
10/19/09 11:33 AMavr-libc: Frequently Asked Questions

Page 1 of 19http://www.nongnu.org/avr-libc/user-manual/FAQ.html

AVR Libc
Home Page

AVR Libc
Development

Pages

Main Page User
Manual

Library
Reference FAQ Alphabetical

Index
Example
Projects

Frequently Asked Questions
FAQ Index

1. My program doesn't recognize a variable updated within an interrupt routine
2. I get "undefined reference to..." for functions like "sin()"
3. How to permanently bind a variable to a register?
4. How to modify MCUCR or WDTCR early?
5. What is all this _BV() stuff about?
6. Can I use C++ on the AVR?
7. Shouldn't I initialize all my variables?
8. Why do some 16-bit timer registers sometimes get trashed?
9. How do I use a #define'd constant in an asm statement?

10. Why does the PC randomly jump around when single-stepping through my program in avr-
gdb?

11. How do I trace an assembler file in avr-gdb?
12. How do I pass an IO port as a parameter to a function?
13. What registers are used by the C compiler?
14. How do I put an array of strings completely in ROM?
15. How to use external RAM?
16. Which -O flag to use?
17. How do I relocate code to a fixed address?
18. My UART is generating nonsense! My ATmega128 keeps crashing! Port F is completely broken!
19. Why do all my "foo...bar" strings eat up the SRAM?
20. Why does the compiler compile an 8-bit operation that uses bitwise operators into a 16-bit

operation in assembly?
21. How to detect RAM memory and variable overlap problems?
22. Is it really impossible to program the ATtinyXX in C?
23. What is this "clock skew detected" message?
24. Why are (many) interrupt flags cleared by writing a logical 1?
25. Why have "programmed" fuses the bit value 0?
26. Which AVR-specific assembler operators are available?
27. Why are interrupts re-enabled in the middle of writing the stack pointer?
28. Why are there five different linker scripts?
29. How to add a raw binary image to linker output?
30. How do I perform a software reset of the AVR?
31. I am using floating point math. Why is the compiled code so big? Why does my code not work?
32. What pitfalls exist when writing reentrant code?
33. Why are some addresses of the EEPROM corrupted (usually address zero)?
34. Why is my baud rate wrong?

My program doesn't recognize a variable updated within an
interrupt routine
When using the optimizer, in a loop like the following one:

uint8_t flag;
...
ISR(SOME_vect) {
 flag = 1;
}
...

 while (flag == 0) {
 ...
 }

http://www.nongnu.org/avr-libc/
https://savannah.nongnu.org/projects/avr-libc/
http://www.nongnu.org/avr-libc/user-manual/index.html
http://www.nongnu.org/avr-libc/user-manual/pages.html
http://www.nongnu.org/avr-libc/user-manual/modules.html
http://www.nongnu.org/avr-libc/user-manual/FAQ.html
http://www.nongnu.org/avr-libc/user-manual/globals.html
http://www.nongnu.org/avr-libc/user-manual/group__demos.html
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_volatile
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_libm
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_regbind
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_startup
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_use_bv
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_cplusplus
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_varinit
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_16bitio
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_asmconst
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_gdboptimize
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_asmstabs
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_port_pass
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_reg_usage
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_rom_array
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_ext_ram
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_optflags
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_reloc_code
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_fuses
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_flashstrings
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_intpromote
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_ramoverlap
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_tinyavr_c
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_clockskew
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_intbits
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_fuselow
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_asmops
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_spman
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_linkerscripts
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_binarydata
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_softreset
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_math
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_reentrant
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_eeprom_corruption
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_wrong_baud_rate
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdint.html#gba7bc1797add20fe3efdf37ced1182c5

10/19/09 11:33 AMavr-libc: Frequently Asked Questions

Page 2 of 19http://www.nongnu.org/avr-libc/user-manual/FAQ.html

the compiler will typically access flag only once, and optimize further accesses completely away, since its
code path analysis shows that nothing inside the loop could change the value of flag anyway. To tell the
compiler that this variable could be changed outside the scope of its code path analysis (e. g. from within an
interrupt routine), the variable needs to be declared like:

volatile uint8_t flag;

Back to FAQ Index.

I get "undefined reference to..." for functions like "sin()"
In order to access the mathematical functions that are declared in <math.h>, the linker needs to be told to
also link the mathematical library, libm.a.

Typically, system libraries like libm.a are given to the final C compiler command line that performs the
linking step by adding a flag -lm at the end. (That is, the initial lib and the filename suffix from the library
are written immediately after a -l flag. So for a libfoo.a library, -lfoo needs to be provided.) This will
make the linker search the library in a path known to the system.

An alternative would be to specify the full path to the libm.a file at the same place on the command line, i.
e. after all the object files (*.o). However, since this requires knowledge of where the build system will
exactly find those library files, this is deprecated for system libraries.

Back to FAQ Index.

How to permanently bind a variable to a register?
This can be done with

register unsigned char counter asm("r3");

Typically, it should be safe to use r2 through r7 that way.

Registers r8 through r15 can be used for argument passing by the compiler in case many or long arguments
are being passed to callees. If this is not the case throughout the entire application, these registers could be
used for register variables as well.

Extreme care should be taken that the entire application is compiled with a consistent set of register-
allocated variables, including possibly used library functions.

See C Names Used in Assembler Code for more details.

Back to FAQ Index.

How to modify MCUCR or WDTCR early?
The method of early initialization (MCUCR, WDTCR or anything else) is different (and more flexible) in the
current version. Basically, write a small assembler file which looks like this:

;; begin xram.S

#include <avr/io.h>

 .section .init1,"ax",@progbits

 ldi r16,_BV(SRE) | _BV(SRW)
 out _SFR_IO_ADDR(MCUCR),r16

;; end xram.S

Assemble it, link the resulting xram.o with other files in your program, and this piece of code will be
inserted in initialization code, which is run right after reset. See the linker script for comments about the
new .initN sections (which one to use, etc.).

The advantage of this method is that you can insert any initialization code you want (just remember that this
is very early startup -- no stack and no __zero_reg__ yet), and no program memory space is wasted if this
feature is not used.

http://www.nongnu.org/avr-libc/user-manual/group__avr__stdint.html#gba7bc1797add20fe3efdf37ced1182c5
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/math_8h.html
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/inline_asm.html#c_names_in_asm
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/io_8h.html
http://www.nongnu.org/avr-libc/user-manual/group__avr__sfr.html#g11643f271076024c395a93800b3d9546
http://www.nongnu.org/avr-libc/user-manual/group__avr__sfr.html#g11643f271076024c395a93800b3d9546

10/19/09 11:33 AMavr-libc: Frequently Asked Questions

Page 3 of 19http://www.nongnu.org/avr-libc/user-manual/FAQ.html

There should be no need to modify linker scripts anymore, except for some very special cases. It is best to
leave __stack at its default value (end of internal SRAM -- faster, and required on some devices like
ATmega161 because of errata), and add -Wl,-Tdata,0x801100 to start the data section above the stack.

For more information on using sections, see Memory Sections. There is also an example for Using Sections
in C Code. Note that in C code, any such function would preferably be placed into section .init3 as the code
in .init2 ensures the internal register __zero_reg__ is already cleared.

Back to FAQ Index.

What is all this _BV() stuff about?
When performing low-level output work, which is a very central point in microcontroller programming, it is
quite common that a particular bit needs to be set or cleared in some IO register. While the device
documentation provides mnemonic names for the various bits in the IO registers, and the AVR device-
specific IO definitions reflect these names in definitions for numerical constants, a way is needed to convert
a bit number (usually within a byte register) into a byte value that can be assigned directly to the register.
However, sometimes the direct bit numbers are needed as well (e. g. in an SBI() instruction), so the
definitions cannot usefully be made as byte values in the first place.

So in order to access a particular bit number as a byte value, use the _BV() macro. Of course, the
implementation of this macro is just the usual bit shift (which is done by the compiler anyway, thus doesn't
impose any run-time penalty), so the following applies:

_BV(3) => 1 << 3 => 0x08

However, using the macro often makes the program better readable.

"BV" stands for "bit value", in case someone might ask you. :-)

Example: clock timer 2 with full IO clock (CS2x = 0b001), toggle OC2 output on compare match (COM2x =
0b01), and clear timer on compare match (CTC2 = 1). Make OC2 (PD7) an output.

 TCCR2 = _BV(COM20)|_BV(CTC2)|_BV(CS20);
 DDRD = _BV(PD7);

Back to FAQ Index.

Can I use C++ on the AVR?
Basically yes, C++ is supported (assuming your compiler has been configured and compiled to support it, of
course). Source files ending in .cc, .cpp or .C will automatically cause the compiler frontend to invoke the
C++ compiler. Alternatively, the C++ compiler could be explicitly called by the name avr-c++.

However, there's currently no support for libstdc++, the standard support library needed for a complete
C++ implementation. This imposes a number of restrictions on the C++ programs that can be compiled.
Among them are:

Obviously, none of the C++ related standard functions, classes, and template classes are available.

The operators new and delete are not implemented, attempting to use them will cause the linker to
complain about undefined external references. (This could perhaps be fixed.)

Some of the supplied include files are not C++ safe, i. e. they need to be wrapped into

 extern "C" { . . . }

(This could certainly be fixed, too.)

Exceptions are not supported. Since exceptions are enabled by default in the C++ frontend, they
explicitly need to be turned off using -fno-exceptions in the compiler options. Failing this, the
linker will complain about an undefined external reference to __gxx_personality_sj0.

Constructors and destructors are supported though, including global ones.

When programming C++ in space- and runtime-sensitive environments like microcontrollers, extra care
should be taken to avoid unwanted side effects of the C++ calling conventions like implied copy
constructors that could be called upon function invocation etc. These things could easily add up into a

http://www.nongnu.org/avr-libc/user-manual/mem_sections.html
http://www.nongnu.org/avr-libc/user-manual/mem_sections.html#c_sections
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/group__avr__io.html
http://www.nongnu.org/avr-libc/user-manual/group__avr__sfr.html#g11643f271076024c395a93800b3d9546
http://www.nongnu.org/avr-libc/user-manual/group__avr__sfr.html#g11643f271076024c395a93800b3d9546
http://www.nongnu.org/avr-libc/user-manual/group__avr__sfr.html#g11643f271076024c395a93800b3d9546
http://www.nongnu.org/avr-libc/user-manual/group__avr__sfr.html#g11643f271076024c395a93800b3d9546
http://www.nongnu.org/avr-libc/user-manual/group__avr__sfr.html#g11643f271076024c395a93800b3d9546
http://www.nongnu.org/avr-libc/user-manual/group__avr__sfr.html#g11643f271076024c395a93800b3d9546
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index

10/19/09 11:33 AMavr-libc: Frequently Asked Questions

Page 4 of 19http://www.nongnu.org/avr-libc/user-manual/FAQ.html

considerable amount of time and program memory wasted. Thus, casual inspection of the generated
assembler code (using the -S compiler option) seems to be warranted.

Back to FAQ Index.

Shouldn't I initialize all my variables?
Global and static variables are guaranteed to be initialized to 0 by the C standard. avr-gcc does this by
placing the appropriate code into section .init4 (see The .initN Sections). With respect to the standard, this
sentence is somewhat simplified (because the standard allows for machines where the actual bit pattern used
differs from all bits being 0), but for the AVR target, in general, all integer-type variables are set to 0, all
pointers to a NULL pointer, and all floating-point variables to 0.0.

As long as these variables are not initialized (i. e. they don't have an equal sign and an initialization
expression to the right within the definition of the variable), they go into the .bss section of the file. This
section simply records the size of the variable, but otherwise doesn't consume space, neither within the
object file nor within flash memory. (Of course, being a variable, it will consume space in the target's
SRAM.)

In contrast, global and static variables that have an initializer go into the .data section of the file. This will
cause them to consume space in the object file (in order to record the initializing value), and in the flash
ROM of the target device. The latter is needed since the flash ROM is the only way that the compiler can
tell the target device the value this variable is going to be initialized to.

Now if some programmer "wants to make doubly sure" their variables really get a 0 at program startup, and
adds an initializer just containing 0 on the right-hand side, they waste space. While this waste of space
applies to virtually any platform C is implemented on, it's usually not noticeable on larger machines like
PCs, while the waste of flash ROM storage can be very painful on a small microcontroller like the AVR.

So in general, variables should only be explicitly initialized if the initial value is non-zero.

Note:
Recent versions of GCC are now smart enough to detect this situation, and revert variables that are
explicitly initialized to 0 to the .bss section. Still, other compilers might not do that optimization, and
as the C standard guarantees the initialization, it is safe to rely on it.

Back to FAQ Index.

Why do some 16-bit timer registers sometimes get trashed?
Some of the timer-related 16-bit IO registers use a temporary register (called TEMP in the Atmel datasheet)
to guarantee an atomic access to the register despite the fact that two separate 8-bit IO transfers are required
to actually move the data. Typically, this includes access to the current timer/counter value register (TCNTn),
the input capture register (ICRn), and write access to the output compare registers (OCRnM). Refer to the
actual datasheet for each device's set of registers that involves the TEMP register.

When accessing one of the registers that use TEMP from the main application, and possibly any other one
from within an interrupt routine, care must be taken that no access from within an interrupt context could
clobber the TEMP register data of an in-progress transaction that has just started elsewhere.

To protect interrupt routines against other interrupt routines, it's usually best to use the ISR() macro when
declaring the interrupt function, and to ensure that interrupts are still disabled when accessing those 16-bit
timer registers.

Within the main program, access to those registers could be encapsulated in calls to the cli() and sei()
macros. If the status of the global interrupt flag before accessing one of those registers is uncertain,
something like the following example code can be used.

uint16_t
read_timer1(void)
{
 uint8_t sreg;
 uint16_t val;

 sreg = SREG;
 cli();
 val = TCNT1;
 SREG = sreg;

 return val;
}

http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/mem_sections.html#sec_dot_init
http://www.nongnu.org/avr-libc/user-manual/mem_sections.html#sec_dot_bss
http://www.nongnu.org/avr-libc/user-manual/mem_sections.html#sec_dot_data
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#gd28590624d422cdf30d626e0a506255f
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#g68c330e94fe121eba993e5a5973c3162
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#gad5ebd34cb344c26ac87594f79b06b73
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdint.html#g1f1825b69244eb3ad2c7165ddc99c956
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdint.html#gba7bc1797add20fe3efdf37ced1182c5
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdint.html#g1f1825b69244eb3ad2c7165ddc99c956
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#g68c330e94fe121eba993e5a5973c3162

10/19/09 11:33 AMavr-libc: Frequently Asked Questions

Page 5 of 19http://www.nongnu.org/avr-libc/user-manual/FAQ.html

Back to FAQ Index.

How do I use a #define'd constant in an asm statement?
So you tried this:

asm volatile("sbi 0x18,0x07;");

Which works. When you do the same thing but replace the address of the port by its macro name, like this:

asm volatile("sbi PORTB,0x07;");

you get a compilation error: "Error: constant value required".

PORTB is a precompiler definition included in the processor specific file included in avr/io.h. As you may
know, the precompiler will not touch strings and PORTB, instead of 0x18, gets passed to the assembler. One
way to avoid this problem is:

asm volatile("sbi %0, 0x07" : "I" (_SFR_IO_ADDR(PORTB)):);

Note:
For C programs, rather use the standard C bit operators instead, so the above would be expressed as
PORTB |= (1 << 7). The optimizer will take care to transform this into a single SBI instruction,
assuming the operands allow for this.

Back to FAQ Index.

Why does the PC randomly jump around when single-stepping
through my program in avr-gdb?
When compiling a program with both optimization (-O) and debug information (-g) which is fortunately
possible in avr-gcc, the code watched in the debugger is optimized code. While it is not guaranteed, very
often this code runs with the exact same optimizations as it would run without the -g switch.

This can have unwanted side effects. Since the compiler is free to reorder code execution as long as the
semantics do not change, code is often rearranged in order to make it possible to use a single branch
instruction for conditional operations. Branch instructions can only cover a short range for the target PC (-
63 through +64 words from the current PC). If a branch instruction cannot be used directly, the compiler
needs to work around it by combining a skip instruction together with a relative jump (rjmp) instruction,
which will need one additional word of ROM.

Another side effect of optimization is that variable usage is restricted to the area of code where it is actually
used. So if a variable was placed in a register at the beginning of some function, this same register can be
re-used later on if the compiler notices that the first variable is no longer used inside that function, even
though the variable is still in lexical scope. When trying to examine the variable in avr-gdb, the displayed
result will then look garbled.

So in order to avoid these side effects, optimization can be turned off while debugging. However, some of
these optimizations might also have the side effect of uncovering bugs that would otherwise not be obvious,
so it must be noted that turning off optimization can easily change the bug pattern. In most cases, you are
better off leaving optimizations enabled while debugging.

Back to FAQ Index.

How do I trace an assembler file in avr-gdb?
When using the -g compiler option, avr-gcc only generates line number and other debug information for C
(and C++) files that pass the compiler. Functions that don't have line number information will be completely
skipped by a single step command in gdb. This includes functions linked from a standard library, but by
default also functions defined in an assembler source file, since the -g compiler switch does not apply to the
assembler.

So in order to debug an assembler input file (possibly one that has to be passed through the C preprocessor),
it's the assembler that needs to be told to include line-number information into the output file. (Other debug

http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/io_8h.html
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index

10/19/09 11:33 AMavr-libc: Frequently Asked Questions

Page 6 of 19http://www.nongnu.org/avr-libc/user-manual/FAQ.html

information like data types and variable allocation cannot be generated, since unlike a compiler, the
assembler basically doesn't know about this.) This is done using the (GNU) assembler option --gstabs.

Example:

 $ avr-as -mmcu=atmega128 --gstabs -o foo.o foo.s

When the assembler is not called directly but through the C compiler frontend (either implicitly by passing a
source file ending in .S, or explicitly using -x assembler-with-cpp), the compiler frontend needs to be
told to pass the --gstabs option down to the assembler. This is done using -Wa,--gstabs. Please take care
to only pass this option when compiling an assembler input file. Otherwise, the assembler code that results
from the C compilation stage will also get line number information, which confuses the debugger.

Note:
You can also use -Wa,-gstabs since the compiler will add the extra '-' for you.

Example:

 $ EXTRA_OPTS="-Wall -mmcu=atmega128 -x assembler-with-cpp"
 $ avr-gcc -Wa,--gstabs ${EXTRA_OPTS} -c -o foo.o foo.S

Also note that the debugger might get confused when entering a piece of code that has a non-local label
before, since it then takes this label as the name of a new function that appears to have been entered. Thus,
the best practice to avoid this confusion is to only use non-local labels when declaring a new function, and
restrict anything else to local labels. Local labels consist just of a number only. References to these labels
consist of the number, followed by the letter b for a backward reference, or f for a forward reference. These
local labels may be re-used within the source file, references will pick the closest label with the same
number and given direction.

Example:

myfunc: push r16
 push r17
 push r18
 push YL
 push YH
 ...
 eor r16, r16 ; start loop
 ldi YL, lo8(sometable)
 ldi YH, hi8(sometable)
 rjmp 2f ; jump to loop test at end
1: ld r17, Y+ ; loop continues here
 ...
 breq 1f ; return from myfunc prematurely
 ...
 inc r16
2: cmp r16, r18
 brlo 1b ; jump back to top of loop

1: pop YH
 pop YL
 pop r18
 pop r17
 pop r16
 ret

Back to FAQ Index.

How do I pass an IO port as a parameter to a function?
Consider this example code:

#include <inttypes.h>
#include <avr/io.h>

void
set_bits_func_wrong (volatile uint8_t port, uint8_t mask)
{
 port |= mask;
}

http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/inttypes_8h.html
http://www.nongnu.org/avr-libc/user-manual/io_8h.html
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdint.html#gba7bc1797add20fe3efdf37ced1182c5
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdint.html#gba7bc1797add20fe3efdf37ced1182c5

10/19/09 11:33 AMavr-libc: Frequently Asked Questions

Page 7 of 19http://www.nongnu.org/avr-libc/user-manual/FAQ.html

void
set_bits_func_correct (volatile uint8_t *port, uint8_t mask)
{
 *port |= mask;
}

#define set_bits_macro(port,mask) ((port) |= (mask))

int main (void)
{
 set_bits_func_wrong (PORTB, 0xaa);
 set_bits_func_correct (&PORTB, 0x55);
 set_bits_macro (PORTB, 0xf0);

 return (0);
}

The first function will generate object code which is not even close to what is intended. The major problem
arises when the function is called. When the compiler sees this call, it will actually pass the value of the
PORTB register (using an IN instruction), instead of passing the address of PORTB (e.g. memory mapped io
addr of 0x38, io port 0x18 for the mega128). This is seen clearly when looking at the disassembly of the
call:

 set_bits_func_wrong (PORTB, 0xaa);
 10a: 6a ea ldi r22, 0xAA ; 170
 10c: 88 b3 in r24, 0x18 ; 24
 10e: 0e 94 65 00 call 0xca

So, the function, once called, only sees the value of the port register and knows nothing about which port it
came from. At this point, whatever object code is generated for the function by the compiler is irrelevant.
The interested reader can examine the full disassembly to see that the function's body is completely fubar.

The second function shows how to pass (by reference) the memory mapped address of the io port to the
function so that you can read and write to it in the function. Here's the object code generated for the
function call:

 set_bits_func_correct (&PORTB, 0x55);
 112: 65 e5 ldi r22, 0x55 ; 85
 114: 88 e3 ldi r24, 0x38 ; 56
 116: 90 e0 ldi r25, 0x00 ; 0
 118: 0e 94 7c 00 call 0xf8

You can clearly see that 0x0038 is correctly passed for the address of the io port. Looking at the
disassembled object code for the body of the function, we can see that the function is indeed performing the
operation we intended:

void
set_bits_func_correct (volatile uint8_t *port, uint8_t mask)
{
 f8: fc 01 movw r30, r24
 *port |= mask;
 fa: 80 81 ld r24, Z
 fc: 86 2b or r24, r22
 fe: 80 83 st Z, r24
}
 100: 08 95 ret

Notice that we are accessing the io port via the LD and ST instructions.

The port parameter must be volatile to avoid a compiler warning.

Note:
Because of the nature of the IN and OUT assembly instructions, they can not be used inside the
function when passing the port in this way. Readers interested in the details should consult the
Instruction Set datasheet.

Finally we come to the macro version of the operation. In this contrived example, the macro is the most
efficient method with respect to both execution speed and code size:

 set_bits_macro (PORTB, 0xf0);
 11c: 88 b3 in r24, 0x18 ; 24

http://www.nongnu.org/avr-libc/user-manual/group__avr__stdint.html#gba7bc1797add20fe3efdf37ced1182c5
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdint.html#gba7bc1797add20fe3efdf37ced1182c5

10/19/09 11:33 AMavr-libc: Frequently Asked Questions

Page 8 of 19http://www.nongnu.org/avr-libc/user-manual/FAQ.html

 11e: 80 6f ori r24, 0xF0 ; 240
 120: 88 bb out 0x18, r24 ; 24

Of course, in a real application, you might be doing a lot more in your function which uses a passed by
reference io port address and thus the use of a function over a macro could save you some code space, but
still at a cost of execution speed.

Care should be taken when such an indirect port access is going to one of the 16-bit IO registers where the
order of write access is critical (like some timer registers). All versions of avr-gcc up to 3.3 will generate
instructions that use the wrong access order in this situation (since with normal memory operands where the
order doesn't matter, this sometimes yields shorter code).

See http://mail.nongnu.org/archive/html/avr-libc-dev/2003-01/msg00044.html for a possible workaround.

avr-gcc versions after 3.3 have been fixed in a way where this optimization will be disabled if the respective
pointer variable is declared to be volatile, so the correct behaviour for 16-bit IO ports can be forced that
way.

Back to FAQ Index.

What registers are used by the C compiler?
Data types:
char is 8 bits, int is 16 bits, long is 32 bits, long long is 64 bits, float and double are 32 bits (this
is the only supported floating point format), pointers are 16 bits (function pointers are word addresses,
to allow addressing up to 128K program memory space). There is a -mint8 option (see Options for
the C compiler avr-gcc) to make int 8 bits, but that is not supported by avr-libc and violates C
standards (int must be at least 16 bits). It may be removed in a future release.

Call-used registers (r18-r27, r30-r31):
May be allocated by gcc for local data. You may use them freely in assembler subroutines. Calling C
subroutines can clobber any of them - the caller is responsible for saving and restoring.

Call-saved registers (r2-r17, r28-r29):
May be allocated by gcc for local data. Calling C subroutines leaves them unchanged. Assembler
subroutines are responsible for saving and restoring these registers, if changed. r29:r28 (Y pointer) is
used as a frame pointer (points to local data on stack) if necessary. The requirement for the callee to
save/preserve the contents of these registers even applies in situations where the compiler assigns
them for argument passing.

Fixed registers (r0, r1):
Never allocated by gcc for local data, but often used for fixed purposes:

r0 - temporary register, can be clobbered by any C code (except interrupt handlers which save it), may be
used to remember something for a while within one piece of assembler code

r1 - assumed to be always zero in any C code, may be used to remember something for a while within one
piece of assembler code, but must then be cleared after use (clr r1). This includes any use of the
[f]mul[s[u]] instructions, which return their result in r1:r0. Interrupt handlers save and clear r1 on entry,
and restore r1 on exit (in case it was non-zero).

Function call conventions:
Arguments - allocated left to right, r25 to r8. All arguments are aligned to start in even-numbered
registers (odd-sized arguments, including char, have one free register above them). This allows
making better use of the movw instruction on the enhanced core.

If too many, those that don't fit are passed on the stack.

Return values: 8-bit in r24 (not r25!), 16-bit in r25:r24, up to 32 bits in r22-r25, up to 64 bits in r18-r25. 8-
bit return values are zero/sign-extended to 16 bits by the called function (unsigned char is more efficient
than signed char - just clr r25). Arguments to functions with variable argument lists (printf etc.) are all
passed on stack, and char is extended to int.

Warning:
There was no such alignment before 2000-07-01, including the old patches for gcc-2.95.2. Check your
old assembler subroutines, and adjust them accordingly.

Back to FAQ Index.

How do I put an array of strings completely in ROM?

http://mail.nongnu.org/archive/html/avr-libc-dev/2003-01/msg00044.html
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/using_tools.html#using_avr_gcc
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index

10/19/09 11:33 AMavr-libc: Frequently Asked Questions

Page 9 of 19http://www.nongnu.org/avr-libc/user-manual/FAQ.html

There are times when you may need an array of strings which will never be modified. In this case, you don't
want to waste ram storing the constant strings. The most obvious (and incorrect) thing to do is this:

#include <avr/pgmspace.h>

PGM_P array[2] PROGMEM = {
 "Foo",
 "Bar"
};

int main (void)
{
 char buf[32];
 strcpy_P (buf, array[1]);
 return 0;
}

The result is not what you want though. What you end up with is the array stored in ROM, while the
individual strings end up in RAM (in the .data section).

To work around this, you need to do something like this:

#include <avr/pgmspace.h>

const char foo[] PROGMEM = "Foo";
const char bar[] PROGMEM = "Bar";

PGM_P array[2] PROGMEM = {
 foo,
 bar
};

int main (void)
{
 char buf[32];
 PGM_P p;
 int i;

 memcpy_P(&p, &array[i], sizeof(PGM_P));
 strcpy_P(buf, p);
 return 0;
}

Looking at the disassembly of the resulting object file we see that array is in flash as such:

00000026 <array>:
 26: 2e 00 .word 0x002e ; ????
 28: 2a 00 .word 0x002a ; ????

0000002a <bar>:
 2a: 42 61 72 00 Bar.

0000002e <foo>:
 2e: 46 6f 6f 00 Foo.

foo is at addr 0x002e.
bar is at addr 0x002a.
array is at addr 0x0026.

Then in main we see this:

 memcpy_P(&p, &array[i], sizeof(PGM_P));
 70: 66 0f add r22, r22
 72: 77 1f adc r23, r23
 74: 6a 5d subi r22, 0xDA ; 218
 76: 7f 4f sbci r23, 0xFF ; 255
 78: 42 e0 ldi r20, 0x02 ; 2
 7a: 50 e0 ldi r21, 0x00 ; 0
 7c: ce 01 movw r24, r28
 7e: 81 96 adiw r24, 0x21 ; 33
 80: 08 d0 rcall .+16 ; 0x92

This code reads the pointer to the desired string from the ROM table array into a register pair.

http://www.nongnu.org/avr-libc/user-manual/pgmspace_8h.html
http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html#g963f816fc88a5d8479c285ed4c630229
http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html#g9c3ff50bdf59b38219394ff5230660da
http://www.nongnu.org/avr-libc/user-manual/pgmspace_8h.html
http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html#g963f816fc88a5d8479c285ed4c630229
http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html#g963f816fc88a5d8479c285ed4c630229
http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html#g53ee9e2dec1d5f685d78aa8dc444dccb
http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html#g963f816fc88a5d8479c285ed4c630229
http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html#g9c3ff50bdf59b38219394ff5230660da
http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html#g53ee9e2dec1d5f685d78aa8dc444dccb
http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html#g963f816fc88a5d8479c285ed4c630229

10/19/09 11:33 AMavr-libc: Frequently Asked Questions

Page 10 of 19http://www.nongnu.org/avr-libc/user-manual/FAQ.html

The value of i (in r22:r23) is doubled to accommodate for the word offset required to access array[], then
the address of array (0x26) is added, by subtracting the negated address (0xffda). The address of variable p
is computed by adding its offset within the stack frame (33) to the Y pointer register, and memcpy_P is
called.

 strcpy_P(buf, p);
 82: 69 a1 ldd r22, Y+33 ; 0x21
 84: 7a a1 ldd r23, Y+34 ; 0x22
 86: ce 01 movw r24, r28
 88: 01 96 adiw r24, 0x01 ; 1
 8a: 0c d0 rcall .+24 ; 0xa4

This will finally copy the ROM string into the local buffer buf.

Variable p (located at Y+33) is read, and passed together with the address of buf (Y+1) to strcpy_P. This
will copy the string from ROM to buf.

Note that when using a compile-time constant index, omitting the first step (reading the pointer from ROM
via memcpy_P) usually remains unnoticed, since the compiler would then optimize the code for accessing
array at compile-time.

Back to FAQ Index.

How to use external RAM?
Well, there is no universal answer to this question; it depends on what the external RAM is going to be used
for.

Basically, the bit SRE (SRAM enable) in the MCUCR register needs to be set in order to enable the external
memory interface. Depending on the device to be used, and the application details, further registers affecting
the external memory operation like XMCRA and XMCRB, and/or further bits in MCUCR might be configured.
Refer to the datasheet for details.

If the external RAM is going to be used to store the variables from the C program (i. e., the .data and/or .bss
segment) in that memory area, it is essential to set up the external memory interface early during the device
initialization so the initialization of these variable will take place. Refer to How to modify MCUCR or
WDTCR early? for a description how to do this using few lines of assembler code, or to the chapter about
memory sections for an example written in C.

The explanation of malloc() contains a discussion about the use of internal RAM vs. external RAM in
particular with respect to the various possible locations of the heap (area reserved for malloc()). It also
explains the linker command-line options that are required to move the memory regions away from their
respective standard locations in internal RAM.

Finally, if the application simply wants to use the additional RAM for private data storage kept outside the
domain of the C compiler (e. g. through a char * variable initialized directly to a particular address), it
would be sufficient to defer the initialization of the external RAM interface to the beginning of main(), so
no tweaking of the .init3 section is necessary. The same applies if only the heap is going to be located there,
since the application start-up code does not affect the heap.

It is not recommended to locate the stack in external RAM. In general, accessing external RAM is slower
than internal RAM, and errata of some AVR devices even prevent this configuration from working properly
at all.

Back to FAQ Index.

Which -O flag to use?
There's a common misconception that larger numbers behind the -O option might automatically cause
"better" optimization. First, there's no universal definition for "better", with optimization often being a speed
vs. code size trade off. See the detailed discussion for which option affects which part of the code
generation.

A test case was run on an ATmega128 to judge the effect of compiling the library itself using different
optimization levels. The following table lists the results. The test case consisted of around 2 KB of strings to
sort. Test #1 used qsort() using the standard library strcmp(), test #2 used a function that sorted the strings
by their size (thus had two calls to strlen() per invocation).

When comparing the resulting code size, it should be noted that a floating point version of fvprintf() was

http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html#g9c3ff50bdf59b38219394ff5230660da
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/mem_sections.html#sec_dot_init
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_startup
http://www.nongnu.org/avr-libc/user-manual/mem_sections.html#c_sections
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdlib.html#g4996af830ebe744d9678e5251dfd3ebd
http://www.nongnu.org/avr-libc/user-manual/malloc.html#malloc_where
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdlib.html#g4996af830ebe744d9678e5251dfd3ebd
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/using_tools.html#gcc_optO
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdlib.html#gfd4bf2faec43342e7ad3d2ab37bac1fe
http://www.nongnu.org/avr-libc/user-manual/group__avr__string.html#g46f3cbd2de457c0fb340a1f379fc33ba
http://www.nongnu.org/avr-libc/user-manual/group__avr__string.html#g7fd4936b86eb6b87e98587044c562715

10/19/09 11:33 AMavr-libc: Frequently Asked Questions

Page 11 of 19http://www.nongnu.org/avr-libc/user-manual/FAQ.html

linked into the binary (in order to print out the time elapsed) which is entirely not affected by the different
optimization levels, and added about 2.5 KB to the code.

Optimization flags Size of .text Time for test #1 Time for test #2

-O3 6898 903 Âµs 19.7 ms

-O2 6666 972 Âµs 20.1 ms

-Os 6618 955 Âµs 20.1 ms

-Os -mcall-prologues 6474 972 Âµs 20.1 ms

(The difference between 955 Âµs and 972 Âµs was just a single timer-tick, so take this with a grain of salt.)

So generally, it seems -Os -mcall-prologues is the most universal "best" optimization level. Only
applications that need to get the last few percent of speed benefit from using -O3.

Back to FAQ Index.

How do I relocate code to a fixed address?
First, the code should be put into a new named section. This is done with a section attribute:

__attribute__ ((section (".bootloader")))

In this example, .bootloader is the name of the new section. This attribute needs to be placed after the
prototype of any function to force the function into the new section.

void boot(void) __attribute__ ((section (".bootloader")));

To relocate the section to a fixed address the linker flag --section-start is used. This option can be
passed to the linker using the -Wl compiler option:

-Wl,--section-start=.bootloader=0x1E000

The name after section-start is the name of the section to be relocated. The number after the section name is
the beginning address of the named section.

Back to FAQ Index.

My UART is generating nonsense! My ATmega128 keeps crashing!
Port F is completely broken!
Well, certain odd problems arise out of the situation that the AVR devices as shipped by Atmel often come
with a default fuse bit configuration that doesn't match the user's expectations. Here is a list of things to care
for:

All devices that have an internal RC oscillator ship with the fuse enabled that causes the device to run
off this oscillator, instead of an external crystal. This often remains unnoticed until the first attempt is
made to use something critical in timing, like UART communication.
The ATmega128 ships with the fuse enabled that turns this device into ATmega103 compatibility
mode. This means that some ports are not fully usable, and in particular that the internal SRAM is
located at lower addresses. Since by default, the stack is located at the top of internal SRAM, a
program compiled for an ATmega128 running on such a device will immediately crash upon the first
function call (or rather, upon the first function return).
Devices with a JTAG interface have the JTAGEN fuse programmed by default. This will make the
respective port pins that are used for the JTAG interface unavailable for regular IO.

Back to FAQ Index.

Why do all my "foo...bar" strings eat up the SRAM?
By default, all strings are handled as all other initialized variables: they occupy RAM (even though the
compiler might warn you when it detects write attempts to these RAM locations), and occupy the same
amount of flash ROM so they can be initialized to the actual string by startup code. The compiler can

http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/mem_sections.html
http://www.nongnu.org/avr-libc/user-manual/using_tools.html#gcc_minusW
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index

10/19/09 11:33 AMavr-libc: Frequently Asked Questions

Page 12 of 19http://www.nongnu.org/avr-libc/user-manual/FAQ.html

optimize multiple identical strings into a single one, but obviously only for one compilation unit (i. e., a
single C source file).

That way, any string literal will be a valid argument to any C function that expects a const char *
argument.

Of course, this is going to waste a lot of SRAM. In Program Space String Utilities, a method is described
how such constant data can be moved out to flash ROM. However, a constant string located in flash ROM
is no longer a valid argument to pass to a function that expects a const char *-type string, since the AVR
processor needs the special instruction LPM to access these strings. Thus, separate functions are needed that
take this into account. Many of the standard C library functions have equivalents available where one of the
string arguments can be located in flash ROM. Private functions in the applications need to handle this, too.
For example, the following can be used to implement simple debugging messages that will be sent through
a UART:

#include <inttypes.h>
#include <avr/io.h>
#include <avr/pgmspace.h>

int
uart_putchar(char c)
{
 if (c == '\n')
 uart_putchar('\r');
 loop_until_bit_is_set(USR, UDRE);
 UDR = c;
 return 0; /* so it could be used for fdevopen(), too */
}

void
debug_P(const char *addr)
{
 char c;

 while ((c = pgm_read_byte(addr++)))
 uart_putchar(c);
}

int
main(void)
{
 ioinit(); /* initialize UART, ... */
 debug_P(PSTR("foo was here\n"));
 return 0;
}

Note:
By convention, the suffix _P to the function name is used as an indication that this function is going
to accept a "program-space string". Note also the use of the PSTR() macro.

Back to FAQ Index.

Why does the compiler compile an 8-bit operation that uses bitwise
operators into a 16-bit operation in assembly?
Bitwise operations in Standard C will automatically promote their operands to an int, which is (by default)
16 bits in avr-gcc.

To work around this use typecasts on the operands, including literals, to declare that the values are to be 8
bit operands.

This may be especially important when clearing a bit:

var &= ~mask; /* wrong way! */

The bitwise "not" operator (~) will also promote the value in mask to an int. To keep it an 8-bit value,
typecast before the "not" operator:

var &= (unsigned char)~mask;

Back to FAQ Index.

http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html
http://www.nongnu.org/avr-libc/user-manual/inttypes_8h.html
http://www.nongnu.org/avr-libc/user-manual/io_8h.html
http://www.nongnu.org/avr-libc/user-manual/pgmspace_8h.html
http://www.nongnu.org/avr-libc/user-manual/group__avr__sfr.html#gaf6857fa882da35f8685e2001e5c3bbe
http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html#g73084a8bbde259ffae72980354b3f027
http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html#g05ca900ebf7cd121be73c654d9ccb3eb
http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html#g05ca900ebf7cd121be73c654d9ccb3eb
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index

10/19/09 11:33 AMavr-libc: Frequently Asked Questions

Page 13 of 19http://www.nongnu.org/avr-libc/user-manual/FAQ.html

How to detect RAM memory and variable overlap problems?
You can simply run avr-nm on your output (ELF) file. Run it with the -n option, and it will sort the symbols
numerically (by default, they are sorted alphabetically).

Look for the symbol _end, that's the first address in RAM that is not allocated by a variable. (avr-gcc
internally adds 0x800000 to all data/bss variable addresses, so please ignore this offset.) Then, the run-time
initialization code initializes the stack pointer (by default) to point to the last available address in (internal)
SRAM. Thus, the region between _end and the end of SRAM is what is available for stack. (If your
application uses malloc(), which e. g. also can happen inside printf(), the heap for dynamic memory is also
located there. See Memory Areas and Using malloc().)

The amount of stack required for your application cannot be determined that easily. For example, if you
recursively call a function and forget to break that recursion, the amount of stack required is infinite. :-)
You can look at the generated assembler code (avr-gcc ... -S), there's a comment in each generated
assembler file that tells you the frame size for each generated function. That's the amount of stack required
for this function, you have to add up that for all functions where you know that the calls could be nested.

Back to FAQ Index.

Is it really impossible to program the ATtinyXX in C?
While some small AVRs are not directly supported by the C compiler since they do not have a RAM-based
stack (and some do not even have RAM at all), it is possible anyway to use the general-purpose registers as
a RAM replacement since they are mapped into the data memory region.

Bruce D. Lightner wrote an excellent description of how to do this, and offers this together with a toolkit on
his web page:

http://lightner.net/avr/ATtinyAvrGcc.html

Back to FAQ Index.

What is this "clock skew detected" message?
It's a known problem of the MS-DOS FAT file system. Since the FAT file system has only a granularity of
2 seconds for maintaining a file's timestamp, and it seems that some MS-DOS derivative (Win9x) perhaps
rounds up the current time to the next second when calculating the timestamp of an updated file in case the
current time cannot be represented in FAT's terms, this causes a situation where make sees a "file coming
from the future".

Since all make decisions are based on file timestamps, and their dependencies, make warns about this
situation.

Solution: don't use inferior file systems / operating systems. Neither Unix file systems nor HPFS (aka
NTFS) do experience that problem.

Workaround: after saving the file, wait a second before starting make. Or simply ignore the warning. If you
are paranoid, execute a make clean all to make sure everything gets rebuilt.

In networked environments where the files are accessed from a file server, this message can also happen if
the file server's clock differs too much from the network client's clock. In this case, the solution is to use a
proper time keeping protocol on both systems, like NTP. As a workaround, synchronize the client's clock
frequently with the server's clock.

Back to FAQ Index.

Why are (many) interrupt flags cleared by writing a logical 1?
Usually, each interrupt has its own interrupt flag bit in some control register, indicating the specified
interrupt condition has been met by representing a logical 1 in the respective bit position. When working
with interrupt handlers, this interrupt flag bit usually gets cleared automatically in the course of processing
the interrupt, sometimes by just calling the handler at all, sometimes (e. g. for the U[S]ART) by reading a
particular hardware register that will normally happen anyway when processing the interrupt.

From the hardware's point of view, an interrupt is asserted as long as the respective bit is set, while global
interrupts are enabled. Thus, it is essential to have the bit cleared before interrupts get re-enabled again
(which usually happens when returning from an interrupt handler).

http://www.nongnu.org/avr-libc/user-manual/group__avr__stdlib.html#g4996af830ebe744d9678e5251dfd3ebd
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g4c04da4953607fa5fa4d3908fecde449
http://www.nongnu.org/avr-libc/user-manual/malloc.html
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://lightner.net/avr/ATtinyAvrGcc.html
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index

10/19/09 11:33 AMavr-libc: Frequently Asked Questions

Page 14 of 19http://www.nongnu.org/avr-libc/user-manual/FAQ.html

Only few subsystems require an explicit action to clear the interrupt request when using interrupt handlers.
(The notable exception is the TWI interface, where clearing the interrupt indicates to proceed with the TWI
bus hardware handshake, so it's never done automatically.)

However, if no normal interrupt handlers are to be used, or in order to make extra sure any pending
interrupt gets cleared before re-activating global interrupts (e. g. an external edge-triggered one), it can be
necessary to explicitly clear the respective hardware interrupt bit by software. This is usually done by
writing a logical 1 into this bit position. This seems to be illogical at first, the bit position already carries a
logical 1 when reading it, so why does writing a logical 1 to it clear the interrupt bit?

The solution is simple: writing a logical 1 to it requires only a single OUT instruction, and it is clear that only
this single interrupt request bit will be cleared. There is no need to perform a read-modify-write cycle (like,
an SBI instruction), since all bits in these control registers are interrupt bits, and writing a logical 0 to the
remaining bits (as it is done by the simple OUT instruction) will not alter them, so there is no risk of any race
condition that might accidentally clear another interrupt request bit. So instead of writing

TIFR |= _BV(TOV0); /* wrong! */

simply use

TIFR = _BV(TOV0);

Back to FAQ Index.

Why have "programmed" fuses the bit value 0?
Basically, fuses are just a bit in a special EEPROM area. For technical reasons, erased E[E]PROM cells
have all bits set to the value 1, so unprogrammed fuses also have a logical 1. Conversely, programmed fuse
cells read out as bit value 0.

Back to FAQ Index.

Which AVR-specific assembler operators are available?
See Pseudo-ops and operators.

Back to FAQ Index.

Why are interrupts re-enabled in the middle of writing the stack
pointer?
When setting up space for local variables on the stack, the compiler generates code like this:

/* prologue: frame size=20 */
 push r28
 push r29
 in r28,__SP_L__
 in r29,__SP_H__
 sbiw r28,20
 in __tmp_reg__,__SREG__
 cli
 out __SP_H__,r29
 out __SREG__,__tmp_reg__
 out __SP_L__,r28
/* prologue end (size=10) */

It reads the current stack pointer value, decrements it by the required amount of bytes, then disables
interrupts, writes back the high part of the stack pointer, writes back the saved SREG (which will eventually
re-enable interrupts if they have been enabled before), and finally writes the low part of the stack pointer.

At the first glance, there's a race between restoring SREG, and writing SPL. However, after enabling
interrupts (either explicitly by setting the I flag, or by restoring it as part of the entire SREG), the AVR
hardware executes (at least) the next instruction still with interrupts disabled, so the write to SPL is
guaranteed to be executed with interrupts disabled still. Thus, the emitted sequence ensures interrupts will
be disabled only for the minimum time required to guarantee the integrity of this operation.

Back to FAQ Index.

http://www.nongnu.org/avr-libc/user-manual/group__avr__sfr.html#g11643f271076024c395a93800b3d9546
http://www.nongnu.org/avr-libc/user-manual/group__avr__sfr.html#g11643f271076024c395a93800b3d9546
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/assembler.html#ass_pseudoops
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#g68c330e94fe121eba993e5a5973c3162
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index

10/19/09 11:33 AMavr-libc: Frequently Asked Questions

Page 15 of 19http://www.nongnu.org/avr-libc/user-manual/FAQ.html

Why are there five different linker scripts?
From a comment in the source code:

Which one of the five linker script files is actually used depends on command line options given to ld.

A .x script file is the default script A .xr script is for linking without relocation (-r flag) A .xu script is like
.xr but *do* create constructors (-Ur flag) A .xn script is for linking with -n flag (mix text and data on same
page). A .xbn script is for linking with -N flag (mix text and data on same page).

Back to FAQ Index.

How to add a raw binary image to linker output?
The GNU linker avr-ld cannot handle binary data directly. However, there's a companion tool called avr-
objcopy. This is already known from the output side: it's used to extract the contents of the linked ELF file
into an Intel Hex load file.

avr-objcopy can create a relocatable object file from arbitrary binary input, like

avr-objcopy -I binary -O elf32-avr foo.bin foo.o

This will create a file named foo.o, with the contents of foo.bin. The contents will default to section .data,
and two symbols will be created named _binary_foo_bin_start and _binary_foo_bin_end. These
symbols can be referred to inside a C source to access these data.

If the goal is to have those data go to flash ROM (similar to having used the PROGMEM attribute in C
source code), the sections have to be renamed while copying, and it's also useful to set the section flags:

avr-objcopy --rename-section .data=.progmem.data,contents,alloc,load,readonly,data -I binary -O elf32-avr foo.bin foo.o

Note that all this could be conveniently wired into a Makefile, so whenever foo.bin changes, it will trigger
the recreation of foo.o, and a subsequent relink of the final ELF file.

Below are two Makefile fragments that provide rules to convert a .txt file to an object file, and to convert a
.bin file to an object file:

$(OBJDIR)/%.o : %.txt
 @echo Converting $<
 @cp $(<) $(*).tmp
 @echo -n 0 | tr 0 '\000' >> $(*).tmp
 @$(OBJCOPY) -I binary -O elf32-avr \
 --rename-section .data=.progmem.data,contents,alloc,load,readonly,data \
 --redefine-sym _binary_$*_tmp_start=$* \
 --redefine-sym _binary_$*_tmp_end=$*_end \
 --redefine-sym _binary_$*_tmp_size=$*_size_sym \
 $(*).tmp $(@)
 @echo "extern const char" $(*)"[] PROGMEM;" > $(*).h
 @echo "extern const char" $(*)_end"[] PROGMEM;" >> $(*).h
 @echo "extern const char" $(*)_size_sym"[];" >> $(*).h
 @echo "#define $(*)_size ((int)$(*)_size_sym)" >> $(*).h
 @rm $(*).tmp

$(OBJDIR)/%.o : %.bin
 @echo Converting $<
 @$(OBJCOPY) -I binary -O elf32-avr \
 --rename-section .data=.progmem.data,contents,alloc,load,readonly,data \
 --redefine-sym _binary_$*_bin_start=$* \
 --redefine-sym _binary_$*_bin_end=$*_end \
 --redefine-sym _binary_$*_bin_size=$*_size_sym \
 $(<) $(@)
 @echo "extern const char" $(*)"[] PROGMEM;" > $(*).h
 @echo "extern const char" $(*)_end"[] PROGMEM;" >> $(*).h
 @echo "extern const char" $(*)_size_sym"[];" >> $(*).h
 @echo "#define $(*)_size ((int)$(*)_size_sym)" >> $(*).h

Back to FAQ Index.

How do I perform a software reset of the AVR?

http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index

10/19/09 11:33 AMavr-libc: Frequently Asked Questions

Page 16 of 19http://www.nongnu.org/avr-libc/user-manual/FAQ.html

The canonical way to perform a software reset of the AVR is to use the watchdog timer. Enable the
watchdog timer to the shortest timeout setting, then go into an infinite, do-nothing loop. The watchdog will
then reset the processor.

The reason why this is preferable over jumping to the reset vector, is that when the watchdog resets the
AVR, the registers will be reset to their known, default settings. Whereas jumping to the reset vector will
leave the registers in their previous state, which is generally not a good idea.

CAUTION! Older AVRs will have the watchdog timer disabled on a reset. For these older AVRs, doing a
soft reset by enabling the watchdog is easy, as the watchdog will then be disabled after the reset. On newer
AVRs, once the watchdog is enabled, then it stays enabled, even after a reset! For these newer AVRs a
function needs to be added to the .init3 section (i.e. during the startup code, before main()) to disable the
watchdog early enough so it does not continually reset the AVR.

Here is some example code that creates a macro that can be called to perform a soft reset:

#include <avr/wdt.h>

...

#define soft_reset() \
do \
{ \
 wdt_enable(WDTO_15MS); \
 for(;;) \
 { \
 } \
} while(0)

For newer AVRs (such as the ATmega1281) also add this function to your code to then disable the
watchdog after a reset (e.g., after a soft reset):

#include <avr/wdt.h>

...

// Function Pototype
void wdt_init(void) __attribute__((naked)) __attribute__((section(".init3")));

...

// Function Implementation
void wdt_init(void)
{
 MCUSR = 0;
 wdt_disable();

 return;
}

Back to FAQ Index.

I am using floating point math. Why is the compiled code so big?
Why does my code not work?
You are not linking in the math library from AVR-LibC. GCC has a library that is used for floating point
operations, but it is not optimized for the AVR, and so it generates big code, or it could be incorrect. This
can happen even when you are not using any floating point math functions from the Standard C library, but
you are just doing floating point math operations.

When you link in the math library from AVR-LibC, those routines get replaced by hand-optimized AVR
assembly and it produces much smaller code.

See I get "undefined reference to..." for functions like "sin()" for more details on how to link in the math
library.

Back to FAQ Index.

What pitfalls exist when writing reentrant code?
Reentrant code means the ability for a piece of code to be called simultaneously from two or more threads.

http://www.nongnu.org/avr-libc/user-manual/wdt_8h.html
http://www.nongnu.org/avr-libc/user-manual/group__avr__watchdog.html#gf6cfea2a1b61e2530ea0c4ef8fc572b3
http://www.nongnu.org/avr-libc/user-manual/group__avr__watchdog.html#gd45893280f49113ffc2e67e1d741f29d
http://www.nongnu.org/avr-libc/user-manual/wdt_8h.html
http://www.nongnu.org/avr-libc/user-manual/group__avr__watchdog.html#gb3784e1b871d61ed338da5658184b725
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_libm
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index

10/19/09 11:33 AMavr-libc: Frequently Asked Questions

Page 17 of 19http://www.nongnu.org/avr-libc/user-manual/FAQ.html

Attention to re-enterability is needed when using a multi-tasking operating system, or when using interrupts
since an interrupt is really a temporary thread.

The code generated natively by gcc is reentrant. But, only some of the libraries in avr-libc are explicitly
reentrant, and some are known not to be reentrant. In general, any library call that reads and writes global
variables (including I/O registers) is not reentrant. This is because more than one thread could read or write
the same storage at the same time, unaware that other threads are doing the same, and create inconsistent
and/or erroneous results.

A library call that is known not to be reentrant will work if it is used only within one thread and no other
thread makes use of a library call that shares common storage with it.

Below is a table of library calls with known issues.

Library call Reentrant Issue Workaround/Alternative

rand(), random() Uses global variables to
keep state information. Use special reentrant versions: rand_r(), random_r().

strtod(), strtol(),
strtoul()

Uses the global variable
errno to return
success/failure.

Ignore errno, or protect calls with cli()/sei() or
ATOMIC_BLOCK() if the application can tolerate it.
Or use sccanf() or sccanf_P() if possible.

malloc(), realloc(),
calloc(), free()

Uses the stack pointer
and global variables to
allocate and free
memory.

Protect calls with cli()/sei() or ATOMIC_BLOCK() if
the application can tolerate it. If using an OS, use the
OS provided memory allocator since the OS is likely
modifying the stack pointer anyway.

fdevopen(), fclose() Uses calloc() and free().

Protect calls with cli()/sei() or ATOMIC_BLOCK() if
the application can tolerate it. Or use
fdev_setup_stream() or FDEV_SETUP_STREAM().
Note: fclose() will only call free() if the stream has
been opened with fdevopen().

eeprom_*(), boot_*() Accesses I/O registers. Protect calls with cli()/sei(), ATOMIC_BLOCK(), or
use OS locking.

pgm_*_far() Accesses I/O register
RAMPZ.

Starting with GCC 4.3, RAMPZ is automatically saved
for ISRs, so nothing further is needed if only using
interrupts.
Some OSes may automatically preserve RAMPZ during
context switching. Check the OS documentation before
assuming it does.
Otherwise, protect calls with cli()/sei(),
ATOMIC_BLOCK(), or use explicit OS locking.

printf(), printf_P(),
vprintf(),
vprintf_P(), puts(),
puts_P()

Alters flags and
character count in global
FILE stdout.

Use only in one thread. Or if returned character count is
unimportant, do not use the *_P versions.
Note: Formatting to a string output, e.g. sprintf(),
sprintf_P(), snprintf(), snprintf_P(), vsprintf(),
vsprintf_P(), vsnprintf(), vsnprintf_P(), is thread safe.
The formatted string could then be followed by an
fwrite() which simply calls the lower layer to send the
string.

fprintf(),
fprintf_P(),
vfprintf(),
vfprintf_P(), fputs(),
fputs_P()

Alters flags and
character count in the
FILE argument.
Problems can occur if a
global FILE is used
from multiple threads.

Assign each thread its own FILE for output. Or if
returned character count is unimportant, do not use the
*_P versions.

assert()
Contains an embedded
fprintf(). See above for
fprintf().

See above for fprintf().

clearerr() Alters flags in the FILE
argument.

Assign each thread its own FILE for output.

getchar(), gets()
Alters flags, character
count, and unget buffer
in global FILE stdin.

Use only in one thread. ***

fgetc(), ungetc(),
fgets(), scanf(),

http://www.nongnu.org/avr-libc/user-manual/group__avr__stdlib.html#ge23144bcbb8e3742b00eb687c36654d1
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdlib.html#g114aeb1751119382aaf3340355b22cfd
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdlib.html#gf5085001be836a0f2a5d3269a7c9fd04
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdlib.html#ga99a0733f06d2b9960a1401c2721af1e
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdlib.html#g5ee4d110a3bb55d2eadda05e3ebedf8a
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdlib.html#gf8ce3b8dae3d45c34c3b172de503f7b3
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdlib.html#gea44aa48bda8261f794dcb2d1e7ab2b2
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#g68c330e94fe121eba993e5a5973c3162
http://www.nongnu.org/avr-libc/user-manual/group__util__atomic.html#gaaea265b31dabcfb3098bec7685c39e4
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdlib.html#g4996af830ebe744d9678e5251dfd3ebd
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdlib.html#gfd300bad8b4dd2e88b07d464d76c92aa
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdlib.html#g51ac965dacbc9daf922f469bdcfe00c2
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdlib.html#gfb8699abb1f51d920a176e695ff3be8a
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#g68c330e94fe121eba993e5a5973c3162
http://www.nongnu.org/avr-libc/user-manual/group__util__atomic.html#gaaea265b31dabcfb3098bec7685c39e4
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#gb599ddf60819df4cc993c724a83cb1a4
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#gd3d27a6dcc225237171196dd0739bb10
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdlib.html#g51ac965dacbc9daf922f469bdcfe00c2
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdlib.html#gfb8699abb1f51d920a176e695ff3be8a
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#g68c330e94fe121eba993e5a5973c3162
http://www.nongnu.org/avr-libc/user-manual/group__util__atomic.html#gaaea265b31dabcfb3098bec7685c39e4
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#gf41f158c022cbb6203ccd87d27301226
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#gea2b6be92ead4673bc487b271b7227fb
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#gd3d27a6dcc225237171196dd0739bb10
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdlib.html#gfb8699abb1f51d920a176e695ff3be8a
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#gb599ddf60819df4cc993c724a83cb1a4
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#g68c330e94fe121eba993e5a5973c3162
http://www.nongnu.org/avr-libc/user-manual/group__util__atomic.html#gaaea265b31dabcfb3098bec7685c39e4
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#g68c330e94fe121eba993e5a5973c3162
http://www.nongnu.org/avr-libc/user-manual/group__util__atomic.html#gaaea265b31dabcfb3098bec7685c39e4
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g4c04da4953607fa5fa4d3908fecde449
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g418e63921ed6259e873cd21b6c5c8e6e
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g0b15be24dd9db93355e1f62937fdfd9a
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g33f7bd99d40bf6f68a00d5507d65363d
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#gb4de83c560c79bf880fa39b997d61610
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g6017094d9fd800fa02600d35399f2a2a
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g2b829d696b17dedbf181cd5dc4d7a31d
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g77070c245d4ca4f7ec7d7144260fb875
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g53ff61856759709eeceae10aaa10a0a3
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#gaeb1bbe21a1b9b50b207ab059a67993f
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#gf47f5141509d1e434f9da2b27287a707
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#gc92e8c42a044c8f50aad5c2c69e638e0
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g2071feb5c92bf50a6bd508a07ead9515
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#gdd5777719a41713629a62b68c239a774
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g0e41285401c397eb29692205a95fcd9c
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g36173b4a8551b61811089198beec69d9
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#ga3b98c0d17b35642c0f3e4649092b9f1
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g55b25ecbfd3811ea4495d1f235e2e186
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g19c2bbe9ce4af9f0a7e3448387004fd3
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g3d25813cb225ca410518a3f48eb00caa
http://www.nongnu.org/avr-libc/user-manual/group__avr__assert.html#g0041af519e0e7d47c9bcc83760c4669e
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g0e41285401c397eb29692205a95fcd9c
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g0e41285401c397eb29692205a95fcd9c
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g0e41285401c397eb29692205a95fcd9c
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#gaa6d255675688c736c99ebd32f2a7214
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#gc0484b3e3a4d8361d91c3322440f9195
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#gf577dcba9afe50a9d068d0b69ac85d2f
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g818d63019adc9d518a13f9c36ed04f35
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#gb4f9b130166e5811519513d6178c1ae3
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g00d34a8bff0293d2d6f4563d248d8fb2
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g3f0edc16dcabb5344d59d42cf7682102

10/19/09 11:33 AMavr-libc: Frequently Asked Questions

Page 18 of 19http://www.nongnu.org/avr-libc/user-manual/FAQ.html

fgets(), scanf(),
scanf_P(), fscanf(),
fscanf_P(), vscanf(),
vfscanf(),
vfscanf_P(), fread()

Alters flags, character
count, and unget buffer
in the FILE argument.

Assign each thread its own FILE for input. ***
Note: Scanning from a string, e.g. sscanf() and
sscanf_P(), are thread safe.

*** It's not clear one would ever want to do character input simultaneously from more than one thread
anyway, but these entries are included for completeness.

An effort will be made to keep this table up to date if any new issues are discovered or introduced.

Back to FAQ Index.

Why are some addresses of the EEPROM corrupted (usually
address zero)?
The two most common reason for EEPROM corruption is either writing to the EEPROM beyond the
datasheet endurance specification, or resetting the AVR while an EEPROM write is in progress.

EEPROM writes can take up to tens of milliseconds to complete. So that the CPU is not tied up for that long
of time, an internal state-machine handles EEPROM write requests. The EEPROM state-machine expects to
have all of the EEPROM registers setup, then an EEPROM write request to start the process. Once the
EEPROM state-machine has started, changing EEPROM related registers during an EEPROM write is
guaranteed to corrupt the EEPROM write process. The datasheet always shows the proper way to tell when
a write is in progress, so that the registers are not changed by the user's program. The EEPROM state-
machine will always complete the write in progress unless power is removed from the device.

As with all EEPROM technology, if power fails during an EEPROM write the state of the byte being written
is undefined.

In older generation AVRs the EEPROM Address Register (EEAR) is initialized to zero on reset, be it from
Brown Out Detect, Watchdog or the Reset Pin. If an EEPROM write has just started at the time of the reset,
the write will be completed, but now at address zero instead of the requested address. If the reset occurs
later in the write process both the requested address and address zero may be corrupted.

To distinguish which AVRs may exhibit the corrupt of address zero while a write is in process during a
reset, look at the "initial value" section for the EEPROM Address Register. If EEAR shows the initial value
as 0x00 or 0x0000, then address zero and possibly the one being written will be corrupted. Newer parts
show the initial value as "undefined", these will not corrupt address zero during a reset (unless it was
address zero that was being written).

EEPROMs have limited write endurance. The datasheet specifies the number of EEPROM writes that are
guaranteed to function across the full temperature specification of the AVR, for a given byte. A read should
always be performed before a write, to see if the value in the EEPROM actually needs to be written, so not
to cause unnecessary EEPROM wear.

AVRs use a paging mechanism for doing EEPROM writes. This is almost entirely transparent to the user
with one exception: When a byte is written to the EEPROM, the entire EEPROM page is also transparently
erased and (re)written, which will cause wear to bytes that the programmer did not explicitly write. If it is
desired to extend EEPROM write lifetimes, in an attempt not to exceed the datasheet EEPROM write
endurance specification for a given byte, then writes must be in multiples of the EEPROM page size, and
not sequential bytes. The EEPROM write page size varies with the device. The EEPROM page size is found
in the datasheet section on Memory Programming, generally before the Electrical Specifications near the
end of the datasheet.

The failure mechanism for an overwritten byte/page is generally one of "stuck" bits, i. e. a bit will stay at a
one or zero state regardless of the byte written. Also a write followed by a read may return the correct data,
but the data will change with the passage of time, due the EEPROM's inability to hold a charge from the
excessive write wear.

Back to FAQ Index.

Why is my baud rate wrong?
Some AVR datasheets give the following formula for calculating baud rates:

(F_CPU/(UART_BAUD_RATE*16L)-1)

http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g00d34a8bff0293d2d6f4563d248d8fb2
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g3f0edc16dcabb5344d59d42cf7682102
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g0fb7fd70cd7618f27d8219c97e61bcf3
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g0beb4fd9ff6833a364e3ce60370de058
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g7aec94e711ad64724076666586a26839
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g8bd4b760f67791a54e73111734caa82f
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g67bae1ad3af79809fd770be392f90e21
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g6c6b5b881ce8f4739777ff3a615e988a
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g54fa47156a34c1659a29ed96e46e3518
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#g5507d0e1bbfd387fbb2ffcfd8f5dca6f
http://www.nongnu.org/avr-libc/user-manual/group__avr__stdio.html#geca11dc4b3757ed4ff2f2a4950eba117
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index

10/19/09 11:33 AMavr-libc: Frequently Asked Questions

Page 19 of 19http://www.nongnu.org/avr-libc/user-manual/FAQ.html

Unfortunately that formula does not work with all combinations of clock speeds and baud rates due to
integer truncation during the division operator.

When doing integer division it is usually better to round to the nearest integer, rather than to the lowest. To
do this add 0.5 (i. e. half the value of the denominator) to the numerator before the division, resulting in the
formula:

((F_CPU + UART_BAUD_RATE * 8L) / (UART_BAUD_RATE * 16L) - 1)

This is also the way it is implemented in <util/setbaud.h>: Helper macros for baud rate calculations.

Back to FAQ Index.

Automatically generated by Doxygen 1.5.7 on 5 Mar 2009.

http://www.nongnu.org/avr-libc/user-manual/group__util__setbaud.html
http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_index

