
Low Level Control System and Control GUI

For

High Speed Vehicle

Michael Y. Wu

A thesis submitted in partial fulfillment of the requirements of the degree of

Bachelor of Engineering (Mechatronics)

Australian Centre for Field Robotics(ACFR)

School of Aerospace, Mechanical and Mechatronic Engineering

The University of Sydney

November 2002

 2

Declaration

I hereby declare that:

• I conducted the literature review for this thesis.

• I researched, designed and implemented the Hercules II low level control Graphic

User Interfaces for both on-line and off-line applications.

• I designed and implemented a fine-tuning graphical user interface for steering,

allowing automatic step, ramp and sinusoidal inputs.

• I designed a Keyboard Remote Control user interface to control HSV by a

keyboard.

• I developed the accelerator and brakes’ PID tuning and Velocity Controlling

graphical user interfaces.

• I completed PID fine-tuning process for the steering.

• I collected and analyzed the best behavior of steering in steps, ramp and

sinusoidal inputs under the ideal PID gains.

• With the assistance of Shahram, I collected and analyzed the response of the

steering under different Step inputs in various velocities.

• I researched and developed a fuzzy logic controller for the Velocity control.

• I designed and developed a PID tuning user interface for path following control

system.

• I researched and developed a PID control algorithm for path following control

system with the assistances from Jose, Wang and Shahram.

 3

• I designed and developed a Clone Control user interface allowing speed inputs

into the path following system.

• With the assistance of Shahram, I upgraded PID control algorithm for steering,

brake and accelerator.

• I assisted Chris and Shahram to correct power amplification for steering system.

• I have studied a concept design of a mechanical emergency system for the

accelerator actuation system.

• With the assistance of Shahram, I designed a set of emergency procedure during

the accidents.

• All results listed above have been demonstrated to my supervisor, Associated

Professor Eduardo Nebot.

Michael Wu Yue

November 10, 2002

 4

Abstract

Ever since the beginning of human’s science, to create and build men-like machine

always be the dream to achieve. For many years, the development of a fully autonomous

vehicle comes into the focus of many potential applications in areas such as car

manufacturers, defense forces or even space programs. Navigation is the main focus out

of many researches and for 5 years, navigation of an autonomous vehicle has been

undertaken in the heart of all robotic technologies in Australia, the Australian Centre for

Field Robotics (ACFR) in the University of Sydney.

The Project is called HSV, abbreviation for High Speed Vehicle project. Since the first

day, many undergraduate students have spent many hours in the creation of making it

more perfect and more men-like.

“A journey of a thousand miles must begin with a single step.”

 Lao Tzu, Tao Te Ching

For the last few years, low level control has always be the problem for HSV to solve

before moving up to a new step. Just like Lao Tzu taught us, the most important thing in

front of you often to be the first thing but the most difficult thing to accomplish. Low

Level Control is the basic control in the entire navigation research yet because it deals

with many no-linear behaviors such as power steering, power brake or any speed-related

system responses, it is still the myth waiting to be solved.

And for this year, I am the undergraduate student who takes part in the low level control

of the HSV project.

In order to fully understand the system response and behavior in controlling the low level

control, which involves the steering control and speed control, my task this year is to

gather and analysis data of the responses of the steering in different types environments.

 5

The efforts and approaches used to achieve this is to

• Develop a Graphical User Interface allowing fine tuning process of all three

actuations.

• Gather information and analysis the results

• Seeking the relationship between any on linearity and the control of the vehicle

• Finding possible solutions towards the problem

 6

Acknowledgements

To begin with, I would like to thank my supervisor, Professor Eduardo Nebot for giving

me the chance to be a part of this interesting project and constantly pays attention to our

progress in theses.

My special thanks to Jose Guivant, as he helped mainly on the software implementation

in my thesis. He is a fun people to be with and always make us large.

My special thanks to Shahram Rezaei for his friendly companion when we worked

together sometimes till the late evening. I found out he loved female songs very much.

My special thanks to Juan Nieto for helping me on understanding on the basic idea of

path following simulation. He doesn’t talk as much, but when he’s talking…. “soccer”.

My special thanks to Chris Misud for his time to come and help us on the electronic

circus confusion. A question will rise in mine when anyone mentions his name, “Where

is he?”

My special thanks to Trevor Fitzgibbons with his assistance in software and reversing the

car for me constantly. He and Jeremy Randle are my savior when I am sick and tired of

reversing the car back to garage.

My special thanks to Gurce Isikyildiz as he helped me on some software bugs when I

were working. After work, he always be my best person to talk and complain to.

My thanks to other projects members especially Kim Jong-Hyuk, Alex Makarenko and

Ralph Koch.

 7

Content

Declaration.. 2

Abstract... 4

Acknowledgements... 6

Content.. 7

Chapter 1 Introduction.. 10

Chapter 2 Low Level Control System .. 12

2.1 Introduction -- 12

2.2 Steering Control System-- 13

2.3 Steering Fine tuning results -- 17

2.3.1 Step input results-- 17

2.3.2 Ramp input results -- 21

2.3.3 Sinusoidal input results -- 22

2.4 Steering Amplifier configuration -- 24

2.5 Speed Control system --- 27

2.5.1 Introduction-- 28

2.5.2 Brake Control System-- 29

2.5.3 Accelerator Control System --- 32

2.5.4 Fuzzy logic Speed Control System----------------------------------- 34

 8

Chapter 3 Low Level Control Software Design 37

3.1 Introduction to Microsoft Foundation Class----------------------------- 37

3.2 Low Level Control GUI Hercules 3.50 ---------------------------------- 40

3.2.1 Introduction --- 40

3.2.2 AutoMode Control Page --- 43

3.2.3 Low Level Control System --- 46

3.2.3.1 Accelerator actuation and Speed Control Interfaces47

3.2.3.2 Brake actuation Control Interface ..54

3.2.3.3 Steering actuation Control Interface55

3.2.4 Keyboard Remote Control System ----------------------------------- 60

3.2.5 Path following and Path Cloning Control System------------------ 62

3.2.5.1 Introduction to Path following and tracking system62

3.2.5.2 Path Following Control Algorithm ..64

3.2.5.3 Path Following Control Interface...67

3.2.5.4 Clone Following Control Interface Error! Bookmark not

defined.

3.3 Summery on Hercules 3.50--- 71

Chapter 4 Steering response characteristic 72

4.1 Steering responses introduction-- 72

4.2 Speed related Characteristic of steering response ----------------------- 73

4.2.1 Overshoots and Steady State Errors ---------------------------------- 73

4.2.2 System Rising time and Overshoot time----------------------------- 86

4.2.3 Summery on Speed related Characteristics-------------------------- 88

4.2.4 Speed and Power Steering --- 100

4.3 Angle Increments Related Steering Response ------------------------- 102

 9

4.4 Motor Characteristic Related Steering Response---------------------- 107

4.5 Integral Terms Related Steering Response----------------------------- 110

Chapter 5 HSV Safety issues .. 111

5.1 Introduction-- 111

5.2 Emergency procedure in HSV Running Experiments---------------- 112

5.3 Concept Design of an emergency system------------------------------ 113

Chapter 6 Conclusion ... 116

Reference: ... 117

 10

Chapter 1

Introduction
The navigation controls of the Project HSV mainly consists of two large control systems,

a high level control system and a low level control system. The high level controls the

path of navigation while the low level control tends to reach the path with its best

performance. Both of systems are equally important. For instance, it is like a ship where

the captain on the ship tells stuff where to go and when to change the course(a high level

controller), then the stuff who received the commands will change the velocity and

steering angle as captain demanded(a low level controller). A ship can not last long in the

deep ocean without a proper cooperation between captain and his staff and so as in the

navigation control of HSV, the low level control should always cooperate with a high

level control.

For the low level control, a better cooperation with high level control requires an

improving performance in the response of both speed control and steering control.

Different form the high level control, the difficulties of a low level control is that it deals

with large amount of uncertainties or no-linear behaviors in both steering control system

and speed control system.

It is set to be one of my major tasks to find these possible no-linear behaviors and

responses in the steering control system. In addition, I will do in this year:

Steering Control System

• Develop a Graphical User Interface allowing fine tuning process of all three

actuations.

• Online fine tuning of the steering control system

• Gather information and analysis the results

• Make correction or modification to PID control loops and steering amplifier

• Fine tuning the steering control system again

 11

• Seeking the relationship between any no-linearity and the control of the vehicle

• Gather information and analysis the results

• Finding possible solutions towards the problem

Speed Control System

• Develop a Graphical User Interface for speed control

• Develop a Fuzzy logic controller for speed control

• Implement codes into Hyperkernel application

Path following Control System

• Research previous theses on path following

• Develop a Graphical User Interface for path following

• Develop a PID controlled path following algorithm

• Implement codes into Hercules software

 12

Chapter 2

Low Level Control System

2.1 Introduction

The low level control is always to be one of the difficult tasks through out the whole

project as it deals with many no-linear system responses under various conditions. A low

level control system focuses on building a better responded system with lower overshoots

and lesser steady-state-errors. It mainly consists of two systems, a steering control system

and a speed control system.

The steering control system focuses on the position control of the steering wheel by feed-

back PID-controlled DC motor. The speed control system is in controls on both actuators

in the responses of brake and throttle systems, to control the speed of the vehicle

eventually.

In order to achieve better responses of the systems, fine-tuning of the PID controllers on

all actuators are necessary. In hence they produce an accurate and fast response of the

vehicle.

Some of the no-linear behaviors occurred in the low level control system such as speed

related steering responses or motor characteristic related steering responses are needed to

be concluded and analyzed. A low level control graphical user interface is necessary for

fine tuning PID controllers and gathering data for analysis proposes.

 13

2.2 Steering Control System

The steering control system focuses on the position control of the steering wheel. The

input of the control system is the desire position of the steering in counts and output of it

will be the actual position of the steering in counts.

Figure 2.1: Hardware map of steering Control

As shown in the figure 2.1 above, The Hardware components of the steering control

system are mainly consisting of a motor, a magnetic clutch, gears and shafts, a steering

column links to the steering wheel and a chain which links the motor to the column.

By controlling the current flows into the DC motor, we can control the torque generated

by the motor and hence control the steering wheel’s position.

Steering Column
Chain

Worm Gear

DC Motor

Magnetic Clutch

Gear shaft

 14

The rest of the steering control system involves in the software and the electronic devices

used. It consists of a PID Control Algorithm, a Current-gain Amplifier, a +24 volt DC

motor and a LVDT feedback loop(Figure 2.2).

Figure 2.2: Steering Control System

 (1)
 (2)
 (3)

Figure 2.3: Steering Control Algorithm

The PID Control Algorithm(Figure 2.3) is used to calculate the power flows into the

amplifier in the range of 0 to 5 vols. Distinguishing from the steering control system, the

input to the PID steering control algorithm is the error between desired and actual

position and the output will the power calculated.

The power output from the PID Control Algorithm is in terms of pervious two states and

current state of the steering position error. It can be tuned in respect of different PID

control gains, Kp, Ki and Kd to achieve a better steering position-control response.

PID Steering
Control
Algorithm

Amplifier

Desired
Steering
Set point

Actuator +
-

• Input: Desired Setpoint
• Amplifier: Current Gain
• Actuation: DC Motor

Actual
Steering
angle

dt
dkdtkkm dip
εεε +∫+=

)()(211 −−− +−++−=∆ εεεεεε dip kkkm

mmm ∆+= −1

PID Steering
Control
Algorithm

 15

The integral term of error, dtε∫ needs to be set down to zero each time a new desired

position(set-point) of the steering is inputted into the algorithm. It is to prevent the

happen of integral team related steering responses(See Chapter 4 Section 5 for detail).

As indicated in David’s thesis 1997, Steering’s LVDT reading(Figure 2.4) from 2028 to

3093 is representing vehicle heading from -35 deg to -1 deg(left); LVDT reading from

2026 to 492 is representing vehicle heading from 1 deg to 35 deg(right).

Figure 2.4: LVDT Reading Configuration

By controlling the torque to the motor generated by the power from the PID control

algorithm and the amplifier, we can accurately control the position of the steering wheel

in a range of 492 to 3093 counts. The LVDT reading is then feed-backed to produce next

power output from PID control algorithm.

The Steering control algorithm is written down in Hyper Kernel Application previously.

A PID structure is used to store PID data information in terms of set-point, gains, errors

and output power to an amplifier. Three pointers are created to point to the structure in

the use of three different control-loops by all three actuations. Steering Control is in one

of them. Execution of the control loops take place in the main function where threads to

the shared memory are in running. The calculated power output by control algorithm lies

2027
35 degree -35 degree

492
3093

 16

in the range between + 2001 in counts. Then it is amplified from 0 to 5 Amp to the motor

under 24 volt DC by a current gain amplifier.

However some of the unexpected steering responses are due to the LVDT noises in the

feedback. Figure 2.4B shows a sample of LVDT readings at steering position remaining

2027.

Figure 2.4B: Noise in LVDT readings of steering control system

The figure2.4B above indicates there are mass amount of noise in both direction with an

average magnitude from 8 to 17 counts. In results some shape edges appear in most of the

steering LDVT reading plots and since the maximum magnitude of noise is around 0.3-

0.4 of a degree, and for different direction, the noise peaks varies. That may be one of the

reasons we needs to have two sets of PI gains for both of the direction of

turning(explained in later sections).

 17

However, comparing with the rest of actuations, LDVT readings of the steering system

have the lowest noises and considered to be much more reliable in control. Nevertheless,

the reading can be further improved by technique such as median filters.

2.3 Steering Fine-tuning results

The tuning process is started to locate a set of gains to provide steering control system

with the best response in terms of minimum overshoots and steady state errors.

Steering fine tuning processes are taken on the grass land near St. John College. Results

are taken in shinny day to avoid variations in results caused by weather related ground

conditions. During the fine tuning processes, speed of vehicle is maintained around 10

km/hr. Hercules software(See Chapter 3) is used to provide auto pilot of the steering and

ease in fine-tuning.

Steering fine tuning processes are mainly focusing on the steering Reponses on step

inputs. Then further results such like ramp and sinusoidal inputs are taken under the fine-

tuned gain set concluded from step inputs results.

2.3.1 Step input results

In the low level control of HSV, overshoots and steady state errors are essential towards

the performance of the steering control system while the system is following a steering

command from a high level control algorithm. Steady state errors of the steering

responses sometimes are more important in cases of a ‘slow’ high level control. For

instance, during a path following process, if the steady state error in low level control is

high, after 3 seconds the vehicle may have the orientation offset up to 10 degrees under a

high speed. It is depending on the control interval time or sample time of the high level

control system as well.

 18

During the tuning process, it is showing that steering system under only proportional-

control(only Kp) seems to have some surprisingly good performances in terms of no

overshoots and faster rising time characteristics.

But the only problem of proportional controlled steering system is it shows a large steady

state error in the response. Therefore introducing Ki term of control is necessary to

reduce steady state errors, but in return it increases overshoots of the system response. In

PID controlled steering responses, Although derivate term of gain(Kd) can eliminate a

certain amount of overshoots created by integral term of gain(Ki), but at the same time

steady state error and overshoot time increase.

As discussed before, in the low level control of HSV, overshoots and steady state errors

are essential towards the performance of the system. As results indicated, a PI controller

has a better performance than any other type of controllers.

Therefore focus of finding a better gain set has been moved from PID region to PI region.

In other words, by comparing the steering response under a PID with under a PD

 19

controller, it is clear that a PI controller can bring us a better response.

Figure 2.5: Step inputs response of the PI-controlled steering system

In general for turning the steering control system, the gains of Kp=3.276, Kd=0 and Ki =

0.006102 has been found to be one of the reliable gain sets which can have a very high

accuracy in terms of minimum overshoot, overshoot time and steady state error. The

steering response has an average overshoot around 1.8 degrees in 0.2 seconds under the

speed of 15km/hr. The average steady state is about 0.4 degrees. In addition, a PI

controlled steering system with a small integral term no less than 0.006102 can have the

performance when no other types of controller can achieve. As in Figure 2.5, some

particular performances of steering have been recorded down of the 0.1 steady state error

in degree and zero overshoot for a small integral term.

In addition to the fine tuning process, it is found that the generally fine-tuned steering

responses while turning right and left are different. Therefore two more fine-tuning

processes had been taken separately to find gain sets for each side of directions vehicle

turns to. While turning to the left direction, steering response in figure 2.6 shows the

 20

maximum overshoots of 1.7 degree, a minimum steady state error of 0 to 0.1 degrees at

average,

Figure 2.6: Fine tuning process(Left)

Kp = 3.276 and Ki = 0.006495 are found to be suitable for vehicle to turn to the right

direction in figure 2.7. The average overshoots are 1.5 to 1.7 degrees in angle, overshoot

time is about 0.2 seconds. The average steady state error is recorded as 0.1 to 0.5 degrees.

 21

Figure 2.7: Fine tuning process(Right)

Results also indicate that decrease of Ki will be better for the left-turn application but be

worse for the right-turn situation. Similar characteristics but opposite are found in the

increase of Ki.

In conclusion of the PI controller, which can provide the best performance of the low

level steering control system has the set of PI gains of 3.276 in Kp and 0.006102 for Ki.

Due to the characteristic of motor’s dead zone related steering responses, steady state

error of the steering can not be set down to zero when power output to the motor is within

the dead zone region(Please see Chapter 4 Section 4 for more detail).

2.3.2 Ramp input results

The figure 2.4 is a ramp input test taken as increment of one degree per 1.4 seconds

shown below in figure 2.4. The result is taken as PI controller gains Kp=3.276 and

 22

Ki=0.006102 and indicates the error between the desired position of the steering to the

actual position is between 0 to 0.7 degree. The result of a power output plot(Figure 2.4)

indicates the characteristic of the motor’s dead zone related steering response. Error of

steering can not be set to zero also because of the little-angle-increments related steering

response(See Chapter 4 Section 3 for more detail).

Figure 2.4: Ramp inputs response of the steering

In figure 2.4, it is also clear that from system elapsed time of 23.4 seconds to 24 seconds,

although power output to the motor is increasing, steering does not move due to

insufficient torque generated from these power.

This characteristic of the steering response has been categorized as motor characteristic

related steering responses and it will be explained and analyzed in later chapter.

2.3.3 Sinusoidal input results

In sine wave input results(figures 2.5 and 2.6) under fine-tuned PI gains of Kp=2.069,

and Ki=0.006102 under a speed of approximately 10 km/hr shows there is a increase in

 23

error between desired and actual position of the steering as steering reaches towards both

of its limits.

Figure 2.5: Speed vs steering in sine wave inputs

Figure 2.6: Power VS Steering in sine wave inputs

This result can be further improved by a bigger Kp gain increased from 2.069 to 3.276 as

much powerful toque will force motor to turn the steering wheel near its limit.

 24

2.4 Steering Amplifier configuration

A 25A Series PWM servo amplifier is used to drive the

brush type DC motor, which controls the steering. It is

protected against over-voltage, over-current, over hearing

and short-circuits across motor, ground and power leads by

a limitation current fuse. Single red/green LED indicates its

operation status. Loop gain, current limit, input gain and offset can be adjusted using 15-

turn potentiometers. The offset adjusting potentiometer can also be used as an on-board

input signal for testing purposes when SW4 (DIP switch) is “On”. The Configuration

map of the amplifier is shown in figure 2.7.

Figure 2.7: Configuration map of steering amplifier

In mid 2002, the current gain factor at Pot 1 has been adjusted to produce current output

range of 0 to 5A to satisfy the maximum torque output of the steering motor when output

power of PID controller returns the maximum value of 2001 counts.

 25

Before adjust any current gains or limits of the amplifier, please check switch 1 and 2 are

off and switch 3 should be on and switch 4 don’t care for current gain mode. The

information on functionalities of these four switches is listed in figure 2.7b below:

Figure 2.7b functionalities of four switches

Four potentiometers are used to adjust the limits or gains in different mode as listed in

figure 2.7c, only pot 1 is used to tune current gain factor. It is located in the left-center

op-amp on the configuration map of the amplifier(Figure 2.7).

Figure 2.7c functionalities of four potentiometers

 26

Please read through all configuration procedures available before changing the power

output limits of the amplifier. If motor is suddenly out of function and it shows no current

to the motor, please check the fuse that protect the amplifier and replace them under the

permission of any HSV stuff.

Any more specify changes on the current gain and current limit of the amplifier needs to

be discussed in meeting first. An unsuitable gain or limit will cause harm to the motor.

There are certain cautions notes to be taken for the safety of amplifiers in HSV’s steering

testing processes.

1. Do not reverse the power supply leads

2. Use sufficient power supply capacitance

3. Do not spin the motor without power

4. Do not short the motor at a high speed

 27

2.5 Speed Control system

Since the year 1997, speed control has become one of the focuses in low level control

system development. In Mark’s thesis[2] 1997, he has implemented the two

methods(both simple and reversed smoothing filter) of smoothing the data collected from

wheel encoder, stated the relationship between the velocity and acceleration from the

filtered data. In Lawrence thesis[3] 1998, he mentioned the possibility of controlling the

velocity in respect to the wheel encoder reading. In his thesis, he designed the first logical

control algorithm for speed control in HSV but couldn’t have the time to finish it. At that

time, the logical control algorithm he was written is very similar to a fuzzy logic control

algorithm.

In difference to a PID control law, a fuzzy logic or a neural fuzzy logic control law does

not calculate the output according to a very precise input or the calculation process is

only base on some pre-set logics.

Imaging a driver driving a car on a high way, the variation of the vehicle’s speed depends

on the force he steps down on the throttle paddle and the force which the driver used to

step down on the brake paddle. By how much force applied to each paddle, the driver

does not calculate in his mind. In the explanation from a biology point of view, the inner

ear is the body's gyroscope, telling the brain at all times the head's orientation and

movement in space. Fluid moves through a set of three semicircular canals and two

otolith organs to constantly inform the brain as to the direction and the speed at which the

head is moving. The system then directs the movement of the other parts of the driver’s

body to slow down or accelerate the vehicle according to current state of event happening

around him. For instance, when a driver wants to maintain the vehicle slowly under 5

km/hr, he can maintain it by using the friction force generated between the tyre and

ground instead of brake system in the vehicle and only applying only a little force on the

throttle paddle when speed is fallen too fast. The phoneme for the driver to sense speed

and making decisions to produce accordingly amount of force to decelerate or accelerate

the vehicle as to be described as “the feeling of speed in control” and it can not be easily

 28

explained and copied down as codes. Certainly it does not only base on the error of speed

to be simply controlled under a PID controller but decisions and rules that only can be set

as logics to follow. We can reproduce them as some pre-set logics or rules which

simulating decisions that a driver will make in react of controlling the vehicle’s speed in

reality.

Also as we know that during the speed control of a vehicle in reality, a driver will either

step down on the throttle paddle or the brake paddle, and will not step down on both

paddles at the same time. This rule is the logic rule in controlling the speed as well.

Therefore the autonomous control of the speed is more likely to favor a fuzzy logic

controller, which determines the amount of Set-point for each of two actuators. The fuzzy

logic controller has the input as the error between desired speed and actual speed from

sensors. It then produces two proportional outputs as the position set-points of both PID

controlled actuators.

2.5.1 Introduction

The speed control system mainly consists of a fuzzy logic controller and two PID

controllers for each of two actuations.

A fuzzy logic controller is used to decide which of two actuation controller should be

used to control the speed at the moment. The input to the controller will be the difference

in desired and actual speed, and the output from the controller will be both set-points of

the two actuators.

The two PID controllers for brake and throttle(accelerator) actuation controls are in a way

very similar to the steering position control. The inputs of the two PID controllers will be

the error between desired and actual positions of the cylinders in terms of the retracted or

expended length from the actuator housings. The outputs of the two controllers will

produce the necessary power output for the next state to compensate the position errors

existing in the current state.

 29

Once the two PID-controlled actuator control systems can efficiently in reduce of the

error in desired position(set-point) and actual position. The error in speed will be reduced

as well and hence speed control is achieved.

2.5.2 Brake Control System

Similar to the steering control system, brake control system is mainly consists of a Brake

PID control algorithm, a amplifier, a linear actuator and a potential meter reads position

of the retracted or extended cylinder as +8.6 vol for feedback.

Figure 2.8: Brake Control System

The PID control law used in the brake is the same as the rest. The integral term of error

needs to set to zero each time a new desired position(set-point) is given. The effected

position of the brake actuator is found to be in between 1400 to 2600 in counts. When the

position of the brake actuator is at 1400, the cable will be pulled slightly and just stops

when tension in cable reaches maximum. When actuator stops at 2600, the brake

Brake PID Control
Algorithm

Amplifier
Actuator

+
-

Desired
Position
1400-2600

Actual
Position
1400-2600

• Input: Desired Set-point
• Output: Actual position
• Amplifier: Current Gain
• Actuation: Linear actuator

Brake PID Control
Algorithm

Kp = 4, Ki = 0, Kd = 0

Tuning in demand

 30

mechanism reaches it maximum capacity and its paddle can not be pressed further down.

The variation of the range due to temperature changes and duration of a mechanism

assumed to have small impact the effective range.

The effective range of brake actuator is used for the linearization of the fuzzy logic

controller to control the speed of the vehicle and it is important in controls of a very slow

speed.

Comparing with the LVDT reading from steering control system, the potential meters of

both brake and throttle(Accelerator) actuators return data containing a large amount of

high peak noises as shown in figure 2.9. The figure is taken when no powers are flowing

into the actuator.

Figure 2.9 Noise from Potential Meter Reading in Brake Control system

 31

From the figure 2.9, it is obvious that there are some very high peak noises in the positive

position. Peak of noises are up to 4100, but since they are very singled-out high peaks

and happens very fast, they can be eliminated by a median filter. A boundary for output

power can also be added to eliminate oscillation of the brake actuator caused by noise

during the control. A boundary for output power has been set as +50 for the brake to stay

still under the noises exists as shown in figure 2.9.

In HyperKernel Application, the maximum power output has been set to +1500.

Currently the actuator is running under a proportional controller with Kp=4. A proper

tuning of the controller is required and it is easier to be done after the signal noises are

eliminated completed and the boundary of power to be re-opened again.

Once tuning process is ready, the brake actuator responses can be fine tuned to give very

sensible and accurate results. The tuning process required a low level control tuning

software to proceed, e.g. Hercules 3.50(See Chapter 3 for tuning process).

 32

2.5.3 Accelerator Control System

Similar to Brake Control System or Steering Control System, Accelerator Control System

deals will the position control of the accelerator linear actuator. A cable is attached to the

front end of the actuator’s cylinder whereas the other end attaches to the butter fly valve

which controls the amount of air flow into the engine. By retracting or extending the

cylinder from actuator house, the cable is either pulled or set loosed by the amount the

cylinder moved. When the cable is set loosed, the spiral pre-loaded spring on the butter

fly valve will pull up the cable to close the valve and stop air flowing into engine.

Assuming that the geometric position of the cable attachment on the valve and the

friction which cable is experiencing are not relevant to the accelerator control system, we

can conclude the PID control strategy of accelerator actuator is just like the ones in the

other two systems.

Figure 3.0: Accelerator Control System

Similar to the brake control system, accelerator actuation’s position also has an effective

range from 1190 to 2500. But position of 2500 is not the when the accelerator actuation

reaches its maximum capacity, it can be further increased during butter fly valve can not

open any more. Currently under the effective range, the accelerator actuation can have a

Accelerator PID
Control Algorithm

Amplifier
Actuator

+
-

Desired
Position
1190-2500

Actual
Position
1190-2500

• Input: Desired Set-point
• Output: Actual position
• Amplifier: Current Gain
• Actuation: Linear actuator

Accelerator PID
Control Algorithm

Kp =4, Ki =0, Kd =0

Tuning in Demand

 33

capacity from 0% to 90% of its total capacity limit. It can be changed by a further

measurement.

Currently in the HyperKernel Application, the power output limit of the PID controller

set to be -1000 to 1000 in counts. And similar to the brake control system, the power

output has a boundary of +70 counts to reduce noise-related oscillations. The accelerator

control system responses with little overshoot under a proportional control of Kp=4.

From the figure 3.1which shows a sample of potential meter readings when there is no

power out to the accelerator actuation.

Figure 3.1: noise in potential meter readings in Accelerator control system

From the figure above, there is a large amount of noise to the negative side of the

accelerator signal. Even the actuator does not move, the result shows that actuator signal

is having bias or off set possibly by the damage on the power connection. Although a

 34

capacitor has been added to reduce the noise this year, problem might still occur when

further damages are caused possibly in the future. Integral term of error should be turn

down to zero whenever a new set-point is introduced. PID gains can be further tuned to

achieve a better response of the accelerator control system.

2.5.4 Fuzzy logic Speed Control System

The fuzzy logic speed control system in figure 3.2 consists of two PID-controlled

actuation systems and a fuzzy logic controller with two factors. The input of the system is

the desired speed and the output will be the actual speed of the vehicle.

Figure 3.2 Speed Control System

The system is capable of controlling the speed according to the readings from both wheel

encoder and a global positioning system(GPS).

The readings directly from wheel encoder are originally in the form of counts. It will be

needed to linearized in terms of the difference in counts between previous and current

+ -

Desired
Speed

Actual
Speed Fuzzy

Logic

B
rake factor

A
cceleration

factor

Fuzzy logic controller for Speed Control Speed Control
Algorithm

 35

states. A range is set as any value of difference bigger than the absolute value of 64000, it

will be brought back into the region by plus or reduce 64-bit(64x1024) value.

It is then transformed from the position of the wheel encoder to the readings at centre of

the vehicle in km/hr through the equation (2.1) given below.

1000
3600

83.2
76.0)tan(1

)21.01(024970.0
×

×
−

−××
= γ

encoder
centre

VV (2.1)

Where γ is the steering angle in counts.

It seems that it is more convenient to use km/hr as the speed’ unit in control than to use

m/s, as m/s returns very small values. For example, 10km/hr is 2.7778 m/s and 5 km/hr is

1.38889 m/s respectively.

For GPS horizontal speed reading, it requires to be converted to km/hr as shown in

equation (2.2).

1000
3600

994.1
' ×= GPS

GPS

VV (2.2)

Where 'GPSV is the GPS horizontal speed in Km/hr and it is not transformed to the centre

of the vehicle as it’s position isn’t fixed on the vehicle.

The speed control algorithm is implemented in HyperKernel application. Once the

desired speed and actual speed are in the same units, error between them is then inserted

into a Fuzzy logic controller. Error is calculated in the equation (2.3).

actualdesirespd VV −=ε (2.3)

There are three conditions to be considered in terms of the speed error, they are when

0>spdε , 0<spdε and 0=spdε .

 36

When 0>spdε , which means the desired speed is greater than the actual speed, vehicle

needs to accelerate forward to reduce the error. Therefore the desired position set-point as

an input to the accelerator control system will be calculated according to the accelerator

factor. The set-point of the brake control system will be set to 1400(no-brake status). The

speed controller after sending a corresponding set-point to accelerator control system will

wait for the next speed error input.

When 0<spdε , which means the vehicle is traveling too fast and needs to be decelerated,

there are two more situations as pre-set logic conditions are tested. When the absolute of

speed error spdε is greater thanα , where α is the maximum speed error that allows the

use of the friction force on the ground to slow down the vehicle, the set-point of brake

control system will be calculated due to the brake factor. On the contrary, if the absolute

value of error spdε is less or equal toα , both set-points of brake and accelerator

actuations will be set back to original position where brake and accelerator’s set-points

are 1400(no-brake) and 1190(no-acceleration) respectively.

When 0=spdε , which means the desired speed is equivalent to the actual speed, then the

set-point of both accelerator actuation and brake actuation will be set to original position,

where set-point of brake and accelerator actuation are 1400(no-acceleration) and

1190(no-brake) respectively.

In addition, When desired speed is zero, which means the user wants the vehicle to stop

at the time, accelerator actuation will be set back to its original position at 1190 and brake

actuation will be set to its maximum value of 2600 for a full brake status. Because when

the gear box on the left of driver seat is set to drive mode, a little fuel is then started to be

pumped into the engine producing a pushing force and starting vehicle go forward even

the butter fly valve is still remaining close that the moment. It is necessary to stop the

vehicle driving forward by a full-brake command whenever the desired speed is zero.

 37

Chapter 3

Low Level Control Software Design

3.1 Introduction to Microsoft Foundation Class
The Microsoft Foundation Classes, usually abbreviated to MFC, are a set of predefined

classes upon which Windows programming with Visual C++ is built. These classes

represent an object-oriented approach to Windows programming that encapsulates the

windows API. The process of writing a windows program involves creating and using

MFC objects, or object of classes derived from MFC. The objects created will incorporate

member functions for communicating with window, or in our case, the Hyper Kernel

Application.

In addition to some more specialized tools, Microsoft’s Visual C++ package encompasses

a C/C++ compiler, a resource editor, a debugger, and the Microsoft Foundation Class

Library. This class library provides a collection of C++ classes that take most of the

drudgery out of writing software for windows.

The most compelling reason to use MFC is the vast amount of functionality that the

classes can realize. Since the classes are targeted at the features your application needs –

such as slider bars, the implementation required for multiple document windows – using

MFC saves us coding time that we can spend on other features in our application.

“A journey of a thousand miles must begin with a single step.”

 Lao Tzu, Tao Te Ching

 38

Let us begin with some features that lie inside the development of a MFC Application. A

New MFC Application can be easily created through MFC Application Wizard in figure

3.3.

Figure 3.3: MFC AppWizard window

MFC provides tools windows such as MFC ClassWizard to provide ease in creating new

member functions, member variables, events, message handlers.

An event or a message handler is a Wnd-member function, which handles the messages or

any actions when certain events have been satisfied. You can call out MFC ClassWizard

window any time by pressing Ctrl+w to set up a message handle or creating a member

variable or a control member.

A member variable that defined as a control type to its control ID can use the member

function built within the control object easily.

 39

For example a defined CSlider member variable in the member variable in MFC

ClassWizard(figure 3.5) as a control type can excess to all the CSlider class’s member

functions such as CSlider::SetRange() or CSlider::SetPos().

Figure 3.5: MFC ClassWizard window

In Graphical user interface design, the most commonly used controls are Slider controls,

Progress Controls, Animation Controls, Button Controls, List Controls, Edit Controls and

the Rich Edit Controls. Most of these controls will be explained as examples during the

creation of the Hercules 3.50 software.

 40

3.2 Low Level Control GUI Hercules 3.50

3.2.1 Introduction

Hercules 3.50 is a tested-software, developed for HSV’s low-level control graphical user

interface. It has the abilities and functionalities to access all the low level controls in HSV,

which include steering control and the speed control.

Hercules 3.50 also provides a path following tuning interface which allows user to tune

the PID controller for path following on-line.

It not only allows users to control the motions of all three actuators(steering motor,

throttle and brake actuators), but allows users to fine-tune the responses of these actuators

through each of the corresponding PID control interfaces as well.

It has the access to HyperKernel application, shared memory and a navigation loop which

allows the software to do path following and tracking for the high level control. It

provides an automatic pilot system for step, ramp and sinusoidal inputs to the steering,

which makes it much easier for the on-line fine-tuning process.

It provides in total 32 online plots monitoring all sensors and actuations as well as online

path tracking and path following information.

In addition, it has an interface which allows user fine-tuning gains for path following and

path tracking system. Besides all these, it has a built-in remote control user interface

allow users to control HSV’s motion by a keyboard.

 41

Figure 3.6: Low Level control system

Hercules 3.50 is a dialog based MFC application. It is constructed by grouping other

dialog boxes logically together onto a tab-styled property sheet(figure 3.6). Each of these

dialog boxes are called a property page and stored itself as a CPropertyPage object to the

main sheet. Once the dialogs are created in the resource view window, they can be added

into your main property sheet as an object by calling the CPropertySheet::AddPage()

function. Then you will need to call out CPropertySheet::DoModel() function to active

the object as a dialog box. You can also use SetActivePage() to set which page is active

within the sheet by its page index. Given a pointer to a page, you can use GetPageIndex()

function to find the page’s index or call GetActivePage() to find a pointer to the currently

active page object. Hercules 3.50 is a dialog box itself and before it ends its

CMyDialog::OnInitDialog() function, it dynamically adds and actives its six

CPorpertyPage Objects by calling CPropertySheet::DoModel(). One good thing of using

 42

CPropertySheet::DoModel() is you can keep your pages alive long enough, because the

DoModel() call doesn’t return until the property sheet has been destroy. Each of the six

CPropertyPage objects is created separately and has its own unique Graphical user

interface.

 43

3.2.2 AutoMode Control Page

Figure 3.7 Automode main user interface

Automode CPropertyPage Object is the main user interface of all interfaces. As in figure

3.7, it mainly consists of a CList box control object, a CCombo box control object, six

CSlider control objects and a few CButton control objects. These controls construct

mainly four windows from the top left to down bottom. They are respectively Status

monitor, Main monitor, Path monitor and Advance Control windows.

The CList box in the Main monitor is used to display debug message sent by the hyper

kenel application. Once we find a pointer which pointing to the address of the CList

 44

control object, then we can send messages from hyper kenel application’s debug to the

address of the object through its pointer.

The CButton Control Objects are used for execute message handles whenever those

buttons are pressed or checked. A message handler is a Wnd-member function, which

handles the messages or any actions when certain events have been satisfied. You can call

out MFC ClassWizard window any time by pressing Ctrl+w to set up a message handle

or creating a member variable or a control member. In this case, for a button object the

message handler will be executed when it is pressed or checked. There are mainly two

types of buttons, ones are for pressing and the other radio ones are for checking. The ones

for pressing are in rectangular shape, the radio ones are in small circular shapes.

Rectangular-shaped buttons are most commonly used for executing the message handler.

For pressing the Start or Shutdown button in the main monitor, it calls out the Hyper

kernel start or shutdown functions defined in the HyperShared header file. The

Emergency button is used to shutdown all the output powers to each of the steering,

accelerator(throttle) and brake actuations. The message handler for this is simply

triggering a bool flag. The flag is member variable called m_Emergency and it is

accessible to all other CPropertyPage Objects. The Refresh button at the left-bottom Path

Monitor window is used in refreshing the rectangle underneath the plots. The member

function OnPrint() created as a message handler does not reprint the dialog when

drawings on dialog are expired. It is necessary to create another message handler to

Refresh the drawings on the dialog by calling out UpdateWindow() Wnd-member

function. The radio button in the Path Monitor window will be explained in the Plotting

section.

The CEdit Control Object is useful to the application when inputs from users are

demanded. Unlike other control objects, CEdit does not have many member functions. In

fact, the propose of using a CEdit control object is to be able to retrieve an input as a

string from the edit slot. As an example, in the Advance Control Window, when Path

Cloning or Path Following system is selected from the CList object, a edit slot will

become enabled to allow user typing up the file path and name of which the user would

 45

like to save or load. GetDlgItemText() member function is called to retrieve the string

from the edit slot.

The CSlider Control Objects are most commonly used in the Hercules software, as it is

easy to control the actuations’ positions or their PID gains by sliders. The MCF

ClassWizard Window(Press Ctrl+w) will help you to define any type of member

variables based on the control IDs of the control objects and its data type. For example, a

member variable m_DKpSliderCrl is created under the control ID of IDC_DKPSLIDER,

and the data type is selected as Control from the Category list box in Add Member

Variable Window. After the member variable m_DKpSliderCrl of the CSlider Control

type is created, you can use it as an object to access member function in CSlider.

CSlider::SetRange() function is commonly used to set the minimum to maximum range

of the slider. CSlider::GetPos() member function is used to retrieve current position of

the slider. CSlider::SetPos() is to set a position on the slider. These member functions are

the most powerful functions in CSlider Control. CSlider::SetRange() functions are most

commonly to be called in the OnInitDialog() member function, as well as pre-setting the

position of the sliders. The OnInitDialog() member function is created as a message

handler, it is the first function to be called when you open the dialog. It is commonly

called as the initialization function of the dialog. Together with OnTimer() member

function which creates a run-time timer for the dialog, the position of the current slider

can be retrieved every sampled time.

The CCombo box control objects in the Status window and in the Advance Control

window are created to allow user to switch to a pre-set system easily.

CCombo::AddString() and CCombo::InsertString() are used to add and insert text strings

into the Combo box list. The index can be retrieved by calling CCombo:: GetCurSel()

function. It is easy to firstly setting up a message handler on every time selecting or

changing the present content of the Combo box from its list. Back to the software above,

In the Advance Control window, the index pointing to a selected content from the list is

stored in a member variable m_ControlIndex. This member variable plays a role as a flag

of swapping control systems back and forth. There are four system to be chosen from:

 46

Clone Following Control system, Keyboard remote control system, Low Level Control

system and Path Following Control system.

3.2.3 Low Level Control System

Figure 3.8 Low level Control System

Low Level Control System is built especially to fine-tune the three actuations(steering,

brake and throttle actuations) through three PID control interfaces. It also includes a

speed control interface by a fuzzy logic controller, which is added inside the hyperkenel

application. Each of the three PID control interfaces are CPropertyPage Objects. They are

 47

Accelerator CPropertyPage Object, Brake CPropertyPage Object and Steering

CPropertyPage Object respectively.

As Low Level Control System has been selected, the CEdit Control Object, two CButton

Objects for saving and loading trajectory files for Path Cloning or Path Following System,

as well as six CSlider Objects for tuning the Path following System will be all disenabled

by a member function called EnableWindow(). The function is often used to distinguish

control options between the four different control systems.

3.2.3.1 Accelerator actuation and Speed Control Interfaces

Figure 3.9: Accelerator actuation and speed control interfaces

 48

Accelerator CPropertyPage Object is the interface of both Accelerator (throttle) PID fine-

tuning and Fuzzy-logic Speed Control systems.

As in figure 3.9 it consists of an Accelerator Monitor, an Accelerator Actuator, an

Accelerator Control Monitor and a Path Monitoring Windows.

In the Accelerator Monitor Window, there are six radio buttons in the right and two at the

bottom. Radio buttons are very commonly used in the button family. It can be seen in

most of the applications where selections from a group of similarity are demanded.

A wnd member function called IsDlgButtonChecked() is often used to return TRUE

whenever the user check the certain Control ID which pointing the corresponding Radio

button. A Control ID is a identification number representing as a pointer pointing to the

address of the dialog control object. It is often in a form of “IDC_EXAMPLE”.

The six radio buttons in the right hand side of the Accelerator Monitor Window(figure

3.9) are used to swapping plots among Power output, Actual-Desired actuator Position,

Actual-Desired Speed, Speed error in Speed control, Distance error and Orientation error

in both Path Following & Path Cloning system from top to bottom respectively. The

Bottom two radio buttons are only used when Actual-Desired actuator position plot radio

button on the right is checked. It provides the zooming view of the desired set point and

actual potential-meter’s position reading from sensor, allowing finer tuning of the PID

controlled acceleration-actuator system.

 49

In the Acceleration Actuator Window(figure 3.9) on the right, there shows the current

status of the actuator. The readings from left column to the right column are represented

as:

Overshoot(counts) Power Output(counts)

Steady State Error(counts) Actual Actuator Position(counts)

Proportional Term Error(counts) Desired Actuator Position(counts)

Derivative term Error(counts)

Actual Speed From Wheel

Encoder(km/hr)

Integral Term Error(counts) Desired Speed(km/hr)

Actual horizontal Speed From

GPS(m/s) Latitude From Encoder GPS(m)

Error in Desire and Actual

Speed(km/hr) Longitude From Encoder GPS(m)

Table 2 Readings arrangement in figure 3.9

In order to display various types of data onto the dialog, an overload member function

IceUpdate() is created to accept four different types of data. Included data types are

integer, long integer, double and text. Double type of data will be firstly combined into a

string, then display it on the dialog. Wnd-member functions SetDlgItemInt() and

SetDlgItemText() are used for the other types of data.

In the Accelerator Control Monitor Window(figure 3.9), there’s a CCombo box object

allowing user to select or change among the Actuator, Wheel encoder Speed control and

GPS speed Control Interfaces.

 50

Figure 4.0: Speed Control system interface

If the Actuator Control is selected from the Combo Box in figure 4.0, the Slider bar

underneath the list box, which is used to control desired speed of the vehicle in terms of

Kilo meter per hour, will be disenabled by EnableWindow() member function. User can

only control the slider bar on the left to control the position of the linear acceleration

actuator. The position of the slider bar is put in a shared-memory variable call

AcceleratorSliderValue, which is defined in the SharedMemProtocol header file. Like

integer variables SteeringSliderValue and BrakeSliderValue, AcceleratorSliderValue

controls the set point in the structure PID_B, which is used in the hyper kenel application

to calculated the output power required to retract or extend the cylinder in the

 51

acceleration linear actuator. The set point in the PID controller indicates the desired

position of the cylinder exceeding from the actuator.

Figure 4.1: Accelerator Control Monitor PID controller

Kp, Ki and Kd are controlled in the very similar way by three sliders. There are three

radio buttons following each of the three PID gain Sliders in rows in figure 4.1. These are

called gain factors and they are used when regions of the gains are needed to fine tuning

the actuator system. For instance, when radio button of X1 is checked for Kp, the gain Kp

slider bar lies in the range of 0 to 1 with increment of 0.0001; when radio button of X10

is checked, Kp slider value lies between 0 to 10 with increment of 0.001; when radio

button of X100 is checked, Kp value lies between 0 to 100 with increment of 0.01 It is

 52

done by pre-setting the gain slider range from 0 to 10000, then multiply one of the gain

factors as 0.0001, 0.001 and 0.01 in the order of radio button X1, X10 and X100 as one of

the button checked. There are corresponded gain readings on the right corner of this

window in figure 4.1. It is often wise to pre-check some necessary radio buttons in the

OnInitDialog() member function when dialog is created at the first instant.

If either Wheel Encoder or GPS Speed Control interfaces option is selected from the

Combo list. Actuator position-control Slider will be disenabled by EnableWindow() and

at the same time, the Desired Speed Control Slider underneath will be enabled.

Figure 4.2 Speed Control Interface

The Desired Speed Control Slider controls the desired speed sending into the Fuzzy logic

controller in Hyperkernel application through the shared memory as a variable named

 53

DesSpeed. The Shared- memory Variable DesSpeed is used in the Fuzzy Logic Control

loop to compare with either wheel encoder or GPS speed reading in Kilo meter per hour

to calculate a desired position set-point passing down to either one of the PID structure

for brake or accelerator actuation. It is then up to each of the two PID control loops to

decide the final power output sent to their actuators. At the same time, the resulted two

set-points from fuzzy logic controller are stored in the shared memory and retrieved back

to this Speed control interface as variables SetAccelerator and SetBrake. These two Set

Points are used to set back the position of the slider which controls the set point of the

actuations before. It results in two actuation sliders moves automatically according to

their feed back set point of the PID actuations’ control. Error of the desired speed and

actual speed are also sent back through the shared memory for status reading and on-line

plotting proposes.

Whenever a speed control is under going, all Slider value from both brake and

acceleration actuators’ Sliders will lose controls to the set points in the PID structures by

the Index returned from CCombo::GetCurSel() member function. In another words, when

Speed control is engaged, set points that sent to these two actuations’ PID structures, will

be fully determined by the Fuzzy Logic Controller.

 54

3.2.3.2 Brake actuation Control Interface

The Brake Control interface(Figure 4.3) is very similar to accelerator control interface. It

provides user a PID tuning system to the user for fine tuning the PID responses of the

actuation.

Figure 4.3: Brake Control Interface

In all three of the actuations control interfaces, overshoots and steady state error are to be

computerized as display in the actuator monitoring windows in the right top corner.

Overshoot is calculated when actual positions of the actuators exceed the set-point and it

is recorded as the maximum peak value exceeding a set-point. Each time when a new set-

 55

point appear, overshoot will be washed away. It is similar to the way steady state error is

monitored. A slower timer is created to record a steady state error when previous state

error is identical to the current state error.

3.2.3.3 Steering actuation Control Interface

The Steering control interface is the mostly used interface through out the year.

It has similar features on the actuation position plots, speed plots and GPS plots like other

CPropertyPage objects have. It provides the most basic manual inputs function that allow

user to input a steering position by a slider located in top half of the Steering PID Control

Window. The statuses of the steering actuation are displayed inside the Steering Motor

Window. In order, the readings are represented as shown in table 3.

Overshoot(counts) Power output(counts)

Proportional term of Error(counts) Actual Position of the Steering(counts)

Integral term of Error(counts) Desired Position of the Steering(counts)

Derivative term of Error(counts) Steering Position error(counts)

Steady State Error(counts) Wheel encoder Speed(km/hr)

Table 3: Steering control interface readings

 56

Figure 4.4 Steering Control Interface

The Combo box in the Steering control interface in figure 4.4 can be dropped down to

select other control option for steering. Notice that the rest of the options are for Auto

Pilot system. It includes auto steps inputs, auto sinusoidal inputs and auto ramp inputs.

The Automatic Pilot System in Steering Control interface is designed for the ease of

tuning the gains while the desired set-points to the PID controller are set automatically.

 57

Figure 4.5: auto pilot steering control system

Since most of the tests demand the same set-point inputs every time. During the speed

and steering experiments, the auto pilot system played a very important role on producing

same increments every six second of system elapsed time. The Save button in the top

right corner of the Steering Monitor Window allows user to save Overshoots, Steady state

error and corresponding Kp, Ki, Kd gains. The matrix *.mat file will be saved in an out-

files folder for the propose of offline analysis.

 58

The matrix file will consists of data in column as shown in table 4 below.
System

time(ms)

Overshoot

(counts)

Steady State

Error(counts)

Kp Ki Kd Setpoint

(counts)

LVDT

Reading

(counts)

Power

out(counts)

Table 4: Steering data saved

In the automatic sinusoidal input mode, set-point of the steering will be generated as a

continuous sine wave pattern in figure 4.6.

Figure 4.6: Automatic sine wave inputs

 59

In Auto Step inputs mode in figure 4.7, user will be asked to select a step increment from

the Combo list at the right. System then provides the same increment as the steering set-

point every 6 seconds.

Figure 4.7 Auto step inputs mode

Note that the emergency buttons on the right top corner will immediate stop the power

generated by PID control system by shutting down all the gains to zero. Unless

emergency button is to be pressed again, any running experiments will not be able to be

continued.

 60

3.2.4 Keyboard Remote Control System

Keyboard Remote Control system

Figure 4.8 Keyboard Remote Control System

The keyboard Remote control system in figure 4.8 is through pressing down the Keys that

correspond to the actuation set point control, to achieve the full low level

controls(including speed control) of the vehicle.

It is done by using the GetAsyncKeyState() wnd member function that reads the

asynchronous state of the a pressed key. The function takes a virtual key code as its

argument and returns a value indicates its according address in the key map when the key

on the keyboard is pressed. If there’s nothing pressed, GetAsyncKeyState() returns 0 in

response. Therefore detecting whether the function returns zero or not zero will be the

way to control actuations through a keyboard. As user holding down a control key on the

keyboard, an increment will be added towards the set-point of the actuation it tends to

control. Increment will be set to zero when user releases the control key, and the

actuation position will stop at where it is unless a particular key is pressed to set actuation

back to the beginning simulating the spring effects in brake and throttle paddles as well as

 61

in steering wheel shaft. The increments to the set-points are known as the sensitivities in

control.

For instance, if the sensitivity of a button controlling the steering motion is high, that

means the increment each time the program detect a keyboard interrupt when the key is

pressed will be high as well. That results a faster response of the actuation.

The sensitivities can be changed either through three sliders at the top right corner in the

interface, or through pressing down three keys on the keyboard as well. Three sliders

below represent the current positions of three actuations.

Keyboard Remote Control Interface (figure 4.8)provides on-board user manual and two

Emergency for any unexpected situations.

 62

3.2.5 Path following and Path Cloning Control System

3.2.5.1 Introduction to Path following and tracking system

Path following also known as trajectory following is to control the vehicle following a

given path or a trajectory under a constant velocity. The Path will be mainly considered

to be consisting of x, y position and the vehicle’s orientation angle. Path tracking on the

other hand involves the fully tracking of an accurate path in terms of position, orientation

as well as speed. For example, a path from St. John College to ACFR building has been

set, requiring the vehicle to reach the destination in 20 minutes. In this case, speed no

longer to be considered as constant but as a factor or variable plotted into the path

planning process. To achieve this, a very accurate path following system need to be fine

tuned.

Unlike the simulations in mathlab, in the reality the speed of the vehicle hardly to be

maintained as a perfect constant and slightly variation in speed will cause unwanted path

overshoots and steady state errors between true path and desired path. Therefore the

second stage in path following might need to involve speed control in the process. For

example using a fuzzy or neural fuzzy logic speed controller to maintain and control a

speed can be essential.

The Clone Following system will take the 4th variable of speed into the path following

process. It will

Both of the control systems require the communication to the high level control algorithm

in either mathlab or C/C++ environment. The path following control system consists of a

PID controller tuning the performance of the vehicle following a given trajectory. There

are two ways of getting a trajectory the vehicle is able to follow. The trajectory is either

prepared from a path planning algorithm in high level control, or pre-recorded by an

active navigation loop instead of making from high level control. Since the navigation

 63

loop such as encoder GPS loop filters away noises from a GPS position reading even

when the vehicle can not be covered by satellites. It is more likely to record down a very

smooth and reasonable path the vehicle is capable of reproducing. Because of the

limitation in space the vehicle faces during a fine-tuning progress of the PID-controlled

Path following system, it is wise to record down a trajectory within the limited space and

reproduce it after.

 64

3.2.5.2 Path Following Control Algorithm

Figure 4.9: Path Following Control Algorithm

As mentioned in Matthew J. Barton’s thesis 2001, if we can specify that the path or the

trajectory to be followed as a series of discrete Cartesian coordinates at regular(around

0.5 m in length) intervals, it then can be linearized by using “a series of short line

segments” technique. Taking ()kk yx , as the current position on the desired path and

()11 , −− kk yx , ()11 , ++ kk yx are representing the previous and next state of desired

positioning the linearized path.

The line equation can be given by:

()pp yx ,

pθ

kθ

Desired path

Actual path

()kk yx ,

()11 , −− kk yx

()11 , ++ kk yx

⊥ε

 65

0)()(
1

1

1

1 =
−
−

−+−
−
−

+

+

+

+
k

kk

kk
k

kk

kk x
xx
yy

yyx
xx
yy

 (2.4)

Hence the relationship between current position on the actual path and the desired

position on the desired path can be established. As shown in the figure above, if ⊥ε is the

error in the perpendicular distance from actual position to the desired position

and ()pp yx , is the current position of the vehicle, the error in distance can be calculated as

22
kk

kpkpk

ba

cybxa

+

++
=⊥ε (2.5)

Where

kk

kk
k xx

yy
a

−
−

=
+

+

1

1 (2.6)

1−=kb (2.7)

k
kk

kk
kk x

xx
yy

yc ×
−
−

−=
+

+

1

1 (2.8)

If the orientation angle at the current position of the vehicle to the x axis is pθ and

orientation angle at the desired position is kθ , the error in orientation can be calculated as,

kp θθεθ −= (2.9)

A PID control algorithm often takes integral and derivation terms of error into the

calculation of the output as showing below.

 (3.0)

A PID controller for the path following system should be a total of two PID control

algorithm in terms of both error in distance and error in orientation.

dt
dkdtkkm dip
εεε +∫+=

)()(211 −−− +−++−=∆ εεεεεε dip kkkm

mmm ∆+= −1

 66

The change in calculated steering angle intspoφ∆ in terms of previous state of the both the

errors
1−⊥

ε ,
1−θ

ε and previous previous state of the errors
2−⊥

ε ,
2−θ

ε and current state of the

errors ⊥εεθ , can be calculated as below:

)]()([

)]()([

211

211int

−−−

−−−

+−±±−±+

+−±±−±=∆ ⊥⊥⊥⊥⊥⊥⊥⊥⊥

θθθθθθθθθ εεεεεε

εεεεεεφ

dip

dipspo

kkk

kkk
 (3.1)

It is then added to the previous steering to form the current steering angle

Note that the sign ± in the equation are determined by which sides from the desired

position the actual vehicle is on.

From the study of Matthew J. Barton’s mathlab codes, it seems that the sign taken into

the equation above can be calculated by two sign of coefficient matrices. One is for

distance error and the other one is for the orientation error.









−−−

−
=⊥ 1111

1111
_ matrixSign (3.2)









−−
−−

=
1111
1111

_ θmatrixSign (3.3)

⊥= ofsignR
2

1
 (3.4)

π
θ

θ
∆

−= ∆ofsignC
2

2
 (3.5)

Where ⊥ and θ∆ are distance error and orientation error with its own sign

),(_ CRmatrixSignSign ⊥⊥ = (3.6)

),(_ CRmatrixSignSign θθ = (3.7)

int1intint spospospo φφφ ∆+=
−

 67

After checking if sign of the coeff. requires swapping, the signs can be put into the

equation before to calculated a correct steering angle.

3.2.5.3 Path Following Control Interface

The Path following and Clone following control loops are implemented in the software

and needed to be updated and fixed before any out door experiments. In the path

following Control system interface, user needs to load a prepared matrix *.m file which

only consists of 3 columns of data in table 5.

Latitude(m) Longitude(m) Orientation(radius)

Table 5: path following loading data

When the path following control system is engaged, the tuning tools below will be

enabled to allow online tuning process. Path plot as well as distance and orientation plots

will monitor the tuning progress. In a path following progress, user can swap back to any

of three actuation control interfaces to observe and analysis the responses of actuations.

All actuations’ PID tuning tools will be disenabled by EnableWindow() member function

during the path tuning process.

 68

Figure 5.0: Path Following Control interface

User needs to specify the path file and its location in File Location slot. Error will be

detected and message will be displayed if path file can not be found. If file is found,

loading will be in progress. Data parsed from Path.m file will become the desired

trajectory and vehicle will start to follow it through a doubled PID control loop.

 69

Figure 5.1: path following loading in progress

3.2.5.4 Clone Following Control Interface

The clone system allows user to save a path in terms of position as well as speed.

Latitude(m) Longitude(m) Orientation(radius) Speed(m/s)

Table 6: Data saved in clone following interface

 70

Before it starts to save the data, GPS origin needs to be to set to zero.

Figure 5.2 Clone Following control interface

Once it is saved, the car needed to return to the origin position where the path was started

saving and reset to origin of the GPS to zero. The speed parsed from a prepared clone

path will become the desired speed sent to a fuzzy logic controller. The software will try

to control the steering motor and two actuators for speed control to follow the desired

path and desired speed.

 71

Figure 5.3 Clone following file saving in progress.

3.3 Summery on Hercules 3.50

Hercules is a tested program used for the tuning process in steering control system as well

as speed control system. Up to the end of 2002, it is capable of doing steering control and

speed control for the low level control in HSV. The keyboard remote control system is

fully functional as well. The interfaces of path planning and clone system are

implemented by the control algorithm hasn’t been tested. Hercules 3.50 is better to work

with bc_saver program which is used to save the data. Saved data is in terms of:

Tim

e

Count

s

Accel

e

Stee

r

Brak

e

Spee

d

Apw

r

Spw

r

Bpw

r

Ase

t

Sse

t

Bse

t

 72

Chapter 4

Steering response characteristic

4.1 Steering responses introduction
As indicated in previous thesis, the Steering’s LVDT reading from 2028 to 3093 is

representing vehicle heading from -35 deg to -1 deg(left); LVDT reading from 2026 to

492 is representing vehicle heading from 1 deg to 35 deg(right). Therefore each degree

while vehicle is turning on its left-hand-side is equivalent to 43.088 units in LVDT

reading. Similarly every degree on its right-hand-side is equal to 45.118 units in LVDT

reading.

Experiments are taken on the grass land at St. John’s college to exam and investigate the

un-linear behaviors of the steering in relation with speed of the vehicle, angle increment,

motor characteristic, integral term of error, directions of turning and other conditions

related system response respectively.

 73

4.2 Speed related Characteristic of steering response

4.2.1 Overshoots and Steady State Errors

From the results and analysis of steering response in all different step inputs under

different vehicle speeds, it is obvious that the speed of the vehicle is related to the

behaviors of the steering system.

Figure 5.4: Speed related 8 degree increment

In the experiment of 8-degree-incremental step inputs while the vehicle is turning to the

right direction and the speed of the vehicle varies from 70 counts to 90 counts, two

steering responses(figure 5.4) are not identical to each other.

 74

Figure 5.5: Speed related steering response at 5800ms

Figure 5.6: Speed related steering response at 12400ms

 75

The step response of the steering at system elapsed time of 5800 ms(figure 5.5) under the

speed of 70 counts has the overshoot of 2 degree. At system time of 12400 ms, overshoot

of the steering system exceed 3 degree in angle while the speed is increased up to 90

counts in figure 5.6.

Similar response observed under the same step input increment but a higher vehicle speed.

The vehicle is turning to the left.

Figure 5.7: Vehicle Turning Left speed related steering responses

At system time of 6000 ms, the overshoot of the steering system is 2.5 degree as it

increased up to 3.5 degree when speed is increased by 73.5 counts at 13300 ms system

time.

 76

Figure 5.8: Turning Left at 6000 ms speed related steering responses

Figure 5.9: At 13300 ms Turning Left speed related steering responses

 77

If the speed of the vehicle is reducing, it results that the overshoot of the steering

response is reducing accordingly. Steady state error is relatively increased.

Figure 6.0: Vehicle reduces speed related steering responses

For example, in the experiment of 13-degree incremental step input while the vehicle is

turning to the right direction, overshoot of the steering response reduced from 3.2

degree(Figure 6.1) to 2.6 degree(Figure 6.2) in angle. Steady state error increased from

0.25 to 0.4 degree in angle.

 78

Figure 6.1: Vehicle reduces speed at 6700ms related steering responses

Figure 6.2: Vehicle reduces speed at 13850ms related steering responses

Similar response happens when car is turning to the left direction and speed is reducing in

figure 6.3.

 79

Figure 6.3: Vehicle turning left speed reducing related steering responses

An example of 8-degree incremental step input below in figure 6.4 shows the overshoot

of the steering response reduces from 3.5 degree under the speed of 180 counts (figure

6.4) down to 2.2 degree in angle under the speed of 115 in counts(figure 6.5). And the

steady state error reduced from 0.6 degree to 0.2 degree in angle.

Figure 6.4: Vehicle turning left speed reducing related steering responses at 13600ms

 80

Figure 6.5: Vehicle turning left speed reducing related steering responses at 20700ms

It is very hard to produce two step-inputs under the exact same vehicle speed, however, if

we can prove that the steering response identical to each other under the same vehicle

speed, it will be further proving the link between various speeds and steering responses.

Once we can prove that steering responses are identical to each other under one constant

speed, we can compare it with any other experiences prove the bonded relationship

between speed and steering.

 81

Figure 6.6: Similar speed related steering responses

As in the experiment shown in figure 6.6, an overshoot of 3 degree in angle is recorded

under the speed of 100 in counts at the system time of 6400 ms(Figure 6.7), another

overshoot is taken 6 seconds later which has magnitude of 3.1 degree in angle under a

close speed of 110 in counts(Figure 6.8).

Figure 6.7: Similar speed related steering responses at 6400ms

 82

Figure 6.8: Similar speed related steering responses at 6 seconds later

Both of the responses are very close to each other as their variation in overshoot and

steady state error are just 0.1 degree differences in angle. Hence we assume under the

same speed and other unexpected conditions, the responses of the steering are always the

same or similar in their characteristic formats.

When Speed of the vehicle keeps on increasing and over a particular spectrum, the

steering response will have second overshoot or even more overshoots after the first one.

It is often considered as the oscillations before the system finally settles down in the

steady state.

Under the same vehicle speed, this second overshoot spectrum more likely to occur

earlier in larger angle incremental inputs as the PID calculated power output is greater

than that in smaller angle incremental inputs’ occasions.

 83

Figure 6.9: Speed related Second overshoot steering responses

Figure 7.0: Speed related Second overshoot steering responses

The examples(in figure 6.9 and 7.0) above show the relationship between speed of the

vehicle and the appearance of the second overshoots. At speed of the vehicle increases

from 200 to 250 counts, the second overshoot of the steering response increases from 1.8

to 2.1 degree in angle. As mentioned before, when speed increases, the corresponding

steady state error following the overshoot increases as well, for a larger speed and

incremental angle inputs, the over exceeding steady state error bounds back to form a

second overshoot and results in the oscillations observed above.

 84

In compares to both power outputs related to different speed as an example of 15-degree-

incremental step input experiment shown below, both power plots should be observed as

identical if we assume that speed of the vehicle is not related to the steering responses.

But in fact the difference between two power plots appeared on the size of the overshoot

when power output tends to bounds back to zero.

Experiments show that the size of the power overshoot is in fact related to the speed of

the vehicle. The bigger the speed demanded, the larger the oscillations power output will

result when it tend to settle down to zero.

Because of these oscillated power outputs, steering response favor to have second or even

more overshoots after the first one.

Figure 6.9: Speed related Second overshoot steering responses

 85

Figure 6.9: Speed related Second overshoot steering responses

In high level steering control, it is wise to avoid second overshoot appearing if it is

avoidable.

Because of the more overshoots, the steering response more likely to have a huge steady

state error in the result of motor dead zone(explain in later chapter), unless a ‘kick’ in the

power output performed or a larger integral error piling up in time.

Statistic summery on speed related Overshoots and steady state errors:

 86

4.2.2 System Rising time and Overshoot time

Speed does not seem to play a role in system rising time unlike angle increment does. But

it is responsible to the change of overshooting time in result of the total system settling

time.

Since various speeds change the shape of overshoot in the steering response, the time

taken for the overshoot to settle down to steady state is changed accordingly. The time is

considered to be the overshoot time for steering response. Statistic of the experiments

shows that the faster the speed is, the longer it takes in overshoot time.

Angle Increment

Speed in

Counts Max 1st overshoot time Max 2nd overshoot time

2 170 0.4 no second overshoot

 240 1.6 no second overshoot

Angle Increment

Speed in

Counts

Max 1st overshoot

time(in second) Max 2nd overshoot time

8 130 0.31 0.17

 190 0.32 0.3

 230 0.45 no second overshoot

Angle Increment

Speed in

Counts Max 1st overshoot time Max 2nd overshoot time

10 190 0.33 0.2

 245 0.34 0.3

Angle Increment

Speed in

Counts Max 1st overshoot time Max 2nd overshoot time

15 115 0.38 no second overshoot

 160 0.4 no second overshoot

 87

Angle Increment

Speed in

Counts Max 1st overshoot time Max 2nd overshoot time

20 50 0.34 no second overshoot

 80 0.35 0.125

 160 0.35 0.15

Angle Increment

Speed in

Counts Max 1st overshoot time Max 2nd overshoot time

25 75 0.35 no second overshoot

 140 0.4 no second overshoot

 200 0.35 0.24

 250 0.31 0.26

From the statistic above, it is clear to see that as speed increases, there is also an obvious

increase in the overshoot time of the steering response. Therefore the total system settling

time is longer and it means it will take longer for the steering system to be steady or

stable.

 88

4.2.3 Summery on Speed related Characteristics

Angel

Increment

Speed

Ranges(km/hr)

Wheel

Encoder(offline)

Max.

Overshoot

(deg)

Max. Second

Overshoot (deg)

Max. Steady

State

Error(deg)

2 deg 5 60 0.5 0.2 0.5

 10 80 0.8 0.2 0.4

 15 160 1 0 0.2

 20 180 1 0 0.3

 25 230 1 0 0.8

 30 280 1.5 0 0.5

5 deg 5 40 2.8 0 0.3

 10 90 2.9 0 0.5

 25 235 3 0 0.5

8 deg 5 50 3 0 0.3

 15 165 3.5 1 0.5

 20 220 3.8 1.5 0.5

10 deg 5 55 2.5 0 0.3

 15 170 3.5 2.1 0.5

 20 190 3.8 1.5 0.7

13 deg 10 120 3.4 0 1

 25 230 4 2.2 1.1

15 deg 5 72 2.9 0 0.05

 10 115 3 0 0.2

 15 160 3.2 0 0.5

 20 210 3.4 0.8 0.5

18 deg 5 80 3 0 1

 10 120 3.7 0.5 0.2

 15 150 3.8 0.7 0.5

 89

20 deg 5 50 3.2 0 0.2

 10 80 3.5 0.13 0.2

 15 160 3.6 0.25 0.4

22 deg 5 70 3 0 1

 10 95 3.3 0 0.1

 15 150 3.5 0 0.15

 20 200 3.7 1.5 0.5

25 deg 5 75 3 0 0.4

 15 140 3.2 0 0.6

 20 200 3.4 1.8 0.6

 25 250 3.9 2.1 0.4

The statistic are plotted according to its increment and test number below, with some

additional characteristic and name of the mathlab files stored in the CD on the back of the

thesis booklet.

 90

2 degree Steering responses in varous speeds

60

80

160 180 230

280

60 80

160 180 230 280

60

80

160

180

230

280

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

60 80 160 180 230 280

speed (counts)

st
ee

rin
g

an
gl

e
(d

eg
re

e)

Max. Overshoot (deg)
Max. Second Overshoot (deg)
Max. Steady State Error(deg)

In the summery of 2 degree steering response due to different vehicle’s speed, as speed is

increasing the first overshoot of the system increases 0.5 degree to 1.5 degree. Second

overshoot appeared only in lower speed tests, as most of them are caused by motor

characteristic related or integral term related steering responses.

Tests #No. Angel Increment Mat File ID Figure File ID
1 2 deg TS11 2deg5km
 TS12 2deg10km
 TS13 2deg15km
 TS14 2deg20km
 TS15 2deg25km
 TS16 2deg30km

 91

5 degree steering response in various speeds

2.8
2.9

3

0 0 0

0.3

0.5 0.5

0

0.5

1

1.5

2

2.5

3

3.5

40 90 235

Speed (counts)

St
ee

rin
g

an
gl

e
(d

eg
re

e)

Max. Overshoot (deg)
Max. Second Overshoot (deg)
Max. Steady State Error(deg)

In the summery of 5 degree increment step response of the steering, as figure above

shown, three out of five tests shows the increase in both overshoot and steady state error.

Statistic shows that second overshoots of the steering response are not obvious. In

addition there are some characteristics shows there are a few quick second overshoots

about 0.7 degree and last less than 0.02 seconds appear when speed reaches 25km/hr.

Tests #No. Angel Increment Mat File ID Figure File ID
2 5 deg TS21 5deg5km_Power, 5deg5km
 TS22 5deg10km_Left, 5deg10km_Right
 TS23 5deg15km_Left, 5deg15km_Right

 TS24
5deg20km_Left,

5deg20km_Right_Power
 TS25b 5deg25km_Left, 5deg25km_Right

 92

8 degree increment step responses under various speeds

3

3.5

3.8

0

1

1.5

0.3

0.5 0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

50 165 220

Speed(counts)

St
ee

rin
g

an
gl

e(
de

gr
ee

)

Max. Overshoot (deg)
Max. Second Overshoot (deg)
Max. Steady State Error(deg)

In the summery of 8 degree increments step responses, some of the tests when speed

reaches 15km/hr, there are some vibrations in the steering system causing plots have

shape edges as noises. It is more obvious in 25km/hr test result.

In the test of 20 km/hr some results show third overshoots’ appearances.

Tests #No. Angel Increment Mat File ID Figure File ID
3 8 deg TS31b 8deg5km_Left_Speed, 8deg5km_Right

 TS32
8deg10km_Left_Speed,

8deg10km_Right

 TS33c
8deg15km_Left_Speed,

8deg15km_Right

 TS34b
8deg20km_Left,

8deg20km_Right_Speed

 TS35
8deg25km_Left_Speed,

8deg25km_Right

 93

10 degree increment step responses under various speeds

2.5

3.5

3.8

0

2.1

1.5

0.3

0.5

0.7

0

0.5

1

1.5

2

2.5

3

3.5

4

55 170 190

Speed(counts)

St
ee

rin
g

an
gl

e(
de

gr
ee

)

Max. Overshoot (deg)
Max. Second Overshoot (deg)
Max. Steady State Error(deg)

There are some obvious curve sharpness possibly caused by vibration in the test of 15

km/hr 10 degree increment step response of the steering. The second overshoot starts to

appear in the 20 km/hr test. Third overshoots start to form in 25 km/hr test with 1 degree

in magnitude.

Tests #No. Angel Increment Mat File ID Figure File ID
4 10 deg TS41 10deg5km_Left, 10deg5km_Right

 TS42c
10deg15km_Left_Speed,

10deg15km_Right

 TS43b
10deg15km_Left,

10deg15km_Right_Speed
 TS44 10deg20km_Left, 10deg20km_Right

 TS45
10deg25km_Left,

10deg25km_Right_Speed

 94

13 degree increment step response under various speeds

3.4

4

1
1.1

0

2.2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

120 230

Speed(counts)

St
ee

rin
g

an
gl

e(
de

gr
ee

)

Max. Overshoot (deg)
Max. Steady State Error(deg)
Max. Second Overshoot (deg)

At 5 km/hr, some smallest steady state recorded as low as 0.15 in degree. Larger steady

state error of up to 1 degree has been recorded in the test at 20 km/hr. some characteristic

in the test at 25km/hr indicates the overshoot time is relevant to speed changes.

Tests #No. Angel Increment Mat File ID
Speed

Ranges(km/hr)
5 13 deg TS51 5
 TS52 10
 TS53b 15
 TS54 20
 TS55 25

 95

15 degree increment step response in various speeds

2.9
3

3.2

3.4

0 0 0

0.8

0.05
0.2

0.5 0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

72 115 160 210

Speed(counts)

St
ee

rin
g

an
gl

e(
de

gr
ee

)

Max. Overshoot (deg)
Max. Second Overshoot (deg)
Max. Steady State Error(deg)

At 10 km/hr test, there are some very small second overshoot lasts only 0.1second. Some

characteristic of steering shown in the test under 15 km/hr that second overshoot is

relevant to speed changes. 20 km/hr test shows some extremely long rising time and some

second overshoots over 0.8 degree.

Tests #No. Angel Increment Mat File ID
Speed

Ranges(km/hr)
6 15 deg TS01 5
 TS02b 10
 TS03b 15
 TS04c 20

 96

18 degree increment step input response under various speeds

0

0.5

1

1.5

2

2.5

3

3.5

4

80 120 150

Speed(counts)

St
ee

rin
g

an
gl

e(
de

gr
ee

)

Max. Overshoot (deg)
Max. Second Overshoot (deg)
Max. Steady State Error(deg)

In 10 km/hr test results, second overshoot of 0. 5 of a degree has been recorded, it

increased up to 0.7 when speed closes to 15km/hr. in the test under 25km/hr, second

overshoots jumped up to 1.7 degree, but overshoot time reduced.

Tests #No. Angel Increment Mat File ID
Speed

Ranges(km/hr)
7 18 deg TS61 5
 TS62 10
 TS63 15
 TS64 20

 97

20 degree increment step response under different speeds

3.2

3.5
3.6

0
0.13

0.250.2 0.2

0.4

0

0.5

1

1.5

2

2.5

3

3.5

4

50 80 160

Speed(counts)

St
ee

rin
g

an
gl

e(
de

gr
ee

)

Max. Overshoot (deg)
Max. Second Overshoot (deg)
Max. Steady State Error(deg)

There are some steering characteristics conclusions shown longer rising time of the

system caused by larger angle increments in step response.

Second overshoots started to appear under 10 km/hr.

Characteristic shown in 15 km/hr indicates maximum power output time is irrelevant to

speed changes.

Tests #No. Angel Increment Mat File ID
Speed

Ranges(km/hr)
8 20 deg TS71 5
 TS72 10
 TS73b 15
 TS74b 20

 98

22 degree increment step input under various speeds

3

3.3

3.5

3.7

0 0 0

1.5

1

0.1 0.15

0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

70 95 150 200

Speed(Counts)

St
ee

rin
g

an
gl

e(
de

gr
ee

)

Max. Overshoot (deg)
Max. Second Overshoot (deg)
Max. Steady State Error(deg)

Some characteristic shows that steady state error increases as more turning torque

required as closer to limit under 5km/hr. It is further proven that maximum power output

time is not related various speed. Tests show the characteristic of an angle increment

related changes in overshoots and steady state error. Test under 20km/hr shows large

second overshoot and increased steady state error.

Tests #No. Angel Increment Mat File ID
Speed

Ranges(km/hr)
9 22 deg TS81 5
 TS82 10
 TS84c 15
 TS83 20

 99

25 degree increment step response under various speeds

3
3.2

3.4

3.9

0 0

1.8

2.1

0.4
0.6 0.6

0.4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

75 140 200 250

Speed(counts)

St
ee

rin
g

an
gl

e(
de

gr
ee

)

Max. Overshoot (deg)
Max. Second Overshoot (deg)
Max. Steady State Error(deg)

In the analysis of 15km/hr test, it is clear that the second overshoot time is related to the

speed changes. In the test under 20 km/hr appears large second overhshoots.

Tests #No. Angel Increment Mat File ID
Speed

Ranges(km/hr)
10 25 deg TS91 5

 TS92 15
 TS93 20
 TS94b 25

 100

4.2.4 Speed and Power Steering

Speed related steering response may be caused by Power Steering

A power steering system consists of a rotary-vane pump, a rotary valve and a pully.

The rotary-vane pump provides hydraulic power for the steering. It is driven by the car’s

engine via a belt and the pulley. It contains a set of retractable vanes that spin inside an

oval chamber. As the vanes spin, they pull hydraulic fluid from the return line at low

pressure and force it into the outlet at high pressure. The amount of flow provided by the

pump depends on the car’s engine speed. The pump is to be designed that provide

adequate flow when the engine is idling. As a result, the pump moves much more fluid

than necessary when the engine is running at faster speeds.

 101

The pump contains a pressure-relief valve to make sure that the pressure does not get too

high, especially at high engine speeds when so much fluid is being pumped.

A power-steering system should assist the driver only when he is exerting force on the

steering wheel(such as when starting a turn). When the driver is not exerting force, the

system should not provide and assist. The device that senses the force on the steering

wheel is called the rotary valve.

The key to the rotary valve is a torsion bar. The torsion bar is a thin rod of metal that

twists when torque is applied to it. The top of the bar is connected to the steering wheel,

and the bottom of the bar is connected to the pinion or worm gear(which turns the

wheels), so the amount of torque in the torsion bar is equal to the amount of torque the

 102

driver(steering motor in HSV) is using to turn the wheel. The more torque the driver uses

to turn he wheels, the more the bar twists.

In another word, power steering is designed by the car manufactory to amplify the force

we use to turn the steering wheel. It is like a mechanical amplifier, which amplify our

force of tuning the steering with respect to the speed of the engine. The gain of this

mechanical amplification depends on how much fuel has been pumped from the engine

into the hydraulic. Faster the vehicle speed, more tuning power will be added to the

steering wheel.

Power Steering is a very un-linear issue as how much fuel is pumped into the mechanical

depends on not just the speed but temperature of the engine, the fuel level left in the fuel

chamber and the conditions of each of the power steering elements.

Under these circumstances, it is not too difficult to understand the behaviors of steering

system responses to different speeds. As speed increases, the speed of engine increases as

well. It results more fuel be pumped to the mechanical amplifier and hence cause the

steering wheel much easier to turn. Because power output of the PID controller is not

related to speed at all, therefore under the same step increments but fast speed, steering

wheel will be overturned and causes larger overshoots and steady state error.

4.3 Angle Increments Related Steering Response

It is not difficult to see that the angle increments can also affect the responses of the

steering system. For a very small angle increment such as 2 degree or 5 degree in angle,

steering response are not seemed to be very stable from the figure shown below:

 103

Figure 7.1 2 degree increments in angle

In the experiment (figure 7.1)of 2 degree incremental step response under the speed of 5

km/hr, the steering response seems to have a extremely long overshoot times, and each

overshoot will often followed by a undershoot. In the power output plot under, it is

obvious that power output experiencing an offset from zero. Unless there is a jump in the

output power, there will be not movement to the steering. This is often caused by motor’s

dead zone. A motor’s dead zone indicates the power region that motor can not turn the

steering wheel. The motor still be able to rotate within the dead zone, but can not deliver

enough turning torque to move the steering wheel. The Motor’s dead related steering

responses are often very similar to each other and they are more likely to occur in the

small incremental step responses, because of the power output calculated from the desired

position and actual position are often very small.

In a zooming view (figure 7.2)of the previous plot at system elapsed time of 58000 ms,

when power output lies in the region of 0 to 100 (counts), the torque generated by motor

 104

is not sufficient enough to turn the steering wheel. The dead zone range from 0 to 100 is a

part of the motor’s dead zone spectrum, noted as the positive spectrum.

Figure 7.2: zoom at 58000ms

The power’s dead zone related steering responses however are not very obvious in the

bigger angle increments step responses. But in a slightly larger increment step response,

its characteristic have been transformed into another formation.

In the experiment of 5 degree incremental step response, in stead of have the

characteristic of one long overshoot follows by one long undershoot and then one

overshoot again, the first overshoot tends to bound back to zero as the power outputs are

larger than that in the 2 degree incremental step response. However since the error

between the desired and actual position of the steering are still small because of the each

of 5 degree increments(figure 7.3), the actual steering will be left in the dead zone again

even it tends to bound back in the first plays, unless a large-enough integral term of error

piles up to exceed the motor’s dead zone.

 105

Figure 7.3: 5 degree increments

Statistic shows that a larger incremental step response often causes a larger overshoot and

a longer Rising time in the steering system. And speed of the vehicle is no relevant to this

characteristic. Below shows a conclusion of the steering response under the similar speed

but different in step angle increments.

Step angle increment

(degree) under

20km/hr

1st

Overshoot(degree)

2nd

Overshoot(degree)

Rising

time(Second)

Steady state

error(degree)

2 1 0 0.3 0.3

5 2.1 1 0.3 0.2

13 2 1 0.4 0.1

15 3.4 0.8 0.8 0.5

20 3.5 1 0.75 0.4

22 3.7 1.5 0.8 0.5

25 3.9 2.1 0.85 0.4

 106

Steering Responses with various Step increments under the speed of 20 km/hr

1

2.1
2

3.4
3.5

3.7
3.9

0

1 1
0.8

1

1.5

2.1

0.3 0.3
0.4

0.8 0.75 0.8 0.85

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 5 13 15 20 22 25

Angle increments(deg)

St
ee

rin
g(

D
eg

re
e)

, T
im

e(
Se

co
nd

)

1st Overshoot(degree)
2nd Overshoot(degree)
Rising time(Second)

It may be because the torque turning the steering wheel is not in a perfectly straight line

relationship with the power in counts calculated by the steering PID controller. As the

error between the desired position and actual position are getting larger when increment

of step response increases, a lesser output power calculated by Steering PID controller is

required to maintain the same overshoot and rising time as in a smaller increment step

response.

 107

4.4 Motor Characteristic Related Steering Response

One of the most un-linear characteristics of the motor is the motor’s dead zone. As it is

mentioned in previous section, a motor’s dead zone indicates the power region that can

not provide enough torque to turn the steering wheel while the motor is still trying to

rotate. It is more often to be seen in the small angle increments step-input applications.

As in the experiment of 2 degree increment step response below in figure 7.4, the motor’s

dead zone has its positive end of the spectrum of 100 power outputs in counts, with a

dead zone time of approximately 3 seconds. A dead zone time indicates the time it takes

the power output to stay inside the dead zone’s region.

Figure 7.4: 2 degree dead zone analysis

Around another 3 seconds later, the steering response is recorded with slightly a bit

different in its overshoot, dead zone region and dead zone region.

 108

Figure 7.5: 2 degree dead zone analysis

At the system elapsed time of 72.62 second in figure 7.5, the power of the motor exceeds

the dead zone as power output reaches to 90 counts. Steering starts to move again. In the

same experiment, at power output reaches the end of the negative spectrum at -200 in

counts.

Figure 7.6: 2 degree motor dead zone analysis

 109

In the figure 7.6, the output power doesn’t seem to return back to zero as it should be

when steering wheel starts to turn again. The reason for this behavior may be caused by

the integral constant error related steering response. It usually occurs when as the integral

term error continuously to pile up over a long period and at constant at it’s maximum

peak. When it happens, the motor will continuously sending power constantly when

proportional term error and derivative term error drop down to zero.

 110

4.5 Integral Terms Related Steering Response

An integral term related steering response often results in a continuous increase in the

power output to the motor. It is usually in a form of a jump in steering suddenly appeared

during the steady state. The figure shown blow shown an integral term related steering

response. As it is mentioned before, an integral term related steering response often

appears in a small angle increment step response. It often related to the problems

occurred by motor’s dead zone as it cause the power output suddenly exceeds dead zone

spectrum causing a jump in the response of steering.

Figure 7.7: integral term related steering response

A integral term related steering response can be avoided by using a flag to set it down to

zero each time a new set point is inputted into the PID controller.

 111

Chapter 5

HSV Safety issues

5.1 Introduction

As the research of the high speed vehicle is getting more and more advanced to any other

step, the requirements of more dangerous tasks or experiments are in demands. Issues on

the safeties of people or their surrounding environments involved into the experiments

are essential and can not be ignored.

Because the research on navigation system in HSV project involves lots of online tuning

process of both steering and speed. Especially for low level control of the vehicle as most

of its works need to be dealing the most on no-linear behaviors in both steering and speed

control responses. Sometimes a waiting accident is often likely to occur. The question on

how to improve the safety for more and more experiments ahead of the project research

just becomes one of the most important issues in the project HSV.

It is everyone’s responsibility to improve the safety of our thesis working environment

and passes our knowledge of safety down to next generation of young students like us.

In order to maintain and improve our safety during the thesis work, there are certain rules

needed to be notified and obeyed.

 112

5.2 Emergency procedure in HSV Running Experiments

There are rules during any run tests are experiments should be kept in mind always. They

are especially important to the students that involves in the work on controlling the

behavior of the vehicle.

Rules list below should be checked before any experiment started.

Hardware and Personnel:

• Have at least 2 people in the vehicle and the other person has be a member in the

HSV team.

• Light up the alarm lamp on top of the vehicle

• Fasten seat belt always

• Push the emergency light to green color

• Make sure there's enough voltage in both batteries

• Double check actuations condition and attachment

• Make sure the driver seat has been adjusted to the best position for any

unexpected emergency procedure.

Software:

Check all other Microsoft Windows programs are closed when only interface is

running. New software always needs to be double checked with other team member

before any on-running tests and experiments.

When accident happens

Driver

• Stepping down the brake paddle immediately while switching off the steering

wheel clutch disengage button

• Turn off the engine

 113

Passenger

• (Optional)Push the emergency buttons built in any User interfaces.

• Pull up the handbrake

5.3 Concept Design of an emergency system

A Concept design is undertaken to implant an emergency override system for the brake

and accelerator actuation systems.

In the early stage of the HSV project, the issue of safety during the road testing is

ineligible. It is more likely to have program crashes or even the electrical failures while

the vehicle is still in driving automatically.

The problem is the brake paddle and butterfly throttle valve are connected to an

electronic worm gear. Since worm gear can not transmit power backwards when the

electricity is dead, the actuator will get stuck and stop moving. In the other word, when

program or electricity fails, cylinder of the actuator can not be moved back, it is more

likely to have difficulty to control the vehicle back to manual.

Similar problem has been solved for the steering control by using a electro-magnetic

clutch to separate the gear attached to motor when accident happens.

Previous Thesis student have chosen an electrical trigger to disengage the actuations for

brake and throttle under the control of computer. By stepping on a button-like panel, it

triggers an override voltage to the actuation system to close off the butter fly valve and

release the brake paddle. That eventually did not solve problem when electricity went

dead.

 114

The cables that attached to the front end of two actuators respectively need to be pulled to

open the throttle valve to accelerate or Set-brake to the vehicle. Therefore they need to be

released when the system emergency procedure takes place. Therefore to release the

necessary cables to close the valve and release the brake paddle.

The concept idea for this design comes from how to increase the current length of the

cable to release the bake paddle and close butterfly valve. All that is needed is to create

the length of 5 to 6 center meter of cable traveling distance after an emergency button has

been pushed.

The hardware listed below is designed to move the entire actuation system forward 6 cm

in the same effect of creating extra length in cable traveling.

Briefly, there are three parts of components as in figure 8.4:

Figure 8.4: Components of emergency-buttoned actuation system

Basement plate - Consists of a thin mounting plate, 60X20X2 (length X width X

thickness in cm) Gray Cast Iron. It also consists of two slider bar 0.5 in diameter, 50 in

length with a clearance of slot 1 cm in depth. A mechanical switch should be built in one

side of the slot as emergency button.

 115

Actuator - Using either a new solenoid actuator or existing worm gear actuator does not

matter (40X15X10), with two 0.7-0.9 diameter holes at the bottom. There should be 4

bearings built inside hole and leave still enough space to allow slider bar passing through.

Helical Compression Spring - provide 0.5 to 1 Kg to push slider forward. Fully

compressed length 4cm fully expended length 10cm.

Trigger - The trigger is in terms of a button which when it is pressed, the pre-

compressed spring will be release causing a force to push actuation forwards.

Figure 8.5: Functionality of emergency-buttoned actuation system

Functionality:

When the button is pushed, Actuator sitting on two smooth slider bar will be pushed

forward 6 cm by a helical spring on the back to cover the required cable length for

complete System override. It is shown as below in figure 8.5

Conclusion:

In conclusion, the design is completely free and independent from any programming

logic and electrical limitation. In other words, it is independent from software and

electronic devices and when accident happens, it can be the reliable break down system

for the emergency procedure. The design of it has not be completed and more work or

new idea are required to solve the emergency problem existing in our actuation control.

 116

Chapter 6

Conclusion

In conclusion of Low-level control at the end of 2002, the PI steering controller has been

found to have a better response than a PID controller for the steering control system. The

gains are tuned as Kp=3.276, Ki=0.006102. it provides a good steering response of 1.7

degree of overshoot and 0.2 seconds in overshoot time. But motor characteristic such as

dead zone related steering response is more likely to produce a big steady state error in

the steering control system. Nevertheless, the best performance of the steering response is

found under the same gains which has zero in overshoot and 0.2 in steady state error.

For the dead zone related steering responses along with other no-linearity related steering

responses such as speed related and increment of angle related responses are to be

explained briefly.

For the speed control, the algorithm is implemented into the Hyperkernal but did not have

the time to accomplish the on-line task. And two position-controlled actuators are ready

to be fine-tuned. The efficient ranges of the working actuations are outlined.

In the middle of the year, motor for controlling the steering has been corrected to provide

the maximum current for motor.

The path following algorithm is written as well as a user interface used to fine tune the

path following results.

 117

Further more work in the development of low level control involves the speed control and

path following tuning process. They can not be approached if the requirement of the

safety in our working environment has been proven to be reliable.

Reference:

Kelly, A. (1995), “A feedforward control approach to the local navigation problem”,
Technical report, Carnegie Mellon University, The Robotics Institute

John G. Bollinger and Neil A. Duffie, “Computer Control of Machines and Processes”,
Addison-Wesley,1993

Thomas D. Gillespie, “Fundamentals of Vehicle Dynamic ”, Society of Automotive
Engineers,1992

Advanced Motion Controls, “users manual for 25A8 series PWM servo amplifier”

Huosheng Hu, “LICA User Manual – A Locally intelligent Control Agent for Building
Complex Control System Version 1.1”, Robotics Research Group, University of Oxford,
1994

S.R. Earle, “Braking of Road Vehicle”, Proceedings of the Institution of Mechanical
Engineers, 1993

Michael J. Young, “Mastering Visual C++ 6”, text book for C++ programming

Ivor Horton, “Beginning with Visual C++ 6”, published by Wrox Press Ltd, 1998

Mike Blaszczak, “Professional MFC with Visual C++ 6”, Published by Wrox Press Ltd
2001”

