L o

{NE RUBUTIES

The

Col ne Robotics

ARMDROI D

Construction and Operation Mnual

Publ i shed by

COLNE ROBOTICS LIMTED
1 Station Road
Tw ckenham
M ddl esex TW. 4LL
[CQ Copyright 1981

CONTENTS

1. | ntroducti on

2. Mechani cs
2.1 Descri ption
2.2 Technical Hints
2.3 Tool s
2.4 Mechani cal Parts
2.5 Assenbl y

3. El ectronics

3.1 Descri ption
3.2 Conponent Li st
3.3 Assenbl y

4. Sof t war e
4.1 I ntroduction
4.2 Loadi ng
4.3 General Description
4.4 Conmand Expl anati on
4.5 I ntroductory Denonstration Sequence
4.6 Detail ed Software Description
4.7 Applications

Page No.
1-1%
2_|
2_2
2_3
2-4 - *2-8*%
2-9 - *2-14%
3-1 - *3-3*
*3-3 * - *3-3 *
3-4 - *3-5*
4_|
4_|
4_|
4-] - Y 4. 4%
* 4- 5%
4-6 *4-48*

*4-48% - *4-58%

| NTRCDUCTI ON

The devel opnent of Arndroid | arose as a result of a survey of
industrial robots. It becane apparent that educationalists and
hobbyi sts were starting to show interest in medium and snall
sized robotic devices. There was however no robot on sale any-
where in the world at a price suitable to these nmarkets. The
Arnmdroid mcro-robot now fulfils this role, providing a
fascinating new m croconputer peripheral.

Purchase of the robot in kit form enables the assenbler to
understand its principles and allows for nodification, although
of course the machine may al so be purchased ready assenbl ed.

This manual has been conpiled as a guide to the construction and
operation of your Arndroid micro-robotic arm and should be
followed carefully. There are separate sections covering both

t he nechani cal and el ectronic aspects of the robot, as well as
the specially witten software.

1-1

¢ﬂi ol j.u.at A5 cheLous |
ﬂu‘ -,t..-avi:!lw vhe "‘?L'r'. >

.

BB, Wileh EOtARel o thd haza
A= | fiﬂ T ers _. theiy

ot tumr *b-.:--" aAch CArviad}
__"l:.)j;_nu‘, ik Ghi Nand, -0
B _on the shauldai™

PR ey

HOOUE. & ROTLZgN, L8

1} r bnl e #"-
] -5 ‘-lm? yh-l ::"3 5

Motemant s, She ::mat..,r*,r ..x!:
Ehe Ilanisa disthe foang
By tapend on aqg:!ruma.' Lon
e “Evl & s yehussiisbed Dy
"*_a .xa-r-""'r.:. R Ehd
ran Che Gears in 250 vaold
.mn*-- STk A€ B, v

gesed HapA with drs sanbi:
ERrd ooz ardd ahnd . Netcaeamal

VECHANI CS
2.1 Description

The ARMDRO D consists of five main parts.

The base
The base perfornms not just its obvious function of supporting
the rest of the arm It al so houses the printed circuit boards
and the notor that provides the rotation.

The Shoul der

The shoul der, which rotates on the base by way of the main
bearing, carries five notors and their reduction gears which
mesh with the reduction gears on the upper arm

The Upper Arm

The |ower end of the upper armcarries the gears and pulleys
that drive the el bow, wist and hand. It rotates about a
horizontal axis on the shoul der.

The For earm

The forearmrotates about a horizontal axis on the upper arm
and carries the wist bevel gears.

The Wist and Hand

The two wist nmovenents, the rotation about the axis of the hand
("twst") and the rotation of the hand about a horizontal axis

("up and down"), depend on a conbi nation of two independent
movenents. The twist is acconplished by rotating both beve

gears in opposite directions, while the up and down novenent

is done by turning the gears in the same direction. Conbinations
of the two novenents can be got by turning one bevel gear nore than
t he ot her.

The three fingered hand with its rubber fingertips has a
strai ghtforward open and shut novenent.

2 - 1

2.2 Technical Hints

1. FI TTING BELTS ONTO PULLEYS

Fit belt over small pulley first and then work onto unfl anged
edge of large pulley a little at a tine - do not attenpt to get
belt fully onto pulley until you have got it on by one or two

millinmetres all round. (Belts can be damaged if they are
crinped). Wen fitted belts should not be drumtight there should
be just a little play, or friction will rear its ugly head again.
2. FI TTI NG SW TCHES

On initial fitting do up bolts only enough to hold switches in
position. Finally after gears are fitted swing switches so that
they clear gears by approximtely one mllinetre and finally tighten.

3. FI TTI NG PULLEYS TO MOTORS

You will find the nmotor shafts have end float with a light spring
action pulling the shaft in. Do not pull shaft out against this
spring when fitting pulley as this will cause friction and |oss of
effective notorpower.

4., LUBRI CATI ON

Use light oil (three in one or simlar), just a drop on all parts
that slide or pivot. DELRIN is a self lubricating material but the
friction is a lot lower with a drop of oil. W only have

limted power fromthe notors so we want to nmake the nost of it,
so work spent on elimnating friction wi Il pay performance

di vidends. Check all bores and bearings for free running - any
tightness is usually caused by burrs or stray bodies in bores.
Renove burrs fromDelrin with a sharp knife, fromnetal with a
scraper.

Di sposabl e hypoderm c is ideal for lubricating - scrounge one from
your local friendly GP or Hospital.

*xD . D%

REED SW TCH POLI CY

M cro-switches are included in the assenbl ed and unassenbl ed

Arndroi d packages as optional extras. It nust be stressed,
however, that the machine will function perfectly well w thout the
m cro-swi tches, but a check nmust be kept on the nunber of conplete
revolutions of the base. Any nmore than 1.5turns will put a

strain on the stepping notor |eads where they connect to the
printed circuit boards.

To prevent any difficulty in the fitting of reed-swtches
after the initial assenmbly the magnets will be inserted
during manufacture. This will save the dismantling of the
Arndroid in the field. Magnets will be included in all the
Kits.

There will be a nominal charge of £15 for the inclusion of reed-
switches in both the assenbl ed and unassenbl ed Arndroi ds.

PART NUMBERS | NVOLVED: *(O9*10*15*16*18/16*18/12*

2-2a

2.3 TOOLS LI ST I NC Lubricants etc

CGeneral and small circlip pliers

7mm spanner suppl i ed
5. 5mm spanner suppl i ed

Metric steel rule, (part identification)
Hypoder m c syringe or small oilcan and 3 in 1 oil
"Superglue” and if possible "Loctite"

Col d vaseline or cycle bearing grease

Tweezers

Al'len keys for M3 grub screws - supplied
M4 grub screws - supplied
M4 bolts - supplied

Li ght wei ght hanmmer (fitting roll pins)

*D_ 3k

2.4 ASSEMBLY

Description of item

Base
Base Bearing support colum
Base not or
Base notor short pulley 20 tooth
Base reduction gear spindle
Turned thick w de washer 16mm x 2mm
Reducti on gear
Base belt (nediumlength) 94 teeth
Base switch support 12mm x 11nm
Base switch
Shoul der pan
Shoul der bearing ring
Base gear (large internal dim
Bearing adjusting ring
Hand notor support bracket
Hand not or
Hand swi tch bracket
Motors - Upper arm
Fore arm
Wist action

Motor pulleys - Upper arm

Fore arm short 14 tooth

Part No

01
02
03b
04b
05
06
07
08m
09
10
11
12
13
14
15
03h
16
O3u
03f
03w
04u
04f

Wist action long 20 tooth 04w

Hand short 20 tooth

*0 L Q¥

04h

DESCRI PTION OF | TEM

Shoul der Si de Pl ates

Switch support bar 107mm x M3 at ends

Support bar spacers M3 cl earance X

Mot or support bracket stiffener
107mm x M3 at ends

Support Bar spacers

Reducti on gears
Reduction gear spindle 96mm x 6mm

Drive belts long = 114 teeth
medium = 94 teeth
short = 87 teeth

Upper Arm Drive Cear

small internal dimno drum

Upper arm side plates
Upper arm brace
Gears wri st action
hand action
fore arm
| dler pulley
Shoul der pivot 96mm x 8nm spi ndl e
Fore arm side pl ates
Fore arm brace
Fore arm pul | ey

9 . G

Part No

017
019
018/ 16
018/ 12

019
018/ 54
018/ 41
020
021

08/ | Hand
08/ m Fore/ Upper arm
08/s Wist action

021
022
023
024
025
026
027
029
030
031
032

DESCRI PTI ON CF | TEM

El bow Idler pulleys hand
wri st

El bow spi ndl e 65mm x 6mm

Wist bevel gear carrier

Wi st guide pulleys

Wi st bevel gears (flanged)

Wist pivots

Hand bevel gear (no fl ange)

Fi nger support flange

Hand pi vot

Finger tip plates

Fi nger cable clanmp

Smal | finger spring

Finger tip pivot

M ddl e finger plates

M ddl e finger pivot

Large finger spring

Fi nger base

Long finger pins 16mm x 3nm

Short finger pins 13mm x 3mm

Smal | finger pulleys

Large finger pulleys

Large hand sheave pull ey

Smal | hand sheave pull ey

Hand sheave pin

Fi nger tip pads

Base pan

*2

6*

No

Part }

033
034
035
036
037
038
039
040
041
041
042
043
044
045
046
047
048
050/ |
050/ s
051
052
053
054
055
056
057

DESCRI PTI ON CF | TEM

Board Spacers

Spacer bars for boards

Rubber feet

Cabl e springs wist action short

Cabl e springs grip, elbow long

PREPARATI ON AND FI XI NGS ETC

DESCRI PTION OF | TEM

Magnet s

Bearing adjustnment ring grub screws

M4 X 8mm

NB + self made plug to protect the

fine bearing thread

Turned cable clanmps 6 x 6mm M3 tapped

Cable clanp grub screws M3 x 4 pointed head

Crinped type cable clanps

crinped eyelets

Gear Cable grub screws M4 x 6mm fl at

Bushes 8mm bore long with flange

shoul der
Shoul der pivot spindle spacer

6mm bore short with flange
- el bow
8mm bore long with flange
wri st
8mm bore no flange
mai n gear inserts
Gear to sheet metal screws M3 x 6
sl ot hd CSK
Spring pillar and base switch
M3 x 10 cheese head

Base bearing to shoul der pan
M4 x 16 CSK socket head

D o 7

Part No.
018/ 41/ 54
058
059
060

061

I tem No.

101

102

103

104/ 105

106

107

108

108a

109
110
111
112

113

114

DESCRI PTI ON | TEM

Mot or bolts, Base bearing to base

M4 x 10 El bow spindle hex hd

Hand to finger, hand to bevel gear

M3 x 6 cheese hd

Shoul der spindl e
Mo x 10 hex hd

General sheet netal fixing
MB x 6 hex hd

Nut s

Washer s

Shakeproofs el bow spindle
shakeproofs shoul der spindle

Nut s

& ® & = E E

washers - sw tches

6mm steel balls - base bearing
Magnetic reed sw tches

Driver board

| nterface board

Edge connect or

6mm Washer s

Rol | pins

4.5mm circlips

3mm circlips

El bow spacer

*xD . gk

| tem No.

115
116

117

118

119
120
121
122
123
124
125
010(1017?)
126
127
128
129
130
131
132
133

2.5 ASSEMBLY

Preparati on

Study the parts list, drawings and the parts thensel ves unti

you are sure you have identified themall. Assenble the tools
suggested in the list of tools (2.3). Read carefully

technical hints section. Solder 12inchesof ribbon cable to each
notor. due nmagnets (101) into the slots in the reduction gears,
noting that the hand gear (25) needs no magnet. Check that the
adjusting ring (14) of the main bearing screws easily onto its
base. dean both if necessary. Insert bushes into the arns,

if necessary using a vice, but taking care not to distort the
sheet netal .

Construction

Fit base bearing support (2) colum inside base (1). (M bolts,
nuts.) NB NUTS | NSI DE BASE

Bolt 1 nmotor (shorter cable) inside base. (M hex bolts, washers
on notor side - nuts on inside). Fit pulley to spindle base of
notor with the grub screw at the top (04b). Fit base reduction
gear spindle (07) to base. (Thick turned washer, M hex bolt)

Fit reduction gear and belt. Place a small drop of oil on the
reduction gear spindle before fitting reduction gear.

When fitting belts they should be placed fully on the notor spindle
and worked gently onto the reduction gear, a small section of their
width at atinme. (see general hints on |ubrication)

Fit base switch support. (M8 hex bolt) NB DRAW NG FOR PCSI TI ON.
Fit base switch and run wires through adjacent hole. (M x 10
cheesehead, washer)

Fit bearing ring (12) (long spigot down) through shoul der base pan

(11) frominside. The base gear (13) fits on the |ower face of the pan,
with the nmagnet at 20'clock as seen frominside the pan with the

flange at the top. (M countersunk x 16mmbolts, nuts)

(This step and the next are sinpler with some help from an
assistant). Put shoul der base pan (gear side up) on to 3in supports
(books etc,) so that the bearing support columm can be inserted.
Practise this novenent to make sure all is well. Snear vaseline
froma fridge, or grease on the bearing track of the flange, and
using tweezers to avoid nelting the vaseline carefully place 24 ball
bearings round the flange, enbedding theminto grease. There wll
be a slight gap when all the balls are in place. Invert the base
and i nsert the threaded bearing support colum inside the bearing
ring taking care not to dislodge any of the balls so that the base
pan neshes with the base gear. Keep the two parts level in the

sane relationship by taping the parts together with a piece of wood or
a spanner 5mm thick between the notor pulley and the shoul der

base pan.

2 - 9

Large rubber bands can be used instead of tape. An assistant
to hold the parts for you will be useful here.

Turn the assenbly the other way up (the base is now on the bench
with the shoul der base pan above it. Put nore grease round the
bearing track and enbed 24 nore ball bearings in it. GCently

lower the adjusting ring (14) on to the threaded base and then
screw the finger tight, renove with tape, adjust the ring unti

the base pan noves freely without play then tighten the grub screw,
inserting a small wood plug to protect the bearing thread. (M
grub screws) (102). The bearing nmay need adjusting after sone

use as it beds in.

Fit hand notor bracket (15) to shoul der base pan (M8 bolts) then
the hand notor O3h(M4) and the hand notor pulley. Then fit the hand
reed switch-bracket (M) and the switch (M8 x 10 cheesehead bolts).

Fit nmotors to the shoul der side plates (17) and feed the cables

t hrough the holes towards the inside. The bolts which are next
to the reduction gears should be placed nut out to prevent the
reducti on gears catching on the end of the bolts. Fit correct
pul l eys (04u/f/w) to the notor spindles noting which pulleys from
the drawi ng, tighten the grub screws.

Fit the shoulder plates. This is sinplified by |oosely tightening
the end bolts to support the weight. Feed the notor cables down
t hrough the main bearing (M3).

Slide switch support (19) bar through spacers (18), sw tches (101)
and notor support bracket (see drawing for correct order of spacers).
You will need to be able to adjust the position of the reed sw tches
after the armis fitted so that they clear the gear wheels

ie tangential to shoulder pivot. Fit the notor support stiffener bar
and spacers. Leave nuts finger tight. (M nuts).

Assenbl e reducti on gear support bar (21), assenble wth the correct
length drive belts (08s/ml) over each gear, reduction gears facing
in correct direction and the thin netal M6 washers at either end.
(see drawing) Slide gently into position and bolt in the support
bolts (Mt a 10mm) Fit the belts round the notor pulleys.

Put upper armdrive gear on the outside of the upper arm side plate.
The magnet should be at 1 o'clock, viewed fromthe gear side of the
arm (M8 CSK screws x 6nmm) Fit a brace to one upper arm side
piece (22), then fit the other side piece to the brace. Fit all
bolts and nuts before tightening any of them Check 8mm shoul der
spindle (29) slides freely through accute bushes in upper arm side
pi eces and through bores of drive gears, pulleys and spacers.
Assenbl e by sliding shaft fromone side and threading gears,

pul | eys and spacers on in the correct order of orientation - use

dr awi ng.

2 - 10

Fit pulley (32) to the outside of the forearm side plate (30)
(MBx6mm) (countersunk screws). Fit a brace to one forearm side
plate, then fit the other side plate to the brace. Check for
squareness before finally tightening bolts.

Put el bow pivot through bushes and an 8mm bar through wist bushes.
(M8 bolts, nuts) Check fit before assenbly. Assenble the pulleys
(33) on the el bow spindle (34), lubricate and fit it to the large
arm and bolt through into spindle. (MI bolts, washers)

Assenble the wist bevel gear carrier (35 and wist pulleys (36)
and then tap the roll pins gently home with a small hamer,
supporting alum nium gear carrier to prevent distortion.

Fit the wist gears on the bushes (37) fromthe outside. Fit

bevel gear carrier (35) between the wist bevel gears (37), line
up holes in end of wist pivot (38) bores with tapped hole in
carrier by peering down pivots. If you do not have a screw gripping

or magnetic driver use a little piece of masking tape or sell otape
to fix MB cheesehead screw to the end of your screwdriver in such
away that it wll pull off after tightening - check gears pivot
freely on pivots and that the whole assenble can pivot in oilite
bushes (drops of oil on faces of gears and pivots)

Screw the finger support flange (40) to the hand bevel (39).

(M8 x 6mm cheesehead screws) Screw the hand pivot (41) to the bevel
gear carrier (35). Tighten on a drop of loctite if available,
gently by turning a pair of pliers inside it. The bevel gears should
be positioned with their grub screws pointing towards the hand when
the hand and the forearmare in line (see draw ng).

Assenble the fingertip (42) and cable clamp (43) with the snall
spring (44) on the pivot (45), and clip together with |arge
circlips on the cable clanp. The spring should be positioned so
that the "back"™ of the spring is on the knuckl eside of the
fingertip, thus tending to open the hand.

Assenble the mddle finger (46) and its pivot (47) with the large
spring (48). Fix to the finger base (49) with the long pin (50/L)
(16m x 3m) and two small circlips (see drawing). Fix one

circlip to the pin before one begins to assenble.

Join the fingertip to the mddle section with the short pin (50/9)
(13mm x 3mm) and two small circlips.

Cut off one end of the tip spring about 8mm 10nm beyond its hole.
Level with its hole bend the spring through a right-angle to secure
it. Repeat at the other end. Trimthe inner end of the mddle
finger spring flush with the end of the finger end and treat the
outer end as above.

2 - 11

Fit the small pulley (51) to the finger m ddle section using a short
pin (13mmx 3m) and two small circlips. Fit the larger pulley (52)
to the finger base with a long pin (16mmx 3my and two snall
circlips.

Screw the finger base to the finger support flange. Mke sure that
the fingers are evenly spaced and do not interfere with each other,
and then tighten. (M8 x 6mm cheesehead)

Assenble the large and snmall hand sheave pulleys using the |arge
circlip on hand sheave pin (55).

*2 - 12%

CABLE THREADI NG

Slide arminto shoulder, you will need to align the reduction
pul l eys between the main drive gears as you lower the arminto
pl ace, and assemble using Mo hex head bolts and shakeproof
washers. Tighten and check the reduction gears "mesh" correctly
and the arm moves freely.

Connect grip action cable tail to shoul der base pan via the spring
correctly placed over the pulley and tension using the normal method
with the cable clanmp.

G ue strips of rubber to finger tips using superglue.

The driver and interface board should be bolted to the base pan
using the spacer bars (58) and spacers. Bolt base pan (57) to
base (M8 x 6mm hex head).

Hints: Useful tools are:

a) 2 or 3 '"bulldog clips' to maintain the tension in the cable

over conpleted sections of each cable while the remainder
is threaded. Masking tape can also be used for this purpose

b) Ends of the cable can be prevented from fraying by placing
a drop of 'superglue' on the end of area where it is to be
cut. The excess should be wiped off on a piece of paper.

NB. This process also stiffens the end which is useful when
threading the cable through the pulleys.

c) Ensure all grub screws are in position but are not obstructing
the cable holes. Also check there are no burs remaining
from machi ning blocking the holes.

d) The cables can be threaded before the armis bolted for the
shoul der which eases the problems of access considerably.
The 'grip action' cable tail can be taped or clipped to the
arm and connected and tensioned with its spring after the
armis fitted to the shoul der,

e) When tensioning the cable, if it is passed through the clanp
and back, then connected to the spring adequate tension can be
applied by pulling the 'free tail' and then nipping it with the
grub screw. A friend will be useful if around, but it is
quite possible without. The correct tension can be easily
judged, as when conpleted the coils of the spring should be
just separated, though this is not critical.

2-13

f) During threading the correct 'route' can be ascertained

from t he expandi ng draw ngs. It is very inportant these
shoul d be followed exactly, especially the position of the
grub screws when they are tightened on the cable. |If this is
wong it will affect the performance of the arm

%)) Care should be taken to avoid the cable kinking or crossing
itself on the druns.

h) Experi ence has shown that the best order to thread the
cables and | engths to use. (Excess can be trimed easily
| ater but makes tensioning sinpler)

Fi rst - Wist cables one at a tine. 1.47m (each)

Second - El bow cable (set up the spring

pillar first - M3 x 10mm cheesehead

and 2 MB hex full nuts) attach

crinped cable clanp to forearm first

using M3 x 10 cheese head and two

nuts as a cable pillar. 0. 95m
Third Single finger cable (fix to the

hand sheave pulley using M3 x 6mm

cheesehead and crinped cable cl anp. 0. 18m
Fourth - Double finger cable (loop over

smal | hand sheave pulley on grip

action pulley and adjust so that

G A P is even when pulleys are

evenl yposi tioned). 0. 36m
Fifth - Gip action cable (start at end

fixed in cable drum and stick

other end to armwhile fitting

it to the shoulder then tension

with the spring to the shoul der

base pan). 1.3 m
i) Ends using the crinped cable eyelets should be threaded

through the eyelet and a small thunmb knot tied to prevent
the cable slipping before crinping the bracket using
crinmping or ordinary pliers. So not crinp too tight
or you may cut through cable, though KEVLAR is very tough

*2- 14

Sarle o REMGEH IS AR Gn w2tk
“Jvy -\"&l: oF TLME Be = 1 AR = WF.- dols % T}
B & FMaAicd G-nie bidipeeblorc] pet
B A% At - It nopelsteRas. the Lot
ot input date SO LHE mlece,

$E= o.iﬁrr Prrade Uhke ot e eont igure
ﬂ ﬂwﬁ'lﬂ" A s foardsta-Sies 100

5 e DI s 1—' Rtd sy the
LHQ PO Fouy L':ﬂ.t!‘-"i s Emd pre
Gt Xal: The -,--aw: "l;' t-u"'.:l coz iy
:.;'-uf?.':' “;e Lawsl f:’ f_j‘!‘;ﬁs“;t-rp 4 .'___-1
ROX: T L¥Tas SsarEy sy B3

Somt!

H-i.n-ﬁ—t}y -n’f [':i e * iy 0
LI S580, et Al B e lstol

R,

'J@’ el E.:*i u.?rlh.. i Pag
N;"M._sa reft disteNps 823 auy>
ek o¥ ehe BEVENENTS ha 29
m fc__' f*ﬁt—ﬁﬁh‘ %:' ™ an

B e e

L _;‘
i e ‘!._

RIS 65 & &.-'1:1:. which cs
amt. sepsEF, dlloifing R
L.th'g.r t‘.—ﬁ :1'@ vas.z_h

". - i I,

CE &8 Twely
a‘:'ﬂ-".- ?"l-i' - 'Et‘ﬂ,n. }CI : 2=
’Zi;.? PUST AR RS TG EN Gy
6GAss the € S oulit” ads
B 3!.} oE bt AT

o 1 -

fm ¢

ELECTRONI CS
3.1 Description

The Interface

To enable the Arndroid to function with as wi de a range of

m croprocessor equi pnment as possible, the interface is designed
round a standard 8-bit bidirectional port. This nmay be | atched
or non-latched. If non-latched, the interface will normally

be used to input data to the mcro.

In the output node the port is configured as follows. The eight
lines are defined as four data bits (D8-D5), three address bits
(D4-D2) and one bit (D) to identify the direction of data
travel on the port. Four data lines are provided so that the
user can control the stepper notor coils direct from conputer

The address bits are used to channel the step pattern to the

sel ected motor. The three address bits can define eight states,
of which 1-6 are used to select one of the notors, while states
0 and 7 are unall ocat ed.

D indicates the direction of data travel, to the notors when
D is low, fromthe mcroswitches, if installed, when D is
high. The transition of D fromhigh to | ow generates a pul se
whi ch causes the step pattern to be latched into the addressed
out put | atch.

In the input node D8 - D3 are used to read the six mcrosw tches
on the arm These reed switches and nmagnets provide a "zero"
point for each of the novenents of the arm which can be used as
reference points for resetting the armin any position before a
| earni ng sequence begi ns.

D2 is spare. It is an input bit which can be buffered and used
for an extra input sensor, allow ng the user to connect a
"home brew transducer to the system

The interface circuitry consists of twelve TTL conponents which
decode the data and route it out to the selected notor driven
logic. 1A and IC buffer the data out to the decoder and

| atches. 106 decodes the three input address bits to provide
eight select lines, six of which are for the latches IC7r - 1Cl2

*3 . 1%

| NTERFACE ONLY

D is buffered and fed into a nonostable (I1C4) to generate

a clock pulse. This causes the decoder to provide a latch
pul se for approximately 500ns to the addresses notor contro
latch. D is tied to pull-up resister (R) so that the line
is high except when are output fromthe m croprocessor. The
buffers 1A and I1C2 are enabled by the buffered output of bit
1 so that data are fed to the latch inputs only when bit 1 is
low. The bit 1 buffer is always enabl ed because its enable
is tied | ow

The mcroswitch inputs are buffered by 1C5 which is enabled

by the conpl enmented output of bitl, so that when bitl is high
IC5 is enabled, and the contents of the mcroswitches will be
input to the mcroprocessor. This allows the user to operate
the armunder bit interupt control, giving instant response to
a mcroswi tch change and avoi ding having to poll the mcro-
swtches. The six mcroswitch inputs are pulled up; thus the
switches can be connected via only one lead per swtch, wth
the arm chassis acting as ground.

THE MOTOR DRI VERS

the notor drivers are designed so that the arm can be driven
fromthe output of the conputer interface circuitry.

The six notor driver stages need two power supplies: 15v at
about 3A and 5v at 150 MA.

The four waveforns QA-QD are then fed into ICs 13-16 which
are 7 x Darlington Transistor ICs. These provide the high
current needed to drive the stepper notor coils, the driving
current being about 300 MA at 15v.

*3 . %

| NTERFACE DRI VER BQOARD

| TEM VALUE QUANTI TY
Resi stors
RI 1KO
R2 1K
R3- 8 2K2 resitor

net wor k 1
RO 1K8
Rl O 1K8
Rl | 1K8 3
R12 15K 1
R13 1K 2
R14 18ohm 5w 1
R15- R20 1KO 6
Capacitors
d | OOp pol ystyrene 1
c2 | . Ovf Tant 1
C3- C15 | Ohf ceram c 13

Sem conduct ors

74LS 125
74LS 125
74LS 04
74LS 123
366
74LS 138
| C12 74LS 175
-1 Cl16 ULN2003A
UA 7805
BZX 13v ZENER

2002882800
>

N———————— —

M scel | aneous

MXJ 10 way edge connector

5 way PCB plug and socket connector
Through Pins

16 pin |1 C sockets

14 pin |1 C sockets

4 way nodified PCB plug and socket

*3 . 3%

Bl ue -

GENERAL ASSEMBLY SEQUENCE FOR THE PC BQOARD

A Fit all of the through pins to the board.

B Fit and screw the 5v regulator to the board.

C ldentify and fit the resistors and the 13v zener to the
board. The black band v points to the notor connectors
(on the zener DI ODE) .

D Identify and fit all capacitors to the board.

E Solder the 2k2 resistor network, |C sockets, and the
4 and 5 way PCB plugs to the board.

G Solder the 10 way socket to the board.

NOTE

Refer to the overlay diagramand parts list to ensure that the
resistors, capacitors, I1C's and other parts are inserted into
the correct |ocations on the PC Board.

BASI C BOARD CHECKS

A Check the board for dry joints and re-sol der any found.

B Hol d the board under a strong light source and check the
underside to ensure there are no sol der bridges between
the tracks.

FITTING THE PC BOARD TO THE BASE OF THE ROBOT

The PCB should be fitted to the base plate using the nylon
pillars provided.

MOTOR CONNECT! ON

Connect the notors to the 5way sockets, ensuring correct 15v
polarity, via the ribbon cable, refering to the diagram provided
to ensure correct connection.

POANER CONNECTI ON

Connect the power to the nodified 4way socket ensuring correct
polarity as shown bel ow.
Pol arising pin

Pin 1 on I/P connector=0Ov 15v = Brown = Pin 2 on |I/P connector

NOTE

A nunber of diagrans are given, explaining in detail the intern-
connections between the notors and the PCB, if the notors are
connected in the manner shown then the software provided wll

map the keys 1-6 and g,w e, r,t,y to the notors in the follow ng way

1, q, GRI PPER. 2, w, = left wist. 3, e, =right wrist.
4, r, = forearm 5, t, = shoul der. 6, y, = base.

as shown in the diagram the two m ddle pins of the stepper notors
shoul d be connected together and to 15v.

*3 . 4%

Mot or Connection And Designation Layouts

+15v

8

28 B

Ri bbon Cable To Stepper Mt or
Connect 1 ons

Qa Black or Geen
Q@ Red or Purple
x Brown or Blue
Q@ Orange or Gey
+15v Yellow or white

+15v

Qc Qb
® -

Mot or Assignnments To Functions

Motor 1 = Gip
Motor 2 = Left Wi st
Motor 3 = Right Wi st
Mot or 4 = El bow
5
6

Mot or = Shoul der
Mot or = Base

IC1i7 7805

R14
~ 18 5w | [5V
To rest of board

ZD1 BZX 13v

H > X pin 9 ICs 13, 14,15, 16

* 3 . 5 %

4. SOFTWARE
4.1 | nt r oducti on

A machi ne code program LEARN , to drive the ARVDRO D has been
specially witten. It was designed for the Tandy TRS-80 Mydel 1
Level 11, and the loading instructions given here apply to that
conputer. But the program can be easily adapted to any Z80

m croprocessor with the necessary port, and versions made

avai |l able for the |eading nmakes with variations of these instructions
where appropriate. But of course users can wite their own software
in whatever | anguage they choose.

4.2 Loading

When in Basic type SYSTEM press ENTER, answer the '*' with LEARN and
t hen press ENTER again. The cassette tape wll take about 1.5
mnutes to load. Answer the next '*' wth / 17408 and press ENTER

4.3 Ceneral Description

LEARN is a nenu-oriented program for teaching the ARMDRO D a
sequence of novenents which it will then repeat either once or as
many times as you like. The programis divided into four sections,
one for learning the sequence and for fine-tuning it, one to save

t he sequence on tape and load it again , one for noving the arm

wi thout the learning function, and finally two exit conmmands.

We suggest that, if this is your first encounter with the program
you should read quickly through the commands w t hout worrying too
much about understanding all the details. Then go to Section 4.5
and follow the 'Sequence for Newconers'. This will give you a good
idea of what the program does. After that you can begin to discover
sone of the subtleties of planning and fine-tuning sequences of
novenent s.

4.4 Expl anation
L(EARN)

Stores a sequence of manual novenents in nmenory. The armis noved
using the commands expl ained under M ANUAL) . You can exit the comand
by pressing O (zero) , press G(0), and the armw || repeat the
novenent you have taught it.

On pressing L(EARN) you will be asked whether you want to S(TART)
again or C(ONTINUE) fromthe current position. The first tinme press
S(TART) . The armis then free to be noved by hand w t hout the
notors' torque preventing you. Mwve it to a suitable starting
position, then press the space bar. You will find that you cannot
now nove the arm by hand.

x4 - 1%

To add a sequence already in nmenory press C(ONTINUE) instead of
S(TART) .

Using the manual commands, nove the armto another position. As it
goes the computer is adding up the steps each notor is making, either
forward or back, and storing the data in nmenory. (hol ding the space
bar down during manual control slows the novenent)

Exit by pressing O (zero).
D (1 SPLAY)

Di spl ays the sequence stored in nmenory. The sequence can be edited
with the E(DIT) command.

The six colums of figures correspond to the six notors, and the
order is the same as that of the 1-6/QY keys (see M(OVE). The
first row (RELPOS) shows the current position. Each row represents
a stage of the nmovenent, and the actual figures are the nunber of
steps each notor is to make, positive for forward, negative for
reverse. The maxi mum nunber of steps stored in a row for one notor
is +127 or -128, so if a novenent consists of nore than this nunber
it is acconodated on several rows.

Movenments of the arm can be fine-tuned by editing (see E(DT))
the figures on display until the armis positioned exactly.

Scrolling of the display can be halted by pressing O (zero). To
continue scrolling, press any other key. To display the figures
one after the other, keep pressing O.

E(DI T)
Al'l ows the user to change the figures in the nenorised sequence.

Truncate a sequence by pressing R(OWCOUNT), then ENTER, then the
nunber of the last row you want perforned, and finally ENTER This
clears the nmenory fromthe next step onwards, so you should only do
this if you do not want the rest of the sequence kept in nenory.

By pressing M OTOR STEP), you can change any of the nunbers in any
row and col um.

S(ET ARM
Sets the current position of the armas the 'zero' or starting position.

When pressed fromthe Menu, it sinply zeroes the first row of the
di spl ay.

S(ET ARM has another function. During a L(EARN), pressing S(ET ARV
at any nonment when the armis at rest will ensure that the novenents
before and after are separated from each other instead of being merged.
This is the way to make quite sure that the arm passes through a
particular point during a sequence. Try the same two novenents

wi t hout pressing S(ET ARM), and note the difference in the display.

X4 - D%

It is inportant to realise that, if a sequence has been nenori sed
and S(ET ARM is pressed fromthe Menu when the armis not in its
original starting position, pressing G0) will take the armthrough
the sequence but fromthe new starting point. This can be usefu
for adjusting the whole of a sequence (perhaps slightly to right or
left), but it can lead to the armrunning into objects if the new
starting point is not selected with care.

WRI TE)

Wites a nmenorised sequence to cassette tape.

R(EAD)

Reads a previously witten sequence from cassette tape into nenory.
C(HECK)

Conpares a sequence witten to cassette tape with the sanme sequence
still in menory, to verify the tape.

G 0)

Moves the armthrough a nenorised sequence, either once or repeatedly.
It is inportant to make sure that the starting point in nmenory is

the right one, or the sequence may try to take the arminto

i mpossi bl e positions, (see S(ET ARM

T(0 START)

Takes the arm back to the zero or starting position.

F(REE)

Renmoves the notors' torque fromthe arm thus allowing it to be
noved by hand.

M ANUAL)

G ves the user control of the nmovements of the armdirect fromthe
keyboard. It is used (a) for practising manual control before
L(EARN) i ng, (b) for trying new conbinations of separate novenents,

and (c) for noving the armto a new starting position before pressing
S(ET ARM). Holding the space bar down slows the novenment by a factor of
about 3.

The notors are controlled with the keys 1-6/QY. The keys operate in
pairs, each pair noving a notor forwards and backwards. Any combi nation
of the six notors may be noved together (or of course separately),

but pressing both keys of a pair sinply cancels any novenent on

t hat not or.

The geonetry of the armis designed to give the maxinmum flexibility
conbi ned with maxi mum practicality. A novenent of one joint affects
only that joint: wth some designs one novenent involuntarily
produces novenent in other joints.

x4 - 3%

It is a feature of the ARMDRO D that it has a so-called 'parallel ogram
operation. Starting with the upper armvertical, the forearm

hori zontal and the hand pointing directly downwards, the shoul der
joint can be rotated in either direction and the forearm and hand
retain their orientation. Equal ly the forearm can be raised and

| owered while |eaving the hand pointing downwards. Moving the arm
outwards and down by rotating both the shoul der joints together

still leaves the hand vertical. This is of vital inportance

for sinplifying the picking and placing of objects.

The notors controlled by the keys are:
1/ Q G i pper

2/ W Wist |eft
3/ E Wist right

4/ R Forearm
5/ T: Shoul der
6/Y: Base

B(OOT)

Returns the conputer to the program start and clears the nmenories.
QUIT

Returns the conputer to TRS80O System | evel.

4 - 4

ARM TRAI NER VK2 AL
DI RECT FULL STEP MOTOR CONTROL
FOR TRS80 MODEL 1, LEVEL 11
BY ANDREW LENNARD

x o July 1981 *

4- 4a

S ECT 1 ON 1

S Y STEWM E QU A TE S
S'Y S T E M V.A\- R I A B L E S
S Y STEWM C ONSTANT S

4.5

10.
11.

12.

| NTROCDUCTCORY DEMONSTRATI ON SEQUENCE

After loading the program the screen shows the nmenu. Press
L to enter L(EARN).

Screen: START AGAIN OR C(ONTI NUE) FROM PRESENT POSI TI ON,
() TOEXIT. Press S

Screen: " ARM RESET

ARM NOW FREE TO MOVE

TYPE SPACE BAR WHEN READY, OR FULL STOP TO EXIT"
Now nove the arm so that both arm and forearm are vertical
with the hand horizontal. For coarse novenents grasp the
forearm or upper armand nove it. For fine adjustnents
and for nmovenents of the hand, it is better to use the |arge
white gear wheels in the shoulder joint. Press the space
bar and the armw || becone rigidly fixed.

Screen: "*** TORQUE APPLI ED ***"

You can now nove the armusing the 1-6/QY keys as expl ai ned
in the manual section. Try just one novenent al one at
first. Now press O (zero) to exit fromL(EARN). The arm
will return to the starting position, and the Menu appears
on the screen.

Screen: Menu. Press D for D(I SPLAY).

Screen: Display and Menu. The nunbers of steps you applied
to each notor have been nenorised by the conmputer, and these
steps are now displayed see D(Il SPLAY) section for

expl anation. Press G for G(0).

Screen: "DO (F) OREVER OR (O NCE?. Press O (letter O,
and the armw || repeat the novenent it has |earnt.

Screen: "SEQUENCE COWPLETE" and Menu. Press L.

Screen: as 2 above. This tinme press C. Now you can
continue the novenent fromthis position, using the 1-6/QY
keys as before. Now press O (zero). Again the armreturns
to its original position.

Scr een: Menu. Press D

Screen: Display and nmenu. Your new novenent has been added
to your first. Press G

Screen: as 7 above. This tine press F. Each tinme a
sequence is started a full point is added to the row on the
screen. To stop press full point.

This is a very sinple denonstration of how conpl ex novenents
can be built up, learnt as a sequence and then repeated endl essly
and with great accuracy.

/] - B

SYSTEM EQUATES
PORT EQU 0 4
FINAD EQU 2B2
PCHR EQ 0033H
GCHR EQU 0049H
KBD EQU 002BH
PUTSTR EQU 28A7H
CASON EQU 0212H
CASOF EQU O1F8H
RDHDR EQU 0296H
READC EQ 0235H
WRLDR EQU 0237H
WRBYA EQU 0264H
MNUS EQU -
sPAC EQU -
NL EQU ODH
NUMBA EQU 30H
MAXLE EQU 10

. ORG 1740 8

ARM PORT NUMBER

SYSTEM RESTART

SYSTEM PRI NT CHARACTER
SYSTEM GET CHARACTER

SCAN KEYBOARD

SYSTEM PRI NT STRI NG

CASSETTE ON

CASSETTE OFF

READ HEADER ON CASSETTE
READ CHARACTER FROM CASSETTE
VWRI TE HEADER TO CASSETTE

VRl TE CHARACTER TO CASSETTE
ASCI I M NUS

ASCI | SPACE

ASClI I NEW LI NE

ASCI | NUMBER BASE

UPPER BOARD FOR ARST ROW COUNTER

= 4400 TRS80 HEX ADDRESS

FOR START OF PROGRAM

4 - B

VARl ABLES USED

M N
MAN
STRFG
KEYP
FORFG

CQOUNT
CUROW

ARRAYS

CTPCS

TBUF

DRBUF

MOTBF

ARST

DEFB 00
DEFB 00
DEFS 00
DEFB 00
DEFB 00

DEFB - 0000
DEFB 0000

DEFS 10

DEFS 12

DEFS 6

DEFS 6

DEFS 6

DEFS 6

DEFS N6

Has val ue of one if nunber input negative
If MAN = zero then steps are stored

| f STRFG non zero then store TBUF array
Set if key pressed in KEYIN Routine

Set if sequence to be done forever

Nunmber of notor slices stored
Pointer to next free notor slice

Store used for Binary to ASCII Conversion
Routi ne CTBAS

Each two bytes of this six elenent array
contai n one val ue which is used to

keep track of each motor's noti on,

hence the array can be used to reset

the arm noving it into a defined

start position.

Each 16 bit value stores a notor's

steps in two's conplenent arithnetic.

6 Bytes, each relating to a notor.

A nunber from 1-4 is stored in

each byte and this is used to

i ndex the FTABL (see constant definition)

When | earning a nove sequence the

six nmotors' notions are stored in this
six byte array. Each byte relates

to a notor and holds a notor step
count in the range -128 to +127

|f the notor changes direction or a
count exceeds the specified range then
the whole TBUF array is stored in

the ARST array and the TBUF array

is cleared.

TBUF neans tenporary buffer

Each byte relates to the previous
direction of a notor.

A six byte array used by DRAMI to

tell which notors are being driven, and
in which direction

Bit zero set if nmotor to be driven.

Bit one set if notor in reverse

Byte zero if nmotor should not be driven.

This array holds the sequence that

the user teaches the system The array
consists of N6 bytes where N is

t he nunber of rows needed to store the
sequence.

L Y £

QGONSTANTS USED

FTABL

DEFB 192
DEFB 144
DEFB 48
DEFB 96

FTABL is a small table which defines the
order of the steps as they are sent out
to the arm To drive each nmotor the
DRAMI routine adds the notor's of fset
which is obtained from CTPOS and adds
this to the FTABL start address -1. This
wi |l now enable the DRAMI routine to
fetch the desired elenent fromthe FTABL
array, and this value is then sent to

the notor via the output port.

*] - 8

CONSTANTS AND ARRAYS

STRI NGS
SIGON DEFM *x+ COLNE ROBOTI CS ARM CONTROLLER
'\/K (AI_Z) * k%!
DEFW 000DH
RELYQ DEFB ODH
DEFM "REALLY QUIT? (Y/N)'
DEFW 00
S| GOF DEFW ODODH
DEEM 'YOU ARE NOW AT TRS80 SYSTEM LEVEL'
DEFW 00
ECOMS DEFM "EDIT (M OTOR STEP, OR (R OW COUNT?'
DEFW 000DH
COUTS DEFM ' NEW UPPER ROW BOUND | S?'
DEFB 00
EDSTR DEFM " RONV NUVBER?"
DEFB 00
BADVE DEFM
e OOODHBAD | NPUT VAL UE
MOTNS BEE'I\B/' " CHANGE STEPS ON WHI CH MOTOR?'
NVALS DEFM 00
DEFB ' REPLACEVENT STEP VALUE?'
QUESS DEFM 00

"LRN, READ, CHECK, WRI TE, GO, DI SP, BOOT, MAN,

DEEW QUI T, SETA, TOST, EDT, FREE
RORNM DEFM 000DH
DEFB 'DO (F)OREVER OR (O NCE?
CASRD DEFM 00
DEEB 'TYPE SPACE BAR WHEN READY, OF FULL STOP TO EXIT
QVESS DEFM 00
DEEW " PARDON
BOOTS DEFB 000DH
DEFM ODH
DEFB "WANT TO RE- START (Y/N)?'
RELNS DEFM ' START AGAIN OR (C)ONTINUE FROM CURRENT POSI TI ON
() TO EXIT
DEFW 000DH
DI SPS DEFB ODH
DEFM ' *%x MNOVEMENT ARRAY DI SPLAY ***
DEFB ODH
DEFW 000DH
NODI S DEFM 'xx% NO SEQUENCE I N STORE ***'
DEFB ODH
DEFW 000DH
OVFNS DEFM 'NO MORE ARM STORE LEFT, DELETE OR SAVE?'
DEFW 000DH
DONMB DEFB ODH
DEFM ' SEQUENCE COMPLETE'
DEFW 000DH
RDVBG DEFM '*%* READ ERROR ***'
DEFW 000DH
TAPOK DEFM vxx%x TAPE OK ***!
DEFW 000DH
STRST DEFM " ARM RESET'
DEFW 000DH
NOTOR DEFM " ARM NOW FREE TO MOVE'

*4 - O

TORMS

PCSST

DEFB
DEFB
DEFM
DEFW
DEFM
DEFB

000DH

OCH
'R** TORQUE APPLIED ***!

000DH
" RELPOS='

00

*4

10¢

4-10b

COWNVAND | NDEX

STARM = = . Program entry point

LEARN Learn a sequence conmand

eoTtr . Edit a sequence conmand

READ Read in sequence from tape command
WTE = Wite sequence to tape conmand
CHECK = Check stored sequence command
Boor Re-start system command

FINSH Exit from system conmand

SETARM = Set start position comand

TostmMye - Move armto start position conmand
FREARM = = = Free all arm joints

MANLU Go into manual node

o Execute stored sequence comand

D SPLAY Di splay stored Sequence command

*4 - 11%

MAIN LOCP

; Program start

STARM

QUESL

CALL
LD
CALL
CALL
CALL
CALL
LD
CALL
CALL
CALL
CP
JR

JP

d ear the TRS80 Screen
Point to sign on nessage
Print it

Print a new |ine

Set up system
Smal | del ay
Point to nenu
Print it

Get response and print it
Print new |ine

| s response a new ine

Yes then ignore

I's response an 'L

Yes do | earn section

Is it an 'FE

Yes do edit

Is it an 'R

Yes then do read command
Is it a'W

Yes do wite comand

Is it a'C

Yes do check routine

Isit an 'S

Yes then do arm set

a'T

Yes then nove armto start
a'G

string

Do execute novenents stored

a'D

Yes then display ARST array

a'B

Yes then restart system
an 'M

Yes the Manual
a'F

Yes then clear all notors
a 1

Yes then quit program
Point to 'PARDON nessage
Print it

Try for next command

control

x4 - 12"

of arm

THE LEARN RCQUTI NE

; This section deals with the recording
; of an arm sequence

LEARN LD HL, RELNS
CALL PSTR
CALL GCHRA

CALL PNEWL

Point to |earn nessage
Print the nmessage

Get response and print it
Print a new |line

cP . Response a '.'
JP Z, QUES1 Back to main loop is uder types a '.
CcP 'S Response an 'S
JR Z, WAl T1 Learn sequence from start
cP 'C a 'C
JR Z, NO NT Continue learning fromend of
seguence

CALL PNEWL out put a new |ine

WAl T1 CALL MOVTO Move armto start position
CALL INIT Cl ear vari abl es

WAl T2 LD HL, CASRD Point to waiting nessage
CALL PSTR Print it

CALL GCHRA

Cet response and print it
CALL PNEWL

JR LEARN Bad answer so try again
: Print new line character

cP . Response a '.'
JP QUES1 Exit to main loop if so
CP SPAC Is it a space?
JR NZ, WAI T2 If not then bad input, try again
CALL TORQUE Switch nmotors on
JR STLRN Do rest of learn
NO NT LD HL, (COUNT) ; Get current count
l(_)lrjg 'ﬁI’L ; Is it zero?

JR Z, NOSTR ; Yes then can't add to nothing
STLRN XOR A ;. Clear manual flag

LD (MAN) A : Because we are in |earn node
CONLN CALL KEYI N ; Drive notors and store sequence

R A Zero key pressed

JR NZ, CONLN No then conti nue

CALL MOVTO Move armto start position
JP QUES1 Back to main |oop

4 - 13

ED T FUNCTI ON

EDT

EDSRT

EDMOT

EDOK

LD
LD
R
JP
LD
CALL
CALL
CALL

HL, (COUNT)
H

Z, NOSTR
HL, ECOVB
PSTR
GCHRA

Get row count

Test for zero
Yes then nothing in store
Print edit nessage

Get response

Print a new |ine

Is response an 'M

Yes then edit notor

Is response an 'R

No then try again

HL = New row count nessage
Print it

Get 16 bit signed integer
Non zero return neans bad input
Test top bit of HC

If negative then bad input

Get count val ue

Save response

Clear carry flag

See if response < current count
Restore response

Repl ace count with response
Back to main | oop

Print 'row nunber'
Get integer response
Bad answer

No negative row count
al | owed

or zero row count

Get row count into BC

Move count up one

Clear carry flag

Subtract count from response
Restore response

If greater than allowed error
Move response down one

Doubl e HL

Save it

Row count x 4

BC = row count X 2

x4 - 14*

PED T

MOTAS

BADNM

LD

PUSH
LD
CALL
CALL
JR
LD

JR
LD

JR

JR
POP
DEC
LD
LD

PUSH
LD
CALL

JR
LD

JR
BIT
JR
JR
OR
JR
BI T
JR
LD

LD
JP

LD
CALL
JP

g7
-
<

WO>>ITZNORP>
@)
w
>
)
prd
<

o>

£
oy,
@]

HL, NVALS
PSTR

G NT

NZ, BADNM
A H

OFFH

NZ, PEDI T
7L

Z, BADNM
MOTAS

A

NZ, BADNM
7L

NZ, BADNM
A L

HL
(H), A
QUES1

HL

HL, BADMVS
PSTR
QUESL

*4

HL = Row count x 6

Get store start address
Add row of f set

Save resulting pointer
Pri nt

Mot or nunber string
Get Answer

Bad answer

Response too |arge

No notor nunber < 1
No notor nunber > 6
Restore = Menory pointer
Mbtor offset 0 — 5

Add to nenory pointer

Now we point to notor in store

Save pointer

Print new step val ue
Get response
Bad answer

W have a positive response
New negative step val ue too
| ar ge

Step value X

New positive step value too
| ar ge

SO exit

el se ok

Cet step val ue

Restore nmenory pointer

Pl ace step value in store
Co do next operation

Print error nessage and

return to main |oop

15*

READ ROUTI NE

; Reads stored sequence from cassette

; into menory

READ

ROMR

RDBYT

RDERR

LD
CALL
CALL
CALL
cP
JP
cP
JR
XOR
CALL
CALL
CALL
CALL

HL, CASRD
PSTR
GCHRA
PNEWL

Z, QUES1
SPAC

NZ, READ

B A
READC
CA

B

Z, NO5TR

(GOUNT) , BC

HL, ARST
BC

E, 0

B, 6
READC
(H), A

A E

E A

H

RDBYT

BC

READC

E

NZ, RDERR
BC

A B

C

NZ, ROAKR
CASOF
TAPEF

HL, RDVBG
PSTR

QUES1

*4

Point to wait nessage
Print it

Get response

Print new line

I s response a dot?
Yes then exit

Is it a space?

No then try again

Cl ear A=Drive zero
Switch on drive zero
Short del ay
Read header
Read first
Put in B
Read second character
Place in C

BC now equal s count
Count zero, so exit
Set count = read count
Point to start of store
Same count

E = Check sum for
B = Col um Count
Read a row el enent
Store it

Add it to check sum
Store in check sum

I nc menory pointer

Do next el enent
Restore row count

Read check digit

Sane as cal cul at ed?
No then error

Decr ement row count
See if row count

IS zero

No then read next row
Switch cassette off

fromtape
char act er

exit
Error nessage for tape
Print it

Go to main | oop

- 1l6*

a row

WRI TE ROUTI NE

; Wites a stored sequence to tape

WRI TE LD BC, (COUNT))
LD A B :
R C :

BADW JP Z, NOSTR)
LD HL, CASRD)
CALL PSTR :
CALL GCHRA)
CALL PNEWL)
JP Z, QUES1)
CP SPAC)
JR NZ, BADW)
XOR A)
CALL CASON)
CALL DELT)
CALL VWRLDR)
CALL DELT)
LD BC, (COUNT))
LD A B :
CALL WRBYA)
LD A C)
CALL DELT)
CALL WRBYA)
LD HL, ARST)

RONNW PUSH BC)
LD E, O)
LD B, 6)

WRBYT LD A, (HL))
CALL DELS)
CALL WRBYA)
CALL DELS)
ADD A E)
LD E A :
| NC HL)
DINZ WRBYT)
CALL WRBYA)
POP BC)
DEC BC)
LD A B :
OoR C X
JR NZ, ROANW)
CALL CASCF)
JP QUES1)

*4_

Get row count

If zero exit
print nmessage

Get answer

Print new |ine

s answer a dot
Yes then exit

I's answer a space
No then try again

Cl ear drive nunber

Switch on drive zero

del ay

Wite Leader

del ay

Get count into BC

Wite higher byte

CGet |lower byte of count into A
del ay

Wite |ower byte

Point to start of sequence of store
Save row count

Cl ear check sum

Six notor slots per row

Get nmotor slot N

del ay

Wite it

del ay

add to check sum

Inc nenory pointer

Do for all six notors
Wite check sum

Rest ore r ow count
Decrenment row count

Test if zero

No then try again
Switch cassette off
Back to main | oop

17*

CHECK ROUTI NE

; Checks tape with sequence in

CHECK

BADCI

CKBYT

TAPEF

LD
LD
OR
JP
LD
CALL
CALL
CALL
CcP
JP
cP
JR
XOR
CALL
CALL
LD
CALL
cP
JR
CALL
cP
JR
OR
JP
LD
PUSH
LD
LD
CALL
cP
JP
ADD
LD
| NC
DINZ
POP
CALL
cP
JP
DEC
LD
OR
JP
CALL
LD
CALL
JP

BC, (COUNT)

C

Z, NOSTR
HL, CASRD
PSTR
GCHRA
PNEWL

Z, QUESL
SPAC

NZ, BADCI
A

CASON
RDHDR

BC, (COUNT)

READC

B

NZ, RDERR
READC

C

NZ, RDERR
B

Z, NOSTR
HL, ARST
BC

=

B, 6
READC
(H)

NZ, RDERR

NZ, RDERR
BC

A B

C

NZ, ROANC
CASOF

HL, TAPOK
PSTR

QUES1

*4

store
: Get row count

; If zero exit
; Print wait nmessage

; Get answer

. Print new line

;1S response a '.'
; Yes then go to main |oop
; Is it a space
; No then try again
; Clear cassette nunber
;. Switch drive zero on
; Read header fromtape
; Get row count
; Read first section
; Sanme?

: No then error
; Read | ower byte of count
; Sane?

: No then error

; Zero count fromtape
;SO exit

; Point to start of nmenory
; Save count

; Check sumis zero

; Count is 6

;. Read a notor step el enent
; Same as in store?

; Not the sane so error

: Add to check sum

; Advance nenory pointer

. Do next row el enent

. Restore row count

: Read check sum

: Sane as check sum cal cul at ed
: No then error

: Decrenment count

X I's count zero?

: No then do next row

: Switch cassette off

: Print tape off nessage

;and back to main |oop

- 18*

BOOT AND FI NI SH COMMANDS

; This routine restarts the program

BOOT LD HL, BOOTS
CALL PSTR
CALL GCHRA

cP Ly
JP Z, STARM
cP "N

JR NZ, BOOT
CALL PNEWL
JP QUESL

Print "DO YOU REALLY
WANT TO RESTART?"

Get answer

user typed 'Y ?

Yes then restart program
No "N ?

Then try again

el se print new | ine and
back to nmain | oop

. This is the exit from program Section to TRS80

; system | evel

FI NSH LD HL, RELYQ
CALL PSTR
CALL GCHRA

cP Y%
JR NZ, TRYNO
LD HL, SI GOF
CALL PSTR
JF FI NAD
TRYNO CP "N
JR NZ, FI NSH
CALL PNEWL
JP QUESL

Print "REALLY QUI T"

Get answer

User typed a 'Y

No then try 'N

Print endi ng nessage
and then

return to TRS80O System
User typed an 'N

No then try again

Print a new line

Back to main | oop

-19

OTHER SHORT COVMANDS
. SETAM clears armposition array

SETAM CALL RESET ;7 Clear Arm array (PCSAR)
JP QUES1 ; Back to main |oop

; TOSTM noves the armback to its start position

TCSTM CALL MOVTO ; Steps notors till POSAR el enents
JP QUESL ; are zero then back to main |oop

) FREARM frees all notors for user to nobve arm
; by hand

FREARM CALL CLRMT ; Qutput all ones to notors
JP QUES1 ;and now to main |oop

: MANU allows the user to nove the arm using
;. the 1-6 keys and the 'Q '"W'E 'R 'T 'Y keys
; The novenents made are not stored.

MANU LD Al ; Set in manual node for the
LD (MN),A ; Kkeyin routine
MANUA CALL KEYI N ; Now get keys and nove notors
JP NZ, MANUA, If non zero then nove to be done
XOR A ; Clear manual flag
LD (MN), A ;
JP QUES1 ; Back to main |oop

4 - 20

THE GO COVIVAND

This command causes the conputer to step
through a stored sequence and mekes the arm
follow the steps stored, if the sequence is to
be done forever then the armresets itself at
the end of each cycle.

€e) CALL PNEWL ;. Print anewlire
CALL MOVTO Move armto start.
XOR A C ear
LD (FORFG), A Forever Flag FORFG
LD HL, AORNM Print "DO ONCE OR FOREVER
CALL PSTR Message
CALL GCHRA Get answer and print it
CALL PNEWL Print a newline
cP "0 User typed an 'O’
JR Z, ONECY Do sequence till end
cP "F User typed an 'F
JR NZ, GO No then re-try
LD A Set forever flag
LD (FORFG, A to 1
ONECY LD ALY Print a '.'

CALL PUTCHR
CALL DOALL

Usi ng PUTCHR
Execute the sequence

LD A, (FORFC) Test FORFG, if zero
R A then we do not want
JP Z, NORET to carry on so exit

CALL DELT
CALL MOVTO
CALL DELLN

del ay
Move armto start
Del ay approx 1 second

JR ONECY Do next sequence
NORET LD HL, DONVS Print sequence done

CALL PSTR ;

JP QUES ; and go to main |oop

*4 - 21%

THE DI SPLAY COMVAND

This command all ows the user to display
he can then

t he not or

sequence so that

; alter the contents of a sequence by using
; the Edit command

D SP

NCSTR

SETBC

NEXTE

NUMPO
EVAL

DOSTF

HL, DI SPS

PSTR

POSDS

HL, ARST

BC, (COUNT)

A B

C

NZ, SETBC

HL, NODI S

PSTR
QUES]

EC, 000

BC

HL

H B

L, C X

HL

1X, NUVAR

CBTAS

HL, NUVAR

PSTR
AL

A, (3810H)

0, A

Z, NOSTP
GCER

NZ, NOSTP

PNEW .

BC

HL

Poi nt to header string
and display it
Print out the relative position
Point to sequence start

BC = how many rows to print

Test

i f count

is zero

No then junp to rest of
di splay el se print nmessage

tell

i ng user

no display and

return to the nmain | oop

Cl ear

BC for r

Save it
Save menory position

ow count

HL = row count

Now row count =N+1

1X points to buffer fcr ASCII String
Convert HL to ASC

Point to ASCII string

now print it

Print a ".'

Restore nenory pointer

Mot or count to B (6 notors)
Get step val ue

Save menory pointer

Save not or count

Test bit 7 of A for sign

If bit = 0 then positive step
Make B = negative nunber

Do rest

Clear H for positive nunber
Get |ow order byte into L
Point to result string

Call conversion routine

HL points to result

Print resulting conversion
Get keyboard menory | ocation
Test for zero key pressed

Not pressed, then skip

Wait till next character entered
Is it a dot?

No then carry on

el se print
and restore all

and

an

the stack

*4 - 22%

ew |ine
the registers
| evel

NOSTP

*4

23*

Junp back to main | oop
Rest ore col umm count

Rest ore nenory pointer

I ncrement nenory pointer
Print a space between
nunber s

Do for six notors

Print a new |line

Rest ore row count

| ncrement row count

Get | ower count byte

Is it the same

No then do next row

Get hi gher order count byte
Sane?

No then do next row el se
print a new line and then
back to main | oop

SECTION

4-23b

3

SUBRQOUTI NES | NDEX

DoALL Execute a stored sequence once

DREVL Drives all notors directed by TBUF

INNT Set up system

movTtcCc.. . Use POSAR to rest system arm

TORQUE] Turn on off notors

CLR™MIr. Turn off all notors

SETOT = Reset CTPOS el ements to one

DRAMT Drive directed notors

STEPM Step motors via DRAMT

DNeVD Del ay on direction change

SRAMI. Update TBUF array during |earn

KEYIN Scan keyboard and build up notors to nove
CBTAS. Convert 16 bit 2's conpl enent nunber to ASC |
CLR»WF Cl ear MOTBF array

ctrBuF Cl ear TBUF, DRBUF & MOTBF arrays

anNr. oo Get 16 bit signed value from keyboard
pCsbs . Display relative position array elenents
POSIC. Increment relative position array elenents
STORE . Copy TBUF to current ARST slice

RESET = Cl ear POCSAR array

pPUTCHR Print a character

PSTR Print a string

pPSPAC Print a space

PNEW. Print a carriage return

x4 - 24*

SUBROUTI NES | NDEX (conti nued)

sckBD Scan the keyboard

acHRA Get a character and print it
CLRSC . . . Cl ear the Screen

DELSW. Delay on value in B

DELs Del ay approx 0.001 sec

DeLt Del ay approx 0.01 sec
DELLN. Del ay approx 1. 0 sec

4 - 25

SUBROUTI NE DOALL

; This subroutine executes a sequence in store once.

: For ever

DQOAL L LD
LD
R
JR
LD

NMOT'S LD
PUSH
LD
LDl R
PUSH
CALL
CALL
POP
POP
CALL

RET2

CARON

BC, (COUNT)
A B
C

Z, RET?2

HL, ARST
DE, TBUF
BC

BC, 0006

HL
DRI VL
SCKBD

*4

flag FORFG is cleared if user types a

Get sequence row count
If count zero then

exit

HL points to nenory start

DE points to tenporary buffer
Save count

Mot or count of six

Copy nenory slice into TBUF
Save new nenory pointer

Drive all motors fcr this slice
See if keyboard input

Restore nenory pointer

Rest ore row count

User typed a '

No then conti nue

Clear A

Clear flag to halt routine above
exi t

Decr ement count

Test for zero
No then carry on el se
return

26*

SUBROUTI NE DRI VL

; This routine is given TBUF,

DRI VL
SCANW

TBZER

TBNZR

DOAGN

SPCS

SNEG

NOEL
NOFI L

LD
LD
LD
LD
OR
JR
I NC
DINZ
RET
LD
LD
LD
LD
cP
JR
JP
LD
LD
DEC
JR
LD
LD
I NC
JR
XOR
LD
DEC
DEC
DINZ
LD

CALL
DEC
JF
RET

C 0

B, 6
HL, TBUF
A, (HL)
A

NZ, TBNZR
HL
TBZER

DE, MOTBF + 5

HL, TBUF + 5

B, 6
A (HL)
0

Z, NOEL
M SNEG
A 3
(DB), A
(H)
NOF| L
Al
(DE), A
(BL)
NOF| L
A
(DE), A
DE
HL
DOAGN
A |
(KEYP) , A
STEPM

C
NZ, SCANW

*4

it
X the motors that need to be driven,

then drives al

till TBUF = 0

Set BC = notor
Point to TBUF
Get step val ue from TBUF

Is it zero?

No then conti nue

Poi nt to next TBUF | ocation

Do next motor check

If no notor to step, then return

DE points to last direction array
HL points to TBUF

count

B = motor count

Get notor step val ue

Is it zero?

Yes then skip

Is it negative ie, reverse

No positive, so |load MOTBF (N
Wth 3

Decrenment notor count in TBUF
Conpl ete the MOTBF array

Set MOTBF = 1 for

a positive drive

Decrenent negative count

Do rest of MOTBF
Cl ear MOTBF (N

Move to next MOTBF el enent
Move to next TBUF el enment
Do for all six notors

Set key pressed flag

Step all motors once if
any to step
Do for maxi mum of 128 cycles

then return

27*

SUBROUTINE INI'T

INIT clears the row count (COUNT), resets the

MAN flag, clears the TBUF, DRBUF, & MOTBF arrays

The CUROW pointer is reset to the start of the ARST,
position array is cleared.

INIT LD HL, O ; Set HL = 0
LD (CQOUNT) , HL and clear the row count
XOR A Clear A
LD (MAN), A Now cl ear MAN
LD HL, ARST HL = start of armstore

CALL CTBUF Cl ear TBUF, DRBUF & MOTBF
CALL RESET Cl ear the POSAR array
CALL CLRMT Free all notors

LD (CURCW , HL CUROW = start of arm store
RET COEXIT

4 - 28*

SUBRQUTI NE MOVTO

; This routine takes the POSAR array and uses it to drive

. all

MOVTO

RES1

NRES1

MI'SA

DOVPL

RMOT1
DA T1

ENDSC

the notors until

PUSH
PUSH
PUSH
PUSH

AF
BC
DE

HL

HL, POSAR
B, 12

A, (HL)
A

NZ, MT'SA
HL

NRES1
ENDSC

HL, POSAR+10
DE, MOTBF+

B, 6

BC

C (HL)

HL

B, (HL)

A C

B

NZ, DOVPL
(DB, A

the ARMis in its defined start

*4

posi tion

* 4 X X

Save registers

HL points to POSAR

B = count of 12

Get PCSAR el enent

Is it zero?

No then conti nue

Point to next POSAR el enent
See if all zero

Al'l zero so end:

HL points to POSAR

DE points to MOTBF

B = count

Save count

Get |l ower byte

Advance HL pointer

Get high byte of POSAR el enent
Get low byte into A

See if POSAR(N) is zero
no skip

Zero MOTBF (N

advance POSAR poi nter

Do next notor

See direction to nove in

Go in reverse

G forward

A = forward

Do rest

Dec count for reverse

Set reverse in A

Store reverse in MOIBF (N
Store updated POSAR count
in POSAR (N

Store |ower byte

poi nt to next POSAR el enment
Move to next MOTBF el enent
Rest ore notor count

Do for next notor

Drive all notors to be driven
Do till all PCSAR slots zero

Restore all

* 4 ¥ %

registers

Ret urn

- 28a*

SUBROUTI NES TORQUE, CLRMI' AND SETDT

TORQUE swi tches
turns all
sets all

: CLRMT
. SETDT

position which equals 1.

TORQUE

TORQL

TORQZ

CLRMI

orMr

TOQCL

*4

of nmotors on and sets CTPOS(N)'s
motors off and sets CTPOS(1-6)
CTPCS el enents to start offset

Set cl ear notor-
*

* Save Registers
*

Print TORQUE ON nessage

Point to FTABL of fset array
Point to last drive table

B = notor count

Get notor val ue

Is it zero?

No then skip

Reset CTPOS(N) to position 1

I n FTABL

Get notor address in A

Shift it left for interface defn
or in FTABL pul se

Qutput it to selected notor
Advance points to next

not or s

Do next not or

Exit with register restoration
* clear all notors torque

*

* Save Registers
*

Print "NO TORQUE" nessage

Pattern for notors off

B = Mdtor count

CGet notor address in A

Shift into correct bit position
Conbine with coils off pattern
Qut put to sel ected notor

Do next notor

Cl ear CTPCS array to value of 1

*
*

* Restore Registers
*

Done, exit

29*

SETDT PUSH BC X * Set CTPCS el enents to start

PUSH DE ; * Save used registers

PUSH HL ;X

LD B, 6 ; Motor count to B

LD HL, CTPOCS ; HL points to CTPCS array
NSET1 LD (HD), 1 ;. Set CTPOS(N) to start position =1

I NC HL ; Increnment HL

DINZ NSET1 . Do set up next CTPCS el enent

POP HL ;X

POP DE ; * Restore used registers

POP BC ;X

RET ;

4 - 30

SUBROUTI NE DRAMT

For

DRAMT

NMTDT

NORST
| GVIN

REVMT

QUTAM

DRAMI drives all
FTABL to output the correct
hal f stepping the pattern nust be changed in FTABL
and the bounds in DRAMI

PUSH

PUSH
PUSH
PUSH

AF
BC
DE
HL
B, 6

DE, MOTBF +5
HL, CTPOS

A, (DE)
A

Z, | GUTN
1A
OUTAM

NC, NORST

A 4
NORST
A (H)
AF
DE
HL

HL, FTABL- 1

six notors directly and uses
pul se patterns.

Save Registers

*

B = notor count

Point to MOTBF array

HL points to FTABL of fset array
Get MOTBF(N)

Is it zero?

If zero; then skip

Test direction

St ep not or

I f direction negative then junp
I ncrenment table counter
Upper bound?

No then conti nue

Reset table offset

Store in CTPGCS (N

I ncrenment CTPOS poi nter
Decr enent MOTBF poi nt er

Do for next notor

Del ay after all pul ses out
*

*

* Restore Registers

*

Exi t

Move tabl e pointer on
Conpare with | ower bound

If no overfl ow then continue
Reset table offset

Do next nptor

Cet table offset 1-4

*

* Save Registers
*

Get table start

DE now equal s 1-4

Add to FTABL -1 to get address
Get notor pul se pattern

Get address field in C and
shift it one to the |eft

or in the pulse pattern

Qutput to interface circuitry
*

* Restore Registers
*

Ret urn

31*

SUBRQUTI NE STEPM

; This routine causes all notors that should be
; stepped to be so, and updates the notors relative
; positions fromtheir start positions.

STEPM PUSH AF ;X
PUSH HL ; Save Regi ster
PUSH BC ;o *
LD HL, MOTBF ; HL points to notor buffer
LD B, 6 ;B = Count
TRYO LD A, (HL) . Get notor value 3 or 1
R A , Zero?
JR NZ, CONTA ; No then continue
CONT INC HL ; Point to next notor
DINZ TRYO ;Do next notor
POP BC ;o *
POP HL ;. * Restore Registers
POP AF ;X
RET ; Exit
CONTA POP BC ;X
POP HL ;. * Restore registers
CALL DRAMI ; Drive notors
CALL POsIC ; Increment relative position
POP AF ; * Restore AF
RET ; Exit

*4 - 32%

SUBROUTI NE DNEWD
; This subroutine checks to see if any notors are

; changi ng direction
; into the sequence.

DNEVWD

NDI R

CDDEL
NCDSG

PDI R

NXTCK

PUSH
PUSH
PUSH
PUSH
LD

if so adelay is inserted

*

*

* save used registers

*

Load BC wi th count

Clear carry

HC points to previous notor slice
Move HL to DE
Restore current
Save again

row poi nter

Get contents of this row

See if positive or negative

CGet identical previous notor slot
if positive do for positive notor
Conpare if both in sane
direction then skip el se

delay and

*

*

* Restore registers

*

Now return

If previous notor is negative
t hen del ay, else do for next
not or sl ot

i ncrement current row pointer
i ncrement | ost row pointer

do for next notor

Return with no large (1 sec) delay

*4 - 33

SUBROUTI NE SRAMTI

SRAMI is responsible for updating the TBUF
setting the STRFG if a situation
exi sts where the TBUF array should be stored in the

el enents and for

current ARST sl ot.

direction or a notor
boundary of -128 to 127.
SRAMT LD A, (MAN)
R A
JP NZ, STEPM
LD (STRFG , A
LD B, 6
LD | X, DRBUF+6
LD 'Y, MOTBF+6
LD HL, TBUF +6
NTMOT DEC 1Y
DEC 1X
DEC HL
LD A (1Y +0)
OoR A
JR Z, NOCDRV
CP 1
JR Z, REVDR
FORDR LD A (| X+0)
CP 1
JR Nz, CFORD
CALL SETST
LD (1y+0) ,0
JR NODRV
CFORD | NC (H)
LD A, (HL)
CP 127
CALL SETST
LD (I X+0), 3
NCDRV DINZ NTMOT
CALL STEPM
LD A, (STRFG)
OR A
JP NZ, STORE
RET
REVDR LD A (| X+0)
CP 3
JR Nz, CREV1
CALL SETST
LD (1'Y+0),0
JR NODRV
CREV1 DEC (H)
LD A, (HL)
CP -128
CALL Z, SETST
CREVD LD (1X+0), 1
JR NODRV
SETST PUSH AF
LD Al
SETSC LD (STRFG , A
POP AF
RET

This w ||

occur if any notor changes

exceeds the allowed sl ot

Get manual
Is it zero?
Yes then just step notors
Clear the store flag

flag

B = notor count

1X = previous direction buffer
1Y = current buffer

HL = step buffer

nove pointers

Get current notor direction
No work to do

skip, if so

Rever se

Yes then skip

Get previous direction

Di recti on change?

No then advance TBUF(N) step
Set the store flag

Cl ear MOTBF el enent.

Do next notor

I ncrenment not or
Get new val ue
Check agai nst upper board

Limt reached then store flag
Set previous direction

Do next notor

Step notors to be driven

Exam ne store flag

Zer 0?

No then do store operation

Exit

Get previous direction

Direction reversed?

No then continue

El se set store TBUF in ARST fl ag
cl ear MOTBF el enent
Do next notor
Advance step count
Get el enent

Conmpare with upper negative bound
Limt reached so set store flag
Set Direction

Do next notor

Save AF

Set store flag STRFG

to one

Restore AF

Conti nue

4 - 34

step in TBUF

in TBUF (N

SUBRCOUTI NE KEYI N

This routine scans the keyboard checking for
the keys '1-6' and '"Q'"WE 'R 'T"'Y" and 'S
It then drives the notors corresponding

to the keys pressed. |If
sequence is stared.

and O.

in | earn node the

KEYI N CALL CLRVF ; Clear MOTBF array
LD A (3840H) ; Get TRS80 keyboard byte
BIT 7, A ; See if
JR Z, | GDEL ;. No space key so skip
CALL DELT ;X
CALL DELT ;* Slow notor driving
| GDEL XOR A ; Clear KEY PRESSED fl ag
LD (KEYP), A
LD A (3810H) ;
BIT 0A ;. |Is the zero key pressed?
JR Z, TRYS ; No then skip
JP NOTNG ;. Go to do not hing
TRYS LD A (3804H) ; See if
BIT 3,A ;. 'S key pressed
LD A (3810H) ; Restore nenory val ue
JR Z, TRYNL : No then skip
LD A, (MAN) ;. See if in manual node
CR A ;
CALL Z, STORE ; No then store TBUF
R 1 ; Set not finished flag
RET ; and exit to caller
TRYN1 LD BC, 0 ; Clear MOTBF offset in BC
BIT 1A . See if '"1' key is pressed
JP Z, TRYN2 ; No then skip el se
CALL FORMT ; Set up nmotor 1 position in MOIBF
TRYN2 | NC BC ;I ncrement MOTBF of f set
BIT 2,A ;. See if '2' key pressed
JP Z, TRYN3 ; No skip
CALL FORMT ; Set second notor forward
TRYN3 | NC BC ; Advance of fset
BIT 3, A ;
JP Z, TRYNA ;. See if '"3" key pressed, No skip
CALL FORMI ; Set forward direction on Mdtor 3
TRYN4 | NC BC ; Increment offset in BC
BIT 4, A . See if key "4'" is pressed
JP Z, TRYNS ; No then test key '5'
CALL FORMI ; Do forward direction for Mtor 4
TRYNS | NC BC ; Advance offset
BIT 5 A ;. Key '5' pressed
JP Z. TRYN6 ; No skip
CALL FORMT ;. Do set up for notor 5
TRYNG | NC BC ; Advance of f set
BIT 6, A ;. Key '6' pressed
JP Z, TRYQr ; No then try 'Q
CALL FORMI ; Do for notor 6

- 35*

TRYQT

TRYQ

TRYW

TRYE

TRYR

TRYT

TRYY

SOVEN

NOTNG

FORMI

BACMI'
SETMI

BC, 0
A, (3804H)
1, A
Z, TRYW

BACMT

7, A

A, (3801H)
5, A

Z, TRYR
BACMT

BC

A, (3804H)

A, (3808H)
BC

1,A

Z, SOVEN
BACMT
SRAMI

1

A, (MAN)
A

Z, STORE
A

E, 3
SETMT
E, |

HL, MOTBF
HL, BC
AF

A, (HL)

A

Z, DOVOT
A
(H), A
AF

(H), E

A
(KEYP), A
AF

*4

36*

BC of fset for notor 1
'Q key pressed

Cl ear
See if

No t hen skip
Set notor 1 for backward
Advance pointer

See if "W key pressed
No skip

Do backward for notor 2
Advance pointer offset
See if

"E' key pressed

No skip

Set nmotor 3 for backward
Advance pointer offset
See if

Key 'R is pressed

No skip

Set notor 4 backward
Advance of f set

s key 'T' pressed?

No skip

Set nmptor 5 backward

Is the 'Y key pressed?
Advance of f set

No key

"Y' then skip

Set nptor 6 for backward
St ep not ors, maybe store.
Set zero key not pressed flag
Return to caller

Zero was pressed so see
if in |earn node

Yes then store

Set zero flag and

Return to caller

Set for forward direction
Do set nmotor slot in MOTBF
Set for reverse direction
Poi nt to MOTBF

Add in notor offset

Save AF

Get byte

See if zero

Yes then set byte

Cl ear

byte in MOTBF user wants both
directions clear byte
Restore AF and return

Set byte in MOTBF

and set

key pressed flag

Rest ore AF

exit fromroutine

SUBROUTI NE CBTAS

; This subroutine nakes a signed binary value in
; HL into armASCII String and stores the string
; in the locations pointed to by 1X

CBTAS PUSH AF ;o
PUSH HL ;o
PUSH DE ; * Save Registers
PUSH 1X ;o
BIT 7, H ; Test sign of nunber
JR Z, POSNO ; | f zero then positive nunber
LD A H ;
CPL ; Conmpl ement nunber if negative
LD H A ;
LD A L ;
CPL ;
LD L, A ;
| NC HL ; Now 2's conpl enent negative
LD A, M NUS ; Place m nus sign in string
PUTSN LD (1X+0), A ; Pointed to by 1X
| NC 1X ; Advance 1X pointer
JR CONUM ; Do rest of conversion
POSNO LD A, SPAC ; Pl ace a space if nunber positive
JR PUTSN ; Junp to copy space to nenory
CONUM PUSH 1Y ; Save 1Y regi ster
LD 1Y, BTOAT ; Point to subtraction table
NUMLP LD A, NUMBA ; Get ASCII 0 in A
LD E, (1Y+0) ;
LD D, (1Y+1) ; Get table val ue
SUBBA OR A ; Clear carry bit
SBC HL, DE ; Subtract table value fromvalue
;1 nput
JP C, GONEN ; If carry then do for next digit
| NC A ; Inc count (ASCII in A
JR SUBBA ; Do next subtraction
GONEN ADD H., DE ; Rest ore val ue before |ast
; subtraction
LD (1X+0), A ; Store ASCI |1 Nunber in nenory
| NC 1X ; I nc nmenory pointer
| NC 1Y ; Point to next table val ue
| NC 1Y ;
DEC E ; Test if E=0
JR NZ, NUMLP No then try for next digit
XOR A ; Clear A and place in store
LD (1X+0), A ; as EOCS = End of string
POP 1Y ;o
POP 1X ;
POP DE ; * Restore all saved registers
POP HL ; * and
POP AF ;o
RET ;o Exit

4 - 37

BTQAT DEFW 10000 : Tabl e of subtraction constants

DEFW 1000 : for conversion routine
DEFW 100)

DEFW 10

DEFW 1

4 - 38

CLEARI NG AND RESETTI NG ROUTI NES

; CLRMF

CLRWF

clears the MOIBF array

PUSH BC :
PUSH DE :
POP HL :
LD HL, MOTBF :
LD DE, MOTBF +1 :
LD BC, 5 :
LD (HL), 0 :
LDl R :
POP HL :
POP DE :
POP BC :
RET :

) CTBUF cl ears TBUF, DRBUF and

) Not e all

CTBUF

must be in order

PUSH BC :
PUSH DE :
PUSH HL :
LD HL, TBUF :
LD DE, TBUF + 1 :
LD BC, 17 :
LD (HL), 0 :
LD R :
POP HL :
POP DE :
POF BC :
RET :

*4

*

* Save Registers used

*

Poi nt to MOTBF(0)

Point to MOTBF(1)

BC = Count

MOTBF (0) =0

Copy through conplete array
*

* Restore Registers used

*

Exit

MOTBF

*

* Save Registers

*

HL points to TBUF(O0)

DE points to TBUF(I)

BC = Count of 17

Clear first el enent

Now cl ear next 17 el enents

*

* Restore Registers

*

Exi t

39*

SUBROUTI NE G NT

; This subroutine gets a signed 16 bit integer
; fromthe TRS80 Keyboard.

; If a bad nunber istyped it returns with the
; Status flag - non zero.

The 2's conpl enent nunber is returned in HL

G NT PUSH BC *
PUSH DE ; * Save Registers
XOR A ; Clear A and carry
SBC HL, HL ; Zero HL
LD B, 5 ; Maxi mumof 5 characters
LD (MN, A ; Clear M N=M nus Fl ag
G NT1 CALL GCHRA ; Get a character and display it
CcP SPAC ; Is it a space?
JR Z, A NT1 ; Yes then skip
CP NL ; Is it a newine?
JP Z, PRET1 ; Done if newline, return zero
CP M NUS ;A m nus nunber ?
JR NZ, POSON ; No then see if positive
LD Al ; Set mnus flag
LD (MN), A ;
JR Gl NT2 ; Get rest of number
PCSON CP ' ; s number a positive number
JR NZ, NUML ; See if numeric
Gl NT2 CALL GCHRA ; Get next character
NUML CP NL ;. Newline?
JR Z, NUMET ; Yes then exit
ADD HL, HL ; Doubl e number
PUSH HL . Save X 2
ADD HL, HL ;. X4
ADD HL, HL ;. X8
POP DE ; Restore X 2
ADD HL, DE ; Now add to get X 10
CP 0 ;
JR C, ERRN2 ; I f nunber |less than ASCII 0 ERR
cP 9"+ 1 ;|If nunber greater than ASCI I
JR NC, ERRN2 ;9 then error
SuB NUMBA ; Nunber input OK, so nake into
LD E A ; Binary and
LD D0 ; load into DE
ADD HL, DE ; Now add to total
DINz G NT2 ; Do for next digit
CALL PNEWL ; Print a newline
NUMET LD A (MN) ;|'s nunber negative?
R A X
JR Z, PRET1 ; No then finish off
LD AL ; el se conpl enent
CPL ; The value in HL
LD L, A ;
LD A H ; (2's Conpl enent)

*4

40*

PRET1

ERRN2

HA
HL
BC

PNEWL
Al

HL, HL
PRET2

*4 - 41%

Clear A and flags
* Restore Registers

*

and return

Print a newine

Set Ato 1l

Clear carry flag

Cl ear HL

Clear carry flag
Return with ERROR CODE

SUBRQUTI NE PGSDS

; This routine displays the PCSAR array for the
; user to see how far the armis fromits
; "Honme position”

CALL CBTAS

LD HL, NUVAR
CALL PSTR
CALL PSPAC
DINZ NPGCSA
CALL PNEWWL

Convert HL and leave in (1X
Point to result string

Print it

Print a space

Do for next notor

Print a newline, all done

*

POSDS PUSH AF ;
PUSH BC ;
PUSH DE ; * Save all registers
PUSH HL ;X
LD HL, POSST ; Print "RELPOS="
CALL PSTR ; String
LD B, 6 ; Modtor count into B
LD DE, POSAR ; Point to array containing offsets
NPOSA LD A, (DE) ;. CGet lower order byte into
LD L, A ;L
I NC DE ; I ncrement nmenory pointer
LD A, (DE) ; CGet higher order byte into
LD H A ; H
I NC DE ; I ncrement to next nunber
LD 1X, NUMAR ; 1X points to result string
FOP HL ;
POP DE ;o *
POP BC ;. * Restore all Registers
POP AF ;o *
RET ; Now return

4 - 42

SUBROUTI NE

. PCSI C
X not or
: But

be rotated about

PUSH
PUSH
PUSH
PUSH
LD
LD
LD
PUSH
LD

I NC
LD
LD
AND
R
JR
DEC

NPOS1

NONZM

RDPOS
STPCS

NPCS2

i ncrenents
step of fset counts.

this is very unlikely.
30 tines to cause such an event.

AF
BC
DE
HL
B, 6

DE, MOTBF+5

the signed 2's conpl enent

HL, POSAR+I O;

BC
C, (HL)
HL
B, (HL)
A, (DE)

*4

PCSI C

16 bit
It does not check for overfl ow,
The base would need to

*

* Save registers
B = notor count
Poi nt to MOTBF
Point to POSAR (relative position)
Save notor count
Get | ower PCSAR byte in C
Point to Higher byte
Get higher byte in B
Get di recti onbytefrcmMOTBF
Clear all higher bits
Is it zero?
No skip
Yes then nove POSAR pointer
and continue with next notor
Test direction bit
Do for reverse direction
Advance el enent
Restore 16 bit POSAR el enent
Advance negative POSAR el enent
Store higher byte
Move pointer to |ower
Store | ower byte
Back up PCSAR pointer to
next notor position slot
Backup MOTBF poi nter to next
Restore Mbtor count
Do next notor

from Dr7-D3

back

byt e

sl ot

* Restore used Registers

Done, Exit

- 43+

SUBROUTI NE STORE

; STORE copies the TBUF array into the |ocations pointed to
; by CUROWN If the TBUF array is conpletely enpty then the
; copy is not done. The COUNT and the CUROW vari abl es

; are both updated, and a check is nade to ensure that

; a store overflow is caught and the user told.

STORE PUSH BC ;o *
PUSH HL * Save registers

LD HL, TBUF Poi nt to TBUF

LD B, 6 B = notor count
STEST LD A, (HL) Get TBUF (N

OoR A Is TBUF el enent zero

JR NZ, STOR1 No then do store

| NC HL Poi nt to next el enment
DINZ STEST) Go dc next el enent check

JR EXIT Al'l TBUF zero so exit
STOR1L LD (1 X+0),0 Cl ear DRBUF el enent
LD HL, (COUNT) Get current count val ue
| NC HL Advance it
LD A H See if over or at 512 bytes
cP 1 ;
JP NC, OVRFW ; Yes then overflow
LD (COUNT) , HL Put back advanced count
LD DE, (CUROW Get current row pointer in DE
LD HL, TBUF Get TBUF pointer in HL
LD BC, 0006 Count for six notors
LD R Copy TBUF to ARST(1)
LD (CUROW , DE Repl ace updated row poi nter CUROW
CALL CTBUF Cl ear buffers
EXIT POP HL *
POP BC * Restore Registers
RET Now return to caller
OVRFW LD HL, OVFNVS Print overflow situation

CALL GCHRA Get response

CALL PSTR ' Message
CALL PNEWL Print a newline

cP "D User typed a 'D
JP Z, REDO Yes then clear all
cP 'S User typed an 'S
JR Z, EXI T2 Yes exit with sequence saved
JR OVRFM Bad i nput, try again
REDO CALL INIT Clear all arrays etc
EXI T2 POP HL *
POP BC * Restore Registers
POP BC Throw away return address
JP QUES1 Back to main | oop

4 - 44

SUBROUTI NE RESET

RESET

PUSH
PUSH
PUSH
LD
LD
LD
LD
LDI R
LD
CALL

POP
POP
RET

BC
DE
H .
HL, POSAR

DE, POSAR+1

(HL), 00
BC, 11

HL, STRST
PSTR

HL

DE

BC

*4

This subroutine clears the POSAR array

* Save Registers
*

Point to POSAR start

Poi nt to next el enent

Clear first PCSAR el enent

El even nore row counts to clear
Cl ear PCSAR array

Print "ARM RESET" nessage

and

*

* Restore Registers and
*

Return to caller

45*

| NPUT/ QUTPUT ROUTI NES
; PUTCHR prints a character

PUTCHR PUSH AF
PUSH DE
CALL PCHR
POP DE
POP AF
RET

; PSTR prints a string point

PSTR PUSH BC
PUSH DE
CALL PUTSTR
POP DE
POP BC
RET

in A
. Save AF
: Save DE
: Print character in A
: Restore DE
: Rest ore AF
: Done, Exit
ed to by HL
* Save registers that are

: * corrupted by the TRS80
; *Print the string
; * Restore Registers

: Done, Exit

PSPAC prints a space character

PSPAC PUSH AF
LD A, 20
CALL PUTCHR
POP AF
RET

;. PNEW. prints a newline to

PNEWL PUSH AF
LD A, ODH
CALL PUTCHR
POP AF
RET

SCKBD Scans the keyboard

: zero if character found

SCKBD PUSH DE
CALL KBD
POP DE
RET

; GCHRA gets a character

GCHRA CALL CHR
CALL PUTCHR
RET

*4_

X Save AF

;A = Space character
c Print it

X Rest ore AF

: Done, Exit
t he screen

Save AF

A = Newl i ne character
Print it

Restore AF

Done, Exit

once and returns, non

X Save DE
: See if character
X Rest ore

: Done, Exit

is there

from keyboard and di splays it

: Get a character
c Print it
. Done, Exit

46*

CLEAR SCREEN ROUTI NE

; Sinple scrolling type screen clear

CLRSC PUSH BC ; Save used register
LD B, 16 ; Get screen row count
UP1RW CALL PNEWL ; Print a newline
DINZ UPIRW ; Do 16 tines
POP BC ; Restore Register

RET Exi t

4 - 47

DELAY ROUTI NES

DELSW
DELS1

DELS

DELT

DELLN

BC
BC

BC
DELS1
BC

BC

B, 20
DELSW
BC

BC
B, 0
DELSW
BC

BC
B, 200
DELSW
DDDD
BC

4 - 48

Delay for 10 * B + 10 Mcycles
Save BC

Delay for 11 T state

4 T state del ay

4 T state del ay

Delay for 11 T states

Do delay tinmes value in B
Restore BC

Exi t

Save BC

Set B for 0.001 sec delay (apx)
Do del ay

Restore BC

Exi t

Save BC

Set B for 0.01 sec delay (apx)
Dc del ay

Restore BC

Exi t

Save BC

Set B for 1.0 sec delay (apx)
Do del ay

Do next delay section

Restore BC

Exi t

FULL STEPPI NG AND HALF STEPPI NG THE MOTORS

Two tables are shown below, the first indicates the sequence for
full stepping the notors and the second table shows the pul se
pattern for half stepping the notors.

FULL STEPPI NG SEQUENCE

oy o2 T STEP
1 0 1 0 1
1 0 0 1 2
0 1 0 1 3
0 1 1 0 4
HALF STEPPI NG PULSE SEQUENCE
o oz T @ STEP
1 0 1 0 1
1 0 0 0 15
1 0 0 1 2
0 0 0 1 2.5
0 1 0 1 3.0
0 1 0 0 35
0 1 1 0 4
0 0 1 0 4.5

The docunented program contains a table FTABL which is shown
below. This table contains the step sequence for full stepping
al so shown below is the new tabl e FTABLH whi ch contains the
sequence for half stepping. To use this table (FTABLH) in the
programit will be necessary to alter a few lines of code in the
DRAMI routine. The conparison wwith 5 CPlI 5 should be changed
to a conparison wwth 9 and the programline LD A 4 should be
changed to LD A, 8. The table FTABL should now be changed so

it appears as FTABLH

FULL STEP TABLE

Step nunber
FTABL DEFB 192 1
DEFB 144 2
DEFB 48 3
DEFB 96 4
HALF STEP TABLE
Step nunber
FTABLH DEFB 192 1
DEFB 128 1.5
DEFB 144 2
DEFB 16 2.5
DEFB 48 3
DEFB 32 3.5
DEFB 96 4
DEFB 64 4.5

x4 - 49*

25_\2 spmtrRr e five Lulples gFlesk g
G SDraviobs paARe -You-wIll 2ot
5 43 Ladauwe o and O arr e

¥abie thu to thehatduere »

ERNER O ER. EITING PRUGRANE L

B RRR O CTENT THs OB RNDI Q0 QU1
MEVERERD: &0 THAT TRE-TORIYOIL

i

N
=

4 - 493

I f you conpare the table values with the tables
on the previous page you will note a difference,
this is because @B and QC are exchanged in the

above table due to the hardware switching these
two |ines.

NOTE

REMEMBER WHEN WRI TI NG PROGRAMS DI RECTLY DRI VE
THE ARM SO THAT THE B AND QC QUTPUT BI TS SHOULD
BE REVERSED, SO THAT THE TOP FOUR BI TS ARE: -

b8
D7
D6
D5

8RB

*4 - 50

CONSTRUCTI ON CF A SUI TABLE PORT FOR THE ARNMDRO D

A circuit diagramis given which describes in particular the
construction of an 8 bit bi-directional, non latched port. The
circuit as given is for the TRS80 bus, but it should be
possible with reasonably sinple nodifications to alter it for
nmost Z80 type systens.

The circuit described is a non latched port so the output
data wi Il appear for only a short period on the 8 data |ines.

As can be seen fromthe diagram the circuit draws its 5 volt
power supply fromthe armis interface port, and not fromthe
processor it is connected to. The port was constructed this
way due to the fact that some commercial mcroprocessor systens
do not have a 5v output supply.

Wien the above circuit is connected to the arms interface card
the bottombit is usually pulled high, thus if the user inputs
fromthe port at any tine the data presented will mrror the
state of the reed sw tches.

To output data to the armusing this port the user should send
the data to the port with the bottombit cleared. The data
will then be latched through to the addressed arm notor | atch

The conponents for the described port should be easily
avai |l abl e from nost sources.

*4 - 51

TRS80 8 BIT INTERFACE (NON LATCHED BI - DI RECTTONAL)

READ OR WRITE FROM PORT (4)

1
|
-I + GND
A7l e .
e y I a © coine aobo:icq
2 ! 12
6 o =P
IC 2a
AS o It 1b i
AL ®
: * 3 B \g ENABLE
ol k4 &
Al t| 5 2 J
A2
% 5 TEL 5
i .k---J 10 \ 3
] n
! -
|
| IC 3a IC 3b
oUT ek 1 1 i & A.J. LENNARD 20/6/1981
W .]____F‘TD 6
5
| DIRECTION : e 0 VOLTS
l 1 19 | ® 5 VOLTS
] -]8 i
L 3] 3
08 - 7 t— 08
7 ol - 16 . 7
Db 5 IC 4 15) o=
D5 or B ' | ® D5
Dk @ » D
D3 gl 7 13 | 03
e a AR
oy %% 9 11 i
.' ; T0)
| I RosoT 8 817
t I INTERFACE
| SR N
IC 1: 74LS27 Pin 14: 5 Volts, Pin 7: GND 3#3 INPUT NOR
IC 2: 74Ls20 Pin 14: 5 Volts, Pin 7: GND 2%4 INPUT NAND
IC 3: 74LS00 Pin 14: 5 Volts, Pin 7: GND 4%2 |NPUT NAND
IC h: 74LS245 Pin 20: 5 Volts, Pin 10: GND OCTAL BUS TRANSCEIVER

(Tri-state)

CONNECTI ON OF THE ARVDRO D TO THE TRS8O PRI NTER PORT

The TRS80O printer port can be used to drive the robot arm but
when using the printer port it will not be possible to read
the reed-switches connected to the armas this port is not a

bi-directional port. The TRS80 to ARVDRO D connections are
shown bel ow.

TRS80O PRI NTER PORT ARVDRO D CONNECTI ON ON
PI N CONNECTI ONS | NTERFACE BOARD
18 0 volts
17 D8
15 D7
13 D6
11 D5
9 D4
7 D3
5 D2
3 D

The software driving the notors should output data to the robot
armin the follow ng manner.

The followi ng Z80 code sequence assunes the correct driving
pattern and notor address is in the Z80 accunul ator.

OR 0 1H ; Set bit D
LD PORTAD, A;, Send data to port
AND OFEH ; Cear bit D
LD PORTAD, A; Now latch data pulse to
; selected notor
In the case of the TRS80O level |l the printer port address is:

PORTAD equal s 37E8H

4 -53

CONNECTI ON. OF ARMDRO D TO PET/ VI C COWUTERS

PET/VIC USER PORT CONNECTOR

PIN NO PET/ VI C ARNVDRO D
NOTATI ON NOTATI ON

C PAO DI

D PAl D2

E PA2 D3

F PA3 D4

H PA4 D5

J PAS D6

K PAG D7

L PA7 D8

N GROUND GROUND

|/O Regi ster Addresses (User Ports)

VIA Data Direction Control: 37138

PET Data Directional Control Register: 59459
VIC I/0O Regi ster Address: 37136

PET Data Regi ster Address: 59471

The data direction registers in the VIA define which bits

on the respective user ports are input and which are to be
used as output bits. A binary one in any bit position defines
an output bit position and a zero defines that bit as an

input bit.

4 - 54

SI MPLE BASI C ARM DRI VER FOR VIA (PET/M Q

5L = 37136: Q = 37138
10 PRINT "VIC ARMDRO D TEST"
20 PRI NT
30 PRINT "HALF STEP VALUES"
40 T=8 C=2: S=10: M=1. | =1. A$ = "F"
50 FORI =1 TOT: READWI): PRINT WI): NEXT I
60 POKE Q 255
70 I NPUT "MOTOR NUMBER (1-6)"; M
80 IF Mkl OR M8 THEN 70
90 INPUT "FORWARD BACKWARD'; A$
100 IF A$ = "F* THEN D= O GOTO 130
110 IF A3 = "B*" THEN D = 1: G@GOTO 130
120 GOTO 90
130 I NPUT "STEPS"; S
140 I F S<1 THEN 130
150 O = M+ M +1
160 FOR Y = 1 TO $C
170 F = WI) + O
180 PCKE L, F
190 PCKE L, F-1
20 IF D = 0 THEN 230
210 Y=Y + 1. IF Y>T THENY = 1
220 GOTO 240
230 Y=Y - 1. IFY<LTHENY =T
240 NEXT Y
250 GOTO 70
260 DATA 192, 128, 144, 16, 48, 32, 96, 64
THE VALUES FOR L AND Q FOR THE PET ARE
Q = 59459 = DATA DI RECTI ON
L = 59471 = 1/0

*4-55%

MOTOR STEP RELATI ONSHI P PER DEGREE | NCREMENT

Bel ow are shown the cal culations for each joint to enable the
user to calculate the per notor step relationship to actual
degree of novenent.

These constants are necessary for users wishing to fornulate
a cartesian frame reference systemor a joint related angle
ref erence system

Base

Motor step angle x ratio 1 x ratio 2

7.5 x 20 teeth x 12 teeth
72 teeth 108 teeth

= 0.2314 degree step or 4.32152 steps per degree.
Shoul der

7.5 x 14 teeth x 12 teeth
72 teeth 108 teeth

= 0.162 degree per step or 6.17284 steps per degree
El bow

Same as shoul der joint
Wi sts

Sane as base joint cal cul ations

Hand
7.5 x 20 teeth x 12 teeth
72 teeth 108 teeth = 0.231 degree per step
pi x d x 0.231 = (0.0524/2)mm
360

=0. 0262mm = hand pull ey notion per step
Total hand open to close pulley novenent = 20.0mm

Angl et raver sedbysi ngl ef i nger =50degr ees

50° x 0.0262mm
20.0 nm

=0. 0655 degr ees per stepor 15. 2672 st eps per degr ee
pi = 3.1415926
d = 26mm = pul l ey di aneter

4 - 56

SOVE OVERALL DI MENSI ONS

Shoul der pivot to pivot = 190nm

Forearm pivot to pivot = 190nm

Fi nger wist pivot to fingers closed = 90mm
wist pivot to finger open (90) = 99mm

Bott om of base to shoul der pivot = 238mm

ANGULAR JO NT SPANS

Shoul der up = 153 ,down 45

Forearm up = 45 , down 150

Wi st up = 100 ,down 100

Base no limt ,but suggest caution not to

overwi nd cables in base
Hand fingers nove over 50

(Al above neasurenents are in degrees)
NOTE

The above neasurenents were taken with the arm joints
held in a horizontal plane:

*4 - 57

SOME EXTRA POINTS TO BEAR IN M ND
a) Long Lead of LED goes to NEGATI VE

Short |lead of LED goes via 4.7 kohm Resi stor
to POSI Tl VE

b) Due to LED hole being slightly too large a gronmmet
will first have to be fitted to the LED and its hol der
can then be super glued if necessary into the grommet.
c) The Torque available is largely a function of speed
and hence the user can expect performance to deteriorate

as speed is increased. Tables are supplied earlier
in the manual .

FI NAL NOTE

BEST W SHES AND GOOD LUCK

b

*4 - 58

