Dynamic C

For Rabbit Semiconductor Microprocessors
Integrated C Development System

User’'s Manual

040313 » 019-0125-B

This manual (or an even more up-to-date revision) is available for free
download at the Z-World website: www.zworld.com

Table of Contents

Installing Dynamic C.........cccooeveivneeecnnes 1 4.19 Function Chaining.........cccceeeeuenenuenas 36
1.1 ReqUIreMeENtS......cccoeveveveveverererererereeeenns 1 4.20 Global Initidlization............cccccuruenees 37
1.2 ASSUMPLIONScoovvevieeeeceerereeeee e, 1 421 Libraries....ccoeeverenenene e 38

. . 4.22 HEAAEN'S ..ottt 39

Introduction to DYNAMIC C....evvvve 3 4,23 MOQUIES ..oro oo 39

2.1 The Nature of Dynamic C 3 The Parts of aModule........_ 29
Speegl .. 3 Module Sample Code.................. 1
22 Dynarmc C Enhancements and Important NOtes..........ccccoeeveneeceenne. 42
D|fferepc&c...: :4 4.24 Function Description Headers 43
2.3 Dynamic C Differences Between Rabbit 4.25 SUPPOTt Fi1ES oo 43
ANd Z180.....cereeeererreere e 6 itasking with Dvnamic 45

. . 5 Multi ing wi \ ICC e,

Quick Tutorialcceeeveeeeeeeeeceeeeeee, 7 5.1 Cooperative Multitasking................ 45

3.1 RUNDEMOLC ..o 8 2 A Red-Time Problom. . 4
SmgIeStepplng 9 Solving the Real-Time Problem
Watch E?<pron 9 with a State Machine ... 47
Brggkpm M s 9 5.3 Costatements........ccccvvevevevreereseerennnnns 48
Editing the Program..........cccceeuu.e. 10 Solving the Real-Time Problem

3.2 RUNDEMO2.C.....coevvrrerrerrerinienas 10 :

, | ; with Costatements.........c..cceveueee 48
Watching Variables Dynamically10 Costatement SyntaX.........ccccervreeene. 49

3.3 Run DEMO_3.C......: SR 11 Control Statements.................. 50
Cooperative Multitasking................ 11 5.4 Advanced Costatement TOpICS......... 50

3.4 Summary of Features...........cccccverennee. 12 The CoData Structure. ... 50

LanguagE......ccccovvreeeiireeee e 15 CoDataFelds.......cooevvvnnenriicen, 51
4.1 CLanguage Elements............ccccuu..... 15 Pointer to CoData Structure............ 52
4.2 Punctuation ToKens.........ccccevevvnenenes 16 Functions for Use With Named
TG I D T - T 17 Costatementsccovveereerieennns 52

Data Type Limits.......cccoevvevrrenne 17 Firsttime FUNCLions...........ccccoeeeeee 53

4.4 NAMES ..cvrrirerreereeseseessesesssessssssenns 18 Shared Global Variables.................. 53

RV - o o L 19 55 Cofunctions.......c.ccoevvvrennennenieennne 54
RESLICLIONS.....ceeveeeeercveete e 21 Cofunction SyntaX..........cceeevvervennnne 54

4.6 NUMDETS.......oooveeiee et 21 Calling Restrictions..........ccccevvvnene. 55

4.7 Strings and Character Data................. 22 CoData Structure..........cccoeeeverereenes 55
String Concatenation....................... 22 Firsttime FUNCLions...........ccccveeeeee. 55
Character Constants.........coeveeeenee. 23 Types of Cofunctions.........cccceeveneee 56

4.8 StAEMENS.....ceeeercereeiiree v 23 Types of Cofunction Calls............... 57

4.9 DeclarationS.........coceeevveevereeiesieenenns 24 Specia Code Blocks.........ccccerveeee. 58

4,10 FUNCLIONS......ceeerieieceisrie e seere e 24 Solving the Real-Time Problem

4,11 PrototypeS......coevveereerereereieeeseeressesennas 25 with Cofunctions..........c.ccceeenne. 59

4,12 Type Definitions.........ccccoeeveeeercnnnee 25 5.6 Patterns of Cooperative Multitasking.59

4.13 Aggregate Data TYPES........coceeeeveneee. 27 5.7 Timing Considerations.........c.cccuvvvuueee 60
AITAY o 27 waitfor Accuracy Limits................. 61
SUUCIUIE...veeeeeeeeeee e 27 5.8 Overview of Preemptive Multitasking61
UNION 1o seneeeees 28 5.9 Slice Statements........cccevveereerevrerenennns 61
COMPOSILES......coceeeerereeeeeeeveeeee 28 Slice SYNtaX.....coevrerereerrenireeeeenens 61

4,14 Storage ClasseS.....oovvvvvvvevereeseneneans 28 USA0E ..o 62

415 POINErS ...cvveveeeeeereeie e 29 Restrictions........c.ccovveeveenecniecnne 62

4.16 Pointers to Functions, Indirect Calls..30 Slice Data Structurecccuvnee.... 63

4.17 Argument Passingccoueeeeeeenennnnns 31 Slice Internals.........coooeeevrceeecnennne 63

4,18 Program FIOWcovveevecinicicicieee 32 5.10 SUMMAY ...cooviviiieriiresenine s 65
ég?}g‘:'] e 2:23 6 The Virtual DIiVEr oooovovvveeeeceeseeeeeeeerreeeeeen 67
Branching.........ccoceeeeeveeeeveeevcrnnnen. 34 6.1 DEfUIt Operation ..o 67

Dynamic C User’'s Manual i

6.2 Calling_GLOBAL_INIT() cseerrrrnn. 67

6.3 Globa Timer Variables...........cccoen... 63
6.4 Watchdog Timers.......c.cceeevevevrereeennn 69
Hardware Watchdogccccveveee 69
Virtual Watchdogs..........cocevrerernnee. 69
6.5 Preemptive Multitasking Drivers....... 69
7 TheSlave Port Driver ... 71
7.1 Slave Port Driver Protocol 71
OVEIVIEW ..o 71
Registers on the Slave..........ccc........ 71
Polling and Interrupts........cccoeueuen. 73
Communication Channels............... 73
7.2 FUNCLIONS.....coveirrcinenenreree s 73
7.3 EXaMPIES.....ocovvereeieecee e 78
Status Handler ..o, 78
Serial Port Handler ... 79
Byte Stream Handlercoc.... 92
8 RUN-TIMEEITOrS....cooovvreririrircrcrs 101
8.1 Run-Time Error Handling................. 101
Error Code Ranges...........ccceveene.. 101
Fatal Error Codes.........ccocvvruennne 102
8.2 User-Defined Error Handler 103
Replacing the Default Handler 103
8.3 Run-Time Error Logging 104
Error Log Buffer........cccoeeeneneee 104
Initialization and Defaults............. 105
Configuration Macros................... 105
Error Logging Functions.............. 106
Examples of Error Log Use.......... 106
9 Memory Managementccccceevveruennee 107
9.1 Memory Map.....cccceveeienenceeeceee, 107
Memory Mapping Contral............ 108
9.2 Extended Memory Functions........... 108
Code Placement in Memory 108
10 TheFash File System.........cccoevvvveneee. 109
10.1 General Usage.......cccceeveeneecienerceennns 109
Maximum File Size.........cccc........ 109
Two Flash Boards.........ccccceveeenene 110
Using SRAMcconnnenierinieienene 110
Wear Leveling.......coeeeveneciieenne. 110
Low-Level Implementation.......... 110
Multitasking and the File System. 110
10.2 Application Requirements............... 111
Library Reguirements................... 111
FS2 Configuration Macros........... 111
FS2 and Use of the First Flash 113
10.3 File System API Functions.............. 114
FS2 APl Error Codes........ccceu.... 115

10.4 Setting up and Partitioning the File
SYSEEM .t 115
Initial Formatting.........cccccveieuenne. 115
Logical Extents (LX) ..ccccoeverennene 116

Logical Sector Size.........ccevvvenee. 117

10.5 File ldentifiers.......coeovveereenenenen. 117

File NUMbErs......ccocevveernine 117

File Names......ccccoovveenccnncrinnene, 118

10.6 Skeleton Program Using FS2.......... 119

11 Using Assembly Language..................... 121

11.1 Mixing Assembly and C.................. 121

Embedded Assembly Syntax........ 121

Embedded C SyntaXcccueeee. 122

Setting Breakpointsin Assembly . 122

11.2 Assembler and Preprocessor 123

COmMMENES.......overrereieeereeee e 123

Defining Constants.........ccccceveeeee. 123

Multiline Macros.........ccceeereenene 125

o= 125

Special Symbols........ccoceceiiienen. 125

CVariablesccoooveieienncicn 126

11.3 Stand-Alone Assembly Code........... 127

Stand-Alone Assembly Codein

Extended Memory..........ccccc...... 127
Example of Stand-Alone Assembly

COode....coiiiiriieee e 128

11.4 Embedded Assembly Code.............. 128

The Stack Frame.........cccccccevvenneee 128

Embedded Assembly Example..... 130

Local Variable Access.........cc...... 132

11.5 C Caling Assembly.......ccccceereeenene 133

Passing Parameters.........ccccoueuee. 133

Location of Return Results........... 133

11.6 Assembly Calling C.........cccoevueennene 135

11.7 Interrupt Routinesin Assembly....... 136

Steps Followed by an ISR 136

Modifying Interrupt Vectors......... 137

11.8 Common Problems...........ccccceeeenneee 142

12 Keywords.......cooovveeevevevcecieseee e, 143

abandon ... 143

ADOIt. ..o 143

ANGN e 144

AWAYS ON .. 144

ANYMEM . 144

=S 0 TS 145

AUEO et 145

bbram.......ccccoovvnnine 145

o)1= 146

oSO 146

CBSE ittt 146

Char ..o 147

CONSL.....cveiieeiiesteeie st e seens 148

CONLINUE ...t 149

COSLALL....ceeeeeereeeieeee e 149

debUg ..o 149

default.....cccooneenrieee 150

o (o TS 150

ElSE i 150

ENUM . 151

EXEEIMN e 151

FIrsttime ...oocooeeeeeceee s 152

Dynamic C User’s Manual

L0 RO 152 HNOUSEIX ..oeveereereeerecreere e 174
O i 153 HWAIMNS ... 174
00 [TR 153 HWarntasmine..........ceceevevveeeeverienns 174
S 154 HXIMPONt .. 175
NIt ON oo 154 E57411110]0) S 175
1 0| PR 154

Te e TeT . SO 155 13 Operator_s e 177
INtErTUPL_VECLONvoocveeveerereene. 156 13.1 Arithmetic Operators..............c...... 178
[ONG. .t 156 F e 178
L T 157 eeeser e 178
(0100 1= o 0 o FS 157 *

[010] £ S 157 [gg
nOUSEi X 157 ..
NULL oo 157 FH o, 180
protected........cooeeinieeieeeee e, 158 T T TSRSV 180
FOMUM oo 158 0 1eeeerneeeseeeess e 180
FOOL ..o 159 -

R ———— 15 132ASGMEN OIS .o 151
g-]ar&j .. 159 T aassrassrrassraEssEEEssEEsssEEsssEEsssEEsEEEEEEE
10 AU 160 P 181
SIZE it 160 e s 181
SIZEOF 160 2 et 181
(S0 1C <o 160 -

SEELC oo 161 T o
S 100 o: SO 161 07 e

SN| tch ... 162 K it 181
typPedEf ... 162 SST e 181
070 To! o O 163 TRV U T U VT VT TR 182
UNSIGNEd ... 163 A

USEIX caveeeeeneeneesenneeesseeneseeseseeseeneas 163 _ Trmmmmmmmmmmmmmmmmmmmm———" 12;
WaILFOF .o 164 [T
waitfordone 13.3 Bitwise Operatorsccooeeevereeneenne 182

(WFd) e 164 S ittt 182
WHIlE..coo 164 D> e 182
D0 - - VNSO 165
e 166 f{. .. igg
XStrl ng .. 167 ...

o1 D 167 et 183

12.1 Compiler Directives.......ccccoveereeene 168 TSRS 183

HASM oo 168 13.4 Relational Operators........ceceverereens 183

HCIASS....oovvi 168 SRS 183
#debug -

HROAEDUG o 169 S S 183
Hdefine. . 169 > e 184
#endwn 169 DS 184
#Hatal ... 169 13.5 Equality Operators.........ccceeerereerenns 184
HGLOBAL _INIT oo 170 ST s 184
HBITON v 170 R 184
zif]yncchal [P 170 13.6 Logical Operators ... 185

#elif & i 185

#else | TSRS 185

HNAIf o 171 D ettt 185
#! fdef ... 171 13.7 POSthX Expr OnS 185
HTNAER ..o 172
#interleave () cereerereeeree s 185

#nointerleave........cocoviiviiii, 172 [] ... 185
2 | N 172 (0 [0 [186
#makechain 172 S e ————————————— 186
#memmap 172 13.8 Reference/Dereference Operators. ..186
HPragMaL......coveeeeeeeee e 173 2 186
#pra:ompl | e 173 ..
HUNDER oo 174 SRR PR USRI 187
FUSE ..o 174 13.9 Conditional Operators..........cccceevev.e. 187
#useix 2 e 187

Dynamic C User’'s Manual %

(077 0L) T 188
SIZEOF ..ot 188
e s 189
14 Graphical User Interface........cccccoveeeee. 191
141 Editing ...cocvveeeeereeeeeeeseseeeseenenenns 191
TA2 MENUS.....coiiierereee e 192
FileMenu........cccooovveennenrencnnn, 192
Edit MenU ..., 194
Compile MenU.......ccccevveeeveernnnns 197
RUNMENU......oiviicieee 199
Inspect Menu........ccccoeeveveenieeennnne. 201
OptionsMenU......cccoceevvveerereenee. 204
Window Menu........coveevererenrenn 234
Help Menu......ocoooiiieniiicenee 238
15 Command Line Interface.........c.ccoeuuee 241
15.1 Default tateScveveeererereeereririeieiee 241
15.2User INPUL.....ooeeeeeeeeeeeeeee e 241
15.3 Saving Output to aFile.................... 241
15.4 Command Line Switches................ 242
Switches Without Parameters....... 242
Switches Requiring a Parameter... 250
15.5 EXaMPIES....ooiiieeieie e 258
Example ... 258
Example 2. 258
Example 3. 258
16 ProjeCt Fil€S....oiiveiciicceeveceea 259
16.1 Project File Names........cc.ccocevvenneee 259
Active Projectcoovvvceiviennne 259
16.2 Updating a Project File.................... 260
16.3 Menu Selections.........ccccceeereeeeennen 260
16.4 Command Line Usage........cccceeeunene 261
17 Hintsand TipsS.....ccccooveeenrivceeieseeienans 263
17. 1 EffiCienCy ...ooceeeeeeeereeeee e 263
Nodebug Keyword...........c.cccc...... 263
IN-liNE /O e 264
17.2 Run-time Storage of Data................ 264
User BIOCK ..o 265
Flash File Systemcccocveeenenenne 265
WriteFlash2coeeeeivieeeccnene 265
Battery-Backed RAM.................... 265
17.3 Root Memory Reduction Tips......... 266
Increasing Root Code Space......... 266
Increasing Root Data Space.......... 268
18 UC/OS e, 269
18.1 Changesto HC/OSHIcueeeeennene 269
Ticks per Secondcccceeeveeneenne. 269
Task Creation.........cccevveeeeneennnnes 270
ReStiCtions.......cccvveereereriee 271

18.2 Tasking Aware Interrupt Service
Routines (TA-ISR)ccocvvenerineenn. 271
Interrupt Priority Levels............... 271

Possible ISR Scenarios................. 272
General Layout of aTA-ISR......... 273
18.3 Library Reentrancy.........c.ccccevvvevenens 277

18.4 How to Get auC/OS-11 Application
RUNNING ..o 278
Default Configuration................... 278
Custom Configuration.................. 279
EXamples......ccovivvvnvreveeceen, 280
18.5 Compatibility with TCP/IP 283
Socket LOCKSovvvevrereirincnieciene 283
18.6 Debugging TipS....ccovvvvereereererrennens 284
Appendix A: Macros and Global Variables 285
Compiler-Defined Macros.................. 285
Global Variables.........ccoevevvevvcienn, 287
EXCEption TYPES.....coeveeeeireeesiereneens 288
Rabbit 2000/3000 Internal registers... 288
Appendix B: Map File Generation 289
Grammar.......cccoeeeeviieeiee e 289
Appendix C: Utility Programs................... 291
Library File Encryption Utility........... 291
File Compression Utilitycccceeeuen. 291
Font and Bitmap Converter Utility..... 293
Rabbit Field Utilityc.ccooorvrcrnnnene 294
Noticeto USErScoveveee e 297
License Agreementccccceveeeceevensneenns 299
10 L 303

Vi

Dynamic C User’s Manual

1. Installing Dynamic C

Insert theinstallation disk or CD in the appropriate disk drive on your PC. The installation should
begin automatically. If it doesn’t, issue the Windows “Run...” command and type the following
command.

<disk> : \SETUP

The installation program will begin and guide you through the installation process.

1.1 Requirements

Your IBM-compatible PC should have at least one free COM port and be running one of the fol-
lowing.

e \Windows 95

e \Windows 98

e \Windows 2000
e WindowsMe
e WindowsNT

1.2 Assumptions

It is assumed that the reader has a working knowledge of:
e thebasics of operating a software program and editing files under Windows on a PC.
e programming in a high-level language.
e assembly language and architecture for controllers.

For afull treatment of C, refer to one or both of the following texts:
e The C Programming Language by Kernighan and Ritchie (published by Prentice-Hall).
e C: A Reference Manual by Harbison and Steel (published by Prentice-Hall).

Chapter 1: Installing Dynamic C 1

Dynamic C User’'s Manual

2. Introduction to Dynamic C

Dynamic C is an integrated development system for writing embedded software. It is designed for
use with Z-World controllers and other controllers based on the Rabbit microprocessor. The Rab-
bit 2000 and the Rabbit 3000 are high-performance 8-bit microprocessors that can handle C lan-
guage applications of approximately 50,000 C+ statementsor 1 MB.

2.1 The Nature of Dynamic C
Dynamic C integrates the following devel opment functions:
e Editing
e Compiling
e Linking
e Loading
e Debugging

into one program. In fact, compiling, linking and loading are one function. Dynamic C has an
easy-to-use, built-in, full-featured, text editor. Dynamic CPrograms can be executed and debugged
interactively at the source-code or machine-code level. Pull-down menus and keyboard shortcuts
for most commands make Dynamic C easy to use.

Dynamic C also supports assembly language programming. It is not necessary to leave C or the
development system to write assembly language code. C and assembly language may be mixed
together.

Debugging under Dynamic C includes the ability to use print f commands, watch expressions,
breakpoints and other advanced debugging features. Watch expressions can be used to compute C
expressions involving the target’s program variables or functions. Watch expressions can be evalu-
ated while stopped at a breakpoint or while the target is running its program.

Dynamic C provides extensions to the C language (such as shared and protected variables, cos-
tatements and cofunctions) that support real-world embedded system development. Dynamic C
supports cooperative and preemptive multi-tasking.

Dynamic C comes with many function libraries, all in source code. These libraries support real-
time programming, machine level 1/O, and provide standard string and math functions.

2.1.1 Speed

Dynamic C compiles directly to memory. Functions and libraries are compiled and linked and
downloaded on-the-fly. On afast PC, Dynamic C might load 30,000 bytes of code in 5 seconds at
abaud rate of 115,200 bps.

Chapter 2: Introduction to Dynamic C 3

2.2 Dynamic C Enhancements and Differences

Dynamic C differsfrom atraditional C programming system running on a PC or under UNIX. The
reason? To be better help customers write the most reliable embedded control software possible. It
is not possible to use standard C in an embedded environment without making adaptations. Stan-
dard C makes many assumptions that do not apply to embedded systems. For example, standard C
implicitly assumes that an operating system is present and that a program starts with a clean dlate,
whereas embedded systems may have battery-backed memory and may retain data through power
cycles. Z-World has extended the C language in a number of areas.

2.2.1 Dynamic C Enhancements
Many enhancements have been added to Dynamic C. Some of these are listed below.

e Function chaining, a concept unique to Dynamic C, allows special segments of code to be
embedded within one or more functions. When a named function chain executes, al the seg-
ments belonging to that chain execute. Function chains allow software to perform initializa-
tion, data recovery, or other kinds of tasks on request.

e Costatements allow concurrent parallel processes to be simulated in a single program.
e Cofunctions allow cooperative processes to be simulated in a single program.
e Slice statements allow preemptive processesin a single program.

e Dynamic C supports embedded assembly code and stand-alone assembly code.

e Dynamic C has shared and protected keywords that help protect data shared between different
contexts or stored in battery-backed memory.

e Dynamic C has a set of features that allow the programmer to make fullest use of extended
memory. Dynamic C supportsthe 1 MB address space of the microprocessor. The address space
is segmented by a memory management unit (MMU). Normally, Dynamic C takes care of
memory management, but there are instances where the programmer will want to take control
of it. Dynamic C has keywords and directivesto help put code and datain the proper place. The
keyword root selects root memory (addresses within the 64 KB physical address space). The
keyword xmem selects extended memory, which means anywhere in the 1024 KB or 1 MB
code space. root and xmem are semantically meaningful in function prototypes and more effi-
cient code is generated when they are used. Their use must match between the prototype and
the function definition. The directive #memmap allows further control. See “Memory Manage-
ment” on page 107, for further details on memory.

4 Dynamic C User’s Manual

2.2.2 Dynamic C Differences
The main differencesin Dynamic C are summarized here and discussed in detail in chapters “Lan-
guage” on page 15 and “Keywords’ on page 143.

If avariableisexplicitly initialized in adeclaration (e.g., int x = 0;),itisstoredinflash
memory (EEPROM) and cannot be changed by an assignment statement. Such a declaration
will generate awarning that may be suppressed using the const keyword:

const int x = 0

To initialize static variables in Static RAM (SRAM) use #GLOBAL INIT sections. Note that
other C compilers will automatically initialize all static variablesto zero that are not explicitly
initialized before entering the main function. Dynamic C programs do not do this becausein an
embedded system you may wish to preserve the datain battery-backed RAM on reset

The numerous include files found in typical C programs are not used because Dynamic C hasa
library system that automatically provides function prototypes and similar header information
to the compiler before the user’s program is compiled. Thisis done viathe #use directive.
Thisisan important topic for users who are writing their own libraries. Those users should refer
to the M odul es section of the language chapter. It isimportant to note that the #use directiveis
areplacement for the #include directive, and the #include directiveis not supported.

When declaring pointers to functions, arguments should not be used in the declaration. Argu-
ments may be used when calling functionsindirectly via pointer, but the compiler will not
check the argument list in the call for correctness.

Bit fields are not supported.

Separate compilation of different parts of the program is not supported or needed.

Chapter 2: Introduction to Dynamic C

2.3 Dynamic C Differences Between Rabbit and Z180

A major difference in the way Dynamic C interacts with a Rabbit-based board compared to aZ180
or 386EX board isthat Dynamic C expects no BIOS kernel to be present on the target when it
startsup. Dynamic C stores the BIOS kernel as a C source file. Dynamic C compiles and loads it
to the Rabbit target when it starts. Thisis accomplished using the Rabbit CPU’s bootstrap mode
and a specia programming cable provided in al Rabbit product development kits. This method
has numerous advantages.

e A socketed flash is no longer needed. BIOS updates can be made without a flash-EPROM
burner since Dynamic C can communicate with atarget that has a blank flash EPROM. Blank
flash EPROM can be surface-mounted onto boards, reducing manufacturing costs for both Z-
World and other board developers. BIOS updates can then be made available on the Web.

e Advanced users can see and modify the BIOS kernel directly.

e Board developers can design Dynamic C compatible boards around the Rabbit CPU by simply
following afew simple design guidelines and using a“skeleton” BIOS provided by Z-World.

e A mgjor featureis the ability to program and debug over the Internet or local Ethernet. This
requires the use of a RabbitLink board, available alone or as an option with Rabbit-based devel-
opment Kits.

6 Dynamic C User’s Manual

3. Quick Tutorial

Sample programs are provided in the Dynamic C Samples folder similar to the one shown
below.

Lookin: | _4 Samples = |=_°F~| |
|EAES Encryption: .l dmtarget __1Gps
| IBI2000 I drunit el
| [BI2100 L IDOWHM_LOAD . |lcom
| IBIZR00 _lEmorHandling __llntrupts
|| Cofunc __IFft __lJackrab
|| Costate __IFileSystem __ILCD_Keppad
I []
File name: I Dpen I
Filez of type: II: Source [*.c] j Canicel |

The subfolders contain sample programs that illustrate the use of the various Dynamic C librar-
ies. E.g., the subfolders“ Cofunc” and “Costate” have sample programs illustrating the use of
COFUNC.LIB and COSTATE . LIB, librariesthat support cooperative multitasking using
Dynamic C language extensions. The sample program Pong.c demonstrates output to the
STDIO window.

Read the comment block at the top of the sample program for a general description of its purpose.
Further details are provided in this comment block when needed. Comments are also in the source
code. The sample program documentation is provided by the software engineers and isarich
source of information.

Chapter 3: Quick Tutorial 7

3.1 Run DEMO1.C

This sample program will be used to illustrate some of the functions of Dynamic C. Open the file
Samples/DEMOL . C using the File menu or the keyboard shortcut <Ctrl+O>. The program will
appear in awindow, as shown in Figure 1 below (minus some comments). Use the mouse to place
the cursor on the function name print £ in the program and press <Ctrl+H>. This brings up a doc-
umentation box for the function print£. You can do this with all functions in the Dynamic C
libraries, including libraries you write yourself.

=E Default - Dynamic C Dist. 8. 00Beta? - [E-ADC 8\Samplesi\DEMO1.C]

ﬁEile Edit Compile Bun Inspect Options Window Help _|E|5|

DS emnn alas||enssr

fﬁ-:{-ﬁ-:{-ﬁ-:{-ﬁ-:{-ﬁ-***********************

demol. c
E-World, 2000

Sample program for Dynamic C© tutorial
:(-:i-:(-:i-:(-:i-**********:(-*:(-*:(-*:(-*:(-:(-:(-:(-*:(-************************ﬁ

foaing) o A40 programs begin with main

int i, 3:

i = 0;: S Initialize & counter
while (1) { FS Btart an endless loop
i++: S Increment the counter

for (j=0; j<20000; J++); /7 Delavy by counting to 20,000
printf(™i = sdyn"™, 1i): A Print out counter

b
|Default [Line: 21 [Zal 70 | |Inzert oz

Figure 3-1 Sample Program DEMOL1.C

To run DEMO1 . C compile it using the Compile menu, and then run it by selecting Run
ﬂ in the Run menu. (The keyboard shortcut <F9> will compile and run the program. You
may also use the green triangle toolbar button as a substitute for <F9>.)

The value of the counter should be printed repeatedly to the Stdio window if everything went well.
If this doesn’t work, review the following points:

e Thetarget should be ready, indicated by the message “ BIOS successfully compiled...” If you
did not receive this message or you get a communication error, recompile the BIOS by typing
<Ctrl+Y> or select Reset Target / Compile BIOS from the Compile menu.

8 Dynamic C User’s Manual

e A message reports “ No Rabbit Processor Detected” in cases where the wall transformer is not
connected or not plugged in.

e The programming cable must be connected to the controller. (The colored wire on the program-
ming cableis closest to pin 1 on the programming header on the controller). The other end of
the programming cable must be connected to the PC serial port. The COM port specified in the
Communications dialog box must be the same as the one the programming cable is connected
to. (The Communications dialog box is accessed via the Communications tab of the Options |
Project Options menu.)

e To check if you have the correct serial port, press<Ctrl+Y>. If the “BIOS successfully com-
piled ...” message does not display, choose a different serial port in the Communications dia-
log box until you find the serial port you are plugged into. Don’'t change anything in this menu
except the COM number. The baud rate should be 115,200 bps and the stop bits should be 1.

3.1.1 Single Stepping
____ Toexperiment with single stepping, we will first compile DEMO1 . C to the target with-

‘ ﬂ out running it. This can be done by clicking the compile button on the task bar. Thisis
- thesameas pressing <F5>. Both of this actions will compile according to the setting of
“Default Compile Mode.” (See “Default Compile Mode” in Chapter 14, for how to set this param-

eter.) Alternatively you may select Compile | Compile to Target from the main menu.

After the program compiles a highlighted character (green) will appear at the first exe-
cutable statement of the program. Press the <F8> key to single step (or use the toolbar
button). Each time the <F8> key is pressed, the cursor will advance one statement. When
you get to the statement: for (=0, j< ... ,itbecomesimpractical to single step further
because you would have to press <F8> thousands of times. We will use this statement to illustrate
watch expressions.

3.1.2 Watch Expression

Watch expressions may only be added, deleted or updated whilein run mode. To add a
watch expression click on the toolbar button pictured here, or press <Ctrl+W=> or choose
Add Watch from the Inspect menu. The “ Add Watch Expression” popup box will appear.
Type the lower case letter “j” and click on either Add or OK. The former keeps the popup box
open, the latter closes it. Either way the “Watches’ window appears. Thisiswhere information on
watch expressions will be displayed. Now continue single stepping. Each time you do, the watch
expression (j) will be evaluated and printed in the “Watches’ window. Note how the value of “j”

J
advances when the statement § + + is executed.

+

Q

3.1.3 Breakpoint
Move the cursor to the start of the statement:
for (j=0; j<20000; Jj++);

To set a breakpoint on this statement, press <F2> or select Toggle Breakpoint from the Run menu.
A red highlight appears on the first character of the statement. To get the program running at full
speed, press <F9>. The program will advance until it hits the breakpoint. The breakpoint will start
flashing both red and green colors.

Chapter 3: Quick Tutorial 9

To remove the breakpoint, press <F2> or select Toggle Breakpoint on the Run menu. To continue
program execution, press <F9>. Now the counter should be printing out regularly in the Stdio win-
dow.

You can set breakpoints while the program is running by positioning the cursor to a statement and
using the <F2> key. If the execution thread hits the breakpoint, a breakpoint will take place. You
can toggle the breakpoint with the <F2> key and continue execution with the <F9> key.

3.1.4 Editing the Program

Press <F4>to put Dynamic C into edit mode. Use the Save as choice on the File menu to save the
file with a new name so as not to change the original demo program. Save the fileasMYTEST. C.
Now change the number 20000 in the for statement to 10000. Then use the <F9> key to recom-
pile and run the program. The counter displays twice as quickly as before because you reduced the
valuein the delay loop.

3.2 Run DEMO2.C

Go back to edit mode and open the program DEMO?2 . C. This program is the same as the first pro-
gram, except that avariable k has been added along with a statement to increment k by the value
of i each time around the endless loop. Compile and run DEMO2 . C.

3.2.1 Watching Variables Dynamically
Press <Ctrl+W> to open the “ Add Watch Expression” popup box.

Type“k” in the text entry

box, then click OK (or Add) bkl sty
toadd the expression k to the watch Expression [k =]

top of the list of watch
expressions. Now press
<Ctrl+U>, the keyboard short-
cut for updating the watch
window. Each time you press <Ctrl+U>, you will see the current value of k.

ok | Cancel | Help |

Add another expression to the watch window:
k*5
Then press <Ctrl+U> several times to observe the watch expressionsk and k*5.

The evaluation of an expression that will result in a run-time exception will ignore the exception,
and the result of the expression will be undefined.

10 Dynamic C User’s Manual

3.3 Run DEMOQO3.C

The example bel ow, sample program DEMO3 . C, uses costatements. A costatement is away to
perform a sequence of operations that involve pauses or waits for some external event to take
place.

3.3.1 Cooperative Multitasking

Cooperative multitasking is away to perform several different tasks at virtualy the same time. An
example would be to step a machine through a sequence of tasks and at the same time carry on a
dialog with the operator via a keyboard interface. Each separate task voluntarily surrenders its
compute time when it does not need to perform any more immediate activity. |n preemptive multi-
tasking control is forcibly removed from the task via an interrupt.

Dynamic C has language extensions to support both types of multitasking. For cooperative multi-
tasking the language extensions are costatements and cofunctions. Preemptive multitasking is
accomplished with slicing or by using the uC/OS-11 real-time kernel that comes with Dynamic C
Premier.

3.3.1.1 Advantages of Cooperative Multitasking

Unlike preemptive multitasking, in cooperative multitasking variables can be shared between dif-
ferent tasks without taking elaborate precautions. Cooperative multitasking also takes advantage

of the natural delays that occur in most tasks to more efficiently use the available processor time.

The DEMO3 . C sample program has two independent tasks. The first task prints out a message to
STDIO once per second. The second task watches to seeif the keyboard has been pressed and
prints the entered key.

main () {
int secs; // seconds counter
secs = 0; // initialize counter
(1) while (1) { // endlessloop

// First task will print the seconds elapsed.

(2) costate {
secs++; // increment counter
(3) waitfor (DelayMs (1000)) ; // wait one second

printf ("$d seconds\n", secs); // printeapsed seconds
(4) }

// Second task will check if any keys have been pressed.

costate {

(5) if (!kbhit()) abort; // key been pressed?
printf (" key pressed = %c\n", getchar());
}
(6) 1} // end of while loop
} // endof main

Chapter 3: Quick Tutorial 11

The numbersin the left margin are reference indicators and not part of the code. Load and run the
program. The elapsed time is printed to the STDIO window once per second. Push several keys
and note how they are reported.

The elapsed time message is printed by the costatement starting at the line marked (2). Costate-
ments need to be executed regularly, often at least every 25 ms. To accomplish this, the costate-
ments are enclosed inawhile loop. Thewhile loop starts at (1) and ends at (6). The statement
at (3) waitsfor atime delay, in this case 1000 ms (one second). The costatement executes each
pass through the while loop. When await for condition is encountered the first time, the cur-
rent value of MS TIMER issaved and then on each subsequent pass the saved value is compared
to the current value. If await for condition isnot encountered, then ajump is madeto the end of
the costatement (4), and on the next pass of the loop, when the execution thread reaches the begin-
ning of the costatement, execution passes directly to the wait for statement. Once 1000 ms has
passed, the statement after the wait for isexecuted. A costatement can wait for along period of
time, but not use alot of execution time. Each costatement is alittle program with its own state-
ment pointer that advances in response to conditions. On each pass through the while loop as
few as one statement in the costatement executes, starting at the current position of the costate-
ment’s statement pointer. Consult Chapter 5 "M ultitasking with Dynamic C" for more details.

The second costatement in the program checks to see if akey has been pressed and, if one has,
prints out that key. The abort statement isillustrated at (5). If the abort statement is exe-
cuted, the internal statement pointer is set back to the first statement in the costatement, and a
jump is made to the closing brace of the costatement.

Observe the value of secswhile the program is runningTo illustrate the use of snooping, use the
watch window to observe secs while the program isrunning. Add thevariable secs tothelist
of watch expressions, then press <Ctrl+U> repeatedly to observe as secs increases.

3.4 Summary of Features

This chapter provided a quick look at the interface of Dynamic C and some of the powerful
options available for embedded systems programming. The following several paragraphs are a
summary of what we've discussed.

Development Functions

When you load a program it appears in an editor window. You compile by clicking Compile on the
task bar or from the Compile menu. The program is compiled into machine language and down-
loaded to the target over the serial port. The execution proceeds to the first statement of main,
where it pauses, waiting to run. Press <F9> or select Run on the Run menu. If want to compile and
run the program with one keystroke, use <F9>, the run command; if the program is not aready
compiled, the run command compilesit.

Single Stepping

Thisis done with the F8 key. The F7 key can also be used for single stepping. If the F7 key is
used, then descent into subroutines will take place. With <F8> the subroutine is executed at full
speed when the statement that calls it is stepped over.

12 Dynamic C User’s Manual

Setting Breakpoints

The F2 key is used to toggle a breakpoint at the cursor position if the program has already been
compiled. You can set a breakpoint if the program is paused at a breakpoint. You can also set a
breakpoint in aprogram that isrunning at full speed. Thiswill cause the program to break if the
execution thread hits your breakpoint.

Watch Expressions

A watch expression isa C expression that is evaluated on command in the watch window. An
expression is basicaly any type of C statement that can include operators, variables and function
calls, but not statements that require multiple lines such as for or switch. You can have alist of
watch expressionsin the “Watches” window. If you are single stepping, then they are all evaluated
on each step. You can also command the watch expression to be evaluated by using the <Ctrl+U>
command. When awatch expression is evaluated at a breakpoint, it is evaluated as if the statement
was at the beginning of the function where you are single stepping.

Costatements

A costatement is a Dynamic C extension that allows cooperative multitasking to be programmed
by the user. Keywords, like abort and wait for, are available to control multitasking operation
from within costatements.

Chapter 3: Quick Tutorial 13

14

Dynamic C User’'s Manual

4. Language

Dynamic C is based on the C language. The programmer is expected to know programming meth-
odologies and the basic principles of the C language. Dynamic C hasits own set of libraries,
which include user-callable functions. Please see the Dynamic C Function Reference Manual for
detailed descriptions of these API functions. Dynamic C libraries are in source code, allowing the
creation of customized libraries.

Before starting on your application, read through the rest of this chapter to review C-language fea-
tures and understand the differences between standard C and Dynamic C.

4.1 C Language Elements

A Dynamic C program is a set of files consisting of onefile with a . ¢ extension and the requested
library files. Each file is a stream of characters that compose statements in the C language. The
language has grammar and syntax, that is, rules for making statements. Syntactic elements—often
called tokens—form the basic elements of the C language. Some of these el ements are listed in the
table below.

Table 4-1 Language Elements

Syntactic Element Description
punctuation Symbols used to mark beginnings and endings
names Words used to name data and functions
numbers Literal numeric values
strings Literal character values enclosed in quotes
directives Words that start with # and control compilation
keywords Words used as instructions to Dynamic C
operators Symbols used to perform arithmetic operations

Chapter 4: Language 15

4.2 Punctuation Tokens

Punctuation serves as boundariesin C programs. The table below lists the punctuation tokens.
Table 4-2 Punctuation Marks and Tokens

Token Description

Terminates a statement |abel.

; Terminates a simple statement or ado loop.

Separatesitemsin alist, such as an argument list,
declaration list, initiaization list, or expression list.

Encloses argument or parameter lists. Function calls
always require parentheses. Macros with parameters
also require parentheses. Also used for arithmetic and
logical sub expressions.

()

Begins and ends a compound statement, a function
{1} body, a structure or union body, or encloses a function
chain segment.

Indicates that the rest of thelineisacomment and is not

/7 compiled.

/* ... */|Commentsare nested between the /* and * / tokens.

16 Dynamic C User’s Manual

4.3 Data

Data (variables and constants) have type, size, structure, and storage class. Basic (aka primitive)

data types are shown below.

Table 4-3 Dynamic C Basic Data Types

Data Type Description
char 8-bit unsigned integer. Range: 0 to 255 (OxFF)
int 16-hit signed integer. Range: -32,768 to +32,767

unsigned int

16-bit unsigned integer. Range: 0 to +65,535

long

32-bit signed integer. Range: -2,147,483,648 to +2,147,483,647

unsigned long

32-bit unsigned integer. Range 0to 232 -1

32-bit |IEEE floating-point value. The sign bit is 1 for negative
values. The exponent has 8 bits, giving exponents from -127 to

float +128. The mantissa has 24 bits. Only the 23 least significant bits
are stored; the high bit is 1 implicitly. (Rabbit controllers do not
have floating-point hardware.) Range: 1.18 x 1038 to 3.40 x 108

enum Defines alist of named integer constants. The integer constants are

signed and in the range: -32,768 to +32,767.

4.3.1 Data Type Limits

The following symbolic names for the hardcoded limits of the data types are defined in

limits.h.
#define CHAR BIT 8
#define UCHAR MAX 255
#define CHAR MIN 0
#define CHAR MAX 255
#define MB_LEN MAX 1
#define SHRT MIN -32768
#define SHRT MAX 32767
#define USHRT MAX 65535
#define INT MIN -32767
#define INT MAX 32767
#define UINT MAX 65535
#define LONG MIN -2147483647
#define LONG MAX 2147483647

#define ULONG MAX 4294967295

Chapter 4: Language

17

4.4 Names

Names identify variables, certain constants, arrays, structures, unions, functions, and abstract data
types. Names must begin with aletter or an underscore (), and thereafter must be letters, digits,
or an underscore. Names may not contain any other symbols, especialy operators. Names are dis-
tinct up to 32 characters, but may be longer. Names may not be the same as any keyword. Names
are case-sensitive.

Examples
my function // ok
_Dblock // ok
test32 // ok
jumper- // not ok, usesaminus sign
3270type // not ok, begins with digit
Cleanup the data now // These names are not distinct in DC 6.19

Cleanup the data later // butaredistinctinall later versions.

References to structure and union elements require compound names. The simple namesin acom-
pound name are joined with the dot operator (period).

cursor.loc.x = 10; // setstructure element to 10

Usethe #define directiveto create names for constants. These can be viewed as symbolic con-
stants. See Section 4.5, “Macros.”

#define READ 10
#define WRITE 20
#define ABS 0
#define REL 1
#define READ ABS READ + ABS
#define READ REL READ + REL

Theterm READ ABS isthesameas10+ 0 or 10, and READ REL isthesameas10+ 1 or 11.
Note that Dynamic C does not allow anything to be assigned to a constant expression.

READ ABS = 27; // produces compiler error

To accomplish the above statement, do the following:

#undef READ ABS
#define READ ABS 27

18 Dynamic C User’s Manual

4.5 Macros

Macros may be defined in Dynamic C by using #define. A macro is a name replacement fea-
ture. Dynamic C has atext preprocessor that expands macros before the program text is compiled.
The programmer assigns a name, up to 31 characters, to afragment of text. Dynamic C then
replaces the macro name with the text fragment wherever the name appears in the program. In this
example,

#define OFFSET 12
#define SCALE 72

int i, x;

i = x * SCALE + OFFSET;

thevariable i getsthevauex * 72 + 12. Macroscan have parameters such asin the follow-
ing example.

#define word(a, b) (a<<8 | b)

char c;

int i, Jj;

i = word(j, <); // sameas i=(j <<8]|c)

The compiler removes the surrounding white space (comments, tabs and spaces) and collapses
each sequence of white space in the macro definition into one space. It placesa \ beforeany " or
\ to preserve their original meaning within the definition.

Dynamic C implements the # and ## macro operators.

The # operator forces the compiler to interpret the parameter immediately following it asastring
literal. For example, if amacro is defined

#define report (value, fmt) \
printf (#value "=" #fmt "\n", value)

then the macroin
report (string, %s);
will expand to
printf ("string" "=" "%s" "\n", string);
and because C always concatenates adjacent strings, the final result of expansion will be

printf ("string=%s\n", string);

The ## operator concatenates the preceding character sequence with the following character
sequence, deleting any white space in between. For example, given the macro

#define set(x,y,2z) x ## z ## ## vy ()
themacroin

set (AASC, FN, 6);
will expand to

AASC6 _FN() ;

For parameters immediately adjacent to the ## operator, the corresponding argument is not
expanded before substitution, but appears as it does in the macro call.

Chapter 4: Language 19

Generally speaking, Dynamic C expands macro calls recursively until they can expand no more.
Another way of stating thisis that macro definitions can be nested.

The exceptionsto thisrule are
1. Argumentsto the # and ## operators are not expanded.
2. To prevent infinite recursion, a macro does not expand within its own expansion.

The following complex example illustrates this.

#define A B

#define B C

#define uint unsigned int

#define M(x) M ## x

#define MM(x,y,2z) X = vy ## z

#define string something

#define write(value, fmt)\

printf (#value "=" #fmt "\n", value)

The code

uint z;
M (M) (A,A,B);
write (string, %s);

will expand first to

unsigned int z; // sSimple expansion
MM (A,A,B); // M(M) doesnot expand recursively
printf ("string" "=" "$s" "\n", string);

// #value — "string" #fmt — "&s"

then to

unsigned int z;

A = AB; // from A = A ## B

printf ("string" "=" "%g" "\n", something) ;
// string — something

then to

unsigned int z;

B = AB; // A > B

printf ("string=%s\n", something) ; // concatenation
and finally to

unsigned int z;

C = AB; // B - C

printf ("string = %s\n", something) ;

20 Dynamic C User’s Manual

4. 5.1 Restrictions

The number of argumentsin amacro call must match the number of parameters in the macro defi-
nition. An empty parameter list is allowed, but the macro call must have an empty argument list.
Macros are restricted to 32 parameters and 126 nested calls. A macro or parameter name must
conform to the same requirements as any other C name. The C language does not perform macro
replacement inside string literals, character constants, comments, or within a #def ine directive.

A macro definition remainsin effect unless removed by an #undef directive. If an attempt is
made to redefine a macro without using #undef, awarning will appear and the original defini-
tion will remainin effect.

4.6 Numbers

Numbers are constant values and are formed from digits, possibly a decimal point, and possibly
thelettersU, L, X, or A-F, ortheir lower case equivalents. A decima point or the presence of
the letter E or F indicates that a number isreal (has a floating-point representation).

Integers have several forms of representation. The normal decimal form is the most common.
10 -327 1000 0

Aninteger islong (32-bit) if its magnitude exceeds the 16-bit range (-32768 to +32767) or if it has
the letter 1. appended.

OL -32L 45000 32767L

Aninteger isunsigned if it has the letter U appended. Itis1ong if it also has 1. appended or if its
magnitude exceeds the 16-bit range.

0U 4294967294U 32767U 1700UL

Aninteger is hexadecimal if preceded by 0x.
0Xx7E 0xE000 0XxFFFFFFFA

It may contain digits and the lettersa—f or A-F.

Aninteger isoctal if begins with zero and contains only the digits 0-7.
0177 020000 000000630

A rea number can be expressed in avariety of ways.

4.5 means 4.5
4f means 4.0
0.3125 means 0.3125

456e-31 mMeans 456 x 10 ot
0.3141592e1 means 3.141592

Chapter 4: Language 21

4.7 Strings and Character Data
A string isagroup of characters enclosed in double quotes ("").
"Press any key when ready..."

Stringsin C have aterminating null byte appended by the compiler. Although C does not have a
string data type, it does have character arrays that serve the purpose. C does not have string opera-
tors, such as concatenate, but library functions strcat () and strncat () areavailable.

Strings are multibyte objects, and as such they are always referenced by their starting address, and
usualy by achar* variable. More precisely, arrays are always passed by address. Passing a
pointer to a string is the same as passing the string. Refer to Section 4.15 for more information on
pointers.

The following example illustrates typical use of strings.
const char* select = "Select option\n";
char start[32];

strcpy (start, "Press any key when ready...\n");
printf (select); // pass pointer to string

printf (start); // passstring

4.7.1 String Concatenation

Two or more string literals are concatenated when placed next to each other. For example:
"Rabbits" "like carrots."

becomes
"Rabbits like carrots."

during compilation.

If the strings are on multiple lines, the macro continuation character must be used. For example:

"Rabbits"\
"don’'t like line dancing."

becomes
"Rabbits don’t like line dancing."
during compilation.

22 Dynamic C User’s Manual

4.7.2 Character Constants
Character constants have a slightly different meaning. They are not strings. A character constant is
enclosed in single quotes (*+ ') and is arepresentation of an 8-bit integer value.

g’ |\n| '\XlB'

Any character can be represented by an alternate form, whether in a character constant or in a
string. Thus, nonprinting characters and characters that cannot be typed may be used.

A character can be written using its numeric value preceded by a backslash.

\x41 // thehex vaue 41
\101 // theocta value 101, aleading zero is optional
\B10000001 // thebinary value 10000001

There are also several “specia” forms preceded by a backslash.

\a bdl \b backspace

\f formfeed \n newline

\r carriage return \t tab

\v vertical tab \0 null character

\\ backslash \c theactual character ¢

\’ single quote \” double quote

Examples

"He said \"Hello.\"" // embedded double quotes

const char j = 'Z'; // character constant

const char* MSG = "Put your disk in the A drive.\n";
// embedded new line at end

printf (MSG) ; // print MSG

char* default = ""; // empty string: asingleNull byte

4.8 Statements

Except for comments, everything in a C program is a statement. Almost all statements end with a
semicolon. A C program is treated as a stream of characters where line boundaries are (generally)
not meaningful. Any C statement may be written on as many lines as needed. The Dynamic C text
editor enforces a 512 byte limit on the length of aline. Similarly, the Dynamic C compiler isonly
guaranteed to parse up to 512 bytes for any single C statement.

A statement can be many things. A declaration of variables is a statement. An assignment isa
statement. A while or for loop isastatement. A compound statement is a group of statements
enclosed in braces { and }. A group of statements may be single statements and/or compound
statements.

Comments (the /* . . . */ kind) may occur amost anywhere, even in the middle of a statement,
as long as they begin with /* and end with * /.

Chapter 4: Language 23

4.9 Declarations

A variable must be declared before it can be used. That means the variable must have a name and
atype, and perhaps its storage class could be specified. If an array is declared, its size must be
given. Root data arrays are limited to atotal of 32,767 elements.

static int thing, arrayl[12]; // dtaticinteger variable &

// staticinteger array
auto float matrix[3] [3]; // autofloat array with 2 dimensions
char *message="Press any key...” // initialized pointer to char array

If an aggregate type (struct or union) is being declared, itsinternal structure hasto be
described as shown below.

struct ({ // description of structure
char flags;
struct { // anested structure here
int x;
int y;
} loc;
} cursor;
int a;
a = cursor.loc.x; // useof structure element here

4.10 Functions

The basic unit of a C application program is afunction. Most functions accept parameters (ak.a.,
arguments) and return results, but there are exceptions. All C functions have a return type that
specifieswhat kind of result, if any, it returns. A function with avoid return type returns no
result. If afunction is declared without specifying areturn type, the compiler assumesthat it isto
return an int (integer) value.

A function may call another function, including itself (arecursive call). Themain functionis
called automatically after the program compiles or when the controller powers up. The beginning
of thema in function isthe entry point to the entire program.

24 Dynamic C User’s Manual

4.11 Prototypes
A function may be declared with a prototype. Thisis so that:
e Functions that have not been compiled may be called.

e Recursive functions may be written.

e The compiler may perform type-checking on the parameters to make sure that callsto the
function receive arguments of the expected type.

A function prototype describes how to call the function and is nearly identical to the function’sini-
tial code.

/* Thisisafunction prototype.* /
long tick count (char clock id);

/* Thisisthe function’s definition.* /
long tick count (char clock id) {

}

It is not necessary to provide parameter names in a prototype, but the parameter typeis required,
and all parameters must be included. (If the function accepts a variable number of arguments, as
printf does, usean ellipsis.)

/* This prototypeis as good as the one above. */
long tick count (char);

/* Thisisaprototype that uses ellipsis. */
int startup (device id, ...);

4.12 Type Definitions

Both types and variables may be defined. One virtue of high-level languages such as C and Pascal
isthat abstract data types can be defined. Once defined, the data types can be used as easily as
simple datatypeslike int, char, and float. Consider thisexample.

typedef int MILES; // abasictypenamed MILES
typedef struct ({ // astructure type...
float re; //
float im; // ...
} COMPLEX; // ..named COMPLEX
MILES distance; // declarevariable of type MILES
COMPLEX z, *zp; // declare variable of & pointer to type COMPLEX .

Chapter 4: Language 25

Use typedef to create ameaningful name for a class of data. Consider this example.

typedef unsigned int node;
void NodeInit (node) ;
void NodeInit (unsigned int) ;

This example shows many of the basic C constructs.

// typenameisinformative
// not very informative

/* Put descriptive information in your program code using this form of comment,
which can be inserted anywhere and can span lines. The double slash comment
(shown below) may be placed at the end of aline.* /

#fdefine SIZE 12

int g, h;

float sumSquare(int, int);
void init () ;

main () {
float x;
init () ;
X = sumSquare(g, h);
printf (*x = %f”,x);

}

void init () {
g = 10;
h = SIZE;

}

float sumSquare(int a, int b){
float temp;
temp = a*a + b*b;
return(temp) ;

}

/* and hereisthe end of the program */

// A symbolic constant defined.
// Declare global integers.

// Prototypesfor

// functions below.

// Program starts here.

// x isloca tomain.

// Call avoid function.

// x Qgets sumSquare value.
// printf isastandard function.

// Void functions do things but
// they return no value.

// Here, it uses the symbolic
// constant defined above.
// Integer arguments.

// Local variables.

// Arithmetic statement.

// Return value,

The program above calculates the sum of squares of two numbers, g and h, which are initialized
to 10 and 12, respectively. The main function callsthe init function to give valuesto the global
variables g and h. Then it usesthe sumSquare function to perform the calculation and assign
the result of the calculation to the variable x. It prints the result using the library function
printf, which includes aformatting string as the first argument.

Notice that al functions have { and } enclosing their contents, and all variables are declared
before use. Thefunctionsinit () and sumSquare () were defined before use, but there are
alternatives to this. The “Prototypes’ section explained this.

26

Dynamic C User’s Manual

4.13 Aggregate Data Types

Simple data types can be grouped into more complex aggregate forms.

4.13.1 Array
A data type, whether it is simple or complex, can be replicated in an array. The declaration

int item[10]; // Anarray of 10 integers.

represents a contiguous group of 10 integers. Array elements are referenced by their subscript.

j = item[n]; // Thenth eement of item.

Array subscripts count up from 0. Thus, item [7] aboveisthe eighth item in the array. Notice
the [and] enclosing both array dimensions and array subscripts. Arrays can be “nested.” Thefol-
lowing doubly dimensioned array, or “array of arrays.”

int matrix[7] [3];

isreferenced in asimilar way.

scale = matrix[i] [J];

The first dimension of an array does not have to be specified aslong as an initialization list is
specified.

int x[11[2] = { {1, 2}, {3, 4}, {5, 6} };

char string[] = "abcdefg";

4.13.2 Structure

Variables may be grouped together in structures (st ruct in C) or in arrays. Structures may be
nested.

struct {
char flags;
struct {
int x;
int y;
} loc;
} cursor;

Structures can be nested. Structure members—the variables within a structure—are referenced
using the dot operator.

j = cursor.loc.x

The size of astructure is the sum of the sizes of its components.

Chapter 4: Language 27

4.13.3 Union
A union overlays simple or complex data. That is, all the union members have the same address.
The size of the union isthe size of the largest member.

union {
int ival;
long jval;
float xval;
}ou;

Unions can be nested. Union members—the variables within a union—are referenced, like struc-
ture elements, using the dot operator.

j = u.ival

4.13.4 Composites

Composites of structures, arrays, unions, and primitive data may be formed. This example shows
an array of structures that have arrays as structure elements.

typedef struct ({

int *x;

int c[32]; // array in structure
} node;
node list([12]; // array of structures

Refer to an element of array ¢ (above) as shown here.

z = list[n] .c[m];

list[0] .c[22] = OxFF37;

4.14 Storage Classes

Variable storage canbe auto or static. Theterm “static” means the data occupies a permanent
fixed location for the life of the program. The term “auto” refersto variablesthat are placed on the
system stack for the life of afunction call. The default storage classis aut o, but can be changed
by using #class static. Thedefault storage class can be superseded by the use of the key-
word auto or static inavariable declaration.

These terms apply to local variables, that is, variables defined within afunction. If avariable does
not belong to afunction, it is called a global variable—available anywhere in the program—~but
thereis no keyword in C to represent this fact. Global variables always have static storage.

28 Dynamic C User’s Manual

4.15 Pointers

A pointer is avariable that holds the 16-bit logical address of another variable, a structure, or a
function. Dynamic C does not currently support long pointers. The indirection operator (*) is used
to declare avariable as a pointer. The address operator (&) is used to set the pointer to the address
of avariable.

int *ptr to i;

int 1i;

ptr to i = &i; // setpointer equal to the address of i
i = 10: // assignavaueto i

j = *ptr to i; // thissets j equal tothevauein i

In thisexample, thevariableptr to i isapointer to an integer. The statement j =

*ptr to_ 1i; referencesthe value of theinteger by the use of the asterisk. Using correct pointer
terminology, the statement dereferences the pointer ptr to i.Then *ptr to i and i have
identical values.

Notethat ptr to_ i and i do not havethe samevaluesbecauseptr to iisapointerandi is
an int. Note also that * has two meanings (not counting its use as a multiplier in others contexts)
in avariable declaration suchas int *ptr to_ i; the* meansthat the variable will be a
pointer type, and in an executable statement j = *ptr to_ i; means“thevalue stored at the
addresscontained inptr to 1i.”

Pointers may point to other pointers.

int *ptr to i;
int **ptr to ptr to i;
int i,7;
ptr to i = &i; // Set pointer equal to the address of i
ptr to ptr to i = &ptr to i; // Setapointer tothe pointer
// totheaddressof i
i = 10; // Assignavaueto i
j = **ptr to ptr to i; // Thissets j equal tothevauein i.

Itispossibleto do pointer arithmetic, but thisis slightly different from ordinary integer arithmetic.
Here are some examples.

float £[10], *p, *qg; // an array and some ptrs

p = &f; // point p toarray element 0
q = p+5; // point g toarray element 5
g++; // point g toarray element 6
P =D+ q; // illegal!

Becausethe f1oat isa4-byte storage element, the statement g = p+5 setsthe actua value of g
top+20. The statement g++ adds 4 to the actual value of g. If £ were an array of 1-byte charac-
ters, the statement g++ adds1toq.

Chapter 4: Language 29

Beware of using uninitialized pointers. Uninitialized pointers can reference ANY location in
memory. Storing data using an uninitialized pointer can overwrite code or cause a crash.

A common mistake isto declare and use a pointer to char, thinking there isa string. But an unini-
tialized pointer is al thereis.

char* string;

strcpy (string, "hello"); // Invalid!
printf (string) ; // Invaid!

Pointer checking is arun-time option in Dynamic C. Use the compiler options command in the
Options menu. Pointer checking will catch attempts to dereference a pointer to unallocated mem-
ory. However, if an uninitialized pointer happens to contain the address of a memory location that
the compiler has already allocated, pointer checking will not catch thislogic error. Because pointer
checking is arun-time option, pointer checking adds instructions to code when pointer checking is
used.

4.16 Pointers to Functions, Indirect Calls

Pointers to functions may be declared. When afunction is called using a pointer to it, instead of
directly, we call thisan indirect call.

The syntax for declaring a pointer to a function is different than for ordinary pointers, and
Dynamic C syntax for thisis slightly different than the standard C syntax. Standard syntax for a
pointer to afunction is:

returntype (*name) ([argument list]) ;

for example:

int (*funcl) (int a, int b) ;
void (*func2) (char*) ;

Dynamic C doesn’t recognize the argument list in function pointer declarations. The correct
Dynamic syntax for the above examples would be:

int (*funcl) () ;
void (*func2) () ;

30 Dynamic C User’s Manual

You can pass arguments to functions that are called indirectly by pointers, but the compiler will
not check them for correctness. The following program shows some examples of using function

pointers.

typedef int (*fnptr) (); // create pointer tofunction that returns an integer

main () {
int x,vy;
int (*fncl) () ; // declarevar fncl asapointer to anint function.
fnptr fp2; // declarevar fp2 as pointer to anint function
fnecl = intfunc; // initidlize fncl topointto intfunc ()
fp2 = intfunc; // initidlize £p2 to point to the same function.
x = (*fnecl) (1,2) ; // cdl intfunc () via fncl
vy = (*fp2) (3,4) ; // cdl intfunc () via fp2

printf ("$d\n", x);
printf ("%d\n", v);

}

int intfunc(int x, int y){
return x+y;

}

4.17 Argument Passing

In C, function arguments are generally passed by value. That is, arguments passed to a C function
are generally copies—on the program stack—of the variables or expressions specified by the
caller. Changes made to these copies do not affect the original values in the calling program.

In Dynamic C and most other C compilers, however, arrays are always passed by address. This
policy includes strings (which are character arrays).

Dynamic C passes st ructs by value—on the stack. Passing alarge st ruct takesalong time
and can easily cause a program to run out of memory. Pass pointersto large st ructs if such

problems occur.

For a function to modify the original vaue of a parameter, pass the address of, or a pointer to, the
parameter and then design the function to accept the address of the item.

Chapter 4: Language

31

4.18 Program Flow

Three terms describe the flow of execution of a C program: sequencing, branching and looping.
Sequencing is simply the execution of one statement after another. Looping is the repetition of a
group of statements. Branching is the choice of groups of statements. Program flow is altered by
calling afunction, that is transferring control to the function. Control is passed back to the calling
function when the called function returns.

4.18.1 Loops
A while loop tests acondition at the start of the loop. Aslong as expression is true (non-zero),
the loop body (some statement(s)) will execute. If expressionisinitially false (zero), the loop body

will not execute. The curly braces are necessary if there is more than one statement in the loop
body.

while (expression) {
some statement (s)
}

A do loop tests a condition at the end of the loop. Aslong as expression istrue (non-zero) the loop
body (some statement(s)) will execute. A do loop executes at least once before its test. Unlike
other controls, the do loop requires a semicolon at the end.

dof{
some statements
}while(expression) ;

The for loop is more complex: it sets an initial condition (expl), evaluates a terminating condi-
tion (exp2), and provides a stepping expression (exp3) that is evaluated at the end of each iteration.
Each of the three expressionsis optional.

for(expl ; exp2 ; exp3){
some statements
}

If the end conditionisinitially false, a for loop body will not execute at all. A typical use of the
for loopisto count n times.

sum = 0;
for(i = 0; i < n; i++){
sum = sum + arrayl[il;

}

Thisloop initially sets i to 0, continues aslong as i islessthan n (stopswhen i equalsn), and
increments i at each pass.

Another use for the for loop isthe infinite loop, which is useful in control systems.

for(;;) {some statement (s)}

32 Dynamic C User’s Manual

Here, thereisnoinitial condition, no end condition, and no stepping expression. The loop body
(some statement(s)) continues to execute endlessly. An endless loop can also be achieved with a
while loop. Thismethod is slightly less efficient than the £or loop.

while (1) { some statement (s) }

4.18.2 Continue and Break
Two keywords are available to help in the construction of loops: cont inue and break.

The cont inue statement causes the program control to skip unconditionally to the next pass of
the loop. In the example below, if bad istrue, more statements will not execute; control will pass
back to the top of thewhile loop.

get char() ;

while(! EOF) {
some statements
if(bad) continue;
more statements

The break statement causes the program control to jump unconditionally out of aloop. In the
example below, if cond_RED istrue, more statements will not be executed and control will pass
to the next statement after the ending curly brace of the for loop

for(i=0;i<n;i++){
some statements
if (cond RED) break;
more statements

}

The break keyword also appliesto the switch/case statement described in the next section.
The break statement jumps out of the innermost control structure (loop or switch statement)
only.

Chapter 4: Language 33

There will be timeswhen break isinsufficient. The program will need to either jump out more
than one level of nesting or there will be a choice of destinations when jumping out. Use agoto
statement in such cases. For example,

while (some statements) {
for(i=0;i<n;i++){
some statements
if (cond RED) goto yyy;
some statements
if (code BLUE) goto zzz;
more statements

}
YYY:
handle cond RED

ZZ7Z:
handle code_ BLUE

4.18.3 Branching
The goto statement is the simplest form of a branching statement. Coupled with a statement
label, it simply transfers program control to the labeled statement.

some statements
abc:

other statements

goto abc;

more statements
goto def;

def:
more statements

The colon at the end of the labelsis required. In general, the use of the got o statement is discour-
aged in structured programming.
The next simplest form of branching isthe 1 £ statement. The simple form of the i £ statement

tests a condition and executes a statement or compound statement if the condition expressionis
true (non-zero). The program will ignore the i £ body when the condition is false (zero).

if (expression) {
some statement (s)
}

34 Dynamic C User’s Manual

A more complex form of the i f statement tests the condition and executes certain statements if
the expression istrue, and executes another group of statements when the expression isfalse.

if (expression) {

some statement (s) // if true
}else{
some statement (s) // if fase

}

The fullest form of the i £ statements produces a succession of tests.

if(expr;){
some statements
}else if(expr,){
some statements
}else if(expr;){
some statements
}else{
some statements
}

The program evaluates the first expression (expr4). If that proves false, it tries the second expres-
sion (expr,), and continues testing until it finds a true expression, an el se clause, or the end of
theif statement. An else clauseisoptional. Without anelse clause,anif/else if dtate
ment that finds no true condition will execute none of the controlled statements.

The switch statement, the most complex branching statement, allows the programmer to phrase
a“multiple choice” branch differently.

switch(expression) {

case constq
statements;
break;

case consts
statements,
break;

case constg
statements,
break;

default:
statementspgraynT

}

First the switch expression is evaluated. It must have an integer value. If one of the consty
values matches the switch expression, the sequence of statementsidentified by the consty

Chapter 4: Language 35

expression is executed. If there is no match, the sequence of statementsidentified by the

default label isexecuted. (Thedefault partisoptional.) Unlessthe break keywordis
included at the end of the case's statements, the program will “fall through” and execute the state-
ments for any number of other cases. The break keyword causes the program to exit the
switch/case statement.

Thecolons (:) after case and default arerequired.

4.19 Function Chaining

Function chaining allows special segments of code to be distributed in one or more functions.
When anamed function chain executes, al the segments belonging to that chain execute. Function
chains allow the software to perform initialization, data recovery, and other kinds of tasks on
request. There are two directives, #makechain and #funcchain, and one keyword, seg-
chain that create and control function chains:

#makechain chain name

Creates afunction chain. When a program executes the named function chain, all of the func-
tions or chain segments belonging to that chain execute. (No particular order of execution can
be guaranteed.)

#funcchain chain name name
Adds afunction, or another function chain, to afunction chain.

segchain chain name { statements }

Defines a program segment (enclosed in curly braces) and attaches it to the named function
chain.

Function chain segments defined with segchain must appear in afunction directly after data
declarations and before executabl e statements, as shown below.

my function() {
/* datadeclarations */

segchain chain x{
/* some statements which execute under chain x */
}

segchain chain y({
/* some statements which execute under chain y */
}

/* function body which executeswhen my function iscaled */

A program will call afunction chain asit would an ordinary void function that has no parameters.
The following example shows how to call afunction chain that is named recover.

#makechain recover

recover () ;

36 Dynamic C User’s Manual

4.20 Global Initialization

Various hardware devices in a system need to beinitialized, not only by setting variables and con-
trol registers, but often by complex initialization procedures. Dynamic C provides a specific func-
tion chain, GLOBAL_ INIT, for thispurpose. Your program can add segmentsto the
_GLOBAL_INIT function chain, as shown in the example below.

long my func(char j);

main () {
my func(100) ;

}

long my func(char j){
int 1i;
long array[256];

// TheGLOBAL INIT section isautomatically run once when the program starts up

#GLOBAL INIT{

for(i = 0; 1 < 100; i++){
array[i] = i*i;
}
}
return arrayl[jl; // only this code runs when the function is called

}

The special directive #GLOBAL INIT{ } tellsthe compiler to add the codein the block
enclosed in bracesto the GLOBAL_INIT function chain. Any number of #GLOBAL INIT
sections may be used in your code. The order in which they are called isindeterminate since it
depends on the order in which they were compiled.

The GLOBAL INIT function chainisalways called when your program starts up, so thereis
nothing special to do to invoke it. In addition, it may be called explicitly at any timein an applica-
tion program with the statement:

_GLOBAL_INIT() ;

Make this call this with caution. All costatements and cofunctions will be initialized. See “ Calling
_GLOBAL_INIT()" on page 67 for more information.

Chapter 4: Language 37

4.21 Libraries

Dynamic C includes many libraries—files of useful functionsin source code form. They are
located in the 1.IB subdirectory where Dynamic C was installed. The default library file extension
is . LIB. Dynamic C uses functions and data from library files and compiles them with an applica-
tion program that is then downloaded to a controller or saved to a . bin file.

An application program (the default file extension is . ¢) consists of a source code file that con-
tains a main function (called ma in) and usually other user-defined functions. Any additional
source files are considered to be libraries (though they may have a . ¢ extension) and are treated as
such. The minimum application program is one source file, containing only

main () {

}
Libraries (both user defined and Z-World defined) are “linked” with the application through the
#use directive. The #use directive identifies a file from which functions and data may be
extracted. Filesidentified by #use directives are nestable, as shown below. The #use directiveis
areplacement for the #include directive, which is not supported in Dynamic C. Any library
that isto be #used in a Dynamic C program must be listed in the file LIB . DIR, or another
* . DIR file specified by the user.

(Starting with version Dynamic C 7.05, adifferent * . DIR file may be specified by the user in the
Compiler Options dialog box to facilitate working on multiple projects.)

Application X.LIB Y.LIB
#use x.1ib4— | #use y.1ib4—o»" 2 1.
main () { function | |77
- function
#use z.lib function ZLIB
#use z.lib T

m | -

Figure 4-1 Nesting Files in Dynamic C

Most libraries needed by Dynamic C programs have a #use statement in the file
lib\default.h.

The“Modules’ section later in this chapter explains how Dynamic C knows which functions and
global variablesin alibrary are available for use.

38 Dynamic C User’s Manual

4.22 Headers

The following table describes two kinds of headers used in Dynamic C libraries.

Table 4-4 Dynamic C Library Headers

Header Name Description

Make functions and global variablesin the library known to

Module headers Dynamic C.

Describe functions. Function headersform the basis for function

Function Description headers lookup help.

You may also notice some “Library Description” headers at the top of library files. These have no
special meaning to Dynamic C, they are simply comment blocks.

4.23 Modules

A Dynamic C library typically contains severa modules. Modules must be understood to write
efficient custom libraries. Modules provide Dynamic C with the names of functions and variables
within alibrary that may be referenced by filesthat have a #use directive for the library some-
where in the code.

Modules organize the library contents in such away asto allow for smaller code sizein the com-
piled application that uses the library. To create your own libraries, write modules following the
guidelinesin this section.

The scope of modulesis global, but indeterminate compilation order makes the situation less than
straightforward. Read this entire section carefully to understand module scope.

4.23.1 The Parts of a Module
A module has three parts: the key, the header, and the body. The structure of a moduleis:

/*** BeginHeader funcl, var2, */
prototype for funcl
extern var2
/*** EndHeader */
definition of funcl
declaration for wvar2
possibly other functions and data

A module beginswith its BeginHeader comment and continues until either the next Begin-
Header comment or the end of thefileis encountered.

Chapter 4: Language 39

4.23.1.1 Module Key

The module key is ususally contained within the first line of the module header. Itisalist of func-
tion and data names separated by commas. The list of names may continue on subsequent lines.

/*** BeginHeader [name;, name,,] */

It isimportant to format the BeginHeader comment correctly, otherwise Dynamic C cannot
find the contents of the module. The case of the word “beginheader” is unimportant, but it must be
preceded by aforward dlash, 3 astericks and one space (/***). The forward slash must be the
first character onthe line. The BeginHeader comment must end with an asterick and aforward
sash (/).

The key tells the compiler which functions exist in the module so the compiler can exclude the
module if namesin the key are not referenced. Data declarations (constants, structures, unions and
variables) as well as macros and function chains (both #makechain and #funchain state-
ments) do not need to be named in the key if they are completely defined in the header, i.e, no
extern declaration. They are fully known to the compiler by being completely defined in the
module header. An important thing to remember is that variables declared in a header section will
be alocated memory space unless the declaration is preceded with extern .

4.23.1.2 Module Header

Every line between the BeginHeader and EndHeader comments belongs to the header of the
module. When alibrary islinked to an application (i.e., the application has the statement #use
“library name”), Dynamic C precompiles every header in the library, and only the headers.

With proper function prototypes and variable declarations, a module header ensures proper type
checking throughout the application program. Prototypes, variables, structures, typedefs and mac-
ros declared in a header section will always be parsed by the compiler if the library is#used, and
everything will have global scope. It is even permissible to put function bodies in header sections,
but it’s not recommended because the function will be compiled with any application that #uses
thelibrary. Since variables declared in aheader section will be alocated memory space unlessthe
declaration is preceded with extern, the variable declaration should be in the modul e body
instead of the header to save data space.

The scope of anything inside the module header is global; this includes compiler directives. Since
the headers are compiled before the module bodies, the last one of a given type of directive
encountered will be in effect and any previous ones will be forgotten.

Using compiler directiveslike #class or #memmap inside module headersisinadvisable. If itis
important to set, for example, “#class auto” for some library modules and “#class static” for oth-
ers, the appropriate directives should be placed inside the module body, not in the module header.
Furthermore, since there is no guaranteed compilation order and compiler directives have global
scope, when you issue a compiler directive to change default behavior for a particular module, at
the end of the module you should issue another compiler directive to change back to the default
behavior. For example, if amodule body needs to have its storage class as static, have a

“#class static” directive at the beginning of the module body and “#class auto” at the end.

40 Dynamic C User’s Manual

4.23.1.3 Module Body

Every line of code after the EndHeader comment belongs to the body of the module until (1)
end-of-file or (2) the BeginHeader comment of another module. Dynamic C compiles the
entire body of amoduleif any of the namesin the key or header are referenced anywhere in the
application. So keep modules small, don’t put all the functionsin alibrary into one module. If you
look at the Dynamic C libraries you'll notice that many modules consist of one function. This
saves on code size, because only the functions that are called are actually compiled into the appli-
cation.

To further minimize waste, define code and data only in the body of amodule. It is recommended
that a module header contain only prototypes and extern declarations because they do not gen-
erate any code by themselves. That way, the compiler will generate code or allocate data only if
the module is used by the application program.

4.23.2 Module Sample Code
There are many examples of modulesin the Lib directory of Dynamic C. The following code will
illustrate proper module syntax and show the scope of directives, functions and variables.

/*** BeginHeader ticks*/
extern unsigned long ticks;
/*** EndHeader */

unsigned long ticks;

/*** BeginHeader Get Ticks */
unsigned long Get Ticks() ;
/*** EndHeader */

unsigned long Get Ticks () {

}

/*** BeginHeader Inc Ticks */
void Inc Ticks(int i);
/*** EndHeader */

#asm

Inc Ticks::
or a
ipset 1

ipres
ret
#endasm

There are 3 modules defined in this code. Thefirst oneis responsible for the variable t i cks, the
second and third modules define functionsGet Ticks () and Inc_Ticks that accessthe vari-
able. Although Inc_Ticks isan assembly language routine, it has a function prototype in the
module header, alowing the compiler to check callsto it.

Chapter 4: Language 41

If the application program calls Inc_Ticks or Get Ticks () (or both), the module bodies
corresponding to the called routines will be compiled. The compilation of these routines triggers
compilation of the module body corresponding to t i cks because the functions use the variable
ticks.

/*** BeginHeader func a */
int func al();
#ifdef SECONDHEADER

#define XYZ
#endif

/*** EndHeader */

int func a() {
#ifdef SECONDHEADER

printf ("I am function A.\n");
#endif

}
/*** BeginHeader func b */
int func b() ;
#define SECONDHEADER
/*** EndHeader */

#ifdef XYZ
#define FUNCTION B

#endif
int func b() {
#ifdef FUNCTION_B
printf ("I am function B.\n");
#endif

Let'ssay the abovefileisnamed mylibrary. 1ib. If anapplication hasthe statement

#use “mylibrary.lib” andthencalls func b (), will the printf statement be reached?
The answer isno. The order of compilation for module headersis sequential from the beginning of
thefile, therefore, the macro SECONDHEADER is undefined when the first module header is
parsed.

If an application #uses this library and then makesacall to func_a (), will that function’s print
statement be reached? The answer isyes. Since all the headers were compiled first, the macro
SECONDHEADER is defined when the first modul e body is compiled.

4.23.3 Important Notes

Remember that in a Dynamic C application there isonly one file that containsmain () . All other
source files used by the file that containsmain () areregarded aslibrary files. Each library must
beincluded in LIB.DIR (or auser defined replacement for .IB . DIR). Although Dynamic C
uses . LIB asthelibrary extension, you may use anything you like as long as the complete path is
entered inyour LIB.DIR file.

There is no way to define file scope variablesin Dynamic C libraries.

42 Dynamic C User’s Manual

4.24 Function Description Headers

Each user-callable function in a Z-World library has a descriptive header preceding the function to
describe the function. Function headers are extracted by Dynamic C to provide on-line help mes-

sages.
The header is a specialy formatted comment, such as the following example.

/* START FUNCTION DESCRIPTION * %% %% %k %% k% %k k& k% x%

WrIOport <IO.LIB>
SYNTAX: void WrIOport (int portaddr, int wvalue) ;
DESCRIPTION:

Writes data to the specified I/0O port.
PARAMETER1: portaddr - register address of the port.
PARAMETER2: value - data to be written to the port.

RETURN VALUE: None
KEY WORDS: parallel port

SEE ALSO: RdIOport
END DESCRIPTION ***xkkkkkkkkhhkkkhkhkhkhhhkkkrkkhkkkrkkxx /

If thisformat is followed, user-created library functions will show up in the “Function L ookup”
facility. Note that these sections are scanned in only when Dynamic C starts.

4.25 Support Files

Dynamic C has severa support files that are necessary in building an application. These files are
listed below.

Table 4-5 Dynamic C Support Files

File Name Purpose of File

DCW.CFG Contains configuration data for the target controller.

Contains prototypes, basic type definitions, #def ine, and default modes

DC. HH for Dynamic C. Thisfile can be modified by the programmer.

Contains a set of #use directives for each control product that Z-World

DEFAULT.H ships. Thisfile can be modified.

Contains pathnames for all libraries that are to be known to Dynamic C.
The programmer can add to, or remove libraries from thislist. The factory
default isfor thisfile to contain al the libraries on the Dynamic C distribu-
tion disk. Any library that isto be used in a Dynamic C program must be
listedinthefile LIB.DIR, or another * . DIR file specified by the user.
(Starting with version Dynamic C 7.05, a different * . DIR file may be
specified by the user in the Compiler Options dialog to facilitate working
on multiple projects.)

LIB.DIR

These files hold the default compilation environment that is shipped from
the factory. DEFAULT . DCP may be modified, but not PROJECT . DCP.
See Chapter 16 for details on project files.

PROJECT .DCP
DEFAULT .DCP

Chapter 4: Language 43

Dynamic C User’s Manual

5. Multitasking with Dynamic C

A taskisan ordered list of operations to perform. In a multitasking environment, more than one
task (each representing a sequence of operations) can appear to executein parallel. Inredlity, a
single processor can only execute one instruction at atime. If an application has multiple tasks to
perform, multitasking software can usually take advantage of natural delaysin each task to
increase the overal performance of the system. Each task can do some of its work while the other
tasks are waiting for an event, or for something to do. In this way, the tasks execute almost in par-
alel.

There are two types of multitasking available for developing applications in Dynamic C: preemp-
tive and cooperative. In a cooperative multitasking environment, each well-behaved task voluntar-
ily gives up control when it is waiting, allowing other tasks to execute. Dynamic C has language
extensions, costatements and cofunctions, to support cooperative multitasking. Preemptive multi-
tasking is supported by the dlice statement, which allows a computation to be divided into small
dlices of afew milliseconds each, and by the uC/OS-11 real-time kernel.

5.1 Cooperative Multitasking

In the absence of a preemptive multitasking kernel or operating system, a programmer given a
real-time programming problem that involves running separate tasks on different time scales will
often come up with a solution that can be described as a big loop driving state machines.

\

Top of loop

v

State machine

¢

State machine

¢

State machine
|

Figure 5-1. Big Loop

Chapter 5: Multitasking with Dynamic C 45

This means that the program consists of alarge, endless loop—a big loop. Within the loop, tasks
are accomplished by small fragments of aprogram that cycle through a series of states. The stateis
typically encoded as numerical valuesin C variables.

State machines can become quite complicated, involving alarge number of state variablesand a
large number of states. The advantage of the state machine isthat it avoids busy waiting, whichis
waiting in aloop until acondition is satisfied. In this way, one big loop can service alarge number
of state machines, each performing its own task, and no one is busy waiting.

The cooperative multitasking language extensions added to Dynamic C use the big loop and state
machine concept, but C code is used to implement the state machine rather than C variables. The
state of atask is remembered by a statement pointer that records the place where execution of the
block of statements has been paused to wait for an event.

To multitask using Dynamic C language extensions, most application programs will have some
flavor of this simple structure:

main() {
int 1i;
while (1) { // endlessloop for multitasking framework
costate { // task 1
.. // body of costatement
}
costate { // task 2

// body of costatement

}
}

46 Dynamic C User’s Manual

5.2 A Real-Time Problem

The following sequence of eventsis common in real-time programming.
Start:

Wait for a pushbutton to be pressed.

Turn on the first device.

Wait 60 seconds.

Turn on the second device.

Wait 60 seconds.

Turn off both devices.

Go back to the start.

N o s~ wDd R

The most rudimentary way to perform this function isto idle (“busy wait”) in atight loop at each

of the steps where waiting is specified. But most of the computer time will used waiting for the

task, leaving no execution time for other tasks.

5.2.1 Solving the Real-Time Problem with a State Machine
Hereis what a state machine solution might look like.

tasklstate = 1; // initialization:
while (1) {
switch (tasklstate)
case 1:
if (buttonpushed()) {
tasklstate=2; turnondevicel () ;
timerl = time; // timeincremented every second
}
break;
case 2:
if((time-timerl) >= 60L) {
tasklstate=3; turnondevice2 () ;

timer2=time;

}

break;
case 3:
if ((time-timer2) >= 60L) {
tasklstate=1; turnoffdevicel () ;
turnoffdevice2 () ;
}
break;

}

/* other tasks or state machines */

Chapter 5: Multitasking with Dynamic C

47

If there are other tasks to be run, this control problem can be solved better by creating aloop that
processes a number of tasks. Now each task can relinquish control when it is waiting, thereby
allowing other tasks to proceed. Each task then doesits work in the idle time of the other tasks.

5.3 Costatements

Costatements are Dynamic C extensions to the C language which simplify implementation of state
machines. Costatements are cooperative because their execution can be voluntarily suspended and
later resumed. The body of a costatement is an ordered list of operationsto perform -- atask. Each
costatement hasits own statement pointer to keep track of which item on thelist will be performed
when the costatement is given a chance to run. As part of the startup initialization, the pointer is
set to point to the first statement of the costatement.

The statement pointer is effectively a state variable for the costatement or cofunction. It specifies
the statement where execution is to begin when the program execution thread hits the start of the
costatement.

All costatements in the program, except those that use pointers as their names, are initialized when
the function chain _GLOBAL_ INIT iscaled. GLOBAL INIT iscalled automatically by pre-
main beforemain iscalled. Caling GLOBAL INIT from an application program will cause
reinitialization of anything that was initialized in the call made by premain.

5.3.1 Solving the Real-Time Problem with Costatements
The Dynamic C costatement provides an easier way to control the tasks. It isrelatively easy to add
atask that checks for the use of an emergency stop button and then behaves accordingly.

while (1) {

costate{ ... } // task 1

costate(// task 2
waitfor (buttonpushed()) ;
turnondevicel () ;
waitfor (DelaySec (60L)) ;
turnondevice2 () ;
waitfor (DelaySec (60L)) ;
turnoffdevicel () ;
turnoffdevice2 () ;

}

costate{ ... } // task n

}

The solution is elegant and simple. Note that the second costatement looks much like the original
description of the problem. All the branching, nesting and variables within the task are hidden in
the implementation of the costatement and itswa it for statements.

48 Dynamic C User’s Manual

5.3.2 Costatement Syntax

costate [name [state] 1 { [statement | yield; | abort; |
waitfor(expression); 1 . . .}

The keyword costate identifies the statements enclosed in the curly braces that follow as a cos-
tatement.

name can be one of the following:
e A valid C name not previously used. Thisresultsin the creation of a structure of type
CoData of the same name.
e Thenameof alocal or global coData structure that has already been defined

e A pointer to an existing structure of type CoData

Costatements can be named or unnamed. If name is absent the compiler creates an “ unnamed”
structure of type CoData for the costatement.

state can be one of the following:
® always on

The costatement is always active. This means the costatement will execute every timeit is
encountered in the execution thread, unlessit is made inactive by Copause () . It may be
made active again by CoResume ().

® init on
The costatement isinitially active and will automatically execute thefirst timeitis

encountered in the execution thread. The costatement becomes inactive after it completes
(or aborts). The costatement can be made inactive by CoPause ().

If state isabsent, anamed costatement isinitialized in apaused init on condition. This
means that the costatement will not execute until CoBegin () or CoResume () isexecuted. It
will then execute once and become inactive again.

Unnamed costatements are always_on. You cannot specify init on without specifying
name.

Chapter 5: Multitasking with Dynamic C 49

5.3.3 Control Statements

waitfor (expression);
The keyword wa it for indicates aspecial waitfor statement and not a function call. The
expression is computed each timewait for isexecuted. If true (non-zero), execution pro-
ceeds to the next statement, otherwise ajump is made to the closing brace of the costatement or
cofunction, with the statement pointer continuing to point to the wait for statement. Any
valid C function that returns avalue can be used in awaitfor statement.

yield
Theyield statement makes an unconditional exit from a costatement or a cofunction. Execu-

tion continues at the statement following yie1d the next time the costatement or cofunctionis
encountered.

abort

The abort statement causes the costatement or cofunction to terminate execution. |f a cos-
tatement isalways_on, the next time the program reaches it, it will restart from the top. If
the costatement isnot always_on, it becomes inactive and will not execute again until
turned on by some other software.

A costatement can have as many C statements, including abort, yield, and wait for state-
ments, as needed. Costatements can be nested.

5.4 Advanced Costatement Topics

Each costatement has a structure of type CoData. This structure contains state and timing infor-
mation. It aso contains the address inside the costatement that will execute the next time the pro-
gram thread reaches the costatement. A value of zero in the address |ocation indicates the
beginning of the costatement.

5.4.1 The CoData Structure

typedef struct {
char CSState;
unsigned int lastlocADDR;
char lastlocCBR;
char ChkSum;
char firsttime;
union{
unsigned long ul;
struct {
unsigned int ul;
unsigned int u2;
} us;
} content;
char ChkSum2;
} CoData;

50 Dynamic C User’s Manual

5.4.2 CoData Fields

CSState

The csstate field contains two flags, STOPPED and INIT. The possible flag values and their
meaning are in the table bel ow.

Table 5-1. Flags that specify the run status of a costatement

STOPPED INIT State of Costatement
Done, or has been initialized to run, but set to
yes yes o
inactive. Set by CoReset ().
yes no Paused, waiting to resume. Set by CoPause ().
no yes Initialized to run. Set by CoBegin ().
Running. CoResume () will return the flagsto
no no)
this state.

The function i sCoDone () returnstrue (1) if both the STOPPED and INIT flags are set.
The function i sCoRunning () returnstrue (1) if the STOPPED flag is not set.

The csstate field appliesonly if the costatement hasaname ThecSState flag hasno
meaning for unnamed costatements or cofunctions.

Last Location

Thetwo fields 1ast1ocADDR and 1ast1locCBR represent the 24-bit address of the location at
which to resume execution of the costatement. If Last1ocADDR iszero (asit iswheninitial-
ized), the costatement executes from the beginning, subject to the csSstate flag. If last-
locADDR is nonzero, the costatement resumes at the 24-bit address represented by
lastlocADDR and lastlocCBR.

These fields are zeroed whenever one of the following is true:
e theCoData structureisinitialized by acall to GLOBAL INIT, CoBegin Or CoReset
e the costatement is executed to completion
e the costatement is aborted.

Check Sum

The chksum field isaone-byte check sum of the address. (It is the exclusive-or result of the
bytesin last1locADDR and lastlocCBR.) If ChkSum ishot consistent with the address, the
program will generate arun-time error and reset. The check sum is maintained automatically. It is
initialized by GLOBAL_INIT, CoBegin and CoReset.

First Time

The firsttime fieldisaflagthat isused by awaitfor, of waitfordone statement. Itis
set to 1 before the statement is evaluated thefirst time. Thisaidsin calculating elapsed time for the
functionsDelayMs, DelaySec, DelayTicks, IntervalTick, IntervalMs, and
IntervalSec.

Chapter 5: Multitasking with Dynamic C 51

Content
The content field (aunion) is used by the costatement or cofunction delay routinesto store a
delay count.

Check Sum 2
The chksum2 field is currently unused.

5.4.3 Pointer to CoData Structure
To obtain a pointer to a named costatement’s CoData structure, do the following:

CoData costl; // alocate memory for a CoData struct
CoData *pcostl;

pcostl = &costl; // get pointer to the CoData struct

CoBegin (pcostl) ; // initialize CoData struct

costate pcostl { // pcostl isthe costatement name and also a

// pointer to its CoData structure.

}

5.4.4 Functions for Use With Named Costatements
For detailed function descriptions, please see the Dynamic C Function Reference Manual or select
Function Lookup/Insert from Dynamic C's Help menu (keyboard shortcut is <Ctrl-H>).

All of these functions arein COSTATE . LIB. Each one takes a pointer to a CoData struct asits
only parameter.

isCoDone

int isCoDone (CoData* p);

Thisfunction returnstrue if the costatement pointed to by p has completed.

isCoRunning

int isCoRunning(CoData* p);

Thisfunction returnstrueif the costatement pointed to by p will run if given a continua
tion call.

CoBegin
void CoBegin (CoData* p);

This function initializes a costatement’s CoDat a structure so that the costatement will
be executed next timeit is encountered.

52 Dynamic C User’s Manual

CoPause

void CoPause (CoData* p);

Thisfunction will change CoData so that the associated costatement is paused. When
acostatement is called in this state it does an implicit yield until it isreleased by acall
from CoResume Or CoBegin.

CoReset

void CoReset (CoData* p);

Thisfunction initializes a costatement’s CoData structure so that the costatement will
not be executed the next time it is encountered (unless the costatement is declared
always on.)

CoResume

void CoResume (CoData* p);

Thisfunction unpauses a paused costatement. The costatement will resumethe next time
itiscalled.

5.4.5 Firsttime Functions
In afunction definition, the keyword £irsttime causesthe function to have an implicit first
parameter: a pointer to the CoData structure of the costatement that callsit.

Thefollowing £ irsttime functionsare defined in COSTATE . LIB. For more information see
the Dynamic C Function Reference Manual. These functions should be called insideawaitfor
statement because they do not yield while waiting for the desired time to elapse, but instead return
0 to indicate that the desired time has not yet elapsed.

DelayMs IntervalMs
DelaySec IntervalSec
DelayTicks IntervalTick

User-defined £ irsttime functions are allowed.

5.4.6 Shared Global Variables

ThevariablesSEC_TIMER,MS TIMER and TICK TIMER are shared, making them atomic
when being updated. They are defined and initialized in VDRIVER . LIB. They are updated by the
periodic interrupt and are used by firsttime functions. They should not be modified by an
application program. Costatements and cofunctions depend on these timer variables being valid
for usein wait for statementsthat call functions that read them. E.g. the following statement
will access SEC_TIMER.

waitfor (DelaySec(3));

Chapter 5: Multitasking with Dynamic C 53

5.5 Cofunctions

Cofunctions, like costatements, are used to implement cooperative multitasking. But, unlike cos-
tatements, they have aform similar to functions in that arguments can be passed to them and a
value can be returned (but not a structure).

The default storage class for a cofunction’svariablesis Instance. An instance variable
behaveslikeastatic variable, i.e., its value persists between function calls. Each instance of an
Indexed Cofunction hasits own set of instance variables. The compiler directive #class does
not change the default storage class for a cofunction’s variables.

All cofunctionsin the program are initialized when the function chain _ GLOBAL INIT iscalled.
Thiscal ismade by premain.

5.5.1 Cofunction Syntax
A cofunction definition is similar to the definition of a C function.

cofunc|scofunc type [name] [[dim]] ([type argl, ..., type argN])
{ [statement | yield; | abort; | waitfor (expression);]... }

cofunc, scofunc

The keywords cofunc or scofunc (asingle-user cofunction) identify the statements
enclosed in curly braces that follow as a cofunction.

type
Whichever keyword (cofunc or scofunc) isusedisfollowed by the data type returned
(void, int, €tc.).

name

A name can beany valid C name not previously used. Thisresultsin the creation of a structure
of type CoData of the same name.

dim
The cofunction name may be followed by a dimension if an indexed cofunction is being
defined.

cofunction arguments (argl, . . ., argN)
Aswith other Dynamic C functions, cofunction arguments are passed by value.

cofunction body

A cofunction can have as many C statements, including abort, yield, waitfor, and
waitfordone statements, as needed. Cofunctions can contain calls to other cofunctions.

54 Dynamic C User’s Manual

5.5.2 Calling Restrictions
You cannot assign a cofunction to afunction pointer then call it viathe pointer.

Cofunctions are called using awaitfordone statement. Cofunctions and thewaitfordone
statement may return an argument value as in the following example.

int j,k,x,y,2z;
J waitfordone x = Cofuncl;
k waitfordone{ y=Cofunc2(...); z=Cofunc3(...); }

The keyword waitfordone (can be abbreviated to the keyword wf d) must be inside a costate-
ment or cofunction. Since a cofunction must be called from inside awfd statement, ultimately a
wfd statement must be inside a costatement.

If only one cofunction isbeing called by wfd the curly braces are not needed.

The wfd statement executes cofunctionsand £irsttime functions. When al the cofunctions
and firsttime functionslisted in the wfd statement are complete (or one of them aborts), exe-
cution proceeds to the statement following wf d. Otherwise ajump is made to the ending brace of
the costatement or cofunction where the wfd statement appears and when the execution thread
comes around again control is given back to wfd.

In the example above, x, v and z must be set by return statementsinside the called cofunc-
tions. Executing a return statement in a cofunction has the same effect as executing the end brace.

In the example above, the variable k is a status variable that is set according to the following
scheme. If no abort has taken place in any cofunction, k issetto 1, 2, ..., n to indicate which
cofunction inside the braces finished executing last. If an abort takes place, k issetto -1, -2, ..., -n
to indicate which cofunction caused the abort.

5.5.2.1 Using the IX Register
Functions called from within a cofunction may use the IX register if they restore it before the
cofunction is exited, which includes an exit via an incomplete wait fordone statement.

In the case of an application that uses the #useix directive, the IX register will be corrupted when
any stack-variable using function is called from within a cofunction, or if a stack-variable using
function contains a call to a cofunction.

5.5.3 CoData Structure

The CoData structure discussed in Section 5.4.1 applies to cofunctions; each cofunction has an
associated CoData structure.

5.5.4 Firsttime Functions

The firsttime functions discussed in “Firsttime Functions’ on page 53 can also be used inside
cofunctions. They should be called inside awa it for statement. If you call these functions from
inside awfd statement, no compiler error is generated, but, since these delay functions do not
yield while waiting for the desired time to elapse, but instead return 0 to indicate that the desired
time has not yet elapsed, the wf d statement will consider areturn value to be completion of the
firsttime function and control will pass to the statement following the wfd.

Chapter 5: Multitasking with Dynamic C 55

5.5.5 Types of Cofunctions
There are three types of cofunctions: simple, indexed and single-user. Which one to use depends
on the problem that is being solved. A single-user, indexed cofunction is not valid.

5.5.5.1 Simple Cofunction
A simple cofunction has only oneinstance and is similar to aregular function with a costate taking
up most of the function’s body.

5.5.5.2 Indexed Cofunction
Anindexed cofunction allows the body of a cofunction to be called more than once with different
parameters and local variables. The parameters and the local variable that are not declared static
have a special lifetime that begins at afirst time call of a cofunction instance and ends when the
last curly brace of the cofunction is reached or when an abort or return isencountered.

The indexed cofunction call is a cross between an array access and anormal function call, where
the array access selects the specific instance to be run.

Typicaly thistype of cofunction isused in a situation where N identical units need to be con-
trolled by the same algorithm. For example, a program to control the door latches in abuilding
could use indexed cofunctions. The same cofunction code would read the key pad at each door,
compare the passcode to the approved list, and operate the door latch. If there are 25 doorsin the
building, then the indexed cofunction would use an index ranging from 0 to 24 to keep track of
which door is currently being tested. An indexed cofunction has an index similar to an array index.

waitfordone{ ICofunc[n] (...); ICofunc2[m] (...); }

The value between the square brackets must be positive and less than the maximum number of
instances for that cofunction. There is no runtime checking on the instance selected, so, like
arrays, the programmer is responsible for keeping this value in the proper range.

5.5.5.2.1 Indexed Cofunction Restrictions
Costatements are not supported inside indexed cofunctions. Single user cofunctions can not be
indexed.

5.5.5.3 Single User Cofunction
Since cofunctions are executing in parallel, the same cofunction normally cannot be called at the
same time from two places in the same big loop. For example, the following statement containing
two simple cofunctions will generally cause afata error.

waitfordone{ cofunc nameA(); cofunc nameA() ;}

Thisis because the same cofunction is being called from the second location after it has already
started, but not completed, execution for the call from the first location. The cofunction is a state
machine and it has an internal statement pointer that cannot point to two statements at the same
time.

56 Dynamic C User’s Manual

Single-user cofunctions can be used instead. They can be called simultaneously because the sec-
ond and additional callers are made to wait until the first call completes. The following statement,
which contains two single-user cofunctions, is okay.

waitfordone (scofunc nameA() ; scofunc_nameA();}

loopinit()
This function should be called in the beginning of a program that uses single-user cofunctions. It
initializes internal data structures that are used by 1cophead () .

loophead()
This function should be called within the "big loop" in your program. It is necessary for proper
single-user cofunction abandonment handling.

Example

// echoes characters

main () {
int c;
serXopen (19200) ;
loopinit () ;
while (1) {

loophead () ;

wfd ¢ = cof serAgetc() ;
wfd cof serAputc(c);

}

serAclose () ;

5.5.6 Types of Cofunction Calls
A wfd statement makes one of three types of calls to a cofunction.

5.5.6.1 First Time Call
A first time call happenswhen awfd statement calls a cofunction for the first timein that state-
ment. After the first time, only the original wfd statement can give this cofunction instance con-
tinuation calls until either the instance is complete or until the instance is given ancther first time
call from adifferent statement.

5.5.6.2 Continuation Call
A continuation call iswhen a cofunction that has previously yielded is given another chance to run
by the enclosing wf d statement. These statements can only call the cofunction if it was the last
statement to give the cofunction afirst time call or a continuation call.

5.5.6.3 Terminal Call
A terminal call ends with a cofunction returning to its wfd statement without yielding to another
cofunction. This can happen when it reaches the end of the cofunction and does an implicit return,
when the cofunction does an explicit return, or when the cofunction aborts.

Chapter 5: Multitasking with Dynamic C 57

5.5.6.4 Lifetime of a Cofunction Instance
This stretches from afirst time call until its terminal call or until its next first time call.

5.5.7 Special Code Blocks
The following special code blocks can appear inside a cofunction.

everytime { statements }
Thismust be the first statement in the cofunction. It will be executed every time program exe-
cution passes to the cofunction no matter where the statement pointer is pointing. After the

everytime statements are executed, control will pass to the statement pointed to by the
cofunction’s statement pointer.

abandon { statements }
This keyword applies to single-user cofunctions only and must be the first statement in the
body of the cofunction. The statements inside the curly braces will be executed if the single-

user cofunction isforcibly abandoned. A call to loophead () (definedin COFUNC.LIB)is
necessary for abandon statements to execute.

Example
Samples/COFUNC/ COFABAND.C illustrates the use of abandon.

scofunc SCofTest (int 1)
abandon {
printf ("CofTest was abandoned\n") ;
}

while (i>0) {
printf ("CofTest (%d) \n",1i) ;
yield;

}

main () {
int x;
for (x=0;x<=10;x++) {
loophead () ;
if (x<5) {
costate {
wfd SCofTest (1) ; // firstcaler
}
}

costate {
wfd SCofTest (2) ; // second caller
}

}

In this example two tasksin ma in are requesting accessto SCofTest. Thefirst request is hon-
ored and the second request is held. When 1oophead notices that thefirst caller is not being
called each time around the loop, it cancel sthe request, calls the abandonment code and allowsthe
second caller in.

58 Dynamic C User’s Manual

5.5.8 Solving the Real-Time Problem with Cofunctions

for(;;){
costate(// task 1
wfd emergencystop () ;
for (i=0; i<MAX DEVICES; i++)
wfd turnoffdevice (i) ;

}
costate(// task 2
wfd x = buttonpushed() ;
wfd turnondevice (X) ;
waitfor (DelaySec (60L)) ;
wfd turnoffdevice (x) ;

}

ééétate{ e} // taskn
}

Cofunctions, with their ability to receive arguments and return values, provide more flexibility and
specificity than our previous solutions. Using cofunctions, new machines can be added with only
trivial code changes. Making but tonpushed () acofunction allows more specificity because
the value returned can indicate a particular button in an array of buttons. Then that value can be
passed as an argument to the cofunctions turnondevice and turnoffdevice.

5.6 Patterns of Cooperative Multitasking

Sometimes atask may be something that has a beginning and an end. For example, a cofunction to
transmit a string of charactersviathe seria port begins when the cofunction isfirst called, and
continues during successive calls as control cycles around the big loop. The end occurs after the
last character has been sent and the wa it fordone condition is satisified. Thistype of acal toa
cofunctions might look like this:

waitfordone{ SendSerial ("string of characters"); }
[next statement]

The next statement will execute after the last character is sent.

Chapter 5: Multitasking with Dynamic C 59

Some tasks may not have an end. They are endless |oops. For example, atask to control a servo
loop may run continuously to regulate the temperature in an oven. If there are a anumber of tasks
that need to run continuoudly, then they can be called using asingle wait fordone statement as
shown below.

costate {
waitfordone { Taskl(); Task2(); Task3(); Task4(); }
[tocomehereisan error]

}

Each task will receive some execution time and, assuming none of the tasks is completed, they
will continue to be called. If one of the cofunctions should abort, then the wait fordone state-
ment will abort, and corrective action can be taken.

5.7 Timing Considerations

In most instances, costatements and cofunctions are grouped as periodically executed tasks. They
can be part of areal-time task, which executes every n milliseconds as shown below using costate-
ments.

lentel' every n milliseconds

costate{ ... }
costate{ ... }
costate{ ... }

costate{ ... }

| exit

Figure 5-2. Costatement as Part of Real-Time Task

If all goeswell, the first costatement will be executed at the periodic rate. The second costatement
will, however, be delayed by the first costatement. The third will be delayed by the second, and so
on. The frequency of the routine and the time it takes to execute comprise the granularity of the
routine.

If the routine executes every 25 milliseconds and the entire group of costatements executesin 5 to
10 milliseconds, then the granularity is 30 to 35 milliseconds. Therefore, the delay between the
occurrence of awaitfor event and the statement following thewait for can be as much asthe
granularity, 30 to 35 ms. The routine may also be interrupted by higher priority tasks or interrupt
routines, increasing the variation in delay.

The consequences of such variationsin the time between steps depends on the program’s objec-
tive. Suppose that the typical delay between an event and the controller’s response to the event is

60 Dynamic C User’s Manual

25 ms, but under unusual circumstances the delay may reach 50 ms. An occasional sow response
may have no consequences whatsoever. If adelay is added between the steps of a process where
the time scale is measured in seconds, then the result may be avery dight reduction in throughput.

If thereis a delay between sensing a defective product on a moving belt and activating the reject
solenoid that pushes the object into the reject bin, the delay could be serious. If acritical delay
cannot exceed 40 ms, then a system will sometimes fail if its worst-case delay is 50 ms.

5.7.1 waitfor Accuracy Limits

If anidleloop isused to implement adelay, the processor continues to execute statements almost
immediately (within nanoseconds) after the delay has expired. In other words, idle loops give pre-
cise delays. Such precision cannot be achieved with wait for delays.

A particular application may not need very precise delay timing. Suppose the application requires
a 60-second delay with only 100 ms of delay accuracy; that is, an actual delay of 60.1 secondsis
considered acceptable. Then, if the processor guarantees to check the delay every 50 ms, the delay
would be at most 60.05 seconds, and the accuracy requirement is satisfied.

5.8 Overview of Preemptive Multitasking

In a preemptive multitasking environment, tasks do not voluntarily relinquish control. Tasks are
scheduled to run by priority level and/or by being given a certain amount of time.

There are two ways to accomplish preemptive multitasking using Dynamic C. Thefirst way is
HC/OS-1, areal-time, preemptive kernel that runs on the Rabbit microprocessor and is fully sup-
ported by Dynamic C. For more information see Chapter 18, “uC/OS-11.” The other way isto use
slice statements.

5.9 Slice Statements

The s11ice statement, based on the costatement language construct, allows the programmer to
run ablock of code for a specific amount of time.

5.9.1 Slice Syntax

slice ([context buffer,] context buffer size, time slice)
[name] { [statement |yield; |abort; |waitfor (expression);]}

context buffer size

Thisvalue must evaluate to a constant integer. The value specifies the number of bytes for the
buffer context buffer. Itneedsto belarge enough for worst-case stack usage by the
user program and interrupt routines.

time slice

The amount of timeinticks for the diceto run. Onetick = 1/1024 second.

Chapter 5: Multitasking with Dynamic C 61

name

When defining anamed s1ice statement, you supply a context buffer as the first argument.
When you define an unnamed s1 ice statement, this structure is allocated by the compiler.

[statement | yield; | abort; | waitfor (expression) ;]
The body of aslice statement may contain:
e Regular C statements
e yield statementsto make an unconditional exit.
e abort Statementsto make an execution jump to the very end of the statement.

e waitfor statementsto suspend progress of the slice statement pending some condition
indicated by the expression.

5.9.2 Usage

The s1ice statement can run both cooperatively and preemptively all in the same framework. A
dlice statement, like costatements and cofunctions, can suspend its execution with an abort,
yield, orwaitfor. Itcan also suspend execution with animplicit yield determined by the
time slice parameter that was passed to it.

A routine called from the periodic interrupt forms the basis for scheduling slice statements. It
counts down the ticks and changesthe s1 i ce statement’s context.

5.9.3 Restrictions

Since aslice statement hasits own stack, local auto variables and parameters cannot be
accessed whilein the context of as1ice statement. Any functions called from the dlice statement
function normally.

Only one s11ice statement can be active at any time, which eliminates the possibility of nesting
slice statementsor using aslice statement inside afunction that is either directly or indi-
rectly called fromas1ice statement. The only methods supported for leaving aslice state-
ment are completely executing the last statement in the s11ice, or executing an abort, yield
or waitfor statement.

The return, continue, break, and goto statements are not supported.
Slice statements cannot be used with uC/OS-11 or TCP/IP.

62 Dynamic C User’s Manual

5.9.4 Slice Data Structure

Internally, the s11ice statement uses two structures to operate. When defining anamed s1lice
statement, you supply a context buffer asthe first argument. When you define an unnamed s1ice
statement, this structure is allocated by the compiler. Internally, the context buffer is represented
by the S1iceBuf fer structure below.

struct SliceData {
int time out;
void* my sp;
void* caller sp;
CoData codata;

}

struct SliceBuffer ({
SliceData slice data;
char stackl[]; // fillsrest of the dice buffer

b

5.9.5 Slice Internals

When aslice statement isgiven control, it saves the current context and switches to a context
associated with the s1i ce statement. After that, the driving force behind the s11ice statement is
the timer interrupt. Each time the timer interrupt is called, it checksto seeif aslice statementis
active. If aslice statement isactive, thetimer interrupt decrementsthe time out fieldinthe
slice’sSliceData. Whenthefield is decremented to zero, the timer interrupt saves the
s1lice statement’s context into the S11iceBuf fer and restores the previous context. Once the
timer interrupt completes, the flow of control is passed to the statement directly following the
slice statement. A similar set of events takes place when the s11 ce statement does an explicit
yield/abort/waitfor.

Chapter 5: Multitasking with Dynamic C 63

5.9.5.1 Example 1

Two s1ice statements and a costatement will appear to run in parallel. Each block will run inde-
pendently, but the s11ice statement blocks will suspend their operation after 20 ticks for
slice aand40ticksfor slice b. Costate awill not release control until it either explicitly
yields, aborts, or completes. In contrast, slice a will runfor at most 20 ticks, then slice b
will begin running. Costate awill get its next opportunity to run about 60 ticks after it relinquishes
control.

main () {
int x, y, z;
for (;;) {
costate a {

}

slice (500, 20) { // slice a

}

slice (500, 40) { // slice b

}

5.9.5.2 Example 2
This code guarantees that the first slice startson TICK _TIMER evenly divisible by 80 and the
second startson TICK TIMER evenly divisible by 105.

main ()
for(;;) {
costate {
slice(500,20) // slice a
waitfor (IntervalTick (80)) ;

}

slice(500,50) // slice b
waitfor (IntervalTick (105) ;

}

64 Dynamic C User’s Manual

5.9.5.3 Example 3
This approach is more complicated, but will allow you to spend the idle time doing a low-priority
background task.

main () {
int time left;
long start time;

for(;;) {
start time = TICK TIMER;
slice(500,20) // slice a

wailtfor (IntervalTick (80)) ;

}
slice(500,50) // slice b
waitfor (IntervalTick (105)) ;

}

time left = 75- (TICK TIMER-start time) ;
if (time left>0) {
slice(500,75- (TICK TIMER-start time)) { // slice c

}

5.10 Summary

Although multitasking may actually decrease processor throughput slightly, it is an important con-
cept. A controller is often connected to more than one external device. A multitasking approach
makes it possible to write a program controlling multiple devices without having to think about all
the devices at the same time. In other words, multitasking is an easier way to think about the sys-
tem.

Chapter 5: Multitasking with Dynamic C 65

66

Dynamic C User’'s Manua

6. The Virtual Driver

Virtual Driver is the name given to some initialization services and a group of services performed
by a periodic interrupt. These services are:

Initialization Services

e Cal GLOBAL INIT()
e [nitidlize the global timer variables
e Start the Virtual Driver periodic interrupt

Periodic Interrupt Services
e Decrement software (virtual) watchdog timers
e Hitting the hardware watchdog timer
e |ncrement the global timer variables
e Drive uC/OS-1l preemptive multitasking
e Drive dice statement preemptive multitasking

6.1 Default Operation

The user should be aware that by default the Virtual Driver starts and runsin a Dynamic C pro-
gram without the user doing anything. This happens because beforemain () iscalled, afunction
caled premain () iscaled by the Rabbit kernel (BIOS) that actually callsmain () . Before
premain () calsmain (), it calsafunction named vdinit () that performstheinitializa-
tion services, including starting the periodic interrupt. If the user were to disable the Virtual Driver
by commenting out thecall to vdInit () inpremain (), then none of the services performed
by the periodic interrupt would be available. Unless the Virtual Driver isincompatible with some
very tight timing requirements of a program and none of the services performed by the Virtua
Driver are needed, it is recommended that the user not disable it.

6.2 Calling _GLOBAL_INIT()

vdiInit () callsthefunction chanin GLOBAL INIT () whichrunsal #GLOBAL INIT Sec-
tionsinaprogram. GLOBAL INIT () alsoinitializesall of the CoData structures needed by
costatements and cofunctions. If vdInit () isnot called, users could still use costatements and
cofunctionsif thecall tovdInit () wasreplaced by acall to GLOBAL INIT (), butthe
DelaySec () and DelayMs () functions often used with costatements and cofunctionsin
waitfor statementswould not work because those functions depend on timer variables which
are maintained by the periodic interrupt.

Chapter 6: The Virtual Driver 67

6.3 Global Timer Variables

SEC_TIMER, MS TIMER and TICK TIMER areglobal variablesdefined as shared
unsigned long. Thesevariables should never be changed by an application program. Among
other things, the TCP/IP stack depends on the validity of the timer variables.

Oninitialization, SEC_TIMER is synchronized with the real-time clock. The date and time can be
accessed more quickly by reading SEC_ TIMER than by reading the real-time clock.

The periodic interrupt updates SEC_ TIMER every second, MS_TIMER every millisecond, and
TICK TIMER 1024 times per second (the frequency of the periodic interrupt). These variables
areused by theDelaySec, DelayMS and DelayTicks functions, but are also convenient for
application programs to use for timing purposes. The following sample shows the use of

MS_ TIMER to measure the execution timein microseconds of a Dynamic C integer add. The
work isdonein anodebug function so that debugging does not affect timing. For more informa-
tion on the nodebug keyword, please see “nodebug” on page 157.

#define N 10000
main(){ timeit(); }

nodebug timeit ()
unsigned long int TO;
float T2,T1;
int x,vy;
int 1i;

TO = MS TIMER;

for(i=0;i<N;i++) { }

// T1 givesempty loop time

T1l=(MS_TIMER-TO) ;

TO = MS TIMER;

for(i=0;1i<N;i++){ x+y;}

// T2 givestest code execution time
T2=(MS_TIMER-TO) ;

// subtract empty loop time and convert to time for single pass
T2=(T2-T1) / (float)N;

// multiply by 1000 to convert ms. to us.
printf ("time to execute test code = %$f us\n",T2*1000.0) ;

68 Dynamic C User’s Manual

6.4 Watchdog Timers

Watchdog timers limit the amount of time your system will be in an unknown state.

6.4.1 Hardware Watchdog
The Rabbit CPU has one built-in hardware watchdog timer (WDT). The Virtual Driver hits this
watchdog periodically. The following code fragment could be used to disable this WDT:

#asm
1d a, 0x51
ioi 1d (WDTTR),a
1d a,0x54
ioi 1d (WDTTR),a
#endasm

However, it is recommended that the watchdog not be disabled. This prevents the target from
entering an endless loop in software due to coding errors or hardware problems. If the Virtual
Driver is not used, the user code should periodicaly call hitwd ().

When debugging a program, if the program is stopped at a breakpoint because the breakpoint was
explicitly set, or because the user is single stepping, then the debug kernd hits the hardware
watchdog periodically.

6.4.2 Virtual Watchdogs

There are 10 virtual WDTs available; they are maintained by the Virtual Driver. Virtual watch-
dogs, like the hardware watchdog, limit the amount of time a system isin an unknown state. They
also narrow down the problem areato assist in debugging.

The function VvdGet FreeWd (count) allocates and initializes a virtual watchdog. The return
value of thisfunction isthe ID of the virtua watchdog. If an attempt is made to allocate more than
10 virtual WDTSs, afatal error occurs. In debug mode, thisfatal error will cause the program to
return with error code 250. The default run-time error behavior isto reset the board.

The ID returned by vdGetFreewWd () isused asthe argument when calling vdHitWwd (ID) or
VdReleaseWd (ID) to hit or dedlocate avirtual watchdog

The Virtual Driver counts down watchdogs every 62.5 ms. If avirtual watchdog reaches 0, thisis
fatal error code 247. Once avirtual watchdog is active, it should be reset periodically with acall
to VdHitWd (ID) to prevent this. If count = 2 for aparticular WDT, then VAHitWd (ID) will
need to be called within 62.5 msfor that WDT. If count = 255, VdHitwWd (ID) will need to be
called within 15.94 seconds.

The Virtual Driver does not count down any virtual WDTs if the user is debugging with Dynamic
C and stopped at a breakpaint.

6.5 Preemptive Multitasking Drivers

A simple scheduler for Dynamic C's preemptive glice statement is serviced by the Virtual Driver.
The scheduling for uC/OS-11 a more traditional full-featured real-time kernel, is also done by the
Virtual Driver.

These two scheduling methods are mutually exclusive—slicing and uC/OS-I1 must not be
used in the same program.

Chapter 6: The Virtual Driver 69

70

Dynamic C User’'s Manua

7. The Slave Port Driver

The Rabbit 2000 and the Rabbit 3000 have hardware for a slave port, allowing a master controller
to read and write certain internal registers on the Rabbit. The library, Slaveport.lib, imple-
ments a compl ete master/slave protocol for the Rabbit slave port. Sample libraries,

Master serial.libandSp stream.lib provide serial port and stream-based communi-
cation handlers using the slave port protocol.

7.1 Slave Port Driver Protocol

Given the variety of embedded system implementations, the protocol for the dave port driver was
designed to make the software for the master controller as simple as possible. Each interaction
between the master and the dave isinitiated by the master. The master has compl ete control over
when data transfers occur and can expect single, immediate responses from the slave.

7.1.1 Overview

1. Master writesto the command register after setting the address register and, optionally, the data
register. These registers are internal to the slave.

2. Slave reads the registers that were written by the master.

3. Slave writes to command response register after optionally setting the data register. This also
causes the SLAVEATTN line on the Rabbit slave to be pulled low.

4. Master reads response and dataregisters.
5. Master writes to the slave port status register to clear interrupt line from the slave.

7.1.2 Registers on the Slave
From the point of view of the master, the slave isan I/O device with four register addresses.

Table 7-1. The slave registers that are accessible by the master

Internal Address of
REISE] Address of REIBES F’rom Register Use
Name . Master’s
Register)
Perspective
SPDOR 0x20 0 Command and response regi ster
SPD1R 0x21 1 Address register
SPD2R 0x22 2 Optional dataregister
SPSR 0x23 3 Slave port status register. In this protocol the only bit
used is for checking the command response register.
Bit 3isset if the Slave has written to SPDOR. It is
cleared when the master writes to SPSR, which also
deassertsthe SLAVEATTN line.

Chapter 7: The Slave Port Driver 71

Accessing the same address (0, 1 or 2) uses two different registers, depending on whether the
access was aread or awrite. In other words, when writing to address 0, the master accesses a dif-
ferent location than when the it reads address 0.

Table 7-2. What happens when the master accesses a slave register

Register :
Address Read Write
0 Gets command response from | Sends command to slave, triggers
dave dlave response
1 Not used Sets channel addressto send
command to
2 Getsreturned datafrom slave | Sets data byte to send to slave
Gets dave port status (see Clears dlave response bit (see
3
below) below)

The status port is a bit field showing which slave port registers have been updated. For the pur-
poses of this protocol. Only bit 3 needsto be examined. After sending a command, the master can
check bit 3, which is set when the slave writes to the response register. At this point the response
and returned data are valid and should be read before sending a new command. Performing a
dummy write to the status register will clear this bit, so that it can be set by the next response.

Pin assignments for both the Rabbit 2000 and the Rabbit 3000 acting as a slave are as follows:

Table 7-3. Pin assignments for the Rabbit acting as a slave

Pin Function

PE7 /SCS chip select (active low to read/write slave port)

PB2 /SWR slave write (assert for write cycle)

PB3 /SRD slave read (assert for read cycle)

PB4 SAOQ low address bit for slave port registers

PB5 SA1 high address bit for dave registers

PB7 /SLVATTN a_sserted by d ave_when it respondsto acommand. cleared
by master write to status register

PAO-PA7 slave port data bus

For more details and read/write signal timing see the Rabbit 2000 Microprocessor User’s Manual
or the Rabbit 3000 Microprocessor User’s Manual.

72 Dynamic C User’s Manual

7.1.3 Polling and Interrupts

Both the slave and the master can use interrupt or polling for the slave. The parameter passed to
SPinit () determineswhich oneisused. Ininterrupt mode, the developer can indicate whether
the handler functions for the channels are interruptible or non-interruptible.

7.1.4 Communication Channels

The Rabbit slave has 256 configurable channels available for communication. The developer must
provide a handler function for each channel that is used. Some basic handlers are available in the
library Slave Port.1lib. These handlerswill be discussed later in this chapter.

When the slave port driver isinitialized, a callback table of handler functionsis set up. Handler
functions are added to the callback table by SPsetHandler ().

7.2 Functions
Slave port.1lib providesthefollowing functions:

Chapter 7: The Slave Port Driver 73

SPinit

int SPinit (int mode);

DESCRIPTION

Thisfunctioninitializesthe dave port driver. It setsup the callback tablesfor the different
channdls. Thedave port driver can berunin either pollingmodewhere st ick () must
be called periodically, or ininterrupt mode where an ISR istriggered every time the mas-
ter sends acommand. There aretwo version of interrupt mode. In thefirst, interrupts are
reenabled while the handler function is executing. In the other, the handler function will
execute at the same interrupt priority asthe driver ISR.

PARAMETERS

mode 0: For polling
1: For interrupt driven (interruptible handler functions)
2: For interrupt driven (non-interruptible handler functions)

RETURN VALUE

1: Success
0: Failure

LIBRARY
SLAVE PORT.LIB

74 Dynamic C User’s Manual

SPsetHandler

int SPsetHandler (char address, int (*handler) (), wvoid
*handler params) ;

DESCRIPTION

Thisfunction sets up a handler function to processincoming commands from the master
for aparticular slave port address.

PARAMETERS
address The8-bit dave port address of the channel that correspondsto
the handler function.
handler Pointer to the handler function. Thisfunction must have apar-

ticular form, which is described by the function description
for MyHandler () shown below. Setting this parameter to
NULL unloads the current handler.

handler params Pointer that will be saved and passed to the handler function
each timeitiscalled. Thisallows the handler function to be
parameterized for multiple cases.

RETURN VALUE

1: Success, the handler was set.
0: Failure.

LIBRARY
SLAVE PORT.LIB

Chapter 7: The Slave Port Driver

75

MyHandler

int MyHandler (char command, char data in, void *params);

DESCRIPTION

Thisfunction is adeveloper-supplied function and can have any valid Dynamic C name.
Its purposeisto handle incoming commands from amaster to one of the 256 channelson
the dave port. A handler function must be supplied for every channel that is being used

on the dave port.
PARAMETERS
command Thisisthe received command byte.
data in The optional data byte
params The optional parameters pointer.

RETURN VALUE
This function must return an integer. The low byte must contains the response code and
the high byte contains the returned data, if thereis any.

LIBRARY
Thisis a devel oper-supplied function.

76 Dynamic C User’s Manual

SPtick

void SPtick (void);
DESCRIPTION
This function must be called periodically when the slave port is used in polling mode.

LIBRARY
SLAVE PORT.LIB

Chapter 7: The Slave Port Driver

7

SPclose

void SPclose(wvoid);

DESCRIPTION
This function disables the slave port driver and unloads the ISR if one was used.

LIBRARY
SLAVE PORT.LIB

7.3 Examples
The rest of the chapter describes some useful handlers.

7.3.1 Status Handler
SPstatusHandler (), avalableinSlave port.1lib,isanexampleof asimple handler to
report the status of the slave. To set up the function as a handler on slave port address 12, do the
following:

SPsetHandler (12, SPstatusHandler, &status char);

Sending any command to this handler will cause it to respond with a 1 in the response register and
the current value of status_char inthe data return register.

78 Dynamic C User’s Manual

7.3.2 Serial Port Handler

Slave port.1lib containshandlersfor all four serial portson the dave.

Master serial.lib containscode for amaster using the slave's serial port handler. This
library illustrates the general case of implementing the master side of the master/slave protocol.

7.3.2.1 Commands to the Slave

Table 7-4. Commands that the master can send to the slave

Command Command Description

1 Transmit byte. Byte value isin data register. Slave responds with 1 if the
byte was processed or 0O if it was not.

5 Receive byte. Slave respondswith 2 if has put anew received byte into the
data return register or O if there were no bytes to receive.
Combined transmit/receive—a combination of the transmit and receive

3 commands. The response will also be alogical OR of the two command
responses.

4 Set baud factor, byte 1 (LSB). The actual baud rate is the baud factor
multiplied by 300.

5 Set baud factor, byte 2 (MSB). The actual baud rate is the baud factor

multiplied by 300.

6 Set port configuration bits

7 Open port

8 Close port

Get errors. Slave respondswith 1if the port is open and can return an error
9 bitfield. The error bits are the same asfor the function serAgetErrors() and
are put in the datareturn register by the slave.

Returns count of free bytes in the seria port write buffer. The two
10,11 | commands return the LSB and the MSB of the count respectively. The
L SB(10) should be read first to latch the count.

Returns count of free bytes in the seria port read buffer. The two
12,13 | commands return the LSB and the M SB of the count respectively. The
L SB(12) should be read first to latch the count.

Returns count of bytes currently in the serial port write buffer. The two
14,15 | commands return the LSB and the MSB of the count respectively. The
L SB(14) should be read first to latch the count.

Returns count of bytes currently in the serial port write buffer. The two
16,17 | commands return the LSB and the MSB of the count respectively. The
L SB(16) should be read first to latch the count.

Chapter 7: The Slave Port Driver

7.3.2.2 Slave Side of Protocol
To set up the serial port handler to connect serial port A to channel 5, do the following:

SPsetHandler (5, SPserAhandler, NULL) ;

7.3.2.3 Master Side of Protocol

Thefollowing functionsareinMaster serial.lib. They arefor amaster using aserial port
handler on adave.

cof MSgetc

int cof MSgetc(char address);

DESCRIPTION

Yieldsto other tasks until abyte isreceived from the serial port on the dlave.
PARAMETERS

address Slave channel address of the serial handler.

RETURN VALUE

Value of the received character on success.
-1: Failure.

LIBRARY
MASTER SERIAL.LIB

80 Dynamic C User’s Manual

cof MSputc

void cof MSputc(char address, char ch);

DESCRIPTION

Sends a character to the serial port. Yields until character is sent.

PARAMETERS
address Slave channd address of serial handler.
ch Character to send.

RETURN VALUE

0: Success, character was sent.
- 1: Failure, character was not sent.

LIBRARY
MASTER SERIAL.LIB

Chapter 7: The Slave Port Driver

81

cof MSread

int cof MSread(char address, char *buffer, int length, unsigned
long timeout);

DESCRIPTION

Reads bytes from the serial port on the slave into the provided buffer. Waits until at |east
one character has been read. Returns after buffer isfull, or t imeout has expired be-
tween reading bytes. Yields to other tasks while waiting for data.

PARAMETERS
address Slave channel address of seria handler.
buffer Buffer to store received bytes.
length Size of buffer.
timeout Timeto wait between bytes before giving up on receiving anymore.

RETURN VALUE

>0: Bytesread.
-1: Failure.

LIBRARY
MASTER SERIAL.LIB

82 Dynamic C User’s Manual

cof MSwrite

int cof MSwrite(char address, char *data,

DESCRIPTION

Transmits an array of bytes from the serial port on the slave. Yieldsto other tasks while

waiting for write buffer to clear.

PARAMETERS
address Slave channel address of serial handler.
data Array to be transmitted.
length Size of array.

RETURN VALUE
Number of bytes actually written or -1 if error.

LIBRARY
MASTER SERIAL.LIB

int length);

MSclose

int MSclose(char address);

DESCRIPTION
Closes a serial port on the dave.

PARAMETERS

address Slave channel address of seria handler.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY
MASTER SERIAL.LIB

Chapter 7: The Slave Port Driver

83

MSgetc

int MSgetc(char address);

DESCRIPTION
Receives a character from the serial port.

PARAMETERS

address Slave channd address of serial handler.

RETURN VALUE

Value of received character.
-1: No character available.

LIBRARY
MASTER_ SERIAL.LIB

MSgetError

int MSgetError (char address);

DESCRIPTION

Getshitfield with any current error from the specified serial port on thedave. Error codes
are:

SER_PARITY ERROR

SER_OVERRUN ERROR

PARAMETERS
address Slave channel address of seria handler.

RETURN VALUE

Number of bytes free: Success.
-1: Failure.

LIBRARY
MASTER SERIAL.LIB

84 Dynamic C User’s Manual

MSinit

int MSinit(int io_bank);
DESCRIPTION
Sets up the connection to the dave.

PARAMETERS

io bank The 10 bank and chip select pin number for the slave device.
Thisisanumber from 0to 7 inclusive.

RETURN VALUE
1: Success.

LIBRARY
MASTER SERIAL.LIB

MSopen

int MSopen(char address, unsigned long baud) ;

DESCRIPTION
Opens a seria port on the slave, given that thereis a serial handler at the specified ad-
dress on the slave.
PARAMETERS
address Slave channel address of serial handler.
baud Baud rate for the seria port on the dave.

RETURN VALUE

1: Baud rate used matches the argument.
0: Different baud rate is being used.
-1: Slave port comm error occurred.

LIBRARY
MASTER SERIAL.LIB

Chapter 7: The Slave Port Driver 85

MSputc

int MSputc(char address, char ch);

DESCRIPTION
Transmits asingle character through the serial port.

PARAMETERS
address Slave channd address of serial handler.
ch Character to send.

RETURN VALUE

1: Character sent.
0: Transmit buffer isfull or locked.

LIBRARY
MASTER SERIAL.LIB

MSrdFree

int MSrdFree (char address);

DESCRIPTION

Gets the number of bytes available in the specified serial port read buffer on the slave.
PARAMETERS

address Slave channel address of seria handler.

RETURN VALUE

Number of bytes free: Success.
-1: Failure.

LIBRARY
MASTER SERIAL.LIB

86 Dynamic C User’s Manual

MSsendCommand

int MSsendCommand (char address, char command, char data,
char *data returned, unsigned long timeout);

DESCRIPTION

Sends a single command to the slave and gets aresponse. This function also servesasa
general example of how to implement the master side of the dave protocol.

PARAMETERS
address Slave channel address to send command to.
command Command to be sent to the dave (see Section 7.3.2.1).
data Data byte to be sent to the dave.

data returned Addressof variableto place datareturned by the dave.

timeout Timeto wait before giving up on dave response.

RETURN VALUE

>0: Response code.
- 1: Timeout occured before response.
-2: Nothing at that address (response = 0xff).

LIBRARY
MASTER SERIAL.LIB

Chapter 7: The Slave Port Driver

87

MSread

int MSread(char address, char *buffer, int size, unsigned long
timeout) ;

DESCRIPTION
Receives bytes from the serial port on the dave.

PARAMETERS
address Slave channel address of seria handler.
buffer Array to put received datainto.
size Size of array (max bytes to be read).
timeout Time to wait between characters before giving up on receiving any

more.

RETURN VALUE
The number of bytes read into the buffer (behaveslike serXread ()).

LIBRARY
MASTER SERIAL.LIB

88 Dynamic C User’s Manual

MSwrFree

int MSwrFree (char address)

DESCRIPTION
Gets the number of bytes available in the specified seria port write buffer on the dave.

PARAMETERS

address Slave channd address of serial handler.

RETURN VALUE

Number of bytesfree: Success.
-1: Failure.

LIBRARY
MASTER SERIAL.LIB

Chapter 7: The Slave Port Driver

89

MSwrite

int MSwrite (char address, char *data, int length);

DESCRIPTION
Sends an array of bytes out the serial port on the slave (behaveslike serXwrite ()).

PARAMETERS
address Slave channel address of serial handler.
data Array of bytesto send.
length Size of array.

RETURN VALUE
Number of bytes actually sent.

LIBRARY
MASTER_ SERIAL.LIB

20 Dynamic C User’s Manual

7.3.2.4 Sample Program for Master
Thissample program, /Samples/SlavePort/master demo.c, treatsthe davelike a
seria port.

#use "master serial.lib"
#define SP CHANNEL 0x42

char* const test str = "Hello There";

main () {
char buffer[100];
int read length;

MSinit (0) ;

// comment thisline out if talking to a stream handler
printf ("open returned:0x%x\n", MSopen (SP_CHANNEL, 9600));

while (1)
{

costate

{

wfd{cof MSwrite (SP_CHANNEL, test str, strlen(test str));}
wfd{cof MSwrite (SP_CHANNEL, test str, strlen(test str));}

}

costate

{

wfd{ read length = cof MSread(SP_CHANNEL, buffer, 99, 10);
if (read length > 0)
{

buffer[read length] = 0; //null terminator

printf ("Read:%s\n", buffer);

}

else if (read length < 0)

{

printf ("Got read error: %d\n", read length);

}

printf ("wrfree = %$d\n", MSwrFree (SP_CHANNEL)) ;

}

Chapter 7: The Slave Port Driver

91

7.3.3 Byte Stream Handler

Thelibrary, SP_STREAM. LIB, implements abyte stream over the slave port. If the master isa
Rabbit, the functionsin MASTER SERIAL.LIB can be used to access the stream as though it
came from a serial port on the save.

7.3.3.1 Slave Side of Stream Channel

To set up the function sPShandler () asthe byte stream handler, do the following:
SPsetHandler (10, SPShandler, stream ptr);

This sets up the stream to use channel 10 on the slave.

A sample program in Section 7.3.3.2 shows how to set up and initialize the circular buffers. An
internal data structure, SPStream, keeps track of the buffers and a pointer to it is passed to
SPsetHandler () and some of the auxiliary functions that supports the byte stream handler.
Thisis also shown in the sample program.

7.3.3.1.1 Functions
These are the auxiliary functions that support the stream handler function, SPShandler ().

cbuf init

void cbuf init (char *circularBuffer, int dataSize);
DESCRIPTION
Thisfunction initidizes acircular buffer.

PARAMETERS

circularBuffer The circular buffer to initialize.

dataSize Sizeavailableto data. The size must be 9 bytes morethan the
number of bytes needed for data. Thisisfor internal book-
keeping.
LIBRARY
RS232.LIB

92 Dynamic C User’s Manual

cof SPSread

int cof SPSread(SPStream *stream, void *data, int length,
unsigned long tmout):;

DESCRIPTION

Reads 1 ength bytesfrom the slave port input buffer or until tmout milliseconds tran-
spires between bytes after the first byte isread. It will yield to other tasks while waiting
for data. Thisfunction is non-reentrant.

PARAMETERS
stream Pointer to the stream state structure.
data Structure to read from slave port buffer.
length Number of bytesto read.
tmout Maximum wait in milliseconds for any byte from previous one.

RETURN VALUE
The number of bytes read from the buffer.

LIBRARY
SP_STREAM.LIB

Chapter 7: The Slave Port Driver

93

cof SPSwrite

int cof SPSwrite(SPStream *stream, void *data, int length);

DESCRIPTION
Transmits 1ength bytesto slave port output buffer. This function is non-reentrant.

PARAMETERS
stream Pointer to the stream state structure.
data Structure to write to dave port buffer.
length Number of bytesto write.

RETURN VALUE
The number of bytes successfully written to dave port.

LIBRARY
SP_STREAM.LIB

SPSinit

void SPSinit(void);
DESCRIPTION
Initializes the circular buffers used by the stream handler.

LIBRARY
SP_STREAM.LIB

94 Dynamic C User’s Manual

SPSread

int SPSread(SPStream *stream, void *data, int length, unsigned
long tmout) ;

DESCRIPTION

Reads 1 ength bytesfrom the slave port input buffer or until tmout milliseconds tran-
spires between bytes. If no datais available when thisfunctioniscalled, it will returnim-
mediately. Thisfunction will call sptick () if thedave portisin polling mode.

This function is non-reentrant.

PARAMETERS
stream Pointer to the stream state structure.
data Buffer to read received datainto.
length Maximum number of bytes to read.
tmout Timeto wait between received bytes before returning.

RETURN VALUE
Number of bytes read into the data buffer

LIBRARY
SP_STREAM.LIB

Chapter 7: The Slave Port Driver

95

SPSwrite

int SPSwrite(SPSream *stream, void *data, int length)

DESCRIPTION

Thisfunction transmits length bytesto slave port output buffer. If the dave portisin poll-
ing mode, thisfunctionwill call sSPtick () whilewaiting for the output buffer to empty.
This function is non-reentrant.

PARAMETERS
stream Pointer to the stream state structure.
data Bytes to write to stream.
length Size of write buffer.

RETURN VALUE
Number of bytes written into the data buffer.

LIBRARY
SP_STREAM.LIB

96 Dynamic C User’s Manual

SPSwrFree

int SPSwrFree();
DESCRIPTION
Returns number of free bytesin the stream write buffer.

RETURN VALUE
Space available in the stream write buffer.

LIBRARY
SP_STREAM.LIB

SPSrdFree

int SPSrdFree();

DESCRIPTION

Returns the number of free bytes in the stream read buffer.

RETURN VALUE
Space available in the stream read buffer.

LIBRARY
SP_STREAM.LIB

Chapter 7: The Slave Port Driver

97

SPSwrUsed

int SPSwrUsed();

DESCRIPTION

Returns the number of bytes currently in the stream write buffer.

RETURN VALUE
Number of bytes currently in the stream write buffer.

LIBRARY
SP_STREAM.LIB

SPSrdUsed

int SPSrdUsed();
DESCRIPTION
Returns the number of bytes currently in the stream read buffer.

RETURN VALUE
Number of bytes currently in the stream read buffer.

LIBRARY
SP_STREAM.LIB

98

Dynamic C User’s Manual

7.3.3.2 Byte Stream Sample Program

Thisprogram, /Samples/SlavePort/Slave Demo

byte stream over the slave port.

. ¢, runson aslave and implements a

#iclass auto

#use "slave port.lib"
#use "sp_ stream.lib"

#define STREAM BUFFER SIZE 31

main ()

{

char buffer[10];
int bytes read;

SPStream stream;
// Circular buffers need 9 bytes for bookkeeping.

char stream inbuf [STREAM BUFFER SIZE + 9];
char stream outbuf [STREAM BUFFER SIZE + 9];

SPStream *stream ptr;

// setup buffers

cbuf init (stream inbuf, STREAM BUFFER SIZE) ;
stream.inbuf = stream inbuf;

cbuf init (stream outbuf, STREAM BUFFER SIZE) ;
stream.outbuf = stream outbuf;

stream ptr = &stream;

SPinit (1) ;

SPsetHandler (0x42, SPShandler, stream ptr) ;
while (1)

{

bytes read = SPSread(stream ptr, buffer, 10,
if (bytes read)

{
}

SPSwrite (stream ptr, buffer, bytes read);

10) ;

Chapter 7: The Slave Port Driver

99

100 Dynamic C User’s Manual

8. Run-Time Errors

Compiled code generated by Dynamic C calls an exception handling routine for run-time errors.
The exception handler supplied with Dynamic C printsinternally defined error messagesto a Win-
dows message box when run-time errors are detected during a debugging session. When software
runs stand-alone (disconnected from Dynamic C), such a run-time error will cause awatchdog
timeout and reset. Run-time error logging is available for Rabbit-based target systems with bat-
tery-backed RAM.

8.1 Run-Time Error Handling

When arun-time error occurs, acall ismadeto exception (). Therun-time error typeis passed
to exception (), which then pushes various parameters on the stack, and calls the installed
error handler. The default error handler places information on the stack, disables interrupts, and
enters an endless loop by calling the xexit function in the BIOS. Dynamic C notices this and
halts execution, reporting a run-time error to the user.

8.1.1 Error Code Ranges

The table below shows the range of error codes used by Dynamic C and the range available for a
custom error handler to use. Please see section 8.2 on page 103 for more information on replacing
the default error handler with a custom one.

Table 8-1. Dynamic C Error Types Ranges

Error Type Meaning
0-127 Reserved for user-defined error codes.
128-255 Reserved for use by Dynamic C.

Chapter 8: Run-Time Errors 101

8.1.2 Fatal Error Codes
Thistableliststhe fatal errors generated by Dynamic C.

Table 8-2. Dynamic C Fatal Errors

Error Type Meaning
127 - 227 not used
228 Pointer store out of bounds
229 Array index out of bounds
230- 233 not used
234 Domain error (for example, acos (2))
235 Range error (for example, tan (pi/2))
236 Floating point overflow
237 Long divide by zero
238 Long modulus, modulus zero
239 not used
240 Integer divide by zero
241 Unexpected interrupt
242 not used
243 Codata structure corrupted
244 Virtua watchdog timeout
245 XMEM adlocation failed (xalloc call)
246 Stack allocation failed
247 Stack deallocation failed
248 not used
249 Xmem allocation initialization failed
250 No virtual watchdog timers available
251 No valid MAC address for board
252 Invalid cofunction instance
253 Socket passed as auto variable while running pC/OS-11
254
not used
255

102

Dynamic C User’s Manual

8.2 User-Defined Error Handler

Dynamic C allows replacement of the default error handler with a custom error handler. Thisis
needed to add run-time error handling that would require treatment not supported by the default
handler.

A custom error handler can also be used to change how existing run-time errors are handled. For
example, the floating-point math librariesincluded with Dynamic C are written to allow for execu-
tion to continue after adomain or range error, but the default error handler halts with arun-time
error if that state occurs. If continued execution is desired (the function in question would return a
value of INF or whatever value is appropriate), then asimple error handler could be written to pass
execution back to the program when a domain or range error occurs, and pass any other run-time
errors to Dynamic C.

8.2.1 Replacing the Default Handler
To tell the BIOS to use a custom error handler, cal this function:

void defineErrorHandler (void *errfcn)
This function sets the BIOS function pointer for run-time errors to the one passed to it.

When arun-time error occurs, exception () pushesonto the stack the information detailed in
the table below.

Table 8-3. Stack setl'Jp for run-time errors

Address Data at address
SP+0 Return address for error handler
SP+2 Error code

SP+4 Additional data (user-defined)

XPC when exception () wascalled (upper

SP+6 byte)

SP+8 Addresswhere exception () wascalled from

Then exception () calstheinstaled error handler. If the error handler passes the run-time
error to Dynamic C (i.e. itisafatal error and the system needs to be halted or reset), then registers
must be loaded appropriately before calling the _xexit function.

Dynamic C expects the following values to be loaded:

Table 8-4. Register contents loaded by error handler before passing the error to Dynamic C

Register Expected Value
H XPC when exception () wascalled
L Run-time error code
HL’ Addresswhere exception () was called from

Chapter 8: Run-Time Errors 103

8.3 Run-Time Error Logging
Error logging is available as a BIOS enhancement for storing run-time exception history. It can be

useful diagnosing problems in deployed Rabbit targets. To support error logging, the target must
have battery-backed RAM.

8.3.1 Error Log Buffer
A circular buffer in extended RAM will be filled with the following information for each run-time
error that occurs:

e Thevalueof SEC_TIMER at thetime of the error. This variable contains the number of
seconds since 00:00:00 on January 1st 1980 if the real-time clock has been set correctly.
Thisvariable is updated by the periodic timer which is enabled by default. Z-World setsthe
real-time clock in the factory. When the BIOS starts on boards with batteries, it initializes
SEC_TIMER to thevaluein the real-time clock.

e The address where the exception was called from. This can be traced to a particular func-
tion using the MAP file generated when a Dynamic C program is compiled.

e The exception type. Please see Table 8-2 on page 102 for alist of exception types.

e Thevalueof al registers. Thisincludes alternate registers, SP and XPC. Thisis a global
option that is enabled by default.

e An 8-byte message. Thisisaglobal option that is disabled by default. The default error
handler does nothing with this.

e A user-definable length of stack dump. Thisisaglobal option that is enabled by default.

e A one byte checksum of the entry.

8.3.1.1 Error Log Buffer Size

The size of the error log buffer is determined by the number of entries, the size of an entry, and the
header information at the beginning of the buffer. The number of entriesis determined by the
macro ERRLOG_NUM ENTRIES (default is 78). The size of each entry is dependent on the set-
tings of the global options for stack dump, register dump and error message. The default size of
the buffer is about 4K in extended RAM.

104 Dynamic C User’s Manual

8.3.2 Initialization and Defaults

Aninitialization of the error log occurs when the BIOS is compiled, when cloning takes place or
when the BIOS is loaded via the Rabbit Field Utility (RFU). By default, error logging is enabled
with messages turned off, stack and register dumps turned on, and an error log buffer big enough
for 78 entries.

The error log buffer contains header information as well as an entry for each run-time error. A
debug start-up will zero out this header structure, but the run-time error entries can till be exam-

ined from Dynamic C using the static information in flash. The header is at the start of the error
log buffer and contains:

e A status byte

e The number of errors since deployment

e Theindex of thelast error

e The number of hardware resets since deployment

e The number of watchdog time-outs since deployment
e The number of software resets since deployment

e A checksum byte.

“Deployment” is defined as the first power up without the programming cable attached. Repro-
gramming the board through the programming cable, RFU, or RabbitLink and starting the pro-
gram again without the programming cable attached is a new deployment.

8.3.3 Configuration Macros
These macros are defined at the top of Bios/RabbitBios.c.

ENABLE_ERROR_LOGGING
Default: 0. Disables error logging. Changing thisto one in the BIOS enables error logging.

ERRLOG_USE_REG_DUMP
Default: 1. Include aregister dump in log entries. Changing thisto zero in the BIOS excludes
the register dump in log entries.

ERRLOG_STACKDUMP_SIZE
Default: 16. Include a stack dump of size ERRLOG_STACKDUMP SIZE inlog entries.
Changing thisto zero in the BIOS excludes the stack dump in log entries.

ERRLOG_NUM_ENTRIES
Default: 78. Thisisthe number of entries allowed in the log buffer.

ERRLOG_USE_MESSAGE
Default: 0. Exclude error messages from log entries. Changing thisto one in the BIOS
includes error messages in log entries The default error handler makes no use of this feature.

Chapter 8: Run-Time Errors 105

8.3.4 Error Logging Functions
The run-time error logging API consists of the following functions:

errlogGetHeader I nfo Reads error log header and formats output.

errlogGetNthEntry Loads errLogEntry structure with the Nth entry
from the error log buffer. errLogEntry isapre-alo-
cated global structure.

errlogGetM essage Returns aNULL-terminated string containing the 8 byte
error message in errLogEntry.

errlogFormatEntry Returns aNULL-terminated string containing basic
informationin errLogEntry.

errlogFormatRegDump Returns aNULL-terminated string containing the regis-
ter dumpinerrLogEntry.

errlogFormatStack Dump Returns aNULL-terminated string containing the stack
dumpinerrLogEntry

errlogReadHeader Reads error log header into the structure errlog-
Info.

ResetErrorL og Resets the exception and restart type counts in the error
log buffer header.

8.3.5 Examples of Error Log Use
To try error logging, follow the instructions at the top of the sample programs:

samples\ErrorHandling\Generate runtime errors.c
and

samples\ErrorHandling\Display errorlog.c

106 Dynamic C User’s Manual

9. Memory Management

Processor instructions can specify 16-bit addresses, giving alogical address space of 64K (65,536
bytes). Dynamic C supports a 1M physical address space (20-bit addresses).

An on-chip memory management unit (MMU) translates 16-bit addresses to 20-bit memory
addresses. Four MMU registers (SEGSIZE, STACKSEG, DATASEG and XPC) divide and main-
tain the logical sections and map each section onto physical memory.

Any memory beyond the 16 bit address capability of the processor, whether flash or RAM, is
called xmem and requires memory management techniques for access. In general, xmem flash
access for program space is transparent to the user, but xmem accesses to RAM are not.

9.1 Memory Map

A typical Dynamic C memory mapping of logical and physical address spaceis shown in the fig-
ure below. The actual layout may be different depending on board type and compilation options.
E.g., enabling separate 1& D space will affect the memory map.

OXFFFFF

OXFFFF “4§3:::
Xmem Segment
0xBEQO
0xE000
Root Data
Stack Segment Interrupt Vectors, RAM
0xD000 —————————————— «— 0xD0 Watch Code
Extérnal pteriupt - - DU 0xB1000
N oxccoo - - o 0xA9000
0xCF00 L Stack
Data Segment 0xA8000
it i i (Root Data)
‘Intermal Interrupt - . - @%B
Vectors. .. 080000
OXCEQQ bl e el
S Xmem Code
:\:l\:/:_t:h:_c;::é::::_:_:_: (from Xmem Segment) Flash
ateh-Code -
IR s Base Segment Memory
L L (Root Code)
S Root Code
0xCCOOt - - - T L 0x0000 0x0000Q
Logical Address Space Physical Address Space

Figure 9-1. Dynamic C Memory Mapping

Figure 9-1 illustrates how the logical address space is divided and where code residesin physical
memory. Both the static RAM and the flash memory are 128K in the diagram. Physical memory
starts at address 0x00000 and flash memory is usually mapped to the same address. SRAM typi-
cally begins at address 0x80000.

If BIOS code runs from flash memory, the BIOS code starts in the root code section at address
0x00000 and fills upward. The rest of the root code will continue to fill upward immediately fol-

Chapter 9: Memory Management 107

lowing the BIOS code. If the BIOS code runs from SRAM, the root code section, along with root
data and stack sections, will start at address 0x80000.

9.1.1 Memory Mapping Control

The advanced user of Dynamic C can control how Dynamic C allocates and maps memory. For
details on memory mapping, refer to any of the following:

e Rabbit 2000 Microprocessor User’s Manual

e Rabbit 3000 Microprocessor User’s Manual

e Rabbit 3000 Designer’s Handbook

e Technical Note 202 “Rabbit Memory Management in a Nutshell”

All of the above documents are available at www.zworld.com.

9.2 Extended Memory Functions

A program can use many pages of extended memory. Under normal execution, code in extended
memory maps to the logical address region EOOOH to FFFFH.

Extended memory addresses are 20-bit physical addresses (the lower 20 bits of along integer).
Pointers, on the other hand, are 16-bit machine addresses. They are not interchangeable. However,
there are library functions to convert address formats.

To access xmem data, use function calls to exchange data between xmem and root memory. Use
the Dynamic C functions root 2xmem () , xmem2root () and xmem2xmem () to move blocks
of data between logical memory and physical memory.

9.2.1 Code Placement in Memory

Coderunsjust as quickly in extended memory asit does in root memory, but callsto and returns
from the functions in extended memory take a few extra machine cycles. Code placement in mem-
ory can be changed by the keywords xmem and root, depending on the type of code:

Pure Assembly Routines

Pure assembly functions may be placed in root memory or extended memory. Prior to Dynamic C
version 7.10, pure assembly routines had to be in root memory.

C Functions

C functions may be placed in root memory or extended memory. Accessto variablesin C state-
ments is not affected by the placement of the function. Dynamic C will automatically place C
functions in extended memory as root memory fills. Short, frequently used functions may be
declared with the root keyword to force Dynamic C to load them in root memory.

Inline Assembly in C Functions

Inline assembly code may be written in any C function, regardless of whether it is compiled to
extended memory or root memory.

All static variables, even those local to extended memory functions, are placed in root memory.
Keep thisin mind if the functions have many variables or large arrays. Root memory can fill up
quickly.

108 Dynamic C User’s Manual

http://www.zworld.com/docs/

10. The Flash File System

The Dynamic C file system, known as the filesystem mk Il or simply as FS2, was designed to be
used with a second flash memory or in SRAM.

FS2 dlows:

e the ability to overwrite parts of afile.

e the simultaneous use of multiple device types.

e the ability to partition devices.

o cfficient support for byte-writable devices.

e better performance tuning.

e ahigh degree of backwards compatibility with its predecessor.

NOTE: Dynamic C'slow-level flash memory access functions should not be used in
the same area of the flash where the flash file system exists.

10.1 General Usage
The recommended use of aflash file system isfor infrequently changing data or data rates that

have writes on the order of tens of minutes instead of seconds. Rapidly writing datato the flash'
could result in using up its write cycles too quickly. For example, consider a 256K flash with 64
blocks of 4K each. Using aflash with a maximum recommendation of 10,000 write cycles means
alimit of 640,000 writesto the file system. If you are performing one write to the flash per second,
in alittle over aweek you will use up its recommended lifetime.

Increase the useful lifetime and performance of the flash by buffering data before writing it to the
flash. Accumulating 1000 single byte writes into one multi-byte write can extend the life of the
flash by an average of 750 times. FS2 does not currently perform any in-memory buffering. If you
write asingle byteto afile, that byte will cause write activity on the device. This ensures that data
iswritten to non-volatile storage as soon as possible. Buffering may be implemented within the
application if possible loss of datais tolerable.

10.1.1 Maximum File Size

The maximum file size for an individual file depends on the total file system size and the number
of files present. Each file requires at least two sectors: at least one for data and always one for
metadata (for information used internally). There also needs to be two free sectorsto allow for
moving data around.

FS2 supports atotal of 255 files, but storing a large number of small files is not recommended. It
is much more efficient to have a few large ones.

i. All other code, including ISRs, is suspended while writing to flash.

Chapter 10: The Flash File System 109

10.1.2 Two Flash Boards

By default, when a board has two flash devices, Dynamic C will use only thefirst flash for code.
The second flash is available for the file system unless the BIOS macro USE_2NDFLASH CODE
has been uncommented. This macro allocates the second flash to hold program code. The use of
USE_2NDFLASH CODE isnot compatible with FS2.

10.1.3 Using SRAM

The flash file system can be used with battery-backed SRAM. Internally, RAM istreated like a
flash device, except that there is no write-cycle limitation, and access is much faster. Thefile sys-
tem will work without the battery backup, but would, of course, lose al data when the power went
off.

Currently, the maximum size file system supported in RAM is about 200k. This limitation holds
true even on boards with a512k RAM chip. The limitation involves the placement of BIOS con-
trol blocks in the upper part of the lower 256k portion of RAM.

To obtain more RAM memory, xalloc () may beused. If xalloc () iscalledfirst thinginthe
program, the same memory addresses will always be returned. This can be used to store non-vola-
tiledatais so desired (if the RAM is battery-backed), however, it is not possible to manage this
area using the file system.

Using FS2 increases flexibility, with its capacity to use multiple device types simultaneously.

Since RAM isusually a scarce resource, it can be used together with flash memory devices to
obtain the best balance of speed, performance and capacity.

10.1.4 Wear Leveling

The current code has a rudimentary form of wear leveling. When you write into an existing block
it selects afree block with the least number of writes. The file system routines copy the old block
into the new block adding in the users new data. This has the effect of evening the wear if thereis
areasonable turnover in the flash files.

10.1.5 Low-Level Implementation
For information on the low-level implementation of the flash file system, refer to the beginning of
thelibrary file FS2 . LIB.

10.1.6 Multitasking and the File System
Thefile system is not re-entrant. If using preemptive multitasking, ensure that only one thread per-
forms calls to the file system, or implement locking around each call.

When using uC/OS-11, FS2 must be initialized first; that is, £s_init () must be called before
0SInit () inthe application code.

110 Dynamic C User’s Manual

10.2 Application Requirements
Application requirements for using FS2 are covered in this section, including:

which library to use
which driversto use

defaults and descriptions for configuration macros
detailed instructions for using the first flash

10.2.1 Library Requirements
The file system library must be compiled with the application:

#use “FS2.LIB”

For the simplest applications, thisis all that is necessary for configuration. For more complex
applications, there are several other macro definitions that may be used before the inclusion of
FS2.LIB. Theseare

#define FS_MAX DEVICES 3
#define FS_MAX LX 4
#define FS_MAX FILES 10

These specify certain static array sizesthat alow control over the amount of root data space taken
by FS2. If you are using only one flash device (and possibly battery-backed RAM), and are not
using partitions, then thereisno need to set FS_MAX DEVICES or FS_MAX LX.

For more information on partitioning, please see section 10.4, “ Setting up and Partitioning the File
System,” on page 115.

10.2.2 FS2 Configuration Macros

FS_MAX DEVICES

This macro defines the maximum physical media. If it is not defined in the program
code, FS_MAX DEVICES will defaultto 1, 2, or 3, depending on the values of
FS2 USE_ PROGRAM FLASH, XMEM RESERVE SIZE and

FS2 RAM RESERVE.

FS MAX LX
This macro definesthe maximum logical extents. You must increase thisvalue by 1 for

each new partition your application creates. It thisis not defined in the program code it
will default to FS_MAX DEVICES.

For a description of logical extents please see section 10.4.2, “Logical Extents (LX),”
on page 116.

Chapter 10: The Flash File System 111

FS_MAX FILES

Thismacro is used to specify the maximum number of filesthat are allowed to coexist
inthe entirefile system. Most applications will have afixed number of files defined, so
this parameter can be set to that number to avoid wasting root data memory. The default
is 6 files. The maximum value for this parameter is 255.

FS2 RAM RESERVE

This BIOS-defined macro determines the amount of space used for FS2 in RAM. If

some battery-backed RAM isto be used by FS2, then this macro must be modified to
specify the amount of RAM to reserve. The memory isreserved near the top of RAM.
Note that this RAM will be reserved whether or not the application actually uses FS2.

Prior to Dynamic C 7.06 this macro was defined as the number of bytesto reserve and
had to be a multiple of 4096. It is now defined as the number of blocksto reserve, with
each block being 4096 bytes.

FS2 SHIFT DOESNT UPDATE FPOS
If thismacroisdefined beforethe #use £s2.1ib statement in an application, mul-

tiple file descriptors can be opened, but their current position will not be updated if
fshift () isused.

FS2 USE PROGRAM FLASH
The number of kilobytes reserved in the first flash for use by FS2. The default is zero.

The actual amount of flash used by FS2 is determined by the minimum of this macro
and XMEM RESERVE SIZE.

XMEM RESERVE SIZE
This BIOS-defined macro is the number of bytes (which must be a multiple of 4096)
reserved in thefirst flash for use by FS2 and possibly other customer-defined purposes.
Thisis defined in the BIOS as 0x0000. Memory set aside with
XMEM_RESERVE_SIZE will NOT be available for xmem code.

112 Dynamic C User’s Manual

10.2.3 FS2 and Use of the First Flash
To use the first flash in FS2, follow these steps:

1. Define XMEM_RESERVE_SIZE (currently set to 0x0000 in the BIOS) to the number of
bytesto alocate in the first flash for the file system.

2.Define FS2 _USE PROGRAM FLASH to the number of KB (1024 bytes) to alocate in the
first flash for the file system. Do thisin the application code before #use "fs2.1ib".

3. Obtain the LX number of thefirst flash: Call £s_get other 1x ()when there aretwo
flash memories; cal £s_get flash 1x () whenthereisonly one.

4. If desired, create additional logical extents by calling the FS2 function £s_setup () to
further partition the device. This function can also change the logical sector sizes of an
extent. Please see the function description for £s_setup () inthe Dynamic C Function
Reference Manual for more information.

10.2.3.1 Example Code Using First Flash in FS2

If the target board has two flash memories, the following code will cause the file system to use the
first flash:

FSLXnum flashl; // logical extent number
File f; // struct for file information

flashl = fs_get other 1x();
if (flashl) {
fs set 1x(flashl, flashl);
fcreate (&£, 10);

}

To obtain the logical extent number for aoneflash board, fs _get flash 1x () mustbe
caledinstead of fs get other 1x().

Chapter 10: The Flash File System 113

10.3 File System API Functions

These functions are defined in FS2 . LIB. For more information please see the Dynamic C

Function Reference Manual.

Table 10-1. FS2 API

Command

Description

fs_setup (FS2)

Alterstheinitial default configuration.

fs _init (FS2)

Initialize the internal data structures for the file system.

fs format (FS2)

Initialize flash and the internal data structures.

1x format

Formats a specified logical extent (LX).

fs set 1x (FS2)

Sets the default LX numbers for file creation.

fs get _1x (FS2)

Returns the current LX number for file creation.

fcreate (FS2)

Creates afile and open it for writing.

fcreate unused (FS2)

Creates afile with an unused file number.

fopen rd (FS2)

Opens afilefor reading.

fopen wr (FS2)

Opens afile for writing (and reading).

fshift

Removes specified number of bytes from beginning of file.

fwrite (FS2)

Writesto afile starting at “ current position.”

fread (FS2) Reads from the current file pointer.
fseek (FS2) Moves the read/write pointer.
ftell (Fs2) Returns the current offset of the file pointer.

fs _sync (FS2)

Flushes any buffers retained in RAM to the underlying
hardware device.

fflush (FS2)

Flushes buffers retained in RAM and associated with the
specified file to the underlying hardware device.

fs get flash 1x (FS2)

Returns the LX number of the preferred flash device (the
2nd flash if available).

fs get 1x size (FS2)

Returns the number of bytes of the specified LX.

fs get other 1x (FS2)

Returns LX # of the non-preferred flash (usually the first
flash).

fs get ram 1lx (FS2)

Return the LX number of the RAM file system device.

fclose

Closes afile.

fdelete (FS2)

Deletes afile.

114

Dynamic C User’s Manual

10.3.1 FS2 API Error Codes

Thelibrary ERRNO . LIB contains alist of all possible error codes returnable by the FS2 API.
These error codes mostly conform to POSIX standards. If the return value indicates an error, then
the global variable errno may be examined to determine a more specific reason for the failure.
The possible errno codes returned from each function are documented with the function.

10.4 Setting up and Partitioning the File System

This step merits some thought before plowing ahead. The context within which the file system
will be used should be considered. For example, if the target board contains both battery-backed
SRAM and a second flash chip, then both types of storage may be used for their respective advan-
tages. The SRAM might be used for a small application configuration file that changes frequently,
and the flash used for alarge log file.

FS2 automatically detects the second flash device (if any) and will also use any SRAM set aside
for thefile system (if FS2_RAM RESERVE iS Set).

10.4.1 Initial Formatting

Thefilesystem must be formatted when it isfirst used. The only exception is when aflash memory
deviceis known to be completely erased, which is the normal condition on receipt from the fac-
tory. If the device contains random data, then formatting is required to avoid the possibility of
some sectors being permanently locked out of use.

Formatting is also required if any of the logical extent parameters are changed, such as changing
the logical sector size or re-partitioning. This would normally happen only during application
devel opment.

The question for application developersis how to code the application so that it formats the file-
system only thefirst timeit isrun. There are several approaches that may be taken:

e A gpecial program that isloaded and run once in the factory, before the application is
loaded. The specia program prepares the filesystem and formats it. The application never
formats; it expects the filesystem to be in a proper state.

The application can perform some sort of consistency check. If it determines an inconsis-
tency, it callsformat. The consistency check could include testing for afile that should
exist, or by checking some sort of "signature" that would be unlikely to occur by chance.

Have the application prompt the end-user, if some form of interaction is possible.

A combination of one or more of the above.

Rely on aflash device being erased. Thiswould be OK for a production run, but not suit-
ableif battery-backed SRAM was being used for part of the filesystem.

Chapter 10: The Flash File System 115

10.4.2 Logical Extents (LX)

The presence of both “devices’ causes aninitial default configuration of two logical extents
(ak.a, LXs) tobeset up. An LX isanalogousto disk partitions used in other operating systems. It
represents a contiguous area of the device set aside for file system operations. An LX contains sec-
torsthat are al the same size, and all contiguoudly addressable within the one device. Thus aflash
device with three different sector sizes would necessitate at least three logical extents, and more if
the same-sized sectors were not adjacent.

Files stored by the file system are comprised of two parts: one part contains the actual application
data, and the other is afixed size area used to contain data controlled by the file systemin order to
track the file status. This second area, called metadata, is analogous to a “ directory entry” of other
operating systems. The metadata consumes one sector per file.

The dataand metadatafor afile are usually stored in the same L X, however they may be separated
for performance reasons. Since the metadata needs to be updated for each write operation, it is
often advantageous to store the metadata in battery-backed SRAM with the bulk of the dataon a
flash device.

10.4.2.1 Specifying Logical Extents
When afileis created, the logical extent(s) to use for the file are defined. This association remains
until the fileis deleted. The default LX for both data and metadata is the flash device (LX #1) if it
exists, otherwisethe RAM LX. If both flash and RAM are available, LX #1 isthe flash device and
LX #2 isthe RAM.

When creating afile, the associated logical extents for the data and the metadata can be changed
from the default by calling £s_set 1x (). Thisfunctions takes two parameters, one to specify
the LX for the metadata and the other to specify the LX for the data. Thereafter, all created files
are associated with the specified LXsuntil anew call to fs_set 1x () ismade. Typicaly, there
will beacall to fs_set 1x () beforeeachfileiscreated, in order to ensure that the new file
gets created with the desired associations. The file creation function, fcreate (), may be used
to specify the LX for the metadata by providing avalid LX number in the high byte of the func-
tion’'s second parameter. Thiswill override any LX number set for the metadatain

fs set 1x().

10.4.2.1.1 Further Partitioning

Theinitial default logical extents can be divided further. This must be done before calling

fs init (). Thefunction to create sub-partitionsiscaled £s setup (). Thisfunction takes
an existing LX number, dividesthat LX according to the given parameters, and returns a newly
created LX number. The original partition still exists, but is smaller because of the division. For
example, in asystem with LX#1 as aflash device of 256K and LX#2 as4K of RAM, an initial call
to fs_setup () might be made to partition LX#1 into two equal sized extents of 128K each.
LX#1 would then be 128K (the first half of the flash) and LX#3 would be 128K (the other half).
L X#2 is untouched.

Having partitioned once, £s_setup () may be called again to perform further subdivision. This
may be done on any of the original or new extents. Each call to £s_setup () in partitioning
mode increases the total number of logical extents. You will need to make surethat FS_ MAX LX
is defined to a high enough value that the LX array size is not exceeded.

116 Dynamic C User’s Manual

While developing an application, you might need to adjust partitioning parameters. If any parame-
ter is changed, FS2 will probably not recognize data written using the previous parameters. This
problem is common to most operating systems. The “solution” isto save any desired files to out-
side the file system before changing its organization; then after the change, force aformat of the
file system.

10.4.3 Logical Sector Size

fs setup () canaso be used to specify non-default logical sector (LS) sizes and other parame-
ters. FS2 allows any logical sector size between 64 and 8192 bytes, providing the LS sizeisan
exact power of 2. Each logical extent, including sub-partitions, can have adifferent LS size. This
allows some performance optimization. Small L Ss are better for aRAM LX, since it minimizes
wasted space without incurring a performance penalty. Larger LSs are better for bulk data such as
logs. If the flash physical sector size (i.e. the actual hardware sector size) islarge, it is better to use
acorrespondingly large LS size. Thisis especially the case for byte-writable devices. Large LSs
should also be used for large L Xs. This minimizes the amount of time needed to initialize the file
system and access large files. Asarule of thumb, there should be no more than 1024 LSsin any
LX. Theideal LS size for RAM (which isthe default) is 128 bytes. 256 or 512 can also be reason-
able values for some applications that have alot of spare RAM.

Sector-writable flash devices require: LS size > PS size. Byte-writable devices, however, may use
any alowable logical sector size, regardless of the physical sector size.

Sample program Samples\FileSystem\FS2DEMO2 illustratesuseof £s_setup (). This
sample also allows you to experiment with various file system settings to obtain the best perfor-
mance.

FS2 has been designed to be extensible in order to work with future flash and other non-volatile
storage devices. Writing and installing custom low-level device driversis beyond the scope of this
document, however see FS2 . LIB and FS_DEV.LIB for hints.

10.5 File Identifiers

There are two ways to identify a particular file in the file system: file numbers and file names.

10.5.1 File Numbers

The file number uniquely identifies afile within alogical extent. File numbers must be unique
within the entire file system. FS2 accepts file numbers in word format:

typedef word FileNumber

The low-order byte specifies the file number and the high-order byte specifies the LX number of
the metadata (1 through number of LXs). If the high-order byte is zero, then a suitable “default”
LX will be located by the file system. The default LX will default to 1, but will be settable viaa
#define, for file creation. For existing files, a high-order byte of zero will cause the file system
to search for the L X that contains the file. This will require no or minimal changes to existing cus-
tomer code.

Only the metadata L X may be specified in the file number. Thisis called a“fully-qualified” file
number (FQFN). The LX number always applies to the file metadata. The data can reside on a dif-
ferent LX, however thisis aways determined by FS2 once the file has been created.

Chapter 10: The Flash File System 117

10.5.2 File Names

There are several functionsin ZSERVER . LIB that can be used to associate a descriptive name
with afile. The file must exist in the flash file system before using the auxiliary functions listed in
the following table. These functions were originally intended for usewithan HTTP or FTP server,
so some of them take a parameter called servermask. To use these functions for file naming
purposes only, this parameter should be SERVER USER.

For a detailed description of these functions please refer to the Dynamic C's TCP/IP User’s Man-
ual, or use<Ctrl-H>in Dynamic C to use the Library Lookup feature.

Table 10-2. Flash File System Auxiliary Functions

Command

Description

sspec_addfsfile

Associate a name with the flash file system file number. The return
valueisan index into an array of structures associated with the
named files.

sspec_readfile

Read a file represented by the return value of
sspec_addfsfile into abuffer.

sspec_getlength

Get the length (number of bytes) of thefile.

sspec _getfileloc

Get the file system file number (1- 255). Cast return value to
FILENUMBER.

sspec_findname

Find the index into the array of structures associated with named
files of the file that has the specified name.

sspec _getfiletype

Get file type. For flash file system files this value will be
SSPEC FSFILE.

sspec findnextfile

Find the next named file in the flash file system, at or following the
specified index, and return the index of thefile.

sSspec_remove

Remove the file name association.

sSspec_save

Savesto the flash file system the array of structures that reference
the named filesin the flash file system.

sspec_restore

Restores the array of structures that reference the named filesin the
flash file system.

118

Dynamic C User’s Manual

10.6 Skeleton Program Using FS2

The following program uses some of the FS2 API. It writes several stringsinto afile, readsthefile
back and prints the contents to the STDIO window.

#use "FS2.LIB"
#define TESTFILE 1

main ()

{

}

File file;
static char buffer[256];

fs_init (0, 0);
if (!fcreate(&file, TESTFILE) && fopen wr (&file, TESTFILE))

{

printf ("error opening TESTFILE %d\n", errno) ;
return -1;

}

fseek (&file, 0, SEEK END) ;
fwrite (&file, "hello",6) ;
fwrite (&file, "12345",6) ;
fwrite (&file, "67890",6) ;
fseek (&file, 0, SEEK SET) ;

while (fread (&file,buffer,6)>0)
printf ("$s\n",buffer) ;

}

fclose (&file) ;

For a more robust program, more error checking should be included. See the sample programsin
the Samples\FILESYSTEM folder for more complex examples, including error checking, for-
matting, partitioning and other new features.

Chapter 10: The Flash File System 119

120 Dynamic C User’s Manual

11. Using Assembly L anguage

This chapter gives the rules for mixing assembly language with Dynamic C code. A reference
guide to the Rabbit Instruction Set is available from the Help menu of Dynamic C and is also doc-
umented in the Rabbit 2000/3000 Microprocessor Instruction Reference Manual.

11.1 Mixing Assembly and C

Dynamic C permits assembly language statements to be embedded in C functions and/or entire
functions to be written in assembly language. C statements may also be embedded in assembly
code. C-language variables may be accessed by the assembly code.

11.1.1 Embedded Assembly Syntax

Usethe #asm and #endasm directives to place assembly code in Dynamic C programs. For
example, the following function will add two 64-bit numbers together. The same program could be
writtenin C, but it would be many times slower because C does not provide an add-with-carry
operation (adc).

void eightadd(char *chl, char *ch2) {

#asm
1d hl, (sp+@SP+ch2) ; Qet source pointer
ex de,hl ; saveinregister DE
1d hl, (sp+@SP+chl) ; get destination pointer
1d b,s ; humber of bytes
Xor a ; Clear carry
loop:
1d a, (de) ; ch2 source byte
adc a, (hl) ; add chi byte
14 (hl) ,a ; Storeresultto chi address
inc hl ; increment chl pointer
inc de ; increment ch2 pointer
djnz loop ; do 8 bytes
; chl now pointsto 64 bit result

#endasm

}

The keywords debug and nodebug can be placed on the same line as #asm. Assembly code
blocks are nodebug by default. This saves space and unnecessary calls to the debugger kernel.

All blocks of assembly code within a C function are assembled in nodebug mode. The only excep-
tion to thisiswhen ablock of assembly code is explicitly marked with debug. Any blocks
marked debug will be assembled in debug mode even if the enclosing C function is marked
nodebug.

Chapter 11: Using Assembly L anguage 121

11.1.2 Embedded C Syntax
A C statement may be placed within assembly code by placing a“c” in column 1. Note that which-
ever registers are used in the embedded C statement will be changed.

#asm

InitValues::

¢ start time = 0;

c counter = 256;
ret

#endasm

11.1.3 Setting Breakpoints in Assembly
There are two ways to enable breakpoint support in ablock of assembly code.

One way isto explicitly mark the assembly block as debug (the default condition isnodebug).
This causes the insertion of “rst 0x28” instructions between each assembly instruction. These rst
0x28 instructions may cause jump relative (i.e., j r) instructions to go out of range, but this prob-
lem can be solved by changing the relative jump (j r) to an absolute jump (3 p).

The other way to enable breakpoint support in ablock of assembly codeisto add a C statement
before the desired assembly instruction. Note that the assembly code must be contained in a debug
C function in order to enable C code debugging. Below is an example.

debug dummyfunction() {
#asm
function::

label:
c ; // addline of C codeto permit a breakpoint before jump relative
jr nc, label

ret
#endasm

}

NOTE: Single stepping through assembly code is always allowed if the assembly
window is open.

122 Dynamic C User’s Manual

11.2 Assembler and Preprocessor

The assembler parses most C language constant expressions. A C language constant expression is one
whose value is known at compile time. All operators except the following are supported:

Table 11-1. Operators Not Supported By The Assembler

Operator Symbol |Operator Description
?: conditional
[1] array index
dot
-> pointsto
* dereference

11.2.1 Comments
C-style comments are allowed in embedded assembly code. The assembler will ignore comments
beginning with

; — text from the semicolon to the end of lineisignored.

// — text from the double forward slashes to the end of lineisignored.

/* ... */ — text between slash-asterisk and asterisk-dash isignored.

11.2.2 Defining Constants

Constants may be created and defined in assembly code with the assembly language keyword db
(define byte). db should be followed immediately by numerical values and strings separated by
commeas. For example, each of the following lines al define the string "aBC."

db 'Aa', 'B', 'C!
db "ABC"
db 0x41, 0x42, 0x43

The numerical values and charactersin strings are used to initialize sequential byte locations.

If separate |1& D space is enabled, assembly constants should either be put in their own assembly
block with the const keyword or be donein C.

#asm const
myrootconstants: :
db 0x40, 0x41, 0x42

#endasm

or

const char myrootconstants([] = {‘\x40’, ‘\x41’, ‘\x42’}

Chapter 11: Using Assembly L anguage 123

If separate |& D space is enabled, db places bytesin the base segment of the data space when itis
used with const. If the const keyword is absent, i.e.,

#asm
myrootconstants: :
db 0x40, 0x41, 0x42

#endasm

the bytes are placed somewhere in the instruction space. If separate 1& D space is disabled (the
default condition), the bytes are placed in the base segment (aka, root segment) interspersed with
code.

Therefore, so that data will be treated as data when referenced in assembly code, the const key-
word must be used when separate 1& D space is enabled. For example, this won't work correctly
without const:

#asm const
label: :
db 0x5a
#endasm
main () {
#asm
1d a, (label) // 1ld 0x5a to reg a
#endasm

}

The assembly language keyword dw defines 16-bit words, least significant byte first. The keyword
dw should be followed immediately by numerical values:

dw 0x0123, OxXFFFF, Xyz

This example defines three constants. The first two constants are literals, and the third constant is
the address of variable xy z.

The numerical valuesinitialize sequential word locations, starting at the current code address.

124 Dynamic C User’s Manual

11.2.3 Multiline Macros

The Dynamic C preprocessor has a special feature to allow multiline macrosin assembly code.
The preprocessor expands macros before the assembler parses any text. Putting a $\ at the end of
alineinserts anew linein the text. This only works in assembly code. Labels and comments are
not allowed in multiline macros.

#define SAVEFLAG S\
1d a,b s\
push af s\
pop bc

#asm

1d b, 0x32
SAVEFLAG

#endasm

11.2.4 Labels

A label is aname followed by one or two colons. A label followed by asingle colonislocal,
whereas one followed by two colonsis global. A local label is not visible to the code out of the
current embedded assembly segment (i.e., code before the #asm or after the #endasm directive).

Unlessit isfollowed immediately by the assembly language keyword equ, the label identifies the
current code segment address. If the label isfollowed by equ, the label “equates’ to the value of
the expression after the keyword equ.

Because C preprocessor macros are expanded in embedded assembly code, Z-World recommends
that preprocessor macros be used instead of equ whenever possible.

11.2.5 Special Symbols
Thistable lists special symbolsthat can be used in an assembly language expression.

Table 11-2. Special Assembly Language Symbols

Symbol Description

Indicates the amount of stack space (in bytes) used for stack-

@sP based variables. This does not include arguments.
Constant for the current code location. For example:
@pC 1d hl, @PC

|oads the code address of the instruction. Id hl,@PC+3 loads
the address after the instruction sinceit isa 3 byte instruction.

Evaluates the offset from the frame reference point to the
@RETVAL stack space reserved for the st ruct function returns. See
Section 11.4.1.1 on page 129 for more information.

Determines the next reference address of avariable plusits

@LENGTH
Slze.

Chapter 11: Using Assembly L anguage 125

11.2.6 C Variables

C variable names may be used in assembly language. What a variable name represents (the value
associated with the name) depends on the variable. For aglobal or static local variable, the name
represents the address of the variable in root memory. For an auto variable or formal argument,
the variable name represents its own offset from the frame reference point.

The following list of processor register names are reserved and may not be used as C variable
namesin assembly: A, B, C,D, E, F, H, L, AF, HL, DE, BC, IX, IY, SP, PC, XPC, IR, IR and EIR.
Both upper and lower case instances are reserved.

The name of a structure element represents the offset of the element from the beginning of the
structure. In the following structure, for example,

struct s {
int x;
int y;
int z;

b

the embedded assembly expression s+x evaluatesto 0, s+y evaluatesto 2, and s+z evaluates to
4, regardless of where structure s may be.

In nested structures, offsets can be composite, as shown here.

struct s {

int x; // s+x=0

struct af{ // s+a=2
int b; // atb=0s+a+b=2
int c¢; // at+tc=2s+a+c=4

b

b

126 Dynamic C User’s Manual

11.3 Stand-Alone Assembly Code

A stand-alone assembly function is one that is defined outside the context of a C language func-
tion.

A stand-alone assembly function has no auto variables and no formal parameters. It can, how-
ever, have arguments passed to it by the calling function. When a program calls afunction from C,
it putsthefirst argument into aprimary register. If the first argument has one or two bytes (int,
unsigned int, char, pointer),theprimary register isHL (with register H containing
the most significant byte). If the first argument has four bytes (1ong, unsigned long,
float), the primary register is BC:DE (with register B containing the most significant byte).
Assembly-language code can use the first argument very efficiently. Only the first argument is put
into the primary register, while all arguments—including the first, pushed last—are pushed on the
stack.

C function values return in the primary register, if they have four or fewer bytes, either in HL or
BC.DE.

Assembly language allows assumptions to be made about arguments passed on the stack, and auto
variables can be defined by reserving locations on the stack for them. However, the offsets of such
implicit arguments and variables must be kept track of. If afunction expects arguments or needsto
use stack-based variables, Z-World recommends using the embedded assembly techniques
described in the next section.

11.3.1 Stand-Alone Assembly Code in Extended Memory

Stand-alone assembly functions may be placed in extended memory by adding the xmem keyword
asaqualifier to #asm, as shown below. Care needs be taken so that branch instructions do not
jump beyond the current xmem window. To help prevent such bad jumps, the compiler limits
xmem assembly blocks to 4096 bytes. Code that branches to other assembly blocks in xmem
should awaysuse1jp or 1call.

#asm xmem
main: :

lcall fcn in xmem
lret
#endasm

#asm xmem
fcn in xmem: :
lret

#endasm

Chapter 11: Using Assembly L anguage 127

11.3.2 Example of Stand-Alone Assembly Code
The stand-alone assembly function £oo () can be called from a Dynamic C function.

int foo (int); // A function prototype can be declared for stand-alone
// assembly functions, which will cause the compiler
// to perform the appropriate type-checking.
main () {
int 1i,7;
=1l g
j=foo (i) ;

}

#asm
foo::

1d hl,>2 // Thereturn value expected by main () isput
ret // inHL just before foo () returns
#endasm

The entire program can be written in assembly.

#asm
main: :

ret
#endasm

11.4 Embedded Assembly Code

When embedded in a C function, assembly code can access arguments and local variables (either
auto or static) by name. Furthermore, the assembly code does not need to manipulate the
stack because the functions prolog and epilog aready do so.

11.4.1 The Stack Frame

The purpose and structure of a stack frame should be understood before writing embedded assem-
bly code. A stack frame is a run-time structure on the stack that provides the storage for all auto

variables, function arguments and the return address for a particular function. If the IX register is

used for a frame reference pointer, the previous value of 1X isaso kept in the stack frame.

Figure 11.1 shows the general appearance of a stack frame.

128 Dynamic C User’s Manual

Stack Frame

= Last Auto Variable -
o
Optional — °
| , -
— First Auto Variable —
< Frame Reference
Point

Optional — - IX Register -

Return Address

First Parameter
— (pushed last) -
. L o i
Optional .

- o -
— Last Parameter - (stack grows down)
(pushed first)

Lower Addresses

; | Structure Return
Optional B Space _ Higher Addresses

Figure 11.1. General Appearance of Assembly Code Stack Frame

The return address is always necessary. The presence of auto variables depends on the function
definition. The presence of arguments and structure return space depends on the function call.
(The stack pointer may actually point lower than the indicated mark temporarily because of tem-
porary information pushed on the stack.)

The shaded areain the stack frame is the stack storage alocated for aut o variables. The assem-
bler symbol @sP represents the size of this area.

11.4.1.1 The Frame Reference Point

The frame reference point is alocation in the stack frame that immediately follows the function’s
return address. The I X register may be used as a pointer to this location by putting the keyword
useix before the function, or the request can be specified globally by the compiler directive
#useix. Thedefaultis #nouseix. If the IX register is used as a frame reference pointer, its pre-
vious valueis pushed on the stack after the function’s return address. The frame reference point
moves to encompass the saved I X value.

Chapter 11: Using Assembly L anguage 129

11.4.2 Embedded Assembly Example
The purpose of the following sample program, asm1l . c, is to show the different ways to access
stack-based variables from assembly code.

void func(char ch, int i, long 1lg);

main () {

}

char ch;
int 1i;
long 1lg;

ch = 0x11;
i = 0x2233;
lg = 0x44556677L;

func(ch,i, 1lqg);

void func(char ch, int i, long 1g){

X

auto int x;
auto int z;

0x8888;
0x9999;

zZ

#asm

// Thisisequivalent to the C statement: x = 0x8888
1d hl, 0x8888
1d (sp+@SP+x), hl

// Thisisequivalent to the C statement: z = 0x9999
1d hl, 0x9999
1d (sp+@SP+z), hl

// @SP+i givesthe offset of i from the stack frame on entry.
// Onthe Rabbit, thisis how HL isloaded with the valuein i.
1d hl, (sp+@SP+1i)

// Thisworksif func () isuseix; however, if the IX register
// hasbeen changed by the user code, this code will fail.
1d hl, (ix+1)

// This method works in either case because the assembler

// adjusts the constant @SP, so changing the function to

// nouseix with the keyword nouseix, or the compiler

// directive #nouseix will not break the code. But, if SP has
// been changed by user code, (e.g. apush) it won't work.

1d hl, (sp+@SP+1g+2)

1d b,h
1d c,L
1d hl, (sp+@SP+1g)
ex de, hl
#endasm

}

130

Dynamic C User’s Manual

11.4.2.1 The Disassembled Code Window

A program may be debugged at the assembly level by opening the “ Disassembled Code” window.
Single stepping and breakpoints are supported in this window. When the “ Disassembled Code”
window is open, single stepping occurs instruction by instruction rather than statement by state-
ment. The figure below shows the “ Disassembled Code” window for the example code, asm1 . c.

=% Default - Dynamic C Dist. 8.00B eta?2

File Edit Comple Bun

Inzpect

Optione Window Help

O [= e 5 [AT s R

Figure 11.2. Disassembled Code Windows

Address | Machine Code | Opcode Cycles
leds =] EXH 2
le=0a 2100040 14 hl,0=x0000 &
le0d CD7E1E call sspixffn 12
lelin EF rst Q=25 g
[aswl.c(7)]: ch = 0Ox11;
a,0=x11
1=13 3Z9EC3 14 [OxC39E) ,a 10
leld EF rst Q=25 g
[aswl.c(8)]: 1 = 0Ox2233;
1=17 213322 14 hl,0x2233 &
lela 229CC3 14 [0xC39C) k1l 13
leid EF rst Q=25 g
[aswl.c(9)]: lg = O0x44556677L;
l=le 117766 14 de, 0x&677 &
l=21 015544 14 be, 0x4455 &
l=24 ED5393C3 14 [0xZC398) ,de 15
1=25 ED4394C3 14 [0xC394) b 15
leic EF rst Q=25 g
[aswl.c(10)] : funeich,i, lqg):;
lez2d EDSESSCS 14 de, (0xC328) 13
le31 ED4ESQLCS 14 beo, (0xC394) 13
1e35 Ch push he 10
le36 b5 push de 10
1=37 ZA9CC3 14 hl, (OxC39C) 11
le3a ES push hl 10
le3b ZA9ECT 14 hl, (OxC39E) 11
lede 2600 14 h,0x00 4
1le40 ES push hl 10
le=41 CDEO1E call func 1z
ledd oo nop 2
le=45 2705 add sp,0x058 4

Y

Chapter 11: Using Assembly L anguage

131

11.4.2.2 Instruction Cycle Time

The “Disassembled Code” window shows the memory address on the far |eft, followed by the
code bytes for the instruction at the address, followed by the mnemonics for the instruction. The
last column shows the number of cycles for the instruction, assuming no wait states. The total
cycletimefor ablock of instructions will be shown at the lowest row in the block in the cycle-time
column, if that block is selected and highlighted with the mouse. The total assumes one execution
per instruction, so the user must take looping and branching into consideration when evaluating
execution times.

11.4.3 Local Variable Access
Accessing static local variablesis simple because the symbol evaluates to the address directly. The
following code shows, for example, how to load static variable y into HL.

1d hl, (y) ; load hl with contentsof v

11.4.3.1 Using the IX Register

Access to stack-based local variablesisfairly inefficient. The efficiency improvesif IX isused as
aframe pointer. The arguments will have slightly different offsets because of the additional two
bytes for the saved I X register value.

Now, access to stack variablesis easier. Consider, for example, how to load ch into register A.

1d a, (ix+ch) ; a ¢« ch

The I X+offset load instruction takes 9 clock cycles and opcode is three bytes. If the program needs
to load a four-byte variable such as 1g, the | X+offset instructions are as follows.

1d hl, (ix+1g+2) ; load LSB of 1g

1d b,h ; longsarenormally stored in BC:DE
1ld ¢, L

1d hl, (ix+19) ; load MSB of 1g

ex de,hl

Thistakes atotal of 24 cycles.

The offset from | X isasigned 8-hit integer. To use | X+offset, the variable must be within +127 or
—128 bytes of the frame reference point. The @sP method is the only method for accessing vari-
ables out of thisrange. The @sP symbol may be used even if 1X isthe frame reference pointer.

132 Dynamic C User’s Manual

11.4.3.2 Functions in Extended Memory

If the xmem keyword is present, Dynamic C compiles the function to extended memory. Otherwise,
Dynamic C determines where to compile the function. Functions compiled to extended memory have a 3-
byte return address instead of a 2-byte return address.

Because the compiler maintains the offsets automatically, thereis no need to worry about the
change of offsets. The @sP approach discussed previously as a means of accessing stack-based
variables works whether a function is compiled to extended memory or not, as long as the C-lan-
guage names of local variables and arguments are used.

A function compiled to extended memory can use IX as aframe reference pointer aswell. This
adds an additional two bytes to argument offsets because of the saved I X value. Again, the I X +off-
set approach discussed previously can be used because the compiler maintains the offsets automat-
ically.

11.5 C Calling Assembly

Dynamic C does not assume that registers are preserved in function calls. In other words, the func-
tion being called need not save and restore registers.

11.5.1 Passing Parameters

When a program calls afunction from C, it puts the first argument into HL (if it has one or two
bytes) with register H containing the most significant byte. If the first argument has four bytes, it
goesin BC:DE (with register B containing the most significant byte). Only the first argument is
put into the primary register, while all arguments—including the first, pushed last—are pushed on
the stack.

11.5.2 Location of Return Results

If a C-callable assembly function is expected to return aresult (of primitive type), the function
must pass the result in the “primary register.” If theresultisan int, unsigned int, char,
or apointer, return the result in HL (register H contains the most significant byte). If theresultisa
long, unsigned long, or float, return theresult in BCDE (register B contains the most
significant byte). A C function containing embedded assembly code may, of course, useaC
return Statement to return avalue. A stand-alone assembly routine, however, must load the pri-
mary register with the return value before the ret instruction.

Chapter 11: Using Assembly L anguage 133

11.5.2.1 Returning a Structure

In contrast, if afunction returns a structure (of any size), the calling function reserves space on the
stack for the return value before pushing the last argument (if any). Dynamic C functions contain-
ing embedded assembly code may use a C return statement to return avalue. A stand-alone
assembly routine, however, must store the return value in the structure return space on the stack

before returning.

Inline assembly code may access the stack area reserved for structure return values by the symbol
@RETVAL, which is an offset from the frame reference point.

The following code shows how to clear field £1 of a structure (as areturned value) of type
struct s.

typedef struct ss {

int £0; // firstfied
char f1; // second field
} XY Zz;j

Xyz my struct;
my struct = func();

xyz func () {

#asm
Xor a ; Clear register A.
1d hl,@SP+@RETVAL+ss+f1l ; hl « theoffset from SPto the
; flfield of the returned structure.
add hl,sp ; hl now pointsto f1.
1d (hl),a ; load a(now 0) to f1.
#endasm

}

It iscrucial that @sP be added to @RETVAL because @RETVAL is an offset from the frame refer-
ence point, not from the current SP.

134 Dynamic C User’s Manual

11.6 Assembly Calling C

A program may call a C function from assembly code. To make this happen, set up part of the
stack frame prior to the call and “unwind” the stack after the call. The procedure to set up the stack

frame is described here.

1

Save al registersthat the calling function wants to preserve. A called C function may change
the value of any register. (Pushing registers values on the stack is a good way to save their val-

ues.)

2. If thefunctionreturnisa struct, reserve space on the stack for the returned structure. Most

o g~ w

functions do not return structures.
Compute and push the last argument, if any.
Compute and push the second to last argument, if any.
Continue to push arguments, if there are more.

Compute and push the first argument, if any. Also load the first argument into the primary reg-
ister (HL for int, unsigned int, char, and pointers, or BCDE for 1ong,
unsigned long, and float) if itisof aprimitivetype.

7. lIssuethe call instruction.

The caller must unwind the stack after the function returns.
1. Recover the stack storage allocated to arguments. With no more than 6 bytes of arguments, the

program may pop data (2 bytes at time) from the stack. Otherwise, it is more efficient to com-
pute anew SP instead. The following code demonstrates how to unwind arguments totaling
36 bytes of stack storage.

; Notethat HL is changed by this code!
Useex de, hl tosave HL if HL hasthe return value

!

;;:ex de,hl ; save HL (if required)
1d hl,36 ; Want to pop 36 bytes
add hl,sp ; compute new SP value
1d sp,hl ; put value back to SP

;;:;ex de,hl ; restore HL (if required)

2. If thefunction returnsastruct, unload the returned structure.
3. Restoreregisters previously saved. Pop them off if they were stored on the stack.
4, If the function return was not a st ruct, obtain the returned value from HL or BCDE.

Chapter 11: Using Assembly L anguage 135

11.7 Interrupt Routines in Assembly

Interrupt Service Routines (ISRs) may be written in Dynamic C (declared with the keyword
interrupt). But since an assembly routine may be more efficient than the equivalent C func-
tion, assembly is more suitable for an ISR. Even if the execution time of an ISR is not critical, the
latency of one ISR may affect the latency of other ISRs.

Either stand-alone assembly code or embedded assembly code may be used for ISRs. The benefit
of embedding assembly code in a C-language ISR is that there is no need to worry about saving
and restoring registers or reenabling interrupts. The drawback is that the C interrupt function does
save al registers, which takes some amount of time. A stand-alone assembly routine needs to save
and restore only the registers it uses.

11.7.1 Steps Followed by an ISR

The CPU loads the Interrupt Priority register (1P) with the priority of the interrupt before the ISR
iscalled. This effectively turns off interrupts that are of the same or lower priority. Generaly, the
ISR performs the following actions:

1. Saveall registersthat will be used, i.e. push them on the stack. Interrupt routines writtenin C
save all registers automatically. Stand-alone assembly routines must push the registers explic-
itly.

2. Determine the cause of the interrupt. Some devices map multiple causes to the same interrupt
vector. An interrupt handler must determine what actually caused the interrupt.

3. Remove the cause of the interrupt.

4. If aninterrupt has more than one possible cause, check for al the causes and remove all the
causes at the same time.

5. When finished, restore registers saved on the stack. Naturally, this code must match the code
that saved the registers. Interrupt routines written in C perform this automatically. Stand-alone
assembly routines must pop the registers explicitly.

6. Restoretheinterrupt priority level so that other interrupts can get the attention of the CPU.
ISRswrittenin C restore the interrupt priority level automatically when the function returns.
However, stand-alone assembly |SRs must restore the interrupt priority level explicitly by call-
ing ipres.

Theinterrupt priority level must be restored immediately before the return instructions ret or
reti. If the interrupts are enabled earlier, the system can stack up the interrupts. This may or
may not be acceptable because there is the potential to overflow the stack.

7. Return. There are three types of interrupt returns: ret, reti, and retn.

Thevaluein IPis shown in the status bar at the bottom of the Dynamic C window. If a breakpoint
is encountered, the IP value shown on the status bar reflects the saved context of I[P from just
before the breakpoint.

136 Dynamic C User’s Manual

11.7.2 Modifying Interrupt Vectors

Prior to Dynamic C 7.30, interrupt vector code could be modified directly. By reading the internal
and external interrupt registers, 1R and EIR, the location of the vector could be calculated and
then written to because it was located in RAM. This method will not work if separate 1&D spaceis
enabled because the vectors must be located in flash. To accommodate separate 1& D space, the
way interrupt vectors are set up and modified has changed dightly. Please see the Rabbit 3000
Designer’s Handbook for detailed information about how the interrupt vectors are set up. This sec-
tion will discuss how to modify the interrupt vectors after they have been set up.

For backwards compatibility, “modifiable” vector relays are provided in RAM. In C, they can be
accessed through the SetVectIntern and SetVectExtern functions. In assembly, they are accessed
through INTVEC BASE + <vector offset> or XINTVEC BASE + <vector offset>. The values for
<vector offset> are definedin sysio. 1ib, and arelisted here for convenience.

Table 11-3. Internal Interrupts and their offset from INTVEC BASE

PERIODIC OFS SERA_OFS
RST10_OFS SERB_OFS
RST18_ OFS SERC_OFS
RST20_OFS SERD_OFS
RST28_ OFS SERE_OFS
RST38_OFS SERF_OFS
SLAVE_OFS QUAD OFS
TIMERA OFS INPUTCAP OFS
TIMERB_OFS

Table 11-4. External Interrupts and their offset from XINTVEC BASE

EXTO_OFS

EXT1 OFS

Chapter 11: Using Assembly L anguage 137

The following example from RS232 . LIB illustrates the new |& D space compatible way of mod-
ifying interrupt vectors.

The following code fragment to set up the interrupt service routine for the periodic interrupt from
Dynamic C 7.25 is not compatible with separate 1& D space:

#asm xmem

;*** Old method ***
1d a,iir ; get the offset of interrupt table
1d h,a
1d 1,0x00
1d iy,hl
1d (iy),0c3h ; jpinstruction entry
inc iy
1d hl,periodic isr ; Set service routine
1d (iy),hl
#endasm

The following code fragment shows an |& D space compatible method for setting up the ISR for
the periodic interrupt in Dynamic C 7.30:

#asm xmem

; *** New method ***
1d a, 0xc3 ; jp instruction entry
1d hl, periodic_isr ; Set service routine
1d (INTVEC BASE+PERIODIC OFS), a ;writetotheinterrupt table
1d (INTVEC_BASE+PERIODIC OFS+1), hl
#endasm

When separate 1& D space is enabled, INTVEC BASE pointsto a proxy interrupt vector tablein
RAM that is modifiable. The code above assumes that the actual interrupt vector table pointed to
by the lIR is set up to point to the proxy vector. When separate |& D space is disabled,

INTVEC_ BASE and the lIR point to the same location. The code above is an example only, the
default configuration for the periodic interrupt is not modifiable.

138 Dynamic C User’s Manual

The following example from RS232 . LIB illustrates the new |& D space compatible way of mod-
ifying interrupt vectors.

The following function serAclose () from Dynamic C 7.25, is not compatible with separate
& D space:

#asm xmem

serAclose::
1d a,iir
1d h,a
1d 1, 0xco0
1d a, 0xc9 ; retinfirst byte
ipset 1
1d (hl) ,a
1d a, 0x00 ; disableinterrupts for port
1d (SACRShadow), a
ioi 1d (SACR), a
ipres
lret

; hl=spaisr start, de={iir,0xe0}

#endasm

Thisversion of serAclose () in Dynamic C 7.30 is compatible with separate |& D space:

#asm xmem

serAclose::
1d a, 0xc9
ipset 1
1d (INTVEC BASE + SERA OFS), a ; retinfirstbyteof spaisr start
14 a, 0x00 ; disableinterrupts for port

1d (SACRShadow) ,a
ioi 1d (SACR),a

ipres

lret

#endasm

Chapter 11: Using Assembly L anguage 139

If separate |& D space is enabled, using the modifiable interrupt vector proxy in RAM adds about
80 clock cycles of overhead to the execution time of the ISR. To avoid that, the preferred way to
Set up interrupt vectorsis to use the new keyword, interrupt vector, to set up the vector
location at compile time.

When compiling with separate 1& D space, modify applicationsthat use SetvectIntern (),
SetVectExtern2000 () Or SetVectExtern3000 () touse interrupt vector
instead.

The following code, from /Samples/TIMERB/TIMER B.C, illustrates the change that should
be made.

void main ()

{

#if SEPARATE INST DATA
interrupt vector timerb intvec timerb isr;

#else
SetVectIntern (0x0B, timerb isr); // setup ISR

#endif

}

If interrupt vector isused multiple timesfor the same interrupt vector, the last one
encountered by the compiler will override all previous ones.

interrupt vector issyntactic sugar for using the origin directives and assembly code. For
example, theline:

interrupt vector timerb intvec timerb isr;

isequivalent to:
#rcodorg timerb intvec apply

#asm
jp timerb isr
#endasm

#rcodorg rootcode resume

140 Dynamic C User’s Manual

The following table lists the defined interrupt vector names that may be used with
interrupt vector, aong with their ISRs.

Table 11-5. Interrupt Vector and ISR Names

Interrupt Vector Name

ISR Name

Default Condition

periodic_intvec

periodic_isr

Fast and nonmodifiable

rstl0_intvec

User defined name

User defined

rstl8_ intvec

rst20_intvec

rst28 intvec

These interrupt vectors and their 1SRs should never be altered
by the user because they are reserved for the debug kernel.

rst38_ intvec

User defined name

User defined

slave intvec

slave isr

Fast and nonmodifiable

timera intvec

User defined name

User defined

timerb intvec

User defined name

User defined

inputcap intvec

User defined name

quad_intvec

gd _isr

ext0_ intvec

User defined name

extl intvec

User defined name

DevMateSerialISR |Fast and nonmodifiable
sera_intvec® : :
spa_isr User defined
serb intvec spb_isr
serc_intvec spc_isr
serd_intvec spd_isr
sere_intvec spe isr
serf intvec spf_isr User defined

a. Please note that this ISR shares the sameinterrupt vector asDevMateSerialISR. Using
spa_ isr precludes Dynamic C from communicating with the target.

Chapter 11: Using Assembly L anguage

141

11.8 Common Problems

Unbalanced stack. Ensure the stack is “baanced” when aroutine returns. In other words, the SP
must be same on exit as it was on entry. From the caller’s point of view, the SP register must be
identical before and after the call instruction.

Using the @sP approach after pushing temporary information on the stack. The @sp
approach for inline assembly code assumes that SP points to the low boundary of the stack frame.
This might not be the case if the routine pushes temporary information onto the stack. The space
taken by temporary information on the stack must be compensated for.

The following code illustrates the concept.

; SPtill points to the low boundary of the call frame
push hl ; SaveHL

; SP now two bytes below the stack frame!

1d hl, @SP+x+2 ; Add 2 to compensate for altered SP
add hl,sp ; compute as normal

1d a, (hl) ; get the content

pop hl ; restore HL

; SPagain points to the low boundary of the call frame

Registersnot preserved. In Dynamic C, the caller is responsible for saving and restoring all reg-
isters. An assembly routine that calls a C function must assume that all registers will be changed.

Unpreserved registersin interrupt routines cause unpredictable and unrepeatable problems. In con-
trast to normal functions, interrupt functions are responsible for saving and restoring all registers
themselves.

142 Dynamic C User’s Manual

12. Keywords

A keyword isareserved word in C that represents a basic C construct. It cannot be used for any
other purpose.

abandon

Used in single-user cofunctions, abandon{ } must be the first statement in the body of the
cofunction. The statements inside the curly braces will be executed only if the cofunction isforc-
ibly abandoned and if acall to 1oophead () ismadein main () before caling the single-user
cofunction. See Samples\Cofunc\Cofaband. ¢ for an example of abandonment handling.

abort

Jumps out of a costatement.

for (; ;) {
costate {

if(condition) abort;

Chapter 12: Keywords 143

align

Used in assembly blocks, the a1 ign keyword outputs a padding of nops so that the next instruc-
tion to be compiled is placed at the boundary based on VALUE.

#asm
align <VALUE>
#endasm
VALUE can have any (positive) integer expression or the special operands even and odd. The

operand even alignstheinstruction on an even address, and odd on an odd address. Integer
expressions align on multiples of the value of the expression.

Some examples:

align odd ; Thisaignson the next odd address

align 2 ; Alignson a 16-bit (2-byte) boundary

align 4 ; Alignson a 32-bit (4-byte) boundary

align 100h ; Alignsthe code to the next addressthat isevenly divisible by 0x100
align sizeof (int)+4 ; Complex expression, involving sizeof andinteger constant

Note that integer expressions are treated the same way as operand expressions for other asm oper-
ators, so variable labels are resolved to their addresses, not their values.

always on

The costatement is always active. (Unnamed costatements are always on.)

anymem

Allows the compiler to determine in which part of memory afunction will be placed.

anymem int func () {

}

#memmap anymem
#asm anymem

#endasm

144 Dynamic C User’s Manual

asm

Use in Dynamic C code to insert one assembly language instruction. If more than one assembly
instruction is desired use the compiler directive #asm instead.

int func() {
int x,v,2;

asm 1d hl,0x3333

auto

A functions'slocal variable islocated on the system stack and exists as long as the function call
does.

int func () {
auto float x;

bbram

Identifies a variable to be placed into a second data area reserved for battery-backed RAM with
boards with more than one RAM device. Generally, the battery-backed RAM is attached to CS1
due to the low-power requirements. In the case of areset or power failure, the value of abbram
variable is preserved, but not atomically like with protected variables. No software check is
possible to ensure that the RAM is battery-backed. This requirement must be enforced by the user.

If interested, please see the Rabbit 3000 Microprocessor Designer’ s Handbook for information on
how the second data areais reserved.

On boards with asingle RAM, bbram variables will be treated the same as normal root variables.
No warning will be given; the bbram keyword is simply ignored when compiling to boardswith a
single RAM.

Chapter 12: Keywords 145

break

Jumps out of aloop, if, or case statement.
while(expression) {
if% condition) break;
iwitch(expression) {
case 3:

break;

(o]

Use in assembly block to insert one Dynamic C instruction.

#asm

InitValues::

¢ start time = 0;

c counter = 256;
1d hl, 0xa0;
ret

#endasm

case

Identifies the next casein a switch statement.

switch(expression) {
case constant:

case constant:

case constant:

146

Dynamic C User’s Manual

char

Declaresavariable or array element as an unsigned 8-bit character.

char ¢, x, *string = "hello";
int 1i;
¢ = (char)i; // type casting operator

Chapter 12: Keywords 147

const

This keyword declares that a value will be stored in flash, thus making it unavailable for modifica-
tion. const isatype qualifier and may be used with any static or global type specifier (char,
int, struct, etc.). The const qualifier appears before the type unless it is modifying a
pointer. When modifying a pointer, the const keyword appears after the “ *.”

In each of the following examples, if const was missing the compiler would generate atrivial
warning. Warnings for const can be turned off by changing the compiler options to report seri-
ouswarnings only. Note that const is not currently permitted with return types, automatic locals
or parameters and does not change the default storage class for cofunctions.

Example 1:

// ptr_to_x isaconstant pointer to an integer
int x;
int * const cptr to x = &x;

Example 2:
// cptr_to i isaconstant pointer to a constant integer
const int 1 = 3;
const int * const cptr to i = &i;
Example 3:

// axisaconstant 2 dimensional integer array
const int ax[2][2] = {{2,3}, {1.,2}};

Example 4:

struct rec {
int a;
char b[10];
[
// zedisaconstant struct
const struct rec zed = {5, “abc”};

Example 5:

// cptrisaconstant pointer to an integer
typedef int * ptr to int;

const ptr to int cptr = &i;

// thisdeclaration is equivalent to the previous one
int * const cptr = &i;

148 Dynamic C User’s Manual

continue

Skip to the next iteration of aloop.

while(expression) {
if (nothing to do) continue;

costate

Indicates the beginning of a costatement.

costate [name [state]] {

}

Name can be absent. If nameispresent, state canbealways onorinit on. If stateis
absent, the costatement isiinitially off.

debug

Indicates afunction isto be compiled in debug mode. This is the default case for Dynamic C func-
tions with the exception of pure assembly language functions.

Library functions compiled in debug mode can be single stepped into, and breakpoints can be set
in them.

debug int func () {

}

#asm debug

#endasm

Chapter 12: Keywords 149

default

Identifies the default case in a switch statement. The default case is optional. It executes only
when the switch expression does not match any other case.

switch(expression) {
case constl:

case const2:

default:

do

Indicates the beginning of ado loop. A do loops tests at the end and executes at |east once.
do

while(expression) ;

The statement must have a semicolon at the end.

else
The false branch of an i £ statement.
if (expression)
statement // statement executeswhen expression istrue
else
statement // statment executeswhen expressionisfase

150 Dynamic C User’s Manual

enum

Defines alist of named integer constants:

enum foo ({

white, // default is O for thefirst item
black, // will bel
brown, // will be2
spotted = -2, // will be-2
striped, // will be-3

}i
Anenum canbedeclaredinloca or global scope. Thetag foo isoptional; but it allows further
declarations:

enum foo rabbits;

To see a colorful sample of the enum keyword, run /samples/enum. c.

extern

Indicates that a variable is defined in the BIOS, later in alibrary file, or in another library file. Its
main use is in module headers.

/*** BeginHeader ..., var */
extern int var;
/*** EndHeader */
int wvar;

Chapter 12: Keywords 151

firsttime

firsttime infront of afunction body declaresthe function to have an implicit *CoData
parameter as the first parameter. This parameter should not be specified in the call or the proto-
type, but only in the function body parameter list. The compiler generates the code to automati-
cally passthe pointer to the CoDat a structure associated with the costatement from which the call
ismade. A firstime function can only be called from inside of a costatement, cofunction, or
dlice statement. The DelayTick function from COSTATE . LIB below is an example of a
firsttime function.

firsttime nodebug int DelayTicks (CoData *pfb, unsigned int ticks)

{

if (ticks==0) return 1;
if (pfb->firsttime) {
fb->firsttime=0;

/* savecurrent ticker */
fb->content.ul=(unsigned long)TICK TIMER;

}

else if (TICK TIMER - pfb->content.ul >= ticks)
return 1;

return O0;

float

Declares variables, function return values, or arrays, as 32-bit IEEE floating point.

int func () {
float x, y, *p;
float PI = 3.14159265;

}

float func(float par) {

}

152 Dynamic C User’s Manual

for

Indicates the beginning of a for loop. A for loop has an initializing expression, alimiting
expression, and a stepping expression. Each expression can be empty.

for(;;) { // anendlessloop

}

for(i = 0; 1 < n; i++) { // counting loop

}

goto

Causes a program to go to alabeled section of code.

if(condition) goto RED;

RED:

Use goto to jump forward or backward in a program. Never use goto to jump into aloop body
or aswitch case. Theresults are unpredictable. However, it is possible to jump out of aloop
body or switch case.

Chapter 12: Keywords 153

if

Indicates the beginning of an i £ statement.

if(tank full) shut off water();

if (expression) {
statements

}else if(expression) {
statements

}else if(expression) {
statements

}else if(expression) {
statements

}else{
statements
}

If one of the expressionsistrue (they are evaluated in order), the statements controlled by that
expression are executed. An if statement can have zero or moreelse if parts. Theelse is
optional and executes only when none of the 1 £ or else 1if expressions are true (non-zero).

init on

The costatement isinitially on and will automatically execute the first timeit is encountered in the
execution thread. The costatement becomes inactive after it completes (or aborts).

int

Declares variables, function return values, or array elementsto be 16-bit integers. If nothing elseis
specified, int implies a 16-bit signed integer.

int i, j, *k; // 16-bit signed
unsigned int x; // 16-bit unsigned
long int z; // 32-bit signed
unsigned long int w; // 32-bit unsigned
int funct (int arg) {

}

154 Dynamic C User’s Manual

interrupt

Indicatesthat afunction isan interrupt service routine (ISR). All registers, including alternates, are
saved when an interrupt function is called and restored when the interrupt function returns. Writ-
ing ISRsin Cis never recommended, especially when timing is critical.

interrupt isr () {

}

Aninterrupt service routine returns no value and takes no arguments.

Chapter 12: Keywords 155

interrupt vector

This keyword, intended for use with separate & D space, sets up an interrupt vector at compile
time. Thisisits syntax:

interrupt vector <INT VECTOR NAME> <ISR NAME>
A listof INT VECTOR NAMEs and ISR_NAMEsisfound in Table 11-5 on page 141. Thefol-
lowing code fragment illustrates how interrupt vector isused.

// Setup an Interrupt Service Routine for Timer B
#asm

timerb isr::

; ISR code

ret
#endasm

main () {
// Variables

// Setup ISR
interrupt vector timerb intvec timerb isr; // Compiletime setup

// Code

}

interrupt vector overidesrun time setup. For run time setup, you would replace the
interrupt vector statement above with:
#rcodorg <INT VEC NAME> apply

#asm
INTVEC RELAY SETUP (timerb intvec + TIMERB OFS)

#endasm
#rcodorg rootcode resume

Thisresultsin aslower interrupt (80 clock cycles are added), but an interrupt vector that can be
modified at run time. Interrupt vectors that are set up using interrupt vector arefast, but
can’'t be modified at run time since they are set at compile time.

long

Declares variables, function return values, or array elementsto be 32-bit integers. If nothing elseis
specified, 1ong implies asigned integer.

long i, j, *k; // 32-bit signed

unsigned long int w; // 32-bit unsigned

long funct (long arg) {

}

156 Dynamic C User’s Manual

main

Identifiesthemain function. All programs start at the beginning of themain function. (mainis
actually not a keyword, but is a function name.)

nodebug

Indicates a function is not compiled in debug mode. Thisisthe default for assembly blocks.

nodebug int func () {

}

#asm nodebug
#endasm

See dso debug and directives #debug #nodebug.

norst

Indicates that a function does not use the RST instruction for breakpoints.

norst void func () {

}

nouseix

Indicates a function does not use the I X register as a stack frame reference pointer. Thisis the
default case.

nouseix void func () {

}

NULL

The null pointer. (Thisisactually amacro, not akeyword.) Sameas (void *) 0.

Chapter 12: Keywords 157

protected

An important feature of Dynamic C isthe ability to declare variables as protected. Such avariable
is protected against loss in case of a power failure or other system reset because the compiler gen-
erates code that creates a backup copy of a protected variable before the variable is modified. If
the system resets while the protected variable is being modified, the variable's value can be
restored when the system restarts. Battery-backed RAM isrequired for this operation..

main () {
protected int statel, state2, state3;

_sysIsSoftReset () ; // restore any protected variables

}

Thecal to sysIsSoftReset checksto seeif the previous board reset was due to the com-
piler restarting the program (i.e. a soft reset). If so, then it initializes the protected variable flags
and calls sysResetChain (), afunction chain that can be used to initialize any protected vari-
ables or do other initialization. If the reset was due to a power failure or watchdog time-out, then
any protected variables that were being written when the reset occurred are restored.

A system that shares data among different tasks or among interrupt routines can find its shared
data corrupted if an interrupt occurs in the middle of awrite to a multibyte variable (such as type
int or £loat). Thevariable might be only partially written at its next use.Declaring a multibyte
variable shared means that changes to the variable are atomic, i.e., interrupts are disabled while
the variable is being changed. You may declare a multibyte variable as both shared and protected.

return

Explicit return from a function. For functions that return values, thiswill return the function result.

void func () {

if(expression) return;

}

float func (int x){
float temp;

return (temp * 10 + 1);

158 Dynamic C User’s Manual

root

Indicates a function isto be placed in root memory. This keyword is semantically meaningful in
function prototypes and produces more efficient code when used. Its use must be consistent

between the prototype and the function definition.

root int func () {

}

#memmap root
#asm root

#endasm

segchain

Identifies a function chain segment (within a function).
int func (int arg) {
int vec[10];

segchain GLOBAL_ INIT{
for(i = 0; i<10; i++){ vecl[i]

}

=0; }

}

This example adds a segment to the function chain GLOBAL INIT. Using segchain is
equivalent to using the #GLOBAL INIT directive. When this function chain executes, this and

perhaps other segments elsewhere execute. The effect in thisexampleisto (re)initidize vec.

shared

Indicates that changes to a multibyte variable (such asa f1oat) are atomic. Interrupts are dis-
abled when the variable is being changed. Local variables cannot be shared.

shared float x, y, z;
shared int j;
main () {
}
= i+ 1) constitute two atomic ref-

If i isashared variable, expressions of theform i++ (ori =
erencesto variable i, aread and awrite. Be careful because i ++ isnot an atomic operation.

Chapter 12: Keywords 159

short

Declaresthat avariable or array is short integer (16 bits). If nothing else is specified, short implies
a 16-bit signed integer.

short i, j, *k; // 16-bit, signed
unsigned short int w; // 16-hit, unsigned
short funct (short arg) {
}

size

Declares afunction to be optimized for size (as opposed to speed).

size int func () {

}

sizeof

A built-in function that returns the size in bytes of avariable, array, structure, union, or of adata
type. sizeof () can beused inside of assembly blocks.

int 1list[] = { 10, 99, 33, 2, -7, 63, 217 };
X = sizeof (list); // X will beassigned 14
speed

Declares afunction to be optimized for speed (as opposed to size).

speed int func () {

}

160 Dynamic C User’s Manual

static

Declaresalocal variable to have a permanent fixed location in memory, as opposed to auto,
where the variable exists on the system stack. Global variables are by definition static. Local

variables are auto by default.

int func () {
int 1i; // auto by default
static float x; // explicitly static

struct

This keyword introduces a structure declaration, which defines atype.
struct {
int x;
int y;

int z;
} thingl; // definesthevariable thingl to be a struct

struct speed{

int x;
int vy;
int z;
}i // declares astruct type named speed
struct speed thing2; // definesvariable thing2 to be of type speed

Structure declarations can be nested.

struct {
struct speed slow;

struct speed slower;
} tortoise; // definesthevariable tortoise to be anested struct

struct rabbit
struct speed fast;

struct speed faster;
}i // declares anested struct type named rabbit

struct rabbit chips; // definesthevariable chips to be of type rabbit

Chapter 12: Keywords 161

switch

Indicates the start of a switch statement.
switch(expression) {
case constl:
break;
case const2:
break;
case const3:
break
default
}
The switch statement may contain any number of cases. The constants of the case statements
are compared with expression. If thereisamatch, the statements for that case execute. The

default case if itispresent, executesif none of the constants of the case statements match
expression.
If the statementsfor a case do not includeabreak, return, continue, or some means of

exiting the switch statement, the cases following the selected case will also execute, regardiess
of whether their constants match the swit ch expression.

typedef

This keyword provides away to create new names for existing data types.

typedef struct {

int x;

int y;
} xyz; // definesastruct type...
xyz thing; // ...andathing of type xyz
typedef uint node; // meaningful type name

node master, slavel, slave2;

162 Dynamic C User’s Manual

union

Identifies avariable that can contain objects of different types and sizes at different times. Itemsin
aunion havethe same address. The size of aunion isthat of itslargest member.

union {
int x;
float y;
} abc; // overlaysafloat and an int

unsigned

Declares avariable or array to be unsigned. If nothing elseis specified in a declaration,
unsigned means 16-bit unsigned integer.

unsigned i, j, *k; // 16-hit, unsigned
unsigned int x; // 16-bit, unsigned
unsigned long w; // 32-bit, unsigned
unsigned funct (unsigned arg) {

}
Valuesin a 16-bit unsigned integer range from 0 to 65,535 instead of —32768 to +32767. Valuesin

an unsigned long integer range from 0 to 232 — 1.

useix

Indicates that afunction uses the I X register as a stack frame pointer.

useix void func () {

}

Seedsonouseix and directives #useix #nouseix.

Chapter 12: Keywords 163

waitfor

Used in a costatement, this keyword identifies a point of suspension pending the outcome of a
condition, completion of an event, or some other delay.

for(;;){
costate {
waitfor (input(l) == HIGH);

waitfordone
(wfd)

Thewaitfordone keyword can be abbreviated aswfd. It ispart of Dynamic C's cooperative
multitasking constructs. Used inside a costatement or a cofunction, it executes cofunctions and
firsttime functions. When al the cofunctionsand £ i rsttime functionsin the wfd state-
ment are complete, or one of them aborts, execution proceeds to the statement following wfd.
Otherwise ajump is made to the ending brace of the costatement or cofunction where thewfd
statement appears; when the execution thread comes around again, control is given back to the
wfd statement.

The wfd statements below are from Samples\cofunc\cofterm.c

x=wfd login() ; // wEd with one cofunction
wfd { // wfd with severa cofunctions
clrscr () ;

putat (5,5, "name:") ;
putat (5,6, "password:") ;
echoon () ;

}

Asshown, wfd may return an argument.

while

Identifiesthe beginning of a while loop. A while loop testsat the beginning and may exe-
cute zero or more times.

while (expression) {

}

164 Dynamic C User’s Manual

xdata

Declares ablock of datain extended flash memory.

xdata name { value 1, ... value n };

The 20-bit physical address of the block is assigned to name by the compiler as an unsigned long
variable. The amount of memory allocated depends on the datatype. Each char isallocated one
byte, and each int isalocated two bytes. If an integer fitsinto one byte, it is still allocated two
bytes. Each £ 1oat and 1ong cause four bytesto be allocated.

The value list may include constant expressions of type int, float, unsigned int, long,
unsigned long, char, and (quoted) strings. For example:

xdata
xdata
xdata
xdata

namel
name2
name3
name4

{"\x46',"\x47", '\x48"', '\x49"', '\x4A"', '\x20"', '\x20"'};
{'R','a','b','b','i','t'};

{" Rules! "};

{1.0,2.0, (float)3,40e-01,5e00, .6el};

The data can be viewed directly in the dump window by doing a physical memory dump using the
20-bit address of the xdatablock. See Samples\Xmem\xdata . c for moreinformation.

Chapter 12: Keywords

165

Xxmeim

Indicates that afunction isto be placed in extended memory. This keyword is semantically mean-
ingful in function prototypes. Good programing style dictates its use be consistent between the
prototype and the function definition. That is, if afunction is defined as:

xmem int func () {}
the function prototype should be:

xmem int func() ;

Any of the following will put the function in xmem:

xmem int func() ;
xmem int func() {}

or

xmem int func() ;
int func() {}
or

int func() ;
xmem int func() {}

In addition to flagging individual functions, the xmem keyword can be used with the compiler
directive #memmap to send all functions not declared as root to extended memory.

#memmap xmem

This construct is helpful if an application is running out of root code space. Another strategy is to
use separate & D space. Using both #memmap xmem and & D space is not advised and might
cause an application to run out of xmem, depending on the size of the application and the size of
the flash.

166 Dynamic C User’s Manual

xstring

Declares atable of stringsin extended memory. The strings are allocated in flash memory at com-
pile time which means they can not be rewritten directly.

The table entries are 20-bit physical addresses. The name of the table represents the 20-bit physi-
cal address of the table; this addressis assigned to name by the compiler.

xstring name { “string 1”, . . . “string n” };

yield

Used in a costatement, this keyword causes the costatement to pause temporarily, allowing other
costatements to execute. The yield statement does not alter program logic, but merely postpones
it.

for (;;){
costate {

yield;

Chapter 12: Keywords 167

12.1 Compiler Directives

Compiler directives are specia keywords prefixed with the symbol #. They tell the compiler how
to proceed. Only one directive per lineisallowed, but a directive may span more than onelineif a
backslash (\) is placed at the end of the line(s).

There are some compiler directives used to decide where to place code and datain memory. They
are caled origin directives and include #rcodorg, #rvarorg and #xcodorg. A detailed
description of origin directives may be found in the Rabbit 3000 Designer’s Handbook (look in
the index under “origin directives’).

#asm

Syntax: #asm options
Begins a block of assembly code. The available options are:
e const: When seperate |& D space is enabled, assembly constants should be placed in their

own assembly block (or done in C). For more information, see Section 11.2.2, “Defining Con-
stants.”

e debug: Enables debug code during assembly.

e nodebug: Disables debug code during assembly. Thisis the default condition. It is still possi-
ble to single step through assembly code as long as the assembly window is open.

e xmem: Places ablock of code into extended memory, overriding any previous memory direc-
tives. The block islimited to 4KB.

If the #asm block isunmarked, it will be compiled to root.

#class

Syntax: #class options
Controlsthe storage class for local variables. The available options are:

e suto: Placeloca variables on the stack.

e static: Placelocal variablesin permanent, fixed storage.
The default storage classis auto.

168 Dynamic C User’s Manual

#debug
#nodebug

Enables or disables debug code compilation. #debug is the default condition. These directives
override the debug and nodebug keywords used on function declarations or assembly blocks.
#nodebug prevents RST 28h instructions from being inserted between C statements and assem-
bly instructions.

NOTE: These directives do nothing if they are inside of afunction. Thisis by design.
They are meant to be used at the top of an application file.

#define

Syntax: #define name text or #define name (parameters...) text

Defines a macro with or without parameters according to ANSI standard. A macro without param-
eters may be considered a symbolic constant. Supports the # and ## macro operators. Macros can
have up to 32 parameters and can be nested to 126 levels.

#endasm

Ends a block of assembly code.

#fatal

Syntax: #fatal “...”

Instructs the compiler to act asif afatal error. The string in quotes following the directive is the
message to be printed

Chapter 12: Keywords 169

#GLOBAL INIT

Syntax: #GLOBAL_INIT{ variables}

#GLOBAL_ INIT sectionsare blocks of code that are run once beforemain () iscalled. They
should appear in functions after variable declarations and before the first executable code. If a
local static variable must beinitialized once only before the program runs, it should be donein a
#GLOBAL_INIT section, but other inititialization may also be done. For example:

// Thisfunction outputs and returns the number of times it has been called.
int foo () {
char count;
#GLOBAL INIT{
// initialize count
count = 1;
// make port A output
WrPortI (SPCR, SPCRShadow, 0x84) ;

}

// output count
WrPortI (PADR, NULL, count) ;

// increment and return count
return ++count;

#ferror

Syntax: error "...
Instructs the compiler to act asif an error was issued. The string in quotes following the directive
is the message to be printed

#funcchain

Syntax: #funcchain chainname name

Adds a function, or another function chain, to a function chain.

170 Dynamic C User’s Manual

#if
#elif
#else

#endif

Syntax: #1f constant expression
#elif constant expression
#else
#endif

These directives control conditional compilation. Combined, they form a multiple-choice i f.

When the condition of one of the choices is met, the Dynamic C code selected by the choiceis
compiled. Code belonging to the other choicesisignored.

main () {
#if BOARD TYPE ==
#define product "Ferrari"

#elif BOARD TYPE == 2
#define product "Maserati"

#elif BOARD TYPE ==
#define product "Lamborghini™

ftelse
#tdefine product "Chevy"

#endif

}

The#elif and #else directivesare optional. Any code between an #else and an #endif is
compiled if al valuesfor constant expression arefase.

#ifdef

Syntax: #ifdef name

This directive enables code compilation if name has been defined with a#def ine directive.
This directive must have amatching #endif.

Chapter 12: Keywords 171

#ifndef

Syntax: #ifndef name

This directive enables code compilation if name has not been defined with a#def ine directive.
This directive must have amatching #endif.

#interleave
#nointerleave

Controls whether Dynamic C will intersperse library functions with the program’s functions dur-
ing compilation. #nointerleave forcesthe user-written functionsto be compiled first.

#KILL

Syntax: #KILL name
To redefine a symbol found in the BIOS of a controller, first KILL the prior name.

#makechain

Syntax: #makechain chainname

Creates a function chain. When a program executes the function chain named in this directive, all
of the functions or segments belonging to the function chain execute.

#memmap

Syntax: #memmap options
Controls the default memory areafor functions. The following options are available.

e anymem NNNN: \When code comeswithin NNNN bytes of the end of root code space, start
putting it in xmem. Default memory usageis #memmap anymem 0x2000.

e root: All functions not declared as xmem go to root memory.

e xmem: C functions not declared as root go to extended memory. Assembly blocks not marked
as xmem go to root memory. See the description for xmem for more information on this key-
word.

172 Dynamic C User’s Manual

#pragma

Syntax: #pragma nowarn [warnt|warns]

Trivial warnings (warnt) or trivial and serious warnings (warns) for the next physical line of
code are not displayed in the Compiler Messages window. The argument is optional; default
behavior iswarnt.

Syntax: #pragma nowarn [warnt|warns] start

Trivial warnings (warnt) or trivial and serious warnings (warns) are not displayed in the Com-
piler Messages window until the #pragma nowarn end statement isencountered. The argu-
ment is optional; default behavior iswarnt. #pragma nowarn cannot be nested.

#precompile

Allows library functions in a comma separated list to be compiled immediately after the BIOS.

The #precompile directiveisuseful for decreasing the download time when devel oping your
program. Precompiled functions will be compiled and downloaded with the BIOS, instead of each
time you compile and download your program. The following limitations exist:

e Precompile functions must be defined nodebug.

e Any functionsto be precompiled must be in alibrary, and that library must beincluded either in
the BIOSusing a #use, or recursively included by those libraries.

e [nternal BIOS functions will precompile, but will not result in any improvement.

e |ibrariesthat require the user to define parameters before being used can only be precompiled
if those parameters are defined before the #precompile statement. An example of thisis
includedinprecompile.lib.

e [Function chains and functions using segment chains cannot be precompiled.
e Precompiled functions will be placed in extended memory, unless specifically marked root.

e All dependencies must be resolved (Macros, variables, other functions, etc.) before afunction
can be precompiled. This may require precompiling other functionsfirst.

Seeprecompile.lib for moreinformation and examples.

Chapter 12: Keywords 173

#undef

Syntax: #undef identifier
Removes (undefines) a defined macro.

#use

Syntax: #use pathname

Activatesalibrary named in 1ib . dir so modulesin the library can be linked with the applica-
tion program. This directive immediately readsin all the headers in the library unless they have
aready been read.

#useix
#nouseix

Controls whether functions use the I X register as a stack frame reference pointer or the SP (stack
pointer) register. #nouseix isthe default.

Note that when the I X register is used as a stack frame reference pointer, it is corrupted when any
stack-variable using function is called from within a cofunction, or if a stack-variable using func-
tion contains a call to a cofunction.

#warns

Syntax: #warns “...

Instructs the compiler to act asiif a serious warning was issued. The string in quotes following the
directive is the message to be printed.

#warntasmine

Syntax: #warnt “..”

Instructs the compiler to act asif atrivial warning was issued. The string in quotes following the
directive is the message to be printed.

174 Dynamic C User’s Manual

#ximport

Syntax: #ximport “filename” symbol

This compiler directive placesthe length of £11ename (stored asalong) and its binary contents
at the next available place in xmem flash. £i1ename isassumed to be either relative to the
Dynamic C installation directory or afully qualified path. symbol isacompiler generated macro
that gives the physical address where the length and contents were stored.

The sample program ximport . c illustrates the use of this compiler directive.

#zimport

Syntax: #zimport “"filename” symbol

This compiler directive extends the functionality of #ximport toinclude file compression by an
external utility. £ilename istheinput file (and must be relative to the Dynamic C installation
directory or be afully qualified path) and symbo1 represents the 20-bit physical address of the
downloaded file.

The external utility supplied with Dynamic C is zcompress . exe. It outputs the compressed
file to the same directory asthe input file, appending the extension .Dcz. E.g., if theinput fileis
named test . txt, the output file will be named test . txt .dcz. Thefirst 32 bits of the out-
put file contains the length (in bytes) of the file, followed by its binary contents. The most signifi-
cant bit of the length is set to one to indicate that the file is compressed.

The sample program zimport . c illustrates the use of this compiler directive. Please see
Appendix C.2 for further information regarding file compression and decompression.

Chapter 12: Keywords 175

176 Dynamic C User’s Manual

13. Operators

An operator isasymbol such as +, —, or & that expresses some kind of operation on data. Most
operators are binary—they have two operands.

a + 10 // two operands with binary operator "add"
Some operators are unary—they have a single operand,
-amount // single operand with unary “minus’

although, like the minus sign, some unary operators can also be used for binary operations.

There are many kinds of operators with operator precedence. Precedence governs which oper-
ations are performed before other operations, when there is a choice.

For example, given the expression
a =b + c * 10;

will the + or the * be performed first? Since * has higher precedence than +, it will be performed
first. The expression isequivalent to

a=>b + (c * 10);
Parentheses can be used to force any order of evaluation. The expression
a= (b + c) * 10;

uses parentheses to circumvent the normal order of evaluation.

Associativity governs the execution order of operators of equal precedence. Again, parentheses
can circumvent the normal associativity of operators. For example,

a =Db + c + d; // (b+c) performed first

a =Db + (c + 4d); // now c+d isperformed first
int *a(); // function returning ptr to int
int (*a) (); // ptrto function returning int

Unary operators and assignment operators associate from right to left. Most other operators associ-
ate from left to right.

Certain operators, namely *, &, (), [1, -> and . (dot), can be used on the left side of an
assignment to construct what is called an Ivalue. For example,

float x;
* (char*)&x = 0x17; // low byte of x getsvalue

Chapter 13: Operators 177

When the data types for an operation are mixed, the resulting type is the more precise.

float x, vy, z;
int 1, j, k;

char c;
z =1 / x; // sameas (float)i / x
j =k + c; // sameas k + (int)c

By placing atype namein parenthesesin front of avariable, the program will perform type casting
or type conversion. In the example above, theterm (£1loat) i meansthe “the value of i con-
verted to floating point.”

The operators are summarized in the following pages.

13.1 Arithmetic Operators

+

Unary plus, or binary addition. (Standard C does not have unary plus.) Unary plus does not really
do anything.

a =Db + 10.5; // binary addition
Z = +Y; // just for emphasis!

Unary minus, or binary subtraction.

a =Db - 10.5; // binary subtraction
Z = -Y; // z getsthenegativeof y

178 Dynamic C User’s Manual

*

Indirection, or multiplication. As aunary operator, it indicates indirection. When used in a declara-
tion, * indicates that the following item is a pointer. When used as an indirection operator in an
expression, * provides the value at the address specified by a pointer.

int *p; //

const int j = 45;

p = &J; //

k = *p; //
//

*p = 25; //
//

p isapointer to an integer

p how pointsto 7.

k getsthe value to which

p points, namely 45.

Theinteger towhich p points gets 25.
Same as j 25,since p pointsto j.

Beware of using uninitialized pointers. Also, theindirection operator can be

used in complex ways.

int *list[10]

int (*1list) [10]
float** vy;

Z = **y;

typedef char **stp;
stp my_ stuff;

// array of 10 pointersto integers
// pointer to array of 10 integers
// pointertoapointertoa float
// z getsthevalueof vy

// my stuff istyped char**

Asabinary operator, the * indicates multiplication.

// a getstheproductof b and c

Divideis abinary operator. Integer division truncates; floating-point division does not.

a=>b * c;
/
const int i = 18, const j
k=1 / 3;
x = (float)i / 3;

= 7, k; float x;

// resultis2;
// resultis2.591...

Chapter 13: Operators

179

++

Pre- or post-increment is a unary operator designed primarily for convenience. If the ++ precedes
an operand, the operand is incremented before use. If the ++ operator follows an operand, the
operand is incremented after use.

int i, all12];

i = 0;

q = ali++]; // q gets a[0], then i becomes 1
r = ali++]; // v gets a[1], then i becomes 2
S = ++1; // i becomes 3, then s = i
1+4+4; // i becomes 4

If the ++ operator is used with a pointer, the value of the pointer increments by the size of the
object (in bytes) to which it points. With operands other than pointers, the value increments by 1.

Pre- or post-decrement. If the —- precedes an operand, the operand is decremented before use. If
the —— operator follows an operand, the operand is decremented after use.

int j, al12];

j = 12;
qg=al--j1; // 7 becomes 11, then g gets a[11]
r = al--i1; // J becomes 10, then r gets a[10]
s = j-—; // s = 10, then j becomes 9
j--; // 3 becomes 8
If the —— operator is used with a pointer, the value of the pointer decrements by the size of the

object (in bytes) to which it points. With operands other than pointers, the value decrements by 1.

%

Modulus. Thisis abinary operator. The result is the remainder of the |left-hand operand divided by
the right-hand operand.

const int i = 13;
j =1 % 10; // J gets 1 mod 10 or 3
const int k = -11;
j =k % 7; // Jj gels k mod 7 or -4

180 Dynamic C User’s Manual

13.2 Assignment Operators

Assignment. This binary operator causes the value of the right operand to be assigned to the left
operand. Assignments can be “ cascaded” as shown in this example.

a 10 * b + ¢; // a getstheresult of the calculation
a=b = 0; // b gets 0 and a gets 0

Addition assignment.
a += 5; // Add 5 to a. Sameas a = a + 5

Subtraction assignment.
a -= 5; // Subtract 5 from a. Sameas a = a - 5

Multiplication assignment.
a *= 5; // Multiply a bys5. Sameasa = a * 5

Division assignment.
a /= 5; // Divide a by 5. Sameas a = a / 5

Modulo assignment.
a %= 5; // a mod 5. Sameas a = a % 5

L eft shift assignment.
a <<= 5; // Shift a left 5bits. Sameas a = a << 5

Right shift assignment.
a >>= 5; // Shift a right5bits. Sameas a = a >> 5

=

Chapter 13: Operators 18

Bitwise AND assignment.
a &= b; // AND a with b. Sameas a = a & b

Bitwise XOR assignment.
a *= b; // XOR a with b. Sameas a = a * b

Bitwise OR assignment.
a |= b; // OR a with b. Sameas a = a | b

13.3 Bitwise Operators

Shift left. Thisis abinary operator. The result isthe value of the |eft operand shifted by the num-
ber of bits specified by the right operand.

int i = 0xFOOF;
j =1 << 4; // 3 gets 0x00FO

The most significant bits of the operand are lost; the vacated bits become zero.

Shift right. Thisis a binary operator. The result isthe value of the |eft operand shifted by the num-
ber of bits specified by the right operand:

int 1 = OxFOOF;

j =1 >> 4; // J gets 0xFF00
The least significant bits of the operand are lost; the vacated bits become zero for unsigned vari-
ables and are sign-extended for signed variables.

Address operator, or bitwise AND. As a unary operator, this provides the address of avariable;

int x;
zZ = &X; // z getstheaddressof x
Asabinary operator, this performs the bitwise AND of two integer (char, int, or 1ong) vaues.
int 1 = OxFFFO;
int j = O0xOFFF;
z =1 & 3J; // z Qgets 0xO0FFO

182 Dynamic C User’s Manual

Bitwise exclusive OR. A binary operator, this performs the bitwise XOR of two integer (8-bit, 16-
bit or 32-hit) values.

int 1 = OxFFFO;
int j = OxOFFF;
z =1 " 3; // z gets OxFOOF

Bitwiseinclusive OR. A binary operator, this performs the bitwise OR of two integer (8-bit, 16-bit
or 32-bit) values.
int i = 0xFF00;

int § = OxOFFO;
z =1 | 3; // z gels OxFFFO

Bitwise complement. Thisisaunary operator. Bitsin achar, int, or long vaue are inverted:

int switches;
switches = OXFFFO;
j = ~switches; // j becomes 0x000F

13.4 Relational Operators

Lessthan. Thisbinary (relational) operator yields a Boolean value. Theresult is 1 if the left oper-
and is less than the right operand, and 0 otherwise.
ifF(1< 3§){
body // executesif i <

}

OK = a < b; // truewhen a < b

Lessthan or equal. This binary (relational) operator yields a boolean vaue. Theresultis 1 if the
left operand isless than or equal to the right operand, and O otherwise.

if(i <=3)
body // executesif 1 <= 7

OK = a <= b; // truewhen a <= Db

Chapter 13: Operators 183

>
Greater than. This binary (relational) operator yields a Boolean vaue. Theresult is 1 if the left

operand is greater than the right operand, and 0 otherwise.

if(i > 3)f

body // executesif i > J

}
. // truewhen a > b

Greater than or equal. This binary (relational) operator yields a Boolean value. Theresult is 1 if
the left operand is greater than or equal to the right operand, and O otherwise.

iF(1 os= 3){
body // executesif i >=

}
; // truewhen a >= b

13.5 Equality Operators

Equal. Thisbinary (relational) operator yields a Boolean value. Theresult is 1 if the left operand
equals the right operand, and 0 otherwise.

if(i == 3){
body
}

OK = a == b;

1l
.

// executesif i

1
o

// truewhen a

Note that the == operator is not the same as the assignment operator (=). A common mistake isto

write
if(i =3)f
body

}

Here, 1 getsthevaue of j, and the i £ condition istrue when i isnon-zero, not when i equals j.

1=
Not equal. Thisbinary (relational) operator yields a Boolean value. Theresult is 1 if the left oper-
and is not equal to the right operand, and O otherwise.

if(i 1= 3)

body // executesif 1 1=

// truewhen a !'= b

184 Dynamic C User’s Manual

13.6 Logical Operators

Logical AND. Thisisabinary operator that performs the Boolean AND of two values. If either
operand is O, the result is 0 (FALSE). Otherwise, the result is 1 (TRUE).

Logical OR. Thisisabinary operator that performs the Boolean OR of two values. If either oper-
and is non-zero, theresult is 1 (TRUE). Otherwise, the result is O (FALSE).

Logical NOT. Thisisaunary operator. Observe that C does not provide a Boolean datatype. In C,
logical falseisequivalent to 0. Logical trueis equivalent to non-zero. The NOT operator resultis1
if the operand is 0. The result is O otherwise.

test = get input(...);
if(!test){

}

13.7 Postfix Expressions

Grouping. Expressions enclosed in parentheses are performed first. Parentheses also enclose func-
tion arguments. In the expression

a= (b +c¢c) * 10;
thetermb + cisevaluated first.

Array subscripts or dimension. All array subscripts count from O.

int all2]; // aray dimensionis 12
j = alil; // referencestheith element

Chapter 13: Operators 185

The dot operator joins structure (or union) names and subnames in a reference to a structure (or
union) element.

struct {
int x;
int y;

} coord;

m = coord.x;

Right arrow. Used with pointers to structures and unions, instead of the dot operator.
typedef struct({

int x;
int vy;
} coord;
coord *p; // pisapointer to structure
m = p->X; // reference to structure element

13.8 Reference/Dereference Operators

Address operator, or bitwise AND. As a unary operator, this provides the address of a variable:
int x;

Z = &X; // z getstheaddressof x

Asabinary operator, this performs the bitwise AND of two integer (char, int,or long) val-
ues.

int 1 = OxXFFFO;
int j = OxXOFFF;
z =1 & 3J; // z Qets 0x0FFO

186 Dynamic C User’s Manual

*

Indirection, or multiplication. As aunary operator, it indicates indirection. When used in a declara-
tion, * indicates that the following item is a pointer. When used as an indirection operator in an
expression, * provides the value at the address specified by a pointer.

int *p; // p isapointer to an integer

int j = 45;

p = &J; // P nhow pointsto 7.

k = *p; // k getsthevalueto which
// p points, namely 45.

*p = 25; // Theinteger towhich p

// pointsgets 25. Sameas j = 25,
// since p pointsto j.

Beware of using uninitialized pointers. Also, theindirection operator can be
used in complex ways.

int *1ist[10] // array of 10 ptrstoint

int (*1list) [10] // ptrtoarray of 10 ints
float** y; // ptrtoaptrtoa float

Z = **y; // z getsthevalueof vy
typedef char **stp;

stp my_ stuff; // my stuff istyped char**

As abinary operator, the * indicates multiplication.
a =Db * c; // a getstheproductof b and c

13.9 Conditional Operators

Conditional operators are athree-part operation unique to the C language. The operation has three
operands and the two operator symbols ? and :.

? 2
If the first operand evaluates true (non-zero), then the result of the operation isthe second operand.
Otherwise, the result is the third operand.

int i, J, k;

:L= i<k ? 3 : k;
The ? : operator isfor convenience. The above statement is equivalent to the following.

if(j < k)
i=73;
else
i = k;

If the second and third operands are of different type, the result of this operation is returned at the
higher precision.

Chapter 13: Operators 187

13.10 Other Operators

(type)

The cast operator converts one data type to another. A floating-point value is truncated when
converted to integer. The bit patterns of character and integer data are not changed with the cast
operator, although high-order bits will be lost if the receiving value is not large enough to hold the
converted value.

unsigned i; float x = 10.5; char c;

i = (unsigned)x; // 1 Qets 10;

¢ = *(char*) &x; // c getsthelow byteof x
typedef ... typed;

typedef ... typeB;

typeA iteml;
typeB item2;

item2 = (typeB)iteml; // forces iteml tobetreated asa
typeB

sizeof

The sizeof operator isaunary operator that returnsthe size (in bytes) of avariable, structure,
array, or union. It operates at compiletime asif it were abuilt-in function, taking an object or a
type as a parameter.

typedef struct{
int x;
char y;
float z;

} record;

record array[100];
int a, b, ¢, d;

char cc[] = "Fourscore and seven'";

char *1list[] = { "ABC", "DEFG", "HI" };

#define array size sizeof (record)*100 // number of bytesin array
a = sizeof (record) ; Y

b = array size; // 700

¢ = sizeof (cc); // 20

d = sizeof(list); // 6

Why issizeof (1ist) equal to6? 1ist isanarray of 3 pointers (to char) and pointers have
two bytes.

Why issizeof (cc) equa to 20 and not 19? C strings have aterminating null byte appended by
the compiler.

188 Dynamic C User’s Manual

/4

Comma operator. This operator, unique to the C language, is a convenience. It takes two operands:
the left operand—typically an expression—is evaluated, producing some effect, and then dis-
carded. The right-hand expression is then evaluated and becomes the result of the operation.

This example shows somewhat complex initialization and stepping in a for statement.

for(i=0,j=strlen(s)-1; i<j; i++,3—){

}

Because of the comma operator, the initialization has two parts: (1) set i to 0 and (2) get the
length of string s. The stepping expression also has two parts: increment i and decrement 5.

The comma operator exists to allow multiple expressionsin loop or i £ conditions.

The table bel ow shows the operator precedence, from highest to lowest. All operators grouped
together have equal precedence.

Table 13-1. Operator Precedence

Operators Associativity Function
0O 1 -> left to right member
!(ty;e)H* _; cigeot right to left unary
* /% left to right multiplicative
+ - left to right additive
<< >> left to right bitwise
< <= > >= left to right relational
== I= left to right equality
& left to right bitwise
» left to right bitwise
| left to right bitwise
&& left to right logical
|| left to right logical
? right to left conditional
:<=*_»:= &9:= A:= ;= right to left assignment
, (comma) left to right series

Chapter 13: Operators

189

190 Dynamic C User’s Manual

14. Graphical User Interface

Dynamic C can be used to edit source files, compile and run programs, and choose options for
these activities using pull-down menus or keyboard shortcuts. There are two modes: edit mode and
run mode (run mode is a so known as debug mode). Various debugging windows can be viewed in
run mode. Programs can compile directly to atarget controller for debugging in RAM or flash.
Programs can also be compiled to a . bin file, with or without a controller connected to the PC.

To debug a program, a controller must be connected to the PC, either directly via a programming
cable or indirectly viaan Ethernet connection and a RabbitLink board. Multiple instances of
Dynamic C can run simultaneously. This means multiple debugging sessions are possible over dif-
ferent serial ports. Thisis useful for debugging boards that are communicating among themsel ves.

14.1 Editing

A fileisdisplayed in atext window when it is opened or created. More than one text window may
be open. If the same fileis in multiple windows, any changes made to the file in one window will
be reflected in all text windows that display that file. Dynamic C supports normal Windows text
editing operations.

A mouse (or other pointing device) may be used to position the text cursor, select text, or extend a
text selection. The keyboard may be used to do these same things. Text may be scrolled using the
arrow keys, the PageUp and PageDown keys, and the Home and End keys. The up, down, |eft and
right arrow keys move the cursor in the corresponding direction.

The Ctrl key works in conjunction with the arrow keysthis way

Ctrl+Left Move cursor to previous word.
Ctrl+Right Move cursor to next word.

Move editor window up, text moves down oneline. Cursor is
Ctrl+Up

not moved.

Move editor window down, text moves up oneline. Cursor is
Ctrl+Down

not moved.

The Home key may be used alone or with other keys.

Home Move to beginning of line.
Ctrl+Home Move to beginning of file.
Shift+Home Select to beginning of line.

Shift+Ctrl+Home | Select to beginning of file.

Chapter 14: Graphical User Interface 191

The End key may be used alone or with other keys.

End Moveto end of line.
Ctrl+End Moveto end of file.
Shift+End Select to end of line.

Shift+Ctrl+End | Select to end of file.

14.2 Menus
Dynamic C's main menu has 8 command menus, as well as the standard Windows system menus.

= Anavailable command can be
% Dynamic C Dist. 8.00Beta2 [_ (O] executed from amenu by click-
File Edit Compile Bun |nspect Options ‘Window Help ing the menu and then clicking
the command, or by (1) pressing
the Alt key to activate the menu bar, (2) using the left and right arrow keys to select a menu, (3)
and using the up or down arrow keysto select acommand, and (4) pressing Enter.

It is usually more convenient to type keyboard shortcuts (such as <Ctrl+H> for the Library
Function Lookup option). Pressing the Esc key will make any visible menu disappear. A menu can
be activated by holding the Alt key down while pressing the underlined letter of the menu name.
For example, press <Alt+F> to activate the FILE menu.

14.2.1 File Menu
Click the menu title or press <Alt+F> to select the FILE menu.

% Dynamic C Dist. 8.00Beta2 New <Ctrl+N>
Edit Compile Bun Inspect Dptions %/t Cregtes a blank, untitled program in a new win-

(1 Hew Chrl+M e 5!3 g dow, called the text window or the editor window.
= Dpen... Chl+0 If you right click anywhere in the text window a
E save Chl+5 popup menu will appear. It is available as a con-
& Savehs.. venience for accessing some frequently used

Bl Save sl ShifteChles commands.

E‘gg LCloze Crl+F4

Open <Ctrl+O>

.....

Project 4 MO Create. . Presents a dialog box to specify the name of afile
Print Setup 0 Open... to open. To select afile, typein the file name
Priri Pr'eview MO Save (pathnames may be entered), or browse and select
& pint D Save As. it. Unless there is a problem, Dynamic C will

present the contents of the file in atext window.
The program can then be edited or compiled.
Multiple files can be selected by either holding
down <Ctrl> then clicking the left mouse on each filename you want to open, or by dragging
the selection rectangle over multiple filenames.

E0 Close

L Ext Alt+F4

192 Dynamic C User’s Manual

Save <Ctrl+S>
The Save command updates an open file to reflect changes made since the last time the file
was saved. If the file has not been saved before (i.e., the fileis anew untitled file), the Save
As dialog will appear to prompt for a name. Use the Save command often while editing to
protect against loss during power failures or system crashes.

Save As
Presents a dialog box to save the file under anew name. To select afile name, typeit in the
File name field. The file will be saved in the folder displayed in the Save in field. You may, of
course, browse to another location. You may also select an existing file. Dynamic C will ask
you if you wish to replace the existing file with the new one.

Save All <Shift+Ctrl+S>
This command saves all maodified files that are currently open.

Close <Ctrl+F4>
Closes the active editor window. The active window may also be closed by double-clicking on
its system menu. If thereis an attempt to close a modified file, Dynamic C will ask you if you
wish to save the changes. Thefileis saved when Yes isclicked or “y” istyped. If thefileis
untitled, there will be a prompt for afile name in the Save As dialog. Any changes to the doc-
ument will be discarded if No isclicked or “n” istyped. Choosing Cancel resultsin areturn to
Dynamic C with no action taken.

Project
Allows a project file to be created, opened, saved, saved as a different name and closed. See
Chapter 16 for all the details on project files.

Print Setup
Displaysthe Page Setup dialog box. Margins, page orientation, page numbers and header and
footer properties are all chosen here.

The Printer Setup button isin the bottom left of the dialog box. It brings up the Print Setup
dialog box, which allows a printer to be selected. The Network button allows printers to be
added or removed from the list of printers.

Print Preview
Displays whichever fileisin the active editor window in the Preview Form window, showing
how the text will look when it is printed. You can search and navigate through the printable
pages and bring up the Print dialog box.

Print
Brings up the Print dialog box, which allows you to choose a printer. Only text in an editor
window may be printed. To print the contents of debug windows, the text must be copied and
pasted to an editor window. As many copies of the text as needed may be printed. If more than
one copy is requested, the pages may be collated or uncollated.

Exit <Alt+F4>
Close Dynamic C after prompting to save any unsaved changes to open files.

Chapter 14: Graphical User Interface 193

14.2.2 Edit Menu

Click the menu title or press <Alt+E> to select the EDIT menu.

% Dynamic C Dist. 8 00Beta2

File Enmpile Bun Inspect Options

” [¥ Undo Chil+2

e 4 Hedn) e B

| A

— X Cu Chrl+s
Copy Chrl+C
E Paste Chrl+4f

Inzert Code Template...
Ii Togale Bookrmark.
'-)Ii 3o ta Bookrmarl:,

&% Fird Ctrl+F
ﬂ Beplace F&
M Fird Meyt F2
ﬂ Reverze Find Nest Alt+F3
Eit Find in Files [Grep)... Shift+Chil+F
¥=] Gotao Line Mumber. . Ctil+G
"E Erewiats B [Eti{ el
;E [HEwt Errar [Etr{+E
abl| EditkMode F4

Paste <Ctrl+V>

Undo <Ctrl+z>

This option undoes recent changes in the active edit
window. The command may be repeated several times
to undo multiple changes. Undo operations have
unlimited depth. Two types of undo are supported—
applied to asingle operation and applied to a group of
the same operations (2 continuous del etes are consid-
ered asingle operation.

Dynamic C only discards undo information if the
“Undo after save” option is unchecked in the Editor
dialog under Environment Options.

Redo <Shift+Ctrl+Z>

Redoes changes recently undone. This command only
works immediately after one or more Undo opera-
tions.

Cut <Ctrl+Xx>
Removes selected text and saves to the clipboard.

Copy <Ctrl+C>
Makes a copy of text selected in afile or in adebug
window. The text is saved on the clipboard.

Pastes text from the clipboard to the current insertion point. Nothing can be pasted in a debug-
ging window. The contents of the clipboard may be pasted virtually anywhere, repeatedly (as
long as nothing new is cut or copied into the clipboard), in the same or other sourcefiles, or
even in word processing or graphics program documents.

Insert Code Template <Ctrl+J>

Opens the code template list at the current cursor location. Clicking on alist entry or pressing
<Enter> inserts the selected template at the cursor location in the active edit window. The
arrow keys may be used to scroll the list. Pressing the first letter of the name of a code tem-
plate selects the first template whose name starts with that letter. Pressing the same letter again
will go to the next template whose name starts with that letter. Continuing to press the same
letter cycles through all the templates whose name starts with that letter.

To create, edit or remove templates from the code template list, go to Environment Options

and click on the Code Templates tab.

Toggle Bookmark

Toggle one of 10 bookmarks in the active edit window.

Go to Bookmark

Go to one of 10 bookmarks in the active edit window. Executing this command again will take
you back to the location you were at before going to the bookmarked location.

194

Dynamic C User’s Manual

Find <Ctrl F>
Finds first occurrence of specified text. Text may be specified by selecting it prior to opening
the Find dialog box if the option “Find text at cursor” is checked in the Editor dialog under
Environment Options. Only one word may be selected; if more than one word is selected, the
last word selected appears as the entry for the search text. More than one word of text may be
specified by typing it in or selecting it from the available history of search text.

There are several waysto narrow or broaden the search criteria using the Find dialog box. For
example, if Case sensitive is unchecked, then “ Switch” and “ SWITCH” would match the
search text “switch.” If Whole words only is checked, then the search text “switch” would not
match “switches.” Selecting Entire scope will cause the whole document to be searched. If
Selected text is chosen and “ Persistent blocks” was checked in the Editor dialog under Envi-
ronment Options, the search will take place only in the selected text.

Replace <F6>
Finds and replaces the specified text. Text may be specified by selecting it prior to opening the
Replace Text dialog box. Only one word may be selected; if more than one word is selected,
the last word selected appears as the entry for the search text. More than one word of text may
be specified by typing it in or selecting it from the available history of search text. The
replacement text is typed or selected from the available history of replacement text.

Aswith the Find dialog box, there are several ways to narrow or broaden the search criteria.
An important option is Prompt on replace. If thisis unchecked, Dynamic C will not prompt
before making the replacement, which could be dangerous in combination with the choice to
Replace All.

Find Next <F3>
Once search text has been specified with the Find or Replace commands, the Find Next com-
mand will find the next occurrence of the same text, searching forward or in reverse, case sen-
sitive or not, as specified with the previous Find or Replace command. If the previous
command was Replace, the operation will be areplace.

Reverse Find Next <Alt+F3>
Behaves the same as Find Next except in the opposite direction. If Find Next is searching for-
ward in thefile, Reverse Find Next will search backwards, and vice versa.

Find in Files (Grep)... <Shift+Ctrl+F>
This option searches for text in the currently open file(s) or in any directory (optionally includ-
ing subdirectories) specified. Standard Unix-style regular expressions are used.

A window with the search resultsis displayed with an entry for each match found. Double-
clicking on an entry will open the corresponding file and place the cursor on the search string
in that file. Multiple filetypes can be separated by semicolons. For example, entering
C:\mydirectory*.lib;*.cwill searchall .1iband .c filesinmydirectory.

Go to Line Number
Positions the insertion point at the beginning of the specified line.

Previous Error <Ctrl+Alt+P>
L ocates the previous compilation error in the source code. Any error messages will be dis-
played in alist in the Compiler Messages window after a program is compiled. Dynamic C
selectsthe previous error in the list and displays the offending line of code in the text window.

Chapter 14: Graphical User Interface 195

Next Error <Ctrl+Alt+N>
L ocates the next compilation error in the source code. Any error messages will be displayed in
alist in the Compiler Messages window after a program is compiled. Dynamic C selects the
next error in the list and displays the offending line of code in the text window.

Edit Mode <F4>
Switches to edit mode from run mode. (Run mode aka debug mode.) After successful compi-
lation or execution, no changes to the file are allowed unless Edit Mode is selected. If the
compilation fails or aruntime error occurs, Dynamic C comes back aready in edit mode.

14.2.2.1 Editor Window Popup Menu
Right click anywhere in the editor window and a popup menu will appear.

% Dynamic C Dist. 8.01Beta2

File Edit Compile Bun Inspect Option: ‘Window Help

DSNSG =R aME L R>EASR
% E:ADC 875 amples\Demol c
;ffs(-s(-s(-fs(-s(-s(-fs(-s(-s(-fs(-**fs{-*ffs(-s(-fisés(-fsés(-s(-féf*féé*fé**fé**fé**fé
demol. c
S World, 2000 e Ctrhe
Open File at Curzor Cr+E nter
Sample program for Dvne Close CtrkF4
LR EEEESEEEEEEES EEEEEEE R EESEEE] lnSErtEDdETEmthE... ;f
Toggle Bookmark 3
main() { Go to Bookmark. b |k main
int i,. j.: Eu_t [t
[Eapy [EtrlE
i = 0: Easte [Etrlss
Find Chrl+F
while (1) { Edit ilods P b
i++: eld ateb., (Bl =
for (j=0; j<20000; j++) Options. 28,000
printf(™i = sdyn"™, i): A4 Print out counter
}
¥

|Defait |Lires 14 |Cok: 33 [[Insert [[o

All of the menu options, with the exception of Open File at Cursor, are available from the main
menu, e.g., New is an option in the File menu and was described earlier with the other options for
that menu.

Open File at Cursor <Ctrl+Enter>
Attempts to open the file whose name is under the cursor. The file will be opened in anew edi-
tor window, if thefilenameislistedin 1ib.dir aseither an absolute path or a path relative
to the Dynamic C root directory or if the fileisin Dynamic C'sroot directory. Asalast resort,
an Open dialog box will appear so that the file may be manually chosen.

196 Dynamic C User’s Manual

14.2.3 Compile Menu
Click the menu title or press <Alt+C> to select the COMPILE menu.

% Dynamic C Dist. 8.00Beta2

File Edit gEIER Fun Optionz Window Help

|D & @ corie 2 PO
R4 Compile to Target [41* Compile to Flash
¥ [} Compile to B
[y Compile ta Flash, Run in RaM

Inzpect

B Compile ta bin File

% Feset Target / Compile BIOS Chi+y

bigs 2

Compile <F5>
Compiles aprogram and loads it to the target or to a .bin file. When you press <F5> or select
Compile from the Compile menu, the active file will be compiled according to the current
compiler options. Compiler options are set in the dialog box accessed by the Compiler tab in
the menu selection Options | Project Options. When compiling directly to the target, Dynamic
C queries the attached target for board information and creates macros to automatically con-
figure the BIOS and libraries.

Any compilation errors are listed in the automatically activated Compiler Messages window.
Press <F1> to obtain more information for any error message that is high-lighted in thiswin-
dow.

Compile to Target
Expands to one of 3 choices:

e Compile to Flash
e Compile to RAM
e Compile to Flash, Run in RAM

These options override any BIOS Memory Setting choice made from the Compiler tab in the
menu selection Options | Project Options.

Compile to .bin File
Compiles a program and writestheimageto a . bin file. There are 2 choices available with
this option, Compile to Flash and Compile to Flash, Run in Ram:

The target configuration used in the compileis determined in Options | Project Options,
Compiler tab. From there, under Default Compile Mode you can choose to use the attached tar-
get or adefined target configuration. The defined target configuration is accessed by clicking
on the Targetless tab which will reveal three additional tabs; RTI File, Specify Parameters and
Board Selection. To learn more about these tabs see page 231.

The . bin file may be used with a device programmer to program multiple targets; or the
Rabbit Field Utility (RFU) can be used to load the . bin file to the target.

If you are creating specia a program such as a cold loader that starts at address 0x0000 you
can exclude the BIOS from being compiled into the . bin file by unchecking the option to
includeit. Thisis done by choosing Options | Project Options | Compiler and clicking on the
Advanced... button.

Chapter 14: Graphical User Interface 197

In addition to the .bin file, several other files are generated with this compile option. For
example, if you compile demol.c toa .bin file the following fileswill bein the same
folder asdemol. c:

DEMOL1 . bak - backup of the application source file (made at compile time, when this
option is enabled).

demol .bdl - binary image download file (used when loading the application to a
connected target).

DEMO1 . brk - debugger breakpoints information.
demo1l . hdl - no longer used.

demol . hex - simple Intel HEX format output image file; the serial DLM samples
download a DLP's HEX file and load the image to flash.

DEMO1 . map - the application's code/data map file (RabbitBios . map isalso gen-
erated, separately). For more information on the map file, see Appendix B Appendix
Title

DEMO1 . rom - ROM "output” file, containing redundant addresses (dueto fixups); it's
used to generate the BDL, BIN, HEX, and HDL files.

Reset Target / Compile BIOS <Ctrl+Y>
This option reloads the BIOS to RAM or flash, depending on the choice made under BIOS
Memory Setting in the Compiler dialog (viewable from Options | Project Options).

The following message will appear upon successful compilation and loading of BIOS code.

BIOS Successfully Compiled
Ready to Compile User Programs

198

Dynamic C User’s Manual

14.2.4 Run Menu
Click the menu title or press <Alt+R> to select the RUN menu.

1n$pect Optionz Window He Run <F9>

i [> Bun F3 Starts program execution from the current breakpoint. Reg-
E W Siop (Bl isters are restored, including interrupt status, before execu-
&, Run w/Na Paling AleF3 | tion begins. If in Edit mode, the program is compiled and

¢ Tracelnto F? downloaded.

O Step Dver F8 | Stop <Ctr+Q>

¢ Source Trace Jnta Al+F7 | The Stop command stops the program at the current point of

O Source Step Over A+FE | execution. Usually, the debugger cannot stop within

*& Toggle Breskpoint - nodebug code. Op the other hand, the target can be stopped

i . atanRST 028hinstruction if an RST 028h assembly code

iigh Toggle Hard Breakpoint Alt+F2 .. - .

5 Clear &l Breakpoints —_— isinserted asinline asem-bly codein nodebgg code.
However, the debugger will never be able to find and place

= Poll Target Cidel | the execution cursor in nodebug code.

Reset Program Cul+F2 | Run w/ No Polling <Alt+F9>

P Cloze Connection This command isidentical to the Run command, with one

exception. The PC polls the target every 3 seconds by

default to determine if the target has crashed. When debug-
ging via RabbitLink, polling is used to make the RabbitLink keep its connection to the PC
open. Polling does have some overhead, but it isvery minimal. If debugging ISRs, it may be
helpful to disable polling.

Trace Into <F7>
Executes one C statement (or one assembly language instruction if the assembly window is
displayed) with descent into functions. If nodebug isin effect and the Assembly window is
closed, execution continues until code compiled without the nodebug keyword is encoun-
tered.

Step Over <F8>
Executes one C statement (or one assembly language instruction if the assembly window is

displayed) without descending into functions.

Source Trace Into <Alt+F7>
Executes one C statement with descent into functions when the assembly window is open. If

nodebug isin effect, execution continues until code compiled without the nodebug key-
word is encountered.

Source Step Over <Alt+F8>
Executes one C statement without descending into functions when the assembly window is

open.

Toggle Breakpoint <F2>
Toggles aregular (“soft”) breakpoint at the current cursor location. Soft breakpoints do not

affect the interrupt state at the time the breakpoint is encountered, whereas hard breakpoints
do.

Chapter 14: Graphical User Interface 199

Toggle Hard Breakpoint <Alt+F2>
Toggles a hard breakpoint at the current cursor location. A hard breakpoint differs from a soft
breakpoint in that interrupts are disabled when the hard breakpoint is reached.

Clear All Breakpoints <Ctrl+A>
Self explanatory.

Poll Target <Ctrl+L>
This menu option used to be named Toggle Polling. A check mark indicates that Dynamic C
will poll the target. The absence of a check mark indicates that Dynamic C will not poll the
target. Thisdiffers from Toggle Polling in that Dynamic C will not restart polling without the
user explicitly requesting it.

Reset Program <Ctrl+F2>
Resets program to itsinitial state. The execution cursor is positioned at the start of the main
function, prior to any global initialization and variable initialization. (Memory locations not
covered by normal program initialization may not be reset.)

Theinitial state includes only the execution point (program counter), memory map registers,
and the stack pointer. The Reset Program command will not reload the program if the previ-
ous execution overwrites the code segment. That is, if your code is corrupted, the reset will not
be enough; you will have to reload the program to the target.

Close Connection
If using aseria connection, disconnects the programming serial port between PC and target so

that the target seria port is accessible to other applications.
If using a TCP/IP connection, closes the socket between the PC and the RabbitLink.

200 Dynamic C User’s Manual

14.2.5 Inspect Menu

Click the menu title or press <Alt+1> to open the INSPECT menu.

=l Options Window Help
F AddWatch.. Crbead
=3 Delete Watch
ik Delete Al atches
Q?" Update " atch Wwindow Chrl+L

QV Ewaluate Expreszion

fml Dizazzemble at Curzor Chrl+F10
::ﬁ Digazzemble at Address.. Al+F10
I Dump &t Address. .. Ctrl+[r
G to execution poink Ctrl+E

dow.

Add W atch Expreszion

The INSPECT menu provides commands to manipul ate
watch expressions, view disassembled code, and pro-
duce hexadecima memory dumps. The INSPECT menu
commands and their functions are described here.

Add Watch <Ctrl+W>
This command displays the Add Watch Expression dia-
log. Enter watch expressions with this dialog box.

A watch expression may be any valid C expression,
including assignments, function calls, and preprocessor
macros. (Do not include a semicolon at the end of the
expression.) If the watch expression is successfully com-
piled, it and its outcome will appear in the Watches win-

If the cursor in the active win-
dow is positioned over avari-

Watch Expreszion

[able or function name, that

add | [oK

name will appear in the Watch

Expression text box when the

Add Watch Expression dialog

box appears. Clicking the Add button will add the given watch expression to the watch ligt,
and will leave the Add Watch Expression dialog open so that more watches can be added.
Clicking the OK button will add the given watch expression to the watch list, and close the

Add Watch Expression dialog.

To add alocal variable to the Watch window, the target controller’s program counter (PC)
must point to the function where the local variableis defined. If the PC points outside the
function, an error message will display when Add or OK is pressed, stating that the variableis

out of scope or not declared.

An example of the results displayed in the Watches window appears bel ow.

EWatches =]

i

int 47 (0x002ZF) ¢

3

int 1326 (0x00gg)

If the evaluation of awatch expression causes a run-time exception, the exception will be
ignored and the value displayed in the Watches window for the watch expression will be unde-

fined.

Delete Watch

Removes highlighted entry from the Watches window.

Chapter 14: Graphical User Interface

201

Delete All Watches
Removes all entries from the Watches window.

Update Watch Window <Ctrl+U>
Forces expressions in the Watches window to be evaluated. If the target is running nodebug

code, the Watches window will not be updated, and the PC will lose communication with the
target. Inserting an RST 02 8h instruction into frequently executed nodebug code will allow
the watch window to be updated while running in nodebug code. Normally the Watch window
is updated every time the execution cursor is changed, that is when a single step, a breakpoint,
or astop occursin the program.

Evaluate Expression
Brings up the Evaluate Expression dialog where you can enter a single expression in the

Expression dialog. Theresult is displayed in the Result text box when Evaluateis clicked.
Multiple Evaluate Expression dialogs can be active at the sametime.

Disassemble at Cursor <Ctrl+F10>
L oads, disassembles and displays the code at the current editor cursor location. This command

does not work in user application code declared as nodebug. Also, this command does not
stop the execution on the target.

Disassemble at Address <Alt+F10>
Brings up the Disassemble at Address dialog where you can enter an address at which to begin

disassembly. The format of the addressis either the logical address specified as a hex number
(Oxnnnn or just nnnn) or as an xpc:offset pair separated by a colon (nn:mmmm).

The Disassembled Code window displays the result. See “Assembly” on page 235 for details
about this window.

Dump at Address <Ctrl+D>
Allows blocks of raw valuesin any memory location to be looked at. VValues can be displayed

on the screen or written to afile. If separate 1&D space is enabled, you can choose which logi-
cal space to examine: instruction space or data space.

When writing to afile, the option Save

Memary Dump Setup to File requires afile pathname and the
— Memary Durmp number of bytes to dump. The option
Dump Address IEI:-:EIEIEIEI =] Save Entire Flash to File requires afile

[T Save entire flazh to file pathr?amg It you are runr_]ing in RAM,
............................ then It WIII be RAM thﬁ Isww to a
"""""""""""""" file, not Flash, because this option sim-

ply starts dumping physical memory at

Fils ez I _I address zero.

Murnber of bytez I

[u]:4 Cancel Help

202 Dynamic C User’s Manual

When displaying on a screen, the Memory Dump window is opened. A typical screen display
appears below. Although the cursor is not visible in this screen capture, it is hovering over log-
ical memory location 0x0022, which has a value of OxFF. Thisinformation is given in the fly-
over text and also in the titlebar. Either or both of these options may be disabled by right click-
ing in the Memory Dump window or in the Options | Environment Options, Debug Windows
tab, under Specific Preferences for the Memory Dump window.

EMemnw Dump - 00022 - FF

TUpdate button ||IJ:420 'IEI?I;

0oo
oooooo C3 72 oo 77 1D 00 00 12 FF FF FF FF FF FF FF FF i w ﬂ
oooolo FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

aoooozo FF FF FF FF FF FF FF FF C7 00 E1 F2 CF 4% E4 F& E
ooooz0 Cr 1F 1D CF E1 EE F2 C3 ZC 00 EIr 5E CF EBA EZ F&2 P
oooo040 EDR 46 3E 20 3F 44 Ce CF F& E1 F2 C3 77 1D FD £1 F= 27 L
000050 11 c2 100022 FF|oo CE 7F 22 05 CI» BES 11 18 12 CE H o

ooooe0 &F 22 05 CDr 74 14 12 OF 34 3B C2 BY 22 08 CD 74 {1 ¢ - [S
oooo70 14 12 04 D3 3F C3 00 C9 ED 76 FE 02 F5 ED 77 FE z w o
oooos0 C5 DE ES DD ES FDr ES D3 CH DE ES CDr 4E 00 E1 Dl N
oooo20 C1 09 F©r E1 DI E1 E1 D1 C1 F1 EDI &7 F1 02 F1 ED o
0000a0 7E ED ED» C2 D3 3234 C3 00 CE 7F C2 D3 24 CO 00 C9 ~ H H
oooob0 2E O7 D2 32 C2 00 C2 D3 34 C3 00 CE EF CO 79 D3 = 2 H _ 7
oo00e0 3E CO OO0 C2 44 79 6E &1 6D &% 43 55 BE 69 76 65 2 Dynami Clinive
oooodo 7E 73 61 6C Z0 B2 Bl &E 6Z &5 74 20 42 49 4F &3 rsal Babbhit BIOS
0000e0 Z0 L& &5 72 73 69 &F &E 20 37 ZE 323 32 3B ED &4 WVersion 7.32; T
oooof0 &F 7C ED &7 YD ED E4 33 33 C9 F& 2E EA D3 3Z 08 ol o} T332 =2 E
ooolo0 00 F1 C2 CF &2 EA F2 C9 FL 32 E4 CE CE E7 CE EF h

0oollo 3 E4 CL 32 ES CE CE 27 CEB EF CE C7 32 EE CE 3E & - z >‘:J

The Memory Dump window may be scrolled. Scrolling causes the contents of other memory
addresses to appear in the window. Hotkeys ArrowUp, ArrowDown, PageUp, PageDown are
active in the Memory Dump window. The window always displays as many lines of 16 bytes
and their ASCII equivalent aswill fit in the window.

Valuesin the Dump window are updated automatically either when Dynamic C stops or comes
to a breakpoint. Updates only occur if the window is updateable. This can be set either by right
clicking in the Memory Dump window and toggling the updateable menu item, or by clicking
on the Debug Windows tab in Options | Environment Options. Select Memory Dump under
Specific Preferences, then check the option “ Allow automatic updates.” The Memory Dump
window can be updated at any time by clicking the Update button on the tool bar or by right
clicking and choosing Update from the popup menu.

The Memory Dump window is capable of displaying three different types of dumps. A dump
of alogical address ([Ox]mmmm) will result in a 64k scrollable region (0x0000 - Oxffff). A
dump of a physical address ([0x]mmmmm) will result in adump of a 1M region (0x00000 -
Oxfffff). A dump of an xpc:offset address (nn:mmmm) will result in either a 4k, 64k, or 1M
dump range depending on the option set on the Debug Windows tab under Options | Environ-
ment Options.

Any number of dump windows may be open at the same time. The type of dump or dump
region for a dump window can be changed by entering a new address in the toolbar’s text
entry area. To theright of the this areais a button that, when clicked, will cause the addressin
the text entry areato be the first address in the Dump window. The toolbar for adump window
may be hidden or visible.

Chapter 14: Graphical User Interface 203

Goto execution point <Ctrl+E>
When stopped in debug mode, this option places the cursor at the statement or instruction that
will execute next.

14.2.6 Options Menu
Click the Options menu title or press <Alt+O> to select the Options menu.

Inzpect Q[N "Aindow Help

3 I$ Erwiranrment Options
Project Optionz

Environment Options

Dynamic C comes with a built-in, full-featured text editor.
It may be customized to suit your style using the Environ-
Toolbars * | ment Options dialog box. The dialog box has tabs for vari-
ous aspects of the editor.

Editor Tab
Click on the Editor tab to display the following dialog. Installation defaults are shown.

Environment Options |

f Gutter&MarginI Displa_l,ll Syntax Eolnrsl Code Templatesl Debug Windowsl Frint # Alerts

— Editar optionz

v Auto indent mode [~ Keep trailing blanks [~ Dizable dragaing

[~ Use previous indention [~ Persistent blocks [Center Bookmarks [2]
[~ Cursar through tabs (3] ¥ Owvenarite blocks

[¥ Backspace unindents [~ Double click line

[~ Show line numbers ¥ Find text at cursor

[| Shoavlite aumbers arauter [~ Select found text

[~ Maotepad style cursar [1] v Use sprtax highlight

[~ Cursor beyond EOE [~ Block ovenarite cursor

v Cursor beyond EOL [~ Undo after zave [£]

v Selection beyond EOL v Group undo

Block indent: Tab stops: k.epmapping:

[3 25 | Detau =
#define N 1000 =
const float JQRT PI = 1.77245355;) the sguare root
const char lasbel = "The =square root of pi is:
raing)

{
int i;
for (i = 0; 1 < N; ++1)
¢ -
printf ("ss $£in”, label, SQRT PI);

T o

0k Cancel | Help |

204 Dynamic C User’s Manual

The Editor options are detailed here. All actions taken are immediately reflected in the
text area at the bottom of the dialog, and in any open editor windows.

Auto indent mode
Checking this causes a new line to match the indentation of the previous line.

Use previous indention
Uses the same characters for indentation that were used for the last indentation. If the
last indentations was 2 tabs and 4 spaces, the next indentation will use the same com-
bination of whitespace characters.

Cursor through tabs
With this option checked, the right and left arrow keys will move the cursor through
the logical spaces of atab character. If thisis unchecked the cursor will move the
entire length of the tab character.

Backspace unindents
Check this to backspace through indentation levels. If thisis unchecked, the back-
space will move one character at atime.

Show line numbers

Check this to display line numbers in the text window. This must be checked to acti-
vate the option Show line numbers on gutter.

Show line numbers on gutter
If gutters are visible, check this to display line numbers in the gutter.

Notepad style cursor
Checking this causes the cursor to behave similar to Notepad.

Cursor beyond EOF
Check this option to move the cursor past the end of the file.

Cursor beyond EOL
Check this option to move the cursor past the end of the line.

Selection beyond EOL
Check this option to select text beyond the end of the line.

Keep trailing blanks

Check this option to keep extra spaces and tabs at the end of alinewhen anew lineis
started.

Chapter 14: Graphical User Interface 205

Persistent blocks
Check this option to keep selected text selected when you move the cursor using the
arrow keys. Using the mouse to move the cursor will deselect the block of text. Using
menu commands or keyboard shortcuts will affect the entire block of selected text.
For example, pressing <Ctrl+X> will cut the selected block. But pressing the delete
key will only delete one character to the right of the cursor. If this option was
unchecked, pressing the delete key would delete all the selected text.

If this option is checked and the Find or Replace diaog is opened with a piece of text
selected in the active edit window, the search scope will default to that bit of selected
text only.

Overwrite blocks
Check this option to enable overwriting a selected block of text by pressing akey on

the keyboard. The block of text may be overwritten with any character, including
whitespaces or by pressing delete or backspace.

Double click line
Check this option to alow an entire line to be selected when you double click at any

position in the line. When this option is unchecked, double clicking will select the
closest word to the left of the cursor.

Find text at cursor
When either the Search or Replace dialogs are opened, if this option is checked the
word at the cursor location in the active editor window will be placed into the “ Text to

Find” edit box. If this option is unchecked, the edit box will contain the last search
string.

Select found text

The color of found text can be set in Options | Environment Options, on the Syntax
Colors page. Select “Search Match” from the Element list box, then set the foreground
and background colors.

If this box is unchecked the Search Match color scheme will be used when amatch is
found, but the text will not be selected for copy or delete operations. If this option is
checked, the matched text will automatically be selected so that it may be copied or
deleted.

Use syntax highlight
Check this option to enable the Display and Syntax Color choicesto be active.

Block overwrite cursor

Check this option to show the cursor as a block when an editor is placed in overwrite
mode.

206 Dynamic C User’s Manual

Undo after save
Check this option to enable undo operations after a file has been saved. With this
option unchecked, the undo list for afileis erased each time the file is saved.

Group undo

Check this option to undo changes one group at atime. With this option unchecked,
each operation is undone individually.

Disable dragging
Checking this option disables drag and drop operations: i.e., the ability to move
selected text by pressing down the left mouse button and dragging the text to a new
location.

Center Bookmarks

Check this option so that when you jump to a bookmark it is centered in the editor
window.

Block indent

The number of spaces used when a selected block is indented using <Ctrl+k+i> or
unindented using <Ctrl+k+u>.

Tab stops
Thisis acomma separated list of numbers which indicate the number of spaces per
tab stop. If only one number is entered, say “3,” then thefirst tab stop is 3 spaces, asis
each additional tab stop. Every additional number in the list indicates the number of
spaces for al subsequent tabs. E.g., if thelist consists of “3,6,12" thefirst tab stop is 3
spaces, the second tab stop is 3 more spaces and all subsequent tab stops are 6 spaces.

Keymapping
The keyboard has 5 different default key mappings: Default, Classic, Brief, Epsilon
and Visual Studio. Change the keymapping with this pulldown menu.

Chapter 14: Graphical User Interface 207

Gutter & Margin Tab
Click on the Gutter & Margin tab to display the following dial og.

Environment Options E2

| Displa_l,ll Syntax EDID[SI Code Templatesl [Debug Winduwsl Print .-’.i".lertsl

— Editar gutter — Editar margir
W Visible width [2 3] % Visble widh: [T 3]
Calar: ||:| BtnFace j @l e I- GragTont ﬂ @I

— Line Mumbers Colors

Style: -
Foreground: I- Black. j @l | -
Backaraund: |] Whie =] @| Position: |BD B

#odefine N 1000 =

const fleat ZQRT PI = 1.77245385; /7 the sguare roob

const char lakel = "The sguare root of pi is: ';

tain ()

{

int i;

for (i = 0; i < N; ++i)
i

printf ("ss %£yn”, label, SQRT PI):
H

0. LCancel | Help |

Editor gutter

Check the Visible box to create a gutter in the far left side of the text window. Use the
Width scroll bar to set the width of the gutter in pixels. The button to the right updates
the width parameter. Changing the width and clicking on OK at the bottom of the dia-
log does not update the gutter width; you must click on the button. Use the Color pull-
down menu to set the color. The button to the right brings up more color choices.

Editor margin

Check the Visible box to create a right-hand margin in the text window. Use the Width
scroll bar and the Color pulldown menu to set the like-named attributes of the margin
line. The Style pulldown menu displays the line choices available: a solid line and var-
ious dashed lines. The Position scroll box is used to place the margin at the desire
location in the text window.

208 Dynamic C User’s Manual

Line Number Colors

If line numbers are set to visible and are not placed on the gutter, the Foreground color
will set the color of the line numbers and the Background color will set the color on
which the line numbers appear.

Display Tab

Click on the Display tab to display the following dial og.

Environment Options

| Syntax Colors | Code Templates I Debug Windows I Print / Alerts I

-l 2

-l 2

— Editar Faont — Backaround Calars
Hame: W Use monofont Size: E ditar [E dit Mode]:
I Carier Mew =] |1 0 =l ||:| "wWindow
— Special Symbols Editor [Del.:uug b ode]:
- ||:| "wiindow
EmE |1 GpaGe; I Wiorkspace:
EOE I_— T I— I- AppiwiorkSpace

]

#define N 1000 -
const £loat SQRT_PI = 1.77245385; A4 the sguare root
const char label = "The sgquare root of pi is: ';
maini)
{
int i:
for (i = 0; 1 < HN: ++1i)
{
printf ("%s $f\n", lakel, S0RT _PI);
H
H
h
1| I 3
ok LCancel | Help |
Editor Font

This area of the dialog box is for choosing the font style and size. Check
Use mono font for fixed spacing with each character; note that this option limits the

available font styles.

Special Symbols

Check Use to view end of line, end of file, space and/or tab symbolsin the editor win-

dow.

Chapter 14: Graphical User Interface

209

Background Colors

This area of the dialog box is for choosing background colors for editor windows and
the main Dynamic C workspace. The editor window can have a different background
color in edit mode than it does in run mode. Each pulldown menu has an icon to the

right that brings up additional color choices.

Syntax Colors Tab

Click on the Syntax Colors tab to display the following dialog.

Environment Options E2

Element

Sking

Comment
Integer

Float

Reserved words
Defines
Identifier
Delirmiters
Agzembler

||

Errearommd calan

| Code Templates I Debug Windows I Prirt / &lerts I

| I Eack

B achanoum calan

2

||:| Windaow
ze defaultz for
[+ Fareground

¥ Backaground

2

Text attibutes

™ Bold
[~ Italic
[T Underline

Open

main ()
{

int i:
(i

for o:
{

princt

{"ss sfyn",

fdefine N 1000
const float 3QRT FPI
const char lakbel

i< N ++1)

1.77245385;

label,

SQRT FI):

A4 the sguare root
"The scquare root of pi is: :

[
Save |

LCancel |

210

Dynamic C User’s Manual

Element
In thistext box are the different elements that may bein afile (strings, comments,
integers, etc.). For each one you may choose a foreground and a background color.
You may also opt to use the default colors: black for foreground and white for back-
ground. In the Text attribues area of the dialog box, you may set Bold, Italic and/or
Underline for the any of the elements.

Open / Save Buttons

These buttons load and save color stylesinto files with a.rgb extension. Clicking the
Open button will bring up an Open File dialog box, where you choose a .rgb file that
will set all of the syntax colors. Thereis a subdirectory titled Schemes under the root
Dynamic C directory that has some predefined color schemes that can be used. Open-
ing a .rgb file makes its colors immediately active in all open editor windows. If you
close the Environment Options window without saving the changes, the colors will go
back to whatever they were before you opened the .rgb file.

Chapter 14: Graphical User Interface 211

Code Template Tab
Click the Code Template tab to display the following dialog.

Environment Options]
Editar | Gutter & Marginl Displa}ll Syntas Colors Code Templates | Debug 'W'indu:uwsl Frint .f'a'-‘n.lertsl
Templates
M ame IDexcriptiun | Edit |
forb for staterment
function function declaration Delete |
ffb ff statement Add.,
ifeb if elze
structure declaration
awitch statement
whileb while statenment
libheader Libramy Header
libdeszcription Library Description
funcdescription Function D escription
hd ain kain program
Code
switch [|) |
{
case : ;
break:
case :
break;
default: ;
H
|
ak. LCancel Help |

Asyou can see, there are several predefined templates. The Edit and Delete buttons allow
the like-named operations on existing templates. The Add button gives the ability to create
custom templ ates.

To bring up thelist of defined templates, Dynamic C must bein edit mode. Then you must
do one of the following: press <Ctrl+j> or right click in the editor window and choose
“Insert Code Template” from the popup menu or choose the Edit command menu and
select “Insert Code Template.” Clicking on the desired template name inserts that template
at the cursor location.

212

Dynamic C User’s Manual

Debug Windows Tab
Click on the Debug Windows tab to display the following dialog. Here is where you
change the behavior and appearance of Dynamic C debug windows.

Environment Options E

Editar | Gutter & Marginl Displa_l,ll Syntax Eololsl Code Templates Debug ‘Windows | Print .r'ﬂ.lertsl

— General Preferences

= Do not automatically open = Open zelected

t* Open |ast used windows [T fssembly ¥ Stdia

" Open all debug windows [T Beaisters [T Gtack
b = D

— Specific Preferences

— Fonts and Caolors

[ebug Windows
Faregraund Calar
| I E1ack = @|
Reqgisters
kemary Dump Background Color
W atch -
M ezzages ||:| hite j @l
Font I~ Use figed pitch
ITerminal j |
_| &pply Settings ko &l
— Optionz

¥ Afutomatic open Baws: |1|:||:||:|E|
v Automnatic Yertical Scrall

Cal 3 IBI:I
™ Automatic Horizontal S crall SIS
[~ LogtaFile [T &ppend Spaces In Tak: IB

Idc.nut _l

ak. I LCancel

Under General Preferences iswhere you decide which debug windows will be opened
after a successful compile. You may choose one of the radio buttonsin this category.
Selecting “ Open last used windows’ makes Dynamic C 8 act like Dynamic C 7.x.

Under Specific Preferences is where you customize each window. Colors and fonts are
chosen here, as well as other options.

Chapter 14: Graphical User Interface

213

Stdio Window

The previous screen shows the options available for the Stdio wi ndow'. They are
described here. You may modify or check as many as you would like.

Automatic open

Check this to open the Stdio window thefirst timeprint£ () isencoun-
tered.

Automatic Vertical Scroll
Check thisto force vertical scroll when text is displayed outside the view of
the window. If this option is unchecked, the text display doesn’t change when
the bottom of the window is passed; you have to use the scroll bar to see text
beyond the bottom of the window.

Automatic Horizontal Scroll
Check this to force horizontal scroll when text is displayed outside the view
of the window.

Log to File
Check thisto direct output to afile. If the file does not exist it will be created.
If it does exist it will be overwritten unless you also check the option to
append thefile.

Rows
Specifies the maximum number of rows that can hold Stdio data.

Columns
Specifies the maximum number of columns that can hold Stdio data. When
the maximum column is reached, output automatically wrapsto the next row.

Spaces In Tab
Tab stops display as the number of spaces specified here.

i. Themacro STDIO DEBUG_SERIAL may be defined to redirect Stdio output to a des-
ignated seria port—A, B, C or D. For more information, please see the sample program
Samples/STDIO_ SERIAL.C.

214

Dynamic C User’s Manual

Assembly Window

The Assembly window displays the disassembled code from the program just com-
piled. All but the opcode information may be toggled off and on using the checkboxes
pictured below. For more information about this window see Section 11.4.2.1 on

page 131.

 Specific Preferences

Debug windows

Stack
Fegisters
temaom Dump

— Fontz and Colors

Eorearautd Ealan

[N Back =l
Background Color

[Jwhis = @]
Fant ™ | Uze fied piteh
Il:nurier Hew j _I

_| &pply Settings to Al

— Optiohs
v Show Addresses

v Show Machine Code
¥ Show Clock Cycles
¥ Sum Clock Cycles

v Use Syntax: Highlighting
[~ Show Source
[~ Show File Mame in Source Line

Cancel

Show Addresses

Check thisto show the logical address of the instruction in the far left column.

Show Machine Code

Check this to show the hexidecimal number corresponding to the opcode of

the instruction.

Show Clock Cycles

Check this to show the number of clock cycles needed to execute the instruc-
tion in the far right column. Zero wait states is assumed. Two numbers are
shown for conditional return instructions. The first is the number of cycles if
the return is executed, the second is the number of cyclesif the return is not

executed.

Sum Clock Cycles

Check this to total the clock cycles for ablock of instructions. The block of
instructions must be selected and highlighted using the mouse. Thetotal is

displayed to the right of the number of clock cycles of the last instruction in
the block. This value assumes one execution per instruction, so looping and
branching must be considered separately.

Chapter 14: Graphical User Interface

215

Use Syntax High

lighting

Toggle syntax highlighting. Click on the Syntax tab to set the different colors.

Show Source

Check thisto display the Dynamic C statement corresponding to the assembly

code.

Show File Name in Source Line
Check this to prepend the file name to the Dynamic C statements correspond-
ing to the assembly code.

Register

For this window you must choose one of the following conditions:. “ Show register his-
tory” or “ Show registers as editable.” When the Register Contents window opens it
will be in editable mode by default. Selecting “ Show Register history” will override

the default setting.

Show register history
In this mode, a snapshot of the register and flag valuesis displayed every time
program execution stops. Theline (L:) and column (C:) of the cursor is noted,
followed by the register and flag values. The window is scrollable and sec-
tions may be selected with the mouse, then copied and pasted.

™2 Dynamic C Dist. 8.00Beta2

File Edt Comple RBun Inzpect Options ‘Window Help

0= W

&P s

L: 13 C:3Z

A oo

EC 0&CEZ
DE z7ED
HL 4738E
I CLaD
PC 1Ell

L: 18 C:1
] C
A Fa

EC 000%
DE CEZO
HL 4348
I¥ CE8D
PC 1E3Z

St -
=5 Register Contents

HPC 00

AF' Fs00
EC' 0000
DE' 1000
HL' LFFD
IT 1El0
ZF DFFD

3

HPC oo
AF' 2040
EC' 0003
DE' o000
HL' o000
IT C2ll
5P DFFD

LChange Register Value(z)... Ctil+Alt+R

Copy Chl+C

Switch to Editable View Chrl+l+E

-

A click of the right mouse button brings up the menu pictured above. Choos-
ing Change Register Value(s)... brings up a dialog where you can enter new
values for any of the registers, except SP, PC and XPC.

216

Dynamic C User’s Manual

Show registers as editable
In this mode, you can increment or decrement most of the registers, all but the
SP, PC and XPC registers.

This screen shows the Register Contents window in editable mode. Itis
divided into registers on the |eft and flags on the right.

% Dynamic C Dist. 8.00Beta2

File Edit Compile Bun lnzpect Options Window Help

[[o=w s

R

A - 0OxF7

BC : 0Ox00E7
DE : 0OxCEEZ0
HL : 0OxE7CC
AF': 0Ox%040
EC': 0Ox000%2
DE': 0x0000
HL': 0x0000
¥ : 0xCEsD

f - OxC=lo

5P : 0OxDFFD
PC : 0OxlE3:Z

Decrement Register Chil+Alt+D
WPC- Ox0000 Increment B egister Clrl+Alt+
Mew Register Walue... Chl+alt+H

E Regizter Contents

M E e " E OH O
|l e T e e R o e Y O}

Switch to Historg View Chil+<+H

A click of the right mouse button on the register side will bring up the menu
pictured here. You can switch to history view or change register values for al
but the SP, PC and XPC registers.

Enter new value for I'Y

The option New Register Value

XJ will bring up adialog to enter

Mew Reqister Walue ||

]S

the new register value. Hex
values must have “0x”

Cancel | prepended to the value. Values

without aleading “0x” are
treated as decimal.

A click of the right mouse button on the flags side of the window will bring
up amenu that lets you toggle the selected flag (Ctrl+Alt+T) or switch to his-
tory view (Ctrl+Alt+H).

Chapter 14: Graphical User Interface

217

Memory Dump

Apply changesto all
Changes made in this dialog will be applied to all memory dump windows.

Allow automatic updates

The memory dump window will be updated every time program execution
stops (breakpoint, single step, etc.).

218 Dynamic C User’s Manual

Show tool bar

Each dump window has the option of atool bar that has a button for updating
the dumped region and atext entry box to enter a new starting dump address.

Show address while scrolling

While using the scroll bar, asmall popup box appearsto the right of the scroll
bar and displays the address of the first byte in the window. This allows you
to know exactly where you are as you scroll.

Show current bytein hint

The address and value of the byte that is under the cursor is displayed in a
small popup box.

Show current bytein title bar

The address and value of the byte that is under the cursor is displayed in the
title bar.

Segmented Dump Range

The memory dump window can display 3 different types of dumps. A dump
of alogical addresswill result in a 64k scrollable region (0x0000 - Oxffff). A
dump of a physical address will result in adump of a 1M region (0x00000 -
Oxfffff). A dump of an xpc:offset address will result in either a 4k, 64k or 1M
dump range, depending on how this option is set.

If adk or 64k range is selected, the dump window will dump a 4k or 64k
chunk of memory using the given xpc. If “Full Range” is selected, the win-
dow will dump 00:0000 - ff:ffff. To increment or decrement the xpc, use the
“+" and “-” buttons located below and above the scroll bar. These buttons are
visible only for an xpc:offset dump where the range is either 4k or 64k.

Chapter 14: Graphical User Interface 219

Print/Alerts Tab

Click on the Print/Alerts tab to display the following dialog. You may access both the Page
Setup dialog and Print Preview from here.

Environment Options E

Editor I Gutter&MarginI Displa_l,ll Syntan Eolor&l Code Templatesl Debug Windows Frint / Alerts

i Print Dptions

¥ Use Left Margin |1
o Lz Zoi v Usze Right kargin I'I

W Mumber Pages

¥ Swyntax Print & sz Lo bizcin |1

I~ ‘Wiap Lines ¥ Usze Bottam Margin |1
i Editor Font
Harne: Size:
ICourier Mew j |1 0 j
Setup Preview
i Alerts

[~ Flashicon in taskbar after successful compile and download
[~ Beep after successtul compile and download
v Detect changes made to open file outside of IDE and prampt far reload

[Confirm compilation of ibrany files

0k, I LCancel

The Page Setup dialog works in conjunction with the Print/Alerts dialog. The Page Setup
dialog is where you define the attributes of headers, footers, page numbering and margins
for the printed page. The Print/Alerts dialog is where you enable and disabl e these set-
tings. You may also change the font family and font size that will be used by the printer.
This does not apply to the fonts used for headers and footers, those are defined in the Page
Setup dialog.

There are 4 checkboxes in the Alerts area of thisdialog. Thefirst 2 signal a successful
compile and download, one with avisual signal, the other auditory. The 3rd checkbox
detectsif afile that is currently open in Dynamic C has been modified by an external
source, i.e., a 3rd party editor; and if checked, will bring up adiaog box asking if you
want to rel oad the modified file so that Dynamic C is working with the most current ver-
sion. The last checkbox, if checked, causes Dynamic C to query when an attempt is made
to compile alibrary file to make sure that iswhat is desired.

You may choose zero or more of these alerts.

220

Dynamic C User’s Manual

Project Options
Settings used by Dynamic C to communicate with atarget, and to compile and run programs
are accessible by using the Project Options dialog box. The dialog box has tabs for various
aspects of communicating with the target, the BIOS and the compiler.

Communications Tab

Project Options |

Communications I I:::umpilerl Del:uuggerl Definesl Targetlessl

— Connection Tepe

* lze Senal Connectior " Usze TCPAP Connection

— Sernal Optiohz

— Baud Rates
Debua Baud Rate | 115200

[
[

Max Download Baud Rate |4EEIEEIEI

[~ Dizable Baud Megatiation

Serial Port IEEIM1 vI Stop Bitz |2 vI

¥ Enable Processor verfication [Use USE to Serial Corwerter

Werify the processar.
[Try dizabling if pou can't get
the PC ta find the target]

— TCR/IP Optionz
[etwart Sddress I

[Eartralen Hiame I

ot Fart IU

[IiEEayEn |

ak. Cancel | Help

Connection Type
Choose either a serial connection or a TCP/I P connection.

Chapter 14: Graphical User Interface 221

Serial Options
Thisiswhere you setup for serial communication. The following options are available
when the Use Serial Connection radio button is selected.

Debug Baud Rate

This defaultsto 115200 bps. It isthe baud rate used for target communica-
tions after the program has been downloaded.

M ax Download Baud Rate

When baud negotiation is enabled, Dynamic C will start out at the selected
baud rate and work downwards until it reaches one both it and the target can
handle.

Disable Baud Negotiation

Dynamic C negotiates a baud rate for program download. (This helps with
USB or anyone who happens to have a high-speed serial port.) This default
behavior may be disabled by checking the Disable Baud Negotiation check-
box. When baud negotiation is disabled, the program will download at 115k
baud or 56k baud only. When enabled, it will download at speeds up to 460k
baud, as specified by Max Download Baud Rate.

Serial Port

Thisisthe COM port of the PC that is connected to the target. It defaults to
COM1.

Sop Bits
The number of stop bits used by the serial drivers. Defaultsto 2.

Enable Processor Verification

Processor detection is enabled by default. The connection is normally
checked with atest using the Data Set Ready (DSR) line of the PC seria con-
nection. If the DSR line is not used as expected, afalse error message will be
generated in response to the connection check.

To bypass the connection check, uncheck the Enable Processor Verification
checkbox. This allows custom designed systems to not connect the STATUS
pin to the programming port. Also disabling the connection check allows non-
standard PC ports or USB converters which might not implement the DSR
line to work.

Use USB to Serial Converter

Check this checkbox if a USB to serial converter cable is being used.
Dynamic C will then attempt to compensate for abnormalitiesin USB con-
verter drivers. This mode makes the communications more USB/RS232 con-
verter friendly by allowing higher download baud rates and introducing short
delays at key pointsin the loading process. Checking this box may also help
non-standard PC ports to work properly with Dynamic C.

222

Dynamic C User’s Manual

TCP/IP Options

In order to program and debug a controller across a TCP/IP connection, the Network
Address field must have the | P address of either the Z-World RabbitLink board that is
attached to the controller, or the | P address of a controller that has its own Ethernet

interface.

To accept control commands from Dynamic C, the Control Port field must be set to
the port used by the Ethernet-enabled controller. The Controller Name is for informa-
tional purposes only. The Discovery button makes Dynamic C broadcast a query to
any RabbitLinks attached to the network. Any RabbitLinks that respond to the broad-
cast can be selected and their information will be placed in the appropriate fields.

Compiler Tab

Click on the Compiler tab to display the following dialog.

Project Options

Commurications |

— Bun-Time Checking
[Auray Indices
¥ Paointers

| Del:uuggerl Definesl Targetlessl

— Optimize For
" Size
* Speed

— Twpe Checking
[+ Pratotype
¥ Demation
¥ Poirter

— BIOS Memaory Setting
f* Code and EIOS in Flash
" Code and BIOS in Bak
= Code and BIOS in Flash, Bun in Rk

— Warning Reparts
o A

" Serous Only
" Maone

 Max Shown

Errars; m =

Wamings: (10 =

— Ligt Files

[T Generate aszembly list file for each compile

— Separate [netruction & Data Space

[Enable separate instruction and data spaces

— Default Compile Mode
* Compile to attached target

" Compile to bin file using attached target

' Compile defined target configuration ta . bin file

— Ireline |A0
[T Inline builtin 10 functions

Advanced...

Cancel

Help

Chapter 14: Graphical User Interface

223

Run-Time Checking
These options, if checked, can allow afatal error at run-time. They also increase the
amount of code and cause slower execution, but they can be valuable debugging tools.

e Array Indices—Check array bounds. Thisfeature adds code for every array ref-

erence.

e Pointers—Check for invalid pointer assignments. A pointer assignment is

invalid if the code attempts to write to alocation marked as not writable. Loca
tions marked not writable include the entire root code segment. This feature
adds code for every pointer reference.

Type Checking
This menu item allows the following choices:

e Prototypes—Performs strict type checking of arguments of function calls

against the function prototype. The number of arguments passed must match
the number of parametersin the prototype. In addition, the types of arguments
must match those defined in the prototype. Z-World recommends prototype
checking because it identifies likely run-time problems. To use this feature
fully, all functions should have prototypes (including functionsimplemented in
assembly).

Demotion—Detects demotion. A demotion automatically converts the value of
alarger or more complex type to the value of a smaller or less complex type.
Theincreasing order of complexity of scalar typesis:

char

unsigned int

int

unsigned long

long

float

A demotion deserves awarning because information may be lost in the conver-
sion. For example, when a 1 ong variable whose value is 0x10000 is converted
toan int value, the resulting valueis 0. The high-order 16 bits are lost. An
explicit type casting can eliminate demotion warnings. All demotion warnings
are considered non-serious as far as warning reports are concerned.

Pointer—Generates warningsif pointersto different types are intermixed with-
out type casting. While type casting has no effect in straightforward pointer
assignments of different types, type casting does affect pointer arithmetic and
pointer dereferences. All pointer warnings are considered non-serious as far as
warning reports are concerned.

Warning Reports
This tells the compiler whether to report all warnings, no warnings or serious warn-
ings only. It is advisable to let the compiler report all warnings because each warning
isapotential run-time bug. Demotions (such as convertingalong toan int) are
considered non-serious with regard to warning reports.

224

Dynamic C User’s Manual

Optimize For
Allows for optimization of the program for size or speed. When the compiler knows
more than one sequence of instructions that perform the same action, it selects either
the smallest or the fastest sequence, depending on the programmer’s choice for opti-
mization.

The difference made by this option isless obvious in the user application (where most
code is not marked nodebug). The speed gain by optimizing for speed is most obvi-
ous for functions that are marked nodebug and have no auto local (stack-based)
variables.

BIOS Memory Setting
A single, default BIOS source file that is defined in the system registry when install-
ing Dynamic C is used for both compiling to RAM and compiling to flash. Dynamic
C definesapreprocessor macro, FLASH , RAM or FAST RAM dependingon
which of the following optionsis selected. This macro is used to determine the rele-
vant sections of code to compile for the corresponding memory type.

e Code and BIOS in Flash—If you select this option, the compiler will load the
BIOS to flash when cold-booting, and will compile the user program to flash
where it will normally reside.

e Code and BIOS in RAM—If you select this option, the compiler will load the
BIOSto RAM on cold-booting and compile the user program to RAM. This
option is useful if you want to use breakpoints while you are debugging your
application, but you don’t want interrupts disabled while the debugger writes a
breakpoint to flash (this can take 10 ms to 20 ms or more, depending on the
flash type used). Itisalso possibleto have atarget that only has RAM for use
as a slave processor, but this requires more than checking this option because
hardware changes are necessary that in turn require a special BIOS and cold-
loader.

e Code and BIOS in Flash, Run in RAM—If you select this option, the compiler
will load the BIOS to flash when cold-booting, compile the user program to
flash, and then the BIOS will copy the flash image to the fast RAM attached to
CS2. This option supports a CPU running at a high clock speed (anything
above 29 MHz).

Thisisthe same as the command line compiler -mf r option.

Max Shown
This limits the number of error and warning messages displayed after compilation.

List Files
Checking this option generates an assembly list file for each compile. A list file con-
tains the assembly code generated from the source file.

Thelist fileis placed in the same directory as your program, with the name
<Program Name>.LST. Thelist file has the sasme format as the Disassembled
Code window. Each C statement is followed by the generated assembly code. Each
line of assembly code is broken down into memory address, machine code, opcode
and number of clock cycles. See page 235 for a screen shot of the Disassembled Code
window.

Chapter 14: Graphical User Interface 225

Separate Instruction and Data Space
When checked, this option enables separate 1& D space, doubling the amount of root
code and root data space available.

Please note that if you are compiling to a 128K RAM, thereisonly about 12K avail-
able for user code when separate 1& D space is enabled.

Default Compile Mode
One of the following options will be used when Compile | Compileis selected from
the main menu of Dynamic C or when the keyboard shortcut <F5> isused. The set-
ting shown here may be overridden by choosing a different option in the Compile
menu.

e Compile to attached target - a program is compiled and loaded to the attached
target.

e Compile defined target configuration to .bin file - a program is compiled and
the image written to a.bin file. The target configuration used in the compileis
taken from the parameters specified in Options | Project Options. The Target-
less tab allows you to choose an already defined board type or you may define
one of your own.

e Compileto .bin file using attached target - a program is compiled and the
image written to a .bin file using the parameters of the attached controller.

In-line 1/O
If checked, the built-in I/O functions (WrPortI (),RdPortI (),BitWrPortI ()
and BitRdPortI ()) will have efficient inline code generated instead of function
calsif all arguments are constants, with the exception of the 3rd parameter of Bit -
WrPortI () andWrPortI (), which may be any valid expression.

If this box is checked, but acall to one of the aforementioned functions is made with
non-constant arguments, (with the exception of the 3rd parameter for the 2 write
functions) then a normal function call is generated.

Advanced... Button
Click on this button to reveal the Advanced Compiler Options dialog. The options are:

Default Project Source File

Use this option to set adefault source file for your project. If thisbox is
checked, then when you compile, the source file named here will be used and
not the file that is in the active editor window. If the file named here is not
open, it will be opened into a new editor window, which will be the new
active editor window.

226 Dynamic C User’s Manual

User Defined BIOS File

Use this option to change from the default BIOS to a user-specified file. Enter
or select thefile using the browse button/text box underneath this option. The
check box labeled use must be selected or el se the default file BIOS defined
in the system registry will be used. Note that a single BIOS file can be made
for compiling both to RAM and flash by using the preprocessor macros
FLASH or _RAM . Thesetwo macros are defined by the compiler based
on the currently selected radio button in the BIOS Memory Setting group box.

User Defined Lib Directory File

The Library Lookup information retrieved with <Ctrl+H> is parsed from the
librariesfoundinthe 1ib.dir file, whichis part of the Dynamic C ingtalla-
tion. Checking the Use box for User Defined Libraries File, allowsthe parsing
of a user-defined replacement for 1ib . dir when Dynamic C starts. Library
filesmust belistedin 1ib.dir (or its replacement) to be available to a pro-
gram.

If the function description headers are formatted correctly (See “Function
Description Headers’ on page 43.), the functionsin the libraries listed in the
user-defined replacement for 1ib . dir will be available with <Ctrl+H> just
like the user-callable functions that come with Dynamic C.

Thisis the same as the command line compiler -1 £ option.

Watch Code

Allow any expressionsin watch expressions

This option causes any compilation of a user program to pull in al the utility
functions used for expression eval uation.

Restricting watch expressions (may save root code space)

Choosing this option means only utility code aready used in the application
program will be compiled.

Debug Instructions and BIOS Inclusion

Include RST 28 instructions

If thisis checked, the debug and nodebug keywords and compiler directives
work as normal. Debug code consists mainly of RST 28h instructionsinserted
after every C statement. This option also controls the definition of a compiler-
defined macro symbol, DEBUG_RST. If the menu item is checked, then
DEBUG_RST is set to one, otherwise it is zero.

If the option is not checked, the compiler marks all code as nodebug and
debugging is not possible.

The only reason to check this option if debugging is finished and the program
isready to be deployed, isto allow some current (or planned) diagnostic capa-
bility of the Rabbit Field Utility (RFU) to work in a deployed system. This
option affects both code compiled to .bin files and code compiled to the tar-
get. To run the program after compiling to the target with this option, discon-
nect the target from the programming port and reset the target CPU.

Chapter 14: Graphical User Interface 227

Include BIOS

If thisis checked, the BIOS, as well as the user program, will beincluded in
the .bin file. If you are creating a special program such as a cold loader that
starts at address 0x0000, then this option should be unchecked.

Thisoption is not available when you are compiling a program to the attached
target controller.

Debugger Tab
Click on the Debugger tab to display the following dialog. This is where you can disable
parts of the debug kernel to save room if there are tight code space requirements.

Project Options

Eummunicatinnsl Compiler Debugger | Definesl Targetlessl

— Debugger Optionz

Max breakpoints: 2 =

[+ Enable watch expressions

bl ax watch exprezsions: IE= vI

[+ Enable instruction level single stepping

Enable Breakpoints

If thisbox is checked, the debug kernel will be able to toggle breakpoints on and off
and will be ableto stop at set breakpoints. Thisiswhere you set the maximum number
of breakpoints the debug kernel will support. The debug kernel uses a small amount of
root RAM for each breakpoint, so reducing the number of breakpoints will slightly
reduce the amount of root RAM used.

If this box is unchecked, the debug kernel will be compiled without breakpoint sup-
port and the user will receive an error message if they attempt to add a breakpoint.

Enable Watch Expressions

If thisis checked, watch expressions will be enabled. Thisiswhere you set the maxi-
mum number of watch expressions the debug kernel will support. The debug kernel
uses a small amount of root RAM for evaluating each watch expression, so reducing
the amount of watches will dlightly reduce the amount of root RAM used.

With it unchecked, the debug kernel will be compiled without watch expressions sup-
port and the user will receive an error message if they attempt to add awatch expres-
sion.

228

Dynamic C User’s Manual

Enable Instruction Level Single Stepping
If thisis checked when the assembly window is open, single stepping will be by
instruction rather than by C statement. Unchecking this box will disable instruction
level single stepping on the target and, if the assembly window is open, the debug ker-
nel will step by C statement.

Defines Tab

The Defines tab brings up a dialog box with awindow for entering (or modifying) alist of
defines that are global to any source file programs that are compiled and run. The macros
that are defined here are seen by the BIOS during its compilation.

Syntax:
DEFINITION[DELIMETER DEFINITION[DELIMETER DEFINITION]...]]]

DEFINITION: MACRONAME[[WS]=[WS]VALUE]

DELIMETER: "' or 'newline

MACRONAME: the same as for a macro name in a source file

WS: [SPACE[SPACE]...]]]

VALUE: CHR[CHR]...]]

CHR: any character except the delimeter character *; ', which is entered as the character
pair "\ ;"

Notes:

e Do not continue a definition in thiswindow with '\, smply continue typing as along
line will wrap.

¢ |nthiswindow hitting the Tab key will not enter atab character (\ t), but will tab to the
OK button.

e The command line compiler honors al macros defined in the project filethat itis
directed to use with the project file switch, -pf, or default .decpif -pf isnot used.
See command line compiler documentation.

e A macro redefined on the command line will supercede the definition read from the
project file.

Chapter 14: Graphical User Interface 229

Examples and file equivalents:

Example:

DEF1;MAXN=10;DEF2

Equivalent:

#define DEF1
#define MAXN
#define DEF2

Example:

DEF1
MAXN = 10
DEF2

Equivalent:

#define DEF1
#define MAXN
#define DEF2

Example:

STATEMENT = A

Equivalent:

#define STATEMENT

#define DEF1
Example:

STATEMENT
FORMATSTR
DEF1=10

Equivalent:

#define STATEMENT
#define FORMATSTR

10

10

+

10

A + B
"name

#define DEF1 10

A + B

C\;

A + B
"mame

$s\n"

C\;;DEF1=10

C;
$s\n"

230

Dynamic C User’s Manual

Targetless Tab
Click on the Targetless tab to reveal 3 additional tabs: RTI File, Specify Parameters and
Board Selection.

RTI File
Click on thistab to open a Rabbit Target Information (RTI) file for viewing. Thefile
isread-only. You may not edit RTI files, but you may create one by selecting an entry
in the Board Selection list and clicking on the button Save as RTI. Or you may define
aboard configuration in the Specify Parameters dialog and then save the information
inan RTI file. Details follow.

Specify Parameters
Thisiswhere you may define the parameters of a controller for later use in targetless
compilations.

Project Options |

Enmmunicatinnsl Eu:umpilerl Del:uuggerl Defines Targetless |

RTIFile Specifty Parameters | Board Selection |

Board Configuratian

1D Code [0=<FFO0 - 0xFFFF):
=F

D ezcription;

CPL [revizion shawn on chip]:
IHabbit 2000 revision 14T

L

Baze Freguency [MHz]:

11.0532 =]
Bk [KBytes]:
512 =]

Prirary Flazh [FBytes]:
| 256

L

Update Board Selection | Save az RTI

ok Cancel | Help

Chapter 14: Graphical User Interface 231

The result may be saved to a RTI file for later use, or the result may be saved to the
list of board configurations. Thislist is viewable from the Board Selection tab. The
highlighted entry in the list of board configurations is the one that will be used when
the compilation uses a defined target configuration, that is, when the Default Compile
Mode on the Compiler tab is set to “ Compile defined target configuration to .bin file”
and Compile or Compile to .bin file is chosen from the Compile menu.

If you save to thelist of board configurations by clicking on the button Update Board
Selection, then you must fill in al fields of the dialog. The baud rate, calculated from
the value in the Base Frequency (MHz) field, only applies to debugging. The fastest
baud rate for downloading is negotiated between the PC and the target.

To saveto an RTI file only requires an entry in the CPU field. Please see Technical
Note 231 for information on the specifics of the Rabbit CPU revisions.

The correct choice for the CPU field isfound on the chip itself. The informationis
printed on the 3rd line from the top on the Rabbit 2000 and the 2nd line from the top
on the Rabbit 3000. The Rabbit 2000 revision is |Q#T, where # is the revision number
and the letters are associated information. The Rabbit 3000 revision is IL#T or | Z#T,
where # is the revision number and the letters are associated information.

RABBIT 3000™ S . _
ATS6CSS-LIT =w®
DOE4946AA RABBIT 3000™

ATS6CSSAZIT

0209 2G4993A

0230

232

Dynamic C User’s Manual

Toolbars

Selecting this menu item revea s alist of all menu button groups, i.e., the groups of icons that
appear in toolbars beneath the title bar and the main menu items (File, Edit, ...). Thisareais
called the control bar. Uncheck View Menu Buttons to remove the control bar from the
Dynamic C window. Any undocked toolbars (i.e., toolbars floating off the control bar) will
till be visible. You undock atoolbar by placing the cursor on the 2 vertical lines on the left
side of the toolbar and dragging it off the control bar.

Each menu button group (File, Tl #indew Help

Edit, Compile, Run, Options,
Watch, Debug Window, Win-
dowView and Help) has a
checkbox for choosing whether
or not to make itstoolbar visi-
ble on the control bar.

|$ Ervironment O ptions > m ” A S R
' Project Options

4 IT Wiew Menu Buttons

v File
IT Frrint
|v Edi
IT LCompile
|7 Bun

Inzpect

To quickly return to only show-

ing the icons visible by default, Options

select Default Toolbars. |v Debug Windows
Window Wiews

Select the option, Consolidate Belp
Eansolidated

visible buttons to one toolbar to
do exactly that—create one
toolbar containing all visible
icons. Doing this, enables the
option Consolidated, which tog-
glesthe visihility of the consoli-
dated toolbar, even when it is undocked from the control bar.

Default Toolbars
Show All Buttons

Consolidate vizible buttons to one toolbar

Cuztamize Button Groups. ..

.Select Customize Button Groups to

bri ng up the Customize Menu But-
e e — - tons window. This window allows
Frint = Openafie you to change which buttons are
gﬂf:p”e I Save curent fie associated with which button group
Inspect o on the toolbar. Choose a button
patns o] SR roup on the l&ft side of the win-
&?Eggm?:ﬁm E'El Create a new project with facton sett gOW'pthiS causes the icons for the
e £ Open Pm.'ECt”' = buttons in that group to display on
B Sl the right side of the window. Click
4= SaveProject .. _ILI and drag an icon from theright side
S L 1 of the window to the desired but-
Help | Close | ton group on the tool bar.

To remove an icon from its button group, click and drag the icon off the toolbar or to another
button group on the toolbar. The Customize Menu Buttons window must be open to change
the position of an icon on the toolbar.

Chapter 14: Graphical User Interface 233

14.2.7 Window Menu

Click the menu title or press <Alt+W> to display the Window menu.

Window Wl

Minimize L

Bestore »
Cloze ¥

B Cascade

= Tile Horizankally
[Tl Tile Yertically
B Ananges loons

Ig' [Eampierfleszages

Debug Wi

= Stdia
1 EADC BvSAMPLESSDEMOA C * A fssembly F10

R Register F11
S Stack F12

= .
T Information

You can choose to minimize,
restore or close al open win-
dows or just the open debug win-
dow or just the open editor
windows. The second group of
itemsis aset of standard Win-
dows commands that allow the
application windows to be
arranged in an orderly way.

The Compiler Messages option is
atoggle for displaying that win-
dow. Thisisonly availableif an
error or warning occurred during
compilation.

The Debug Windows option
opens a secondary menu, whose
items are toggles for displaying

the like-named debug windows. You can scroll these windowsto view larger portions of data, or
copy information from these windows and paste the information as text anywhere. More informa-

tion is given below for each window.

At the bottom of the Window menu isalist of current windows, including source code windows.

Click on one of these items to bring its window to the front.

234

Dynamic C User’'s Manual

Watch
Select Watch to activate or deactivate the Watches window. The Add Watch command on the

INSPECT menu will do thistoo. The Watches window displays the results whenever Dynamic
C evaluates watch expressions.

Stdio
Select Stdio to activate or deactivate the Stdio window. The Stdio window displays output

fromcalstoprintf (). If theprogram calsprintf (), Dynamic C will activate the Stdio
window automatically if it is not already open, unless “ Automatic open” is unchecked in the
Debug Windows dialog in Options | Environment Options.

Assembly
Select Assembly to activate or deactivate the Disassembled Code window. The Disassembled

Code window (aka., the Assembly window) displays machine code generated by the compiler
in assembly language format.

The Disassemble at Cursor or Disassemble at Address commands from the Inspect menu
also activate the Disassembled Code window.

% Disassembled Code

Address | Machine Code | Opcode ycles
[DEMOL1.C(15)]: €or (3j=0; J<20000; J++): -
== 1232 1120CE 1d de,0xCEZ0 &

135 2 L9EC3 14 'S

1235 29 add p o Loey Ll

1230 IF cof Save to File Chil+5

1235 FC rr " Move to Addrezs Chrl+bd

123k EDSZ sho ¢ Move to Execution Paint Clrl+E

1lesd DESZ1E ::lp I, Show Source

1=40 CI4ELE e . v Show File Mame in Source Line

1243 EF rst | ¥ Show Addresses
[DEMO1.C(18)]: for (3=0; j<z000 = :

144 5 AOEC3 1d v Show Machine Code

1247 g inc P ¥ Show Clock Cycles

1e45 Z229BC3 1d | Surm Clack Cyeles

1e4hb C3I311E ip L lse Syntax Highlighting

le=4de EF rst [Er =
[DEMOL1.C(15)]: €or (3j=0; Jj<20000; J++):

1le4f C3431E Jp O0x1E43 7

1e52 EF rst 0x28 5 =

The Disassembled Code window displays Dynamic C statements followed by the assembly
instructions for that statement. Each instruction is represented by the memory address on the
far left, followed by the code bytes for the instruction at that address, followed by the mne-
monics for the instruction. The last column shows the number of cyclesfor the instruction,
assuming no wait states. The total cycletime for ablock of instructions will be shown at the
lowest row in the block in the cycle-time column, if that block is selected and highlighted with
the mouse. The total assumes one execution per instruction, so the user must take looping and
branching into consideration when evaluating execution times.

Chapter 14: Graphical User Interface 235

Use the mouse to select several linesin the Assembly window, and the total cycle time for the
instructions that were selected will be displayed to the lower right of the selection. If the total
includes an asterisk, that means an instruction with an indeterminate cycle time was sel ected,
suchasldir orret nz.

Right click anywhere in the Disassembled Code window to display the following popup
menu:

Copy
. . . C Chrl+C
Copies selected text in the Disas- =oR "
bled Code window to the dli Save to File Chil+5
Eemd ode window to the clip- Move to Addrezs Chrl+hd
oard. ke bo Execution Paoint Chil+E
Saveto File

v Show Source

Opens the Save As dialog to save v Showe File Namme in Source Line
text selected in the Disassembled v Show Addresses

Code window to afile. If you do v Show Machine Code

not specify an extension, . dasm v Show Clock Crcles

will be appended to the file name.

v Sum Clock Cycles
Moveto Address v |Jze Suntax Highlighting

Opens the Disassemble at Address
dialog so you can enter a new address.

M ove to Execution Point

Highlights the assembly instruction that will execute next and displaysitin
the Disassembled Code window.

All but the last menu option of the remaining itemsin the popup menu toggle what is dis-
played in the Disassembled Code window. The last menu option, Use Syntax Highlighting, dis-
plays the colors that were set for the editor window in the Disassembled Code window aswell.

To resize a column in the assembly window, move the mouse pointer to one of the vertical
bars that is between each of the column headers. For instance, if you move the mouse pointer
between "Address" and "Machine Code," the pointer will change from an arrow to avertical
bar with arrows pointing to the right and left. Hold the left mouse button down and drag to the
right or left to grow or shrink the column.

Registers
Select Registersto activate or deactivate the Register window. This window displays the pro-
cessor register set, including the status register. Letter codes indicate the bits of the status reg-
ister (F register). The window also shows the source-code line and column at which the
snapshot of the register was taken.

It is possible to scroll back to see the progression of successive register snapshots. Register
values may be changed when program execution is stopped Registers PC, XPC, and SP may
not be edited as this can adversely affect program flow and debugging.

See “Register” on page 216 for more details on this window.

236 Dynamic C User’s Manual

Stack

E005:
EOOE:
E0OOD:
EQOOQF:
E0ll:
E013:
E0L15:
EOL17:
E0l5:
EOL1E:

L: 18 C:Z&
DFFD:
DFFF:
E00L:
E003:
E00S:

4623
LEOO
LEEE
LEEE
SESE

LEEE
LEEE
SESE
SELE
LEEE
LEEE
SESE
SELE
LEEE
LEEE

Information
Select the Information menu option to activate the Information window.

Click the Stack command to activate or deactivate the Stack win-
dow. The Stack window displays the top 32 bytes of the run-time

stack. It also shows the line and column at which the stack

“snapshot” was taken. It is possible to scroll back to see the pro-
gression of successive stack snapshots.

Information
| Baze Top Size
|Fioot code: 0 44D4 4ADE |Totalcode sizer 28128 hytes
|%MEM code: DEO00 02304 02305 |Total data size: 232 bytes
l'wiatch code: CCO0 COFE 1FF |Lines compiled: 7138
|Stack: 0000 DFFF 1000 |Compile time: 1 seconds
|Fioot data: C29F C2p3 EB |Compile speed: 392197 linesmirute
|Fioot constants: Only in Separate 15D |Board ID: 0=05900

The Information window displays how the memory is partitioned and how well the compila
tion went.

Chapter 14: Graphical User Interface

237

14.2.8 Help Menu
Click the menu title or press <Alt+H> to select the HELP menu. The choices are given below:

Online Documentation
Opens a browser page and displays afile with links to other manuals. When installing

Dynamic C from CD, this menu item points to the hard disk; after a Web upgrade of Dynamic
C, thismenu item optionally points to the Web.

Keywords
Opens a browser page and displays an HTML file of Dynamic C keywords, with links to their

descriptionsin this manual.

Operators
Opens a browser page and displays an HTML file of Dynamic C operators, with links to their

descriptionsin this manual.

HTML Function Reference
Opens a browser page and displays an HTML file that has two links, one to Dynamic C func-

tions listed al phabetically, the other to the functions listed by functional group. Each function
listed islinked to its description in the Dynamic C Function Reference Manual.

Function Lookup
Displays descriptions for library functions. The keyboard shortcut is <Ctrl+H>.

TR N T TR R

ﬁLihraw Function Lookup

Function Search:

A

_glienulnitin E:ADC 8ALIBMDISPLAYSWGRAPHICWGLMEMLU LIE ;l +- GPS.LIB ;l
_aMenukevpad in EADC BALIBVDISPLAYSAGRAPHICAGLMEMULLIE | . GRAPHIC.LIE

gltenuSha i E:50C BALIBSDISPLAY SYGRAPHICAVGLMEML . LIE __ HDLC PACKET.LIE

ing in E:5C B\TCRIPSCHMP.LIE : — : 1
_prot_init in E:ADC 84LIBLSYS.LIE #-HTTF.LIB
_prot_recover in E:ADC 8SLIBNSYS.LIB - 12C.LIB
_send_ping in E:ADC 8MLIBSTCPIPS CMP.LIE - 12C_DEVICES LIE
_svelsSoftReset in EADC SALIBNSYS LIB - ICHMP LIE
abz in E:ADC SMLIBSMATH.LIE T .
acos in EADC S\LIB\MATH LI - _chk_ping
acot in E:A\DC SALIBYMATH.LIB . v _ping
aczzin EADC BALIBAMATH.LIE © L. _send_ping
ADSTAFAINE n E:ADC BASAMPLESASPIMADSYEFOLIE o IFAkA | ID hu
ADSTATIRead in EADC BVSAMPLESASPINVADSFEFOLIE ;l i | _h|_|

Help | ok Cancel |

Choosing afunction is done in one of several ways. You may type the function namein the
Function Search entry box. Notice how both scroll areas underneath the entry box display the
first function that matches what you type. The functionsto the left are listed alphabetically,
while those on the right are arranged in atree format, displaying the libraries alphabetically
with their functions collapsed underneath. You may scroll either of these two areas and have
whatever you select in one areareflected in the other area and in the text entry box. Click OK
or press <Enter> to bring up the Function Description window.

238 Dynamic C User’s Manual

If the cursor is on afunction when Help | Function Lookup is selected (or when <Ctrl+H> is
pressed) then the Library Function Lookup dialog is skipped and the Function Description
window appears directly.

% ping in E:\DC SALIBATCPIPAICMP.LIB

Function Description:

| ping <ICMF.LIB>

ISYNTJLX: int ping(longword host, longword sSegquence number |;

EETWORDS: topip, icmp, ping

DESCRIPTICON: generate an ICHMP request for host. NOTE: this is a macro

which ealls send ping

PARAMETERL: ip address to send ping

FPARAMETERZ @ user defined sequence nunber

RETUEN WALUE: 0O successful
1 failed when sending packet

-1 fsiled hecause could not resolve host hardware address.

SEE AL3O: _chk ping, send ping, ping.c

Edit | Browse | : Help LCloze

If you click the Edit button, the Function Description window will close and the library that
contains the function that was in the window will open in an editor window. The cursor will be
placed at the function description of interest.

Clicking on the Browse button will open the Library Function L ookup window to allow you to
search for anew function description. Multiple Function Description windows may be open at
the same time.

Chapter 14: Graphical User Interface 239

Instruction Set Reference
Invokes an on-line help system and displays the alphabetical list of instructions for the Rabbit
2000 microprocessor and the Rabbit 3000 microprocessor.

I/O Registers
Invokes an on-line help system that provides the bit values for all of the Rabbit I/O registers.

Keystrokes
Invokes an on-line help system and displays the keystrokes page. Although a mouse or other

pointing device may be convenient, Dynamic C a so supports operation entirely from the key-
board.

Contents
Invokes an on-line help system and displays the contents page. From here view explanations

of various features of Dynamic C.

Tech Support
Opens a browser window to the Rabbit Semiconductor Technical Support Center web page,
which contains links to user forums, downloads for Dynamic C and information about 3rd
party software vendors and developers.

Register Dynamic C
Allows you to register your copy of Dynamic C. A dialog is opened for entering your
Dynamic C serial number. From there you will be guided through the very quick registration
process.

Tip of the Day
Brings up awindow displaying some useful information about Dynamic C. Thereis an option
to scroll to another screen of Dynamic C information and an option to disable the feature. This
isthe same window that is displayed when Dynamic C initializes.

About
The About command displays the Dynamic C version number and the copyright notice.

240 Dynamic C User’s Manual

15. Command Line Interface

The Dynamic C command line compiler (dccl cmp . exe) performs the same compilation and
program execution as its GUI counterpart (dcrabxx . exe), but isinvoked as a console applica-
tion from a DOS window. It is called with a single source file program pathname as the first
parameter, followed by optional case-insensitive switches that alter the default conditions under
which the program is run. The results of the compilation and execution, al errors, warnings and
program output, are directed to the console window and are optionally written or appended to a
text file.

15.1 Default States

The command line compiler uses the values of the environment variablesthat arein the project file
indicated by the -pf switch, or if the -pf switch is not used, the values are taken from
default.dcp. For moreinformation, please see Chapter 16, “Project Files’ on page 259.

The command line compiler will compile and run the specified source file. The exception to thisis
when the project file “ Default Compile Mode” is one of the options which compilesto a .bin file,
in which case the command line compiler will not run the program but will only compile the
source to a.bin file. Command line help displayed to the console with

dcecl cmp
gives asummary of switches with defaults from the default project file, default . dcp, and
dccl cmp -pf specified project name.dcp

gives asummary of switches with defaults from the specified project file. All project options
including the default compile mode can be overridden with the switches described in Section 15.4.

15.2 User Input
Applications requiring user input must be called with the -i option:
dccl cmp myProgram.c -i myProgramInputs.txt

wheremyProgramInputs . txt isatext file containing the inputs as separate lines, in the
order inwhichmyProgram. ¢ expects them.

15.3 Saving Output to a File
The output consists of al program printf’s aswell as all error and warning messages.
Output to afile can be accomplished with the -0 option
dccl cmp myProgram.c -i myProgramInputs.txt -o myOutputs.txt
wheremyOutputs . txt isoverwritten if it existsor is created if it does not exist.
If the -0a option isused, myOutputs . txt isappended if it existsor is created if it does not.

Chapter 15: Command Line Interface 241

15.4 Command Line Switches

Each switch must be separated from the others on the command line with at |east one space or tab.
Extra spaces or tabs are ignored. The parameter(s) required by some switches must be added as
separate text immediately following the switch. Any of the parameters requiring a pathname,
including the source file pathname, can have imbedded spaces by enclosing the pathnamein

quotes.

15.4.1 Switches Without Parameters

-b

Description:

Factory Default:
GUI Equivalent:

-bf-

Description:

Factory Default:
GUI Equivalent:

-br

Description:

Factory Default:

Use compile mode: Compileto .bin file using attached target.
Compile mode: Compile to attached target.

Compile program (F5) with Default Compile M ode set to "Compileto .bin
file using attached target" in Compiler tab of Project Options dialog.

Undo user-defined BIOS file specification.
None.

Thisisan advanced setting, viewable by clicking on the “ Advanced” radio
button at the bottom of the Compiler tab of Project Options dialog.
Uncheck the “User Defined BIOS File” checkbox.

Use compile mode: Compile defined target configuration to .bin file

Compile mode: Compile to attached target.

GUI Equivalent: Compile program (F5) with Default Compile Mode set to "Compile
defined target configuration to .binfile" in Compiler tab of Project Options
diaog.

242 Dynamic C User’s Manual

-h+

Description:

Factory Default:
GUI Equivalent:

Example:

-h-

Description:

Factory Default:
GUI Equivalent:

-id+

Description:

Factory Default:
GUI Equivalent:

-id-

Description:

Factory Default:
GUI Equivalent:

Print program header information.
No header information will be printed.
None.

dccl cmp samples\demol.c -h -o myoutputs.txt

Header text preceding output of program:

khkkhkkhkkhkkhkhkkhkhhkhkhkhhhhhhhhhhhhhhhhhhhhdhhhhdhhdhhhhhdddhxhxdx%

4/5/01 2:47:16 PM

dccl_cmp.exe, Version 7.10P - English
samples\demol.c

Options: -h+ -0 myoutputs.txt
Program outputs:

Note: Version information refersto dcwd . exe with the same compiler
core.

Disable printing of program header information.
No header information will be printed.

None.

Enable separate instruction and data space.
Separate 1& D space is disabled.
Check “Separate Instruction & Data Space” in Project Options | Compiler.

Disable separate instruction and data space.
Separate 1& D spaceis disabled.

Uncheck “ Separate Instruction & Data Space” in the Project Options |
Compiler dialog box.

Chapter 15: Command Line Interface

243

-ini
Description:

Factory Default:

GUI Equivalent:

-If-

Description:

Factory Default:

GUI Equivalent:

-mf

Description:

Factory Default:

GUI Equivalent:

-mfr

Description:

Factory Default:
GUI Equivalent:

-mr

Description:

Factory Default:

GUI Equivalent:

Generatesinline code for WwrPortI (),RAPortI (), BitWrPortI ()
and BitRdPortI () if dl arguments are constants.

No inline code is generated for these functions.

Check “Inline builin I/O functions” in the Project Options | Compiler dia-
log box.

Undo Library Directory file specification.
No Library Directory fileis specified.

Thisisan advanced setting, viewable by clicking on the “ Advanced” radio
button at the bottom of the Project Options | Compiler dialog box.
Uncheck “User Defined Lib Directory File.”

Memory BIOS setting: Flash.
Memory BIOS setting: Flash.

Select “Code and BIOS in Flash” in the Project Options | Compiler dialog
box.

The BIOS and code are compiled to flash, and then the BIOS copies the
flash image to RAM to run the code.

Memory BIOS setting: Flash

Select “Code and BIOS in Flash, Runin RAM” in the Project Options |
Compiler dialog box.

Memory BIOS setting: RAM.
Memory BIOS setting: Flash.

Select “Code and BIOSin RAM” in the Project Options | Compiler dialog
box.

244

Dynamic C User’s Manual

Description:

Factory Default:

GUI Equivalent:

Description:

Factory Default:
GUI Equivalent:

-rb+

Description:

Factory Default:
GUI Equivalent:

-rb-

Description:

Factory Default:
GUI Equivalent:

Null compile for errors and warnings without running the program. The
program will be downloaded to the target.

Programisrun.

Select Compile | Compile or use the keyboard shortcut <F5>.

Use compile mode: Compile to attached target.
Compile mode: Compile to attached target.

Run program (F9)

Include BIOS when compiling to afile.
BIOSisincluded if compiling to afile.

Thisisan advanced setting, viewable by clicking on the “ Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Check
“Include BIOS.”

Do not include BIOS when compiling to afile.
BIOSisincluded if compiling to afile.

Thisisan advanced setting, viewable by clicking on the “ Advanced” radio
button at the bottom of the Project Options | Compiler dialog box.
Uncheck “Include BIOS.”

Chapter 15: Command Line Interface 245

-rd+

Description:

Factory Default:
GUI Equivalent:

-rd-

Description:

Factory Default:
GUI Equivalent:

-ri+

Description:

Factory Default:
GUI Equivalent:

-ri-

Description:

Factory Default:
GUI Equivalent:

_rp+

Description:

Factory Default:
GUI Equivalent:

Include debug code when compiling to afile.
RST 28 instructions are included

Thisisan advanced setting, viewable by clicking on the “ Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Check
“Include RST 28 instructions.”

Do not include debug code when compiling to afile. This optionis
ignored if not compiling to afile.

RST 28 instructions are included.

Thisisan advanced setting, viewable by clicking on the “ Advanced” radio
button at the bottom of the Project Options | Compiler dialog box.
Uncheck “Include RST 28 instructions.”

Enabl e runtime checking of array indices.
Runtime checking of array indicesis performed.

Check “Array Indices’ in the Project Options | Compiler dialog box.

Disable runtime checking of array indices.
Runtime checking of array indicesis performed.

Uncheck “Array Indices’ in the Project Options | Compiler dialog box.

Enable runtime checking of pointers.
Runtime checking of pointersis performed.

Check “Pointers’ in the Project Options | Compiler dialog box.

246

Dynamic C User’s Manual

rp
Description:
Factory Default:
GUI Equivalent:

-rw+

Description:
Factory Default:
GUI Equivalent:

rW

Description:
Factory Default:
GUI Equivalent:

_Sp
Description:
Factory Default:
GUI Equivalent:

-SZ

Description:
Factory Default:
GUI Equivalent:

-td+

Description:
Factory Default:
GUI Equivalent:

Disable runtime checking of pointers.
Runtime checking of pointersis performed.

Uncheck “Pointers’ in the Project Options | Compiler dialog box.

Restrict watch expressions—may save root code space.
Allow any expressions in watch expressions.

Thisisan advanced setting, viewable by clicking on the “ Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Check
“Restrict watch expressions. . .”

Don't restrict watch expressions.
Allow any expressions in watch expressions.

Thisisan advanced setting, viewable by clicking on the “ Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Check
“Allow any expressionsin watch expressions”

Optimize code generation for speed.
Optimize for speed.
Choose “ Speed” in the Project Options | Compiler dialog box.

Optimize code generation for size.
Optimize for speed.
Choose “Size” in the Project Options | Compiler dialog box.

Enable type demotion checking.
Type demotion checking is performed.

Check “Demation” in the Project Options | Compiler dialog box.

Chapter 15: Command Line Interface

247

-td-

Description:

Factory Default:
GUI Equivalent:

_tp-p

Description:

Factory Default:
GUI Equivalent:

tp

Description:

Factory Default:
GUI Equivalent:

-tt+

Description:

Factory Default:
GUI Equivalent:

-tt-

Description:

Factory Default:
GUI Equivalent:

Disable type demotion checking.

Type demotion checking is performed.

Uncheck “Demotion” in the Project Options | Compiler dialog box. .

Enable type checking of pointers.
Type checking of pointersis performed.

Check “Pointer” in the Project Options | Compiler dialog box.

Disable type checking of pointers.
Type checking of pointersis performed.

Uncheck “Pointer” in the Project Options | Compiler dialog box.

Enable type checking of prototypes.
Type checking of prototypesis performed.
Check “Prototype” in the Project Options | Compiler dialog box.

Disable type checking of prototypes.
Type checking of prototypesis performed.

Uncheck “Prototype” in the Project Options | Compiler dialog box..

248

Dynamic C User’s Manual

_Vp+

Description:

Factory Default:
GUI Equivalent:

Vp

Description:

Factory Default:
GUI Equivalent:

-wa

Description:

Factory Default:
GUI Equivalent:

-wn

Description:

Factory Default:
GUI Equivalent:

-WS

Description:

Factory Default:
GUI Equivalent:

Verify the processor by enabling a DSR check. This should be disabled if a
check of the DSR lineisincompatible on your system for any reason.

Processor verification is enabled.

Check “Enable Processor verification” in the Project Options |
Communications dialog box.

Assume avalid processor is connected.
Processor verification is enabled.

Uncheck “Enable Processor verification” in the Project Options |
Communications dialog box.

Report all warnings.
All warnings reported.

Select “All” under “Warning Reports” in the Project Options | Compiler
dialog box.

Report no warnings.
All warnings reported.

Select “None” under “Warning Reports’ in the Project Options | Compiler
dialog box.

Report only serious warnings.
All warnings reported.

Select “Serious Only” under “Warning Reports’ in the Project Options |
Compiler dialog box.

Chapter 15: Command Line Interface 249

15.4.2 Switches Requiring a Parameter

-bf BIOSFilePathname

Description: Compile using aBIOSfilefound in BIOSFilePathname.
Factory Default: \Bios\RabbitBios.c

GUI Equivalent: Thisisan advanced setting, viewable by clicking on the “ Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Check
the box under “User Defined BIOS File” and then fill in the pathname for
the new BIOSfile.

Example: dccl cmp myProgram.c -bf MyPath\MyBIOS.lib

-clf ColdLoaderFilePathname

Description: Compile using cold loader filefound in ColdLoaderFilePathname.
Factory Default: \Bios\ColdLoad.bin
GUI Equivalent: None.

Example: dccl cmp myProgram.c -clf MyPath\MyColdloader.bin

250 Dynamic C User’s Manual

-d MacroDefinition

Description: Define macros and optionally equate to values. The following rules apply
and are shown here with examples and equivaent #define form:

Separate macros with semicolons.

dccl cmp myProgram.c -d DEF1;DEF2
#define DEF1
#define DEF2

A defined macro may be equated to text by separating the defined macro
from the text with an equal sign (=).
dccl _cmp myProgram.c -d DEF1=20;DEF2

#define DEF1 20
#define DEF2

Macro definitions enclosed in quotation marks will be interpreted asa sin-
gle command line parameter.
dccl cmp myProgram.c -d “DEFl=text with spaces;DEF2”

#define DEF1l text with spaces
#define DEF2

A backslash preceding acharacter will be kept except for semicolon, quote
and backdash, which keep only the character following the backslash. An
escaped semicolon will not be interpreted as a macro separator and an
escaped quote will not be interpreted as the quote defining the end of a
command line parameter of text.

dccl_cmp myProgram.c -d DEFl=statement);;ESCQUOTE=\\\"

#define DEF1 statement;

#define ESCQUOTE \”

dccl _cmp myProg.c -d “FSTR = \"Temp = %6.2F DEGREES C\n\””
#define FSTR “Temp = %6.2f degrees C\n”

Factory Default: None.
GUI Equivalent: Select the Defines tab from Project Options.

Chapter 15: Command Line Interface 251

-d- MacroToUndefine

Description: Undefines a macro that might have been defined in the project file. If a
macro is defined in the project file read by the command line compiler and
the same macro name is redefined on the command line, the command line
definition will generate awarning. A macro previoudly defined must be
undefined with the -d- switch before redefining it. Undefining amacro that
has not been defined has no consequence and so is always safe although
possibly unnecessary. In the example, all compilation settings are taken
from the project file specified except that now the macro MAXCHARS was
first undefined before being redefined.

Factory Default: None.
GUI Equivalent: None.

Example: dccl cmp myProgram.c -pf myproject -d- MAXCHARS -d
MAXCHARS=512

-eto EthernetResponseTimeout

Description: Timein milliseconds Dynamic C waits for aresponse from the target on
any retry while trying to establish Ethernet communication.

Factory Default: 8000 milliseconds.
GUI Equivalent: None.

Example: dccl cmp myProgram.c -eto 6000

-i InputsFilePathname

Description: Execute a program that requires user input by supplying the input in atext
file. Each input required should be entered into the text file exactly asit
would be when entered into the Stdio Window in dcwd . exe. Extrainput
isignored and missing input causesdccl cmp to wait for keyboard
input at the command line.

Factory Default: None.
GUI Equivalent: Using -1 islike entering inputs into the Stdio Window.

Example dccl cmp myProgram.c -i MyInputs.txt

252 Dynamic C User’s Manual

-If LibrariesFilePathname

Description:

Factory Default:
GUI Equivalent:

Example

Compile using afile found in LibrariesFilePathname which lists all librar-
ies to be made available to your programs.

Lib.dir.

Thisisan advanced setting, viewable by clicking on the “ Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Check

the box under “User Defined Lib Directory File’ and then fill in the path-

name for the new Lib.dir.

dccl cmp myProgram.c -1f MyPath\MyLibs.txt

-ne maxNumberOfErrors

Description:
Factory Default:
GUI Equivalent:

Example:

Change the maximum number of errors reported.
A maximum of 10 errors are reported.

Enter the maximum number of errorsto report under “Max Shown” in the
Project Options | Compiler dialog box.

Allows up to 25 errorsto be reported:
dccl cmp myProgram.c -ne 25

-nw maxNumberOfWarnings

Description:
Factory Default:
GUI Equivalent:

Example:

Change the maximum number of warnings reported.
A maximum of 10 warnings are reported.

Enter the maximum number of warnings to report under “Max Shown” in
the Project Options | Compiler dialog box.

Allows up to 50 warnings to be reported:

dccl cmp myProgram.c -nw 50

Chapter 15: Command Line Interface 253

-0 OutputFilePathname

Description: Write header information (if specified with -h) and all program errors,
warnings and outputs to atext file. If the text file does not exist it will be
created, otherwise it will be overwritten.

Factory Default: None.

GUI Equivalent: Go to Option | Environment Options and select the Debug Windows tab.
Under “ Specific Preferences’ select “ Stdio” and check “Log to File” under
“Options.”

Example dccl cmp myProgram.c -o MyOutput.txt
dccl cmp myProgram.c -o MyOutput.txt -h
dccl cmp myProgram.c -h -o MyOutput.txt

-oa OutputFilePathname

Description: Append header information (if specified with -h) and all program errors,
warnings and outputs to atext file. If the text file does not exist it will be
created, otherwise it will be appended.

Factory Default: None.

GUI Equivalent: Go to Option | Environment Options and select the Debug Windows tab.
Under “ Specific Preferences’ select “ Stdio” and check “Log to File” under
“Options,” then check “Append” and specify the filename.

Example dccl cmp myProgram.c -oa MyOutput.txt

-pbf PilotBIOSFilePathname

Description: Compileusing apilot BIOSfoundin PilotBIOSFilePathname.
Factory Default: \Bios\Pilot.bin

GUI Equivalent: None.

Example: dccl cmp myProgram.c -pbf MyPath\MyPilot.bin

254 Dynamic C User’s Manual

-pf projectFilePathname

Description:

Factory Default:
GUI Equivalent:

Example

Specify a project file to read before the command line switches are read.
The environment settings are taken from the project file specified with -pf,
ordefault.dcp if no other project fileis specified. Any switches on
the command line, regardless of their position relative to the -pf switch,
will override the settings from the project file.

The project filedefault .dcp.
Select File| Project | Open...

dccl cmp myProgram.c -ne 25 -pf myProject.dcp
dccl cmp myProgram.c -ne 25 -pf myProject

Note: The project file extension, . dcp, may be omitted.

-pw TCPPassPhrase

Description:

Factory Default:
GUI Equivalent:

Example:

-ret Retries

Description:

Factory Default:
GUI Equivalent:

Example:

Enter the passphrase required for your TCP/IP connection. If no pass-
phrase is required this option need not be used.

No passphrase.

Enter the passphrase required at the dialog prompt when compiling over a
TCP/IP connection

dccl cmp myProgram.c -pw “My passphrase”

The number of times Dynamic C attempts to establish communication if
the given timeout period expires.

3

None.

dccl cmp myProgram.c -ret 5

Chapter 15: Command Line Interface 255

-rf RTIFilePathname

Description: Compileto a.bin file using targetless compilation parameters found in
RTIFilePathname. The resulting compiled file will have the same path-
name as the source (. ¢) file being compiled, but with a . bin extension.

Factory Default: None.
GUI Equivalent:

Example: dccl cmp myProgram.c -rf MyTCparameters.rti

dccl cmp myProgram.c -rf “My Long Pathname\MyTCpa-
rameters.rti”

-rti BoardID:CpulD:CrystalSpeed:RAMSize:FlashSize

Description: Compileto a . bin file using parameters defined in a colon separated for-
mat of BoardlD:Cpul D:Crystal Speed:RAMSize:FlashSize. The resulting
compiled file will have the same pathname as the source (. c) file being
compiled, but with a . bin extension.

BoardID - Hex integer

CpulD - 2000r# or 3000r# where # is the revision number of the CPU.

2000r0: corresponds to 1Q2T2
2000r1: correspondsto 1Q3T
2000r2: correspondsto 1Q4T
2000r3: correspondsto 1Q5T
3000r0: correspondsto IL1IT or 1Z1T
3000r1: correspondsto IL2T

For backward compatibility, we also support:

2000: correspondsto 1Q2T
3000: correspondsto ILIT or 1Z1T

Crystal Speed - Base frequency, decimal floating point, in MHz
RAMSize - Decimadl, in KBytes
FlashSize - Primary flash, decimal, in KBytes.

Factory Default: None.

GUI Equivalent: Select Options| Project Options | Targetless | Board Selection and choose a
board from the list; then select Compile | Compileto .bin File | Compile to
Flash

Example: dccl cmp myProgram.c -rti
0x0700:2000r3:11.0592:512:256

a. 1Q*, IL* and |Z* are explained on page 232.

256 Dynamic C User’s Manual

-s Port:Baud: Stopbits

Description: Use seria transmission with parameters defined in a colon separated for-
mat of Port:Baud: Stopbits:BackgroundTx.

Port: 1,2, 3,4,5,6,7,8

Baud: 110, 150, 300, 600, 1200, 2400, 4800, 9600, 12800, 14400,
19200, 28800, 38400, 57600, 115200, 128000, 230400, 256000

Stophits: 1, 2
Include all serial parametersin the prescribed format even if only oneis
being changed.

Factory Default: 1:115200:1:0

GUI Equivalent: Select the Communications tab of Project Options. Select the “ Use Serial
Connection” radio button.

Example: Changing port from default of 1 to 2:
dccl cmp myProgram.c -s 2:115200:1:0

-sto SerialResponseTimeout

Description: Time in milliseconds Dynamic C waits for aresponse from the target on
any retry while trying to establish serial communication.

Factory Default: 300 ms.
GUI Equivalent: None.

Example: dccl cmp myProgram.c -sto 400

-t NetAddress:TcpName:TcpPort

Description: Use TCP with parameters defined in a contiguous colon separated format
of NetAddress: TcpName: TcpPort. Include all parameters even if only one
is being changed.

netAddress: n.n.n.n

tcpName: Text name of TCP port

tcpPort: decimal number of TCP port
Factory Default: None.

GUI Equivalent: Select the Communicationstab of Project Options. Select the“Use TCP/IP
Connection” radio button.

Example: dccl cmp myProgram.c -t 10.10.6.138:TCPName:4244

Chapter 15: Command Line Interface 257

15.5 Examples

The following examples illustrate using multiple command line switches at the sametime. If the
switches on the command line are contradictory, such as -mr and -mf, the last switch (read left to
right) will be used.

15.5.1 Example 1
In this example, al current settings of default . dcp are used for the compile.

dccl cmp samples\timerb\timerb.c

15.5.2 Example 2
In this example, all settings of myproject .dcp are used, except timer b. c iscompiled to
timer b.bin instead of to the target and warnings or errors are written to myouputs . txt.

dccl cmp samples\timerb\timer b.c -o myoutputs.txt -b -pf
myproject

15.5.3 Example 3
These examples will compile and runmyProgram. ¢ with the current settingsin
default .dcp but using different defines, displaying up to 50 warnings and capture all output to
one file with a header for each run.
dccl cmp myProgram.c -d MAXCOUNT=99 -nw 50 -h -o myOutput.txt
dccl cmp myProgram.c -d MAXCOUNT=15 -nw 50 -h -oa myOutput.txt

dccl cmp myProgram.c -d MAXCOUNT=15 -d DEF1l -nw 50 -h -oa
myOutput.txt

The first run could have used the - oa option if myOutput . txt were known to not initially
exist. myProgram. c presumably uses a constant MAXCOUNT and contains one or more com-
piler directives that react to whether or not DEF1 is defined.

258 Dynamic C User’s Manual

16. Project Files

In Dynamic C, aproject is an environment that consists of opened source files, aBIOSfile, avail-
able libraries, and the conditions under which the source files will be compiled. Projects allow dif-
ferent compilation environments to be separately maintained.

16.1 Project File Names
A project maintains a compilation environment in afile with the extension . dcp.

16.1.1 Factory.dcp

The environment originally shipped from the factory is kept in a project file named
factory.dcp. If Dynamic C cannot find thisfile, it will be recreated automatically in the
Dynamic C exe path. The factory project can be opened at any time and the environment changed
and saved to another project name, but factory . dep will not be changed by Dynamic C.

16.1.2 Default.dcp

This default project fileisoriginally acopy of factory.dcp and will be automatically recre-
ated as such in the exe path if it cannot be found when Dynamic C opens. The default project will
automatically become the active project with File | Project... | Close.

The default project is specia in that the command line compiler will use it for default values
unless another project fileis specified with the -pf switch, in which case the settings from the indi-
cated project will be used.

Please see chapter 15, “Command Line Interface” starting on page 241 for more details on using
the command line compiler.

16.1.3 Active Project

Whenever a project is selected, the current project related data is saved to the closing project file,
the new project settings become active, and the (possibly new) BIOS will automatically be recom-
piled prior to compiling a source file in the new environment.

The active project can be factory.dcp, default .dcp or any project you create with
File | Project... | Save As... When Dynamic C opens, it retrieves the last used project, or the
default project if being opened for the first time or if the last used project cannot be found.

If aproject is closed with the File | Projects... | Close menu option, the default project,
default .dcp, becomesthe active project.

The active project file name, without path or extension, is always shown in the leftmost panel of
the status bar at the bottom of the Dynamic C main window and is prepended to the Dynamic C
version in the title bar except when the active project is the default project.

Changes made to the compilation environment of Dynamic C are automatically updated to the
active project, unless the active projectis factory . dcp.

Chapter 16: Project Files 259

16.2 Updating a Project File

Unlessthe active project is factory . dep, changes made in the Project Options dialog will
cause the active project file to be updated immediately:

Opening or closing files will not immediately update the active project file. The project file state
of the recently used files appearing at the bottom of the File menu selection and any opened files
in edit windows will only by updated when the project closes or when File | Projects... | Save is
selected. The Message, Assembly, Memory Dump, Registers and Stack debug windows are not
edit windows and will not be saved in the project fileif you exit Dynamic C while debugging.

16.3 Menu Selections

The menu selections for project files are available in the File menu. The choices are the familiar
ones. Create..., Open..., Save, Save As... and Close.

Choosing File | Project | Open... will bring up adialog box to select an existing project filename
to become the active project. The environment of the previous project is saved to its project file
beforeit isreplaced (unlessthe previous projectis factory . dep). The BIOSwill automatically
be recompiled prior to the compilation of a source file within the new environment, which may
have adifferent library directory file and/or a different BIOSfile.

Choosing File | Project... | Save will save the state of the environment to the active project file,
including the state of the recently used filelist and any files open in edit windows. This selectionis
greyed out if the active project is factory . dep. Thisoption is of limited use since any project
changes will be updated immediately to the file and the state of the recently used filelist and open
edit windows will be updated when the project is closed for any reason.

Choosing File | Project... | Save as... will bring up a dialog box to select a project file name. The
filewill be created or, if it exists, it will be overwritten with the current environment settings. This
environment will also be saved to the active project file before it is closed and its copy (the newly
created or overwritten project file) will become active.

Choosing File | Project... | Close first saves the environment to the active project file (unless the
active projectis factory . decp) and then loads the Dynamic C default project, default . dep,
asthe active project. Aswith Open..., the BIOS will automatically be recompiled prior to the
compilation of asource file within the new environment. The new environment may have a differ-
ent library directory file and/or a different BIOSfile.

260 Dynamic C User’s Manual

16.4 Command Line Usage

When using the command line compiler, dccl cmp.exe, aproject fileisalwaysread. The
default project, default . dep, isused automatically unlessthe project file switch, -pf, specifies
another project file to use. The project settings are read by the command line compiler first even if
a-pf switch comes after the use of other switches, and then all other switches used in the com-
mand line are read, which may modify any of the settings specified by the project file.

The default behavior given for each switch in the command line documentation is with reference
tothe factory . dcp settings, so the user must be aware of the default state the command line
compiler will actually use. The settings of default . dcp can be shown by enteringdccl cmp
alone on the command line. The defaults for any other project file can be shown by following
dccl cmp by athe project file switch without a sourcefile.

dccl cmp

showsthe current state of all default . dcp settings
dccl cmp -pf myProject

shows the current state of all myProject . dcp settings

dccl cmp myProgram.c -ne 25 -pf myProject

readsmyProject . dcp then compiles and runsmyProgram. ¢ but with 25 errors maximum
shown.

The command line compiler, unlike Dynamic C, never updates the project file it uses. Any
changes desired to a project file to be used by the command line compiler can be made within
Dynamic C or changed by hand with an editor.

Making changes by hand should be done with caution, using an editor which does not introduce
carriage returns or line feeds with wordwrap, which may be a problem if the global defines or any
file pathnames are lengthy strings. Be careful when changing by hand not to change any of the
section names in brackets or any of the key phrases up to and including the '='.

If amacro is defined on the command line with the -d switch, any value that may have been
defined within the project file used will be overwritten without warning or error. Undefining a
macro with the -d- switch has no consequence if it was not previously defined.

Chapter 16: Project Files 261

262 Dynamic C User’s Manual

17. Hints and Tips

This chapter offers hints on how to speed up an application and how to store persistent data at run
time.

17.1 Efficiency

There are anumber of methods that can be used to reduce the size of a program, or to increase its
speed. Let’slook at the events that occur when a program enters a function.

e The function saves IX on the stack and makes I X the stack frame reference pointer (if the
program isin the useix mode).

e The function creates stack space for auto variables.
e The function sets up stack corruption checksif stack checking is enabled (on).

e The program notifies Dynamic C of the entry to the function so that single stepping modes
can be resolved (if in debug mode).

The last two consume significant execution time and are eliminated when stack checking is dis-
abled or if the debug modeis off.

17.1.1 Nodebug Keyword

When the PC is connected to atarget controller with Dynamic C running, the normal code and
debugging features are enabled. Dynamic C placesan RST 2 8H instruction at the beginning of
each C statement to provide locations for breakpoints. This alows the programmer to single step
through the program or to set breakpoints. (It is possible to single step through assembly code at
any time.) During debugging there is additional overhead for entry and exit bookkeeping, and for
checking array bounds, stack corruption, and pointer stores. These “jumps’ to the debugger con-
sume one byte of code space and al so require execution time for each statement.

At some point, the Dynamic C program will be debugged and can run on the target controller
without the Dynamic C debugger. This saves on overhead when the program is executing. The
nodebug keyword is used in the function declaration to remove the extra debugging instructions
and checks.

nodebug int myfunc(int x, int z){

}

If programs are executing on the target controller with the debugging instructions present, but
without Dynamic C attached, the call to the function that handles RST 28H instructions in the vec-
tor table will be replaced by a simple ret instruction for Rabbit 2000 based targets. For Rabbit
3000 based targets, the RST 28H instruction is treated as a NOP by the processor when in debug
mode. The target controller will work, but its performance will not be as good as when the node-
bug keyword is used.

Chapter 17: Hintsand Tips 263

If the nodebug option is used for the ma in function, the program will begin to execute as soon as
it finishes compiling (as long as the program is not compiling to afile).
Usethe directive #nodebug anywhere within the program to enable nodebug for al statements
following the directive. The #debug directive has the opposite effect.

Assembly code blocks are nodebug by default, even when they occur inside C functions that are
marked debug, therefore using the nodebug keyword with the #asm directive is usually unnec-
essary.

17.1.2 In-line I/O

The built-in 1/0 functions (WrPortI (),RdPortI (),BitWrPortI () and BitRd-

PortI ()) canbegenerated as efficient in-line code instead of function calls. All arguments must
be constant. A normal function call is generated if the I/O function is called with any non-constant
arguments. To enable in-line code generation for the built-in 1/O functions check the option “Inline
builtin I/O functions” in the Compiler dialog, which is accessible by clicking the Compiler tab in
the Project Options dialog.

17.2 Run-time Storage of Data

Datathat will never changein a program can be put in flash by initializing it in the declarations.
The compiler will put this datain flash. See the description of the const, xdata, and xstring
keywords for more information.

If data must be stored at run-time and persist between power cycles, there are several waysto do
this using Dynamic C functions:

e User Block - Recommended method for storing non-file data. Thisiswhere calibration
constants for boards with analog /O are stored in the factory. Space hereislimited to as
small as8K-sizeof (SysIDBlock) bytes, or lessif there are calibration constants.

e Flash File System - Thefile system is best for storing data that must be organized into
files, or datathat won't fit in the User block. It is best used on a second flash chip. It is not
possibleto use asecond flash for both extra program code that doesn’t fit into the first flash,
and the file system. The macro USE_ 2NDFLASH_CODE must be uncommented in the
BIOSto allow programs to grow into the second flash; this precludes the use of thefile sys-
tem.

e \WriteFlash2 - Thisfunction is provided for writing arbitrary amounts of data directly to
arbitrary addresses in the second flash.

e Battery-Backed RAM - Storing data hereis as easy as assigning valuesto global variables
or local static variables. Thefile system can also be configured to use RAM. The important
question is, what will you do when your battery runs out?

264 Dynamic C User’s Manual

17.2.1 User Block
The User block is an area near the top of flash reserved for run-time storage of persistent data and
calibration constants. The size of the User block can be read in the global structure member
SysIDBlock.userBlockSize. Thefunctions readUserBlock () and
writeUserBlock () areused to access the User block. These function take an offset into the
block as a parameter. The highest offset available to the user in the User block will be
SysIDBlock.userBlockSize-1
if there are no calibration constants, or
DAC_CALIB ADDR-1
if there are.

See the Rabbit 3000 Designer’s Handbook or the Rabhit 2000 Designer’s Handbook for more
details about the User block.

17.2.2 Flash File System
For a complete discussion of the file system, please see “ The Flash File System” on page 109.

17.2.3 WriteFlash2
See the Dynamic C Function Reference Manual for a complete description.

NOTE: ThereisaWwriteFlash () function available for writing to the first
flash, but its use is highly discouraged for reasons of forward source and binary
compatibility should flash sector configuration change drastically in a product.
See Technical Notes 216 and 217 for more information on flash compatibility
issues.

17.2.4 Battery-Backed RAM

Static variables and global variables will always be located at the same addresses between power
cycles and can only change locations via recompilation. The file system can be configured to use
RAM aso. While there may be applications where storing persistent datain RAM is acceptable,
for example a data logger where the data gets retrieved and the battery checked periodically, keep
in mind that a programming error such as an uninitialized pointer could cause RAM data to be cor-
rupted.

xalloc () will allocate blocks of RAM in extended memory. It will allocate the blocks consis-
tently from the same physical addressif done at the beginning of the program and the program is
not recompiled.

Chapter 17: Hintsand Tips 265

http://www.zworld.com/support/technotes_whitepapers.shtml

17.3 Root Memory Reduction Tips

Customers with programs that are near the limits of root code and/or root data space usage will be
interested in these tips for saving root space. For more help, see Technical Note TN238 “Rabbit
Memory Usage Tips.” This document is available on our website: www . zworld. com, and aso
by choosing Online Documentation from within the Help menu of Dynamic C.

17.3.1 Increasing Root Code Space
Increasing the available amount of root code space may be done in the following ways:

e Enable Separate Instruction and Data Space

A hardware memory management scheme that uses address line inversion to double the
amount of logical address space in the base and data segments is enabled on the Com-
piler tab of the Options | Project Options dialog. Enabling separate 1& D space doubles
the amount of root cod and root data available for an application program.

e Use#memmap xmem

Thiswill cause C functions that are not explicitly declared as“root” to be placed in
xmem. Note that the only reason to locate a C function in root is because it modifies the
XPC register (in embedded assembly code), or it isan ISR. The only performance dif-
ference in running code in xmem isin getting there and returning. It takes atotal of 12
additional machine cycles because of the differences between call/1call, and
ret/lret.

e |Increase DATAORG

Root code space can be increased by increasing DATAORG inRabbitBios.cin
increments of 0x1000. DATAORG is the beginning logical address for the data segment.
The default is 0x3000 when separate |& D space is enabled, and 0x6000 otherwise. It
can be changed to as high as 0xB00O.

Be aware that increasing DATAORG reduces the amount of root data space.

¢ Reduce usage of root constantsand string literals

Shortening literal strings and reusing them will save root space. The compiler automati-
cally reusesidentical string literals.

These two statements ;

printf (“This is a literal string”);
sprintf (buf, “This is a literal string”);

will share the same literal string space whereas:
sprintf (buf, “this is a literal string”);

will use its own space since the string is different.

266 Dynamic C User’s Manual

http://www.zworld.com/support/techNotes_whitePapers.shtml

e Usexdatato declarelargetablesof initialized data

If you have large tables of initialized data, consider using the keyword xdata to
declare them. The disadvantage is that data cannot be accessed directly with pointers.
The function xmem2root () alowsxdatato be copied to aroot buffer when needed.

// Thisusesroot code space
const int root tbl[8]={300,301,302,103,304,305,306,307};

// Thisdoes not
xdata xdata_ table {300,301,302,103,304,305,306,307};
main () {

// thisonly usestemporary stack space

auto int table[8];

xmem2root (table, xdata table, 16);
// now the xmem data can be accessed viaa 16 bit pointer into the table

}
Both methods, const and xdata, create initialized datain flash at compile time, so
the data cannot be rewritten directly.

e Usexstring to declare a table of strings

The keyword xstring declares atable of stringsin extended flash memory. The dis-
advantage is that the strings cannot be accessed directly with pointers, since the table
entries are 20-bit physical addresses. Asillustrated above, the function xmem2root ()
may be used to store the table in temporary stack space.

// Thisusesroot code space
const char * name[] = {“string 1”, . . . “string n”};

// Thisdoes not
xstring name {“string 1”, . . . “string n”};

Both methods, const and xstring, createinitialized datain flash at compile time,
so the data cannot be rewritten directly.

e Turn off selected debugging features

Watch expressions, breakpoints, and single stepping can be selectively disabled on the
Debugger tab of Project Options to save some root code space.

Chapter 17: Hintsand Tips 267

e Place assembly language code into xmem
Pure assembly language code functions can go into xmem.

#asm

foo root::
[some instructions]
ret

#endasm

The same function in xmem:

#asm xmem
foo xmem::
[some instructions]
lret ; uselret instead of ret
#endasm
Thecorrect calsarecall foo root andlcall foo xmem. If theassembly
function modifies the XPC register with

LD XPC, A
it should not be placed in xmem. If it accesses data on the stack directly, the datawill be
one byte away from where it would be with aroot function because 1call pushesthe
value of XPC onto the stack.

17.3.2 Increasing Root Data Space
Increasing the available amount of root data space may be done in the following ways:

e Enable Separate Instruction and Data Space

A hardware memory management scheme that uses address line inversion to double the
amount of logical address space in the base and data segments is enabled on the Com-
piler tab of the Options | Project Options dialog. Enabling separate 1& D space doubles
the amount of root code and root data available for an application program.

e Decrease DATAORG

Root data space can be increased by decreasing DATAORG inRabbitBios.cin
increments of 0x1000. At the time of thiswriting, RAM compiles should be done with
no less than the default value of DATAORG when separate |& D spaceis disabled. This
restriction is to ensure that the pilot BIOS does not overwrite itself. The default is
0x6000.

Be aware that decreasing DATAORG reduces the amount of root code space.

e Usexmem for large RAM buffers

xalloc () canbe used to allocate chunks of RAM in extended memory. The memory
cannot be accessed by a 16 hit pointer, so using it can be more difficult. The functions
xmem2root () and root2xmem () are available for moving from root to xmem and
xmem to root. Large buffers used by Dynamic C libraries are already alocated from
RAM in extended memory.

268 Dynamic C User’s Manual

18. PC/OS-II

HC/OS-I1 isasimple, clean, efficient, easy-to-use real-time operating system that runs on the Rab-
bit microprocessor and is fully supported by the Dynamic C development environment. It isan
add-on modul e that may be purchased from our website: www.zworld.com.

MC/OS-1 is capable of intertask communication and synchronization viathe use of semaphores,
mailboxes, and queues. User-definable system hooks are supplied for added system and configura-
tion control during task creation, task deletion, context switches, and time ticks. For more infor-
mation on UC/OS-I1, please refer to Jean J. Labrosse’s book, MicroC/OS 11, The Real-Time Kernel
(ISBN: 0-87930-543-6). The data structures (e.g., Event Control Block) referenced in the
Dynamic C pC/OS-I1 function descriptions are fully explained in Labrosse’s book. It can be pur-
chased at the Z-World store, www.zworld.com/store/home.html, or at http://www.ucos-ii.comy.

The Rabbit version of uC/OS-11 has the new features and API changes availablein version 2.51 of
HC/OS-11. The documentation for these changes is included with Dynamic Cin
Samples/UCos-II.ThefileNewv251.pdf containsall of the features added since version
2.00and Relv251.pdf contains release notes for version 2.51.

18.1 Changes to uC/OS-lI

To take full advantage of services provided by Dynamic C, minor changes have been made to
HC/OSHI.

18.1.1 Ticks per Second

In most implementations of uC/OS-I1, 0S_TICKS PER_SEC informsthe operating system of
therate at which 0STimeTick iscalled; this macro is used as a constant to match the rate of the
periodic interrupt. In uC/OS-11 for the Rabbit, however, changing this macro will change the tick
rate of the operating system set up during 0SInit. Usually, areal-time operating system has a
tick rate of 10 Hz to 100 Hz, or 10-100 ticks per second. Since the periodic interrupt on the Rabbit
occurs at arate of 2 kHz, it isrecommended that the tick rate be a power of 2 (e.g., 16, 32, or 64).
Keep in mind that the higher the tick rate, the more overhead the system will incur.

In the Rabbit version of uC/OS-11, the number of ticks per second defaults to 64. The actual num-
ber of ticks per second may be dightly different than the desired ticks per second if
TicksPerSec doesnot evenly divide 2048.

Chapter 18: uC/OS-11 269

http://www.zworld.com/store/home.html
http://www.ucos-ii.com/
http://www.zworld.com/products/dc/DC8/buyOnline.shtml#Modules

Changing the default tick rate is done by simply defining 0S_TICKS PER_SEC to the desired
tick rate before calling 0SInit (). E.g. to change the tick rate to 32 ticks per second:

#define 0OS TICKS PER SEC 32
0SInit () ;
OSStart () ;

18.1.2 Task Creation

In apuC/OS-1 application, stacks are declared as static arrays, and the address of either the top or
bottom (depending on the CPU) of the stack is passed to 0OSTaskCreate. InaRabbit-based
system, the Dynamic C development environment provides a superior stack allocation mechanism
that uC/OS-1l incorporates. Rather than declaring stacks as static arrays, the number of stacks of
particular sizes are declared, and when atask is created using either 0STaskCreate or
OSTaskCreateExt, only the size of the stack is passed, not the memory address. This mecha-
nism allows alarge number of stacks to be defined without using up root RAM.

There are five macroslocated in ucos2 . 11ib that define the number of stacks needed of five dif-
ferent sizes. In order to have three 256 byte stacks, one 512 byte stack, two 1024 byte stacks, one
2048 byte stack, and no 4096 byte stacks, the following macro definitions would be used:

#define STACK CNT 256 3 // number of 256 byte stacks
#define STACK CNT_ 512 1 // number of 512 byte stacks
#define STACK CNT_1K 2 // number of 1K stacks
#define STACK CNT_2K 1 // number of 2K stacks
#define STACK CNT_ 4K 0 // number of 4K stacks

These macros can be placed into each pC/OS-11 application so that the number of each size stack
can be customized based on the needs of the application. Suppose that an application needs 5
tasks, and each task has a consecutively larger stack. The macrosand callsto OSTaskCreate
would look asfollows

#define STACK CNT 256 2 // number of 256 byte stacks
#define STACK CNT_ 512 2 // number of 512 byte stacks
#define STACK CNT_1K 1 // number of 1K stacks
#define STACK CNT_2K 1 // number of 2K stacks
#define STACK CNT_4K 1 // number of 4K stacks
OSTaskCreate(taskl, NULL, 256, 0);
OSTaskCreate(task2, NULL, 512, 1);

OSTaskCreate (task3, NULL, 1024, 2);

OSTaskCreate (task4, NULL, 2048, 3);

OSTaskCreate (task5, NULL, 4096, 4);

Note that STACK_CNT 256 issetto 2instead of 1. uC/OS-I1 aways creates an idle task which
runs when no other tasks are in the ready state. Note also that there are two 512 byte stacks instead
of one. Thisis because the program is given a 512 byte stack. If the application utilizes the
HC/OSH 1 statistics task, then the number of 512 byte stacks would have to be set to 3. (Statistic
task creation can be enabled and disabled viathe macro 0S_ TASK _STAT_ EN whichislocated in
ucos?2.1ib). If only 6 stacks were declared, one of the callsto 0STaskCreate would fail.

270

Dynamic C User’s Manual

If an application uses 0STaskCreateExt, which enables stack checking and allows an exten-

sion of the Task Control Block, fewer parameters are needed in the Rabbit version of pC/OS-I1.

Using the macros in the example above, the tasks would be created as follows:

OSTaskCreateExt (taskl, NULL, 0, 0, 256, NULL, OS_TASK OPT STK CHK |
0S_TASK_OPT STK CLR) ;

OSTaskCreateExt (task2, NULL, 1, 1, 512, NULL, OS _TASK OPT STK CHK |
OS_TASK OPT STK CLR) ;

OSTaskCreateExt (task3, NULL, 2, 2, 1024, NULL, OS TASK OPT STK CHK |
OS_TASK OPT STK CLR) ;

OSTaskCreateExt (task4, NULL, 3, 3, 2048, NULL, OS TASK OPT STK CHK |
OS_TASK OPT STK CLR) ;

OSTaskCreateExt (task5, NULL, 4, 4, 4096, NULL, OS TASK OPT STK CHK |
OS_TASK OPT STK CLR) ;

18.1.3 Restrictions

At the time of thiswriting, uC/OS-I1 for Dynamic C is not compatible with the use of dlice state-
ments. Also, see the function description for 0STimeTickHook () for important information
about preserving registersif that stub function is replaced by a user-defined function.

Due to Dynamic C's stack allocation scheme, special care should be used when posting messages
to either amailbox or aqueue. A messageis simply avoid pointer, allowing the application to
determine its meaning. Since tasks can have their stacksin different segments, auto pointers
declared on the stack of the task posting the message should not be used since the pointer may be
invalid in another task with a different stack segment.

18.2 Tasking Aware Interrupt Service Routines (TA-ISR)

Special care must be taken when writing an interrupt service routine (1SR) that will be used in con-
junction with uC/OS-11 so that uC/OS-I1 scheduling will be performed at the proper time.

18.2.1 Interrupt Priority Levels

MC/OS-1 for the Rabbit reserves interrupt priority levels 2 and 3 for interrupts outside of the ker-
nel. Since the kernel is unaware of interrupts above priority level 1, interrupt service routines for
interrupts that occur at interrupt priority levels 2 and 3 should not be written to be tasking aware.
Also, apuC/OS-11 application should only disable interrupts by setting the interrupt priority level to
1, and should never raise the interrupt priority level above 1.

Chapter 18: uC/OS-11 271

18.2.2 Possible ISR Scenarios

There are several different scenarios that must be considered when writing an ISR for use with
MC/OS-I1. Depending on the use of the ISR, it may or may not have to be written so that it is task-
ing aware. Consider the scenario in the Figure below. In this situation, the ISR for Interrupt X does
not have to be tasking aware since it does not re-enable interrupts before completion and it does
not post to a semaphore, mailbox, or queue.

Task 1

Interrupt X

Interrupt X ISR
ipres

Task 1

Figure 1. Type 1ISR

If, however, an ISR needs to signal atask to the ready state, then the ISR must be tasking aware. In
the example in the Figure below, the TA-I SR increments the interrupt nesting counter, does the
work necessary for the ISR, readies a higher priority task, decrements the nesting count, and
returns to the higher priority task.

Task 2

Interrupt X
™ Nesting=1
Interrupt X TA-ISR | Tasx Lisreadied
Nesting =0
ipres

Task 1

Figure 2. Type 2 ISR

272 Dynamic C User’s Manual

It may seem as though the I SR in this Figure does not have to increment and decrement the nesting
count. Thisis, however, very important. If the ISR for Interrupt X is called during an ISR that re-
enabl es interrupts before completion, scheduling should not be performed when Interrupt X com-
pletes; scheduling should instead be deferred until the least nested | SR completes. The next Figure

shows an exampl e of this situation.

Task 2

Interrupt Z

Task 1

Nesting = 1
Do critical code
Interrupt Z TA-ISR ipres
Interrupt X
» Nesting =2
Interrupt X TA-ISR | Task lisreadied
Nesting=1
- ipres
Finish ISR
Nesting = 0
-~

Figure 3. Type 2 ISR Nested Inside Type 3 ISR

As can be seen here, athough the ISR for interrupt Z does not signal any tasks by posting to a
semaphore, mailbox, or queue, it must increment and decrement the interrupt nesting count since it

re-enablesinterrupts (ipres) prior to finishing al of its work.

18.2.3 General Layout of a TA-ISR

A TA-ISRisjust like astandard | SR except that it does some extra checking and house-keeping.

The following table summarizes when to use a TA-ISR.

Table 18-1. Use of TA-ISR

UC/OS-II Application

Type 1% Type 22

Type 32

TA-ISR Required? No Yes

Yes

1. Type 1—L eavesinterrupts disabled and does not signal task to ready state
2. Type 2—L eaves interrupts disabled and signalstask to ready state
3. Type 3—Reenables interrupts before completion

Chapter 18: uC/OS-11

273

The following Figure shows the logical flow of a TA-ISR.

Save registers used by TA-ISR

¢

Clear interrupt source

¢

Increment nesting count

¢

Do work necessary for interrupt

¢

Reenable interrupts (optional)

¢

Call OSIntExit

'

Decrement Nesting Count

¢

IsNesting==07?

Yes

Is switch pending ?

No

.

Restore Registers used by TA-ISR

Yes

¢

Switch to new task

Return from interrupt

Figure 4. Logical Flow of a TA-ISR

274

Dynamic C User’s Manual

18.2.3.1 Sample Code for a TA-ISR
Fortunately, the Rabbit BIOS and libraries provide all of the necessary flags to make TA-ISRs
work. With the code found in Listing 1, minimal work is needed to make a TA-ISR function
correctly with uC/OS-11. TA-1SRs dlow uC/OS-I1 the ability to have | SRs that communicate with
tasks as well asthe ability to let ISRs nest, thereby reducing interrupt latency.

Just like a standard ISR, the first thing a TA-I1SR doesisto save the registersthat it is going to use
(1). Oncethe registers are saved, the interrupt source is cleared (2) and the nesting counter is
incremented (3). Notethat bios intnesting isagloba interrupt nesting counter provided in
the Dynamic C libraries specifically for tracking the interrupt nesting level. If an ipres instruc-
tion is executed (4) other interrupts can occur before this ISR is completed, making it necessary
for thisISR to be aTA-ISR. If it is possible for the ISR to execute before uC/OS-I1 has been fully
initialized and started multi-tasking, a check should be made (5) to insure that uC/OS-ll isina
known state, especialy if the TA-ISR signals atask to the ready state (6). After the TA-ISR has
doneits necessary work (which may include making a higher priority task than is currently run-
ning ready to run), 0SIntExit must becalled (7). This uC/OS-11 function determines the high-
est priority task ready to run, setsit as the currently running task, and sets the global flag

bios_ swpend if acontext switch needs to take place. Interrupts are disabled since a context
switch istreated as a critical section (8). If the TA-ISR decrements the nesting counter and the
count does not go to zero, then the nesting level issaved inbios intnesting (9), theregis-
ters used by the TA-ISR are restored, interrupts are re-enabled (if not already donein (4)), and the
TA-ISR returns (12). However, if decrementing the nesting counter in (9) causes the counter to
become zero, thenbios swpend must be checked to seeif a context switch needs to occur (10).
If a context switch is not pending, then the nesting level is set (9) and the TA-ISR exits (12). If a
context switch is pending, then the remaining context of the previoustask is saved and along call,
which insures that the xpc is saved and restored properly, ismadetobios intexit (11).
bios intexit isresponsiblefor switching to the stack of the task that is now ready to run and
executing along call to switch to the new task. The remainder of (11) is executed when a previ-
ously preempted task is allowed to run again.

Listing 1

#asm

taskaware isr::
push af ; push regs needed by isr (1)
push hl ; Clear interrupt source (2)
14 hl,bios_intnesting ; increase the nesting count (3)
inc (hl)
; ipres (optional) (4)
; do processing necessary for interrupt
1d a, (OSRunning) ; MCOS multitasking yet? (5)
or a
jr z,taisr decnesting
; possibly signal task to become ready (6)
call OSIntExit ; setsbios_swpend if higher

; prioready (7)

Chapter 18: uC/OS-11 275

taisr decnesting:

push ip (8)

ipset 1

1d hl,bios intnesting ; hesting counter == 17

dec (hl) (9)

jr nz,taisr noswitch

1d a, (bios_swpend) ; switch pending? (10)
or a

jr z,taisr noswitch

push de (11)
push bc

ex af,af’

push af

exx

push hl

push de

push bc

push iy

lcall bios_ intexit

pop iy
pop bc
pop de
pop hl
exx
pop af
ex af,af’
pop bc
pop de
taisr noswitch:
pop ip
taisr done:
pop hl (12)
pop af
ipres
ret
#endasm

276 Dynamic C User’s Manual

18.3 Library Reentrancy

When writing apC/OS-11 application, it isimportant to know which Dynamic C library functions
are non-reentrant. If afunction is non-reentrant, then only one task may access the function at a

time, and access to the function should be controlled with auC/OS-I1 semaphore. The following is
alist of Dynamic C functions that are non-reentrant.

Library Non-reentrant Functions
MATH.LIB randg, randb, rand
RS232.LIB All

RTCLOCK.LIB

write rtc, tm_wr

STDIO.LIB kbhit, getchar, gets, getswf, selectkey
STRING.LIB atof?, atoil, strtok

clockDoublerOn, clockDoublerOff, useM ainOsc,
SYS.LIB

useClockDivider, use32kHzOsc

VDRIVER.LIB

VdGetFreeWd, VdRe easeWd

XMEM.LIB WriteFlash
JRIO.LIB digOut, digOn, digOff, jriolnit, analn, anaOut, cof _analn
JR485.LIB All

1. reentrant but setsthe global xtoxErr flag

The seria port functions (Rs232.LIB functions) should be used in arestricted manner with

MC/OS-I1. Two tasks can use the same port as long as both are not reading, or both are not writing;

i.e., onetask can read from serial port X and another task can write to serial port X at the same

time without conflict.

Chapter 18: uC/OS-11

277

18.4 How to Get a HC/OS-1l Application Running

HC/OS-1 isahighly configureable, real-time operating system. It can be customized using as
many or as few of the operating system'’s features as needed. This section outlines:

e The configuration constants used in uC/OS-1|
e How to override the default configuration supplied in UCOS2 . LIB
e The necessary steps to get an application running

It is assumed that the reader has a familiarity with uC/OS-I1 or has a pC/OS-11 reference
(MicroC/OS 11, The Real-Time Kernel by Jean J. Labrosse is highly recommended).

18.4.1 Default Configuration

HC/OS-1 usually relieson theincludefileos cfg. h to get values for the configuration con-
stants. In the Dynamic C implementation of uC/OS-11, these constants, along with their default
values, areinos_cfg.1lib. A default stack configuration isalso suppliedinos cfg.lib.
HC/OS-1 for the Rabbit uses a more intelligent stack allocation scheme than other pC/OS-11
implementations to take better advantage of unused memory.

The default configuration allows up to 10 normally created application tasks running at 64 ticks
per second. Each task has a 512-byte stack. There are 2 queues specified, and 10 events. An event
isaqueue, mailbox or semaphore. You can define any combination of these three for atotal of 10.
If you want more than 2 queues, however, you must change the default value of 0S_MAX _QsS.

Some of the default configuration constants are;
// Maximum number of events (semaphores, queues, mailboxes)
#define OS_MAX EVENTS 10

// Maximum number of tasks (less stat and idle tasks)
#define 0OS_MAX TASKS 10

// Maximum number of queuesin system
#define 0S MAX QS 2

// Maximum number of memory partitions
#define OS_MAX MEM PART 1

// Enable normal task creation
#define OS_TASK CREATE EN 1

// Disable extended task creation
#defineOS TASK CREATE EXT EN 0

// Disabletask deletion
#define OS TASK DEL EN 0

// Disable statistics task creation
#define OS TASK STAT EN 0

// Enable queue usage
#define OS Q EN 1

// Disable memory manager
#define OS _MEM EN 0

// Enable mailboxes
#define OS MBOX EN 1

278 Dynamic C User’s Manual

// Enable semaphores
#define OS_SEM EN 1

// number of ticks in one second
#define 0OS_TICKS PER SEC 64

// number of 256 byte stacks (idle task stack)
#define STACK CNT 256 1

// number of 512-byte stacks (task stacks + initial program stack)

#define STACK CNT 512 OS_MAX TASKS+1
If aparticular portion of uC/OS-I1 is disabled, the code for that portion will not be compiled, mak-
ing the overall size of the operating system smaller. Take advantage of this feature by customizing
UC/OS-11 based on the needs of each application.

18.4.2 Custom Configuration
In order to customize pC/OS-I1 by enabling and disabling components of the operating system,
simply redefine the configuration constants as necessary for the application.

#define OS_MAX EVENTS 2
#define OS_MAX TASKS 20
#define OS MAX QS 1
#define OS MAX MEM PART 15
#define OS_TASK STAT EN 1
#define OS_Q EN 0
#define OS_MEM EN 1
#define OS_MBOX EN 0
#define OS_TICKS PER SEC 64

If a custom stack configuration is needed also, define the necessary macros for the counts of the
different stack sizes needed by the application.

#define STACK CNT 256 1 // idletask stack

#define STACK CNT 512 2 // initial program + stat task stack
#define STACK CNT_ 1K 10 // task stacks

#define STACK CNT 2K 10 // number of 2K stacks

In the application code, follow the uC/OS-I1 and stack configuration constants with a #use
“ucos2.1lib” statement. This ensures that the definitions supplied outside of the library are
used, rather than the defaultsin the library.

This configuration uses 20 tasks, two semaphores, up to 15 memory partitions that the memory
manager will control, and makes use of the statisticstask. Note that the configuration constants for
task creation, task deletion, and semaphores are not defined, as the library defaults will suffice.
Also note that 10 of the application tasks will each have a 1024 byte stack, 10 will each have a
2048 byte stack, and an extra stack is declared for the statistics task.

Chapter 18: uC/OS-11 279

18.4.3 Examples
The following sample programs demonstrate the use of the default configuration supplied in
UCoS2 . LIB and acustom configuration which overrides the defaullts.

Example 1

In this application, ten tasks are created and one semaphore is created. Each task pends on the
semaphore, gets a random number, posts to the semaphore, displays its random number, and
finally delaysitself for three seconds.

Looking at the code for this short application, there are several things to note. First, since uC/OS-
Il and slice statements are mutually exclusive (both rely on the periodic interrupt for a“heart-
beat”), #use “ucos2.1lib” must beincluded in every pC/OS-11 application (1). In order for
each of the tasks to have access to the random number generator semaphore, it is declared asaglo-
bal variable (2). In most cases, all mailboxes, queues, and semaphores will be declared with global
scope. Next, 0SInit () must be called before any other uC/OS-11 function to ensure that the
operating system is properly initialized (3). Before uC/OS-11 can begin running, at least one appli-
cation task must be created. In this application, all tasks are created before the operating system
begins running (4). It is perfectly acceptable for tasks to create other tasks. Next, the semaphore
each task usesis created (5). Onceall of theinitializationisdone, 0sStart () iscaled to start
MC/OS-I1 running (6). In the code that each of the tasksrun, it isimportant to note the variable
declarations. The default storage classin Dynamic C is static, so to ensure that the task codeis
reentrant, all are declared auto (7). Each task runs as an infinite loop and once this application is
started, UC/OS-11 will run indefinitely.

280 Dynamic C User’s Manual

// 1. Explicitly use uC/OS-I library
#use "ucos2.lib"

void RandomNumberTask (void *pdata) ;

// 2. Declare semaphore global so all tasks have access
OS_EVENT* RandomSem;

void main ()

{
int 1i;
// 3. Initialize OSinternals
OSInit () ;
for(i = 0; 1 < OS _MAX TASKS; i++)
// 4. Create each of the system tasks
OSTaskCreate (RandomNumberTask, NULL, 512,

// 5. semaphore to control access to random number generator
RandomSem = 0SSemCreate (1) ;

// 6. Begin multitasking
OSStart () ;
}
void RandomNumberTask (void *pdata)
{
// 7.Declare as auto to ensure reentrancy.
auto OS TCB data;
auto INT8U err;
auto INT16U RNum;

OSTaskQuery (OS PRIO SELF, &data);
while (1)

{

i);

// Randisnot reentrant, so access must be controlled via a semaphore.

0SSemPend (RandomSem, 0, &err) ;
RNum = (int) (rand() * 100);
OSSemPost (RandomSem) ;

printf ("Task%d's random #: %d\n",data.OSTCBPrio, RNum) ;

// Wait 3 secondsin order to view output from each task.
0STimeDlySec (3) ;

Chapter 18: uC/OS-11

281

Example 2

This application runs exactly the same code as Example 1, except that each of the tasks are created
with 1024 byte stacks. The main difference between the two is the configuration of pC/OS-11.

First, each configuration constant that differs from the library default is defined. The configuration
in this example differs from the default in that it allows only two events (the minimum needed
when using only one semaphore), 20 tasks, no queues, no mailboxes, and the system tick rateis set
to 32 ticks per second (1). Next, since this application uses tasks with 1024 byte stacks, it is neces-
sary to define the configuration constants differently than the library default (2). Notice that one
512 byte stack is declared. Every Dynamic C program starts with an initial stack, and defining
STACK CNT 512 iscrucia to ensure that the application has a stack to use during initialization
and before multi-tasking begins. Finally ucos2 . 1ib isexplicitly used (3). This ensures that the
definitionsin (1 and 2) are used rather than the library defaults. Thelast step ininitiadizationisto
set the number of ticks per second viaOSSetTicksPerSec (4).

Therest of this application isidentical to example 1 and is explained in the previous section.
// 1. Define necessary configuration constants for uC/OS-I|

#define OS_MAX EVENTS 2
#define OS_MAX_ TASKS 20
#define 0S MAX QS 0
#define OS_Q EN 0
#define OS_MBOX EN 0
#define OS_TICKS PER_SEC 32

// 2.Define necessary stack configuration constants
#define STACK CNT 512 1 // initia program stack
#define STACK CNT_ 1K OS_MAX TASKS // task stacks

// 3. Thisensures that the above definitions are used
#use "ucos2.lib"

void RandomNumberTask (void *pdata) ;

// Declare semaphore global so all tasks have access
OS_EVENT* RandomSem;
void main () {

int 1i;

// Initialize OSinternals

OSInit () ;

for(i = 0; i < OS _MAX TASKS; i++) {

// Create each of the system tasks
OSTaskCreate (RandomNumberTask, NULL, 1024, i);

}

// semaphore to control access to random number generator
RandomSem = 0OSSemCreate(1l) ;

// 4. Set number of system ticks per second
OSSetTicksPerSec (0OS_TICKS PER SEC);

// Begin multi-tasking

OSStart () ;

282 Dynamic C User’s Manual

void RandomNumberTask (void *pdata)

{

// Declare as auto to ensure reentrancy.
auto OS TCB data;

auto INT8U err;

auto INT16U RNum;

OSTaskQuery (OS_PRIO SELF, &data);
while (1)

{

// Randisnot reentrant, so access must be controlled via a semaphore.
0SSemPend (RandomSem, 0, &err) ;

RNum = (int) (rand() * 100) ;

0OSSemPost (RandomSem) ;

printf ("Task%02d's random #: %d\n",data.OSTCBPrio,RNum) ;

// Wait 3 secondsin order to view output from each task.
0STimeDlySec (3) ;

18.5 Compatibility with TCP/IP

The TCP/IP stack is reentrant and may be used with the uC/OS real-time kernel. Theline
#use ucos2.lib

must appear before the line
#use dcrtcp.lib

A call tooSInit () must be made before calling sock_init ().

18.5.1 Socket Locks

Each socket used in auC/OS-I1 application program has an associated socket lock. Each socket
lock uses one semaphore of type OS_EVENT. Therefore, the macro MAX OS_EVENTS must take
into account each of the socket locks, plus any events that the application program may be using
(semaphores, queues, mailboxes, event flags, or mutexes).

Determining OS_MAX EVENTS may get alittle tricky, but it isn't too bad if you know what your
program isdoing. Since MAX SOCKET LOCKS is defined as:

#define MAX SOCKET LOCKS (MAX TCP SOCKET BUFFERS +
MAX_UDP_SOCKET BUFFERS)

OS_MAX EVENTS may be defined as:

#define OS MAX EVENTS MAX TCP_SOCKET BUFFERS +
MAX_UDP_SOCKET BUFFERS + 2 + z

The constant “2” isincluded for the two global locks used by TCP/IP, and z is the number of
OS_EVENTS (semaphores, queues, mailboxes, event flags, or mutexes) required by the program.

Chapter 18: uC/OS-11 283

If either MAX TCP_SOCKET BUFFERS Or MAX UDP_SOCKET BUFFERS isnot defined by
the application program prior to the #use statements for ucos.1ib and dcrtcp. 1ib default
values will be assigned.

If MAX TCP_SOCKET BUFFERS isnot defined in the application program, it will be defined as
MAX SOCKETS. If, however, MAX SOCKETS is not defined in the application program,
MAX TCP_SOCKET BUFFERS will be4.

If MAX UDP_SOCKET BUFFERS isnot defined in the application program, it will be defined as
1if USE_DHCP isdefined, or O otherwise.

For more information regarding TCP/IP, please see the Dynamic C TCP/IP User’s Manual, avail-
able online at zworld.com or rabbitsemi conductor.com.

18.6 Debugging Tips

Single stepping may be limited to the currently running task by using F8 (Step over). If thetask is
suspended, single stepping will also be suspended. When the task is put back in arunning state,
single stepping will continue at the statement following the statement that suspended execution of
the task.

Hitting F7 (Trace into) at a statement that suspends execution of the current task will cause the
program to step into the next active task that has debug information. It may be useful to put a
watch on the global variable 0SPrioCur to see which task is currently running.

For example, if the current task is going to call 0SSemPend () on asemaphore that isnot in the
signaled state, the task will be suspended and other tasks will run. If F8 is pressed at the statement
that calls 0SsemPend () , the debugger will not single step in the other running tasks that have
debug information; single stepping will continue at the statement following the call to
0SSemPend (). If F7 ispressed at the statement that calls0SSemPend () instead of F8, the
debugger will single step in the next task with debug information that is put into the running state.

284 Dynamic C User’s Manual

http://www.zworld.com/documentation/docs/manuals/TCPIP/UsersManual/index.html
http://www.rabbitsemiconductor.com/documentation/docs/manuals/TCPIP/UsersManual/index.html

Appendix A: Macros and Global
Variables

This appendix contains descriptions of macros and global variables available in Dynamic C. This
is not an exhaustive list.

A.1 Compiler-Defined Macros

The macrosin the following table are defined internally. Default values are given where applica-
ble, aswell as directions for changing values.

Table A-2. Macros Defined by the Compiler

Macro Name Definition and Default

Thisisthe debug baud rate. The baud rate can be changed in
the Communications tab of Project Options.

Thisisread from the System ID block or defaulted to 0x100
(the BL1810 JackRabbit board) if no System ID block is
present. This can be used for conditional compilation based on
board type. Board types are listed inboardtypes.lib.

_BIOSBAUD

_BOARD TYPE

This macro identifies the CPU type, e.g. R3000 is the Rabbit

_CPU_ID_ 3000 microprocessor.
cc VER Givesthe Dynamic C version in hex, i.e. version 7.05 is
- 0x0705.
DC_CRC PTR Reserved.
The compiler substitutes this macro with the date that the file
was compiled (either the BIOS or the . c fil€). The character
DATE string literal isof theform Mmm dd yyyy. The daysof the

month are asfollows: "Jan," "Feb," "Mar," "Apr," "May," "Jun,"
"Jul," "Aug," "Sep," "Oct," "Nov," "Dec." Thereisaspace asthe
first character of dd if the value isless than 10.

Go to the Compiler tab of Project Options and click on the
“Advanced” button at the bottom of the dialog box. Check
DEBUG RST “Include RST 28 instructions’ to set DEBUG_RST to 1. Debug
code will beincluded even if #nodebug precedes the main
function in the program.

The compiler substitutes this macro with the current source

_ FILE_ code file name as a character string literal.

Dynamic C User’'s Manual 285

Table A-2. Macros Defined by the Compiler

Macro Name Definition and Default

_FAST RAM These are used for conditional compilation of the BIOS to
distinguish between the three options:
» compiling to and running in flash
RAM » compiling to and running in RAM
 compiling to flash and running in RAM

The choice is made in the Compiler tab of Project Options. The
default is compiling to and running in flash.
The BIOS defines FAST RAM COMPILE,
FLASH COMPILE and RAM_COMPILE. These macrosare
defined to 0 or 1 as opposed to the corresponding compiler-
defined macros which are either defined or not defined. This
difference makes possible statements such as:

#if FLASH COMPILE || FAST RAM COMPILE

Setting FAST RAM COMPILE limitstheflashfilesystem size
to the smaller of the following two values: 256K less the
SystemI D/User Blocks reserved area; the sum of the
completely available flash sectors between the application
code/constants and the Systeml D/User Blocks reserved area.

_FLASH

_FLASH SIZE These are used to set the MMU registers and code and data
sizes available to the compiler. The values of the macros are
_RAM_SIZE the number of 4K blocks of memory available.
LINE The compiler substitutes this macro with the current source code

l[ine number as adecima constant.

Boolean value. Tells the compiler whether or not to include the
B1OS when compiling to a .bin file. Thisis an advanced
compiler option accessible by clicking the “Advanced” button
on the Compiler tab in Project Options.

NO BIOS

Boolean value. It defaultsto 0. Set it by selecting “ Compile
_TARGETLESS COMPILE | defined target configuration to .bin file” under “Default
Compile Mode,” in the Compiler tab of Project Options.

The compiler substitutes this macro with the time that the file
__TIME (BIOSor . ¢) was compiled. The character string literal is of the
form hh:mm: ss.

286 Dynamic C User’s Manual

A.2 Global Variables
These variables may be read by any Dynamic C application program.

dc_timestamp

Thisinternally-defined long is the number of seconds that have passed since 00:00:00 January 1,
1980, Greenwich Mean Time (GMT) adjusted by the current time zone and daylight savings of the
PC on which the program was compiled. The recorded time indicates when the program finished
compiling.

printf ("The date and time: %1x\n", dc_timestamp) ;

OPMODE

Thisisachar. It can have the following values:
e (0x88 = debug mode
e (0x80 = run mode

SEC_TIMER

Thisunsigned long variableisinitialized to the value of the real-time clock (RTC). If the RTC is
set correctly, thisis the number of seconds that have elapsed since the reference date of January 1,
1980. The periodic interrupt updates SEC_ TIMER every second. Thisvariableisinitialized by the
Virtual Driver when a program starts.

MS_TIMER

Thisunsigned long variableisinitialized to zero. The periodic interrupt updatesMS TIMER every
millisecond. Thisvariableisinitialized by the Virtual Driver when a program starts.

TICK_TIMER

This unsigned long variable isinitialized to zero. The periodic interrupt updates TICK TIMER
1024 times per second. Thisvariableisinitialized by the Virtual Driver when a program starts.

Dynamic C User’'s Manual 287

A.3 Exception Types

These macros are defined in errors . 1lib:

#define ERR_ BADPOINTER 228
#define ERR BADARRAYINDEX 229
#define ERR DOMAIN 234
#define ERR RANGE 235
#define ERR_ FLOATOVERFLOW 236
#define ERR_LONGDIVBYZERO 237
#define ERR LONGZEROMODULUS 238
#define ERR BADPARAMETER 239
#define ERR INTDIVBYZERO 240
#define ERR UNEXPECTEDINTRPT 241
#define ERR_CORRUPTEDCODATA 243
#define ERR_VIRTWDOGTIMEOUT 244
#define ERR BADXALLOC 245
#define ERR BADSTACKALLOC 246
#define ERR BADSTACKDEALLOC 247
#define ERR BADXALLOCINIT 249
#define ERR NOVIRTWDOGAVAIL 250
#define ERR_ INVALIDMACADDR 251
#define ERR_ INVALIDCOFUNC 252

A.4 Rabbit 2000/3000 Internal registers

Macros are defined for all of the Rabbit’s 1/O registers. A listing of these register macros can be
found in the Rabbit 2000 Microprocessor User’s Manual and the Rabbit 3000 MIcroprocessor
User’s Manual.

A.4.1 Shadow Registers

Shadow registers exist for many of the I/O registers. They are character variables defined in the
BIOS. The naming convention for shadow registersis to append the word Shadow to the name of
the register. For example, the global control status register, GCSR, has a corresponding shadow
register named GCSRShadow.

The purpose of the shadow registersis to alow the program to reference the last value pro-
grammed to the actual register. Thisis needed because a number of the registers are write only.

288 Dynamic C User’s Manual

Appendix B: Map File Generation

All symbol information is put into a single file. The map file has three sections: a memory map

section, afunction section, and a globals section.

The map file format is designed to be easy to read, but with parsing in mind for use in program

down-loaders and in other possible future utilities (for example, an independent debugger). Also,

the memory map, as defined by the #org statements, will be saved into the map file.

Map files are generated in the same directory as the file that is compiled. If compilation is not suc-

cessful, the contents of the map file are not reliable.

B.1 Grammar

<mapfile>: <memmap section> <function section> <global section>

<memmap section>: <memmapreg>+
<memmapreg>: <register var> = <8-hit const>
<register var>: XPC|SEGSIZE|DATASEG
<function section>: <function descripton>+

<function description>: <identifier> <address> <size>
<address>: <logical address> | <physical address>
<logical address>: <16-hit constant>

<physical address: <8-hit constant>:<16-bit constant>
<size>: <20-bit constant>

<global section>: <global description>+

<global description>: <scoped name> <address>
<scoped name>: <global>| <local static>

<global>: <identifier>

<local static>: <identifier>:<identifier>

Comments are C++ style (// only).

Dynamic C User’'s Manual

289

290 Dynamic C User’s Manual

Appendix C: Utility Programs

This appendix documents the utility programs available from Z-World. All of these utilities are
easy to use.

e Library File Encryption Utility: sold separately as an add-on module. It may be obtained on
our website: www.zworld.com.

File Compression Utility: bundled with Dynamic C.

Font and Bitmap Converter: bundled with Dynamic C.
Rabbit Field Utility (RFU): bundled with Dynamic C, source code sold separately.

C.1 Library File Encryption Utility

The Library File Encryption Utility allows distribution of sensitive runtime library files. Complete
instructions are available by clicking on the Help button within the utility, Encrypt . exe. Con-
text-sensitive help is accessed by positioning the cursor over the desired subject and hitting <F1>.

The encrypted library files compile normally, but cannot be read with an editor. The fileswill be
automatically decrypted during Dynamic C compilation, but users of Dynamic C will not be able
to see any of the decrypted contents except for function descriptions for which apublic interfaceis
given. An optional user-defined copyright notice is put at the beginning of an encrypted file.

C.2 File Compression Utility

Dynamic C has a compression utility feature. The default utility implements an LZSS style com-
pression algorithm. Support libraries to decompress files achieve a throughput of 10 KB/sto 20
KB/s (number of bytesin uncompressed file/time to decompress entire file using
ReadCompressedFile ()) depending upon file size and compression ratio.

The #zimport compiler directive performs a standard #ximport, but compresses the file by
invoking the compression utility before emitting the file to the target. Support libraries allow the
compressed file to be decompressed on-the-fly. Compression ratios of 50% or more for text files
can be achieved , thus freeing up valuable xmem space. The compression library is thread safe.

For details on compression ratios, memory usage and performance, please see Technical Note 234,
“File Compression (Using #zimport)” available on our website, at www.zworld.com.

Dynamic C User’s Manual 291

http://www.zworld.com/products/dc/DC8/buyOnline.shtml#Modules
http://www.zworld.com/support/techNotes_whitePapers.shtml

C.2.1 Using the File Compression Utility

The utility isinvoked by Dynamic C during compile time when #zimport isused. The keyword
#zimport will compress any file. Of course somefiles are aready in a compressed format, for
example jpeg files, so trying to compress them further is not useful and may even cause the result-
ing compressed file to be larger than the origina file. (The original fileis not modified by the
compression utility nor by the support libraries.) The compression of FS2 filesis a specid case.
Instead of using #zimport, #ximport isused adong with the function CompressFile ().

Compressed files are decompressed on-the-fly using ReadCompressedFile (). Compressed
FS2 files may also be decompressed on-the-fly by using ReadCompressedFile (). In addi-
tion, an FS2 file may be decompressed into anew FS2 file by using DecompressFile ().

There are 3 sample programs to illustrate the use of file compression
® Samples/zimport/zimport.c: demonstrates #zimport

e Samples/zimport/zimport fs2.c:demonstratesfilecompressionincombination
with the file system

e Samples/tcpip/http/zimport . c: demonstrates file compression support using
the http server
C.2.1.1 File Compression/Decompression API
The file compression API consists of 7 functions, 3 of which are of prime importance:

OpenInputCompressedFile () - openacompressed file for reading or open an uncom-
pressed #ximport file for compression.

CloseInputCompressedFile () - closeinput file and deallocate memory buffers.
ReadCompressedFile () - perform on-the-fly decompression.

The remaining 4 functions are included for compression support for FS2 files:
OpenOutputCompressedFile () - open FS2filefor use with CompressFile ().
CloseOutputCompressedFile () - closefile and deallocate memory buffers.
CompressFile () - compress an FS2 file, placing the result in a second FS2 file.
DecompressFile () - decompress an FS2 file, placing the result in a second FS2 file.

Complete descriptions are available for these functions in the Dynamic C Function Reference
Manual and also via the Function Lookup facility (Ctrl+H or Help menu).

There are several macros associated with the file compression utility:
e ZIMPORT MASK - Used to determineif theimported fileis compressed (#zimport) or
not (#ximport).

e OUTPUT_ COMPRESSION BUFFERS (default = 0) - Number of 24K buffers for compres-
sion (compression also requires a4K input buffer, which is allocated automatically for each
output buffer that is defined).

e INPUT COMPRESSION BUFFERS (default = 1) Number of 4KB internal buffers (in
RAM) used for decompression.

Each compressed file has an associated file descriptor of type ZFILE. All fieldsin this structure
are used internally and must not be changed by an application program.

292 Dynamic C User’s Manual

C.2.2 Replacing the File Compression Utility

Users can use their own compression utility, replacing the one provided. If the provided compres-
sion utility is replaced, the following support libraries will also need to be replaced:
zimport.lib,lzss.libandbitio.lib. They arelocatedinlib/zimport/. The
default compression utility, Zcompress . exe, islocated in Dynamic C'sroot directory. The util-
ity name is defined by a key in the current project file:

[Compression Utilityl]
Zimport External Utility=Zcompress.exe

To replace Zcompress . exe asthe utility used by Dynamic C for compression, open your
project file and edit the filename.

The compression utility must reside in the same directory as the Dynamic C compiler executable.
Dynamic C expects the program to behave as follows:

e Takeasinput afile namerelative to the Dynamic C installation directory or afully qualified
path.

e Produce an output file of the same name as the input file with the extension .DCZ at the end.
E.g., test.txt becomestest.txt.dcz.

e [EXxit with zero on success, non-zero on failure.

If the utility does not meet these criteria, or does not exist, a compile-time error will be generated.

C.3 Font and Bitmap Converter Utility

The Font and Bitmap Converter converts Windows fonts and monochrome bitmapsto alibrary file
format compatible with Z-World’'s Dynamic C applications and graphical displays. Non-Roman
characters may also be converted by applying the monochrome bitmap converter to their bitmaps.

Double-click onthe fmbenvtr . exe fileinthe Dynamic C directory. Select and convert existing
fonts or bitmaps. Complete instructions are available by clicking on the Help button within the
utility.

When complete, the converted fileis displayed in the editing window. Editing may be done, but
probably won't be necessary. Save thefileaswhatever. 1ib: the name of your choice.

Add the file to applications with the statement:
#use whatever.lib // remember to add thisfilenameto1ib.dir
or by cut and pasting from whatever . 1ib directly into the application file.

Dynamic C User’s Manual 293

C.4 Rabbit Field Utility

The Rabbit Field Utility (RFU) will load a binary file created by Dynamic C to a Rabbit-based
controller. It can be used to load a program to a controller without Dynamic C present on the host
computer, and without recompiling the program each time it is loaded to a controller.

The Dynamic C installation created a desktop icon for the RFU. The executablefile, rfu. exe,
can be found in the subdirectory named “ Utilities’ where Dynamic C was installed. Complete
instructions are available by clicking on the Help button within the utility. The Help document
details setup information, the file menu options and BIOS requirements. The source code for the
RFU may be purchased separately; it is available on our website, at www.zworld.com.

There is also a command line version of the RFU. On the command line specify:
clRFU SourceFilePathName [options]

where SourceFilePathName isthe path name of the . bin fileto load to the connected tar-
get. The options are as follows:

-s port:baudrate

Description: Select the comm port and baud rate for the serial connection.
Default: COM1 and 115,200 bps

RFU GUI From the Setup | Communications dialog box, choose values from the Baud
Equivalent: Rate and Comm Port drop-down menus.

Example: ¢lRFU myProgram.bin -s 2:115200

-t ipAddress:tcpPort

Description: Select the | P address and port.
Default: Seria Connection

RFU GUI From the Setup | Communications dialog box, click on “Use TCP/IP Con-
Equivalent: nection,” then typein the IP address and port for the controller that is
receiving the . bin file or use the “Discover” radio button.

Example: clRFU myProgram.bin -t 10.10.1.100:4244

294 Dynamic C User’s Manual

http://www.zworld.com/products/dc/DC8/buyOnline.shtml#Modules

Description:

Default:

RFU GUI
Equivalent:

Example:

Causes the RFU version number and additiona status information to be dis-
played.
Only error messages are displayed.

Status information is displayed by default and there is no option to turn it
off.

clRFU myProgram.bin -v

-cl ColdLoaderPathName

Description:
Default:

RFU GUI
Equivalent:

Example:

Select anew initial loader.
\bios\coldload.bin

From the Setup | Boot Strap L oaders dia og box, type in a pathname or click
on the ellipses radio button to browse for afile.

clRFU myProgram.bin -cl myInitialLoader.c

-pb PilotBiosPathName

Description:
Default:

RFU GUI
Equivalent:

Example:

Description:

RFU GUI
Equivalent:

Example:

Select anew secondary loader.
\bios\pilot.bin

From the Setup | Boot Strap L oaders dia og box, type in a pathname or click
on the ellipses radio button to browse for afile.

clRFU myProgram.bin -pb mySecondarylLoader.c

Run Ethernet discovery. Don't load the . bin file. Thisoption isfor infor-
mation gathering and must appear by itself with no other options and no
binary image file name.

From the Setup | Communications dialog box, click on the “Use TCP/IP
Connection” radio button, then on the “Discover” button.

clRFU -d

Dynamic C User’s Manual

295

296 Dynamic C User’s Manual

Dynamic C User’s Manual

Part Number 019-0125-B ¢ Printed in U.SA.
©2004 Z-World Inc. = All rightsreserved.

Z-World reserves the right to make changes and
improvements to its products without providing notice.

Notice to Users

Z-WORLD PRODUCTS ARE NOT AUTHORIZED FOR USE AS
CRITICAL COMPONENTS IN LIFE-SUPPORT DEVICES OR SYS
TEMS UNLESS A SPECIFIC WRITTEN AGREEMENT REGARD-
ING SUCH INTENDED USE IS ENTERED INTO BETWEEN THE
CUSTOMER AND Z-WORLD PRIOR TO USE. Life-support devices or
systems are devices or systems intended for surgical implantation into the
body or to sustain life, and whose failure to perform, when properly used
in accordance with instructions for use provided in the labeling and user’s
manual, can be reasonably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always
present in a system of any size. In order to prevent danger to life or prop-
erty, it is the responsibility of the system designer to incorporate redun-
dant protective mechanisms appropriate to the risk involved.

Trademarks
Dynamic C® is aregistered trademark of Z-World Inc.

Windows® isa registered trademark of Microsoft Corporation

Z-World, Inc.

2900 Spafford Street
Davis, California 95616-6800
USA

Telephone: (530) 757-3737
Fax: (530) 757-3792
www.zworld.com

http://www.zworld.com

298

Z-\WORLD SOFTWARE END USER LICENSE
AGREEMENT

IMPORTANT-READ CAREFULLY: BY INSTALLING COPYING OR OTHERWISE USING
THE ENCLOSED Z-WORLD,INC. ("Z-WORLD") DYNAMIC C SOFTWARE, WHICH
INCLUDES COMPUTER SOFTWARE ("SOFTWARE") AND MAY INCLUDE ASSOCIATED
MEDIA, PRINTED MATERIALS, AND "ONLINE" OR ELECTRONIC DOCUMENTATION
("DOCUMENTATION"), YOU (ON BEHALF OF YOURSELF OR AS AN AUTHORIZED
REPRESENTATIVE ON BEHALF OF AN ENTITY) AGREE TOALL THE TERMS OF THIS
END USER LICENSE AGREEMENT ("LICENSE") REGARDING YOUR USE OF THE
SOFTWARE. IF YOU DO NOT AGREEWITH ALL OF THE TERMS OF THIS LICENSE, DO
NOT INSTALL, COPY OR OTHERWISE USE THE SOFTWARE AND IMMEDIATELY CON-
TACT Z-WORLD FOR RETURN OF THE SOFTWARE AND A REFUND OF THE PUR-
CHASE PRICE FOR THE SOFTWARE.

We are sorry about the formality of the language below, which our lawyers tell us we need to
include to protect our legal rights. If You have any questions, write or call Z-World at (530) 757-
4616, 2900 Spafford Street, Davis, California 95616.

1. Definitions. In addition to the definitions stated in the first paragraph of this document, capital-
ized words used in this License shall have the following meanings:

1.1 "Qualified Applications' means an application program developed using the Software and
that links with the development libraries of the Software.

1.1.1"Qualified Applications' is amended to include application programs devel oped using
the Softools WinlDE program for Rabbit processors available from Softoals, Inc.

1.1.2 The MicroC/OS-II (UC/OS-I1) library and sample code released with any version of
Dynamic C, and the Point-to-Point Protocol (PPP) library released prior to Dynamic C
version 7.32 are not included in this amendment.

1.1.3 Excluding the exceptions in 1.1.2, library and sample code provided with the Software
may be modified for use with the Softools WinIDE program in Qualified Systems as
defined in 1.2. All other Restrictions specified by this license agreement remain in force.

1.2 "Quadlified Systems" means a microprocessor-based computer system which is either (i)
manufactured by, for or under license from Z-WORLD, or (ii) based on the Rabbit 2000
microprocessor or the Rabbit 3000 microprocessor. Qualified Systems may not be (a)
designed or intended to be re-programmable by your customer using the Software, or (b)
competitive with Z-WORLD products, except as otherwise stated in awritten agreement
between Z-World and the system manufacturer. Such written agreement may require an
end user to pay run time royaltiesto Z-World.

Dynamic C User’s Manual 299

2. License. Z-WORLD grantsto You a nonexclusive, nontransferable license to (i) use and repro-
duce the Software, solely for interna purposes and only for the number of users for which You
have purchased licenses for (the "Users"') and not for redistribution or resale; (ii) use and repro-
duce the Software solely to develop the Qualified Applications; and (iii) use, reproduce and
distribute, the Qualified Applications, in object code only, to end users solely for use on Quali-
fied Systems; provided, however, any agreement entered into between You and such end users
with respect to a Qualified Application is no less protective of Z-Worldsintellectual property
rights than the terms and conditions of this License. (iv) use and distribute with Qualified
Applications and Qualified Systems the program files distributed with Dynamic C named
RFU.EXE, PILOT.BIN, and COLDLOAD.BIN in their unaltered forms.

3. Restrictions. Except as otherwise stated, You may not, nor permit anyone el se to, decompile,
reverse engineer, disassemble or otherwise attempt to reconstruct or discover the source code
of the Software, alter, merge, modify, translate, adapt in any way, prepare any derivative work
based upon the Software, rent, lease network, loan, distribute or otherwise transfer the Software
or any copy thereof. You shall not make copies of the copyrighted Software and/or documenta-
tion without the prior written permission of Z-WORLD; provided that, You may make one (1)
hard copy of such documentation for each User and a reasonable number of back-up copies for
Your own archival purposes. You may not use copies of the Software as part of a benchmark or
comparison test against other similar productsin order to produce results strictly for purposes
of comparison. The Software contains copyrighted material, trade secrets and other proprietary
material of Z-WORLD and/or its licensors and You must reproduce, on each copy of the Soft-
ware, all copyright notices and any other proprietary legends that appear on or in the origina
copy of the Software. Except for the limited license granted above, Z-WORLD retains all right,
title and interest in and to all intellectual property rights embodied in the Software, including
but not limited to, patents, copyrights and trade secrets.

4. Export Law Assurances. You agree and certify that neither the Software nor any other techni-
cal datareceived from Z-WORLD, nor the direct product thereof, will be exported outside the
United States or re-exported except as authorized and as permitted by the laws and regulations
of the United States and/or the laws and regulations of the jurisdiction, (if other than the United
States) in which You rightfully obtained the Software. The Software may not be exported to
any of the following countries: Cuba, Iran, Irag, Libya, North Korea, Sudan, or Syria.

5. Government End Users. If You are acquiring the Software on behalf of any unit or agency of
the United States Government, the following provisions apply. The Government agrees. (i) if
the Software is supplied to the Department of Defense ("DOD"), the Software is classified as
"Commercial Computer Software" and the Government is acquiring only "restricted rights" in
the Software and its documentation as that term is defined in Clause 252.227-7013(c)(1) of the
DFARS; and (ii) if the Software is supplied to any unit or agency of the United States Govern-
ment other than DOD, the Government's rights in the Software and its documentation will be as
defined in Clause 52.227-19(¢)(2) of the FAR or, in the case of NASA, in Clause 18-52.227-
86(d) of the NASA Supplement to the FAR.

300 Dynamic C User’s Manual

6. Disclaimer of Warranty. You expressly acknowledge and agree that the use of the Software
and its documentation is at Your solerisk. THE SOFTWARE, DOCUMENTATION, AND
TECHNICAL SUPPORT ARE PROVIDED ON AN "ASIS' BASISAND WITHOUT WAR-
RANTY OF ANY KIND. Information regarding any third party servicesincluded in this pack-
ageis provided as a convenience only, without any warranty by Z-WORLD, and will be
governed solely by the terms agreed upon between You and the third party providing such ser-
vices. Z-WORLD AND ITS LICENSORS EXPRESSLY DISCLAIM ALL WARRANTIES,
EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING BUT NOT LIMITED
TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. Z-WORLD
DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE
WILL MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE SOFT-
WARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTSIN THE
SOFTWARE WILL BE CORRECTED. FURTHERMORE, Z-WORLD DOES NOT WAR-
RANT OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS
OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY
OR OTHERWISE. NO ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY Z-
WORLD OR ITSAUTHORIZED REPRESENTATIVES SHALL CREATE A WARRANTY
ORIN ANY WAY INCREASE THE SCOPE OF THISWARRANTY. SOME JURISDIC-
TIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE
ABOVE EXCLUSION MAY NOT APPLY TO YOU.

7. Limitation of Liability. YOU AGREE THAT UNDER NO CIRCUMSTANCES, INCLUD-
ING NEGLIGENCE, SHALL Z-WORLD BE LIABLE FOR ANY INCIDENTAL, SPECIAL
OR CONSEQUENTIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION AND THE
LIKE) ARISING OUT OF THE USE AND/OR INABILITY TO USE THE SOFTWARE,
EVEN IF Z-WORLD OR ITSAUTHORIZED REPRESENTATIVE HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. SOME JURISDICTIONS DO NOT ALLOW
THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSE-
QUENTIAL DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT
APPLY TOYOU. IN NO EVENT SHALL Z-WORLDS TOTAL LIABILITY TO YOU FOR
ALL DAMAGES, LOSSES, AND CAUSES OF ACTION (WHETHER IN CONTRACT,
TORT, INCLUDING NEGLIGENCE, OR OTHERWISE) EXCEED THE AMOUNT PAID
BY YOU FOR THE SOFTWARE.

8. Termination. ThisLicenseis effective for the duration of the copyright in the Software unless
terminated. You may terminate this License at any time by destroying al copies of the Software
and its documentation. This License will terminate immediately without notice from Z-
WORLD if You fail to comply with any provision of this License. Upon termination, You must
destroy all copies of the Software and its documentation. Except for Section 2 ("License"), all
Sections of this Agreement shall survive any expiration or termination of this License.

Dynamic C User’s Manual 301

9. General Provisions. No delay or failure to take action under this License will constitute a
waiver unless expressly waived in writing, signed by aduly authorized representative of Z-
WORLD, and no single waiver will constitute a continuing or subsequent waiver. This License
may not be assigned, sublicensed or otherwise transferred by You, by operation of law or other-
wise, without Z-WORLD's prior written consent. This License shall be governed by and con-
strued in accordance with the laws of the United States and the State of California, exclusive of
the conflicts of laws principles. The United Nations Convention on Contracts for the Interna-
tional Sale of Goods shall not apply to this License. If for any reason a court of competent
jurisdiction finds any provision of this License, or portion thereof, to be unenforceable, that
provision of the License shall be enforced to the maximum extent permissible so asto affect the
intent of the parties, and the remainder of this License shall continue in full force and effect.
This License constitutes the entire agreement between the parties with respect to the use of the
Software and its documentation, and supersedes al prior or contemporaneous understandings
or agreements, written or oral, regarding such subject matter. There shall be no contract for pur-
chase or sale of the Software except upon the terms and conditions specified herein. Any addi-
tional or different terms or conditions proposed by You or contained in any purchase order are
hereby rejected and shall be of no force and effect unless expressly agreed to in writing by Z-
WORLD. No amendment to or modification of this License will be binding unless in writing
and signed by a duly authorized representative of Z-WORLD.

Copyright 2000 Z-World, Inc. All rights reserved.

302 Dynamic C User’s Manual

| ndex

Symbols argument passing ..31, 128,129, hard ..o 200
134, 135 interrupt status 199, 200
#and ## (Operators) 19 modifying value 31 o 199
e LU 121,168,264 arrangeiconsccooo. 234
#debug 157,169,264 grrays ... 27,2831 C
#defl NE v, 18, 19, 169 CharaCterscccvvveeveereeenn, 22 C language ..3. 4. 15. 22. 25. 31
zn‘ gi SUBSCIILS oo o7 396""91’23" L
SE ATOW KEVS oo 191, 192 L ’
#endasm 121,125,169 ggm ... ey 145 g'gggdﬁ??basl yse'n'n' oy gg
#endif ..o 171 assembly 3, 121-142, 199 variables in assembl Yo 126
FEITON oo 170 blocks in XMeM v 127 cascaded windows Yo 234
Hatal oo 169 embedding C statements ..122 case 35146 150
#funcchainc.ccoeeeneee. 36, 170 Sand-alone e, 127 Gy 25’ 1 47’ 165
o 171 WINAOW oo 131, 234, 235 characters """""""" ' '
#Hfdef .o 171 assignment operators 181 s 2
1) R 172 asSOGIBIVIY oo 177 em?)y A -
#include auto126, 127, 128, 145, 263 nonbrintin qva, wes 3
_ absence ofccccovveniiicene 38 storage of variables 128 speg alv al?Ja """"""" 3
WILL e B T —— 194
#makechain ... 36, 172 closingafile ..o 193
HMEMMED oo 172, 266 backslash (\) CoData Structureccc..... 50
#nodebug 157, 169, 264 chargcter_literals_......._....19, 23 poi nt_er {10 T 52
#nointerleave ... 172 c_ontl r!uatlon indirectives .168 cofunctions.............c.ccce... 54-59
HNOUSEIX . 174 basicunit of aC program 24 abal_ﬂdon e 58
sondef 21 baudratecccceveene. 79, 222 callmg restrictions 55
Huse 38,39, 174 BCDE 127, 133, 135 e_veryn ME o 58
HUSBIX 174 B_eg| nHeader 39, 40, 41 firsttimecocoeveveneneeen 152
swans ... 174 Dbinary operaors 177 mdexed 56
swarnt 174 BIOS ... 6 SINGIE USEY ..o 56
: CXEXIE e 101 LSV, 1= G 54
g;ﬁ‘gg{: s Y Cling premaing) . 67 coldloader 197
@RETVAL oo 134 command line compiler ..242, column resizingc.e..... 236
@SP129, 132, 133, 134, 142 20 communication
"GLOBAL_INIT oo 159 compi | ati on environments 259 TC_P/ IP e 223
{} curly braces ... 23 complleoptlon 286 compile
configuration macros 105, BIOS ... 198
A 112 command line. 241-258
control blockscc..... 110 EITOMS vt 195
abandon ..o, 143 macro definitions 229 MENU e 197
BDOME s 143 memory location 107 OPLiONS .. 223
about Dynamic C 240 memory Settings 227 27N Y R 225, 268
abstract datatypes............ 25,26 redefineasymbol in 172 K .o, 3
adc (add-with-carry) 121 variable defined in 151 S 11 237
address space 4,107 pranchingccoooccemumenee. 34,35 t0 .0INfile coverrverrciin, 197
addressesin assembly 126 Break ..o.ooeeeeeneeniiinns 146, 162 (o} {1 =Y 191
aggregate data types 27 G L1 [33 toflash ..o, 197
Aign s 144 KEYWOIdcoovveerreeee. 33 t0 target ..oovvvvvreereens 191, 197
ALT key liMitationscoooeeveeeeenne. 34 compiler
See keystrokes out of al00pPveeevereennes 33 line parsing limit 23
always on ..., 144 out of aswitch statement ...33 compiler directives 168
ANYMEM ..o 144 preakpoints ..131, 157, 199, 202, HaSM ..ooovrr 121, 168, 264
application program 33 263 OPtONS w.oooeeeeees 168
Dynamic C User’s Manual 303

OPLiONS ..ovveeeeieieeeens 168
#debug 157, 169, 264
HAefine .o 19, 169
HElIf o 171
HEISE o 171
#endasm 121, 125, 169
#endif ..o 171
HEITON oo 170
Hatal ..o 169
#funcchain 36, 170
#GLOBAL_INIT 170
HT 171
Hifdef .o 171
#fndef ..o 172
#interleavecccooeeeenens 172
AKILL e 172
#makechain 36, 172
HFMEMMAEP ..o, 172

OPLiONS ..cveeeeeiricecene 172
#nodebug 157, 169, 264
#nointerleavec........ 172
HNOUSEIX ..ooverneeeneirienenens 174
HPragmacccceveeeeeneenn. 173
#precompile ..o 173
#undefoccovviiiens 21,174
HUSE ..o 38, 39, 174
FUSEIX o 174
AWAINS ..o 174
AWANT ..o, 174
HEXIMPOIt ..o 175
HZIMPOrt ..o 175
line continuation 168

compound
NAIMESoonereereeereerieesiereens 18
statementscoccveeienienne 23
COMPreSSIiONcceveeeeervenenn 291
concatenation of strings 22
CONSE ..o 123,148
continue 33, 149, 162
eXample ... 33
copying textccoceeerennene 194
COSLALEovveeirierieeieeee e 149
costatementscccce.e. 48-53
abort ..o, 143
firsttimecocceeviie 152
keywordcccceenenicnene 149
ST o= oo [N 164
SYNMEAX e 49
Vield e 167
curly braces{ }cccocvriirens 23
cursor
execution 199, 200
positioning 191, 195

cutting textcceevevvvrenenne 194
D
data structure
COMPOSItES ...coerveriereerieine 28
keywordccccveriiiinenn. 24
NESLING ..voveieeeeeeeeerie e 27
offset of element 126
pass by valuec.cc....... 31
returned by function 134
UNION oo 28
datatypesccoevererenenennens 27
aggregatecoocevvreenennen. 27
Primitiveccocoeeeeveeeeene 17
DATAORG 266, 268
DATASEGcccoovveeeiee 107
dateand timecccccveennee 68
AD e 123
debugcocevvririiiiee 263
dialog boXccevereririennn. 228
disassemble at address 202
disassembled code 202
keywordccocoeeniiennnne 149
memory dump 202
MOAE ..o 263
prevention ... 199
run-time errors 101
SIEP OVEr e 199
switching modes 196
trace intoccovevvvennnne 199
update watch expressions 202
watchdog timers 69
declarationsc.e..... 24,39
defaultcooovevieiienn 35, 150
Default Compile Mode......... 226
demotionccccoeeveenienene 224
disassemble
at address 202, 235
al CuUrsorcccveeeee 202, 235
dO100P .o 32
dot operatorc.ccceueee 18, 27
downloadingccccoeeeeniniennene 3
dump Windowccceeeene 203
OW e 124
Dynamic C
differencesccoceuenee. 4, 36
EXIT o 193
support filescccoceverenene 43

dynamic storage alocation 28
E

Editmenuccceveevveeeennen. 194
edit modecccc....... 191, 196
(<0 1 (0] (R 3

ElSe e 150
embedded assembly 3, 128,133,
134

embedded quotes 23
EeNCryptioncceevveevevrenennes 291
EndKey .oovevvveveieceee 191
EndHeader 39, 40, 41
ENUM e 151
EPROMcccoivvivnevieieneeens 4
<0 |1 TR 125
errors
error code ranges 101
locating ..cocevvvveerenenns 195, 196
run-timec.coceveeene 101, 224
ESC key
toclosemenu 192
examples
break ... 33
(00111 011 =N 33
forloop ...coovveeveveiieee 32
MOdUIEScveeeeircreeiae 41
of arrayccooeveveneiiee 27
01911] o [28
exit Dynamic Cccceueee. 193
extended memory 4, 133, 166
asm blockscccevveniee. 127
(S (L 1 0 P 41,151
F
file
commandscceceeue. 192
COMPresSioNcceveeeenins 291
encryptionccceeevenne. 291
extensionscccceeeveenennn 198
generatedcoooeveiinienne. 198
(115 01U [192
Print oo 193
filesystem ..o 109-119
inprimary flash 113
INRAM ..o, 110
max. # of files 109
max. filesize 109
multitaskingc.cceeeveene 110
files
additional source 38
Find Next <F3>cccceeee 195
firsttimeccoocevevveveciee 152
flash
filesystemccoceviiennne 110
initialized variables 5

304

Dynamic C User’s Manual

float ...ccovvvvvireennn 25,152,165 init 0N ..ccceeveecceeee 154 <CTRL-P>
VAlUES .ovvvvveee e 21 inlinecodeccccocevvierieennnnns 226 previous error 195
(0] g (oo o I 32,153 insertion paint 194, 195 <CTRL-U>
frame Inspect menu 201, 235 Update Watch window .202
reference point 134 Instruction Set Reference240 <CTRL-V>
reference pointer132,133,) 25, 154, 165 pasting textccouen... 194
157, 263 10150 (< £ 21 <CTRL-W>
functioncceevevveve e 24 interrupts ..oveveeeeeenee 136, 142 Add/Del Items 201
auto variables ..o 145 breakpointsccccceeevnee. 199 <CTRL-X>
cals24, 128, 129, 133, 134 keyword for ISR 155 cutting textcoeeeee 194
calsfromassembly 135 1= 1= 1[0 A 136 <CTRL-Y>
chainscccocoeeevvnnnns 36, 159 VL= (0 ¢ 137,156 Reset targetcocvveeeee. 198
createchainsccoeueee... 172 ISR e 136, 266 <CTRL-Z>
entry and exitcceeeeeee 263 IX (index register) 55,132,133, 53 (0] o 199
executiontime 263 157, 163 <F10>
headerscccoveecincninnnne 43 Assembly window 234
REID oo 3 K <F2>
indirect callcccceorieeennene 30 ey 39 Toggle Breakpoint 199
librariesccooveeeincceinenn, 3 & <F3>
keystrokes .
prototypes 25, 26, 39 <ALT-Backspace> Find Nextcccoceeuenee. 195
returns 133, 134, 135 undoing changes 194 <F5>
saving registers 142 <ALT-C> Compilecccoeverenenne 197
stack SPACE e 263 select Compile menu197 <F7> .
transferring contral 32 <ALT-E> Traceintocccoeeveeeene 199
unbalanced stack 142 select Eilemenu 192 <F8>
function lookup <CTRL-H> 238 <ALT-F10> Step OVEr ..o 199
G Disassemble at Address 202 <F9>
<ALT-F2> RUN .o 199
Globa Initialization 37 Toggle Hard Breakpaint keywords133, 143, 157, 159,
global variablesoooooo... 28 200 264
e C 34, 153, 195 <ALT-F4> DO e 143
(0] 0= o JU RS 195 quitting Dynamic C 193 AGN s 144
<ALT-F9> aways oncccoeeeeienene 144
H Run w/ No Polling 199 F21017/001=: 1o S ﬂg
herd breakpOINtS .o 200 <ALT-H> ;;umm e
%Iect Hel p mmu 238
header <ALT-O> ' 145
functionceeeeeeiieveieenn, 43 . break oo 146
modulecccoeuenee. 39, 40, 41 select Options menu204 c 146
Help men ... 28 ALTSHIFTbakpace> - G
hexedecimal integer 21 (NG CNNGSS e A 147
HL 127,132,133, 135 ; (070101 S 123
select Window menu234 >
LU G/ 191 <CTRL-F10> CONEINUE ..o 149
horlzontal tlllng """""""""" 234 D|mrnble at CurSOI’ 202 (00015 1= | (< I 149
| <CTRL-F2> debugccocoeiriniiieiee 149
Reset Program 200 defaultccoovveevieirien, 150
icons <CTRL-G> [0 [0 TR 150
arrangedcooeeveecveennne. 234 GOto o 195 ElSE e 150
|EEE floating point 152 <CTRL-H> ENUM oo 151
TSR 150 Library Help lookup238 e_Xter_n ------------------------------- 151
MUItichOICEccevvrveriennnen, 35 <CTRL-N> firsttimecocooevevenenieenen 152
SMPIE oo Y EXE €ITOT oo 196 FlOAE wovieeeeee e 152
WIth ElSe v, 35 <CTRL-O> fOr e, 153
information window234, 237 Poll Targetoooovvoe... 200 QOO e 153
Dynamic C User’'s Manual 305

I 154 fOr i, 153 N
INIt_ON o 154 skipping to next pass 33
1L S 154 NBAIMES woovvssnvssssmsssssnsssssnses 18
INEETUPE .o 155 M N #(:efine CTRLN """"""" 1;2
interrupt_vector 156 ext error < -N> .
10N e 156 o008 o 19 A2 1Y nodebyg ... 121, 157, 199, 202,
Nodebugccoevrererieenen 157 With parameters 19 225, 263, 264
norst R— 157 main function .. 24, 38, 157, 264 norst IR 157
NOUSEIX oo 157 S 289 NOUSEIX ...oovverireenrisresreseinnenes 157
NULL e 157 N[O I 157
protectedccoovenrenennen. 158 address Space ... 107 O
(< (0] 0 0 RO PPPPRRRP 158 DATAORG ..o, 266, 268
(60 ST 159 QUMD e 201 Octal integerccooverreerreennes 21
segchain ..o 159 dump at address 202 Offsetsinassembly 126,132,
sharedcccevevveceecreee, 159 dump flash o 202 133
[S 00/ A 160 dump tofile o 202 online help 43, 240
SIZE o 160 extended ..o 4,133, 166 (0015 =1 (0] 1R 177
SIZEOF oo 160 flash e 110 #and## (Macros) 19
SPEEd .. 160 management 144, 159 arithmetic operators 178
S = (o 161 MAD e 107, 289 decrement (--) ..o 180
SIPUCE e 161 FEA0-ONIY +ovvvveveeeeveeeeeeeeeenennes 4 division (/) cccceevevrernne 179
SWITCH e, 162 rOOt oo, 108, 126, 159, 266 increment (++) ,,,,,,,,,,,,, 180
typedef ... 162 rO0t KEYWOrdoovevvevevereeene 4 indirection (*) 179
UNION e 163 memory management unit 4, MINUS (=) oveeveeverierieneene 178
unsignedcocoeeeneniennene 163 107 modulus (%)c....... 180
USBIX cvereenreneeseeneeseneeenaens 163 menus multiplication (*) 179
WaItfor ...oovceeeeceee e, 164 close al (31072 A 192 p| us (+) ,,,,,,,,,,,,,,,,,,,,,,,, 178
WaItfOrdone 164 COMPIle oo 197 POINEENS .oovvvvvvvvvnnanas 179
WL o 164 Bt e 194 post-decrement (--) 180
XOBLA oo 165 File 192 post-increment (++) 180
XIMEM v 166 Help e 238 pre-decrement (--) 180
XSUING oo 167 INSPECE +rrerreereren 201, 235 pre-increment (++) 180
Vield e 167 OPLIONS oo 204 assignment operators 181
L RUN oo 199 add assign (+=) 181
WINAOW ...oovoveveereece 234 AND asdign (&) 182
language elements15,18,22, message window . 195, 196, 234 aSSIGN (%) covvvvvnvrrs 181
143 11 R 116 divide assign (/=) 181
OPEXBLOrS .oooveeerreeevren 177 MMU oo 4,107 modulo assign (%=) 181
1oL — 42,174 modes multiply assign (*=)...... 181
11T S = 3,38 debug 196, 199, 263 OR &sIgN (|7) wvovvvvveoo 182
iNKING cvvvvvvvvrererrevenreneneeneeee 38 ' | O 196 shift left (<<=) oo 181
real-time programming 3 PrEVIEW ..o, 193 shiftright (>>=) 181
writing your own 39 1013 R 196, 199 subtract assign (-=) 181
Library Help lookup43,238 modules 39,41, 42 XOR assign (=) 182
[1315]1 R 3 DOy e 39,41,42 GSSOCIEVILY oo 177
listfiles ..o 225 example ... 41 BINAIY ooeovveiiiniiinnnnnnn 1r7
locating errors 195, 196 header ... 39, 40, 41, 151 bitwise operators
long KEY ooeeeeeeeireeesesennnans 39, 40 address (&) ... 182
TR0 01 A 21 MOUSE woeeeeeeeeeeeeeeeeeesennees 191 bitwise AND (&) 182
KeyWOordcoeveevereerrnnn. 156 multitasking bitwise exclusive OR (%) ..
lookup function 238 cooperativecoceveeenne. 45 183
100PS +.oveeeeveeerieeereennne 32,33 Preemptivecoovereeeee 61 bitwise inclusive OR (|) 183
breaking out of 33 complement (=) 183
Y 150 POINLENS oo 182
306 Dynamic C User’s Manual

shift left (<<) vovereeenene 182 precompileccceeee. 40, 173 file system usage 111
shift right (>>) 182 preserving registers135, 142 keywordc.cceevverinnnne 159
COMMA ...cvveeereneeneeeeeseeeees 189 Previous error <CTRL-P> ...195 MEMOrY MaP ...ccceeveeereenns 107
conditional operators(?:) 187 primary register127, 133, 135 static variables 108
equality operators 184 primitive datatypes 17 variable address 126
equal (3) v 184 print RST 28Hccccvvvveenee 199, 263
not equa (=) woeveevneeee. 184 choosing aprinter 193 run
inassemblycccceevenene 123 printfile . 193 MENU v 199
logical operators 185 print previewccoceeeveenee. 193 MOodecceevvvrereenn, 196, 199
logical AND (&&) 185 printf . 23, 26, 214 No Polling ..ccooeevvvveerieeene 199
logical NOT (1) .cvovneeeee. 185 program
logical OR (| [) +.ccovrrrn.. 185 EXAMPIE oo % S
operator precedence 189 FIOW oo 32 sample programs
postfix expressions 185 OptiMIZE .ovveeeeeeeeeeeee 227 basic C constructs 26
() parentheses 185 (5= SRR 200 i oL Vi1 T 193
[]aray indices 185 spanning 2 flash 110,264 archtext ..o 195
0 [0 () I 186 programmable ROM 4 e 1 I 36, 159
parentheses ()coe.... 185 project files 193,259-261 orGgiZE 107
right arrow (->) 186 promotionccccceeeeeennnn 178 separate 18D space123,137,
precedenceccccoeeene. 177 protected 202, 226
reference/dereference opera- keywordcccoereniennn. 158 ghadow L C LR 288
TOrS e 186 variables ... 3188 gared . 159
address (&) ..ocoeeeeereeenene 186 prototypes shared variables ... 3 158
bitwise AND (&) 186 checkingcccocceveveennnnns 24 ot 160
indirection (*)c.cce..... 187 function 25,26,39 4 ngle stepping131, 202, 263
multiplication (*) 187 in module header 39 with descent ... 199
relational operators 183 punctuation ... 16 without descent ... 199
gredter than (3) 184 SIZE oo 160, 227
grester than or equal (>=) ... Q sizeof 160
184 uitting Dynamic C 193 skipping to next loop pass33
0 () .t PO g ot copps .3
lessthanor equal (<=) ..183 R dice statementscco........ 61
ey 0 Rabbit et S DCKPOITS . 199
onfi mi;/e aive or soeed 7 protected variables 158 sSource fIles .o 38
ogtions PO RAM compile 225, 268 SS%’E;ZZ‘{(' n%?r\:\':er)1291341§3514
(00 2110 1 [=: 223 read-only memory 4 142 274 T
177410 204 red-time ial ch
Programming 3 Sedal Charadiers .. 23
P redoing changes 104 Specia symbols
’ 101 registers |er;dassembly 160;;3
gggagvl\gy EY e o] saving and restoring 136 ;paCk 31132134135 1 2
B RS s 1S F=To [0 1V 288 T e PO RO O
partl_tlonl NG oo 115 SNAPSNOLS .o 236 142, 145, 157, 263
passing arguments .31, 128, 129, Window oo 234, 236 checkingc.ccocovveiiiinene 263
) 133, 134, 135 reserved WOrdsc.coeveen. 126 frame 128, 129, 134’ 135,142
pasting textcceeeenrieenns 194 et frame reference point 134
periodic interrupt 53,62, 67, DIOGEAM oo 200 frame reference pointer ...132,
) 269, 280_' 2687 resizing columns 236 _133’ 157,263
poi nter checkingcccccceee.. 0 et 133, 136 pointer (SP)129, 134, 135,
POINENS vvvvrvssssssrvve S = (T 136 142, 174
uninitializedccceeeeeenene 0 vetn . 136 sn_apshots 237
poll_target 200 eturn 133, 134, 158, 162 WINAdOW ...oooeiiiiiieeceee 237
pol I_| s 19 oturn address ..o 128 ST ACKSEG 107
positioning text 195 root memory state machine
Dynamic C User’'s Manual 307

eXample ..oocovvveereeeee 47 unbalanced stack 142 XMEM . 133, 166
statementsccoceeereereerieeene. 23 undoing changes.................. 194 asm blockscceeevevenene 127
LS [o 161 uninitiadized definitionccoovrienn. 107

variables 5, 126, 128 POINLENS ..cvvveeeeeeeece e 30 XPC ., 107, 266
status register (F) .ooovvvvnnnne 236 UNION .ccveeeeceeie 24,28,163 XSHNQG cveveevereeeereeeerieseeseeneas 167
Stdio window 214,234 unpreserved registers ... 135, 142
STDIO_DEBUG_SERIAL .214 unsignedccccovvennenene. 163 Y
step overoveeeeenen. R 199 uns_i gned.integer 21 1 DO 167
stop program execution 199 untitledfiles....ccocevvvverenenen. 193
storageclasscceevveeriennn, 24 USB ., 222

=11 (0 28 USE_2NDFLASH_CODE . 110,

LS [28 264
IS 1] go S, 22,165 USEIX .coocvrvreeneennn 132, 163, 263

concatenationcccceeee. 22 Utility Programs

functionscccceeeriiennne 22 File Compression/Decompres-

literal ..o, 19 SION Lo 291

terminating null byte 22 Font/ Bitmap Converter ... 293
struct keywordccceeee. 161 Library File Encryption ... 291
structure Rabbit Field Utility 294

COMPOSItESooeeneeeriereine 28

keywordcccceenenienennn. 24 \4

(011 oo TR 27T \ariables

offset of dlement 126 QO e 145

pasS by VAIU@ovvivve S 1 - [P 28

return space ... _129’ 134,135 1S 1 161

returned by function 134 yiertical tiling ...vvreverene 234

UNTON et 28
subscripts w

ATAY o 27]

SUPPOTE Fil€S ovvvveeeereeeeee. 43 waitfor ... 164
SWItCH e 35, 150, 162 waitfordonecoceeeeeevernnee. 164

breaking Out Of 33 warning reports 224

s Y 162 watch expressions
switching to edit mode 196 add or delete SN 201
symbol information 289 watch menu option 235
symbolic constant 169 Watch Window 201

WINAOW ..o 234

T WED o 164

while ..o, 23, 32,164

TCP/II?_ 223 \\indow menu .. 234
text editingccooeveeeeeennene 194 windows

t_e>_<t mch 195 assembly 131, 234, 235

tiling windowscccco..... 234 cascaded o 234

toggle information 234, 237

breskpoint 199, 200 MESSATE veveveeeeeeeeeserene 234
tool bz_;tr 233 FEQISHEr oo 234 236
traceintoccceveeeerenienenn 199 sack 234, 237
type U [214, 234

cadti NG i 178 tiled horizontally 234

Checking 25,224 filed vertically ... 234

definitionsc.cceceeeee 25, 26 watch o 202, 234, 235
typedefcoocvevvvennn 25, 26, 162
U X

D0 " - SR 165
unary operatorscceeueenee. 177
308 Dynamic C User’s Manual

	�1. Installing Dynamic C
	1.1� Requirements
	1.2� Assumptions

	�2. Introduction to Dynamic C
	2.1� The Nature of Dynamic C
	2.1.1� Speed

	2.2� Dynamic C Enhancements and Differences
	2.3� Dynamic C Differences Between Rabbit and Z180

	�3. Quick Tutorial
	3.1� Run DEMO1.C
	3.1.1� Single Stepping
	3.1.2� Watch Expression
	3.1.3� Breakpoint
	3.1.4� Editing the Program

	3.2� Run DEMO2.C
	3.2.1� Watching Variables Dynamically

	3.3� Run DEMO3.C
	3.3.1� Cooperative Multitasking

	3.4� Summary of Features

	�4. Language
	4.1� C Language Elements
	4.2� Punctuation Tokens
	4.3� Data
	4.3.1� Data Type Limits

	4.4� Names
	4.5� Macros
	4.5.1� Restrictions

	4.6� Numbers
	4.7� Strings and Character Data
	4.7.1� String Concatenation
	4.7.2� Character Constants

	4.8� Statements
	4.9� Declarations
	4.10� Functions
	4.11� Prototypes
	4.12� Type Definitions
	4.13� Aggregate Data Types
	4.13.1� Array
	4.13.2� Structure
	4.13.3� Union
	4.13.4� Composites

	4.14� Storage Classes
	4.15� Pointers
	4.16� Pointers to Functions, Indirect Calls
	4.17� Argument Passing
	4.18� Program Flow
	4.18.1� Loops
	4.18.2� Continue and Break
	4.18.3� Branching

	4.19� Function Chaining
	4.20� Global Initialization
	4.21� Libraries
	4.22� Headers
	4.23� Modules
	4.23.1� The Parts of a Module
	4.23.2� Module Sample Code
	4.23.3� Important Notes

	4.24� Function Description Headers
	4.25� Support Files

	�5. Multitasking with Dynamic C
	5.1� Cooperative Multitasking
	5.2� A Real-Time Problem
	5.2.1� Solving the Real-Time Problem with�a�State�Machine

	5.3� Costatements
	5.3.1� Solving the Real-Time Problem with�Costatements
	5.3.2� Costatement Syntax
	5.3.3� Control Statements

	5.4� Advanced Costatement Topics
	5.4.1� The CoData Structure
	5.4.2� CoData Fields
	5.4.3� Pointer to CoData Structure
	5.4.4� Functions for Use With Named Costatements
	5.4.5� Firsttime Functions
	5.4.6� Shared Global Variables

	5.5� Cofunctions
	5.5.1� Cofunction Syntax
	5.5.2� Calling Restrictions
	5.5.3� CoData Structure
	5.5.4� Firsttime Functions
	5.5.5� Types of Cofunctions
	5.5.6� Types of Cofunction Calls
	5.5.7� Special Code Blocks
	5.5.8� Solving the Real-Time Problem with�Cofunctions

	5.6� Patterns of Cooperative Multitasking
	5.7� Timing Considerations
	5.7.1� waitfor Accuracy Limits

	5.8� Overview of Preemptive Multitasking
	5.9� Slice Statements
	5.9.1� Slice Syntax
	5.9.2� Usage
	5.9.3� Restrictions
	5.9.4� Slice Data Structure
	5.9.5� Slice Internals

	5.10� Summary

	�6. The Virtual Driver
	6.1� Default Operation
	6.2� Calling _GLOBAL_INIT()
	6.3� Global Timer Variables
	6.4� Watchdog Timers
	6.4.1� Hardware Watchdog
	6.4.2� Virtual Watchdogs

	6.5� Preemptive Multitasking Drivers

	�7. The Slave Port Driver
	7.1� Slave Port Driver Protocol
	7.1.1� Overview
	7.1.2� Registers on the Slave
	7.1.3� Polling and Interrupts
	7.1.4� Communication Channels

	7.2� Functions
	7.3� Examples
	7.3.1� Status Handler
	7.3.2� Serial Port Handler
	7.3.3� Byte Stream Handler

	�8. Run-Time Errors
	8.1� Run-Time Error Handling
	8.1.1� Error Code Ranges
	8.1.2� Fatal Error Codes

	8.2� User-Defined Error Handler
	8.2.1� Replacing the Default Handler

	8.3� Run-Time Error Logging
	8.3.1� Error Log Buffer
	8.3.2� Initialization and Defaults
	8.3.3� Configuration Macros
	8.3.4� Error Logging Functions
	8.3.5� Examples of Error Log Use

	�9. Memory Management
	9.1� Memory Map
	9.1.1� Memory Mapping Control

	9.2� Extended Memory Functions
	9.2.1� Code Placement in Memory

	�10. The Flash File System
	10.1� General Usage
	10.1.1� Maximum File Size
	10.1.2� Two Flash Boards
	10.1.3� Using SRAM
	10.1.4� Wear Leveling
	10.1.5� Low-Level Implementation
	10.1.6� Multitasking and the File System

	10.2� Application Requirements
	10.2.1� Library Requirements
	10.2.2� FS2 Configuration Macros
	10.2.3� FS2 and Use of the First Flash

	10.3� File System API Functions
	10.3.1� FS2 API Error Codes

	10.4� Setting up and Partitioning the File System
	10.4.1� Initial Formatting
	10.4.2� Logical Extents (LX)
	10.4.3� Logical Sector Size

	10.5� File Identifiers
	10.5.1� File Numbers
	10.5.2� File Names

	10.6� Skeleton Program Using FS2

	�11. Using Assembly Language
	11.1� Mixing Assembly and C
	11.1.1� Embedded Assembly Syntax
	11.1.2� Embedded C Syntax
	11.1.3� Setting Breakpoints in Assembly

	11.2� Assembler and Preprocessor
	11.2.1� Comments
	11.2.2� Defining Constants
	11.2.3� Multiline Macros
	11.2.4� Labels
	11.2.5� Special Symbols
	11.2.6� C Variables

	11.3� Stand-Alone Assembly Code
	11.3.1� Stand-Alone Assembly Code in Extended Memory
	11.3.2� Example of Stand-Alone Assembly Code

	11.4� Embedded Assembly Code
	11.4.1� The Stack Frame
	11.4.2� Embedded Assembly Example
	11.4.3� Local Variable Access

	11.5� C Calling Assembly
	11.5.1� Passing Parameters
	11.5.2� Location of Return Results

	11.6� Assembly Calling C
	11.7� Interrupt Routines in Assembly
	11.7.1� Steps Followed by an ISR
	11.7.2� Modifying Interrupt Vectors

	11.8� Common Problems

	�12. Keywords
	abandon
	abort
	align
	always_on
	anymem
	asm
	auto
	bbram
	break
	c
	case
	char
	const
	continue
	costate
	debug
	default
	do
	else
	enum
	extern
	firsttime
	float
	for
	goto
	if
	init_on
	int
	interrupt
	interrupt_vector
	long
	main
	nodebug
	norst
	nouseix
	NULL
	protected
	return
	root
	segchain
	shared
	short
	size
	sizeof
	speed
	static
	struct
	switch
	typedef
	union
	unsigned
	useix
	waitfor
	waitfordone (wfd)
	while
	xdata
	xmem
	xstring
	yield
	12.1� Compiler Directives
	#asm
	#class
	#debug #nodebug
	#define
	#endasm
	#fatal
	#GLOBAL_INIT
	#error
	#funcchain
	#if #elif #else #endif
	#ifdef
	#ifndef
	#interleave #nointerleave
	#KILL
	#makechain
	#memmap
	#pragma
	#precompile
	#undef
	#use
	#useix #nouseix
	#warns
	#warntasmine
	#ximport
	#zimport

	�13. Operators
	13.1� Arithmetic Operators
	+
	–
	*
	/
	++
	––
	%

	13.2� Assignment Operators
	=
	+=
	-=
	*=
	/=
	%=
	<<=
	>>=
	&=
	^=
	|=

	13.3� Bitwise Operators
	<<
	>>
	&
	^
	|
	~

	13.4� Relational Operators
	<
	<=
	>
	>=

	13.5� Equality Operators
	==
	!=

	13.6� Logical Operators
	&&
	||
	!

	13.7� Postfix Expressions
	()
	[]
	. (dot)
	->

	13.8� Reference/Dereference Operators
	&
	*

	13.9� Conditional Operators
	? :

	13.10� Other Operators
	(type)
	sizeof
	,

	�14. Graphical User Interface
	14.1� Editing
	14.2� Menus
	14.2.1� File Menu
	New <Ctrl+N>
	Open <Ctrl+O>
	Save <Ctrl+S>
	Save As
	Save All <Shift+Ctrl+S>
	Close <Ctrl+F4>
	Project
	Print Setup
	Print Preview
	Print
	Exit <Alt+F4>

	14.2.2� Edit Menu
	Undo <Ctrl+Z>
	Redo <Shift+Ctrl+Z>
	Cut <Ctrl+X>
	Copy <Ctrl+C>
	Paste <Ctrl+V>
	Insert Code Template <Ctrl+J>
	Toggle Bookmark
	Go to Bookmark
	Find <Ctrl F>
	Replace <F6>
	Find Next <F3>
	Reverse Find Next <Alt+F3>
	Find in Files (Grep)... <Shift+Ctrl+F>
	Go to Line Number
	Previous Error <Ctrl+Alt+P>
	Next Error <Ctrl+Alt+N>
	Edit Mode <F4>
	Open File at Cursor <Ctrl+Enter>

	14.2.3� Compile Menu
	Compile <F5>
	Compile to Target
	Compile to .bin File
	Reset Target / Compile BIOS <Ctrl+Y>

	14.2.4� Run Menu
	Run <F9>
	Stop <Ctrl+Q>
	Run w/ No Polling <Alt+F9>
	Trace Into <F7>
	Step Over <F8>
	Source Trace Into <Alt+F7>
	Source Step Over <Alt+F8>
	Toggle Breakpoint <F2>
	Toggle Hard Breakpoint <Alt+F2>
	Clear All Breakpoints <Ctrl+A>
	Poll Target <Ctrl+L>
	Reset Program <Ctrl+F2>
	Close Connection

	14.2.5� Inspect Menu
	Add Watch <Ctrl+W>
	Delete Watch
	Delete All Watches
	Update Watch Window <Ctrl+U>
	Evaluate Expression
	Disassemble at Cursor <Ctrl+F10>
	Disassemble at Address <Alt+F10>
	Dump at Address <Ctrl+D>
	Goto execution point <Ctrl+E>

	14.2.6� Options Menu
	Environment Options
	Project Options
	Toolbars

	14.2.7� Window Menu
	Watch
	Stdio
	Assembly
	Registers
	Stack
	Information

	14.2.8� Help Menu
	Online Documentation
	Keywords
	Operators
	HTML Function Reference
	Function Lookup
	Instruction Set Reference
	I/O Registers
	Keystrokes
	Contents
	Tech Support
	Register Dynamic C
	Tip of the Day
	About

	�15. Command Line Interface
	15.1� Default States
	15.2� User Input
	15.3� Saving Output to a File
	15.4� Command Line Switches
	15.4.1� Switches Without Parameters
	15.4.2� Switches Requiring a Parameter

	15.5� Examples
	15.5.1� Example 1
	15.5.2� Example 2
	15.5.3� Example 3

	�16. Project Files
	16.1� Project File Names
	16.1.3� Active Project

	16.2� Updating a Project File
	16.3� Menu Selections
	16.4� Command Line Usage

	�17. Hints and Tips
	17.1� Efficiency
	17.1.1� Nodebug Keyword
	17.1.2� In-line I/O

	17.2� Run-time Storage of Data
	17.2.1� User Block
	17.2.2� Flash File System
	17.2.3� WriteFlash2
	17.2.4� Battery-Backed RAM

	17.3� Root Memory Reduction Tips
	17.3.1� Increasing Root Code Space
	17.3.2� Increasing Root Data Space

	�18. µC/OS-II
	18.1� Changes to µC/OS-II
	18.1.1� Ticks per Second
	18.1.2� Task Creation
	18.1.3� Restrictions

	18.2� Tasking Aware Interrupt Service Routines (TA-ISR)
	18.2.1� Interrupt Priority Levels
	18.2.2� Possible ISR Scenarios
	18.2.3� General Layout of a TA-ISR

	18.3� Library Reentrancy
	18.4� How to Get a µC/OS-II Application Running
	18.4.1� Default Configuration
	18.4.2� Custom Configuration
	18.4.3� Examples

	18.5� Compatibility with TCP/IP
	18.5.1� Socket Locks

	18.6� Debugging Tips

	Appendix A: Macros and Global Variables
	A.1� Compiler-Defined Macros
	A.2� Global Variables
	A.3� Exception Types
	A.4� Rabbit 2000/3000 Internal registers

	Appendix B: Map File Generation
	B.1� Grammar

	Appendix C: Utility Programs
	C.1� Library File Encryption Utility
	C.2� File Compression Utility
	C.3� Font and Bitmap Converter Utility
	C.4� Rabbit Field Utility

	Notice to Users
	License Agreement
	Index

