GPIB

NI-488.2M™ User
Manual for Windows 95
and Windows NT

June 1996 Edition
Part Number 321037B-01

© Copyright 1995, 1996 National Instruments Corporation.
All Rights Reserved.






Internet Support

GPIB: gpi b. support @ati nst.com
DAQ: dag. support @ati nst.com
VXI:vxi . support @at i nst.com
LabVIEW: | v. support @at i nst.com
LabWindows: | w. support @ati nst.com
HiQ: hi q. support @ati nst.com
VISA:vi sa. support @ati nst.com

E-mail: i nfo@ati nst.com
FTP Site: ft p. nati nst.com
Web Address: htt p: / / ww. nati nst.com

Bulletin Board Support

BBS United States: (512) 794-5422 or (800) 327-3077
BBS United Kingdom: 01635 551422
BBS France: 1 48 65 15 59

E FaxBack Support

(512) 418-1111

DN
Telephone Support (U.S.)

Tel: (512) 795-8248
Fax: (512) 794-5678

Q{}o
International Offices

Australia 03 9 879 9422, Austria 0662 45 79 90 0, Belgium 02 757 00 20,

Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 90 527 2321, France 1 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186,
Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico 95 800 010 0793,
Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085,
Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200, U.K. 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100



Important Information

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute
programming instructions, due to defects in materials and workmanship, for a period of 90 days from date of
shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or
replace software media that do not execute programming instructions if National Instruments receives notice
of such defects during the warranty period. National Instruments does not warrant that the operation of the
software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on
the outside of the package before any equipment will be accepted for warranty work. National Instruments
will pay the shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been
carefully reviewed for technical accuracy. In the event that technical or typographical errors exist, National
Instruments reserves the right to make changes to subsequent editions of this document without prior
notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In
no event shall National Instruments be liable for any damages arising out of or related to this document or
the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS
OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’'S RIGHT TO RECOVER DAMAGES CAUSED
BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO
THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE
LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR
INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
This limitation of the liability of National Instruments will apply regardiess of the form of action, whether in
contract or tort, including negligence. Any action against National Instruments must be brought within one
year after the cause of action accrues. National Instruments shall not be liable for any delay in performance
due to causes beyond its reasonable control. The warranty provided herein does not cover damages,
defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments
installation, operation, or maintenance instructions; owner’s modification of the product; owner's abuse,
misuse, or negligent acts, and power failure or surges, fire, flood, accident, actions of third parties, or other
events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or
mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in
whole or in part, without the prior written consent of National Instruments Corporation.

Trademarks

® ™ ™ ™ .
NI-488~, NI-488.2 , NI-488.2M , and TNT4882C  are trademarks of National Instruments
Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of
reliability suitable for use in treatment and diagnosis of humans. Applications of National Instruments
products involving medical or clinical treatment can create a potential for accidental injury caused by product
failure, or by errors on the part of the user or application designer. Any use or application of National
Instruments products for or involving medical or clinical treatment must be performed by properly trained
and qualified medical personnel, and all traditional medical safeguards, equipment, and procedures that are
appropriate in the particular situation to prevent serious injury or death should always continue to be used
when National Instruments products are being used. National Instruments products are NOT intended to be a
substitute for any form of established process, procedure, or equipment used to monitor or safeguard
human health and safety in medical or clinical treatment.



Table
of
Contents
About This Manual
HOw to Usethe Manual SEL ...........ooeieiinieeee e Xiii
Organization of THISIMaNUA ..........coreiiiiriireee s Xiv
Conventions Used in ThiSManUal ...........ooeieeieiieeeeeeee e XV
Related DOCUMENEALION .....c.ooiiiieieieie ettt s ne e eneenas XVi
Customer COMMUNICALION ........ooueiueiirienereereeee e seeeese e tesee st seeseeseeeeneeneeneeneeneens XVi
Chapter 1
Introduction
GPIB OVEIVIEW ...ttt sttt st b e s ennas 1-1
Talkers, Listeners, and CONntrollers ..........coeoveieinennenseneseseee e 1-1
Controller-In-Charge and System Controller ... 1-1
GPIB AArESSING ... coueiuiieiriirieieiie ettt s 1-2
Sending Messages acrosSSthe GPIB ... 1-2
DaALINES ...t 1-2
HaNASNAKE LINES ......ccviecieeeiereeereee e 1-3
Interface Management LiNesS........coccoiverereiinene e 1-3
Setting up and Configuring Y our SYSEEM .......cccvieiieneninere e 1-4
Controlling More Than One Board............cccooevevenenereneeieieeeenns 1-5
Configuration REQUIFEMENES..........cocererirerinese e 1-5
The NI-488.2M Software for Windows 95...........cooveireiieeneeneesrenesesesreseere e 1-6
NI-488.2M Software for Windows 95 COMPONENtS ...........ccervereereeieeieriennens 1-6
NI-488.2M Driver and Driver UtIlItieS........cccovvvervenceneeneees 1-6
16-Bit Windows SUpPpOrt FIlES.........coeiiiineneneeeeeeeee e 1-7
DOS SUPPOIT FITES ...t 1-7
Microsoft C/C++ Language Interface Files........ccoeveieinieccnene, 1-7
Borland C/C++ Language Interface Files.........cooeoeieiiinininicnnns 1-8
Microsoft Visual Basic Language Interface Files..........ccceveeeneee 1-8
Sample Application FIlES.........coiiiiiinee e 1-8
How the NI-488.2M Software Works with Windows 95............cccoeveveenne 1-8
Uninstalling the GPIB Hardware from Windows 95 .........ccccoeieirinencnnene 1-9
Uninstalling the GPIB Software for Windows 95...........cccoeviieneneieeieneenene 1-11

© National Instruments Corporation v NI-488.2M User Manual for Windows 95/Windows NT



Table of Contents

The NI-488.2M Software for WindowWS NT .......ccooriririiinene e 1-13
NI-488.2M Software for Windows NT COMPONENtS..........cccvereeerenerenennas 1-13
NI-488.2M Driver and Driver UtilitieS........cccovevereieieeeceeee 1-13
DOS and 16-Bit Windows Support Files.........ccoeviinrineicnecnnee 1-13
Microsoft C/C++ Language Interface Files.........cccoevviieccniecnnn 1-14
Borland C/C++ Language Interface Files........cocvevierciennenccnens 1-14
Microsoft Visual Basic Language Interface Files.........cccoevvveeneee 1-14
Sample Application FIleS........cccoeviiiinceeee e 1-14
How the NI-488.2M Software Works with Windows NT ........cccccooeeveennene. 1-15
Unloading and Reloading the NI1-488.2M Driver for Windows NT ............. 1-16
Chapter 2
Application Examples
Example 1: BasiC COMMUNICALION ........oouirierieieieieeeeieriese sttt s 2-2
Example 2: Clearing and Triggering DEVICES........cccceererininiene e 2-4
Example 3: ASYNCArONOUS 1/O........cuiieeiiereeenter st eaen 2-6
Example 4: End-0Of-String MOGE..........cooiririieiieeeeree e 2-8
Example 5: Service REQUESES.......cc.coeieeeirirereetee sttt ene 2-10
Example 6: Basic Communication with |EEE 488.2-Compliant Devices ................. 2-14
Example 7: Serial Polls Using NI-488.2 ROULINES .........ccoceviririninenie e 2-16
Example 8. Parallel POlIS..........cooe e 2-18
Example 9: Non-Controller EXampPle ..o 2-20
Chapter 3
Developing Your Application
Choosing Y our Programming MethodolOgy ........cccoevvierenennneneneseseeesee e 31
Choosing aMethod to Accessthe NI-488.2M DIiVEr........ccccoeveveveereeeennnne. 31
NI-488.2M Language INterfaces........ccoovvvrvrereneerereseeeseeeseenens 31
DIreCt ENIY ACESS .uveueeeeeeeeeeereeestese e ste e sae e see e eesnee e enessenns 31
Choosing between NI-488 Functions and NI-488.2 Routines............cccccv..... 32
Using NI-488 Functions: One Device for Each Board ................... 32
NI-488 Device FUNCHONS ........cocveirinieiee e 3-3
NI-488 Board FUNCLIONS .......cceovvieirieiniieeee e 3-3
Using NI-488.2 Routines: Multiple Boards and/or
MUIIPIE DEVICES ...t s eneas 33
Checking Status with Global Variables..........cccceveevceiecice e 34
SEAUS WOId — TDSEA ..o 34
Error Variable — iDEIT ... 35
Count Variables—ibcnt and ibentl .........coeeveiiiinnincreeee 3-6
Using Win32 Interactive Control to Communicate with Devices........ccoccvevevveeenenne. 3-6
Programming Model for NI-488 AppliCations .........cccccevverevenieneseereesieseeseeeeeseneens 3-7
[tEMS O INCIUE ...ttt 3-7
NI-488 Program Sl ......cccveeiirireseseeee s enens 3-8

NI-488.2M User Manual for Windows 95/Windows NT vi © National Instruments Corporation



Table of Contents

NI-488 General Program Steps and EXamples........cocovvevennennenseneeenene 39
Step 1. Open aDEVICE.......cci e 39
Step 2. Clear the DEVICE. ..o 39
Step 3. Communicate with the Device.........cocveeveeneceneenicne 39
Step 4. Place the Device Offline Before Exiting Y our
APPHCALTON ... 3-10
Programming Model for NI-488.2 AppliCations .........ccccvveerenenenneneeseee e 311
[TEMS O INCIUTE ...ttt 311
NI-488.2 Program Shell ..o 312
NI-488.2 General Program Steps and EXamples........cocoevereeneeneccnienennee 3-13
Step 1. INItIAIZAHON ... 313
Step 2. Determine the GPIB Address of Your Device................... 3-13
Step 3. Initialize the DeVICe ... 314
Step 4. Communicate with the Device.........ccceeveenecreenieenne 314
Step 5. Place the Device Offline Before Exiting Y our
APPHCALTON ... e 3-15
Language-Specific Programming INSrUCLIONS .........cccoueerieereierenneesesesesee e 315
Microsoft Visual C/C++ (Version 2.0 or HIgher) .....ccceeveininieieneicneee 3-15
Borland C/C++ (Version 4.0 or Higher) ......cocoveniininneeeeeeeeee 3-15
Visual Basic (Version 4.0 o Higher) ..o 3-16
Direct ENtry With C .....oviiiiee e 3-16
OPID-32.dI1 EXPOIS ..ot 3-16
Directly Accessing the gpib-32.dll EXPOItS.......ccccoverieineeneenee 3-17
Windows 95: Running Existing GPIB ApPliCations ..........c.cccerrireiineieneicnec e 3-19
Running Existing Win16 GPIB AppliCations ...........cccoerrinreneienieienieennene 3-19
Running Existing DOS GPIB AppliCations ..........cccoeereienenenennenesie e 3-19
Windows NT: Running Existing GPIB AppliCations...........ccoeereereiineeniecnienienes 3-20
Chapter 4
Debugging Your Application
Debugging With GPIB SPY .....ccuiiiiiieieieeerereeeeiee et sne 4-1
Debugging with the Global Status Variables...........ccccoovininiiiiieeceeeeee 4-1
Debugging with Win32 Interactive COntrol ... 4-1
GPIB EITON COUES.......covieetereeie ettt 4-2
CoNfIQUIALTION EFTOIS ..ot et sb s 4-3
TIMING EFTOIS....oeiieeeee ettt st e e e e b 4-3
COMMUNICALION EITOIS.......oeirieciireeireese e s 4-4
REPEAt AQArESSING ....ccveeverieiierie ettt 4-4
Termination MEthOd..........c.ooiiiie e 4-4
OFNEN EFTONS ...ttt 4-4

© National Instruments Corporation vii  NI-488.2M User Manual for Windows 95/Windows NT



Table of Contents

Chapter 5
GPIB Spy Utility
OVEIVIBIV ...ttt ettt b et b e e b et e bt nn et n e nn e nr e 5-1
SEAING GPIB SPY ..ottt e 5-1
Starting GPIB Spy Under WIindows 95.........ccoiiinineneninese e 51
Starting GPIB Spy Under WIindows NT ..o 51
Using the Online GPIB SPY HEIP .......ooiiiiiee e 5-2
Locating Errors With GPIB SPY .....ccciiiiriiriereeeeeeeeene et 5-2
Viewing Properties for Recorded CallS ... 5-2
EXItING GPIB SPY .evceeiiiisicieereie ettt e 5-4
Performance CONSIAEIatiONS.........ccciveerierrieriereees et 5-4
Chapter 6
Win32 Interactive Control Utility
OVEIVIBIW ...ttt ettt n et r e 6-1
Getting Started with Win32 Interactive Control ...........ccocvveeerieverererereeseees e 6-1
Win32 Interactive CONLrol SYNEaX .......cccoveeeerererireeenese s e seeseesee s eeeeeee e ssenns 6-4
N[ 00101 GV | 6-4
S 100 RS L= ST 6-4
PN 0 (0[S TS 1 - S 6-5
Win32 Interactive Control COMMANGS..........courrerrererirenrnrenereseree e sesnenas 6-5
SEAIUSWOIA ..ot 6-9
Error INFOrMBELION ......cccvieeercirere s 6-10
Count INFOMMBLTON .....cvveeieiiereere e 6-10
Chapter 7
GPIB Programming Techniques
Termination Of Data TranSFErS......oouiiereeee e e eneas 7-1
High-Speed Data Transfers (HSA88) ..ottt 7-2
ENalling HSABB.........coee e 7-2
System Configuration EffectS ON HSA88 ... 7-3
Waiting for GPIB CONAItIONS.........coveirieirieierieirieesi e 7-4
Asynchronous Event Notification in Win32 GPIB Applications..........c.ccccoeeveeenenne. 7-4
Calling the ibnotify FUNCLION.........c.coiiiiireree e 7-4
ibnotify Programming EXample..........cocooveiiiinienencseeseeee e 7-6
Writing Multithreaded Win32 GPIB AppliCations.........ccuoeereeereeeneerieerieeseeeniens 7-9
Device-Level Callsand Bus Management............ccooeereireenenenenesesesie s 7-11
Talker/Listener APPIICALIONS ........ccoiviiriireriiieeeesee e 7-11
SENTA POIING .o 7-12
Service Requests from |EEE 488 DEVICES. .........ccovereeerieereerieenieesieeniens 7-12
Service Requests from |EEE 488.2 DEVICES .......ccevvveerieenieeniee e 7-12

NI-488.2M User Manual for Windows 95/Windows NT viii © National Instruments Corporation



Table of Contents

Automatic Serial POIING ....covcveieeiiiiieiercee s 7-13
SHUCK SRQ SEALE......eeuieeeeriereririete ettt e 7-13
Autopolling and INEEMTUPES........coveereiereeeeee s 7-14
SRQ and Seria Polling with NI-488 Device FUNCLions..........c.ccccveereeenenne 7-14
SRQ and Serial Polling with NI-488.2 ROULINES..........ccoeiieineinecnieeee 7-15
Example 1: Using FINARQS...........cooooiieniinenereseseee e 7-16
Example 2: UsSing AIISPOI ......ccocoieieieeeeeeeeee 7-16
Parall @l POHING.......oucuieiirieieie ettt nnas 7-17
Implementing aParallel POll ... 7-17
Parallel Polling with NI-488 FUNCLIONS ........c.covirriiriecieeee 7-17
Parallel Polling with NI-488.2 ROULINES.........ccccovinirereeereieseeiees 7-18
Chapter 8
GPIB Configuration Utility
OVEIVIBIV ...ttt ettt b et b e e b et e bt nn et n e nn e nr e 81
Windows 95: Configuring the NI-488.2M SOftWare ..........ccooeveveneneneseeieeeeeeeee 8-2
Windows NT: Configuring the NI-488.2M SOftware...........ccccovreneieneieieeeeeenee 8-4
Appendix A
Status Word Conditions
[T L (L= o ) A-2
QLI LY L@ I (o L= o ) SRS A-2
[ N I (o L=V 20 o ) A-2
SROI (D) et A-3
(O Y (6 Y ISR A-3
L0111 = I (o = YR o o ) A-3
LOK (B 1.ttt A-3
REM (BIO) 1. A-4
(OO (o]« ) TSSOSO A-4
ATN (BFA) oot A-4
TACS (D) . A-4
[N @RS (oo ) ST A-5
DTAS (D) et A-5
DCAS (U)o A-5
Appendix B
Error Codes and Solutions
LAY o () ST B-2
ECTC (L) ittt ettt sttt st sttt e e b R st s et e b et e et ne e e ennas B-2
EINOL (2) ettt ettt st s bbbt st b s st seebebe e et ene e s raenas B-3
EADR (B) -ttt sttt ettt et b et e et n ettt n e e nenas B-4

© National Instruments Corporation ix NI-488.2M User Manual for Windows 95/Windows NT



Table of Contents

EARG (4) covoovvoeeeeeeeeeeeeeeeeeeessssses s ssses s eessses s es s ses s s ses s B-4
ST Y O () OO B-5
=7y =T @ (<) OO B-5
ENEB (7) covoeveeeeeeeeeeeieseeeeeseesessssssssssssessssssssessssesssssssssssssssssssssssssssssssssnsssnssssssssnes B-5
EDMA (8) covvooveeeeeeeeeeeeeeeeeeeeessssesessesssses s ssssssssssssssssses s sessssssssssssssnssssesssesssnssenns B-6
=01 = 10) SO B-6
ECAP (11) weoveoeeeeeeeeeeeeeeeeeeeeeseesee s seees s ssseess s es s sns s ssessssesssssssssns s sssnsssnes B-7
=S ) (17 OO B-7
EBUS (14) woooveoeeeeeeeeeseeeeeeeesesssssesessssessssessssessssessssss s sss s ssssssssessssssss s s sssssssnes B-7
ESTB (15) ovvooveeeeeeieeeeeeeeeseeessssesessesssesssssssssssssssssssssessssessssessssssssssssssssssssssssnsesnssenns B-8
ESRQ (16) weovveoeeeeeeeeeeeeeeeesessssssssssssessssessssessssesssssssssssssssssssssssssssssssssnssssessssssssees B-8
g =3 210 IO B-9
Appendix C
Windows 95: Troubleshooting and Common Questions
Troubleshooting EDVR Error CoNAitioNS ...........ccoeveerinenenenine e C-1
EDVR Error with ibcntl Set to OXEO28002C .........ccoveiveniereeeeieeeeeeeeeee C-1
EDVR Error with ibentl Set to OXEQ140025.........cocooeieieiinieeneeeeeeeeeenens C-1
EDVR Error with ibentl Set to OXEQ140035........coooieeeneienienieneereeeeeeeenens C-1
EDVR Error with ibentl Set to OXE0320029.........cooeeierieiienieniereeneeeeeeeenens C-2
EDVR Error with ibcntl Set to OXEOL40004... .......coevireneneeeeieeeeeeeeeee C-2
Troubleshooting Windows 95 Device Manager Status COdes ..........coevveveeeeieeennenne. C-2
COMMON QUESLIONS ...ttt ettt ettt e te st e et e st e et e ste e s e sneennesneennas C-3
Appendix D
Windows NT: Troubleshooting and Common Questions
Using Windows NT DiagnostiC TOOIS......ccccerereerierereeeresesesesesseese s seeneeeeseeeesenns D-1
Examining NT Devicesto Verify the NI-488.2M Ingtalation...................... D-1
Examining the NT System Log Using the Event Viewer ........ccccccceeevveeenene D-2
COMMON QUESHIONS ....ovecuieteerieteeteetee sttt e st eesbe s e sbeste st e e tesbessbesbeensesbeenseeseensesreennes D-2
Appendix E
Customer COMMUNICALION ..o c1
GIOSSAIY ... sssssssssssssssooes Glossary-1
TNVAEX oot s e Index-1

NI-488.2M User Manual for Windows 95/Windows NT X © National Instruments Corporation



Figures

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.

Figure 3-1.
Figure 3-2.

Figure 5-1.
Figure 5-2.
Figure 5-3.

Figure 8-1.
Figure 8-2.
Figure 8-3.

Tables
Table 1-1.
Table 1-2.
Table 3-1.

Table 4-1.

Table of Contents

GPIB AdAreSS BitS .....cccvucveiiriririeiciessie s 1-2
Linear and Star System Configuration ............ccoceeeeereneeneeieeienccnenne 1-4
Example of Multiboard System Setup.........cooeveverenenieneieeeeeceee 1-5
How the NI-488.2M Software Works with Windows 95................... 1-9
Selecting an Interface to Remove from Windows 95............cccceeneee. 1-10
Add/Remove Programs Properties Dialog Box in Windows 95 ........ 1-11
Uninstallation Resultsin Windows 95 ... 1-12
How the NI-488.2M Software Works with Windows NT ................ 1-16
Program Flowchart for Example 1 ... 2-3
Program Flowchart for EXample 2 ... 2-5
Program Flowchart for Example 3 ... 2-7
Program Flowchart for EXample 4 ... 2-9
Program Flowchart for EXample 5 ... 2-12
Program Flowchart for EXample 6 ... 2-15
Program Flowchart for EXample 7 ... 2-17
Program Flowchart for Example 8 ... 2-20
Program Flowchart for EXample 9 ... 2-22
General Program Shell Using NI-488 Device Functions ................... 3-8
General Program Shell Using NI-488.2 RoULINES..........cccccoeeercnennene 313
GPIB Spy Main WINAOW ........ccucueirerieieininieiceesisieee e 5-2
GPIB Spy Input Tab for Device-Level i bWt ..o 5-3
GPIB Spy Output Tab for Device-Level i brd ... 5-3
NI-488.2M Settings Tab for the AT-GPIB/TNT (PnP)........ccceceneenee 8-3
Device Templates Tab for the Logical Device Templates.................. 8-4
Main Dialog Box in the GPIB Configuration Utility for

WINAOWS NT L. 85
GPIB Handshake LiNES........ccco i 1-3
GPIB Interface Management LiNeS........c.ccoevveveveveeneneneeseeesenennens 1-3
StAUS WOId LaYOUL ......ceeeeeeeeeeeeeceeecese et enens 35
GPIB EIror COUES. ......oiveereririrerieiisese st 4-3

© National Instruments Corporation Xi NI-488.2M User Manual for Windows 95/Windows NT



Table of Contents

Table 6-1. Syntax for Device-Level NI-488 Functionsin Win32

INtEractive CONIOl .......ccoveeiieiirieerieere s 6-6
Table 6-2. Syntax for Board-Level NI-488 Functionsin Win32

INteraCtive CONIOl .......ccoveeeriiirierieere s 6-7
Table 6-3. Syntax for NI-488.2 Routines in Win32 Interactive Control ............. 6-8
Table 6-4. Auxiliary Functionsin Win32 Interactive Control ...........ccccoeeereuenee 6-9

NI-488.2M User Manual for Windows 95/Windows NT Xii © National Instruments Corporation



About
This
Manual

This manual describes the features and functions of the NI-488.2M
software for both Windows 95 and Windows NT. The NI-488.2M
software for Windows 95 is meant to be used with the Microsoft
Windows 95 operating system. The NI-488.2M software for Windows
NT is meant to be used with the Microsoft Windows NT (version 3.51
and later) operating system. This manual assumes that you are already
familiar with the appropriate Microsoft operating system.

How to Use the Manual Set

Getting Started
Manual

Installation and
Configuration

Novice Eprerlenced
Users sers
_ ETTRNS — Y
— NI-488.2M Function
NI-488.2M User Application Reference Manual
Manual for Development for Win32
Windows 95 and Examples
and Windows NT
Function
and Routine
Descriptions

Use the getting started manual to install and configure your GPIB
hardware and software for Windows 95.

© National Instruments Corporation Xiii NI-488.2M User Manual for Windows 95/Windows NT



About This Manual

Use the NI-488.2M User Manual for Windows 95 and Windows NT to
learn the basics of GPIB and how to develop an application program.
The user manual also contains debugging information and detailed
examples.

Use the NI-488.2M Function Reference Manual for Win32 for specific
NI-488 function and NI-488.2 routine information, such as format,
parameters, and possible errors.

Organization of This Manual

Thismanual is organized as follows:

Chapter 1, Introduction, gives an overview of GPIB and the
NI-488.2M software.

Chapter 2, Application Examples, contains nine sample
applications designed to illustrate specific GPIB concepts and
techniques that can help you write your own applications.

Chapter 3, Developing Your Application, explains how to develop
a GPIB application using NI-488 functions and NI-488.2 routines.

Chapter 4, Debugging Your Application, describes several waysto
debug your application.

Chapter 5, GPIB Spy Utility, introduces you to GPIB Spy, the
application monitor you can use to monitor NI1-488 and NI-488.2
cals.

Chapter 6, Win32 Interactive Control Utility, introduces you to
Win32 Interactive Control, the interactive control utility that you
can use to communicate with GPIB devicesinteractively.

Chapter 7, GPIB Programming Techniques, describes techniques
for using some NI-488 functions and NI-488.2 routines in your
application.

Chapter 8, GPIB Configuration Utility, contains a description of
the GPIB configuration utility you can use to configure your
NI-488.2M software.

Appendix A, Satus Word Conditions, gives a detailed description
of the conditions reported in the status word, i bst a.

Appendix B, Error Codes and Solutions, lists a description of each
error, some conditions under which it might occur, and possible
solutions.

NI-488.2M User Manual for Windows 95/Windows NT Xiv © National Instruments Corporation



About This Manual

*  Appendix C, Windows 95: Troubleshooting and Common
Questions, describes how to troubleshoot problems and lists some
common questions for Windows 95 users.

* Appendix D, Windows NT: Troubleshooting and Common
Questions, describes how to troubleshoot problems and lists some
common questions for Windows NT users.

» Appendix E, Customer Communication, contains forms you can
use to request help from National Instruments or to comment on
our products and manuals.

» TheGlossary contains an aphabetical list and description of terms
used in this manual, including abbreviations, acronyms, metric
prefixes, mnemonics, and symbols.

»  ThelIndex contains an alphabetical list of key terms and topicsin
this manual, including the page where you can find each one.

Conventions Used in This Manual

bold
bold italic

bol d
nmonospace

italic
italic
nonospace

nonospace

The following conventions are used in this manual:
Bold text denotes menus, menu items, or dialog box buttons or options.
Bold italic text denotes a note, caution, or warning.

Bold text in this font denotes the messages and responses
that the computer automatically printsto the screen.

Italic text denotes emphasis, a cross reference, or an introduction to a
key concept.

Italic text in this font denotes that you must supply the
appropriate words or valuesin the place of these items.

Text in this font denotes text or charactersthat are to be literally input
from the keyboard, sections of code, programming examples, and
syntax examples. Thisfont is also used for the proper names of disk
drives, paths, directories, programs, subprograms, subroutines, device
names, functions, variables, filenames, and extensions, and for
statements and comments taken from program code.

Angle brackets enclose the name of akey on the keyboard-for
example, <PageDown>.

A hyphen between two or more key names enclosed in angle brackets
denotes that you should simultaneously press the named keys—for
example, <Control-Alt-Delete>.

© National Instruments Corporation Xv NI-488.2M User Manual for Windows 95/Windows NT



About This Manual

» The » symbol leads you through nested menu items and dialog box
options to afinal action. The sequence
File»Page Setup»Options»Substitute Fonts directs you to pull down
the File menu, select the Page Setup item, select Options, and finally
select the Substitute Fonts option from the last dialog box.

IEEE 488 and  |EEE 488 and |EEE 488.2 refer to the ANSI/IEEE Standard
|EEE 488.2 488.1-1987 and the ANSI/IEEE Standard 488.2-1992,
respectively, which define the GPIB.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and
terms are listed in the Glossary.

Related Documentation

The following document contains information that you may find
helpful as you read this manual:

* ANSI/IEEE Standard 488.1-1987, |EEE Standard Digital Interface
for Programmable I nstrumentation

* ANSI/IEEE Standard 488.2-1992, |EEE Standard Codes, Formats,
Protocols, and Common Commands

e Microsoft Windows 95 User's Guide
e Microsoft Windows NT User’s Guide

*  Microsoft Win32 Software Development Kit for Microsoft
Windows

Customer Communication

National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with
our products, and we want to help if you have problems with them. To
make it easy for you to contact us, this manual contains comment and
configuration forms for you to complete. These formsarein
Appendix E, Customer Communication, at the end of this manual.

NI-488.2M User Manual for Windows 95/Windows NT Xvi © National Instruments Corporation



Introduction

Chapter

This chapter gives an overview of GPIB and the NI-488.2M software.

GPIB Overview

The ANSI/IEEE Standard 488.1-1987, also known as GPIB (General
Purpose Interface Bus), describes a standard interface for
communication between instruments and controllers from various
vendors. It contains information about electrical, mechanical, and
functional specifications. The GPIB isadigital, 8-bit parallel
communications interface with data transfer rates of 1 Mbytes/s and
above, using a 3-wire handshake. The bus supports one System
Controller, usually a computer, and up to 14 additional instruments.
The ANSI/IEEE Standard 488.2-1992 extends |EEE 488.1 by defining
a bus communication protocol, a common set of data codes and
formats, and a generic set of common device commands.

Talkers, Listeners, and Controllers

GPIB devices can be Takers, Listeners, or Controllers. A Taker sends
out data messages. Listeners receive data messages. The Controller,
usually a computer, manages the flow of information on the bus. It
defines the communication links and sends GPIB commands to devices.

Some devices are capable of playing more than onerole. A digita
voltmeter, for example, can be a Talker and a Listener. If your personal
computer has a National Instruments GPIB interface board and
NI-488.2M software installed, it can function as a Talker, Listener, and
Controller.

Controller-In-Charge and System Controller

Y ou can have multiple Controllers on the GPIB, but only one
Controller at atime can be the active Controller, or
Controller-In-Charge (CIC). The CIC can either be active or inactive

© National Instruments Corporation 1-1  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 1 Introduction

(Standby) Controller. Control can pass from the current CIC to an idle
Controller, but only the System Controller, usually a GPIB interface
board, can make itself the CIC.

GPIB Addressing

All GPIB devices and boards must be assigned a unique GPIB address.
A GPIB addressis made up of two parts: aprimary address and an
optional secondary address.

The primary addressis a number in the range 0 to 30. The GPIB
Controller uses this address to form atalk or listen addressthat is sent
over the GPIB when communicating with a device.

A talk addressis formed by setting bit 6, the TA (Tak Active) bit of the
GPIB address. A listen addressis formed by setting bit 5, the LA
(Listen Active) bit of the GPIB address. For example, if adeviceisat
address 1, the Controller sends hex 41 (address 1 with bit 6 set) to make
the device a Talker. Because the Controller isusually at primary
address 0, it sends hex 20 (address 0 with bit 5 set) to make itself a
Listener. Figure 1-1 shows the configuration of the GPIB address bits.

Bit 7 6 5 4 3 2 1 0

Position

Meaning | O TA LA | GPIB Primary Address (range 0-30)
Figure 1-1. GPIB Address Bits

With some devices, you can use secondary addressing. A secondary
addressis a number in the range hex 60 to hex 7E. When secondary
addressing isin use, the Controller sends the primary talk or listen
address of the device followed by the secondary address of the device.

Sending Messages across the GPIB

Devices on the bus communicate by sending messages. Signals and
lines transfer these messages across the GPIB interface, which consists
of 16 signal lines and eight ground return (shield drain) lines. The 16
signal lines are discussed in the following sections.

Data Lines

Eight datalines, DIO1 through DIO8, carry both data and command
messages.

NI-488.2M User Manual for Windows 95/Windows NT 1-2 © National Instruments Corporation



Chapter 1 Introduction

Handshake Lines

Three hardware handshake lines asynchronously control the transfer of
message bytes between devices. This processis athree-wire interlocked
handshake, and it guarantees that devices send and receive message
bytes on the data lines without transmission error. Table 1-1
summarizes the GPIB handshake lines.

Table 1-1. GPIB Handshake Lines

Line Description

NRFD Listening device is ready/not ready to receive a
(not ready for data) | message byte. Also used by the Talker to
signal high-speed GPIB transfers.

NDAC Listening device has/has not accepted a

(not data accepted) message byte.

DAV Talking device indicates signals on data lines
(datavalid) are stable (valid) data.

Interface Management Lines

Five GPIB hardware lines manage the flow of information across the
bus. Table 1-2 summarizes the GPIB interface management lines.

Table 1-2. GPIB Interface Management Lines

Line Description
ATN Controller drives ATN true when it sends
(attention) commands and false when it sends data messages.
IFC System Controller drivesthe IFC lineto initialize
(interface clear) | the bus and makeitself CIC.
REN System Controller drivesthe REN lineto place
(remote enable) | devicesin remote or local program mode.
SRQ Any device can drive the SRQ line to
(service request) | asynchronously request service from the Controller.
EQI Talker uses the EQI line to mark the end of a data
(end or identify) | message. Controller usesthe EOI line when it

conducts a paralel poll.

© National Instruments Corporation 1-3  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 1 Introduction

Setting up and Configuring Your System

Devices are usually connected with a cable assembly consisting of a
shielded 24-conductor cable with both a plug and receptacle connector
at each end. With this design, you can link devicesin alinear
configuration, a star configuration, or a combination of the two.
Figure 1-2 shows the linear and star configurations.

o——3

—

Device A

——

Device B

=

Device C

a. Linear Configuration

o—

=

—=

Device A

Device D

= L=

Device B

Device C

b. Star Configuration

Figure 1-2. Linear and Star System Configuration

NI-488.2M User Manual for Windows 95/Windows NT

1-4

© National Instruments Corporation



Chapter 1 Introduction

Controlling More Than One Board

Figure 1-3 shows an example of a multiboard system configuration.
gpi b0 isthe access board for the voltmeter, and gpi b1 isthe access
board for the plotter and printer. The control functions of the devices
automatically access their respective boards.

One | \|I'%|'szmm
GPIB Digital
Voltometer | Dggnuum
_ NS
gpi b0
Plotter
Another I DEEDD‘:D'DD P ]
GPIB 0o000se

L Printer

Figure 1-3. Example of Multiboard System Setup

Configuration Requirements

To achieve the high data transfer rate that the GPIB was designed for,
you must limit the physical distance between devices and the number of
devices on the bus. The following restrictions are typical:

e A maximum separation of four meters between any two devices
and an average separation of two meters over the entire bus.

* A maximum total cablelength of 20 m.

A maximum of 15 devices connected to each bus, with at least
two-thirds powered on.

© National Instruments Corporation 1-5  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 1

Introduction

For high-speed operation, the following restrictions apply:
»  All devicesin the system must be powered on.

e Cablelengths as short as possible up to a maximum of 15 m of
cable for each system.

» With at least one equivaent device load per meter of cable.

If you want to exceed these limitations, you can use bus extenders to
increase the cable length or expander to increase the number of device
loads. Extenders and expanders are available from National
Instruments.

The following sections describe the NI-488.2M software, which
controls the flow of communication on the GPIB.

The NI-488.2M Software for Windows 95

NI-488.2M Software for Windows 95 Components

The following section highlightsimportant components of the
NI-488.2M software for Windows 95 and describes the function of
each component.

NI-488.2M Driver and Driver Utilities
The distribution disk contains the following driver and utility files:

e A documentationfile, r eadne. t xt , that contains important
information about the NI-488.2M software and a description of any
new features. Before you use the software, read thisfile for the
most recent information.

* Native, 32-bit NI1-488.2M driver components: A collection of
dynamically loadable, Plug and Play aware, and multitasking
aware virtua device drivers and dynamic link libraries. They are
installed into the Windows System directory.

* A Win32dynamic link library, gpi b- 32. dI | , that acts asthe
interface between all Windows 95 GPIB applications and the
NI-488.2M driver components.

e Win32 Interactive Control isa utility that you use to communicate
with the GPIB devices interactively using NI-488.2 functions and
routines. It helps you to learn the NI-488.2 routines and to program
your instrument or other GPIB devices.

NI-488.2M User Manual for Windows 95/Windows NT 1-6 © National Instruments Corporation



Chapter 1 Introduction

GPIB Spy isthe GPIB application monitor program. Itisa
debugging tool that you can use to monitor the N1-488.2 calls your
GPIB applications make.

The GPIB configuration utility is integrated into the Windows 95
Device Manager. Y ou use this utility to modify the configuration
parameters of the NI1-488.2M software.

Diagnostic is a utility that you use to verify that the GPIB hardware
and software have been installed properly.

16-Bit Windows Support Files

A 16-bit Windows dynamic link library, gpi b. dl | , used when
you run an existing N1-488.2 application for Windows in the
Windows 95 environment, this file replacesthe GPIB DLL that
you used in the Windows 3 environment for Win16 applications.

A 32-hit Windows dynamic link library, gpi b32ft. dl |, that
helps gpi b. dl | thunk 16-bit GPIB callsto 32-bit GPIB calls that
address the standard 32-hit dynamic link library, gpi b- 32. dI | .

DOS Support Files

A Virtual Device Driver (VXD), gpi bdosk. vxd, that serves as
the DOS device driver, to trap NI-488 function calls and NI-488.2
routine calls made by DOS applications and route them to the
standard 32-bit dynamic link library, gpi b- 32. dl | . Thisfile
replaces the real-mode DOS device driver that would be |oaded
from your conf i g. sys fileif you were using the DOS
environment for DOS GPIB applications.

A Win32 executable, gpi bdos. exe, that helps
gpi bdosk. vxd thunk DOS GPIB calls to 32-hit calls that
address the standard 32-bit dynamic link library, gpi b- 32. dI | .

Microsoft C/C++ Language Interface Files

© National Instruments Corporation

A documentation file, r eadne. t xt , that contains information
about the C language interface.

A 32-bit includefile, decl - 32. h, that contains NI-488 function
and NI1-488.2 routine prototypes and various predefined constants.

A 32-hit C language interfacefile, gpi b- 32. obj , that an
application links with in order to access the 32-bit DLL.

1-7  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 1 Introduction

Borland C/C++ Language Interface Files

e A documentation file, r eadne. t xt , that contains information
about the C language interface.

* A 32-bitincludefile, decl - 32. h, that contains NI1-488 function
and NI1-488.2 routine prototypes and various predefined constants.

e A 32-bit Clanguageinterfacefile, bor | andc_gpi b- 32. obj ,
that an application links with in order to access the 32-hit DLL.

Microsoft Visual Basic Language Interface Files

* A documentation file, r eadne. t xt , that contains information
about the Visua Basic language interface.

* A Visua Basic global module, ni gl obal . bas, that contains
certain predefined constant declarations.

» A Visua Basic sourcefile, vbi b- 32. bas, that contains
NI-488.2 routine and NI-488 function prototypes.

Sample Application Files

The NI-488.2M software includes nine sample applications along with
source code for each language supported by the NI-488.2M software.
For a detailed description of the sample application files, refer to
Chapter 2, Application Examples.

How the NI-488.2M Software Works with Windows 95

The NI-488.2M software for Windows 95 includes a multi-layered
device driver that consists of DLL pieces that run in user mode and
VXD pieces that run in kernel mode. User applications access this
device driver from user mode through gpi b- 32. dI | , a 32-bit
Windows 95 dynamic link library.

GPIB applications access the NI-488.2M software through
gpi b-32. dl | asfollows:

* A Win32 application can either link with the language interface or
directly access the functions exported by the DLL.

* A Winl16 application uses the 16-bit thunking DLL (gpi b. dI I)
and 32-bit thunking DLL (gpi b32ft . dl | ) to accessthe GPIB
driver.

* A DOS application uses the DOS support VxD and application to
access the GPIB driver.

NI-488.2M User Manual for Windows 95/Windows NT 1-8 © National Instruments Corporation



Chapter 1 Introduction

Figure 1-4 shows the interaction between various types of GPIB
applications (shaded sections) and the NI-488.2M software

components.
( Win16 Application ’

( Win32 Application ’

( gpib-32.dll

DOS Support
Application

1

(DOS Application ’

y

( gpibmngr.dll
User Mode

Kernal Mode \

y »
(VXD Class Driver ' (DOS Support VXD’

\ 4

VxD Port Driver

\
| GPIB Hardware

i

U

Figure 1-4. How the NI-488.2M Software Works with Windows 95

Uninstalling the GPIB Hardware from Windows 95

Before physically removing the GPIB hardware from the computer, you
must remove the hardware information from the Windows 95 Device
Manager.

To remove the hardware information from Windows 95, double-click
the System icon in the Control Panel, which can be opened from the
Settings selection of the Start menu. Select the Device Manager tab in
the System Properties dialog box that appears, click the View devices
by type button at the top of the Device Manager tab, and double-click
on the National I nstruments GPIB Interfacesicon.

© National Instruments Corporation 1-9  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 1 Introduction

To remove an interface, select it from the list of interfaces under
National Instruments GPIB Interfaces as shown in Figure 1-5, and
click the Remove button.

System Properties

General Device Manager | Hardware Prafiles F'erfc:rmanu:el

= View devices by lype " Wiew devices by connection

Computer

=D Disgk drives

@ Dizplay adapters

--% Floppy dizk controllers

-5 Hard disk controllers

@ F.eyboard

Monitor

-7y Mouse

El W National Instruments GPIB Interfaces
! f AT-GPIBATMT [Plug and Play]
P LW AT-GPIB/TMT (Plug and Play]
I B Metwork adapters

B Parts (COM & LPT)

- . Syztem devices

Properties | Refrezh | Remowve | Priat... |

Cloze I Cancel |

Figure 1-5. Selecting an Interface to Remove from Windows 95

After you remove the appropriate interface information from the Device
Manager, you should physically remove the interface from your
computer.

NI-488.2M User Manual for Windows 95/Windows NT 1-10 © National Instruments Corporation



Chapter 1 Introduction

Uninstalling the GPIB Software for Windows 95

Before uninstalling the software, you should remove all GPIB interface
information from the Windows 95 Device Manager, as described in the
previous section. Y ou do not need to shut down Windows 95 before
uninstalling the software.

Complete the following steps to remove the GPIB software.

1. Runthe Add/Remove Programs applet from the Control Panel,
which can be opened from the Settings selection of the Start
menu. A dialog box similar to the one in Figure 1-6 appears. This
diaog box lists the software available for removal.

Add'Remove Programs Properties

Install /U ninstall |Windnws Setup I Startup Diskl

To inztall a new program fram a floppy disk or CO-ROM
drive, click Install.
Py

YWindows, Taoremove a program or to modify itz installed
components, zelect it from the izt and click
Add/Remove.

@ The following software can be automatically removed by

MI-433. 20 Software for Windows 95
Qld "windows 3% and MS5-D0S5 system files
Windowes 95

Add/Remove... |

] 4 Cancel | Apply |

Figure 1-6. Add/Remove Programs Properties Dialog Box in Windows 95

© National Instruments Corporation 1-11  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 1 Introduction

2. Select the GPIB software you want to remove, and click the
Add/Remove... button. The uninstall program runs and removes all
folders, programs, VxDs, DLLSs, and registry entries associated
with the GPIB software. Figure 1-7 shows the results of a
successful uninstallation.

Remove Programs From Your Computer

v

= % " RN

unlnztallShield will remove the software 'MI-488. 24
Software for Windows 95' fron your computer. Please
wai whil_e each of the following components are

Uningtall succeszstully completed.

Shared program files...
Standard program files. .
Folder items...

Program folders...
Frogram directories...

Program registiy entries...

Figure 1-7. Uninstallation Results in Windows 95

If you have interfaces other than PCMCIA cards and you have not
physically removed them from your computer, you should shut down
Windows 95, power off your computer, and remove the interfaces now.
Y ou may remove PCMCIA cards without powering off your computer.

If you want to reinstall the hardware and software, refer to the getting

started manual.

NI-488.2M User Manual for Windows 95/Windows NT 1-12

© National Instruments Corporation



Chapter 1 Introduction

The NI-488.2M Software for Windows NT

NI-488.2M Software for Windows NT Components

The following section highlights important elements of the NI1-488.2M
software for Windows NT and describes the function of each element.

NI-488.2M Driver and Driver Utilities

The distribution disk contains the following driver and utility files:

A documentation file, r eadne. t xt , that contains important
information about the NI-488.2M software and a description of any
new features. Before you use the software, read thisfile for the
most recent information.

Native Windows NT kernel driver components.

A Win32 dynamic link library, gpi b- 32. dl | , that acts asthe
interface between all applications and the kernel mode GPIB
driver.

Win32 Interactive Control utility that you use to communicate with
the GPIB devicesinteractively using NI-488.2 functions and
routines. It helps you to learn the NI-488.2 routines and to program
your instrument or other GPIB devices.

GPIB Spy isthe GPIB application monitor program. It isa
debugging tool that you can use to monitor the N1-488.2 calls your
GPIB applications make.

The GPIB configuration utility, a control panel application that you
use to modify the software configuration parameters of the
NI-488.2M software.

Diagnostic is a utility you can use to verify that the GPIB hardware
and software have been installed properly.

DOS and 16-Bit Windows Support Files

© National Instruments Corporation

A documentation file, r eadn®e. t xt , that contains information
about using existing DOS and 16-bit Windows applications under
Windows NT.

A Virtua devicedriver, gpi b- vdd. dl | , that allows existing
NI-488.2 for DOS and 16-hit Windows applications to access the
NI-488.2M software.

1-13  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 1 Introduction

» A DOSdevicedriver, gpi b- nt . com When you run an existing
NI-488.2 application for DOS in the Windows NT environment,
thisfile replacesthe gpi b. comdriver that you used in the DOS
environment.

* A Windowsdynamic link library, gpi b. dl | . When you run an
existing N1-488.2 application for Windowsin the Windows NT
environment, thisfile replaces the GPIB DLL that you used in the
Windows (16-bit) environment.

Microsoft C/C++ Language Interface Files
* A documentationfile, r eadne. t xt , that contains information
about the C language interface.

* A 32-bitincludefile, decl - 32. h, that contains NI1-488 function
and NI1-488.2 routine prototypes and various predefined constants.

e A 32-bit Clanguageinterfacefile, gpi b- 32. obj , that an
application links with in order to access the 32-bit DLL.

Borland C/C++ Language Interface Files
* A documentationfile, r eadne. t xt , that contains information
about the C language interface.

* A 32-bitincludefile, decl - 32. h, that contains NI1-488 function
and NI1-488.2 routine prototypes and various predefined constants.

e A 32-bit Clanguageinterfacefile, bor | andc_gpi b- 32. obj ,
that an application links with in order to access the 32-hit DLL.

Microsoft Visual Basic Language Interface Files
* A documentationfile, r eadne. t xt , that contains information
about the Visual Basic language interface.

e A Visua Basic globa module, ni gl obal . bas, that contains
certain predefined constant declarations.

A Visua Basic sourcefile, vbi b- 32. bas, that contains
NI-488.2 routine and NI-488 function prototypes.

Sample Application Files

The NI-488.2M software includes nine sample applications along with
source code for each language supported by the NI-488.2M software.
For a detailed description of the sample application files, refer to
Chapter 2, Application Examples.

NI-488.2M User Manual for Windows 95/Windows NT 1-14 © National Instruments Corporation



Chapter 1 Introduction

How the NI-488.2M Software Works with Windows NT

The main components of the NI-488.2M software are adynamic link
library that runsin user mode and alayered NT device driver that runs
in kernel mode. The layered NT device driver consists of three drivers:
adevice class driver that handles device-level calls, aboard class driver
that handles board-level calls, and a GPIB port driver that uses the
Hardware Abstraction Layer (HAL) to communicate with the GPIB
hardware. The top two layers of the layered NT device driver are
accessed from user mode by gpi b—32. dI | , a32-bit Windows NT
dynamic link library.

GPIB applications access the NI-488.2M software through
gpi b- 32. dl | asfollows:

* A Win32 application can either link with the language interface or
directly access the functions exported by the DLL.

e A Winl6 application uses the 16-bit DLL (gpi b. dI |) to access
the GPIB virtual devicedriver (gpi b-vdd. dl | ).

» A DOS application uses the DOS device driver (gpi b—t . conj
to access the GPIB virtual device driver.

© National Instruments Corporation 1-15  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 1

Introduction

Figure 1-8 shows the interaction between various types of GPIB
applications and the NI-488.2M software components.

Applications <

( (Winlﬁ Application) (DOS Application)

A4

C gpib.dil

\ 4
) C gpib-nt.com )

Win32 Application

Language Interface

gpib-vdd.dll

\1 Win32 Application ’

\ \4

gpib-32.dll '
y

4

o

Protected ( Win32 Subsystem ’
Subsystem User Mode
Kernel Mode
\ 4
4 System Services \
| | | | I/0 Manager
NT Executive

gpibclsd.sys

Kernel gpibclsb.sys

L gpibxxxx.sys

| Hardware Abstraction Layer (HAL

v

| GPIB Hardware

Figure 1-8. How the NI-488.2M Software Works with Windows NT

Unloading and Reloading the NI-488.2M Driver for Windows NT

NI-488.2M User Manual for Windows 95/Windows NT

Y ou can unload and restart the N1-488.2M driver using the GPIB
configuration utility.

To run this utility in Windows NT 3.51, double-click on the GPIB icon

in the Control Panel, which islocated in the Main group of the
Program Manager . To run this utility in Windows NT 4.0 or later,
select Start»Settings»Control Panel, and double-click on the GPIB
icon.

1-16

© National Instruments Corporation




Chapter 1 Introduction

The main window has an Unload button and a Restart button. If you
click on the Unload button, the N1-488.2M driver is unloaded. If you
click on the Restart button, the NI1-488.2M driver is automatically
unloaded and then reloaded. Refer to Chapter 8, GPIB Configuration
Utility, for a more compl ete description.

© National Instruments Corporation 1-17  NI-488.2M User Manual for Windows 95/Windows NT



Chapter

Application Examples

This chapter contains nine sampl e applications designed to illustrate
specific GPIB concepts and techniques that can help you write your
own applications. The description of each example includes the
programmer's task, a program flowchart, and numbered steps which
correspond to the numbered blocks on the flowchart.

Use this chapter along with your NI-488.2M software, which includes
the C and Visual Basic source code for each of the nine examples. The
programs are listed in order of increasing complexity. If you are new to
GPIB programming, you might want to study the contents and concepts
of thefirst sample, si npl e. ¢, before moving on to more complex
examples.

The following example programs are included with your NI-488.2
software:

» sinpl e. c isthe source codefile for Example 1. It illustrates how
you can establish communication between a host computer and a
GPIB device.

e clr_trg. cisthesource codefilefor Example 2. It illustrates
how you can clear and trigger GPIB devices.

* asynch. c isthe source codefile for Example 3. It illustrates how
you can perform non-GPIB tasks while datais being transferred
over the GPIB.

» eo0s. c isthe source codefile for Example 4. It illustrates the
concept of the end-of-string (EOS) character.

* rqQs. c isthe source codefile for Example 5. It illustrates how you
can communicate with GPIB devices that use the GPIB SRQ line
to request service. This sampleis written using NI-488 functions.

* easy4882. c isthe source codefile for Example6. Itisan
introduction to NI-488.2 routines.

© National Instruments Corporation 2-1  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 2 Application Examples

r qs4882. c isthe source code file for Example 7. It uses
NI-488.2 routines to communicate with GPIB devices that use the
GPIB SRQ line to request service.

ppol | . c isthe source code file for Example 8. It uses NI-488.2
routines to conduct parallel polls.

non_ci c. c isthe source code file for Example 9. It illustrates
how you can use the NI1-488.2M driver in a non-Controller
application.

Example 1: Basic Communication

This example focuses on the basics of establishing communication
between a host computer and a GPIB device.

A technician needs to monitor voltage readings using a GPIB
multimeter. His computer is equipped with an |EEE 488.2 interface
board. The NI-488.2M softwareisinstalled, and a GPIB cable runs
from the computer to the GPIB port on the multimeter.

The technician is familiar with the multimeter remote programming
command set. Thislist of commandsis specific to his multimeter and is
available from the multimeter manufacturer.

He sets up the computer to direct the multimeter to take measurements
and record each measurement asit occurs. To do this, he has written an
application that uses some simple high-level GPIB commands. The
following steps correspond to the program flowchart in Figure 2-1.

1

The application initializes the GPIB by bringing the interface board
in the computer online.

The application sends the multimeter an instruction, setting it up to
take voltage measurements in autorange mode.

The application sends the multimeter an instruction to take a
voltage measurement.

The application tells the multimeter to transmit the data it has
acquired to the computer.

The process of requesting a measurement and reading from the
multimeter (Steps 3 and 4) is repeated as long as there are readings
to be obtained.

As a cleanup step before exiting, the application returns the
interface board to its original state by taking it offline.

NI-488.2M User Manual for Windows 95/Windows NT 2-2 © National Instruments Corporation



Chapter 2 Application Examples

Com

GPIB Cable

puter

Multimeter

INIT

Yy i bwt

Set Up Multimeter
to Take Voltages

"VOLTS DC;AUTO"

|
Yy i bwt
Tell Multimeter to

Take Measurements

I—l "VOLTS?" H

y ibrd

Read Measurement

From Multimeter

Finished Getting
Measurements?

; Yes

CLEAN UP

© National Instruments Corporation

Figure 2-1. Program Flowchart for Example 1

2-3  NI-488.2M User Manual for Windows 95/Windows NT




Chapter 2 Application Examples

Example 2: Clearing and Triggering Devices

This example illustrates how you can clear and trigger GPIB devices.

Two freshman physics lab partners are learning how to use a GPIB
digital oscilloscope. They have successfully loaded the NI1-488.2M
software on a personal computer and connected their GPIB board to a
GPIB digital oscilloscope. Their current lab assignment isto write a
small application to practice using the oscilloscope and its command set
using high-level GPIB commands. The following steps correspond to
the program flowchart in Figure 2-2.

1. Theapplication initializes the GPIB by bringing the interface board
in the computer online.

2. Theapplication sends a GPIB clear command to the oscill oscope.
This command clears the internal registers of the oscilloscope,
reinitializing it to default values and settings.

3. Theapplication sends a command to the oscilloscope telling it to
read awaveform each time it istriggered. Predefining the task in
this way decreases the execution time required. Each trigger of the
oscilloscope is now sufficient to get anew run.

4. The application sends a GPIB trigger command to the oscilloscope
which causes it to acquire data.

5. The application queries the oscilloscope for the acquired data. The
oscilloscope sends the data.

The application reads the data from the oscilloscope.

The application calls an external graphics routine to display the
acquired waveform.

Steps 4, 5, 6, and 7 are repeated until al of the desired data has been
acquired by the oscilloscope and received by the computer.

8. Asacleanup step before exiting, the application returns the
interface board to its original state by taking it offline.

NI-488.2M User Manual for Windows 95/Windows NT 2-4 © National Instruments Corporation



Chapter 2 Application Examples

GPIB Cable
Computer Oscilloscope
1 INIT I
y ibclr
2 Clear Oscilloscope Clear Command )_>
vy i bwt

Define Task to Be Done

3 When Oscilloscope "WAV=TRIG"

Is Triggered
=$ ibtrg
| ey | Cmerconmand) -
‘ i bwrt

v ibrd
Read Data
6 From Oscilloscope Im

7 | Display Waveform

Request Data " " '
I_l CURV? H
5 From Oscilloscope !

v

Finished Reading?

¢ Yes
8 CLEAN UP I

Figure 2-2. Program Flowchart for Example 2

© National Instruments Corporation 2-5  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 2 Application Examples

Example 3. Asynchronous I/0

This exampleillustrates how an application conducts data transfers
with a GPIB device and immediately returns to perform other non-

GPIB related tasks while GPIB 1/O is occurring in the background. This
asynchronous mode of operation is particularly useful when the
requested GPIB activity may take some time to complete.

In this example, aresearch biologist istrying to obtain accurate CAT
scans of alab animal’sliver. She will print out a color copy of each
scan asit isacquired. The entire operation is computer-controlled. The
CAT scan machine sends the images it acquires to a computer that has
the NI1-488.2M software installed and is connected to a GPIB color
printer. The biologist is familiar with the command set of her color
printer, as described in the user manual provided by the manufacturer.
She acquires and prints images with the aid of an application she wrote
using high-level GPIB commands. The following steps correspond to
the program flowchart in Figure 2-3.

1. Theapplication initializes the GPIB by bringing the interface board
in the computer online.

Animageisscannedin.

The application sends the GPIB printer acommand to print the
new image and immediately returns without waiting for the I/0
operation to be completed.

The application saves the image obtained to afile.

5. Theapplication inquires as to whether the printing operation has
completed by issuing a GPIB wait command. If the status reported
by the wait command indicates completion (CMPL isin the status
returned) and more scans need to be acquired, Steps 2 through 5
are repeated until the scans have al been acquired. If the status
reported by the wait command in Step 5 does not indicate that
printing is finished, statistical computations are performed on the
scan obtained and Step 5 is repeated.

6. Asacleanup step before exiting, the application returns the
interface board to its original state by taking it offline.

NI-488.2M User Manual for Windows 95/Windows NT 2-6 © National Instruments Corporation



Chapter 2 Application Examples

GPIB Cable
Computer Color Printer
1 INIT I
>
\ 4
2 Image Scan
y ibwta

Print Image Print Image
3 Asynchronously :

4 Non-GPIB Activity:
Save to Disk
¢ i bwai t
g
Nl
5 Is GPIB Printing Non-GPIB Activity:

Compute Statistics

8 CLEAN UP I

Figure 2-3. Program Flowchart for Example 3

© National Instruments Corporation 2-7  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 2 Application Examples

Example 4. End-of-String Mode

This exampleillustrates how to use the end-of-string modes to detect
that the GPIB device has finished sending data.

A journalist is using a GPIB scanner to scan some picturesinto his
personal computer for anews story. A GPIB cable runs between the
scanner and the computer. He is using an application written by an
intern in the department who has read the scanner's instruction manual
and is familiar with the scanner's programming requirements. The
following steps correspond to the program flowchart in Figure 2-4.

1

The application initializes the GPIB by bringing the interface board
in the computer online.

The application sends a GPIB clear message to the scanner,
initializing it to its power-on defaults.

The scanner needs to detect adelimiter indicating the end of a
command. In this case, the scanner expects the commands to be
terminated with <CR><LF> (carriage return, \ r, and linefeed,

\ n). The application sets its end-of-string (EOS) byteto <LF>. The
linefeed code indicates to the scanner that no more datais coming,
and is called the end-of-string byte. It flags an end-of -string
condition for this particular GPIB scanner. The same effect could
be accomplished by asserting the EOI line when the command is
sent.

With the exception of the scan resolution, all the default settings
are appropriate for the task at hand. The application changes the
scan resolution by writing the appropriate command to the scanner.

The scanner sends back information describing the status of the
change resolution command. Thisis a string of bytes terminated by
the end-of -string character to tell the application it is done
changing the resolution.

The application starts the scan by writing the scan command to the
scanner.

The application reads the scan data into the computer.

As a cleanup step before exiting, the application returns the
interface board to its original state by taking it offline.

NI-488.2M User Manual for Windows 95/Windows NT 2-8 © National Instruments Corporation



Chapter 2 Application Examples

GPIB Cable

Computer

INIT

y ibclr

| Reset Internal State

Scanner

Clear Command

y i beos

Set EOS Mode

*ibwrt

Change Scan
Resolution

i

i brd

Read Status

"RES:3\r\n"

3

"OK"

*ibwrt

ﬁ

Start Scan "scan\r\n”

v ibrd :
Read Data I Scanned Data
CLEAN UP I :

© National Instruments Corporation

Figure 2-4. Program Flowchart for Example 4

2-9  NI-488.2M User Manual for Windows 95/Windows NT




Chapter 2 Application Examples

Example 5. Service Requests

This exampleillustrates how an application communicates with a GPIB
device that uses the GPIB service request (SRQ) lineto indicate that it
needs attention.

A graphic arts designer is transferring digital images stored on her
computer to aroll of color film, using a GPIB digital film recorder. A
GPIB cable connects the GPIB port on the film recorder to the

|EEE 488.2 interface board installed in her computer. She hasinstalled
the NI-488.2M software on the host computer and is familiar with the
programming instructions for the film recorder, as described in the user
manual provided by the manufacturer. She places afresh roll of filmin
the camera and launches a simple application she has written using
high-level GPIB commands. With the aid of the application, she
records afew images on film. The following steps correspond to the
program flowchart in Figure 2-5.

1. Theapplication initializes the GPIB by bringing the interface board
in the computer online.

2. Theapplication brings the film recorder to aready state by issuing
adevice clear instruction. The film recorder is now set up for
operation using its default values. (The graphic arts designer has
previously established that the default values for the film recorder
are appropriate for the type of film she isusing).

3. The application advances the new roll of film into position so the
first image can be exposed on the first frame of film. Thisis done
by sending the appropriate instructions as described in the film
recorder programming guide.

4. The application waits for the film recorder to signify that it is done
loading the film, by waiting for RQS (request for service). The film
recorder asserts the GPIB SRQ line when it has finished loading
the film.

5. Assoon asthe film recorder asserts the GPIB SRQ line, the
application’ swait for the RQS event completes. The application
conducts a seria poll by sending a special command message to
the film recorder that directsit to return aresponse in the form of a
seria poll status byte. This byte contains information indicating
what kind of service the film recorder is requesting or what
condition it is flagging. In this example, it indicates the completion
of acommand.

NI-488.2M User Manual for Windows 95/Windows NT 2-10 © National Instruments Corporation



6.

10.

© National Instruments Corporation

Chapter 2 Application Examples

A color image transfers to the digital film recorder in three
consecutive passes—one pass each for the red, green and blue
components of the image. Sub-steps 6a, 6b, and 6¢ are repeated for
each of the passes:

6a. The application sends a command to the film recorder
directing it to accept data to create a single passimage. The
film recorder asserts the SRQ line as soon asapassis
compl eted.

6b. The application waits for RQS.

6¢. When the SRQ lineis asserted, the application seria pollsthe
film recorder to seeif it requested service, asin Step 5.

The application issues a command to the film recorder to advance
the film by one frame. The advance occurs successfully unless the
end of film isreached.

The application waits for RQS, which completes when the film
recorder asserts the SRQ lineto signal it is done advancing the
film.

As soon as the application's wait for RQS compl etes, the
application serial pollsthe film recorder to seeif it requested
service, asin Step 5. The returned serial poll status byte indicates
either of two conditions—the film recorder finished advancing the
film as requested or the end of film was reached and it can no
longer advance. Steps 6 through 9 are repeated aslong asfilmisin
the camera and more images need to be recorded.

As a cleanup step before exiting, the application returns the
interface board to its original state by taking it offline.

2-11  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 2 Application Examples

GPIB Cable
Computer Digital Film Recorder
1 INIT I :
y ibclr
2 | Clear Film Recorder Clear Command :
v ibwt
3 Advance Film I_C "FRM+" )_p:
NN CEED S

Request Service

Wait For the Film i
4 Recorder to " Did \S(ou -
Request Service equest Service?

T — Yes

¢ i brsp

3

5 | Read Response From Response
the Film Recorder

v

Finished Loading
Film?

l Yes
Exit Application and
Repair Film Recorder

(continues)
Figure 2-5. Program Flowchart for Example 5

NI-488.2M User Manual for Windows 95/Windows NT 2-12 © National Instruments Corporation




Chapter 2 Application Examples

> 6

These steps are
repeated three <
times, once for

each color pass

(Continued)
Computer Digital Film Recorder

[ ) '

. :

o :

"""""""""""""""" #'TBN%""'"'"'"'"'"'"'"'"'"}'"'ﬁ

6 Create a Single Data for Red,

a Pass Image Green, or Blue Pass, H

¢ i bwai t :

Wait For the Film
6b Recorder to
Request Service

i brsp

6c | Read Response From lg | Response ) :
the Film Recorder :

I ( "ADV" ’ » :.
v i buai t 5
Request Service :

Wait For the Film H

8 Recorder to Did You
Request Service Request Service?

¢ i brsp
9 Read Response From 4_( Response )—-
the Film Recorder

7 Advance Film

v

No Reached End of

Film?

¢ Yes

10 CLEAN UP I

© National Instruments Corporation

Figure 2-5. Program Flowchart for Example 5 (Continued)

2-13  NI-488.2M User Manual for Windows 95/Windows NT




Chapter 2 Application Examples

Example 6: Basic Communication with
|IEEE 488.2-Compliant Devices

This example provides an introduction to communicating with
| EEE 488.2-compliant devices.

A test engineer in ametal factory isusing | EEE 488.2-compliant tensile
testers to find out the strength of metal rods as they come out of
production. There are several tensile testers and they are all connected
to acentral computer equipped with an |EEE 488.2 interface board.
These machines are fairly voluminous and it is difficult for the engineer
to reach the address switches of each machine. For the purposes of his
future work with these tensile testers, he needs to determine what GPIB
addresses they have been set to. He can do so with the aid of asimple
application he has written. The following steps correspond to the
program flowchart in Figure 2-6.

1. Theapplication initializes the GPIB by bringing the interface board
in the computer online.

2. The application issues a command to detect the presence of
listening devices on the GPIB and compiles alist of the addresses
of all such devices.

3. Theapplication sends an identification query (" * | DN?") all of the
devices detected on the GPIB in Step 2.

4. The application reads the identification information returned by
each of the devices asit responds to the query in Step 3.

5. Asacleanup step before exiting, the application returns the
interface board to its original state by taking it offline.

NI-488.2M User Manual for Windows 95/Windows NT 2-14 © National Instruments Corporation



Chapter 2 Application Examples

Tensile Tester 3

GPIB Cable GPIB Cable GPIB Cable
4 N Y4
Computer Tensile Tester 1 Tensile Tester 2
1 INIT : : :
y FindLstn
Who's Listening? }—p»t > »!
2 Get a List of Devices Device 1 Is Here ' H H
Present on GPIB H - H H
< s \Dewce 2 Is Here : H
!< Device 3 Is Here ’_.
J‘ Send H H H
3 Tell Device 1 to p . H
Identify Itself IDN? H ' H
* Recei ve
4 Read Response B .
From Device 1 MUTT 10383 :
3 Tell Device 2t0 || “DN?" :
Identify Itself 1 . _ . :
* Recei ve H H H
4 Read Response || _ : . " :
From Device 2 | D ' MUTT 10426 ' '
3 Tell Device 3 to “IDN?" :
Identify Itself 1 H H .
* Recei ve
4 Read Response I‘ . .
From Device 3 ™ : v MUTT 10528 :
5 | CLEAN UP : : :

Figure 2-6. Program Flowchart for Example 6

© National Instruments Corporation

2-15  NI-488.2M User Manual for Windows 95/Windows NT




Chapter 2 Application Examples

Example 7: Serial Polls Using NI-488.2 Routines

This exampleillustrates how you can take advantage of the NI-488.2
routines to reduce the complexity of performing serial polls of multiple
devices.

A candy manufacturer is using GPIB strain gauges to measure the
consistency of the syrup used to make candy. The plant has four big
mixers containing syrup. The syrup has to reach a certain consistency to
make good quality candy. Thisis measured by strain gauges that
monitor the amount of pressure used to move the mixer arms. When a
certain consistency is reached, the mixture is removed and a new batch
of syrup is poured in the mixer. The GPIB strain gauges are connected
to a computer with an IEEE 488.2 interface board and the NI1-488.2M
software installed. The processis controlled by an application that uses
NI-488.2 routines to communicate with the | EEE 488.2-compliant
strain gauges. The following steps correspond to the program flowchart
in Figure 2-7.

1. Theapplication initializes the GPIB by bringing the interface board
in the computer online.

2. Theapplication configures the strain gauges to reguest service
when they have a significant pressure reading or a mechanical
failure occurs. They signal their request for service by asserting the
SRQ line.

3. Theapplication waits for one or more of the strain gauges to

indicate that they have a significant pressure reading. This wait
event ends as soon as the SRQ lineis asserted.

4. Theapplication seria polls each of the strain gauges to seeif it
requested service.

5. Once the application has determined which one of the strain gauges
requires service, it takes areading from that strain gauge.

6. If thereading matches the desired consistency, a dialog window
appears on the computer screen and prompts the mixer operator to
remove the mixture and start a new batch. Otherwise, adialog
window prompts the operator to service the mixer in some other

way.

Steps 3 through 6 are repeated as long as the mixers are in operation.

7. After thelast batch of syrup has been processed, the application
returns the interface board to its original state by taking it offline.

NI-488.2M User Manual for Windows 95/Windows NT 2-16 © National Instruments Corporation



Chapter 2 Application Examples

GPIB Cable

GPIB Cable GPIB Cable

-~

Computer

INIT I

‘ SendLi st

Configure Strain
Gauges to Request
Service When They

Have a Reading

‘ Wai t SRQ
Wait For 1 Or More
3 Strain Gauges to
Request Service

‘Fi ndRQS

Serial Poll Each Strain
4 Gauge Until One

S

Strain Gauge 1

"SRQ=HI"

Strain Gauge 2 Strain Gauge 3

Requesting Service

Is Located

$ Recei ve

5 | GetaReading From
Strain Gauge

v

No Does the Gauge

Need Service?

#No

Provide Whatever
Service Is Required

Mixture Is Ready
6 Display "Remove
Mixture" Message
-

Done For the
Day?

# Yes

7 ’ CLEAN UP I

Figure 2-7. Program Flowchart for Example 7

© National Instruments Corporation

2-17

NI-488.2M User Manual for Windows 95/Windows NT




Chapter 2 Application Examples

Example 8: Parallel Polls

This exampleillustrates how you can use NI-488.2 routines to obtain
information from several IEEE 488.2-compliant devices at once using a
procedure called parallel polling.

The process of manufacturing a particular alloy involves bringing three
different metalsto specific temperatures before mixing them to form
the alloy. Three vats are used, each containing a different metal. Each is
monitored by a GPIB ore monitoring unit. The monitoring unit consists
of a GPIB temperature transducer and a GPIB power supply. The
temperature transducer is used to probe the temperature of each metal.
The power supply isused to start a motor to pour the metal into the
mold when it reaches a predefined temperature. The three monitoring
units are connected to the | EEE 488.2 interface board of a computer
that has the NI-488.2M software installed. An application using
NI-488.2 routines operates the three monitoring units. The application
will obtain information from the multiple units by conducting a parallel
poll, and will then determine when to pour the metals into the mixture
tank. The following steps correspond to the program flowchart in
Figure 2-8.

1. Theapplication initializes the GPIB by bringing the interface board
in the computer online.

2. Theapplication configures the temperature transducer in the first
monitoring unit by choosing which of the eight GPIB data lines the
transducer uses to respond when a parallel poll is conducted. The
application also sets the temperature threshold. The transducer
manufacturer has defined the individual status (i st ) bit to be true
when the temperature threshold is reached, and the configured
status mode of the transducer is assert the data line. When a
parallel poll is conducted, the transducer assertsits datalineif the
temperature has exceeded the threshold.

3. Theapplication configures the temperature transducer in the
second monitoring unit for parallel polls.

4. The application configures the temperature transducer in the third
monitoring unit for parallel polls.

5. The application conducts non-GPIB activity while the metals are
heated.

6. The application conducts a paralel poll of all three temperature
transducers to determine whether the metals have reached the
appropriate temperature. Each transducer assertsits dataline

NI-488.2M User Manual for Windows 95/Windows NT 2-18 © National Instruments Corporation



Chapter 2 Application Examples

during the configuration step if its temperature threshold has been
reached.

7. If theresponse to the poll indicates that all three metals are at the
appropriate temperature, the application sends a command to each
of the three power supplies, directing them to power on. Then the
motors start and the metals pour into the mold.

If only one or two of the metalsis at the appropriate temperature,
Steps 5 and 6 are repeated until the metals can be successfully
mixed.

8. Theapplication unconfigures all of the transducers so that they no
longer participate in parallel polls.

9. Asacleanup step before exiting, the application returns the
interface board to its original state by taking it offline.

GPIB Cable GPIB Cable GPIB Cable GPIB Cable GPIB Cable  GPIB Cable

Computer UNIT 1 UNIT 2 UNIT 3
Temperature Power Temperature Power Temperature Power
1 INIT Transducer Supply Transducer Supply  Transducer Supply

‘ PPol | Config

Configure Transducer 1 Parallel Poll >
For Parallel Ports Enable

PPol | Confi g

Configure Transducer 2
For Parallel Ports

3

Parallel Poll
Enable

# PPol | Confi g

4 Configure Transducer 3
For Parallel Ports
5 Non-GPIB Activity

Parallel Poll
Enable

Parallel Poll
Are All Metals
Ready?

Yes
SendLi st

Start Power Supplies

y PPol | Unconfig

Parallel Poll
Disable

8 PPoll Unconfigure
v

9 CLEAN UP I

Figure 2-8. Program Flowchart for Example 8

© National Instruments Corporation 2-19  NI-488.2M User Manual for Windows 95/Windows NT




Chapter 2 Application Examples

Example 9: Non-Controller Example

This exampleillustrates how you can use the N1-488.2M software to
emulate a GPIB device that is not the GPIB Controller.

A software engineer has written firmware to emulate a GPIB device for
aresearch project and istesting it using an application that makes
simple GPIB calls. The following steps correspond to the program
flowchart in Figure 2-9.

1. Theapplication brings the device online.

2. Theapplication waits for any of three eventsto occur: the device
to become listen-addressed, become talk-addressed, or receive a
GPIB clear message.

3. Assoon as one of the events occurs, the application takes an action
based upon the event that occurred. If the device was cleared, the
application resets the internal state of the device to default values.
If the device was talk-addressed, it writes data back to the
Controller. If the device was listen-addressed, it reads in new data
from the Controller.

NI-488.2M User Manual for Windows 95/Windows NT 2-20 © National Instruments Corporation



Chapter 2 Application Examples

Device Controller

1 INIT I

A A A

y i bwai t
Wait To Be Talk

2 Addressed, Listen
Addressed, Or Cleared

3

| | Reset Internal
State

Is This the
Clear Event?

No Is This the Talk

Addressed Event?
l Yes
i bwrt
3 | Write Out New Data Data

! i brd

Read In New Data I

E

v

Figure 2-9. Program Flowchart for Example 9

© National Instruments Corporation 2-21  NI-488.2M User Manual for Windows 95/Windows NT



Chapter

Developing Your
Application

This chapter explains how to develop a GPIB application using NI1-488
functions and N1-488.2 routines.

Choosing Your Programming Methodology

Based on your development environment, you can select a method for
accessing the driver, and based on your GPIB programming needs, you
can choose between the NI-488 functions and NI-488.2 routines.

Choosing a Method to Access the NI-488.2M Driver

Applications can access the NI-488.2M dynamic link library
(gpi b- 32. dI I') either by using an NI-488.2M language interface or
by direct access.

NI-488.2M Language Interfaces

Y ou can use alanguage interface if your program iswritten in
Microsoft Visual C/C++ (2.0 or higher), Borland C/C++ (4.0 or
higher), or Microsoft Visual Basic (4.0 or higher). Otherwise, you must
accessthe gpi b- 32. dI | directly.

Direct Entry Access

You can directly access the DLL from any programming environment
that allows you to request addresses of variables and functions that a
DLL exports. Thegpi b- 32. dl | exports pointersto each of the
global variables and all of the NI1-488 and NI-488.2 cadlls.

© National Instruments Corporation 3-1  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 3 Developing Your Application

Choosing between NI-488 Functions and NI-488.2 Routines

The NI-488.2M software includes two distinct sets of subroutines to
meet your application needs. Both of these sets, the NI-488 functions
and the NI-488.2 routines, are compatible across computer platforms
and operating systems, so you can port programs to other platforms
with little or no source code modification. For most applications, the
NI-488 functions are sufficient. Y ou should use the N1-488.2 routines if
you have a complex configuration with one or more interface boards
and multiple devices. Regardless of which option you chooseg, the
driver automatically addresses devices and performs other bus
management operations necessary for device communication.

The following sections discuss some differences between NI-488
functions and N1-488.2 routines.

Using NI-488 Functions: One Device for Each
Board

If your system has only one device attached to each board, the NI-488
functions are probably sufficient for your programming needs. Some
other factors that make the NI-488 functions more convenient include
the following:

*  With NI-488 asynchronous I/O functions (i bcnda, i br da, and
i bwrt @), you can initiate an 1/0 sequence while maintaining
control over the CPU for non-GPIB tasks.

*  NI-488 functions include built-in file transfer functions (i br df
andi bwtf).

e With NI-488 functions, you can control the busin non-typical
ways or communicate with non-compliant devices.

The NI-488 functions consist of high-level (or device) functions that
hide much of the GPIB management operations and low-level (or
board) functions that offer you more control over the GPIB than
NI-488.2 routines. The following sections describe these different
function types.

NI-488.2M User Manual for Windows 95/Windows NT 3-2 © National Instruments Corporation



Chapter 3 Developing Your Application

NI-488 Device-Level Functions

Device functions are high-level functions that automatically execute
commands to handle bus management operations such as reading from
and writing to devices or polling them for status. If you use device
functions, you do not need to understand GPIB protocol or bus
management. For information about device-level calls and how they
manage the GPIB, refer to Device-Level Calls and Bus Management, in
Chapter 7, GPIB Programming Techniques.

NI-488 Board-Level Functions

Board functions are low-level functions that perform rudimentary GPIB
operations. Board functions access the interface board directly and
require you to handle the addressing and bus management protocol. In
cases when the high-level device functions might not meet your needs,
low-level board functions give you the flexibility and control to handle
situations such as the following:

»  Communicating with non-compliant (non-IEEE 488.2) devices

» Altering various low-level board configurations

»  Managing the bus in non-typical ways

The NI-488 board functions are compatible with, and can be
interspersed within, sequences of NI-488.2 routines. When you use
board functions within a sequence of NI-488.2 routines, you do not
need aprior cal toi bf i nd to obtain a board descriptor. Y ou simply
substitute the board index as the first parameter of the board function

call. With this flexibility, you can handle non-standard or unusual
situations that you cannot resolve using NI-488.2 routines only.

Using NI-488.2 Routines: Multiple Boards and/or

Multiple Devices

When your system includes a board that must access multiple devices,
use the N1-488.2 routines. N1-488.2 routines can perform the following
tasks with asingle call:

* Find dl of the Listeners on the bus

» Find adevice requesting service

»  Determine the state of the SRQ line, or wait for SRQ to be asserted
e Address multiple devicesto listen

© National Instruments Corporation 3-3  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 3 Developing Your Application

Y ou can mix board-level NI-488 functions with the NI-488.2 routines
to have accessto all of the NI-488.2 functionality.

Checking Status with Global Variables

Each NI-488 function and NI-488.2 routine updates four global
variablesto reflect the status of the device or board that you are using.
These global status variables are the status word (i bst a), the error
variable (i ber r) and the count variables (i bcnt and i bent | ). They
contain useful information about the performance of your application.

Y our application should check these variables after each GPIB call. The
following sections describe each of these global variables and how you
can use them in your application.

5 Note: If your application is a multithreaded application, refer to the
Writing Multithreaded Win32 GPIB Applications section in
Chapter 7, GPIB Programming Techniques.

Status Word — ibsta

All functions update a global statusword, i bst a, which contains
information about the state of the GPIB and the GPIB hardware. The
value stored ini bst a isthe return value of all of the NI-488 functions
except i bf i nd andi bdev. You can examine various status bitsin

i bst a and use that information to make decisions about continued
processing. If you check for possible errors after each call using the

i bst a ERR bit, debugging your application is much easier.

i bst aisal6-bit value. A bit value of one (1) indicates that a certain
condition isin effect. A bit value of zero (0) indicates that the condition
isnot in effect. Each bitini bst a can be set for NI-488 device calls
(dev), NI-488 board calls (brd) and NI-488.2 calls, or al (dev, brd).

Table 3-1 shows the condition that each bit position represents, the bit
mnemonics, and the type of calls for which the bit can be set. For a
detailed explanation of each of the status conditions, refer to
Appendix A, Satus Word Conditions.

NI-488.2M User Manual for Windows 95/Windows NT 3-4 © National Instruments Corporation



Chapter 3 Developing Your Application

Table 3-1. Status Word Layout

Bit | Hex
Mnemonic | Pos. | Value | Type Description
ERR 15 8000 |[dev,brd | GPIB error
TIMO 14 4000 | dev,brd [ Timelimit exceeded
END 13 2000 | dev,brd [ END or EOS detected
SRQI 12 1000 | brd SRQ interrupt received
RQS 11 800 | dev Device requesting service
CMPL 8 100 | dev,brd | 1/Ocompleted
LOK 7 80 | brd L ockout State
REM 6 40 | brd Remote State
CiC 5 20 | brd Controller-In-Charge
ATN 4 10 | brd Attention is asserted
TACS 3 8 |brd Talker
LACS 2 4 |brd Listener
DTAS 1 2 |brd Device Trigger State
DCAS 0 1 |brd Device Clear State

The language header file included on your distribution disk defines
each of thei bst a status bits. You can test for ani bst a status bit
being set using the bitwise and operator (“&” in C/C++). For example,
thei bst a ERR bitisbit 15 of i bst a. To check for a GPIB error, use
the following statement after each GPIB call as shown:

if (ibsta & ERR)

printf("GPIB error encountered");

Error Variable — iberr

If theERR bitissetini bst a, aGPIB error has occurred. When an
error occurs, the error typeis specified by i ber r . To check for aGPIB
error, use the following statement after each GPIB call:

if (ibsta &RR)

printf("GPIB error % encountered", iberr);

Note:  Thevalueini berr ismeaningful asan error type only when the
ERRbitissetini bst a, indicating that an error has occurred.

© National Instruments Corporation

3-5

NI-488.2M User Manual for Windows 95/Windows NT



Chapter 3 Developing Your Application

For more information on error codes and solutions refer to Chapter 4,
Debugging Your Application, or Appendix B, Error Codes and
Solutions.

Count Variables — ibcnt and ibcntl

The count variables are updated after each read, write, or command
function. In Win32 applications, i bcnt and i bent | are 32-bit
integers. On some systems, like MS-DOS, i bcnt isa16-bit integer,
andi bent | isa32-bit integer. For cross-platform compatibility, all
applications should use i bent | . If you are reading data, the count
variables indicate the number of bytes read. If you are sending data or
commands, the count variables reflect the number of bytes sent.

In your application you can use the count variables to null-terminate an
ASCII string of datareceived from an instrument. For example, if data
isreceived in an array of characters, you canusei bent | to
null-terminate the array and print the measurement on the screen as
follows:

char rdbuf[512];
ibrd (ud, rdbuf, 20L);
if (!(ibsta & ERR)){
rdbuf[ibcntl] = "'\0";
printf ("Read: 9%\n", rdbuf);
}
el se {
error();

}

Using Win32 Interactive Control to Communicate with
Devices

Before you begin writing your application, you might want to use the
Win32 Interactive Control utility. With Win32 Interactive Control, you
communicate with your instruments from the keyboard rather than from
an application. Y ou can use Win32 Interactive Control to learn to
communicate with your instruments using the NI-488 functions or
NI-488.2 routines. For specific device communication instructions,
refer to the user manual that came with your instrument. For
information about using Win32 Interactive Control and for detailed
examples, refer to Chapter 6, Win32 Interactive Control Utility.

NI-488.2M User Manual for Windows 95/Windows NT 3-6 © National Instruments Corporation



Chapter 3 Developing Your Application

Programming Model for NI-488 Applications

This section discusses items you should include in your application,
general program steps, and an NI-488 example.

Items to Include

© National Instruments Corporation

In aC application, include the header fileswi ndows. h and
decl - 32. h.wi ndows. h, the standard Windows header file,
contains definitions used by decl - 32. hand decl - 32. h
contains prototypes for the GPIB functions and constants that you
can usein your application.

Check for errors after each N1-488 function call.

Declare and define afunction to handle GPIB errors. This function
takes the device offline and closes the application. If the function is
declared as;

voi d gpiberr (char * nsg); /*function prototype*/
then your application invokes it as follows:

if (ibsta & ERR) {
gpi berr("GPIB error");

}

3-7  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 3 Developing Your Application

NI-488 Program Shell

Figure 3-1 isaflowchart of the stepsto create your application using

NI-488 functions. The flowchart is for device-level calls.

< START )

\ 4
Open Device (i bdev)

v

Are All Devices
Open?

Make a Device Level Call

«» Send Data to Device (i bwrt)

» Receive Data From Device (i br d)
« Clear Device (i bcl r)

« Serial Poll Device (i br sp)

and so on

Finished GPIB
Programming?

l Yes

Close Device (i bonl)

Closed All
Devices?

¢ Yes
END

Q )

NI-488.2M User Manual for Windows 95/Windows NT 3-8

Figure 3-1. General Program Shell Using NI-488 Device Functions

© National Instruments Corporation



Chapter 3 Developing Your Application

NI-488 General Program Steps and Examples

The following steps demonstrate how to use the NI-488 device
functionsin your application. The NI-488.2M software includes the
source code for an example written in C (devsanp. c¢) and the source
code for the example written to use direct entry to access the

gpi b-32.dl |l (dl | dev. c). The NI-488.2M software also includes
asample program written in Visual Basic, devsanp. frm

Step 1. Open a Device

Your first NI-488 function call should beacall toi bdev to open a
device. Thei bdev function requires the following parameters:

»  Connect board index (typically set to 0, because your board is
GPIBO0),

*  Primary address for the GPIB instrument (refer to the GPIB
instrument manual)

e Secondary address for the GPIB instrument (0 if the GPIB
instrument does not use secondary addressing)

*  Timeout period (typically set to T10s which is 10 seconds)

»  End-of-transfer mode (typically 1 so that EOI is asserted with the
last byte of writes)

e EOS detection mode (0 if the GPIB instrument does not use EOS
characters)

When you call i bdev, the driver automatically initializes the GPIB by
sending an Interface Clear (IFC) message and placing the devicein
remote programming state. A successful i bdev call returns a unit
descriptor handle, ud, that is used for all NI-488 calls that
communicate with the GPIB instrument.

Step 2. Clear the Device

Usei bcl r to clear the device before you configure the device for your
application. Clearing the device resetsitsinternal functionsto a default
State.

Step 3. Communicate with the Device

After you open and clear the device, your GPIB instrument is ready to
receive instructions. If you want to acquire readings from your device,
you can do so in several ways . Each GPIB device has its own specific
instructions. Y ou should refer to the documentation that came with

© National Instruments Corporation 3-9  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 3

Developing Your Application

your GPIB device to learn how to properly communicate with it. For
this example, assume that the GPIB device can be programmed to
acquire readings whenever it is triggered. Furthermore, assume that the
GPIB device reguests service when it has acquired areading. Given
these assumptions, the following steps are necessary:

Step 3a.

Program the GPIB device to acquire areading whenever it receives a
GPIB trigger using thei bwr t function. The buffer that you pass to
i bwrt isthe command message that programs the device to behave

properly.

Step 3b.

Trigger the device using the i bt r g function.

Step 3c.

Wait for the device to acquire the reading using the i bwai t function
withamask valueof RQS | Tl MObecause the event of interest isthe
device' s ReQuest for Service (RQS). If thei bwai t function times out
before the RQS event occurs, the timeout bit (TIMO) is set in the

i bst a valuefor thecall.

Step 3d.

If the wait for the service request succeeded, get the device' s serial poll
response byte and verify that it indicates that the device obtained a
good measurement, using thei br sp function.

Step 3e.

Read the measurement from the device using the i br d function and
record it in alist of device measurements.

Steps 3b through 3e should be repeated for each measurement you want
to acquire.

Step 4. Place the Device Offline Before Exiting

Your Application

Once you are finished accessing the GPIB device, take it offline using
thei bonl function before you exit your application.

NI-488.2M User Manual for Windows 95/Windows NT 3-10 © National Instruments Corporation



Chapter 3 Developing Your Application

Programming Model for NI-488.2 Applications

This section discusses items you should include in an application that
uses NI-488.2 routines, general program steps, and an NI-488.2
example.

Items to Include

© National Instruments Corporation

In aC application, include the header fileswi ndows. h and
decl - 32. h.wi ndows. h, the standard Windows header file,
contains definitions used by decl - 32. hand decl - 32. h
contains prototypes for the GPIB routines and constants that you
can usein your application.

Check for errors after each N1-488.2 routine call.

Declare and define afunction to handle GPIB errors. This function
takes the device offline and closes the application. If the function is
declared as;

voi d gpiberr (char * nsg); /*function prototype*/
Then your application invokes it as follows:

if (ibsta & ERR) {
gpi berr("GPIB error");
}

3-11  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 3 Developing Your Application

NI-488.2 Program Shell

Figure 3-2 isaflowchart of the stepsto create your application using
NI-488.2 routines.

C START )

\ 4
Initialize Specified GPIB
Interface (Sendl FC)

v

Are All Boards
Initialized?

Nyl
Low-Level Making High-Level

or Low-Level Call?

High-Level

Make a Low-Level Call Make a High-Level Call

« Address Devices to Listen (SendSet up) « Send Data to Device (Send)

« Send Data to Addressed Listener « Receive Data From Device (Recei ve)
(SendDat aByt es) « Clear Device (DevC ear)

 Address Device to Talk (Recei veSet up) « Serial Poll Device (ReadSt at usByt e)

* Receive Data From Addressed Talker and so on
(RcvRespMsQ)

and so on

No

Finished GPIB
Programming?

L Yes

Close Board (i bonl )

Are All Boards No
Closed?
‘ Yes
C END )

Figure 3-2. General Program Shell Using NI-488.2 Routines

NI-488.2M User Manual for Windows 95/Windows NT 3-12 © National Instruments Corporation



Chapter 3 Developing Your Application

NI-488.2 General Program Steps and Examples

The following steps demonstrate how to use the NI-488.2 routinesin
your application. The NI-488.2M software includes the source code for
an example written in C (sanp4882. c¢) and the source code for the
example written to use direct entry to accessthe gpi b- 32. di |

(dl'1 4882. ¢). The NI-488.2M software also includes a sample
program written in Visual Basic, sanp4882. frm

Step 1. Initialization

Usethe Sendl FCroutine to initialize the bus and the GPIB interface
board so that the GPIB board is Controller-In-Charge (CIC). The only
argument of Sendl FCisthe GPIB interface board number, typically 0
for GPIBO.

Step 2. Determine the GPIB Address of Your

Device

If you do not know the address of your device, you can use the
Fi ndLst n routine to find all the devices attached to the GPIB. The
Fi ndLst n routine requires the following parameters:

» Interface board number (typically set to O, because your board is
GPIBO0)

e Alist of primary addresses, terminated with the NOADDR
constant

» Alist of GPIB addresses of devices found listening on the GPIB
e Limit which isthe humber of the GPIB addresses to report

TheFi ndLst n routine tests for the presence of all of the primary
addresses that are passed to it. If adeviceis present at a particular
primary address, then the primary addressis stored in the GPIB
addresses list. Otherwise, all secondary addresses of the given primary
address are tested, and the GPIB address of any devices found are
stored in the GPIB addresseslist. Once you have thelist of GPIB
addresses, you can determine which one corresponds to your instrument
and use it for subsequent NI-488.2 calls.

Alternatively, if you already know your GPIB device's primary and
secondary address, you can create an appropriate GPIB address to use
in subsequent NI-488.2 calls as follows: a GPIB address is a 16-bit
value that contains the primary addressin the low byte and the
secondary addressin the high byte. If you are not using secondary

© National Instruments Corporation 3-13  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 3

Developing Your Application

addressing, the secondary addressis 0. For example, if the primary
addressis 1, then the word = 0x01; otherwiseif the primary addressis 1
and the secondary address is 0x67, then the word = 0x6701.

Step 3. Initialize the Device

After you find the device, use the DevCd ear routineto clear it. The
first argument is the GPIB board number. The second argument is the
GPIB address as determined in Step 2.

Step 4. Communicate with the Device

After initialization, your GPIB instrument is ready to receive
instructions. If you want to acquire readings from your device, you do
so in several ways. Each GPIB device has its own specific instructions.
Y ou should refer to the documentation that came with your GPIB
deviceto learn how to properly communicate with it. For this example,
assume that the GPIB device can be programmed to acquire readings
whenever it istriggered. Furthermore, assume that the GPIB device
requests service when it has acquired areading. Given that, the
following steps are necessary:

Step 4a.

Program the GPIB device to acquire areading whenever it receives a
GPIB trigger using the Send command. The buffer that you passto
Send isthe command message that programs the device to behave

properly.

Step 4b.
Trigger the device using the Tr i gger routine.

Step 4c.
Wait for the device to acquire the reading using the Wai t SRQroutine.

Step 4d.

If the wait for the service request succeeded, read the seria poll status
byte and verify that it indicates that the device obtained a good
measurement using the ReadSt at usByt e routine.

NI-488.2M User Manual for Windows 95/Windows NT 3-14 © National Instruments Corporation



Chapter 3 Developing Your Application

Step 4e.

Read the measurement from the device using the Recei ve routine and
record it in alist of device measurements.

Steps 4b through 4e should be repeated for each measurement you want
to acquire.

Step 5. Place the Device Offline Before Exiting
Your Application

Once you are finished accessing the GPIB device, take it offline using
thei bonl function before you exit your application.

Language-Specific Programming Instructions

The following sections describe how to develop, compile, and link your
Win32 GPIB applications using various programming languages.

Microsoft Visual C/C++ (Version 2.0 or Higher)

Before you compile your Win32 C application, make sure that the
following lines are included at the beginning of your program:

#i ncl ude <w ndows. h>

#i ncl ude "decl-32. h"

To compile and link a Win32 console application named cpr og ina
DOS shell, type the following on the command line:

cl cprog.c gpib-32. obj

Borland C/C++ (Version 4.0 or Higher)

Before you compile your Win32 C application, make sure that the
following lines are included at the beginning of your program:

#i ncl ude <w ndows. h>

#i ncl ude "decl-32. h"

To compile and link a Win32 console application named cpr og ina
DOS shell, type the following on the command line:

bcc32 -w32 cprog. ¢ borl andc_gpi b- 32. obj

© National Instruments Corporation 3-15  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 3 Developing Your Application

Visual Basic (Version 4.0 or Higher)

With Visual Basic, you can access the NI-488 functions as subroutines,
using the BASIC keyword CALL followed by the NI1-488 function
name, or you can access the NI-488 functionsusing thei | set of
functions. With some of the NI-488 functions and NI-488.2 subroutines
(for examplei br d or Recei ve) thelength of the string buffer is
automatically calculated within the actual function or subroutine, which
eliminates the need to pass in the length as an extra parameter. Refer to
the online help or NI-488.2M Function Reference Manual for Win32
for more information about function syntax for Visual Basic.

Before you run your Visua Basic application, include the files
ni gl obal . bas and vbi b- 32. bas in your application project file.

Direct Entry with C

The following sections describe how to use direct entry with C.

gpib-32.dll Exports

gpi b-32. dl | exports pointersto the global variables and al of the
NI-488.2 functions and subroutines. Pointers to the global variables
(ibsta,iberr,ibcnt,andi bcnt|) are accessible through these
exported variables:

int *user_ibsta;
int *user_iberr;
int *user_ibcnt;
| ong *user _ibcntl;

Except for the functionsi bbna, i bfi nd,i brdf ,andi bwtf, all
of the NI-488.2 function and subroutine names are exported from

gpi b- 32. dl | . What this means isthat to use direct entry to access a
particular function al you need to do to get a pointer to the exported
functionisto call Get Pr ocAddr ess passing the name of the
function as a parameter. The parameters that you use when you invoke
the function are identical to those described in the online help and
NI-488.2M Function Reference Manual for Win32.

These functions al require an argument that isaname. i bbna requires
aboard name, i bf i nd requiresaboard or device name, and i br df
andi bwrt f take afile name. Because Windows NT supports both
normal (8-bit) and Unicode (16-bit) characters, gpi b- 32. dl |

exports both normal and Unicode versions of these functions. Because
Windows 95 does not support 16-bit wide characters, use only the 8-bit

NI-488.2M User Manual for Windows 95/Windows NT 3-16 © National Instruments Corporation



Chapter 3 Developing Your Application

ASCII versions, named i bbnaA, i bfi ndA,i brdf A, andi bwt fA.
The Unicode versions are named i bbnaWi bf i ndWi br df Wand

i bwrt f W You can use either the Unicode or ASCII versions of these
functions with Windows NT, but only the ASCII versions with
Windows 95.

In addition to pointers to the status variables and a handle to the loaded
gpi b-32. dl I , you must define the direct entry prototypes for the
functions you use in your application. The prototypes for each function
exported by gpi b- 32. dl | can be found in the NI-488.2M Function
Reference Manual for Win32. The NI-488.2M direct entry sample
programs illustrate how to use direct entry to accessgpi b- 32. dl | .
For more information on direct entry, refer to the Win32 SDK
(Software Development Kit) online help.

Directly Accessing the gpib-32.dll Exports

Make sure that the following lines are included at the beginning of your
application:

#i fdef __cplusplus

extern "C'{

#endi f

#i ncl ude <w ndows. h>
#i ncl ude "decl-32. h"

#i fdef __cpluspl us

}
#endi f

In your Win32 application, you first need to load gpi b- 32. dl | . The
following code fragment illustrates how to call the LoadLi brary
function and check for an error:
HI NSTANCE Gpi b32Li b = NULL;
Gpi b32Li b=LoadLi brary("GPI B-32. DLL");
if (Gpib32Lib == NULL) {
return FALSE;
}

Next, your Win32 application needs to use Get Pr ocAddr ess to get
the addresses of the global status variables and functions your
application needs to use. The following code fragment illustrates how
to get the addresses of the pointers to the status variables and any
functionsit needsto use:

© National Instruments Corporation 3-17  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 3 Developing Your Application

/* Pointers to NI -488.2 global status variables */
int *Pibsta;
int *Piberr;
long *Pi bcntl;
static int(__stdcall *Pibdev)
(int ud, int pad, int sad, int tno, int eot,
int eos);

static int(__stdcall *Pibonl)
(int ud, int v);
Pibsta = (int *) GetProcAddress(Gpi b32Li b,
(LPCSTR) "user _i bsta");
Piberr = (int *) GetProcAddress(Gpi b32Li b,
(LPCSTR) "user _i berr");
Pi bcntl = (long *) GetProcAddress(Gpi b32Li b,
(LPCSTR) "user _i bent");

Pi bdev = (int (__stdcall *)

(int, int, int, int, int, int))

Get ProcAddr ess( Gpi b32Li b, (LPCSTR)"i bdev");
Pibonl = (int (__stdcall *)(int, int))

Get ProcAddr ess( Gpi b32Li b, (LPCSTR)"i bonl");

If Get Pr ocAddr ess fails, it returnsa NULL pointer. The following
code fragment illustrates how to verify that none of the callsto
Get Pr ocAddr ess failed:

if ((Pibsta == NULL) ||
(Piberr == NULL) ||
(Pibcntl == NULL) ||
(Pi bdev == NULL) ||
(Pibonl == NULL)) {

/* Free the GPIB library */
Fr eeLi brary( Goi b32Li b) ;
printf("GetProcAddress failed.");

}

Y our Win32 application needs to dereference the pointer to access
either the status variables or function. The following code illustrates
how to call afunction and access the status variable from within your
application:

dvm = (*Pi bdev) (0, 1, 0, T10s, 1, 0);
if (*Pibsta & ERR) {
printf("Call failed");

}

NI-488.2M User Manual for Windows 95/Windows NT 3-18 © National Instruments Corporation



Chapter 3 Developing Your Application

Before exiting your application, you need to free gpi b- 32. dl | with
the following command:

FreeLi brary( Gpi b32Li b);

For more examples of directly accessing gpi b- 32. dl |, refer to the
NI-488.2M direct entry sample programsdl| | dev. ¢ and

dl | 4882. c that areinstalled with the GPIB software. For more
information on direct entry, refer to the Win32 SDK (Software
Development Kit) online help.

Windows 95: Running Existing GPIB Applications

Running Existing Win16 GPIB Applications

Y ou can run existing Win16 GPIB applications under Windows 95 by
using the pair of 16-to-32 bit thunking DLLs, gpi b. dI | and
gpi b32ft. dl I , which areinstalled with your NI1-488.2M software.

To run 16-bit Windows GPIB applications, the system uses the special
GPIB dynamic link library, gpi b. dl | . When you install the
NI-488.2M software, gpi b. dl | and gpi b32ft. dl | arecopied
into the Windows System directory. These DLLs are automatically
accessed whenever you execute aWinl6 GPIB application.

Running Existing DOS GPIB Applications

With the NI-488.2M software properly configured, you can run your
existing DOS GPIB applications along with your Win16 and Win32
GPIB applications. No DOS device driver isrequired. In fact, be sure
that no older version of the GPIB DOS device driver is being loaded
fromyour conf i g. sys file, afilelocated on the boot drive of your
computer. The older GPIB DOS device driver isloaded with a
command line of theform devi ce=<pat h>/ gpi b. comwhere
<pat h> isthe drive and directory where gpi b. comislocated. Delete
thisline to ensure that the older GPIB DOS driver is not being loaded.

To run DOS GPIB applications, the system uses a Virtua Device
Driver (VxD), gpi bdosk. vxd, and aWin32 executable,

gpi bdos. exe. When you install the NI-488.2M software,

gpi bdosk. vxd and gpi bdos. exe are copied into the Windows
System directory. These files are loaded when you restart your
computer, if the NI-488.2M software has been properly configured to
run your existing DOS GPIB applications.

© National Instruments Corporation 3-19  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 3 Developing Your Application

Windows NT:

To configure the N1-488.2M software to run your existing DOS GPIB
applications, follow these steps after you have installed the NI1-488.2M
software and your GPIB hardware:

1. Select Start»Settings»Control Panel, and double-click the
System icon. The System Properties dialog box appears.

2. Select the Device Manager tab.

Click the View devices by typeradio button at the top of the page,
and click on the National Instruments GPIB Interfacesicon.

4. Click onthe Properties button to display the General property
page for the N1-488.2M software.

5. Select the checkbox labeled Enable Support for DOS GPIB
Applications, and then click on the OK button.

6. Restart your computer.

Now you can run your existing DOS GPIB applications.

Running Existing GPIB Applications

Y ou can run existing DOS and Windows GPIB applications under
Windows NT by using the GPIB Virtual Device Driver,
gpi b-vdd. dI |, whichisincluded with your NI-488.2M software.

To run DOS GPIB applications, load the special GPIB device driver
gpi b- nt. cominstead of gpi b. com which you normally use with
DOS. When you install the NI1-488.2M software, gpi b- nt . comis
copied into anew subdirectory called doswi n16. To use

gpi b- nt . com you must modify your confi g. nt filetoload

gpi b- nt . comwhenever aDOS application is executed. The
config. nt fileislocated in your <wi nnt >\ syst enB82 directory,
where <wi nnt > isyour Windows NT directory, for example

c:\wi ndows. Toload gpi b- nt . com add the following line to your
config.nt file

devi ce=<pat h>\ doswi n16\ gpi b-nt.com

where <pat h> isthe directory where you installed the GPIB software
(the default installation directory isc: \ gpi b- nt).

NI-488.2M User Manual for Windows 95/Windows NT 3-20 © National Instruments Corporation



Chapter 3 Developing Your Application

To run Winl16 GPIB applications, the system uses the special GPIB
dynamic link library, gpi b. dI | . When you install the NI-488.2M
software, gpi b. dl | iscopied into the <wi nnt >\ syst en82 directory,
where <wi nnt >isyour Windows NT directory, for example

c:\wi ndows). Aslong asgpi b. dl | isinthat directory, itis
automatically accessed whenever you launch aWinl6 GPIB
application.

© National Instruments Corporation 3-21  NI-488.2M User Manual for Windows 95/Windows NT



Debugging Your
Application

Chapter

A

This chapter describes several ways to debug your application.

Debugging with GPIB Spy

Y ou can use the GPIB Spy utility to monitor all of the GPIB calls that
are made by GPIB applications. Because all applications go through
gpi b-32. dl I, the GPIB calls made by Win32, Winl16, and DOS
applications are all recorded by GPIB Spy. For more information about
GPIB Spy, refer to the online help available through the application or
to Chapter 5, GPIB Spy Utility.

Debugging with the Global Status Variables

After each function call to your NI1-488.2M driver, i bst a, i berr,

i bent,andi bent | are updated before the call returnsto your
application. Y ou should check for an error after each GPIB call. Refer
to Chapter 3, Developing Your Application, for more information about
how to use these variables within your program to automatically check
for errors.

After you determine which GPIB call isfailing and note the
corresponding values of the global variables, refer to Appendix A,
Satus Word Conditions, and Appendix B, Error Codes and Solutions.
These appendixes can help you interpret the state of the driver.

Debugging with Win32 Interactive Control

If your application does not automatically check for and display errors,
you can locate an error by using the Win32 Interactive Control utility.
Simply issue the same functions or routines, one at atime as they
appear in your application. Because Win32 Interactive Control returns
the status values and error codes after each call, you should be able to

© National Instruments Corporation 4-1  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 4 Debugging Your Application

determine which GPIB call isfailing. For more information about
Win32 Interactive Control, refer to the online help or Chapter 6, Win32
Interactive Control Utility.

After you determine which GPIB call isfailing and note the
corresponding values of the global variables, refer to Appendix A,
Satus Word Conditions, and Appendix B, Error Codes and Solutions.
These appendixes can help you interpret the state of the driver.

GPIB Error Codes

Table 4-1 lists the GPIB error codes. Remember that the error variable
is meaningful only when the ERR bit in the status variable is set. For a
detailed description of each error and possible solutions, refer to
Appendix B, Error Codes and Solutions.

Table 4-1. GPIB Error Codes

Error iberr

Mnemonic | Value Meaning
EDVR 0 System error
ECIC 1 Function requires GPIB board to be CIC
ENOL 2 No Listeners on the GPIB
EADR 3 GPIB board not addressed correctly
EARG 4 Invalid argument to function call
ESAC 5 GPIB board not System Controller as

required

EABO 6 1/O operation aborted (timeout)
ENEB 7 Nonexistent GPIB board
EDMA 8 DMA error
EQIP 10 Asynchronous I/O in progress
ECAP 11 No capability for operation
EFSO 12 File system error
EBUS 14 GPIB bus error
ESTB 15 Serial poll status byte queue overflow
ESRQ 16 SRQ stuck in ON position
ETAB 20 Table problem

NI-488.2M User Manual for Windows 95/Windows NT 4-2 © National Instruments Corporation



Chapter 4 Debugging Your Application

Configuration Errors

Note:

Timing Errors

Several applications require customized configuration of the GPIB
driver. For example, you might want to terminate reads on a special
end-of-string character, or you might require secondary addressing. In
these cases, you can either permanently reconfigure the driver using the
NI-488.2M software configuration utility, or temporarily reconfigure
the driver while your application is running using thei bconfi g
function.

National Instrumentsrecommendsusing i bconf i g to modify the
NI-488.2M driver configuration dynamically.

If your application uses dynamic configuration, it will always work
regardless of the previous configuration of the driver. Refer to the
description of i bconf i g inthe online help or the NI-488.2M
Function Reference Manual for Win32 for more information.

If your application fails, but the same callsissued in the Win32
interactive control utility are successful, your program might be issuing
the NI-488.2 calls too quickly for your device to process and respond to
them. This problem can also result in corrupted or incomplete data.

A well-behaved |EEE 488 device should hold off handshaking and set
the appropriate transfer rate. If your deviceis not well behaved, you can
test for and resolve the timing error by single-stepping through your
program and inserting finite delays between each GPIB call. One way
to do thisis to have your device communicate its status whenever
possible. Although this method is not possible with many devices, it is
usually the best option. Y our delays will be controlled by the device
and your application can adjust itself and work independently on any
platform. Other delay mechanisms will probably cause varying delay
times on different platforms.

© National Instruments Corporation 4-3  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 4 Debugging Your Application

Communication Errors

Repeat Addressing

Devices adhering to the |EEE 488.2 standard should remain in their
current state until specific commands are sent across the GPIB to
change their state. However, some devices require GPIB addressing
before any GPIB activity. Therefore, you might need to configure your
NI-488.2M driver to perform repeat addressing if your device does not
remain in its currently addressed state. Refer to Chapter 8, GPIB
Configuration Utility, or to the description of i bconf i g (option

| bc READDR) in the online help or NI-488.2M Function Reference
Manual for Win32 for more information about reconfiguring your
software.

Termination Method

Other Errors

Y ou should be aware of the data termination method that your device
uses. By default, your NI-488.2M software is configured to send EOI
on writes and terminate reads on EOI or a specific byte count. If you
send a command string to your device and it does not respond, it might
be because it does not recognize the end of the command. Y ou might
need to send a termination message such as <CR> <LF> after awrite
command as follows:

i bwrt (dev, " COMMAND\ X0A\ x0D", 9) ;

If you experience other errorsin your application, refer to Appendix C,
Windows 95: Troubleshooting and Common Questions, or Appendix D,
Windows NT: Troubleshooting and Common Questions, depending on
which operating system you are using.

NI-488.2M User Manual for Windows 95/Windows NT 4-4 © National Instruments Corporation



GPIB Spy Utility

Chapter

Overview

This chapter introduces you to GPIB Spy, the application monitor you
can use to monitor NI-488 and NI-488.2 calls.

GPIB Spy monitors, records, and displays the NI-488 and NI-488.2
calls made to the NI1-488.2M driver. GPIB Spy monitors Win32,
Win16, and DOS GPIB applications. It is a useful tool for
troubleshooting errors in your application and for verifying that the
communication with your GPIB instrument is correct.

Starting GPIB Spy

When you launch GPIB Spy, it displays the main GPIB Spy window.
By default, Spy capture ison, and GPIB Spy records al GPIB calls
made to the NI1-488.2M driver. Figure 5-1 shows the main GPIB Spy
window with several callsrecorded init.

Starting GPIB Spy Under Windows 95

Start GPIB Spy by choosing the GPIB Spy item under
Star t»Programs»NI-488.2M Softwar e for Windows 95.

Starting GPIB Spy Under Windows NT

In Windows NT 3.51, start GPIB Spy by double-clicking on the

GPIB Spy icon in the NI-488.2M Softwar e for Windows NT group of
the Program Manager. In Windows NT 4.0 or later, start GPIB Spy
by choosing the GPIB Spy item under Star t»Programs»NI-488.2M
Softwar e for Windows NT.

© National Instruments Corporation 5-1  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 5 GPIB Spy Utility

File *“iew Spy Help

=S|d|S| @|=[x]e]

GPIE Calls | ibsta | iber | ibent | Time |
ibdesd0, 8, 0 [Ow0), T10z (131, 1, 0=0000) w0100 0 0 [0x0) 15:37:33.040
ibel(J00] 00100 O 0 [0x0] 15:38:06. 70
it D0, "ide !, 5 [05]) w0100 O F [0x5) 15:38:19.450
ibrd(UD0, "Mational Inst..." 400 [0x190] w2100 0 B [0%33) 15:38:33.130
ibrt{UD 0, “conf-de max: ", 21 [0x15]) 00100 O 21 [0x15) 15:39:16. 450
ibrd(UD0, "5.7725E1.", 100 [0xE4 02100 O

ibwrt[LIDD, "zonkde def- " 21 [0415]) (<01 00 1]
ibrd(IC0, "6.3231.", 100 [0x64) Ox2100 0
ibonl[UD0, 0) 00700 0 7 [0x7) 15:40:10.180
For Help, press F1 |Call count: 9 a4

Figure 5-1. GPIB Spy Main Window

Using the Online GPIB Spy Help

The GPIB Spy utility has built-in, context-sensitive online help. You
can access it through GPIB Spy's Help menu to view descriptions of all
GPIB Spy features. Y ou can aso access the GPIB Spy context-
sensitive help by clicking on the question mark button, and then
clicking on any area of the screen.

Locating Errors with GPIB Spy

All GPIB callsreturned with an error are displayed in red within the
main GPIB Spy window.

Viewing Properties for Recorded Calls

Y ou can view the detailed properties of any call recorded in the main
GPIB Spy window by double-clicking on the call. The Call Properties
window contains general, input, and output information. Figure 5-2
shows the I nput tab for adevice-level i bwr t and Figure 5-3 shows
the Output tab for adevice-level i br d call.

NI-488.2M User Manual for Windows 95/Windows NT 5-2 © National Instruments Corporation



Chapter 5 GPIB Spy Utility

GPIB Spy Call Properties: ibwrt EHE

i Dutput I

General §

Brd/Dewv Mame:  LIDO

ud: 31256
Ebuffer: Dx0084FCO0
count; 21 [0=15]

[nput Butfer [Full]

o0: 63 6F 6E 66 34 64 63 20 L=
03: 64 65 a6 3B 20 6D &5 61
10: 73 34 64 63 3F

E
1 | 3

Previous | Mest | Cloze |

Figure 5-2. GPIB Spy Input Tab for Device-Level i bwr t

GPIE Spy Call Properties: ibrd EHE |
Eenerall Input
ibzta:; #2100 ibsta—— —ibem—
iberr: 1]
ibzntl: A1 [O33] Eﬁ\dHD EE;'EH
EMD EMOL
EADR
aggl EARG
ESALC
ChPL EARD
LOK ENEE
Output Buffer [Brief] Ell;::M EB{.‘;"&'
00: 4E 61 74 69 6F 6E 61 60 [= ATH ECAP
08: 20 49 6E 73 74 72 75 6D TACS EFSO
10: &5 6E 74 73 20 47 50 49 LALS Eglflg
18: 42 20 44 65 76 69 63 ﬁs_l;l oTas || Esmo
. | r DCAS ETAR
Previouz | Hext | Cloge

Figure 5-3. GPIB Spy Output Tab for Device-Level i br d

© National Instruments Corporation 5-3  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 5 GPIB Spy Utility

Exiting GPIB Spy

When you exit GPIB Spy, its current configuration is saved and used to
configure GPIB Spy when you start it again. Note that unless you
explicitly save the data captured in GPIB Spy before you exit, that
information is lost.

Performance Considerations

GPIB Spy can slow down the performance of your GPIB application,
and certain configurations of GPIB Spy have alarger impact on
performance than others. For example, configuring GPIB Spy to record
callsto an output file or to use full buffers, might have a significant
impact on the performance of both your application and the system. For
this reason, use GPIB Spy only while you are debugging your
application or in situations where performance is not critical.

NI-488.2M User Manual for Windows 95/Windows NT 5-4 © National Instruments Corporation



Win32 Interactive Control

Utility

Chapter

Overview

This chapter introduces you to Win32 Interactive Control, the
interactive control utility that you can use to communicate with GPIB
devicesinteractively.

With the Win32 Interactive Control utility, you communicate with the
GPIB devices through functions you enter at the keyboard. For specific
information about how to communicate with your particular device,
refer to the manual that came with the device. Y ou can use Win32
Interactive Control to practice communication with the instrument,
troubleshoot problems, and develop your application.

One way Win32 Interactive Control helps you to learn about your
instrument and to troubleshoot problems is by displaying the following
information on your screen whenever you enter a command:

»  Theresults of the statusword (i bst a) in hexadecimal notation
*  The mnemonic constant of each bit setini bst a

»  The mnemonic value of the error variable (i ber r) if an error
exists (the ERR bitissetini bst a)

*  Thecount value for each read, write, or command function
» Thedatareceived from your instrument

Getting Started with Win32 Interactive Control

This section shows how you might use Win32 Interactive Control to
test a sequence of GPIB calls.

Run the Win32 Interactive Control utility:

*  Windows 95: Select the Win32 Interactive Control item under
Star t»Programs»NI-488.2M Softwar e for Windows 95.

© National Instruments Corporation 6-1  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 6 Win32 Interactive Control Utility

*  WindowsNT 3.51: Double-click on the Win32 I nteractive
Control icon in the NI1-488.2M Softwar e for Windows NT group
of the Program Manager.

e WindowsNT 4.0 and later: Select the Win32 Interactive Control
item under Start»Programs»NI-488.2M Softwar e for
Windows NT.

When the Win32 Interactive Control utility first starts, it displays the
following banner message:

Wn32 Interactive Contro
Copyright 1996 National I|nstrunents Corporation
Al rights reserved

Type ‘help’ for help or ‘q to quit

Thefirst step isto open either a board handle or device handle to use
for further GPIB calls. Usei bdev to open adevice handle, use

i bf i nd to open aboard handle or usetheset 488. 2 command to
switch to a488.2 prompt. For help on any Win32 Interactive Control
command, typein hel p followed by the command, for example, hel p
i bdev orhel p set.

If you want to use device-level calls, open a device handle using
i bdev. Thefollowing example shows how you can usei bdev to
open adevice, assign it to access board gpi b0, choose a primary
address of 6 with no secondary address, set atimeout of 10 seconds,
enable the END message and disable the EOS mode;
i bdev

enter board index: O

enter prinary address: 6

enter secondary address: O

enter timeout: T10s

enter “EQ on last byte flag: 1

enter end-of-string node/byte: 0

udo:

If you enter acommand and no parameters, you are automatically
prompted for the necessary arguments. If you already know the
required arguments, you can enter them from the command line, as
follows:

ibdev 0 6 0 T10s 1 O
udo:

NI-488.2M User Manual for Windows 95/Windows NT 6-2 © National Instruments Corporation



Chapter 6  Win32 Interactive Control Utility

The new prompt, udO, represents a device-level handle that can be
used for further GPIB cdlls. To clear the device, usei bcl r as
follows:

udO: ibclr
[0100] (cnpl)

To write datato the device, usei bwr t . Make sure that you refer to the
instrument user manual that came with your GPIB instrument for
specific command messages.

udO: i bwt

enter string: "*RST; VAC, AUTO TRIGGER 2; *SRE 16"
[ 0100] (cnpl)
count: 35

or, equivalently:

ud0: ibwt "*RST; VAC, AUTGQ TRIGGER 2; *SRE 16"
[0100] (cnpl)
count: 35

To send atrigger, usei bt r g asfollows:

udO: ibtrg
[0100] (cnpl)

To read datafrom your device, usei br d. The datathat isread from
the instrument is displayed. For example, to read 18 bytes:

udO: ibrd

enter byte count: 18
[0100] (cnpl)
count: 18
4e 44 43 56 20 30 30 30 NDCV 000
2e 30 30 34 37 45 2b 30 .0047E+0O0
Oa Oa

or, equivalently:

udO: ibrd 18

[0100] (cnpl)

count: 18

4e 44 43 56 20 30 30 30 NDCV 00O
2e 30 30 34 37 45 2b 30 . 0047E+0O0
Oa Oa

© National Instruments Corporation 6-3  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 6 Win32 Interactive Control Utility

When you are finished communicating with the device, make sure you
put it offline using thei bonl command as follows:

ud0: ibonl O
[0100] (cnpl)

This properly closes the device handle and the ud0 prompt is no longer
present.

Win32 Interactive Control Syntax

Number Syntax

String Syntax

The following special rules apply to making calls from the interactive
control utility.

» Theud or Boar dl d parameter isimplied by the Interactive
Control prompt, therefore it is never included in the call.

» Thecount parameter to functionsis unnecessary because buffer
lengths are automatically determined by the interactive control
utility.

e Function return values are handled automatically by the interactive
control utility. In addition to printing out thereturn i bst a value
for the function, it also prints other return values.

» |If you do not know what parameters are appropriate to passto a
given function call, type in the function name and press <Enter>,
and the interactive control utility automatically prompts you for
each required parameter.

Y ou can enter numbers as hexadecimal or decimal integer.

Hexadecimal numbers—Y ou must precede hex numbers by zero and x
(for example, OxD).

Decimal numbers—Enter the number only.

You can enter strings as an ASCI| character sequence, hex bytes, or
special symbols.

ASCII character sequence-Y ou must enclose the entire sequence in
guotation marks.

NI-488.2M User Manual for Windows 95/Windows NT 6-4 © National Instruments Corporation



Address Syntax

Chapter 6  Win32 Interactive Control Utility

Hex bytes—Y ou must use a backslash character and an x followed by
the hex value. For example, hex 40 is represented by \ x40.

Soecial Symbols-Some instruments require special termination or
end-of-string (EOS) characters that indicate to the device that a
transmission has ended. The two most common EOS charactersare\ r
and\ n.\ r represents acarriage return character and \ n represents a
linefeed character. Y ou can use these specia charactersto insert the
carriage return and linefeed charactersinto a string, asin
"F3R5T1\r\n".

Many of the NI-488.2 routines have an address or address list
parameter. An addressis a 16-hit representation of the GPIB address of
adevice. The primary addressis stored in the low byte and the
secondary address, if any, is stored in the high byte. For example, a
device at primary address 6 and secondary address 0x67 has an address
of 0x6706. A NULL addressis represented as Oxffff. An addresslist is
represented by a commarseparated list of addressessuch as1, 2, 3.

Win32 Interactive Control Commands

Tables 6-1 and 6-2 summarize the syntax of NI-488 functionsin Win32
Interactive Control. Table 6-3 summarizes the syntax of NI1-488.2
routines in Win32 Interactive Control. Table 6-4 summarizes the
auxiliary functions that you can use in Win32 Interactive Control. For
more information about the function parameters, use the online help
feature. If you enter only the function name, the Win32 Interactive
Control utility prompts you for parameters.

© National Instruments Corporation 6-5  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 6

Win32 Interactive Control Utility

Table 6-1. Syntax for Device-Level NI-488 Functions in Win32 Interactive Control

Syntax

Description

i bask option

Return configuration information where opt i on isa
mnemonic for a configuration parameter

i bbna bname

Change access board of device where bnane is symbolic
name of new board

ibclr

Clear specified device

i bconfig option
val ue

Alter configurable parameters where opt i on is mnemonic
for a configuration parameter

i bdev Bdl ndx pad

Open an unused device i bdev parameters are Bdl ndx

sad tno eot eos pad sad tnmo eot eos

i beos v Change/disable EOS message

i beot v Enable/disable END message

ibln pad sad Check for presence of device on the GPIB at pad, sad
i bl oc Go tolocal

i bonl v Place device online or offline

i bpad v Change primary address

i bpct Pass control

i bppc v Parallel poll configure

i brd count Read data where count isthe bytesto read

i brda count Read data asynchronously where count isthe bytesto read

i brdf flname

Read datato filewheref | nane is pathname of file to read

i brpp Conduct a parallel poll

i brsp Return serial poll byte

i bsad v Change secondary address

i bstop Abort asynchronous operation

ibtmo v Change/disable time limit

ibtrg Trigger selected device

i bwai t nmask Wait for selected event where mask isahex or decimal

integer or alist of mask bit mnemonics such asi bwai t
TI MO CVPL

i bwt wrtbuf

Write data

ibwta wtbuf

Write data asynchronously

NI-488.2M User Manual for Windows 95/Windows NT

ibwtf flnane

Write datafrom afilewheref | nane is pathname of file to
write

6-6 © National Instruments Corporation



Chapter 6  Win32 Interactive Control Utility

Table 6-2. Syntax for Board-Level NI-488 Functions in Win32 Interactive Control

Syntax

Description

i bask option

Return configuration information where opt i on isamnemonic
for a configuration parameter

i bcac v Become active Controller
i becnrd cndbuf Send commands
i bcnda cndbuf

Send commands asynchronously

i bconfig option
val ue

Alter configurable parameters where opt i on is mnemonic for a
configuration parameter

i bdma v Enable/disable DMA
i beos v Change/disable EOS message
i beot v

Enable/disable END message

i bfi nd udnane

Return unit descriptor where udnan® is the symbolic name of
board (for example, gpi b0)

ibgts v Go from Active Controller to standby

ibist v Set/clear i st

i blines Read the state of all GPIB control lines

ibln pad sad Check for presence of device on the GPIB at pad, sad

i bl oc Gotolocal

i bonl v Place device online or offline

i bpad v Change primary address

i bppc v Parallel poll configure

i brd count Read datawhere count isthe bytesto read

i brda count Read data asynchronously where count isthe bytesto read
i brdf flnanme Read datato file where f | name is pathname of file to read
i brpp Conduct a parallel poll

ibrsc v Request/rel ease system control

ibrsv v Request service

i bsad v Change secondary address

i bsic Send interface clear

ibsre v Set/clear remote enable line

i bstop Abort asynchronous operation

ibtmo v Change/disable time limit

i bwait mask

Wait for selected event where mask isahex or decimal integer or
alist of mask bit mnemonicssuch asi bwai t TI MO CMPL

i bwt wrtbuf

Write data

ibwta wtbuf

Write data asynchronously

ibwtf flnane

Write datafrom afilewheref | nane is pathname of file to write

© National Instruments Corporation

6-7  NI-488.2M User Manual for Windows 95/Windows NT




Win32 Interactive Control Utility

Table 6-3. Syntax for NI-488.2 Routines in Win32 Interactive Control

Routine Syntax

Description

Al'l Spol | addrli st Serial poll multiple devices
DevCl ear address Clear adevice
Devd ear Li st addrli st Clear multiple devices

Enabl eLocal addrli st

Enable local control

Enabl eRenpt e addrli st

Enable remote control

FindLstn padlist limt

Find all Listeners

Fi ndRQS addrl i st

Find device asserting SRQ

PassCont rol address

Pass control to adevice

PPol |

Parallel poll devices

PPol | Confi g address dataline
| i neSense

Configure device for paralel poll

PPol | Unconfi g addrli st

Unconfigure device for parallel poll

RcvRespMsg count term nation

Receive response message

ReadSt at usByt e address

Serial poll adevice

Recei ve address count
term nation

Receive data from a device

Recei veSet up address

Receive setup

Reset Sys addrli st

Reset multiple devices

Send address buffer eotnode

Send datato adevice

SendCnds buf fer

Send command bytes

SendDat aByt es buf f er eot node

Send data bytes

Sendl FC

Send interface clear

SendLi st addrlist buffer Send data to multiple devices
eot node
SendLLO Put devicesin local lockout

SendSet up addrli st

Send setup

Set RALS addrli st

Test SRQ

Test for service request

Test Sys addrli st

Tri gger address

Trigger adevice

TriggerList addrlist

Trigger multiple devices

Wi t SRQ

Wait for service request

NI-488.2M User Manual for Windows 95/Windows NT

6-8 © National Instruments Corporation

Put devices in remote with lockout state

Cause multiple devices to perform self-tests




Status Word

Chapter 6  Win32 Interactive Control Utility

Table 6-4. Auxiliary Functions in Win32 Interactive Control

Function Description

set udnane [ Select active device or board where udnamne isthe
symbolic name of the new device or board (for
example, dev1 or gpi b0). Cal i bfi nd or

i bdev initially to open each device or board.

set 488.2 v | Enter 488.2 mode for board v

hel p Display Win32 interactive utility online help.

hel p option [ Display helpinformation on opt i on, where
opt i on isany NI-488, NI-488.2, or auxiliary call,
for example hel p i bwrt orhel p set.

! Repeat previous function.

- Turn OFF display.

+ Turn ON display.

n * function | Execute function n timeswheref uncti on
represents the correct Win32 Interactive Control
function syntax.

n=*! Execute previous function n times.

$ filename | Executeindirect filewherefi| enanme isthe
pathname of afile that contains Win32 Interactive
Control functions to be executed.

buf fer option| Settype of display used for buffers. Valid options
arefull,brief,ascii,andoff.Defaultisfull.

q Exit or quit.

In Win32 Interactive Control, all NI-488 functions (except i bf i nd
and i bdev) and NI-488.2 routines return the statusword i bst a in
two forms. ahex value in square brackets and alist of mnemonicsin
parentheses. In the following example, the status word is on the second
line, showing that the write operation completed successfully:

udO: i bwrt "f2t3x"
[0100] (cnpl)
count: 5

udO:

For more information about the status word, refer to Chapter 3,
Developing Your Application.

© National Instruments Corporation 6-9  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 6

Win32 Interactive Control Utility

Error Information

If an NI-488 function or NI-488.2 routine completes with an error,
Win32 Interactive Control displays the relevant error mnemonic. In the
following example, an error condition EBUS has occurred during a data
transfer.

udOo: i bwrt "f2t3x"
[8100] (err cnpl)

error: EBUS
count: 1
udo:

In this example, the addressing command bytes could not be
transmitted to the device. Thisindicates that either the device ud0
representsis powered off, or the GPIB cable is disconnected.

For adetailed list of the error codes and their meanings, refer to
Chapter 4, Debugging Your Application.

Count Information

When an /O function completes, Win32 Interactive Control displays
the actual number of bytes sent or received, regardless of the existence
of an error condition.

If one of the addresses in an address list of an NI1-488.2 routine is
invalid, then the error is EARG and Win32 Interactive Control displays
the index of the invalid address as the count.

The count has a different meaning depending on which NI-488 function
or NI-488.2 routine is called. Refer to the function descriptionsin the
online help or NI-488.2M Function Reference Manual for Win32 for
the correct interpretation of the count return.

NI-488.2M User Manual for Windows 95/Windows NT 6-10 © National Instruments Corporation



Chapter

GPIB Programming
Techniques

This chapter describes techniques for using some NI-488 functions and
NI-488.2 routines in your application.

For more detailed information about each function or routine, refer to
the online help or NI-488.2M Function Reference Manual for Win32.

Termination of Data Transfers

GPIB datatransfers are terminated either when the GPIB EOQI lineis
asserted with the last byte of atransfer or when a preconfigured
end-of-string (EOS) character is transmitted. By default, the NI1-488.2M
driver asserts EOI with the last byte of writes and the EOS modes are
disabled.

You can usethei beot function to enable or disable the end of
transmission (EOT) mode. If EOT mode is enabled, the NI1-488.2M
driver assertsthe GPIB EOI line when the last byte of awriteis sent
out on the GPIB. If it isdisabled, the EOI lineis not asserted with the
last byte of awrite.

You can usethei beos function to enable, disable, or configure the
EOS modes. EOS mode configuration includes the following
information:

e A 7-bit or 8-bit EOS byte

*  EOS comparison method-This indicates whether the EOS byte has
seven or eight significant bits. For a 7-bit EOS byte, the eighth bit
of the EOS byte isignored.

*  EOSwrite method-f thisis enabled, the NI1-488.2M driver
automatically asserts the GPIB EOI line when the EOS byteis
written to the GPIB. If the buffer passed intoani bwr t call
contains five occurrences of the EOS byte, the EQOI lineis asserted
as each of the five EOS bytes are written to the GPIB. If ani bwr t
buffer does not contain an occurrence of the EOS byte, the EOI

© National Instruments Corporation 7-1  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 7 GPIB Programming Techniques

lineis not asserted (unless the EOT mode is enabled, in which case
the EOI lineis asserted with the last byte of the write).

* EOSread method-If thisisenabled, the NI-488.2M driver
terminatesi br d, i brda, andi br df callswhenthe EOS byteis
detected on the GPIB or when the GPIB EQI lineis asserted or
when the specified count is reached. If the EOS read method is
disabled, i brd,i brda, andi br df callsterminate only when the
GPIB EOQI lineis asserted or the specified count has been read.

You can usethei bconf i g function to configure the software to
inform you whether or not the GPIB EOI line was asserted when the
EOS bytewasread in. Usethe | bcEndBi t | sNor mal optionto
configure the software to report only the END bitini bst a when the
GPIB EOI lineis asserted. By default, the NI-488.2M driver reports
END ini bst a when either the EOS byteisread in or the EOI lineis
asserted during aread.

High-Speed Data Transfers (HS488)

Enabling HS488

National Instruments has designed a high-speed data transfer protocol
for IEEE 488 called H488. This protocol increases performance for
GPIB reads and writes up to 8 Mbytes/s, depending on your system.

H$SA488 is a superset of the IEEE 488 standard; thus, you can mix

|EEE 488.1, |IEEE 488.2, and H$488 devices in the same system. If
H$A488 is enabled, the TNT4882C hardware implements high-speed
transfers automatically when communicating with H$488 instruments.
If you attempt to enable HS488 on a GPIB board that does not have the
TNT4882C hardware, the error ECAP isreturned.

To enable H3488 for your GPIB board, usethei bconf i g function
(option | bcHSCabl eLengt h). Thevalue passedtoi bconfi g
should specify the number of meters of cablein your GPIB
configuration. If you specify a cable length that is much smaller than
what you actually use, the transferred data could become corrupted. If
you specify a cable length longer than what you actually use, the dataiis
transferred successfully, but more slowly than if you specified the
correct cable length.

In additionto using i bconf i g to configure your GPIB board for
H$488, the Controller-1n-Charge must send out GPIB command bytes
(interface messages) to configure other devices for HS488 transfers.

NI-488.2M User Manual for Windows 95/Windows NT 7-2 © National Instruments Corporation



Chapter 7 GPIB Programming Techniques

If you are using device-level calls, the NI-488.2M software
automatically sends the HS488 configuration message to devices. If
you enabled the HS488 protocol in the GPIB Configuration Utility, the
NI-488.2M software sends out the HS488 configuration message when
you usei bdev to bring adevice online. If you call i bconfi g to
change the GPIB cable length, the NI-488.2M software sends out the
HS488 message again the next time you call a device-level function.

If you are using board-level functions or NI-488.2 routines and you
want to configure devices for high-speed, you must send the HS488
configuration messagesusing i bcnd or SendCnds. The HS488
configuration message is made up of two GPIB command bytes. The
first byte, the Configure Enable (CFE) message (hex 1F), places all
H$S488 devicesinto their configuration mode. Non-HS488 devices
should ignore this message. The second byte isa GPIB secondary
command that indicates the number of meters of cable in your system.
It is called the Configure (CFGn) message. Because HS488 can operate
only with cable lengths of 1 to 15 meters, only CFGn values of 1
through 15 (hex 61 through 6F) are valid. If the cable length was
configured properly in the GPIB Configuration Utility, you can
determine how many meters of cable are in your system by calling

i bask (option | baHSCabl eLengt h) in your application. For CFE
and CFGn messages, refer to the online help or Appendix A, Multiline
Interface Messages, in the NI-488.2M Function Reference Manual for
Win32.

System Configuration Effects on HS488

Maximum data transfer rates can be limited by your host computer and
GPIB system setup. For example, even though the theoretical
maximum transfer rate with HS488 is 8 Mbytes/s, the maximum
transfer rate obtainable on PC -compatible computers with an I1SA bus
is 2 Mbytes/s. The same | EEE 488 cabling constraints for a350 ns T1
delay apply to H$488. As you increase the amount of cablein your
GPIB configuration, the maximum data transfer rate using HS488
decreases. For example, two HS488 devices connected by two meters
of cable can transfer data faster than three HS488 devices connected by
four meters of cable.

© National Instruments Corporation 7-3  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 7 GPIB Programming Techniques

Waiting for GPIB Conditions

You canusethei bwai t function to obtain the current i bst a value
or to suspend your application until a specified condition occurs on the
GPIB. If you usei bwai t with a parameter of zero, it immediately
updatesi bst a and returns. If you want to usei bwai t to wait for one
or more events to occur, then pass await mask to the function. The wait
mask should always include the TIMO event; otherwise, your
application is suspended indefinitely until one of the wait mask events
ocCurs.

Asynchronous Event Notification in Win32 GPIB

Applications

Win32 GPIB applications can asynchronously receive event
notificationsusing thei bnot i f y function. Thisfunction isuseful if
you want your application to be notified asynchronously about the
occurrence of one or more GPIB events. For example, you might
chooseto usei bnot i fy if your application only needs to interact
with your GPIB device when it is requesting service. After calling

i bnot i fy, your application does not need to check the status of your
GPIB device. Then when your GPIB device requests service, the GPIB
driver automatically notifies your application that the event has
occurred by invoking a callback function. The callback functionis
registered with the GPIB driver when thei bnot i fy call ismade.

Calling the ibnotify Function

i bnot i fy hasthefollowing function prototype:

i bnotify (
int ud, /1 unit descriptor
int mask, /1 bit mask of GPIB events

Gpi bNot i fyCal | back_t Cal | back,
/1 callback function
void * RefData // user-defined reference data

)

Both board-level and device-level i bnot i fy callsare supported by
the GPIB driver. If you are using device-level cals, you call

i bnot i fy with adevice handlefor ud and armask of RQS, CMPL,
END, or TIMO. If you are using board-level calls, you call i bnoti fy

NI-488.2M User Manual for Windows 95/Windows NT 7-4 © National Instruments Corporation



Chapter 7 GPIB Programming Techniques

with aboard handle for ud and anmask of any values except RQS or

ERR. Note that the i bnot i f y mask bitsare identical to thei bwai t
mask bits. In the example of waiting for your GPIB device to request

service, you might choose to passi bnot i f y amask with RQS (for
device-level) or SRQI (for board-level).

The Callback function that you register withthei bnot i fy call is
invoked by the GPIB driver when one or more of the mask bits passed
toi bnot i fy is TRUE. The function prototype of the callback is as

follows:

int __stdcall Callback (
int ud, /1 unit descriptor
int ibsta, /'l ibsta val ue
int iberr, /'l iberr value
long ibcentl, /1 ibcntl val ue

void * RefData // user-defined reference data

)

The callback function is passed a unit descriptor, the current values of
the GPIB global variables, and the user-defined reference data that was
passed to the original i bnot i fy call. The GPIB driver interprets the
return value for the callback as a mask value that is used to
automatically rearm the callback if it is non-zero. For a complete
description of i bnot i fy, refer to the online help or NI-488.2M
Function Reference Manual for Win32.

Note:  Thei bnoti fy Callback isexecuted in a separate thread of
execution from therest of your application. If your application
might be performing other GPIB operationswhileit isusing
i bnot i fy, you should use the per-thread GPI B globalsthat are
provided by the Thr eadl bst a, Thr eadl berr, Thr eadl bcnt ,
and Thr eadl bent | functionsthat are described in the Writing
Multithreaded Win32 GPIB Applications section of this chapter. In
addition, if your application needsto share global variables with the
Cal | back, you should use a synchronization primitive (for
example, semaphore) to protect access to any globals. For more
information on the use of synchronization primitives, refer to the
documentation on using Win32 synchronization objects that came
with your development tools.

© National Instruments Corporation 7-5  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 7 GPIB Programming Techniques

ibnotify Programming Example

The following code is an example of how you might usei bnot i fy in
your application. Assume that your GPIB device is a multimeter that
you program to acquire areading by sending it “SEND DATA”. The
multimeter requests service when it has areading ready, and each
reading is afloating point value.

In this example, globals are shared by the Cal | back thread and the
main thread, and the access of the globalsis not protected by
synchronization. In this case, synchronization of access to these globals
is not necessary because of the way they are used in the application:
only asingle thread is writing the global values and that thread always
just adds information (increases the count or adds another reading to the
array of floats).

int __stdcall MCallback (int ud, int Locallbsta, int Locallberr,
I ong Local I bcntl, void *RefData);

i nt Readi ngsTaken = O;

fl oat Readi ngs[ 1000];

BOOL Devi ceError = FALSE;

int main()
{

int ud;

/1 Assign a unique identifier to the device and store it in the

/1 variable ud. ibdev opens an avail abl e device and assigns it to

/1 access GPIBO with a primary address of 1, a secondary address of O,
/1 a tinmeout of 10 seconds, the END nessage enabl ed, and the ECS nopde
/1 disabled. If ud is less than zero, then print an error nessage

/1 that the call failed and exit the program

ud = ibdev (0O, // connect board
1, /1 primary address of GPlIB device
0, /1 secondary address of GPIB device
T10s, // 10 second |/ O tineout
1, // EOT node turned on
0); // ECS node di sabl ed

if (ud <0) {
printf ("ibdev failed.\n");
return O;

NI-488.2M User Manual for Windows 95/Windows NT 7-6 © National Instruments Corporation



Chapter 7 GPIB Programming Techniques

/1 Issue a request to the device to send the data. If the ERR bit
/1 is set in ibsta, then print an error message that the call failed
/1 and exit the program
ibwt (ud, "SEND DATA", 9L);
if (ibsta & ERR) {
printf ("unable to wite to device.\n");
return O;

}

/1 set up the asynchronous event notification on RQS
ibnotify (ud, RQS, MCallback, NULL);
if (ibsta & ERR) {

printf ("ibnotify call failed.\n");

return O;

}

whil e ((Readi ngsTaken < 1000) && ! (DeviceError)) {
/1 Your application does useful work here. For exanple, it
/1 mght process the device readings or do any other useful work.

}

// disable notification
ibnotify (ud, 0, NULL, NULL);

// Call the ibonl function to disable the hardware and software.
i bonl (ud, 0);
return 1;

__stdcall MCallback (int LocalUud, int Locallbsta, int Locallberr,
| ong Local I bentl, void *RefData)

char Spol | Byt e;
char ReadBuffer[40];

/1 If the ERR bit is set in Locallbsta, then print an error nmessage
/1 and return.
if (Locallbsta & ERR) {
printf ("GPIB error %d has occurred. No nore call backs.\n",
Local I berr);
Devi ceError = TRUE;
return O;

© National Instruments Corporation 7-7  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 7 GPIB Programming Techniques

/!l Read the serial poll byte fromthe device. If the ERR bit is set
/1 in ibsta, then print an error message and return.
Local I bsta = ibrsp (Local Ud, &Spoll Byte);
if (Locallbsta & ERR) {
printf ("ibrsp failed. No nore call backs.\n");
Devi ceError = TRUE;
return O;

/1 1f the returned status byte equals the expected response, then
// the device has valid data to send; otherwise it has a fault
/1 condition to report.

if (spr != expectedResponse) {
printf("Device returned invalid response. Status byte = Ox%\n",
spr);
Devi ceError = TRUE;
return O;
}

// Read the data fromthe device. If the ERR bit is set in ibsta,
/1 then print an error message and return.
Local I bsta = ibrd (Local Ud, ReadBuffer, 40L);
if (Locallbsta & ERR) {
printf ("ibrd failed. No nore call backs.\n");
Devi ceError = TRUE;
return O;

}

/1l Convert the data into a nuneric val ue.
sscanf (ReadBuffer, "% ", &Readi ngs[Readi ngsTaken]);
Readi ngsTaken += 1;
if (Readi ngsTaken >= 1000) {
return O;

}

else {
/1 Issue a request to the device to send the data and rearm
/1 callback on RQS.
Local I bsta = i bwt (Local Ud, "SEND DATA", 9L);
if (Locallbsta & ERR) {
printf ("ibwt failed. No nore call backs.\n");
Devi ceError = TRUE;
return O;

NI-488.2M User Manual for Windows 95/Windows NT 7-8 © National Instruments Corporation



Chapter 7 GPIB Programming Techniques

else {
return RQS;
}

}
Writing Multithreaded Win32 GPIB Applications

If you are writing a multithreaded GPIB application and you plan to
make all of your GPIB calls from a single thread, you can safely
continue to use the traditional GPIB global variables (i bst a, i berr,
i bent,i bent!). The GPIB global variables are defined on a per-
process basis, so each process accesses its own copy of the GPIB
globals.

If you are writing a multithreaded GPIB application and you plan to
make GPIB calls from more than a single thread, you cannot safely
continue to use the traditional GPIB global variables without some
form of synchronization (for example, a semaphore). To understand
why thisistrue, take alook at the following example.

Assume that a process has two separate threads that make GPIB calls,
thread #1 and thread #2. Just as thread #1 is about to examine one of
the GPIB globals, it gets preempted and thread #2 is allowed to run.
Thread #2 proceeds to make several GPIB calls that automatically
update the GPIB globals. Later, when thread #1 is allowed to run, the
GPIB global that it is ready to examineis no longer in aknown state
and its value is no longer reliable.

This exampleillustrates a well-known multithreading problem. It is
unsafe to access process-global variables from multiple threads of
execution. Y ou can avoid this problem in two ways:

e Use synchronization to protect access to process-global variables.
» Do not use process-global variables.

If you choose to implement the synchronization solution, you must
ensure that code that makes GPIB calls and examines the GPIB globals
modified by a GPIB call is protected by a synchronization primitive.
For example, each thread might acquire a semaphore before making a
GPIB call and then release the semaphore after examining the GPIB
globals modified by the call. For more information on the use of
synchronization primitives, refer to the documentation on using Win32
synchronization objects that came with your devel opment tools.

© National Instruments Corporation 7-9  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 7 GPIB Programming Techniques

Note:

If you choose not to use process-global variables, you can access per-
thread copies of the GPIB global variables using a specia set of GPIB
calls. Whenever athread makes a GPIB call, the driver keeps a private
copy of the GPIB globals for that thread. The driver keeps a separate
private copy for each thread. The following code shows the set of
functions you can use to access these per-thread GPIB global variables.

int Threadlbsta(); [/ return thread-specific ibsta
int Threadlberr(); /'l return thread-specific iberr
int Threadl bcnt(); /] return thread-specific ibcnt

long Threadlbcnt!l (); // return thread-specific ibcntl

In your application, instead of accessing the per-process GPIB globals,
substitute a call to get the corresponding per-thread GPIB global. For
example, the line of code

if (ibsta & ERR)
could be replaced by
if (Threadlbsta() & ERR)

A quick way to convert your application to use per-thread GPIB
globals, isto add the following #def i ne lines at the top of your C file:

#define ibsta Thr eadl bst a()
#define iberr Thr eadl berr ()
#define ibcnt Thr eadl bent ()
#define ibcntl Thr eadl bent | ()

If you areusing i bnot i fy in your application (seethe
Asynchronous Event Notification in Win32 GPIB Applications
section of thischapter) thei bnot i f y callback isexecutedin a
separate thread that is created by the GPIB driver. Therefore, if
your application makes GPIB callsfrom thei bnot i fy callback
function and makes GPIB calls from other places, you must use the
Thr eadl bst a, Thr eadl berr, Thr eadl bent , and

Thr eadl bent | functions described in this section, instead of the
per process GPIB globals.

NI-488.2M User Manual for Windows 95/Windows NT 7-10 © National Instruments Corporation



Chapter 7 GPIB Programming Techniques

Device-Level Calls and Bus Management

The NI-488 device-level calls are designed to perform all of the GPIB
management for your application. However, the NI-488.2M driver can
handle bus management only when the GPIB interface board is CIC
(Controller-In-Charge). Only the CIC is able to send command bytes to
the devices on the bus to perform device addressing or other bus
management activities. Use one of the following methods to make your
GPIB board the CIC:

» |If your GPIB board is configured as the System Controller
(default), it automatically makes itself the CIC by asserting the IFC
line the first time you make a device-level call.

» If your setup includes more than one Controller, or if your GPIB
interface board is not configured as the System Controller, use the
CIC Protocol method. To use the protocol, issuethei bconfi g
function (option | bc Cl CPROT) or use the GPIB Configuration
Utility to activate the CIC protocal. If the interface board is not
CIC, and you make a device-level call with the CIC Protocol
enabled, the following sequence occurs:

1. The GPIB interface board asserts the SRQ line.

2. Thecurrent CIC serial pollsthe board.

3. Theinterface board returns aresponse byte of hex 42.
4. Thecurrent CIC passes control to the GPIB board.

If the current CIC does not pass control, the NI-488.2M driver returns
the ECIC error code to your application. This error can occur if the
current CIC does not understand the CIC Protocol. If this happens, you
could send a device-specific command requesting control for the GPIB
board. Then use aboard-level i bwai t command to wait for CIC.

Talker/Listener Applications

Although designed for Controller-In-Charge applications, you can also
use the NI1-488.2M software in most non-Controller situations. These
situations are known as Talker/Listener applications because the
interface board is not the GPIB Controller.

A Talker/Listener application typically usesi bwai t with amask of 0
to monitor the status of the interface board. Then, based on the status
bitsset ini bst a, the application takes whatever action is appropriate.
For example, the application could monitor the status bits TACS

© National Instruments Corporation 7-11  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 7 GPIB Programming Techniques

Serial Polling

(Talker Active State) and LACS (Listener Active State) to determine
when to send data to or receive data from the Controller. The
application could aso monitor the DCAS (Device Clear Active State)
and DTAS (Device Trigger Active State) bits to determine if the
Controller has sent the device clear (DCL or SDC) or trigger (GET)
messages to the interface board. If the application detects a device clear
from the Controller, it might reset the internal state of message buffers.
If it detects a trigger message from the Controller, the application might
begin an operation such as taking a voltage reading if the application is
actually acting as avoltmeter.

You can use serial polling to obtain specific information from GPIB
devices when they request service. When the GPIB SRQ lineis
asserted, it signals the Controller that a service request is pending. The
Controller must then determine which device asserted the SRQ line and
respond accordingly. The most common method for SRQ detection and
servicing isthe serial poll. This section describes how you can set up
your application to detect and respond to service requests from GPIB
devices.

Service Requests from IEEE 488 Devices

| EEE 488 devices request service from the GPIB Controller by
asserting the GPIB SRQ line. When the Controller acknowledges the
SRQ, it serial polls each open device on the bus to determine which
device requested service. Any device requesting service returns a status
byte with bit 6 set and then unasserts the SRQ line. Devices not
requesting service return a status byte with bit 6 cleared. Manufacturers
of |EEE 488 devices use lower order bits to communicate the reason for
the service request or to summarize the state of the device.

Service Requests from IEEE 488.2 Devices

The |EEE 488.2 standard refined the bit assignments in the status byte.
In addition to setting bit 6 when requesting service, |IEEE 488.2 devices
also use two other bitsto specify their status. Bit 4, the Message
Available bit (MAV), is set when the deviceis ready to send previously
gueried data. Bit 5, the Event Status bit (ESB), is set if one or more of
the enabled | EEE 488.2 events occurs. These events include power-on,

NI-488.2M User Manual for Windows 95/Windows NT 7-12 © National Instruments Corporation



Chapter 7 GPIB Programming Techniques

user request, command error, execution error, device dependent error,
guery error, request control, and operation complete. The device can
assert SRQ when ESB or MAV are set, or when a manufacturer-defined
condition occurs.

Automatic Serial Polling

Y ou can enable automatic serial polling if you want your application to
conduct a serial poll automatically any time the SRQ lineis asserted.
The autopolling procedure occurs as follows:

1. Toenableautopolling, use the GPIB Configuration Utility or the
configuration function, i bconf i g with option | bc AUTOPOLL.
(Autopolling is enabled by default.)

2. When the SRQ lineis asserted, the driver automatically seria polls
the open devices.

3. Each positive serial poll response (bit 6 or hex 40 is set) is stored in
a queue associated with the device that sent it. The RQS bit of the
device statusword, i bst a, is set.

4. The polling continues until SRQ is unasserted or an error condition
is detected.

5. Toempty the queue, usethei br sp function. i br sp returnsthe
first queued response. Other responses are read in first-in-first-out
(FIFO) fashion. If the RQS bit of the status word is not set when
i br spiscaled, aserial poll is conducted and returns whatever
response is received. Y ou should empty the queue as soon as an
automatic serial poll occurs, because responses might be discarded
if the queueisfull.

6. If the RQS bit of the status word is still set after i br sp iscalled,
the response byte queue contains at least one more response byte.
If this happens, you should continueto call i br sp until RQSis
cleared.

Stuck SRQ State

If autopolling is enabled and the GPIB interface board detects an SRQ,
the driver serial polls all open devices connected to that board. The
seria poll continues until either SRQ unasserts or all the devices have
been polled.

If no device responds positively to the serial poll, or if SRQ remainsin
effect because of afaulty instrument or cable, a stuck SRQ stateisin
effect. If thishappensduring ani bwai t for RQS, the driver reports
the ESRQ error. If the stuck SRQ state happens, no further polls are

© National Instruments Corporation 7-13  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 7

GPIB Programming Techniques

&

Note:

attempted until ani bwai t for RQSismade. Wheni bwai t isissued,
the stuck SRQ state is terminated and the driver attempts a new set of
seria polls.

Autopolling and Interrupts

If autopolling and interrupts are both enabled, the NI1-488.2M software
can perform autopolling after any device-level N1-488 call aslong as no
GPIB 1/O is currently in progress. In this case, an automatic seria poll
can occur even when your application is not making any callsto the
NI-488.2M software. Autopolling can aso occur when a device-level

i bwai t for RQSisin progress. Autopolling is not allowed whenever
an application calls a board-level NI1-488 function or any NI-488.2
routine, or the stuck SRQ (ESRQ) condition occurs.

The NI-488.2M software for Windows 95 and Windows NT does not
function properly if interrupts are disabled.

SRQ and Serial Polling with NI-488 Device Functions

Y ou can use the device-level NI-488 function i br sp to conduct a
seria poll. i br sp conducts asingle serial poll and returns the serial
poll response byte to the application. If automatic serial polling is
enabled, the application can usei bwai t to suspend program
execution until RQS appearsin the statusword, i bst a. The program
canthen call i br sp to obtain the serial poll response byte.

The following example illustrates the use of thei bwai t andi br sp
functionsin atypical SRQ servicing situation when automatic serial
polling is enabled.

#i ncl ude "decl -32. h"
char Cet Seri al Pol | Response ( int DeviceHandl e )
{
char Serial Pol | Response = 0;
ibwait ( DeviceHandle, TIMO| RQS );
if (ibsta & RS ) {
printf ( "Device asserted SRQ\n" );
/* Use ibrsp to retrieve the serial poll response. */
ibrsp ( DeviceHandl e, &Serial Pol | Response );

}
return Seri al Pol | Response;
}
NI-488.2M User Manual for Windows 95/Windows NT 7-14 © National Instruments Corporation



Chapter 7 GPIB Programming Techniques

SRQ and Serial Polling with NI-488.2 Routines

&

Note:

The NI-488.2M software includes a set of NI-488.2 routines that you
can use to conduct SRQ servicing and serial polling. Routines pertinent
to SRQ servicing and seria polling are Al | Spol |, Fi ndRGQS,
ReadsSt at usByt e, Test SRQ and Wai t SRQ

Al | Spol | can serial poll multiple devices with asingle call. It places
the status bytes from each polled instrument into a predefined array.
Then you must check the RQS hit of each status byte to determine
whether that device requested service.

ReadSt at usByt e issimilar to Al | Spol |, except that it only serial
pollsasingle device. It is also analogous to the device-level NI-488
i br sp function.

Fi ndRQS serial pollsalist of devices until it finds a devicethat is
requesting service or until it has polled all of the devices on the list.
The routine returns the index and status byte value of the device
requesting service.

Test SRQdetermines whether the SRQ line is asserted or unasserted,
and returns to the program immediately.

Wi t SRQissimilar to Test SRQ except that WA t SRQ suspends the
application until either SRQ is asserted or the timeout period is
exceeded.

The following examples use N1-488.2 routines to detect SRQ and then
determine which device requested service. In these examples three
devices are present on the GPIB at addresses 3, 4, and 5, and the GPIB
interface is designated as busindex 0. The first example uses

Fi ndRQS to determine which device is requesting service and the
second example uses Al | Spol | to seria poll al three devices. Both
examples use Wai t SRQto wait for the GPIB SRQ line to be asserted.

Automatic serial polling isnot used in these examples because you
cannot useit with NI-488.2 routines.

© National Instruments Corporation 7-15  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 7

NI-488.2M User Manual for Windows 95/Windows NT 7-16 © National Instruments Corporation

GPIB Programming Techniques

Example 1: Using FindRQS
This exampleillustrates the use of Fi ndRQS to find the first device
that is requesting service.

voi d Get ASeri al Pol | Response ( char *Devi cePad,
char *Devi ceResponse)
{

char Serial Pol | Response = 0;
int WiitResult;
Addr4882_t Addrlist[4] = {3,4,5, NOADDR};
WAi t SRQ (0, &WMitResult);
if (WaitResult) {
printf ("SRQis asserted.\n");
Fi ndRQS ( O, AddrlList, &SerialPoll Response );
if (I(ibsta & ERR)) {
printf ("Device at pad % returned byte
9.\ n", AddrList[ibcnt], (int)
Seri al Pol | Response) ;
*Devi cePad = AddrList[ibcnt];
*Devi ceResponse = Seri al Pol | Response;
}
}

return;

Example 2: Using AllSpoll

This exampleillustrates the use of Al | Spol | to serial poll three
deviceswith asingle call.

void Get Al'l Seri al Pol | Responses ( Addr4882_t
AddrList[], short ResponseList[] )

{
int WaitResult;
Wai t SRQ (0, &WaitResult);
if ( WitResult ) {
printf ( "SRQis asserted.\n" );
Al'l Spoll ( O, AddrlList, Responselist );
if (!(ibsta & ERR))
for (i = 0; AddrList[i] != NOADDR; i++) {
printf ("Device at pad % returned byte
%.\n", AddrList[i], ResponseList[i] );
}
}
}
return;
}



Chapter 7 GPIB Programming Techniques

Parallel Polling

Although parallel polling is not widely used, it is a useful method for
obtaining the status of more than one device at the sametime. The
advantage of parallel polling isthat asingle parallel poll can easily
check up to eight individual devices at once. In comparison, eight
separate serial polls would be required to check eight devices for their
seria poll response bytes. The value of the individual status bit (i st)
determines the parallel poll response.

Implementing a Parallel Poll

Y ou can implement paralléel polling with either NI-488 functions or
NI-488.2 routines. If you use NI-488.2 routines to execute parallel
polls, you do not need extensive knowledge of the paralléel polling
messages. However, you should use the NI-488 functions for parallel
polling when the GPIB board is not the Controller and must configure
itself for aparallel poll and set its own individual status bit (i st).

Parallel Polling with NI-488 Functions

Follow these steps to implement parallel polling using NI1-488
functions. Each step contains exampl e code.

1. Configurethe device for parallel polling using the i bppc
function, unless the device can configure itself for parallel polling.

i bppc requires an 8-hit value to designate the data line number,
thei st sense, and whether or not the function configures or
unconfigures the device for the parallél poll. The bit patternisas
follows:

011ESD2D1DO0

Eis1todisable parallel polling and O to enable parallel polling for
that particular device.

Sis1if thedeviceisto assert the assigned datalinewheni st =1,
and 0 if the device isto assert the assigned datalinewhen i st =0.

D2 through DO determine the number of the assigned dataline. The
physical line number is the binary line number plus one. For
example, DIO3 has a binary bit pattern of 010.

The following example code configures adevice for parallel
polling using NI-488 functions. The device asserts DIO7 if its
i st =0.

© National Instruments Corporation 7-17  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 7

GPIB Programming Techniques

In this example, thei bdev command is used to open a device that
has a primary address of 3, has no secondary address, has a timeout
of 3 s, asserts EOI with the last byte of awrite operation, and has
EOS characters disabled.

Thefollowing call configures the device to respond to the poll on
DIO7 and to assert the line in the case when itsi st is0. Passthe
binary bit pattern, 0110 0110 or hex 66, to i bppc.

#i ncl ude "decl -32. h"

char ppr;

dev = ibdev(0,3,0,T3s,1,0);

i bppc(dev, 0x66);

If the GPIB interface board configures itself for a parallel poll, you
should gtill usethei bppc function. Pass the board index or a
board unit descriptor value as the first argument ini bppc. In
addition, if theindividual statusbit (i st ) of the board needsto be
changed, usethei bi st function.

In the following example, the GPIB board isto configure itself to
participate in aparalel poll. It asserts DIO5 wheni st =1if a
parallel poll is conducted.

i bppc(0, 0x6C);
ibist(0, 1);

Conduct the parallel poll using i br pp and check the response for
acertain value. The following example code performs the parallel
poll and compares the response to hex 10, which corresponds to
DIOS. If that bit isset, thei st of the deviceis 1.

i brpp(dev, &ppr);
if (ppr & 0x10) printf("ist = 1\n");

Unconfigure the device for parallel polling withi bppc. Notice
that any value having the parallél poll disable bit set (bit 4) in the
bit pattern disables the configuration, so you can use any value
between hex 70 and 7E.

i bppc(dev, 0x70);

Parallel Polling with NI-488.2 Routines

Follow these steps to implement parallel polling using NI-488.2
routines. Each step contains example code.

1. Configurethe device for parallel polling using the PPol | Confi g

routine, unless the device can configure itself for parallel polling.
The following example configures adevice at address 3 to assert
dataline 5 (DIO5) wheniitsi st valueis 1.

NI-488.2M User Manual for Windows 95/Windows NT 7-18 © National Instruments Corporation



Chapter 7 GPIB Programming Techniques

#i ncl ude "decl -32. h"

char response;

Addr 4882_t AddressList[2];

/* The followi ng command cl ears the GPIB. */

Sendl FC(0) ;

/* The value of sense is conpared with the ist bit
of the device and determ nes whether the data
line is asserted. */

PPol | Config(0,3,5,1);

2. Conduct the parallel poll using PPol | , store the response, and
check the response for a certain value. In the following example,
because DIO5 is asserted by the deviceif i st =1, the program
checks bit 4 (hex 10) in the response to determine the value of
i st.

PPol | (0, &response);

/* If response has bit 4 (hex 10) set, the ist bit
of the device at that time is equal to 1. If
it does not appear, the ist bit is equal to O.
Check the bit in the followi ng statenment. */

if (response & 0x10) ({
printf("The ist equals 1.\n");

el se {
printf("The ist equals 0.\n");

3. Unconfigure the device for parallel polling using the
PPol | Unconf i g routine as shown in the following example. In
this example, the NOADDR constant must appear at the end of the
array to signal the end of the address|list. If NOADDR is the only
valuein the array, all devices receive the parallel poll disable
message.
Addr essLi st [ 0] 3;

Addr esslLi st [ 1] NOADDR
PPol | Unconfi g(0, AddressList);

© National Instruments Corporation 7-19  NI-488.2M User Manual for Windows 95/Windows NT



Chapter

GPIB Configuration Utility

This chapter contains a description of the GPIB configuration utility
you can use to configure your NI-488.2M software.

Overview

The Windows 95 GPIB configuration utility isintegrated into the
Windows 95 Device Manager. The Windows NT GPIB configuration
utility isintegrated into the Windows NT Control Panel. Y ou can use
the GPIB configuration utility to view or modify the configuration of
your GPIB interface boards. Y ou can also use it to view or modify the
GPIB device templates, which provide compatibility with older
applications. The online help includes al of the information that you
need to properly configure the NI1-488.2M software.

In most cases, you should use the GPIB configuration utility only to
change the hardware configuration of your GPIB interface boards. To
change the GPIB characteristics of your boards and the configuration of
the device templates, usethei bconf i g function in your application.
If your application usesi bconf i g whenever it needs to modify a
configuration option, it is able to run on any computer with the
appropriate N1-488.2M software, regardless of the configuration of that
computer.

© National Instruments Corporation 8-1  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 8

GPIB Configuration Utility

Windows 95: Configuring the NI-488.2M Software

5

NI-488.2M User Manual for Windows 95/Windows NT 8-2

Note:

Y ou do not need to configure the NI-488.2M software unless you are
using more than one GPIB interface in your system. If you are using
more than one interface, you should configure the NI-488.2M software
to associate alogical name (gpi b0, gpi b1, and so on) with each
physical GPIB interface.

GPIB Analyzer software settings are available through the GPIB
Analyzer application.

To configure the NI-488.2M software, follow these steps:

1

Double-click the System icon in the Control Panel, which can be
opened from the Settings selection of the Start menu.

Select the Device M anager tab in the System Properties dialog
box that appears.

Click the View devices by type radio button at the top of the
Device Manager tab, and double-click the National Instruments
GPIB Interfacesicon.

Double-click on the particular interface type you want to configure
inthelist of installed interfaces immediately below National
Instruments GPIB Interfaces. If an exclamation point or an X
appears next to the interface, there is a problem, and you should
refer to the Troubleshooting Windows 95 Device Manager Device
Satus Codes section of Appendix C, Windows 95:
Troubleshooting and Common Questions, to resolve your problem
before you continue. The Resour ces tab provides information
about the hardware resources assigned to the GPIB interface, and
the NI-488.2M Settings tab provides information about the
software configuration for the GPIB interface.

Use the Interface Name drop-down box to select alogical name
(GPI BO, GPI B1, and so on) for the GPIB interface. Repeat this
process for each interface you need to configure. Figure 8-1 shows
the N1-488.2M Settingstab for an AT-GPIB/TNT (PnP).

© National Instruments Corporation



Chapter 8 GPIB Configuration Utility

AT-GPIBE/TNT {(Plug and Play) Properties | X |

General MI-483.2M Setting: I Hesuurcesl

W AT-GPIB/TNT (Plug and Flay]

154 PrP Serial Murnber 00000123

Irnterface Mame — Termination Methods

- ¥ Send EDI at end of Wiite

—GPIB Addrezs— [T Temiinate Read on EOS
Efrreyy I~ Set EOl with EQS on Wiite

L - [T &bit EDS Compare

_IIS rj;;n;aw TI ID_ EQS Byte

140 Timeout

I 10s2c jv Advanced... |

¥ System Contraller

QF. I Cancel

Figure 8-1. NI-488.2M Settings Tab for the AT-GPIB/TNT (PnP)

If you want to examine or modify the logical device templates for the
GPIB software, select the National I nstruments GPIB Interfacesicon
from the Device Manager tab, and click the Properties button. Select
the Device Templates tab to view the logical device templates, as
shown in Figure 8-2.

© National Instruments Corporation 8-3  NI-488.2M User Manual for Windows 95/Windows NT



Chapter 8 GPIB Configuration Utility

Windows NT:

National Instruments GPIBE Interfaces Properties HE

W M atiomal Instruments GPIB Interfaces

-

General ;L

Device Name

DEV2
DEV3
DEYS ¥

—DEW1 Attributes

|nterface — Termination kethadsz Timeouts

[sPED -] [¥ Send EQI at end of wiite | | /2
. |1Dsec '|
[T Teminate Fead on EOS

GPIE Address Serial Pall

Primary [~ Set EOI with EQS on 'wWite
m |1sec 'l

[ B-bit EDS Compare

Secondary

NOME = IU EOS Byte [ Beaddiess

(] I Cancel

Figure 8-2. Device Templates Tab for the Logical Device Templates

Configuring the NI-488.2M Software

When you install the NI-488.2M software for Windows NT, the
installation program places the GPIB configuration utility into your
Control Panel. To start the GPIB configuration utility simply open your
Windows NT Control Panel and select the eagle icon.

Because you can use the GPIB configuration utility to modify the
configuration of the NI1-488.2M kernel drivers, you must be logged on
to Windows NT asthe Admi ni st r at or to make any changes with
the GPIB configuration utility. If you start the GPIB configuration
utility without Admi ni st r at or privileges, it runsin read-only mode;
you can view the settings, but you cannot make changes.

The main GPIB Configuration dialog box appears containing alist of
the GPIB boards and device templates as shown in Figure 8-3.

NI-488.2M User Manual for Windows 95/Windows NT 8-4 © National Instruments Corporation



Chapter 8 GPIB Configuration Utility

= GPIB Configuration

GFIE BEoard ’ Device Template
(GPIBD DE1

Configure DEVZ
DEW3

DEY4
Board Type DEYS

I| Cancel | Helg | Unload

Figure 8-3. Main Dialog Box in the GPIB Configuration Utility

If at any point you need more help, click on the Help button or press
the <F1> key. Either of these actions brings up the help screen, which
gives you more information about the current dialog box.

After you have finished configuring your GPIB boards and device
templates, click on the OK button to save the changes and exit. Click
the Cancel button to exit without saving any of the changes you made.

After you click on the OK button, the GPIB Configuration utility asks
whether or not you want the changes to take effect immediately. If you
answer No, you must restart your system before the new settings can be
used. If you answer Y es, the GPIB configuration utility attempts to
unload and reload the NI1-488.2M software so that the software uses
your new settings. If the GPIB configuration utility cannot unload the
software because it is being used by another application, it instructs you
to restart your computer.

If you need to unload the NI-488.2M software and prevent it from
reloading when you restart your computer, click the Unload button. If
the GPIB configuration utility cannot unload the NI1-488.2M software,
it instructs you either to exit all GPIB-related applications, or to shut
down and restart your computer. If you want to use the software again
after unloading it, run the GPIB Configuration utility again and then
click on the OK button.

© National Instruments Corporation 8-5  NI-488.2M User Manual for Windows 95/Windows NT



Appendix

Status Word Conditions

This appendix gives a detailed description of the conditions reported in
the statusword, i bst a.

For information about how to use i bst a in your application program,
refer to Chapter 3, Developing Your Application.

Each bitini bst a can be set for device calls (dev), board calls (brd),
or both (dev, brd).

The following table shows the status word layout.

Bit Hex

Mnemonic | Pos. | Value | Type Description
ERR 15 | 8000 | dev,brd | GPIB error
TIMO 14 4000 | dev,brd | Timelimit exceeded
END 13 | 2000 | dev,brd | END or EOS detected
SRQI 12 | 1000 | brd SRQ interrupt received
RQS 11 800 | dev Device requesting service
CMPL 8 100 | dev,brd | 1/Ocompleted
LOK 7 80 | brd Lockout State
REM 6 40 | brd Remote State
CiC 5 20 | brd Controller-In-Charge
ATN 4 10 | brd Attention is asserted
TACS 3 8 |brd Talker
LACS 2 4 |brd Listener
DTAS 1 2 |brd Device Trigger State
DCAS 0 1 |brd Device Clear State

© National Instruments Corporation A-1  NI-488.2M User Manual for Windows 95/Windows NT



Appendix A Status Word Conditions

ERR (dev, brd)

ERR is set in the status word following any call that resultsin an error.
Y ou can determine the particular error by examining the error variable

i berr . Appendix B, Error Codes and Solutions, describes error codes
that arerecorded ini ber r along with possible solutions. ERR is
cleared following any call that does not result in an error.

TIMO (dev, brd)

TIMO indicates that the timeout period has been exceeded. TIMO is set
in the status word followingani bwai t ori bnot i fy cal if the
TIMO bit of the mask parameter is set and the time limit expires. TIMO
isalso set following any synchronous /O functions (for example,

i bcd, i brd,i bwt,Recei ve, Send, and SendCns) if a
timeout occurs during one of these calls. TIMO iscleared in all other
circumstances.

END (dev, brd)

END indicates either that the GPIB EOI line has been asserted or that
the EOS byte has been received, if the software is configured to
terminate aread on an EOS byte. If the GPIB board is performing a
shadow handshake as aresult of thei bgt s function, any other
function can return a status word with the END bit set if the END
condition occurs before or during that call. END is cleared when any
I/O operation isinitiated.

Some applications might need to know the exact /0O read termination
mode of aread operation—EOI by itself, the EOS character by itself, or
EOI plusthe EOS character. You can usethei bconf i g function
(option | bcEndBi t | sNor nmal ) to enable amode in which the END
bit is set only when EOI is asserted. In this mode if the I/O operation
completes because of the EOS character by itself, END is not set. The
application should check the last byte of the received buffer to seeiif it
isthe EOS character.

NI-488.2M User Manual for Windows 95/Windows NT A-2 © National Instruments Corporation



Appendix A Status Word Conditions

SRQI (brd)

SRQI indicates that a GPIB device isrequesting service. SRQI is set
whenever the GPIB board is CIC, the GPIB SRQ line is asserted, and
the automatic serial poll capability isdisabled. SRQI is cleared either
when the GPIB board ceases to be the CIC or when the GPIB SRQ line
is unasserted.

RQS (dev)

RQS appears in the status word only after a device-level cal and
indicates that the device is requesting service. RQS is set whenever one
or more positive seria poll response bytes have been received from the
device. A positive seria poll response byte always has bit 6 asserted.
Automatic serial polling must be enabled (it is enabled by default) for
RQS to automatically appear ini bst a. You can also wait for adevice
to request service regardless of the state of automatic serial polling by
calingi bwai t with amask that contains RQS. Do not issue an

i bwai t call on RQS for adevice that does not respond to serial polls.
Usei br sp to acquire the serial poll response byte that was received.
RQS is cleared when all of the stored serial poll response bytes have
been reported to you through thei br sp function.

CMPL (dev, brd)

CMPL indicates the condition of 1/O operations. It is set whenever an
I/O operation is complete. CMPL is cleared while the I/O operation is
in progress.

LOK (brd)

LOK indicates whether the board isin alockout state. While LOK is
set, the Enabl eLocal routineor i bl oc function isinoperative for
that board. LOK is set whenever the GPIB board detects that the Local
L ockout (LLO) message has been sent either by the GPIB board or by
another Controller. LOK is cleared when the System Controller
unasserts the Remote Enable (REN) GPIB line.

© National Instruments Corporation A-3  NI-488.2M User Manual for Windows 95/Windows NT



Appendix A Status Word Conditions

REM (brd)

CIC (brd)

REM indicates whether or not the board is in the remote state. REM is
set whenever the Remote Enable (REN) GPIB lineis asserted and the
GPIB board detects that its listen address has been sent either by the
GPIB board or by another Controller. REM is cleared in the following
situations:

*  When REN becomes unasserted

*  When the GPIB board as a Listener detects that the Go to Local
(GTL) command has been sent either by the GPIB board or by
another Controller

« Whenthei bl oc functionis caled whilethe LOK bit iscleared in
the status word

ATN (brd)

CIC indicates whether the GPIB board is the Controller-In-Charge. CIC
is set when the Sendl FCroutineor i bsi ¢ function is executed either
while the GPIB board is System Controller or when another Controller
passes control to the GPIB board. CIC is cleared either when the GPIB
board detects Interface Clear (IFC) from the System Controller or when
the GPIB board passes control to another device.

TACS (brd)

ATN indicates the state of the GPIB Attention (ATN) line. ATN is set
whenever the GPIB ATN lineis asserted, and it is cleared when the
ATN lineis unasserted.

TACS indicates whether the GPIB board is addressed as a Talker.
TACS is set whenever the GPIB board detects that its talk address (and
secondary address, if enabled) has been sent either by the GPIB board
itself or by another Controller. TACSis cleared whenever the GPIB
board detects the Untalk (UNT) command, its own listen address, atalk
address other than its own talk address, or Interface Clear (IFC).

NI-488.2M User Manual for Windows 95/Windows NT A-4 © National Instruments Corporation



LACS (brd)

Appendix A Status Word Conditions

DTAS (brd)

LACS indicates whether the GPIB board is addressed as a Listener.
LACS s set whenever the GPIB board detects that its listen address
(and secondary address, if enabled) has been sent either by the GPIB
board itself or by another Controller. LACSis aso set whenever the
GPIB board shadow handshakes as aresult of thei bgt s function.
LACS s cleared whenever the GPIB board detects the Unlisten (UNL)
command, its own talk address, Interface Clear (IFC), or that the

i bgt s function has been called without shadow handshake.

DCAS (brd)

DTAS indicates whether the GPIB board has detected a device trigger
command. DTAS is set whenever the GPIB board, as a Listener, detects
that the Group Execute Trigger (GET) command has been sent by
another Controller. DTAS s cleared on any call immediately following
ani bwai t cal,if theDTASbhitissetinthei bwai t mask parameter.

DCAS indicates whether the GPIB board has detected a device clear
command. DCAS is set whenever the GPIB board detects that the
Device Clear (DCL) command has been sent by another Controller, or
whenever the GPIB board as a Listener detects that the Selected Device
Clear (SDC) command has been sent by another Controller.

If youusethei bwai t ori bnoti fy function to wait for DCAS and
the wait is completed, DCASis cleared fromi bst a after the next
GPIB call. The sameistrue of reads and writes. If you call aread or
writefunction suchasi bwrt or Send, and DCASissetini bst a,
the 1/0O operation is aborted. DCAS s cleared from i bst a after the
next GPIB call.

© National Instruments Corporation A-5  NI-488.2M User Manual for Windows 95/Windows NT



Appendix

Error Codes and Solutions

This appendix lists a description of each error, some conditions under
which it might occur, and possible solutions.

The following table lists the GPIB error codes.

Error iberr
Mnemonic | Value Meaning
EDVR 0 System error
ECIC 1 Function requires GPIB board to be CIC
ENOL 2 No Listeners on the GPIB
EADR 3 GPIB board not addressed correctly
EARG 4 Invalid argument to function call
ESAC 5 GPIB board not System Controller as
required
EABO 6 1/O operation aborted (timeout)
ENEB 7 Nonexistent GPIB board
EDMA 8 DMA error
EQIP 10 Asynchronous I/O in progress
ECAP 11 No capability for operation
EFSO 12 File system error
EBUS 14 GPIB bus error
ESTB 15 Serial poll status byte queue overflow
ESRQ 16 SRQ stuck in ON position
ETAB 20 Table problem

© National Instruments Corporation B-1  NI-488.2M User Manual for Windows 95/Windows NT



Appendix B Error Codes and Solutions

EDVR (0)

EDVR is returned when the board or device name passed to i bf i nd,
or the board index passed toi bdev, cannot be accessed. The global
variablei bent | contains an error code. This error occurs when you
try to access aboard or device that is not installed or configured

properly.

EDVR isalso returned if an invalid unit descriptor is passed to any
NI-488 function call.

Solutions

ECIC (1)

Usei bdev to open adevice without specifying its symbolic
name.

Use only device or board names that are configured in the GPIB
configuration utility as parametersto thei bf i nd function.

Use the GPIB Configuration utility to ensure that each board you
want to access is configured properly.

Use the unit descriptor returned fromi bdev ori bf i nd asthe
first parameter in subsequent NI-488 functions. Examine the
variable before the failing function to make sure its value has not
been corrupted.

For Windows 95, refer to the Troubleshooting EDVR Error
Conditions section in Appendix C, Windows 95: Troubleshooting
and Common Questions, for more information.

ECIC isreturned when one of the following board functions or routines
is called while the board is not CIC:

Any device-level NI-488 functions that affect the GPIB

Any board-level NI-488 functions that issue GPIB command bytes:
i bcd, i benda, i bl n,andi br pp

i bcac andi bgts

Any of the NI-488.2 routines that issue GPIB command bytes:
SendCnds, PPol | , Send, and Recei ve

NI-488.2M User Manual for Windows 95/Windows NT B-2 © National Instruments Corporation



Appendix B Error Codes and Solutions

Solutions

ENOL (2)

Usei bsi ¢ or Sendl FCto make the GPIB board become CIC on
the GPIB.

Usei brsc 1 to make sureyour GPIB board is configured as
System Controller.

In multiple CIC situations, aways be certain that the CIC bit
appearsin the statusword i bst a before attempting these calls. If
it does not appear, you can performani bwai t (for CIC) call to
delay further processing until control is passed to the board.

ENOL usually occurs when awrite operation is attempted with no
Listeners addressed. For adevice write, ENOL indicates that the GPIB
address configured for that device in the software does not match the
GPIB address of any device connected to the bus, that the GPIB cable
is not connected to the device, or that the deviceis not powered on.

ENOL can occur in situations where the GPIB board is not the CIC and
the Controller asserts ATN before the write call in progress has ended.

Solutions

© National Instruments Corporation

Make sure that the GPIB address of your device matches the GPIB
address of the device to which you want to write data.

Use the appropriate hex codeini bcnd to address your device.

Check your cable connections and make sure at least two-thirds of
your devices are powered on.

Call i bpad (or i bsad, if necessary) to match the configured
address to the device switch settings.

Reduce the write byte count to that which is expected by the
Controller.

B-3  NI-488.2M User Manual for Windows 95/Windows NT



Appendix B Error Codes and Solutions

EADR (3)

EADR occurs when the GPIB board is CIC and is not properly
addressing itself before read and write functions. This error is usually
associated with board-level functions.

EADR isalso returned by the function i bgt s when the
shadow-handshake feature is requested and the GPIB ATN lineis
already unasserted. In this case, the shadow handshake is not possible
and the error isreturned to notify you of that fact.

Solutions

* Make surethat the GPIB board is addressed correctly before
calingi brd,i bwt, RevRespMsg, or SendDat aByt es.

* Avoidcalingi bgt s except immediately after an i bend call.
(i bcnd causes ATN to be asserted.)

EARG (4)

EARG results when an invalid argument is passed to a function call.
The following are some examples:

* i bt no called with avalue not in the range 0 through 17.

* i beos called with meaningless bits set in the high byte of the
second parameter.

* ibpadori bsad called with invalid addresses.
* i bppc caled withinvalid parallel poll configurations.

* A board-level NI-488 call made with avalid device descriptor, or a
device-level NI-488 call made with aboard descriptor.

*  AnNI-488.2 routine called with an invalid address.
 PPol | Confi g caled with aninvalid data line or sense hit.

Solutions

* Make sure that the parameters passed to the NI-488 function or
NI-488.2 routine are valid.

e Do not use adevice descriptor in a board function or vice-versa.

NI-488.2M User Manual for Windows 95/Windows NT B-4 © National Instruments Corporation



ESAC (5)

Appendix B Error Codes and Solutions

EABO (6)

ESAC resultswheni bsi ¢, i bsr e, Sendl FC, or Enabl eRenpt e
is called when the GPIB board does not have System Controller

capability.

Solutions

Give the GPIB board System Controller capability by calling
i brsc 1 or by using the GPIB configuration utility to configure that
capability into the software.

ENEB (7)

EABO indicates that an /O operation has been canceled, usually dueto
atimeout condition. Other causes are calling i bst op or receiving the
Device Clear message from the CIC while performing an 1/O operation.
Frequently, the 1/O is not progressing (the Listener is not continuing to
handshake or the Talker has stopped talking), or the byte count in the
call which timed out was more than the other device was expecting.

Solutions

» Usethe correct byte count in input functions or have the Talker use
the END message to signify the end of the transfer.

e Lengthen the timeout period for the I/O operation using i bt no.

» Make surethat you have configured your deviceto send data
before you request data.

ENEB occurs when no GPIB board exists at the 1/O address specified
in the configuration program. This problem happens when the board is
not physically plugged into the system, the 1/0O address specified during
configuration does not match the actual board setting, or thereisa
system conflict with the base I/O address.

© National Instruments Corporation B-5  NI-488.2M User Manual for Windows 95/Windows NT



Appendix B Error Codes and Solutions

EDMA (8)

Solutions

Make sure there is a GPIB board in your computer that is properly
configured both in hardware and software using avalid base I/O
address.

EOIP (10)

EDMA occurs if asystem DMA error is encountered when the
NI-488.2M software attempts to transfer data over the GPIB using
DMA.

Solutions

* You can correct the EDMA problem in the hardware by using the
GPIB configuration utility to reconfigure the hardware to not use a
DMA resource.

* You can correct the EDMA problem in the software by using
i bdnma to disable DMA.

EOIP occurs when an asynchronous 1/0O operation has not finished
before some other call is made. During asynchronous /O, you can only
usei bst op,i bnotify,ibwait,andi bonl orperform other non-
GPIB operations. If any other call is attempted, EOIP is returned.

Solutions

Resynchronize the driver and the application before making any further
GPIB calls. Resynchronization is accomplished by using one of the
following four functions:

* ibnotify Ifthei bsta valuepassedtothei bnotify
callback contains CMPL, the driver and application
are resynchronized.

e ibwait If thereturned i bst a contains CMPL then the driver
and application are resynchronized.

e ibstop The /O is canceled; the driver and application are
resynchronized.

NI-488.2M User Manual for Windows 95/Windows NT B-6 © National Instruments Corporation



ECAP (11)

Appendix B Error Codes and Solutions

* ibonl The l/O is canceled and the interface is reset; the
driver and application are resynchronized.

EFSO (12)

ECAP results when your GPIB board lacks the ability to carry out an
operation or when a particular capability has been disabled in the
software and a call is made that requires the capability.

Solutions

Check the validity of the call, or make sure your GPIB interface board
and the driver both have the needed capability.

EBUS (14)

EFSO resultswhenani br df ori bwrt f call encounters a problem
performing afile operation. Specifically, this error indicates that the
function is unable to open, create, seek, write, or close the file being
accessed. The specific operating system error code for this conditionis
contained ini bent | .

Solutions

» Make sure the filename, path, and drive that you specified are
correct.

» Make sure that the access mode of thefileis correct.

e Make surethereis enough room on the disk to hold thefile.

EBUS results when certain GPIB bus errors occur during device
functions. All device functions send command bytes to perform
addressing and other bus management. Devices are expected to accept
these command bytes within the time limit specified by the default
configuration or thei bt no function. EBUS resultsif atimeout
occurred while sending these command bytes.

© National Instruments Corporation B-7  NI-488.2M User Manual for Windows 95/Windows NT



Appendix B Error Codes and Solutions

ESTB (15)

Solutions

e Verify that the instrument is operating correctly.

*  Check for loose or faulty cabling or several powered-off
instruments on the GPIB.

» |If thetimeout period istoo short for the driver to send command
bytes, increase the timeout period.

ESRQ (16)

ESTB isreported only by thei br sp function. ESTB indicates that one
or more serial poll status bytes received from automatic serial polls
have been discarded because of alack of storage space. Several older
status bytes are available; however, the oldest is being returned by the

i brsp call.

Solutions

e Cdli br sp morefrequently to empty the queue.

» Disable autopolling with thei bconf i g function (option
| bcAUTOPQOLL) or the GPIB configuration utility.

ESRQ can only bereturned by adevice-level i bwai t call with RQS
set in the mask. ESRQ indicates that await for RQS is not possible
because the GPIB SRQ lineis stuck on. This situation can be caused by
the following events:

» Usudly, adevice unknown to the software is asserting SRQ.
Because the software does not know of this device, it can never
seria poll the device and unassert SRQ.

* A GPIB bustester or similar equipment might be forcing the SRQ
line to be asserted.

* A cable problem might exist involving the SRQ line.
Although the occurrence of ESRQ warns you of a definite GPIB

problem, it does not affect GPIB operations, except that you cannot
depend onthei bst a RQS bit while the condition lasts.

NI-488.2M User Manual for Windows 95/Windows NT B-8 © National Instruments Corporation



Appendix B Error Codes and Solutions

Solutions

Check to see if other devices not used by your application are asserting
SRQ. Disconnect them from the GPIB if necessary.

ETAB (20)

ETAB occursonly during the Fi ndLst n and Fi ndRQS functions.
ETAB indicates that there was some problem with atable used by these
functions.

* Inthecaseof Fi ndLst n, ETAB meansthat the given table did
not have enough room to hold all the addresses of the Listeners
found.

* Inthecaseof Fi ndRQS, ETAB means that none of the devicesin
the given table were requesting service.

Solutions

In the case of Fi ndLst n, increase the size of result arrays. In the case
of Fi ndRQS, check to seeif other devices not used by your application
are asserting SRQ. Disconnect them from the GPIB if necessary.

© National Instruments Corporation B-9  NI-488.2M User Manual for Windows 95/Windows NT



Appendix

Windows 95:
Troubleshooting and
Common Questions

This appendix describes how to troubleshoot problems and lists some
common questions for Windows 95 users.

Troubleshooting EDVR Error Conditions

In some cases, calls to NI-488 functions or NI-488.2 routines may
return with the ERR bit setini bst a and thevaue EDVRini berr.
Thevalue stored ini bent | isuseful in troubleshooting the error
condition.

EDVR Error with ibcntl Set to 0xE028002C (-534249428)

If acal is made with a board number that iswithin the range of allowed
board numbers (typically 0 to 3), but which has not been assigned to a
GPIB interface, an EDVR error condition occurswith i bent | set to
0xE028002C. Y ou can assign a board number to a GPIB interface by
configuring the NI1-488.2M software and selecting an interface name.
Refer to the getting started manual for information on how to configure
the NI-488.2M software.

EDVR Error with ibcntl Set to 0xE0140025 (-535560155)

If acall is made with a board number that is not within the range of
allowed board numbers (typically 0 to 3), an EDVR error condition
occurswithi bent | set to 0xE0140025.

EDVR Error with ibcntl Set to 0xE0140035 (-535560139)

If acall is made with a device name that is not listed in the logical
device templates that are part of the NI-488.2M software configuration
utility, an EDVR error condition occurswith i bent | setto
0xE0140035.

© National Instruments Corporation C-1  NI-488.2M User Manual for Windows 95/Windows NT



Appendix C  Windows 95: Troubleshooting and Common Questions

EDVR Error with ibcntl Set to 0xE0320029 (-533594071)

If acal is made with a board number that is assigned to a GPIB
interface that is unusable because of aresource conflict, an EDVR error
condition occurswith i bent | set to 0XE0320029. Refer to the
troubleshooting instructions in the getting started manual. This error is
also returned if you remove a PCMCIA-GPIB or PCMCIA-GPIB+
while the driver is accessing it. Thiserror isalso returned if you try to
access a PCMCIA-GPIB when 32-bit PCMCIA drivers are not enabled.
Refer to the Install the PCMCIA-GPIB+ or PCMCIA-GPIB sectionin
your getting started manual for more information about enabling 32-bit
PCMCIA drivers.

EDVR Error with ibcntl Set to 0xE0140004 (-535560188)

This error may occur if the GPIB interface has not been correctly
installed and detected by Windows 95. Refer to the Installation and
Configuration chapter in your getting started manual for details on how
to install the GPIB hardware. If you have already followed those
instructions and still receive this error, Windows 95 might have
configured the GPIB interface as an "Other Device". Refer to your
getting started manual for information on how to force Windows 95 to
detect the GPIB hardware.

Troubleshooting Windows 95 Device Manager Device
Status Codes

If you are having trouble with your GPIB interface, check to seeif the
interface listing in the Windows 95 Device Manager appears with an
exclamation point or X by it. If it does, click on theinterface listing and
then click on the Properties button to view the General properties
page for the interface. In the Device Status section, look for the status
description and status code number. Use these status code descriptions
and numbers to troubleshoot your problem. The following paragraphs
describe the status codes.

» Code8: The GPIB software wasincompletely installed. You
might encounter this problem if you have installed an
AT-GPIB/TNT+ but not installed the GPIB Anayzer software. To
solve this problem, reinstall the GPIB software for Windows 95.

* Code9: Windows 95 had a problem reading information from the
GPIB interface. This problem can occur if you are using an older
revision of the AT-GPIB/TNT+ or AT-GPIB/TNT (PnP) interface.
Contact National Instruments to upgrade your GPIB interface.

NI-488.2M User Manual for Windows 95/Windows NT c-2 © National Instruments Corporation



Appendix C Windows 95: Troubleshooting and Common Questions

* Code15: The GPIB interface was not assigned an Interrupt
Request level. If your computer does not have any available
Interrupt Request levels, Windows 95 might configure your GPIB
interface without an Interrupt Request level. The GPIB software
for Windows 95 cannot function without an Interrupt Request
level. Another way to verify this problemisto look at the
Resour ce settings list on the Resour ces tab to verify that the
GPIB interface was not assigned an Interrupt Request level. To
solve this problem, free up an Interrupt Request level that is being
used by another device in the system.

* Code?22: TheGPIB interface isdisabled. To enable the GPIB
interface, check the appropriate configuration checkbox in the
Device Usage section of the General tab.

» Code?24: The GPIB interfaceis not present, or the Device
Manager is unaware that the GPIB interfaceis present. To solve
this problem, select the interface in the Device Manager, and click
on the Remove button. Next, click the Refresh button. At this
point, the system rescans the installed hardware, and the GPIB
interface should show up without any problems. If the problem
persists, contact National Instruments.

*  Code 27: Windows 95 was unable to assign the GPIB interface
any resources. To solve this problem, free up system resources by
disabling other unnecessary hardware so that enough resources are
available for the GPIB interface.

Common Questions

What do | doif my GPIB hardwareislisted in the Windows 95 Device M anager
with an exclamation point or an X next toit?

Refer to the Troubleshooting Windows 95 Device Manager Device
Satus Codes section of this appendix for specific information about
what might cause this problem. If you have already completed the
troubleshooting steps, fill out the formsin Appendix E, Customer
Communication, and contact National Instruments.

How can | determine which type of GPIB hardware | haveinstalled?

Run the GPIB Configuration utility. To run the utility, select
Start»Settings»Control Panel»System. Select the Device M anager
tab in the System Properties dialog box. Click on the View devices by
typeradio button at the top of the page. If any GPIB hardwareis

© National Instruments Corporation C-3  NI-488.2M User Manual for Windows 95/Windows NT



Appendix C  Windows 95: Troubleshooting and Common Questions

correctly installed, a National I nstruments GPIB Interfacesicon
appearsin thelist of device types. Double-click thisicon to see alist of
installed GPIB hardware.

How can | determine which version of the NI-488.2M software| haveinstalled?

Run the Diagnostic utility. To run the utility, select the Diagnostic item
under Start»Programs»NI-488.2M Software for Windows 95.
Diagnostic displays information about the version of the NI-488.2M
software currently installed.

Which GPIB interfaces does version 1.1 of the NI-488.2M softwar e for
Windows 95 support?

Version 1.1 of the GPIB software for Windows 95 supports the
AT-GPIB/TNT, AT-GPIB/TNT (Plug and Play), AT-GPIB/TNT+,
PCMCIA-GPIB, PCMCIA-GPIB+, PCI-GPIB, GPIB-ENET,
EISA-GPIB, NEC-GPIB/TNT, and NEC-GPIB/TNT (Plug and Play).

| have a GPIB interface that the NI-488.2M softwar e for Windows 95 does not
support. What should | do?

Contact National Instruments to order the Compatibility Release for
Windows 95 or to upgrade your hardware.

How many GPIB interfacescan | configurefor usewith my NI1-488.2M software
for Windows 95?

The NI-488.2M software for Windows 95 can be configured to
communicate with up to 100 GPIB interfaces.

How many devicescan | configurefor use with my NI-488.2M softwar e for
Windows 95?

The NI-488.2M software for Windows 95 provides atotal of 1,024
logical devicesfor applicationsto use. The default number of devices
is32. The maximum number of physical devices you should connect to
asingle GPIB interface is 14, or fewer, depending on your system
configuration.

Areinterruptsand DMA required with the NI-488.2M softwar e for
Windows 95?

Interrupts are required, but DMA is not.

NI-488.2M User Manual for Windows 95/Windows NT c-4 © National Instruments Corporation



Appendix C Windows 95: Troubleshooting and Common Questions

How can | determineif my GPIB hardware and software are correctly
installed?

Run the Diagnostic utility. To run the utility, select the Diagnostic
item under Start»Programs»NI-488.2M Softwar e for Windows 95.
Use the Diagnostic online help to troubleshoot problems.

When should | usethe Win32 Interactive Control utility?

Y ou can use the Win32 Interactive Control utility to test and verify
instrument communication, troubleshoot problems, and develop your
application. For more information, refer to Chapter 6, Win32
Interactive Control Utility.

How do | usean NI-488.2M language interface?

For information about using NI-488.2M |language interfaces, refer to
Chapter 3, Developing Your Application.

What do | doif the Diagnostic utility failswith an error?

Use the Diagnostic online help, or refer to the getting started manual, to
troubleshoot specific problems. If you have already completed the
troubleshooting steps, fill out the support formsin Appendix E,
Customer Communication, and contact National Instruments.

How do | communicate with my instrument over the GPIB?

Refer to the documentation that came from the instrument
manufacturer. The command sequences you use are totally dependent
on the specific instrument. The documentation for each instrument
should include the GPIB commands you need to communicate with it.
In most cases, NI-488 device-level calls are sufficient for
communicating with instruments. Refer to Chapter 3, Developing Your
Application, for more information.

Can | usethe NI-488 and NI-488.2 calls together in the same application?
Y es, you can mix NI-488 functions and NI-488.2 routines.

What can | doto check for errorsin my GPIB application?

Examinethe value of i bst a after each NI1-488 or NI1-488.2 call. If a
call fails, the ERR bit of i bst a isset and an error code is stored in

i ber r . For more information about global status variables, refer to
Chapter 3, Developing Your Application.

© National Instruments Corporation C-5  NI-488.2M User Manual for Windows 95/Windows NT



Appendix C  Windows 95: Troubleshooting and Common Questions

Why doesthe uninstall program leave some componentsinstalled?

The uninstall program removes only items that the installation program
installed. 1f you add anything to a directory that was created by the
installation program, the uninstall program does not del ete that
directory, because the directory is not empty after the uninstallation.

Y ou can remove the remaining components yourself.

What information should | have beforel call National | nstruments?

When you call National Instruments, you should have the results of the
diagnostic test. Also, make sure you have filled out the technical
support form in Appendix E, Customer Communication.

NI-488.2M User Manual for Windows 95/Windows NT C-6 © National Instruments Corporation



Windows NT: Appendix
Troubleshooting and
Common Questions

This appendix describes how to troubleshoot problems and lists some
common questions for Windows NT users.

Using Windows NT Diagnostic Tools

There are many reasons why the NI-488.2M driver might not load. If
the software is not properly installed or if thereis a conflict between the
GPIB hardware and the other hardware in the system, the NI1-488.2M
driver failsto start. Two Windows NT utilities are useful in

determining the source of the problem: the Devices applet in the
Control Panel, and the Event Viewer. The information available
through each utility is described in the following sections.

Examining NT Devices to Verify the NI-488.2M Installation

To verify whether the NI1-488.2M devices areinstalled correctly (that
is, that the devices are started), run the Devices applet in the Control
Panel. In Windows NT 3.51, open the GPIB Control Panel in the
Main group of the Program Manager. In Windows NT 4.0 or later,
select Start»Settings»Control Panel. This utility listsal of the
devices Windows NT detects. Each device has a status associated with
it. If the NI1-488.2M driver isinstalled correctly, the following lines
appear in thelist of NT devices:

Devi ce St at us Started
GPI B Board Cl ass Driver Started Aut omati ¢
GPI B Device Class Driver Started Aut omati ¢

Y ou should also see one or more lines similar to the following:

Devi ce St at us Started
GPIB Port Driver (AT-GPIB) (**** Syst em
GPIB Port Driver (PCl-GPIB) **** Syst em

© National Instruments Corporation D-1  NI-488.2M User Manual for Windows 95/Windows NT



Appendix D Windows NT: Troubleshooting and Common Questions

The GPIB Board Class Driver and the GPIB Device Class Driver
should both have a status of Started. If not, refer to the next section,
Examining the NT System Log Using the Event Viewer.

At least one of the GPIB Port Driverslisted by the Devices applet
should have astatus of St art ed. If not, refer to the next section,
Examining the NT System Log Using the Event Viewer.

If the GPIB Class Driver lines are not present or at least one GPIB
Port Driver lineis not present, the NI1-488.2M software is not installed
properly. You must reinstall the NI1-488.2M software.

Examining the NT System Log Using the Event Viewer

Windows NT maintains a system log. If the NI-488.2M driver is unable
to start, it records entriesin the system log explaining why it failed to
start. Y ou can examine the system log by running the Event Viewer
utility. In Windows NT 3.51, double-click on the Event Viewer icon in
the Administrative Tools group of the Program Manager. In
Windows NT 4.0 or higher, select Start»Programs»Administrative
Tools»Event Viewer. Events that might appear in the system log

include the following:

«  Thesystem is unable to locate the device file for one or more of the
devices that make up the NI-488.2M driver and an event islogged
that The system cannot find the file specified.Inthis
case, the N1-488.2M softwareisincorrectly installed. Y ou should
reinstall the software.

« A conflict exists between the GPIB hardware and the other
hardware in the system. If thisis the case, an event islogged that
indicates the nature of the resource conflict. To correct this
conflict, reconfigure the GPIB hardware and NI1-488.2M software.
Refer to the getting started manual for configuration information.

Common Questions

How can | determine which type of GPIB hardware | haveinstalled?

Run the GPIB Configuration utility. To run the utility, open your
Windows NT Control Panel and select the National Instruments eagle
icon.

NI-488.2M User Manual for Windows 95/Windows NT D-2 © National Instruments Corporation



Appendix D Windows NT: Troubleshooting and Common Questions

How can | deter mine which version of the NI -488.2M software | have installed?

Run the Diagnostic utility. 1n Windows NT version 3.51, start the
Diagnostic by double-clicking on the Diagnostic icon in the
NI-488.2M Software for Windows NT group of the Program
Manager. In Windows NT version 4.0 or later, start the Diagnostic by
choosing the Diagnostic item under Star t»Programs»NI-488.2M
Softwar e for Windows NT.

Which GPIB interfaces does version 1.2 of the NI-488.2M Softwar e for
Windows NT support?

Version 1.2 of the NI1-488.2M Software for Windows NT supports the
AT-GPIB, AT-GPIB/TNT, PCMCIA-GPIB, PCMCIA-GPIB+, and
PCI-GPIB.

How many GPIB interfaces can | configurefor use with my NI-488.2M
Softwar e for Windows NT?

The NI-488.2M Software for Windows NT can be configured to
communicate with up to 4 GPIB interfaces.

How many devices can | configurefor use with my NI-488.2M Softwar e for
WindowsNT?

The NI-488.2M Software for Windows NT provides atotal of 100
logical devicesfor applicationsto use. The default number of devices
is32.

Areinterruptsand DMA required with the NI-488.2M Softwar e for
Windows NT?

Interrupts are required, but DMA is not.

How can | determineif my GPIB hardware and software are correctly
installed?

Run the Diagnostic utility. In Windows NT version 3.51, start the
Diagnostic by double-clicking on the Diagnostic icon in the
NI-488.2M Software for Windows NT group of the Program
Manager. In Windows NT version 4.0 or later, start the Diagnostic by
choosing the Diagnostic item under Start»Programs»NI-488.2M
Softwar e for Windows NT.

© National Instruments Corporation D-3  NI-488.2M User Manual for Windows 95/Windows NT



Appendix D Windows NT: Troubleshooting and Common Questions

When should | usethe Win32 Interactive Control utility?

Y ou can use the Win32 Interactive Control utility to test and verify
instrument communication, troubleshoot problems, and develop your
application. For more information, refer to Chapter 6, Win32
Interactive Control Utility.

How do | usean NI-488.2M language interface?

For information about using NI-488.2M language interfaces, refer to
Chapter 3, Developing Your Application.

What do | doif the Diagnostic utility failswith an error?

Use the Diagnostic online help, or refer to the getting started manual, to
troubleshoot specific problems. If you have already completed the
troubleshooting steps, fill out the support formsin Appendix E,
Customer Communication, and contact National Instruments.

How do I communicate with my instrument over the GPIB?

Refer to the documentation that came from the instrument
manufacturer. The command sequences you use are totally dependent
on the specific instrument. The documentation for each instrument
should include the GPIB commands you need to communicate with it.
In most cases, NI-488 device-level cals are sufficient for
communicating with instruments. Refer to Chapter 3, Devel oping Your
Application, for more information.

Can | usethe NI-488 and NI-488.2 callstogether in the same application?
Y es, you can mix NI-488 functions and NI-488.2 routines.

What can | doto check for errorsin my GPIB application?

Examinethevalue of i bst a after each NI1-488 or NI1-488.2 cdll. If a
call fails, the ERR bit of i bst a isset and an error code is stored in

i ber r. For more information about global status variables, refer to
Chapter 3, Developing Your Application.

What information should | have beforel call National |nstruments?

When you call National Instruments, you should have the results of the
Diagnostic test. Also, make sure you have filled out the technical
support form in Appendix E, Customer Communication.

NI-488.2M User Manual for Windows 95/Windows NT D-4 © National Instruments Corporation



Appendix

Customer Communication 1

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve technical problems you might have as well as aform you can use to comment on
the product documentation. Filling out a copy of the Technical Support Form before contacting
National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. Inthe U.S.
and Canada, applications engineers are available Monday through Friday from 8:00 am. to
6:00 p.m. (central time). In other countries, contact the nearest branch office. Y ou may fax
guestions to us at any time.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
files and documents to answer most common customer questions. From these sites, you can also
download the latest instrument drivers, updates, and example programs. For recorded instructions
on how to use the bulletin board and FTP services and for BBS automated information, call

(512) 795-6990. Y ou can access these services at:

United States: (512) 794-5422 or (800) 327-3077
Up to 14,400 baud, 8 data bits, 1 stop hit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 14865 1559
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support

To access our FTP site, log on to our Internet host, f t p. nat i nst . com as anonymous and use
your Internet address, such asj oesmi t h@nywher e. com asyour password. The support files
and documents are located in the /support directories.

© National Instruments Corporation E-1  NI-488.2M User Manual for Windows 95/Windows NT



El FaxBack Support

FaxBack is a 24-hour information retrieval system containing alibrary of documents on awide
range of technical information. Y ou can access FaxBack from atouch-tone telephone at the
following number:

(512) 418-1111

E-Mail Support (currently U.S. only)

Y ou can submit technical support questions to the appropriate applications engineering team
through e-mail at the Internet addresses listed below. Remember to include your name, address,
and phone number so we can contact you with solutions and suggestions.

GPIB: gpi b. support @ati nst.com LabVIEW: |v. support @atinst.com
DAQ: daqg. support @atinst.com HiQ: hi g. support @atinst.com
VXI:  vxi.support @atinst.com VISA: vi sa. support @at i nst.com
LabWindows: | w. support @ati nst.com

Telephone and Fax Support

National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country,

contact the source from which you purchased your software to obtain support.

Y Telephone

=

Australia 039879 9422 0398799179
Austria 0662 4579900 0662 45 79 90 19
Belgium 02 757 00 20 027570311
Canada (Ontario) 519 622 9310

Canada (Quebec) 514 694 8521 514 694 4399
Denmark 4576 26 00 4576 26 02
Finland 90527 2321 90 502 2930
France 148142424 148142414
Germany 0897413130 089 714 60 35
Hong Kong 2645 3186 2686 8505
Italy 02 413091 02 41309215
Japan 035472 2970 035472 2977
Korea 02 596 7456 02 596 7455
Mexico 95 800 010 0793 5520 3282
Netherlands 0348 433466 0348 430673
Norway 3284 84 00 3284 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 73049 70 087304370
Switzerland 056 20051 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154



Technical Support Form

Photocopy this form and update it each time you make changes to your software or hardware, and
use the completed copy of thisform as areference for your current configuration. Completing this
form accurately before contacting National Instruments for technical support helps our
applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pagesif necessary.

Name

Company

Address

Fax (___) Phone (___)

Computer brand Model Processor
Operating system (include version number)

Clock Speed MHz RAM MB  Display adapter
Mouse _ yes __ no  Other adaptersinstalled

Hard disk capacity __ MB Brand

Instruments used

National Instruments hardware product model Revision

Configuration

National Instruments software product Version

Configuration

The problemis

List any error messages

The following steps will reproduce the problem




Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with our
products. Thisinformation helps us provide quality products to meet your needs.

Title:  NI-488.2M™ User Manua for Windows 95 and Windows NT
Edition Date: June 1996
Part Number: 321037B-01

Please comment on the compl eteness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name

Title

Company

Address

Phone ( ) Fax ( )

Mail to:  Technical Publications Faxto: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678

Austin, TX 78730-5039



Glossary

Glossary

Prefix Meaning Value
n- nano- 109
u- micro- 106
m- milli- 103
k- kilo- 108
M- mega- 106
A
acceptor handshake Listeners use this GPIB interface function to receive data, and all
devices useit to receive commands. See source handshake and
handshake.
access board The GPIB board that controls and communicates with the devices on
the bus that are attached to it.
ANS American National Standards Institute.
ASCII American Standard Code for Information Interchange.
asynchronous An action or event that occurs at an unpredictable time with respect to

automatic serial polling

the execution of a program.

Autopolling. A feature of the NI-488.2M software in which serial polls
are executed automatically by the driver whenever a device asserts the
GPIB SRQ line.

© National Instruments Corporation G-1 NI-488.2M User Manual for Windows 95/Windows NT



Glossary

B

base |/0 address
BIOS

board-level function

C

CFE

CFGn

CiCc

CPU

D

DAV

DCL

device-level function

DIO1 through DIO8

See 1/O address.
Basic Input/Output System.

A rudimentary function that performs a single operation.

Configuration Enable. The GPIB command which precedes CFGn and
is used to place devices into their configuration mode.

These GPIB commands (CFG1 through CFG15) follow CFE and are
used to configure al devices for the number of meters of cable in the
system so that HS488 transfers occur without errors.

Controller-In-Charge. The device that manages the GPIB by sending
interface messages to other devices.

Central processing unit.

Data Valid. One of the three GPIB handshake lines. See handshake.

Device Clear. The GPIB command used to reset the device or internal
functions of al devices. See SDC.

A function that combines several rudimentary board operations into one
function so that the user does not have to be concerned with bus
management or other GPIB protocol matters.

The GPIB lines that are used to transmit command or data bytes from
one device to ancther.

DLL Dynamic link library.

DMA Direct memory access. High-speed data transfer between the GPIB
board and memory that is not handled directly by the CPU. Not
available on some systems. See programmed 1/0.

driver Device driver software installed within the operating system.

NI-488.2M User Manual for Windows 95/Windows NT G-2 © National Instruments Corporation



E

END or END Message

EQI

EOS or EOS Byte

EOT

ESB

GET

GPIB

GPIB address

GPIB board

GTL

handshake

© National Instruments Corporation G-3

Glossary

A message that signals the end of adata string. END is sent by
asserting the GPIB End or Identify (EOI) line with the last data byte.

A GPIB linethat isused to signal either the last byte of a data message
(END) or the parallel poll Identify (IDY) message.

A 7- or 8-bit end-of-string character that is sent as the last byte of a data
message.

End of transmission.

The Event Status bit is part of the | EEE 488.2-defined status byte
which isreceived from a device responding to a serial poll.

Group Execute Trigger. It isthe GPIB command used to trigger a
device or internal function of an addressed Listener.

General Purpose Interface Bus is the common name for the
communications interface system defined in ANSI/IEEE Standard
488.1-1987 and ANSI/IEEE Standard 488.2-1987.

The address of adevice on the GPIB, composed of a primary address
(MLA and MTA) and perhaps a secondary address (MSA). The GPIB
board has both a GPIB address and an |/O address.

Refers to the National Instruments family of GPIB interface boards.

Go To Local. It isthe GPIB command used to place an addressed
Listener in local (front panel) control mode.

The mechanism used to transfer bytes from the Source Handshake
function of one device to the Acceptor Handshake function of another
device. The three GPIB lines DAV, NRFD, and NDAC are used in an
interlocked fashion to signal the phases of the transfer, so that bytes can
be sent asynchronoudly (for example, without a clock) at the speed of
the slowest device.

NI-488.2M User Manual for Windows 95/Windows NT



Glossary

hex

high-level function

For more information about handshaking, refer to the ANSI/IEEE
Standard 488.1-1987.

Hexadecimal; a number represented in base 16. For example, decimal
16 = hex 10.

See device-level function.

Hz Hertz.

I

i bent After each NI-488 1/O function, this global variable contains the actual
number of bytes transmitted.

i berr A global variable that contains the specific error code associated with a
function call that failed.

i bsta At the end of each function call, this global variable (status word)
contains status information.

|IEEE Ingtitute of Electrical and Electronic Engineers.

interface message A broadcast message sent from the Controller to all devices and used to
manage the GPIB.

/0 Input/Output. In the context of this manual, the transmission of
commands or messages between the computer via the GPIB board and
other devices on the GPIB.

I/O address The address of the GPIB board from the point of view of the CPU, as
opposed to the GPIB address of the GPIB board. Also called port
address or board address.

i st An Individual Status bit of the status byte used in the Parallel Poll
Configure function.

K

KB Kilobytes.

NI-488.2M User Manual for Windows 95/Windows NT G-4 © National Instruments Corporation



L
LAD

language interface

Listener

LLO

low-level function

M

m

MAV

MB
memory-resident

MLA

MSA

MTA

multitasking

Glossary

Listen address. See MLA.

Code that enables an application program that uses NI-488 functions or
NI-488.2 routines to access the driver.

A GPIB device that receives data messages from a Talker.

Local Lockout. The GPIB command used to tell al devicesthat they
may or should ignore remote (GPIB) data messages or local (front
panel) controls, depending on whether the deviceisin local or remote
program mode.

A rudimentary board or device function that performsasingle
operation.

Meters.

The Message Available bit is part of the |EEE 488.2-defined status byte
which isreceived from a device responding to a serial poll.

Megabytes.
Resident in RAM.

My Listen Address. A GPIB command used to address adeviceto be a
Listener. It can be any one of the 31 primary addresses.

My Secondary Address. The GPIB command used to address a device
to be aListener or a Talker when extended (two byte) addressing is
used. The complete addressisaMLA or MTA address followed by an
MSA address. There are 31 secondary addresses for atotal of 961
distinct listen or talk addresses for devices.

My Talk Address. A GPIB command used to address a deviceto be a
Talker. It can be any one of the 31 primary addresses.

The concurrent processing of more than one program or task.

© National Instruments Corporation G-5 NI-488.2M User Manual for Windows 95/Windows NT



Glossary

N

NDAC Not Data Accepted. One of the three GPIB handshake lines. See
handshake.

NRFD Not Ready For Data. One of the three GPIB handshake lines. See
handshake.

P

parallel poll The process of polling all configured devices at once and reading a
composite poll response. See serial poll.

PIO See programmed 1/0.

PPC Parallel Poll Configure. It isthe GPIB command used to configure an
addressed Listener to participate in polls.

PPD Parallel Poll Disable. It isthe GPIB command used to disable a
configured device from participating in polls. There are 16 PPD
commands.

PPE Parallel Poll Enable. It isthe GPIB command used to enable a
configured device to participate in polls and to assign a DIO response
line. There are 16 PPE commands.

PPU Parallel Poll Unconfigure. It isthe GPIB command used to disable any
device from participating in polls.

programmed 1/0 L ow-speed data transfer between the GPIB board and memory in which
the CPU moves each data byte according to program instructions. See
DMA.

R

RAM Random-access memory.

resynchronize The NI-488.2M software and the user application must resynchronize
after asynchronous /O operations have compl eted.

RQS Request Service.

NI-488.2M User Manual for Windows 95/Windows NT G-6 © National Instruments Corporation



SDC

semaphore

seria poll

service regquest

source handshake

SPD

SPE

SRQ

status byte

status word

synchronous

System Controller

© National Instruments Corporation G-7

Glossary

Seconds.

Selected Device Clear. The GPIB command used to reset internal or
device functions of an addressed Listener. See DCL.

An object that maintains a count between zero and some maximum
value, limiting the number of threads that are simultaneously accessing
a shared resource.

The process of polling and reading the status byte of one device at a
time. See parallel poll.

See SRQ.

The GPIB interface function that transmits data and commands. Talkers
use this function to send data, and the Controller usesit to send
commands. See acceptor handshake and handshake.

Serial Poll Disable. The GPIB command used to cancel an SPE
command.

Seria Poll Enable. The GPIB command used to enable a specific
deviceto be polled. That device must also be addressed to talk. See
SPD.

Service Request. The GPIB line that a device asserts to notify the CIC
that the device needs servicing.

The |EEE 488.2-defined data byte sent by adevice when it is serially
polled.

Seeibsta.

Refers to the relationship between the NI1-488.2M driver functions and
a process when executing driver functionsis predictable; the processis
blocked until the driver completes the function.

The single designated Controller that can assert control (become CIC of
the GPIB) by sending the Interface Clear (IFC) message. Other devices
can become CIC only by having control passed to them.

NI-488.2M User Manual for Windows 95/Windows NT



Glossary

TAD
Taker

TCT

timeout

TLC

ud

UNL

UNT

Talk Address. See MTA.
A GPIB device that sends data messages to Listeners.

Take Control. The GPIB command used to pass control of the bus from
the current Controller to an addressed Talker.

A feature of the NI1-488.2M driver that prevents I/O functions from
hanging indefinitely when there is a problem on the GPIB.

An integrated circuit that implements most of the GPIB Talker,
Listener, and Controller functions in hardware.

Unit descriptor. A variable name and first argument of each function
call that contains the unit descriptor of the GPIB interface board or
other GPIB device that is the object of the function.

Unlisten. The GPIB command used to unaddress any active Listeners.

Untalk. The GPIB command used to unaddress an active Talker.

NI-488.2M User Manual for Windows 95/Windows NT G-8 © National Instruments Corporation



I ndex

Numbers/Symbols

I (repeat previous function) function, Win32
Interactive Control, 6-9
$ filename (execute indirect file) function,
Win32 Interactive Control, 6-9
+ (turn ON display) function, Win32
Interactive Control, 6-9
- (turn OFF display) function, Win32
Interactive Control, 6-9
16-bit Windows applications, running
under Windows 95, 3-19
under Windows NT, 3-20to 3-21
16-bit Windows support files, NI-488.2M
for Windows 95, 1-7
32-bit NI1-488.2M driver components, 1-6

A

active Controller. See Controller-in-
Charge (CIC).
addresses. See GPIB addresses.
AllSpall routine, 7-15, 7-16
application development.
See also debugging; GPIB
programming techniques.
accessing NI1-488.2M DLL, 3-1
application examples
asynchronous I/O, 2-6 to 2-7
basic communication, 2-2 to 2-3
basic communication with IEEE
488.2-compliant devices, 2-14
to 2-15

© National Instruments Corporation

clearing and triggering devices, 2-4
to 2-5
end-of-string mode, 2-8 to 2-9
non-controller example, 2-20
to2-21
parallel polls, 2-18 to 2-19
seria polls using NI-488.2 routines,
2-16to 2-17
service requests, 2-10to 2-13
source codefiles, 2-1 to 2-2
choosing between NI-488 functions and
NI-488.2 routines, 3-2 to 3-4
global variables for checking status, 3-4
to 3-6
count variables - ibcnt and
ibentl, 3-6
error variable - iberr, 3-5to0 3-6
status word - ibsta, 3-4 to 3-5
language-specific instructions, 3-15
to 3-19
Borland C/C++, 3-15
direct entry with C, 3-16 to 3-19
directly accessing gpib-32.dll
exports, 3-17 to 3-19
gpib-32.dll exports, 3-16
to 3-17
Microsoft Visual Basic, 3-16
Microsoft Visual C/C++, 3-15
NI-488 applications
clearing devices, 3-9
communicating with devices, 3-9
to 3-10

/-1 NI-488.2M User Manual for Windows 95/Windows NT



Index

flowchart of programming with
device-level functions, 3-8

genera steps and examples, 3-9
to 3-10

itemsto include, 3-7

opening devices, 3-9

placing device offline, 3-10

program shell (illustration), 3-8

reading measurement, 3-10

triggering devices, 3-10

waiting for measurement, 3-10

NI-488 functions, 3-2 to 3-3

advantages, 3-2

board-level functions, 3-3

choosing between NI-488 functions
and NI-488.2 routines, 3-2 to 3-4

device-level functions, 3-3

one device per board, 3-2to 3-3

NI-488.2 applications

communicating with devices, 3-14
to 3-15

determining GPIB address of
device, 3-13t0 14

flowchart of programming with
routines, 3-12

genera steps and examples, 3-13
to 3-15

initialization, 3-13

initializing devices, 3-14

itemsto include, 3-11

placing device offline, 3-15

program shell (illustration), 3-12

reading measurements, 3-14
to 3-15

triggering instruments, 3-14

waiting for measurements, 3-14

NI-488.2 routines

choosing between NI-488 functions
and NI-488.2 routines, 3-2to 3-4

using with multiple boards or
devices, 3-3t0 3-4

Win32 Interactive Control for

NI-488.2M User Manual for Windows 95/Windows NT

communicating with devices, 3-6

-2

applications, existing. See existing
applications, running.
asynchronous event notification in Win32
applications, 7-4to 7-9
calling ibnotify function, 7-4 to 7-5
ibnotify programming example, 7-6
to 7-9
asynchronous I/O application example, 2-6
to 2-7
ATN (attention) line (table), 1-3
ATN status word condition
bit position, hex value, and type
(table), 3-5
description, A-4
automatic serial polling. See seria polling.
auxiliary functions, Win32 Interactive
Control, 6-9

B

board functions. See NI-488 functions.
Borland C/C++
language interface files
NI-488.2M for Windows 95, 1-8
NI-488.2M for Windows NT, 1-14
programming instructions, 3-15
borlandc_gpib-32.0bj file, 1-8, 1-14
buffer option function, Win32 Interactive
Control, 6-9
bulletin board support, E-1

C

C language direct entry for application
development, 3-16 to 3-19
directly accessing gpib-32.dll exports,
3-17t0 3-19
gpib-32.dll exports, 3-16 to 3-17
cable length for high-speed data
transfers, 7-2, 7-3
CIC. See Controller-in-Charge (CIC).
CIC Protocal, 7-11

© National Instruments Corporation



CIC status word condition
bit position, hex value, and type
(table), 3-5
description, A-4
clearing and triggering devices, example,
2-410 2-5
CMPL status word condition
bit position, hex value, and type
(table), 3-5
description, A-3
common questions. See troubleshooting and
common questions.
communication application examples
basic communication, 2-2 to 2-3
with |EEE 488.2-compliant
devices, 2-14t0 2-15
communication errors, 4-4
repeat addressing, 4-4
termination method, 4-4
configuration, 1-4 to 1-6. See also GPIB
configuration utility; Win32 Interactive
Control utility.
controlling more than one board, 1-5
linear and star system configuration
(illustration), 1-4
requirements, 1-5to 1-6
system configuration effects on
H$488, 7-3
configuration errors, 4-3
Configure (CFGn) message, 7-3
Configure Enable (CFE) message, 7-3
Controller-in-Charge (CIC)
active Controller as CIC, 1-1
making GPIB board CIC, 7-11
System Controller as, 1-2
Controllers
definition, 1-1
emulation of non-controller GPIB
(example), 2-20to 2-21
idle Controller, 1-2
monitoring by Talker/Listener
applications, 7-11to 7-12
System Controller, 1-2
count, in Win32 Interactive Control, 6-10

© National Instruments Corporation

/-3

Index

count variables - ibcnt and ibentl, 3-6
customer communication, xvi, E-1 to E-2

D

datalines, 1-2
data transfers
high-speed (H$488), 7-2to 7-3
enabling, 7-2to 7-3
system configuration effects, 7-3
terminating, 7-1 to 7-2
DAV (datavalid) line (table), 1-3
DCAS status word condition
bit position, hex value, and type
(table), 3-5
description, A-5
Talker/Listener applications, 7-12
waiting for messages from
Controller, 7-12
debugging. See also GPIB Spy utility;
troubleshooting and common questions,
Win32 Interactive Control utility.
communication errors, 4-4
repeat addressing, 4-4
termination method, 4-4
configuration errors, 4-3
global status variables, 4-1
GPIB error codes (table), 4-2, B-1
GPIB Spy, 4-1. See also GPIB
Spy utility.
other errors, 4-4
timing errors, 4-3
Win32 Interactive Control utility, 4-1
to4-2
decl-32.h file
Borland C/C++ language interfacefile,
1-8,1-14
Microsoft C/C++ language interface
file 1-7, 1-14
DevClear routine, 3-14
device functions. See NI-488 functions.
Device Manager device status codes,
troubleshooting, C-2 to C-3
device-level calls and bus management, 7-11

NI-488.2M User Manual for Windows 95/Windows NT



Index

direct accessto NI-488.2 dynamic link
library, 3-1
documentation
conventions used in manual, xv-xvi
how to use manual set, xiii-xiv
organization of manual, xiv-xv
related documentation, xvi
DOS applications, running
under Windows 95, 3-19 to 3-20
under Windows NT, 3-20 to 3-21
DOS support files
NI-488.2M for Windows 95, 1-7
NI-488.2M for Windows NT, 1-13
drivers
configuring, 4-3
driver and driver utilities for NI-488.2M
software, 1-6 to 1-7
DTAS status word condition
bit position, hex value, and type
(table), 3-5
description, A-5
Talker/Listener applications, 7-12
waiting for messages from
Controller, 7-12
dynamic link library, GPIB.
See NI-488.2M DLL.

E

EABO error code
definition (table), 4-2
description, B-5

EADR error code
definition (table), 4-2
description, B-4

EARG error code
definition (table), 4-2
description, B-4

EBUS error code
definition (table), 4-2
description, B-7 to B-8

ECAP error code
definition (table), 4-2
description, B-7

NI-488.2M User Manual for Windows 95/Windows NT 1-4

ECIC error code
definition (table), 4-2
description, B-2 to B-3
EDMA error code
definition (table), 4-2
description, B-6
EDVR error code
definition (table), 4-2
description, B-2
troubleshooting, C-1to C-2
EFSO error code
definition (table), 4-2
description, B-7
electronic support services, E-1to E-2
e-mail support, E-2
END status word condition
bit position, hex value, and type
(table), 3-5
description, A-2
end-of-string character. See EOS.
ENEB error code
definition (table), 4-2
description, B-5 to B-6
ENOL error code
definition (table), 4-2
description, B-3
EOQI (end or identify) line
purpose (table), 1-3
termination of datatransfers, 7-1
EOIP error code
definition (table), 4-2
description, B-6
EOS
configuring EOS mode, 7-1
end-of-string mode application
example, 2-8to 2-9
EOS comparison method, 7-1
EOS read method, 7-2
EOS write method, 7-1 to 7-2
ERR status word condition
bit position, hex value, and type
(table), 3-5
description, A-2

© National Instruments Corporation



error codes and solutions
EABO, B-5
EADR, B-4
EARG, B-4
EBUS, B-7 to B-8
ECAP, B-7
ECIC, B-2t0 B-3
EDMA, B-6
EDVR, B-2
EFSO, B-7
ENEB, B-5to B-6
ENOL, B-3
EOIP, B-6
ESAC, B-5
ESRQ, B-8 to B-9
ESTB, B-8
ETAB, B-9
GPIB error codes (table), 4-2, B-1
error conditions
communication errors, 4-4
repeat addressing, 4-4
termination method, 4-4
configuration errors, 4-3
timing errors, 4-3
Win32 Interactive Control error
information, 6-10
error variable - iberr, 3-5t0 3-6
ESAC error code
definition (table), 4-2
description, B-5
ESRQ error code
definition (table), 4-2
description, B-8 to B-9
ESTB error code
definition (table), 4-2
description, B-8
ETAB error code
definition (table), 4-2
description, B-9
event notification. See asynchronous event
notification in Win32 applications.
Event Status bit (ESB), 7-12 to 7-13
execute function n times (n *) function,
Win32 Interactive Control, 6-9

© National Instruments Corporation

1-5

Index

execute indirect file ($) function, Win32
Interactive Control, 6-9
execute previous function ntimes (n* !)
function, Win32 Interactive Control, 6-9
existing applications, running
Windows 95
DOS GPIB applications, 3-19
to 3-20
Winl16 GPIB applications, 3-19
Windows NT, 3-20 to 3-21

F

fax and telephone technical support, E-1

FaxBack support, E-2

FindLstn routine, 3-13

FindRQS routine, 7-15, 7-16

FTP support, E-1

functions. See auxiliary functions, Win32
Interactive Control; NI-488 functions.

G

General Purpose Interface Bus. See GPIB.
global variables, 3-4 to 3-6
count variables - ibcnt and ibentl, 3-6
debugging applications, 4-1
error variable - iberr, 3-5to 3-6
status word - ibsta, 3-4 to 3-5
writing multithread Win32 GPIB
applications, 7-9 to 7-10
GPIB
configuration, 1-4 to 1-6. See also GPIB
configuration utility; Win32
Interactive Control utility.
controlling more than one
board, 1-5
linear and star system configuration
(illustration), 1-4
requirements, 1-5 to 1-6
definition, 1-1
overview, 1-1

NI-488.2M User Manual for Windows 95/Windows NT



Index

sending messages across, 1-2 to 1-3
datalines, 1-2
handshake lines, 1-3
interface management lines, 1-3
Talkers, Listeners, and Controllers, 1-1
GPIB addresses
address bit configuration (table), 1-2
listen address, 1-2
primary, 1-2
purpose, 1-2
repeat addressing, 4-4
secondary, 1-2
syntax in Win32 Interactive
Control, 6-6
talk address, 1-2
GPIB configuration utility
overview, 8-1
Windows 95, 8-2 to 8-4
Windows NT, 8-4 to 8-5
GPIB programming techniques. See also
application devel opment.
asynchronous event notification in
Win32 applications, 7-4 to 7-9
calling ibnotify function, 7-4 to 7-5
ibnotify programming example, 7-6
to 7-9
device-level calls and bus
management, 7-11
high-speed data transfers, 7-2 to 7-3
enabling H$488, 7-2 to 7-3
system configuration effects, 7-3
paralel polling, 7-17 to 7-18
implementing, 7-17 to 7-18
using NI-488 functions, 7-17
to 7-18
using NI-488.2 routines, 7-18
to 7-19
seria polling, 7-12to 7-16
automatic serial polling, 7-13
to7-14
autopolling and
interrupts, 7-14
stuck SRQ state, 7-13to 7-14

NI-488.2M User Manual for Windows 95/Windows NT 1-6

service requests
from |EEE 488 devices, 7-12
from |EEE 488.2 devices, 7-12
to 7-13
SRQ and serial polling
with NI-488 device
functions, 7-14
with NI-488.2 routines, 7-15
to 7-16
Talker/Listener applications, 7-11
to 7-12
termination of datatransfers, 7-1to 7-2
waiting for GPIB conditions, 7-4
writing multithread Win32 GPIB
applications, 7-9to 7-10
GPIB Spy utility
debugging applications, 4-1
exiting, 5-4
locating errors, 5-2
main window (illustration), 5-2
online help, 5-2
overview, 5-1
performance considerations, 5-4
starting, 5-1t0 5-2
under Windows 95, 5-1
under Windows NT, 5-1
viewing properties for recorded
cals, 5-2t05-3
gpib.dll file. See also NI1-488.2M DLL.
Windows 95, 1-7
Windows NT, 1-14
gpib-32.dlIl exports
accessing directly, 3-17 to 3-19
direct entry with C, 3-16 to 3-17
gpib-32.dll file, 1-6, 1-13
gpib32ft.dll file, 1-7
gpib-32.0bj file, 1-7, 1-14
gpibdos.exefile, 1-7
gpibdosk.vxd file, 1-7
gpib-nt.comfile, 1-14
gpib-vdd.dll file, 1-13

© National Instruments Corporation



H

handshake lines, 1-3
Help (display Win32 Interactive utility
online help) function (table), 6-9
help for GPIB Spy, 5-2
Help option function, Win32 Interactive
utility, 6-9
high-speed data transfers (H$488), 7-2
to7-3
enabling H$488, 7-2 to 7-3
setting cable length, 7-2
system configuration effects, 7-3
HS$488. See high-speed data
transfers (H$488).
HSS488 configuration message, 7-3

ibask function, 7-3
ibclr function
clearing devices, 3-9
using in Win32 Interactive Control
(example), 6-3
ibent and ibentl variables, 3-6
ibconfig function
configuring GPIB board as CIC, 7-2
configuring GPIB driver, 4-3
determining assertion of EQI line, 7-2
enabling autopolling, 7-13
enabling high-speed data transfers, 7-2
to7-3
modifying NI-488.2M driver

configuration dynamically (note), 4-3

ibdev function
opening devices, 3-9
using in Win32 Interactive Control
(example), 6-2
ibeos function, 7-1
ibeot function, 7-1
iberr error variable, 3-5t0 3-6

© National Instruments Corporation

Index

ibnotify function
asynchronous event notification in
Win32 GPIB applications (example),
7-6t07-9
caling, 7-4to 7-5
ibonl function
placing device offline, 3-10, 3-15
using in Win32 Interactive Control
(example), 6-4
ibppc function
conducting parallel polls, 7-17 to 7-18
unconfiguring device for parallel
polling, 7-18
ibrd function
reading measurement from device, 3-10
using in Win32 Interactive Control
(example), 6-3
ibrpp function, 7-18
ibrsp function
automatic serial polling, 7-13
SRQ and seria polling, 7-14
ibsta. See status word - ibsta.
ibtrg function
triggering devices, 3-10
using in Win32 Interactive Control
(example), 6-3
ibwait function
Talker/Listener applications, 7-11
terminating stuck SRQ state, 7-13
to7-14
waiting for GPIB conditions, 7-4
waiting for measurement, 3-10
ibwrt function
acquiring measurement, 3-10
using in Win32 Interactive Control
(example), 6-3
IFC (interface clear) ling, 1-3
interface management lines, 1-3
interrupts and autopolling, 7-14

NI-488.2M User Manual for Windows 95/Windows NT



Index

L

LACS status word condition
bit position, hex value, and type
(table), 3-5
description, A-5
Talker/Listener applications, 7-12
listen address, setting, 1-2
Listeners, 1-1.
See also Taker/Listener applications.
LOK status word condition
bit position, hex value, and type
(table), 3-5
description, A-3

M

manual. See documentation.
Message Available (MAV) bit, 7-12 to 7-13
messages, sending across GPIB, 1-2to 1-3
datalines, 1-2
handshake lines, 1-3
interface management lines, 1-3
Microsoft C/C++ language interface files
NI-488.2M for Windows 95, 1-7
NI-488.2M for Windows NT, 1-14
Microsoft Visual Basic
language interface files
NI-488.2M for Windows 95, 1-8
NI-488.2M for Windows NT, 1-14
programming instructions, 3-16
Microsoft Visual C/C++ programming
instructions, 3-15
multithread Win32 GPIB applications,
writing, 7-9to 7-10

N

n* I (execute previous function n times)
function, Win32 Interactive Control, 6-9

n* (execute function n times) function,
Win32 Interactive Control, 6-9

NDAC (not data accepted) line (table), 1-3

NI-488.2M User Manual for Windows 95/Windows NT 1-8

NI-488 applications, programming.

See also application development.
acquiring measurement, 3-10
clearing devices, 3-9
flowchart of programming with device-

level functions, 3-8
genera steps and examples, 3-9to 3-10
itemsto include, 3-7
opening devices, 3-9
placing device offline, 3-10
program shell (illustration), 3-8
reading measurement, 3-10
triggering devices, 3-10
waiting for measurement, 3-10
NI-488 functions
paralel polling, 7-17 to 7-18
programming considerations
advantages of using, 3-2
board-level functions, 3-3
choosing between functions and
routines, 3-2 to 3-4
device-level functions, 3-3
when to use functions, 3-2
seria polling, 7-14
using in Win32 Interactive Control
examples, 6-2to 6-4
syntax, 6-6 to 6-7
NI-488.2 applications, programming
communicating with devices, 3-14
to 3-15
determining GPIB address of device,
3-13t0 14
flowchart of programming with
routines, 3-12
genera steps and examples, 3-13
to 3-15
initialization, 3-13
initializing devices, 3-14
itemsto include, 3-11
placing board offline, 3-15
program shell (illustration), 3-12
reading measurement, 3-14 to 3-15
triggering instruments, 3-14
waiting for measurement, 3-14

© National Instruments Corporation



NI-488.2 routines
paralel polling, 7-18 to 7-19
programming considerations
choosing between functions and
routines, 3-2 to 3-4
using with multiple boards or
devices, 3-3t0 3-4
seria polling, 7-15to 7-16
seria polling examples
AllSpoll, 7-16
FindRQS, 7-16
Win32 Interactive Control syntax, 6-8
NI-488.2M DLL
choosing access method, 3-1
direct entry access, 3-1
NI-488.2M software, 1-6 to 1-12. See also
application development; NI-488
functions; NI1-488.2 routines.
Windows 95
16-bit Windows support files, 1-7
Borland C/C++ language interface
files, 1-8
C language interface files, 1-7
to1-8
DOS support files, 1-7
driver and driver utility files, 1-6
to 1-7
how NI-488.2M software works
with Windows 95, 1-8 to 1-9
Microsoft C/C++ language
interface files, 1-7
Microsoft Visual Basic language
interface files, 1-8
NI-488.2M driver and driver
utilities, 1-6 to 1-7
sample application files, 1-8
troubleshooting.
See troubleshooting and
common questions.
uninstalling GPIB hardware, 1-9
to 1-10
uninstalling GPIB software, 1-11
to1-12

© National Instruments Corporation

/-9

Index

Windows NT
Borland C/C++ language interface
files, 1-14
DOS and 16-hit Windows support
files, 1-13t0 1-14
how NI-488.2M software works
with Windows NT, 1-15 to 1-16
Microsoft C/C++ language
interface files, 1-14
Microsoft Visual Basic language
interface files, 1-14
NI-488.2M driver and driver
utilities, 1-13
reloading NI-488.2M driver, 1-16
to 1-17
sample application files, 1-14
troubleshooting.
See troubleshooting and
common questions.
unloading NI-488.2M driver, 1-16
to 1-17
niglobal .basfile, 1-14
NRFD (not ready for data) line (table), 1-3
number syntax, in Win32 Interactive
Control, 6-4

0
online help for GPIB Spy, 5-2

P

parallel polling, 7-17 to 7-18
application example, 2-18 to 2-19
implementing, 7-17 to 7-18
using NI-488 functions, 7-17 to 7-18
using NI-488.2 routines, 7-18 to 7-19

PPoall routine, 7-19

PPollConfig routine, 7-19

PPollUnconfig routine, 7-19

primary GPIB address, 1-2

problem solving. See debugging;

troubl eshooting and common questions.

NI-488.2M User Manual for Windows 95/Windows NT



Index

programming. See application development;
debugging; GPIB
programming techniques.

Q

g function, Win32 Interactive Control, 6-9

R

readme.txt file
Borland C/C++ language interface files,
1-8,1-14
Microsoft C/C++ language interface
files, 1-7, 1-14
Microsoft Visual Basic language
interface files, 1-8, 1-14
NI-488.2M driver and driver
utilities, 1-6, 1-13
ReadStatusByte routine, 3-14, 7-15
Receiveroutine, 3-15
reloading NI-488.2M driver for
Windows NT, 1-16 to 1-17
REM status word condition
bit position, hex value, and type
(table), 3-5
description, A-4
REN (remote enable) line (table), 1-3
repeat addressing, 4-4
repeat previous function (!) function, Win32
Interactive Control, 6-9
requesting service. See service requests.
routines. See NI-488.2 routines.
RQS status word condition
bit position, hex value, and type
(table), 3-5
description, A-3
running existing applications. See existing
applications, running.

S

sample application files
NI-488.2M for Windows 95, 1-8
NI-488.2M for Windows NT, 1-14

NI-488.2M User Manual for Windows 95/Windows NT

1-10

secondary GPIB address, 1-2
Send routine, 3-14
SendIFC routine, 3-13
seria polling, 7-12to 7-16
application example using N1-488.2
routines, 2-16 to 2-17
automatic serial polling, 7-13 to 7-14
autopolling and interrupts, 7-14
stuck SRQ state, 7-13 to 7-14
service requests
from |EEE 488 devices, 7-12
from |EEE 488.2 devices, 7-12
to 7-13
SRQ and serial polling
with NI-488 device functions, 7-14
with NI-488.2 routines, 7-15
to 7-16
service requests
application examples, 2-10 to 2-13
seria polling
| EEE 488 devices, 7-12
|EEE 488.2 devices, 7-12to 7-13
stuck SRQ state, 7-13to 7-14
Set 488.2 v function, Win32 Interactive
Control utility, 6-9
Set udname function, Win32 Interactive
Control utility, 6-9
setting up your system. See configuration.
software. See NI-488.2M software.
SRQ (service request) line
application examples, 2-10to 2-13
purpose (table), 1-3
seria polling
automatic serial polling, 7-13
to7-14
using NI-488 device
functions, 7-14
using NI-488.2 routines, 7-15
to 7-16
stuck SRQ state, 7-13 to 7-14
SRQI status word condition
bit position, hex value, and type
(table), 3-5
description, A-3

© National Instruments Corporation



status word - ibsta, 3-4 to 3-5
ATN, A-4
CIC, A-4
CMPL, A-3
DCAS, 7-12, A-5
DTAS, 7-12, A-5
END, A-2
ERR, A-2
LACS, 7-12, A-5
LOK, A-3
programming considerations, 3-4 to 3-5
REM, A-4
RQS, A-3
SRQl, A-3
status word layout (table), 3-5, A-1
TACS, 7-11to 7-12, A-4
TIMO, A-2
Win32 Interactive Control example, 6-9
string syntax, in Win32 Interactive Control,
6-410 6-5
stuck SRQ state, 7-13to 7-14
System Controller as Controller-in-
Charge, 1-2

T

TACS status word condition
bit position, hex value, and type
(table), 3-5
description, A-4
Talker/Listener applications, 7-11
to 7-12
talk address, setting, 1-2
Talker/Listener applications, 7-11 to 7-12
Talkers, 1-1
technical support, E-1 to E-2C-1
termination methods, errors caused by, 4-4
termination of datatransfers, 7-1to 7-2
TestSRQ routine, 7-15
timing errors, 4-3
TIMO status word condition
bit position, hex value, and type
(table), 3-5
description, A-2
Trigger routine, 3-14

© National Instruments Corporation

1-11

Index

triggering devices, example, 2-4 to 2-5
troubleshooting and common questions. See
also debugging; GPIB Spy utility; Win32
Interactive Control utility.
Windows 95, C-1to C-6
common questions, C-3to C-6
Device Manager device status
code, C-2to C-3
EDVR error conditions, C-1to C-2
Windows NT, D-1to D-4
common questions, D-2 to D-4
examining NT system log using
Event Viewer, D-2
using diagnostic tools, D-1 to D-2
verifying NI-488.2M installation,
D-1to D-2
turn OFF display (-) function, Win32
Interactive Control, 6-9
turn ON display (+) function, Win32
Interactive Control, 6-9

U

uninstalling GPIB hardware from
Windows 95, 1-9

uninstalling GPIB software from
Windows 95, 1-11 to 1-12

unloading NI-488.2M driver for
Windows NT, 1-16 to 1-17

V

vbib-32.basfile, 1-14
Visual Basic. See Microsoft Visual Basic.

W

wait function. See ibwait function.
WaitSRQ routine
conducting seria polls, 7-15
waiting for measurement, 3-14

NI-488.2M User Manual for Windows 95/Windows NT



Index

Win32 Interactive Control utility
auxiliary functions (table), 6-9
communicating with devices, 3-6
count, 6-10
debugging applications, 4-1 to 4-2
error information, 6-10
getting started, 6-1to 6-4
NI-488 function examples, 6-2 to 6-4
overview, 6-1
programming considerations, 3-6
status word, 6-9
syntax, 6-4 to 6-9
addresses, 6-5
board-level functions (table), 6-7
device-level functions (table), 6-6
NI-488 functions (table), 6-6 to 6-7
NI-488.2 routines, 6-8
numbers, 6-4
strings, 6-4 to 6-5

NI-488.2M User Manual for Windows 95/Windows NT 1-12 © National Instruments Corporation



	NI-488.2M™ User Manual for Windows 95 and Windows NT
	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Table of Contents
	About This Manual
	How to Use the Manual Set
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Introduction
	GPIB Overview
	Talkers, Listeners, and Controllers
	Controller-In-Charge and System Controller
	GPIB Addressing
	Sending Messages across the GPIB
	Data Lines
	Handshake Lines
	Interface Management Lines
	Setting up and Configuring Your System
	Controlling More Than One Board
	Configuration Requirements
	The NI-488.2M Software for Windows 95
	NI-488.2M Software for Windows 95 Components
	NI-488.2M Driver and Driver Utilities
	16-Bit Windows Support Files
	DOS Support Files
	Microsoft C/C++ Language Interface Files
	Borland C/C++ Language Interface Files
	Microsoft Visual Basic Language Interface Files
	Sample Application Files
	How the NI-488.2M Software Works with Windows 95
	Uninstalling the GPIB Hardware from Windows 95
	Uninstalling the GPIB Software for Windows 95
	The NI-488.2M Software for Windows NT
	NI-488.2M Software for Windows NT Components
	NI-488.2M Driver and Driver Utilities
	DOS and 16-Bit Windows Support Files
	Microsoft C/C++ Language Interface Files
	Borland C/C++ Language Interface Files
	Microsoft Visual Basic Language Interface Files
	Sample Application Files
	How the NI-488.2M Software Works with Windows NT
	Unloading and Reloading the NI-488.2M Driver for Windows NT

	Chapter 2 Application Examples
	Example 1: Basic Communication
	Example 2: Clearing and Triggering Devices
	Example 3: Asynchronous I/O
	Example 4: End-of-String Mode
	Example 5: Service Requests
	Example 6: Basic Communication with IEEE 488.2-Compliant Devices
	Example 7: Serial Polls Using NI-488.2 Routines
	Example 8: Parallel Polls
	Example 9: Non-Controller Example

	Chapter 3 Developing Your Application
	Choosing Your Programming Methodology
	Choosing a Method to Access the NI-488.2M Driver
	NI-488.2M Language Interfaces
	Direct Entry Access
	Choosing between NI-488 Functions and NI-488.2 Routines
	Using NI-488 Functions: One Device for Each Board
	NI-488 Device-Level Functions
	NI-488 Board-Level Functions
	Using NI-488.2 Routines: Multiple Boards and/or Multiple Devices
	Checking Status with Global Variables
	Status Word – ibsta
	Error Variable – iberr
	Count Variables – ibcnt and ibcntl
	Using Win32 Interactive Control to Communicate with Devices
	Programming Model for NI-488 Applications
	Items to Include
	NI-488 Program Shell
	NI-488 General Program Steps and Examples
	Step 1. Open a Device
	Step 2. Clear the Device
	Step 3. Communicate with the Device
	Step 4. Place the Device Offline Before Exiting Your Application
	Programming Model for NI-488.2 Applications
	Items to Include
	NI-488.2 Program Shell
	NI-488.2 General Program Steps and Examples
	Step 1. Initialization
	Step 2. Determine the GPIB Address of Your Device
	Step 3. Initialize the Device
	Step 4. Communicate with the Device
	Step 5. Place the Device Offline Before Exiting Your Application
	Language-Specific Programming Instructions
	Microsoft Visual C/C++ (Version 2.0 or Higher)
	Borland C/C++ (Version 4.0 or Higher)
	Visual Basic (Version 4.0 or Higher)
	Direct Entry with C
	gpib-32.dll Exports
	Directly Accessing the gpib-32.dll Exports
	Windows 95: Running Existing GPIB Applications
	Running Existing Win16 GPIB Applications
	Running Existing DOS GPIB Applications
	Windows NT: Running Existing GPIB Applications

	Chapter 4 Debugging Your Application
	Debugging with GPIB Spy
	Debugging with the Global Status Variables
	Debugging with Win32 Interactive Control
	GPIB Error Codes
	Configuration Errors
	Timing Errors
	Communication Errors
	Repeat Addressing
	Termination Method
	Other Errors

	Chapter 5 GPIB Spy Utility
	Overview
	Starting GPIB Spy
	Starting GPIB Spy Under Windows 95
	Starting GPIB Spy Under Windows NT
	Using the Online GPIB Spy Help
	Locating Errors with GPIB Spy
	Viewing Properties for Recorded Calls
	Exiting GPIB Spy
	Performance Considerations

	Chapter 6 Win32 Interactive Control Utility
	Overview
	Getting Started with Win32 Interactive Control
	Win32 Interactive Control Syntax
	Number Syntax
	String Syntax
	Address Syntax
	Win32 Interactive Control Commands
	Status Word
	Error Information
	Count Information

	Chapter 7 GPIB Programming Techniques
	Termination of Data Transfers
	High-Speed Data Transfers (HS488)
	Enabling HS488
	System Configuration Effects on HS488
	Waiting for GPIB Conditions
	Asynchronous Event Notification in Win32 GPIB Applications
	Calling the ibnotify Function
	ibnotify Programming Example
	Writing Multithreaded Win32 GPIB Applications
	Device-Level Calls and Bus Management
	Talker/Listener Applications
	Serial Polling
	Service Requests from IEEE 488 Devices
	Service Requests from IEEE 488.2 Devices
	Automatic Serial Polling
	Stuck SRQ State
	Autopolling and Interrupts
	SRQ and Serial Polling with NI-488 Device Functions
	SRQ and Serial Polling with NI-488.2 Routines
	Example 1: Using FindRQS
	Example 2: Using AllSpoll
	Parallel Polling
	Implementing a Parallel Poll
	Parallel Polling with NI-488 Functions
	Parallel Polling with NI-488.2 Routines

	Chapter 8 GPIB Configuration Utility
	Overview
	Windows 95: Configuring the NI-488.2M Software
	Windows NT: Configuring the NI-488.2M Software

	Appendix A Status Word Conditions
	ERR (dev, brd)
	TIMO (dev, brd)
	END (dev, brd)
	SRQI (brd)
	RQS (dev)
	CMPL (dev, brd)
	LOK (brd)
	REM (brd)
	CIC (brd)
	ATN (brd)
	TACS (brd)
	LACS (brd)
	DTAS (brd)
	DCAS (brd)

	Appendix B Error Codes and Solutions
	EDVR (0)
	ECIC (1)
	ENOL (2)
	EADR (3)
	EARG (4)
	ESAC (5)
	EABO (6)
	ENEB (7)
	EDMA (8)
	EOIP (10)
	ECAP (11)
	EFSO (12)
	EBUS (14)
	ESTB (15)
	ESRQ (16)
	ETAB (20)

	Appendix C Windows 95: Troubleshooting and Common Questions
	Troubleshooting EDVR Error Conditions
	EDVR Error with ibcntl Set to 0xE028002C (-534249428)
	EDVR Error with ibcntl Set to 0xE0140025 (-535560155)
	EDVR Error with ibcntl Set to 0xE0140035 (-535560139)
	EDVR Error with ibcntl Set to 0xE0320029 (-533594071)
	EDVR Error with ibcntl Set to 0xE0140004 (-535560188)
	Troubleshooting Windows 95 Device Manager Device Status Codes
	Common Questions

	Appendix D Windows NT: Troubleshooting and Common Questions
	Using Windows NT Diagnostic Tools
	Examining NT Devices to Verify the NI-488.2M Installation
	Examining the NT System Log Using the Event Viewer
	Common Questions

	Appendix E Customer Communication
	Glossary
	Index
	Figures
	Figure 1-1. GPIB Address Bits
	Figure 1-2. Linear and Star System Configuration
	Figure 1-3. Example of Multiboard System Setup
	Figure 1-4. How the NI-488.2M Software Works with Windows 95
	Figure 1-5. Selecting an Interface to Remove from Windows 95
	Figure 1-6. Add/Remove Programs Properties Dialog Box in Windows 95
	Figure 1-7. Uninstallation Results in Windows 95
	Figure 1-8. How the NI-488.2M Software Works with Windows NT
	Figure 2-1. Program Flowchart for Example 1
	Figure 2-2. Program Flowchart for Example 2
	Figure 2-3. Program Flowchart for Example 3
	Figure 2-4. Program Flowchart for Example 4
	Figure 2-5. Program Flowchart for Example 5
	Figure 2-6. Program Flowchart for Example 6
	Figure 2-7. Program Flowchart for Example 7
	Figure 2-8. Program Flowchart for Example 8
	Figure 2-9. Program Flowchart for Example 9
	Figure 3-1. General Program Shell Using NI-488 Device Functions
	Figure 3-2. General Program Shell Using NI-488.2 Routines
	Figure 5-1. GPIB Spy Main Window
	Figure 5-2. GPIB Spy Input Tab for Device-Level ibwrt
	Figure 5-3. GPIB Spy Output Tab for Device-Level ibrd
	Figure 8-1. NI-488.2M Settings Tab for the AT-GPIB/TNT (PnP)
	Figure 8-2. Device Templates Tab for the Logical Device Templates
	Figure 8-3. Main Dialog Box in the GPIB Configuration Utility

	Tables
	Table 1-1. GPIB Handshake Lines
	Table 1-2. GPIB Interface Management Lines
	Table 3-1. Status Word Layout
	Table 4-1. GPIB Error Codes
	Table 6-1. Syntax for Device-Level NI-488 Functions in Win32 Interactive Control
	Table 6-2. Syntax for Board-Level NI-488 Functions in Win32 Interactive Control
	Table 6-3. Syntax for NI-488.2 Routines in Win32 Interactive Control
	Table 6-4. Auxiliary Functions in Win32 Interactive Control


