NetLogo Tutorial Notes

Steven O. Kimbrough

April 11, 2014

Steven O. Kimbrough, kimbrough[at]wharton.upenn.edu

$Id: NetLogo-tutorial-notes.tex 3684 2013-09-09 20:37:28Z sok $

kimbrough[at]wharton.upenn.edu

ii

Contents

[Prefacel ix
I_Starters 1
LI Starters 1
[I.1.1 NetLogo world view (main metaphors)[. 1

(1.2 The Interface Tabl 2
[1.2. ['he Observerl 2

[1.2.2 Inspecting|., 2

(1.2.3 Editing the View (and the World)[. 3

[1.2.4 More on Editing the World| 9

[L.2.5 Interface Widgets (on the Toolbar) 5

[1.2.5.1 NetLogo Intertace Tab: The Intertace Tool- |

| bar: Buttons 5
[1.2.5.2 NetLogo Intertace Tab: The Intertace Tool- |

[bar: Shdersl 0oL 6
[1.2.5.3 NetLogo Intertace Tab: The Intertace Tool- |

[bar: Switches.o oo 6
[1.2.5.4 The Interface Toolbar: Choosersl 7

[1.2.5.5 The Intertace Toolbar: Input boxes| 7

(1.2.5.6 The Interface Toolbar: Monitorl 7

[1.2.5.7 The Interface Toolbar: Plotl. 8

[1.2.5.8 The Intertace Toolbar: Output|. 8

(1.2.5.9 The Interface Toolbar: Notel 8

(1.2.6 The Interface Toolbar: Plotl 8

[1.2.7 Introducea Bugl 13

0.3 ThelnfoTabl 14
04 The Code Tabl 15
[1.4.1 Commands and reporters| 17

[1.42 Global and local variablesl 17

iii

[1.4.4 Assignment: Set|
[1.4.5 Agent properties, turtles-own, and patches-own| . .
[1.4.6 Agentsets|

[1.4.9 Character strings|

1.4.10 T/O|o oo
[1.4.11 Control flow and logic|

[1.4.12 Typical program structure|.

|2 Exercise: Testing Strategies in 2x2 Games|
2.1 Needed Programming Elements|
2.1.1 Local and Global Variablesl

iv

27
28
28
29
29
29
29
30
30

33
34
34
35
36
36
37
39

[7 File I/O (Input & Output)]

(7.1 File Output| . . .
[7.2 Output format| .

[7.3.1 Modity ml-symmetric-2x2-wlD.nlogo to record datal .

I8 Example: A Simple Queuing System|

9 Doing Experiments|
9.1 Model Setup| . .

9.3 Response Point Estimation|

9.4 Response Surface Estimation|

11 Development Notes|
[References|
Index

51

55
95
55

57
57
58
61
61

63
63

69
70
72
73
79
83
83
83

89
89
89

91

92

93

vi

List of Figures

[1.1 World & View Edit Dialog Box| 4
-) centerl 11

1.3 NetLogo Error Message from a Button| 14
(1.4 The Window for the Code Tabl 16
[2.1 Interface tab for Simple2x2.nlogo| 27
2.2 'The NetLogo Dictionary. Useit!| 28
4.1 Pseudo code for basic PROBE AND ADJUST| 47
7.1 Example procedure to write data to a file. Line numbers |
added. Code is from Example-data-writing.nlogo.|. 60

8.1 SimpleQueuingModel.nlogo, Intertace tab| 64
[8.2 Initialization of SimpleQueuingModel.nlogo| 67
18.3 Go procedure of SimpleQueuingModel.nlogo| 68

[9.1 Box plots of queue lengths. 1) 10,000 ticks. 2) 20,000 ticks.| . 78
9.2 MasterSetup #3. Nested for loops for a tactorial data col- |

lection.. 80

[9.3 Excel Pivot'Table report; data generated from MasterSetup #3| 83
9.4 Queue length increases rapidly at 1000 ticks when arrival rate |

exceeds service ratel. L. L 86

vii

viii

Preface

Assumptions:

e Previous exposure to NetLogo models. Previous exposure to program-
ming. In either case exposure can be quite minimal.

e Working with an open, new NetLogo model. Version: 5.X. These notes
separately.

e Here, highlights only. These tutorials are just a beginning, to get you
started and to serve as notes and as a quick reference.

e RTFM principle: read the manual, from NetLogo. Most important:
Programming Guide and NetLogo Dictionary. Read the Programming
Guide. Keep the NetLogo Dictionary to hand as you write code and
refer to it often. You can often find commands that will do exactly
what you need. But there are a lot of commands. Notice that they
are organized by category; see the top of the NetLogo Dictionary.

NetLogo demonstration files, written by me, can generally be down-
loaded (if available) at http://opim.wharton.upenn.edu/~sok/mandms/
nlogocode/| or perhaps more likely at http://opim.wharton.upenn.edu/
~sok/age/nlogol

There isn’t much in the way of a NetLogo textbook or instruction manual
at all, other than what is present on the NetLogo Web site—

e NetLogo home page: http://ccl.northwestern.edu/netlogo/k

e NetLogo user manual: http://ccl.northwestern.edu/netlogo/docs/.

Note well: The user manual comes with three tutorials. I recommend
them, especially for beginners. Also, NetLogo comes with a models
library (under the File menu), which is full of interesting examples,
including code examples. Well worth rooting around in.

ix

http://opim.wharton.upenn.edu/~sok/mandms/nlogocode/
http://opim.wharton.upenn.edu/~sok/mandms/nlogocode/
http://opim.wharton.upenn.edu/~sok/age/nlogo
http://opim.wharton.upenn.edu/~sok/age/nlogo
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/docs/

Probably should
switch to Python.

—which is pretty good. NetLogo programmers should expect to consult it
regularly, especially the dictionary (see the user manual). Also, see the pro-
gramming examples that come with NetLogo. They are extensive and quite
comprehensive. Recently, however, Agent-Based and Individual-Based Mod-
eling [Railsback and Grimm, 2012] has appeared. It is excellent, if lengthy.
I highly recommend it for going beyond these Notes.

We nse R_too_not just NetlLogo. The home page for R.ishttn: //www.
r-project.org/. You will find there, besides opportunity to download a
free copy of R, manuals and documentation. The newbie should start (and
probably finish) with An Introduction to R, which you can find online at
http://cran.r-project.org/doc/manuals/R-intro.htmll

This booklet is very much a work in progress. It is aimed at helping
people new to NetLogo and with minimal programming experience get up
and running very quickly. Also, I'm trying to build up enough examples
that the booklet can be used as a reference work.

Comments and suggestions are most welcome and will be gratefully re-
ceived.

For a quick start, see QuickStart.nlogo, with answers in QuickStartSo-
lutions.nlogo.

http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://cran.r-project.org/doc/manuals/R-intro.html

Chapter 1

Starters

1.1 Starters

First of all, remember that NetLogo has a manual with lots of valuable
information. RTFM! For purposes of getting started you might consider
looking here and in the NetLogo manual. Here, begin immediately below. In
the NetLogo manual, begin with “Introduction” then move on to “Learning
NetLogo”. Skim the “Interface Guide” and the “Programming Guide” and
be prepared to consult them as you progress. The “NetLogo Dictionary” is
especially useful on a day-to-day basis.

1.1.1 NetLogo world view (main metaphors)

The NetLogo program/application has a main window with three tabs, for
three different functions:

’ Interface ‘ Info ‘ Code ‘

The principal metaphors in NetLogo are these:
e From the manual:

The NetLogo world is made up of agents. Agents are beings
that can follow instructions. Each agent can carry out its
own activity, all simultaneously.

In NetLogo, there are four types of agents: turtles, patches,
links, and the observer. Turtles are agents that move around
in the world. The world is two dimensional and is divided
up into a grid of patches. Each patch is a square piece of

1

2 CHAPTER 1. STARTERS

“ground” over which turtles can move. Links are agents that
connect two turtles. The observer doesn’t have a location —
you can imagine it as looking out over the world of turtles
and patches.

e The world: rectangular array of patches on which turtles may sit.
Patches are (like) geographic locations and are fixed. Turtles are
moveable entities. Both have properties. In addition, turtles may
be connected by links, which are also agents.

e The observer: looks down at the world and what is in it.
From the Command Center. From the Procedures.

e The View. A window onto the world of patches and turtles. By default,
a black window on the Interface Tab.

We'll focus next on the Interface Tab.

1.2 The Interface Tab

1.2.1 The Observer

e Again: The observer: looks down at the world and what is in it.
Can issue commands, from the Command Center. For example,

observer> create-turtles 1 creates a turtle at patch (0,0) or patch
0 0 as it is called in NetLogo.

Note: every patch has a planar or x-y coordinate address, measured
away from 0 0 in the cartesian plane.

observer> ask turtle O [fd 12] moves our turtle (ID is 0) forward
12 patches.

observer> ask turtle O [forward -12] puts it back at the origin.

1.2.2 Inspecting

e Right-click on the turtle. Investigate: inspect patch 0 0 and turtle
0. Inspect each. Note the properties of each.

Try observer> ask patch 2 2 [set pcolor red], and
observer> ask turtle O [set label "My first turtle!"].

1.2. THE INTERFACE TAB 3

Notice how NetLogo makes assignments to variables (and properties):
set <thing> <to value>.

Try observer> print count patches
and observer> print count turtles.

Now start over: observer> clear-all.

1.2.3 Editing the View (and the World)
e Click on Edit... in the View window.

You get (by default) the window/dialog box shown in Figure page
4

4 CHAPTER 1. STARTERS

Model Settings
World

(-16,16)

Location of origin: ' Center |41

minimum x coordinate for patches

4+ (0,0

max-pxcor 16

maximum x coordinate for patches

minimum y coordinate for patches (-16,-16)
®

max-pycor 16 Torus: 33 x 33

maximum y coordinate for patches

W World wraps horizontally
W World wraps vertically

View
Patch size 13 Font size 10
measured in pixels of labels on agents

W Turtle shapes

if unchecked, turtles appear as squares
Tick counter

!Z‘. Show tick counter

Tick counter label ticks

(Cancel) (Apply) (OK)

Figure 1.1: World & View Edit Dialog Box

1.2.

THE INTERFACE TAB)

1.2.4 More on Editing the World

e You control the size of the world—the number of patches—here.

Notice the coordinate system (by default): in horizontally and ver-
tically symmetrical offsets from patch O 0. The boundaries of the
world always have an odd number of patches.

By default, the world is a torus: it wraps horizontally and vertically.
You can modify that here.

If you want to create a world with very many patches, you will probably
also want to reduce the patch size (in pixels), which is done in the View
section of this dialog box.

1.2.5 Interface Widgets (on the Toolbar)

NetLogo has icons on the Toolbar for interface widgets.
Click and draw. Right-click to edit.
There are nine types (see the manual):

1.
2.

button
slider

switch

. chooser
. input

. monitor

plot

. output

. note

1.2.5.1 NetLogo Interface Tab: The Interface Toolbar: Buttons

e Button: “Buttons can be either once-only buttons or forever buttons.

When you click on a once button, it executes its instructions once.
The forever button executes the instructions over and over, until you
click on the button again to stop the action.”

Click and draw a button. In the “Commands” text area put:

6 CHAPTER 1. STARTERS

print Mutation?

if-else (Mutation?)
[set Mutation? false]
[set Mutation? true]

Accept and try it out.

1.2.5.2 NetLogo Interface Tab: The Interface Toolbar: Sliders

e Slider: “Sliders are global variables, which are accessible by all agents.
They are used in models as a quick way to change a variable without
having to recode the procedure every time. Instead, the user moves
the slider to a value and observes what happens in the model.”

Click and draw a slider. Set “Global variable” to myFirstVariable,
leave “Minimum” at 0, set “Increment” to 0.1, “Maximum” to 10, and
“Value” to 7.3. Click “OK”. Move the slider to a new value.

Try observer> print Myfirstvariable. (We see that NetLogo is
not case-senstive.) Try observer> set myFirstVariable 9.9

then observer> set myFirstVariable 29,

and then observer> print myFirstVariable.

Note well Note well: Starting in version 4, NetLogo allows you to change slider
variables to values outside those declared in the slider. I’'m not sure this is
an improvement, but there you have it. So, you can’t rely on there being a
maximum or minimum value to a slider variable. You will need to program
them yourself.

1.2.5.3 NetLogo Interface Tab: The Interface Toolbar: Switches

e Switch: “Switches are a visual representation for a true/false variable.
The user is asked to set the variable to either on (true) or off (false)
by flipping the switch.”

Click and draw a switch. Set “Global variable” to Mutation?. Toggle
the switch and try observer> print Mutation?.

e Sliders, switches and choosers are the only interface widgets available
for sending information from the user interface to the Observer (or
NetLogo procedures).

1.2. THE INTERFACE TAB 7

1.2.5.4 The Interface Toolbar: Choosers

e Chooser: “Choosers let the user choose a value for a global variable
from a list of choices, presented in a drop down menu.”

One per line. Put strings in double quotes. Numbers directly.

Click and draw a chooser. In the “Global variable” text area, type
person. In the “Choices” text area type:

"Bob"
"Carol"
"Ted"
"Alice"
9

23.34

Accept and try it out. Note: Choosers don’t accept functions to eval-
uate. (Choosers can’t be beggars?)

Right-click on the monitor and choose “Edit”. Insert person as the
global variable. Accept and try it out.

Comment: You can also use a chooser to control execution of the
program. Think of the choices as determining scenarios.

1.2.5.5 The Interface Toolbar: Input boxes

e Input: “Input Boxes are global variables that contain strings or num-
bers. The model author chooses what types of values the user can
enter. Input boxes can be set to check the syntax of a string for com-
mands or reporters. Number input boxes read any type of constant
number expression which allows a more open way to express numbers
than a slider. Color input boxes offer a NetLogo color chooser to the
user.”

e Try one out. Use the variable name bob. Type print bob from the
command center.
1.2.5.6 The Interface Toolbar: Monitor

e Monitor: “Monitors display the value of any expression. The expres-
sion could be a variable, a complex expression, or a call to a reporter.
Monitors automatically update several times per second.”

CHAPTER 1. STARTERS

A reporter is a procedure that returns a value. We're not there yet
(but we will be).

Click and draw a monitor. In the “Reporter” text area, type Mutation?.
Accept and try it out.

1.2.5.7 The Interface Toolbar: Plot
See §1.2.6] below, page

1.2.5.8 The Interface Toolbar: Output

e Output: “The output area is a scrolling area of text which can be used
to create a log of activity in the model. A model may only have one
output area.”

Click and draw an output area. Edit the button and change the first
line from print Mutation? to output-print Mutation?.

Accept and try it out. You can essentially achieve this by writing to
the Command Center with print etc. However, clear-all clears the
output area, but not the command center output area.

See also: print, show, type, write.

1.2.5.9 The Interface Toolbar: Note

e Note: “Notes lets [sic] you add informative text labels to the Interface
tab. The contents of notes do not change as the model runs.”

Nor can your program modify them. Useful for giving basic directions
to users.

Click and draw a note. Insert “Click here to initialize:” in the text
area. Accept. Right-click and choose “Select”. Move (mouse down
and drag) the note to a point above the button. Click outside the note
to deselect it.

1.2.6 The Interface Toolbar: Plot

We're going to create a stream (eventually two streams) random walk data,
and plot the results. This will be a bit more complex than what we have
done so far.

1. Begin by creating two buttons: Setup and Random Walking. For now,

just give them display names only, with nothing to do.

1.2. THE INTERFACE TAB 9

2. Create a slider whose global variable is daNewA. Set the minimum to
-1, the increment to 0.000001, the maximum to 1, and the value to
0.1.

Note: Setting the increment to 0.000001 or 1.0E-6 (or some simi-
larly small value) is crucial. If you set it too high, say to 0.1, then
I get unusual and implausible numbers set via the random number
generator.

3. Create a slider whose global variable is streamA. Set the minimum to
0, the increment to 1.0E-5, the maximum to 50, and the value to 30.

4. In the “Commands” text area of the Setup button, type:

clear-all

set daNewA 0.0
set streamA 25.0
random-seed 1

Accept and click the button. The two slider values should change.

This button now: (1) reinitializes the system (clears the World, clears
the plots). (2) Sets the global variable daNewA to have the value 0.0.
(3) Sets the global variable streamA to have the value 25.0. And, (4),
initializes the random number generator using the seed 1.

Comment on random number generators: They play an absolutely
critical role in simulations and experimental mathematics, such as we
are doing. They are, however, only pseudo-random. In fact, given a
starting seed value, they are absolutely deterministic and eventually
they cycle! The thing that unless you know the generator, just looking
at its stream of random numbers you can’t tell (ideally that is), that
they aren’t being generated from an ideal random number generator.

If you don’t set the seed, NetLogo uses the system clock, so on each
run you will see a different random number stream. It is useful when
you are developing a model to set the random number seed yourself,
since that will produce predictable output. When you are exploring
your model, after it is developed, you should explore using multiple
random seeds, either by letting NetLogo pick them or by explicitly
setting them yourself.

It is typical in NetLogo models to have a setup button that initial-
izes the system and a second button—ours here is called “Random

10

CHAPTER 1. STARTERS

Walking”-to run the model. You may find it useful to add other but-
tons. Especially during development, they can be useful for debugging.

. Now create a plot. Click and drag the plot widget to an appropriate

spot. In the “Name” field, type:
My first plot

Set “X min” to 0, “X max” to 10.0, “Y min” to 20, and “Y max” to
30. Note: these settings are not crucial, because NetLogo will change
them dynamically as needed.

Click on the “Create” button and name the new plot pen daStreamAPen.
Select its color to be cyan.

Click “Ok”.

. In the “Commands” text area of the Random Walking button, type:

print (word "streamA " streamA)
set daNewA ((random-float 1) - 0.5)
print (word "daNewA " daNewA)

set streamA (streamA + daNewA)

Click the “Forever” check box. Click “Ok”.

Note well: NetLogo now uses the reporter word to concatenate strings.
See the NetLogo Dictionary on word for details.

What this code does is the following. We’ve initialized streamA to be
25.0. We draw a random number between 0 and 1 (with random-float
1) and add it to streamA, subtracting 0.5 at the same time. So, the
new value of streamA is the old value plus or minus a random amount
between 0 and 0.5. streamA will drift aimlessly, in what is called a
random walk. Note that step intervals other than (0,0.5) are possible;
we’ve just chosen that one for convenience.

Another comment on the code. word in the first line is being used
as a string concatenator (“concatenator” = “putter together”). In
the third and fourth lines the plus sign is being used for numerical
addition. Notice especially that in NetLogo the operators must have
white space surrounding them. a + b is OK, but a+b is not.

Then click the Setup button followed by the Random Walking button.

1.2. THE INTERFACE TAB 11

You will see output scrolling by in the Command Center output win-
dow. After a short time, click on the Random Walking button again
to stop the run.

Now click on the double-headed arrow, next to the “Clear” button, at
the far right of the Command Center output window. See the image
that follows.

| Clear |

Figure 1.2: Double-Headed Arrow of the Command Center

The Command Center output window will expand for easier viewing.
This is what you get:

streamA 25.0

daNewA -0.082978

streamA 24.917022

daNewA -0.4998856316786342
streamA 24.417136368321366
daNewA -0.353244107423887
streamA 24.06389

daNewA -0.3137397857321689
streamA 23.75015

daNewA -0.10323251879902084
streamA 23.64692

daNewA -0.08080549071321619

12

CHAPTER 1. STARTERS

streamA 23.566114509286784
daNewA -0.295548

streamA 23.270561999999998
daNewA -0.47261240282038
streamA 22.79795

daNewA -0.08269519422643179
streamA 22.71525480577357

Note again: Seeding the random number generator with 1 should pro-
duce these values reliably. (Actually, sometimes NetLogo seems to
round off the values. I'm not clear why this seemingly irregular be-
havior occurs.)

Click the Clear button to remove the text from the Command Center
window. Click the double-headed arrow again to return the Command
Center window to its original and diminished position.

. Now let’s do some plotting. Add the following code to the code area

of the Random Walking button:

set-current-plot "My first plot"
set-current-plot-pen "daStreamAPen"
plot-pen-down

plot streamA

This snippet of code should be readily understandable. First, we tell
NetLogo which (of possibly many) plots we want to access. Next we
tell NetLogo which (of possibly many) pens (for distinct streams of
data) we wish to use. We place the pen down and we plot the current
value of our variable of interest, here streamA. And that’s it.

Click the Ok button in the Random Walking dialog box. Click the
Setup button, then click Random Walking and watch the plot unfold!

. Now we’ll add a second random walk stream. First, add two new

sliders, for global variables daNewB and streamB, analogous to daNewA
and streamA. Second, edit (right-click then choose “Edit”) your plot,
creating a new pen called daStreamBPen and set its color to magenta.

Third, modify the code for the Setup button to read as follows:

clear-all

1.2.

THE INTERFACE TAB 13

set dalNewA 0.0
set streamA 25.0
set dalNewB 0.0
set streamB 25.0
random-seed 1

And fourth, modify the code for the Random Walking button to read
as follows:

;print (word "streamA " streamh)
set daNewA ((random-float 1) - 0.5)
;print (word "daNewA " daNewh)

set streamA (streamA + daNewA)

set daNewB ((random-float 1) - 0.5)
set streamB (streamB + daNewB)
set-current-plot "My first plot"
set-current-plot-pen "daStreamAPen"
plot-pen-down

plot streamA

set-current-plot-pen "daStreamBPen"
plot-pen-down

plot streamB

Note that lines 1 and 3 now begin with a semicolon — ; — which is the
NetLogo comment symbol. Presumably we don’t need to print out the
values anymore. Commenting out the lines serves the useful purpose
of reminding us of what we did and allows us to quickly remove the
comments if we want to regain the lines of code. Even better would be
to comment profusely, as in this tutorial, but in the code itself, using
comment lines.

. Experiment!

How long does it take the streams to cross over? Try a different random
number seed. What happens?

1.2.7 Introduce a Bug

The first line of the code for the Random Walking button is now

;print (word "streamA " streamd)

Change it to

14 CHAPTER 1. STARTERS

print '"streamA " streamA

That is, remove the semicolon, the parentheses, and word.

Click the Ok button. Notice that we return to the Interface Tab but the
lettering on the Random Walking button is now in red. This indicates an

error. Edit the button. Here is what you will see:

e o Button

Agent(s) Observer 3| ro .

Ta)

Commands
™ Expected command.

print "streamA " streamA

set daNewA ((random-float 1) - 0.5) :j
;print "daNewA " + daNewA

set streamA (streamA + daNewA)

set daNewB ((random-float 1) - 0.5)

set streamB (streamB + daNewB)

Display name Random Walking

Action key

z Force view update after each run
Checking this box produces smoother animation, but may make the button run more slowly.

(Cancel) (OK)
Ne— "4 . "4

Figure 1.3: NetLogo Error Message from a Button

The cursor will also be on the offending line. Fix it.

1.3 The Info Tab

Not a lot to say here. A nice design. Two modes: view and edit. Go to edit

mode and notice the simple pattern.
[Later: Using the ODD protocol here for documentation: http://bio.

uib.no/te/papers/Grimm_2010_The_0DD_protocol_.pdf.

1. Purpose

2. State variables and scales

http://bio.uib.no/te/papers/Grimm_2010_The_ODD_protocol_.pdf
http://bio.uib.no/te/papers/Grimm_2010_The_ODD_protocol_.pdf

1.4. THE CODE TAB 15

3. Process overview and scheduling
4. Design concepts

5. Initialization

6. Input

7. Submodels

See also nice discussion in Agent-Based and Individual-Based Modeling by
Railsback and Grimm.]
Add in—

EXTRA STUFF

You can add categories of your own.

—and return to view mode.

Notice that full URLs are “live,” e.g., try inserting http://opim-sky.
wharton.upenn.edu/~sok/.

Also, vertical bars at the beginning of lines indicate special shading for
emphasis, e.g., to present code.

| clear-all

| set daNewA 0.0

| set streamA 25.0
| set daNewB 0.0

| set streamB 25.0
| random-seed 1

Notice that the shaded area uses “typewriter” font (conventional for code).

1.4 The Code Tab

We can do a great deal of NetLogo programming by proceeding as we have,
adding code to buttons on the Interface Tab. This quickly becomes a soft-
ware engineering nightmare, however. The Procedures Tab helps us avoid,
or at least postpone, this unhappy eventuality.

Open a new (blank) NetLogo file and click on the Procedures Tab. Here’s
what you see (and get):

http://opim-sky.wharton.upenn.edu/~sok/
http://opim-sky.wharton.upenn.edu/~sok/

16 CHAPTER 1. STARTERS

NetLogo — Untitled

~Interface Information Procedures
L v 4
| Y |
Find... Check
Figure 1.4: The Window for the Code Tab
The “Find...” function is for searching for text in the edit area (the

large white area extending below). The “Check” function is for validating
your code, looking for syntax errors. The “Procedures” function is a drop-
down list that allows you to see, select, and go to a particular procedure.
The rest is the large white editing area extending below.

There are two types of procedures: commands (which correspond to sub-
routines in other languages or procedures with void returns) and reporters
(which in other languages are often called functions, or procedures that re-
turn values). Commands do things, but do not return values. Reporters
return values. NetLogo is not case-sensitive. Even so, I'll try to follow this
stylistic convention:

e Procedures—commands and reporters—begin with an upper-case let-
ter

e Variables begin with a lower-case letter

e After the first character, both procedures and variables UseTheCamel-
BackConvention.

1.4. THE CODE TAB 17

1.4.1 Commands and reporters

To declare a reporter, call it SumOf TwoNumsSquared, that accepts one argu-
ment and returns the argument plus one squared, do this:

to-report SumOfTwoNumsSquared [daFirstNumber daSecondNumber]
report (daFirstNumber + daSecondNumber) * (daFirstNumber + daSecondNumber)
end

To declare a command, call it MyFirstCommand, use the following format:

to MyFirstCommand

print "Hello from MyFirstCommand."

print (word "The square of 3 + 2 is " SumOfTwoNumsSquared(3)(2) ".")
end

Try typing these into the procedures edit area. Then create a button and
call MyFirstCommand. Points arising:

1. Reporters and commands may or may not require accompanying ar-
guments to be specified. If arguments are specified you show this as
in the declaration for the reporter SumOfTwoNumsSquared, with the
arguments specified between square brackets and separated by white
space if there is more one.

2. NetLogo uses square brackets, [...], to indicate lists (of which more
later). Items in a list are separated by white space.

3. NetLogo supports various arithmetic and mathematical operators, e.g.,
+ for addition, * for multiplication, ~ for exponentiation, and so forth.
NetLogo requires that these operators be surrounded by white space.
So, 2*3 is not legal, but 2 * 3 is.

1.4.2 Global and local variables

NetLogo’s variables are not typed, but they must be declared. NetLogo
supports both global and local variables. Global variables may be declared
in either of two ways. First, using a variable in a slider or switch on the
Interface Tab counts as declaring the variable as global. Second, at the top
of the procedures edit area, you can declare NetLogo global variables using
this format:

18 CHAPTER 1. STARTERS

globals [myFirstVariable mySecondVariable
myThirdVariable
]

So, the notation for declaring global variables in the Procedures Tab is the
keyword globals followed by a list of variables.

There are similarly two ways of declaring local variables. The first is
demonstrated in the reporter Sum0f TwoNumsSquared, above. There, [daFirstNumber
daSecondNumber] declares two variables whose scope is the reporter Sum0f TwoNumsSquared.
Second, you can place this sort of expression within any procedure:

let myFirstLocalVariable O
let mySecondLocalVariable ""
let myThirdLocalVariable one-of patches

Use let to declare variables and give them initial values. Thereafter use
set to give them new values.

1.4.3 Comments and line breaks

The semicolon— ; —is NetLogo’s comment symbol. Anything appearing
after a semicolon in a line is considered a comment. NetLogo does not have
multiline commenting.

NetLogo is remarkably forgiving and loose about line breaks. The fol-
lowing is entirely OK:

print (word "Sum from several lines: "
(3+

4_

3

+

1)

)
The parentheses are required, but not because of the line breaks. If you

want to use mathematical operators in this string context, you need to
group things with parentheses.

1.4.4 Assignment: Set

Use Set to assign values to variables.

1.4. THE CODE TAB 19

Set myFirstVariable 17.2

Variables may hold complex objects, including lists, turtles and patches.
Just use Set.

1.4.5 Agent properties, turtles-own, and patches-own

Turtles and patches are agents, objects with properties. By default every
patch has the properties: pxcor, pycor (its and y coordinates on the
world grid), pcolor (its color), plabel, and plabel-color. You can see
the properties of a patch by right-clicking on it, then choosing to inspect it.
Turtles come by default with a longer list of properties. These, too, you can
see (and edit) by right-clicking on a turtle and choosing to inspect it.

Your program can alter any properties a patch or turtle has. In addition,
and most usefully, your program can add properties to turtles and to patches.
For example, placing

patches-own [playerType]

at the beginning of the procedures edit area, below globals and above the
first procedure will cause all patches to have a new property, playerType.
If you want more properties added, just add them to the list, which above
contains just playerType. Similarly, you can add properties to turtles with,

e.g.,
turtles-own [speed availableEnergyl

If you want to set a property of a turtle or patch to a certain value, you
ask, e.g.,

ask turtle O [set shape "airplane"]

Note: every turtle has an ID number. Numbering is in sequence, beginning
with 0. There are a number of shapes that ship with NetLogo (ship shapes?).
You can see the current list by typing

show shapes

in the Command Center. Similarly, you can ask a patch to set one of its
properties, whether given by default or added by you, e.g.,

ask patch 1 2 [set playerType "type0O1']

20 CHAPTER 1. STARTERS

Note that every patch is identified uniquely by its x-y coordinate numbers
on the world grid.
If you want all the patches or turtles to do something, you just ask, e.g.,

ask patches [set pcolor "blue"]

And similarly for ask turtles. With these commands you exploit NetL-
ogo’s simulation of parallel programming. NetLogo updates the agents in
random order.

NetLogo’s of and one-of mechanisms are also quite useful. —of is used
with a property, e.g.

set [color] of turtle O blue

Use of when dealing with one turtle or one patch. You can also use it for
agentsets, collections of NetLogo agents (see below). See of in the
Dictionary.

You use with to select a set of turtles or patches from a larger group,
e.g.,

ask turtles with [shape = "default"] [set color green]

Again, see the Dictionary.
NetLogo’s one-of randomly selects one item from a list. For example,

print one-of ["Bob" "Carol" "Ted" "Alice"]

1.4.6 Agentsets

See the discussion in the NetLogo manual. An agentset is a set of patches
or a set of turtles. Agentsets are unordered. They are a fundamental and
crucial concept in NetLogo. The turtles built-in primitive is a reporter
that reports the agentset of all turtles presently in the model. Similarly for
patches. Great power of expression comes from the fact that agentsets can
be given as arguments to reporters, which then operate on them, and the
fact that agentsets may be composed or defined under program control, for
example by filtering another agentset. Examples:

count patches applies the count reporter to the patches agentset.

print count turtles with [color = green] filters the agentset turtles,
creating a new agentset of green turtles, then applies the count reporter to
this.

See additional examples on page 81 of the manual. Useful agentset con-
structors:

1.4. THE CODE TAB 21

e with

e turtles-here
e in-radius

e at-points

e neighbors4, neighbors

turtles-on

Useful built-in reporters taking agentsets as arguments:
e max-one-of and min-one-of

e one-of, n-of

e values-from

1.4.7 Breeds of turtles

Turtles, but not patches, can be organized by breeds, which are classes—
distinct agentsets—of turtles. Use breed at the top of the procedures edit
area, before the procedures, to declare new breeds, e.g.,

breed [optimists optimist]
breed [pessimists pessimist]

Then, where you might say turtles you can now say optimists or pessimists
and where you might say turtle you can now say optimist or pessimist.
You can still write

create-turtles 17

and you can also write

create-optimists 23

Note well

22 CHAPTER 1. STARTERS

1.4.8 Lists

Lists are ordered collections of things and may be heterogeneous, e.g.,
print (list "Bob" 5 [2 "Carol"] turtle 0)

prints out [Bob 5 [2 Carol] (turtle 0)].

If you have more than 2 things to put into the list you must use paren-
theses in creating it (see above).

There are several built-in reporters that can be used to change a list.
Examples:

set dalist replace-item 3 dalList (list 1 2 3)

This replaces whatever item 3 was (the fourth item, since we count starting
at 0) with [1 2 3].

set dalList fput "Bob" dalist

This adds "Bob" to the beginning (position 0) of daList, making it one item
longer. Use lput for adding to the end. Note well: In NetLogo lists are
naturally accessed from the front. If you need to access (add, delete, find
something in) a list towards the end, it will often be faster to reverse the
list, access it, and then reverse it again.

set dalList but-first dalist

This removes the first item in dalList. Use but-last to remove the last
item.
List are used for controlling iteration. Example:

foreach [1 2 3]
[crt 7]

This does what in other languages might be done with

for i=1 to 3
crt (i)
next i

or with

for (int i=1; i < 4; i++) {
crt (i)
}

1.4. THE CODE TAB 23

Note that the counter— ? —is anonymous, so that nesting interations (with
foreach) requires reading the ? into a variable, e.g.,

foreach [1 2 3]
[set myi ?
crt myi]

You can use n-values to create a list for foreach iteration, e.g.,
set mylterationList n-values 10 [7]

myIterationList isnow [0 1 2 3 45 6 7 8 9].
See the manual, the “Programming Guide,” for additional examples.

1.4.9 Character strings

Are indicated with double quotes, e.g., "Bob". Generally, if a built-in re-
porter works on a list it will work on a string, too. Example:

print length (list 2 4 6 8)
print length "Now is the time"

In addition there are string-specific built-ins: is-string?, substring, word.
Recall that string concatenation is done with word, e.g.,
print (word 17 " is " "an odd number").

1.4.10 I/O

You can read from and write to files, in simple ways. You can make Quick-
Time movies of the execution of your NetLogo program.

Here, too briefly, is example code for writing to a file. It’s taken from
Chapter @ NetLogo’s file handling capabilities are very basic (maybe prim-
itive would be a better word). Anyway, only one file open at a time, be
sure to close files when you’re done, and writing to a file appends to what’s
there, so if you want a blank file, first check to see if it exists and if it does,
delete it.

4 ; Delete the existing output file, if it exists.

5 if file-exists? "runsQOutput.txt"

6 [file-delete "runsOutput.txt"]

18 file-print (word currentRunNumber "," meanCustomerInterarrivalTime
19 meanCustomerServiceTime "," maxTicks "," length(customerQueue))

20 file-close

b

24 CHAPTER 1. STARTERS

1.4.11 Control flow and logic

See Control/Logic in the NetLogo Dictionary. Main ones:

1. foreach From the manual:

foreach [1.1 2.2 2.6] [show (word ? " -> " round 7)]

=>1.1 >1
= 2.2 > 2
=> 2.6 > 3

Issues: (a) use of ?7; getting a list. On the latter, see n-values. From
the manual:

show n-values 5 [1]

= [11111]

show n-values 5 [7]

= [0 1 2 3 4]

show n-values 3 [turtle 7]

=> [(turtle 0) (turtle 1) (turtle 2)]
show n-values 5 [?7 * 7]

=> [014 9 16]

2. if and ifelse

From the manual:

ifelse reporter [commandsl] [commands2]
Reporter must report a boolean (true or false) value.
If reporter reports true, runs commandsl.

If reporter reports false, runs commands2.

ask patches
[ifelse pxcor > 0
[set pcolor blue]
[set pcolor red]]
;; the left half of the world turns red and
;; the right half turns blue

1.4. THE CODE TAB 25

3. while

From the manual:
while [reporter] [commands]
If reporter reports false, exit the loop. Otherwise run commands and repeat.

The reporter may have different values for different agents,
so some agents may run commands a different number of times
than other agents.

while [any? other turtles-here]

[fd 1]
;3 turtle moves until it finds a patch that has
;; no other turtles on it

1.4.12 Typical program structure

Two main command procedures: Setup and (then) Go, both called by but-
tons on the Interface tab, and Go a forever button. Setup initializes, Go
handles the main loop of execution. Both can (and usually should) call
various reporters and command procedures as subroutines.

26

CHAPTER 1.

STARTERS

Chapter 2

Exercise: Testing Strategies
in 2x2 Games

Figure[2.1]shows the interface tab for the NetLogo program Simple2x2.nlogo.

(I | (E— i | (i | | —

ARow 30 | ACol 30 BRow 0 | BCol 50

[| — {1 | | —— | (I

CRow 50 | CCol 0 DRow 10 | DCol 10
’ Setup I ’ Co |

RowStrategy ColStrategy

| TitForTat v|| TitForTar v

[
NumRounds 20

%A ticksio

Figure 2.1: Interface tab for Simple2x2.nlogo

27

28 CHAPTER 2. EXERCISE: TESTING STRATEGIES IN 2x2 GAMES

This program is for testing strategies in iterated 2x2 games. Our aim
with this exercise is to understand how Simple2x2.nlogo works and then to
modify and improve it. Before we do that, however, we need to review a
number of NetLogo programming elements.

2.1 Needed Programming Elements

NetLogo Dictionary
NetLogo 4.1.2 User Manual

Categories: Turtle - Patch - Agentset - Color - Control/Logic - World - Perspective
Input/Output - Files - List - String - Math - Plotting - Links - Movie - System - HubNet

|Specia|: Variables - Keywords - Constants

Categories

This is an approximate grouping. Remember that a turtle-related primitive might still be used by patches or the observer, and
vice versa. To see which agents (turtles, patches, links, observer) can actually run a primitive, consult its dictionary entry.

Figure 2.2: The NetLogo Dictionary. Use it!

2.1.1 Local and Global Variables

Variables set on the Interface tab are global, as are variables declared with
globals (at the top of the Procedures window).

globals [Row ; the row player
Col ; the column player
]

To set a global variable, use set, e.g.,

set Row turtle O
set Col turtle 1

All other variables are local. To declare a local variable use let and give
it a value, e.g.,

let carol 8

Once declared (assuming you are in its scope) you change the value of a
local variable with set, e.g.,

set carol (carol + 1)

Note: you need white space before and after arithmetic operations.

2.1. NEEDED PROGRAMMING ELEMENTS 29

2.1.2 Reporters

to-report bob [x y]
report (list 3 4 x y)
end

to test
let carol bob ("hello") ("there")
print first carol
print last carol
print carol
end

This code is in Simple2x2.nlogo. Try typing test in the command line (on
the interface tab). Note that using a test procedure like this is a good idea
during program development.

Note well: use of square and round brackets.

2.1.3 Lists

A list is just an sequence of things. In NetLogo, these things can be
...anything more or less, including numbers, strings, turtles and so on.
NetLogo uses square brackets to delineate lists: [bob carol ted alice].
Notice: spaces not commas separate the elements.

Note to create lists use list as in

let bob (list 2 3 4 5 "hello")
Note further this is how you do string building (concatentation):
let myString (word "Now is" " the time " "for all etc.")

Let’s look at the List category in the Dictionary. ...

2.1.4 Random Numbers

See the Mathematical category in the Dictionary. random-float is perhaps
the most commonly used.

2.1.5 Turtles

See the Turtle category in the Dictionary. Turtles (which can move) and
patches (which cannot move) are, with lists, the main data structures in

30 CHAPTER 2. EXERCISE: TESTING STRATEGIES IN 2x2 GAMES

NetLogo. Here, we won’t be using patches and our turtles won’t move.
Still, we have this:

turtles-own [Player
PolicyOfPlay
NextMove ; the player’s next move, which is 0 or 1
MyMoves ; a list of my moves, moves are O or 1
CounterPartMoves ; a list of the counterpart’s moves
Payoffs ; a list of the payoffs received
]

What this does is to define new attributes that all turtles will have. We
can define as many as we want. Our program will use this attributes as
turtle-specific variables, which will be set perhaps many times during a run.

2.2 Understanding Simple2x2.nlogo

[OK, I'll handle this live.]

2.3 Exercises

1. Simple2x2.nlogo prints output messages to the command window at
the end of a run. Change the program so that there is an output
widget on the Interface tab and the messages at the end of the run are
printed to it.

2. Simple2x2.nlogo comes with the game matrix set to a Prisoner’s Dilemma.
Add code an Interface widgets that let you choose (use a chooser)
among a stated list of games. Add several interesting 2x2 games to
the program and test it all out. You should have a chooser whose
variable is PickGameSetup. You should add a button that calls the
procedure SetUpGame and, obviously, you need to add a procedure
named SetUpGame that resets the game matrix payoff sliders as appro-
priate.

3. Simple2x2.nlogo comes with two built-in straties: “Random” and “Tit-
ForTat”. Add new strategies and explore their performances. Best to
think up your own (be sure to document them!), but here are some
suggestions.

2.3. EXERCISES 31

(a) “TitForTatComplement”. Defaults to 1, after that, like “Tit-
ForTat” it mimics the play of the counter-player in the previous
round. (Also known as “SuspiciousTitForTat”.)

(b) “2 Tits for OneTat”.
(c) “Tit for Two Tats”.
(d) All of the strategies used by Axelrod in his tournaments.

4. Add a feature to output the run information to a comma separated
file. Such files are easily read by R, Excel, and other data analysis
programs. See the Files category in the Dictionary. You should settle
on a name for your file, such as Simple2x20utput.txt. When you go to
write your data to your file for the first time, you will normally want
to see if the file already exists. If it does and you want to start anew,
then delete it.

Don’t forget to close your file when you are done. Also, NetLogo really
only lets you deal with one open file at a time.

5. Add a slider to the Interface tab, named NumReplications. Then
make appropriate code changes so that that number of replications is
run for any given setting. Preferably, make this work with the file
logging feature so that results from each replication are stored (as
rows) in a comma separated file.

6. Add features to the program so that you can run tournaments, say one
strategy playing each strategy in a given list. Make sure the results
are properly recorded a log file.

7. Add features to the program so that you can do multiple runs for
sensitivity analysis. For example, you might vary the payoffs in a
game systematically, undertake multiple runs, record the data, and
see how the payoff changes affect the performance of a strategy.

$Id: strategy-tester-2x2.tex 3684 2013-09-09 20:37:28Z sok $

32 CHAPTER 2. EXERCISE: TESTING STRATEGIES IN 2x2 GAMES

Chapter 3

Exercise: Simple animation
with turtles

In this exercise, or series of exercises, we will have one or more trucks move
between two points, which we might think of as notional supply and delivery
locations.

Since the trucks have to move, we use turtles to embody them. NetLogo
comes, [shall assume, with a truck shape. Verify this by choosing Turtle
Shapes Editor under the Tools menu in NetLogo. You should find a scrolling
window displaying turtle shapes, with truck near the bottom. Note that you
can also click on Import from Library...and see an even larger collection
of turtle shapes. Select (click on) truck, then click on Duplicate. In the
new window, type truck-west to name our new shape. Then click Flip
Horizontal to head the truck to the west (left). Click OK. You should now
see your new shape in the Shapes Editor scrolling window. Click the go-away
button on the window and return to the main window of NetLogo.

Why did we do this? Our trucks will start in the west and head east
to a specified point. After that, they will turn around and head west to a
specified point, and so on. The truck shape is not symmetric, so rotating it
(which is all NetLogo can do under program control) won’t make it point
west without being upside down. (Notice that in the Shapes Editor, the
Rotatable check box is unchecked. You can check it and thereby allow your
program to rotate the truck—e.g., with right or rt—but why would you
want an upside-down truck?) So, we will use two shapes with the same
turtle.

In the command center, test things out with:

observer> crt 1

33

34 CHAPTER 3. EXERCISE: SIMPLE ANIMATION WITH TURTLES

observer> ask turtle O [set size 4]
observer> ask turtle O [set shape "truck-west"]

then
observer> ask turtle O [set shape "truck"]

OK. Now we’ll do three exercises in which we move one or more trucks
back and forth across the gridscape.

3.0.1 Exercise 1

We write two commands: Setup and Go. In Setup, create a single turtle,
and give it a name, say daTruck which should be global. Position the truck
at patch -10 0. Hint: Use setxy. Give the truck the shape "truck", set
its size to 4, and its heading to 90 (due east).

In Go, when the truck has the shape "truck" move it forward east
one patch per run of Go, until the truck is on patch 10 0. Then, set the
shape to "truck-west" and the heading to 270 (due west). If the shape is
"truck-west", move the truck forward west one patch at a time, until the
truck is on patch -10 0. Now, change its shape to "truck" again and its
heading to due east.

Create buttons for Setup and Go, making Go a forever button. FExercise
the code. Use the speed control slider at the top of the world window to
control the speed of the truck. Experiment with the code a bit to add
features, e.g., change the color of the truck depending on its direction.

3.0.2 Exercise 2

We write two commands: SetupPlus and GoPlus, and buttons to call them.

Now we declare delivery-trucks as a new breed with breed [delivery-trucks
delivery-truck] and weadd loading-time as a property of delivery-trucks.
Do this with delivery-trucks-own [loading-time]. Our truck will
take some time to load and unload.

Write SetupPlus much as you did Setup, but use create-delivery-trucks
instead of create-turtles and set the loading-time of our truck to -1.

Write GoTruckPlus much as you did GoTruck, but when the truck ar-
rives at the eastern terminus, set its loading-time to 4, then decrement
loading-time by 1 each time step until it equals 0. At that time, set the
shape and direction for heading west, and set loading-time to -1 again.

When the truck arrives at the western terminus, it should be handled
analogously to what was done at the eastern terminus.

35

Using buttons for SetupPlus and GoPlus, exercise the code and experi-
ment with changing it.

3.0.3 Exercise 3

Now we’ll create two delivery trucks and run them in parallel at different
speeds. We write two commands: SetupPlusArg and GoPlusArg, and but-
tons to call them. We’ll also write a command, GoTruckPlusArg that takes
a delivery truck as its calling argument and processes its activities.

There are one or two important issues here. First, we want different
trucks to do things at different, idiosyncratic speeds. We’'ll facilitate this
by maintaining a global counter, mytick, which we increment each time
GoPlusArg is called. A particular truck will do things based on the value of
mytick. A truck that does something every 2 ticks, for example, will check
for mytick mod 2 = 0. A slower truck might act when mytick mod 5 = 0.

Note well: Consider how to do all of this more elegantly using the
reserved words in NetLogo, tick and ticks.

The second important issue is that we want a single way to handle all
of the delivery trucks, even though they behave differently. We do this by
giving them different values for their properties and writing a command (here
GoTruckPlusArg) that handles any delivery truck based on its property
values.

So, GoTruckPlusArg is very like GoTruckPlus of exercise 2, except that
it takes a delivery truck as an input argument.

Delivery trucks now have more properties: delivery-trucks-own [
speed loading-time loading-flag loading-time-left].

In SetupPlusArg we create two delivery trucks. Call them daTruck,
as before, and daOtherTruck. Make one of the truck green and the other
yellow (or pick some other color scheme). Both trucks should have their
loading-flag set at —-1. Let one have a speed of 2 and give the other
3. Have one truck go between patch -10 0 on the west to 10 0 on the
east, while the other has a route from -10 10 to 10 10. Finally, give one a
loading-time of 3 and give the other a 5.

The job of GoPlusArg is mainly to call GoTruckPlusArg. Here it is:

to GoPlusArg
set mytick mytick + 1
ask delivery-trucks [
if mytick mod speed = 0
[GoTruckPlusArg(self)]

Note well

36 CHAPTER 3. EXERCISE: SIMPLE ANIMATION WITH TURTLES

]

end

The role of self is crucial in this quite elegant NetLogo approach to the
problem. ask delivery-trucks iterates in random order through the agentset
delivery-trucks. The agent it happens to be processing at a given time
is called self, which name we use as the argument to GoTruckPlusArg.
(Otherwise, how would we do this?)

Using buttons for SetupPlusArg and GoPlusArg, exercise the code and
experiment with changing it.

3.0.4 Solutions

The NetLogo program is |animation-1-truck.nlogo. When all three exer-
cises are implemented the leading declarations are:

globals [daTruck mytick daOtherTruck]
breed [delivery-trucks delivery-truck]

delivery-trucks-own [speed loading-time loading-flag loading-time-left]

3.0.4.1 Exercise 1

33355335533 5555 5553355335555
5553555 Exercise 1 555555555555
to Setup

clear-all

create-turtles 1

set daTruck turtle O

ask daTruck
[setxy -10 0
set shape "truck"
set size 4
set heading 90]
end

to Go
ask daTruck [
if (shape = "truck") [

animation-1-truck.nlogo

37

ifelse (xcor < 9)
[fd 1]
[fd 1
set shape "truck-west"
; Note: the shape is defined in the library as "truck-west"
; Things don’t work properly if you change capitalization at all,
; e.g., "truck-west". It’s safest just to always use lower case.
set heading 270]
] ; end of if shape = truck

if (shape = "truck-west") [
ifelse (xcor > -9)

[fd 1]

[fd 1

set shape "truck"

set heading 90]

]
] ; end of ask daTruck
end ; of Go

3.0.4.2 Exercise 2

2999999 9993399933393 IIDIDID

5333333333 Exercise 2 5555555555

to SetupPlus

clear-all
create-delivery-trucks 1

set daTruck delivery-truck O

ask daTruck

[setxy -10 0

set shape "truck"

set size 4

set speed 3

set heading 90

set loading-time -1]
end

38 CHAPTER 3. EXERCISE: SIMPLE ANIMATION WITH TURTLES

to GoTruckPlus
ask daTruck [
if (shape = "truck") [
ifelse (xcor < 9)
[fd 1]
[if (loading-time < 0) [
set loading-time 4]
if (loading-time > 0) [
set loading-time loading-time - 1]
if (loading-time = 0) [
set shape "truck-west"
; Note: the shape is defined in the library as "truck-west"
; Things don’t work properly if you change capitalization at all,
; e.g., "truck-west". It’s safest just to always use lower case.

set heading 270
set loading-time -1]

]
] ; end of if shape = truck

if (shape = "truck-west") [
ifelse (xcor > -9)
[fd 1]
[if (loading-time < 0) [
set loading-time 4]
if (loading-time > 0) [
set loading-time loading-time - 1]
if (loading-time = 0) [
set shape "truck"
set heading 90
set loading-time -1]
] ; end of else in ifelse
] ; end of if shape = truck-west
] ; end of ask daTruck
end ; of GoTruckPlus command

to GoPlus
set mytick mytick + 1
ask daTruck [
if mytick mod speed = 0 [

GoTruckPlus

]
] ; end of ask daTruck

end

3.0.4.3 Exercise 3

2999999293333 3939339933333 IIIDIDIIDIDIND

55355535555 Exercise 3 5555555555

2999939999993 33 33393
;55 SetupPlusArg ;;;;

3999999993333 939339)9))

to SetupPlusArg

clear-all
create-delivery-trucks 2
set daTruck turtle O

set daOtherTruck turtle 1

ask daTruck
[setxy -10 O
set shape "truck"
set size 4
set speed 3
set heading 90
set color green
set loading-flag -1
set loading-time 3]

ask daOtherTruck
[setxy -10 10
set shape "truck"
set size 4
set speed 2
set heading 90
set color yellow
set loading-flag -1

39

40 CHAPTER 3. EXERCISE: SIMPLE ANIMATION WITH TURTLES

set loading-time 5]
end

to GoPlusArg
set mytick mytick + 1
ask delivery-trucks [
if mytick mod speed = 0
[GoTruckPlusArg(self)]

39999 99999999993y
;55 GoTruckPlusArg ;;;;

399 9999999999993

to GoTruckPlusArg [daDeliveryTruck]

ask daDeliveryTruck [
if (shape = "truck") [
ifelse (xcor < 9)
[fd 1]
[if (loading-flag > 0) [
set loading-time-left loading-time-left - 1
]
if (loading-flag < 0) [
set loading-time-left loading-time
set loading-flag 1]

if (loading-time-left <= 0 and loading-flag > 0) [
set shape "truck-west"
; Note: the shape is defined in the library as "truck-west"
; Things don’t work properly if you change capitalization at all,
; e.g., "truck-West". It’s safest just to always use lower case.
set heading 270
set loading-flag -1
set loading-time-left 0]
]
] ; end of if shape = truck

if (shape = "truck-west") [
ifelse (xcor > -9)
[fd 1]
[if (loading-flag > 0) [
set loading-time-left loading-time-left - 1]
if (loading-flag < 0) [
set loading-time-left loading-time
set loading-flag 1]

if (loading-time-left <= 0 and loading-flag > 0) [
set shape "truck"
set heading 90
set loading-flag -1
set loading-time-left O]
] ; end of else in ifelse
] ; end of if shape = truck-west
] ; end of ask daTruck
end ; of GoTruckPlusArg command

41

42 CHAPTER 3. EXERCISE: SIMPLE ANIMATION WITH TURTLES

Chapter 4

Working with Lists

See §1.4.8] page [22| for our first introduction to lists in NetLogo. Also, read
the Dictionary under Lists.

4.1 Basics

You create lists using the 1ist reporter:

globals [bob carol ted alice]

to setup
set bob (list 1 2 3 4 5)
end

Qua list, bob may be operated on in a number of ways (see the Dictionary
for the full...list).

observer> print bob

[1 23 45]

observer> print first bob

1

observer> print but-first bob
[2 3 4 5]

observer> print reverse bob
[54321]

observer> print item 3 bob

4

Note that item counts in lists start with 0.
Sorting is often very useful. See sort and sort-by.

43

44 CHAPTER 4. WORKING WITH LISTS

observer> print sort reverse bob
[12345]

observer> print sort-by [?1 > 72] bob
[64321]

4.2 Exercise: map and data manipulation

NetLogo’s map command—originating in the list processing language, Lisp—
is extremely useful for iterating over lists. A basic format is:

map [< reporter >] <list>

For example,

print map [? + 2] [1 2 3 4 5]
prints out the list [3 4 5 6 7]. The 7 refers to the current item in the list,
as map iterates through the list.

One of the great features of lists is that they can be indefinitely long.
In consequence, with map (and other list reporters) it is possible to write
general procedures that work on lists of any size. This facilitates reuse of
code.

Useful list reporters include: length for the number of items in a list
and sum for the numerical sum of the items in the list.

4.2.1 Exercise 1

As an exercise, let us look at some elementary statistical number processing.
Suppose our data are in a list. We’d like the mean, the sum of squared
deviations from the mean, the variance, and so forth.

Do this: Declare a short list of numerical data and assign it a name, say
bob, and print it out. Get the number of items in the list and print that out.
Get the numerical sum of the elements in the list and print that out. Then,
use map to get the sum of the squared deviations from the mean (ssdm) of

the data in the list. That is, if x; is the ith data element of the list, then

ssdm is
> (wi—7)?

where T is the average value of x in the list and the summation is over all the
elements in the list. Do this directly in a procedure, then write a reporter
that takes a list (presumably of numbers) as an argument and returns the
list’s ssdm.

4.2. EXERCISE: MAP AND DATA MANIPULATION 45

4.2.2 Exercise 2

If your list contains elements other than numbers, for example strings or
other lists, then numerical operations performed while iterating on the list
(e.g., with map or sum) will cause an error condition.

The solution to this problem is to write a reporter that determines
whether or not everything in the list is in fact a number. NetLogo has
built-in reporters that find the types of objects. Specifically, is-number?
reports true if the argument is a number, and false otherwise.

Write a reporter that accepts a list as its argument and returns true
if every element is a number and false otherwise. Hint: member? xx yy
reports true if xx is a member of list yy and false otherwise.

See NetLogo’s manual for other is- reporters.

4.2.3 Solutions

4.2.3.1 Exercise 1

Here is code that does this. 1list-processing.nlogo| contains this code.

to test

let bob [] ; empty list, but really anything would do
let carol [] ; empty list, but really anything would do
set bob [1 3 5 7 9]

print (word "bob = " bob)

print (word "The length of bob is " length bob)

print (word "The sum of the elements in bob is " sum bob)

set carol map [? - sum bob / length bob] bob

print (word "The elements of bob minus the mean of bob is " carol)

print (word "The sum of the mean squared deviations is "
sum map [? * 7] carol)

print (word "This again, with a reporter call: " ssdm(bob))

end

; sum of squared deviations from the mean
to-report ssdm [daDatalList]

report sum map [(? - (sum daDatalist / length daDatalist)) ~ 2] daDatalist
end

4.2.3.2 Exercise 2

to-report ListIsAllNumbers? [alList]

list-processing.nlogo

46 CHAPTER 4. WORKING WITH LISTS

dummy [] ; empty list, but really anything would do
set dummy map [is-number? 7] alist
ifelse (member? false dummy)
[report falsel
[report true]
end

4.3 Exercise 3: Probe and Adjust

Lists are often useful for remembering things. The agent observes something,
notes a value in a list (use fput for efficiency),

observer> set bob fput 6 bob
observer> print bob
(6 1234 5]

...and after a time takes an action depending on the contents of the list,
i.e., the data collected and remembered. Then, typically, the agent will reset
the list, making it empty, [].

In this exercise we model a form of learning I call PROBE AND ADJUST.
A source of data, puts out (to begin) a constant value. Our agent wants to
learn what that value is. The agent has an initial guess, currentValue. In
each tick, the agent uses its currentValue to make a guess. Specifically,
the agent’s guess is a uniformly random number between currentValue -
delta and currentValue + delta, where delta is a global variable (think:
slider) and is small compared to currentValue.

After the agent guesses, the data source returns to the agent the absolute
value of the difference between the guess and the source’s value. The agent
maintains two lists: one for guesses above currentValue and one for guesses
below currentValue. The agent records the source’s responses in whichever
list is appropriate. After a number of guesses, epochLength, another global
variable, the agent adjusts its currentValue. If the high guesses on average
produce smaller errors, then the agent adjust currentValue up by epsilon,
another global variable or parameter, one that should be smaller than delta.
And similarly if the low guesses do better.

You should plot both the source’s value and the agent’s guesses. What
happens?

Now make the source’s values a mild random walk. Can the agent track
the changes? Under what conditions?

See Figure[4.1] page[d7] for pseudocode presenting PROBE AND ADJUST.

4.3.

10.

11.

EXERCISE 3: PROBE AND ADJUST 47

. Set parameters 0, €, currentQuantity, epochLength

(Typically, ¢ < 0 < currentQuantity and epochLength ~ 30.)

. episodeCounter «+ 0

. returnsUp « [| (Initialize returnsUp to an empty list.)
. returnsDown < [| (Initialize returnsDown to an empty list.)
. Do forever:

. episodeCounter «— episodeCounter + 1

. bidQuantity ~ UlcurrentQuantity — ¢, currentQuantity +]

(The agent’s bidQuantity is drawn from the uniform distribution
within the range currentQuantity +9.)

. return < Return-of bidQuantity

(The agent receives return from bidding bidQuantity.)

. If (return > currentQuantity) then:

returnsUp « Append return to returnsUp
else:
returnsDown « Append return to returnsDown

If (episodeCounter mod epochLength = 0) then:
(Epoch is over. Adjust episodeCounter and reset accumulators.)

(a) If (mean-of returnsUp > mean-of returnsDown) then:
currentQuantity < currentQuantity +¢
else:
currentQuantity < currentQuantity —¢

(b) returnsUp « ||

(c) returnsDown « ||

Loop back to step

Figure 4.1: Pseudo code for basic PROBE AND ADJUST

48 CHAPTER 4. WORKING WITH LISTS

4.4 Exercise 4: Genetic Operators

It is natural to represent a solution for a multi-variable optimization problem
as a list of numbers. Perhaps the simplest case is the so-called Simple
Knapsack problem in which we have to choose for each of n items whether
it is in the knapsack (=1) or not (=0). In such a problem we might represent
a solution as a list of n Os and 1s:

let aSolution (list 11 0110 0 0)

Here n = 8.

Genetic algorithms (GAs) are a popular and often appropriate kind of
approach to treating such problems. Two important genetic operators on
solutions that GAs typically employ are mutation and recombination.

4.4.1 Mutation

In mutation, a solution undergoes one or more changes of its “alleles” (for
us, items in the list constituting a solution) at random. One way this might
be done is to set a probability of mutation for an allele, say ProbMutation
= 0.05, and to consider each allele in turn. For each allele, or item in the
list, we draw a random number uniformly distributed between 0 and 1:

set mutation random-float 1

Then if mutation < ProbMutation we randomly set the allele to 0 or 1. To
do this, we draw another random number and set the allele accordingly.

set newValue random O 2
Write a reporter that takes as arguments a solution in the form of a list of
0Os and 1s and a mutation rate, and returns a possibly mutated solution.

4.4.2 Recombination

In recombination, two (or more, but we’ll stick to two) solutions exchange
genetic material, at least metaphorically. A simple way to this is with single-
point crossover. Two solutions are identified as well as a crossover point. If
our solutions are

[1t1011000]

and

4.4. EXERCISE 4: GENETIC OPERATORS 49

[11111111]

and our crossover point is 3, then the two resulting solutions are
[11011111]

and

[11111000]

Write a reporter that accepts two solutions on input and a probability
of crossover, and returns two solutions, appropriately, using single-point
CrOSSOVer.

The single-point crossover has a bias. It matters what the order is of
the meaning of the alleles. This can be overcome with two-point crossover.
Instead of one point of exchange, there are two. So, for example, if our
previous two solutions were instead crossed over at points 3 and 6, we would
get

[t101110 0]
and
[t1 11101 1]

Write a reporter that accepts two solutions on input and a probability of
crossover, and returns two solutions, appropriately, using two-point crossover.

50

CHAPTER 4. WORKING WITH LISTS

Chapter 5

Programming exercise:
evo-dyna

In this chapter we present a programming exercise to develop a simple model
in NetLogo that exercises an evolutionary dynamic (“evo-dyna”) in a finite
population of players playing a 2x2 game. Here is a schematic for the game:

0 1
0 (row00, col00) (row01, col01)
1 (rowl0, coll0) (rowll, colll)

Each player, Row and Column, has two stage-game strategies, labeled
0 and 1. The payoffs are listed in the form rowXY and colXY. Row gets
rowXY if Row plays its strategy 0 and Column plays its strategy Y.

This is a discrete (finite population) version of the replicator dynamics,
which is modeled using differential equations. In our finite and discrete
model, we have a population of players represented as patches in the NetLogo
world. Each patch is a player and each player has a playerType.

We distinguish four types of players: "type00" players play strategy 0
as Row and 0 as Column; "typelO" players play strategy 1 as Row and 0
as Column; "type01" players play strategy 0 as Row and 1 as Column; and
"typell" players play strategy 1 as Row and 1 as Column.

A run is organized by distinct generations. Each generation consists of a
number of rounds of play, that number being set by the RoundsPerGeneration
slider/global variable. A generation is run the command RunAGeneration.
At the heart of this command is the following mixture of code and pseudo-
code (indicated by < code goes here >):

51

52 CHAPTER 5. PROGRAMMING EXERCISE: EVO-DYNA

repeat RoundsPerGeneration [
; Pick two players/patches at random
< code goes here >
; Have the two players play one round, collecting appropriate statistics
< code goes here >

We can sketch a simple version of RoundsPerGeneration as follows:

to RunAGeneration
< declare local variables here using let >
; Reset accumulator variables to track performance by playerType
ResetAccumulators
repeat RoundsPerGeneration [
; Pick two players/patches at random
< code goes here >
; Have the two players play one round, collecting appropriate statistics
< code goes here >
1 ; of repeat RoundsPerGeneration
; Set currentWeightTypeXY to how much return typeXY got in the round overall,
; divided by the total return in the round from all types.
UpdateCurrentWeights
; Re—seed the patches according to the new distribution of types.
ask patches [set playerType GetRandomType
set pcolor TypeColor(playerType)]
; Compute (for display) the new actual number of types of each kind.
UpdateTypeCounts
; Increment the generation counter
set generationCounter generationCounter + 1
end ; of RunAGeneration

Your task is to fill in the blanks and create a basic evo-dyna program
in NetLogo. See finite-pop-2x2-evo-dyna-template.nlogo, which pro-
vides the Setup command and considerable structure. You will find it at
http://opim-sky.wharton.upenn.edu/~sok/mandms/nlogocode/.

Note on the Interface Tab:

1. There are two buttons. Setup calls the Setup command, which has
been left more or less intact from the full working program. The
RunAGeneration button calls the RunAGeneration command. When
the program is fully working, this should be a forever button. The

http://opim-sky.wharton.upenn.edu/~sok/mandms/nlogocode/

93

RunAGeneration command needs to be developed as part of this ex-
ercise, although considerable structure is available for you there.

. There are 8 sliders for setting the globals row00, row01, row10, rowll,
c0100, c0l101, col10, and colll. These are the payoffs to the Row
and Column players. So rowXY is the payoff to Row if Row plays
strategy X and Column plays strategy Y.

Note especially that this representation is quite general and in partic-
ular allows for non-symmetric 2x2 games.

Payoffs should not be negative.

. There are 4 slides for setting the globals initialWeight00, initialWeightO1,
initialWeight10, and initialWeight1l. The program permits up

to 4 types of players. Players of typeXY play strategy X when they

are Row players and strategy Y when they are Column players.

The expected percentage of the various types in each generation is
determined from the weights. A type’s percentage is just its current
weight divided by the total weight of all the types. These four sliders
initialize the four weights. After that, returns from play are accumu-
lated during a generation and used to determine the percentages for
the next generation.

. There is a slider for the global variable roundsPerGeneration. During
each generation the number of rounds of play is roundsPerGeneration.
In a single round of play, two patches are randomly chosen, one to be
the Row player, the other to be the Column player. They play as spec-
ified and the resulting payoffs are accumulated during the generation.

Note that in the Test command there is some useful code for conduct-
ing a round of play:

set rowPatch patch-at random-pxcor random-pycor
set colPatch patch-at random-pxcor random-pycor
set rowPlayerType [playerTypel of rowPatch
set colPlayerType [playerType] of colPatch

random-pxcor finds a random x-coordinate for the patches. patch-at
returns the patch at the coordinates specified by the two arguments
that follow. This example illustrates setting a variable to have the
value of a particular patch.

54 CHAPTER 5. PROGRAMMING EXERCISE: EVO-DYNA

5. There are 6 monitors and an output window on the Interface Tab.
These should have self-evident functionality.

Now, the best next step is probably to study Setup and understand how
it works. After that, you should be able to begin designing and coding for
this exercise.

Chapter 6

Diffusion and Hill Climbing

6.1 Diffusion

Use the diffuse command to create patches with different heights. Use
patches-own [height]

to give each patch a height. Pick one patch, say patch 0 0, to be the top of
a hill. Set its height to some reasonably large number, say 100. Now set the
pcolor of that patch to some extreme on the color table. See “Programming
Guide” and “Colors” within it. For example height = 100 might map to 69.9,
which is white. Height = 0 might map to 60, which is black, the default
patch color. And heights in between to colors between would be various
shades of green.

Now use diffuse to make neighboring patches have non-zero heights.
Do all of this so it displays nicely and the hill is visually evident.

6.2 Hill Climbing

Create a turtle that is able to climb the hill you just built. See uphill (and
downhill). You might also use neighbors.

These methods assume the agent, here a turtle, has a very short field
of vision, i.e., that he can see only his immediate neighbors. Redo the
procedures so that the turtle has a field of vision set by a parameter (> 1).
Hint: Look at the documentation for in-radius.

55

56

CHAPTER 6. DIFFUSION AND HILL CLIMBING

Chapter 7

File I/O (Input & Output)

NetLogo has rudimentary file I/O capabilities. We'll focus here on file
output, because we are primarily interested in writing data to files in a
format convenient for subsequent analysis. For NetLogo documentation,
see “File I/O” in the “Programming Guide,” the “Files” category in the
“NetLogo Dictionary,” and the programs FileOutputExample.nlogo and
FileInputExample.nlogo| in the Code Examples folder of the Models Li-
brary.

7.1 File Output

To write data to a file, you must do three things, in order:
1. Open the file.
2. Write to the file.
3. Close the file.

You open a file in the current directory with the Netlogo command
file-open, followed by the name of the file as a string (in quotes, if lit-
eral). See line 6 in Figure on page reproduced here:

file-open "data-dump-example.txt"

If the file you name doesn’t exist, executing the file-open command causes
an empty file to be created. If the file already exists it is opened as is, and
anything you write to it will be appended, preserving what is already there.

o7

File Output Example.nlogo
File Input Example.nlogo
file-open
file-open

58 CHAPTER 7. FILE I/O (INPUT & OUTPUT)

Often, the file will exist, but you no longer want the data, you want to write
new data to an empty file. In that case, you need to check whether the file
exists and if so, delete it. Lines 2—4 from Figure [7.1] on page [60] show how
to do this:

; Delete the existing file if there is omne.
if (file-exists? "data-dump-example.txt")
[file-delete "data-dump-example.txt"]

Now that the file is open, you can write to it. Line 7 from Figure [7.1] on
page [60] shows how to do this:

file-print "Bob,Carol,Ted,Alice"

file-print prints strings (as here) as well as numbers and even agents, and
then terminates the line, so that the next thing you output begins the next
line of the file. If you don’t want to start a new line, use file-write.

To close a file, use file-close. It’s important to do this, if only because
you can’t open and opened file. Error!

7.2 QOutput format

Under the Tools menu in NetLogo you will find the BehaviorSpace option.
It is for “parameter sweeping,” that is, running a model multiple times with
different parameter values, and recording data. This is a fine thing to do
and we shall do it. But we’ll do it without BehaviorSpace. Still, it’s worth
looking into.

The format for data from BehaviorSpace is idiosyncratic spreadsheet.
Much better is what T'll call “R-tabular” format (after R, the statistical
analysis package, http://www.r-project.org/, and what it likes), which I
define as follows.

1. The (text) file consists of rows of one or more items (or fields), with
each row having the same number of items.

2. The items are separated by a common symbol, which I shall take to

(1)

be the comma, ,

3. The first row in the file contains headers for each of the columns, that
is, names for the data fields under them.

http://www.r-project.org/

7.2. OUTPUT FORMAT 29

4. After the first row, all rows at data records. The records may mix data
types; specifically, they may include integers, floating point numbers,
and text. The text items should not have spaces in them; use a dash
or underscore if you want to preserve the appearance of a space.

The NetLogo code in Figure on page [60] produces output files in
R-tabular format. Here is the top portion of one such file:

Bob,Carol,Ted,Alice
2,3,4,100
2,3,4,101
2,3,5,100
2,3,5,101
2,5,4,100
2,5,4,101
2,5,5,100
2,5,5,101
2,7,4,100
2,7,4,101
2,7,5,100
2,7,5,101
4,3,4,100
4,3,4,101
4,3,5,100

Note well: Although NetLogo has a file-close-all command, only one file
at a time can be available for writing (or for reading). So, if you open a file,
close it as soon as you are done writing. Don’t rely on the file-close-all
command.

Study Figure on page 60| to make sure you understand how it works.

60 CHAPTER 7. FILE I/O (INPUT & OUTPUT)

to dump-em

; Delete the existing file if there is one.

if (file-exists? "data-dump-example.txt")
[file-delete "data-dump-example.txt"]

; Print the headers for the file. Assume CSV.

file-open "data-dump-example.txt"

file-print "Bob,Carol,Ted,Alice"

file-close

let firstLoopCounter O

let secondLoopCounter O

let thirdLoopCounter O

© 0 N O O W N -

= o
= O

12 let fourthLoopCounter O
13 foreach [2 4 6] [

14 set firstLoopCounter 7
15 foreach [3 5 7] [

16 set secondLoopCounter 7?
17 foreach [4 5] [

18 set thirdLoopCounter 7
19 foreach [100 101] [

20 set fourthLoopCounter 7

21 ; Print the records to the file. Assume CSV.

22 file-open "data-dump-example.txt"

23 file-print (word firstLoopCounter "," secondLoopCounter ","
24 thirdLoopCounter "," fourthLoopCounter)

25 file-close

26] ; end of fourth loop
27] ; end of third loop
28] ; end of second loop
29] ; end of first loop

30 end ; end of to dump-em

Figure 7.1: Example procedure to write data to a file. Line numbers added.
Code is from Example-data-writing.nlogo.

7.3. EXERCISES 61

7.3 Exercises

7.3.1 Modify ml-symmetric-2x2-wID.nlogo to record data

Saveml-symmetric-2x2-wID.html, which you may find at http://opim-sky.
wharton.upenn.edu/~sok/age/nlogo/, to a new file name and modify it
to record data in R-tabular format. Specifically,

1. In the present version the program runs (after setup) using a forever
button to call the go procedure. Add a slider for Number0fGenerations
and modify the program so that go is executed NumberOfGenerations
times.

2. Having done this, further modify the code so that NumRuns replications
are run with the same parameter input values.

3. Having done this, modify the code to record in a file, in R-tabular form,
key output values from each run. Your file should have 20 columns,
whose headers are as follows:

total-0Os,totalls,total2s,total3s,totalds,totalbs,totalbs,
followed by
total7s,zero-weight,one-weight,two-weight,three-weight,
followed by
four-weight,five-weight,six-weight,seven-weight,

followed by
A-value-cc-to-row,B-value-cd-to-row,C-value-dc-to-row,
followed by

D-value-dd-to-row

Each subsequent row should record data for one run.

(Notice the principle: record both the output data and the run pa-

rameters for each run. Full information)

4. Having done this add parameter sweeping by changing one parameter,
setting it at three distinct levels. So, we have the starting parameter
settings, which we run NumRuns times, then we modify the value of
one parameter and run another NumRuns times, then we modify the
parameter once more and do another NumRuns runs. All the while, we
record the data at the end of each run.

m1-symmetric-2x2-wID.html
http://opim-sky.wharton.upenn.edu/~sok/age/nlogo/
http://opim-sky.wharton.upenn.edu/~sok/age/nlogo/

62

CHAPTER 7. FILE I/O (INPUT & OUTPUT)

. Having done all this, conduct the runs, creating the output file with

the data.

. Then launch R, use the read.table command to load in the data,

creating an R data frame. Now explore.

Chapter 8

Example: A Simple Queuing
System

See: SimpleQueuingModel.nlogo. SinmpleQueuingModel.nlogo embodies a
simple model of a simple queuing system. There is one server and one type
of customer. The customers arrive randomly, go to the end of the line (a
first-in-first-out queue). When it is their turn, they are served, for random
lengths of time, by the single server.

Analytic solutions to this model have long been known. The purpose of
this implementation is to illustrate basic techniques in NetLogo and to serve
as a template for more complex models, which cannot be solved analytically.

8.1 How It Works

There are two procedures: Setup and Go. Both have buttons on the Interface
tab, with Go being a forever button. You initialize the system by clicking on
the Setup button. You then run the system by clicking on the Go button.
You stop the run by clicking on the Go button again.

0. Time proceeds discretely by ticks (of the clock; tick in NetLogo).

1. The queue is represented by a list of turtles waiting to be served. Its
name in the program is customerQueue, a global variable. When a
new turtle arrives it is put at the end of the queue (under a presumed
first-come-first-served regime). In NetLogo

set customerQueue lput nextCustomerToArrive customerQueue

63

64 CHAPTER 8. EXAMPLE: A SIMPLE QUEUING SYSTEM

™ O O Netlogo — SimpleQueuingModel {/Users /kimbrough/svnrepos/top/code/NetLogo}

{

Interface | Information Procedures

+

Add

%<5 Monitor v

Setup

Co

|
meanCustomerinterarrivalTime 4.2

|
meanCustomerServiceTime 4.0

length(customerQueue)
1

Time in Queue of Customer Being Served

20.933934600134535

{ # view updates e ~
I = re Settings...
continuous %} —
normal speed _
4P S ticks:1828 3D

[arrivalTime] of nextCustomerToArrive

1831.399627090037

[processingCustomer] of server 0
(customer 391)

[scheduledCompletion] of server 0
1828.6069730547124

Command Center

observer>

Figure 8.1:

Version information
$ld: SimpleQueuingModel.nlogo 816 2009-03-20 18:53:57Z sok $

SimpleQueuingModel.nlogo, Interface tab

8.1. HOW IT WORKS 65

2. Turtles arrive randomly with exponential interarrival times (in this
simple model). The mean of the interarrival times is set by the pro-
gram variable

meanCustomerInterarrivalTime
which itself is set by a slider on the Interface tab.

At initialization (in the Setup procedure), a single turtle is scheduled
for arrival, but it is not put in the queue yet, because it hasn’t arrived.
This is because its arrival time is after 0, which is the time (tick) now,
at initialization. Instead, the turtle assigned to a program variable:

nextCustomerToArrive

3. There are two breeds of turtles: servers and customers.

breed [servers serverl]
breed [customers customer]

The program assumes that all of the servers are created before any
customer is created. (NetLogo numbers turtles consecutively, regard-
less of specific breed. The program uses these numbers to identify
customers.)

4. Servers have three distinctive properties:

servers-own [idle scheduledCompletion processingCustomer]

The variable idle may be true or false; it is used to indicate whether
a given (here, the only) server is busy or not. scheduledCompletion is
the time at which the currently-processed customer is scheduled to be
finished. processingCustomer, when not empty, actually holds a copy
of the customer/turtle that the server is processing.

5. Customers have two distinctive properties:

customers-own [arrivalTime dequeueTime]

arrivalTime records the time of scheduled arrival to the queue, and
dequeueTime is the time (in ticks) that the customer was removed
from the queue and begun to be processed by the server.

6. At initialization, the customerQueue is empty:

set customerQueue []

7. In Go,

66 CHAPTER 8. EXAMPLE: A SIMPLE QUEUING SYSTEM

(a) The clock is advanced: tick

(b) The turtle/customer assigned to nextCustomerToArrive is checked.
If its arrival time is greater than now (the current value of ticks),
nothing is done. If its arrival time is at for before now, then:

i. The turtle/customer is placed at the end of the customerQueue.
ii. The next arriving customer/turtle is created, scheduled for
arrival, and assigned to nextCustomerToArrive.
(¢) The server(s) is(are) checked. If a server is busy and the comple-
tion time of the job is after now, nothing is done.

If a server is busy and the completion time of the job is at or
before now, the job is terminated and the server is made idle.

If the server is idle, and there is a job is the queue, the frontmost
job is removed, the server is made busy, and the completion time
of the job is scheduled (using an exponential distribution with
mean

meanCustomerServiceTime

a global variable set in a slider on the Interface tab).

At this point, the end of Go, statistics, plots etc. may be updated. Monitors
on the Interface tab presently handle what is done directly.

8.1. HOW IT WORKS 67

© 00 NO Ok WN -

W W W W WNDNDNNDNDNMDMNMNNMDMNMNNNDMNNE PR P B B R
P WNE, O OO NOOOO D WNERLEOOOWNO O WND P O

globals [nextCustomerToArrive ; the who/ID of the customer that is
; scheduled to be the next arrival
customerQueue ; the queue of arrived and waiting customers
]
; We’ll have two breeds of turtles/agents:
; servers and customers.
breed [servers server]
servers-own [idle scheduledCompletion processingCustomer]
breed [customers customer]
customers-own [arrivalTime dequeueTime]
to Setup
clear-all ; For a fresh start.
; We’ll have one server
create-servers 1
; Declare the server(s) to be idle
; and set the scheduled completion times
; for their jobs to -1.
; Notice that we could do without the idle
; field, but having it arguably makes things
; clearer.
ask servers [
set idle true
set scheduledCompletion -1
set processingCustomer []
]
create-customers 1
ask customers [
set arrivalTime random-exponential meanCustomerInterarrivaltime
set dequeueTime -1
]
; Now we assign the customer, a turtle, to a program variable:
set nextCustomerToArrive customer max [who] of customers
set customerQueue []
end

Figure 8.2: Initialization of SimpleQueuingModel.nlogo

68 CHAPTER 8. EXAMPLE: A SIMPLE QUEUING SYSTEM

to Go
tick
if [arrivalTime] of nextCustomerToArrive <= ticks
[set customerQueue lput nextCustomerToArrive customerQueue
create-customers 1
ask customer max [who] of customers
[set arrivalTime (ticks + random-exponential
meanCustomerInterarrivaltime)]
set nextCustomerToArrive customer max [who] of customers

© 0 N O O WN =

10]
11 ask servers [
12 if idle = false and scheduledCompletion <= ticks

13 [let toDie [who] of processingCustomer

14 ask customer toDie [die]

15 set idle true

16 set scheduledCompletion -1

17 set processingCustomer []

18]

19 ; If you are idle and there is a customer to serve,
20 ; dequeue it and start processing it.

21 if idle = true and length(customerQueue) > O

22 [set processingCustomer first customerQueue

23 set customerQueue but-first customerQueue

24 set scheduledCompletion (ticks + random-exponential
25 meanCustomerServiceTime)

26 set idle false

27 set [deQueueTime] of processingCustomer ticks
28]

29]

30 end

Figure 8.3: Go procedure of SimpleQueuingModel.nlogo

Chapter 9

Doing Experiments

It is appropriate to think of an ABM, or indeed any computational model,
as calculating one or more functions. Given a setting of the parameters,
or more generally a configuration of the model, the model is executed and
produces results. We may—indeed should—think of the configuration of the
model as fixing predictor (exogenous) variables and the results produced as
response (exogenous) variables. The function computed is from the predic-
tor variables to the response variables. To understand or investigate the
computational model is to understand or investigate this function.

At bottom, we investigate a computational model because we want to
describe it partially or in summary form, because we find this valuable.
We summarize the model with certain findings of interest or with a simpler
model, for example a low-order polynomial model, as would be generated
by a regression study.

Directly or indirectly we are presented with a number of issues associated
with any attempt to understand or investigate a computational model.

1. Model setup. Setting up, possibly reprogramming, the computa-
tional model so that it can be run in a way that collects the data we
wish to have.

2. Variable construction. Constructing, arranging to generate, the
appropriate response variables.

3. Response point estimation. Estimating the response variables for
a given configuration. Every ABM (or very nearly so) is a stochastic
computational model, so its outputs, the particular realizations of its
response variables, will vary from run to run. The results from any
single run are not likely to be credible unless supported by adequate

69

70 CHAPTER 9. DOING EXPERIMENTS

replication. Experimentation is about doing the replications and in-
terpreting them. That is the main subject of this chapter.

4. Response surface estimation. Estimating the response of the re-
sponse variables to changes in the model’s configuration. The problem
of response point estimation is compounded by the fact that we are
normally interested understanding the response variables

5. Response discovery. Searching for predictor settings that will gen-
erate a response of a particular sort. For example, in seeking to op-
timize a function, we see to find settings of the decision (predictor;
exogenous) variables that maximize (or minimize) a specified response
variable. Response discovery is central to the use of models for decision
making and design.

In this chapter I aim to illustrate the basics of, the first steps in, experimental
investigation of computational models. There is very much more to the
subject. Here we have only a beginning, but a useful one.

In addressing the issues, above, I shall work with a single example in this
chapter, the SimpleQueuingModel.nlogo, discussed in the previous chapter.
Readers should first be familiar with it. Here, we shall work with a descen-
dant of that model, called SimpleQueuingModelExp.nlogo.

9.1 Model Setup

SimpleQueuingModel.nlogo is typical of NetLogo models in having Setup
and Go command procedures, run by buttons on the Interface tab, with Go
being run as a forever button. There are two initial problems with how
SimpleQueuingModel.nlogo is written (and with how other NetLogo models
are typically written).

First, the Go command procedure should be run not forever but until a
specified stopping condition is met. We solve this problem by using a slider
on the Interface tab to define the program variable maxTicks. So in all we
do this:

1. Convert the Go button by unchecking the forever option.

2. Add a slider to the Interface tab to introduce the new program variable
maxTicks.

3. Modify the Go command procedure. Formerly it began

9.1. MODEL SETUP 71

to Go
tick

Now it begins

to Go

while [ticks < maxTicks]
[

tick

and ends with an added] to match the one added in line 3 of the
procedure. The former code is completely encompassed within the
body of this added while-loop.

Finally, we need to take care to clear or reset all of the appropriate variables
in globals. When we do this, Setup now begins as follows:

to Setup

clear-all-except-globals ; For a fresh start.
; Now clear the globals we need cleared:

set nextCustomerToArrive nobody

set customerQueue []

There is a third variable in globals, daVersion, which we do not need to
reset here. This solves our first problem.

Our second problem is that the Setup command procedure contains,
indeed begins with, the command clear-all, which (from the NetLogo
manual)

Resets all global variables to zero, and calls reset-ticks, clear-
turtles, clear-patches, clear-drawing, clear-all-plots, and clear-
output.

We want to do this sort of thing because we want a fresh start with every run.
If we didn’t do it then, for example, we might begin a run with unwanted
stuff left over from the previous run. The problem with keeping clear-all
in Setup is that we want to do multiple runs and store the results. How
may runs? Where do the results go? This information is stored in program
variables which would be wiped out if we called clear-all for each new
run.

The solution to this problem is to eliminate the use of clear-all in
Setup, but clear everything except the global variables at the start of Setup.
To do that, we write a new command procedure, called clear-all-except-
globals, and substitute it for clear-all in Setup. Here it is.

MasterSetup #1

72 CHAPTER 9. DOING EXPERIMENTS

to clear-all-except-globals
reset-ticks
clear-turtles
clear-patches
clear-drawing
clear-all-plots
clear-output

end

This doesn’t quite give us the capability of doing multiple runs and
recording the data, but we’re getting close. We need a master setup pro-
cedure. It will call Setup and Go for us and won’t forget why. Here’s a
first version of MasterSetup, after declaring endingNumInQueue in globals.
We’ll call it MasterSetup #1.

to MasterSetup
; MasterSetup #1
clear-all
let endingNumInQueue []
foreach n-values numRunsToRun [7]
[set currentRunNumber 7
Setup
Go
set endingNumInQueue
lput length(customerQueue) endingNumInQueue

]
print (word "Mean=" mean(endingNumInQueue) ". "
"Variance=" variance(endingNumInQueue) ". Full list:"
endingNumInQueue ".")
print "All dome."
end

And so our second problem is solved, at least tentatively.

9.2 Variable construction

We engaged in response variable construction in creating MasterSetup #1.
The response variables were the number in the queue at the end of the
run (endingNumInQueue), plus its mean and variance. Other variables are
possible and there is reason not to construct several if we want to. It’s our

9.3. RESPONSE POINT ESTIMATION 73

system and we can assess it with as many measures of performance (MOP’s)
as we find useful. The program already displays the length of the customer
queue and the time in queue of the customer being served.

Comparing running averages, say of the last 100 customers, is a way
to smooth the data and arguably affords better comparison. However, for
the sake of simplicity, I’ll stick here to non-averaged data and use lots of
replications.

9.3 Response Point Estimation

The system as it is affords experimentation. Here is the output from a
trial consisting of 100 runs in which the maximum number of ticks was 100.
The mean of the customer interarrival times was 4.0, while the mean of the
customer service times was 4.4, so customers are arriving on average faster
than they are being processed.

Mean=4.35. Variance=14.512626262626256. Full list:[
7130000080512 1184243527465720360
132038011613 1167120084078384185€6
0110221627341408186398050037203
257143523096 31].

A1l done.

We see that the queue lengths are not unduly long. What happens if we run
for more ticks? Here are the results when maxTicks = 1,000.

Mean=21.9. Variance=190.01010101010093. Full list:[

45 8 34 28 19 6 15 14 20 48 15 19 5 24 12 052 21 21 10
12 20 53 26 1 61 9 34 57 30 14 22 33 39 34 23 12 20 5 15
11 32 23 19 29 20 27 31 5 7 16 22 12 55 35 39 10 28 17 5
2 30 0 256 26 29 12 5 12 32 28 30 10 17 12 14 48 24 28 1

24 22 17 33 29 22 17 33 17 16 46 32 13 9 22 39 3 28 13].
A1l done.

And here 10,000:

Mean=185.69. Variance=2826.923131313131. Full list: [
145 210 201 219 175 189 177 224 115 189 210 216 57

104 126 109 169 274 322 234 211 103 181 150 186 180
199 186 128 199 122 139 170 150 201 164 211 267 170
191 295 167 182 212 303 174 196 176 192 232 195 139

74 CHAPTER 9. DOING EXPERIMENTS

293 184 231 170 199 94 131 266 127 197 265 185 168
208 201 188 146 138 150 290 186 286 90 190 154 244
150 191 151 176 152 81 187 116 214 98 182 283 169

110 147 169 221 221 194 287 191 262].

A1l donme.

With these settings it is evident that the queue length will grow without
limit unless the system is stopped. What is perhaps most interesting is how
long it takes, how many customer arrivals it takes, starting from an empty
system (Good morning!) to have intolerable degradation of service. This is
something that simulation is well suited to investigate.

As we extend and deepening our investigations, however, it makes sense
to write the data to files, and then explore the data with a good statistical
analysis package, such as R, our tool of choice. To do that we begin with

MasterSetup #2 version #2 of MasterSetup.

1 to MasterSetup

2 ; MasterSetup #2

3 clear-all

4 ; Delete the existing output file, if it exists.

5 if file-exists? "runsOutput.txt"

6 [file-delete "runsQOutput.txt"]

7 ; Print the data column headers to the output file,

8 ; separated by commas.

9 file-open "runsOutput.txt"

10 file-print (word "runNumber,meanCustomerInterarrivalTime,"
11 "meanCustomerServiceTime,maxTicks,numInQueuecAtEnd")
12 file-close

13 foreach n-values numRunsToRun [7]

14 [set currentRunNumber 7

15 Setup

16 Go

17 file-open "runsOutput.txt"

18 file-print (word currentRunNumber "," meanCustomerInterarrivalTime ","
19 meanCustomerServiceTime "," maxTicks "," length(customerQueue))

20 file-close

21]

22 print "All done."
23 end

9.3. RESPONSE POINT ESTIMATION 75

Here is what the top of the resulting file, runsOutput.txt, characteristically

looks like. We have a comma-separated values or csv file, in which each headed csv format
column of data is headed by the variable’s name and each row (after the

first) is a distinct data record. Let’s call this the headed csv format.

runNumber ,meanCustomerInterarrivalTime,meanCustomerServiceTime,
maxTicks,numInQueueAtEnd

0,4,4.4,10000,163

1,4,4.4,10000,286

2,4,4.4,10000,135

3,4,4.4,10000,83

4,4,4.4,10000,225

5,4,4.4,10000,191

Now, into R. R likes data files in headed csv format (and so do all
statistical packages, as well as spreadsheets). At the R prompt we navigate

to the directory of our output file. On my machine: getwd () is also helpful.
Type help(getwd) for
> dir() help.
[1] "BibDesk.app" "Desktop" "Documents" "Downloads"
[6] "Library" "Movies" "Music" "Pictures"
[9] "Public" "Sites" "diary" "fos"
[13] "hellobob.py" "skycvs" "svnrepos" "yobob.bash"
> setwd(’svnrepos/top/code/NetLogo/’)
> dir()

[1] "Marchil.nlogo"

[2] "MarriageMatching-1.nlogo"

[3] "MarriageMatching-la.nlogo"

[4] "MarriageMatching-1b.nlogo"

[5] "NetLogoLite.jar"

[6] "ReplicatorDynamicsWithBalking.html"
[7] "ReplicatorDynamicsWithBalking.nlogo"
[8] "SimpleMarriageMatching.nlogo"

[9] "SimpleQueuingModel.nlogo"

[10] "SimpleQueuingModelExp.nlogo"

[11] "VectorMatchSelection.nlogo"

[12] "runsOutput.txt"

[13] "templateElectricityBidPrices.nlogo"

Now we read the file as a table into our R variable, bob, which becomes an
R dataframe, and then we ask for a summary of the data table resulting.

76 CHAPTER 9. DOING EXPERIMENTS

> bob <- read.table(’runsOutput.txt’,header=T,sep=",")
> summary (bob)

runNumber meanCustomerInterarrivalTime meanCustomerServiceTime
Min. : 0.00 Min. 14 Min. 4.4
1st Qu.:24.75 1st Qu.:4 1st Qu.:4.4
Median :49.50 Median :4 Median :4.4
Mean :49.50 Mean 14 Mean 4.4
3rd Qu.:74.25 3rd Qu.:4 3rd Qu.:4.4
Max. :99.00 Max. 14 Max. 4.4
maxTicks numInQueueAtEnd
Min. :10000 Min. : 73.0
1st Qu.:10000 1st Qu.:146.8
Median :10000 Median :186.5
Mean :10000 Mean :186.1
3rd Qu.:10000 3rd Qu.:226.2
Max. :10000 Max. :316.0

Here, only the last column is interesting. We can ask for it explicitly:

> summary (bob$numInQueueAtEnd)
Min. 1st Qu. Median Mean 3rd Qu. Max.
73.0 146.8 186.5 186.1 226.2 316.0

OK, now let’s repeat the experiment with only 20,000 ticks, instead of
10,000.

> carol <- read.table(’runsOutput.txt’,header=T,sep=",")
> summary (carol$numInQueueAtEnd)
Min. 1st Qu. Median Mean 3rd Qu. Max.

199.0 316.5 355.0 357.5 401.8 645.0
> summary(carol)

runNumber meanCustomerInterarrivalTime meanCustomerServiceTime
Min. : 0.00 Min. 14 Min. :4.4
1st Qu.:24.75 1st Qu.:4 1st Qu.:4.4
Median :49.50 Median :4 Median :4.4
Mean :49.50 Mean 4 Mean :4.4
3rd Qu.:74.25 3rd Qu.:4 3rd Qu.:4.4
Max. :99.00 Max. 14 Max. 4.4
maxTicks numInQueueAtEnd

Min. 120000 Min. :199.0

9.3. RESPONSE POINT ESTIMATION 7

1st Qu.:20000 1st Qu.:316.5
Median :20000 Median :355.0
Mean 120000 Mean :357.5
3rd Qu.:20000 3rd Qu.:401.8
Max. :20000 Max. :645.0

As we can see, the queue is lengthening, the server is falling farther and
farther behind. Of course, we can do statistical tests. We’ll use Wilcoxon’s
signed-rank test, which is non-parametric and does not require any assump-
tion of a normal distribution. (See help(wilcox.test).)

> wilcox.test (bob$numInQueueAtEnd, carol$numInQueueAtEnd)
Wilcoxon rank sum test with continuity correction

data: bob$numInQueueAtEnd and carol$numInQueueAtEnd
W = 2566, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to O

We feel very safe in rejecting the null hypothesis that the means of these
two data sets are identical. And we can see it even better with

> boxplot (bob$numInQueueAtEnd, carol$numInQueueAtEnd)

See Figure [9.1] for the results.

78 CHAPTER 9. DOING EXPERIMENTS

o
o
o_
©
(@]
(@]
R
o
o |
Yo |
1
1
1
1
1
o |
o_
=
o 1
o - | |
(a2] | |
! [
! 1
! 1
! 1
o 1
o -
N
T
[
o 1
o - I
~— |
-
I I
1 2

Figure 9.1: Box plots of queue lengths. 1) 10,000 ticks. 2) 20,000 ticks.

9.4. RESPONSE SURFACE ESTIMATION 79

9.4 Response Surface Estimation

So far we’ve had one setting of the predictor variables per data file, with
multiple runs in order to estimate a response variable. This is all well and
good, and it can take us far. R’s summary command (see above) is in fact
very useful and can often settle issues to hand.

But we want more. In particular it is very often important to understand
the joint effects of several predictor (exogenous) variables on a response
variable. So first we have to get the data, generate it and write it to a file,
then we need to analyze it. We'll start with what needs to be done first. To
do that we begin with version #3 of MasterSetup.

With maxTicks = 1000 and numRunsToRun=100, we get 900 data records.
As usual, summary is helpful, although not very on the overall data:

> ted <- read.table("runsOutput.txt",header=T,sep=",")
> summary (ted)

MasterSetup #3

runNumber meanCustomerInterarrivalTime meanCustomerServiceTime
Min. : 1.0 Min. 14 Min. 14
1st Qu.:225.8 1st Qu.:4 1st Qu.:4
Median :450.5 Median :5 Median :5
Mean :450.5 Mean 5 Mean :5
3rd Qu.:675.2 3rd Qu.:6 3rd Qu.:6
Max. :900.0 Max. 16 Max. 16
maxTicks numInQueueAtEnd
Min. :1000 Min. : 0.00

1st Qu.:1000 1st Qu.: 2.00
Median :1000 Median : 10.50

Mean :1000 Mean : 21.06
3rd Qu.:1000 3rd Qu.: 36.00
Max. :1000 Max. :116.00

We need to simplify. Our first and fourth columns contain data we do not
need for the present, so we extract the needed columns into a:

> a <- ted[,c(2,3,5)]
> summary(a)

meanCustomerInterarrivalTime meanCustomerServiceTime numInQueueAtEnd

Min. :4 Min. :4 Min.
1st Qu.:4 1st Qu.:4 1st Qu.:
Median :5 Median :5 Median :

0.00
2.00

10.50

80 CHAPTER 9. DOING EXPERIMENTS

1 to MasterSetup

2 ; MasterSetup #3

3 clear-all

4 set currentRunNumber O

5 ; Delete the existing output file, if it exists.

6 if file-exists? "runsOutput.txt"

7 [file-delete "runsQOutput.txt"]

8 ; Print the data column headers to the output file,

9 ; separated by commas.

10 file-open "runsOutput.txt"

11 file-print (word "runNumber,meanCustomerInterarrivalTime,"
12 "meanCustomerServiceTime,maxTicks,numInQueueAtEnd")
13 file-close

14 foreach [4.0 5.0 6.0]

15 [set meanCustomerInterarrivalTime ?

16 foreach [4.0 5.0 6.0]

17 [set meanCustomerServiceTime ?

18 foreach n-values numRunsToRun [7]

19 [set currentRunNumber (currentRunNumber + 1)

20 Setup

21 Go

22 file-open "runsOutput.txt"

23 file-print (word currentRunNumber ","
meanCustomerInterarrivalTime ","

24 meanCustomerServiceTime "," maxTicks ","
length(customerQueue))

25 file-close

26] ; end of foreach n-values numRunsToRun [?7]

27] ; end of the second foreach

28] ; end of the first (the outer-most) foreach

29 print "All done."

30 end

Figure 9.2: MasterSetup #3. Nested for loops for a factorial data collection.

9.4. RESPONSE SURFACE ESTIMATION 81

Mean :5 Mean :5 Mean : 21.06
3rd Qu.:6 3rd Qu.:6 3rd Qu.: 36.00
Max. :6 Max. :6 Max. :116.00

Let us further restrict our attention to those records for which the meanCustomerServiceTime
is 6.0.

> b <- al[a$meanCustomerServiceTime == 6,]
> summary (b)
meanCustomerInterarrivalTime meanCustomerServiceTime numInQueueAtEnd

Min. 14 Min. 16 Min. : 0.0
1st Qu.:4 1st Qu.:6 1st Qu.: 13.0
Median :5 Median :6 Median : 30.0
Mean :5 Mean 16 Mean : 37.4
3rd Qu.:6 3rd Qu.:6 3rd Qu.: 60.0
Max. 16 Max. 16 Max. :116.0

Now let’s look at the mean of numInQueueAtEnd when meanCustomerInterarrivalTime
is 4, 5, and 6:

> mean(b[b$meanCustomerInterarrivalTime == 4,3])
[1] 69.6
> mean(b[b$meanCustomerInterarrivalTime == 5,3])
[1] 32.25
> mean(b[b$meanCustomerInterarrivalTime == 6,3])
[1] 10.34

And what do we find when the arrival rates are lower than the service rates?
Back to a, doing it only slightly differently.

> mean(al[a$meanCustomerInterarrivalTime == 4 & a$meanCustomerServiceTime == 4,3])
[1] 12.81
> mean(al[a$meanCustomerInterarrivalTime == 5 & a$meanCustomerServiceTime == 4,3])
[1] 3.19
> mean(a[a$meanCustomerInterarrivalTime == 6 & a$meanCustomerServiceTime == 4,3])
[1] 1.23

Well, there are much fancier things to do and more elegant ways of looking at
this, but for starters I can only commend the KISS principle. (The obvious
thing is to write a program to handle this sort of thing and indeed that can
be done, but it’s beyond the scope of these introductory notes.)

And here, FYI, is how we can do linear regression—

82 CHAPTER 9. DOING EXPERIMENTS

> tedregressed <- lm(numInQueueAtEnd ~
meanCustomerInterarrivalTime*meanCustomerServiceTime,data=ted)
> summary(tedregressed)

Call:
Im(formula = numInQueueAtEnd ~ meanCustomerInterarrivalTime *
meanCustomerServiceTime, data = ted)

Residuals:
Min 1Q Median 3Q Max
-48.437 -5.943 -0.280 5.507 50.310

Coefficients:

Estimate
(Intercept) -262.9100
meanCustomerInterarrivalTime 40.9667
meanCustomerServiceTime 75.4267

meanCustomerInterarrivalTime:meanCustomerServiceTime -11.9200
Std. Error t value

(Intercept) 15.6866 -16.76
meanCustomerInterarrivalTime 3.0963 13.23
meanCustomerServiceTime 3.0963 24.36
meanCustomerInterarrivalTime:meanCustomerServiceTime 0.6112 -19.50
Pr(>Itl)
(Intercept) <2e-16 **x*
meanCustomerInterarrivalTime <2e-16 **x*
meanCustomerServiceTime <2e-16 **x*

meanCustomerInterarrivalTime:meanCustomerServiceTime <2e-16 ***

Signif. codes: O **x 0.001 **x 0.01 * 0.05 . 0.1 1

Residual standard error: 12.22 on 896 degrees of freedom
Multiple R-squared: 0.7563,Adjusted R-squared: 0.7555
F-statistic: 926.9 on 3 and 896 DF, p-value: < 2.2e-16

—which I think is not very helpful in this case.

9.5. RESPONSE DISCOVERY 83

Average of numInQueueAtEnd | meanCustomerServiceTime
meanCustomerInterarrival Time 4 5 6 Grand Total
4 14.4 | 43.71 71.65 43.25333333
5 298 | 11.25 31.39 15.20666667
6 1.08 | 3.14 10.11 4.776666667
Grand Total 6.153 | 19.366 37.716 21.079

Figure 9.3: Excel PivotTable report; data generated from MasterSetup #3

9.4.1 Cross-tabulation and PivotTables

Cross-tabulation is probably the most useful technique with factorial data,

such as are produced by MasterSetup #3. It is, at the least, something to MasterSetup #3
try early on in your analysis. Figure shows a PivotTable report generated

from data produced from MasterSetup #3. To generate this report, and

similar reports, in Excel:

1.
2.

3.
4.

Generate data, as in runsOutput.txt produced by MasterSetup #3.

In Excel, choose Data | Get External Data | Import Text File ..., and
import the file.

In Excel, choose Date | PivotTable Report

Run the Wizard and complete building the PivotTable.

Here is a nice, slightly dated, tutorial on PivotTables in Excel: http://
www.microsoft.com/dynamics/using/excel_pivot_tables_collins.mspx

What Microsoft Excel calls a PivotTable report the rest of the world calls
a cross-tabulation or crosstab (report). R has two built-in functions for this,
table and xtabs.

9.5 Response Discovery

Just a word. This is a much larger topic and a difficult one. In a nutshell,
this is a kind of optimization problem: define an outcome region of interest,
then select decision variables in order to minimize the difference between
the response variable and the outcome region of interest.

9.6 Back to the Code

We’ll now take a look at version #4 of MasterSetup. Having seen something MasterSetup #4

http://www.microsoft.com/dynamics/using/excel_pivot_tables_collins.mspx
http://www.microsoft.com/dynamics/using/excel_pivot_tables_collins.mspx

84 CHAPTER 9. DOING EXPERIMENTS

of the difficulties above, we’ll do more in the code by way of collecting
statistics.

Here’s our example. Let’s fix meanCustomerServiceTime at say 5.0.
Then let’s vary meanCustomerInterarrivalTime from say 2.0 to 8.0 in in-
crements of 0.1. For each setting of meanCustomerInterarrivalTime let us
estimate with 100 replications the value of numInQueueAtEnd when ending
at 1,000 ticks. Here goes.

1 to MasterSetup

2 ; MasterSetup #4

3 clear-all

4 ;set meanLengthOfQueueAtEndList []

5 set currentRunNumber O

6 let holdingList []

7 ; Delete the existing output file, if it exists.
8 if file-exists? "runsOutput.txt"

9 [file-delete "runsQOutput.txt"]

10 ; Print the data column headers to the output file,
11 ; separated by commas.

12 file-open "runsOutput.txt"

13 file-print (word "meanLengthOfQueueAtEnd")

14 set meanCustomerServiceTime 5.0

15 foreach [2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
16 3.0 3.1 3.2 3.3 3.43.53.63.73.83.9
17 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9
18 5.0 5.1 5.25.35.45.55.65.75.85.9
19 6.0 6.1 6.2 6.36.46.566.66.76.86.9
20 7.07.17.27.37.47.57.67.77.8T7.9
21 8.0]

22 [set meanCustomerInterarrivalTime ?

23 set holdingList []

24 foreach n-values numRunsToRun [7]

25 [set currentRunNumber (currentRunNumber + 1)
26 Setup

27 Go

28 set holdingList lput length(customerQueue) holdingList
29] ; end of foreach n-values numRunsToRun [7]

30 file-print mean(holdingList)

31] ; end of the first (the outer-most) foreach

32 file-close

9.6. BACK TO THE CODE

33 print "All done."
34 end

Now in R we do this

> alice <- read.table("runsOutput.txt",header=T,sep=",")
> summary(alice)

meanlLengthOfQueueAtEnd

Min. : 0.77

1st Qu.: 2.49

Median : 13.17

Mean . 44 .16
3rd Qu.: 73.79
Max. :212.55

> plot(alice$meanlLengthOfQueueAtEnd)

and Figure [9.4] results.

85

alice$meanLengthOfQueueAtEnd

86 CHAPTER 9. DOING EXPERIMENTS

o
3
< o
o
(@]
o
3 4
© o
o
o
(@]
o
o (@]
O p—
- o
o
o
Oo
%
3 o
%
ooo
O
oooo
OOOO
00000,

o 00000000000CC0000000000

| | | | | | |

0 10 20 30 40 50 60

Index

Figure 9.4: Queue length increases rapidly at 1000 ticks when arrival rate
exceeds service rate

9.6. BACK TO THE CODE

$Id: doing-experiments.tex 3684 2013-09-09 20:37:28Z sok $

87

88

CHAPTER 9. DOING EXPERIMENTS

Chapter 10

How To’s

10.1 Collect Agents in a Neighborhood

neighbors and neighbors4 return AgentSets of turtles on the immediately-

adjacent patches. With in-radius we can collect (now in a list, not an

AgentSet) the turtles (breeds) within a given radius from the calling turtle.
See MatingGame.nlogo.

to-report ListNeighboringBreed[daBreed daRadius]
let toReturn []
ask daBreed in-radius daRadius [set toReturn fput who toReturn]
report toReturn

end

See also in-cone.

But, but, but ...

The above reporter produces a list of neighbors. Generally better is to
have an AgentSet. Here’s how:

let myNeighbors daBreed in-radius daRadius

Simple and elegant! That’s how to do it.
Both approaches assume that they are being called by some turtle.

10.2 Breeds Other than Me

See MatingGame.nlogo. XXs and XYs are declared as breeds.

89

90 CHAPTER 10. HOW TO’S

to-report OppositeGender [MyBreed]
let toReturn XXs
if MyBreed = XYs [set toReturn XXs]
if MyBreed = XXs [set toReturn XVYs]
report toReturn

end

$Id: netlogo-how-tos.tex 3684 2013-09-09 20:37:28Z sok $

Chapter 11

Development Notes

Creates a list and assigns it to bob.

let bob read-from-string (word "[" "1 2 3" "]1")
print length bob

91

92

CHAPTER 11. DEVELOPMENT NOTES

Bibliography

[Railsback and Grimm, 2012] Railsback, S. F. and Grimm, V. (2012).
Agent-Based and Individual-Based Modeling. Princeton University Press,
Princeton, NJ.

93

Index

assignment statement, [3] [0] print, [} [§]
random-seed, [J]
button widget, set, 3 [6] O]
set-current-plot, [12]

chooser widget, [7] set-current-plot-pen, [[2]
Code tab, setxy7 |3_Z|
Command Center, show, [§]
Command Center output window, show shapes, [I9]
commands, sum, [44]

ask, [turtles-own, [I9

ask patch, 20] type, [§

ask patches, 20| with, 20]

ask turtle, 2] [I9 write,

ask turtles, 20| commenting code,

clear-all, [3| [§ [comments, [I§]

count, [3] csv files,

create-turtles, [2] .

£d, [debugging,

forvard, [J downhill, [55]

if-else,[§ headed csv format,

inspect, 2

is-, [5)] in-radius, [55]

is-number?, [45] Info tab,

length, [14] Interface tab, [I]

map, [44] interface widgets,

member?, [45] button,

mod, [35] chooser, [7]

of, 20] monitor, [7]

one-of, [20] note, [§

patches-own, [I9 output, [§

plot, [12] plot,

plot-pen-down, [12] selecting and deselecting,

94

INDEX

slider, [6]
switch, [6]

line breaks, [I§]

links,

Lisp, [44]

list commands
length, [44]
map, [44]
member?, [A5)]
sum, [44]

lists,

main window,
MasterSetup #2,[74]
MasterSetup #3,[79} [83]
MasterSetup #4, 83
MasterSetup #1,[72]
mathematical commands

mod, [35]

monitor widget,

neighbors, [55]
NetLogo

version,
note widget,

observer,
output widget,

parallelism,
patches,
addresses, [2]
coordinate system,
plot widget,
PROBE AND ADJUST, [40]
procedures
commands,

reporters, [16]

QuickStart.nlogo, [x]

R
dataframe,
home page, [x]
summary, [79]
wilcox.test, [77]
random number generators, [9]
reporter,
reporters, [16]
RTFM principle,

self, [36]
slider widget, [6]

sorting, [43]

string concatenation, [10] 23]
style conventions,

switch widget, [6]

ticks, [35]
tick, 35

turtle commands

setxy, [34]

turtles,

uphill, 5|

variables

self, [30]
View,

white space and operators,
wilcox.test, [77]
world,

95

	Preface
	Starters
	Starters
	NetLogo world view (main metaphors)

	The Interface Tab
	The Observer
	Inspecting
	Editing the View (and the World)
	More on Editing the World
	Interface Widgets (on the Toolbar)
	NetLogo Interface Tab: The Interface Toolbar: Buttons
	NetLogo Interface Tab: The Interface Toolbar: Sliders
	NetLogo Interface Tab: The Interface Toolbar: Switches
	The Interface Toolbar: Choosers
	The Interface Toolbar: Input boxes
	The Interface Toolbar: Monitor
	The Interface Toolbar: Plot
	The Interface Toolbar: Output
	The Interface Toolbar: Note

	The Interface Toolbar: Plot
	Introduce a Bug

	The Info Tab
	The Code Tab
	Commands and reporters
	Global and local variables
	Comments and line breaks
	Assignment: Set
	Agent properties, turtles-own, and patches-own
	Agentsets
	Breeds of turtles
	Lists
	Character strings
	I/O
	Control flow and logic
	Typical program structure

	Exercise: Testing Strategies in 22 Games
	Needed Programming Elements
	Local and Global Variables
	Reporters
	Lists
	Random Numbers
	Turtles

	Understanding Simple2x2.nlogo
	Exercises

	Exercise: Simple animation with turtles
	Exercise 1
	Exercise 2
	Exercise 3
	Solutions
	Exercise 1
	Exercise 2
	Exercise 3

	Working with Lists
	Basics
	Exercise: map and data manipulation
	Exercise 1
	Exercise 2
	Solutions
	Exercise 1
	Exercise 2

	Exercise 3: Probe and Adjust
	Exercise 4: Genetic Operators
	Mutation
	Recombination

	Programming exercise: evo-dyna
	Diffusion and Hill Climbing
	Diffusion
	Hill Climbing

	File I/O (Input & Output)
	File Output
	Output format
	Exercises
	Modify m1-symmetric-2x2-wID.nlogo to record data

	Example: A Simple Queuing System
	How It Works

	Doing Experiments
	Model Setup
	Variable construction
	Response Point Estimation
	Response Surface Estimation
	Cross-tabulation and PivotTables

	Response Discovery
	Back to the Code

	How To's
	Collect Agents in a Neighborhood
	Breeds Other than Me

	Development Notes
	References
	Index

