
Application Report
SNOA082C–May 2004–Revised May 2004

AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
...

ABSTRACT

This application note describes the COP8™ In System Programming (ISP) Software. ISP method of
programming the flash memory are thoroughly discussed.

Contents
1 Introduction .. 3
2 Introduction to ISP—Software Topics .. 3
3 ADVANCED ISP—SOFTWARE TOPICS .. 13
4 ISP DOWNLOADER .. 25
Appendix A ... 59

List of Figures

1 Block Diagram of ISP... 4

2 Sample Application Circuit ... 8

3 Flow for the Sequencer Program.. 13

4 ISP Boot ROM Interface .. 13

5 COP8 FLASH Memory Layout... 14

6 MICROWIRE/PLUS Example.. 16

7 MICROWIRE/PLUS Interface Timing, Normal SK Mode, SK Idle Phase being High 16

8 Parallel Port Connection Diagram... 17

9 MICROWIRE/PLUS Interface Timing, Normal SK Mode, SK Idle Phase being High 17

10 ISP Command Frame... 18

11 Cascade Delay Requirement .. 18

12 Byte Write Waveform (Relative Bytes are Shown).. 19

13 Block Write Waveform (Relative Bytes are Shown) .. 19

14 Page Erase Waveform (Relative Bytes are Shown) .. 20

15 Mass Erase Waveform (Relative Bytes are Shown) .. 20

16 The ISP—MICROWIRE Control ... 21

17 The Set PGMTIM Command... 21

18 The PAGE ERASE Command... 22

19 The MASS_ERASE Command .. 23

20 The READ_BYTE Command .. 23

21 The WRITE_BYTE Command ... 23

22 The Block Write Routine.. 24

23 The Block Read Command .. 24

24 The EXIT Command .. 25

25 Interfacing the COP8SGR and COP8CBR Microcontrollers... 25

26 Flow Chart for the Initialization Routine .. 26

COP8, MICROWIRE/PLUS, WATCHDOG are trademarks of Texas Instruments.
ICE is a trademark of Intel Corporation.
MetaLink is a trademark of dcl_owner.
All other trademarks are the property of their respective owners.

1SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com

27 Flow for the PGMTIM_SET Program ... 27

28 Flow for the Page Erase Function... 29

29 Flow for the Mass Erase Function .. 32

30 Flow for the Read Byte Routine ... 35

31 Flow for the Write Byte Function .. 38

32 Flow for the Block Write Function ... 41

33 Flow for the BLOCK_READ Function... 45

34 Flow for the Exit Routine ... 48

List of Tables

1 High Byte of ISP Address.. 4

2 Low Byte of ISP Address .. 4

3 ISP Read Data Register ... 5

4 ISP Write Data Register.. 5

5 Key Register Write Format .. 5

6 Key Register Read Format .. 6

7 Bit Patterns for the Sample Program ... 12

8 Option and TCON Register Bit Assignments .. 14

9 Initialization of the MICROWIRE/PLUS by the Firmware .. 16

10 MICROWIRE/PLUS Mode Selected by the Firmware .. 16

11 Parallel Port <-> MICROWIRE/PLUS Conversion .. 17

12 Initialization of the MICROWIRE/PLUS by the Firmware .. 17

13 MICROWIRE/PLUS Mode Selected by the Firmware .. 17

14 Required time delays (in instruction cycles) for cascading command frames after an initial command was
executed .. 18

15 Required Time Delays (In Instruction Cycles) ... 19

16 MICROWIRE/PLUS Commands... 20

17 Valid PGMTIM Values .. 21

18 Required Initialization of the MICROWIRE/PLUS ... 25

19 MICROWIRE/PLUS Mode Required for Communication .. 25

20 User Entry Points and Their Associated Labels... 50

21 Registers.. 50

22 User Entry Points .. 51

23 Required Interrupt Lockout Time (in Instruction Cycles) ... 52

24 Resource Utilization for the Command: cpgerase (Page Erase).. 52

25 Typical Endurance Cycles vs. Erase Time and Temperature ... 53

26 Resource Utilization for the Command: cmserase (Mass Erase) ... 54

27 Resource Utilization for the Command: creadbf (Read a Byte of Flash Memory) 54

28 Resource Utilization for the Command: cblockr (Block Read of the Flash Memory) 55

29 Resource Utilization for the Command: cblockw (Write to a Block of Flash Memory) 56

30 Resource Utilization for the Command: cwritebf (Write a Byte to the Flash) 57

31 Resource Utilization for the Command: exit (reset the microcontroller).. 58

2 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com Introduction

1 Introduction

In-System Programming (ISP) allows the user to re-program a microcontroller without physical removal.
The COP8™ ISP Software allows the user to program the flash memory in three ways. A user may
choose to program the flash memory by using the Boot ROM's user support portion, the MetaLink™
support portion (via the Flash emulator module) or the MICROWIRE/PLUS™ support portion. The use of a
user and/or MICROWIRE/PLUS™ support portions are fully documented and their requirements are
specified. Other application notes that relate to the COP8™ FLASH ISP software include AN-1151
(Parallel Port Programming Adapter), AN-1152 (FLASHDOS Programmer Source), AN-1153 (Virtual E2

Guide), AN-1154 (FLASHWIN Programmer’s Guide) and AN-1161 (FLASHDOS Programmer’s Guide).

2 Introduction to ISP—Software Topics

The Flash Family provides the capability to program the Program Memory while installed in an application
board. This feature is called In System Programming (ISP). It provides a means of ISP by using the
MICROWIRE/PLUS™, or the user can provide his own, customized ISP routine. This customized routine
may use any of the capabilities of the device, such as USART, parallel port, etc. The factory installed ISP
uses only the MICROWIRE/PLUS™ port.

2.1 Functional Description

The organization of the ISP feature consists of the user flash program memory, the factory Boot ROM,
and some registers dedicated to performing the ISP function. See Figure 1 for a simplified block diagram.
The factory installed ISP that uses MICROWIRE/PLUS is located in the Boot ROM. The size of the Boot
ROM is 1K bytes and also includes the ICE™ monitor code. If a user chooses to write his own ISP
routine, it must be located in the flash program memory.

In the next section, ADVANCED ISP SOFTWARE TOPICS, a discussion regarding the FLEX bit is
presented. The FLEX bit controls whether the device exits RESET executing from the flash memory or the
Boot ROM. The user must program this Configuration Register bit as appropriate for the application. In the
erased state, the FLEX bit = 0 and the device will power-up executing from Boot ROM. When FLEX = 0,
this assumes that either the MICROWIRE/PLUS™ ISP routine or external programming is being used to
program the device. If using the MICROWIRE/PLUS™ ISP routine, the software in the Boot ROM will
monitor the MICROWIRE/PLUS™ for commands to program the flash memory. When programming the
flash program memory is complete, the FLEX bit will have to be programmed to a 1 and the device will
have to be reset, either by pulling external Reset to ground or by software, before execution from flash
program memory will occur.

If FLEX = 1, upon exiting Reset, the device will begin executing from location 0000 in the flash program
memory. The assumption here, is that either the application is not using ISP, but is using
MICROWIRE/PLUS™ ISP by jumping to it within the application code or is using a customized ISP
routine. If a customized ISP routine is being used, then it must be programmed into the flash memory by
means of MICROWIRE/PLUS™ ISP or external programming as described in the preceding paragraph.

3SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

Introduction to ISP—Software Topics www.ti.com

Figure 1. Block Diagram of ISP

2.1.1 REGISTERS

There are six registers required to support ISP: Address Register Hi byte (ISPADHI), Address Register
Low byte (ISPADLO), Read Data Register (ISPRD), Write Data Register (ISPWR), Write Timing Register
(PGMTIM), and the Control Register (ISPCNTRL).

2.1.1.1 ISP Address Registers

The address registers (ISPADHI and ISPADLO) are used to specify the address of the byte of data being
written or read. For page erase operations, the address of the beginning of the page should be loaded.
When reading the Option register, FFFF should be placed into the address registers. Registers ISPADHI
and ISPADLO are cleared to 00 on Reset. These registers can be loaded from either flash program
memory or Boot ROM and must be maintained for the entire duration of the operation.

Table 1. High Byte of ISP Address

ISPADHI

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Addr Addr Addr Addr Addr Addr Addr Addr
15 14 13 12 11 10 9 8

Table 2. Low Byte of ISP Address

ISPADLO

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Addr Addr Addr Addr Addr Addr Addr Addr
7 6 5 4 3 2 1 0

2.1.1.2 ISP Read Data Register

The Read Data Register (ISPRD) contains the value read back from a read operation. This register can be
accessed from either flash program memory or Boot ROM. This register is undefined on Reset. CAUTION:
Read/Modify/Write instructions are not allowed to be used on this register.

4 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com Introduction to ISP—Software Topics

Table 3. ISP Read Data Register

ISPRD

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

2.1.1.3 ISP Write Data Register

The Write Timing Register (PGMTIM) is used to control the width of the timing pulses for write and erase
operations. The value to be written into this register is dependent on the frequency of CKI and is shown in
Table 17. This register must be written before any write or erase operation can take place. It only needs to
be loaded once, for each value of CKI frequency. If a dedicated E2 block exists on the device and it's in
the process of writing, this register should not be changed until the E2 write cycle is completed.

Table 4. ISP Write Data Register

ISPWR

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

2.1.1.4 ISP Write Timing Register

The Write Timing Register (PGMTIM) is used to control the width of the timing pulses for write and erase
operations. The value to be written into this register is dependent on the frequency of CKI and is shown in
Table 17. This register must be written before any write or erase operation can take place. It only needs to
be loaded once, for each value of CKI frequency. This register can be loaded from either flash program
memory or Boot ROM and must be maintained for the entire duration of the operation. If a dedicated E2

block exists on the device and it's in the process of writing, this register should not be changed until the E2

write cycle is completed.

2.1.2 MANEUVERING BACK AND FORTH BETWEEN FLASH MEMORY AND BOOT ROM

When using ISP, at some point, it will be necessary to maneuver between the flash program memory and
the Boot ROM, even when using customized ISP routines. This is because it's not possible to execute
from the flash program memory while it's being programmed.

The JSRB instruction is used to Jump to the Boot ROM. Refer to the COP8™ Flash Family User Manual
for specific details on the operation of this instruction. The JSRB instruction must be used in conjunction
with the Key register. This is to prevent jumping to the Boot ROM in the event of run-away software. For
the JSRB instruction to actually jump to the Boot ROM, the Key bit must be set. This is done by writing the
value shown in Table 5 to the Key register. The Key is a 6-bit key and, if the key matches, the KEY bit will
be set for 8 instruction cycles. The JSRB instruction must be executed while the KEY bit is set. If the KEY
does not match, then the KEY bit will not be set and the JSRB will jump to the specified location in the
flash memory. In emulation mode, if a breakpoint is encountered while the KEY is set, the counter that
counts the instruction cycles will be frozen until the breakpoint condition is cleared. The Key register is a
memory mapped register. Its format when writing is shown in Table 5. Its format when reading is shown in
Table 6. In normal operation, it is not necessary to test the KEY bit before using the JSRB instruction. The
reading of the Key register is primarily used for testing. Also, located in the Key register is a bit called
EFLEX. This bit is also used for testing.

Table 5. Key Register Write Format

KEY when Writing

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 0 1 1 0 X X

5SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

Introduction to ISP—Software Topics www.ti.com

Bits 7–2:— Key value that must be written to set the KEY bit.

Bits 1–0:—Don't care.

Table 6. Key Register Read Format

KEY when Reading

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 0 0 EFLEX KEY

R R R R R R R R

Bits 7–2:—Read back as 0.

EFLEX (FLASH EXECUTION):—This is the bit that actually controls whether program execution occurs
from flash memory or Boot ROM. It uses data from the Option Register bit in combination with other
logic controlled by the JSRB instruction, and the G6 hardware override. When EFLEX = 1,
execution is from the flash program memory. When EFLEX = 0, program execution occurs from the
Boot ROM. This is a Read Only bit.

KEY:— This is the state of the Key. If it is set, it indicates that a valid key was written to the Key register
and the JSRB instruction will jump correctly to the Boot ROM. If it's cleared, the key is not valid and
the JSRB instruction will jump to the specified address in flash program memory. Once set, the
hardware will clear it to 0 after 8 instruction cycles. This is used primarily for testing. This is a Read
Only bit.

2.1.3 FORCED EXECUTION FROM BOOT ROM

When the user is developing his own ISP routine, he may encounter code lockups due to mistakes in his
software. There is a hardware method to get out of these lockups and force execution from the Boot
ROM's MICROWIRE/PLUS routine, so that the customer can erase his flash code and start over. The
method to force this condition is to drive the G6 pin to high voltage (2X VCC) and activate Reset. As a note
for user of the parallel printer port connects, it is advisable that the user remove the G6 line from the PC
when applying high voltage. The voltage may be high enough to permanently damage the PC parallel port
logic circuits. The high voltage condition on G6 must be held for at least 3 instruction cycles longer than
Reset is active. This special condition will start execution from location 0000 in the Boot ROM where the
user can input the appropriate commands, using MICROWIRE/PLUS™, to erase the flash program
memory and reprogram it.

2.1.4 RETURN TO FLASH WITHOUT HARDWARE RESET

After programming the entire program memory, including options (and setting the FLEX bit in the Option
Register), it is necessary to exit the Boot ROM and return to the flash program memory for program
execution. This can be accomplished through the use of the MICROWIRE/PLUS™ ISP Exit command as
described later.

2.1.5 MICROWIRE/PLUS ISP COMMANDS

The MICROWIRE/PLUS™ ISP will support the following features and commands:

• Read a byte from a specified address.

• Write a byte from a specified address.

• Erase a page at a specified address.

• Erase the entire flash program memory (mass erase).

• Read multiple bytes starting at a specified address.

• Write multiple bytes starting at a specified address.

• Read Option register.

• Exit ISP by resetting the device and return execution to flash program memory if the FLEX bit is set in
the Option Register.

6 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com Introduction to ISP—Software Topics

2.1.6 VIRTUAL E2 COMMANDS

The following commands will support transferring blocks of data from RAM to flash program memory, and
vice-versa.

• Erase a page of flash memory at a specified address.

• Copy a block of data from RAM into flash program memory.

• Copy a block of data from program flash memory to RAM.

2.1.7 SAMPLE PROGRAM: A Light Sequencer.

Since we have completed our introduction to Flash Family device, lets begin to work on our sample
application program.

The goal of this section is to familiarize the user with the following:

1. Writing and saving a program for the COP8™ Flash Family devices

2. Using the MICROWIRE/PLUS™ flash command: Set PGMTIM (write timing register)

3. Using the internal flash command: cwritebf (write a byte to the flash)

4. Using the internal flash command: creadbf (read a byte from the flash)

5. Using the internal/ MICROWIRE/PLUS™ flash command: EXIT (reset the microcontroller).

We will achieve the above commands by using the FLASHWIN Programmer’s Guide. See Application
Note–1154 for additional information.

2.1.7.1 Description of the Sample Application Program

The goal of the sample program is to teach the user the basics of using the COP8™ flash family devices.
The schematic in Figure 2 shows the circuit we are going to use. We will be attaching 8 LEDs, Each LED
will be connected in such a way as to sink current from the microcontroller. The cathode (long leg of the
LED) will be connected toward the COP8™ Flash Family devices. The short leg of the LED (anode) will be
connected through a resistor toward the VCC power supply.

7SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

Introduction to ISP—Software Topics www.ti.com

Figure 2. Sample Application Circuit

2.1.7.2 Writing the Program

We will begin first by writing the program. Launch the Windows 95 Editor by going to the taskbar and
clicking on the Start button. Then click on Run. At the Run dialog Open window type in the Open
fieldedit. Type in exactly as is listed in Example 1. When done, Click on File and then Save. At the new
dialog window type in c:\asm\sequencer.asm (where asm is the directory in which the assembler is
installed in). When done, click on File and then click on Exit.

Example 1. Sample Application Code (sequence.asm)

; Program: Sequence.asm
; Purpose: Demonstrate the use of flash routines
; Date: 02/5/00
.INCLD COP8CBR.INC ;INCLUDE FILE FOR THE COP8CBR
creadbf = 011 ; Entry point for the read byte of flash command
cwritebf = 014 ; Entry point for the write byte of flash command
exit = 062 ; Entry point for Resetting the microcontroller
.sect data,reg,abs=0xF4 ;FOR RAM STORAGE AREA
LED_BITPOS:.DSB 1 ;STORAGE FOR THE LED POSITION
DELAY_NUM: .DSB 1 ;STORAGE FOR THE NUMBER OF DELAYS
.sect code,rom,abs=0 ;BEGINNING CODE SPACE
.org 0 ;START AT LOCATION 0
MAIN:

8 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com Introduction to ISP—Software Topics

Example 1. Sample Application Code (sequence.asm) (continued)

LD S,#000
RBIT 2,PORTLC ;USE PORTL.2 AS AN INPUT
SBIT 2,PORTLD ;CAUSE PORTL.2 TO BE AN INPUT WITH PULL-UP
LD PGMTIM,#07B ;FOR A 10MHZ CLOCK
LD ISPADHI,#000 ;LOAD THE HIGH BYTE ADDRESS
LD ISPADLO,#0A0 ;LOAD THE LOW BYTE ADDRESS
LD ISPWR,#080 ;FOR LED POSITION 10000000
LD ISPKEY,#098 ;LOAD THE KEY
JSRB cwritebf ;CALL THE ROUTINE
LD ISPADLO,#0A1 ;LOAD THE LOW BYTE ADDRESS
LD ISPWR,#040 ;FOR LED POSITION 01000000
LD ISPKEY,#098 ;LOAD THE KEY
JSRB cwritebf ;CALL THE ROUTINE
LD ISPWR,#020 ;FOR LED POSITION 00100000
LD ISPADLO,#0A2 ;LOAD THE LOW BYTE ADDRESS
LD ISPKEY,#098 ;LOAD THE KEY
JSRB cwritebf ;CALL THE ROUTINE
LD ISPWR,#010 ;FOR LED POSITION 00010000
LD ISPADLO,#0A3 ;LOAD THE LOW BYTE ADDRESS
LD ISPKEY,#098 ;LOAD THE KEY
JSRB cwritebf ;CALL THE ROUTINE
LD ISPWR,#008 ; FOR LED POSITION 00001000
LD ISPADLO,#0A4 ; LOAD THE LOW BYTE ADDRESS
LD ISPKEY,#098 ; LOAD THE KEY
JSRB cwritebf ; CALL THE ROUTINE
LD ISPWR,#004 ; FOR LED POSITION 00000100
LD ISPADLO,#0A5 ; LOAD THE LOW BYTE ADDRESS
LD ISPKEY,#098 ; LOAD THE KEY
JSRB cwritebf ; CALL THE ROUTINE
LD ISPWR,#002 ; FOR LED POSITION 00000010
LD ISPADLO,#0A6 ; LOAD THE LOW BYTE ADDRESS
LD ISPKEY,#098 ; LOAD THE KEY
JSRB cwritebf ; CALL THE ROUTINE
LD ISPWR,#001 ; FOR LED POSITION 00000001
LD ISPADLO,#0A7 ; LOAD THE LOW BYTE ADDRESS
LD ISPKEY,#098 ; LOAD THE KEY
JSRB cwritebf ; CALL THE ROUTINE
LOOP: ; BEGINNING OF THE LOOP
LD LED_BITPOS,#0A0 ; POSITION IS INITIALIZED TO #0A0
SEQUENCE: ; BEGINING OF THE SEQUENCE
JSR DELAY ; JUMP TO THE DELAY ROUTINE
LD A,LED_BITPOS ; GET THE BIT POSITION
X A,ISPADLO ; SWAP IT WITH THE ISP LOW ADDRESS BYTE
LD ISPKEY,#098 ; LOAD THE KEY
JSRB creadbf ; CALL THE ROUTINE
LD A,ISPRD ; LOAD THE RESULTS INTO THE ACCUMULATOR
X A,PORTD ; SWAP IT WITH PORTD
LD A,LED_BITPOS ; LOAD THE LED_BITPOS VARIABLE

; ROTATE THROUGH THE BIT POSITIONS
INC A ; INCREMENT THE ACCUMULATOR
X A,LED_BITPOS ; SWAP IT WITH THE LED_BITPOS
IFEQ A,#0A7 ; STOP AT THE EIGHTH BIT POSITION SHIFT
JP LOOP ; RETURNING TO THE MAIN LOOP
JP SEQUENCE ; RETURN TO THE MAIL LOOP SEQUENCE
DELAY:
LD DELAY_NUM,#0FF ; CREATE 256 NOPS
DELAY_LOOP: ; THE DELAY ROUTINE
NOP ; CREATE A 1 CYCLE DELAY
NOP ; CREATE A 1 CYCLE DELAY
DRSZ DELAY_NUM ; COUNT DOWN UNTIL ZERO
JP DELAY_LOOP ; OTHERWISE JUST JUMP INTO THE DELAY
RET
IFBIT 2,PORTLP ; DETECT IF THE SWITCH IS OFF
JP NEXT2 ; IF OFF THEN GOTO NEXT COMMAND

9SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

Introduction to ISP—Software Topics www.ti.com

Example 1. Sample Application Code (sequence.asm) (continued)

JP QUIT ; OTHERWISE QUIT
NEXT2: ; NEXT COMMAND
RET ; RETURN FROM THE SUBROUTINE
QUIT: ; THIS ROUTINE WILL EXIT WITH AN INTERNAL RESET
LD ISPKEY,#098 ; LOAD THE KEY
JSRB exit ; CALL THE EXIT
.END MAIN ; END OF PROGRAM

2.1.7.3 Assembling and Linking the Sample Program

Example 2 shows the assembled code. Linking must occur after assembling the code. This can be
accomplished via the command: “lncop sequencer”. A hex file named sequencer.hex will be produced as
a result of this command. To launch the FLASHWIN application, see the FLASHWIN Programmer’s Guide
AN-1154. Click on the Set CLOCK button to set the write timer register. A dialog box will appear. Enter 10
for a 10 MHz CKI frequency. Next, click on the “Upload from a hex file” command. Click on the “Select
File” button. Either click on the file or enter it by click on it. Click Ok and the upload process will begin.
After the upload is complete perform a write byte to the Configuration Operation. Write a 1 to location
0xFFFF (See Table 8 for additional information) in order to program the microcontroller for execution out
of the flash memory. Next click Reboot to exit the MICROWIRE/PLUS ISP routine. Execution will be from
the flash array once the reset cycle has completed.

Example 2. The Listing of the Assembled Code (sequence.lis)

NSC ASMCOP, Version 5.3 (April 12 17:13
2000) SEQUENCE 13-Sep-00
14:45
PAGE 1
1 ; Program: Sequence.asm
2 ; Purpose: Demonstrate the use of the flash routines
3 ; Date: 02/5/00
4
5 .INCLD COP8CBR.INC ; INCLUDE FILE FOR THE COP8CBR
6
7 0011 creadbf = 011 ; Entry point for the read byte of flash command
8 0014 cwritebf = 014 ; Entry point for the write byte of flash command
9 0062 exit = 062 ; Entry point for Resetting the microcontroller
10
11 00F4 .sect data,reg,abs=0xF4 ; For RAM storage area
12 00F4 LED_BITPOS:.DSB 1 ; Storage for the LED position
13 00F5 DELAY_NUM: .DSB 1 ; Storage for the number of delays
14 0000 .sect code,rom,abs=0 ; Beginning code space
15 0000 .org 0
16
17 0000 MAIN:
18 0000 DF00 3 LD S,#000 ; Use PORTL.2 as an input
19 0002 BDD16A 4 RBIT 2,PORTLC ; Cause PORTL.2 to be an input with pull-up
20 0005 BDD07A 4 SBIT 2,PORTLD ; For a 10MHz clock
21
22 0008 BCA900 3 LD ISPADHI,#000 ; Load the high byte address
23 000B BCA8A0 3 LD ISPADLO,#0A0 ; Load the low byte address
24 000E BCAB80 3 LD ISPWR,#080 ; For LED position 10000000
25 0011 BCE298 3 LD ISPKEY,#098 ; Load the key
26 0014 6114 5 JSRB cwritebf ; Call the routine
27
28 0016 BCA8A1 3 LD ISPADLO,#0A1 ; Load the low byte address
29 0019 BCAB40 3 LD ISPWR,#040 ; for the LED poistion 01000000
30 001C BCE298 3 LD ISPKEY,#098 ; Load the key
31 001F 6114 5 JSRB cwritebf ; Call the routine
32
33 0021 BCAB20 3 LD ISPWR,#020 ; For the LED poistion 00100000

10 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com Introduction to ISP—Software Topics

Example 2. The Listing of the Assembled Code (sequence.lis) (continued)

34 0024 BCA8A2 3 LD ISPADLO,#0A2 ; Load the low byte address
35 0027 BCE298 3 LD ISPKEY,#098 ; Load the key
36 002A 6114 5 JSRB cwritebf ; Call the routine
37
38 002C BCAB10 3 LD ISPWR,#010 ; For the LED poistion 00010000
39 002F BCA8A3 3 LD ISPADLO,#0A3 ; Load the low byte address
40 0032 BCE298 3 LD ISPKEY,#098 ; Load the key
41 0035 6114 5 JSRB cwritebf ; Call the routine
42
43 0037 BCAB08 3 LD ISPWR,#008 ; For the LED poistion 00001000
44 003A BCA8A4 3 LD ISPADLO,#0A4 ; Load the low byte address
45 003D BCE298 3 LD ISPKEY,#098 ; Load the key
46 0040 6114 5 JSRB cwritebf ; Call the routine
47
48 0042 BCAB04 3 LD ISPWR,#004 ; For the LED poistion 00000100
49 0045 BCA8A5 3 LD ISPADLO,#0A5 ; Load the low byte address
50 0048 BCE298 3 LD ISPKEY,#098 ; Load the key
51 004B 6114 5 JSRB cwritebf ; Call the routine
52
53 004D BCAB02 3 LD ISPWR,#002 ; For the LED poistion 00000100
54 0050 BCA8A6 3 LD ISPADLO,#0A6 ; Load the low byte address
55 0053 BCE298 3 LD ISPKEY,#098 ; Load the key
56 0056 6114 5 JSRB cwritebf ; Call the routine
NSC ASMCOP, Version 5.3 (April 12 17:13
2000) SEQUENCE 13-Sep-00
14:45
PAGE 2
57
58 0058 BCAB01 3 LD ISPWR,#001 ; For the LED poistion 00000100
59 005B BCA8A7 3 LD ISPADLO,#0A7 ; Load the low byte address
60 005E BCE298 3 LD ISPKEY,#098 ; Load the key
61 0061 6114 5 JSRB cwritebf ; Call the routine
62
63 0063 LOOP: ; Beginning of the Loop
64 0063 D4A0 3 LD LED_BITPOS,#0A0 ; Position is initialized to #0A0
65
66 0065 SEQUENCE: ; Beginning of the sequence
67 0065 307D 5 JSR DELAY ; Jump to the delay routine
68 0067 9DF4 3 LD A,LED_BITPOS ; Get the bit positon
69 0069 9CA8 3 X A,ISPADLO ; Swap it with the ISP low address byte
70 006B BCE298 3 LD ISPKEY,#098 ; Load the key
71 006E 6111 5 JSRB creadbf ; Call the routine
72 0070 9DAA 3 LD A,ISPRD ; Load the results into the accumulator
73 0072 9CDC 3 X A,PORTD ; Swap it with PORTD
74
75 0074 9DF4 3 LD A,LED_BITPOS ; Load the LED_BITPOS variable
76
77 ; Rotate through the bit positions
78 0076 8A 1 INC A ; Increment the accumulator
79
80 0077 9CF4 3 X A,LED_BITPOS ; Swap it with the LED_BITPOS
81
82 0079 92A7 2 IFEQ A,#0A7 ; Stop at the eighth bit position shift
83 007B E7 3 JP LOOP ; Returning to the main loop
84 007C E8 3 JP SEQUENCE ; Return to the main loop sequence
85
86 007D DELAY:
87 007D D5FF 3 LD DELAY_NUM,#0FF ; Create 256 NOPs
88 007F DELAY_LOOP: ; The delay routine
89 007F B8 1 NOP ; Create a 1 cycle delay
90 0080 B8 1 NOP ; Create a 1 cycle delay
91 0081 C5 3 DRSZ DELAY_NUM ; Count down until zero
92 0082 FC 3 JP DELAY_LOOP ; Otherwise just jump into the delay
93 0083 8E 5 RET

11SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

Introduction to ISP—Software Topics www.ti.com

Example 2. The Listing of the Assembled Code (sequence.lis) (continued)

94 0084 BDD272 4 IFBIT 2,PORTLP ; Detect if the switch is off
95 0087 01 3 JP NEXT2 ; If off then goto next command
96 0088 01 3 JP QUIT ; Otherwise quit
97 0089 NEXT2: ; Next command
98 0089 8E 5 RET ; Return from the subroutine
99
100 008A QUIT: ; This routine will exit with an internal reset
101 008A BCE298 3 LD ISPKEY,#098 ; Load the key
102 008D 6162 5 JSRB exit ; Call the exit
103 008F .END MAIN ; End of program
**** Errors: 0, Warnings: 0
Checksum: 0x543B
Byte Count: 0x008F (143)
Input File: c:\nsc\sequence.asm
Output File: c:\nsc\sequence.obj
Memory Model: Large
Chip: 8CBR

2.1.7.4 1.8.4 Analysis of the Program

The best way to understand a program is to cut it apart line by line. Lines 14-53 shows how to use the
function cwritebf (customer write byte). They also show the correct calling format and usage of the JSRB
instruction. Loading the KEY register bit is also shown in the code sample. The code will write the bit
patterns listed in Table 7 to the flash memory.

Lines 66-86 makes up the main calling routine. The code will use the creadbf function to read flash
memory. Lines 92-104 makes up the delay and detect_exit routine. Lines 106-109 makes up the exit
routine. The exit routine calls the reset function and will cause the microcontroller to reset.

The flow to this program is represented in Figure 3.

Table 7. Bit Patterns for the Sample Program

Sequence # Sequence Pattern

1 1 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0

3 0 0 1 0 0 0 0 0

4 0 0 0 1 0 0 0 0

5 0 0 0 0 1 0 0 0

6 0 0 0 0 0 1 0 0

7 0 0 0 0 0 0 1 0

8 0 0 0 0 0 0 0 1

12 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ADVANCED ISP—SOFTWARE TOPICS

Figure 3. Flow for the Sequencer Program

3 ADVANCED ISP—SOFTWARE TOPICS

3.1 IN SYSTEM PROGRAMMING (ISP) SUPPORT BLOCKS

The Flash Family's Boot ROM consists of three main blocks: The user support portion, the MetaLink
support portion and the MICROWIRE/PLUS support portion. Figure 4 shows the relative organization of
these support blocks. Each command portion is both independent and self contained. The entire Boot
ROM is 1 Kbytes. This document assumes that the reader is fluent in the use of MICROWIRE/PLUS and
its transmission protocol. For reference please refer the MICROWIRE/PLUS section of the Flash Family
datasheet.

Figure 4. ISP Boot ROM Interface

3.2 Boot ROM Memory Layout

Figure 5 shows how the Boot ROM is organized. FLEX is a hardware bit that controls whether program
execution occurs from flash memory of Boot_ROM. It uses data from the Option register. When the FLEX
bit option register=1, execution is from the flash program memory. When bit FLEX=0, program execution
occurs from the Boot ROM.

13SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ADVANCED ISP—SOFTWARE TOPICS www.ti.com

Figure 5. COP8 FLASH Memory Layout

3.3 PROGRAMMABLE OPTIONS DESCRIPTION

The programmable configuration options for this device are listed below.

• Program Memory Security

• Watchdog feature

• Halt Enable feature

• Power-up execution feature

The options will be stored in the highest location in program memory. This location will be called the
Option Register. For devices with 32K of Program Memory, the options are stored at location 7FFF. For
16K devices, they will be stored at 3FFF, for 8K devices 1FFF, and for 4K devices 0FFF, however the
Option Register can always be accessed by referencing Flash address FFFF. The options are
programmed with either external programming or ISP. The location must be erased before programming.
The user must not store instructions in the Option register location. If the software tries to execute from
the Option register, 00 data will be returned to the instruction register and the device will execute the
Software Trap.

3.4 OPTION REGISTER BIT ASSIGNMENTS

The format of the Option Register bit locations are shown in Table 8.

Table 8. Option and TCON Register Bit Assignments

Option Register

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved SEC Reserved Reserved WD HALT FLEX

Bit 7 -— Reserved

Bit 6 -— Reserved

Bit 5 -— SEC - Security bit
=1 Security enabled
=0 Security disabled

Bits 4,3 -— Reserved

Bit 2 -— WD - Watchdog
=1 Watchdog feature is disabled with G1 being a standard I/O.
=0 Watchdog feature is enabled to G1 output with weak pull-up enabled when output is not valid.

14 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ADVANCED ISP—SOFTWARE TOPICS

Bit 1 -— HALT - Halt Enable
=1 Halt mode is disabled
=0 Halt mode is enabled

Bit 0 -— FLEX - Flash execution
=1 Execute from Flash program memory upon exiting Reset
=0 Execute from Boot ROM upon exiting Reset

3.5 SECURITY

The device has a security feature, when enabled, it prevents reading, writing, and page erases of the flash
program memory. Bit-5 in the Option register determines whether security is enabled or disabled. If the
security option is disabled, the contents of the internal flash program memory is not protected. If the
security feature is enabled;

When executing from user ISP:

1. Reads, writes, page erases, mass erases are all allowed. The user is expected to enforce security
within the application code.

When executing from NSC (Boot ROM) ISP or ICE emulation. All writes, reads, and page erases are
prohibited.

1. Reads will return FF.

2. Mass erase is permitted. This also erases the Option register.

3. The Option register is readable by reading location FFFF.

4. Reads, writes, page erases are prohibited.

3.6 MICROWIRE/PLUS SUPPORT BLOCKS

3.6.1 2.5.1 Introduction

MICROWIRE/PLUS is a synchronous SPI compatible serial communication system that allows this device
to communicate with any other device that also supports the MICROWIRE/PLUS system. Examples of
such devices include A/D converters, comparators, EEPROMs, display drivers, telecommunications
devices, and other processors. The MICROWIRE/PLUS serial interface uses a simple and economical 3-
wire connection between devices.

Several MICROWIRE/PLUS devices can be connected to the same 3-wire system. One of these devices,
operating in what is called the master mode, supplies the synchronous clock for the serial interface and
initiates the data transfer. Another device, operating in what is called the slave mode, responds by
sending (or receiving) the requested data. The slave device uses the master's clock for serially shifting
data out (or in), while the master device shifts the data in (or out).

On this device, the three interface signals are called SI (Serial Input), SO (Serial Output), and SK (Serial
Clock). To the master, SO and SK are outputs (connected to slave inputs), and SI is an input (connected
to slave outputs).

This device can operate either as a master or a slave, depending on how it is configured by the software.
Figure 6 shows an example of how several devices can be connected together using the
MICROWIRE/PLUS system, with the device (on the left) operating as the master, and other devices
operating as slaves. The protocol for selecting and enabling slave devices is determined by the system
designer.

15SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ADVANCED ISP—SOFTWARE TOPICS www.ti.com

Figure 6. MICROWIRE/PLUS Example

3.6.2 Firmware—MICROWIRE/PLUS Initialization

The MICROWIRE/PLUS support block will initialize the internal communication block with the following
parameters: CTRL.MSEL=1, PORTGD.SO=1, PORTGD.SK=1, PORTGC.SI=1, and PORTGC.SK=0.
Table 9 and Table 10 contain information about the MICROWIRE/PLUS mode. Figure 7 shows the
waveforms that are from the MICROWIRE/PLUS block.

Table 9. Initialization of the MICROWIRE/PLUS by the Firmware

Port G Config. Reg. MICROWIRE/PLUS G4 Pin Function G5 Pin Function G6 Pin FunctionBits G5-G4 Operation

0-1 Slave, Data Out and SO Output SK Input SI Input
Data In

Table 10. MICROWIRE/PLUS Mode Selected by the Firmware

Port G
SO Clocked Out On: SI Sampled On: SK Idle Phase

G6 (SKSEL) Config. Bit G5 Data Bit

1 1 SK Falling Edge SK Rising Edge High

Figure 7. MICROWIRE/PLUS Interface Timing, Normal SK Mode, SK Idle Phase being High

3.7 PC to Boot from MICROWIRE/PLUS Connection Diagram

Figure 8 shows the necessary connections to attach the MICROWIRE/PLUS to the PC's parallel port. The
flash microcontroller connection to the PC will be accomplished via a four wire interface.

16 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ADVANCED ISP—SOFTWARE TOPICS

Figure 8. Parallel Port Connection Diagram

Table 11 shows the necessary connections used in the building of the parallel adapter for the COP8 Flash
Family microcontroller.

Table 11. Parallel Port <-> MICROWIRE/PLUS Conversion

Parallel Port Parallel MICROWIRE/PLUS
Printer Port Printer Port Pin Names
Pin Names Pin Numbers

STROBE 1 SK/G5

DO 2 SI/G6

NEG(ACK) 10 SO/G4

GND 18 GND

3.8 FIRMWARE—MICROWIRE/PLUS INITIALIZATION

The MICROWIRE/PLUS support block will initialize the internal communication block with the following
parameters: CTRL.MSEL=1, PORTGD.SO=1, PORTGD.SK=1, PORTGC.SI=1, and PORTGC.SK=0.
Table 9 and Table 10 contains information about the MICROWIRE/PLUS mode. Figure 7 shows the
waveforms that are from the MICROWIRE/PLUS block.

Table 12. Initialization of the MICROWIRE/PLUS by the Firmware

Port G Config. Reg. MICROWIRE/PLUS G4 Pin Function G5 Pin Function G6 Pin FunctionBits G5-G4 Operation

0-1 Slave, Data Out and SO Output SK Input SI Input
Data In

Table 13. MICROWIRE/PLUS Mode Selected by the Firmware

Port G
SO Clocked Out On: SI Sampled On: SK Idle Phase

G6 (SKSEL) Config. Bit G5 Data Bit

1 1 SK Falling Edge SK Rising Edge High

Figure 9. MICROWIRE/PLUS Interface Timing, Normal SK Mode, SK Idle Phase being High

17SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ADVANCED ISP—SOFTWARE TOPICS www.ti.com

3.8.1 The MICROWIRE/PLUS Packet Composition

A typical MICROWIRE/PLUS packet is composed of a three byte frame (although this varies with the
chosen command). Figure 10 is a symbolic representation of the ISP-MICROWIRE/PLUS packet. A trigger
byte is a value which will cause a ISP (In System Programming) command to be executed (e.g. erase,
read or write a byte of flash). The COMMAND Byte holds this trigger byte value. Refer to Table 16 for
valid MICROWIRE/PLUS commands and their trigger byte values. Bytes ADDRESS_HI and
ADDRESS_LO refer to the high and low byte address of the flash memory that is to be operated upon.
The symbol tdelay represents the delay that is required when sending the command, ADDRESS_HI and
ADDRESS_LO bytes.

Figure 10. ISP Command Frame

3.8.2 Required Delays In Cascading Microwire Command Frames

A certain amount of delay must be observed when sending multiple command frames in a data stream.
The symbol tcascade-delay represents the delay that is required when sending several commands in a data
stream. The host must wait tcascade-delay cycles before sending the next command frame to the COP8 Flash
Family device. Figure 11 shows the delay relationship. Refer to Table 14 for the values of tcascade-delay. Refer
to Table 15 for the values of tdelay. The symbol t1...tN denotes individual delay requirements (which varies
among different commands).

Table 14. Required time delays (in instruction cycles) for cascading command frames after an
initial command was executed

Command tCASCADE-DELAY

READ_BYTE 6

WRITE_BYTE 6

BLOCKR 13

BLOCKW 6

PGERASE 6

MASS_ERASE 6

EXIT N/A

PGMTIM_SET 6

Figure 11. Cascade Delay Requirement

18 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ADVANCED ISP—SOFTWARE TOPICS

Table 15. Required Time Delays (In Instruction Cycles)

COMMAND t1 t2 t3 t4 t5 t6 tN

READ_BYTE 35 100 100 N/A N/A N/A N/A

WRITE_BYTE 35 100 20 10 N/A N/A N/A

BLOCKR 35 100 100 100 140 140 140

BLOCKW 35 100 100 100 100 100 52

PGERASE 35 100 100 N/A N/A N/A N/A

MASS_ERASE 25 100 N/A N/A N/A N/A N/A

EXIT N/A N/A N/A N/A N/A N/A N/A

PGMTIM_SET 35 35 N/A N/A N/A N/A N/A

3.8.3 Variable Host Delay

A special type of communication has been implemented in the device firmware in order to allow the
microcontroller enough time to complete a write or erase operation. This type of communication was
developed since the microcontroller may be used in situations where the clock is extremely slow and
writes to the flash memory will take a large amount of time. This implementation relieves the user of
having to manually change the write delays in their host software. Figure 12 shows how the VARIABLE
HOST DELAY configuration is implemented on a byte write. Figure 13 shows how the VARIABLE HOST
DELAY configuration is implemented on a block write. Figure 14 shows how the VARIABLE HOST DELAY
configuration is implemented on a page erase. Figure 15 shows how the VARIABLE HOST DELAY
configuration is implemented on a mass erase. Since the SK (Serial CLOCK) is normally high, the
microcontroller brings SK low to indicate to the host that a WAIT condition (i.e. the SK pin is low) exists.
The host then goes into a loop until the WAIT condition changes to a READY condition (i.e., the SK pin is
high again). The controller then returns to command decode and waits for the next command.

Figure 12. Byte Write Waveform (Relative Bytes are Shown)

Figure 13. Block Write Waveform (Relative Bytes are Shown)

19SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ADVANCED ISP—SOFTWARE TOPICS www.ti.com

Figure 14. Page Erase Waveform (Relative Bytes are Shown)

Figure 15. Mass Erase Waveform (Relative Bytes are Shown)

3.8.4 MICROWIRE/PLUS—Boot ROM Startup Behavior

Upon start-up the ISP Boot ROM will detect if the G6 pin is high. This is used to detect if a high voltage
condition on the G6 pin is present (i.e., a forced Boot ROM re-entry due to code lockup, for additional
information refer to Section 2.1.3.) By using this technique the Boot ROM avoids any bit that may be
inadvertently entered on to the SI pin. If the G6 pin is not high at start-up, the ISP Boot ROM will try to
detect if a valid command is received on a transmission. If a valid command is received, the Boot ROM
firmware will check to see if the SECURITY bit is set. Table 16 shows the valid MICROWIRE/PLUS
commands. If security is set, the Boot ROM will disable all ISP functions except the reading of the
OPTION register at 0xFFFF, the execution of a mass erase on the flash memory and the setting of the
PGMTIM Register. Read attempts of flash memory, other than location 0xFFFF, Option Register, while
security is set, will result with a 0xFF sent back through the MICROWIRE/PLUS. In general, the Boot
ROM firmware will decode the command, check security, execute the command (if security is off) and
execute the MICROWIRE/PLUS Main Support Block (e.g., triggering the PSW.BUSY bit in order to send
the data back to the host.) See Figure 16 for the ISP—MICROWIRE/PLUS Control flow.

Table 16. MICROWIRE/PLUS Commands

Byte Value Variable Host DelayCommand Function Parameters Return DataImplemented?

PGMTIM_SET Write Pulse 0x3B Value No N/A
Timing
Register

PAGE_ERASE Page Erase 0xB3 Starting Address of Page Yes N/A

MASS_ERAS Mass Erase 0xBF Confirmation Code Yes N/A (The entire Flash
E Memory will be erased)

READ_BYTE Read Byte 0x1D Address High, Address No Data Byte if Security not
Low set. 0xFF if Security set.

BLOCKR Block Read 0xA3 Address High, Address No n Data Bytes if Security
Low, Byte Count (n) High, not set. n Bytes of 0xFF if
Byte Count (n) Low (0 ≤ n Security set
≤ 32767)

WRITE_BYTE Write Byte 0x71 Address High, Address Yes N/A
Low, Data Byte

20 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ADVANCED ISP—SOFTWARE TOPICS

Table 16. MICROWIRE/PLUS Commands (continued)

Byte Value Variable Host DelayCommand Function Parameters Return DataImplemented?

BLOCKW Block Write 0x8F Address High, Address Yes N/A
Low, Byte Count (0 ≤ n ≤
16), n Data Bytes
Data location must be
within a 64 byte segment
for a 32k device, 32 byte
for 1k and 4k devices (1/2
page) due to multi-byte
write limitation

EXIT EXIT 0xD3 N/A No N/A (Device will Reset)

INVALID N/A Any other invalid command N/A N/A
will be ignored

Figure 16. The ISP—MICROWIRE Control

3.9 MICROWIRE COMMANDS AVAILABLE

3.9.1 PGMTIM_SET

Sets the flash write timing register to match that of the CKI frequency. See Table 17 for values.

Description: Figure 17 shows the format of the PGMTIM_SET command. The PGMTIM_SET command
will transfer the next byte sent into the flash programming time register. No acknowledgment will be sent.
The symbol t1 denotes the time delay between the command byte and the setting of the PGMTIM register.
This command is always available. This command must be used before any “writes” can occur (i.e., page
erase, mass erase, write byte or block write). See Table 21 for the value(s) of t1 and t2. Table 17 shows
valid values for the PGMTIM register. This command is security independent.

Figure 17. The Set PGMTIM Command

Table 17. Valid PGMTIM Values

Bit Values for the PGMTIM Register
Hex Value CKI Frequency Range

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0x01 25 kHz–33.3 kHz

0 0 0 0 0 0 1 0 0x02 37.5 kHz–50 kHz

0 0 0 0 0 0 1 1 0x03 50 kHz–66.67 kHz

0 0 0 0 0 1 0 0 0x04 62.5 kHz–83.3 kHz

0 0 0 0 0 1 0 1 0x05 75 kHz–100 kHz

0 0 0 0 0 1 1 1 0x07 100 kHz–133 kHz

0 0 0 0 1 0 0 0 0x08 112.5 kHz–150 kHz

0 0 0 0 1 0 1 1 0x0B 150 kHz–200 kHz

0 0 0 0 1 1 1 1 0x0F 200 kHz–266.67 kHz

0 0 0 1 0 0 0 1 0x11 225 kHz–300 kHz

0 0 0 1 0 1 1 1 0x17 300 kHz–400 kHz

0 0 0 1 1 1 0 1 0x1D 375 kHz–500 kHz

21SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ADVANCED ISP—SOFTWARE TOPICS www.ti.com

Table 17. Valid PGMTIM Values (continued)

Bit Values for the PGMTIM Register
Hex Value CKI Frequency Range

7 6 5 4 3 2 1 0

0 0 1 0 0 1 1 1 0x39 500 kHz–666.67 kHz

0 0 1 0 1 1 1 1 0x2F 600 kHz–800 kHz

0 0 1 1 1 1 1 1 0x3F 800 kHz–1.067 MHz

0 1 0 0 0 1 1 1 0x47 1 MHz–1.33 MHz

0 1 0 0 1 0 0 0 0x48 1.125 MHz–1.5 MHz

0 1 0 0 1 0 1 1 0x4B 1.5 MHz–2 MHz

0 1 0 0 1 1 1 1 0x4F 2 MHz–2.67 MHz

0 1 0 1 0 1 0 0 0x54 2.625 MHz–3.5 MHz

0 1 0 1 1 0 1 1 0x5B 3.5 MHz–4.67 MHz

0 1 1 0 0 0 1 1 0x63 4.5 MHz–6 MHz

0 1 1 0 1 1 1 1 0x6F 6 MHz–8 MHz

0 1 1 1 1 0 1 1 0x7B 7.5 MHz–10 MHz

R R/W R/W R/W R/W R/W R/W R/W

3.9.2 PAGE_ERASE—Erase a Page of Flash Memory

Description: Figure 18 shows the format of the PAGE_ERASE command. The PAGE_ERASE command
will erase a 128 bytes page (depends on the array size, 64 bytes for devices containing 1k and 4k) from
the flash memory. The next two bytes after the PAGE_ERASE byte refer to the beginning high and low
bytes of the beginning address of the target flash page. A WAIT/READY technique is used to delay the
host when the controller is executing and writing to the flash memory. For a full description of the
WAIT/READY command refer to the section regarding VARIABLE HOST DELAY (Section 3.8.3). The
symbol t1, t2 denote the time delay between the command byte, the delay required after loading the high
address byte, and the delay after loading of the low address byte. The symbol t3 denotes the time delay
after loading the ADDRESS_LO value. The PAGE_ERASE command is NOT always available (i.e., it is
security dependent). If security is set, then the command will be aborted and no acknowledgment will be
sent back. See section 10.4 for details on the number of endurance cycles and the number of page erase
commands that should be issued prior to writing data into the erased page. See Table 15 for the value(s)
of t1, t2, and t3.

Figure 18. The PAGE ERASE Command

3.9.3 MASS_ERASE—Erase the Entire Flash Memory Array

Description: Figure 19 shows the format of the MASS_ERASE command. The MASS_ERASE command
will erase the entire flash memory, including the Option Register. The next byte after the MASS_ERASE
command refers to the confirmation key used to double check that a mass erase request was actually
sent. The confirmation key must equal 0x55 in order for the MASS_ERASE command to continue. The
symbol t1 denotes the time delay between the command byte and the transmission of the CONFIRM_KEY.
The symbol t2 denotes the time delay after the CONFIRM_KEY has been checked. A WAIT/READY
technique is used to delay the host when the controller is executing and writing to the flash memory. For a
full description regarding the WAIT/READY command refer to the section regarding VARIABLE HOST
DELAY (Section 3.8.3). The MASS_ERASE command is always available. It is security independent. See
Table 15 for the value(s) of t1, and t2.

22 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ADVANCED ISP—SOFTWARE TOPICS

Figure 19. The MASS_ERASE Command

3.9.4 READ_BYTE—Read a Byte from the Flash Memory Array

Description: Figure 20 shows the format of the READ_BYTE command. The READ_BYTE command will
read a byte from the flash memory. The next two bytes after the READ_BYTE refer to the address of the
target flash location. The symbol t1, t2 denotes the time delay between the command byte, the delay after
loading of the high address byte. Data is sent back after t3 delay(s) has elapsed. If security is set, the user
is only allowed to read location 0xFFFF (Option Register). In other words, if security is set and
ADDRESS_HI and ADDRESS_LO=0xFFFF then the firmware will allow that operation, otherwise it will
send back a 0xFF in the DATA_RTN byte. See Table 15 for the value(s) of t1, t2, and t3.

Figure 20. The READ_BYTE Command

3.9.5 WRITE_BYTE—Write a Byte to the Flash Memory Array

Description: Figure 21 shows the format of the WRITE_BYTE routine. The WRITE_BYTE command will
write a byte to the flash memory. The next two bytes after the WRITE_BYTE byte refer to the high and low
byte address of the target flash location. The next byte (DATA_REC) after the ADDRESS_LO byte will
contain the value that will be stored into the flash location. The symbols t1, t2 denote the time delay
between the command byte and the delay after loading of the high address byte. The symbol t3 denotes
the time delay after loading the ADDRESS_LO value. Data is saved into the flash location after a t4 delay.
A WAIT/READY signal is used to delay the host. For a full description of the WAIT/READY command refer
to the section regarding VARIABLE HOST DELAY (Section 3.8.3). The WRITE_BYTE command is NOT
always available (i.e. it is security dependent.) If security is set, then the command will be aborted and no
acknowledgment will be sent back. See Table 15 for the value(s) of t1, t2, t3, and t4.

Figure 21. The WRITE_BYTE Command

3.9.6 BLOCK WRITE—Write a Block of Data to the Flash Memory Array

Description: Figure 22 is a symbolic representation of the BLOCK_WRITE routine. Data is written in
sequential order. This routine is intended to write bytes of data which will reside in a page of flash
memory. The next two bytes after the BLOCK_WRITE byte refer to the beginning high and low byte
address of the target flash location. The next byte after the ADDRESS_LO byte refers to the
BYTECOUNTLO variable. The BYTECOUNTLO variable is used by the microcontroller to transfer N bytes
(i.e, N=BYTECOUNTLO). The maximum number of bytes that can be written is 16. If the number of bytes

23SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ADVANCED ISP—SOFTWARE TOPICS www.ti.com

exceeds 16, it may not be guaranteed that all of the bytes were written. The data cannot cross page
boundaries. Data must be placed with-in the same 1/2 page segment, 64 bytes for 32k devices and 32
bytes for 1k and 4k devices. This is due to the multi-byte write limitation. If N=0 then the firmware will
abort. The symbols t1 and t2 denotes the time delay between the command byte and the delay after
loading of the high address byte. The symbol t3 denotes the time delay after loading the ADDRESS_LO
value. The symbol t4 denotes the necessary time delay after loading the BYTECOUNTLO variable. Data
arrives at t5 cycles after the ADDRESS_LO value is loaded (i.e. DATA1 - DATA2 have the same delay as
DATA2 - DATA3). After the last byte (DATA_N) is received, a WAIT/ READY signal will be sent to delay
the host. For a full description of the WAIT/READY command refer to the section regarding VARIABLE
HOST DELAY (Section 3.8.3). The command (BLOCK_WRITE) is NOT always available (i.e. it is security
dependent). If security is set, then the command will be aborted after the last data (DATA_N) is received
and no acknowledgment will be sent back. See Table 15 for the value(s) of t1, t2, t3, t4, t5, and t6.

Figure 22. The Block Write Routine

3.9.7 BLOCK_READ—Read a Block from the Flash Memory Array

Description: Figure 23 shows the format of the BLOCK_READ command. The BLOCK_READ command
will read multiple bytes from the flash memory. The next two bytes after the BLOCK_READ byte refer to
the beginning high and low byte address of the target flash location. The next two bytes after the
ADDRESS_LO byte refer to the upper and lower byte of BYTECOUNT. The BYTECOUNT variable is
used by the microcontroller to send back N number of bytes (i.e, N=BYTECOUNT). The maximum value
of N is 32 kBytes. If N=0 then the firmware will abort. The symbols t1, t2and , t3 denotes the time delay
between the command byte, the delay in loading of the ADDRESS_HI, and the delay after loading the
ADDRESS_LO. The symbol t4 denotes the required time delay between loading BYTECOUNTHI and
BYTECOUNTLO. Subsequent data is sent to the host at t5 cycles after BYTECOUNTLO (i.e.
DATA1–DATA2 have the same delay as DATA2–DATA3). This command is capable of sending up to 32
kB of flash memory through the MICROWIRE/PLUS. This command is always available however, if
security is set, the user is only allowed to read 0xFFFF (Option Register). In other words, if at anytime
ADDRESS_HI and ADDRESS_LO=0xFFFF, the firmware will allow that operation. If at any time
ADDRESSHI and ADDRESS_LO do not equal 0xFFFF and security is set, then the firmware will return
0xFF. This routine will acknowledge by returning data to the host.

Figure 23. The Block Read Command

24 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ISP DOWNLOADER

3.9.8 EXIT—Reset the Microcontroller

Description: Figure 24 shows the format of the EXIT command. The EXIT command will reset the
microcontroller. There is no additional information required after the EXIT byte is received. No
acknowledgment will be sent back regarding the operation. This command is always available. It is
security independent.

Figure 24. The EXIT Command

4 ISP DOWNLOADER

4.1 IMPLEMENTATION EXAMPLE—BUILDING A FIRMWARE MODIFIER/DOWNLOADER

The following section deals with construction of a portable downloader. Several microcontrollers exist
which have the MICROWIRE/PLUS compatible peripheral built in. National's COP8SGx line of
microcontrollers are used to demonstrate the construction of a portable downloader.

National's COP8SGx microcontrollers are easily interfaced to the COP8 Flash Family microcontrollers.
Communication is established via the built-in MICROWIRE/PLUS peripheral block. A 3 + GND wire setup
is used. Code samples are provided and documented procedures are given. Figure 25 shows how to
interface the COP8SGR to the COP8 Flash Family devices. The 100Ω resistor is used to protect both
devices from bus contention. The 5.6 kΩ pull-up resistor is used by the firmware to detect an idle condition
on the bus.

Figure 25. Interfacing the COP8SGR and COP8CBR Microcontrollers

4.1.1 COP8SGR Initialization Routine

The COP8SGR microcontroller must initialize the internal communication block with the following
parameters: CTRL.MSEL=1,PORTGD.SO=1,PORTGD.SK=1,PORTGC.SI=1, and
PORTGC.SK=1.Table 18 andTable 19 contain information about the MICROWIRE/PLUS mode. Figure 7
shows the waveforms from the MICROWIRE/PLUS block. Figure 26 shows the flow for the initialization
routine.

Table 18. Required Initialization of the MICROWIRE/PLUS

Port G Config. Reg. MICROWIRE/PLUS G4 Pin Function G5 Pin Function G6 Pin FunctionBits G5-G4 Operation

1-1 Master, Data Out and SO Output SK Input SI Input
Data In

Example 3 Example 4 shows the sample assembly and C source for the routine.

Table 19. MICROWIRE/PLUS Mode Required for Communication

Port G
SO Clocked Out On: SI Sampled On: SK Idle Phase

G6 (SKSEL) Config. Bit G5 Data Bit

1 1 SK Falling Edge SK Rising Edge High

25SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ISP DOWNLOADER www.ti.com

Figure 26. Flow Chart for the Initialization Routine

Example 3. Required Initialization Routine—Assembly Version

; MICROWIRE/PLUS COP8SGR Initialization Routine
; Assume That The Wire Are Connected As In Figure 29
.INCLD cop8sgr.INC ; INCLUDE FILE FOR THE COP8SGR
.sect code,rom,abs=0 ; BEGINING CODE SPACE

; Main Routine
MAIN:

jsr MICROINIT ; CALL THE ROUTINE
jp MAIN ; RETURN TO MAIN

;INITIALIZATION CODE
MICROINIT:

sbit MSEL,CNTRL ; CNTRL.MSEL= 1, SET MICROWIRE INTO
sbit SK,PORTGC ; PORTGC.SK = 1, MODE, DATA OUT,
sbit SO,PORTGC ; PORTGC.SO = 1 ,DATA IN
rbit SO,PORTGD ; PORTGD.SO = 0 to let the firmware know that

; you want to go into ISP Mode
; Set MICROWIRE/PLUS into standard sk mode,
; IDLE = High, SET ACCORDING TO Table 20

sbit SK,PORTGD ; PORTGD.SK=1
sbit SI,PORTGC ; PORTGC.SI = 1
ret ; RETURN FROM THE CALL

.END MAIN ; END OF PROGRAM

Example 4. Required Initialization Routine—C Version

#include ²8sgr.h²; // Include file for the COP8SGR Microcontroller
void microinit(void); // The MICROWIRE/PLUS initialization routine
void main(){ // The main
microinit(); // Set up MICROWIRE/PLUS for CBR Xmission
while(1); // Endless loop
} // End of the main

void microinit(){ // MICROWIRE/PLUS Initialization Routine
CNTRL.MSEL=1; // The MICROWIRE/PLUS Control Select Bit is set.
PORTGC.SK=1; // Set the MICROWIRE/PLUS into PORTGC.SK=1
PORTGC.SO=1; // MODE: DATA OUT, PORTGC.SO=1
PORTGD.SO=0; // To tell the firmware that you want to go into

// ISP Mode
// Set MICROWIRE/PLUS into standard sk mode, IDLE=High, Set According
// to Table 2

PORTGD.SK=1; // Set IDLE MODE=High
PORTGC.SI=1; // Set the configuration bit
} // End of microinit routine

26 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ISP DOWNLOADER

4.1.2 The PGMTIM_SET Routine

Sets the flash write timing register to match that of the CKI frequency. See Table 11.5 for values.
Example 5 shows the flow of the PGMTIM_SET routine. Example 5 Example 6 shows the assembly and C
version of the routine.

Figure 27. Flow for the PGMTIM_SET Program

Example 5. Code Sample For PGMTIM_SET. Assembly Version: COP8SGR

; MICROWIRE/PLUS COP8SGR Write PGMTIME routine
; Assume That The Wire Are Connected As In Figure 29

.INCLD cop8sgr.INC ;INCLUDE FILE FOR THE COP8SGR

.sect data,reg,abs=0xF0 ;FOR RAM STORAGE AREA
DELAY_NUM: .DSB 1 ;STORAGE FOR THE NUMBER OF DELAYS

.sect code,rom,abs=0 ;BEGINING CODE SPACE
MAIN:

jsr MICROINIT ;CALL THE MICROWIRE INITIALIZATION ROUTINE
jsr PGMTIM_SET ;CALL THE SET PROGRAMMING TIMING
jp MAIN ;RETURN TO THE MAIN LOOP

PGMTIM_SET: ;THE SET WRITE TIMING ROUTINE
ld SIOR,#03B ;PGMTIM_SET COMMAND Byte
jsr MICROWIRE_SEND ;Send the command byte out
ld A,#023 ;The amount of delay cycles required, For more info

;see Table 18 regarding required time delay cycles
jsr DELAY ;The delay routine
ld SIOR,# 06F ;Send the Write Time - Assume a 10MHz CKI CBR CKI

;frequency, See Table 2-13 for additional information
jsr MICROWIRE_SEND ;Send the value out to the COP8CBR
ret ;end of the PGMTIM_SET routine

MICROWIRE_SEND: ;The MICROWIRE/PLUS send routine
sbit BUSY,PSW ;SET THE PSW.BUSY BIT TO TURN ON
ld B,#PSW ;while (PSW.BUSY)

wait_uwire: ;THE MICROWIRE WAIT ROUTINE
ifbit 02,[B] ;IF THE BIT IS ON THEN WAIT
jp wait_uwire ;Otherwise stay in the loop
ret ;RETURN FROM THE FUNCTION CALL

MICROINIT:
sbit MSEL,CNTRL ;CNTRL.MSEL= 1, SET MICROWIRE INTO
sbit SK,PORTGC ;PORTGC.SK = 1, MODE, DATA OUT,
sbit SO,PORTGC ;PORTGC.SO = 1, DATA IN
rbit SO,PORTGD ;PORTGD.SO = 0 to let the firmware know that

;you want to go into ISP Mode

27SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ISP DOWNLOADER www.ti.com

Example 5. Code Sample For PGMTIM_SET. Assembly Version: COP8SGR (continued)

; Set MICROWIRE/PLUS into standard sk mode, sk high during idle
; IDLE = High, SET ACCORDING TO Table 20

sbit SK,PORTGD ;PORTGD.SK=1
sbit SI,PORTGC ;PORTGC.SI=1
ret ;RETURN FROM THE CALL

DELAY: ;THE DELAY ROUTINE
; ASSUME THE AMOUNT OF NOPS IS STORED IN
; THE ACCUMULATOR A

LD DELAY_NUM,#023 ;Corresponds to 35 cycles
LOOP_POINT: ;POINT WHERE THE LOOP ACTUALLY OCCURS

NOP ;THE ACTUAL NOPS
drsz DELAY_NUM ;DECREMENT DELAY_NUM, SKIP NEXT INSTR. IF
jp LOOP_POINT ;ZERO
ret ;RETURN FROM TO THE FUNCTION CALL
.END MAIN ;END OF PROGRAM

Example 6. The PGMTIM_Set Routine—C Version

#include "8sgr.h"; // Include file for the COP8SGR Microcontroller
void pgmtim_set(void); // The pgmtim_set routine
void delay(unsigned int delay_num); // The actual num of delays
void microwire_send(void);
void microinit(void);
void main(){ // The main
microinit(); // Initialize the MICROWIRE/PLUS port
pgmtim_set(0x7B); // For a 10 MHZ CKI Frequency
delay(6); // Just in case of cascading
while(1); // Endless loop
}
void pgmtim_set(unsigned int frequency){ // The PGMTIM_SET
SIOR=0x3B; // Routine, Send out the PGMTIM_SET command byte
microwire_send(); // Start up the MICROWIRE/PLUS and send the byte
delay(35); // Wait for 35 NOPs as required in the time delay
req.
SIOR=frequency; // Now send out the frequency
microwire_send(); // Start out the MICROWIRE/PLUS
} // End of the routine
void microwire_send(void){ // The routine that starts the microwire
CNTRL.MSEL=1; // Set the MICROWIRE/PLUS Control Bit
PSW.BUSY=1; // Set the PSW busy bit
while(PSW.BUSY); // Wait until the bit has cleared
} // end of the routine
void delay(unsigned int delay_num){ // The delay routine
unsigned int i; // temp variable
for (i=0;i<delay_num; i++) // The loop control
NOP; // Wait on NOP
} // End of the delay routine
void microinit(){ // MICROWIRE/PLUS Initialization Routine
CNTRL.MSEL=1; // The MICROWIRE/PLUS Control Select Bit is set.
PORTGC.SK=1; // Set the MICROWIRE/PLUS into PORTGC.SK=1
PORTGC.SO=1; // MODE: DATA OUT, PORTGC.SO=1
PORTGD.SO=0; // To tell the firmware that you want to go

// into ISP Mode
// Set MICROWIRE/PLUS into standard sk mode,

IDLE=High,
// Set According to Table 2

PORTGD.SK=1; // Set IDLE MODE=High
PORTGC.SI=1; // Set the configuration bit
} // End of microinit routine

28 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ISP DOWNLOADER

4.1.3 PAGE_ERASE—Erase a Page of Flash Memory

Figure 28 shows the flow for the PAGE_ERASE routine. Example 7 and Example 8 shows the assembly
and C code versions for the routines.

Figure 28. Flow for the Page Erase Function

Example 7. The Page Erase Routine—Assembly Version: COP8SGR

; ERASE A PAGE FROM FLASH
.INCLD cop8sgr.INC ;INCLUDE FILE FOR THE COP8SGR
.sect DATA,REG,ABS=0F0;
DELAY_NUM .DSB 1 ;Allocate some memory
ADDRESSHI .DSB 1 ;To Hold the Upper Byte
ADDRESSLO .DSB 1 ;To Hold the Lower Byte
.SECT CODE,ROM,ABS=0 ;Beginning of the code
MAIN: ;Beginning of the main
jsr MICROINIT ;Call the initialization routine
jsr PGMTIM_SET ;Set the PGMTIM_SET routine
ld ADDRESSHI,#000 ;Addresshi=0
ld ADDRESSLO,#000 ;Addresslo=0
jsr PAGE_ERASE ;Call the erase page routine
ld A,#006 ;Create a delay of at least 6 NOPS
jsr DELAY ;Jump to the delay routine
jp MAIN ;Return to the main function
PAGE_ERASE: ;The erase function
ld SIOR,#0B3 ;The command byte for page erase
jsr MICROWIRE_SEND ;Start the MICROWIRE/PLUS up
ld A,#023 ;Wait at least 35 cycles
jsr DELAY ;Call the delay routine
ld A,ADDRESSHI ;Load the low address into the SIOR register
x A,SIOR ;Do the swap here
jsr MICROWIRE_SEND ;Start the MICROWIRE/PLUS up
ld A,#064 ;Create a delay of at least 100 NOPS

29SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ISP DOWNLOADER www.ti.com

Example 7. The Page Erase Routine—Assembly Version: COP8SGR (continued)

jsr DELAY ;Jump to the delay routine
ld A, ADDRESSLO ;Load the high address into the SIOR register
x A,SIOR ;Do the swap here
jsr MICROWIRE_SEND ; Start the MICROWIRE/PLUS up
ld A,#064 ;Create a delay of at least 100 NOPS
jsr DELAY ;Jump to the delay routine
jsr DETECT_READY ;Detect if its ready to continue

; Variable Host Delay implementation
ret ;Return from the call
DETECT_READY: ; Variable Host Delay routine
rbit SK,PORTGC ;Set portg.sk into read only mode
rbit SK,PORTGD ;
VARIABLE_DELAY: ;The holding is here
ifbit SK,PORTGP ;If high then return and proceed to next
jp NEXT ;instruction
jp VARIABLE_DELAY ;Otherwise stay here
NEXT: ;Continue on to the next instruction
sbit SK,PORTGC ;Reset to normal mode when done
sbit SK,PORTGD ;
ret ;Return to function call
MICROWIRE_SEND: ;The MICROWIRE/PLUS send routine
sbit BUSY,PSW ;SET THE PSW.BUSY BIT TO TURN ON
wait_uwire: ;THE MICROWIRE WAIT ROUTINE
ifbit BUSY,PSW ;IF THE BIT IS ON THEN WAIT
jp wait_uwire ;Otherwise stay in the loop
ret ;End of MICROWIRE/PLUS_SEND
DELAY: ;THE DELAY ROUTINE

; ASSUME THE AMOUNT OF NOPS IS STORED IN
; THE ACCUMULATOR A

x A,DELAY_NUM ;SET THE DELAY_NUM VARIABLE
LOOP_POINT: ;POINT WHERE THE LOOP ACTUALLY OCCURS
NOP ;THE ACTUAL NOPS
drsz DELAY_NUM ;DECREMENT DELAY_NUM, SKIP NEXT INSTR. IF
jp LOOP_POINT ;ZERO
ret ;End of DELAY
PGMTIM_SET: ;THE SET WRITE TIMING ROUTINE
ld SIOR,#03B ; PGMTIM_SET COMMAND Byte
jsr MICROWIRE_SEND ;Send the command byte out
ld A,#023 ; The amount of delay cycles required, For more
information

; see 2-11 regarding required time delay cycles
jsr DELAY ; The delay routine
ld SIOR,# 07B ; Send the Write Time - Assume a 10MHz CKI CBR CKI

; frequency, See Table 2-13 for other values
jsr MICROWIRE_SEND ; Send the value out to the COP8CBR
ret ; End of PGMTIM_SET Program
MICROINIT:
sbit MSEL,CNTRL ; CNTRL.MSEL= 1, SET MICROWIRE INTO
sbit SK,PORTGC ; PORTGC.SK = 1, MODE, DATA OUT,
sbit SO,PORTGC ; PORTGC.SO = 1, DATA IN
rbit SO,PORTGD ; PORTGD.SO = 0 to let the firmware know that

; you want to go into ISP Mode
; Set MICROWIRE/PLUS into standard sk mode,

; IDLE = High, SET ACCORDING TO Table 20
sbit SK,PORTGD ;PORTGD.SK=1
sbit SI,PORTGC ;PORTGC.SI = 1
ret ;RETURN FROM THE CALL
.END MAIN ;END OF PROGRAM

30 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ISP DOWNLOADER

Example 8. The Page Erase Routine—C Version: COP8SGR

#include "8sgr.h"; //Include file for the COP8SGR
Microcontroller
void page_erase(unsigned int addresshi, unsigned int addresslo);
void pgmtim_set(unsigned int frequency); //Set the write time
void microinit(void); //Call the MICROWIRE/PLUS
initialization routine
void delay(unsigned int delay_num); //The delay routine
void detect_ready(); //Detect if it is ready to
continue routine
void microwire_send(); //The send microwire routine
void main(){ //The main
microinit(); //Initialize the program
pgmtim_set(0x7B); //Call the pgmtim_set routine
page_erase(0,0); //Erase location 0000 of the
flash
delay(6); //Delay for at least 6 NOPs as
specified in Table 18
detect_ready(); //Detect if it is ready to
continue
while(1); //Endless loop
}

//The page erase routine
void page_erase(unsigned int addresshi, unsigned int addresslo){
SIOR=0xB3; //Send out the command byte
value
microwire_send(); //tell MICROWIRE/PLUS to
transmit
delay(35); //Delay for at least 35 NOPS as
specified in Table 18
SIOR=addresshi; // Set the high address
microwire_send(); // tell MICROWIRE/PLUS to
transmit
delay(100); // Delay for at least 100 NOPs
SIOR=addresslo; // Set the low address
microwire_send(); // tell MICROWIRE/PLUS to
transmit
delay(100); // Delay for at least 100 NOPs
detect_ready();
}
void pgmtim_set(unsigned int frequency){ // The PGMTIM_SET
SIOR=0x3B; // Routine, Send out the
PGMTIM_SET command byte
microwire_send(); // Start up the MICROWIRE/PLUS
and send the byte
delay(35); // Wait for 35 NOPs as required
in the time delay req.
SIOR=frequency; // Now send out the frequency
microwire_send(); // Start out the MICROWIRE/PLUS
} // End of the routine
void microinit(){ // MICROWIRE/PLUS Initialization
Routine
CNTRL.MSEL=1; // The MICROWIRE/PLUS Control
Select Bit is set.
PORTGC.SK=1; // Set the MICROWIRE/PLUS into
PORTGC.SK=1
PORTGC.SO=1; // MODE: DATA OUT, PORTGC.SO=1

// Set MICROWIRE/PLUS into
standard sk mode,

// IDLE=High, Set According to
Table 2
PORTGD.SK=1; // Set IDLE MODE=High
PORTGC.SI=1; // Set the configuration bit
} // End of the routine
void delay(unsigned int delay_num){ // The delay routine

31SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ISP DOWNLOADER www.ti.com

Example 8. The Page Erase Routine—C Version: COP8SGR (continued)

unsigned int i; // temp variable
for (i=0;i<delay_num; i++) // The loop control
NOP; // Wait on NOP
} // End of the delay routine
void detect_ready(){ // Detect if the host is ready
to send routine
PORTGC.SK=0; // Set the PORTG.SK into input
mode
PORTGD.SK=0;
while(PORTGP.SK==0) // While the CLOCK line is still
low
NOP; // Stay Here
PORTGC.SK=1; //Other wise reset
PORTGD.SK=1; //And Exit Routine
} //End of detect_ready()
void microwire_send(void){ // The routine that starts the
microwire
CNTRL.MSEL=1; // Set the MICROWIRE/PLUS
Control Bit
PSW.BUSY=1; // Set the PSW busy bit
while(PSW.BUSY); // Wait until the bit has cleared
} // end of the routine

4.1.4 MASS_ERASE—Bulk Erase the Flash Memory

Figure 29 shows the flow for the MASS_ERASE routine. Example 9 and Example 10 shows the assembly
and C code versions of the MASS_ERASE routine.

Figure 29. Flow for the Mass Erase Function

Example 9. The Mass Erase Routine—Assembly Version: COP8SGR

; Mass Erase The FLASH
.INCLD cop8sgr.INC ;INCLUDE FILE FOR THE COP8SGR
.sect DATA,REG,ABS=0F0;
DELAY_NUM .DSB 1 ;Allocate some memory
ADDRESSHI .DSB 1 ;To Hold the Upper Byte
ADDRESSLO .DSB 1 ;To Hold the Lower Byte

32 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ISP DOWNLOADER

Example 9. The Mass Erase Routine—Assembly Version: COP8SGR (continued)

.SECT CODE,ROM,ABS=0 ;Beginning of the code
MAIN: ;Beginning of the main
jsr MICROINIT ;Call the initialization routine
jsr PGMTIM_SET ;Set the PGMTIM_SET routine
ld ADDRESSHI,#000 ;Addresshi=0
ld ADDRESSLO,#000 ;Addresslo=0
jsr Mass_ERASE ;Call the Mass Erase routine
ld A,#006 ;Create a delay of at least 6 NOPS
jsr DELAY ;Jump to the delay routine
jp MAIN ;Return to the main function
MASS_ERASE: ;The erase function
ld SIOR,#0BF ;The command byte for page erase
jsr MICROWIRE_SEND ;Start the MICROWIRE/PLUS up
ld A,#023 ;Wait at least 35 cycles
jsr DELAY ;Call the delay routine
ld A,#055 ;Load the confirmation code into the SIOR
register
x A,SIOR ;Do the swap here
jsr MICROWIRE_SEND ;Start the MICROWIRE/PLUS up
ld A,#064 ;Create a delay of at least 100 NOPS
jsr DELAY ;Jump to the delay routine
jsr DETECT_READY ;Detect if its ready to continue

;Variable Host Delay implementation
ret ;Return from the call
DETECT_READY: ;Variable Host Delay routine
rbit SK,PORTGC ;Set portg.sk into read only mode
rbit SK,PORTGD ;
VARIABLE_DELAY: ;The holding is here
ifbit SK,PORTGP ;If high then return and proceed to next
jp NEXT ;instruction
jp VARIABLE_DELAY ;Otherwise stay here
NEXT: ; Continue on to the next instruction
sbit SK,PORTGC ; Reset to normal mode when done
sbit SK,PORTGD ;
ret ; Return to function call
MICROWIRE_SEND: ; The MICROWIRE/PLUS send routine
sbit BUSY,PSW ; SET THE PSW.BUSY BIT TO TURN ON
wait_uwire: ; THE MICROWIRE WAIT ROUTINE
ifbit BUSY,PSW ; IF THE BIT IS ON THEN WAIT
jp wait_uwire ; Otherwise stay in the loop
ret ; End of MICROWIRE/PLUS_SEND
DELAY: ;THE DELAY ROUTINE

; ASSUME THE AMOUNT OF NOPS IS STORED IN
; THE ACCUMULATOR A

x A,DELAY_NUM ; SET THE DELAY_NUM VARIABLE
LOOP_POINT: ; POINT WHERE THE LOOP ACTUALLY OCCURS
NOP ; THE ACTUAL NOPS
drsz DELAY_NUM ; DECREMENT DELAY_NUM, SKIP NEXT INSTR. IF
jp LOOP_POINT ; ZERO
ret ; End of DELAY
PGMTIM_SET: ; THE SET WRITE TIMING ROUTINE
ld SIOR,#03B ; PGMTIM_SET COMMAND Byte
jsr MICROWIRE_SEND ; Send the command byte out
ld A,#023 ; The amount of delay cycles required, For more
information

; see 2-11 regarding required time delay cycles
jsr DELAY ; The delay routine
ld SIOR,# 07B ; Send the Write Time -
Assume a 10MHz CKI CBR CKI

; frequency, See Table 2-13 for other values
jsr MICROWIRE_SEND ; Send the value out to the COP8CBR
ret ; End of PGMTIM_SET Program
MICROINIT:
sbit MSEL,CNTRL ; CNTRL.MSEL= 1, SET MICROWIRE INTO

33SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ISP DOWNLOADER www.ti.com

Example 9. The Mass Erase Routine—Assembly Version: COP8SGR (continued)

sbit SK,PORTGC ; PORTGC.SK = 1, MODE, DATA OUT,
sbit SO,PORTGC ; PORTGC.SO = 1, DATA IN
rbit SO,PORTGD ; PORTGD.SO = 0 to let the firmware know that

; you want to go into ISP Mode
; Set MICROWIRE/PLUS into standard sk mode,
; IDLE = High, SET ACCORDING TO Table 20

sbit SK,PORTGD ; PORTGD.SK=1
sbit SI,PORTGC ; PORTGC.SI = 1
ret ; RETURN FROM THE CALL
.END MAIN ; END OF PROGRAM

Example 10. The Mass Erase Routine—C Version: COP8SGR

#include "8sgr.h"; // Include file for the COP8SGR Microcontroller
void mass_erase();
void pgmtim_set(unsigned int frequency); // Set the write time
void microinit(void); // Call the MICROWIRE/PLUS initialization routine
void delay(unsigned int delay_num); // The delay routine
void detect_ready(); // Detect if it is ready to continue routine
void microwire_send(); // Send the data out that is in the SIOR buffer
void main(){ // The main
microinit(); // Initialize the program
pgmtim_set(0x7B); // Call the pgmtim_set routine
mass_erase(); // Mass erase the flash
delay(6); //Delay for at least 6 NOPs as specified in Table
18
detect_ready(); // Detect if it is ready to continue
while(1); // Endless loop
}

// The mass erase routine
void mass_erase(){
SIOR=0xBF; // Send out the command byte value
microwire_send(); // tell MICROWIRE/PLUS to transmit
delay(35); // Delay for at least 35 NOPS as specified in the
Table 18
SIOR=0x55; // Set the confirmation code
microwire_send(); // tell MICROWIRE/PLUS to transmit
delay(100); // Delay for at least 100 NOPs
detect_ready();
}
void pgmtim_set(unsigned int frequency){ // The PGMTIM_SET
SIOR=0x3B; // Routine, Send out the PGMTIM_SET command byte
microwire_send(); // Start up the MICROWIRE/PLUS and send the byte
delay(35); // Wait for 35 NOPs as required in the time delay
req.
SIOR=frequency; // Now send out the frequency
microwire_send(); // Start out the MICROWIRE/PLUS
} // End of the routine
void microinit(){ // MICROWIRE/PLUS Initialization Routine
CNTRL.MSEL=1; // The MICROWIRE/PLUS Control Select Bit is set.
PORTGC.SK=1; // Set the MICROWIRE/PLUS into PORTGC.SK=1
PORTGC.SO=1; // MODE: DATA OUT, PORTGC.SO=1

// Set MICROWIRE/PLUS into standard sk mode,
IDLE=High,

// Set According to Table 2
PORTGD.SK=1; // Set IDLE MODE=High
PORTGC.SI=1; // Set the configuration bit
} // End of the routine
void delay(unsigned int delay_num){ // The delay routine
unsigned int i; // temp variable
for (i=0; i<delay_num; i++) // The loop control

34 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ISP DOWNLOADER

Example 10. The Mass Erase Routine—C Version: COP8SGR (continued)

NOP; // Wait on NOP
} // End of the delay routine
void detect_ready(){ // Detect if the host is ready to send routine
PORTGC.SK=0; // Set the PORTG.SK into input mode
PORTGD.SK=0;
while(PORTGP.SK==0) // While the CLOCK line is still low
NOP; // Stay Here
PORTGC.SK=1; // Otherwise reset
PORTGD.SK=1; // And Exit Routine
} // End of detect_ready()
void microwire_send(void){ // The routine that starts the microwire
CNTRL.MSEL=1; // Set the MICROWIRE/PLUS Control Bit
PSW.BUSY=1; // Set the PSW busy bit
while(PSW.BUSY); // Wait until the bit has cleared
} // end of the routine

4.1.5 READ_BYTE—Read a Byte from the Flash Memory Array

Figure 30 shows the flow for the READ_BYTE routine. Example 11 and Example 12 shows the assembly
and C code versions for the routine.

Figure 30. Flow for the Read Byte Routine

Example 11. Read A Byte Of Flash—Assembly Version: COP8SGR

; The following routine will read a byte from the flash memory array
.INCLD cop8sgr.INC ;INCLUDE FILE FOR THE COP8SGR
.sect DATA,REG,ABS=0F0 ;Set the beginning of the RAM location
DELAY_NUM .DSB 1 ;To be starting at 0F0
ADDRESSHI .DSB 1 ;The high address byte
ADDRESSLO .DSB 1 ;The low address byte

35SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ISP DOWNLOADER www.ti.com

Example 11. Read A Byte Of Flash—Assembly Version: COP8SGR (continued)

DATA_READ .DSB 1 ;The variable to store the returned data
.SECT CODE,ROM,ABS=0 ;Beginning of the code
MAIN: ;The Main
jsr MICROINIT ;Call the MICROWIRE/PLUS initialization routine
ld ADDRESSHI,#000 ;Addresshi = 0 of flash
ld ADDRESSLO,#000 ;Addresslo = 0 of flash
jsr READ_BYTE ;Call the read byte routine
ld A,#006 ;Delay for 6 cycles
jsr DELAY ;Call the delay routine
ld A,SIOR ;Copy the buffer into the accumulator
x A,DATA_READ ;Save into the RAM location now
jp MAIN ;Return to the main
READ_BYTE: ;The read byte routine
ld SIOR,#01D ;The command byte for read byte
jsr MICROWIRE_SEND ;Call the MICROWIRE/PLUS send routine
ld A,#023 ;Delay for 35 cycles
jsr DELAY ;Call the delay function
ld A,ADDRESSHI ;Set the actual high byte if the flash address
x A,SIOR ;Swap it with the MICROWIRE/PLUS buffer and send it out
jsr MICROWIRE_SEND ;Call the MICROWIRE/PLUS send routine
ld A,#064 ;Delay for 100 NOPs
jsr DELAY ;Call the delay routine
ld A, ADDRESSLO ;Set the actual low byte of the flash address
x A,SIOR ;Swap it with SIOR
jsr MICROWIRE_SEND ;Call the MICROWIRE/PLUS send routine
ld A,#064 ;Wait for 100 Nops
jsr MICROWIRE_SEND ;One last time to get the data

;Data should be in the SIOR register now
jsr DELAY ;Call the delay routine
jsr MICROWIRE_SEND ;ONE LAST CALL FOR THE DATA

;DATA SHOULD BE IN THE SIOR NOW
ret ;
MICROWIRE_SEND: ; MICROWIRE/PLUS Routine
sbit BUSY,PSW ; SET THE PSW.BUSY BIT TO TURN ON
wait_uwire: ; THE MICROWIRE WAIT ROUTINE
ifbit BUSY,PSW ; IF THE BIT IS ON THEN WAIT
jp wait_uwire ; Otherwise stay in the loop
ret ; End of MICROWIRE/PLUS_SEND
DELAY: ; THE DELAY ROUTINE

; ASSUME THE AMOUNT OF NOPS IS STORED IN
; THE ACCUMULATOR A

x A,DELAY_NUM ; SET THE DELAY_NUM VARIABLE
LOOP_POINT: ; POINT WHERE THE LOOP ACTUALLY OCCURS
NOP ; THE ACTUAL NOPS
drsz DELAY_NUM ; DECREMENT DELAY_NUM, SKIP NEXT INSTR. IF
jp LOOP_POINT ; ZERO
ret ; End of DELAY
MICROINIT:
sbit MSEL,CNTRL ; CNTRL.MSEL= 1, SET MICROWIRE INTO
sbit SK,PORTGC ; PORTGC.SK = 1, MODE, DATA OUT,
sbit SO,PORTGC ; PORTGC.SO = 1, DATA IN
rbit SO,PORTGD ; PORTGD.SO = 0 to let the firmware know that

; you want to go into ISP Mode
; Set MICROWIRE/PLUS into standard sk mode,
; IDLE = High, SET ACCORDING TO Table 20

sbit SK,PORTGD ; PORTGD.SK=1
sbit SI,PORTGC ; PORTGC.SI = 1
ret ; RETURN FROM THE CALL
.END MAIN ; END OF PROGRAM

36 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ISP DOWNLOADER

Example 12. Read A Byte of Flash—C Version: COP8SGR

#include "8sgr.h"; //Include file for the COP8SGR
Microcontroller
unsigned int read_byte(unsigned int addresshi, unsigned int addresslo); //The read
byte function
void microinit(void); //The MICROWIRE/PLUS
initialization routine
void delay(unsigned int delay_num); //The delay routine
void microwire_send(); //The microwire send
routine
void main(){ //The main routine
unsigned int data_read; //The buffer that would hold
the result data
microinit(); //Initialize the data vector
data_read=read_byte(0,1); //Read at location 1 of the
flash
while(1); //Endless loop
}

//The read_byte routine, it
will return the data byte read
unsigned int read_byte(unsigned int addresshi, unsigned in addresslo){
SIOR=0x1D; //The read_byte command byte
microwire_send(); //Send it out to the
MICROWIRE/PLUS
delay(35); //Wait for 35 NOPs as stated
in Table 18
SIOR=addresshi; //Set up the high address
microwire_send(); //Send it out on the
MICROWIRE/PLUS line
delay(100); //Wait for 100 Nops
SIOR=addresslo; //Set up the low address
microwire_send(); //Send it out on the
MICROWIRE/PLUS line
delay(100); //Wait for 100 Nops
microwire_send(); //One last time for the data
return SIOR; //Data should now be in the
SIOR buffer
} //End of read_byte routine
void microinit(){ // MICROWIRE/PLUS
Initialization Routine
CNTRL.MSEL=1; // The MICROWIRE/PLUS Control
Select Bit is set.
PORTGC.SK=1; // Set the MICROWIRE/PLUS into
PORTGC.SK=1
PORTGC.SO=1; // MODE: DATA OUT, PORTGC.SO=1
PORTGD.SO=0; // To tell the firmware that you
want to go into

// ISP Mode
// Set MICROWIRE/PLUS into standard

sk mode, IDLE=High,
// Set According to Table 2

PORTGD.SK=1; // Set IDLE MODE=High
PORTGC.SI=1; // Set the configuration bit
} // End of microinit routine
void delay(unsigned int delay_num){ // The delay routine
unsigned int i; // temp variable
for (i-0; i<delay_num;i++) // The loop control
NOP; // Wait on NOP
} // End of the delay routine
void microwire_send(void){ // The routine that starts the
microwire
CNTRL.MSEL=1; // Set the MICROWIRE/PLUS Control
Bit
PSW.BUSY=1; // Set the PSW busy bit
while(PSW.BUSY); // Wait until the bit has cleared

37SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ISP DOWNLOADER www.ti.com

Example 12. Read A Byte of Flash—C Version: COP8SGR (continued)

} // end of the routine

4.1.6 WRITE_BYTE—Write a Byte to the Flash Memory Array

Figure 31 shows the flow for the WRITE_BYTE routine. Example 13 and Example 14 and shows the
assembly and C code versions for the routine.

Figure 31. Flow for the Write Byte Function

Example 13. Write a Byte to the Flash—Assembly Version: COP8SGR

; WRITE A BYTE TO THE FLASH ROUTINE
.INCLD cop8sgr.INC ;INCLUDE FILE FOR THE COP8SGR
.sect DATA,REG,ABS=0F0 ;DECLARE SOME VARIABLE
DELAY_NUM .DSB 1 ;The number of delays
ADDRESSHI .DSB 1 ;The high address byte
ADDRESSLO .DSB 1 ;The low address byte
WRITE_DATA .DSB 1 ;The variable where the data is to be read

; from
.SECT CODE,ROM,ABS=0 ;Beginning of the program
MAIN: ;The main routine
jsr MICROINIT ;Initialize the MICROWIRE/PLUS
jsr PGMTIM_SET ;Set the write time
ld A,#006 ;Delay for 6 cycles
jsr DELAY ;Call the delay routine
ld ADDRESSHI,#000 ;Set the high address byte
ld ADDRESSLO,#001 ;Set the low address byte
ld WRITE_DATA,#005 ;Load a 5 where the write data variable is
jsr WRITE_BYTE ;Call the write byte variable
jp MAIN ;Jump to the main function
WRITE_BYTE: ;The write byte variable
ld SIOR,#071 ;The write byte command values
jsr MICROWIRE_SEND ;Start-up the MICROWIRE/PLUS function
ld A,#023 ;Delay for 35 Nops
jsr DELAY ;Call the delay function
ld A,ADDRESSHI ;Set the high address byte

38 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ISP DOWNLOADER

Example 13. Write a Byte to the Flash—Assembly Version: COP8SGR (continued)

x A,SIOR ;Then swap it with the SIOR register
jsr MICROWIRE_SEND ;Call the MICROWIRE/PLUS send routine
ld A,#064 ;Delay for 100 Nops
jsr DELAY ;Call the delay routine
ld A, ADDRESSLO ;Set the low address byte
x A,SIOR ;Swap it with the SIOR register
jsr MICROWIRE_SEND ;Call the MICROWIRE/PLUS send routine
ld A,#014 ;Delay for 20 Nops
jsr DELAY ;Call the delay routine
ld A, WRITE_DATA ;Set the low address byte
x A,SIOR ;Swap it with the SIOR register
jsr MICROWIRE_SEND ;Call the MICROWIRE/PLUS send routine
ld A,#014 ;Delay for 20 Nops
jsr DELAY ;Call the delay routine
ld A,WRITE_DATA ;Get the data
x A,SIOR ;Get ready to send it out
jsr MICROWIRE_SEND ;ONE LAST CALL FOR THE DATA
ld A,#00A ;Delay for 10 Nops
jsr DELAY ;Call the delay routine
jsr DETECT_READY ;Call the routine to detect if it is ready
ret ;Return to the function call
PGMTIM_SET: ;THE SET WRITE TIMING ROUTINE
ld SIOR,#03B ;PGMTIM_SET COMMAND Byte
jsr MICROWIRE_SEND ;Send the command byte out
ld A,#023 ; The amount of delay cycles required, For more informa-

; tion see Table 18 regarding required time delay cycles
jsr DELAY ; The delay routine
ld SIOR,# 07B ; Send the Write Time - Assume a 10MHz CKI CBR
; CKI frequency
ld A,#064 ; The amount of delay cycles required, For more informa-

; tion see Table 18 regarding required time delay cycles
jsr DELAY ; The delay routine
jsr MICROWIRE_SEND ; Send the value out to the COP8CBR
ret ; End of PGMTIM_SET routine
DETECT_READY: ; Variable Host Delay routine
rbit SK,PORTGC ; Set portg.sk into read only mode
rbit SK,PORTGD ;
VARIABLE_DELAY: ; The holding is here
ifbit SK,PORTGP ; If high then return and proceed to next
jp NEXT ; instruction
jp VARIABLE_DELAY ; Otherwise stay here
NEXT: ; Continue on to the next instruction
sbit SK,PORTGC ; Reset to normal mode when done
sbit SK,PORTGD ;
ret ;Return to function call
DELAY: ; THE DELAY ROUTINE

; ASSUME THE AMOUNT OF NOPS IS STORED IN
; THE ACCUMULATOR A

x A,DELAY_NUM ; SET THE DELAY_NUM VARIABLE
LOOP_POINT: ; P01NT WHERE THE LOOP ACTUALLY OCCURS
NOP ; THE ACTUAL NOPS
drsz DELAY_NUM ; DECREMENT DELAY_NUM, SKIP NEXT INSTR. IF
jp LOOP_POINT ; ZERO
ret ; End of DELAY
MICROINIT:
sbit MSEL,CNTRL ; CNTRL.MSEL= 1, SET MICROWIRE INTO
sbit SK,PORTGC ; PORTGC.SK = 1, MODE, DATA OUT,
sbit SO,PORTGC ; PORTGC.SO = 1, DATA IN
rbit SO,PORTGD ; PORTGD.SO = 0 to let the firmware know that

; you want to go into ISP Mode
; Set MICROWIRE/PLUS into standard sk mode,

; IDLE = High, SET ACCORDING TO Table 20
sbit SK,PORTGD ; PORTGD.SK=1
sbit SI,PORTGC ; PORTGC.SI = 1

39SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ISP DOWNLOADER www.ti.com

Example 13. Write a Byte to the Flash—Assembly Version: COP8SGR (continued)

ret ; RETURN FROM THE CALL
MICROWIRE_SEND: ; MICROWIRE/PLUS Routine
sbit BUSY,PSW ; SET THE PSW.BUSY BIT TO TURN ON
wait_uwire: ; THE MICROWIRE WAIT ROUTINE
ifbit BUSY,PSW ; IF THE BIT IS ON THEN WAIT
jp wait_uwire ; Otherwise stay in the loop
ret ; End of MICROWIRE/PLUS_SEND
.END MAIN ; End of the Program

Example 14. Write a Byte to the Flash—C Version: COP8SGR

#include "8sgr.h"; // Include file for the COP8SGR Microcontroller
void write_byte(unsigned int addresshi, unsigned int addresslo, usigned int write_data);

// The write byte routine
void microinit(void); // Initialize the MICROWIRE/PLUS initialization
void delay(unsigned int delay_num); // Delay routine
void detect_ready(); // Detect when CBR is ready
void microwire_send(); // The microwire send routine
void main(){ // The main routine
microinit(); // The main initialization routine
pgmtim_set(0x7B); // Call the pgmtim_set routine
write_byte(0,1,5); // Write a byte at location 1 of flash with a 5
detect_ready();
while(1); // Endless loop
}
void pgmtim_set(unsigned int frequency){ // The PGMTIM_SET
SIOR=0x3B; // Routine, Send out the PGMTIM_SET command byte
microwire_send(); // Start up the MICROWIRE/PLUS and send the byte
delay(35); // Wait for 35 NOPs as required in the time delay req.
SIOR=frequency; // Now send out the frequency
microwire_send(); // Start out the MICROWIRE/PLUS
delay(100); // Wait for at least 100 NOPs
} // End of the routine
void write_byte(unsigned int addresshi, unsigned in addresslo, unsigned int write_data){

// The actual function call
SIOR=0x1D; // The command byte value
microwire_send(); // Send it out to the CBR
delay(35); // Delay for 35 Nops
SIOR=addresshi; // Send out the high address byte
microwire_send(); // Tell MICROWIRE/PLUS to send it
delay(100); // Delay for 100 Nops
SIOR=addresslo; // Send out the low address byte
microwire_send(); // Tell MICROWIRE/PLUS to send it
delay(100); // Delay for 100 Nops
microwire_send(); // Now send the actual data to the microcontroller
delay(10); // Wait till the end of 10 cycles
detect_ready(); // Detect if the CBR is ready for additional data
} // end of the write_byte routine
void microinit(){ // MICROWIRE/PLUS Initialization Routine
CNTRL.MSEL=1; // The MICROWIRE/PLUS Control Select Bit is set
PORTGC.SK=1; // Set the MICROWIRE/PLUS into PORTGC.SK=1
PORTGC.SO=1; // MODE: DATA OUT, PORTGC.SO=1
PORTGD.SO=0; // To tell the firmware that you want to go into

// ISP Mode
// Set MICROWIRE/PLUS into standard sk mode, IDLE=High,
// Set According to Table 2

PORTGD.SK=1; // Set IDLE MODE=High
PORTGC.SI=1; // Set the configuration bit
} // End of microinit routine
void detect_ready(){ //Detect if the host is ready to send routine
PORTGC.SK=0; //Set the PORTG.SK into input mode

40 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ISP DOWNLOADER

Example 14. Write a Byte to the Flash—C Version: COP8SGR (continued)

PORTGD.SK=0;
while(PORTGP.SK==0) //While the CLOCK line is still low
NOP; //Stay Here
PORTGC.SK=1; //Otherwise reset
PORTGD.SK=1; //And Exit Routine
} //End of detect_ready()
void delay(unsigned int delay_num){ // The delay routine
unsigned int i; // temp variable
for (i=0;i<delay_num;i++) // The loop control
NOP; // Wait on NOP
} //End of delay routine
void detect_ready(){ // Detect if the host is ready to send routine
PORTGC.SK=0; //Set the PORTG.SK into input mode
PORTGD.SK=0;
while(PORTGP.SK==0) //While the CLOCK line is still low
NOP; //Stay Here
PORTGC.SK=1; //Otherwise reset
PORTGD.SK=1; /And Exit Routine
} //End of the detect ready event
void microwire_send(void){ // The routine that starts the microwire
CNTRL.MSEL=1; // Set the MICROWIRE/PLUS Control Bit
PSW.BUSY=1; // Set the PSW busy bit
while(PSW.BUSY); // Wait until the bit has cleared
} // end of the routine

4.1.7 BLOCK WRITE—Write a Block of Data to the Flash Memory Array

Figure 32 shows the flow for the BLOCK WRITE routine. Example 15 and Example 16 shows the
assembly and C code versions for the routine.

Figure 32. Flow for the Block Write Function

Example 15. The Block Write Sample Code—Assembly Version: COP8SGR

; WRITE A BLOCK OF DATA TO THE FLASH MEMORY
.INCLD cop8sgr.INC ;INCLUDE FILE FOR THE COP8SGR
.sect DATA,REG,ABS=0F0 ;Declare some variables

41SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ISP DOWNLOADER www.ti.com

Example 15. The Block Write Sample Code—Assembly Version: COP8SGR (continued)

DELAY_NUM .DSB 1 ;For the delay routine
ADDRESSHI .DSB 1 ;To hold the high address byte
ADDRESSLO .DSB 1 ;To hold the low address byte
BYTECOUNTLO .DSB 1 ;To hold the number of bytes to send
WRITE_DATA1 .DSB 1 ;To hold the sample data #1
WRITE_DATA2 .DSB 1 ;To hold the sample data #2
WRITE_DATA3 .DSB 1 ;To hold the sample data #3
.SECT CODE,ROM,ABS=0 ;Beginning of the program
MAIN: ;The main function
jsr PGMTIM_SET ;Set the write time
ld A,#006 ;Delay for 6 Nops before jumping
jsr DELAY ;Call the delay routine
jsr MICROINIT ;Initialize the MICROWIRE/PLUS routine
ld WRITE_DATA1,#001 ;Set the first variable WRITE_DATA1=1
ld WRITE_DATA2,#002 ;Set the second var. WRITE_DATA2=2
ld WRITE_DATA3,#003 ;Set the third var. WRITE_DATA3=3
ld ADDRESSHI,#000 ;The high address byte is 0
ld ADDRESSLO,#001 ;The low address byte is 1
ld B,#WRITE_DATA1 ;Set the pointer to the WRITE_DATA1
ld BYTECOUNTLO,#003 ;Set the number of bytes to read as 3
jsr BLOCK_WRITE ;Call the block write routine
ld A,#006 ;Delay for 6 Nops
jsr DELAY ;Call the delay routine
jp MAIN ;Return to the MAIN function
BLOCK_WRITE: ;The BLOCK_WRITE routine definition
ld SIOR,#08F ;The BLOCK_WRITE command byte
jsr MICROWIRE_SEND ;Startup MICROWIRE/PLUS
ld A,#023 ;Delay for 35 Nops as specified in Table 18
jsr DELAY ;Call the delay routine
ld A,ADDRESSHI ;Load the high byte of the address to the
x A,SIOR ;SIOR Buffer
jsr MICROWIRE_SEND ;Send it out to the COP8CBR
ld A,#064 ;Delay for 100 Nops
jsr DELAY ;Call the delay function
ld A, ADDRESSLO ;Load the low byte of the address to the
x A,SIOR ;SIOR Buffer
jsr MICROWIRE_SEND ;Send it out to the COP8CBR
ld A,#064 ;Delay for 100 Nops
jsr DELAY ;Call the delay function
ld A,BYTECOUNTLO ;Load the value of bytecountlo into the

; accumulator
x A,SIOR ;Swap it with the SIOR buffer
jsr MICROWIRE_SEND ;Call MICROWIRE/PLUS to send it out
ld A,#064 ;Setup a delay for 100 Nops
jsr DELAY ;Call the delay function
READ_PT: ;The point where the read loops around
ld A,[B+] ;Load the value where the B pointer is pointing at
x A,SIOR ;It assume the user has already setup the B pointer
jsr MICROWIRE_SEND ;Call the MICROWIRE/PLUS to send it out
ld A,#064 ;Swap it with the SIOR buffer and delays it for 100 Nops
jsr DELAY ;Call the delay routine
drsz BYTECOUNTLO ;Decrement bytecount and jump next if zero
jp READ_PT ;Go back to the read point
jsr DETECT_READY ;Detect if it is ready to send
ret ;End of Block Write Routine
DETECT_READY: ;Variable Host Delay routine
rbit SK,PORTGC ;Set portg.sk into read only mode
rbit SK,PORTGD ;
VARIABLE_DELAY: ;The holding is here
ifbit SK,PORTGP ;If high then return and proceed to next
jp NEXT ;instruction
jp VARIABLE_DELAY ;Otherwise stay here
NEXT: ;Continue the next instruction
sbit SK,PORTGC ;Reset to normal mode when done

42 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ISP DOWNLOADER

Example 15. The Block Write Sample Code—Assembly Version: COP8SGR (continued)

sbit SK,PORTGD ;
ret ;Return to function call
DELAY: ;THE DELAY ROUTINE

; ASSUME THE AMOUNT OF NOPS IS STORED IN
; THE ACCUMULATOR A

x A,DELAY_NUM ;SET THE DELAY_NUM VARIABLE
LOOP_POINT: ;P01NT WHERE THE LOOP ACTUALLY OCCURS
NOP ;THE ACTUAL NOPS
drsz DELAY_NUM ;DECREMENT DELAY_NUM, SKIP NEXT INSTR. IF
jp LOOP_POINT ;ZERO
ret ;End of DELAY
MICROINIT:
sbit MSEL,CNTRL ; CNTRL.MSEL= 1, SET MICROWIRE INTO
sbit SK,PORTGC ; PORTGC.SK = 1, MODE, DATA OUT,
sbit SO,PORTGC ; PORTGC.SO = 1, DATA IN
rbit SO,PORTGD ; PORTGD.SO = 0 to let the firmware know that

; you want to go into ISP Mode
; Set MICROWIRE/PLUS into standard sk mode,
; IDLE = High, SET ACCORDING TO Table 20

sbit SK,PORTGD ; PORTGD.SK=1
sbit SI,PORTGC ; PORTGC.SI = 1
ret ; RETURN FROM THE CALL
PGMTIM_SET: ; THE SET WRITE TIMING ROUTINE
ld SIOR,#03B ; PGMTIM_SET COMMAND Byte
jsr MICROWIRE_SEND ; Send the command byte out
ld A,#023 ; The amount of delay cycles required, For more informa-

; tion see Table 18 regarding required time delay cycles
jsr DELAY ; The delay routine
ld SIOR,# 07B ; Send the Write Time - Assume a 10MHz CKI CBR CKI frequency
jsr MICROWIRE_SEND ; Send the value out to the COP8CBR
ld A,#064 ; The amount of delay cycles required, For more informa-

; tion see Table 18 regarding required time delay cycles
jsr DELAY ; The delay routine
ret ; End of PGMTIM_SET
MICROWIRE_SEND: ; MICROWIRE/PLUS Routine
sbit BUSY,PSW ; SET THE PSW.BUSY BIT TO TURN ON
wait_uwire: ; THE MICROWIRE WAIT ROUTINE
ifbit BUSY,PSW ; IF THE BIT IS ON THEN WAIT
jp wait_uwire ; Otherwise Wait until cleared
ret ; End of MICROWIRE/PLUS_SEND
.END MAIN ; END OF PROGRAM

Example 16. The Block Write Sample Code–C Version: COP8SGR

#include "8sgr.h"; // Include file for the COP8SGR Microcontroller
// The write byte routine

void block_write(unsigned int addresshi, unsigned int addresslo, unsigned int
bytecountlo); void microinit(void); // Initialize the
// MICROWIRE/PLUS initalization
void delay(unsigned int delay_num); // Delay it for 6 Nops
void detect_ready(); // Detect when CBR is ready
void microwire_send(); // The microwire send routine
unsigned int write_data[3]; // Declare three data points for data storage
void main(){ //The main routine
microinit(); //The main initialization routine
pgmtim_set(0x7B); //Call the pgmtim_set routine
write_data[1]=1; //Storage location 1 for the block write routine
write_data[2]=2; //Storage location 2 for the block write routine
write_data[3]=3; //Storage location 3 for the block write routine
block_write(0,1,3); //Write a block of data beginning at flash(001) and
//bytecountlo=3, the assumed array is global with the name

43SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ISP DOWNLOADER www.ti.com

Example 16. The Block Write Sample Code–C Version: COP8SGR (continued)

write_data[]
while(1); //Endless loop
}
void block_write(unsigned int addresshi, unsigned int addresslo, unsigned
int bytecountlo){ //The actual function call
unsigned int i; //A counter variable
SIOR=0x8F; //The command byte value
microwire_send(); //Send it out to the CBR
delay(35); //Delay for 35 Nops
SIOR=addresshi; //Send out the high address byte
microwire_send(); //Tell MICROWIRE/PLUS to send it
delay(100); //Delay for 100 Nops
SIOR=addresslo; //Send out the low address byte
microwire_send(); //Tell MICROWIRE/PLUS to send it
delay(100); //Delay for 100 Nops
microwire_send(); //Now send the actual data to the microcontroller
SIOR=bytecountlo; //Send out the low address byte
microwire_send(); //Tell MICROWIRE/PLUS to send it
delay(100); //Delay for 100 Nops
for (i=0; i<bytecountlo;i++){ //Send the data out until it reaches
bytecountlo
SIOR=write_data[i]; //Send out the low address byte
microwire_send(); //Tell MICROWIRE/PLUS to send it
delay(100); //Delay for 100 Nops
}
detect_ready(); //Detect if the CBR is ready for additional data
} //end of the block write routine
void microinit(){ // MICROWIRE/PLUS Initialization Routine
CNTRL.MSEL=1; // The MICROWIRE/PLUS Control Select Bit is set.
PORTGC.SK=1; // Set the MICROWIRE/PLUS into PORTGC.SK=1
PORTGC.SO=1; // MODE: DATA OUT, PORTGC.SO=1
PORTGD.SO=0; // To tell the firmware that you want to go into

// ISP Mode
// Set MICROWIRE/PLUS into standard sk mode, IDLE=High,
// Set According to Table 2

PORTGD.SK=1; // Set IDLE MODE=High
PORTGC.SI=1; // Set the configuration bit
} // End of microinit routine
void detect_ready(){ // Detect if the host is ready to continue
PORTGC.SK=0; // Set the PORTG.SK into input mode
PORTGD.SK=0;
while(PORTGP.SK==0) // While the CLOCK line is still low
NOP; // Stay Here
PORTGC.SK=1; // Otherwise reset
PORTGD.SK=1; // And Exit Routine
} // End of detect_ready()
void pgmtim_set(unsigned int frequency){ // The PGMTIM_SET
SIOR=0x3B; // Routine, Send out the PGMTIM_SET command byte
microwire_send(); // Start up the MICROWIRE/PLUS and send the byte
delay(35); // Wait for 35 NOPs as required in the time delay req.
SIOR=frequency; // Now send out the frequency
microwire_send(); // Start out the MICROWIRE/PLUS
delay(100);
} // End of the routine
void microwire_send(void){ // The routine that starts the microwire
CNTRL.MSEL=1; // Set the MICROWIRE/PLUS Control Bit
PSW.BUSY=1; // Set the PSW busy bit
while(PSW.BUSY); // Wait until the bit has cleared
} // end of the routine

44 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ISP DOWNLOADER

4.1.8 BLOCK_READ_Read a Block from the Flash Memory Array

Figure 33 shows the flow for the BLOCK READ routine. Example 17 and Example 18 shows the assembly
and C code versions for the routine.

Figure 33. Flow for the BLOCK_READ Function

Example 17. The MICROWIRE/PLUS BLOCK_READ Routine—Assembly Routine: COP8SGR

;READ A BLOCK OF DATA FROM THE FLASH MEMORY
.INCLD cop8sgr.INC ;INCLUDE FILE FOR THE COP8SGR
.sect DATA,REG,ABS=0F0 ;Declare some variables
DELAY_NUM .DSB 1 ;For the delay routine
ADDRESSHI .DSB 1 ;To hold the high address byte
ADDRESSLO .DSB 1 ;To hold the low address byte
BYTECOUNTLO .DSB 1 ;To hold the lower num of bytes to rec.
BYTECOUNTHI .DSB 1 ;To hold the upper num of bytes to rec.
READ_DATA1 .DSB 1 ;To hold the sample data #1
READ_DATA2 .DSB 1 ;To hold the sample data #2
READ_DATA3 .DSB 1 ;To hold the sample data #3
.SECT CODE,ROM,ABS=0 ;Beginning of the program
MAIN: ;The main function
jsr MICROINIT ;Initialize the MICROWIRE/PLUS routine
ld ADDRESSHI,#000 ;The high address byte is 0
ld ADDRESSLO,#001 ;The low address byte is 1
ld B,#READ_DATA1 ;Set the pointer to the READ_DATA1
ld BYTECOUNTLO,#003 ;Set the lower num of bytes to read as 3
ld BYTECOUNTHI,#000 ;Set the up num of bytes to read
jsr BLOCK_WRITE ;Call the block write routine
ld A,#006 ;Delay for 6 Nops
jsr DELAY ;Call the delay routine
jp MAIN ;Return to the MAIN function
BLOCK_READ: ;The BLOCK_WRITE routine definition
ld SIOR,#0A3 ;The BLOCK_WRITE command byte
jsr MICROWIRE_SEND ;Start-up the MICROWIRE/PLUS

45SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ISP DOWNLOADER www.ti.com

Example 17. The MICROWIRE/PLUS BLOCK_READ Routine—Assembly Routine: COP8SGR (continued)

ld A,#023 ;Delay for 35 Nops as specified in Table 18
jsr DELAY ;Call the delay routine
ld A,ADDRESSHI ;Load the high byte of the address to the
x A,SIOR ;SIOR Buffer
jsr MICROWIRE_SEND ;Send it out to the COP8CBR
ld A,#064 ;Delay for 100 Nops
jsr DELAY ;Call the delay function
ld A, ADDRESSLO ;Load the low byte of the address to the
x A,SIOR ;SIOR Buffer
jsr MICROWIRE_SEND ;Send it out to the COP8CBR
ld A,#064 ;Delay for 100 Nops
jsr DELAY ;Call the delay function
ld A,BYTECOUNTHI ;Load the value of bytecountlo into the

;accumulator
x A,SIOR ;Swap it with the SIOR buffer
jsr MICROWIRE_SEND ;Call MICROWIRE/PLUS to send it out
ld A,#064 ;Setup a delay for 100 Nops
jsr DELAY ;Call the delay function
ld A,BYTECOUNTLO ;Load the value of bytecountlo into the accumulator
x A,SIOR ;Swap it with the SIOR buffer
jsr MICROWIRE_SEND ;Call MICROWIRE/PLUS to send it out
ld A,#064 ;Setup a delay for 100 Nops
jsr DELAY ;Call the delay function
SAVE_PT: ;The point where the read loops around
ld A,#08C ;First wait until the delay is ready, 140 NOPs
jsr DELAY ;by calling the delay routine
jsr MICROWIRE_SEND ;Tell MICROWIRE/PLUS to send the data over
ld A,[B+] ;Load the value where the B pointer is pointing at
x A,SIOR ;It assumes the user has already setup the B pointer
drsz BYTECOUNTLO ;Decrement bytecount and jump next if zero
jp READ_PT ;Go back to the read point
jsr DETECT_READY ;Detect if it is ready to send
ret ;Return to the call
DETECT_READY: ;Variable Host Delay routine
rbit SK,PORTGC ;Set portg.sk into read only mode
rbit SK,PORTGD ;
VARIABLE_DELAY: ;The holding is here
ifbit SK,PORTGP ;If high then return and proceed to next
jp NEXT ;instruction
jp VARIABLE_DELAY ;Otherwise stay here
NEXT: ;Continue the next instruction
sbit SK,PORTGC ;Reset to normal mode when done
sbit SK,PORTGD ;
ret ;Return to function call
DELAY: ;THE DELAY ROUTINE

;ASSUME THE AMOUNT OF NOPS IS STORED IN
;THE ACCUMULATOR A

x A,DELAY_NUM ;SET THE DELAY_NUM VARIABLE
LOOP_POINT: ;P01NT WHERE THE LOOP ACTUALLY OCCURS
NOP ;THE ACTUAL NOPS
drsz DELAY_NUM ;DECREMENT DELAY_NUM, SKIP NEXT INSTR. IF
jp LOOP_POINT ;ZERO
ret ;End of DELAY
MICROINIT:
sbit MSEL,CNTRL ;CNTRL.MSEL= 1, SET MICROWIRE INTO
sbit SK,PORTGC ;PORTGC.SK = 1, MODE, DATA OUT,
sbit SO,PORTGC ;PORTGC.SO = 1, DATA IN
rbit SO,PORTGD ;PORTGD.SO = 0 to let the firmware know that

;you want to go into ISP Mode
;Set MICROWIRE/PLUS into standard sk mode,
;IDLE = High, SET ACCORDING TO Table 20

sbit SK,PORTGD ;PORTGD.SK=1
sbit SI,PORTGC ;PORTGC.SI = 1
ret ;RETURN FROM THE CALL

46 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ISP DOWNLOADER

Example 17. The MICROWIRE/PLUS BLOCK_READ Routine—Assembly Routine: COP8SGR (continued)

MICROWIRE_SEND: ;MICROWIRE/PLUS Send Routine
sbit BUSY,PSW ;SET THE PSW.BUSY BIT TO TURN ON
wait_uwire: ;THE MICROWIRE WAIT ROUTINE
ifbit BUSY,PSW ;IF THE BIT IS ON THEN WAIT
jp wait_uwire ;STAY MICROLOOP IF NOT DOT
ret ;End of MICROWIRE/PLUS_SEND
.END MAIN ;END OF PROGRAM

Example 18. The MICROWIRE/PLUS BLOCK_READ Routine—C Version: COP8SGR

#include "8sgr.h"; // Include file for the COP8SGR Microcontroller
// The write byte routine
void block_read(unsigned int addresshi, unsigned int addresslo, unsigned int bytecounthi,
unsigned int bytecounthi);
void microinit(void); // Initialize the

// MICROWIRE/PLUS initalization
void delay(unsigned int delay_num); // Delay it for 6 Nops
void detect_ready(); // Detect when CBR is ready
void microwire_send();
unsigned int write_data[3]; //Declare three data points for data storage
void main(){ //The main routine
microinit(); //The main initialization routine
pgmtim_set(0x7B); //Call the pgmtim_set routine
write_data[1]=1; //Storage location 1 for the block write routine
write_data[2]=2; //Storage location 2 for the block write routine
write_data[3]=3; //Storage location 3 for the block write routine
block_write(0,1,0,3); //Write a block of data beginning at flash(001) and

//bytecounthi=0 and bytecountlo=3, the assumed array
//is global with the name write_data[]

while(1); //Endless loop
}
void block_read(unsigned int addresshi, unsigned in addresslo, unsigned int bytecounthi,
unsigned int bytecountlo){ //The actual

//function call
unsigned int i, j ; //Counter Variables
SIOR=0x8F; //The command byte value
microwire_send(); //Send it out to the CBR
delay(35); //Delay for 35 Nops
SIOR=addresshi; //Send out the high address byte
microwire_send(); //Tell MICROWIRE/PLUS to send it
delay(100); //Delay for 100 Nops
SIOR=addresslo; //Send out the low address byte
microwire_send(); //Tell MICROWIRE/PLUS to send it
delay(100); //Delay for 100 Nops
microwire_send(); //Now send the actual data to the microcontroller
SIOR=bytecounthi; //Send out the high address byte
microwire_send(); //Tell MICROWIRE/PLUS to send it
delay(100); //Delay for 100 Nops
SIOR=bytecountlo; // Send out the low address byte
microwire_send(); // Tell MICROWIRE/PLUS to send it
delay(100); // Delay for 100 Nops
for (j=0;j<bytecountlo;j++){ // Send the data out until it reaches
bytecountlo
delay(140); // Delay for 140 Nops
read_data[i]=SIOR; // Send out the low address byte
microwire_send(); // Tell MICROWIRE/PLUS to send it
}
detect_ready(); // Detect if the CBR is ready for additional data
} // end of the block write routine
void microinit(){ // MICROWIRE/PLUS Initialization Routine
CNTRL.MSEL=1; // The MICROWIRE/PLUS Control Select Bit is set.

47SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ISP DOWNLOADER www.ti.com

Example 18. The MICROWIRE/PLUS BLOCK_READ Routine—C Version: COP8SGR (continued)

PORTGC.SK=1; // Set the MICROWIRE/PLUS into PORTGC.SK=1
PORTGC.SO=1; // MODE: DATA OUT, PORTGC.SO=1
PORTGD.SO=0; // To tell the firmware that you want to go into

// ISP Mode
// Set MICROWIRE/PLUS into standard sk mode, IDLE=High,
// Set According to Table 2

PORTGD.SK=1; // Set IDLE MODE=High
PORTGC.SI=1; // Set the configuration bit
} // End of microinit routine
void microwire_send(void){ // The routine that starts the microwire
CNTRL.MSEL=1; // Set the MICROWIRE/PLUS Control Bit
PSW.BUSY=1; // Set the PSW busy bit
while(PSW.BUSY); // Wait until the bit has cleared
} // end of the routine

4.1.9 EXIT—Reset the Microcontroller

Figure 34 shows the flow for the EXIT routine. Example 19 Example 20 shows the assembly and C
version for the routine.

Figure 34. Flow for the Exit Routine

Example 19. The MICROWIRE/PLUS Exit Routine—Assembly Routine: COP8SGR

;Cause the microcontroller to perform a reset
.INCLD cop8sgr.INC ;INCLUDE FILE FOR THE COP8SGR
.sect DATA,REG,ABS=0F0 ;Declare some variables
DELAY_NUM .DSB 1 ;For the delay routine
.SECT CODE,ROM,ABS=0 ;Begining of the program
MAIN: ;The main function
jsr MICROINIT ;Initialize the MICROWIRE/PLUS routine
jsr EXIT ;Jump to the exit routine
jp MAIN ;Return to the MAIN function
EXIT: ;The MICROWIRE/PLUS send routine
ld SIOR,#0D3 ;The MICROWIRE/PLUS command byte
jsr MICROWIRE_SEND ;Tell the MICROWIRE/PLUS to send the byte out
ret ;End of the Exit routine
MICROINIT:
sbit MSEL,CNTRL ;CNTRL.MSEL= 1, SET MICROWIRE INTO
sbit SK,PORTGC ;PORTGC.SK = 1, MODE, DATA OUT,
sbit SO,PORTGC ;PORTGC.SO = 1, DATA IN
rbit SO,PORTGD ;PORTGD.SO = 0 to let the firmware know that

;you want to go into ISP Mode
;Set MICROWIRE/PLUS into standard sk mode,
;IDLE = High, SET ACCORDING TO Table 20

sbit SK,PORTGD ;PORTGD.SK=1

48 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ISP DOWNLOADER

Example 19. The MICROWIRE/PLUS Exit Routine—Assembly Routine: COP8SGR (continued)

sbit SI,PORTGC ;PORTGC.SI = 1
ret ;RETURN FROM THE CALL
MICROWIRE_SEND: ;MICROWIRE/PLUS Send Routine
sbit BUSY,PSW ;Set the PSW.BUSY bit to turn on
wait_uwire: ;The MICROWIRE/PLUS wait routine
ifbit BUSY,PSW ;If the busy bit is on then wait.
jp wait_uwire ;Otherwise wait here until it has cleared
ret ;End of MICROWIRE/PLUS_SEND
.END MAIN ;END OF PROGRAM

Example 20. The MICROWIRE/PLUS Exit Routine—C Routine: COP8SGR

#include "8sgr.h"; //Include file for the COP8SGR Microcontroller
//The write byte routine

void block_read(unsigned int addresshi, unsigned int addresslo, unsigned int bytecounthi,
unsigned int bytecounthi);
void microinit(void); //Initialize the

//MICROWIRE/PLUS initialization
void delay(unsigned int delay_num); //Delay it for 6 Nops
void detect_ready(); //Detect when CBR is ready
void exit();
unsigned int write_data[3]; //Declare three data points for data storage
void microwire_send();
void main(){ //The main routine
microinit(); //The main initialization routine
exit(); //Call the exit routine
while(1); //Endless loop
}
void exit(){ //The MICROWIRE/PLUS exit routine
SIOR=0xD3; //The exit command byte
microwire_send(); //Tell MICROWIRE/PLUS to send it out
}
void block_read(unsigned int addresshi, unsigned in addresslo, unsigned int bytecounhi,
unsigned int bytecountlo){ //The actual

//function call
unsigned int i, j ; //Counter Variables
SIOR=0x8F; //The command byte value
microwire_send(); //Send it out to the CBR
delay(35); /Delay for 35 Nops
SIOR=addresshi; //Send out the high address byte
microwire_send(); //Tell MICROWIRE/PLUS to send it
delay(100); //Delay for 100 Nops
SIOR=addresslo; //Send out the low address byte
microwire_send(); //Tell MICROWIRE/PLUS to send it
delay(100); //Delay for 100 Nops
microwire_send(); //Now send the actual data to the microcontroller
SIOR=bytecounthi; //Send out the high address byte
microwire_send(); /Tell MICROWIRE/PLUS to send it
delay(100); //Delay for 100 Nops
}
void microinit(){ // MICROWIRE/PLUS Initialization Routine
CNTRL.MSEL=1; // The MICROWIRE/PLUS Control Select Bit is set.
PORTGC.SK=1; // Set the MICROWIRE/PLUS into PORTGC.SK=1
PORTGC.SO=1; // MODE: DATA OUT, PORTGC.SO=1
PORTGD.SO=0; // To tell the firmware that you want to go into

// ISP Mode
// Set MICROWIRE/PLUS into standard sk mode, IDLE=High,
// Set According to Table 2

PORTGD.SK=1; // Set IDLE MODE=High
PORTGC.SI=1; // Set the configuration bit
} // End of microinit routine

49SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ISP DOWNLOADER www.ti.com

Example 20. The MICROWIRE/PLUS Exit Routine—C Routine: COP8SGR (continued)

void microwire_send(void){ // The routine that starts the microwire
CNTRL.MSEL= // Set the PSW busy bit
while(PSW.BUSY); // Wait until the bit has cleared
} // end of the routine

4.2 USER SUPPORT BLOCK

This section deals with the User Support Block. Entry point locations are shown in Table 20. Register
locations are shown in Table 21. Registers are shown in Table 22. In addition, each description contains
details about security dependencies. There are no checks made for the validity of the ISP Address and the
BYTECOUNT register. Data transfers will take place from whatever RAM locations are specified by the
segment register.

4.2.1 JSRB LABELS User Routines

To execute commands listed in Table 20, the JSRB instruction must be used. In order for correct behavior,
a “KEY” must be set prior to executing the JSRB instruction. The PGMTIM register must be set prior to
any write or erase commands. It is up to the user to enforce security when using these commands. At the
end of each command, a RETF is issued to return control back to the user code in flash memory.

Table 20. User Entry Points and
Their Associated Labels

Command/Labels ROM ADDRESS

cpgerase 0x17

cmserase 0x1A

creadbf 0x11

vblockr 0x26

cwritebf 0x14

vblockw 0x23

exit 0x62

Table 21. Registers

Register Name Purpose RAM LOCATION

ISPADHI High Address of Flash Memory 0xA9

ISPADLO Low Address of Flash Memory 0xA8

ISPWR Must store the byte to be written into this register before jumping into the write byte routine. 0xAB

ISPRD Data will be returned to this register after the read byte routine execution. 0xAA

ISPKEY Register which will hold the KEY value. The KEY value is utilized to verify that a JSRB 0xE2
execution is requested in the next 6 instruction cycles.

BYTECOUNTLO Holds the low byte of the counter. 0xF1

SIOR MICROWIRE/PLUS Buffer 0xE9

PGMTIM Write Timing Register 0xE1

Confirmation The code used to verify that a mass erase was requested, Confirmation Code must be Accumulator A
Code loaded prior to the jump to the cmserase routine.

KEY Must write to the ISPKEY register before a JSRB executed. 0x98

50 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ISP DOWNLOADER

Table 22. User Entry Points

Command/ Function Parameters Return DataLabel

cpgerase Page Erase Register ISPADHI is loaded by the user with N/A (A page of memory beginning at
the high byte of the address. ISPADHI, ISPADLO will be erased).
Register ISPADLO is loaded by the user with
the low byte of the address.

cmserase Mass Erase Accumulator A contains the confirmation key N/A (The entire Flash Memory will be
0x55. erased). The Boot ROM will return the user to

the MICROWIRE/PLUS Boot ISP since the
Flash is completely erased.

creadbf Read Byte Register ISPADHI is loaded by the user with Data Byte in Register ISPRD.
the high byte of the address.
Register ISPADLO is loaded by the user with
the low byte of the address.

cblockr Block Read Register ISPADHI is loaded by the user with n Data Bytes if 0 ≤ n ≤ 255
the high byte of the address.
Register ISPADLO is loaded by the user with Data will be returned beginning at a location
the low byte of the address. pointed to by the RAM address in X.
X pointer contains the beginning RAM
address where the result(s) will be returned.
Register BYTECOUNTLO contains the
number of n bytes to read (0 ≤ n ≤ 255).
Register BYTECOUNTHI is ignored.
It is up to the user to setup the segment
register.

cwritebf Write Byte Register ISPADHI is loaded by the user with N/A
the high byte of the address.
Register ISPADLO is loaded by the user with
the low byte of the address.
Register ISPWR contains the Data Byte to be
written.

cblockw Block Write Register ISPADHI is loaded by the user with N/A
the high byte of the address.
Register ISPADLO is loaded by the user with
the low byte of the address.
Register BYTECOUNTLO contains the
number of n bytes to write (0 ≤ n ≤ 16)
X pointer contains the beginning RAM
address of the data to be written.
It is the user's responsibility to initialize the
segment register.
Data must be placed with-in the 1/2 page
segment (64 byte for 32k devices and 32
byte for 1k and 4k devices). This limitation is
due to the multi-byte write limitation.

exit EXIT N/A N/A (Device will Reset).

4.3 Interrupt Lock Out Time

Interrupts are inhibited during execution from Boot ROM. Table 23 shows the amount of time that the user
is LOCKED OUT of their interrupt service routine(s). The servicing of interrupts will be resumed once the
ISP Boot ROM returns the user to the Flash. Any interrupt(s) that are pending during user ISP will be
serviced after the user has returned to the Flash area. The user should take into account the amount of
time they are locked out of their interrupts. Some of the LOCK OUT times are dependent upon the
PGMTIM. PGMTIM is a value entered into the PGMTIM register (refer to Section 3.9.1 regarding
PGMTIM). Although Section 3.9.1 pertains to MICROWIRE/PLUS commands, the user code MUST set
the PGMTIM register before any write routines occur (e.g., a LD PGMTIM,#06F is needed to specify a CKI
frequency of 6 MHz).

51SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ISP DOWNLOADER www.ti.com

Table 23. Required Interrupt Lockout Time (in Instruction Cycles)

Flash Routines (User Accessible) Minimum Interrupt Latency Time (In Instruction Cycles)

cppgerase 120 + 100*PGMTIM (1)

cmserase 120 + 300*PGMTIM (1)

creadbf 100

cblockr 140/BYTE

cblockw 100 + 3.5*PGMTIM/BYTE (1) + 68/BYTE

cwritebf 168 + 3.5*PGMTIM (1)

exit 100
(1) Refer to Section 3.9.1 for additional information on the PGMTIM variable.

4.4 cpgerase—User Entry Point: Erase a Page of Flash Memory

This routine requires that ISPADHI and ISPADLO are loaded before the jump. A KEY is a number which
must be loaded into the KEY Register (location at 0xE2) before issuing a JSRB instruction. Table 1-5
shows the possible format of the KEY number. Loading the KEY, and a “JSRB cpgerase” are all that is
needed to complete the call to the routine. No acknowledgment will be sent back regarding the operation.
For details regarding the registers ISPADHI and ISPADLO please refer to Table 21. See Table 25 for
details on the number of endurance cycles and the number of page erase commands that should be
issued prior to writing data into the erase page. Since this is a user command, this routine will work
regardless of security (security independent). Example 21 is an example of how to use the cpgerase
function—assembly version. Example 22 shows the C version of the pgerase() function. Table 24 shows
the necessary resources needed to run the routine.

Example 21. SAMPLE cpgerase (PAGE ERASE) EXECUTION—Assembly Version

; ERASE A PAGE FROM FLASH, 0x0080
; ASSUME A 6 MHz CKI FREQUENCY
.INCLD COP8CBR.INC ; INCLUDE FILE FOR THE COP8CBR
.sect code,rom,abs=0 ; BEGINING CODE SPACE
MAIN: ; THE MAIN FUNCTION
LD PGMTIM,#06F ; FOR A 10 MHz CLOCK (DEFAULT)
LD ISPADHI,#000 ; LOAD THE HIGH BYTE ADDRESS
LD ISPADLO,#080 ; LOAD THE LOW BYTE ADDRESS
LD ISPKEY,#098 ; LOAD THE KEY
JSRB cpgserase ; CALL THE ROUTINE
.END MAIN ; END OF THE PROGRAM

Example 22. SAMPLE pgerase(unsigned long) EXECUTION—C Version

#include "8cbr.h"; // Include file for the COP8CBR Microcontroller
#include "flash_OP.h"; // Include file that contain the flash routines
void main(){
PGMTIM=0x6F; // For a 6 MHz CKI Frequency
page_erase(0x80); // Call the erase routine

Table 24. Resource Utilization for the Command: cpgerase (Page Erase)

Returned Interrupt StackInput Accumulator B Pointer X Pointer WD JSRB/Key Data/ Lock UsageData A Used? Used? Used? Serviced Required Location Out Cycles (in Bytes)

ISPADHI YES YES NO YES YES NONE 120 +100* 4
ISPADLO PGMTIM (1)

(1) Refer to Section 3.9.1 for additional information on the PGMTIM variable.

52 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ISP DOWNLOADER

Table 25. Typical Endurance Cycles vs. Erase Time and Temperature

Low End of Operating Temp Range
Erase Time in ms

-40°C -20°C 0°C 25°C

1 60k 60k 60k 100k

2 60k 60k 60k 100k

3 60k 60k 60k 100k

4 60k 60k 100k 100k

5 70k 70k 100k 100k

6 80k 80k 100k 100k

7 90k 90k 100k 100k

8 100k 100k 100k 100k

4.5 cmserase—User Entry Point: Mass Erase the Flash Memory

This routine requires the Accumulator A to contain 0x55 prior to the jump. The value 0x55 is used to verify
that a mass erase was requested. Loading the KEY, “LD A,#055”, and a “JSRB cmserase” are all that is
needed to complete the function. No acknowledgment will be sent back regarding the operation. Since this
is a user command, this routine will work regardless of security (security independent). After a mass erase
is executed the user will be brought back (after 112 instruction cycles) to the beginning of the Boot ROM.
Control and execution will be returned to the MICROWIRE/PLUS ISP handling routine. Table 24 shows
the necessary resources needed to run the routine. Example 23 is an example of how to use the
cmserase function—assembly version. Example 24 shows the C version of the mass_erase() function.
Table 26 shows the necessary resources needed to run the routine.

Example 23. SAMPLE cmserase (MASS ERASE) EXECUTION—Assembly Version

; MASS ERASE THE FLASH
; ASSUME A 6 MHz CKI FREQUENCY
.INCLD COP8CBR.INC ; INCLUDE FILE FOR THE COP8CBR
.sect code,rom,abs=0 ; BEGINING CODE SPACE
MAIN: ; THE MAIN FUNCTION
LD PGMTIM,#06F ; FOR A 6 MHz CLOCK
LD ISPADHI,#055 ; LOAD THE CONFIRMATION CODE
LD ISPKEY,#098 ; LOAD THE KEY
JSRB cmserase ; CALL THE FUNCTION
.END MAIN ; END OF THE PROGRAM

Example 24. SAMPLE mass_erase() EXECUTION—C Version

#include "8cbr.h"; // Include file for the COP8CBR Microcontroller
#include "flash_OP.h"; // Include file that contain the flash routines
void main(){
PGMTIM=06F; // For a 10 MHz CKI Frequency
mass_erase(); // Call the erase routine
}

53SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ISP DOWNLOADER www.ti.com

Table 26. Resource Utilization for the Command: cmserase (Mass Erase)

Returned Interrupt StackInput Accumulator B Pointer X Pointer WD JSRB/Key Data/ Lock UsageData A Used? Used? Used? Serviced Required Location Out Cycles (in Bytes)

Confirmation YES YES NO YES YES NONE 120 +300* 6
Code PGMTIM (1)

""0x55"" is
Loaded into
Accumulator

A
(1) Refer to Section 3.9.1 for additional information on the PGMTIM variable.

4.6 creadbf—User Entry Point: Read a Byte of Flash Memory

This routine requires that ISPADHI and ISPADLO are loaded before the jump. Loading the KEY, and a
“JSRB creadbf” are all that is needed to complete the call to the routine. Data will be returned to the
ISPRD Register. No acknowledgment will be sent back regarding the operation. For details regarding the
registers ISPADHI, ISPADLO, and ISPRD please refer to Table 21. Since this is a user command, this
routine will work regardless of security (security independent). Example 25 is an example of how to use
the creadbf function—assembly version. Example 26 shows the C version of the readbf() function.
Table 24 shows the necessary resources needed to run the routine.

Example 25. SAMPLE unsigned int creadbf (Read a Byte of Flash Memory) EXECUTION

; READ A BYTE FROM THE FLASH [0001]
.INCLD COP8CBR.INC ; INCLUDE FILE FOR THE COP8CBR
.sect code,rom,abs=0 ; BEGINING CODE SPACE
MAIN: ; BEGINING OF THE CODE
LD ISPADHI,#000 ; LOAD THE HIGH ADDRESS BYTE
LD ISPADLO,#001 ; LOAD THE LOW ADDRESS BYTE
LD ISPKEY,#098 ; LOAD THE KEY
JSRB creadbf ; CALL THE FUNCTION
; TRANSFER RAM[5]=FLASH[0001]
LD A,ISPRD ; LOAD THE RESULT ONTO THE ACCUMULATOR
X A,005 ; TRANSFER IT TO RAM[0x05]
.END MAIN ; END OF PROGRAM

Example 26. SAMPLE readbf(unsigned long) EXECUTION—C Version

#include "8cbr.h"; // Include file for the Flash Microcontroller
#include "flash_OP.h"; // Include file that contain the flash routines
void main(){
unsigned int storage[10];

// read a byte from flash location 0x0001 and store it
storage[5]
storage[5]=readbf(0x01);
}

Table 27. Resource Utilization for the Command: creadbf (Read a Byte of Flash Memory)

Returned Interrupt StackInput Accumulator B Pointer X Pointer WD JSRB/Key Data/ Lock UsageData A Used? Used? Used? Serviced Required Location Out Cycles (in Bytes)

ISPADHI YES YES NO YES YES Data/ISPRD 100 4
ISPADLO Register

54 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ISP DOWNLOADER

4.7 cblockr—User Entry Point: Read a Block of Flash Memory

The cblockr routine will read multiple bytes from the Flash memory. ISPADHI and ISPADLO are assumed
to be loaded before the jump. Register BYTECOUNTLO is also assumed to be loaded. The X pointer
contains the address where the data will be placed. The BYTECOUNTLO register is used by the
microcontroller to send back N number of bytes (i.e., N=BYTECOUNTLO). If N=0 then the firmware will
abort. Data is saved into the RAM address pointed to by the X pointer. It is up to the user to setup the
segmentation register. This routine is capable of reading up to 256 bytes of flash memory (limited due to
the memory available) to RAM. This routine is limited to reading blocks of 128 bytes due to the RAM
segmentation. If an attempt to read greater than 128 bytes is issued, the firmware will begin to write to
RAM locations beginning at 0x80 (possibly corrupting the I/O and CONTROL REGISTERS) and above.
After the X pointer and the BYTECOUNTLO is set, the KEY must be loaded, and a “JSRB cblockr” must
be issued. No acknowledgment will be sent back regarding the operation. For details regarding the
registers ISPADHI, ISPADLO, and BYTECOUNTLO please refer to Table 21. Since this is a user
command, this routine will work regardless of security (security independent). Example 27 is an example
of how to use the cblockr function—assembly version. Example 28 shows the C version of the
block_read() function. Table 28 shows the necessary resources needed to run the routine.

Example 27. SAMPLE cblockr (Read a Block of Flash Memory) EXECUTION —Assembly Version

; BLOCK READ, READ 3 BYTE(S) BEGINING
; AT FLASH [0001] AND PLACE DATA AT
; RAM[0x0D]
.INCLD COP8CBR.INC ; INCLUDE FILE FOR THE COP8CBR
.sect code,rom,abs=0 ; BEGINING CODE SPACE
MAIN: ; THE BEGINING OF THE MAIN ROUTINE
LD ISPADHI,#000 ; THE HIGH ADDRESS BYTE
LD ISPADLO,#001 ; THE LOW ADDRESS BYTE
LD S,#000 ; SETUP OF THE SEGMENTATION REGISTER
LD X,00D ; THE RESULTS ARE FROM RAM[0x0D]
LD BYTECOUNTLO,#003 ; THE NUMBER OF BYTES TO WRITE
LD ISPKEY,#098 ; LOAD THE KEY
JSRB cblockr ; CALL THE ROUTINE
.END MAIN ; END OF PROGRAM

Example 28. SAMPLE block_read(unsigned long, unsigned int, unsigned long)—C Version

#include "8cbr.h"; // Include file for the COP8CBR Microcontroller
#include "flash_OP.h"; // Include file that contain the flash routines
void main(){

// storage location with room for 10 elements
unsigned int storage[10] @ 0x0D;

// read 3 bytes from flash, beginning at location 0x0001
// and store it in storage memory array beginning at 0x0D.

block_readf(0x01,3,0x0D);
}

Table 28. Resource Utilization for the Command: cblockr (Block Read of the Flash Memory)

Returned Interrupt StackInput Accumulator B Pointer X Pointer WD JSRB/Key Data/ Lock UsageData A Used? Used? Used? Serviced Required Location Out Cycles (in Bytes)

BYTCONTLO YES YES YES YES YES DATA/RAM[X 140/BYTE 6
ISPADHI]
ISPADLO

55SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ISP DOWNLOADER www.ti.com

4.8 cblockw—User Entry Point: Write to a Block Flash Memory

ISPADHI and ISPADLO must be set by the user prior to the jump command. The BYTECOUNTLO
variable is used by the microcontroller to transfer N number of bytes (i.e, N=BYTECOUNTLO). This
variable also must be set prior to the jump command. The maximum number of bytes that can be written
is 16. If the number of bytes exceed 16, then the user may not be guaranteed that all of the bytes were
written. The data cannot cross 1/2 page boundaries (i.e. all data must be within the 64 bytes segment for
32k devices and within 32 bytes for 4k, and 1k devices). If N=0 then the firmware will abort. Data is read
from the RAM address pointed to by the X pointer. It is up to the user to setup the segmentation register.
Data transfers will take place from whatever the RAM locations are specified by the segment register.
However, if the X pointer exceeds the top of the segment, the firmware will begin to transfer from 0x80
(I/O and CONTROL REGISTERS) and above. After the X pointer and the BYTECOUNTLO is set, the KEY
must be loaded, and a “JSRB cblockw” must be issued. For details regarding the ISPADHI, ISPADLO, and
BYTECOUNTLO registers please refer to Table 21. Since this is a user command, this routine will work
regardless of security (security independent). Example 29 is an example of how to use the cblockw
function—assembly version. Example 30 shows the C version of the block_write() function. Table 29
shows the necessary resources needed to run the routine.

Example 29. SAMPLE cblockw (Write to a Block of Flash Memory) EXECUTION

; BLOCK WRITE, READ 16 BYTE(S) BEGINING
: AT RAM[008] AND PLACE DATA BEGINING AT FLASH [0080] ; ASSUME A 6

MHz CKI FREQUENCY
.INCLD COP8CBR.INC ; INCLUDE FILE FOR THE COP8CBR .sect code,rom,abs=0 ;

BEGINING CODE SPACE
MAIN: ; MAIN PROGRAM CODE SPACE

LD PGMTIM,#06F ; FOR A 6 MHz CLOCK
LD ISPADHI,#000 ; THE HIGH ADDRESS BYTE
LD ISPADLO,#080 ; THE LOW ADDRESS BYTE
LD S,#000 ; SETUP OF THE SEGMENTATION REGISTER
LD X,#008 ; THE DATA TO BE WRITTEN BEGINS AT RAM[0x08] LD

BYTECOUNTLO,#010 ; THE NUMBER OF BYTES TO WRITE
LD ISPKEY,#098 ; LOAD THE KEY
JSRB cblockw ; CALL THE ROUTINE
.END MAIN ;END OF PROGRAM

Example 30. SAMPLE block_writef(unsigned long, unsigned int, unsigned long)—C Version

#include "8cbr.h"; // Include file for the COP8CBR Microcontroller
#include "flash_OP.h"; // Include file that contain the flash routines
void main(){
PGMTIM=0x6F; // Assume A 6 MHz CKI Frequency

// storage location with room for 20 elements
unsigned int storage[20] @ 0x0D;

// write 16 bytes from the storage array to flash, beginning at
// location 0x0D in RAM to the starting location 0x0080 in the flash

block_writef(0x80,16,0x0D);
}

Table 29. Resource Utilization for the Command: cblockw (Write to a Block of Flash Memory)

Interrupt StackInput Accumulator B Pointer X Pointer WD JSRB/Key Return Lock UsageData A Used? Used? Used? Serviced Required Data Out Cycles (in Bytes)

BYTECOUNTLO YES YES YES YES YES NONE 100 + 6
Data is 3.5*PGM-

Assumed to TIME/BYTE
be in the RAM[X] + 68/BYTE (1)

Location(s)
(1) Refer to Section 3.9.1 for additional information on the PGMTIM variable.

56 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com ISP DOWNLOADER

4.9 cwritebf—User Entry Point: Write a Byte to the Flash Memory

This routine requires that ISPADHI, ISPADLO, and ISPWR registers all be loaded prior to the jump.
Loading the KEY and a “JSRB cwritebf” are all that is needed to complete this call. No acknowledgment
will be sent back regarding the operation. For details regarding the ISPADHI, ISPADLO, and ISPRD
registers please refer to Table 21. Since this is a user command, this routine will work regardless of
security (security independent). Example 31 is an example of how to use the cwritebf function—assembly
version. Example 32 shows the C version of the writebf() function. Table 30 shows the necessary
resources needed to run the routine.

Example 31. SAMPLE cwritebf (Write a Byte to Flash Memory) EXECUTION—Assembly Version

; WRITE A BYTE TO THE FLASH [000A]=5
; ASSUME A 10 MHz CKI FREQUENCY

.INCLD COP8CBR.INC ; INCLUDE FILE FOR THE COP8CBR .sect code,rom,abs=0 ;
BEGINING CODE SPACE
MAIN: ; THE MAIN ROUTINE

LD PGMTIM,#06F ; FOR A 6 MHz CLOCK
LD ISPWR,#005 ; LOAD THE WRITE REGISTER WITH 5
LD ISPADHI,#000 ; LOAD THE HIGH ADDRESS BYTE
LD ISPADLO,#00A ; LOAD THE LOW ADDRESS BYTE
LD ISPKEY,#098 ; LOAD THE KEY
JSRB cwritebf ; CALL THE FUNCTION

; TRANSFER FLASH[000B]=RAM[0x0C] LD ISPADHI,#000 ;
LOAD THE HIGH ADDRESS BYTE

LD ISPADLO,#00B ; LOAD THE LOW ADDRESS BYTE
LD A,00C ; LOAD THE DATA INTO THE ACCUMULATOR
X A,ISPWR ; SWAP IT WITH THE ISPWR REGISTER
LD ISPKEY,#098 ; LOAD THE KEY
JSRB cwritebf ; CALL THE FUNCTION
.END MAIN ;END OF PROGRAM

Example 32. SAMPLE writebf(unsigned int, unsigned long, unsigned int)
(Write a byte to flash memory) EXECUTION—C Version

#include "8cbr.h"; // Include file for the COP8CBR Microcontroller
#include "flash_OP.h"; // Include file that contain the flash routines
void main(){ // location in RAM

unsigned int variable @ 0x0C;

PGMTIM=0x6F; // Assume a 6 MHz CKI Frequency // write
to location 0x000A with 5cwritebf(0x00,0x0A,5);

// write to location 0x00B of flash memory with the contents
// of RAM at location 0x0C (variable)

cwritebf(0x00,0x0B,variable); // Call the exit routine
}

Table 30. Resource Utilization for the Command: cwritebf (Write a Byte to the Flash)

Returned InterruptInput Accumulator B Pointer X Pointer JSRB/Key Stack UsageData/ LockData A Used? Used? Used? Required (in Bytes)Location Out Cycles

ISPWR YES YES NO YES NONE 168 + 3.5* 4
Contains PGMTIM
the Data

57SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

ISP DOWNLOADER www.ti.com

4.10 Exit—Reset the Microcontroller

This routine will cause the microcontroller to reset itself. Loading the KEY, and a “JSRB Exit” are the only
actions needed to complete the call. No additional parameters need to be passed. Since this is a user
command, this routine will work regardless of security (security independent). Example 33 is an example
of how to use the exit function—assembly version. Example 34 shows the C version of the exit() function.
Table 31 shows the necessary resources needed to run the routine.

Example 33. SAMPLE exit (reset the microcontroller) EXECUTION—Assembly Version

; RESET THE MICROCONTROLLER
.INCLD COP8CBR.INC ; INCLUDE FILE FOR THE COP8CBR
.sect code,rom,abs=0 ; BEGINING CODE SPACE
MAIN: ; THE MAIN ROUTINE
LD ISPKEY,#098 ; LOAD THE KEY
JSRB exit ; CALL THE FUNCTION
.END MAIN ; END OF PROGRAM

Example 34. SAMPLE exit() (reset the microcontroller) EXECUTION—C Version

#include "8cbr.h"; // Include file for the COP8CBR Microcontroller
#include "flash_OP.h"; // Include file that contain the flash routines
void main(){reset(); // reset the microcontroller}

Table 31. Resource Utilization for the Command: exit (reset the microcontroller)

Interrupt StackInput Accumulator B Pointer X Pointer Register(s) JSRB/Key Return Lock UsageData A Used? Used? Used? Used? Required Data Out Cycles (in Bytes)

N/A YES NO NO NO YES NONE 100 2

4.11 WATCHDOG™ SERVICES

The Watchdog register will be serviced periodically in order to ensure that a watchdog event has not
occurred. All routines in the ISP Boot ROM incorporate automatic watchdog services. Periodically, the
Boot ROM firmware will service the watchdog if the routine will take greater than the 8k upper window
requirement.

58 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP SNOA082C–May 2004–Revised May 2004
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

www.ti.com

Appendix A

A.1 MICROWIRE AND USER INTERFACE MECANISIMS

The following instructions will allow the user to interface directly to the routines in the Boot ROM.

A.2 JSRB—Jump Subroutine in Boot ROM

Syntax:— JSRB ADDR

Description:— The JSRB instruction causes execution to begin at the address specified within the first
256 bytes of the Boot ROM. The switch to Boot ROM is only successful if the JSRB instruction was
immediately preceded by writing a valid key to the ISP KEY register. The instruction pushes the
return address onto the software stack in data memory and then jumps to the subroutine address in
Boot ROM. If the key has not been written, or if the key was invalid, the instruction jumps to the
same address in program memory.
The contents of PCL (Lower 8 bits of PC) are transferred to the data memory location referenced
by SP (Stack Pointer). SP is then decremented, followed by the contents of PCU (Upper 7 bits of
PC) being transferred to the new data memory location referenced by SP. The return address is
now saved on the software stack in data memory RAM. Then SP is again decremented to set up
the software stack reference for the next subroutine.
Next, the values found in the second byte of the instruction are transferred to PCL. PCU is loaded
with 0. The program then jumps to the program memory location accessed by PC in the Boot ROM,
if the key write was successful, or in program memory if it was not.

Operation:— [SP] <- PCL
[SP - 1] <- PCU
[SP - 2]: SET UP FOR NEXT STACK REFERENCE
PC14-8 <- 00
PC7-0 <- LOADDR (SECOND BYTE OF INSTRUCTION)

Instruction Addressing Mode Instruction Cycles Bytes Hex Op Code

JSRB ADDR Absolute 5 2 61/LOADDR

59SNOA082C–May 2004–Revised May 2004 AN-1150 COP8™ FLASH ISP HANDBOOK—Intro to ISP
Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA082C

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	AN-1150 COP8 FLASH ISP HANDBOOK—Intro to ISP
	1 Introduction
	2 Introduction to ISP—Software Topics
	2.1 Functional Description
	2.1.1 REGISTERS
	2.1.1.1 ISP Address Registers
	2.1.1.2 ISP Read Data Register
	2.1.1.3 ISP Write Data Register
	2.1.1.4 ISP Write Timing Register

	2.1.2 MANEUVERING BACK AND FORTH BETWEEN FLASH MEMORY AND BOOT ROM
	2.1.3 FORCED EXECUTION FROM BOOT ROM
	2.1.4 RETURN TO FLASH WITHOUT HARDWARE RESET
	2.1.5 MICROWIRE/PLUS ISP COMMANDS
	2.1.6 VIRTUAL E2 COMMANDS
	2.1.7 SAMPLE PROGRAM: A Light Sequencer.
	2.1.7.1 Description of the Sample Application Program
	2.1.7.2 Writing the Program
	2.1.7.3 Assembling and Linking the Sample Program
	2.1.7.4 1.8.4 Analysis of the Program

	3 ADVANCED ISP—SOFTWARE TOPICS
	3.1 IN SYSTEM PROGRAMMING (ISP) SUPPORT BLOCKS
	3.2 Boot ROM Memory Layout
	3.3 PROGRAMMABLE OPTIONS DESCRIPTION
	3.4 OPTION REGISTER BIT ASSIGNMENTS
	3.5 SECURITY
	3.6 MICROWIRE/PLUS SUPPORT BLOCKS
	3.6.1 2.5.1 Introduction
	3.6.2 Firmware—MICROWIRE/PLUS Initialization

	3.7 PC to Boot from MICROWIRE/PLUS Connection Diagram
	3.8 FIRMWARE—MICROWIRE/PLUS INITIALIZATION
	3.8.1 The MICROWIRE/PLUS Packet Composition
	3.8.2 Required Delays In Cascading Microwire Command Frames
	3.8.3 Variable Host Delay
	3.8.4 MICROWIRE/PLUS—Boot ROM Startup Behavior

	3.9 MICROWIRE COMMANDS AVAILABLE
	3.9.1 PGMTIM_SET
	3.9.2 PAGE_ERASE—Erase a Page of Flash Memory
	3.9.3 MASS_ERASE—Erase the Entire Flash Memory Array
	3.9.4 READ_BYTE—Read a Byte from the Flash Memory Array
	3.9.5 WRITE_BYTE—Write a Byte to the Flash Memory Array
	3.9.6 BLOCK WRITE—Write a Block of Data to the Flash Memory Array
	3.9.7 BLOCK_READ—Read a Block from the Flash Memory Array
	3.9.8 EXIT—Reset the Microcontroller

	4 ISP DOWNLOADER
	4.1 IMPLEMENTATION EXAMPLE—BUILDING A FIRMWARE MODIFIER/DOWNLOADER
	4.1.1 COP8SGR Initialization Routine
	4.1.2 The PGMTIM_SET Routine
	4.1.3 PAGE_ERASE—Erase a Page of Flash Memory
	4.1.4 MASS_ERASE—Bulk Erase the Flash Memory
	4.1.5 READ_BYTE—Read a Byte from the Flash Memory Array
	4.1.6 WRITE_BYTE—Write a Byte to the Flash Memory Array
	4.1.7 BLOCK WRITE—Write a Block of Data to the Flash Memory Array
	4.1.8 BLOCK_READ_Read a Block from the Flash Memory Array
	4.1.9 EXIT—Reset the Microcontroller

	4.2 USER SUPPORT BLOCK
	4.2.1 JSRB LABELS User Routines

	4.3 Interrupt Lock Out Time
	4.4 cpgerase—User Entry Point: Erase a Page of Flash Memory
	4.5 cmserase—User Entry Point: Mass Erase the Flash Memory
	4.6 creadbf—User Entry Point: Read a Byte of Flash Memory
	4.7 cblockr—User Entry Point: Read a Block of Flash Memory
	4.8 cblockw—User Entry Point: Write to a Block Flash Memory
	4.9 cwritebf—User Entry Point: Write a Byte to the Flash Memory
	4.10 Exit—Reset the Microcontroller
	4.11 WATCHDOG SERVICES

	Appendix A 
	A.1 MICROWIRE AND USER INTERFACE MECANISIMS
	A.2 JSRB—Jump Subroutine in Boot ROM

