

Wireless Bear Tracking System
Final Document

Clients

Digi, International

Wildlife Research Institute

Faculty Advisor

Dr. Ahmed Kamal

Team Members

Zach Bruce

Blane Chesnut

Chris Donnelly

John Pritchard

Adam Rasmussen

Wireless Bear Tracking, Group May1010 Page 2

Forward

This document includes information about every aspect of the 2010 Senior Design Project for

group 10, Wireless Bear Tracking. This document was pieced together over a two semester

period and includes information about the design and then the implementation. This project

will need to be completed in another phase of the project, so this document will be important

to understand the progress of the project.

The main sections of the document are: Introduction, Design Requirements, Approach and

Product Design, Implementation, Test Cases, Schedule, and Resources. The approach section

details all of the possibilities for the design that were researched including the actual design

that was selected. The implementation section discusses the completed prototype and what

parts were finalized as well as any PIC code explanation. The test case section details the

different testing procedures that were used to verify the system as well as the results from

those testing procedures.

The table of contents follows as an outline to the document.

Wireless Bear Tracking, Group May1010 Page 3

Table of Contents

1. Introduction ... 13

1.1. Executive Summary ... 13

1.2. Acknowledgments... 14

1.3. Problem Statement ... 15

1.4. Operating Environment ... 15

1.5. Intended Use and Intended Users ... 15

1.6. Assumptions .. 15

1.7. Limitations .. 16

1.8. Expected End Product and Other Deliverables .. 16

2. Design Requirements ... 17

2.1. Functional Requirements .. 17

2.2. Non-Functional Requirements .. 18

2.3. Technology Requirements ... 18

3. Approach and Product Design Results .. 19

3.1. Overall Bear Tracking Structure.. 19

3.1.1. VHF Collar Units with VHF Routing Unit ... 19

3.1.2. VHF Collar Units with OrbCom Routing Unit ... 19

3.1.3. VHF Collar Units with Digi 9Xtend Routing Unit ... 20

3.1.4. Other Inappropriate Solutions ... 20

3.1.5. Detailed Design ... 21

3.2. Network Structure.. 22

3.2.1. CSMA/CA... 22

3.2.2. TDMA ... 22

3.2.3. Detailed Design ... 22

3.3. VHF Transceiver .. 29

3.3.1. Frequency Selection .. 29

3.3.2. Transceiver Selection .. 30

3.3.3. Detailed Design ... 31

3.4. VHF Antenna .. 42

3.4.1. ¼ Wavelength Whip Antenna ... 43

Wireless Bear Tracking, Group May1010 Page 4

3.4.2. ½ Wavelength Whip Antenna ... 45

3.4.3. Sleeve Dipole Antenna ... 45

3.4.4. Normal Mode Helical Antenna ... 46

3.4.5. Rotating Directional Antenna ... 47

3.4.6. Helical Antenna Array .. 48

3.4.7. Yagi Antenna Array .. 49

3.4.8. Detailed Design ... 50

3.5. GPS Module .. 52

3.6. GPS Antenna .. 52

3.6.1. GPS Helix Antenna ... 53

3.6.2. Passive GPS Patch Antenna .. 53

3.6.3. Active GPS Patch Antenna ... 54

3.6.4. Detailed Design ... 54

3.7. Microcontroller... 54

3.8. Chassis ... 55

3.8.1. Commercial Cases .. 55

3.8.2. Industrial Cases ... 56

3.8.3. Detailed Design ... 56

3.9. Power Supply Circuitry ... 57

3.9.1. Linear Regulators .. 57

3.9.2. Switching Regulators .. 58

3.9.3. Detailed Design ... 59

3.10. Battery ... 63

3.10.1. Nickel Metal Hydride (NiMH) .. 63

3.10.2. Lithium Ion (Li-ion) .. 64

3.10.3. Detailed Design ... 64

4. Implementation .. 65

4.1. Hardware .. 65

4.1.1. Printed Circuit Board Layout .. 65

4.1.2. Populated Board .. 67

4.1.3. ADF-7021 Register Configuration ... 67

Wireless Bear Tracking, Group May1010 Page 5

4.1.4. Matching Networks ... 80

4.2. Hardware Modifications .. 82

4.2.1. External Inductor L10 ... 82

4.2.2. PIC Connection to Transceiver ... 83

4.2.3. Transceiver External Crystal... 83

4.2.4. I2C... 84

4.2.5. Power .. 84

4.2.6. Antenna ... 84

4.3. Software... 85

4.3.1. PC Code .. 85

4.3.2. PIC Code ... 86

5. System and Unit Level Test Cases.. 101

5.1. VHF Transceiver Unit Level Test Cases .. 101

5.2. VHF Antenna Unit Level Test Cases .. 101

5.3. GPS Module Unit Level Test Cases .. 102

5.4. Microcontroller Unit Level Test Cases... 102

5.5. Chassis Unit Level Test Cases ... 103

5.6. Battery Unit Level Test Cases ... 103

5.7. Power Supply Circuit Unit Level Test Cases ... 103

5.8. System Test Cases... 104

6. System and Unit Level Test Case Results .. 106

6.1. VHF Spectrum .. 106

6.2. Antenna ... 111

6.3. Google Maps ... 113

6.4. Specific Absorption Rate Safety.. 113

7. Recommendation for Project Continuation .. 114

7.1. VHF Recommendations ... 114

7.2. Power Section Recommendations ... 114

7.3. USB Section Recommendations .. 114

7.4. GPS Section Recommendations .. 115

7.5. General Design Recommendations ... 115

Wireless Bear Tracking, Group May1010 Page 6

8. Statement of Work... 116

8.1. Task 1 - Problem Definition .. 117

8.2. Task 2 - Technology Research and Selection ... 117

8.3. Task 3 - End-Product Design .. 119

8.4. Task 4 - End-Product Prototype Development.. 119

8.5. Task 5 - End-Product Testing ... 120

8.6. Task 6 – Presentations ... 121

8.7. Task 7 - Product Documentation .. 121

9. Resources and Schedule .. 123

9.1. Resources... 123

9.2. Schedule... 124

10. Closure Material .. 126

10.1. Project Contact Information ... 126

10.2. Closing Summary ... 127

Wireless Bear Tracking, Group May1010 Page 7

List of Tables

Table 1: VHF to PIC I/O Descriptions ... 33

Table 2: Timing Table for ADF7021 (Analog Devices, 2009) .. 34

Table 3: RF Switch Control Lines .. 42

Table 4: Nema Case Standards (Computer Dynamics) .. 56

Table 5: Power Requirements ... 57

Table 6: PCB Characteristics .. 66

Table 7: TX Register 1 value .. 68

Table 8: TX Register 3 value .. 68

Table 9: TX Register 0 value .. 70

Table 10: VHF Muxout Settings ... 71

Table 11: TX Register 2 value .. 71

Table 12: PA output power ... 72

Table 13: TX Bit Latency ... 73

Table 14: TX Register 0 power down value ... 73

Table 15: RX Register 1 value .. 74

Table 16: RX Register 3 value .. 74

Table 17: RX Register 6 value .. 74

Table 18: RX Register 5 value .. 75

Table 19: RX Register 11 value .. 76

Table 20: RX Register 12 value .. 77

Table 21: RX Register 0 value .. 77

Table 22: RX Register 4 value .. 77

Table 23: RX Register 10 value .. 79

Table 24: Gain Mode Correction (Analog Devices) ... 92

Table 25: 4B/5B Encoding.. 99

Table 26: Packet Format Size Before Encoding ... 100

Table 27: Tasks to be accomplished ... 116

Table 28: Single Unit Estimated Cost ... 123

Table 29: Project Costs ... 123

Wireless Bear Tracking, Group May1010 Page 8

List of Figures

Figure 1: VHF/UHF Solution ... 17

Figure 2. Network Example .. 23

Figure 3. TDM General Diagram.. 24

Figure 4. Time Slot Assignment ... 28

Figure 5. System Block Diagram .. 32

Figure 6. Interface of Transceiver and RF Switch to Microcontroller ... 33

Figure 7. Timing Diagram for Writing to ADF7021 Registers (Analog Devices) 34

Figure 8. Timing Diagram for Readback (Analog Devices) ... 35

Figure 9. Transmit sequence after power up (Analog Devices, 2009) ... 36

Figure 10. Receive sequence after power up (Analog Devices, 2009) ... 37

Figure 11. RF Output Matching Network ... 39

Figure 12. RF Output Matching Network Simulation .. 39

Figure 13. RF Input Matching Network ... 40

Figure 14. RF Input Matching Network Simulation ... 40

Figure 15. ADF7021 Simulations ... 41

Figure 16. Example Whip Collar Antenna(Advanced Telemetry Systems) 44

Figure 17. Sleeve Dipole Antenna(Saunders and Aragon-Zavala) ... 46

Figure 18. Helical Antenna (Burberry) ... 48

Figure 19. Six Element Yagi Antenna(Setian) ... 49

Figure 20. Radio Mobile Area of Concern ... 51

Figure 21. Radio Mobile Router Station Propagation .. 52

Figure 22. LM317 ... 57

Figure 23. LM2717 ... 58

Figure 24. MAX863 .. 58

Figure 25. ADP3050 ... 59

Figure 26. ADP3050 General Circuit ... 59

Figure 27. 3.3V ESR Calculations .. 60

Figure 28. 5V ESR Calculations ... 62

Figure 29: PCB Layout Structure ... 65

Figure 30: Populated Printed Circuit Board.. 67

Figure 31: Transceiver output matching network simulation circuit with non-ideals 80

Figure 32: Transceiver output matching network simulation with non-ideals 81

Figure 33: Transceiver input matching network circuit with non-ideals 81

Figure 34: Transceiver input matching network simulation with non-ideals 82

Figure 35: RF output vs. total external inductance (Analog Devices, 2009) 82

Figure 36. Quarter-Wave Antenna Construction .. 85

Figure 37: Output Spectrum of board A with transceiver set at level 1 power (-16 dBm) 107

Figure 38: Output Spectrum of board A with transceiver set at level 36 power (~0 dBm) with

span 50 kHz... 107

file://seniord/may1010/Files/Design%20Document%20Files/Final%20Design%20Document/Final%20Document.docx%23_Toc260138411

Wireless Bear Tracking, Group May1010 Page 9

Figure 39: Output Spectrum of board A with transceiver set at level 36 power (~0 dBm) with

Span 2.6 MHz ... 108

Figure 40: Output Spectrum of board A with transceiver set at level 63 power (13 dBm) 108

Figure 41: Spectrum of board B with modification and transceiver output power level of 1 (-16

dBm) ... 109

Figure 42: Spectrum of board B with modification and transceiver output power level of 36 (~0

dBm) ... 109

Figure 43: Spectrum of board B with modification and transceiver output power level of 63 (13

dBm) ... 110

Figure 44. Antenna A - S11 Parameters ... 111

Figure 45. Antenna 2 - S11 Parameters .. 112

Figure 46 Port parameters for communication to PC for Google Map testing 113

Figure 47: Schedule for Project .. 125

Figure 48: Top Copper Layer ... 139

Figure 49: Bottom Copper Layer .. 140

Figure 50: Top Solder Mask ... 140

Figure 51: Bottom Solder Mask .. 141

Figure 52: Top Silk Screen ... 141

Figure 53: Bottom Silk Screen .. 142

Figure 54: Drill Chart.. 143

file://seniord/may1010/Files/Design%20Document%20Files/Final%20Design%20Document/Final%20Document.docx%23_Toc260138457

Wireless Bear Tracking, Group May1010 Page 10

Appendices

Appendix 1: Operations Manual Done by Joe Lane ... 129

Appendix 2: Operations Manual Done by Jamin Hitchcock .. 132

Appendix 3: VHF and Power Amplifier Revision A Schematic .. 135

Appendix 2: Microcontroller Revision A Schematic .. 136

Appendix 5: GPS Revision A Schematic.. 137

Appendix 6: Power Supply ... 138

Appendix 7: PCB Layout Layers .. 139

Appendix 8: Revision B Schematic .. 144

Appendix 9: PC Code ... 145

Appendix 10: PIC Code – main.c ... 146

Appendix 11: PIC Code – main.h ... 152

Appendix 12: PIC Code – init.c .. 153

Appendix 13: PIC Code – init.h .. 161

Appendix 14: PIC Code – datatypes.h .. 162

Appendix 15: PIC Code – handler.h ... 163

Appendix 16: PIC Code – handler.h ... 178

Appendix 17: PIC Code – interrupts.c .. 179

Appendix 18: PIC Code – interrupts.h .. 183

Appendix 19: PIC Code – projconfig.h .. 184

Appendix 20: PIC Code – encoding.c... 185

Appendix 21: PIC Code – encoding.h .. 193

Appendix 22: PIC Code – eeprom_i2c.c .. 194

Appendix 23: PIC Code – eeprom_i2c.h .. 199

Appendix 24: PIC Code – gps_i2c.c ... 201

Appendix 25: PIC Code – gps_i2c.h... 207

Appendix 26: PIC Code – ublox_cfg.c ... 209

Appendix 27: PIC Code – ublox_cfg.h ... 212

Appendix 28: PIC Code – ublox_read.c ... 214

Appendix 29: PIC Code – ublox_read.h ... 218

file://seniord/may1010/Files/Design%20Document%20Files/Final%20Design%20Document/Final%20Document.docx%23_Toc260236120

Wireless Bear Tracking, Group May1010 Page 11

Definitions

ACK Acknowledgement

ADC Analog to digital conversion

AFC Automatic frequency control

ASK Amplitude-shift Keying

BER Bit Error Rate

bps Bits per second

CRC Cyclical Redundancy Check

CSMA/CA Carrier sense multiple access with collision avoidance

dBm Decibel referenced to milliwatts

ESR Effective Series Resistance

FCC Federal Communications Commission

FM Frequency Modulation

FSK Frequency-shift Keying

GPS Global Positioning System

I/O Input and Output

IF Intermediate Frequency

ISM Industrial, Scientific, and Medical Equipment

LEO Low Earth Orbiting, used in describing satellite orbits

MAC Media Access Control

MSK Minimum-shift keying

PA Power Amplifier

PC Personal Computer

PIC Programmable Integrated Circuit

Wireless Bear Tracking, Group May1010 Page 12

POR Power on Reset

RF Radio Frequency

RSSI Received signal strength indication

RX Receive

SAR Specific Absorption Rate

SPOT Commercially available personal tracking unit, which uses satellites for

communication

Sync Synchronize

TDM Time Division Multiplexing

TDMA Time Division Multiple Access

Term Description

TX Transmit

UART Universal asynchronous receiver/transmitter

UHF Ultra High Frequency, the radio frequency range from 300 MHz to 3 GHz

URL Uniform Resource Locator

VHF Very High Frequency, the radio frequency range from 30 MHz to 300 MHz

Wireless Bear Tracking, Group May1010 Page 13

1. Introduction

The following is an overview of the Wireless Bear Tracking Senior Design Project. This

section includes background on the device, the problem statement, possible solutions, and the

product deliverables.

1.1. Executive Summary

A non-profit group from northern Minnesota researches a group of twelve mother bears by

tracking their movements using RF transmitting collars worn by the bears. These bears are

habituated to the researchers and allow them to approach and remove collars as well as take

different measurements and notes. The researchers track the mother bears because they are

more territorial and will stay within a twenty-five mile by ten mile area. The tree cover in this

area is extremely dense. It is important to gather live data of the location of the bears,

especially when the bears go into caves during winter to hibernate as well as when they leave

the caves in the spring.

The previous solution to this tracking did not even provide live data. The bears had worn

collars that transmit on a VHF band. Each collar outputs at a specified frequency, and the

researchers were required to travel and locate the bears individually by monitoring the

strength of signals transmitted. These collars were very reliable and transmitted well through

the trees. The battery life was also superb and lasted nearly five years. The collars would wear

through before the batteries were depleted.

This summer, these VHF collars are being phased out by GPS personal tracking devices called

SPOT. These devices were modified to continually ping their data and send live location

information up to a low earth orbiting satellite and then to the cabin. This system fits well on

the collar, but in a dense forest, the signal is often lost for up to two hours. The SPOT units

also require a monthly fee. It is also very difficult to get decent battery life, for the collars

have batteries that must be changed every week. Still, the researchers prefer the live location

data to the old VHF system.

Digi, International has taken the task of providing a new collar for the researchers as a non-

profit project. They are supporting the project financially and through their technical expertise

and advice.

The goal of this project is to create a new collar that will continually and reliably send

location data to the researchers. This unit must run on battery for at least 6 months, and

transmit location about every fifteen minutes. It is also important to make the unit durable and

smaller than the current SPOT units.

Wireless Bear Tracking, Group May1010 Page 14

The collar will consist of the basic building blocks of GPS, VHF transceiver, PIC

microcontroller, and power electronics, as shown in Figure 5.

The collars will transmit their GPS location via VHF frequencies to various router units. All

units will transmit on the same frequency, 217 MHz, and the system will use a time division

multiplexing network scheme. The router and collar units will have similar hardware, with

minor differences in the VHF antenna and battery. A home base router will output the data

serially to be easily plotted as data points on Google maps or similar mapping software.

The current units are very expensive, nearing $2000. The units we are developing will be

much less expensive. Estimated unit cost is around $290. Digi, International is providing all of

the materials and financing necessary to complete the project.

Prototypes will be available by April so the bears can be collared after they have left

hibernation. There will be three collar units and two router units available to test. The

mechanical design and the computer mapping interface are not the focus of this stage in the

project. In the future these may be developed by another senior design team, or engineers at

Digi.

1.2. Acknowledgments

Digi, International is going to supply all of the necessary parts and funding for the project.

This is a non-profit task that they have decided to support and are going to help with any

aspect of the product. They will provide technical assistance as needed. Technical expertise

has been provided by James Puzzo, Jordan Husney, Mark Tekippe, and Jim Stroner.

Technical expertise has been provided by ISU Faculty including Dr. Ahmed Kamal, Dr.

Nathan Neihart, Dr. Jiming Song, Dr. Mani Mina, Leland Harker, and Matthew Nelson.

Wireless Bear Tracking, Group May1010 Page 15

1.3. Problem Statement

Black bears need to be tracked live from a remote location. The area of concern will be

approximately a 25 mile by 10 mile plot. It is difficult to transmit a signal in this area due to

dense foliage. A collar unit must be developed that can transmit tracking data every ten to

fifteen minutes. This unit must be smaller than the current unit and ideally have a battery life

of six months. It is also important that the collar be individually identified and easily removed.

1.4. Operating Environment

The unit will be exposed to the harsh conditions of northern Minnesota. Temperatures range

from -30 to 70 ºC. The unit must be waterproof and weatherproof. The collar must be

comfortable on the bear, or the bear will tear the collar off. The bear cubs also get restless

during the hibernation months and will proceed to chew and destroy the collar.

The collar unit must also be easily handled by the researchers. They must be able to simply

remove and ID each unit. The researchers are not as familiar with complicated technologies

and the unit must be as user friendly as possible.

1.5. Intended Use and Intended Users

The intended use for the product is to track black bear mothers in a 25 by 10 mile area. The

collar must function in this area, and if successful, it can be transferred to other wildlife

tracking areas as well. The collar will function properly in very dense forests.

The intended users are the bear researchers at the facility in Ely, Minnesota. These researchers

are Sue Mansfield and Lynn Rogers.

1.6. Assumptions

There are many assumptions taken into account when working on this project. It is difficult

for us to gain access to the forested area, so we must assume how certain signals will react to

the forest. We assume that the GPS signals will reach the collar if the collar is properly

located on the bear. We also assume that lower frequencies will penetrate the thick forest

better than the higher frequencies. We are using the SPOT unit as an acceptable size and

weight.

Digi will provide funding and technical advice, and it is assumed that this will continue

throughout the project.

Wireless Bear Tracking, Group May1010 Page 16

After the completion of this project, we do not expect to have much direct contact with the

researchers. We have to make the assumption that if the unit is well documented and

somewhat simple to use, the researchers will be able to properly use the unit without

supervision and guidance.

1.7. Limitations

Our basic limitations on this project are time and experience. We have only one year to

develop this prototype and a project such as this could easily be a several year project. All of

the group members are Electrical Engineers and our current knowledge base of networking

and programming is not as strong as required by this project. We will need to spend extra time

researching these technologies.

A second limitation has to do with access to the area. It is a nine hour drive to the forest and

we do not have the ability to test our equipment in a similar environment. We will have to

estimate and rely on different calculations to determine the best technology.

1.8. Expected End Product and Other Deliverables

At the end of the project the researchers expect three collar tracking units and two router units

to be prototyped and ready to field test.

Along with the prototypes, it is important to provide documentation on the device in terms of

a user manual and a technical specification document, so that it is easily modified and usable.

Suggestions for improving the unit as well as preliminary plans for the next generation are all

important deliverables.

Wireless Bear Tracking, Group May1010 Page 17

2. Design Requirements

The following describes the requirements defined for the project design. Any solution must

meet the requirements laid out in this section.

2.1. Functional Requirements

The VHF/UHF terrestrial communication solution will involve transmitters placed on the

bears to communicate with routers posted in selected spots within the area of concern. GPS

location information would be received by the modules on the collars and then transmitted to

the onsite routers. The routers would then relay the bears' GPS location information to an

onsite base station. This information would then be processed accordingly by the researchers.

See Figure 1.

The functional requirements pertaining to a VHF/UHF solution are defined below.

A. Local VHF/UHF Solution

a. Pertaining to the transmitter on the bear

i. The tracking device is required to receive GPS data via GPS satellites

ii. The tracking device is required to transmit data to routers, via local

VHF/UHF transmitters, stationed within defined area

b. Pertaining to the routing transceiver

i. The routing device is required to communicate with mobile units when

they are within their communication range.

ii. The routing device is required to communicate with other routing

devices

iii. Routing devices will cooperate to relay readings received from

tracking devices to the end user receiver

c. Pertaining to the end user receiver

i. The end device is required to receive data from multiple tracking

devices

ii. The end device is required to receive data from multiple routing

devices

iii. The end device is required to plot location information on a mapping

interface

GPS Bear

VHF/UHF

Transmitter

VHF/UHF

Router A

VHF/UHF

Router B

Base Station

Figure 1: VHF/UHF Solution

Wireless Bear Tracking, Group May1010 Page 18

d. Miscellaneous

i. The battery life of the bear transmitter must be 3 months

ii. The location must be updated every 15 minutes as a minimum

requirement

iii. Proper care is taken to secure bear location information

2.2. Non-Functional Requirements

The non-functional requirements for the tracking device are defined below.

A. The physical dimensions of each unit (bear transmitter, routing device, and end device)

must be appropriate. The bear transmitter must be similar to the currently used SPOT

Satellite Messengers

B. The chosen VHF antenna must be appropriately small

C. All devices must be user friendly. This could incorporate features like a ‘low battery

indication’ transmission to let the researchers know when it is appropriate to change

batteries.

D. The outer shell of the bear transmitter must be very durable

2.3. Technology Requirements

A. The chosen wireless technology must have the ability to penetrate dense forestry

B. The electrical components must be able to handle extreme environments (approximately

-40˚C – 70˚C)

C. The chosen design frequency and output power must be harmless to bears and humans

Wireless Bear Tracking, Group May1010 Page 19

3. Approach and Product Design Results

The following describes the approach that will be taken to achieve the wireless bear tracking

solution. This section describes the overall system and network structure as well as the

individual components that will be included in the system. The considered approaches are all

evaluated, and the finalized approach is described in detail.

3.1. Overall Bear Tracking Structure

Having a functioning structure for communication is critical. We considered a number of

solutions including VHF, satellite, cellular, and Digimesh. From these choices, we narrowed

down our options based on pros and cons of each alternative.

3.1.1. VHF Collar Units with VHF Routing Unit

Collar unit will consist of a VHF transceiver that will allow data to transmit and receive

over VHF Frequencies to the nearest routing unit. The routing unit will use a

predetermined and programming network protocol to send information to collars and to

other routers until the information is received at the remote research station.

Pros

• Router and Collar will be very similar designs.

• The routers are able to be mounted in desirable locations to easily transmit.

• VHF can transmit at increased distances using lower power rates.

• VHF frequencies easily penetrate heavily wooded areas.

Cons

• Readily made VHF module is not easily accessible with high power output.

• The network protocol may be difficult to complete.

• Bears may travel outside the range of stationary routers.

3.1.2. VHF Collar Units with OrbCom Routing Unit

Collar unit will consist of a VHF Transceiver that will allow data to transmit and receive

over VHF Frequencies. The routing unit will transmit received data to the OrbCom

Satellites and the satellites will then transmit to a remote location.

Pros

• VHF can transmit at increased distances using lower power rates.

• VHF frequencies easily penetrate heavily wooded areas.

• OrbCom modules are manufactured by Digi.

Wireless Bear Tracking, Group May1010 Page 20

Cons

• Readily made VHF module is not easily accessible with high power output.

• OrbCom modules have high power requirements.

• Communication to satellite incurs a monthly fee.

• Modules are more expensive and not currently available from Digi.

• Bears may travel outside the range of stationary routers.

3.1.3. VHF Collar Units with Digi 9Xtend Routing Unit

Collar unit will consist of a VHF transceiver that will allow data to transmit and receive

over VHF Frequencies. The routing unit will consist of a Digi 9Xtend (900 MHz) unit

and be mounted above the tree line.

Pros

• VHF can transmit at increased distances using lower power rates.

• VHF frequencies easily penetrate heavily wooded areas.

• The 9Xtend module is manufactured by Digi.

• The 9Xtend module will make the network structure very easy to implement.

Cons

• Readily made VHF module is not easily accessible with high power output.

• Bears may travel outside range of stationary routers.

• The transmission of the 9Xtend was only tested to reach approximately 2.5 miles

with line of sight.

3.1.4. Other Inappropriate Solutions

The following solutions were looked into for a short period to evaluate their feasibility

but were quickly removed from consideration for the given reasons.

Cellular

• Tower coverage is extremely weak in area

• Subscription cost is expensive

• Difficult to certify device

• Signal is too high frequency

Wireless Bear Tracking, Group May1010 Page 21

IRIDIUM Satellite Communication

• No readily available module

• Too high frequency for good signal reception

Satellite Modem on Collar

• Both IRIDIUM and OrbCom constellations

• Too high of power for collared unit

• Modules too large for collared unit

DigiMesh 900MHz Collar Mounted Solution

• Signal power too low to give adequate transmission range.

3.1.5. Detailed Design

The chosen solution was VHF Collar Units with VHF Routing Unit. After evaluating the

Orbcom solution, we realized that this was too similar to the solution currently being

used by the researchers and incurred the same sort of cost that they are looking to

eliminate. Next, we were able to rule out the Digi 9Xtend solution after doing field tests

that resulted in an unacceptable 2 mile range from line of sight. This transmission would

be drastically reduced in the wooded areas of Minnesota.

The VHF Routing Unit solution allowed for these constraints to be overcome. Not only is

it a low cost solution, but it also gives us the ability to choose a frequency that works best

for our conditions. With the selected frequency of 217 MHz, we are able to penetrate

very dense forestry while still maintaining a reasonable range. This was verified using the

Radio Mobile simulation software.

End UserMapping

Server

VHF Radio

V
H

F
 R

a
d
io

VHF Radio

V
H
F R

adio

Wireless Bear Tracking, Group May1010 Page 22

3.2. Network Structure

The following section will define the network routing schemes proposed and why TDMA

was chosen as the preferred networking method. The detailed design of the network method

is also described.

The sole purpose of this section is to propose a versatile solution to the unit to router

communication scheme as well as the router to router communication scheme.

3.2.1. CSMA/CA

CSMA/CA is a networking solution that stands for Carrier Sense Multiple Access with

Collision Avoidance. A user will listen to the channel for a period of time before

transmitting. If the channel is clear, the user will notify all other users not to transmit and

then proceed to transmit the information packet.

3.2.2. TDMA

TDMA will be described in depth in the detailed design section, but its basic concept is

that several users will transmit on the same frequency, but for different time slots. The

individual user is allocated a time to transmit and during that time period, the channel is

clear. After the time has passed, the channel is clear for a second user to transmit.

There were several reasons considered when choosing TDMA over CSMA/CA.

CSMA/CA is useful when users' activities are bursty, and also when the number of users

of the system varies dynamically. CSMA/CA allows simple adaptation to these

conditions. However, since in the current application the system is quasi-static and the

number of users does not change (except in rare situations), in addition to the fact those

users' activities are deterministic (1 report every 10 minutes), TDMA is better suited for

the application. Moreover, with TDMA, the hidden terminal problem can be avoided, the

exposed terminal problem can be avoided, and the ad hoc network topology can be

supported in a simple way. This strategy will also save energy since it will avoid the

collisions that CSMA/CA suffers from. The use of a GPS chip also makes

synchronization a simple task.

3.2.3. Detailed Design

This section gives an introduction to the overall network skeleton as well as the network

protocol chosen.

Wireless Bear Tracking, Group May1010 Page 23

3.2.3.1. General Network Skeleton

Consider the case where four routers are placed in predetermined spots within the

area of concern. Also consider several units scattered throughout this area but within

range of at least one router. This could be described in Figure 2 below.

Figure 2. Network Example

In the case above, there are nine users present in the network of four routers, the first

being home base. It is required that location data from each bear is routed to home

base every 10 to 15 minutes. All units and routers are transmitting and receiving the

same frequency, so a fitting modulation scheme needs to be decided upon.

3.2.3.2. General TDM

TDM (Time Division Multiplexing) is a great choice for this application. The idea is

that a data stream is divided into separate frames in the time domain. Multiple users

then share a piece of that frame (a time slot). Each user is allowed to transmit and

receive for the amount of time allotted in the time slot.

For example, consider Figure 3 below. The top section of this figure displays a data

stream of which is divided into separate frames. Each frame is then divided into

different time slots, in this case four. Thus, there are four possible users that can talk

to a host device at very specific times.

Wireless Bear Tracking, Group May1010 Page 24

Figure 3. TDM General Diagram

This model assumes that a connection has been previously established and time slots

have been assigned to each user. Connection establishment and time slot assignment

will be discussed later in this section.

Wireless Bear Tracking, Group May1010 Page 25

3.2.3.3. General Network Structure

Consider again the example network shown in Figure 2, where nine users have data

routed to home base by three different routers. In this system, all routers are

constantly listening and do not turn off or sleep. The units only turn on when it is

their turn to speak. The unit will know when its turn to speak is based on the time slot

given. This timeslot, or specified amount of time where only one particular unit

speaks, is given to the unit prior to shipment and is hardcoded.

To determine the number of time slots available, the following equation can be used:

where TS is the number of time slots, baud is the bit rate (bits per second), bpTx is the

number of bits per transmission needed, td is the time needed for data transmission (in

seconds), and tg is the guard period (as shown in the previous diagram – two guard

periods are needed, one at the beginning and end of the frame, thus resulting in 2tg).

The lower the baud, the less number of time slots are available. Lower baud usually

results in lower BER and better penetration through the dense woods. The higher the

baud, the greater number of time slots available. Higher baud usually results in higher

BER and does not allow the signal to penetrate dense forestry as well. So, in selecting

the proper baud, tradeoffs need to be considered. The number of bits per transmission

should be static.

3.2.3.4. Specific Unit Data Communication

The specific data needed by the router from the unit could be the following:

<preamble, data start string, UnitID, MAC, data, flags, CRC, data end

string>

The preamble will consist of 6 bytes of alternating ones and zeros. The purpose of the

preamble is to all the transceiver to synchronize with this incoming message. Data

start string is a unique set of characters that differentiates this message from any other

message. UnitID is the unit’s identifier which can be changed in software. MAC is

the unit’s unique MAC address; this is hardcoded and will never change. Data is the

information required to locate the bear. Flags are the bytes needed to let the router

know the status of the unit. CRC is the data needed for bit error checking and

Wireless Bear Tracking, Group May1010 Page 26

correcting. Data end string is the set of bits that lets the router know it has reached the

end of the message.

The unit will require an acknowledgment from the router letting the unit know that

the data was successfully received. This acknowledgment message sent by the router

is described as the following:

<preamble, ACK start string, MAC, time, CRC, ACK end string>

ACK start string is a unique set of characters that differentiates this message from any

other message. MAC is the address of the unit receiving the acknowledgement. The

time of the received GPS data is resent back to the collar unit for extra verification

that the ACK message corresponds to the recent message sent. CRC is the data

needed for bit error checking and correcting. ACK end string is the set of bits that lets

the router know it has reached the end of the message.

The transceiver can handle up to 8 bits of a constant one or zero. After this, the

performance starts to degrade. To address this issue, 8B/10B encoding scheme was

chosen. All packets will be encoding using this scheme.

It is predicted that at most 150 bytes will be needed for the unit to router data

message, and at most 25 bytes will be needed for the router to unit acknowledgment

message. So the total number of bytes needed for data transmission is 175 bytes. This

is a very high overestimate to prepare for a worst case scenario.

Referring to the previous equation, the number of time slots available can be

determined. The baud chosen initially is was 300. If 0.5 ms is allocated for the guard

periods, and 175 bytes are needed for data transmission only, then the time needed for

each time slot is:

Nine bits per byte is used to account for the parity bit. If each frame is 10 minutes

long, the number of time slots available is:

Wireless Bear Tracking, Group May1010 Page 27

Here, it is shown that there are 114 time slots in a length of time equal to 10 minutes.

Each collar is given three time slots in order to achieve a successful transmission. If

the first attempt is successful, the collar will sleep for the additional two time slots it

is assigned. If each collar uses three time slots, this allows for 38 collars in this static

case of the system.

 As location must arrive at the home base every fifteen minutes, the last five minutes

of the TDM allows for router to router communication. A later section defines how

the routers register with each other to transmit the information to the home base.

Routers will relay their unit information forward to the home base in a chain, until the

home base has received all of the data. The time slot for each router is assumed to be

the worst case scenario where it must send location information for all 38 collars.

After the routers have relayed the information to the home base, the 15 minute TDM

cycle will repeat.

3.2.3.5. Time Slot Recognition

Assigning a time slot to a unit is a simple programming task, but introducing the unit

to the network with the assurance the unit properly utilizes the time slot is a more

difficult task. The unit can know precisely when to start and stop transmitting only if

it knows the current time of day. This can be known by using the GPS time.

3.2.3.6. Initial Unit Perception of Time

Consider a unit that needs to begin transmitting on the :00, :10, :20, :30, :40, and :50

mark of every hour. This is hardcoded. By turning on the unit and allowing it to

receive a GPS signal, the time of day can be obtained, and a timer can be set to begin

waiting for the next time to reach its time slot. To be clear, say the time obtained is

12:15:25. The controller would then set a timer for 00:04:35 to begin transmitting.

3.2.3.7. Specific Time Slot Assignment

To ensure minimal unit interruption, the time slot assignment for the collar units will

be staggered along the ten minute allotted time, allowing for ample wait time between

time slots.

Wireless Bear Tracking, Group May1010 Page 28

For example, consider a system that has eight allowed time slots for units to occupy.

Assume that only three units are registered to the system. Units 1, 2, and 3 would be

assigned time slots 1, 7, and 3 respectively. The diagram below illustrates this.

Figure 4. Time Slot Assignment

3.2.3.8. Router Registration

The routers will be required to dynamically set up an appropriate network for

transferring the information from routers back to the home router. This section

describes that registration and initial set-up.

The router registration will execute the following:

 Router will find the nearest adjacent router in the direction of the home base.

 Router will know how many routers the information will transfer through to

arrive at the base router. This will determine the router number.

 Router will define its time slot based on its router number

 Router should know physical location of all other routers in system.

With this information, the steps that will be taken for the router registration are as

follows:

 The home router, hardcoded as Router #01 will be registered as Router A.

 Router A will send out a signal asking that all appropriate routers register,

along with the time the signal was sent.

 Any router that receives the signal will wait a certain number of seconds,

based on the individual router number, and then send the unit’s GPS location.

This allows Router A to store the GPS coordinates for the routers within

range.

 Once the number of router time slots has passed, Router B will do a similar

process. This will once again allow Router B to know all of the GPS

coordinates for the routers within range.

 This process will continue in an avalanche type of process until each router

knows the location of all of the other routers.

Wireless Bear Tracking, Group May1010 Page 29

Because the location of the home computer is already known, the routers can each

calculate which router is the closest router to the path back to the home computer.

The router will know that it must then transmit to this router. By only sending it to the

closest router to the path back to the home computer, it will save time and allow for

fewer transmissions, therefore saving battery power. The receiving router will store

the data until it is its turn to transmit the data. This process will continue for a length

of time that is dependent on the number of routers. Each router will not have its own

time slot, because the amount of data that each router needs to send is dependent on

the number of bears in range of the router, as well as the amount of data that was

forwarded to the router by the previous routers.

3.2.3.9. Bear to Router Communication

With this solution, when a bear collar transmits its location, multiple routers could

receive the location. Each router will know the location of the other routers, so the

closest router will send the acknowledgement to the bear. One exception to this would

be if the closest router did not receive the bear’s transmission. Since the bear will not

receive the acknowledgement, according to the conditions laid out above, the bear

will retransmit the signal. When the router receives the bear’s transmission for a

second time, the second closest router will then try to send the acknowledgement.

This condition is in place because if two routers attempt to send the

acknowledgement simultaneously, the signals could interfere with each other and be

ignored by the bear.

After all bears have transmitted their location, the routers will then transmit locations

back to the home computer in the order from the furthest router towards the closest

router. Once again, the distances will be calculated according to the GPS locations.

This will be the method used to get the locations of all the bears back to the home

router.

3.3. VHF Transceiver

The chosen design will make use of a VHF Transceiver. The following section describes the

frequency selection, transceiver selection, and detailed design for the selected transceiver.

3.3.1. Frequency Selection

In order to achieve better distances in the dense woods, frequencies in the VHF spectrum

were considered in both the unlicensed and licensed bands. These bands were the

unlicensed band at 174 to 216 MHz, ISM band at 40 MHz, and the licensed band at 216

to 220 MHz.

Wireless Bear Tracking, Group May1010 Page 30

The first band we considered was the unlicensed band at 174 to 216 MHz. This band

allowed a bandwidth of 200 kHz and maximum field strength of emissions of 1500

microvolts/meter at 3 meters. The field strength was calculated to limit our transmission

power to -32 dBm of power to the antenna. For our application, this was not enough

power (Federal Communications Commission- Part 15).

The second band we considered was the ISM band at 40 MHz. This band allowed a high

power transmission. However, at a frequency of 40 MHz, our antenna for the VHF would

require an antenna length of 6.2 ft which is too long for the units on the bears (Federal

Communications Commission- Part 18).

The final band we consider was the licensed band at 216 to 220 MHz. The band allows a

maximum output power of 2 watts and bandwidths of 6.25, 12.5, 25 and 50 kHz. The

band is assigned to applicants that establish eligibility in the Industrial/Business Pool.

The Industrial/Business Pool includes uses in the operation of educational institutions

which our final product would qualify for. The downside to this band is that it would

require certification from the FCC (Federal Communications Commission- Part 90).

In the end, we chose the license band at 216 to 220 MHz. More specifically, the exact

frequency the units will operate at is 217.025 MHz. The band is in the VHF spectrum and

will allow us to transmit at power levels that are needed. With the requirement of needing

a license, our client informed us that we do not need to certify our product and any

certification needed would be done by them.

3.3.2. Transceiver Selection

Due to time constraints of the project and the availability of VHF transceiver modules,

our team decided to consider only VHF transceiver modules instead of trying to build our

own transceiver. We considered three different modules: Radiometrix UHX1, Melexis

TH7122, and Analog Devices ADF7021.

Radiometrix UHX1 operated at a frequency of 140 to 175 MHz and allowed output

power of 1 mW to 500 mW. It used FM modulation with channel spacing of 12.5 and 25

kHz. The temperature rating on the device was from -30 to 75 °C. With the temperature

only going down to -30 °C, choosing to use the 216 to 220 MHz band, and a cost of

$266, this transceiver was not a valid option

Melexis TH7122 transceiver allowed frequency range of 27 to 930 MHz. It is digitally

programmable with modulation schemes of FSK, FM, and ASK. The chip has an

adjustable output power of -20 to 10 dBm which means that an external power amplifier

Wireless Bear Tracking, Group May1010 Page 31

would be needed to achieve an output power of 1 watt. The transceiver has an operating

temperature range of -40 to 85 °C and can transmit at a data rate as low as DC with

external components and as high as 20 kbps. Narrowband operation required more

external components to improve performance. TH7122 had a sensitivity of -107 dBm and

had a cost of $13.40.

The last transceiver we considered was Analog Devices ADF7021. The ADF7021 had a

frequency range of 80 to 950 MHz. It is digitally programmable with modulation

schemes of FSK, 3FSK, 4FSK, and MSK. The chip has an adjustable output power of -16

dBm to 13 dBm which means that an external power amplifier would be needed to

achieve an output power of 1 watt. The transceiver has an operating temperature range of

-40 to 85 °C and can transmit at a data rate of 50 bps to 32.8 kbps without any external

components. The transceiver is designed as a narrowband transceiver with programmable

bandwidths of 12.5, 18.75, and 25 kHz. ADF7021 has a receiver sensitivity of -130 dBm

at 100 bps with on-chip image rejection calibration. It also had an on-board temperature

sensor and battery strength indicator.

We decided to use the Analog Devices ADF7021. It required fewer external components

compared to the Melexis TH7122. It also came with software that helped design the

component values of the external circuitry, performed simulations of the chip, and gave

register values to be programmed into the ADF7021 all based on our frequency, external

oscillator frequency, and bandwidth. The chip was also the cheapest at $5.76.

3.3.3. Detailed Design

The following section describes the detailed design for the VHF transceiver. This

includes diagrams, schematics, and simulation data.

3.3.3.1. VHF Overview

The Analog Devices ADF7021 transceiver performs the modulation and

demodulation of the data sent from the microcontroller. ADF7021 outputs the

modulated data at a digitally programmable power range of -16 dBm to 13 dBm to an

external power amplifier SPA-1118 made by RFMD. This power amplifier has a

fixed gain of 17.2 db and an output power at 1db compression of 29.5 dBm. SPA-

1118 outputs to RF switch SKY13270-92LF made by Skyworks which connects the

RF output and RF input to a single 50 ohm antenna. For a block diagram, see Figure

5.

Wireless Bear Tracking, Group May1010 Page 32

Figure 5. System Block Diagram

3.3.3.2. VHF Transceiver ADF7021

The ADF7021 has been configured to have a bandwidth of 25 kHz, a carrier

frequency of 217.025 MHz, transmit at a data rate of 300 bps, and use FSK

modulation.

3.3.3.3. Microcontroller Interface

The data to be transmitted and received by the transceiver is interfaced with the

USART of the microcontroller. The transceiver’s registers are configured by the

microcontroller’s USART. The transceiver has three lines (VHF_CE, VHF_SWD,

and VHF_MUXOUT) that interface with the general I/O of the microcontroller. A

description of each line can be seen in Table 1.

Wireless Bear Tracking, Group May1010 Page 33

Transceiver

ADF7021

PIC

VHF_TX

VHF_SCLK

VHF_WRITE

VHF_SLE

VHF_CE

VHF_RX

VHF_READ

VHF_SWD

VHF_MUXOUT

RF Switch

SKY13270-92LF

ANT_CTL0

ANT_CTL1

3.3 V is high and 0 V is low

Figure 6. Interface of Transceiver and RF Switch to Microcontroller

Table 1: VHF to PIC I/O Descriptions

VHF_TX Serial data that is sent to be transmitted

VHF_RX VHF received data from another device

VHF_SCLK Serial clock input for writing and reading to the registers of the transceiver

VHF_WRITE Serial data input, data to be loaded into the registers of the transceiver

VHF_READ Serial data output, register data of the transceiver

VHF_SLE Load enable input, set high to load data into register

VHF_CE Chip enable, low puts transceiver in power-down and register values are lost

VHF_SWD Sync word detect, high when a match for the sync word sequence found

VHF_MUXOUT Digital pin that can be set to read various set conditions. Default is

Regulator_Ready – pin is set high when the regulator is ready on power up

ANT_CTL0 Antenna Control bit 0 of the antenna switch. Set 0 for TX and 1 for RX

ANT_CTL1 Antenna Control bit 1 of the antenna switch. Set 1 for TX and 0 for RX

Wireless Bear Tracking, Group May1010 Page 34

To write to the transceiver’s register, the data is read in on the rising edge of the

VHF_SCLK. The registers are 32 bits in length and are fed in most significant bit

to least significant bit. During this time VHF_SLE must be held low. After the

last bit rising clock has been read in, VHF_SLE must be raised high for at least 20

ns to move the data into the registers. Table 2 and Figure 7 below from the

ADF7021 datasheet show the timing requirements.

Table 2: Timing Table for ADF7021 (Analog Devices, 2009)

Figure 7. Timing Diagram for Writing to ADF7021 Registers (Analog Devices)

Readback from the ADF7021 can be performed to read back the follow seven

values: AFC, RSSI, battery voltage, temperature, external ADC, filter bandwidth

calibration, and silicon revision. To read back this data, the readback enable bit in

register 7 must be set to 1. VHF_SLE must go high to write the data to register 7.

The data appearing one clock cycle after VHF_SLE goes high must be ignored.

After this ignored clock cycle, the valid data will appear starting with the most

significant bit (bit 15). After bit 0 has been read, one clock cycle should pass

before setting VHF_SLE low to allow for the SREAD pin to be set back to

tristate. Figure 8 below from the datasheet shows the timing for readback.

Wireless Bear Tracking, Group May1010 Page 35

Figure 8. Timing Diagram for Readback (Analog Devices)

Data to be transmitted is sent on VHF_TX and data received is received on

VHF_RX. These lines are asynchronous and will be sent at the bit rate set in the

transceiver.

3.3.3.4. Programming after Initial Power-Up

After VHF_CE is brought high, the registers in the transceiver must be reprogrammed.

Figure 9 and Figure 10 are the suggested programming sequences for transmitting and

receiving from the ADF7021 datasheet.

Wireless Bear Tracking, Group May1010 Page 36

Figure 9. Transmit sequence after power up (Analog Devices, 2009)

Wireless Bear Tracking, Group May1010 Page 37

Figure 10. Receive sequence after power up (Analog Devices, 2009)

Wireless Bear Tracking, Group May1010 Page 38

3.3.3.5. Automatic Sync Word Detection

The ADF7021 can be set to detect a user defined sync word which can be 12, 16, 20,

or 24 bits long. When the transceiver detects the defined sync word, VHF_SWD is set

high.

3.3.3.6. Loop Filter Design

The loop filter design from pin 1 to pin 42 was designed using Analog Devices’

software ADIsimSRD Design Studio. This software takes the user inputs of

frequency, bandwidth, and crystal oscillator frequency and automatically calculates

the values of the loop filter.

3.3.3.7. Crystal Oscillator Design

The crystal oscillator frequency was chosen based on the SRD ADIsimSRD Design

Studio. This crystal frequency allowed the transceiver to have the exact carrier

frequency of 217.025 MHz and a bandwidth of 25 kHz. The crystal oscillator

frequency was also chosen because it was an available crystal to buy and gave us the

exact carrier frequency when multiplied internally. The crystal that was chosen is

made by Citizen and has a temperature range of -40 to 85 °C and a load capacitance

of 18.0 pF. Two capacitances were needed to be put in shunt with the crystal

oscillator to achieve the 18.0 pF load capacitance. The value of these two capacitors

(C1 and C2) can be approximate using the following formula.

1 2

1 2

C C
CL Cstray

C C

C1 and C2 are the load capacitors. CL is the load capacitance specified in the crystal’s

datasheet and Cstray is the total parasitic capacitances on the crystal. Cstray was

estimated at 5 pF. Using this value of Cstray and the available capacitor values

available for purchase, C1 and C2 were picked to be 20 and 36 pF.

3.3.3.8. Matching Network

The RF output of the transceiver was matched to 50 ohm load impedance. From the

application notes, the input impedance at 220 MHz can be modeled as 159.75 +

j53.16. Using the high pass matching network that was suggested, the capacitor and

inductor values were found as shown in Figure 11. A 100.0 pF capacitor was placed

in shunt with the 3.3 voltage supply to prevent the RF from propagating to the voltage

supply. The simulation of the matching network can be seen in Figure 12. As one can

see, the reflected power at 217 MHz is -40 db.

Wireless Bear Tracking, Group May1010 Page 39

Figure 11. RF Output Matching Network

Figure 12. RF Output Matching Network Simulation

Wireless Bear Tracking, Group May1010 Page 40

The RF input of the transceiver was matched to 50 ohms. From the application

notes, the input of the transceiver was modeled at 220 MHz. Using the suggested

matching network and the approximate values for a matching network at 150

MHz, the matching network was able to be tuned to get a match to 50 ohms. The

matching network (C3, C4, L2, and L3) can be seen in Figure 13. Simulating the

circuit (see Figure 14), the reflected power was -51 db at 217 MHz with an input

impedance of 50.182 + j0.215.

Figure 13. RF Input Matching Network

Figure 14. RF Input Matching Network Simulation

Wireless Bear Tracking, Group May1010 Page 41

3.3.3.9. ADF7021 Simulation

Using ADIsimSRD Design Studio provided by Analog Devices, simulations were

performed to simulate the performance of the transceiver's output using the values of

the loop filter, oscillator, and 50 ohm load. The results of these simulations can be

found in Figure 15.

Figure 15. ADF7021 Simulations

Wireless Bear Tracking, Group May1010 Page 42

3.3.3.10. External Power Amplifier

The output from the ADF7021 is fed into an external power amplifier made by

RFMD (SPA-1118). This external power amplifier amplifies the power by 17.2 dB

and has a 1 dB compression of 29.5 dB. The matching network and bias network was

supplied by RFMD. The values of the external components were optimized for a

frequency of 240 MHz and are matched to 50 ohms. The application engineer from

RFMD suggested starting with the values and then slightly adjusting them once the

board is built to achieve an optimal match.

3.3.3.11. RF Switch

A RF switch connects the output RF of the external power amplifier and the RF input

of the transceiver to the common antenna. The RF switch is made my Skyworks

(SKY13270-92LF). The switch has a 0.1 db compression point of 37 dBm and can

handle up to 6 watts of power. The switch isolates the high power transmission from

the RF input of the transceiver. The isolation helps prevent any damaging to the RF

input of the transceiver.

ANT_CTL0 and ANT_CTL1 are the control lines from the microcontroller.

 shows the control lines settings for transmitting and receiving.

Table 3: RF Switch Control Lines

 ANT_CTL0 ANT_CTL1

Transmit 1 0

Receive 0 1

3.4. VHF Antenna

The antenna design at the collar and base station is very important in order for the signals to

be transmitted at the distances necessary for the bear tracking system. The collar and the

routing unit will both have different antenna types and styles due to the different restrictions.

The combination of the two antenna types should have a transmission distance in the wooded

landscape of nearly five miles.

The antenna at the collar is very restricted in size and shape. The antenna must fit on the

collar and be able to withstand the bear’s abuse. The antenna should be sewn into the collar

as much as possible, and if it protrudes, it must be very minor as to avoid damage by the

bears. Curvature of the antenna around the collar and proximity to the bear will greatly affect

the performance of the antenna.

Wireless Bear Tracking, Group May1010 Page 43

The router antenna can be much more sizable which will also allow for a larger antenna gain.

It is necessary in order to receive the signals sent by the collar antenna which may be

restricted due to different obstructions. It can be assumed that the router will be placed in a

relatively clear and higher elevated location.

Wireless communication can be summed up in the following equation, sometimes called the

link equation, or link budget equation.

The PT and PR are the power transmitted and the power received. GT and GR are the gain of

the transmitting and receiving antennas. Note that this is not in dB, but is a direct ratio of the

max directional gain of the antenna. λ is the wavelength of the transmitted signal and R is the

distance between the two antennas.

In this system, due to the poor gain of the antenna on the bear collar, the antenna gain for the

router antenna will have to be much higher. The following describes several different antenna

types and then the detailed design will incorporate the final selection of collar and router

antenna.

3.4.1. ¼ Wavelength Whip Antenna

The ¼ wavelength whip antenna would enter the unit under the neck of the bear and wrap

around the bear’s neck stitched into the collar. At the defined frequency of 217 MHz, the

length of this antenna would be approximately 12.07 inches. This would wrap around the

bear’s neck stitched into the collar and slightly protrude near the top of the collar.

The monopole antenna would require a large ground plane, which the small unit may not

be able to provide. The large ground plane is the reference for the signals that will be

transmitted to the antenna. It will be necessary in this situation to have an entire ground

plane on the printed circuit board.

The antenna would be connected directly to the transceiver. This antenna would not

require any transmission line, but the entire wire connecting the antenna to the transceiver

will act as part of the antenna. Other signals will need to be shielded from this antenna

portion.

Wireless Bear Tracking, Group May1010 Page 44

The antenna extended along inside the collar will be made from stranded steel aircraft

cable. This is a similar material to other wildlife telemetry antennas. There are several

different types of aircraft cable, but the most important quality is thickness. The stranded

cable allows for it to be flexible as it wraps around the neck. The diameter of the cable

must be wide enough to account for the bandwidth of the signal. As the cable of the

antenna widens, the higher bandwidth capability of the antenna will increase.

Figure 16. Example Whip Collar Antenna(Advanced Telemetry Systems)

Pros

 Antenna is easily made

 Very inexpensive

 Very flexible around the neck of the bear

 Does not protrude out of the collar

 Can match the impedance with discrete components

Cons

 Antenna is not shielded properly and will also accept a lot of noise

 The curvature of the antenna will not allow for the ground plane to be

perpendicular to the antenna and possibly allow interesting results

 Research has shown that the ground plane should be several wavelengths long to

produce a stable impedance input

Wireless Bear Tracking, Group May1010 Page 45

3.4.2. ½ Wavelength Whip Antenna

This antenna is very similar to the ¼ wavelength, except it will have a much longer

physical length. This increase in length will also allow a higher antenna gain. The

increase in length will also be more cumbersome for the bear to fit in the collar.

Pros

 Antenna is easily made

 Very inexpensive

 Very flexible around the neck of the bear

 Has a high antenna gain compared to the ¼ wavelength antenna

 Can match the impedance with discrete components

Cons

 Antenna will protrude out of collar and be subject to damage by the bears

 Antenna is not shielded properly and will also accept a lot of noise

 The curvature of the antenna will not allow for the ground plane to be

perpendicular to the antenna and possibly allow interesting results

 Research has shown that the ground plane should be several wavelengths long to

produce a stable impedance input

3.4.3. Sleeve Dipole Antenna

The sleeve dipole antenna is the solution to the unwanted noise possibilities involved in

an unshielded whip antenna. A conductive sleeve surrounds the coaxial transmission line

for a certain portion of the antenna. The conductive sleeve then connects to the outer shell

of the coaxial transmission line and the inner conductor continues as the antenna.

The length of outer conductor, diameter of the conductor, and type of dielectric in

between the coaxial transmission line and this conductor all affect the antenna. This

sleeve works to filter out unwanted frequencies.

Wireless Bear Tracking, Group May1010 Page 46

The sleeve dipole antennas available have mostly a hard metal sleeves which make it

difficult to wrap around the neck of the bear. Also, the researched designs include the

total length to be around ½ wavelength, which is difficult to keep contained inside of the

collar.

Figure 17. Sleeve Dipole Antenna(Saunders and Aragon-Zavala)

Pros

 Antenna is inexpensive

 More reliable impedance matching than alternative antennas

 Coaxial transmission line will give more accurate results

 Has a high antenna gain compared to the ¼ wavelength antenna

Cons

 Antenna will protrude out of collar and be subject to damage by the bears

 The curvature of the antenna will not allow for the ground plane to be

perpendicular to the antenna and possibly allow interesting results

 Antenna is difficult to make and more expensive than alternatives

 Antenna sleeve length and style is difficult to measure and calculate

3.4.4. Normal Mode Helical Antenna

A helical antenna is a coiled antenna that allows the antenna size to be compressed. The

electrical length of the antenna is still half wavelength, but the physical length of the

antenna is much less than that. This antenna in the normal mode will radiate out normal

to the axis of the antenna. It operates in normal mode when the diameter of the antenna is

much less than that of the wavelength of the receive signal.

Wireless Bear Tracking, Group May1010 Page 47

This antenna would be incorporated into the collar and possibly directly into the unit

itself. It would be difficult to keep the antenna oriented in the correct direction due to its

size.

Pros

 Antenna is inexpensive

 Size is much smaller than other antennas

 Has a high antenna gain compared to the ¼ wavelength antenna

 Impedance can be matched using discrete components

Cons

 The ground plane will not be directly perpendicular to the antenna which may

lead to interesting results

 Antenna is not available in size from a manufacturer

 Difficult to manufacture uniform antennas for collars

 Difficult to orient antenna on collar for maximum reception

3.4.5. Rotating Directional Antenna

The previous antennas have been designed for use on the collar. The following antennas

will be of use on the router unit. These antennas will need to have much higher gain and

therefore will not be omnidirectional. The directional antenna allows there to be higher

gain over a more condensed area, yet it is necessary to receive signals from all directions

as bear can be traveling at any position.

One option is to build a highly directional antenna and have it rotate to pick up signals in

all directions using a small motor. This would allow there to only be one antenna on the

router with high gain and it would receive from all directions horizontally.

Pros

 Antenna is very directional and has high gain

 There will be less antenna components than other router antennas

Cons

 The motor will allow for more possibilities of mechanical failure

 The motor will consume battery

 The rotation of the antenna may possibly miss signals when they are sent

Wireless Bear Tracking, Group May1010 Page 48

3.4.6. Helical Antenna Array

Instead of a rotating antenna, several directional antennas can be set up with their

antennas connected in parallel. One simple directional antenna is a helical antenna.

Above the helical antenna was used in normal mode as a possible collar antenna. Here the

helical antenna will be used in axial mode because the diameter of the loops (shown as

variable D in Figure 18) will be much larger than the wave length of the transmitted

signal.

Figure 18. Helical Antenna (Burberry)

The radiation pattern for each instance of the helical antenna will overlap so that in all

directions horizontally there is a high gain pattern. Typical gains for Axial Mode Helical

antennas are between 10 and 15 dB compared to an isotopic radiator. The radiation

pattern is very narrow which will contribute to several antennas necessary for the array.

Pros

 Antenna is relatively inexpensive and can be hand made

 Has a very high gain up to 15 dB

 Impedance can be matched using discrete components

Cons

 The antenna has a very narrow aperture and will require several antennae to build

an effective array

 The axial mode antenna are difficult to support especially in harsh climate

Wireless Bear Tracking, Group May1010 Page 49

3.4.7. Yagi Antenna Array

An antenna array can be made similar to the helical antenna described above, but it can

be made with a Yagi antenna. A Yagi antenna consists of a simple dipole antenna, along

with several conducting directing elements and a reflecting element. The Yagi antenna

can vary in gain based on the length of the elements and the number of elements, but

Yagi antennae consistently can have gains for 8 to 11 dB. More antenna elements will

increase gain, but also decrease directivity, resulting in more antennas necessary to cover

the pattern (Burberry).

The Yagi Antenna can be constructed out of very simple materials including conducting

rods and PVC or other plastic tubing. Below is an example of a Yagi antenna.

Figure 19. Six Element Yagi Antenna(Setian)

Pros

 Antenna is inexpensive.

 Antenna can be easily constructed.

 Gain is higher than most antennas, can be as high as 11 dB.

 Antenna will withstand the harsh environmental conditions.

 Impedance can be matched using discrete components

Cons

 High gain is achieved at the cost of directivity.

 Antenna may consist of several different components.

Wireless Bear Tracking, Group May1010 Page 50

3.4.8. Detailed Design

The bear communication solution will consist of a ¼ wavelength whip antenna and a

Yagi antenna array solution.

The ¼ wavelength antenna will constructed from a coaxial cable with the outer casing

stripped back. The inner wire left exposed will be equal to approximately ¼ wavelength

of the transmitted signal. The coax can be then directly mounted to the PCB with the

appropriate connector. The PCB will need to be a 4 layer board in order to receive the

necessary grounding capabilities for the best antenna performance.

The router antenna will be the Yagi antenna because of its easy of construction and

ability to better withstand the elements than the axial mode helical antenna. There will be

three or more element Yagi antennas and just as many separate antennas in the system in

order for the antenna to view all directions.

Using the link budget equation at the beginning of this section we can determine the

amount of power that will be delivered to the router from a bear.

In the system that we will use, the PT will be equal to 1 Watt. The GT is the gain of the

ideal omnidirectional whip antenna, which by definition is 1. The GR is the gain of the

router antenna, which we will estimate to be 10 dB or a numerical gain of 3.2. The

wavelength at 217 MHz is 1.38 meters. We will assume that the distance needed to

transmit is about 8 km. A compensation factor of ½ is placed in the equation as well to

account for terrain and tree obstructions.

At the baud rate of the system, the receiver can sense at levels down to -130 dBm or 1E-

16 Watts. The received power, even with the compensation factor, is much above the

transceiver’s ability to receive.

Wireless network propagation simulation software called Radio Mobile is available free

online and used by many amateur network designers to test the connections and

transmission characteristics of the wireless signals. This software uses a model for radio

propagation called the Longley-Rice model. The software allows land cover and

elevation data to be mapped in the system and simulate the actual terrain for the devices.

Wireless Bear Tracking, Group May1010 Page 51

The area of land that the bears will travel, between Ely and Tower, Minnesota is loaded

into the program along with the characteristics for the router antenna and the collar

antenna. The calculated radiation pattern, antenna gain, line loss, transmission power, and

antenna sensitivity all factor in to the outcome of this model. Figure 20 below shows the

map of the terrain and then three units. Two of the units are to simulate bears, and the

third unit will simulate the router. In Figure 21 you can see the Router unit transmit its

signal and you can see that in this simulation, the coverage of one router unit nearly

covers the entire area at one watt of transmission.

Figure 20. Radio Mobile Area of Concern

Wireless Bear Tracking, Group May1010 Page 52

Figure 21. Radio Mobile Router Station Propagation

3.5. GPS Module

The GPS Module chosen was the Ublox NEO-5Q. This was chosen because of its ‘kickstart’

weak signal acquisition technology, its compatible I2C interface, its package size, its low

power modes, and lower cost due to Digi buying in bulk.

Other modules were considered including the Trimble Copernicus and Trimble Condor.

Neither the Copernicus nor the Condor had an I2C interface, and both were larger packages

than the Ublox. The Trimble units did, however, trump the Ublox module in accuracy, update

frequency, tracking mode power consumption. These features were only slightly better than

the Ublox, and thus expendable. Overall, the Ublox NEO-5Q was a much more suitable

choice.

3.6. GPS Antenna

Unlike the VHF antenna, only one GPS antenna solution is necessary. While both bear

collars and routers will require GPS antennas, the each will be receiving GPS information in

similar conditions and restrictions.

Wireless Bear Tracking, Group May1010 Page 53

The antenna will:

 Receive GPS data through thick cover of forestry

 Appropriate sizing constraint to fit inside device casing

 Low cost

 Durable in conditions seen in Northern Minnesota

3.6.1. GPS Helix Antenna

A GPS helix antenna provides the best performance out of all GPS antennas. This is

especially true when tracking satellites near the horizon when the GPS antenna is facing

up into the sky. Unfortunately, in order to get this type of performance, the helix antenna

requires a large amount of space to get the correct wavelength for GPS signals. In our

case, the size required and space it takes up exceeds what we are hoping to fit inside of

our case. The base of the helix antenna is greater than 40 centimeters in length, the

circumference of the helix antenna is 19 centimeters, and the height is nearly 40

centimeters as well. While one of these would be simple enough for us to build ourselves,

the sizing of the unit exceeds our devices sizing constraint. (Gulley)

3.6.2. Passive GPS Patch Antenna

In an effort to try to keep costs low, the next possibility for a GPS antenna was the

passive GPS patch antenna. With this solution, we could either design and build our own

again, or buy one from another manufacturer. The advantage of the passive GPS patch

antenna is that no additional power is used in locating and getting a fix on GPS satellites.

The disadvantage of a passive antenna versus an active antenna is that it can take longer

to find the GPS satellites, requiring the device to be powered on longer and therefore

using more power anyway.

While a passive GPS patch antenna would be simple to design and print on to a printed

circuit board, it requires a larger size because the dielectric material is air. Most

manufacturers use a different dielectric material in order to reduce the size of the antenna.

Therefore it would be beneficial to use a manufactured GPS antenna unit rather than an

antenna we would build ourselves. The cost of purchasing an antenna is less than $15 per

unit. Going with a purchased unit would also save time and money invested in creating a

do-it-yourself type of antenna. (Mehaffey)

Wireless Bear Tracking, Group May1010 Page 54

3.6.3. Active GPS Patch Antenna

Since a manufactured passive GPS patch antenna was already being considered, we also

looked at purchasing an active GPS patch antenna. Research showed that active GPS

antennas have the same physical dimensions as passive GPS antennas. Even with this

same size, since they are powered they can locate satellites quicker than their passive

counterparts. They can also track satellites better through the dense forestry that the bears

in Northern Minnesota habitat. Even with the advantages of the active GPS patch

antenna, the cost is the same as the passive GPS patch antenna; also less than $15 per

unit.

3.6.4. Detailed Design

The active GPS patch antenna was chosen because of its theoretical ability to receive

GPS satellite signals through the dense foliage cover in the Northern Minnesota forestry.

Also it will be cheaper and less time consuming to purchase an antenna rather than

researching, designing, and building our own antenna. Taoglas is a reputable GPS patch

antenna manufacturer, which produces both active and passive GPS antennas. After

communicating with a representative of the company, it was determined that the Taoglas

AP25b would be the best antenna for our device. This antenna is only 35 millimeters

square, with a thickness of 4.5 millimeters. It also has a gain of 16 dB. This antenna also

comes with a coaxial cable connection. This will be able to connect directly to a

connection on the GPS chip that we will include.

3.7. Microcontroller

Several types of controllers were considered, but PIC was chosen over others such as Atmel

or a processor because of the great combination of versatility and ease of use.

The microcontroller chosen was the PIC18F46J11. This basis for this choice was its low

power features, multiple communication ports, large program memory, I/O count, and price.

It is an 8-bit microcontroller of the PIC18 family. 16-bit and 32-bit controllers were

considered, but it was found that 8-bit would be sufficient. Choosing 8-bit restricted the

choices to the PIC 10, 12, 16, and 18 families. There were several controllers among these

families that suited the needs of the application, but there were limited availabilities. The

controllers that were best suited and readily available were among the PIC18 family. The

PIC18F46J11 was found to meet all essential needs with the exception of EEPROM. This

was compensated for by selecting an external EEPROM chip 24FC512, manufactured by

Microchip.

Wireless Bear Tracking, Group May1010 Page 55

C programming was chosen again due to versatility and ease of use. There are other easier

languages to use such as PICBASIC, but it would limit the functionality of the controller as

well as efficiency. There are more efficient, low-level languages that could have been

chosen, such as assembly, but using this would complicate the programs needed to be written

far too greatly.

3.8. Chassis

The chassis took into account a number of parameters in choosing the optimal solution. The

chassis needs to be able to withstand the rugged environment (i.e. shock and vibe,

waterproof, temperature) as well as the bears themselves. We were informed that the bear

cubs tend to chew on the collars during the hibernation time. Therefore, we needed an

encapsulation that was small enough but could still endure the effects of its use as well as one

that could contain circuitry without having any effect on the circuit’s performance.

3.8.1. Commercial Cases

These plastic cases are meant to hold cell phones, wallets, and cameras. Their focus is for

personal use for protection of the users valuables.

Pros

• Waterproof

• Crushproof

• Buoyant Case

• Environmentally friendly

• Cheap

Cons

• Dimensions and layout aren’t customizable.

• Simple latch for closing

Wireless Bear Tracking, Group May1010 Page 56

3.8.2. Industrial Cases

These polycarbonate cases meet industry standards and are meant for housing electronics.

Pros

• Waterproof

• Buoyant case

• Customizable shape and layout.

• Premade cases

• Environmentally friendly.

• Cheap

Cons

• Unknown lead time if customized design

3.8.3. Detailed Design

The industrial cases were chosen because of their required fulfillment of industry

standards. The cases meet National Electrical Manufacturers Association (NEMA)

standards 1, 2, 4, 4x, 12, and 13. These standards are shown in Table 4.

Standard Description

NEMA 1 Enclosures constructed for indoor use to provide a degree of protection to personnel

against incidental contact with the enclosed equipment and to provide a degree of

protection against falling dirt.

NEMA 2 Same as NEMA 1 including protection against dripping and light splashing of liquids.

NEMA 4 Enclosures constructed for either indoor or outdoor use to provide a degree of protection

to personnel against incidental contact with the enclosed equipment; to provide a degree of

protection against falling dirt, rain, sleet, snow, windblown dust, splashing water, and

hose-directed water; and that will be undamaged by the external formation of ice on the

enclosure.

NEMA 4X Same as NEMA 4 including protection against corrosion.

NEMA 12 Enclosures constructed (without knockouts) for indoor use to provide a degree of

protection to personnel against incidental contact with the enclosed equipment; to provide

a degree of protection against falling dirt; against circulating dust, lint, fibers, and flyings;

and against dripping and light splashing of liquids.

NEMA 13 Enclosures constructed for indoor use to provide a degree of protection to personnel

against incidental contact with the enclosed equipment; to provide a degree of protection

against falling dirt; against circulating dust, lint, fibers, and flyings; and against the

spraying, splashing, and seepage of water, oil, and non-corrosive coolants.

Table 4: Nema Case Standards (Computer Dynamics)

These cases can also be equipped with heavy duty waterproof prevention options. This

will ensure no intrusion of water. Also, because they are composed of polycarbonate they

have a very high tolerance to impact and wear over time.

Wireless Bear Tracking, Group May1010 Page 57

3.9. Power Supply Circuitry

The power supply section will take the power from the battery and allow it to be readily

available to all components in the system at the power allowances necessary. Table 5 shows

the components in the unit and the power requirements for each of these components.

Component Maximum Required Current Required Voltage

PIC microcontroller 15 mA 3.3 V

UBLOX GPS Module 80 mA 3.3 V

Analog Devices

Transceiver

23.5 mA 3.3 V

Power Amplifier 330 mA 5 V

Table 5: Power Requirements

Essentially, after much research it was decided that four AA batteries would serve as the

input to three high efficiency buck converters. These step-down regulators would be used to

provide the 5V and two 3.3V power lines. A tap directly on the 6V output would be stepped

down with a voltage divider whose output would serve as the input to an A/D converter on

the PIC18F46J11. This voltage tap would provide for low-battery detection.

Several voltage regulators were considered for the power supply circuitry. This subsection

will describe the different types and models considered as well as the chosen solution.

3.9.1. Linear Regulators

Initially, linear regulators were considered. Specifically, the LM317 was the linear

regulator of choice. This regulator provided the required current, allowed for a large input

voltage range, was adjustable for a large output voltage range, and was readily available.

It was unfortunately very inefficient and thus dismissed as an option.

Figure 22. LM317

Wireless Bear Tracking, Group May1010 Page 58

3.9.2. Switching Regulators

In researching more efficient regulators, it was found that switching regulators should be

used in our design. Several regulators of this type were considered.

The first considered was the LM2717. This device was very suitable as its current output

was beyond the requirement, it had a dual output such that 3.3V and 5V could be

obtained on the same chip, and separate shutdown pins were available. Unfortunately, the

input voltage needed to meet our current output was not sufficient.

Figure 23. LM2717

The second considered was the MAX863. This device also gave very high output current

capabilities, a dual output of 3.3V and 5V were available on the same chip, separate

shutdown pins were available, and even a low-battery detect pin was provided. The input

voltage needed to meet our current output requirement was again the problem the

downfall of this part, as well as the lack of availability.

Figure 24. MAX863

Wireless Bear Tracking, Group May1010 Page 59

The third and chosen solution was the ADP3050 series. These step-down buck converters

are available in 3.3V and 5.0V fixed outputs which are both used in the design. Both

permit very wide input rages, separate shutdown pins were available, and the input

voltage allowed current outputs well above the requirement. These devices also required

very little external circuitry and are readily available, unlike the previously considered.

Figure 25. ADP3050

3.9.3. Detailed Design

The chosen design is based around an ADP3050 step-down buck converter. Three of

these are used, one for the 5V output and two for the 3.3V output.

3.9.3.1. General Circuit

The circuit to be used with the ADP3050 is the fixed output version. The applications

information suggests the following circuit. This general circuit will be used in the

design but the specific values shown below in Figure 26 are not necessarily the same.

Figure 26. ADP3050 General Circuit

Wireless Bear Tracking, Group May1010 Page 60

3.9.3.2. Switching Inductor and Output Capacitor Choice for GPS Unit

The GPS unit requires an input of 3.3V with a maximum ripple voltage of 50mVPP.

Thus, the switching regulator must be designed to meet these conditions. To be safe,

the regulator was designed such that the output ripple voltage is 25mVPP. For the

ADP3050, the output Vripple depends on the inductor value chosen as well as the

ESR of the output capacitor. The equations for this are the following:

where L is the inductor value chosen, Vin is the input voltage, Vout is the output

voltage, fsw is the switching frequency (fixed at 200kHz for this device), ESR is

the effective series resistance, Vripple is the output ripple voltage, and Iripple is

the output current ripple.

For the 3.3V step-down design, the input voltage is 1.5V*4 = 6V, the output

voltage is 3.3V, and the switching frequency is 200kHz. Using MATLAB, the

ESR of the output capacitor was plotted as a function of inductor choice. The

code and output are below in Figure 27.

Vin = 6;
fsw = 200e3;
L = [0:1e-6:100e-6];
Vout33 = 3.3;
Iripple33 = ((Vin -

Vout33)./L).*(1/fsw).*(Vout33/Vin);
ESR33 = 25e-3./Iripple33;
plot(L,ESR33)
xlabel('Inductor Value (uH)'),

ylabel('ESR (Ohm)')

Figure 27. 3.3V ESR Calculations

Wireless Bear Tracking, Group May1010 Page 61

From the graph above, it is shown that selecting a 22uH inductor will result in the

choice of capacitor having an ESR of about 74mΩ. After much research it was

found that the best choices were a 22uH inductor and a 100uF tantalum capacitor

with 75mΩ ESR. Using these values, the new Vripple is:

The inductor chosen must be able to handle the proper current draw. The 3.3V

supply is estimated to draw between 250mA and 300mA. For worst-case scenario,

we will assume the regulator draws 120mA. According to the ADP3050

datasheet, the inductor must be able to handle 20% more than the peak switching

current. The calculations for this are shown below.

where Isw(pk) is the peak swing current, Iout(max) is the expected maximum

output current, and Iripple is the output ripple current. After much research, it was

found that a 22uH inductor with 350mA current rating was sufficient.

The values for the passive components calculated above will be used for both

3.3V regulators.

3.9.3.3. Switching Inductor and Output Capacitor Choice for PA

The power amplifier requires an input of 5V without a specified maximum ripple

voltage. For consistency, a maximum ripple voltage of 25mVPP. Thus, the switching

regulator must be designed to meet these conditions. The equations used previously

are repeated, and the MATLAB plot was redone using the output voltage of 5V. The

code and output for this is shown below in Figure 28.

Wireless Bear Tracking, Group May1010 Page 62

Vin = 6;
fsw = 200e3;
L = [0:1e-6:100e-6];
Vout5 = 5;
Iripple5 = ((Vin -

Vout5)./L).*(1/fsw).*(Vout5/Vin);
ESR5 = 25e-3./Iripple5;

plot(L,ESR5)
xlabel('Inductor Value (uH)'),

ylabel('ESR (Ohm)')

Figure 28. 5V ESR Calculations

From the graph above, it is shown that selecting a 47uH inductor will result in the

choice of capacitor having an ESR of about 282mΩ. After much research it was

found that the best choices were a 47uH inductor and a 47uF tantalum capacitor

with 300mΩ ESR.

The inductor chosen must be able to handle the proper current draw. The 5V

supply is estimated to draw up to 330mA. For worst-case scenario, we will

assume the regulator draws 120mA. According to the ADP3050 datasheet, the

inductor must be able to handle 20% more than the peak switching current. The

calculations for this are shown below.

where Isw(pk) is the peak swing current, Iout(max) is the expected maximum

output current, and Iripple is the output ripple current. After much research, it was

found that a 47uH inductor with 600mA current rating was sufficient.

3.9.3.4. Final Power Circuit

As stated before, three regulators provide three different power lines. The +3.3V

ALWAYS line powers the Microchip PIC18F46J11 as well as the backup voltage for

the GPS unit. This line should never be shut off. The +3.3V line powers the GPS unit.

This can be shut off by the PIC when the GPS unit is not in use. The +5V line powers

Wireless Bear Tracking, Group May1010 Page 63

the power amplifier of the VHF transceiver. This can also be shut off when the power

amplifier is not in use. The resistor divider at the bottom steps down the input to 3V

so that the PIC’s A/D can monitor the voltage. When the voltage gets below 2.8V

(which means the input voltage dropped to 5.6V), the PIC will detect a low battery.

This value was chosen based on the ADP3050 datasheet. It specifies that the 5V

regulator will not supply the required current below a 5.5V input.

3.10. Battery

The choice for battery had a lot of things to consider. It must be able to withstand the harsh

environment of the Minnesota woodlands, both terrain and climate. In addition, it must be

able to last at least 3 months without a replacement. Finally, it must be able to deliver the

required voltage to power the components.

3.10.1. Nickel Metal Hydride (NiMH)

The Nickel Metal Hydride battery is composed of a hydrogen-absorbing alloy for the

negative electrode.

Pros

• High capacity.

• Many recharge cycles.

• Very good performance in high-drain devices.

Cons

• High self-discharge rate.

• Does not function well at low temperatures.

• Memory effect.

Wireless Bear Tracking, Group May1010 Page 64

3.10.2. Lithium Ion (Li-ion)

A lithium ion battery is composed of a lithium anode and a carbon cathode.

Pros

• Much lighter than other batteries.

• No memory effect.

• High capacity.

• Very good performance in high-drain devices.

• Very slow self-discharge rate.

• Function better than other types at extreme temperatures.

• Capable of withstanding environmental effects

• Environmentally friendly.

Cons

• More expensive than other types

• Lower shelf life than other types

• Due to high capacity, can be hazardous if short circuited

3.10.3. Detailed Design

Because environmental conditions are a huge part of the project, we decided to go with

the Li-ion battery because it has much better performance at low temperatures.

Regardless of the chosen solution, there were tradeoffs. The higher quality battery will be

more expensive; overall this will be more beneficial because of the longevity they have

over the alternatives.

Wireless Bear Tracking, Group May1010 Page 65

4. Implementation

The second semester of the project, two PCB’s were designed, populated, and tested. Our team

narrowed our focus to the hardware development and low-level programming, leaving high level

networking protocols to be implemented in the future. The following section defines the

implementation of the hardware and software used in the project.

4.1. Hardware

This section describes the assembly and implementation of the hardware, including design

changes. The basic hardware includes two populated PCB’s, two VHF antennas, one GPS

antenna, the USB interconnect, and the power cables.

4.1.1. Printed Circuit Board Layout

The PCB layout was done using Cadence Layout Plus. Each component on our board has

an associated footprint. Most of the footprints were included in the standard library but

some of the footprints had to be created manually. Because of budget constraints, we

designed a two layer PCB. For testing purposes, we kept all components on the top side

of the PCB and included extra test points and connectors.

The general strategy for the layout was to keep the VHF and GPS portions as far apart as

possible. Figure 29 shows the general layout structure of our board. Because RF

performance greatly depends on the ground plane, the PCB board has copper pour

everywhere on the board that does not have any components or traces; these areas are on

both the top and bottom layer of the PCB. To try to keep away from breaking up the

ground plane with traces, we alternated between the top and bottom layer on longer

length traces.

VHFPIC

GPS Power

Power

USB

Figure 29: PCB Layout Structure

Wireless Bear Tracking, Group May1010 Page 66

When starting the layout, the most attention was put on the RF portions of the VHF and

GPS section. The reason for this is because adding more traces changes the characteristic

impedances of the circuit which will result in the parts not being matched to 50 ohms. It

should be noted that on the VHF portion, we had to create two transmission lines because

we were not able to keep transceiver and RF switch as close as possible. Using Advanced

Design System’s (ADS) LineCalc and the characteristic of our PCB as shown in Table 6,

we were able to calculate that a 50 ohm transmission line had a width of 109 mils.

PCB Material FR4

H 64 mils

Er 4.8

Mur 1

Cond 5.8x10
7

Hu 3.9x10
14

T 1.4 mils

Table 6: PCB Characteristics

Once we had the RF portions layout using the least amount of traces, we laid out the rest

of the PCB trying to make the board as compact as possible and avoid breaking up the

ground plane. Plated through holes were also added at various areas to connect the top

and bottom ground planes. We also kept all the external connecters on the same side.

Copper areas were used on each of the three buck converters to help with dissipating

heat. Using the large copper areas was suggested by the manufacturer. The transceiver

and power amplifier both have ground planes underneath of their packages which are

used for RF performance along with helping dissipate heat. We used copper areas to

make these connections. Once we had the layout done, we used Advanced Circuits

(www.4pcb.com/) to manufacture our circuit board because they have a special offer

where we can build our boards for $33 each with no minimum quantity.

It should be noted that after we made these boards, we realized that we inadvertently did

not add the solder mask layer for the power amplifier’s and transceiver’s ground pad. The

revision A PCB layout has this fixed. Also, the crystal was bigger than the package

outline. However, in the new design, the current crystal is not being used. Another

consideration in changing the layout is with the inductance of L10. By changing the

Wireless Bear Tracking, Group May1010 Page 67

lengths of the traces from L10 to the transceiver’s pins 44 and 46, the inductance value of

L10 may need adjustment (See Section 4.2.1)

4.1.2. Populated Board

All parts were ordered and soldered onto the board as shown in Figure 30.

Figure 30: Populated Printed Circuit Board

4.1.3. ADF-7021 Register Configuration

The ADF-7021 uses registers to configure it in either transmit or receive mode. There is a

sequence to follow to configure the transceiver in transmit or receive mode which can be

seen in Figure 9 and Figure 10.

It should be noted that a lot of these values are based on the current hardware, Revision

A. If the crystal oscillator is changed to a voltage controlled oscillator with a better

frequency accuracy as suggested, the register values will change.

4.1.3.1. Transmit Mode

The following steps show the order for configuring the transceiver in transmit mode.

1. Set VHF_CE High

Setting the VHF_CE high turns on the transceiver.

2. Wait around 1.1 ms

This required delayed is necessary to allow the power regulators to power up.

VHF_MUXOUT will be asserted high when the regulators are ready.

Wireless Bear Tracking, Group May1010 Page 68

3. Write to Register 1- VCO/Oscillator Register

1 00 0011 0 1 11 00 1 0 0000 001 0001

External

VCO,

Yes

VCO

Center,

Nominal

VCO-Bias

given

from

Table 9,

0.75mA

RF

divide

by 2,

off

VCO

Enable,

ON

CP-

Current,

Set to

2.1 mA

XTAL Bias,

20uA, higher

current, faster

power up

XOSC

Enable,

Yes using

external

crystal

XTAL

Doubler,

NO

Clock out

divide,

off

R-

Counter,

Set to 1

Address

bits

Table 7: TX Register 1 value

The phase frequency detector (PFD) is given by the following formula based on

whether the RF divide by 2 is on or off.

(Analog Devices)

Maximizing the PFD frequency reduces the N value which will reduce the noise

multiplied at a rate of 20log10(N). The PFD frequency is used in the carrier

frequency and frequency modulation. Analog software, ADIsimSRD, also gave a

lot of the values needed based on our configuration, ADIsimSRD also suggested a

PDF frequency of 4.032 MHz.

The charge pump current was set to the highest value to have the fastest charge

rate.

4. Wait at least 0.7 ms

5. Write to Register 3- Transmit/Receive Clock Register

00 1010 0010 1000 1101 0010 0010 00 0011

AGC-CLK-

Divide, 10

SEQ-CLK-

Divide, 40

CDR-Clk-

Divide, 210

DEM-CLK-

Divide, 2

BBOS Clk

Divide, 4

Address

Table 8: TX Register 3 value

Wireless Bear Tracking, Group May1010 Page 69

Baseband offset clock frequency (BBOS CLK) must be greater than 1 MHz and

less than 2 MHz where BBOS CLK is given by the following equation where

BBOS_CLK_Divide equal to 4 gave us the desired frequency.

MHz
MHz

DivideCLKBBOS

FrequencyXTAL
008.1

4

032.4

__

_

The demodulation clock needed to be set between 2 MHz and 15 MHz. The

demodulation clock is given by the following equation where a value of 2 gave us

the desired frequency.

MHz
MHz

DivideCLKDEMOD

FrequencyXTAL
016.2

2

032.4

__

_

For 2FSK, the data/clock recovery frequency (CDR CLK) needs to be within 2%

of 32 times the data rate. In our case, the data rate was 300 bits/sec given a CDR

CLK of 9.6 kHz. The CDR CLK is given by the following equation where

CDR_CLK_DIVIDE needs to be a value of 210.

kHz
MHz

DivideCLKCDR

CLKDEMOD
6.9

210

016.2

__

_

Sequencer clock (SEQ CLK) supplies the clock to the digital receiver block and

should be close to 100 kHz as possible. The SEQ CLK is given by the following

equation with a value of SEQ_CLK_DIVIDE being 40 giving us the closest value

to 100.

kHz
MHz

DivideCLKSEQ

XTAL
8.100

40

032.4

__
.

Wireless Bear Tracking, Group May1010 Page 70

AGC step to settle is determined by the AGC update rate. It should be set close to

10 kHz. The AGC update rate is given by the following equation with a value of

AGC_CLK_DIVIDE of 10 given us the closest value to 10 kHz.

kHz
kHz

DivideCLKAGC

CLKSEQ
08.10

10

8.100

__

_

6. Write to Register 0- N Register

000 0 0 0011 0101 110 1010 0001 0100 0000

Muxout -

Regulator

Ready

UART

Mode, No =

0

Tx/Rx, TX =

0

Integer-N,

53

Fractional-N, 27156 Address

Bits

 Table 9: TX Register 0 value

The RF output frequency is calculated by the following equations depending on if

RF divide by 2 is set which in our case it is not set to be on.

(Analog Devices)

An Integer-N and Fractional-N value of 53 and 27,156 gives us the center

frequency of 217.0375 MHz. It should be noted that a when the Fractional-N is

used, spurs can appear on the VCO output spectrum at an offset frequency that

corresponds to the difference frequency between an integer multiple of the

reference frequency and the VCO frequency.

Wireless Bear Tracking, Group May1010 Page 71

Muxout sets the output on the VHF_Muxout line. Muxout is a digital value and

can indicate the different components shown in Table 10.

Table 10: VHF Muxout Settings

7. Wait 40 us

8. Write to Register 2- Transmit Modulation Register

0 10 0 0100 1110 10 0100 11 011 0 000 0010

Raised

Cosine

Alpha,

Default

Tx-Data-

Invert,

Inverted

Data

Tx-Fdev, 78 PA

output

power,

36

PA-

Bias,

11

uA

PA-

Ramp,

64

codes/

bit

PA-

Enable,

Off = 0

Modulation

Scheme,

2FSK

Address

Table 11: TX Register 2 value

If the power amplifier (PA) is enabled/disabled by PA_Enable, it ramps up at the

programmed rate but turns off hard. If the PA is enabled/disabled by Tx/Rx

(R0_DB27), it ramps up and down at the programmed rate. PA Ramp prevents

spectral splattering or spurs in the output spectrum. By gradually ramping the PA

on and off, PA transient spurs are minimized. Setting to 64 codes per bit which is

approximately 1/300 = 3.33 ms ramp time. Less codes per bit causes a more

gradual ramp.

PA Bias current is recommended to be 11 uA when power greater than 10 dBm is

required.

Wireless Bear Tracking, Group May1010 Page 72

The external power amplifier has a gain between 19 and 24 dB at our current

frequency with a 1 db compression point of 29.5 dBm. The internal power

amplifier is set by, writing the corresponding value seen in Table 12: PA output

power into register two.

Table 12: PA output power

The estimated power output at the SMA connector can be given by the following

equation.

Output Power in dBm = 0.467742*PA_Level + 0.7323 – Loss in Circuit in dBm

The output power should not exceed more than 29 dBm to avoid non-linearity.

The desired frequency deviation is 4.80 kHz. This frequency deviation allows us

to stay in the 25 kHz channel and allows the spectrum output to drop off. This

frequency deviation was also calculated by ADIsimSRD based on the channel

width and the baud rate. The frequency deviation is given by the following

formula from the datasheet.

(Analog Devices)

By setting TX_FREQUENCY_DEVIATION to 78, it gives us a frequency

deviation of 4.798 kHz where PFD frequency is 4.032 MHz given in Register 1.

The data is set to be inverted because in receive mode the transceiver needs to be

set to be inverted to correctly set the correlator. Thus, to have the PIC receive

non-inverted data, we are inverting the data when we send it.

9. Wait at least 3.33 ms

Wireless Bear Tracking, Group May1010 Page 73

10. Transmit Data

11. Wait 3.4 ms before power down

The delay is needed because of bit latency as shown in Table 13. A latency of 1

bit means that 1/bit rate should be waited before powering down. In this case, it is

1/300 which is 3.33 ms.

Table 13: TX Bit Latency

12. Set Register 0 - PA power down

000 0 1 0011 0101 110 1010 0001 0100 0000

Muxout -

Regulator

Ready

UART

Mode, No =

0

Tx/Rx, RX

= 1

Integer-N,

53

Fractional-N, 27156 Address

Bits

Table 14: TX Register 0 power down value

By switching TX/RX bit to 1, the power amplifier will ramp down which will

minimize spectral splattering as explained in TX Register 2 description.

13. Wait at least 3.33 ms

This delay allows time for the PA to power down.

14. Set VHF_CE to 0

By setting VHF_CE to 0, it will turn off the transceiver.

4.1.3.2. Receive Mode

The following steps show the order for configuring the transceiver in receive mode.

1. Set VHF_CE High

Setting the VHF_CE high turns on the transceiver.

2. Wait at least 1.1 ms

This required delay is necessary to allow the power regulators to power up.

VHF_MUXOUT will be asserted high when the regulators are ready.

Wireless Bear Tracking, Group May1010 Page 74

3. Write to Register 1 - VCO/Oscillator Register

1 00 0011 0 1 11 00 1 0 0000 001 0001

External

VCO,

Yes

VCO

Center,

Nominal

VCO-Bias

given

from

Table 9,

0.75mA

RF

divide

by 2,

off

VCO

Enable,

ON

CP-

Current,

Set to

2.1 mA

XTAL Bias,

20uA, higher

current, faster

power up

XOSC

Enable,

Yes using

external

crystal

XTAL

Doubler,

NO

Clock out

divide,

off

R-

Counter,

Set to 1

Address

bits

Table 15: RX Register 1 value

See Section 4.1.3.1: Transmit Mode for details.

4. Wait at least 0.7 ms

5. Write to Register 3- Transmit/Receive Clock Register

00 1010 0010 1000 1101 0010 0010 00 0011

AGC-CLK-

Divide, 10

SEQ-CLK-

Divide, 40

CDR-Clk-

Divide, 210

DEM-CLK-

Divide, 2

BBOS Clk

Divide, 4

Address

Table 16: RX Register 3 value

See Section 4.1.3.1: Transmit Mode for details.

6. Write to Register 6 - IF Fine Cal Setup

0 11 011 0011 0000 1111 0001 1111 1 0110

IR Cal

Source

divide 2,

OFF

IR-Cal-

Source-

Drive-

Level,

High

IF-Cal-

Dwell-

Time, 51

IF-Cal-

Upper-

Tone-

Divide, 15

IF-Cal-

Lower-

Tone-

Divide, 31

Enable IF

Fine Cal

Address

Table 17: RX Register 6 value

The ADF-7021 has an intermediate-frequency (IF) bandwidth calibration which

should be calibrated on every power-up in receive mode to correct for errors in

the bandwidth and filter center frequency due to process variations. There are two

different calibrations available: Coarse and Fine Calibration. In the cases where

the receive signal bandwidth is very close to the bandwidth of the IF filter, it is

recommended to perform a fine filter calibration every time the unit powers up

which is the case in our design. IF Fine calibration is setup in Register 6 and is

started by writing to Register 5.

Wireless Bear Tracking, Group May1010 Page 75

IF_Cal_Lower_Tone_Divide and IF_Cal_Upper_Tone_Divide are given by the

following formulas.

(Analog Devices)

In our case, IF_CAL_LOWER_TONE_DIVIDE and

IF_CAL_UPPER_TONE_DIVIDE should be 31 and 15.

IF Tone calibration Time is recommended to be at least 500 µs which is given by

the following equation.

(Analog Devices)

The SEQ Clk is equal to 100.8 kHz which is given in Register 3 which makes the

IF_CAL_DWELL_TIME to be at least 51 to have at least a 500 µs calibration

time.

The total time for a fine IF filter calibration is IF Tone Calibration Time times 10

which is around 5.06 ms.

7. Write to Register 5- IF Filter Setup Register

0 0 0 0000 0 0000 00 0000 0 0101 0001 1 0101

IR-

Gain-

Adjust-

UP/DN,

IR-

Gain-

Adjust-

I/Q,

IR-

Gain-

Adjust-

Mag,

IR-

Phase-

Adjust-

I/Q,

IR-

Phase-

Adjust-

Mag,

IF_Filter-

Adjust, 0

IF-Filter-

Divider, 81

IF-Cal-

Coarse, Do

Calibration

Address

Table 18: RX Register 5 value

Register 5 sets up the Coarse calibration.

Wireless Bear Tracking, Group May1010 Page 76

IF_Filter_Divider is given by the following equation which a value of 81 gives us

the closest value to 50 kHz.

(Analog Devices)

IF_Filter_Adjust is automatically adjusted when the Calibration is performed.

This could be set manually if desired.

IR portion is used for image rejection calibration which can be used with an

external microcontroller to calibrate the image rejection. We are currently are not

calibrating.

8. Wait at least 5.2 ms for IF calibration

9. Write to Register 11- Sync Word Detect

0000 0000 0101 1101 1010 1011 01 01 1011

Sync byte Sequence, 0x5DAB

but must be loaded least

significant bit to most significant

bit and inverted

Matching

Tolerance- Accept

1 Error

Sync Byte

Length- 16

bits

Address,

11

Table 19: RX Register 11 value

The transceiver can be set to look for a certain sequence of bits and when this

sequence is found, the VHF_SWD is asserted high. In our application, we use the

sync word to act as a start sequence that tells us that a valid transmission is

coming. We chose a start sequence of 0xBAD5. However, in when the PIC uses

synchronous transmission, it sends the least significant bit first at 8 bits at a time.

Because of this, the transceiver must look for 0x5DAB.

The transceiver also allows for a matching tolerance which is the number of errors

in the sync word that are allowed in the detection.

Wireless Bear Tracking, Group May1010 Page 77

10. Write to Register 12- SWD/Threshold Setup Register

0001 0011 10 10 1100

Data_packet_length,

19

SWD Mode- SWD

Pin High after next

sync word for data

packet length

Lock threshold mode

– Lock threshold

after next sync word

for data packet length

Address,

12

 Table 20: RX Register 12 value

The lock threshold locks the automatic frequency correction (AFC) and automatic

gain correction. We set this lock to last as long as the data packet length.

11. Write to Register 0- N Register

010 0 1 0011 0101 110 1010 0001 0100 0000

Muxout -

Digital-

Lock-Detect

UART

Mode, No =

0

Tx/Rx, RX

= 1

Integer-N,

53

Fractional-N, 27156 Address

Bits

 Table 21: RX Register 0 value

Digital Lock Detect indicates when the PLL has locked. When the phase error on

five consecutive cycles is less than 15 ns, lock detect is set high and remains high

until a 25 ns phase error is detected at the PFD.

See Section 4.1.3.1: Transmit Mode for details.

12. Wait 40 us

13. Write to Register 4- Demod Register

10 00 0000 0001 00 0110 1010 10 1 001 0100

IF-

BW,

25kHz

Post-Demod-

BW, 1

Discriminator-

BW, 106

Rx-

Invert,

Invert

Data

Product DeMod

Scheme,

2FSK

Correlator

Address

Table 22: RX Register 4 value

Demodulation Scheme is set to 2FSK Correlator which is used for 2FSK and has

better performance than the Linear Demodulator for 2FSK.

Wireless Bear Tracking, Group May1010 Page 78

The Discriminator BW is given from the following equations.

,

(Analog Devices)

In our case the Demod Clk is equal to 2.016 MHz (from Register 3) and fdev is

equal to 4.80 kHz (from Register 2). Using the above equation, we get a K value

of 21 which results in a DISCRIMINATOR_BW of 106.

To optimize the coefficients of the correlator, Product and Rx-Invert must be

assigned. The value of these bits depends on whether K is odd or even. The

assignment is given in the following table.

(Analog Devices)

In our case, K and (K+1)/2 is also odd. This makes Product = 1 and RX-Invert

=0b10.

Post Demodulator BW should be set according to the following equation and

table.

(Analog Devices)

In our case, the data rate is 300 so fcutoff is 225 and with Demod clk equal to 2.016

MHz (from Register 3), we get a POST_DEMOD_BW equal to 1.

Wireless Bear Tracking, Group May1010 Page 79

14. Write to Register 10 - AFC Register

0011 0010 100 1011 1000 0010 0001 1 1010

Max-AFC-

Range,50

KP KI AFC Scaling

Factor, 2081

AFC

Enable, On

Address

Table 23: RX Register 10 value

AFC is used to remove frequency errors due to mismatches between the transmit

and receive crystals.

The AFC Scaling Factor is given by the following equation.

(Analog Devices)

In our case, the XTAL is 4.032 MHz which results in a AFC_Scaling_Factor

equal to 2081

KI equal 11 (1011) and KP equal to 4 (100) are the recommended settings to give

optimal AFC performance.

The MAX AFC correction range should be less than or equal to 1.5 IF filter

Bandwidth. From Register 4, our IF filter BW is equal to 25 kHz resulting in a

MAX AFC Correction of less than or equal to 37.5 kHz. The

MAX_AFC_RANGE is given by the following equation.

(Analog Devices)

Setting the AFC correction range at 25 kHz gives us a MAX_AFC_RANGE of

50.

15. RX Mode

16. Set VHF_CE low to power down

Wireless Bear Tracking, Group May1010 Page 80

4.1.4. Matching Networks

With the PCB design completed, we re-simulated our matching networks for the

transceiver with non-ideal parts and traces using Advanced Design System 2009. We

used models for the inductors and capacitors from Murata and Panasonic, and PCB board

characteristics given in Table 6. From these simulations, we only needed to increase L8

inductance to maintain our 50 ohm matches. Figure 31, Figure 32, Figure 33, and Figure

34 all show the circuits used in ADS and their corresponding simulations.

Figure 31: Transceiver output matching network simulation circuit with non-ideals

Wireless Bear Tracking, Group May1010 Page 81

Figure 32: Transceiver output matching network simulation with non-ideals

Figure 33: Transceiver input matching network circuit with non-ideals

Wireless Bear Tracking, Group May1010 Page 82

Figure 34: Transceiver input matching network simulation with non-ideals

4.2. Hardware Modifications

The following section defines the modifications made to the original design post PCB

fabrication, and the reasons for such modifications.

4.2.1. External Inductor L10

The frequency range of the transceiver is determined by an external inductor between pin

44 and pin 46. Figure 35 shows the RF output verses total external inductance between

pin 44 and 46 of the transceiver.

Figure 35: RF output vs. total external inductance (Analog Devices, 2009)

Wireless Bear Tracking, Group May1010 Page 83

The inductance value was given by ADIsimSRD at a value of 38.5 nH based on our

center frequency of 217.0375 MHz. We initially used an inductance value of 39 nH

(L10). However, we were only able to get a max frequency of 200 MHz, which meant we

needed a smaller inductor. In our initial design, we did not include the inductance of the

traces to get to the desired inductance of 38.5 nH. After trying different values of

inductance, a 30 nH inductor gave us the desired frequency that we need. It should be

noted that if the PCB layout is changed with respect to L10, the external inductance will

change depending on the length of the traces from pin 44 and pin 46 to L10.

4.2.2. PIC Connection to Transceiver

The PIC has two different connections to the transceiver: one for configuring the

transceiver’s registers and the other for sending and receiving data wirelessly. To

configure the transceiver’s registers, we generated our own procedure that produced the

desired sequence as explained in Section 3.3.3.3. The procedure is explained in more

detail in the transceiver software Section 4.3.2.3.6.

To send data, we used the PIC’s USART. It should be noted that the USART lines for TX

and RX to the PIC and ADF7021 were switched around in using USART 1. PIC PIN 44

should be connected to TXRXCLK Pin 35. PIC PIN 1 should be connected to

TXRXDATA Pin 34 of the transceiver. On the current revision A, we worked around this

issue by using USART 2 which can be programmed to PIC Pin 1 and 44 and this issue

has been switched in the revised schematic. Using USART 2, we configured the PIC’s

USART to act as the slave. The transceiver provides the clock to output the data on the

rising edge. More details on this can be seen in Section 4.3.2.2 and 4.3.2.3

In receive mode, we do not use the PIC’s USART. Instead, we use the transceiver’s sync

word functionality. The transceiver is programmed to look for a specific start sequence of

bits which in our case is 0x5DAB. Once the transceiver sees this sequence of bits, it sets

the VHF_SWD_INT high which tells the PIC to start to read the bits on the rising edge of

the transceiver’s outputted clock. Once the whole packet is read in, the VHF_SWD_INT

is set low until the next start sequence.

4.2.3. Transceiver External Crystal

The current crystal that was picked out has a frequency tolerance of 30ppm. The

recommended tolerance rate for narrow-band applications, which is given on page 22 of

the transceiver data sheet is to have a <=10ppm. Digikey does not stock crystasl with

these specs. However, there are voltage controlled oscillators (VCXO) that have this

specification. A possible replacement is Digikey part number 631-1068-1-ND. This

VCXO has a frequency tolerance of 1.5 ppm at frequency of 12 MHz which will still

allow us to have exactly a 300 baud rate. It should be noted that if this VCXO is used

Wireless Bear Tracking, Group May1010 Page 84

instead of the current crystal, the values in the registers will have to be changed based on

this new frequency of 12 MHz.

4.2.4. I2C

The I2C lines were used by the PIC to operate an EEPROM memory chip and a UBLOX

NEO-5Q module. Both units operated on different SCL and SDA lines so that each unit

could be debugged separately. The I2C modules are available on the PIC and code was

supplied by Microchip. However, each unit required debugging, especially the UBLOX

module.

In I2C the unit has to address the slave on the line and then wait for the slave to respond

with valuable information. The EEPROM would respond with the data stored in its

memory. The UBLOX GPS chip would respond with NMEA and proprietary UBX data

messages. The UBLOX Protocol Specifications document outlined all the data messages

and how they would be configured.

The EEPROM I2C lines were accidentally switched in the original PCB fabrication.

Jumper lines had to be soldered in order to switch the two lines. Future PCBs will be

updated to this modification.

4.2.5. Power

Coupling between the 3.3V line and an unknown source was detected; therefore, it

appeared that the 3.3V line does not fully shut down. There is a possibility that devices

which use 3.3V line may still be powered even though we prompt it to shut down.

4.2.6. Antenna

A base station antenna was never constructed due to time limitations and material cost.

However, a small whip antenna was constructed for the bear collar. This antenna

consisted of a RG 58A/U coaxial cable terminating at the unit in a 50 Ω SMA connector.

The coaxial cable’s outer conductor was stripped away for a quarter-wave antenna. At the

radiating frequency of 217.0375 MHz, this length was 34.52 cm. There was also a

quarter-wave of coax left on the cable. This cable helped to match the impedance of the

unit and lengthened the antenna for a better fit on the bear collar.

This construction also leads to a poor interface between the coaxial termination and the

radiator. This is due to the mismatch between input impedance of the quarter-wave

antenna and the intrinsic impedance of the coaxial line. Some reflection is expected in the

S11 parameter of the antenna.

Wireless Bear Tracking, Group May1010 Page 85

Figure 36. Quarter-Wave Antenna Construction

4.3. Software

The following section describes the functionality and scope of the software portion of the

project.

4.3.1. PC Code

This portion describes the mapping of GPS coordinates onto Google Maps.

4.3.1.1. Google Mappping Code

Google Maps is a handy and user friendly tool that we thought would give the

researchers a better way to locate the bears and have a better visualization of that

location. So, using the scripting language Python, we wrote a code that will extract

the GPS data sent by the PIC and automatically launch a browser and plot those

coordinates on Google Maps. This code can be seen in Appendix 6. Initially, the set

up of the port is needed. Since we are using serial communication we were able to

implement the pySerial API. This makes it very easy to access the ports needed and

also allows us to set the various parameters.

ser = serial.Serial(port=6, baudrate=2400, bytesize=EIGHTBITS,

parity=PARITY_NONE, stopbits=STOPBITS_ONE,timeout=None, xonxoff=0,

rtscts=0, interCharTimeout=None)

The only thing that needs to be monitored is the port number. Since a computer may

already be using port 6 it may require some modifications to read from the correct

Wireless Bear Tracking, Group May1010 Page 86

port that the board is connected to via USB. In order to view the COM port being

used after plugging in the device open the Device Manager application and double

click "Ports (COM & LPT)". This will list all ports being used on your computer.

From there, the correct port number may be found and the Python code may be

updated as appropriate.

Once the GPS coordinates have been read through the port in decimal form, the

program separates the latitude and longitude coordinates with a comma. This allows

the program to distinguish the coordinates. Then, it implants the coordinates into the

basic URL structure and opens the browser to that URL.

4.3.2. PIC Code

This part of the document describes the files as well as the high level and low level

functions written for the PIC18F46J11 microcontroller for Revision A. The tools used to

program this microcontroller are the following:

 IDE: MPLAB

 Programmer: PICKIT2 or MPLAB ICD2

 Compiler: MPLAB C for PIC18 MCUs (MCC18)

The MPLAB project currently used is the following:

 TDMANetwork.mcp

4.3.2.1. main.c

This file configures and initializes the PIC18F46J11, and serves as the skeleton for

the TDMA network.

4.3.2.1.1. main()

This function calls the initialization functions and then runs the deep sleep handler

function. It is then decided whether the power on reset (POR) was pure, meaning

it is the first power up, or was an awake from deep sleep. Proper actions are then

taken based on the decision.

4.3.2.1.2. activate_unit()

This function is called when the PIC has fully wakened from deep sleep. It is

where communication with the GPS, VHF transceiver, and EEPROM will take

place. This is where communication with other units will take place (one frame in

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469&part=SW007002
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en023805
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en010014

Wireless Bear Tracking, Group May1010 Page 87

the TDMA network). After all networking logic is complete, data is written to the

deep sleep save registers and the PIC goes back to sleep.

4.3.2.1.3. maintenance()

This function performs ‘maintenance’ on the peripherals of the PIC. Its purpose is

to make sure all devices are working correctly.

4.3.2.1.4. tx_test()

This function runs the procedure needed to put the VHF section in transmission

mode. This is used for testing purposes.

4.3.2.1.5. rx_test()

This function runs the procedure needed to put the VHF section in reception

mode. This is used for testing purposes.

4.3.2.2. init.c

This file contains functions that initialize communication ports, I/O ports, the

oscillator, etc.

4.3.2.2.1. eusart2USB_remap()

This function remaps the EUSART2 pins Rx2 and Tx2 to pins 14 and 15

respectively. This allows the FTDI USB to Serial converter chip to talk to the

PIC.

4.3.2.2.2. syc_eusart2VHF_remap()

This procedure sets up the reprogrammable pins needed VHF transmission or

reception. In TX mode, USART 2 clock and data lines are mapped to Pin 1 and

Pin 44 of the PIC respectively. In receive mode, external interrupt 1 and 2 are

programmed to Pin 4 and Pin 1 respectively. Interrupt 1 is used to detect when the

VHF_SWD_INT goes high and external interrupt 2 is used to detect the rising

edge of the receive clock of the transceiver

4.3.2.2.3. eusart2_init()

This function initializes all registers required to communicate serial data

asynchronously over the EUSART2 module.

Wireless Bear Tracking, Group May1010 Page 88

4.3.2.2.4. syc_eusart2_init()

This procedure initializes the synchronous transmission and reception. In

transmission mode, the synchronous USART 2 is used to send the data. The

USART is set up in synchronous and slave mode and disables transmission

interrupts. The transceiver acts as the master and outputs the clock to shift the

data out.

In receive mode, the USART is not used. Instead, the receive procedure uses

interrupts. Two interrupts are needed: one for the sync word detection and the

other for the rising edge of the transceiver clock. External interrupt 1 and 2 are

tied to the sync word detection and transceiver data clock respectively. Thus, in

receive mode, this procedure sets up external interrupt 1 and 2 to be activated on

the rising edge. External interrupt 1 is the only interrupt that is activated right

away because we do not need to start clocking in data until the start character has

been detected. Lastly, the procedure calls global_var_init which initializes the

received data array and count variables to zero.

4.3.2.2.5. osc_init()

This function initializes all registers required for the PIC’s internal oscillator to

oscillate properly.

4.3.2.2.6. io_init()

This function initializes all GPIO pins to be either digital or analog inputs or

outputs.

4.3.2.2.7. vhf_init()

This procedure configures the transceiver to be in either transmit or receive mode.

The procedure contains the register values needed to be written to the transceiver.

For more information on the registers values, see Section ADF-7021 Register

Configuration4.1.3. The register values are passed to the procedure send_gpio()

which writes the values to the transceiver's registers. The for loops are added to

make the required delays as defined in Section 4.1.3.

4.3.2.3. handler.c

This file contains functions that perform any type of data handling. This involves the

deep sleep functionality, sending eusart data, sending data via I/O ports, and other

functions for peripheral testing purposes.

Wireless Bear Tracking, Group May1010 Page 89

4.3.2.3.1. ds_handler()

This function is called to decide whether or not the power on reset (POR) was

pure or if it was from a deep sleep wake.

4.3.2.3.2. dpslp_chk()

This function is called to determine whether or not the power on reset (POR) was

pure or if it was from a deep sleep wake.

4.3.2.3.3. go_to_sleep()

This function is called if a wake from a deep sleep has occurred, but the wake is

not at the beginning of a TDMA network frame. When this function is called, it

increments a counter by calling the sleep_count() function. It then writes this

counter information to the deep sleep save registers, and puts the PIC back into

deep sleep.

4.3.2.3.4. send_eusart1()

This function sends the user inputted integer value via USART 1. It checks to

make sure that the buffer it not full before sending the next byte of data.

4.3.2.3.5. send_esuart2()

This function sends the user inputted integer value via USART 2. It checks to

make sure that the buffer it not full before sending the next byte of data.

4.3.2.3.6. send_gpio()

This procedure writes the specific register value to the transceiver. It takes in the

register value and shifts each bit into an array. These bits are then fed from most

significant bit to least to the transceiver. The procedure sets up the bit's value on

the VHFW line and then toggles the VHF_SCLK to generate the required clock.

The procedure performs this for all 32 bits. After the last bit is read by the

transceiver, the VHF_SLE is set high for a period to latch the data into the

transceiver and then finally set low again. For timing requirements on this

procedure, Section 3.3.3.3 contains more details.

Wireless Bear Tracking, Group May1010 Page 90

4.3.2.3.7. eusart_test()

This function tests the eusart port by calling the send_eusart() function to send

specific values (from 0x00 to 0x03).

4.3.2.3.8. sleep_count()

This function increments the counter variables count1 and count2. These variables

are set at zero when a pure POR has occurred. When counter1 passes 255, it resets

to zero and increments counter 2. The maximum value these counters can

increment to is 255
2
 or 65,025.

4.3.2.3.9. power_33()

This function sets the proper I/O pin high or low to turn the 3.3V power supply on

or off respectively.

4.3.2.3.10. power_5()

This function sets the proper I/O pin high or low to turn the 5V power supply on

or off respectively.

4.3.2.3.11. vhf_trx()

This function sets the proper I/O pin high or low to turn the VHF transceiver on or

off respectively.

4.3.2.3.12. switch_ctrl()

This function is called to control the RF switch to be in either receive or transmit

mode. This function has an unsigned character as a parameter. If the argument

passed through this function is 0, the switch is off. If the argument passed through

this function is 1, the switch is in transmit mode. If the argument passed through

this function is 2, the switch is in receive mode.

4.3.2.3.13. swd()

This procedure is called when external interrupt 1 is detected which means the

transceiver has found the start sequence and the data packet is going to be

outputted. This procedure disables external interrupt 1 (SWD interrupt), clears

external interrupt 2's flag, and enables external interrupt 2 (Data Clock). By

enabling external interrupt 2, the PIC is setting up to read the data outputted by

the transceiver on the rising edge of the transceiver's data clock (TXRXCLK).

Wireless Bear Tracking, Group May1010 Page 91

4.3.2.3.14. VHF_data_rx()

This procedure is called when external interrupt 2 is detected which means a

rising edge was detected on the transceiver's data clock. This procedure is used to

read the data packet and format it in array VHF_buff. The data is sent out from

the PIC least significant bit first and thus as the bits are received, they have to be

shifted to the left to form the byte of data. Once the fixed packet length is read in,

the procedure enables external interrupt 1 (SWD) and disables external interrupt 2

(Data Clock).

4.3.2.3.15. global_var_init()

This procedure initializes the VHF receive global variables VHF_bit_count,

VHF_byte_count, and VHF_buff to 0.

4.3.2.3.16. VHF_read_back()

This function writes to the VHF transceiver register 7 which sets up the read_back

function of the transceiver. For more information on the specifications on read

back, more details can be found in Section 3.3.3.3. Register 7's value is written to

the transceiver in the same manner as the procedure send_gpio(). Once the

VHF_SLE is raised high, the transceiver will output data on the rising edge of the

clock on line VHF_SCLK. The first bit of data is to be ignored. The PIC reads in

the data on the lower edge of the clock to ensure the data has had time to settle.

After the 16 bits have been read in, the VHF_SLE is lowered and one more clock

cycle is produced to allow the transceiver to exit readback mode.

4.3.2.3.17. VHF_AFC_RB()

This function reads back the automatic frequency correction and outputs corrected

frequency. A frequency output of 100 kHz means there is no frequency errors.

The AFC when enabled automatically adjusts the value of the fractional-n to get a

frequency of 100 kHz. The equation for the frequency read back is the follow

equation where DEMOD_CLK is given from register 3 at 2.016 MHz.

4.3.2.3.18. VHF_Silicon_Rev_RB()

This function returns the silicon revision of the transceiver. The current silicon

revision is 0x2104.

Wireless Bear Tracking, Group May1010 Page 92

4.3.2.3.19. VHF_RSSI_RB()

This function reads the received signal strength indication (RSSI) value from the

transceiver and returns the RSSI in dBm. The signal strength in dBm can be

calculated using the following equation.

The readback code is the first 7 bits of the readback value. The gain mode

correction is given by the next 4 bits and gives a correction value based on the

following table.

Table 24: Gain Mode Correction (Analog Devices)

4.3.2.3.20. VHF_Filter_Cal_RB()

This function reads back the filter bandwidth calibration of the transceiver after

the fine and coarse filter calibration has been performed. These values can be used

to manually set the filter calibration without having to run the automatic filter

calibration. The manual adjustment should only be done when the transceiver has

only been powered down for a short period of time. The following equation gives

the filter adjustment value that can be programmed into register 5.

 (Analog Devices)

4.3.2.3.21. VHF_Battery_RB()

This function returns the battery voltage as measured at PIN VDD4. The analog to

digital conversion (ADC) needs to be turned on to read the battery value which is

performed by writing to register 8. Once the ADC is turned on, the battery

readback can be performed. The following equation is used to calculate the

voltage at the battery.

Wireless Bear Tracking, Group May1010 Page 93

4.3.2.3.22. VHF_Temperture_RB()

This function returns the outside temperature in degree Celsius. Just like the
battery readback, the ADC must be turned on before performing the
temperature readback which is performed by writing to register 8. Once the
ADC is turned on, the temperature readback value can be performed and the
temperature can be calculated using the following equation.

(Analog Devices)

4.3.2.4. interrupts.c

This file contains all functions needed for handling interrupts on the PIC18F46J11.

4.3.2.4.1. high_vector_table()

If a ‘sync word detect’ interrupt has been enabled (external interrupt 1), this

function calls the swd() function. If external interrupt 2 has been enabled (VHF

RX data clock), this function calls the VHF_data_rx() function. If there is

incoming data from the FTDI USB to Serial converter, this function calls the

esuart2_rx_int().

4.3.2.4.2. low_vector_table()

This function is not implemented yet because no low priority interrupts are set up.

4.3.2.4.3. eusart2_rx_int()

This function stores the value that was received in an array called eusart2_buff. If

the data received exceeds the length of eusart2_buff, the rx2 pointer is reset to the

beginning of the buffer so that data is overwritten.

4.3.2.4.4. high_vector()

When a high priority interrupt occurs, the program arrives at this function. This

function then directs the program counter (PC) to the high_vector_table() function

using assembly code.

4.3.2.4.5. low_vector()

When a low priority interrupt occurs, the program arrives at this function. This

function then directs the program counter (PC) to the low_vector_table() function

using assembly code.

Wireless Bear Tracking, Group May1010 Page 94

4.3.2.5. user.c

This file contains all the functions necessary to run the user interface on a PC. Its

purpose is to serve as a gateway for the user to access all PIC functionalities.

4.3.2.5.1. user_ctrl()

This function should be run through a while(1) loop to constantly check for user

interaction. A user will open a HyperTerminal and set it up to connect to the

proper COM port with 2400 baud. In the terminal, the user will type ‘+++’

(without quotations) and the PIC will print a welcome string as well as a set of

choices to the terminal. The user will choose a command and based on that choice

the PIC will make decisions and perform the required actions.

4.3.2.5.2. chk_33()

This function is called if the user selects the ‘3.3V Line On’ or ‘3.3V Line Off’

choice. This function turns the 3.3V power line on or off.

4.3.2.5.3. chk_5()

This function is called if the user selects the ‘5V Line On’ or ‘5V Line Off’

choice. This function turns the 5V power line on or off.

4.3.2.5.4. chk_eeprom()

This function is called if the ‘EEPROM Status’ choice is selected. Once

implemented, this function will check the status of the EEPROM chip and report

back to the user on its findings.

4.3.2.5.5. chk_gps()

This function is called if the ‘GPS Status’ choice is selected. Once implemented,

this function will check the status of the GPS chip and report back to the user on

its findings.

4.3.2.5.6. chk_trx()

This function is called if the ‘Transceiver Enable’ or ‘Transceiver Disable’ choice

is selected. This function enables or disables the transceiver.

Wireless Bear Tracking, Group May1010 Page 95

4.3.2.5.7. chk_trx_cfg()

This function is called if the ‘Configure Transceiver’ choice is selected. Once

implemented, this function will run through the procedure needed to properly

configure the transceiver for transmission or reception mode.

4.3.2.5.8. send_data()

This function is called if the ‘Send Data via Transceiver’ choice is selected. Once

implemented, this function will send data to the transceiver that is then sent by

RF.

4.3.2.5.9. gps_test()

This function is called if the ‘GPS Testing Program’ choice is selected. This

function outputs a static GPS coordinate an infinite amount of times. This is used

when using the Google Map interface.

4.3.2.5.10. choice_disp1()

This function is called by user_ctrl() to display the first set of choices once a user

types ‘+++’ in the HyperTerminal.

4.3.2.5.11. choice_disp2()

This function is called by user_ctrl() to display the second set of choices once a

user types ‘+++’ in the HyperTerminal.

4.3.2.5.12. choice_disp3()

This function is called by user_ctrl() to display the third set of choices once a user

types ‘+++’ in the HyperTerminal.

4.3.2.5.13. reset_buff2()

This function resets the user input buffer.

4.3.2.5.14. print()

This function takes a string and prints it to the HyperTerminal. It sends data byte

by byte using the EUSART2 module. It then sends two more bytes – a return

carriage and a new line indicator.

Wireless Bear Tracking, Group May1010 Page 96

4.3.2.5.15. print_mod()

This function is used for the gps_test() function to print location data without any

user visual formatting. In other words, it is the same as print() without sending the

last

4.3.2.6. Eeprom_i2c.c

The eeprom_i2c.c file includes all the necessary protocols to communicate to the

external EEPROM memory.

4.3.2.6.1. eeprom_i2c_init()

This function initializes the PIC to communicate via the second I2C lines. The

pins 38 and 39 on the PIC are set as inputs in order for this to function properly.

This initialization happens at a 100 kHz I2C clock which is based off of the

4MHz oscillator clock.

4.3.2.6.2. eeprom_write_byte()

In the case that only one byte of data needs to be written to the EEPROM, this

function allows that. The inputs must be a single byte, as well as which memory

block (1 or 0), and the address of memory that the data will be written.

4.3.2.6.3. eeprom_read()

The EEPROM can be read simply with this function. An array or pointer must be

passed in as *rdptr and this location is where the EEPROM data will be located

locally. The address and memory block (1 or 0) must also be input. The length of

string to be read is also necessary

4.3.2.6.4. eeprom_ack_polling()

There is no way for the PIC to know when the EEPROM is completed with the

writing stages of its operation. In order to know when it’s done the PIC operates a

polling mechanism. It waits until the EEPROM responds to an address, and then

the unit is available for a second write.

4.3.2.6.5. eeprom_write()

This function is formatted very similar to the read function. It takes all the same

parameters, but this time the dataptr has values to be written to the EEPROM

instead of available space to be written to.

Wireless Bear Tracking, Group May1010 Page 97

4.3.2.7. gps_i2c.c

This file contains all the initialization and basic functionality for the first pair of I2C

lines on the PIC which communicate to the GPS.

4.3.2.7.1. gps_i2c_init()

This function initializes the UBLOX I2C lines to 31.25 kHz if the internal

oscillator is properly tuned to 4 MHz. The I2C lines communicate on pins 37 and

42 of the PIC and these are both configured as inputs. Another important bit to set

is the Slew Rate Control Bit, which allows the signals to be properly recognized

by the GPS. The UBLOX initially configures itself as master to an external

EEPROM. This function waits 300ms in order for this sequence to complete

before initialization.

4.3.2.7.2. gps_read()

This function will read the message stream on the UBLOX chip. The chip does

not always have data available, and this may not print any values in the rdptr. This

function also returns the length of the data that was read, which is important when

looping for data as this function is often used.

4.3.2.7.3. gps_write()

This function is used to write a message to the UBLOX. Messages are not often

written to the GPS, only for the purposes of configuration. Therefore, this

message will often not be used by itself, but by another configuration function.

4.3.2.7.4. gps_read_loop()

At times the UBLOX may not respond to an address, but this function will loop

and end with a read request after the UBLOX acknowledges. This function is not

often used outside of the gps_read function.

4.3.2.7.5. gps_write_loop()

At times the UBLOX may not respond to an address, but this function will loop

and end with a write request after the UBLOX acknowledges. This function is not

often used outside of the gps_write function.

Wireless Bear Tracking, Group May1010 Page 98

4.3.2.8. Ublox_cfg.c

This file contains all of the configuration messages used to set up the UBLOX NEO-5

for the bear application. The functions package a correct configuration message and

then write it to the GPS.

4.3.2.8.1. ubx_cfg_port_poll()

A request is made for the UBLOX to output its current port configuration on the

output Data Stream to be read by the PIC.

4.3.2.8.2. ubx_cfg_port()

This sends a configuration message to the UBLOX. The only important setting is

that this message changes the protocol from NMEA to UBX protocol.

4.3.2.8.3. ubx_cfg_msg_off()

Different message types are outputted automatically to the data stream as a boot-

time configuration of the UBLOX NEO-5. This function turns off a message of

the above class and id as inputs.

4.3.2.8.4. ubx_cfg_msg_on()

Some messages do not default output to the data stream. This function will take a

class and id of a message and have that message type be output to the stream each

time it is available.

4.3.2.8.5. ubx_cfg_inf_off()

The UBLOX has many different error messages available to send to the PIC. This

function turns off all information messages including errors and warnings.

4.3.2.9. Packet Formatting

4.3.2.9.1. Preamble

 The preamble consists of a series of 48 alternating 1's and 0's. This is required by

the VHF transceiver in order to lock on to the signal.

Wireless Bear Tracking, Group May1010 Page 99

4.3.2.9.2. Start bit

 The start bit that we used is 0xBA, 0xD5. This is the signal that the information

is about to be sent, so the receiver can be ready to receive the data.

4.3.2.9.3. Information

For the actual information contained in the packet, we included Longitude,

Latitude, Time, Status, and a Bear ID number.

4.3.2.9.4. Encoding

For the encoding of the message itself, we decided to use 4B/5B encoding. This

would eliminate the issue of having any series of eight 1's or eight 0's

consecutively. The problem with having eight 1's or eight 0's consecutively is that

the transceiver can lose the lock on the signal. While other encoding methods

would have worked as well, we decided to use 4B/5B because of its simplicity.

This functionality uses Table 25 to assign 5 bits of encoding to every 4 bits of

data.

Hex 4 Bits 5 Bits

0 0000 11110

1 0001 01001

2 0010 10100

3 0011 10101

4 0100 01010

5 0101 01011

6 0110 01110

7 0111 01111

8 1000 10010

9 1001 10011

A 1010 10110

B 1011 10111

C 1100 11010

D 1101 11011

E 1110 11100

F 1111 11101

Table 25: 4B/5B Encoding

4.3.2.9.5. Checksum

The checksum is an important piece of information to include in the packet

because it allows the receiving unit to check to see if the data it is received is

Wireless Bear Tracking, Group May1010 Page 100

actually valid. To compute the checksum, we summed all of the encoded data, and

then encoded the checks.

4.3.2.9.6. Shifting

In order to reduce the amount of bytes transmitted, it was necessary to shift the

data so we could transfer 8 data bits, instead of 5 data bits and 3 "filler" bits.

4.3.2.9.7. Sending through VHF

Once the packet has been formatted, it is ready to be sent. This is done with a

function that will send the data synchronously.

4.3.2.9.8. Decoding

Once the data has been received, it is necessary for it to be decoded in order to

actually read the data and convert it in to useful information. Each set of values

gets decoded separately; Longitude, Latitude, Time, Status, and Bear ID. The

decoding has to take each set of 5 bits, decode it to 4 bits, then recombine two 2

sets of 4 bits to make a byte. Longitude and Latitude are signed long (4 bytes),

Time is unsigned long (4 bytes), Status and Bear ID are unsigned characters (1

byte).

Longitude signed long 4 bytes

Latitude signed long 4 bytes

Time unsigned long 4 bytes

Status unsigned char 1 byte

Bear ID unsigned char 1 byte

Table 26: Packet Format Size Before Encoding

4.3.2.9.9. Checksum Decode

The checksum is how the receiver checks the validity of the data it receives. It

computes the checksum by taking the last 12 bits of the received, decoding 10 of

those bits, and shifting the other 2 bits to the most significant positions.

Wireless Bear Tracking, Group May1010 Page 101

5. System and Unit Level Test Cases

The following section defines the test cases to which the design will adhere. There are unit level

tests to confirm the individual components capabilities, as well as system level tests to confirm

that the overall bear tracking system will meet requirements.

5.1. VHF Transceiver Unit Level Test Cases

Impedance matching will be tested between the RF output of the transceiver and input of the

external power amplifier. Impedance matching will also be checked between the output of

the external power amplifier and the antenna port.

The external oscillator will need to be measured to ensure that it is oscillating at the desired

frequency. If the oscillation frequency is high, the load capacitors should be increased to

lower the frequency. If the frequency is low, the load capacitor values should be decreased.

Writing and reading to the registers of the transceiver from the microcontroller will also be

tested to ensure the microcontroller is able to configure the transceiver.

The output RF spectrum will be tested at the output of the transceiver and at the antenna port.

The spectrum will be checked to make sure that the frequencies outside of our 25 kHz

bandwidth at our center frequency is below the FCC mask requirements.

Transceiver to transceiver communication will be tested. Data will be send from one

transceiver and read from another to ensure that communication has been made between the

two units.

5.2. VHF Antenna Unit Level Test Cases

Each collar and router will be tested under ideal conditions, and then it will be tested under

conditions representative of operational use. The router antenna will be as ideal as possible in

the real application, but the collar antenna will also be tested under different curvature

settings as well as with a simulated bear to block signal reception.

Measure the input impedance of the antenna using a network analyzer. The input impedance

should be matched over the desired frequency range to minimize the reflection coefficient of

the antenna.

Use the university’s antenna lab equipment to measure the radiation pattern for the antenna.

Both the router antenna array and the collar antenna must be as omnidirectional as possible.

Wireless Bear Tracking, Group May1010 Page 102

Collar antenna must easily flex around the neck of the bear without drastically affecting

performance.

5.3. GPS Module Unit Level Test Cases

This section describes the testing process that will be undergone once the board has been

fabricated. The microcontroller will output data to a PC when needed. The GPS chip will

output data to the microcontroller which will then output data to the PC (through debugging),

indicating the PC whether or not the GPS is responsive or the outputted data is valid.

Hardware

 All physical connections are sound

 VCC levels are correct

 < 50mVPP ripple is observed at VCC pin

o I/O levels are correct

 Unused I/O ports are high impedance

Functionality

 Status acknowledgment will be requested by the microcontroller to the GPS module,

acknowledgment will be expected from the GPS module.

 GPS data request by the microcontroller shall result in an array of pertinent GPS data

received by the microcontroller.

 Bytes will be counted and compared to the predicted set of data as to calculate an

accurate time slot pertaining to the network design.

 GPS status will be checked in times of low power mode to get an accurate low-power

consumption rate.

5.4. Microcontroller Unit Level Test Cases

This section describes the testing process that will be undergone once the board has been

fabricated. The microcontroller will output data to a PC when needed. The GPS chip will

output data to the microcontroller which will then output data to the PC (through debugging),

indicating the PC whether or not the GPS is responsive or the outputted data is valid.

Hardware

 All physical connections are sound

 VCC levels are correct

 I/O levels are correct

 Unused I/O ports are high impedance

Wireless Bear Tracking, Group May1010 Page 103

Functionality

 Serial data activity is exhibited in times of serial communication – serial ports will be

observed using an oscilloscope.

 Controller status will be checked in times of low power mode to get an accurate low-

power consumption rate.

5.5. Chassis Unit Level Test Cases

In order to test the durability and resistivity of the cases to the environments a variety of tests

can be performed.

 Realistic and measurable force impact on the case at room temperature as well as cold

and hot temperatures.

 Submersion in a variety of materials (dirt, sand, rock) as well as submersion in water.

 Shock and vibration tests at realistic g-forces, with a circuit encapsulated within the

case to test the functionality of a circuit in the rugged conditions that may be

encountered.

5.6. Battery Unit Level Test Cases

To verify their functionality at the extreme temperatures, we would test the battery’s

properties while using a temperature chamber. By starting at 80˚C and decreasing the

temperature by 5˚C every ten minutes, we can take a reading to test the voltage and current.

This will help us get an idea for the temperature at which the battery functionality becomes

unreliable.

5.7. Power Supply Circuit Unit Level Test Cases

Verify the power supply circuitry through the following test cases:

 There is no short to ground on any power line.

 A 3.3V line is properly regulated.

 A 5V line is properly regulated.

 All lines can supply current defined in Table 5.

 System will successfully power down and suppress all voltages on the bus lines, and

send flag to microcontroller when power up is complete.

Wireless Bear Tracking, Group May1010 Page 104

5.8. System Test Cases
The final deliverables will include two router units and three collar units. The following tests

will be performed with these completed units.

Unit System Level Tests

 The unit will successfully power down all systems and power up after a

predetermined amount of time. While the unit is in sleep mode, it will consume less

power.

 The unit will successfully power up and gain a GPS signal lock.

Unit to Router Communication

 The router will recognize the unit sending a packet of information and download this

information. The router will recognize the unit within three attempts by the unit and

will download all correct information. We will test the range of the unit to router

communication in an open area.

 In a heavily forested area, the router will recognize the unit sending a packet of

information and download this information. The router will recognize the unit within

three transmission attempts by the unit and will down load all correct information.

We will test the range of the unit to router communication in a heavily forested area.

Router to Router Communication

 The router will recognize another router sending a packet of information and

download this information. The router will recognize the router within three

transmission attempts and will down load all correct information. We will test the

range of router to router communication in an open area.

 Information received from another router will be successfully downloaded and

concatenated to the information already available. This complete information will be

readily available for serial download from router.

Networking Communication

 Time Division multiplexing will successfully allow the position of a collar unit to be

sent to router 1 and this information will successfully be forwarded to router 2. If one

collar position is sent to more than one router, only one router will send a

confirmation ACK to the collar unit.

 Time Division multiplexing will successfully allow the position of two collar units to

be sent to router 1 and this information will successfully be forwarded to router 2. If

one collar position is sent to more than one router, only one router will send a

confirmation ACK to the collar unit.

 Time Division multiplexing will successfully allow the position of three collar units

to be sent to router 1 and this information will successfully be forwarded to router 2.

Wireless Bear Tracking, Group May1010 Page 105

If one collar position is sent to more than one router, only one router will send a

confirmation ACK to the collar unit.

 Time Division multiplexing will successfully allow the position of two collar units to

be sent to router 1 and one collar unit to router 2. The information from router 1 will

successfully be forwarded to router 2. If one collar position is sent to more than one

router, only one router will send a confirmation ACK to the collar unit.

Optimization and Initialization Routines

 The base router, when notified by the user, will successfully communicate to all

available routers and determine their GPS location. Based on this location, the router

will optimize a networking pattern. The pattern must be the most efficient and the

base router must locate every other router in the system.

 When the base router is notified by user, it can determine all of the routers that are in

use in the field.

Wireless Bear Tracking, Group May1010 Page 106

6. System and Unit Level Test Case Results

The following section is the results from the tests recommended in Section 0. Not all test cases

were implemented due to time and feasibility constraints.

6.1. VHF Spectrum

With the transceiver configured to 2FSK, we measured the output spectrum using a spectrum

analyzer. The first time we measured the output spectrum, we noticed that we were not

getting the power amplification that we should be getting. With the transceiver set at a power

level of 36 (around 0 dBm), we were only seeing around 0 dBm. We believed that a possible

reason for the power amplifier for not working correctly is because there was too much

resistance to ground. In our PCB design, we forgot to add a copper area on the solder mask

for the ground plane of the power amplifier; the only connection to ground is on the

underside of the power amplifier. To test this, we removed the power amplifier from board B

and scrapped off the insulation until we got to the top copper ground plane. After doing this,

we put a new power amplifier onto the board which should allow a full connection to the

ground pad on the power amplifier.

With board A having a power amplifier with only plated through hole connections to ground

and board B with a full connection to ground, we measured the spectrum again of the two

boards at three different power levels: 1 (-16 dBm), 36 (~0 dBm), and 63 (13 dBm). Figure

37, Figure 38, Figure 39, and Figure 40 show the screen shots for board A. As one can see,

we never achieved the amplification that we required. These screen shots did verify that our

boards are modulating using FSK with a frequency deviation of 4.8 kHz. We did observe that

when we turned the power of the transceiver to maximum (PA level 63), we were seeing the

gain dropping tremendously and losing the modulation all together as seen in Figure 40.

Contacting the PA manufacturer (RFMD), they believed that the issue was because of not

having a good connection to ground and also not having a high Q choke and low resistant

inductor on L13. RFMD suggested that we use Coilcraft 1008CS inductor. Because of time

issues, we were not able to see if changing the choke inductor would fix the PA issue.

We also observed images of the FSK modulation at 4.8 kHz from each impulse as seen in

Figure 38 and also 200 kHz from the center frequency as seen in Figure 39. These images

can be cause by using a high number on the fractional-n as explained in the transceiver TX

register 0.

Wireless Bear Tracking, Group May1010 Page 107

Figure 37: Output Spectrum of board A with transceiver set at level 1 power (-16 dBm)

Figure 38: Output Spectrum of board A with transceiver set at level 36 power (~0 dBm) with span 50 kHz

Wireless Bear Tracking, Group May1010 Page 108

Figure 39: Output Spectrum of board A with transceiver set at level 36 power (~0 dBm) with Span 2.6 MHz

Figure 40: Output Spectrum of board A with transceiver set at level 63 power (13 dBm)

With the modification to the ground connection of board B, we saw the output was

attenuated as seen in Figure 41, Figure 42, and Figure 43. When we had the power level

of the transceiver at its highest, we observed an increase in spectral content as seen in

Figure 43. The increase in spectral content may be caused if the power amplifier was not

Wireless Bear Tracking, Group May1010 Page 109

acting as a linear device. We believe that the PA on board B is no longer in a state of

functionality which is why there is so much attenuation.

Figure 41: Spectrum of board B with modification and transceiver output power level of 1 (-16 dBm)

Figure 42: Spectrum of board B with modification and transceiver output power level of 36 (~0 dBm)

Wireless Bear Tracking, Group May1010 Page 110

Figure 43: Spectrum of board B with modification and transceiver output power level of 63 (13 dBm)

Wireless Bear Tracking, Group May1010 Page 111

6.2. Antenna

The RF transmission of the board was initially tested using a quarter-wave coaxial cable to

connect the two units. After acceptable transmission rate was achieved, the quarter-wave

antennas were used in testing.

To test the performance of the quarter-wave antenna we used a network analyzer to test the

reflection S-Parameters. The antenna had tuned frequencies that were slightly off of

accepted, and the desired frequency was almost entirely reflected.

Figure 44. Antenna A - S11 Parameters

Wireless Bear Tracking, Group May1010 Page 112

Figure 45. Antenna 2 - S11 Parameters

The antennas were very sensitive to movement and any adjustment in curvature would affect

the S11 parameters of the antenna. At the angle that the antenna will be on the bear’s collar,

there were the distinct frequencies as displayed in the above graph.

New antennas were constructed to better meet the required frequency. The new antenna is

trimmed in length to adjust the tuned frequency of the system at 217.0375MHz. The

following antenna had a small coax portion and then a length of 21 cm. This antenna had a

nice bandwidth around the necessary frequency.

Figure 46. Finalized Antenna - S11 Parameters

Wireless Bear Tracking, Group May1010 Page 113

6.3. Google Maps

During the testing of this code, it initially let the user input coordinates so that it was able to

verify the correct format of the URL implant and the launching of the browser. Once the

formatting of the URL was correct, we set up a communication link with Putty. Putty is an

open source terminal emulation application that can act as a client for a number of computing

protocols. To simulate GPS coordinates, we set up the PIC to continually output the same

string of fake coordinates. This was to ensure our port parameters were set up correctly to

allow for communication via USB. Once we knew what COM port we were communicating

with, we set the baud rate to 2400, bit size of 8, no parity, and one stop bit.

Figure 47 Port parameters for communication to PC for Google Map testing

6.4. Specific Absorption Rate Safety

The specific absorption rate is a way to measure the amount of energy being absorbed by

bodily tissue due to exposure to radio frequency electromagnetic fields. It is important for us

to take this into account so that we don't injure the bear. Since the collar is so close to the

bear's head, we have to ensure that our outputted power is safe. SAR is measured in

Watts/Kilogram and, in our case, needs to be evaluated over the mass of the bear's head. The

FCC requires that all cell phones have a SAR no greater than 1.6W/kg. Therefore, with our

system outputting about 1W, the bear's head would have to weigh less than 1kg. This

condition will not be a factor our group will encounter since it is safe to say that the average

bears head weighs roughly 5-15kg. Also, contributing to the safety of our system is the

amount of time in which we are transmitting. It is such a short time of exposure that the

effects are very minimal.

Wireless Bear Tracking, Group May1010 Page 114

7. Recommendation for Project Continuation

This section will describe our groups suggestions for future changes to the project.

7.1. VHF Recommendations

In a future design, the image rejection calibration in the ADF-7021 register 5 should be

implemented. By performing this, the transceiver will be able to reject the image frequency at

a higher attenuation which should decrease the bit error rate. Pages 39 to 40 of the ADF-7021

datasheet explain the procedure to calibrate the image rejection.

A bandpass filter should be added to the output of the RF switch. The band-pass should allow

the frequency range of 216 to 221 MHz to pass. A much narrower filter design would be

infeasible with the given fractional bandwidth. This filter will help clean up the out of band

spectrum content and help reject the image frequency. By adding the filter, it should help

lower the bit error rate and clean up the output band content.

In future PCB layouts, the power amplifier and transceiver ground pad should have a copper

area on the solder mask along with the plated through holes to ground. These copper areas

will help with RF performance along with helping dissipate heat. Section 4.1.1 should also be

read in detail to maintain the same RF strategy and knowing to adjust the external inductor of

the transceiver.

7.2. Power Section Recommendations

Previously, three buck converters were used in the power section for a 3.3V always power

line, a 3.3V selectable power line, and a 5V selectable power line. The purpose for using

buck converters was to allow for an efficient step down from the 6V battery supply, as well

as a wide range of input voltages for when a wall transformer is used. This proved to be a

waste of space for only a small save in efficiency as well as an expensive alternative. The

new design replaces these buck converters with selectable LDO regulators. Very few

components are need for these supplies and their efficiencies are comparable to the buck

converters at the input voltages being used. They are also much less expensive.

7.3. USB Section Recommendations

For the USB section in the previous design, an FTDI chip was used for USB to serial

conversion. This was an excellent choice for its capabilities, but it still took up a lot of space

and used several components. A new chip, the Silicon Labs CP2102 is now used, costing the

same amount but having a smaller package size and requiring less external components. This

will again save board space and cost.

Wireless Bear Tracking, Group May1010 Page 115

7.4. GPS Section Recommendations

The NEO-5Q GPS chip is replaced with the EM-408 module and antenna package. Instead of

being integrated into the board as before, this module will plug into a connector mounted on

the board and be a completely separate entity. This module greatly reduces cost and

complication. It further saves design time in that it communicates via UART which is very

easy to implement in the controller chosen (PIC18F46J11). The integrated patch antenna can

be bypassed if required; the EM-408 has an MMCX connector for an optional external

antenna.

7.5. General Design Recommendations

Few changes were needed based off of flaws found in the previous revision. First, the SDA

and SCL communication lines were switched on the EEPROM to PIC interface and are

corrected in this design. Secondly, the VHF_RX and VHF_TX lines need to be switched to

be able to use USART1. Also, a different crystal oscillator was used for the VHF transceiver

to account for the required frequency tolerance.

Wireless Bear Tracking, Group May1010 Page 116

8. Statement of Work

The project will be broken down into seven tasks (Table 27) and every member of the team will

contribute to complete these tasks.

Table 27: Tasks to be accomplished

Task 1 - Problem Definition

 Subtask 1.1 - Problem Definition Completion

 Subtask 1.2 - Constraint Identification

 Subtask 1.3 - End User Identification

Task 2 - Technology Research and Selection

 Subtask 2.1 - Communication and Antenna

 Subtask 2.2 – GPS and Antenna

 Subtask 2.3 - Battery

 Subtask 2.4 – Microcontroller Hardware & Software

 Subtask 2.5 – Chassis

 Subtask 2.6 – Network Structure

 Subtask 2.7 - Security

Task 3 - End-Product Design

 Subtask 3.1 - Electrical Hardware

 Subtask 3.2 - Embedded Programming

 Subtask 3.3 - Software Design

 Subtask 3.4 - Chassis

Task 4 - End-Product Prototype Development

 Subtask 4.1 - Acquire Materials for Prototypes

 Subtask 4.2 - Assemble Prototypes

Task 5 - End-Product Testing

 Subtask 5.1 - Test Planning

 Subtask 5.2 - Test Development

 Subtask 5.3 - Test Implementation

Task 6 - Presentations

 Subtask 6.1 - Project Plan

 Subtask 6.2 - Design Review

 Subtask 6.3 - Client

 Subtask 6.4 - Industry Review Panel

Task 7 - Product Documentation

 Subtask 7.1 - Project Plan Development

 Subtask 7.2 - Design Document Development

 Subtask 7.3 - Project Poster

 Subtask 7.4 - Project Final Report Development

 Subtask 7.5 - Weekly Status Email

Wireless Bear Tracking, Group May1010 Page 117

8.1. Task 1 - Problem Definition

The objective of Task 1 is to clearly define the problem, constraints, and end users that the

client has presented. We will meet with the client to fully understand the problem and ask for

clarification when needed. At the end of this task, we will clearly understand the client's

expectations of the project.

8.1.1. Subtask 1.1 - Problem Definition Completion

The objective of Subtask 1.1 is to clearly define the problem the client has presented. We

will approach this task by meeting with the client and performing research on current

wildlife tracking methods.

8.1.2. Subtask 1.2 - Constraint Identification

The objective of Subtask 1.2 is to define the constraints of the project. We will approach

this task by meeting with the client to identify the constraints of the project.

8.1.3. Subtask 1.3 - End User Identification

The objective of Subtask 1.3 is to identify who will be using the end product. We will

approach this task by meeting with the client to discuss the end use of product.

8.2. Task 2 - Technology Research and Selection

The objective of Task 2 is to find the best technology to use in the project. We will approach

this task by separating the different technologies among the team and performing research on

different options within that technology. After the research has been performed, the results

will be present to the team as whole. At the end of this task, we will have the technology

selected for the project.

8.2.1. Subtask 2.1 - Communication and Antenna

The objective of Subtask 2.1 is to select the method of communication and corresponding

appropriate antenna. The method of communication is the technology that we will use to

send the GPS data from the bears to the end user (i.e. VHF, Satellite, ect.). Along with

picking the technology, we will decide if we will purchase a module or complete a new

hardware design. At the end of the task, we will know the method of communication

between the bears and the end user and whether we are designing the communication

hardware or purchasing a completed module.

Wireless Bear Tracking, Group May1010 Page 118

8.2.2. Subtask 2.2 – GPS and Antenna

The objective of Subtask 2.2 is to select the best GPS module and antenna. We will

approach this task by researching the different modules and antennas available and

picking the best GPS module and antenna for this project.

8.2.3. Subtask 2.3 - Battery

The objective of Subtask 2.3 is to select the best battery technology and vendor for our

application. We will approach this task by researching the different battery technologies

and vendors and picking the appropriate battery technology.

8.2.4. Subtask 2.4 – Microcontroller Hardware & Software

The objective of Subtask 2.4 is to select the microcontroller, programming hardware and

software, and any necessary operating systems needed to run on the microcontroller.

Depending on the microcontroller selected, we will decide if external memory will be

needed and if so, the appropriate memory will be researched and selected. We will also

select the appropriate hardware and software needed to program the microcontroller.

Lastly, we will decide if we will need an operating system and if so will pick the best

operating system for our project.

8.2.5. Subtask 2.5 – Chassis

The objective of Subtask 2.5 is to select the appropriate material for the chassis. We will

research our different options and pick the appropriate material.

8.2.6. Subtask 2.6 – Network Structure

The objective of Subtask 2.6 is to select the appropriate network structure. The network

structure includes the protocol that will be used in the wireless communication and how

the information will go from the bear to the end user. We will research different methods

and pick the appropriate method.

8.2.7. Subtask 2.7 - Security

The objective of Subtask 2.7 is to select the necessary security of the wireless

communication to prevent unauthorized access to the transmitted data. We will approach

this task by determining the appropriate amount of security and the method to protect the

data.

Wireless Bear Tracking, Group May1010 Page 119

8.3. Task 3 - End-Product Design

The objective of Task 3 is to develop the design of the end-product. The design will be of the

unit on the bear and any necessary routers. The design includes both hardware and software.

We will approach this task by dividing the necessary work between the members of the team

based on expertise and desire to work on a specific task.

8.3.1. Subtask 3.1 - Electrical Hardware

The objective of Subtask 3.1 is to design the electrical hardware of the unit on the bear

and any necessary routers. In this task, we will create block diagrams and schematics to

show the electrical layout of all the parts. We will run any necessary simulations to test

our designs. We will also create the printed circuit board layout which will be used to

fabricate the printed circuit board. We will acquire sample parts in order for us to test

initial part performance to make sure the part is applicable to our project.

8.3.2. Subtask 3.2 - Embedded Programming

The objective of Subtask 3.2 is to design the logic and structure of the embedded

software. We will design the logic structure and necessary configurations needed for our

microcontroller on both the unit on the bear and any necessary routers. We will also

develop the necessary configurations of any other device in our hardware design. We will

start initial coding necessary to perform part performance testing done in Subtask 3.1.

8.3.3. Subtask 3.3 - Software Design

The objective of Subtask 3.3 is to design the necessary software needed to allow the user

to obtain the information from the bears on a computer. At the least, the software will

allow the user retrieve the raw data from the bear on a computer. If time allows, more

sophisticated software may be developed to map the data of each bear on a map.

8.3.4. Subtask 3.4 - Chassis

The objective of Subtask 3.4 is to design the physical layout of the chassis of the unit on

the bear and any necessary routers. We will also determine how and where we will be

making the chassis.

8.4. Task 4 - End-Product Prototype Development

The objective of Task 4 is to build the necessary prototypes. At the end of this task, we will

have created multiple prototypes of our design in Task 3.

Wireless Bear Tracking, Group May1010 Page 120

8.4.1. Subtask 4.1 - Acquire Materials for Prototypes

The objective of Subtask 4.1 is to create a list of necessary parts and materials to build

the prototypes and acquire these parts and materials. This task also includes acquiring any

necessary tools needed to build the prototypes.

8.4.2. Subtask 4.2 - Assemble Prototypes

The objective of Subtask 4.2 is to build the prototypes and finish any embedded

programming code and end user software. At the end of this task, we will have built

prototypes that are programmed and ready for testing.

8.5. Task 5 - End-Product Testing

The objective of Task 5 is to create and implement tests to ensure the end-product meets the

necessary functional and non-functional requirements.

8.5.1. Subtask 5.1 - Test Planning

The objective of Subtask 5.1 is to create a list of tests necessary to ensure the end-product

meets the necessary requirements. This task includes creating a list of necessary tools

needed to perform the tests.

8.5.2. Subtask 5.2 - Test Development

The objective of Subtask 5.2 is to create the test procedures and any test hardware and/or

software necessary to accomplish the tests defined in Subtask 5.1.

8.5.3. Subtask 5.3 - Test Implementation

The objective of Subtask 5.3 is to use the tests created in Subtask 5.2 to test the

requirements and functionality of the prototypes. The test implementation includes any

necessary debugging and modifying of the design in order to successfully fulfill the

defined requirements.

Wireless Bear Tracking, Group May1010 Page 121

8.6. Task 6 – Presentations

The objective of Task 6 is to make the required presentations for the Senior Design course

and to demonstrate the end-product to the client.

8.6.1. Subtask 6.1 - Project Plan

The objective of Subtask 6.1 is to create a power point presentation of our project plan

and present this presentation to the Senior Design class. The presentation will cover the

main aspects of our project plan document.

8.6.2. Subtask 6.2 - Design Review

The objective of Subtask 6.2 is to create a power point presentation of our design and

present this presentation to the Senior Design class and review committee. The

presentation will cover the main aspects of our design from Task 3.

8.6.3. Subtask 6.3 - Client

The objective of Subtask 6.3 is to demonstrate the end-product to the client. We will

demonstrate the capabilities of the end-product and the fulfillment of requirements.

8.6.4. Subtask 6.4 - Industry Review Panel

The objective of Subtask 6.4 is to create a power point presentation of the main aspects of

our final end-product and present the presentation to the industry review panel.

8.7. Task 7 - Product Documentation

The objective of Task 7 is to create necessary documentation to plan the project and record

the initial and final designs of our end-product.

8.7.1. Subtask 7.1 - Project Plan Development

The objective of subtask 7.1 is to create a document that captures the requirements and

plans necessary to create the end-product. The document will guide our decisions in the

development of the product.

8.7.2. Subtask 7.2 - Design Document Development

The objective of Subtask 7.2 is to create a document that explains the design of our end-

product. The design document describes the logic of our design, how we plan to build our

end-product, and how the end-product will operate.

Wireless Bear Tracking, Group May1010 Page 122

8.7.3. Subtask 7.3 - Project Poster

The objective of Subtask 7.3 is to create a poster to show the development of our end-

product. It will show the problem, our solution, and the effort in developing the solution.

8.7.4. Subtask 7.4 - Project Final Report Development

The objective of Subtask 7.4 is to create a final document that records the end-product in

both final design and functionality.

8.7.5. Subtask 7.5 - Weekly Status Email

The objective of Subtask 7.5 is to send a weekly status email to all members of the team,

our advisor, and the instructors of Senior Design. The emails will include the team's

progress for the week, meetings held during the week, plan for the upcoming week, and

individual hours worked on the project for the week.

Wireless Bear Tracking, Group May1010 Page 123

9. Resources and Schedule

We estimate the single unit material cost to be $210 and development labor cost to be $21,380.

The development labor costs are being donated by the team, and the material costs are being

covered by the client.

Section 9.2 outlines the schedule of the entire project. The schedule consists of all the tasks and

subtasks from Section 8.2. The schedule was produced to ensure an on-time completion of the

project.

9.1. Resources

Based on initial research and our conceptual diagram, we estimated the unit material cost to

be $210 (see Table 28). The unit material cost represents more of a worst case scenario of

having to use more expensive technology to achieve the performance. In the design stage, we

hope to reduce the single unit cost. The material costs will be covered by the client.

Table 28: Single Unit Estimated Cost

Item Estimate

Cost

VHF Communication $22.00

VHF Antenna $5.00

GPS $100.00

GPS Antenna $11.00

Battery $6.00

Microcontroller $17.00

Connectors $7.00

Printed Wiring Board $33.00

Power Electronics $9.00

Total $210.00

The development labor hours required to complete the project was 1069 hours (see Table

28). With an hourly rate of $20 per hour, the development labor cost for the project is

$21,380. However, for this project, our team will donate the development labor cost. The

total cost for the project is $21,800. The total cost includes building two prototypes (see

Table 29).

Table 29: Project Costs

Description Estimated Unit Cost Estimated Qty Extended Cost

Prototypes $210.00 2 $420

Development Labor Costs $20.00 1069 $21,380

Total $21,800

Wireless Bear Tracking, Group May1010 Page 124

9.2. Schedule

A schedule was developed to ensure that the project will be completed on time. The

completion date of each subtask was based on datelines given to us by the Senior Design

class and the estimated amount of time needed for each task. Figure 48 shows the schedule

for the project.

Wireless Bear Tracking, Group May1010 Page 125

F
ig

u
re 4

8
: S

ch
ed

u
le fo

r P
ro

ject

Wireless Bear Tracking, Group May1010 Page 126

10. Closure Material

Outlined in this section is the contact information of the client, faculty advisor, and student team.

The closure material also contains a brief summary of the project plan.

10.1. Project Contact Information

The following contains the contact information of the client, faculty advisor, and student

team.

10.1.1. Client Information

Digi International

Mark Tekippe, Jim Stroner, and Jordan Husney

11001 Bren Road East

Minnetonka, MN 55343

Phone: 1-877-912-3444

Email: digisd@iastate.edu

10.1.2. Faculty Advisor Information

Dr. Ahmed Kamal

319 Durham Hall

Ames, IA 50011

Phone: 515-294-3580

Email: kamal@iastate.edu

10.1.3. Student Team Information

Zach Bruce

Team Leader

225 N. Hyland APT 6

Ames, IA 50014

Phone: 515-975-7836

Email: zbruce@iastate.edu

Blane Chesnut

Webmaster

4335 Frederickson CT

Ames, IA 50010

Phone: 515-572-7820

Email: bchesnut@iastate.edu

Wireless Bear Tracking, Group May1010 Page 127

Chris Donnelly

4335 Frederickson CT

Ames, IA 50010

Phone: 515-572-7820

Email: cdonns87@iastate.edu

John Pritchard

Communication Liaison

4700 Mortensen RD Unit 201

Ames, IA 50014

Phone: 712-389-0381

Email: johnp@iastate.edu

Adam Rasmussen

3055 190TH ST

Goldfield, IA 50542

Phone: 515-824-3456

Email: adamras@iastate.edu

10.2. Closing Summary

Digi International has presented a problem to our team to find an effective method of

tracking the location of bears in Northern Minnesota. With current products being expensive,

we will provide cheaper end-product that will provide nearly live location information of

bears when possible for researchers who use our end-product. At a unit material cost of $210

and development labor costs of $21,380, we have provided a proof of concept for Digi

International that meets their requirements for the project.

Due to the complexity of this project, we strongly recommend that this project be continued

for a second phase.

Wireless Bear Tracking, Group May1010 Page 128

Works Cited

Advanced Telemetry Systems. Series_M2500. 5 October 2009. 17 November 2009

<http://www.atstrack.com/PDFFiles/Series_M2500.pdf>.

Analog Devices. "ADF7021: High Performance Narrowband ISM Transceiver." August 2009.

Analog Devices. 29 November 2009 <http://www.analog.com/static/imported-

files/data_sheets/ADF7021.pdf>.

BlueSky Telemetry. 30 September 2009

<http://www.blueskytelemetry.com/wildlife_tracking.asp>.

Burberry, R. A. VHF and UHF Antennas. London: Peter Peregrinus Ltd., 1992.

Computer Dynamics. NEMA 4 and Other NEMA Ratings. 2008. 29 November 2009

<http://www.cdynamics.com/nema-4.html>.

Federal Communications Commission- Part 15. "Title 47-Telecommunication. Part 15." 20

February 2009. Federal Communications Commission. 29 November 2009

<http://www.access.gpo.gov/nara/cfr/waisidx_08/47cfr15_08.html>.

Federal Communications Commission- Part 18. "Title 47- Telecommunication. Part 18." 20

February 2009. Federal Communications Commission. 29 November 2009

<http://www.access.gpo.gov/nara/cfr/waisidx_08/47cfr18_08.html>.

Federal Communications Commission- Part 90. "Title 47- Telecommunication. Part 90." 20

February 2009. Federal Communications Commission. 29 November 2009

<http://www.access.gpo.gov/nara/cfr/waisidx_08/47cfr90_08.html>.

Gulley, Walter R. Construction Details for a GPS Helix Antenna. 29 November 2009

<http://www.ggrweb.com/article/gulley.html>.

LandAirSea. 30 September 2009 <http://www.landairsea.com/index.html>.

Mehaffey, Joe. GPS Antennas for Consumer GPS Receivers: Which type is best? 29 November

2009 <http://www.gpsinformation.org/joe/gpsantennaspecs.htm>.

Saunders, Simon R. and Alejandro Aragon-Zavala. Antennas and Propogation for Wireless

Communication Systems Second Edition. Chichester, England: John Wiley & Sons Ltd., 2007.

Setian, Leo. Practical Communication Antennas with Wireless Applications. Upper Saddle

River: Prentice Hall PTR., 1998.

Telonics. 30 September 2009 <http://www.telonics.com/products/vhfStandard/MOD-500.php>.

Wireless Bear Tracking, Group May1010 Page 129

Appendix 1: Operations Manual Done by Joe Lane

Wireless Bear Tracking, Group May1010 Page 130

Wireless Bear Tracking, Group May1010 Page 131

Wireless Bear Tracking, Group May1010 Page 132

Appendix 2: Operations Manual Done by Jamin Hitchcock

Wireless Bear Tracking, Group May1010 Page 133

Wireless Bear Tracking, Group May1010 Page 134

Wireless Bear Tracking, Group May1010 Page 135

Appendix 3: VHF and Power Amplifier Revision A Schematic

Wireless Bear Tracking, Group May1010 Page 136

Appendix 4: Microcontroller Revision A Schematic

Wireless Bear Tracking, Group May1010 Page 137

Appendix 5: GPS Revision A Schematic

Wireless Bear Tracking, Group May1010 Page 138

Appendix 6: Power Supply

Wireless Bear Tracking, Group May1010 Page 139

Appendix 7: PCB Layout Layers

Figure 49: Top Copper Layer

Wireless Bear Tracking, Group May1010 Page 140

Figure 50: Bottom Copper Layer

Figure 51: Top Solder Mask

Wireless Bear Tracking, Group May1010 Page 141

Figure 52: Bottom Solder Mask

Figure 53: Top Silk Screen

Wireless Bear Tracking, Group May1010 Page 142

Figure 54: Bottom Silk Screen

Wireless Bear Tracking, Group May1010 Page 143

Figure 55: Drill Chart

Wireless Bear Tracking, Group May1010 Page 144

Appendix 8: Revision B Schematic

Wireless Bear Tracking, Group May1010 Page 145

Appendix 9: PC Code

import os,urllib

import serial

while 1:

 addr = ''

 #Set up serial port

 ser = serial.Serial(port=7, baudrate=2400, bytesize=serial.EIGHTBITS,

parity=serial.PARITY_NONE,stopbits=serial.STOPBITS_ONE,timeout=None,

xonxoff=0, rtscts=0, interCharTimeout=None)

 addr=ser.read(size=25)

 #addr = raw_input('\nAddress or (Lat,Long): ')

 if addr <> '':

 url = ''

 if addr[0]=='(':

 center = addr.replace('(','').replace(')','')

 lat,lng = center.split(',')

 url = 'http://maps.google.com/maps?q=%s+%s' % (lat,lng)

 else:

 # Encode query string into URL

url = 'http://maps.google.com/?q=' + urllib.quote(addr) +

'&output=js'

 print '\nQuery: %s' % (url)

 # Get XML location

 xml = urllib.urlopen(url).read()

 if '<error>' in xml:

 print '\nGoogle cannot interpret the address.'

 else:

 # Strip lat/long coordinates from XML

 lat,lng = 0.0,0.0

center = xml[xml.find('{center')+13:xml.find('}

',xml.find('{center'))]

 center = center.replace('lat:',' ').replace('lng:',' ')

 lat,lng = center.split(',')

 url = 'http://maps.google.com/maps?q=%s+%s' % (lat,lng)

 if url<>'':

 print 'Map: %s' % (url)

 os.startfile(url)

 ser.flush()

 ser.flushInput()

 ser.close()

Wireless Bear Tracking, Group May1010 Page 146

Appendix 10: PIC Code – main.c

//====================deep_sleep.c==================================//

// file: deep_sleep.c //

// author: John Pritchard //

// project: Bear Tracker Project //

// date: Spring 2010 //

// //

// Desc: This file configures and initializes the PIC18F26J11. Its //

// purpose right now is to serve as a template for the TDMA //

// networking scheme. This program initializes the PIC, sets a time//

// interval, then sleeps for that interval. The PIC then wakes, //

// flashes a set of LEDs, then goes back to sleep. //

//==//

#include "main.h"

#include "datatypes.h"

#include "interrupts.h"

#include "init.h"

#include "handler.h"

#include "user.h"

#include "encoding.h"

#include "ublox_read.h"

#include "gps_i2c.h"

#include "eeprom_i2c.h"

#include <string.h>

//Set configuration bits (see datasheet for details)

#if defined(__18F26J11) || defined(__18F46J11)

#pragma config WDTEN = OFF, XINST = OFF, OSC = INTOSC

#pragma config T1DIG = ON, LPT1OSC = OFF, DSWDTOSC = INTOSCREF

#pragma config RTCOSC = INTOSCREF, DSBOREN = ON, DSWDTEN = ON

#pragma config DSWDTPS = DSPER, FCMEN = OFF, IESO = OFF

#endif

#define ON 1

#define OFF 0

#define TX 1

#define RX 2

#define VHF 0

#define USB 1

//used for testing purposes to determine the transmission error rate

int error=0,trans=0;

Wireless Bear Tracking, Group May1010 Page 147

/*-----------Main --/

* function: main() *

* *

* desc: This is the main function that initializes registers *

* required for the PIC to function properly. It also is where the*

* deep sleep wakeup is checked. If is just powering up (for the *

* first time), then it did not wake from a deep sleep and will *

* perform normal Power On Reset (POR) actions. If the PIC wakes *

* from being in deep sleep, logic is set in place to determine *

* the proper course of action. *

* *

/--*/

void main(void)

{

 int activate_chk = 0;

 //Do some initialization maintenance first.+

 osc_init(); //do this first

 io_init(); //do this before any com port inits

 //activate_chk = ds_handler(); //Run DS handler to see if normal

POR or deep sleep POR

 activate_unit();

 if(activate_chk == 1) //If it is a pure POR, do this...

 {

 Write_DSGPR(0x00,0x00); //write zeros to the registers that

retain values in deep sleep. We will store counter data here.

 maintenance(); //perform first startup

maintenance

 go_to_sleep(); //call the "go_to_sleep"

function in the handler file

 }

 if(activate_chk == 2) //If it is a deep sleep increment

wake (multiple of a DSWDT postscalar), do this...

 {

 go_to_sleep();

 }

 if(activate_chk == 3) //If it is a deep sleep final wake

(final multiple of a DSWDT postscalar), do this...

 {

 activate_unit();

 }

 else

 Nop();

 while(1);

 return;

}

Wireless Bear Tracking, Group May1010 Page 148

/*-----------Activate Unit--/

* function: activate_unit() *

* *

* desc: This function serves to manage the unit's activities once *

* it is fully awake. This means that in this function the unit *

* will receive GPS data, manipulate it, and send it to the *

* transceiver. Future activities will need to be implemented. *

* *

/--*/

void activate_unit(void)

{

// KEEP THESE NEXT TWO LINES. Write zeros to the registers that retain

values in deep sleep. We will store counter data here.

// Write_DSGPR(0x00,0x00);

// go_to_sleep();

 return;

}

//Used for Demo, makes the unit a transmitter only

void TX_unit(){

 unsigned int k;

// gps_i2c_init(); //initializes the GPS

 while(1){

 //Get GPS data and send it

 VHF_TX_Mode();

 //Delay to allow time for the power amplifier to cool down

 for(k = 0; k < 30000; k++); //delay

 for(k = 0; k < 30000; k++); //delay

 }

}

void RX_unit(void){

 unsigned char valid = 0;

 signed long lat=0, lon =0; //latitude and longitude

 unsigned long time = 0; //Time in ms of week

 unsigned char status=0, ID; //Status byte and ID of unit

 int k,i;

 //Configures the PIC for transciver RX mode

 syc_eusart2VHF_remap(RX);

 syc_eusart2_init(RX);

 //Turns on the 3.3 line and makes sure the 5V line is OFF

 power_33(ON);

 power_5(OFF);

 //turns on the transceiver and switches the RF switch to RX mode

Wireless Bear Tracking, Group May1010 Page 149

 vhf_trx(ON);

 switch_ctrl(RX);

 //Delay to allow the transciever to power up

 for(k = 0; k < 90; k++); //delay for ~3.6 ms

 //Configures the receiver to RX mode

 vhf_init(RX);

 while(1){

 //configures transciever in RX mode and waits until data is

received

 valid = VHF_RX_Mode();

 trans++;

 //Checks to see if valid data is available. 1 = Valid data

 if(valid==1){

 //Gets the decoded lat, lon, time, status, and ID

 lat = get_lat(); //gets the latitude

 lon = get_lon(); //gets the longitude

 time = get_time(); //gets the time

 status = get_status(); //gets the status

 ID = get_ID(); //gets the ID

 //sets up the port for USB interface

 eusart2USB_remap();

 eusart2_init(USB);

 //Sends the Data to the PC for mapping to google maps

 gps_map(lat,lon);

 syc_eusart2VHF_remap(RX);

 syc_eusart2_init(RX);

 }else{

 error++;

 }

 if(trans==20)

 trans = trans;

 }

}

Wireless Bear Tracking, Group May1010 Page 150

/*-----------Maintenance--/

* function: maintenance() *

* *

* desc: This function serves to perform maintenance at final wake.*

* Duties include checking if all peripherals are not faulty and *

* also setting the required startup registers for the peripherals.*

* *

/--*/

void maintenance(void)

{

 Nop();

 return;

}

void tx_test(void){

 int k;

 syc_eusart2VHF_remap(TX);

 syc_eusart2_init(TX);

 power_33(ON);

 power_5(ON);

 vhf_trx(ON);

 switch_ctrl(TX);

 for(k = 0; k < 90; k++); //delay for ~3.6 ms

 vhf_init(TX);

 for(k = 0; k < 20; k++); //delay 0.840 ms

 send_eusart2(0xAA);

 send_eusart2(0xAA);

 send_eusart2(0xAA);

 send_eusart2(0xAA);

 send_eusart2(0xAA);

 send_eusart2(0xAA);

 send_eusart2(0xAA);

 send_eusart2(0xBA);

 send_eusart2(0xD5);

 send_eusart2(0xAC);

 send_eusart2(0xAD);

 send_eusart2(0xAE);

 send_eusart2(0xAF);

 send_eusart2(0x55);

 while(!TXSTA2bits.TRMT);

 for(k = 0; k < 8000; k++); //delay 0.840 ms

 power_5(OFF);

 vhf_trx(OFF);

 return;

}

Wireless Bear Tracking, Group May1010 Page 151

void rx_test(void){

 int k;

 int i=0, j=1;

 float temp=0;

 long Silicon_Rev;

 float AFC[10];

 float Avg_AFC=0;

 syc_eusart2VHF_remap(RX);

 syc_eusart2_init(RX);

 power_33(ON);

 power_5(OFF);

 vhf_trx(ON);

 switch_ctrl(RX);

 for(k = 0; k < 90; k++); //delay for ~3.6 ms

 vhf_init(RX);

 while(1){

 //Find_RX_Data();

 AFC[i] = VHF_AFC_RB();

 Avg_AFC = (Avg_AFC + AFC[i])/2;

 j++;

 i++;

 if (i==10)

 i=0;

 if(j==600){

 j = 0;

 Avg_AFC = 0;

 }

 for(k = 0; k < 1000; k++);

 }

 return;

}

*/

Wireless Bear Tracking, Group May1010 Page 152

Appendix 11: PIC Code – main.h
#ifndef _MAIN_H_

#define _MAIN_H_

/*==;

; Deep Sleep Watchdog Postscaler : ;

; DSWDTPS = 2 1:2 (2.1 ms) ;

; DSWDTPS = 8 1:8 (8.3 ms) ;

; DSWDTPS = 32 1:32 (33 ms) ;

; DSWDTPS = 128 1:128 (132 ms) ;

; DSWDTPS = 512 1:512 (528 ms) ;

; DSWDTPS = 2048 1:2,048 (2.1 seconds) ;

; DSWDTPS = 8192 1:8,192 (8.5 seconds) ;

; DSWDTPS = K32 1:32,768 (34 seconds) ;

; DSWDTPS = K131 1:131,072 (135 seconds) ;

; DSWDTPS = K524 1:524,288 (9 minutes) ;

; DSWDTPS = M2 1:2,097,152 (36 minutes) ;

; DSWDTPS = M8 1:8,388,608 (2.4 hours) ;

; DSWDTPS = M33 1:33,554,432 (9.6 hours) ;

; DSWDTPS = M134 1:134,217,728 (38.5 hours) ;

; DSWDTPS = M536 1:536,870,912 (6.4 days) ;

; DSWDTPS = G2 1:2,147,483,648 (25.7 days);

===*/

#include "p18cxxx.h"

#include "dpslp.h"

#include "datatypes.h"

#define TRUE 1

#define DSPER 32 //this is the sleep period postscalar

//Function Prototypes

void activate_unit(void); //the function that activates all peripheral

functionality

void maintenance(void);

void TX_unit(void); //for demo purposes

void RX_unit(void); //for demo purposes

void tx_test(void); //testing purposes only

void rx_test(void); //testing purposes only

#endif

Wireless Bear Tracking, Group May1010 Page 153

Appendix 12: PIC Code – init.c
//====================init.c==//

// file: deep_sleep.c //

// author: John Pritchard //

// project: Bear Tracker Project //

// date: Spring 2010 //

// //

// Desc: This file initializes all ports needed //

// //

//==//

#include "p18cxxx.h"

#include "init.h"

#include "datatypes.h"

#include "handler.h"

//----->this function remaps the eusart2 pins to RP7(RX) and RP8(TX)<-----//

void eusart2USB_remap(void)

{

 //*************************************

 // Unlock Registers

 //*************************************

 _asm

 MOVLB 0x0E

 MOVLW 0x55

 MOVWF EECON2, 0

 MOVLW 0xAA

 MOVWF EECON2, 0

 BCF PPSCON, 0, BANKED

 _endasm

 //***************************

 // Configure Input Functions

 // (See Table 9-13)

 //***************************

 //***************************

 // Assign RX2 To Pin RP7

 //***************************

 _asm

 MOVLW 0x07

 MOVWF RPINR16, BANKED

 _endasm

 //***************************

 // Configure Output Functions

 // (See Table 9-14)

 //***************************

 //***************************

 // Assign TX2 To Pin RP8

 //***************************

 _asm

 MOVLW 0x05

 MOVWF RPOR8, BANKED

 _endasm

 //*************************************

 // Lock Registers

 //*************************************

 _asm

 MOVLW 0x55

Wireless Bear Tracking, Group May1010 Page 154

 MOVWF EECON2, 0

 MOVLW 0xAA

 MOVWF EECON2, 0

 BSF PPSCON, 0, BANKED

 _endasm

 return;

}

//Maps the programmable pins to be set up for VHF Syncrounous TX/RX

void syc_eusart2VHF_remap(byte mode)

{

 //*************************************

 // Unlock Registers

 //*************************************

 _asm

 MOVLB 0x0E

 MOVLW 0x55

 MOVWF EECON2, 0

 MOVLW 0xAA

 MOVWF EECON2, 0

 BCF PPSCON, 0, BANKED

 _endasm

 //***************************

 // Configure I/O Functions

 // (See Table 9-13)

 //***************************

 if(mode ==1){ //TX Mode

 //Assigns Pin 44 as the TX data line for USART 2

 //Assigns Pin 1, RP18 as input clock for USART 2

 _asm

 MOVLW 0x06

 MOVWF RPOR17, BANKED

 MOVLW 0x12

 MOVWF RPINR17, BANKED

 _endasm

 }

 else{ //RX Mode

 //Assigns External Interrupt 1 to Pin 4, RP23 for SWD

 //Assigns External Interrupt 2 to Pin 1, RP18 for CLK

 _asm

 MOVLW 0x17

 MOVWF RPINR1, BANKED

 MOVLW 0x12

 MOVWF RPINR2, BANKED

 _endasm

 }

 //*************************************

 // Lock Registers

 //*************************************

 _asm

 MOVLW 0x55

 MOVWF EECON2, 0

Wireless Bear Tracking, Group May1010 Page 155

 MOVLW 0xAA

 MOVWF EECON2, 0

 BSF PPSCON, 0, BANKED

 _endasm

 return;

}

//----->this function sets up all regesters required for eusart2 transmission

and reception<-----//

void eusart2_init(byte mode)

{

 if(mode == 1){SPBRG2 = 25;} //Baud rate (25 = 2400 baud)

- (Use SYNC=0,BRGH=0,BRG16=0 to determine SPBRG2

 if(mode == 0){SPBRG2 = 207;} //Baud rate (207 = 300 baud) - (Use

SYNC=0,BRGH=0,BRG16=0 to determine SPBRG2

 //Keep below 9600 for an accurate

reading

 BAUDCON2bits.TXCKP = 0;

 TXSTA2bits.SYNC = 0; //Required for TX/RX setup

 TXSTA2bits.TXEN = 1; //enable transmission

 RCSTA2bits.SPEN = 1; //Required for TX/RX setup

 PIE3bits.TX2IE = 0; //No transmission interrupts

 PIE3bits.RC2IE = 1; //Set receive interrupts

 IPR3bits.RC2IP = 1; //set receive interrupt as high prioity

 INTCONbits.GIEL = 1; //Enable global low priority interrupts

 INTCONbits.GIEH = 1; //Enable global high priority interrupts

 RCSTA2bits.CREN = 1; //RX setup

 TRISCbits.TRISC6 = 1; //Set RX pin as input

 TRISCbits.TRISC7 = 0; //Set TX pin as output

 return;

}

//Sets up the registers of the pic to be used for Syncrounous TX/RX

void syc_eusart2_init(byte mode){

 if(mode == 1){ //TX MODE

 TRISCbits.TRISC7 = 1; //Set CLK pin as input

 TRISCbits.TRISC6 = 0; //Set TX pin as output

// BAUDCON2bits.TXCKP = 0; //1= noninverted, 0= inverted

 TXSTA2bits.SYNC = 1; //Synchronous mode

 RCSTA2bits.SPEN = 1; //Enables serial port

 TXSTA2bits.CSRC = 0; //Slave mode

 RCSTA2bits.CREN = 0; //disables continuous receive

 RCSTA2bits.SREN = 0; //don't care

 PIE3bits.TX2IE = 0; //No transmission interrupts

 TXSTA2bits.TXEN = 1; //enables transmission

Wireless Bear Tracking, Group May1010 Page 156

 }else if(mode ==2){ //RX Mode

//These settings are used for Ayscrounous Transmission and are not need at

this time for Syncrous transmission

/* TRISCbits.TRISC7 = 1; //Set CLK pin as output

 TRISCbits.TRISC6 = 1; //Set RX pin as output

 BAUDCON2bits.RXDTP = 0; //received data is inverted

from transciever (active-low)

 TXSTA2bits.SYNC = 1; //Synchronous mode

 RCSTA2bits.SPEN = 1; //Enables serial port

 TXSTA2bits.CSRC = 0; //Slave mode

 PIE3bits.RC2IE = 1; //Set receive interrupts

 IPR3bits.RC2IP = 1; //set receive interrupt as high

prioity

 INTCONbits.GIEL = 1; //Enable global low priority interrupts

 INTCONbits.GIEH = 1; //Enable global high priority interrupts

 RCSTA2bits.CREN = 1; //enables continous recieve mode

*/

 //These settings are used for syncrounous transmission

 TRISCbits.TRISC7 = 1; //Set CLK pin as input

 TRISCbits.TRISC6 = 1; //Set RX pin as input

 INTCONbits.GIE = 1; //enable global intrrupts

 INTCONbits.PEIE = 0; //disables perpheral interrupts

 INTCON2bits.INTEDG1 = 1; //INT 1, rising edge

 INTCON2bits.INTEDG2 = 1; //INT 2, rising edge

 INTCON3bits.INT1IP = 1; //INT 1, High prioity

 INTCON3bits.INT2IP = 1; //INT 2, High prioity

 INTCON3bits.INT1IF = 0; //INT 1, Flag clear

 INTCON3bits.INT2IF = 0; //INT 2, Flag clear

 INTCON3bits.INT1IE = 1; //INT 1, Enable

 INTCON3bits.INT2IE = 0; //INT 2, Disables, This gets

enabled when SYNC word is detected

 //initizlies global variables from handler.c

 global_var_init();

 }

 return;

}

//----->this function sets the required oscillator registers<-----//

void osc_init(void)

{

Wireless Bear Tracking, Group May1010 Page 157

 OSCCONbits.IRCF2 = 1; //these three bits control osc freq (see

datasheet)

 OSCCONbits.IRCF1 = 1; //bits 111 equate to an 8MHz osc freq

 OSCCONbits.IRCF0 = 0; //bits 110 equate to an 4MHz osc freq

 return;

}

//----->this function sets the required input/output registers<-----//

void io_init(void)

{

 TRISBbits.TRISB0 = 1; //VHF Read Line

 TRISBbits.TRISB1 = 0; //VHFW Line

 TRISBbits.TRISB2 = 0; //VHF_SLE Line

 TRISBbits.TRISB3 = 0; //VHF_CE Line

 TRISCbits.TRISC0 = 1; //VHF_MUXOUT Line, input

 TRISCbits.TRISC5 = 0; //5V Shutdown Line

 TRISDbits.TRISD2 = 0; //3.3V Shutdown Line

 TRISDbits.TRISD6 = 1; //VHF_SWD_INT Line

 TRISDbits.TRISD7 = 0; //VHF_SCLK Line

 TRISEbits.TRISE0 = 0; //ANT_CTL0 Line

 TRISEbits.TRISE1 = 0; //ANT_CTL1 Line

 ANCON1bits.PCFG12 = 1; //makes RB0 a digital port and not an analog

port

 LATCbits.LATC0 = 0;

 LATCbits.LATC5 = 0;

 LATBbits.LATB1 = 0;

 LATBbits.LATB2 = 0;

 LATBbits.LATB3 = 0;

 LATDbits.LATD2 = 0;

 LATDbits.LATD6 = 0;

 LATDbits.LATD7 = 0;

 LATEbits.LATE0 = 0;

 LATEbits.LATE1 = 0;

 return;

}

//This procedure configures the transciever in eithr TX or RX mode

//by writing to the appropriate registers as defined in the Final Document

void vhf_init(byte mode)

{

 byte txrx_mode = mode;

 //These register values are used for asyncrounous transmission

/* long reg_1 = 0x21A1091;//0x21B9011;CP high current //0x21A1091;(clock)

//0x21A1011;(no clock)

 long reg_3 = 0x28A34883;

 long reg_0_TX = 0x11AEA140;//0x11AFFFF0;//0x11AEA140; //195 MHz

 long reg_2 = 0x22749BC2;//0x2277FBC2; //max power //0x22749BC2; //0 dBM

 long reg_6 = 0x3661E3F6;

 long reg_5 = 0xA35;

 long reg_0_RX = 0x59AEA140; //digital_lock_ready //0x99AEA140;

 long reg_4 =0x8010CA14;//k=10, dis_BW=50 // 0x8011AA94; //k=21

Wireless Bear Tracking, Group May1010 Page 158

 long reg_10 = 0x4B97043A;//0x3C97043A;//30 kHZ // 0x3297043A; // MAX-

AFC at 25kHZ //0x4B97043A; //AFC at 37.5kHz

// long reg_15 = 0x4000F; //for testing purposes only

*/

 //These register values are used for Syncrounous transmssion

 //See Final Document for Details in the values

 //These registers are used for both TX and RX

 long reg_1 = 0x21A1091;//0x21B9011;CP high current //0x21A1091;(clock)

//0x21A1011;(no clock)

 long reg_3 = 0x28A34883;

 //these register are used for TX only

 long reg_0_TX = 0x1AEA140;//regulator ready on mux out//0x11AEA140;

//195 MHz //0x1B00000; //no factional N value //

 long reg_2 = 0x43A5B82;//not inverted,fdev 8.30kHz, 18

power//0x22725B82; //inverted power 18 //0x22749B82; //inverted 36

power//0x22749B92; //36 power Guassian //0x22749BD2;//inverted, raised Cosine

// 0x225C9B92; //inverted Guassian with FX devivation 0.25*300 =

75//0x22749B82;

 //These Registers of used for RX only

 long reg_6 = 0x3661E3F6;

 long reg_5 = 0xA35;

 long reg_11 = 0x5DAB5B; //not inverted sync word 1 error//0x5DAB9B;

//bad5 not inverted 2 errors//0xA2549B; //2 errors allowed,BAD5 inverted

//0xA2545B; //1 errors allowed

 long reg_12 = 0x13AC; //packet length of 19 //0x5AC; //packet length of

5

 long reg_0_RX = 0x49AEA140;//Syncronice MoDE// //digital_lock_ready

//0x99AEA140; //0x9B00000;//no fractional N value;

 long reg_4 = 0x8010F014; //k=12,fdev=8.30k //0x8011AA94; //k=21

IFBW=25k//0x4011AA94;//k=21 IFbW =18.5k //0x11AA94; //k=21, IFBW =

12.5kHz//0x10CA14; //k=10,IFBW=12.5k //0x8010CA14; //k=10, dis_BW=50

 long reg_10 = 0x897043A; //4kHz

//0x4697043A;//AFC=35k//0x1897043A;//12kHz 0x1497043A;//10kHz //0x1097043A;

//AFC at 8k range //0x3297043A; //AFC at 25 kHz range// 0x2097043A; //AFC

16kHz//0x4B97043A; //AFC at 37.5kHz //0x3C97043A;//30 kHZ // 0x3297043A; //

MAX-AFC at 25kHZ

 int k;

 if(txrx_mode == 1){

 //Do TX mode configuration here

 send_gpio(reg_1);

 for(k = 0; k < 37; k++); //delay 0.840 ms

 send_gpio(reg_3);

 send_gpio(reg_0_TX);

 for(k = 0; k < 2; k++); //delay for ~80 us

 send_gpio(reg_2);

 for(k = 0; k < 170; k++); //delay for ~3.6 ms

 }

 if(txrx_mode == 2){

 //Do RX mode configuration here

 send_gpio(reg_1);

 for(k = 0; k < 37; k++); //delay 0.840 ms

Wireless Bear Tracking, Group May1010 Page 159

 send_gpio(reg_3);

 send_gpio(reg_6);

 send_gpio(reg_5);

 for(k = 0; k < 340; k++); //delay for ~6.2 ms

 send_gpio(reg_11);

 send_gpio(reg_12);

 send_gpio(reg_0_RX);

 for(k = 0; k < 2; k++); //delay for ~80 us

 send_gpio(reg_4);

 send_gpio(reg_10);

 for(k = 0; k < 340; k++); //delay for ~6.2 ms

 }

 return;

}

/**

/* OLD FUNCTIONS Not Used at the moment

/**

//----->this function sets up all regesters required for eusart1 transmission

and reception<-----//

void eusart1_init(void)

{

 SPBRG1 = 207; //Baud rate (207 = 300 baud) - (Use

SYNC=0,BRGH=0,BRG16=0 to determine SPBRG1)

 TXSTA1bits.SYNC = 0; //Required for TX/RX setup

 RCSTA1bits.SPEN = 1; //Required for TX/RX setup

 PIE1bits.TX1IE = 0; //No transmission interrupts

 PIE1bits.RC1IE = 1; //Set receive interrupts

 INTCONbits.GIEL = 1; //Enable global low priority interrupts

 INTCONbits.GIEH = 1; //Enable global high priority interrupts

 RCSTA1bits.CREN = 1; //RX setup

 TRISCbits.TRISC7 = 1; //Set RX pin as input

 TRISCbits.TRISC6 = 0; //Set TX pin as output

 return;

}

//----->this function remaps the eusart2 pins to RP17(RX) and RP18(TX) for

asyncrounous<-----//

void eusart2VHF_remap(void)

{

 //*************************************

 // Unlock Registers

 //*************************************

 _asm

 MOVLB 0x0E

 MOVLW 0x55

 MOVWF EECON2, 0

 MOVLW 0xAA

 MOVWF EECON2, 0

 BCF PPSCON, 0, BANKED

 _endasm

 //***************************

Wireless Bear Tracking, Group May1010 Page 160

 // Configure Input Functions

 // (See Table 9-13)

 //***************************

 //***************************

 // Assign RX2 To Pin RP17

 //***************************

 _asm

 MOVLW 0x11

 MOVWF RPINR16, BANKED

 _endasm

 //***************************

 // Configure Output Functions

 // (See Table 9-14)

 //***************************

 //***************************

 // Assign TX2 To Pin RP18

 //***************************

 _asm

 MOVLW 0x05

 MOVWF RPOR18, BANKED

 _endasm

 //*************************************

 // Lock Registers

 //*************************************

 _asm

 MOVLW 0x55

 MOVWF EECON2, 0

 MOVLW 0xAA

 MOVWF EECON2, 0

 BSF PPSCON, 0, BANKED

 _endasm

 return;

}

*/

Wireless Bear Tracking, Group May1010 Page 161

Appendix 13: PIC Code – init.h

//Define variables

#define VHFREGLEN 32

#include "datatypes.h"

//Define prototypes

void eusart2_init(byte mode);

void eusart2USB_remap(void);

void syc_eusart2VHF_remap(byte mode);

void syc_eusart2_init(byte mode);

void osc_init(void);

void io_init(void);

void vhf_init(byte mode);

extern void send_gpio(long reg_val);

/***************************************

/* Old Functions currently not in use

/***************************************

void eusart1_init(void);

void eusart2VHF_remap(void);

*/

Wireless Bear Tracking, Group May1010 Page 162

Appendix 14: PIC Code – datatypes.h

#ifndef _DATATYPES_H_

#define _DATATYPES_H_

typedef unsigned char byte;

#endif

Wireless Bear Tracking, Group May1010 Page 163

Appendix 15: PIC Code – handler.h

//====================data_handler.c================================//

// file: datahandler.c //

// author: John Pritchard //

// project: Bear Tracker Project //

// date: Spring 2010 //

// //

// functions: //

// //

// Desc: This file contains all functions that handle data //

// //

//==//

#include "p18cxxx.h"

#include "dpslp.h"

#include "handler.h"

#include "datatypes.h"

#include "encoding.h"

#include "init.h"

#include "ublox_read.h"

#include "gps_i2c.h"

#define ON 1

#define OFF 0

#define TX 1

#define RX 2

#define VHF 0

#define USB 1

void reset_buff2(void);

#define BUFFSIZE 50

//Global variables

int count1, count2;

//These global variables are used in receiving the VHF data

int VHF_bit_count=0, VHF_byte_count=0; //keeps track of how many VHF

RX bits and bytes stored

static byte VHF_buff[VHF_BUFFSIZE]; //Contains the RX data

//byte *VHF_buff_end = VHF_buff+VHF_BUFFSIZE;

byte *VHF_rx = VHF_buff; //pointer to the array

unsigned char VHF_data_ready = 1; //polling variable to

determine if valid data is in the VHF_Buff Array

//These global variables contain the most valid decoded RX data

signed long lat=0, lon =0; //latitude and longitude

unsigned long time = 0; //Time in ms of week

unsigned char status=0, ID=0; //Status byte and ID of unit

extern byte *rx2;

extern byte eusart2_buff[BUFFSIZE];

//Global structures used in deep sleep library

SRC ptr;

CONTEXT read_state;

/*-----------Deep Sleep Handler-------------------------------------/

* functions: (none declared) *

Wireless Bear Tracking, Group May1010 Page 164

* *

* desc: This function handles deep sleep functionality. If the *

* PIC has woken from a deep sleep, then a counter is incremented. *

* Once the counter has completed, decisions are made on when to *

* activate the unit. *

* *

/--*/

//void ds_handler(void)

int ds_handler(void){

 int dpslpevent = 0; //this variable determines what the

source of deep sleep wakeup is

 //Check if the device is waking up from deep sleep, else, it must be a

normal power on reset

 if(IsResetFromDeepSleep()==0xFF){ //if this

is the reset after the deep_sleep wakup...then do this

 dpslpevent = dpslp_chk();

 //determine the wakeup source

 if(dpslpevent == 1){ //if

wakeup source is from watchdog timer, do this...

 if(DSGPR1==SCALAR2 && DSGPR0==SCALAR1){ //once the

count registers hit a desired point, do something

 Write_DSGPR(0x00,0x00);

 //reset the counter data

 return(3);

 }

 else

 return(2);

 }

 if(dpslpevent == 2){

 //if wakeup source is from deep sleep fault, do this...

 Nop();

 }

 //FAULT RECOVERY LOGIC NEEDED!!! (change this...)

 else

 Nop();

 }

 else

 return(1);

}

/*-----------Deep Sleep Source Checke-------------------------------/

* functions: dpslp_chk(), *

* *

* desc: This function is called after a decision is made about *

* the type of wakeup (either normal POR or from deep sleep). It *

* then determines the wakeup source. It is supposed to be woken *

* up by the watchdog timer. Anything else would be because of a *

* fault or special case. *

* *

/--*/

int dpslp_chk(void)

{

 extern int count1, count2;

 ReadDSGPR(&read_state); //Read the deep sleep GPR

Wireless Bear Tracking, Group May1010 Page 165

 DeepSleepWakeUpSource(&ptr); //Check the deep sleep wakup soruce (if

required)

 ReleaseDeepSleep(); //Release the Deep sleep (IO

configuration)

 TRISBbits.TRISB1 = 0; //configure the IO [TRIS and LAT

register] to output ssignal for LED

 if((read_state.Reg0!=count1) || (read_state.Reg1!=count2))

 //count1 and count2 represents the state of device before going to deep

sleep

 {

 while(1)

 Nop(); //this indicates an error has occurred

while in deep sleep

 }

 if(ptr.WK_SRC.DS_WDT==TRUE)

 return 1; //deep sleep wakeup source is DSWDT

 if(ptr.WK_SRC.DS_FLT==TRUE)

 return 2; //deep sleep wakeup source is Falut in deep sleep

configuration

 else

 return 0;

}

/*-----------Go to Sleep--/

* function: go_to_sleep() *

* *

* desc: This function is called after a decision is made about *

* the type of wakeup (either normal POR or from deep sleep). *

* Within this function is a sleep counter that allows a versatile *

* sleeping period. The postscalars for the watchdog timer have *

* only a certain set of sleep periods, so the sleep counter *

* increments those periods. *

* *

/--*/

void go_to_sleep(void)

{

 unsigned int config=0;

 sleep_count(); //This function increments the sleep counter

 //e.g. 5 seconds can be acheived with

about 151 increments of a 33ms sleep time

 while(1)

 {

 Write_DSGPR(count1,count2); //Save the counter data

before deep sleep

 config = (DPSLP_ULPWU_DISABLE | DPSLP_RTCC_WAKEUP_DISABLE);

 //configure deep sleep wake up sources

 GotoDeepSleep(config); //This function puts the device

into deep sleep

 }

 return;

}

/*-----------Miscellaneous Functions--------------------------------/

* functions: blink_led(), sleep_count(), gps_parser(), *

* send_eusart(), send_gpio(), batt_chk() *

* *

Wireless Bear Tracking, Group May1010 Page 166

* *

* desc: This function is called after a decision is made about *

* the type of wakeup (either normal POR or from deep sleep). *

* Within this function is a sleep counter that allows a versatile *

* sleeping period. The postscalars for the watchdog timer have *

* only a certain set of sleep periods, so the sleep counter *

* increments those periods. *

* *

/--*/

//----->This function sends eusart1 data<-----//

void send_eusart1(int datatx)

{

 int send_val;

 send_val = datatx;

 TXSTA1bits.TXEN = 1; //enable transmission

 TXREG1 = send_val; //Send byte

 return;

}

//----->This function sends eusart2 data<-----//

void send_eusart2(int datatx)

{

 int send_val;

 send_val = datatx;

 while(!PIR3bits.TX2IF); //makes sure shift register is empty

before sending new infomation

 TXREG2 = send_val; //Send byte

 return;

}

//this procedure writes to the VHF register

void send_gpio(long reg_val)

{

 int i, j, k, b;

 long send_val = reg_val;

 //Define bits

 byte bits[ARRAYLEN];

 for(b=0;b<32;b++)

 {

 bits[b] = send_val & 0x01;

 send_val = send_val >> 1;

 }

 //Set enable pin

 LATBbits.LATB2 = 0;

 //Send bits to i/o

 LATBbits.LATB1 = bits[31];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[30];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

Wireless Bear Tracking, Group May1010 Page 167

 LATBbits.LATB1 = bits[29];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[28];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[27];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[26];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[25];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[24];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[23];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[22];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[21];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[20];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[19];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[18];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[17];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[16];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[15];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[14];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[13];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[12];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[11];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[10];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[9];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[8];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[7];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[6];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[5];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[4];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[3];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[2];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

Wireless Bear Tracking, Group May1010 Page 168

 LATBbits.LATB1 = bits[1];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[0];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 //release enable pin

 LATBbits.LATB2 = 1;

 for(k = 0; k < 37; k++);

 LATBbits.LATB2 = 0;

 //Turn off data and clock pins

 LATBbits.LATB1 = 0;

 LATDbits.LATD7 = 0;

 return;

}

/*------>Send and Receive 0x00 - 0x03<------*/

void eusart_test(void)

{

 int send_val;

 for(send_val = 0x00; send_val <= 0x03; send_val++)

 {

 send_eusart1(send_val); //Send send_val over EUSART

 }

 return;

}

/*------>Sleep Count Incrementer<------*/

void sleep_count(void)

{

 extern int count1, count2;

 //extract counter data from deep sleep save registers

 count1 = DSGPR0; //"Low" count register

 count2 = DSGPR1; //"High" count register

 //The two count registers will make a 16 bit counter in the following

code

 //increment the counters

 if(count1 < 0xFF)

 count1++;

 if(count1 >= 0xFF){

 count2++;

 count1 = 0x00;

 }

 return;

}

/*------>Turn on/off 3.3V Power<------*/

void power_33(byte x)

{

 int on_off = x;

 LATDbits.LATD2 = on_off;

 return;

}

Wireless Bear Tracking, Group May1010 Page 169

/*------>Turn on/off 5V Power<------*/

void power_5(byte x)

{

 int on_off = x;

 LATCbits.LATC5 = on_off;

 return;

}

/*------>Turn on/off VHF transceiver<------*/

void vhf_trx(byte x)

{

 int on_off = x;

 LATBbits.LATB3 = on_off;

 return;

}

/*------>Set RF switch to TX mode<------*/

void switch_ctrl(byte x)

{

 byte ctrl_chk = x;

 if(ctrl_chk == 0) //If turned off...

 {

 LATEbits.LATE0 = 0;

 LATEbits.LATE1 = 0;

 return;

 }

 if(ctrl_chk == 1) //If put in tx mode...

 {

 LATEbits.LATE0 = 1;

 LATEbits.LATE1 = 0;

 return;

 }

 if(ctrl_chk == 2) //If put in rx mode...

 {

 LATEbits.LATE0 = 0;

 LATEbits.LATE1 = 1;

 return;

 }

 else

 return;

}

//This procedure is called when a Sync word has been detected by

//the rising edge of the VHF_SYNC_INT. Once a sync word has been detected

//the pic will retrive the data on the rising edge of the VHF data clock

void swd(void){

 INTCON3bits.INT1IE = 0; //disables interrupt 1, SWD

 INTCON3bits.INT2IF = 0; //clears interrupt flag 2

 INTCON3bits.INT2IE = 1; //enables int 2, VHF RX CLK

 INTCON3bits.INT1IF = 0; //clears int 1 flag

 return;

}

Wireless Bear Tracking, Group May1010 Page 170

//Configures the board to be in VHF recieve mode and waits until a valid

//packet is retrived. It then checks to see if there are any errors in the

//recieved packet and if not, decodes the data and assigns the data to the

//corrisponding global varibles. When new valid data is available, the

//function returns a 1.

unsigned char VHF_RX_Mode(void){

 unsigned char k, success=0;

 int i=0;

 unsigned int decode_chk_sum = 0, calc_chk_sum = 0;

 float Avg = 100000;

/*

 //Configures the PIC for transciver RX mode

 syc_eusart2VHF_remap(RX);

 syc_eusart2_init(RX);

 //Turns on the 3.3 line and makes sure the 5V line is OFF

 power_33(ON);

 power_5(OFF);

 //turns on the transceiver and switches the RF switch to RX mode

 vhf_trx(ON);

 switch_ctrl(RX);

 //Delay to allow the transciever to power up

 for(k = 0; k < 90; k++); //delay for ~3.6 ms

 //Configures the receiver to RX mode

 vhf_init(RX);

*/

 //Waits until the VHF_data is ready

 while(VHF_data_ready){

/* if(i==100){

 i=0;

 }

 Avg = (Avg + VHF_AFC_RB())/2;

 i++;

 for(k=0;k<3000;k++);

*/

 }

 //Decodes the packets check sum and recalculates the check sum

 decode_chk_sum = rx_decode_check_sum(VHF_rx);

 calc_chk_sum = check_sum(VHF_rx,17);

 //Checks for bit errors

 if(decode_chk_sum == calc_chk_sum){

 success = 1;

 //decodes the message and assigns to the corrisponding global

variables

 lat = rx_decode_lat(VHF_rx);

 lon = rx_decode_lon(VHF_rx);

 time = rx_decode_time(VHF_rx);

 status = rx_decode_status(VHF_rx);

 ID = rx_decode_ID(VHF_rx);

Wireless Bear Tracking, Group May1010 Page 171

 }

 //Resets the VHF_Buff and the RX counters and the flag when VHF data is

ready

 global_var_init();

 VHF_data_ready = 1;

 //powers down the transciever

// vhf_trx(OFF);

// power_33(OFF);

 return success;

}

//Returns the current latitude from the RX data

signed long get_lat(void){

 return lat;

}

//Returns the current longitude from the RX data

signed long get_lon(void){

 return lon;

}

//Returns the current time from the RX data

unsigned long get_time(void){

 return time;

}

//Returns the current Status byte from the RX data

unsigned char get_status(void){

 return status;

}

//Returns the current ID from the RX data

unsigned char get_ID(void){

 return ID;

}

//This procedure retrives GPS data, formats the data, and sends it wirelessly

//via the transciever

void VHF_TX_Mode(void){

 int k;

 unsigned char gpsdata[36]; //Will store the UBX NAV-POSLLH message

 unsigned char packet_array[19]; //will contain the encoded packet

to send

 unsigned char *packet = packet_array; //pointer to packet_array

// signed long longitude;

// signed long latitude;

// unsigned long msTOW; //Store the milisecond Time of Week

 //Gets the GPS data to send

// get_gps_data(gpsdata, 20000); //will receive a GPS data with accuracy

of 20 m

Wireless Bear Tracking, Group May1010 Page 172

// longitude = ubx_navpllh_get_longitude(gpsdata);

// latitude = ubx_navpllh_get_latitude(gpsdata);

// msTOW = ubx_navpllh_get_msTOW(gpsdata);

 //Encodes the GPS data into a packet

 format_packet(packet, 0x190CD848, 0x37CF0F1C, 0x240C8400, 0x0F,0x01);

// format_packet(packet, latitude, longitude, msTOW, 0x0F,0x01);

 //Sets up the Ports on the PIC for VHF Transmission

 syc_eusart2VHF_remap(TX);

 syc_eusart2_init(TX);

 //Power on the 3.3V and 5V rail

 power_33(ON);

 power_5(ON);

 //Turn on the transciever and turn the RF switch to TX mode

 vhf_trx(ON);

 switch_ctrl(TX);

 //Delay to allow the transciever to warm up

 for(k = 0; k < 90; k++); //delay for ~3.6 ms

 //configure the transciever's registers to TX mode

 vhf_init(TX);

 //Delay to allow transciever to finish configuring before sending data

 for(k = 0; k < 20; k++); //delay 0.840 ms

 //Sends the packet to the transciever using Eusart 2

 VHF_send_packet(packet);

 //Makes sure that the last byte has been sent to the transciever

 while(!TXSTA2bits.TRMT);

 //gives time for the transciever to modulate the last packet

 //before powering down

 for(k = 0; k < 8000; k++); //delay 0.840 ms

 //Powers down the 5 volt line and the transciever

 power_5(OFF);

 vhf_trx(OFF);

 return;

}

//Thus procedure sends the formatted packet through the VHF transciever

void VHF_send_packet(unsigned char *packet){

 int i;

 //Sends the preamble

 for(i=0; i<11;i++){

 send_eusart2(0xAA);

 }

 //send Start Word 0xBAD5

 send_eusart2(0xBA);

 send_eusart2(0xD5);

Wireless Bear Tracking, Group May1010 Page 173

 //Send the packet

 for(i=0;i<19;i++){

 send_eusart2(*(packet+i));

 }

 return;

}

//This procedures gets the VHF data from the I/O pin

//It runs for the length of the packet and is initiated

//by the interrupt of the rising edge of the VHF data clock

void VHF_data_rx(void){

 unsigned char data=0;

 char i;

 data = PORTCbits.RC6; //reads the data pin

 data = data << VHF_bit_count; //shifts the bit to the approprate bit

position

 VHF_bit_count++;

 //Adds the bit to the data

 VHF_buff[VHF_byte_count] = VHF_buff[VHF_byte_count] | data;

 //checks to see if the length of the packet has been captured

 if(VHF_bit_count == 8 && VHF_byte_count == (VHF_BUFFSIZE-1)){

 INTCON3bits.INT1IF = 0; //clears interrupt 1 flag

 INTCON3bits.INT2IE = 0; //disables int 2, VHF RX CLK

 INTCON3bits.INT1IE = 1; //enables int 1 to look for sync word

 //Signals the there is VHF data ready in VHF_Buff

 VHF_data_ready = 0;

 }

 //checks to see if the byte is complete and needs to move to the next

byte

 if(VHF_bit_count == 8){

 VHF_bit_count = 0;

 VHF_byte_count++;

 }

 INTCON3bits.INT2IF = 0; //clears int 2 flag

 return;

}

//Initilizes the VHF global VHF received data and the bit and byte counters

void global_var_init(void){

 int i;

 VHF_bit_count = 0;

 VHF_byte_count = 0;

 for(i=0;i<VHF_BUFFSIZE;i++)

 VHF_buff[i] = 0x00;

}

Wireless Bear Tracking, Group May1010 Page 174

//This procedures writes to the read back register of the tranciever

//and then reads the output of the read register

signed long VHF_read_back(long reg_val){

 int i, j, k, b;

 long send_val = reg_val;

 int data=0, data_bit=0;

 //Define bits

 byte bits[ARRAYLEN];

 //Assigns the individual bit to the array bits

 for(b=0;b<32;b++)

 {

 bits[b] = send_val & 0x01;

 send_val = send_val >> 1;

 }

 //Set enable pin

 LATBbits.LATB2 = 0;

 //Writes to the register by setting the write port and the generating

the clock

 LATBbits.LATB1 = bits[31];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[30];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[29];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[28];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[27];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[26];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[25];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[24];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[23];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[22];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[21];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[20];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[19];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[18];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[17];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[16];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

Wireless Bear Tracking, Group May1010 Page 175

 LATBbits.LATB1 = bits[15];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[14];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[13];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[12];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[11];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[10];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[9];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[8];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[7];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[6];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[5];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[4];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[3];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[2];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[1];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 LATBbits.LATB1 = bits[0];for(j = 0; j < 2; j++){LATDbits.LATD7 =

j;for(k = 0; k < 37; k++);} //Data Bit

 //release enable pin

 LATBbits.LATB2 = 1;

 for(k = 0; k < 37; k++); //delay

 //procedure for reading back the data

 //Data is outputed on the raising edge of the clock

 //Data is read on the lower edge of the clock

 //The first bit outputted must be ignored

 for(i = 0;i<18;i++){

 for(j = 0; j < 2; j++){

 LATDbits.LATD7 = j;

 if(j==0 && i>1){ //samples on lower edge

and skips the first two iteration

 data_bit = PORTBbits.RB0;

 data = data | (data_bit<<17-i);

 }

 for(k = 0; k < 37; k++);

 }

 }

 //lowers the SLE and performs one more clock cycle to allow the

 //transciever to turn off the readback

 LATBbits.LATB2 = 0;

 for(j = 0; j < 2; j++){

Wireless Bear Tracking, Group May1010 Page 176

 LATDbits.LATD7 = j;

 for(k = 0; k < 37; k++);

 }

 //Turn off data and clock pins

 LATBbits.LATB1 = 0;

 LATDbits.LATD7 = 0;

 return data;

}

//Reads back the AFC values from the tranciever

//Only valid during reception of FSK signals

//The Freq_RB in Hz is given by the following: Freq_RB =

AFC_Readback*Demod_Clk/2^18

//In the absence of frequency error, Freq_RB = 100kHz

//Note for a valid result, the down converted input signal must not fall

//outside the BW of the analog IF filter

float VHF_AFC_RB(void){

 long reg_val = 0x107;

 signed long RB_Value= 0;

 float constant = 7.69043; //demodulation CLK/2^18 where

demodulation CLK = 2.016 MHz

 RB_Value = VHF_read_back(reg_val);

 return RB_Value*constant;

}

//Reads back the Silicon Revision of the transciever

long VHF_Silicon_Rev_RB(void){

 long reg_val = 0x1C7;

 return VHF_read_back(reg_val);

}

//Reads back the RSSI of the transciever

signed float VHF_RSSI_RB(void){

 long reg_val = 0x147;

 long data = 0;

 char RSSI=0,I_gain=0,LNA_gain=0 ;

 char gain_correction;

 data = VHF_read_back(reg_val);

 RSSI = 0x7F & data; //masks the RSSI readback to only

retreive the RSSI-level information

 I_gain = (data>>7) & 0x03; //gets the Current Filter Gain from

the data

 LNA_gain = (data>>9) & 0x03; //gets the LNA gain from data

 //Gets the Gain Mode Correction based on the LNA Gain and I_Gain

(Filter Gain)

 //The data is from the tranciever datasheet on page 32

 if(LNA_gain == 0x02 && I_gain ==0x02)

 gain_correction = 0;

 else if (LNA_gain == 0x01 && I_gain ==0x02)

Wireless Bear Tracking, Group May1010 Page 177

 gain_correction = 24;

 else if (LNA_gain == 0x01 && I_gain ==0x01)

 gain_correction = 38;

 else if (LNA_gain == 0x01 && I_gain ==0x00)

 gain_correction = 58;

 else if (LNA_gain == 0x00 && I_gain ==0x00)

 gain_correction = 86;

 //RSSI Formula in dBm is -130 + (Readback RSSI + Gain Correction)*0.5

 return (-130 + (gain_correction + RSSI)*0.5);

}

//Reads back the Filter Calibration of the transciever

//This is used for manual filter adjust

//IF_Filter_Adjust = FILTER_CAL_READBACK - 128

//IF_Filter_Adjust can be read to R5_DB[14:19]

long VHF_Filter_Cal_RB(void){

 long reg_val = 0x187;

 long data = 0;

 data = data & 0xFF; //masks the data so only first eight bits

are used

 return (data-128);

}

//Reads back the Battery Voltage which is read from VDD4

float VHF_Battery_RB(void){

 long reg_val = 0x157;

 long data = 0;

 send_gpio(0x17D8); //enables ADC

 data = VHF_read_back(reg_val);

 data = data & 0x7F; //masks the data so only first seven bits

are used

 send_gpio(0x16D8); //Disables ADC

 //Voltage of the battery = Battery_Voltage_Readback/21.1

 return (data/21.1);

}

//Reads back the Temperature which is in degrees Celecius

float VHF_Temperture_RB(void){

 long reg_val = 0x167;

 long data = 0;

 send_gpio(0x17D8); //enables ADC

 data = VHF_read_back(reg_val);

 data = data & 0x7F; //masks the data so only first seven bits

are used

 send_gpio(0x16D8); //Disables ADC

 return (-40 + (68.4-data)*9.32);

}

Wireless Bear Tracking, Group May1010 Page 178

Appendix 16: PIC Code – handler.h

#define SCALAR1 100 //(SCALAR1*255+SCALAR2)*(postscalar time) = approx.

sleep period in milisec

#define SCALAR2 0 //SEE TDMA_MAIN.H FOR POSTSCALAR VALUE (DSPER needs

to stay in tdma_main.h)

#define ARRAYLEN 32

#define VHF_BUFFSIZE 19

#include "datatypes.h"

//Define prototypes

void send_eusart1(int datatx);

int dpslp_chk(void);

void sleep_count(void);

void eusart_test(void);

int ds_handler(void);

void wake_to_sleep(void);

void power_33(byte x);

void power_5(byte x);

void send_gpio(long reg_val);

void vhf_trx(byte x);

void switch_ctrl(byte x);

void send_eusart2(int datatx);

unsigned char VHF_RX_Mode(void);

signed long get_lat(void);

signed long get_lon(void);

unsigned long get_time(void);

unsigned char get_status(void);

unsigned char get_ID(void);

void VHF_TX_Mode(void);

void VHF_send_packet(unsigned char *packet);

void swd(void);

void VHF_data_rx(void);

void global_var_init(void);

signed long VHF_read_back(long reg_val);

float VHF_AFC_RB(void);

long VHF_Silicon_Rev_RB(void);

signed float VHF_RSSI_RB(void);

long VHF_Filter_Cal_RB(void);

float VHF_Battery_RB(void);

float VHF_Temperture_RB(void);

extern void activate_unit(void);

extern void go_to_sleep(void);

Wireless Bear Tracking, Group May1010 Page 179

Appendix 17: PIC Code – interrupts.c

//====================tdma_interrupts.c=============================//

// file: tdma_interrupts.c

 //

// author: John Pritchard

 //

// project: Bear Tracker Project

 //

// date: Spring 2010

 //

//

 //

// functions: high_vector_table(), low_vector_table(),

 //

// eusart_rx_int(), high_vector(), low_vector()

 //

//

 //

// Desc: This function handles all interrupts

 //

//

 //

//==//

#include "p18cxxx.h"

#include "interrupts.h"

#include "datatypes.h"

#include "handler.h"

//Define Global variables

static byte eusart_buff[BUFFSIZE];

byte *buff_end = eusart_buff+BUFFSIZE;

byte *rx = eusart_buff;

//int trans,error;

byte eusart2_buff[BUFFSIZE];

byte *buff_end2 = eusart2_buff+BUFFSIZE;

byte *rx2 = eusart2_buff;

/*---

 Function: high_vector_table

 Params: void

 Returns: void

 Description: Vector table for high interrupts. All high

 interrupts come here to find out what to do

 next.

 ---*/

#pragma interrupt high_vector_table

void high_vector_table() {

/* if(PIR1 & 0x20) {

 eusart1_rx_int();

 }

*/

 if(INTCON3bits.INT1F == 1){

 swd();

Wireless Bear Tracking, Group May1010 Page 180

 }

 if(INTCON3bits.INT2F == 1){

 VHF_data_rx();

 }

 if(PIR3 & 0x20){

 eusart2_rx_int();

 }

 else

 Nop();

}

 /*---

 Function: low_vector_table

 Params: void

 Returns: void

 Description: Vector table for low interrupts. All low

 interrupts come here to find out what to do

 next.

 ---*/

#pragma interrupt low_vector_table

void low_vector_table() {

 Nop(); //Do nothing. No low-priority interrupts have been set up

at this time

}

 /*---

 Function: interrupt_euart

 Params: void

 Returns: void

 Description: Interrupt point when rx data is received.

 Loads rx data into a buffer and checks for

 any ids that were received.

 ---*/

void eusart2_rx_int(void) {

 //TXSTA1bits.TXEN = 0; //clear TX enable (this clears TX int flag)

 //TXSTA2bits.TXEN = 0;

 *rx2 = RCREG2;

 rx2++;

 if(rx2 > buff_end2)

 {

 rx2 = eusart2_buff;

 }

 return;

}

 /*---

 Function: high_vector

 Params: void

 Returns: void

 Description: interrupt point for high interrupts

 ---*/

#pragma code high_vector_section=0x08

Wireless Bear Tracking, Group May1010 Page 181

void high_vector(void)

{

 _asm GOTO high_vector_table _endasm

}

 /*---

 Function: low_vector

 Params: void

 Returns: void

 Description: interrupt point for low interrupts

 ---*/

#pragma code low_vector_section=0x18

void low_vector(void)

{

 _asm GOTO low_vector_table _endasm

}

/***

********************OLD FUNCTIONS

void eusart1_rx_int(void) {

 //TXSTA1bits.TXEN = 0; //clear TX enable (this clears TX int flag)

 //TXSTA2bits.TXEN = 0;

 *rx = RCREG1;

 rx++;

 if(rx > buff_end)

 {

 rx = eusart_buff;

 }

 return;

}

//used for Asycronous RX with VHF transciever

void eusartVHF_rx_int(void) {

 //TXSTA1bits.TXEN = 0; //clear TX enable (this clears TX int flag)

 //TXSTA2bits.TXEN = 0;

 int gohere;

 *rx = RCREG2;

 rx++;

 if(rx > buff_end)

 {

 rx = eusart_buff;

 }

 return;

}

void Find_RX_Data(void)

{

 byte *i;

 int j;

 int current_data;

Wireless Bear Tracking, Group May1010 Page 182

 char start,VHF_Count;

 byte VHF_RX[6];

 byte VHF_Correct[6];

 VHF_Correct[0] = 0xAB;

 VHF_Correct[1] = 0xAC;

 VHF_Correct[2] = 0xAD;

 VHF_Correct[3] = 0xAE;

 VHF_Correct[4] = 0xAF;

 VHF_Correct[5] = 0x55;

 start = 0;

 VHF_Count = 0;

 for(i=eusart_buff;i<rx;i++)

 {

 current_data = *i;

 if(current_data == 0xAB && start ==0){

 start = 1;

 }

 if(start == 1){

 if(VHF_Count == 6){

 rx = eusart_buff;

 trans++;

 for(j=0;j<6;j++){

 if(VHF_RX[j] !=VHF_Correct[j]){

 error++;

 return;

 }

 }

 return;

 }

 else{

 VHF_RX[VHF_Count] = current_data;

 VHF_Count++;

 }

 }

 }

}

*/

Wireless Bear Tracking, Group May1010 Page 183

Appendix 18: PIC Code – interrupts.h

#include "datatypes.h"

//Define prototypes

void eusart2_rx_int(void);

void high_vector(void);

void low_vector(void);

void Find_RX_Data(void);

//Define constants

#define BUFFSIZE 50

Wireless Bear Tracking, Group May1010 Page 184

Appendix 19: PIC Code – projconfig.h

//Set configuration bits (see datasheet for details)

#if defined(__18F26J11) || defined(__18F46J11)

#pragma config WDTEN = OFF, XINST = OFF, OSC = INTOSC

#pragma config T1DIG = ON, LPT1OSC = OFF, DSWDTOSC = INTOSCREF

#pragma config RTCOSC = INTOSCREF, DSBOREN = ON, DSWDTEN = ON

#pragma config DSWDTPS = DSPER, FCMEN = OFF, IESO = OFF

#endif

Wireless Bear Tracking, Group May1010 Page 185

Appendix 20: PIC Code – encoding.c

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "encoding.h"

//This procedure takes in a four bit message and encodes it into 4b/5b

encoding

long encode_message(long message)

{

 long encoded_message = 0;

 switch (message)

 {

 case 0b0000:

 encoded_message = 0b11110;

 break;

 case 0b0001:

 encoded_message = 0b01001;

 break;

 case 0b0010:

 encoded_message = 0b10100;

 break;

 case 0b0011:

 encoded_message = 0b10101;

 break;

 case 0b0100:

 encoded_message = 0b01010;

 break;

 case 0b0101:

 encoded_message = 0b01011;

 break;

 case 0b0110:

 encoded_message = 0b01110;

 break;

 case 0b0111:

 encoded_message = 0b01111;

 break;

 case 0b1000:

 encoded_message = 0b10010;

 break;

 case 0b1001:

 encoded_message = 0b10011;

 break;

 case 0b1010:

 encoded_message = 0b10110;

 break;

 case 0b1011:

 encoded_message = 0b10111;

 break;

 case 0b1100:

 encoded_message = 0b11010;

 break;

 case 0b1101:

 encoded_message = 0b11011;

 break;

 case 0b1110:

 encoded_message = 0b11100;

Wireless Bear Tracking, Group May1010 Page 186

 break;

 case 0b1111:

 encoded_message = 0b11101;

 break;

 default:

 encoded_message = 0b00100;

 }

 return encoded_message;

}

//The procedure takes in the 4b/5b encoded message and decodes it

//back to its true 4 bit message

long decode_message(long encoded_message){

 long decoded_message = 0;

 switch (encoded_message)

 {

 case 0b11110:

 decoded_message = 0b0000;

 break;

 case 0b01001:

 decoded_message = 0b0001;

 break;

 case 0b10100:

 decoded_message = 0b0010;

 break;

 case 0b10101:

 decoded_message = 0b0011;

 break;

 case 0b01010:

 decoded_message = 0b0100;

 break;

 case 0b01011:

 decoded_message = 0b0101;

 break;

 case 0b01110:

 decoded_message = 0b0110;

 break;

 case 0b01111:

 decoded_message = 0b0111;

 break;

 case 0b10010:

 decoded_message = 0b1000;

 break;

 case 0b10011:

 decoded_message = 0b1001;

 break;

 case 0b10110:

 decoded_message = 0b1010;

 break;

 case 0b10111:

 decoded_message = 0b1011;

 break;

 case 0b11010:

 decoded_message = 0b1100;

Wireless Bear Tracking, Group May1010 Page 187

 break;

 case 0b11011:

 decoded_message = 0b1101;

 break;

 case 0b11100:

 decoded_message = 0b1110;

 break;

 case 0b11101:

 decoded_message = 0b1111;

 break;

 default:

 decoded_message = 0b0000;

 }

 return decoded_message;

}

//The procedure takes in the latitude, longitude, time, status, and ID and

//formats it into 4b/5b. Once in 4b/5b, the procedure compresses the data

//to reduce the number of bytes send. The compression takes into advantage of

the

//fact that each encoded 4b/5b message has three empty bits. Thus data in the

//next byte can be shifted into these three empty bits

void format_packet(unsigned char *packet, signed long latitude, signed long

longitude, unsigned long time, unsigned char status, unsigned char ID)

{

 int i;

 char message_array[32];

 unsigned char *message=message_array;

 int counter=0;

 //splits up the latitude, longitude, and time in 4b/5b encoding

 //into 8 bits and encodes them into 4b/5b

 for (i=0;i<PACKET_OCT/4;i++)

 {

 *(message+i) = encode_message(latitude>>(i*4) & 0x0000000F);

 *(message+i+8) = encode_message(longitude>>(i*4) & 0x0000000F);

 *(message+i+16) = encode_message(time>>(i*4) & 0x0000000F);

 }

 //encodes the status and ID into 4b/5b

 *(message+24) = encode_message(status & 0x0F);

 *(message+25) = encode_message((status>>4) & 0x0F);

 *(message+26) = encode_message(ID & 0x0F);

 *(message+27) = encode_message((ID>>4) & 0x0F);

 //Compresses the encoded data since each byte in message

 //only contains 5 bits. The compressions moves bits from

 //the next message into the prevouis byte

 tx_packet_shift(message, packet);

 //performs the check sum on the shifted message

 counter = check_sum(packet, 17);

 //encodes the check sum and puts it in the message

 *(message+28) = encode_message(counter & 0x0F);

Wireless Bear Tracking, Group May1010 Page 188

 *(message+29) = encode_message(((counter)>>4) & 0x0F);

 *(message+30) = ((counter>>8) & 0x03);

 *(packet+17) = *(packet+17) | (*(message+28)<<4);

 (packet+18) = ((message+28)>>4) | (*(message+29)<<1) |

(*(message+30)<<6);

 return;

}

//Performs the compression of the data to be sent. It takes advantage of the

//fact that encoded 4b/5b data has 3 unused bits and thus shifts the next

//encoded 4b/5b data into the previous 3 unused bits

void tx_packet_shift(unsigned char *message, unsigned char *packet)

{

 int i=0;

 int j=0;

 //Shifts the data in the encoded 4b/5b data to prevent

 //wasting bits that are not used in the 4b/5b scheme

 for (i=0; i < 24; i=i+8)

 {

 (packet+j) = ((message+i)) | (*(message+i+1)<<5);

 j++;

 (packet+j) = ((message+i+1)>>3) | (*(message+i+2)<<2) |

(*(message+i+3)<<7);

 j++;

 (packet+j) = ((message+i+3)>>1) | (*(message+i+4)<<4);

 j++;

 (packet+j) = ((message+i+4)>>4) | (*(message+i+5)<<1) |

(*(message+i+6)<<6);

 j++;

 (packet+j) = ((message+i+6)>>2) | (*(message+i+7)<<3);

 j++;

 }

 //Encodes the status and ID and adds to packet

 (packet+j) = ((message+i)) | (*(message+i+1)<<5);

 j++;

 (packet+j) = ((message+i+1)>>3) | (*(message+i+2)<<2) |

(*(message+i+3)<<7);

 j++;

 (packet+j) = ((message+i+3)>>1);

 return;

}

//Performs a check sum on the encoded packet for TX mode

unsigned int check_sum(unsigned char *packet, int length){ //Check Sum

Fields

 unsigned int CK_A = 0;

 int i = 0;

 //sums up all the decimal values of the shifted packet except

 //for the last data value because it only has 4 bits in it

 //so it needs masks

Wireless Bear Tracking, Group May1010 Page 189

 for(i = 0; i < length; i++)

 {

 CK_A = CK_A + *(packet + i);

 }

 //masks the last byte to get only the last four digits

 CK_A = CK_A + (*(packet+i)& 0x0F);

 //Only use 10 bits in the check sum

 CK_A = CK_A & 0x3FF;

 return CK_A;

}

//Decodes the latitude data from the encoded-shifted packet

signed long rx_decode_lat(unsigned char *RX){

 long lat1, lat2, lat3, lat4, lat5, lat6, lat7, lat8,lat=0;

 lat1 = (decode_message(*RX & 0x1F));

 lat2 = (decode_message(((*RX >>5)|(*(RX+1)<<3))&0x1F)<<4) ;

 lat3 = (decode_message((*(RX+1)>>2)& 0x1F)<<8) ;

 lat4 = (decode_message(((*(RX+1)>>7)|(*(RX+2)<<1))&0x1F)<<12) ;

 lat5 = (decode_message(((*(RX+2)>>4)|(*(RX+3)<<4))&0x1F)<<16) ;

 lat6 = (decode_message(((*(RX+3)>>1))&0x1F)<<20) ;

 lat7 = (decode_message(((*(RX+3)>>6)|(*(RX+4)<<2))&0x1F)<<24);

 lat8 = (decode_message(((*(RX+4)>>3))&0x1F)<<28);

 lat = lat1|lat2|lat3|lat4|lat5|lat6|lat7|lat8;

 return lat;

}

//Decodes the longitude data from the encoded-shifted packet

signed long rx_decode_lon(unsigned char *RX){

 long lat1, lat2, lat3, lat4, lat5, lat6, lat7, lat8,lat=0;

 lat1 = (decode_message(*(RX+5) & 0x1F));

 lat2 = (decode_message(((*(RX+5) >>5)|(*(RX+6)<<3))&0x1F)<<4) ;

 lat3 = (decode_message((*(RX+6)>>2)& 0x1F)<<8) ;

 lat4 = (decode_message(((*(RX+6)>>7)|(*(RX+7)<<1))&0x1F)<<12) ;

 lat5 = (decode_message(((*(RX+7)>>4)|(*(RX+8)<<4))&0x1F)<<16) ;

 lat6 = (decode_message(((*(RX+8)>>1))&0x1F)<<20) ;

 lat7 = (decode_message(((*(RX+8)>>6)|(*(RX+9)<<2))&0x1F)<<24);

 lat8 = (decode_message(((*(RX+9)>>3))&0x1F)<<28);

 lat = lat1|lat2|lat3|lat4|lat5|lat6|lat7|lat8;

 return lat;

}

//Decodes the time from the encoded-shifted packet

unsigned long rx_decode_time(unsigned char *RX){

 long lat1, lat2, lat3, lat4, lat5, lat6, lat7, lat8,lat=0;

 lat1 = (decode_message(*(RX+10) & 0x1F));

 lat2 = (decode_message(((*(RX+10) >>5)|(*(RX+11)<<3))&0x1F)<<4) ;

 lat3 = (decode_message((*(RX+11)>>2)& 0x1F)<<8) ;

Wireless Bear Tracking, Group May1010 Page 190

 lat4 = (decode_message(((*(RX+11)>>7)|(*(RX+12)<<1))&0x1F)<<12) ;

 lat5 = (decode_message(((*(RX+12)>>4)|(*(RX+13)<<4))&0x1F)<<16) ;

 lat6 = (decode_message(((*(RX+13)>>1))&0x1F)<<20) ;

 lat7 = (decode_message(((*(RX+13)>>6)|(*(RX+14)<<2))&0x1F)<<24);

 lat8 = (decode_message(((*(RX+14)>>3))&0x1F)<<28);

 lat = lat1|lat2|lat3|lat4|lat5|lat6|lat7|lat8;

 return lat;

}

//Decodes the status data from the encoded-shifted packet

unsigned char rx_decode_status(unsigned char *RX){

 char status1, status2, status=0;

 status1 = (decode_message(*(RX+15) & 0x1F));

 status2 = (decode_message((*(RX+15)>>5 | *(RX+16)<<3) & 0x1F)<<4);

 status = status1 | status2;

 return status;

}

//Decodes the ID data from the encoded-shifted packet

unsigned char rx_decode_ID(unsigned char *RX){

 char ID1,ID2,ID=0;

 ID1 = (decode_message((*(RX+16)>>2) & 0x1F));

 ID2 = (decode_message(((*(RX+16)>>7)|(*(RX+17)<<1)) & 0x1F)<<4);

 ID = ID1|ID2;

 return ID;

}

//Takes in the recieved packet and decodes the check sum of the packet

unsigned int rx_decode_check_sum(unsigned char *RX){

 unsigned int check1, check2, check3;

 unsigned int check = 0;

 //decodes the check sum which is located at the end of the packet

 //The decoding requires shifting because the 5 bit encoded data

 //was compressed

 check1 = (decode_message(((*(RX+17)>>4)|(*(RX+18)<<4)) & 0x1F));

 check2 = (decode_message((*(RX+18)>>1) & 0x1F)<<4);

 check3 = (*(RX+18)& 0xC0);

 check3 = check3<<2;

 check = check1|check2|check3;

 return check;

}

/*OLD FUNCTIONS NOT USED

Wireless Bear Tracking, Group May1010 Page 191

int check_sum(unsigned char *packet){ //sums all the 1's in the entire

packet then appends that to an additional byte in the packet

 int i=0;

 int j=0;

 int counter=0;

 for (i=0;i < 25; i++)

 {

 for (j=0;j<8;j++)

 {

 counter += ((*(packet+i)>>j) & 0x01);

 }

 }

 return counter;

}

int send_message(double message_to_send)

{

 int encoded_message_to_send = encode_message(message_to_send);

 TXSTA1bits.TXEN = 1; //enable transmission

 TXREG1 = encoded_message_to_send; //sends encoded message

 return encoded_message_to_send; //returns encoded message to

ensure correct encoding was sent

}

struct coordinates

{

 long latitude; //latitude signed long variable, 4 bytes, 1E-7

to convert to coordinate system

 long longitude; //longitude, signed long variable, 4 bytes, 1E-

7 to convert to coordinate system

 unsigned long time; //time, unsigned long variable, 4 bytes, ms

since beginning of week

 short int status; //status variable, 2 bytes, can use as needed to send

flags to receiver

}

struct packet

{

 int message[28];

}

int send_preamble(void)

{

 TXSTA1bits.TXEN = 1; //enable transmission

 for(int i=0;i<6;i++) //send 48 bits of alternating 1's and 0's

 {

 TXREG1 = 0XAA; //10101010

 }

 return 1; //return 1 for completed preamble

}

Wireless Bear Tracking, Group May1010 Page 192

long check_sum_encode(unsigned int counter){

 long encoded = 0;

 encoded = (encode_message(counter &

0x0F))|(encode_message((counter>>4)& 0x0F)<<5);

 return encoded;

}

*/

Wireless Bear Tracking, Group May1010 Page 193

Appendix 21: PIC Code – encoding.h

//Number of bytes in packet not including preamble

#define PACKET_SIZE 28

//Next largest mulitple of 8 of packet_size

#define PACKET_OCT 32

void format_packet(unsigned char *packet, signed long latitude, signed long

longitude, unsigned long time, unsigned char status, unsigned char ID);

 //Forms an array of 5 encoded bits which can then be sent to the VHF

transciever with a for loop

void tx_packet_shift(unsigned char *message, unsigned char *packet);

signed long rx_decode_lat(unsigned char *RX);

signed long rx_decode_lon(unsigned char *RX);

unsigned long rx_decode_time(unsigned char *RX);

unsigned char rx_decode_status(unsigned char *RX);

unsigned int check_sum(unsigned char *packet, int length);

unsigned char rx_decode_ID(unsigned char *RX);

long check_sum_encode(unsigned int counter);

unsigned int rx_decode_check_sum(unsigned char *RX);

Wireless Bear Tracking, Group May1010 Page 194

Appendix 22: PIC Code – eeprom_i2c.c

/*---

/

/ File: eeprom_i2c.c

/ Contains i2c funtionaility for the EEPROM

/

---*/

#include <p18f46j11.h> //The PIC used in final design

#include <i2c.h>

#include "eeprom_i2c.h"

#define I2C_V6

 /*---

 Function: eeprom_i2c_init

 Params: void

 Returns: void

 Description: intialize the I2C for the EEPROM chip

 ---*/

void eeprom_i2c_init(void)

{

 TRISDbits.TRISD0 = 1; //Set pin 38 as input for I2C to function

 TRISDbits.TRISD1 = 1; //Set pin 39 as input for I2C to function

 //Set MSSPEnable Bit <5> for i2c instead of SPI

 SSP2CON1bits.SSPEN = 1;

 //1011 = I2C Firmware Controlled Master mode (slave Idle)

 //1000 = I2C Master mode, clock = FOSC/(4 * (SSPxADD + 1))

 SSP2CON1bits.SSPM3 = 1;

 SSP2CON1bits.SSPM2 = 0;

 SSP2CON1bits.SSPM1 = 0;

 SSP2CON1bits.SSPM0 = 0;

 // 4/8/10: no clock appear until the clock was changed to 200 KHz

 //Set I2C clock to 100 KHz (ADD = 0x09)

 SSP2ADD = 0x09;

 return;

}

 /*---

 Function: eeprom_write_byte

 Params: byte = byte to write to EEPROM

 address_block = either 1 or 0 for the page of the

memory

 address = the address of the memory

 Returns: void

 Description: write a byte to the EEPROM at the defined address

 ---*/

void eeprom_write_byte(unsigned char byte,

 unsigned char address_block,

Wireless Bear Tracking, Group May1010 Page 195

 unsigned int address)

{

 unsigned char eeprom_control, high_address, low_address;

 IdleI2C2();// ensure module is idle

 StartI2C2();// initiate START condition

 while (SSP2CON2bits.SEN);// wait until start condition is over

 //load EEPROM control byte in buffer

 //<7:4> = 1010

 //<3> = address block, shown as input to function

 //<2:1> = hardware defined address, 00 in this case

 //<0> = 0 for write

 eeprom_control = 0xA0 | (((address_block & 0x01) << 3) & 0x08);

 WriteI2C2(eeprom_control);// write 1 byte - R/W bit should be 0

 IdleI2C2();// ensure module is idle

 //load high byte of address into buffer

 high_address = (address >> 8) & 0x00FF;

 WriteI2C2(high_address);// write address byte to EEPROM

 IdleI2C2();// ensure module is idle

 //load low byte of address into buffer

 low_address = (address) & 0x00FF;

 WriteI2C2(low_address); // write address byte to EEPROM

 IdleI2C2();// ensure module is idle

 WriteI2C2(byte);// Write data byte to EEPROM

 IdleI2C2();// ensure module is idle

 StopI2C2();// send STOP condition

 while (SSP2CON2bits.PEN);// wait until stop condition is over

 eeprom_ack_polling();//Wait for write cycle to complete

 return; // return

}

/*---

 Function: eeprom_ack_polling

 Params: void

 Returns: void

 Description: poll the EEPROM chip to see if it is busy

 for a page write

---*/

void eeprom_ack_polling(void)

{

 unsigned char eeprom_control, ack_bit;

 eeprom_control = 0xA0;

 ack_bit = 1;

 while(ack_bit == 1)

 {

 IdleI2C2();// ensure module is idle

Wireless Bear Tracking, Group May1010 Page 196

 StartI2C2();// initiate START condition

 while (SSP2CON2bits.SEN);// wait until start condition is over

 //load EEPROM control byte in buffer

 //<7:4> = 1010

 //<3> = address block = 0

 //<2:1> = hardware defined address, 00 in this case

 //<0> = 0 for write

 WriteI2C2(eeprom_control);// write 1 byte - R/W bit should be 0

 IdleI2C2();// ensure module is idle

 ack_bit = SSP2CON2bits.ACKSTAT;

 }

 return;

}

 /*---

 Function: eeprom_read

 Params: address_block = either 1 or 0 for the page of the

memory

 address = the address of the memory

 *rdptr = Character type pointer to PICmicro MCU RAM

 for storage of data read from I2C

device

 length = Number of bytes to read from I2C device.

 Returns: none

 Description: read from the EEPROM

 ---*/

void eeprom_read(unsigned char address_block,

 unsigned int address,

 unsigned char *rdptr,

 unsigned char length)

{

 unsigned char eeprom_control, high_address, low_address, data;

 IdleI2C2(); // ensure module is idle

 StartI2C2(); // initiate START condition

 while (SSP2CON2bits.SEN); // wait until start condition is over

 //load EEPROM control byte in buffer

 //<7:4> = 1010

 //<3> = address block, shown as input to function

 //<2:1> = hardware defined address, 00 in this case

 //<0> = 0 for write

 eeprom_control = 0xA0 | (((address_block & 0x01) << 3) & 0x08);

 WriteI2C2(eeprom_control); // write 1 byte

 IdleI2C2(); // ensure module is idle

 //load high byte of address into buffer

 high_address = (address >> 8) & 0x00FF;

 WriteI2C2(high_address); // WRITE word address to EEPROM

 IdleI2C2(); // ensure module is idle

 //load low byte of address into buffer

 low_address = (address) & 0x00FF;

Wireless Bear Tracking, Group May1010 Page 197

 WriteI2C2(low_address); // write HighAdd byte to EEPROM

 IdleI2C2(); // ensure module is idle

 StartI2C2(); // initiate START condition

 while (SSP2CON2bits.SEN); // wait until start condition is over

 WriteI2C2(eeprom_control | 0x01); // WRITE 1 byte - R/W bit should be

1 for read

 IdleI2C2(); // ensure module is idle

 getsI2C2(rdptr, length); // read in multiple bytes

 NotAckI2C2(); // send not ACK condition

 while (SSP2CON2bits.ACKEN); // wait until ACK sequence is over

 StopI2C2(); // send STOP condition

 while (SSP2CON2bits.PEN); // wait until stop condition is over

 return;

}

 /*---

 Function: eeprom_write

 Params: address_block = either 1 or 0 for the page of the

memory

 address = the address of the memory to write

 *dataptr = Character type pointer to data to write

 length = Number of bytes to write to I2C device.

 Returns: void

 Description: write a byte to the EEPROM at the defined address

 ---*/

void eeprom_write(unsigned char address_block,

 unsigned int address,

 unsigned char *dataptr,

 unsigned char length)

{

 unsigned char eeprom_control, high_address, low_address, k, byte;

 IdleI2C2();// ensure module is idle

 StartI2C2();// initiate START condition

 while (SSP2CON2bits.SEN);// wait until start condition is over

 //load EEPROM control byte in buffer

 //<7:4> = 1010

 //<3> = address block, shown as input to function

 //<2:1> = hardware defined address, 00 in this case

 //<0> = 0 for write

 eeprom_control = 0xA0 | (((address_block & 0x01) << 3) & 0x08);

 WriteI2C2(eeprom_control);// write 1 byte - R/W bit should be 0

 IdleI2C2();// ensure module is idle

 //load high byte of address into buffer

 high_address = (address >> 8) & 0x00FF;

 WriteI2C2(high_address);// write address byte to EEPROM

Wireless Bear Tracking, Group May1010 Page 198

 IdleI2C2();// ensure module is idle

 //load low byte of address into buffer

 low_address = (address) & 0x00FF;

 WriteI2C2(low_address); // write address byte to EEPROM

 IdleI2C2();// ensure module is idle

 for(k = 0; k < length; k++)

 {

 byte = *dataptr++;

 WriteI2C2(byte);// Write data byte to EEPROM

 IdleI2C2();// ensure module is idle

 }

 StopI2C2();// send STOP condition

 while (SSP2CON2bits.PEN);// wait until stop condition is over

 eeprom_ack_polling();//Wait for write cycle to complete

 return; // return

}

Wireless Bear Tracking, Group May1010 Page 199

Appendix 23: PIC Code – eeprom_i2c.h

#ifndef _EEPROM_I2C_H_

#define _EEPROM_I2C_H_

 /*---

 Function: eeprom_i2c_init

 Params: void

 Returns: void

 Description: intialize the I2C for the EEPROM chip

 ---*/

void eeprom_i2c_init(void);

 /*---

 Function: eeprom_write_byte

 Params: byte = byte to write to EEPROM

 address_block = either 1 or 0 for the page of the

memory

 address = the address of the memory

 Returns: void

 Description: write a byte to the EEPROM at the defined address

 ---*/

void eeprom_write_byte(unsigned char byte,

 unsigned char address_block,

 unsigned int address);

 /*---

 Function: eeprom_read

 Params: address_block = either 1 or 0 for the page of the

memory

 address = the address of the memory

 *rdptr = Character type pointer to PICmicro MCU RAM

 for storage of data read from I2C

device

 length = Number of bytes to read from I2C device.

 Returns: none

 Description: read from the EEPROM

 ---*/

void eeprom_read(unsigned char address_block,

 unsigned int address,

 unsigned char *rdptr,

 unsigned char length);

/*---

 Function: eeprom_ack_polling

 Params: void

 Returns: void

 Description: poll the EEPROM chip to see if it is busy

 for a page write

---*/

void eeprom_ack_polling(void);

Wireless Bear Tracking, Group May1010 Page 200

/*---

 Function: eeprom_write

 Params: address_block = either 1 or 0 for the page of the

memory

 address = the address of the memory to write

 *dataptr = Character type pointer to data to write

 length = Number of bytes to write to I2C device.

 Returns: void

 Description: write a byte to the EEPROM at the defined address

---*/

void eeprom_write(unsigned char address_block,

 unsigned int address,

 unsigned char *dataptr,

 unsigned char length);

#endif

Wireless Bear Tracking, Group May1010 Page 201

Appendix 24: PIC Code – gps_i2c.c

/*---

/

/ File: gps_i2c.c

/ Contains i2c funtionaility for the NEo-5 GPS

/

---*/

#include "gps_i2c.h"

#include "eeprom_i2c.h"

#include "ublox_cfg.h"

#include "ublox_read.h"

#include <i2c.h>

#include <delays.h>

 /*---

 Function: gps_i2c_init

 Params: void

 Returns: void

 Description: intialize the I2C for the NEo-5 GPS chip

 ---*/

void gps_i2c_init(void)

{

 LATDbits.LATD2 = 1; //Power 3.3V selectable Line

 Delay10KTCYx (30);

 //this is about a 300 ms delay

 //After the 3.3V line is on for 300 ms the GPS will look for the eeprom

 //Need to wait this 250 ms for the GPS to be in slave mode

 //If the 3.3V line gets turned off, this will need to be waited again

 TRISCbits.TRISC3 = 1; //Set pin 37 as input for I2C to function

 TRISCbits.TRISC4 = 1; //Set pin 42 as input for I2C to function

 //Set MSSPEnable Bit <5> for i2c instead of SPI

 SSP1CON1bits.SSPEN = 1;

 //1000 = I2C Master mode, clock = FOSC/(4 * (SSPxADD + 1))

 SSP1CON1bits.SSPM3 = 1;

 SSP1CON1bits.SSPM2 = 0;

 SSP1CON1bits.SSPM1 = 0;

 SSP1CON1bits.SSPM0 = 0;

 //Set I2C clock to 100 KHz (ADD = 0x09)

 //Set I2C clock to 31.25 KHz (ADD = 0x1F)

 SSP1ADD = 0x1F;

 SSP1STATbits.SMP = 1; //Slew Rate control, Must be 1!

 //At a value of zero, the clock edges have a higher slew rate

 //and the UBLOX has difficulty processing them

 //Turn off various NMEA strings

 ubx_cfg_msg_off(0xF0, 0x03);//Turn off GSV

 ubx_cfg_msg_off(0xF0, 0x04);//Turn off RMC

 ubx_cfg_msg_off(0xF0, 0x02);//Turn off GSA

 ubx_cfg_msg_off(0xF0, 0x00);//Turn off GGA

Wireless Bear Tracking, Group May1010 Page 202

 ubx_cfg_msg_off(0xF0, 0x01);//Turn off GLL

 ubx_cfg_msg_off(0xF0, 0x05);//Turn off VTG

 ubx_cfg_msg_off(0xF0, 0x41);//Turn off TXT

 //Turn on NAV-POSLLH message all the time!

 ubx_cfg_msg_on(0x01, 0x02);

 //Turn off all info messages

 ubx_cfg_inf_off();

 //Need to delay in order for the PIC I2c buffer to clear out

 Delay10KTCYx (120);

 return;

}

 /*---

 Function: gps_read

 Params: *rdptr = Character type pointer to PICmicro MCU RAM

 for storage of data read from I2C

device

 length = Number of bytes to read from I2C device.

 Returns: unsigned int number of bytes read

 Description: reads all buffered information from the GPS

 ---*/

unsigned char gps_read(unsigned char *rdptr)

{

 unsigned char length_of_string[2];

 unsigned char length_high, length_low, length;

 gps_write_loop();

 //will continue to address the GPS until ack

 //and then will address the for Write

 //load address of the bytes available: 0xFD

 WriteI2C1(0xFD); // WRITE address to GPS

 IdleI2C1(); // ensure module is idle

 gps_read_loop();

 //will continue to address the GPS until ack

 //and then will address the for Read

 getsI2C1(length_of_string, 2);

 // read in string of the length of the string in memory

 NotAckI2C1(); // send not ACK condition

 while (SSP1CON2bits.ACKEN); // wait until ACK sequence is over

 StopI2C1(); // send STOP condition

 while (SSP1CON2bits.PEN); // wait until stop condition is over

 length_high = length_of_string[0];

 length_low = length_of_string[1];

 if (length_high > 1)

Wireless Bear Tracking, Group May1010 Page 203

 {

 length = 0xFF;

 }

 else

 {

 length = length_low;

 }

 gps_read_loop();

 //will continue to address the GPS until ack

 //and then will address the for Read

 getsI2C1(rdptr, length); // read in multiple bytes

 NotAckI2C1(); // send not ACK condition

 while (SSP1CON2bits.ACKEN); // wait until ACK sequence is over

 StopI2C1(); // send STOP condition

 while (SSP1CON2bits.PEN); // wait until stop condition is over

 return length;

}

 /*---

 Function: gps_write

 Params: *dataptr = Character type pointer to data to write

 length = Number of bytes to write to I2C device.

 Returns: void

 Description: write a CFG message to the UBLOX

 ---*/

void gps_write(unsigned char message[],

 unsigned char length)

{

 unsigned char k, byte;

 gps_write_loop();

 //will continue to address the GPS until ack

 //and then will address the for Write

 for(k = 0; k < length; k++)

 {

 byte = message[k];

 WriteI2C1(byte);// Write data byte to UBLOX

 IdleI2C1();// ensure module is idle

 }

 StopI2C1();// send STOP condition

 while (SSP1CON2bits.PEN);// wait until stop condition is over

 return; // return

}

/*---

 Function: gps_write_loop

 Params: void

Wireless Bear Tracking, Group May1010 Page 204

 Returns: void

 Description: poll the gps chip to see if it is busy

 and then send a write message

---*/

void gps_write_loop(void)

{

 unsigned char ack_bit = 1;

 while(ack_bit == 1)

 {

 IdleI2C1();// ensure module is idle

 StartI2C1();// initiate START condition

 while (SSP1CON2bits.SEN);// wait until start condition is over

 //Address the UBLOX for a write: 0x84

 //<7:1> are default 0x42

 //<0> is 0 for a write

 WriteI2C1(0x84); //Address the UBLOX

 IdleI2C1(); // ensure module is idle

 ack_bit = SSP1CON2bits.ACKSTAT;

 }

 return;

}

/*---

 Function: gps_read_loop

 Params: void

 Returns: void

 Description: poll the gps chip to see if it is busy

 and then send a read message

---*/

void gps_read_loop(void)

{

 unsigned char ack_bit = 1;

 while(ack_bit == 1)

 {

 IdleI2C1();// ensure module is idle

 StartI2C1();// initiate START condition

 while (SSP1CON2bits.SEN);// wait until start condition is over

 //Address the UBLOX for a write: 0x84

 //<7:1> are default 0x42

 //<0> is 1 for a read

 WriteI2C1(0x85); //Address the UBLOX

 IdleI2C1(); // ensure module is idle

 ack_bit = SSP1CON2bits.ACKSTAT;

 }

 return;

Wireless Bear Tracking, Group May1010 Page 205

}

 /*---

 Function: get_gps_data

 Params: gpsdata[] = Array of UBX-NAV-PLLH message

 Returns: 1 if message contains valid data at correct accuracy

 0 if message timed out and contains no data

 Description: Loops a read to the UBLOX GPS so that the PIC buffer

 does not fill and waits for a valid UBX-

NAV-PLLH message

 Also waits to message at correct accuracy and

outputs a valid bit

 ---*/

unsigned char get_gps_data(unsigned char gpsdata[], unsigned long accuracy)

{

 unsigned char valid = 0;

 //Have the function time out if no valid data is found for about 2

minutes

 unsigned char time_out = 0;

 unsigned char class;

 unsigned char id;

 signed long longitude;

 unsigned long accuracy_msg;

 unsigned char valid_msg;

 //Continue to loop until a valid GPS message was received

 while((valid == 0) && (time_out < 250))

 {

 //Read the buffer from the UBLOX

 gps_read(gpsdata);

 //Delay so that the PIC I2C buffer does not overload

 Delay10KTCYx (120);

 //Tests to make sure message received has a UBX header

 valid_msg = valid_ubx_msg(gpsdata);

 if(valid_msg == 1)

 {

 //Check the class and header to make sure the message is

 //a NAV-POSLLH message

 class = ubx_msg_class(gpsdata);

 id = ubx_msg_id(gpsdata);

 if((class == 0x01) && (id == 0x02))

 {

 //Checks the longitude of the message to make sure it

is

 // and thus valid for the United States, also make

sure the

 //accuracy of the message is acceptable

 longitude = ubx_navpllh_get_longitude(gpsdata);

 accuracy_msg = ubx_navpllh_get_accuracy(gpsdata);

 if((longitude < -1) && (accuracy_msg < accuracy))

Wireless Bear Tracking, Group May1010 Page 206

 {

 valid = 1;

 }

 }

 }

 //Only allows to increment to 250 which is about 2 to 3 minutes

 time_out++;

 }

 return valid;

}

Wireless Bear Tracking, Group May1010 Page 207

Appendix 25: PIC Code – gps_i2c.h

#ifndef _GPS_I2C_H_

#define _GPS_I2C_H_

 /*---

 Function: gps_i2c_init

 Params: void

 Returns: void

 Description: intialize the I2C for the EEPROM chip

 ---*/

void gps_i2c_init(void);

 /*---

 Function: gps_read

 Params: *rdptr = Character type pointer to PICmicro MCU RAM

 for storage of data read from I2C

device

 length = Number of bytes to read from I2C device.

 Returns: none

 Description: reads all buffered information from the GPS

 ---*/

unsigned char gps_read(unsigned char *rdptr);

 /*---

 Function: gps_write

 Params: *dataptr = Character type pointer to data to write

 length = Number of bytes to write to I2C device.

 Returns: void

 Description: write a CFG message to the UBLOX

 ---*/

void gps_write(unsigned char *message,

 unsigned char length);

/*---

 Function: gps_read_loop

 Params: void

 Returns: void

 Description: poll the gps chip to see if it is busy

 and then send a read message

---*/

void gps_read_loop(void);

/*---

 Function: gps_write_loop

 Params: void

 Returns: void

 Description: poll the gps chip to see if it is busy

 and then send a write message

---*/

void gps_write_loop(void);

 /*---

 Function: get_gps_data

Wireless Bear Tracking, Group May1010 Page 208

 Params: gpsdata[] = Array of UBX-NAV-PLLH message

 Returns: 1 if message contains valid data at correct accuracy

 0 if message timed out and contains no data

 Description: Loops a read to the UBLOX GPS so that the PIC buffer

 does not fill and waits for a valid UBX-

NAV-PLLH message

 Also waits to message at correct accuracy and

outputs a valid bit

 ---*/

unsigned char get_gps_data(unsigned char gpsdata[], unsigned long accuracy);

#endif

Wireless Bear Tracking, Group May1010 Page 209

Appendix 26: PIC Code – ublox_cfg.c

/*---

/

/ File: ublox_CFG.c

/ Contains the Configuration messages for the NEO-5 GPS

/

---*/

#include <p18f46j11.h> //The PIC used in final design

#include <i2c.h>

#include "gps_i2c.h"

#include "eeprom_i2c.h"

#include "main.h"

#include "ublox_cfg.h"

/*---

 Function: ubx_cfg_msg_off()

 Params: void

 Returns: void

 Description: Set the rate that a message is polled to 0

---*/

void ubx_cfg_msg_off(unsigned char class, unsigned char id)

{

 //See page 83 of the Protocol Specification Document

 char CK_A, CK_B;

 int Inc;

 unsigned char length = 11; //payload + 8

 unsigned char message[11];

 //UBX message headers

 message[0] = 0xB5;

 message[1] = 0x62;

 message[2] = 0x06; //Class ID

 message[3] = 0x01; //Message ID

 //Payload Length - Little Endian

 message[4] = 0x03;

 message[5] = 0x00;

 //Class and ID of message to turn off

 message[6] = class;

 message[7] = id;

 message[8] = 0x00; //set rate to zero to cancel message

 //Check Sum Fields

 CK_A = 0;

 CK_B = 0;

 for(Inc = 2; Inc < (length - 2); Inc++)

 {

 CK_A = CK_A + message[Inc];

 CK_B = CK_B + CK_A;

 }

Wireless Bear Tracking, Group May1010 Page 210

 message[length-2] = CK_A;

 message[length-1] = CK_B;

 gps_write(message, length);

 return;

}

/*---

 Function: ubx_cfg_msg_on()

 Params: void

 Returns: void

 Description: Set the rate that a message is polled to high as possible

---*/

void ubx_cfg_msg_on(unsigned char class, unsigned char id)

{

 //See page 83 of the Protocol Specification Document

 char CK_A, CK_B;

 int Inc;

 unsigned char length = 11; //payload + 8

 unsigned char message[11];

 //UBX message headers

 message[0] = 0xB5;

 message[1] = 0x62;

 message[2] = 0x06; //Class ID

 message[3] = 0x01; //Message ID

 //Payload Length - Little Endian

 message[4] = 0x03;

 message[5] = 0x00;

 //Class and ID of message to turn on

 message[6] = class;

 message[7] = id;

 message[8] = 0x01; //set rate to one to send message everytime

 //the message is available

 //Check Sum Fields

 CK_A = 0;

 CK_B = 0;

 for(Inc = 2; Inc < (length - 2); Inc++)

 {

 CK_A = CK_A + message[Inc];

 CK_B = CK_B + CK_A;

 }

 message[length-2] = CK_A;

 message[length-1] = CK_B;

 gps_write(message, length);

 return;

}

Wireless Bear Tracking, Group May1010 Page 211

/*---

 Function: ubx_cfg_inf_off()

 Params: void

 Returns: void

 Description: Disable all warning and INFormation messages

---*/

void ubx_cfg_inf_off(void)

{

 //See page 93 of the Protocol Specification Document

 char CK_A, CK_B;

 int Inc;

 unsigned char length = 24; //payload + 8

 unsigned char message[24];

 //UBX message headers

 message[0] = 0xB5;

 message[1] = 0x62;

 message[2] = 0x06; //Class ID

 message[3] = 0x02; //Message ID

 //Payload Length - Little Endian

 message[4] = 0x10;

 message[5] = 0x00;

 message[6] = 0x00; //Configure UBX Messages

 message[10] = 0x00; //Disable all messages

 message[11] = 0x00;

 message[12] = 0x00;

 message[13] = 0x00;

 message[14] = 0x01; //Configure NMEA Messages

 message[18] = 0x00; //Disable all messages

 message[19] = 0x00;

 message[20] = 0x00;

 message[21] = 0x00;

 //Check Sum Fields

 CK_A = 0;

 CK_B = 0;

 for(Inc = 2; Inc < (length - 2); Inc++)

 {

 CK_A = CK_A + message[Inc];

 CK_B = CK_B + CK_A;

 }

 message[length-2] = CK_A;

 message[length-1] = CK_B;

 gps_write(message, length);

 return;

}

Wireless Bear Tracking, Group May1010 Page 212

Appendix 27: PIC Code – ublox_cfg.h

#ifndef _UBLOX_CFG_H_

#define _UBLOX_CFG_H_

//Page 91 - CFG-MSG

//Sets how often a message is sent to the GPS Module Settings

//For example, how often do we need to send a GPS message?

/*---

 Function: ubx_cfg_msg_off()

 Params: void

 Returns: void

 Description: Set the rate that a message is polled to 0

---*/

void ubx_cfg_msg_off(unsigned char class, unsigned char id);

/*---

 Function: ubx_cfg_msg_on()

 Params: void

 Returns: void

 Description: Set the rate that a message is polled to high as possible

---*/

void ubx_cfg_msg_on(unsigned char class, unsigned char id);

//Page 92 - CFG-INF

//Sets which error messages are sent to the I2C lines

//For example, Test, Debug, Notice, Warning, Error messages?

/*---

 Function: ubx_cfg_inf_off()

 Params: void

 Returns: void

 Description: Disable all warning and INFormation messages

---*/

void ubx_cfg_inf_off(void);

//Page 94 - CFG-RST

//Can run a complete cold start, or control reset the UBLOX chip

//Page 95 - CFG-DAT

//Set the datum, seems more complicated than necessary

//Page 97 - CFG-TP

//Set the configuration for the timepulse output

//Will not need a timepulse because we can get exact ms times

//Page 98 - CFG-RATE

//How often is the GPS calculating a new location?

//Page 99 - CFG-CFG

//Can save the configuration settings, but there is no battery backup

//or flash or EEPROM memory

//Page 101 - CFG-RXM

//Set the unit into Eco Mode, no Poll available

//This must be set after other settings

Wireless Bear Tracking, Group May1010 Page 213

//Page 101 - CFG-ANT

//Antenna control settings, not sure which settings we need

//Page 102 - CFG-SBAS

//What extra tracking to use, WAAS, etc.

//CFG-NMEA: sets the NMEA version, not needed

//CFG-USB: not needed, dont use as USB

//CFG-TMODE: Used when fixed location and used for precise time

//Page 108 - CFG-NAVX5

//Used to set min, max number of satellites for navigation

//Very specific settings

//Page 108 - CFG-NAV5

//Used to make different settings for Navigation, probably necessary

#endif

Wireless Bear Tracking, Group May1010 Page 214

Appendix 28: PIC Code – ublox_read.c

/*---

/

/ File: ublox_read.c

/ Contains the functionality to read strings from the NEo-5 GPS

/

---*/

#include <p18f46j11.h> //The PIC used in final design

#include <i2c.h>

#include "gps_i2c.h"

#include "main.h"

#include "ublox_read.h"

/*---

 Function: valid_ubx_msg

 Params: message = Character type array

 of the UBX message read from the NEO-5

 Returns: 1 = Message is a valid UBX Message

 0 = Message is not a valid UBX Message

 Description: Read the first two bytes and confirm UBX Message

---*/

unsigned char valid_ubx_msg(unsigned char message[])

{

 unsigned char valid;

 if((message[0] == 0xB5)&&(message[1] == 0x62))

 {

 valid = 1;

 }

 else

 {

 valid = 0;

 }

 return valid;

}

/*---

 Function: ubx_msg_length

 Params: message = Character type array

 of the UBX message read from the NEO-5

 Returns: Unsigned int

 Description: return the length of the message including the header and

checksum fields

---*/

unsigned int ubx_msg_length(unsigned char message[])

{

 unsigned int length;

 length = (0x00FF & message[4])|(0xFF00 & ((message[5])<<8));

 length = length + 8;

Wireless Bear Tracking, Group May1010 Page 215

 return length;

}

/*---

 Function: ubx_msg_class

 Params: message = Character type array

 of the UBX message read from the NEO-5

 Returns: Unsigned char of Class

 Description: Returns the class of the message

---*/

unsigned char ubx_msg_class(unsigned char message[])

{

 unsigned char class;

 class = message[2];

 return class;

}

/*---

 Function: ubx_msg_id

 Params: message = Character type array

 of the UBX message read from the NEO-5

 Returns: Unsigned char of ID

 Description: Returns the ID of the message

---*/

unsigned char ubx_msg_id(unsigned char message[])

{

 unsigned char msg_id;

 msg_id = message[3];

 return msg_id;

}

/*---

 Function: ubx_navpllh_get_latitude

 Params: message = Character type array UBX-NAV-PLLH message

 Returns: Signed Long of lattitude

 Description: Returns lattitude of the message lowest seven

 digits are decimal. Returns in 1e-7.

---*/

signed long ubx_navpllh_get_latitude(unsigned char message[])

{

 signed long latitude;

 latitude = (0x0000FF & message[17]);

 latitude = latitude << 8;

 latitude = latitude | (0x0000FF & message[16]);

 latitude = latitude << 8;

 latitude = latitude | (0x0000FF & message[15]);

 latitude = latitude << 8;

 latitude = latitude | (0x0000FF & message[14]);

Wireless Bear Tracking, Group May1010 Page 216

 return latitude;

}

/*---

 Function: ubx_navpllh_get_longitude

 Params: message = Character type array UBX-NAV-PLLH message

 Returns: Signed Long of longitude

 Description: Returns longitude of the message lowest seven

 digits are decimal. Returns in 1e-7.

---*/

signed long ubx_navpllh_get_longitude(unsigned char message[])

{

 signed long longitude;

 longitude = (0x0000FF & message[13]);

 longitude = longitude << 8;

 longitude = longitude | (0x0000FF & message[12]);

 longitude = longitude << 8;

 longitude = longitude | (0x0000FF & message[11]);

 longitude = longitude << 8;

 longitude = longitude | (0x0000FF & message[10]);

 return longitude;

}

/*---

 Function: ubx_navpllh_get_msTOW

 Params: message = Character type array UBX-NAV-PLLH message

 Returns: unsigned Long of ms time of week

 Description: Returns the unsigned long of ms so far in the week

---*/

unsigned long ubx_navpllh_get_msTOW(unsigned char message[])

{

 unsigned long msTOW;

 msTOW = (0x0000FF & message[9]);

 msTOW = msTOW << 8;

 msTOW = msTOW | (0x0000FF & message[8]);

 msTOW = msTOW << 8;

 msTOW = msTOW | (0x0000FF & message[7]);

 msTOW = msTOW << 8;

 msTOW = msTOW | (0x0000FF & message[6]);

 return msTOW;

}

/*---

 Function: ubx_navpllh_get_accuracy

 Params: message = Character type array UBX-NAV-PLLH message

 Returns: unsigned Long accuracy measurement in mm

 Description: Returns the unsigned long of estimated accuracy

 measurement in milimeters

---*/

Wireless Bear Tracking, Group May1010 Page 217

unsigned long ubx_navpllh_get_accuracy(unsigned char message[])

{

 unsigned long accuracy;

 accuracy = (0x0000FF & message[29]);

 accuracy = accuracy << 8;

 accuracy = accuracy | (0x0000FF & message[28]);

 accuracy = accuracy << 8;

 accuracy = accuracy | (0x0000FF & message[27]);

 accuracy = accuracy << 8;

 accuracy = accuracy | (0x0000FF & message[26]);

 return accuracy;

}

Wireless Bear Tracking, Group May1010 Page 218

Appendix 29: PIC Code – ublox_read.h

#ifndef _UBLOX_READ_H_

#define _UBLOX_READ_H_

/*---

 Function: valid_ubx_msg

 Params: message = Character type array

 of the UBX message read from the NEO-5

 Returns: 1 = Message is a valid UBX Message

 0 = Message is not a valid UBX Message

 Description: Read the first two bytes and confirm UBX Message

---*/

unsigned char valid_ubx_msg(unsigned char message[]);

/*---

 Function: ubx_msg_length

 Params: message = Character type array

 of the UBX message read from the NEO-5

 Returns: Unsigned int

 Description: return the length of the message including the header and

checksum fields

---*/

unsigned int ubx_msg_length(unsigned char message[]);

/*---

 Function: ubx_msg_class

 Params: message = Character type array

 of the UBX message read from the NEO-5

 Returns: Unsigned char of Class

 Description: Returns the class of the message

---*/

unsigned char ubx_msg_class(unsigned char message[]);

/*---

 Function: ubx_msg_id

 Params: message = Character type array

 of the UBX message read from the NEO-5

 Returns: Unsigned char of ID

 Description: Returns the ID of the message

---*/

unsigned char ubx_msg_id(unsigned char message[]);

/*---

 Function: ubx_navpllh_get_latitude

 Params: message = Character type array UBX-NAV-PLLH message

 Returns: Signed Long of lattitude

 Description: Returns lattitude of the message lowest seven

 digits are decimal. Returns in 1e-7.

---*/

signed long ubx_navpllh_get_latitude(unsigned char message[]);

/*---

Wireless Bear Tracking, Group May1010 Page 219

 Function: ubx_navpllh_get_longitude

 Params: message = Character type array UBX-NAV-PLLH message

 Returns: Signed Long of longitude

 Description: Returns longitude of the message lowest seven

 digits are decimal. Returns in 1e-7.

---*/

signed long ubx_navpllh_get_longitude(unsigned char message[]);

/*---

 Function: ubx_navpllh_get_msTOW

 Params: message = Character type array UBX-NAV-PLLH message

 Returns: unsigned Long of ms time of week

 Description: Returns the unsigned long of ms so far in the week

---*/

unsigned long ubx_navpllh_get_msTOW(unsigned char message[]);

/*---

 Function: ubx_navpllh_get_accuracy

 Params: message = Character type array UBX-NAV-PLLH message

 Returns: unsigned Long accuracy measurement in mm

 Description: Returns the unsigned long of estimated accuracy

 measurement in milimeters

---*/

unsigned long ubx_navpllh_get_accuracy(unsigned char message[]);

#endif

