
Marsyas User Manual
For version 0.3

Music Analysis Retrieval and SYnthesis for Audio Signals

Graham Percival and George Tzanetakis

i

Table of Contents

1 General information . 1
1.1 History . 1
1.2 Context and Related Work . 2
1.3 About the documentation . 3

1.3.1 Latest version . 3
1.3.2 User manual and Developer’s manual . 4
1.3.3 Help wanted! . 4

1.4 Beyond the manuals . 4
1.4.1 Examples . 4
1.4.2 MarSystem source documentation . 4
1.4.3 Source code . 4

2 Source installation . 6
2.1 Prerequisites . 6

2.1.1 CMake installation . 6
2.1.2 Compiler configuration . 6

Linux compiler configuration . 6
MacOS X compiler configuration . 6
Windows compiler configuration . 6

2.2 Download . 7
Stable(-ish) Version . 7
Development Version . 7

2.3 Configuring with CMake . 7
2.3.1 Windows . 7
2.3.2 Unix (including MacOS X) . 8

2.4 Marsyas options . 8
2.4.1 Input/Output . 8
2.4.2 Code messages and optional portions . 9
2.4.3 Logging options . 9
2.4.4 Optional software (WITH *) . 9

2.5 Compiling . 10
2.5.1 Testing . 10

2.6 Specific installation examples . 10
2.6.1 Compiling on MacOS X 10.6 Snow Leopard 10
2.6.2 Compiling on Ubuntu 11.04 - Natty Narwhal (2011) 15
2.6.3 Compiling on Ubuntu . 16
2.6.4 Compiling with Visual Studio Express 2008 on Windows XP

. 17
2.6.5 Compiling with MinGW on Windows XP 18
2.6.6 MacOS X additional notes . 19

2.7 Post-install setup . 20
2.7.1 Vim editor support . 20
2.7.2 Datasets . 20

ii

2.8 Structure of distribution . 20

3 Tour . 22
3.0.1 Command-line tools . 22
3.0.2 User interfaces . 23
3.0.3 Web information . 25

4 Available tools . 26
4.1 Collections and input files . 26

4.1.1 Creating collections manually . 26
4.1.2 Labels . 26
4.1.3 MARSYAS_DATADIR . 26
4.1.4 mkcollection . 27

4.2 Soundfile Interaction . 27
4.2.1 sfplay . 27
4.2.2 sfinfo . 28
4.2.3 audioCompare . 28
4.2.4 record . 28
4.2.5 orcarecord . 28
4.2.6 sound2png . 28
4.2.7 sound2sound . 30

4.3 Feature Extraction . 30
4.3.1 pitchextract . 30
4.3.2 bextract . 30
4.3.3 ibt . 35

4.4 Synthesis . 37
4.4.1 phasevocoder . 37

4.5 Machine Learning . 39
4.5.1 kea . 39

4.6 Auditory Scene Analysis . 40
4.6.1 peakSynth . 40
4.6.2 peakClustering . 40

4.7 Marsystem Interaction . 42
4.7.1 sfplugin . 42
4.7.2 msl . 42

4.8 All of the above . 43
4.8.1 mudbox . 43

5 Graphical User Interfaces using Qt4 45
5.1 MarPlayer . 45
5.2 MarPhaseVocoder . 45
5.3 MarGrid . 45
5.4 MarMonitors . 45
5.5 MarLPC . 45

iii

6 Architecture concepts . 46
6.1 Architecture overview . 46

6.1.1 Building MarSystems . 46
6.1.2 Dataflow model . 46

6.2 Implicit patching . 47
6.2.1 Implicit patching vs. explicit patching . 47
6.2.2 Implicit patching advantages . 48
6.2.3 Patching example of Feature extraction 49

6.3 MarSystem composites . 50
6.3.1 Series . 50
6.3.2 Parallel . 51
6.3.3 Fanout . 52
6.3.4 Accumulator . 53
6.3.5 Shredder . 54

6.4 Linking of controls . 55
6.5 Scheduling . 58

6.5.1 Scheduling in Marsyas . 58
6.5.1.1 Time . 59
6.5.1.2 Event . 60

6.5.2 Components of the Marsyas Scheduler . 60
6.5.2.1 MarSystem . 61
6.5.2.2 Scheduler . 62
6.5.2.3 Timers . 62
6.5.2.4 Events . 62
6.5.2.5 Repeat . 62
6.5.2.6 TmTime . 63
6.5.2.7 TmTimerManager . 63

7 System details . 64
7.1 Library reference . 64

7.1.1 Source documentation . 64
7.1.2 MarSystem groups . 64
7.1.3 Limited documentation . 64

7.2 Predefined types . 64
7.2.1 Variables types . 64
7.2.2 Constants . 65

7.3 Realvec . 65
7.3.1 Reading and writing to a realvec . 65
7.3.2 Resizing a realvec . 66
7.3.3 Realvec arithmetic . 66
7.3.4 Applying a function to a realvec . 66
7.3.5 Realvec input and output to a file . 67
7.3.6 Statistical analysis . 67
7.3.7 Other realvec functions . 68

7.4 System limitations . 68
7.4.1 Stereo vs. mono in a spectrum . 68

iv

8 Scripting . 69
8.1 Interactive python . 69

8.1.1 Getting started with python . 69
8.1.2 Swig python bindings bextract example 69

9 Writing applications . 71
9.1 Including libraries and linking . 71

9.1.1 ... using qmake . 71
9.1.2 ... writing your own Makefile . 71
9.1.3 ... on Windows Visual Studio . 72

9.2 Example programs . 73
9.2.1 Hello World (playing an audio file) . 73
9.2.2 Reading and altering controls . 74
9.2.3 Writing data to text files . 76
9.2.4 Getting data from the network . 77
9.2.5 Command-line options . 78

9.3 Writing Qt4 applications . 81
9.3.1 Including and linking to libmarsyasqt . 81
9.3.2 MarSystemQtWrapper . 81
9.3.3 Passing controls to a MarSystemQtWrapper 82
9.3.4 Other classes in MarsyasQt . 82
9.3.5 Qt4 example . 82
9.3.6 Other Qt4 issues . 90

9.4 Other programming issues . 90
9.4.1 Visualizing data with gnuplot . 90

9.5 Interoperability . 91
9.5.1 Open Sound Control (OSC) . 91
9.5.2 WEKA . 91
9.5.3 MATLAB . 91
9.5.4 Python . 93
9.5.5 OCaml . 94
9.5.6 SonicVisualiser Vamp Plugins . 94

9.5.6.1 Instalation . 94
9.5.6.2 Writing Plugin . 97

9.6 Using and Extending the Scheduler . 97
9.6.1 Using the Scheduler . 97

9.6.1.1 Repeating Events . 98
9.6.2 Writing a new Timer . 99

9.6.2.1 Updating timers at run-time . 103
9.6.2.2 Timer Factory . 103

9.6.3 Writing a new Event . 103
9.6.3.1 Expression Events . 109

9.6.4 Marsyas Expression Syntax . 111
9.6.4.1 Type System . 111
9.6.4.2 Operators . 111
9.6.4.3 Variables . 113
9.6.4.4 Assignment (<< >>) . 113
9.6.4.5 Links (-> <-) . 114

v

9.6.4.6 Conditional Statements ({? cond expr : exprs1 : exprs2
}) . 114

9.6.4.7 Multiple Expressions (exprs := expr1 , expr2 , expr3)
. 114

9.6.4.8 Properties (ie Real.pi or ’hello’.2 etc.) 114
9.6.4.9 Sequences (Lists) . 114
9.6.4.10 Function Libraries . 116
9.6.4.11 Using . 118
9.6.4.12 Extending . 119
9.6.4.13 Marsyas Expression Examples . 122

10 Programming MarSystems 125
10.1 Compiling and using a new MarSystem . 125

10.1.1 Writing your own MarSystems . 125
10.1.2 Using your MarSystem . 125

10.2 Anatomy of a MarSystem . 125
10.2.1 Methods of the object . 126
10.2.2 Constructors / destructor . 126

Copy constructor . 126
10.2.3 Handling controls . 126
10.2.4 myProcess() . 127
10.2.5 myUpdate() vs. myProcess() . 127
10.2.6 More details about MarSystems . 128

Missing Docs . 129

The Index . 130

Chapter 1: General information 1

1 General information

MARSYAS (Music Analysis Retrieval and Synthesis for Audio Signals) is a free software
framework for audio analysis, synthesis and retrieval written by George Tzanetakis and
community of developers from around the world. It has been in development for over 10
years and has been used for a variety of projects in academia and industry. More information
about such projects as well as a list of publications related to Marsyas can be found at the
Marsyas website http://marsyas.info/. Please direct any questions/comments about
Marsyas to (gtzan@cs.uvic.ca).

The major underlying theme under the design of Marsyas has been to provide an effi-
cient and extensible framework for building audio analysis (and synthesis) applications with
specific emphasis on Music Information Retrieval (MIR). A variety of building blocks for
performing common audio tasks are provided. Some representative examples are: soundfile
IO, audio IO, signal processing, and machine learning modules. These blocks can be com-
posed into data flow networks that can be modified and controlled dynamically while they
process data in soft real-time.

Another goal has been to accomodate two different types of users: naive and expert (of
course in many cases the same person can operate in both modes). Naive users are able
to construct networks of primitive objects and experiment with them through the use of
controls. They can interact with the system through the use of graphical user interfaces
or high level scripts without actually having to compile any code. Marsyas provides a
high-level of control at runtime without sacrificing performance. Expert users can create
new primitive objects and create more complex applications by writing code and compiling.
These two modes of operation will become clearer in the following sections of the manual.
As with any piece of software the holy grail is to provide maximum automatic support for
the tasks that can be automated while retaining expressiveness and the ability to program
complex systems for the particular domain of interest.

This framework has been created mainly to support the research of the developers in
the emerging area of Music Information Retrieval (MIR). Anyone who finds the framework
useful is welcome to use it and contribute to it.

There is a lot of work behind the development of Marsyas. Although Marsyas is and
will remain free software, any form of financial or hardware support is more than welcome.
The sourceforge page contains a link for people to donate money to the project and any
contribution is welcome and will help further improve the framework. Also implementation
of specific features can be motivated by donation. Finally for companies desiring to incor-
porate Marsyas into closed source software products a commercial license is also available
(this dual licensing scheme is similar to the one used by Trolltech the company behind the
Qt toolkit). For more information about the dual licensing contact George Tzanetakis.

1.1 History

Work on Marsyas started in 1998 during my second year of graduate studies in Computer
Science at Princeton University under the supervision of Dr. Perry Cook. The main moti-
vation behind the design and development of the toolkit was and still is to personally code
the majority of the tools I need for my research in order to have understanding and con-
trol of how they work. Marsyas has been used for every paper I have published since that

http://marsyas.info/

Chapter 1: General information 2

time. I continued to add code to Marsyas until 2000 when it was clear that certain major
design decisions needed to be revised. That made me start a major rewrite/redesign of the
framework and that was the start of the first “real” Marsyas version which was numbered
0.1. Soon after Sourceforge was used to host Marsyas. Version 0.1 is still widely used by
a variety of academic and industry groups around the world but it is slowly being phased
out. .

In 2002 while being a PostDoctoral Fellow at Carnegie Mellon University working with
Roger Dannenberg I decided to start porting algorithms from the Synthesis Toolkit (STK)
by Perry Cook and Gary Scavone into Marsyas. This effort as well as many interesting
conversations with Roger made me rethink the design used by Marsyas. The result was
to move to a dataflow model of audio computation with general matrices instead of 1-D
arrays as data and an Open Sound Control (OSC) inspired hierarchical messaging system
used to control the dataflow network. Marsyas 0.2 is now almost to the point of supporting
the full functionality of Marsyas 0.1. Hopefully the writing of this manual will help users
migrate from version 0.1. If you are a user that has done work in 0.1 it should be relatively
straightforward to figure out how to recode your algorithms in version 0.2. Also if you have
code in 0.1 that you would like help porting in 0.2 I would be more than happy to help -
just drop me an email.

The community of Marsyas developers has grown over the years with currently (Spring
2009) approximately 4-5 developers committing regularly code and close to 30 developers
having committed code over the past few years.

We are very proud that Marsyas is used for a variety of projects in both academia and
industry and looking forward to continue growing and expanding the framework with your
help.

have fun,

George Tzanetakis (gtzan at cs dot uvic dot ca)

1.2 Context and Related Work

There is a lot of interesting related work and inspiration behind the design of this frame-
work. As the goal of this introduction is to provide a quick overview of the system I will
just briefly mention some of the key ideas that strongly influenced the design of the system
without getting into details. Probably the most central inspiration has been the huge legacy
of computer music synthesis languages such as the Music V family, Csound etc. More re-
cent work that has been influential to the design of the system has been the architecture
of the Synthesis Toolkit (STK) and the hierarchical control naming scheme of Open Sound
Control (OSC). Other influences include the use of Design Patterns for creating the object
oriented architecture of the system, kernel stream architectures as well as data flow sim-
ulation software systems such as SimuLink by Matlab and the FilterGraph by Microsoft.
Finally many of the ideas of functional programming such as the clear separation of mutable
and immutable data and the use of composition to build complicated systems have been
another major source of inspiration.

There is a plethora of programming languages, frameworks and environments for the
analysis and synthesis of audio signals. The processing of audio signals requires extensive
numerical calculations over large amounts of data especially when real-time performance
is desired. Therefore efficiency has always been a major concern in the design of audio

Chapter 1: General information 3

analysis and synthesis systems. Dataflow programming is based on the idea of express-
ing computation as a network of processing nodes/components connected by a number of
communication channels/arcs. Computer Music is possibly one of the most successful appli-
cation areas for the dataflow programming paradigm. The origins of this idea can possibly
be traced to the physical re-wiring (patching) employed for changing sound characteristics
in early modular analog synthesizers. From the pioneering work on unit generators in the
Music N family of language to currently popular visual programming environments such
as Max/Msp and Pure Data (PD), the idea of patching components to build systems is
familiar to most computer music practitioners.

Expressing audio processing systems as dataflow networks has several advantages. The
programmer can provide a declarative specification of what needs to be computed without
having to worry about the low level implementation details. The resulting code can be
very efficient and have low memory requirements as data just “flows” through the network
without having complicated dependencies. In addition, dataflow approaches are particularly
suited for visual programming. One of the initial motivation for dataflow ideas was the
exploitation of parallel hardware and therefore dataflow systems are particularly suited for
parallel and distributed computation.

Despite these advantages, dataflow programming has not managed to become part of
mainstream programming and replace existing imperative, object-oriented and functional
languages. Some of the traditional criticisms aimed at dataflow programming include: the
difficulty of expressing complicated control information, the restrictions on using assignment
and global state information, the difficulty of expressing iteration and complicated data
structures, and the challenge of synchronization.

There are two main ways that existing successful dataflow systems overcome these limi-
tations. The first is to embed dataflow ideas into an existing programming language. This
is called coarse-grained dataflow in contrast to fine-grained dataflow where the entire com-
putation is expressed as a flow graph. With coarse-grained dataflow, complicated data
structures, iteration, and state information are handled in the host language while using
dataflow for structured modularity. The second way is to work on a domain whose nature
and specific constraints are a good fit to a dataflow approach. For example, audio and mul-
timedia processing typically deals with fixed-rate calculation of large buffers of numerical
data.

Computer music has been one of the most successful cases of dataflow applications even
though the academic dataflow community doesn’t seem to be particularly aware of this
fact. Existing audio processing dataflow frameworks have difficulty handling spectral and
filterbank data in an conceptually clear manner. Another problem is the restriction of using
fixed buffer sizes and therefore fixed audio and control rates. Both of these limitations can
be traced to the restricted semantics of patching as well as the need to explicitly specify
connections. Implicit Patching the technique used in Marsyas-0.2 is an attempt to overcome
these problems while maintaining the advantages of dataflow computation.

1.3 About the documentation

1.3.1 Latest version

The documentation is uploaded regularly to http://marsyas.sness.net/docs/index.html

http://marsyas.sness.net/docs/index.html

Chapter 1: General information 4

1.3.2 User manual and Developer’s manual

This manual (the User manual) is the main documentation for Marsyas; it covers the use
of existing tools, creating your own tools, and even how to create new MarSystems.

The Developer’s manual is aimed at people who commit material back to Marsyas. It
covers tips and tools which make contributing easier, explains the automatic testing (and
how to include your code in these tests), and how to write documentation.

1.3.3 Help wanted!

Although Marsyas documentation has improved an incredible amount in the past year, we
do not have the resources (time / energy / interest / money) to cover everything. When
the documentation team has identified a particular need in the manual which they cannot
fulfill themselves, they place a notice to that effect:� �

Help wanted: missing info!

Brief note explaining what is missing.

If you can fill in any details, please see Section “Contributing doc-
umentation” in Marsyas Developer’s Manual.
 	

1.4 Beyond the manuals

1.4.1 Examples

In addition to this manual, there are example files included in the Marsyas source tree.
Many of these files are also included in the manual, but you may prefer to examine these
files in your favorite text editor with your own syntax highlighting.

• ‘src/examples/’: the simplest examples are here. These files are provided only for
learning; they have little purpose as actual programs.

• ‘src/examples/Qt4-tutorial/’: a simple Qt4/Marsyas program. Just like the files in
‘examples/’, it has little value as a standalone program.

1.4.2 MarSystem source documentation

Many MarSystems have been documented; see Section 7.1 [Library reference], page 64 for
more information.

1.4.3 Source code

Unfortunately this manual and the source code documentation are not complete. Once you
are familiar with everything covered in this manual, you should examine the source code:

• ‘src/apps/’: the source code for real Marsyas executables. These are real, working
programs. This means that they have poor comments, bad variable names, and are
difficult to read. :)

• ‘src/marsyas/’: the source code for MarSystems. These are the basic building blocks
of Marsyas, and are even more difficult to read.

Chapter 1: General information 5

If you gain any knowledge from the source files that is not covered in the manual,
please help improve the documentation. For more information, see Section “Contributing
documentation” in Marsyas Developer’s Manual.

Chapter 2: Source installation 6

2 Source installation

This chapter shows the steps to get a working version of Marsyas. Compiling and installing
a large piece of software like Marsyas is not trivial. In the summer 2008 we switched our
build system from a combination of autotools and qmake to using CMake. We believe that
this change has greatly simplified the building process across all supported platforms and
configurations. Starting with the Belfast release 0.2.17 CMake is the only supported way
to build Marsyas.

2.1 Prerequisites

Some additional software must be installed before compiling Marsyas.

2.1.1 CMake installation

Before compiling Marsyas, you must install CMake 2.6 or higher. CMake is available in
source and binary forms from:

http://www.cmake.org/HTML/Download.html

2.1.2 Compiler configuration

Linux compiler configuration

• Standard development environment (gcc, g++, etc): probably already installed.

• ALSA headers. On most distributions, this is a package called alsa-devel or libalsa-
devel.

If you install additional software via a package manager such as apt or rpm, then the
relevant environment variables will be configured automatically.

MacOS X compiler configuration

• Xcode: standard development platform on OSX. Please install from your OSX instal-
lation CD/DVD, or download.

If you install additional software via a package manager such as fink or macports, then
the relevant environment variables will be configured automatically.

Windows compiler configuration

• Download and install either the free Visual Studio Express or the full commercial Visual
Studio.

• Microsoft DirectX SDK: (optional) required for audio input/output.

If you install additional software, you might need to modify environment variables man-
ually.

Windows command-line compiler configuration

If you would like to use the Command prompt version, check that the command-line com-
piling works:

http://www.cmake.org/HTML/Download.html
http://www.alsa-project.org/
http://developer.apple.com/tools/xcode/
http://www.finkproject.org/
http://macports.com
http://msdn2.microsoft.com/en-us/xna/aa937788.aspx

Chapter 2: Source installation 7

c:\nmake

You will see some version number and it should complain that no MAKEFILE was found
and no target specified.

If you want to use DirectX SDK on the command-line verison, you may need to add an
environment variable called DXSDK_DIR and modify your the INCLUDES and LIBRARY envi-
ronment variables to include the corresponding directories in the DirectX SDK installation.

2.2 Download

Stable(-ish) Version

Marsyas is hosted at SourceForge:

http://marsyas.sourceforge.net/

http://www.sourceforge.net/projects/marsyas

Marsyas is open source software and is distributed as a tarball (something like
‘marsyas-0.2.8.tar.gz’). Uncompress this file using whatever uncompression program
you prefer (tar, winzip, etc).

Development Version

The latest version can be obtained from the subversion repository stored at the sourceforge
website. If you are planning on working extensively with Marsyas and writing your own
source code it is highly recommend that you download a subversion working copy.

svn co https://svn.code.sf.net/p/marsyas/code/trunk my-marsyas-dir

You can replace ‘my-marsyas-dir’ with any directory you want.

For Windows users, we recommend TortoiseSVN.

2.3 Configuring with CMake

CMake produces build systems as desired – Makefiles on Linux / MacOS X / Cygwin,
XCode projects on MacOS X, and MSVC projects on Windows. It can also create Eclipse
and KDevelop3 projects.

2.3.1 Windows

1. Run the CMake GUI.

2. Select the Marsyas src directory.

3. Select a new directory in which to build Marsyas.

4. Press the Configure button.

5. View the selected options, and change any as desired. If you change any options, run
Configure... again.

6. Press the Ok button to create the build system.

http://marsyas.sourceforge.net/
http://www.sourceforge.net/projects/marsyas
http://toroisesvn.net/downloads

Chapter 2: Source installation 8

2.3.2 Unix (including MacOS X)

1. Open the terminal, create a directory for the build, and run ccmake:

cd MY-MARSYAS-DIR

mkdir build

cd build

ccmake ../src/

2. Press [c] to begin the configuration. Once you have finished changing options, press
[c] to configure the project again. Enabling certain options may add new options to
configure. Repeat until you are satisfied with the selected options.

3. To see advanced options, press [t].

4. After changing the final options, press [g] to generate the build system.

2.4 Marsyas options

2.4.1 Input/Output

MARSYAS_AUDIOIO

This enables audio input/output. Requires DirectX on Windows and either
ALSA or OSS on Linux. MacOS X audio support is built-in with the basic
developer tools.

Chapter 2: Source installation 9

MARSYAS_MIDIIO

This enables midi input/output. Requires DirectX on Windows and either
ALSA or OSS on Linux. MacOS X audio support is built-in with the basic
developer tools.

2.4.2 Code messages and optional portions

MARSYAS_ASSERT

Turns on assertions.

MARSYAS_PROFILING

Turns on profiling.

MARSYAS_DEBUG

Turns on debugging info (large performance penalty).

DISTRIBUTED

(advanced option) experimental code for distributed systems.

2.4.3 Logging options

These are advanced options.

MARSYAS_LOG_WARNINGS

MARSYAS_LOG_DEBUGS

MARSYAS_LOG_DIAGNOSTICS

MARSYAS_LOG2FILE

MARSYAS_LOG2STDOUT

MARSYAS_LOG2GUI

2.4.4 Optional software (WITH *)

All of these options require additional software to be installed and properly configured.

WITH_MAD mp3 audio decoding with LibMAD

WITH_VORBIS

ogg vorbis audio decoding with libvorbis - it requires

WITH_MATLAB

Builds the MATLAB engine interface.

WITH_SWIG

Builds SWIG bindings. This option enables the following sub-options:
WITH SWIG PYTHON, WITH SWIG JAVA, WITH SWIG LUA, and
WITH SWIG RUBY.

WITH_QT Builds the marsyasqt library and Qt applications. Requires Qt 4.2.3 or higher.

WITH_VAMP

Build plugins for Vamp (see Section 9.5.6 [SonicVisualiser Vamp Plugins],
page 94 for more information).

WITH_GSTREAMER

Use GStreamer as an audio source

http://sourceforge.net/projects/mad/

Chapter 2: Source installation 10

2.5 Compiling

Once the build system has been created, simply compile Marsyas using whatever tools was
specified as the generator with cmake. IN Unix/OS X that is typically make. There are
other possibilities for example to use XCode in OS X do:

cmake -G Xcode ../src/

On Windows there different options such as generate a project file for Visual Studio,
compiling from commandline using nmake or using the MinGW toolchain. More specific
instructions for some configurations can be found in Section 2.6 [Specific installation exam-
ples], page 10.

On Unix, use make install to install Marsyas. There is no functionality to install
Marsyas outside of the source tree on Windows.

2.5.1 Testing

Marsyas contains some unit tests and black-box tests. They do not test a great deal of
Marsyas, but running them is still recommended. On Unix, simply run make test. On
MSVC on Windows, build the RUN-TESTS project.

2.6 Specific installation examples

This section contains tips on how to properly install and configure Marsyas and additional
supporting software for different operating systems and compiler configurations. The in-
structions are more specific and detailed. There many possible ways to install supporting
software and install and compile Marsyas depending on your setup and it would be im-
possible to cover them all. Therefore only a few representative case studies are provided.
Ideally the basic installation instructions have worked for you. If not some of these specific
examples might help you and you can always ask for help in the mailing lists. Please send
us your own examples and case studies to help cover more configurations.

2.6.1 Compiling on MacOS X 10.6 Snow Leopard

These steps were used to install Marsyas on a fresh MacOS X 10.6.2 Snow Leopard desktop.
on January 24, 2010. These instructions below can be used to compile the DEFAULT
Marsyas configuration under Mac OSX Snow Leopard (10.6.2):

1.

Download (or find it on your Snow Leopard MacOSX install CD) and install XCode
Developer Tools (it’s freely provided by Apple, but you may need to register and get a
developer account online - see here: http://developer.apple.com/tools/xcode/) in your
machine. If you download XCode from the Apple website (make sure you download
the Snow Leopard version!) you may get a more updated version of the Developer
Tools than the one provided in the OSX instal disk, but any version should work with
Marsyas.

2.

Download and install the CMake 2.8.0 (or later) binary for Apple OSX in
http://www.cmake.org. During install, CMake will ask you if it should install the
"command line links" (i.e. links to ccmake, cmake, etc.), which we recommend you to
do (you’ll need administrator rights to install them, so make sure you are logged in as
an administrator).

Chapter 2: Source installation 11

3.

Apple Mac OSX 10.6.2 Snow Leopard already includes SVN (http://subversion.tigris.org/)
as a command line tool (you can run "which svn" at the OSX terminal to check that
- it should reply with "/usr/bin/svn", which is the path to the SVN binary installed
in your system). In case you prefer using a GUI for SVN in Mac OSX, you can try
the free SvnX (http://code.google.com/p/svnx/).

4.

In case you want to check out the SVN version of Marsyas, just do a SVN checkout from
https://svn.code.sf.net/p/marsyas/code/trunk - you will get the most updated
version (but not necessarily the most stable version ;-) - for that, get the latest tarbal
from the Marsyas SourceForge website: http://marsyas.sf.net).

5.

Launch CMake (using the CMake GUI that you can find in the OSX Applications
folder using Finder, or using the command line tool ccmake in the OSX terminal), and
specify the source and build directory you want to use for Marsyas. For example, if you
have the Marsyas code directory in you home directory (e.g. ~/Marsyas), you should
point your source path to ~/Marsyas/src and the build directory to somewhere like
~/Marsyas/build/ (you may have to create the ~/Marsyas/build directory before hand
in case CMake GUI or ccmake does not create it for you. Either using CMake GUI or
ccmake in the terminal, just select the option to "configure" using the provided options
(i.e. using the default Marsyas build configuration). CMake GUI will ask youif you
want to create the "~/Marsyas/build" directory in case you haven’t dreated it yourself,
and then ask you to select a generator from a drop down list - here you can ask CMake
to create an UNIX makefile, a XCode project, among other options, but for now just
use the provided options and click "done" (you can also specify a generator when using
the command line tool ccmake - check its documentation). CMake will then look into
your system for libraries, compilers, and present you with a list of the configuration
options it set up for you. Just keep hitting "configure" until all options are grey (in the
CMake GUI) or not signaled with a * (if using ccmake on the terminal), and then just
select "generate". This will generate a UNIX makefile with the default build option
for Marsyas. You can now close CMake.

6.

Open a terminal window in OSX (in case you haven’t yet) and go to ~/Marsyas/build
directory and just run "make". Marsyas compilation will start, and you will be able to
see the compilation evolution in the compiler messages in the terminal. When finished,
you will be able to find the compiled binaries in the ~/Marsyas/build/bin directory.
If you want to install the Marsyas command line tools (e.g. sfplay, bextract, sfplugin,
etc.) into your system, just run "sudo make install" and those tools will be installed in
the appropriate system folders in your machine (you will need administrator privileges
to use "sudo").

7.

As a test to see see Marsyas in action, just go to ~/Marsyas/build/bin and run:

$./sfplay someAudioFile.wav

where $ is the command line prompt, and someAudioFile.wav is the path to some audio
file you have in your machine. It should start playing it, so bump up your computer

Chapter 2: Source installation 12

volume and enjoy (hit CTRL-C to stop it). If you installed Marsyas in your system (by
means of "sudo make install") you can just call splay (or any other Marsyas command
line tool) from anywhere (i.e. from any directory) in the terminal.

Using additional and optional libraries

Marsyas can also be compiled using some optional libraries for things like MP3 file read-
ing/writing, GUI, python bindings, among other options. You define these building options
in CMake, during the configuration/generating step (see step 5. above). You can manually
install most of the needed libraries in OSX, but it requires some expertise in dealing with
library dependencies, library configuration, building and install.

Using MACPORTS

A more convenient (and recommended) way to install such libraries in OSX is to use a
project called MacPorts (http://www.macports.org/). MacPorts provides a large set of
libraries and applications available for UNIX customized and ready to use in OSX, and
deals with dependencies in projects so you don’t have to worry about them.

So, we recommend you install MacPorts in your machine following the steps below:

1.

Download MacPorts 1.8.2 (or later) for Snow Leopard at http://www.macports.org

2. Install MacPorts (detailed info can be found at http://www.macports.org/install.php)

3. MacPorts adds its own paths (i.e. /opt/local/bin and /opt/local/sbin) to your PATH
during install (MacPorts is installed in /opt/). That is done in ~/.profile, or in case you
have it in you home directory, in .bash profile. In order to make those paths into the
current command line session, you must do "source .profile" (or "source .bash profile"),
or just close and open a new terminal window.

4. A final step is to make sure MacPorts is updated. Just do "sudo port -v selfupdate"
at the terminal. That’s it.

5. There is a nice GUI front end for MacPorts named Porticus (http://porticus.alittledrop.com/),
in case you don’t want to lean MacPorts syntax for the command line.

MP3 reading support (libmad)

1.

Marsyas makes use of the external MAD library (http://www.underbit.com/products/mad/)
for MP3 reading support. You can find it in MacPorts as "libmad". Just install it.

2.

To build Marsyas with libMAD support, run CMake (remember to select a different
build directory - e.g. ~/Marsyas/build with MAD) and run "configure", and then
select (or turn ON) the WITH MAD option and run "configure" again. After the
second "configure", CMake should present you the paths to the libmad libraries, like
this:

mad_INCLUDE_DIR /opt/local/include

mad_LIBRARY /opt/local/lib/libmad.dylib

In case it does not, you can always change them manually in CMake so they correspond
to the above paths.

Chapter 2: Source installation 13

3.

Execute "configure" once again, and when the "generate" option becomes available
in CMake, execute it and the corresponding makefile for building Marsyas with MAD
support will be generated. You can then test if things went well by doing:

$ cd ~/Marsyas/build_with_MAD/bin

$./sfplay someMP3file.mp3

4.

You can also install this new Marsyas build with MP3 reading support into your system
by doing "sudo make install".

MP3 writing support (LAME)

1.

Marsyas makes use of the external LAME library (http://lame.sourceforge.net/) for
MP3 writing support. You can find it in MacPorts as "lame". Just install it.

2.

To build Marsyas with LAME support, run CMake (remember to select a different
build directory - e.g. ~/Marsyas/build with LAME) and run "configure", and then
select (or turn ON) the WITH LAME option and run "configure" again. After the
second "configure", CMake should present you the paths to the lame libraries, like
this:

lame_LIBRARY /opt/local/lib/libmp3lame.dylib

lame_INCLUDE_DIR /opt/local/include

In case it does not, you can always change them manually in CMake so they correspond
to the above paths.

Nokia Qt SUPPORT

Marsyas uses the Qt Toolkit (http://qt.nokia.com/) for its GUI applications (e.g.
MarPlayer, MarPhaseVocoder, etc.). In order to build Marsyas with Qt support, follow
the next steps:

1.

Download and install Qt 4.6.1 64 bits for cocoa (there are other Qt versions for carbon
and 32 bit, but for Snow Leopard, the 64 bit cocoa SDK version should be the one
to get - get the LGPL version here: http://get.qt.nokia.com/qt/source/qt-mac-cocoa-
opensource-4.6.1.dmg)

2.

2. In CMake, create a new binary folder (e.g. ~/Marsyas/build with Qt), select the
option WITH QT, and CMake should find the Qt libraries in your system and generate
a makefile that you can use to build Marsyas with Qt support. In this case, some new
applications will get built in ~/Marsyas/build with Qt/bin - just try MarPhaseVocoder
or MarPlayer, which provide a GUI.

Python bindings

The following optional steps can be used to setup the Marsyas python bindings using SWIG
and setup the NumPy,SciPy,Matlplotlib environment, using MacPorts. This setup is a

Chapter 2: Source installation 14

great free substitute for MATLAB and integrates very nicely with Marsyas all in a Python
environment.

1.

Install python26 from MacPorts.

2.

Install swig-python from MacPorts.

3.

Install py26-numpy, py26-matplotlib, py26-ipython all from MacPorts.

4.

You should now select which python to use by default in your system (Apple already
provides and oldish version of python in OSX 10.6.2, but we must set the system to
use the MacPorts python instead. For that, we must use the python select command
line tool, that MacPorts also installs with python. First, list the pythons installs in
your system using:

$ python_select -l

Available versions:

current none python26 python26-apple

To see which one is the current one do:

$ python_select -s

python26-apple

In case it’s not the MacPorts installed python (i.e. python26), just select it:

$ python_select python26

5.

If everything has worked so far you should be able to run the examples shown in the
matplotlib webpage in your python or ipython environment.

6.

You can now start CMake and enable WITH SWIG and reconfigure Marsyas (use a
build with SWIG binary folder). If SWIG is found correctly (as it should) the corre-
sponding build files are updated and you can then do "make" at the command line in
~/Marsyas/build with SWIG.

There is a little trick regarding CMake GUI and the definition of the PATH
environment variable for GUI applications in OSX. If you run ccmake from the
terminal, it should be able to find the MacPorts python and SWIG libraries
(because ccmake uses the PATH env. var, that is set at .profile or .bash profile
- see above). However, CMake GUI, because it’s a GUI app launched from the
Finder knows nothing about the terminal PATH env. var. In OSX, GUI apps look
for environment variables in a special environment.plist file in ~/.MacOSX (see
http://developer.apple.com/mac/library/qa/qa2001/qa1067.html).

In case you don’t have the .MacOSX folder in your home directory (you may not have
it), you’ll need to create a folder named “.MacOSX” in your home folder (note that
since there is a dot at the beginning of the folder name, it won’t be visible to a simple
’ls’ - you would need to use ’ls -a’) and then create a file named “environment.plist”
in the ~/.MacOSX folder. Put the definitions of the environment variables that you

Chapter 2: Source installation 15

want defined for all GUI programs in that plist file using a format like the following
example:

PATH String /opt/local/bin:/opt/local/sbin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/X11/bin

(You can use the “Property List Editor” that comes with Apple’s developer tools or
a 3rd-party plist editor - or just an ordinary text editor if you are careful to get the
format correct.)

You must then log out and log in again, because ~/.MacOSX/environment.plist only
gets read during login. So do not forget this step!

Now CMake GUI will know about the MacPorts directory (i.e. /opt) and will be able
to find the pythonand SWIG libs from MacPorts.

7.

After compilation finished, make sure you are at ~/Marsyas/build with SWIG and run
"sudo make install". This will install Marsyas into your system, as well as the Marsyas
python module at the right places so python can import it.

8.

You should now be ready to run Marsyas inside Python. Try launching a Python
interactive interpreter by typing "python" at the terminal and then trying:

import marsyas

If it works you have succeeded and can try the various python Marsyas scripts in
src/swig/python.

A final note

In the above sections we present a way to configure the Marsyas building for a single
optional library, but you can select a combination of any of them at the same time.
That’s why it may be a good idea to have a ~/Marsyas/builds directory where you
then create spear directories for all the different building configurations, e.g.:

~/Marsyas/builds/make_default

~/Marsyas/builds/make_with_MAD_LAME_SWIG

~/Marsyas/builds/make_with_Qt

~/Marsyas/builds/XCode_with_MAD_Qt

etc...

2.6.2 Compiling on Ubuntu 11.04 - Natty Narwhal (2011)

These steps were used to install in a fresh install of Ubuntu (11.04 - Natty Narwhal -
32 bits) on September 2011. All the command were typed in a terminal but it should
be straightforward to use the synaptic package manager instead of apt-get. The text in
parentheses after each command is a simple explanation and should not be typed in the
terminal.

1. sudo apt-get install subversion (install the subversion version control system)

2. svn co https://svn.code.sf.net/p/marsyas/code/trunk my-marsyas-dir

3. cd marsyas

4. mkdir build

5. cd build

Chapter 2: Source installation 16

6. sudo apt-get install cmake (the regular cmake)

7. sudo apt-get install cmake-curses-gui (the curses gui invoked by ccmake)

8. sudo apt-get install libasound2-dev (alsa development library and headers)

9. ccmake ../src

10. Press [c] to configure and [g] to generate the Makefile and exit

11. make (or make -j k where k is the number of cores of your computer + 1)

12. cd bin

13. ./helloWorld (you should hear a sine wave played)

Additional instructions for creating the Marsyas python bindings through Swig as well
as installing matplotlib.

1. sudo apt-get install swig (the swig interface generator for the Python bindings)

2. sudo apt-get install python-dev (the header files for Python)

3. sudo apt-get install python-matplotlib (the matlab-like plotting capabilities for Python)

4. sudo apt-get install ipython

5. cd ..

6. ccmake ../src

7. enable the WITH SWIG option

8. make

9. sudo ldconfig /usr/local/lib (add /usr/local/lib to the location searched for libraries)

10. sudo make install (install the Marsyas python bindings)

Now you are ready to test that everything works:

1. python windowing.py

2. ipython –pylab windowing.py

You should see a plot that has been created by passing data through a Marsyas processing
network. Congratulations - you now can work with Marsyas and matplotlib a powerful
combo.

If you decide to add PNG support you need the following additional steps:

1. sudo apt-get install libfreetype6-dev

2. enable the WITH PNG option

3. make

4. sudo make install

2.6.3 Compiling on Ubuntu

These steps were used to install Marsyas from a fresh install of Ubuntu on August 25, 2008.

1. Open a terminal and type the following commands:

2. sudo apt-get install build-essential

3. sudo apt-get install subversion

4. sudo apt-get install libasound2-dev

Chapter 2: Source installation 17

5. Either download the Linux binary distribution of cmake 2.6 or compile and install the
source code from http://www.cmake.org

6. Test that you can run cmake and svn from the command-line

7. Follow the basic installation instructions Section 2.5 [Compiling], page 10.

2.6.4 Compiling with Visual Studio Express 2008 on Windows XP

These instructions were used to compile Marsyas using the Microsoft Visual Studio 2008
Express IDE in Windows XP

1. Download and install Microsoft Visual C++ Studio Express 2008 from
http://www.microsoft.com/express/vc. (you might need to install Microsoft
Silverlight to view the webpage).

2. Download and install Microsoft Direct X SDK from http://msdn.microsoft.com/en-us/directx/aa937788.aspx.
These instructions worked with installing Direct X August 2008 (DXSDK Aug08.exe).

3. Download and install the CMake 2.6 binary using the Win32 installer from
http://www.cmake.org.

4. Downlaod and install the Tortoise SVN GUI client from http://tortoisesvn.tigris.org/.

5. The Tortoise client is integrated with Windows so right clik on your desktop and check-
out Marsyas as described in the basic installation instructions Section 2.5 [Compiling],
page 10.

6. Launch cmake and specify the source and build directory you want to use for Marsyas
for example c:\marsyas\src and c:\marsyas\build. Press configure until all the options
are grey and then click ok

7. Go to the c:\marsyas\build directory where you will find a Visual Studio project file
named marsyas that you can open with the Visual Studio 9 Express IDE to compile
Marsyas.

8. The binaries are created in build\bin\Release or build\bin\Debug depending on which
build configuration is used.

The following optional steps can be used to setup Marsyas to be able to read MP3 files
through libMAD an external MPEG audio decoder.

1. Download the libMAD library source code from http://www.underbit.com/products/mad/.

2. In the msvc++ folder of the libMAD package there is a Visual Studio project file.
Double-click on that and build the library. This should generate a debug (or release)
folder depending on your configuration in msvc++ which contains a libmad.lib file.

3. Using cmake, set WITH MAD to ON and click configure. The CMake configuration of
Marsyas needs to determine the location of the libmad.lib library file and the location of
the mad.h include file. You can either add the corresponding directory to your PATH
or you can manually point the mad INCLUDE DIR to the msvc++ folder directory
and mad LIBRARY to the libmad.lib file generated earlier. Finally click configure and
okay.

The following optional steps can be used to setup the Marsyas python bindings using
SWIG and setup the NumPy,SciPy,Matlplotlib environment in Windows. It is a great free
substitute for MATLAB and integrates very nicely with Marsyas all in a Python environ-
ment.

http://www.cmake.org
http://www.microsoft.com/express/vc
http://msdn.microsoft.com/en-us/directx/aa937788.aspx
http://www.cmake.org
http://tortoisesvn.tigris.org/
http://www.underbit.com/products/mad/

Chapter 2: Source installation 18

1. Download and install Python 2.5 (IMPORTANT: NumPy and SciPy don’t yet work
with the more recent 2.6) from http://www.python.org/download/. The easiest way
is to just use the .msi installer.

2. Download and install numpy superpack for python 2.5 from the sourceforge
webpage of numpy http://sourceforge.net/project/showfiles.php?group_

id=1369&package_id=175103.

3. Download and install SciPy 2.5. Follow the dowload link at http://www.scipy.org.

4. Download and install ipython from http://ipython.scipy.org/dist/ which is an
enhanced interactive python interpreter that can add MATLAB like plot capabilities
to Python.

5. Download and install matplotlib from http://matplotlib.sourceforge.net/. This
adds plot capabilities.

6. If everything has worked so far you should be able to run the examples shown in the
matplotlib webpage in your python or ipython environment.

7. Now you it is time to install the SWIG python bindings. First you will need to download
and install SWIG from http://www.swig.org/. The easiest method is to just unzip
SWIG-1.3.36.zip somewhere in your hard drive. I chooce c:\swig. Inside this new
directory there is a bin directory with the swig executable. This directory needs to be
added to your system PATH environment variable so that CMake can find the SWIG
installation.

8. We are almost there. Start CMake and enable WITH SWIG and reconfigure Marsyas.
If swig is found correctly the corresponding build files are updated. To install the
marsyas python module you will need to run the INSTALL target of the Marsyas
solution inside Visual Studio. This target can be found on the left side of the Visual
Studio IDE. There is a tree list list of different kinds of things you can compile. One of
them is the INSTALL target. This will build and install all of Marysas including the
Python bindings into your system.

9. There is one final little step. For some reason I have not figured out the marsyas
module is compiled as marsyas.dll and gets copies to the default location for installed
Python modules. You will need to rename this to marsyas.pyc for things to work for
some versions of Python. It seems that for more recent versions of Python it needs to
be called marsyas.pyd.

10. You should now be ready to run Marsyas inside Python. Try launching a Python
interactive interpreter and trying:

import marsyas

If it works you have succeeded and can try the various python Marsyas scripts in
src/swig/python.

2.6.5 Compiling with MinGW on Windows XP

1. Download and install MinGW from http://www.mingw.org/old/download.shtml

2. Download and install Microsoft Direct X SDK from http://msdn.microsoft.com/en-us/directx/aa937788.aspx.
These instructions worked with installing Direct X August 2008 (DXSDK Aug08.exe).

3. Download and install the CMake 2.6 binary using the Win32 installer from
http://www.cmake.org.

http://www.python.org/download/
http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103
http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103
http://www.scipy.org
http://ipython.scipy.org/dist/
http://matplotlib.sourceforge.net/
http://www.swig.org/
http://www.mingw.org/old/download.shtml
http://msdn.microsoft.com/en-us/directx/aa937788.aspx
http://www.cmake.org

Chapter 2: Source installation 19

4. Downlaod and install the Tortoise SVN GUI client from http://tortoisesvn.tigris.org/.

5. The Tortoise client is integrated with Windows so right click on your desktop and check-
out Marsyas as described in the basic installation instructions Section 2.5 [Compiling],
page 10.

6. Launch cmake and choose the install type to be “MinGW Makefiles”

7. Specify the source and build directory you want CMake to use for Marsyas for ex-
ample if marsyas has been installed in c:\marsyas these would be c:\marsyas\src and
c:\marsyas\build.

8. Press configure until all the options are grey and then click ok

9. Go to the c:\marsyas\build directory and type “mingw32-make”

10. The binaries are created in build\bin\release or build\bin\debug.

Python: Installed by default on Linux and MacOS X machines; Windows users may
install it from this site. Marsyas contains some very useful scripts which are written in
Python.

2.6.6 MacOS X additional notes

These random notes might be useful for OS X users.

Qt

On MacOS X and when using Qt-4.3.0 or higher, you must add:

export QMAKESPEC=/usr/local/Qt4.3/mkspecs/macx-g++/

to your ‘~/.profile’ or ‘~/.bash_profile’ and then close (and re-open) your terminal
window before compiling Marsyas.

Recording audio

When trying to record audio, the sample rate must be specified explicitly:

pnet->addMarSystem(mng.create("AudioSource", "srcRec"));

pnet->updctrl("mrs_real/israte", 44100.0);

pnet->updctrl("AudioSource/srcRec/mrs_bool/initAudio", true);

MATLAB

These instructions have been tested on OS X 10.5.8 and MATLAB R2009a.

1. MATLAB and X11 for OS X must be installed

2. The naming conventions of MATLAB are a messy so the CMake configuration as-
sumes that either the MATLAB environment variable is set or looks for MATLAB in
/Applications/MATLAB R2009a.app

3. Compile Marsyas and enable the WITH MATLAB option. If MATLAB can not be
located you will get an error message. Try setting the MATLAB enviornment variable
and if that does not work then attempt to set the paths to the MATLAB-related
variables manually.

4. You will need to edit your .bash profile with the following lines:

export MATLAB="/Applications/MATLAB_R2009a.app"

export DYLD_LIBRARY_PATH=$MATLAB/bin/maci/:$MATLAB/sys/os/maci/:$DYLD_LIBRARY_PATH

http://tortoisesvn.tigris.org/
http://python.org
http://python.org

Chapter 2: Source installation 20

5. try out mudbox -t MATLABengine. MATLAB should open and various benchmarks
and communication between Marsyas and MATLAB should happen. If not email the
mailing lists for some help.

2.7 Post-install setup

2.7.1 Vim editor support

A syntax file for vim color highlighting is in ‘misc/marsyas.vim’. To use this file, copy it
to ‘$HOME/.vim/syntax’ add the following lines to ‘$HOME/.vim/filetype.vim’:

if exists("did_load_filetypes")

finish

endif

augroup filetypedetect

au! BufNewFile,BufRead *.cpp setf marsyas

au! BufNewFile,BufRead *.h setf marsyas

augroup END

2.7.2 Datasets

Useful datasets:

• marsyas-coffee: data set used for large black-box tests in Marsyas. (NOW DEFUNCT,
MIGHT POSSIBLY BE USED AGAIN LATER)

• http://marsyas.info/download/data_sets: large data sets.

2.8 Structure of distribution

Marsyas is primarily targeted to researchers and software developers who want to build
new systems and applications using existing building blocks. Therefore familiarity with the
directory structure of the Marsyas distribution is important for any serious work with the
framework.

The main marsyas directory consists of the following files:

• AUTHORS, COPYING, README, TODO: these files are self-explanatory. Changes
are recorded in svn log messages instead of a ‘Changelog’ file.

In addition there are the following subdirectories:

• src/ all the C++ source files.

• src/marsyas/ the main directory containing all the important source code of Marsyas.
The source files in this subdirectory are compiled into a static library that other pro-
grams can use to access Marsyas functionality.

• src/apps/ the source code for executables.

• src/marsyasqt/ source for the static library MarsyasQt, which allows the use of Marsyas
in Qt applications.

• src/Qt4Apps/ provides GUI interfaces using Qt4. These will not work with earlier ver-
sions of Qt. You must have Qt4 installed in order to use or compile these applications.
A README file is supplied with each one that has instructions on how to compile and
run it.

http://marsyas.sness.net/marsyas-coffee/marsyas-coffee-latest.tar.bz2
http://marsyas.info/download/data_sets

Chapter 2: Source installation 21

• src/tests/unit tests/ tests for individual MarSystems.

• src/tests/black-box/ tests for apps.

• doc/ contains the source for the user manual (which you are currently reading) and
developer manual.

• scripts/ useful scripts to help programming with Marsyas.

• scripts/MATLAB/ MATLAB scripts.

Chapter 3: Tour 22

3 Tour

This chapter assumes that you have succesfully compiled and installed Marsyas as described
in Chapter 2 [Source installation], page 6. The compiling configuration should be Release
otherwise there are noticeable artifacts in the audio playback. The goal of this chapter is
to provide a quick tour of various tools included with the Marsyas distribution that can be
used to showcase the capabilities of the framework rather than a complete exposition which
is provided in chapter Chapter 4 [Available tools], page 26.

In order to execute the examples described in this section you will need collections
of music tracks in an audio format supported by Marsyas. The chapter assumes that
the collections provided in http://marsyas.sness.net/download/data_sets have been
downloaded and placed in a subdirectory named audio of the Marsyas distribution. Here is
a possible sequence of commands to obtain the datasets in a unix like system (Linux, OSX
or Cygwin).

cd MY-MARSYAS-DIR

mkdir audio

cd audio

wget http://opihi.cs.uvic.ca/sound/genres.tar.gz

wget http://opihi.cs.uvic.ca/sound/music_speech.tar.gz

tar -zxvf genres.tar.gz

tar -zxvf music_speech.tar.gz

This should create directories containing the audio files of the collections for example on
my OS X laptop for a particular release of Marsyas the following audio track is available:
‘/Users/gtzan/src/cxx/marsyas-0.2.20/audio/music_speech/music_wav/nearhou.wav’

3.0.1 Command-line tools

In this section a few examples of how Marsyas can be used for various audio processing tasks
are provided. Detailed documentation about the various command-line tools is provided in
Chapter Chapter 4 [Available tools], page 26.

First we will explore audio playback, plugins, and real-time running audio classification
in music/speech.

The following commands can be used to create two collections music.mf and speech.mf
each one with 60 30-second audio clips of music and speech respectively (small modifications
like changing the directory separator character are required for Windows).

cd MY_MARSYAS_DIR/build/bin

mkcollection -c music.mf ../../music_speech/music_wav

mkcollection -c speech.mf ../../music_speech/speech_wav

The following commands can be used to have a quick preview of the two collections (the
-l 1 arguments plays 1 second of audio from each 30-second clip). You can ctrl-c anytime
to exit sfplay.

sfplay -l 1 music.mf

sfplay -l 1 speech.mf

Now we are ready to train a classifier that can be used for real-time music/speech
discrimination. The following command extracts audio features, train a classifier and writes
a text file ‘ms.mpl’ describing the entire audio processing network that includes the trained

http://marsyas.sness.net/download/data_sets

Chapter 3: Tour 23

classifier. The sfplugin executable loads this textual description and then processes any
audio file classifying approximately every second of it into either music or speech.

bextract music.mf speech.mf -cl GS -p ms.mpl

sfplugin -p ms.mpl ../../audio/music_speech/music_wav/winds.wav

sfplugin -p ms.mpl ../../audio/music_speech/speech_wav/allison.wav

sfplugin -p ms.mpl ../../audio/music_speech/music_wav/gravity.wav

The next example shows how automatic genre classification with one feature-vector per
file can be performed using Marsyas. Similarly we can create a labeled collection for the
genres dataset.

mkcollection -c cl.mf -l cl ../../audio/genres/classical

mkcollection -c co.mf -l co ../../audio/genres/country

mkcollection -c di.mf -l di ../../audio/genres/disco

mkcollection -c hi.mf -l hi ../../audio/genres/hiphop

mkcollection -c ja.mf -l ja ../../audio/genres/jazz

mkcollection -c ro.mf -l ro ../../audio/genres/rock

mkcollection -c bl.mf -l bl ../../audio/genres/blues

mkcollection -c re.mf -l re ../../audio/genres/reggae

mkcollection -c po.mf -l po ../../audio/genres/pop

mkcollection -c me.mf -l me ../../audio/genres/metal

cat cl.mf co.mf di.mf hi.mf ja.mf ro.mf bl.mf re.mf po.mf me.mf > genres10.mf

Extracting the features and getting statistics about the classification performance (ac-
curacy, confusion matrix etc) can be done as follows (make sure the terminal size is wide
enough to show the confusion matrix correctly):

bextract -sv genres10.mf -w genres10.arff

kea -w genres10.arff

Alternatively the generated .ARFF file can also be opened by the well-known Weka
machine learning tool.

In addition to classic audio feature extraction and classification Marsyas can be used for
a variety of other audio tasks.

sfplay ../../audio/music_speech/music_wav/deedee.wav

phasevocoder -q -ob -p 0.8 ../../audio/music_speech/music_wav/deedee.wav

The first command simply plays the file. The second one pitch shifts the audio by a factor
of 0.8 without changing the duration using a phasevocoder. A more interactive exploration
of phasevocoding is described in section Chapter 3 [User interfaces], page 23.

Finally efficient dominant melodic sound source extraction based on spectral clustering
of sinusoidal components can be demonstrated as follows:

sfplay ../../audio/music_speech/music_wav/nearhou.wav

peakClustering ../../audio/music_speech/music_wav/nearhou.wav

sfplay nearhouSep.wav

3.0.2 User interfaces

A variety of graphical user interfaces are provided with the Marsyas source distribution.
Although it is possible to write a user interface that communicates with Marsyas in
any language there is specific support for interfacing with the Qt toolkit by Trolltech

Chapter 3: Tour 24

http://www.qtsoftware.com/products/. In order to compile the graphical user
interfaces you will need to have Qt4 installed and enable the WITH QT using CMake.
More information can be found at the chapter Chapter 2 [Source installation], page 6.

MarPlayer is a simple audio player that provides a seekable playback progress indicator
while playing audio and showcases multi-threading using Qt4 and Marsyas.

cd MY_MARSYAS_DIR/build/bin

MarPlayer

This will launch the MarPlayer GUI. Click on File and open one of the audio files in the
collections (or any file in a Marsyas supported format). Clicking on the playback slider will
seek to the corresponding location in the audio file.

cd MY_MARSYAS_DIR/build/bin

MarPhasevocoder

Open a file and experiment with the sliders. The Frequency and Time sliders can be
used to pitch shift the recording without changing the duration or speed up or slow down
the recording without changing the pitch respectively. The Sinusoids slider can be used
to control the number of sinusoids (sorted by amplitude) that are used to approximate
the audio signal at each frame. This example showcases user interaction with a relatively
performance intensive audio synthesis technique like the phasevocoder which frequently
does not have real-time implementations.

The last example of a user interface is a content-based music browsing interface for
large audio collections based on self-organizing maps. First you will need to create the
genres10.mf collection file as described in Section Chapter 3 [Command-line tools], page 22.

cd MY_MARSYAS_DIR

MarGrid2

Click on File-Open-Open Collection File and select the genres10.mf collection. Then
click on the E button (Extract) which performs feature extraction for all the 1000 files in
the collection. This will take a few minutes and you can view the progress in the terminal
output. When the feature extraction is complete click on the T button (Train) which
trains a self-organizing map that maps the high-dimenstional continuous audio features
representing each song to 2D coordinates on a grid. This takes a few seconds. Now click on
the P (Predict) button to place each song on the grid. Feature extraction is performed again
therefore this takes about the same time as the Train stage. Click on View-Colour-Mapping
mode to see a visualization of the genre distributions over the self-organizing map. Note
that the genre information is only used for display purposes but not during the calculation
of the mapping. If either the audio features or the self-organizing map did not work the
colors would essentially appear randomly distributed. Each square contains one more more
tracks that are similar to each other based on the audio feautures. Clicking on a squares
allows the user to cycle through the songs. Another interesting feature can be activated by
selecting View-Continuous which switches songs continuously as the user hovers over the
space without requiring explicit clicking. This mode is particularly effective when using
touch surface interaction. Once a mapping is calculated it is possible to save the grid and
load it without requiring the time consuming stages of feature extraction and training.

http://www.qtsoftware.com/products/

Chapter 3: Tour 25

3.0.3 Web information

Marsyas has been used for a variety of projects in both academia and industry. In ad-
dition there are several web-interfaces that use Marsyas as a backend for audio analysis
and processing. The Marsyas website contains information about projects, publications,
screenshots and web-demos based on Marsyas.

http://marsyas.sness.net/about/projects http://marsyas.sness.net/about/videos

http://marsyas.sness.net/about/publications http://marsyas.sness.net/about/webdemos

http://marsyas.sness.net/about/projects
http://marsyas.sness.net/about/videos
http://marsyas.sness.net/about/publications
http://marsyas.sness.net/about/webdemos

Chapter 4: Available tools 26

4 Available tools

The main goal of Marsyas is to provide an extensible framework that can be used to quickly
design and experiment with audio analysis and synthesis applications. The tools provided
with the distribution, although useful, are only representative examples of what can be
achieved using the provided components. Marsyas is an extensible framework for building
applications, so the primary purpose of these examples is to provide source code of working
applications.

The executable files may be found in the ‘bin/’ subdirectory of the build directory, while
the source code for those files is in ‘src/apps/{DIR}/’.� �

Help wanted: missing info!

descriptions of all these programs

If you can fill in any details, please see Section “Contributing doc-
umentation” in Marsyas Developer’s Manual.
 	

4.1 Collections and input files

Many Marsyas tools can operate on individual soundfiles or collections of soundfiles. A
collection is a simple text file which contain lists of soundfiles.

4.1.1 Creating collections manually

A simple way to create a collection is the unix ls command. For example:

ls /home/gtzan/data/sound/reggae/*.wav > reggae.mf

reggae.mf will look like this:

/home/gtzan/data/sound/reggae/foo.wav

/home/gtzan/data/sound/reggae/bar.wav

Any text editor can be used to create collection files. The only constraint is that the
name of the collections file must have a .mf extension such as reggae.mf. In addition, any
line starting with the # character is ignored. For Windows Visual Studio, change the slash
character separating directories appropriately.

4.1.2 Labels

Labels may be added to collections by appending tab-seperated labels after each sound file:

/home/gtzan/data/sound/reggae/foo.wav \t music

/home/gtzan/data/sound/reggae/bar.wav \t speech

The \t represents an actual tab character. This allows you to create a “master” collection
which includes different kinds of labelled sound files:

cat music.mf speech.mf > all.mf

4.1.3 MARSYAS_DATADIR

Collections support the environment variable MARSYAS_DATADIR. This allows the use of
.mf files shared between users (i.e. for a large dataset of audio). For example, the above
collection could be rewritten as:

Chapter 4: Available tools 27

MARSYAS_DATADIR/reggae/foo.wav \t music

MARSYAS_DATADIR/reggae/bar.wav \t speech

provided that the user configures the environment variable appropriately. For example,
using bash on Linux or MacOS X, users on three different machines may set up the variable
as:

export MARSYAS_DATADIR=/home/gtzan/data/sound/

export MARSYAS_DATADIR=/Users/gtzan/data/sound/

export MARSYAS_DATADIR=/home/gperciva/media/marsyas-data/

4.1.4 mkcollection

mkcollection is a simple utility for creating collection files. To create a collection of all
the audio files residing in a directory the following command can be used:

mkcollection -c reggae.mf -l music /home/gtzan/data/sound/

This also labels the data as ‘music’.

If the -md flag is added, then the filenames written to the .mf file will contain MARSYAS_

DATADIR when appropriate.

All the soundfiles residing in that directory or any subdirectories will be added to the
collection. mkcollection only will add files with .wav and .au extensions but does not
check that they are valid soundfiles. In general collection files should contain soundfiles
with the same sampling rate as Marsyas does not perform automatic sampling conversion
on collections.� �

Warning: mkcollection will add a ‘.mf’ to the collection filename if it does
not contain any extention; otherwise it will leave the collection filename alone.
 	

4.2 Soundfile Interaction

4.2.1 sfplay

sfplay is a flexible command-line soundfile player that allows playback of multiple soundfiles
in various formats with either real-time audio output or soundfile output. The following
two example show two extremes of using of sfplay: simple playback of foo.wav and playing
3.2 seconds (-l) clips starting at 10.0 seconds (-s) into the file and repeating the clips for
2.5 times (-r) writing the output to output.wav (-f) at half volume (-g) playing each file
in the collection reggae.mf. Using the (–ws) option, you may manually set the window
size in samples. The last command stores the MarSystem dataflow network used in sfplay
as a plugin in playback.mpl. The plugin is essentially a textual description of the created
network. Because MarSystems can be created at run-time the network can be loaded in a
sfplugin which is a generic executable that flows audio data through any particular network.
Running sfplugin -p playback.mpl bar.wav will play using the created plugin the file bar.wav.
It is important to note that although both sfplay and sfplugin have the same behavior in
this case they achieve it very different. The main difference is that in sfplay the network is
created at compile time wheras in sfplugin the network is created at run time.

sfplay foo.wav

sfplay -s 10.0 -l 3.2 -r 2.5 -g 0.5 foo.wav bar.au -f output.wav

Chapter 4: Available tools 28

sfplay -l 3.0 reggae.mf

sfplay foo.wav -p playback.mpl

sfplugin -p playback.mpl bar.wav

4.2.2 sfinfo

sfinfo displays information (number of channels, sampling rate, durations) about a support
soundfile (.wav and .au by default .mp3 .ogg if the appropriate extensions are installed)

sfinfo foo.wav

4.2.3 audioCompare

Compares two audio files for similarity with some small tolerance for sample differences.
It returns 0 if the files are the same and 1 if they are they are not. It is used for internal
testing.

4.2.4 record

Records to a sound-file using the default audio input device. For example the second
command records 5 seconds of stereo (-c 2) audio at a sampling rate of 22050 at 80 percent
volume (-g 0.8). The results are written to foo.wav.

record -l 3 foo.wav

record -l 5 -c 2 -s 22050 -g 0.8 bar.wav

4.2.5 orcarecord

Similar to record but with specic change to record 4 stereo channels in parallel using a
TASCAM audio interface. Created for the digitization of tapes for the Orchive project. As
in the previous example, this following commmand records 8 seconds (-l 8) of audio input
at 30 percent volume (-g 0.3).

orcarecord -l 8 -g 0.3 foo.wav

4.2.6 sound2png

A program that uses Marsyas to generate a PNG of an input audio file. The PNG can be
either the waveform or the spectrogram of the audio file.

When generating a spectrogram, you can set both the window size and hop size that are
used in calculating the FFT. The window size that you give is then used as the amount of
data that the FFT is given, which means that the number of bins for the FFT will be half
of the window size. Each bin of the FFT will be drawn in one pixel vertically, so if you use
a window size of 512, the resulting PNG will be 256 pixels high.

The hop size for the spectrogram tells the program how much to overlap each FFT by.
The width of the output PNG will thus depend on the length of the audio file and the hop
size, with smaller hop sizes giving longer PNG images.

Below is shown an example of using sound2png to generate a spectrogram of an orca
call. We use a window size of 1024 and a hop size of 1024. The maximum frequency is set
to 8000Hz. A gain of 1.5 is used to make the spectrogram darker:

Chapter 4: Available tools 29

sound2png -m spectrogram A30.wav -ws 1024 -hs 1024 -mf 8000 -g 1.5 out.png

You can also you sound2png to generate pictures of the waveform of an audio file. For
this, you use the -w option. An example of this is shown below:

sound2png -m waveform tiny.wav -ws 1 out.png

When generating pictures of waveforms, you can specify a window size. sound2png
takes a chunk of data that is window size samples in length and calculates the maximum
and minimum of this window. It then draws a bar from the minimum to the maximum
value for each window. An example of this is shown below:

sound2png -m waveform small.wav -ws 100 out.png

Chapter 4: Available tools 30

4.2.7 sound2sound

A program that uses Marsyas to do various types of audio processing/digital audio effects
that takes as input a single audio file and generate a single audio file that is the result of
the processing.

Help info (this should give you all the parameters that you can adjust from the interface):

sound2sound -h

Bandpass filter with center frequency 500 Hz and a q-factor of 10 the file input.wav
processing 30 seconds starting 15 seconds into the file with a gain of 0.8 and write the result
to output.wav

sound2sound input.wav -m bandpass -f 500 -q 10 -s 15 -l 30 -g 0.8 output.wav

Equivalently:

sound2sound input.wav --method bandpass --frequency 500 --qfactor 10 --start 15 --length 30 --gain 0.8 output.wav

4.3 Feature Extraction

4.3.1 pitchextract

pitchextract is used to extract the fundamental frequency contour from monophonic audio
signals. A simple sinusoidal playback is provided for playback of the resulting contour. In
the following example, the pich is extracted from soundfile, using a windowsize of 1024 (-w
1024), a lower pitch of 36 (-l 36) and an upper pitch of 128 (-u 128).

pitchextract -w 1024 -l 36 -u 128 soundfile

4.3.2 bextract

bextract is one of the most powerful executables provided by Marsyas. It can be used for
complete feature extraction and classification experiments with multiple files. It serves as a
canonical example of how audio analysis algorithms can be expressed in the framework. This
documentation refers to the latest refactored version of bextract. The old-style bextract

using the -e command-line option to specify the feature extractor is still supported but use
of it discouraged.

Suppose that you want to build a real-time music/speech descriminator based on a
collection of music files named music.mf and a collection of speech files named speech.mf.
These collections can either be created manually or using the mkcollection utility. The
following commandline will extract means and variances of timbral features (time-domain
Zero-Crossings, Spectral Centroid, Rolloff, Flux and Mel-Frequency Cepstral Coefficients
(MFCC) over a texture window of 1 sec.

bextract music.mf speech.mf -w ms.arff -p ms.mpl -cl GS

bextract ms.mf -w ms.arff -p ms.mpl

bextract -mfcc classical.mf jazz.mf rock.mf -w genre.arff

The first two commands are equivalent assuming that ms.mf is a labeled collection with
the same files as music.mf and speech.mf. The third-command specifies that only the MFCC
features should be extracted and is an example of classifying three classes.

The results are stored in a ms.arff which is a text file storing the feature values that
can be used in the Weka machine learning environment for experimentation with different

Chapter 4: Available tools 31

classifiers. After a header describing the features (attribute in Weka terminology) it consists
of lines of comma separated feature values. Each line corresponds to a feature vector. The
attributes in the generated .arff file have long descriptive names that show the process used
to calculate the attribute. In order to associate filenames and the subsequences of feature
vectors corresponding to them each subsequence corresponding to a file is prefixed by the
filename as a comment in the .arff file. It is a text file that is straighforward to parse.
Viewing it in a text editor will make this clearer.

In addition to Weka, the native Marsyas kea tool Section 4.5.1 [kea], page 39 can be
used to perform evaluations (cross-validation, accuracies, confusion matrices) similar to
Weka although with more limited functionality.

At the same time that the features are extracted, a classifier (in the example above
a simple Naive Bayes classifier (or Gaussian)) is trained and when feature extraction is
completed the whole network of feature extraction and classification is stored and can be
used for real-time audio classification directly as a Marsyas plugin stored in ms.mpl.

The resulting plugin makes a classification decision every 20ms but aggregates the re-
sults by majority voting (using the Confidence MarSystem) to display time-stamped output
approximately every 1 second. The whole network is stored in ms.mpl which is loaded into
sfplugin and file to be classified is played and classified at the same time. The screen out-
put shows the classification results and confidence. The second command shows that the
live run-time classification can be integrated with bextract. In both cases collections can
be used instead of single files.

sfplugin -p ms.mpl music_file_to_be_classifed.wav

sfplugin -p ms.mpl speech_file_to_be_classifed.wav

bextract -e ms.mf -tc file_to_classified.wav

bextract -e ms.mf -tc collection_to_classified.wav

Using the command-line option -sv turns on single vector feature extraction where one
feature vector is extracted per file. The single-vector feature representation is useful for
many Music Information Retrieval tasks (MIR) such as genre classification, similarity re-
trieval, and visualization of music collections. The following command can be used to
generate a weka file for genre classification with one vector per file.

./bextract -sv cl.mf ja.mf ro.mf -w genres.arff -p genres.mpl

The resulting genres.arff file has only one feature vector line for each soundfile in the
collections. In this case where no -cl command-line argument is specified a linear Support
Vector Machine (SVM) classifier is used instead.

Feature sets refer to collections of features that can be included in the feature extrac-
tion. It includes several individual feature sets proposed in the MIR and audio analysis
literature as well as some common combinations of them. (for details and the most up-
dated list of supported sets experienced users can consult the selectFeatureSet() function
in bextract.cpp). The feature sets can be separated into three lagre groups depending what
front-end is used: time-domain, spectral-domain, lpc-based.

The following feature sets are supported (for definitions consult the MIR literature, check
the corresponding code implementations and send us email with question for details you
don’t understand) :

Chapter 4: Available tools 32

‘-timbral --TimbralFeatures’
Time ZeroCrossings, Spectral Centroid, Flux and Rolloff, and Mel-Frequency
Cepstral Coefficients (MFCC). Equivalent to -mfcc -zcrs -ctd -rlf -flx. This also
the default extracted feature set.

‘-spfe --SpectralFeatures’
Spectral Centroid, Flux and Rolloff. Equivalent to -zcrs -ctd -rlf -flx.

‘-mfcc --MelFrequencyCepstralCoefficients’
Mel-Frequency Cepstral Coefficients.

‘-chroma --Chroma’
‘-ctd --SpectralCentroid’
‘-rlf -- SpectralCentroid’
‘-flx --SpectralFlux’
‘-zcrs --ZeroCrossings’
‘-sfm --SpectralFlatnessMeasure’
‘-scf --SpectralCrestFactor’
‘-lsp --LineSpectralPair’
‘-lpcc --LinearPredictionCepstralCoefficients’

By default stereo files are donwmixed to mono by summing the two channels before
extracting features. However, bextract also supports the extraction of feature based on
stereo information. There are feature sets that can only be extracted from stereo files. In
addition it is possible to use any of the feature sets described above and extract features
for both left and right channels that are concatenated to form a feature vector.

‘-spsf --StereoPanningSpectrumFeatures’
‘-st --stereo’

Calculate whatever feature sets are activated for both left and right channels.

For example the first command below calculates MFCC for both left and right channels.
The second command calculates the Stereo Panning Spectrum Features which require both
channels and also the Spectral Centroid for both left and right.

bextract -st -mfcc mymusic.mf -w mymusic.arff

bextract -spsf -st --SpectralCentroid -w mymusic.arff

The feature extraction can be configured in many ways (only some of which are possible
through command-line options). The following options can be used to control various
aspects of the feature extraction process (most of the default values assume 22050 Hz
sampling rate):

‘-c --collection’
the collection of files to be used

‘-s --start’
starting offset (in seconds) into each soundifle from which features will be ex-
tracted

‘-l --length’
length (in seconds) of each soundfile from which features will be extracted. A
length of -1.0 indicates that the entire duration of the file should be used (the
default behavior)

Chapter 4: Available tools 33

‘-n --normalization’
apply normalization to audio signal

‘-fe --featExtract’
only extract features without training the classifier

‘-st --stereo’
use stereo feature extraction

‘-ds --downsample’
downsample factor (default 1)

‘-ws --winsamples’
size in samples of the analysis window (default 512)

‘-hp --hopsamples’
size in samples of the hop analysis size (default 512 - no overlap)

‘-as --accSize’
size in analysis frames of how many feature vectors are summarized when single
vectors per file are calculated (default 1298 - approximately 30 seconds)

‘-m --memory’
size in analysis frames of how many features vectors are summarized for each
texture window (default 40 - approximately 1 second)

‘-cl --classifier’
classifier used for training and prediction (default GS - a simple Naive Bayes
Classifier)

‘-e --extractor’
old-style specification of feature extraction maintained for backward compati-
bility (usage discouraged)

‘-p --plugin’
filename of generated Marsyas plugin (.mpl file)

‘-w --wekafile’
filename of generated .arff file (for Weka or kea)

‘-tc --test’
filename of collection or soundfile used for prediction after a model is trained
(can be used to conduct MIREX style experimetns)

‘-pr --predict’
filename of a collection or soundfile used for prediction after a model is trained

‘-wd --workdir’
Directory where all generated files will be written by defautl the current direc-
tory is used

TimeLines

bextract also supports a mode, called the Timeline mode that allows labeling of different
sections of an audio recording with different labels. For example, you might have a number
of audio files of Orca recordings with sections of voiceover, background noise, and orca calls.

Chapter 4: Available tools 34

You could train a classifier to recognize each of these types of signal. Instead of a label
associated with each file in the collection there is an associate Marsyas timeline file (the
format is described below). To run bextract in Timeline mode, there are two steps: training
and classifier:

bextract -t songs.mf -p out.mpl -pm

Where:

-t songs.mf - A collection file with a song name and its

corresponding .mtl (Marsyas Timeline) file on each line

-p out.mpl - The Marsyas Plugin to be generated

-pm - Mute the output plugin

and predicting labels for a new audio recording

sfplugin -p out.mpl songmono.wav

Where:

-p out.mpl - The plugin output by bextract in step #1

The songs.mf file is Marsyas collection file with the path to song (usually .wav) files and
their corresponding Marsyas Timeline (.mtl) files on each lines. Here is an example song.mf
file:

/path/to/song1.wav \t /path/to/song1.mtl

/path/to/song2.wav \t /path/to/song2.mtl

/path/to/song3.wav \t /path/to/song3.mtl

Please note that the separator character \t must be an actual tab, it cannot be any other
kind of whitespace.

The .mtl format has three header lines, followed by blocks of 4 lines for each annotated
section. The format is:

HEADER:

number of regions

line size (=1)

total size (samples)

FOR EACH SAMPLE:

start (samples)

classId (mrs_natural)

end (samples)

name (mrs_string)

For example:

Chapter 4: Available tools 35

3

1

2758127

0

0

800000

voiceover

800001

1

1277761

orca

1277762

2

2758127

background

Because the .mtl file is kind of obtuse, we have written a small Ruby program to convert
Audacity label files to .mtl format. This script can be found at marsyas/scripts/generate-
mtl.rb. The script is currently hardcoded to recognize the chord changes from songs from the
annotated Beatles archive, but you can easily change this by modifying the "chords array"
variable.

4.3.3 ibt

ibt – standing for INESC-Porto Beat Tracker – is a tempo induction and beat tracking
system based on a competing multi-agent system that considers parallel hypotheses
regarding tempo and beats. The algorithm works either in real-time, for on-line systems,
and off-line, for MIR-based applications.
Benchmarks on causal and noncausal versions reveal competitive results, under alternative
conditions.
More technical information can be found in the paper “IBT: A Real-
Time Tempo and Beat Tracking System” published in the International
Conference on Music Information Retrieval (ISMIR) 2010. Online at:
http://www.inescporto.pt/~fgouyon/docs/OliveiraGouyonMartinsReis_

ISMIR2010.pdf.

Examples of usage:

1. ibt foo.wav

2. ibt -a foo.wav

3. ibt -f foo.wav

4. ibt -mic

5. ibt -a -mic

6. ibt -f -mic

7. ibt -nc foo.wav

1. This causally processes foo.wav retrieving the processed beat times, in foo.txt, and
the respective median tempo, in foo medianTempo.txt.
NOTE: By default an initial 5secs is used for the phase+tempo induction stage, where the
system is setup.

http://www.inescporto.pt/~fgouyon/docs/OliveiraGouyonMartinsReis_ISMIR2010.pdf
http://www.inescporto.pt/~fgouyon/docs/OliveiraGouyonMartinsReis_ISMIR2010.pdf

Chapter 4: Available tools 36

2. Identical to 1. but playing audio with "clicks" on beats.
3. Identical to 1. but saving a file with the audio + "clicks" on processed beats.
4. This captures audio from microphone inpute and processes beats in real-time.
The processed beat times and tempo are saved, respectively, in mic.txt and
mic medianTempo.txt.
NOTE: Although IBT makes an effort to be noise robust it is still quite prone to it, so a
noise-clean environment is adviced for using the mode of operation.
5. Identical to 4. but playing "clicks" on processed beats.
6. Identical to 4. but saving a file with the captured audio + "clicks" on processed beats.
7. This processes foo.wav non-causally (off-line mode), retrieving the the processed beat
times, in foo.txt, and the respective median tempo, in foo medianTempo.txt.
NOTE: this mode of operation working off-line provides better performance than 1., ideal
to MIR-based applications.

‘-mic --microphone_input’
input sound via microphone interface.

‘-nc --non-causal’
for running in non-causal mode.

‘-t --induction_time’
time (in secs) dispended in the initial induction stage.

‘-o --output’
output files (predicted beat times, mean/median tempo):
"beats", "medianTempo", "meanTempo", "beats+medianTempo",
"beats+meanTempo", "beats+meanTempo+medianTempo", "none".

‘-b --backtrace’
after induction backtrace the analysis to the beginning (for causal [default]
mode).

‘-di --dumb_induction’
for ignoring period induction substituting it by manual defined values.

‘-a --audio’
play the original audio mixed with the synthesized beats.

‘-f --audiofile’
output the original audio mixed with the synthesized beats (as
fileName beats.*).

‘-s --score_function’
heuristics which conducts the beat tracking: "regular" [default], "correlation",
"squareCorr".

‘-m --metrical_time’
initial time (in secs) which allows tracking metrical changes (0 not allowing at
all; -1 for the whole music [default]).

‘-l --log_file’
generate log file of the analysis.

Chapter 4: Available tools 37

‘-2b --givefirst2beats’
replace induction stage with ground-truth (two first beats from beatTimes file
- .txt or .beats - from the directory or file given as argument).

‘-2bs --givefirst2beats_startpoint’
equal to givefirst2beats mode but starting tracking at the first given beat time.

‘-1b --givefirst1beat’
replace initial phase by the given ground-truth first beat (from beatTimes file
- .txt or .beats - from the directory or file given as argument).

‘-1bs --givefirst1beat_startpoint’
equal to givefirst1beat mode but start tracking at the given phase.

‘-pgt --giveinitperiod’
replace initial period given by the ibi of the ground-truth two first beats (from
beatTimes file - .txt or .beats - from the directory or file given as argument).

‘-pgt_mr --giveinitperiod+metricalrel’
equal to giveinitperiod but complementing it with metrically related tempi (2x,
1/2x, 3x, 1/3x).

‘-pgt_nr --giveinitperiod+nonrel’
equal to giveinitperiod but complementing it with non-related tempi.

4.4 Synthesis

4.4.1 phasevocoder

phasevocoder is probably the most powerful and canonical example of sound synthesis pro-
vided currently by Marsyas. It is based on the phasevocoder implementation described by
F.R.Moore in his book “Elements of Computer Music” . It is broken into individual MarSys-
tems in a modular way and can be used for sound-file and real-time input pitch-shifting
and/or time-scaling. Several variations of the algorithm proposed in the literature have
been implemented and can be configured through several command-line options. Familiar-
ity with phasevocoder terminology will help understanding their effect on the transformed
sound file. Some representative examples are:

phasevocoder foo.wav -f foo_identity.wav

phasevocoder foo.wav -f foo_stretched.wav -n 2048 -w 2048 -d 256 -i 512

phasevocoder foo.wav -ob -cm sorted -s 10 -p 1.5 -f foo_pitch_shifted.wav

phasevocoder foo.wav -f foo_stretched.wav -n 4096 -w 4096 -d 768 -i 1024

-cm full -ucm identity_phaselock

phasevocoder foo.wav -f foo_stretched.wav -n 4096 -w 4096 -d 768 -i 1024

-cm analysis_scaled_phaselock -ucm scaled_phaselock

In the first example the input file foo.wav is passed through the classic phasevocoder
(overlap-add, FFT-frontend and FFT-backend) without any time or pitch modifications.
The second example show how time stretching can be achieved by making the analysis hop
size (-d) and the synthesis hop size (-i) different. The -n option specified the FFT size and
the -w option specifies the window size. In the third example a bank of sinusoidal oscillators
(-ob) is used instead of the FFT-backend and the input is pitch shifted by 1.5. The fourth

Chapter 4: Available tools 38

example uses identity phaselocking (-ucm) and the fifth example uses scaled phaselocking
(-cm and -ucm) as described by Laroche and Dobson.

‘-n --fftsize’
size of the fft

‘-w --winsize’
size of the window

‘-v --voices’
number of voices

‘-g --gain’
linear volume gain

‘-b --bufferSize’
audio buffer size

‘-m --midi’
midi input port number

‘-e --epochHeterophonics’
heterophonics epoch

‘-d --decimation’
analysis hop size (decimation)

‘-i --interpolation’
synthesis hop size (interpolation)

‘-p --pitchshift’
pitch shift factor (for example 2.0 is an octave)

‘-ob --oscbank’
use bank of oscillators back-end

‘-s --sinusoids’
number of sinusoids to use if convert mode is sorted

‘-cm --convertmode’
analysis front-end mode: full: use all FFT bins, sorted: sort FFT bins by
magnitude and only use s sinusoids, analysis scaled phaselock: compute extra
analysis info for scaled phaselocking

‘-ucm --unconvertmode’
synthesis back-end mode: classic: propagate phases for all bins,
loose phaselock: described by Puckette, identity phaselock: pick peaks,
propagate phases for peaks and lock regions of influence around them,
scaled phaselock: refinement that takes into account information from the
previous frame

‘-on --onsets filename_with_onsets’
takes as input a simple text file with locations of onsets that are used to re-
initialize phases and not time stretch transient frames that contain the onsets.

Chapter 4: Available tools 39

4.5 Machine Learning

4.5.1 kea

The previous version of Marsyas 0.1 contained machine learning functionality but until 2007
the new version 0.2 mostly relied on Weka for machine learning experiments. Although this
situation was satisfactory for writing papers it was not possible to create real-time networks
integrating machine learning. Therefore an effort was made to establish programming con-
ventions for how machine learning MarSystems should be implemented. Last but not least
we have always wanted to have as much functionality related to audio processing systems
implemented natively in Marsyas.

kea is one of the outcomes of this effort. Kea (a rare bird from New Zealand) is the
Marsyas counterpart of Weka and provides similar capabilities with the command-line in-
terface to Weka although much more limited (at least for now).

Any weka .arff file can be used as input to kea although ususally the input is the extracted
.arff files from bextract. The following command-line options are supported.

‘-m --mode’
specifies the mode of operation (train, distance matrix, pca). The default mode
is train.

‘-cl --classifier’
the type of classifier to use if mode is train Available classifiers are GS, ZEROR,
SVM

‘-w --wekefile’
the name of the weka file

‘-id --inputdir’
input directory

‘-od --outputdir’
output directory

‘-dm --distance_matrix’
filename for the distance matrix output if mode is distance matrix

The main mode (train) basically performs 10-fold non-stratified cross-validation to eval-
uate the classification performance of the specified classifier on the provided .arff file. In
addition to classification accuracy It outputs several other summary measures of the clas-
sifier’s performance as well as the confusion matrix. The format of the output is similar to
Weka.

The mode distance matrix is used to compute a NxN similarity matrix based on the
input .arff file containing N feature vector instances. The output format is the one used for
MIREX 2007 music similarity task. This functionality relies on specific naming conventions
related to the Marsyas MIREX2007 submission. By default the output goes to dm.txt but
can be specified by the -dm command-line option. The following examples show different
ways kea can be used.

The pca mode reduces the input feature vectors by projecting them to the first 3 principal
components using Principal Component Analysis (PCA). Each component is normalized to
lie in the range [0-512]. The resulting transformed features are simply written to stdout.

Chapter 4: Available tools 40

kea -w iris.arff

kea -m train -w iris.arff -cl SVM

kea -m distance_matrix -dm dmatrix.txt -w iris.arff

kea -m pca -w iris.arff

4.6 Auditory Scene Analysis

4.6.1 peakSynth

4.6.2 peakClustering

peakClustering performs sinusoidal analysis followed by a spectral clustering for grouping
spectral peaks that operates across time and frequency over “texture” windows. It can
be used for predominant melody separation on polyphonic audio signals. More technical
information can be found in the paper “Normalized Cuts for Predominant Melodic Source
Separation” published in the IEEE Transactions on Audio, Speech and Language processing.
Examples of usage:

peakClustering foo.wav

This will result in a file named fooSep.wav that contains the separated predominant
melody source such as a singing voice in a rock song or a saxophone line in a jazz tune.

‘-n --fftsize’
size of fft

‘-w --winsize’
size of window

‘-s --sinusoids’
number of sinusoids per frame

‘-b --buffersize’
audio buffer size

‘-o --outputdirectoryname’
output directory path

‘-N --noisename’
name of degrading audio file

‘-p --panning’
panning informations <foreground level (0..1)>-<foreground pan (-1..1)>-
<background level>-<background pan>

‘-t --typeSimilarity’
similarity information a (amplitude) f (frequency) h (harmonicity)

‘-q -quitAnalyse’
quit processing after specified number f seconds

‘-T --textureSize’
number of frames in a texture window

‘-c -clustering’
number of clusters in a texture window

Chapter 4: Available tools 41

‘-v --voices’
number of voices

‘-F --clusterFiltering’
cluster filtering

‘-A --attributes’
set attributes

‘-g --ground’
set ground

‘-SC --clusterSynthetize’
cluster synthetize

‘-P --peakStore’
set peak store

‘-k -keep’ keep the specified number of clusters in the texture window

‘-S --synthetise’
synthetize using an oscillator bank (0), an IFFT mono (1), or an IFFT stereo
(2)

‘-r --residual’
output the residual sound (if the synthesis stage is selected)

‘-i --intervalFrequency’
<minFrequency> <maxFrequency> select peaks in this interval (default 250-
2500 Hz)

‘-f --fileInfo’
provide clustering parameters in the output name (s20t10i250 2500c2k1uTabfbho
means 20 sines per frames in the 250 2500 Hz frequency Interval, 1 cluster
selected among 2 in one texture window of 10 frames, no precise parameter
estimation and using a combination of similarities abfbho)

‘-npp --noPeakPicking’
do not perform peak picking in the spectrum

‘-u --unprecise’
do not perform precise estimation of sinusoidal parameters

‘-if --ignoreFrequency’
ignore frequency similarity between peaks

‘-ia --ignoreAmplitude’
ignore amplitude similarity between peaks

‘-ih --ignoreHWPS’
ignore harmonicity (HWPS) similarity between peaks

‘-ip --ignorePan’
ignore panning similarity between peaks

‘-uo --useOnsets’
use onset detector for dynamically adjusting the length of texture windows

Chapter 4: Available tools 42

4.7 Marsystem Interaction

4.7.1 sfplugin

sfplugin is the universal executable. Any network of Marsystems stored as a plugin can be
loaded at run-time and sound can flow through the network. The following example with
appropriate plugins will peform playback of foo.wav and playback with real time music
speech classification of foo.wav.

sfplugin -p plugins/playback.mpl foo.wav

sfplugin -p musp_classify.mpl foo.wav

Writing a basic sfplugin plugin

The sfplugin application expects that certain controls are available in any network it tries
to handle. Therefore, one of the simplest demonstration plugins one can write is a plugin
containing a SoundFileSource and an AudioSink, demonstrated below. As the sfplugin does
not know were the sources and sinks are in the network it is necessary to link the composite’s
controls with appropriate controls in the network.

// create the network that will become the plugin

MarSystem* sys = mng.create("Series", "head");

// create the two required MarSystems

sys->addMarSystem(mng.create("SoundFileSource", "src"));

sys->addMarSystem(mng.create("AudioSink", "dest"));

// while we don’t actually want to play a file now, supply a valid

// filler name to keep the program happy; sfplugin will update it later

sys->updctrl("SoundFileSource/src/mrs_string/filename",

"../../SuperGroovyLateralGeniculateNucleus.au");

// since we’re not playing the song now, set initAudio to false;

// sfplugin will update this to true when the network is executed there

sys->updctrl("AudioSink/dest/mrs_bool/initAudio", false);

// set those pesky control links!

sys->linkctrl("mrs_string/filename", "SoundFileSource/src/mrs_string/filename");

sys->linkctrl("mrs_bool/initAudio" , "AudioSink/dest/mrs_bool/initAudio");

sys->linkctrl("mrs_natural/pos" , "SoundFileSource/src/mrs_natural/pos");

sys->linkctrl("mrs_bool/hasData" , "SoundFileSource/src/mrs_bool/hasData");

// finally, write the network to a file; the plugin can be run as

// follows: sfplugin -p some_plugin.mpl ../../SamsSavorySuperiorColliculus.au

ofstream ofs("some_plugin.mpl");

ofs << (*sys) << endl;

4.7.2 msl

One of the most useful and powerful characteristics of Marsyas is the ability to create and
combine MarSystems at run time. msl (marsyas scripting language) is a simple interpreter

Chapter 4: Available tools 43

that can be used to create dataflow networks, adjust controls, and run sound through the
network. It’s used as a backend for user interfaces therefore it has limited (or more accu-
rately non-existent) editing functionality. The current syntax is being revised so currently
it’s more a proof-of-concept. Msl has been inactive for a while as the SWIG bindings to
scripting language seem to be the way to go.

Here is an example of creating a simple network in msl and playing a sound file:

msl

[msl] create Series playbacknet

[msl] create SoundFileSource src

[msl] create Gain g

[msl] create AudioSink dest

[msl] add src > playbacknet

[msl] add g > playbacknet

[msl] add dest > playbacknet

[msl] updctrl playbacknet SoundFileSource/src/string/filename technomusic.au

[msl] run playbacknet

The important thing to notice is that both the creation of MarSystems and their assembly
into networks can be done at run-time without having to recompile any code. It also
possible to use the GNU readline utility to provide more friendly user editing and command
completion in Msl.

4.8 All of the above

4.8.1 mudbox

In computer science the term sandbox is frequently used to refer a technique where a
piece of software is isolated from the surrounding operating system environment to reduce
security risks. Unlike these clean sandboxes in Marsyas the mudbox is a playground for
experimentation and messing around. This is all the more appropriate given that several
of the main Marsyas developers have lived in British Columbia where sandbox turn into
mudboxes most of the year. It was motivated by the frequent need to experiment with
various MarSystems under construction without having to create a new application for
each case and potentially have to modify the build system. Typically code for a MarSystem
gets tested in mudbox, then is gradually expanded to a tool and eventually becomes it’s
own application or gets integrated to one of the existing ones. More information can be
found Section “Playing in the mudbox” in Marsyas Developer’s Manual. The examples in
mudbox are short and can provide quick templates for various types of tasks. The specific
example to be executed is specified by the –toy-with, -t command-line argument:

mudbox -t onsets foo.wav

mudbox --toy-with vibrato foo.wav

mudbox -h

The first command will generate a stero file foo.wav onsets.wav with one channel con-
taining the detected onsets. The second command will apply a vibrato type of effect using
a delay line to foo.wav. The third command will display many (but not necessarily) all
of the available “toys” in mudbox. In general, mudbox is supposed to be experimental so
don’t expect careful error checking or proper output messages. In most cases you will need

Chapter 4: Available tools 44

to read the corresponding source code in mudbox.cpp to figure out what’s happening. This
is a feature of mudbox not a bug :-).

Chapter 5: Graphical User Interfaces using Qt4 45

5 Graphical User Interfaces using Qt4

Marsyas provides integration support for the Qt4 user interface toolkit. By using the
MarSystemQtWrapper any processing network can be wrapped into a proper QObject with
signals and slots enabling direct integration with Qt objects and widgets. The wrapper
hides issues of threading, buffering, etc. Another supported functionality that uses the Qt
signal/slot system is the ability to send and process Open Sound Control

5.1 MarPlayer

MarPlayer is a simple graphical user interface for playback of soundfiles supported in
Marsyas. It has shuttle controls and allows for arbitrary seeking and looping. From a
developer perspective it provides an example of how the Qt Designer interface toolkit for
desinging and layout and graphical appearance of the user interface.

5.2 MarPhaseVocoder

MarPhaseVocoder is a front-end to the marsyas phasevocoder. It is an example of how
all the interface code can be directly written in C++. It uses a common architecture with
three layers for separating the handling of graphical user interface action, their mapping,
and their connection to the wrapper.

5.3 MarGrid

MarGrid is a music collection visualization interface. It utilizes feature extraction and a
self-organized map to map each song in a collection to a square in a grid of cells. Once the
self-organized map has been trained it can be used to predict grid positions for new songs.

5.4 MarMonitors

MarMonitors is a proof-of-concept interface that allows the inspection of realvec controls of
any MarSystem. It’s a step towards generic interface for designing, debugging processing
network that are not tied to a specific application.

5.5 MarLPC

MarLPC is a user interface to a system for adding breathiness to the singing voice using
Adaptive Pre-Emphsis Linear Prediction (Nordstrom, Tzanetakis, Driessen 2008). It also
serves as an example of how Open Sound Control (OSC) can be used to change controls
through Qt. The patch scripts/PureData/MarLpc.pd can be usd to demontrate this com-
munication.

Chapter 6: Architecture concepts 46

6 Architecture concepts

In order to fully take advantage of the capabilities of Marsyas it is important to under-
stand how it works internally. The architecture of Marsyas reflects an underlying dataflow
model that we have found useful in implementing real and non-real time audio analysis
and synthesis systems. In marsyas 0.2 a lot of things can be accomplished by assembling
complex networks of basic building blocks called MarSystems that process data. This is
the so called “Black-Box” functionality of the framework. In addition the programmer can
also write directly her/his own building blocks directly in C++ following a certain API and
coding conventions offering the so called “White-Box” functionality. Building networks
is described in Chapter 9 [Writing applications], page 71, and writing new MarSystems is
described in Chapter 10 [Programming MarSystems], page 125.

6.1 Architecture overview

6.1.1 Building MarSystems

The basic idea behind the design of Marsyas is that any audio analysis/synthesis com-
putation can be expressed as some type of processing object, which we call MarSystem,
that reads data from an input slice of floating point numbers, performs some computa-
tion/transformation based on data, and writes the results to another slice of floating point
numbers. Networks of MarSystems can be combined and encapsulated as one MarSystem.

For example consider an audio processing series of computations consisting of reading
samples from a soundfile, performing an short-time fourier transform (STFT) to calculate
the complex spectrum, performing an inverse STFT to convert back from the frequency
domain to time domain, then applying a gain to the amplitude of the samples and writing
the result to a soundfile.

As is very frequently the case with audio processing networks objects the input of each
stage is the output of the previous stage. This way of assembling MarSystems is called
a Series composite. Once a Series Composite is formed it can basically be used as one
MarSystem that does the whole thing. A figure showing a block diagram-like presentation
of this network is shown in the next section.

6.1.2 Dataflow model

Marsyas follows a dataflow model of audio computation.

Chapter 6: Architecture concepts 47

Marsyas uses general matrices instead of 1-D arrays. This allows slices to be semantically
correct.

6.2 Implicit patching

6.2.1 Implicit patching vs. explicit patching

Many audio analysis programs require the user to explicitly (manually) connect every pro-
cessing block,

EXPLICIT PATCHING: block definitions

source, F1, F2, F3, destination;

connect the in/out ports of the blocks

connect(source, F1);

connect(source, F2);

connect(source, F3);

connect(F1, destination);

connect(F2, destination);

connect(F3, destination);

Marsyas uses implicit patching : connections are made automagically when blocks are
created,

IMPLICIT PATCHING

source, F1, F2, F3, destination;

Fanout(F1, F2, F3);

Chapter 6: Architecture concepts 48

Series(source, Fanout, destination);

6.2.2 Implicit patching advantages

Creating a neural network with explicit patching soon becomes a mess,

With implicit patching, this is much more manageable.

IMPLICIT PATCHING

fanoutLayer1(ANN_Node11, ..., ANN_Node1N);

...

fanoutLayerM(ANN_NodeM1, ..., ANN_NodeMN);

ANN_Series(fanoutLayer1, ..., fanoutLayerM);

Chapter 6: Architecture concepts 49

Implicit patching can automagically adjust the connections without requiring any code
recompiliation. For example, we can change the number of bands in a filter bank without
changing any code.

6.2.3 Patching example of Feature extraction

Suppose we wish to create a typical feature extraction program:

MarSystemManager mng;

MarSystem* Series1 = mng.create("Series", "Series1");

MarSystem* Fanout1 = mng.create("Fanout", "Fanout1");

MarSystem* Series2 = mng.create("Series", "Series2");

MarSystem* Fanout2 = mng.create("Fanout", "Fanout2");

MarSystem* Fanout3 = mng.create("Fanout", "Fanout3");

Fanout3->addMarSystem(mng.create("Mean", "Mean"));

Fanout3->addMarSystem(mng.create("Variance", "Variance"));

Fanout2->addMarSystem(mng.create("Centroid", "Centroid"));

Fanout2->addMarSystem(mng.create("RollOff", "Rolloff"));

Fanout2->addMarSystem(mng.create("Flux", "Flux");

Series2->addMarSystem(mng.create("Spectrum, "Spectrum");

Series2->addMarSystem(Fanout2);

Fanout1->addMarSystem(mng.create("ZeroCrossings", "ZeroCrossings");

Fanout1->addMarSystem(Series2);

Series1->addMarSystem(mng.create("SoundFileSource", "Source"));

Series1->addMarSystem(Fanout1);

Series1->addMarSystem(mng.create("Memory", "TextureMemory"));

Chapter 6: Architecture concepts 50

Series1->addMarSystem(Fanout3);

Series1->addMarSystem(mng.create("classifier", "Classifier"));

6.3 MarSystem composites
� �
Help wanted: missing info!

descriptions of composites, add the other composites

If you can fill in any details, please see Section “Contributing doc-
umentation” in Marsyas Developer’s Manual.
 	

6.3.1 Series

The Series composite is the most basic structure for connecting MarSystems into dataflow
networks through implicit patching. It is similar to Unix pipes or the chuck operator in
the Chuck programming language. The output of the first object in the Series connection
becomes the input to the second object, the output of the second object becomes the input
to the third object etc. A MarSystem can potentially have different size and characteristics
for the input and output slices. In Series connections these characteristics are constrained
to ensure that the output slice of each MarSystem is the same as the input slice of the
MarSystem that is downstream from it. The figure shows how a Series composite can be
used to express a complex spectrum computation from a windowed segment of audio. The
Hanning MarSystem windows the incoming segment and the FFT MarSystem converts the
audio to a complex spectrum. Notice how the dimensions of the slices can change at the
different stages of processing.

Chapter 6: Architecture concepts 51

6.3.2 Parallel

A Parallel composite is used when you have an input with multiple observations (i.e. chan-
nels) and you want to run calculations in parallel on each of the observations. This is shown
in graphical form below:

In the above diagram, the Parallel MarSystem is fed a realvec with 3 observations (and
a large number of samples). The MarSystem F1 receives the first observation, coloured in
green. The second MarSystem in the Parallel, F2, gets the second observation, coloured in
blue, and the third MarSystem, F3, receives the third observation, coloured in yellow.

To build this system you would write code that would look something like:

MarSystem* parallel = mng.create("Parallel", "parallel");

parallel->addMarSystem(mng.create("Gain", "F1"));

parallel->addMarSystem(mng.create("Gain", "F2"));

parallel->addMarSystem(mng.create("Gain", "F3"));

One real-life use of Parallels is if you have a stereo sound source and you want to run
an analysis on the left and right channels seperately. An example of generating a spectrum
for the right and left channels of a sound source would look something like:

MarSystem* net = mng.create("Series", "net");

net->addMarSystem(mng.create("SoundFileSource", "src"));

MarSystem* stereobranches = mng.create("Parallel", "stereobranches");

MarSystem* left = mng.create("Series", "left");

MarSystem* right = mng.create("Series", "right");

left->addMarSystem(mng.create("Windowing", "hamleft"));

left->addMarSystem(mng.create("Spectrum", "spkleft"));

left->addMarSystem(mng.create("PowerSpectrum", "leftpspk"));

right->addMarSystem(mng.create("Windowing", "hamright"));

right->addMarSystem(mng.create("Spectrum", "spkright"));

right->addMarSystem(mng.create("PowerSpectrum", "rightpspk"));

stereobranches->addMarSystem(left);

stereobranches->addMarSystem(right);

Chapter 6: Architecture concepts 52

net->addMarSystem(stereobranches);

6.3.3 Fanout

A Fanout is another composite MarSytem that, like a Parallel, contains other MarSystem.
It differs from a Parallel in that it takes a single observation and sends a copy of this
observation to all the MarSystems inside of it. This is shown graphically below:

In the above diagram, we send a realvec with a single observation (and many samples)
into the Fanout. The Fanout then makes a copy of this data for each of the MarSystems
within in. In the above diagram, it makes a copy of the input observation and sends it to
F1 (shown in green), F2 (shown in blue) and F3 (shown in yellow).

Thus, the input of the Fanout shown above is one observation (and many samples) and
the output of the Fanout is three observations (and the same number of samples as the
input had).

To build this system you would write code that would look something like:

MarSystem* fanout = mng.create("Fanout", "fanout");

fanout->addMarSystem(mng.create("Gain", "F1"));

fanout->addMarSystem(mng.create("Gain", "F2"));

fanout->addMarSystem(mng.create("Gain", "F3"));

One real-life example of using a Fanout is if you want to run many different kinds of
algorithms on your data. For example, you might to run a series of different filterbanks on
your audio. To do this you would write code that would look something like:

MarSystem* net = mng.create("Series", "net");

net->addMarSystem(mng.create("SoundFileSource", "src"));

MarSystem* filterbank = mng.create("Fanout", "filterbank");

filterbank->addMarSystem(mng.create("Filter", "cf8"));

filterbank->addMarSystem(mng.create("Filter", "cf12"));

filterbank->addMarSystem(mng.create("Filter", "cf18"));

filterbank->addMarSystem(mng.create("Filter", "cf20"));

net->addMarSystem(filterbank);

Chapter 6: Architecture concepts 53

6.3.4 Accumulator

An Accumulator MarSystem accumulates result of multiple tick process calls to internal
MarSystem. It then generates output only once when all the results are accumulated. It is
used to change the rate of process requests.

For example, if the nTimes control for the Accumulator is set to 6, then each time the
Accumulator receives a tick(), it sends 6 tick()s to the MarSystems that are inside it. This
is shown graphically below:

One common use case for an Accumlator is if your algorithm needs to operate on a block
of data, for example, it might need to analyze a number of frames of an FFT in order to
detect a particular audio event.

An example of using an Accumulator could look like be:

MarSystem* net = mng.create("Series", "net");

MarSystem* acc = mng.create("Accumulator", "acc");

MarSystem* accuInternal = mng.create("Series", "accuInternal");

accuInternal->addMarSystem(mng.create("SoundFileSource", "src"));

accuInternal->addMarSystem(mng.create("Windowing", "ham"));

accuInternal->addMarSystem(mng.create("Spectrum", "spk"));

acc->addMarSystem(accuInternal);

//IMPORTANT NOTE:

//

//note that you can only add one Marsystem to an Accumulator

//any additional Systems added are simply ignored outputwise !!

//e.g. if you want to use multiple Marsystems in a row and accumulate

//their combined output, you need to put them in a series which you add

//to the accumulator

net->addMarSystem(acc);

net->updctrl("mrs_natural/inSamples", 512);

Chapter 6: Architecture concepts 54

net->updctrl("Accumulator/acc/mrs_natural/nTimes", 10);

In the above example, a SoundFileSource is followed by a hamming Window, a Spectrum
and a PowerSpectrum. All of these are added to an Accumulator, which is then added to
a global Series. The nTimes control of the Accumulator is then set to 10.

The output of this MarSystem would be a realvec with 512 observations, corresponding
to each of the bins of the FFT generated by the Spectrum, and with 10 columns (or samples).
Your algorithm could then analyze this two-dimensional matrix to look for the audio feature
you are investigating.

6.3.5 Shredder

A Shredder composite MarSystem does the inverse to what an Accumulator does. While an
Accumulator builds up a realvec containing the results from multiple ticks, a Shredder splits
this realvec into multiple chunks, effectively increasing the rate at which data is output.

A toy example of using both a Shredder and an Accumulator together would look some-
thing like:

MarSystem* net = mng.create("Series", "net");

MarSystem* acc = mng.create("Accumulator", "acc");

MarSystem* shred = mng.create("Shredder", "shred");

acc->addMarSystem(mng.create("SoundFileSource", "src"));

net->addMarSystem(acc);

shred->addMarSystem(mng.create("AudioSink", "dest"));

net->addMarSystem(shred);

net->updctrl("Accumulator/acc/SoundFileSource/src/mrs_string/filename", sfName);

net->updctrl("Shredder/shred/AudioSink/dest/mrs_bool/initAudio", true);

net->updctrl("mrs_natural/inSamples", 256);

net->updctrl("Accumulator/acc/mrs_natural/nTimes", 10);

net->updctrl("Shredder/shred/mrs_natural/nTimes", 10);

In the above example, an Accumulator is added first to a global Series network, and then
a Shredder is added to this Series. A SoundFileSource is then added to the Accumulator,
and an AudioSink is added to the Shredder. The nTimes control of both the Shredder and
Accumulator are then set to 10.

This network would read in data from the SoundFileSource, and the Accumulator would
build up a buffer of 10 chunks of this audio. The Shredder would then take these 10 slices
of audio data and would split them back into 10 chunks, which would then be output to
the AudioSource.

This whole procedure would be akin to buffering a section of audio 10 times the size of
the number of samples that were input. So, since we set the inSamples of the network to
256, the number of samples output by the Acccumulator would be 2560.

Chapter 6: Architecture concepts 55

6.4 Linking of controls

THIS SECTION WAS JUST A COPY-PASTE FROM A LONG EMAIL FROM THE
DEVELOPERS MAILING LIST - STILL NEEDS A BIT OF REVISION, BUT ALREADY
PROVIDES IMPORTANT INFORMATION ABOUT THE LINKING OF CONTROLS IN
MARSYAS (lgmartins)

This refactoring is the "part II" of the last refactoring to the linking mechanism, done
some weeks ago.

In the first part of the refactoring we changed the way linked controls store their values
(i.e their data - a real number, an integer, a string, a realvec, etc). Before this refactoring,
each control had it’s own data allocation, and so everytime we changed a control’s value,
such change had to be propagated (i.e. copied) to all the linked controls (if any). Such a copy
meant that the same data would be replicated in memory a number of times equal to the
number of existing links. Furthermore, keeping all those copies in sync each time we change
a control value implied a lot of copying. This was really ineficient, both computationally
and memory-wise, and all the code for managing such a synchronization was a mess.

So, the first step was to make all MarControls that are linked to each other share a
same MarControlValue (i.e. the marsyas object that in fact stores in memory the data
in MarControls). This automatically solves the synchronization problem, although it may
create some others if we start thinking about multi-treaded code in Marsyas (but let’s forget
about multi-threads for now).

When linking a control (let’s say ctrl A) to another control (ctrl B), it’s now just a
matter of instructing control A to start using the MarControlValue used by control B. The
old MarControlValue of ctrl A can therefore be deleted from memory, in case no other
MarControl is still pointing to it (i.e. refcounting).

To do so, in marsyas pseuso-code, we would write:

ctrl_A->linkTo(ctrl_B);

Or, in case we didn’t have the direct pointer to the controls, using their pathnames and
the MarSystem API:

msys->linkControl("mrs_xxx/A", "mrs_xxx/B");

This brings us to the first important detail: during the linking of two controls, it’s
important the order of the linking operation. Doing ctrl A->linkTo(ctrl B) will discard the
current value of ctrl A, which will now use the value currently stored in ctrl B. If we reverse
it (ctrl B->linkTo(ctrl A);), ctrl B value will be discarded (we can think as "overwriten")
in favour of the value of ctrl A. This is only relevant at the time of the linking operation,
and users should, if nothing else, be aware of which value the want to keep when linking two
controls. Of course, after the linking is done, changing the value of ctrl B will also change
the value of ctrl A, and vice-versa, making this detail syntatically meaningless.

However, this order of the linking operation is now stored internally by all MarControls
in marsyas. And the reason for this has to do with the unlinking operation of controls. This
was the work done in "part II" of the linking/unlinking refactoring, just completed today.

In the first stage of the refactoring, we were not storing anywhere the order of the
linking of two controls. So we just kept a table with references to all the MarControls
linked together (i.e. sharing the same value/data), without any information to who linked
to whom originally.

Chapter 6: Architecture concepts 56

This was quite elegant in fact, allowing to easily unlink any control from a set of linked
controls by just cloning in memory its current value (i.e. creating a new but equal valued
MarControlValue object), removing it from the reference table of the MarControlValue
object holding its value, and re-pointing the control to, from that time on, start using the
new cloned data object instead.

The problem is that in Marsyas, the most interesting use of unlinking controls is a bit
more demanding. The way just described of completely unlinking a control from all the
other linked controls may not be desirable at all.

Suppose the following scenario: we have a composite MarSystem (i.e. a MarSystem with
other MarSystems inside, connected in series, for e.g.) where we have a control (say, ctrl X)
that we want to always link to, for example, the output control of the last child MarSystem
(let’s say ctrl processedData control of the last child MarSystem). This is exactly the case of
the composite FlowThru, so you can refer to its .cpp/.h code for an actual implementation.
So we start by linking ctrl X to the ctrl processedData of the last child:

ctrl_processedData = msys->getctrl("xxx/lastChildMsys1/mrs_realvec/processedData");

ctrl_X->linkTo(ctrl_processedData);

Semanticaly, this is the order that makes more sense (but nothing prevents us to do it the
other way around - the link will work as well!), since we are overwriting ctrl X’s value with
the current value of ctrl processedData, which is in fact an "output" control (controls in
Marsyas do not have an explicit in/out attribute - "output" controls are considered controls
to which makes no sense writing to because they will be ignored and overwriten by their
owning MarSystem; "input" controls on the other hand will be used internally by their
owning MarSystem as parameters, but they may also be read to know the current control
value currently being used).

Graphically, this link can be represented as:

ctrl_processedData <--- ctrl_X

If we now need to link some other controls from other MarSystems to ctrl X, we just
need to explicitly do it:

ctrl_Y->linkTo(ctrl_X);

ctrl_W->linkTo(ctrl_X);

ctrl_Z->linkTo(ctrl_W); //this control will be indirectly connected to ctrl_X, altough its link target is ctrl_W

Graphically:

ctrl_processedData <--- ctrl_X <--- ctrl_Y

^

|--- ctrl_W <--- ctrl_Z

So, after this we have ctrl X, ctrl Y, ctrl W and ctrl Z effectively all linked to and
sharing the same value with ctrl processedData, with minimal computational burden and
a small memory footprint.

Now imagine that we want to add a new child to the FlowThru composite. Since we want
ctrl X (and all the controls linked to it) sharing the value of the last child in the FlowThru
composite, we must update the ctrl X —> ctrl processedData link! In other words, we need
to unlink ctrl X from ctrl processedData of the previous last child MarSystem, and re-link
it to the ctrl processedData of the new last child of the composite. For that we could think
that the following way would cut it:

Chapter 6: Architecture concepts 57

ctrl_processedData = msys->getctrl("xxx/lastChildMsys2/mrs_realvec/processedData");

ctrl_X->unlink();

ctrl_X->linkTo(ctrl_processedData);

However, calling unlink in this way (i.e. the way implemented in "part I" of the refac-
toring) would unlink ctrl X from all the other linked controls (i.e. ctrl W, ctrl Y, etc) and
relinking it alone to the new ctrl processedData (i.e. represented as (2) below) from the
new last child. All the other previously linked controls would still be linked to the same
ctrl processedData of the previous last child in the composite. The only way around this
would be to manually keep track of what links would have to be unlinked and relinked to
the new control.

Graphically:

ctrl_processedData(1) <--- ctrl_Y

^

|--- ctrl_W <--- ctrl_Z

ctrl_processedData(2) <--- ctrl_X

As it is easy to imagine, any minimally complex network of multiple-nested MarSystems
and linked controls would be totally insane to manage! Here’s an example of what we would
have to explicitly do to achieve what we really wanted:

ctrl_processedData = msys->getctrl("xxx/lastChildMsys2/mrs_realvec/processedData");

ctrl_X->unlink();

ctrl_X->linkTo(ctrl_processedData_X);

ctrl_Y->unlink();

ctrl_Y->linkTo(ctrl_X);

ctrl_W->unlink();

ctrl_W->linkTo(ctrl_X);

ctrl_Z->unlink();

ctrl_Z->linkTo(ctrl_W); //we must remind that this one was originally connected to W and not directly to X! :-\

(OK, if you managed to follow me till here without getting suicidal tendencies or fall-
ing totally asleep, please go to http://marsyas.sness.net/community/getting involved and
welcome aboard ;-)).

The best way to make Marsyas solve this automatically for us was to keep a simple
record of the original link orders, as explained above. If we know who originally linked to
whom, it’s then easy to unlink a control from a set of controls, but keep all the controls
that were originally connected (or indirectely connected) still attached to it. So after the
"part II" of the refactoring, if we want to reconnect ctrl X (and all the controls originally
linked to it) to the new last child in the composite, we would only need to do:

ctrl_X->unlinkFromTarget(); //this is in fact not needed! See below...

ctrl_processedData = msys->getctrl("xxx/lastChildMsys2/mrs_realvec/processedData");

ctrl_X->linkTo(ctrl_processedData);

As it’s possible to see, the unlink() method is no longer used (it was deprecated) and we
should now use unlinkFromTarget() for achieving the desired result. By "target" I mean
the following: everytime we link a control *to* another control (and here we start to see
the importance of the order of linking, other than the known issue of which control gets its

Chapter 6: Architecture concepts 58

value overwriten by the other as explained above), we are directly "targeting" or linking to
that control. So for the case of ctrl X, when we linked it to ctrl processedData, we made
the latter the "target" of ctrl X. As we can see, each control, even if linked to any arbitrary
number of controls, only has one "target" control, i.e. the one it was originaly linked to.
So, when we call ctrl X->unlinkFromTarget() above, we are just unlinking ctrl X from its
target (i.e. ctrl processedData(1) and any other controls that have that control as their
target) but keeping the links with all the other controls that have ctrl X as their direct or
indirect target. Graphically we get:

ctrl_processedData(1)

ctrl_processedData(2) <--- ctrl_X <--- ctrl_Y

^

|--- ctrl_W <--- ctrl_Z

In truth, we do not even need to explicitly call unlinkFromTarget() before linking ctrl X
to the new target. Since each linked control can only have one target, re-linking it to other
control will automatically unlink it from its previous target.

All these linked controls can be seen as a directed graph problem (but please do not
suggest me using Ncuts in it ;-)), where there is no possibility of existing loops (e.g. at-
temping to link ctrl X with ctrl Z, as depicted above, would do nothing, since it’s very
easy to detect that they are already linked - we just need to compare the pointers to the
respective MarControlValue of each MarControl: if they point to the same object it means
the controls are already linked, so very easy and efficient to avoid any loops!).

In any case, if we need to completely unlink a control from all its linked controls (re-
gardeless of targets etc - i.e. the way the now deprecated unlink() method worked), we can
simply use:

ctrl_X->unlinkFromAll();

Although not so usefull as the former version of unlinking, there are some situations in
Marsyas where we need this (if you dare or if you are really curious about this, you can
have a look ate MarSystem copy constructor and at the put() method ;-)).

As a conclusion, if when constructing networks of linked controls in Marsyas we take
into mind the importance of the linking order, it’s really easy to construct semantically
meaninful links that will allow easy reconfiguration of MarSystem networks. Actually, this
is a mandatory feature if we want in the future to have MarSystem insertion/deletion at
runtime, without messing up all the linked controls in the network.

6.5 Scheduling

6.5.1 Scheduling in Marsyas

Scheduling is the art of delaying actions (events) until later periods in time. In Marsyas
time and event are are more general than many other systems. This allows for a wide range
of user specified control rates and actions.

Chapter 6: Architecture concepts 59

6.5.1.1 Time

Time is simply a counter. What it counts is up to the writer of a new timer class. The
two supplied timers, TmSampleCount and TmRealTime, count audio samples and system
micro-seconds respectively.

There are a number of issues surrounding control rates in Marsyas and most other time-
aware processing systems. Marsyas’ primary task is to process audio data. This data passes
through the network in buffers of size N. Usually the network is prompted to process the
buffer of N samples by an outer loop. During processing control of the network is lost as
the buffer of data passes through each MarSystem object. The scheduler checks for and
dispatches events when the network is ticked and before the buffer of data passes through
the network. Events are therefore dispatched at the start of each buffer processed.

Event dispatch is therefore governed by the audio sample rate. Ultimately every custom
timer bears some relation to the audio sample rate. Since events are dispatched at the start
of each tick, events are actually dispatched at a rate of every N samples. This implies that
there is a granularity on event dispatch based on the sample rate and buffer size. If an
event is to be dispatched at a point in time that falls inside a buffer, ie at 256 for a buffer
size of 512 samples, then that event will not be dispatched until the next buffer boundary
at which point its dispatch time will be <= current counter time.

We might wish to have sample accurate event timing. After all, there are other audio
processing systems that can claim the accuracy we might desire. The major obstacle to
achieving this accuracy is due to Marsyas’ dataflow architecture. When a buffer of N
samples passes through the network it is processed multiple times (normally once by each
object in the network). This means that each sample recurs a number of times equal to
the number of Marsystems that process it. More specifically, if the time is T when the
network is ticked, then after the first MarSystem processes the buffer of N samples time
will be at T+N. The next MarSystem will start processing the buffer at time T. In this way,
time bounces between T and T+N as the buffer passes through the network. This situation
makes it exceedingly difficult to make the network consistent for events that occur between
T and T+N. If a control value C is to be changed at time T+K where 0<K<N then for C
to remain consistent for all MarSystem objects that might be interested then it must be
changed to the previous state at the start of buffer processing then to the new value at
the event time - each time the buffer is processed. This would be somewhat difficult and
computationally expensive to accomplish within the dataflow model. For this reason the
scheduler only dispatches events on buffer boundaries - when the network is ticked - as this
is the only point when all MarSystems are at the same point in time.

In many systems multiple control rates are desireable. Consider two timers based on
separate sample rates such as 44.1kHz and 12.34kHz. Since both of these rates are regular,
that is they repeat at a constant rate, then a simple conversion function can be used to
convert between the two rates. By converting one of the rates to the other a single timer
can be used in the scheduler. However for other timers an errorless conversion function may
not be possible. Consider a control rate based on detecting someone tapping a drum stick.
The rate of tapping could be described as irregular because it is not known exactly when
the next tap will happen. Combining this timer with the audio sample rate creates the
problem that no perfect conversion function is possible that can compute what the sample
time will be for N taps in the future. In Marsyas this problem is bypassed through the

Chapter 6: Architecture concepts 60

support of multiple timers. Events are therefore posted on the timers they are specified on
and no timer conversion takes place.

6.5.1.2 Event

An event is simply something that happens at some point in time. In Marsyas an event
is a class that contains a user-defined function. What this function contains is up to the
writer and can act on the Marsyas network or outside of it. Marsyas is not threaded and
neither is the scheduler so the scheduler will wait for the event to complete its action before
resuming. Be careful not to do excessive processing during the dispatch of an event.

6.5.2 Components of the Marsyas Scheduler

The scheduler is made up of a collection of files from those used by the scheduler to those
that support it. The classes directly related to the scheduler along with their relationships
is shown in See Figure 6.1.

Chapter 6: Architecture concepts 61

Figure 6.1: Scheduler class diagram.

6.5.2.1 MarSystem

Each MarSystem object has its own scheduler. This makes it possbile to post events on the
MarSystem object directly. However, once a MarSystem is contained within another (within
a Composite) it no longer responds to tick messages. This means that the schedulers in any
of the contained objects will remain dormant. Therefore the only operational scheduler in
a network is the one in the MarSystem being ticked.

Posting events on the scheduler is done through a number of updctrl methods. Each
one takes a TmTime class as its first parameter.

void updctrl(EvEvent* me);

void updctrl(TmTime t, EvEvent* ev);

void updctrl(TmTime t, Repeat rep, EvEvent* ev);

void updctrl(TmTime t, std::string cname, MarControlPtr control);

Chapter 6: Architecture concepts 62

void updctrl(TmTime t, Repeat rep, std::string cname, MarControlPtr control);

Additional methods for adding and removing timers and discovering the current time
on a timer are available. The updtimer method is provided to modify timer parameters at
run-time.

mrs_natural getTime(std::string timer_name);

void updtimer(std::string cname, TmControlValue value);

void addTimer(std::string class_name, std::string identifier);

void addTimer(TmTimer* t);

void removeTimer(std::string name);

6.5.2.2 Scheduler

It is the schedulers job to see that events are passed to the correct timer when they are
posted. On each network tick the scheduler prompts each of the timers it manages to
dispatch their pending events.

6.5.2.3 Timers

Timers define a control rate on which events may be scheduled. It is also the job of the
timer to manage a queue of events and dispatch them at their scheduled dispatch time.

Creating a custom timer is simply a matter of defining its control rate, its units (ie
seconds), and implementing a function to count the elapsed time between ticks. See the
‘TmSampleCount’ timer as an example of a custom timer.

6.5.2.4 Events

Events are the actions that happen at specified points in time. In Marsyas events inherit
from the ‘EvEvent’. Custom events are constructed by inheriting from ‘EvEvent’ and over-
riding the dispatch and clone methods.

The overridden EvEvent::dispatch method is where the custom event action is defined.
Since Marsyas is not threaded the network will block during dispatch. This could result in
breaks in audio for real-time audio if the action takes too much time.

The clone method is intended to be used by the ‘TmTimer’ to copy the event when it’s
posted. This would force the user to take care of its deletion and avoid confusion about
who must do this. At this time clone is not used for this task so that once an ‘EvEvent’ is
posted it is under the control of the ‘TmTimer’ it was posted on. It should not be reposted
or deleted by the user. The search is on for a better solution.

‘EvEvent’ supports repetition without having to create new events. The
setRepeat(Repeat r) method takes a ‘Repeat’ object that defines how to repeat the
event. The default behaviour is no repetition. A true value from the repeat() method
tells the scheduler to repeat the event. This method queries the supplied ‘Repeat’ object.
The getRepeatInterval() returns the repeat rate. The repeat_interval(string

interval) may be used to convert the supplied interval to a count. It is used in the
EvEvent::doRepeat() method.

6.5.2.5 Repeat

Repetition of events is defined using the ‘Repeat’ class. This class is simply a tuple of the
repetition time interval and repetition count. There are three ways to define repetition.

Chapter 6: Architecture concepts 63

Repeat() defines no repetition. Repeat(string interval) defines an infinite repetition at
a rate specified by the supplied interval. Repeat(string interval, mrs_natural count)

defines a finite repetition of count repeats to occur every interval.

Time is specified as a single string without a timer name. It is assumed that the specified
interval time will be meaningful on the timer that the event is posted in.

6.5.2.6 TmTime

Time is specified using the ‘TmTime’ class as TmTime(string timer, string time). The
first parameter is the name of the timer on which the second parameter has meaning. As
an example, TmTime("TmSampleCount/Virtual","5s") specifies 5 seconds from the point
of time it is used on the TmSampleCount timer called Virtual.

6.5.2.7 TmTimerManager

Rather than instantiating timers and adding them to the scheduler using the
MarSystem::addtimer(TmTimer* tmr) method, timers may be specified and added by
name using the MarSystem::addtimer(string name, string ident) method where name
is the timer name, ie TmSampleCount, and ident is the unique identifier, ie Virtual. Of
course, if the timer name is not known then this method will fail. New timers can be
added to the factory using the method laid out in ‘TmTimerManager.cpp’. See [Timer
Factory], page 103.

Chapter 7: System details 64

7 System details

7.1 Library reference

7.1.1 Source documentation

MarSystems are documented in the source documentation available at
http://marsyas.sness.net/docs/index.html. Most MarSystems are organized
into groups.

7.1.2 MarSystem groups

The groups are fairly self-explanatory, but we should clarify a few groupings:

• Processing: audio block => audio block. Examples are Gain and Filter

• Analysis: audio block => other block. Examples are Spectrum and Rms.

• Synthesis: other block => audio block. Examples are SineSource and NoiseSource.

There is one special group: Basic Processing. This is a subset of the Processing group.

To see all MarSystems, look at Data Structures instead of Main Page.

7.1.3 Limited documentation

The “main” MarSystems are fairly well documented, but many MarSystems lack even basic
documentation. In this case, the only option is to read the source code.� �

Help wanted: missing info!

Once you have learned how to use an undocumented MarSystem,
please help document it. The source documentation only requires
adding a special comment in the source file, so it is very easy! Please
see Section “Contributing source documentation” in Marsyas De-
veloper’s Manual.

If you can fill in any details, please see Section “Contributing doc-
umentation” in Marsyas Developer’s Manual.
 	

7.2 Predefined types

7.2.1 Variables types

Marsyas contains some predefined, portable data types:

mrs_bool

mrs_natural (integers)

mrs_real

mrs_complex

The use of these variable types instead of normal C++ like int and double is strongly
recommended.

http://marsyas.sness.net/docs/index.html

Chapter 7: System details 65

� �
Warning: a number like ‘100’ is interpreted as a mrs natural. If you want to
pass this value to a mrs real, you must specify ‘100.0’.
 	

7.2.2 Constants

A number of useful constants, such as PI and TWOPI (at double precision instead of float)
are defined in ‘marsyas/common.h’.

7.3 Realvec

The basic unit of data in Marsyas is the realvec, which is essentially a one- or two-
dimensional array of real numbers. All data flows from MarSystem to MarSystem in the
form of realvecs; the actual function which does the main work of every MarSystem is

void

MarSystem_name::myProcess(realvec& in, realvec& out)

{

...

}

In other words, each MarSystem takes a realvec as input, and writes a realvec as
output.

7.3.1 Reading and writing to a realvec

Realvecs may be accessed using var_name(index) = value.

Non-pointer way (allocation in stack)

mrs_natural i,j;

realvec foo;

foo.create(10);

for (i=0; i<10; i++) {

foo(i) = i;

}

for (i=0; i<10; i++) {

cout<<foo(i)<<endl;

}

realvec bar;

bar.create(5,10);

for (i=0; i<5; i++) {

for (j=0; j<10; j++) {

bar(i,j) = i+j;

}

}

Pointer way (allocation on heap)

// pointer for this example

realvec *baz;

Chapter 7: System details 66

// automatically calls calls create

baz = new realvec(10,20);

// we could do it this way if we wanted (instead of the above line)

//baz = new realvec;

//baz->create(10,20);

for (i=0; i<10; i++) {

for (j=0; j<20; j++) {

(*baz)(i,j) = i+j;

}

}

delete baz; // don’t forget to free the allocated memory

7.3.2 Resizing a realvec

The size of a realvec may be changed dynamically; you may also get the current size.

stretch();

getSize();

// for two-dimensional realvecs

getCols();

getRows();

If you do not know how big your realvec should be, use stretchWrite(...). This
function checks to make sure that the realvec is big enough; if not, it resizes the realvec (by
doubling the size) so that it can store the value. This function is much slower than normal
writing.

7.3.3 Realvec arithmetic

Realvecs may be set (=), added, subracted, and the like.

// realvec foo created, filled with data, etc.

...

realvec bar;

bar = foo;

// bar is now the same size and contains the same data

// arithmetic

baz = foo + bar;

baz = foo + 3;

7.3.4 Applying a function to a realvec

Use apply().

void

TranscriberExtract::toMidi(realvec* pitchList)

{

Chapter 7: System details 67

pitchList->apply(hertz2pitch);

}

7.3.5 Realvec input and output to a file

/* you can do

realvec foo;

...

cout<<foo;

file<<foo;

*/

friend std::ostream& operator<<(std::ostream&, const realvec&);

friend std::istream& operator>>(std::istream&, realvec&);

// does the "file<<foo" method

void write(std::string filename) const;

void read(std::string filename);

// input/output functions for line-separated text files

void readText(std::string filename);

void writeText(std::string filename);

7.3.6 Statistical analysis

This is an incomplete list:

maxval();

minval();

mean();

median();

sum();

std();

var();

meanObs();

stdObs();

varObs();

normObs();

sort();

abs();

sqr();

sqroot();

covariance();

covariance2();

correlation();

det();

divergenceShape();

bhattacharyyaShape();

Chapter 7: System details 68

7.3.7 Other realvec functions

For a complete (and up-to-date) list of all realvec functions, please see the file
‘marsyas/realvec.h’

7.4 System limitations

There are many bugs in Marsyas (far too many to list here!), but there are a few issues
which are more fundamental. We list these issues here, along with workarounds.

7.4.1 Stereo vs. mono in a spectrum

Due to the way that observations behave in Marsyas, in some cases it is impossible to
differentiate between a stereo signal and a mono signal which is twice as long. In particular,
there is currently no direct way to tell apart a stereo pair of spectrums from a mono spectrum
with twice the number of bins.

In these cases, we recommend that you use a Parallel Composite: split the stereo signal
into separate mono dataflows (using Parallel), then treat each mono signal individually.

Chapter 8: Scripting 69

8 Scripting

MarSystems may be used without programing in C++; the bindings for Python, Lua, Ruby,
and Java allow the use of other languages.

8.1 Interactive python

8.1.1 Getting started with python

The WITH_SWIG and WITH_SWIG_PYTHON options in the CMake build system must have been
set ON.

8.1.2 Swig python bindings bextract example

bextract implemented using the swig python Marsyas bindings

George Tzanetakis, January, 16, 2007

import marsyas

Create top-level patch

mng = marsyas.MarSystemManager()

fnet = mng.create("Series", "featureNetwork")

functional short cuts to speed up typing

create = mng.create

add = fnet.addMarSystem

link = fnet.linkControl

upd = fnet.updControl

get = fnet.getControl

Add the MarSystems

add(create("SoundFileSource", "src"))

add(create("TimbreFeatures", "featExtractor"))

add(create("TextureStats", "tStats"))

add(create("Annotator", "annotator"))

add(create("WekaSink", "wsink"))

link the controls to coordinate things

link("mrs_string/filename", "SoundFileSource/src/mrs_string/filename")

link("mrs_bool/hasData", "SoundFileSource/src/mrs_bool/hasData")

link("WekaSink/wsink/mrs_string/currentlyPlaying","SoundFileSource/src/mrs_string/currentlyPlaying")

link("Annotator/annotator/mrs_natural/label", "SoundFileSource/src/mrs_natural/currentLabel")

link("SoundFileSource/src/mrs_natural/nLabels", "WekaSink/wsink/mrs_natural/nLabels")

update controls to setup things

upd("TimbreFeatures/featExtractor/mrs_string/disableTDChild", marsyas.MarControlPtr.from_string("all"))

Chapter 8: Scripting 70

upd("TimbreFeatures/featExtractor/mrs_string/disableLPCChild", marsyas.MarControlPtr.from_string("all"))

upd("TimbreFeatures/featExtractor/mrs_string/disableSPChild", marsyas.MarControlPtr.from_string("all"))

upd("TimbreFeatures/featExtractor/mrs_string/enableSPChild", marsyas.MarControlPtr.from_string("MFCC/mfcc"))

upd("mrs_string/filename", marsyas.MarControlPtr.from_string("bextract_single.mf"))

upd("WekaSink/wsink/mrs_string/labelNames",

get("SoundFileSource/src/mrs_string/labelNames"))

upd("WekaSink/wsink/mrs_string/filename", marsyas.MarControlPtr.from_string("bextract_python.arff"))

do the processing extracting MFCC features and writing to weka file

previouslyPlaying = ""

while get("SoundFileSource/src/mrs_bool/hasData").to_bool():

currentlyPlaying = get("SoundFileSource/src/mrs_string/currentlyPlaying").to_string()

if (currentlyPlaying != previouslyPlaying):

print "Processing: " + get("SoundFileSource/src/mrs_string/currentlyPlaying").to_string()

fnet.tick()

previouslyPlaying = currentlyPlaying

Chapter 9: Writing applications 71

9 Writing applications

9.1 Including libraries and linking

To use any marsyas code in your program(s), you need to include the Marsyas libraries in
your project.

9.1.1 ... using qmake

The easiest way to compile Marsyas programs is to use qmake. You may do this even if you
used autotools to configure Marsyas itself; the author of this documentation uses autotools
to build Marsyas, and qmake to build his programs.

Create a ‘my_program_name.pro’ file:

your files

SOURCES = my_program_name.cpp

#HEADERS += extra_file.h

#SOURCES += extra_file.cpp

if running inside the source tree

adjust as necessary:

MARSYAS_INSTALL_DIR = ../../

INCLUDEPATH += $$MARSYAS_INSTALL_DIR/src/marsyas/

LIBPATH += $$MARSYAS_INSTALL_DIR/lib/release/

if installed elsewhere

#MARSYAS_INSTALL_DIR = /usr/local

#MARSYAS_INSTALL_DIR = ${HOME}/usr/

#INCLUDEPATH += $$MARSYAS_INSTALL_DIR/marsyas/

#LIBPATH += $$MARSYAS_INSTALL_DIR/lib/

basic OS stuff; do not change!

win32-msvc2005:LIBS += marsyas.lib

unix:LIBS += -lmarsyas -L$$MARSYAS_INSTALL_DIR/lib

!macx:LIBS += -lasound

macx:LIBS += -framework CoreAudio -framework CoreMidi -framework CoreFoundation

Then type qmake to generate a Makefile. Now you many compile normally.

9.1.2 ... writing your own Makefile

We highly recommend that you use qmake to create a Makefile. However, if you enjoy swear-
ing at your computer and cursing k&r, rms, gnu, and every other three-letter programmer
acronym in existence, go ahead. read on.

Here are sample Makefiles to get you started:

Chapter 9: Writing applications 72

Makefile.linux

SOURCE = helloworld.cpp

TARGET = helloworld

#MARSYAS_INSTALL = /usr/local/

MARSYAS_INSTALL = ${HOME}/usr/

all:

rm -f *.o

g++ -Wall -O2 -I./ -I${MARSYAS_INSTALL}/include/marsyas -c \

-o ${TARGET}.o ${SOURCE}

g++ -L${MARSYAS_INSTALL}/lib -o ${TARGET} ${TARGET}.o -lmarsyas \

-lasound

Makefile.osx

SOURCE = helloworld.cpp

TARGET = helloworld

#MARSYAS_INSTALL = /usr/local/

MARSYAS_INSTALL = ${HOME}/usr/

all:

rm -f *.o

g++ -Wall -O2 -I./ -I${MARSYAS_INSTALL}/include/marsyas -c \

-o ${TARGET}.o ${SOURCE}

g++ -L${MARSYAS_INSTALL}/lib -o ${TARGET} ${TARGET}.o -lmarsyas \

-framework CoreAudio -framework CoreMidi -framework CoreFoundation

9.1.3 ... on Windows Visual Studio

Create the .cpp and .h files you will be working with in the project. Don’t worry about
the VS project file, it will be generated by qmake.

Type qmake -project at the command line to generate the .pro file, which Qt uses to
create the Makefile (or you can make your own as above). Don’t worry about linking to
external libraries, we will take care of that in Visual Studio.

Once you have a .pro file, type

qmake -tp vc -spec win32-msvc2008

Or equivalent based on your system. This will generate a .vcproj file. Open this in Visual
Studio.

Navigate to Tools->Options->Projects and Solutions->VC++ Directories and ensure:

• Executable files includes qt’s bin directory Include files includes %qt-root%\include,
%marsyas-root%\src\marsyas, %marsyas-root%\src\marsyasqt\, %marsyas-root%
(for config.h)

• Library files include dsdk, marsyas, and qt’s lib directories

Chapter 9: Writing applications 73

• In project properties->linker: General-> Ignore import libary: No Link
Library Dependencies: Yes Input-> Additional Dependencies: add
c:\marsyas\build\lib\Release\marsyas.lib c:\marsyas\build\lib\Release\marsyasqt.lib

"C:\Program Files\Microsoft DirectX SDK (November 2008)\Lib\x86\dsound.lib"

imm32.lib winmm.lib ws2_32.lib System-> Subsystem: Console

These settings worked for the author.

9.2 Example programs

The most efficient way to learn how to write programs that use MarSystem is to read these
examples. We recommend that you use these examples as templates when you begin to
write your own programs.

9.2.1 Hello World (playing an audio file)

Instead of printing “Hello World!” , we shall play a sound file. This is relatively straightfor-
ward: we create a MarSystem which is a series of SoundFileSource, Gain, and AudioSink.
Once the network is created and the controls are given, we call tick() to make time pass
until we have finished playing the file.

helloworld.cpp

#include "MarSystemManager.h"

using namespace std;

using namespace Marsyas;

void sfplay(string sfName, float gain)

{

MarSystemManager mng;

MarSystem* playbacknet = mng.create("Series", "playbacknet");

playbacknet->addMarSystem(mng.create("SoundFileSource", "src"));

playbacknet->addMarSystem(mng.create("Gain", "gt"));

playbacknet->addMarSystem(mng.create("AudioSink", "dest"));

playbacknet->updctrl("SoundFileSource/src/mrs_string/filename", sfName);

playbacknet->updctrl("Gain/gt/mrs_real/gain", gain);

playbacknet->updctrl("AudioSink/dest/mrs_bool/initAudio", true);

while (playbacknet->getctrl("SoundFileSource/src/mrs_bool/notEmpty")->to<mrs_bool>())

{

playbacknet->tick();
}

delete playbacknet;

}

int main(int argc, const char **argv)

{

Chapter 9: Writing applications 74

string fileName;

float gain;

if (argc<2)

{

cout<<"Please enter filename."<<endl;

exit(1);
}

else
{

fileName = argv[1];

}

if (argc<3)

{

gain = 1;

}

else
{

gain = atof(argv[2]);
}

cout << "Playing file " << fileName << " at volume " <<

gain << endl;

sfplay(fileName,gain);
exit(0);

}

9.2.2 Reading and altering controls

Here we have modified the example from the previous section: we have added the ability to
start at an arbitrary position (time) inside the audio file. To calculate the starting position
in the file, we must know the sample rate and number of channels. We get this information
from the SoundFileSource with getctrl.

controls.cpp

#include "MarSystemManager.h"

using namespace std;

using namespace Marsyas;

void sfplay(string sfName, float gain, float start)

{

MarSystemManager mng;

MarSystem* playbacknet = mng.create("Series", "playbacknet");

playbacknet->addMarSystem(mng.create("SoundFileSource", "src"));

Chapter 9: Writing applications 75

playbacknet->addMarSystem(mng.create("Gain", "gt"));

playbacknet->addMarSystem(mng.create("AudioSink", "dest"));

// calculate the starting position.

mrs_natural nChannels = playbacknet->getctrl("SoundFileSource/src/mrs_natural/nChannels")->to<mrs_natural>();
mrs_real srate = playbacknet->getctrl("SoundFileSource/src/mrs_real/israte")->to<mrs_real>();
mrs_natural startPosition = (mrs_natural) (start * srate * nChannels);

playbacknet->updctrl("SoundFileSource/src/mrs_string/filename", sfName);

playbacknet->updctrl("Gain/gt/mrs_real/gain", gain);

playbacknet->updctrl("AudioSink/dest/mrs_bool/initAudio", true);

// set the starting position of the source

playbacknet->updctrl("SoundFileSource/src/mrs_natural/pos", startPosition);

while (playbacknet->getctrl("SoundFileSource/src/mrs_bool/notEmpty")->to<mrs_bool>())

{

playbacknet->tick();
}

delete playbacknet;

}

int main(int argc, const char **argv)

{

string fileName;

float gain, start;

if (argc<2)

{

cout<<"Please enter filename."<<endl;

exit(1);
}

else
{

fileName = argv[1];

}

if (argc<3)

{

gain = 1;

}

else
{

gain = atof(argv[2]);
}

if (argc<4)

{

start = 0;

}

Chapter 9: Writing applications 76

else
{

start = atof(argv[3]);
}

cout << "Playing file " << fileName << " at volume " <<

gain << " starting at " << start << " seconds" << endl;

sfplay(fileName,gain,start);
exit(0);

}

9.2.3 Writing data to text files

Extract data from a network for further analysis (plotting, other programs, etc) is fairly
easy to do with PlotSink.

writefile.cpp

#include "MarSystemManager.h"

using namespace std;

using namespace Marsyas;

void recognize(string sfName)

{

MarSystemManager mng;

MarSystem* pnet = mng.create("Series", "pnet");

// standard network

pnet->addMarSystem(mng.create("SoundFileSource", "src"));

pnet->updctrl("SoundFileSource/src/mrs_string/filename", sfName);

pnet->addMarSystem(mng.create("Spectrum","spk"));

// add a PlotSink wherever we want to get data from

pnet->addMarSystem(mng.create("PlotSink","plot"));
pnet->updctrl("PlotSink/plot/mrs_string/filename", "out");

while (pnet->getctrl("SoundFileSource/src/mrs_bool/notEmpty")->to<mrs_bool>())

{

pnet->tick();
}

delete pnet;

}

int main(int argc, const char **argv)

{

string fileName;

if (argc<2)

{

Chapter 9: Writing applications 77

cout<<"Please enter filename."<<endl;

exit(1);
}

else
{

fileName = argv[1];

}

cout << "Processing file " << fileName << endl;

recognize(fileName);
exit(0);

}

9.2.4 Getting data from the network

Putting together a network of MarSystems is all well and good, but you probably want to
do something with that data. In this example we simply print it to the screen, but the
important thing to note is that we have the data at the level of C programming.

gettingdata.cpp

#include "MarSystemManager.h"

using namespace std;

using namespace Marsyas;

void recognize(string sfName)

{

MarSystemManager mng;

MarSystem* pnet = mng.create("Series", "pnet");

// standard network

pnet->addMarSystem(mng.create("SoundFileSource", "src"));

pnet->updctrl("SoundFileSource/src/mrs_string/filename", sfName);

pnet->addMarSystem(mng.create("Spectrum","spk"));
pnet->addMarSystem(mng.create("Gain", "g2"));

while (pnet->getctrl("SoundFileSource/src/mrs_bool/notEmpty")->to<mrs_bool>())

{

pnet->tick();
// gets data from the Spectrum for read only!

const realvec& processedData =

pnet->getctrl("Spectrum/spk/mrs_realvec/processedData")->to<mrs_realvec>();
cout << "Original Spectrum = " << processedData << endl;

// if we need to get the Spectrum and modify it, here is the way

// to do it. Notice that we must open a new scope using curly

// brackets so that MarControlAccessor is automatically de-

stroyed

Chapter 9: Writing applications 78

// when we are finished modifing the realvec control.

{

MarControlAccessor

acc(pnet->getctrl("Spectrum/spk/mrs_realvec/processedData"));
realvec&

processedData2 = acc.to<mrs_realvec>();

// we can now write to processedData without worries of

// breaking encapsulation

processedData2 *= 2.0;

cout << "Modified Spectrum = " << processedData2 << endl;

}

}

delete pnet;

}

int main(int argc, const char **argv)

{

string fileName;

if (argc<2)

{

cout<<"Please enter filename."<<endl;

exit(1);
}

else
{

fileName = argv[1];

}

cout << "Processing file " << fileName << endl;

recognize(fileName);
exit(0);

}

9.2.5 Command-line options

Getting options from the command-line is fairly easy; Marsyas provides a handy object
which parses the command-line for you.

commandOptions.cpp

#include "CommandLineOptions.h"

using namespace std;

using namespace Marsyas;

Chapter 9: Writing applications 79

CommandLineOptions cmd_options;

int helpOpt;

int usageOpt;

mrs_natural naturalOpt;

mrs_real realOpt;

mrs_string stringOpt;

void

printUsage()
{

MRSDIAG("commandOptions.cpp - printUsage");

cerr << "Usage: commandOptions " << "file1 file2 file3" << endl;

cerr << endl;

cerr << "where file1, ..., fileN are sound files in a MARSYAS supported format" << endl;

exit(1);
}

void

printHelp()
{

MRSDIAG("commandOptions.cpp - printHelp");

cerr << "commandOptions: Sample Program"<< endl;

cerr << "------------------------------" << endl;

cerr << endl;

cerr << "Usage: commandOptions file1 file2 file3" << endl;

cerr << endl;

cerr << "where file1, ..., fileN are sound files in a Marsyas supported format" << endl;

cerr << "Help Options:" << endl;

cerr << "-u --usage : display short usage info" << endl;

cerr << "-h --help : display this information " << endl;

cerr << "-n --natural : sets a ‘natural’ variable " << endl;

cerr << "-r --real : sets a ‘real’ variable " << endl;

cerr << "-s --string : sets a ‘string’ variable " << endl;

exit(1);
}

void

initOptions()
{

cmd_options.addBoolOption("help", "h", false);
cmd_options.addBoolOption("usage", "u", false);
cmd_options.addNaturalOption("natural", "n", 9);

cmd_options.addRealOption("real", "r", 3.1415927);

cmd_options.addStringOption("string", "s", "hello world");

}

Chapter 9: Writing applications 80

void

loadOptions()
{

helpOpt = cmd_options.getBoolOption("help");
usageOpt = cmd_options.getBoolOption("usage");
naturalOpt = cmd_options.getNaturalOption("natural");
realOpt = cmd_options.getRealOption("real");
stringOpt = cmd_options.getStringOption("string");

}

void doStuff(string printMe)

{

cout<<printMe<<endl;

}

int main(int argc, const char **argv)

{

initOptions();
cmd_options.readOptions(argc,argv);
loadOptions();

vector<string> soundfiles = cmd_options.getRemaining();

if (helpOpt)

printHelp();

if ((usageOpt) || (argc==1))

printUsage();

cout<<"Command-line options were:"<<endl;

cout<<" --natural: "<<naturalOpt<<endl;

cout<<" --real: "<<realOpt<<endl;

cout<<" --string: "<<stringOpt<<endl;

cout<<"(these may simply be the default values)"<<endl;

cout<<endl;

cout<<"The rest of the command-line arguments were: "<<endl;

vector<string>::iterator sfi;

for (sfi = soundfiles.begin(); sfi != soundfiles.end(); ++sfi)

{

doStuff(*sfi);

}

}

Chapter 9: Writing applications 81

9.3 Writing Qt4 applications

Writing applications that use Marsyas and Qt4 is quite simple, thanks to ‘libmarsasqt’.� �
Warning: Marsyas compiled with autotools does not compile ‘libmarsyasqt’
by default. To enable it, please pass --enable-marsyasqt to configure.
 	

9.3.1 Including and linking to libmarsyasqt

Create a ‘.pro’ file based on this template:

your files

SOURCES = main.cpp

HEADERS = mainwindow.h

SOURCES += mainwindow.cpp

HEADERS += backend.h

SOURCES += backend.cpp

if running inside the source tree

MARSYAS_INSTALL_DIR = ../../../

INCLUDEPATH += $$MARSYAS_INSTALL_DIR/src/marsyasqt_wrapper/

LIBPATH += $$MARSYAS_INSTALL_DIR/lib/release/

if installed elsewhere

#MARSYAS_INSTALL_DIR = /usr/local

#MARSYAS_INSTALL_DIR = ${HOME}/usr/

#INCLUDEPATH += $$MARSYAS_INSTALL_DIR/src/marsyas/

#LIBPATH += $$MARSYAS_INSTALL_DIR/lib/

unix:LIBS += -lmarsyas -lmarsyasqt

unix:!macx:LIBS += -lasound

macx:LIBS += -framework CoreAudio -framework CoreMidi -framework CoreFoundation

It is highly recommended that you separate the Qt code (ie mainwindow.cpp) from the
Marsyas code (ie backend.cpp).

9.3.2 MarSystemQtWrapper

The actual interaction between Qt and Marsyas is performed with a MarSystemQtWrapper

object. Add the following lines to your header file that deals with Marsyas:

#include "MarSystemQtWrapper.h"

using namespace MarsyasQt;

You may now create a pointer to a MarSystemQtWrapper in your object:

MarSystemQtWrapper *mrsWrapper;

Chapter 9: Writing applications 82

To use this object in your source file, create a MarSystem like normal, then pass it to a
new MarSystemQtWrapper object:

MarSystemManager mng;

playbacknet = mng.create("Series", "playbacknet");

... set up playbacknet...

// wrap it up to make it pretend to be a Qt object:

mrsWrapper = new MarSystemQtWrapper(playbacknet);

mrsWrapper->start();

mrsWrapper->play();

... do something for a while...

mrsWrapper->stop();

delete mrsWrapper;

9.3.3 Passing controls to a MarSystemQtWrapper

Since your MarSystem is wrapped up, you cannot access controls using the normal methods.
Instead, you must use a MarControlPtr:

MarControlPtr filenamePtr;

MarControlPtr positionPtr;

filenamePtr = mrsWrapper->getctrl("SoundFileSource/src/mrs_string/filename");

positionPtr = mrsWrapper->getctrl("SoundFileSource/src/mrs_natural/pos");

mrsWrapper->updctrl(filenamePtr,fileName);

... wait a bit...

newPos = (mrs_natural) positionPtr->to<mrs_natural>();

9.3.4 Other classes in MarsyasQt

MarsyasQt includes more than just MarSystemQtWrapper. Please refer to source documen-
tation in Section 7.1 [Library reference], page 64.

9.3.5 Qt4 example

To get started, look at the Qt4 tutorial files:

tutorial.pro

your files

SOURCES = main.cpp

HEADERS = mainwindow.h

SOURCES += mainwindow.cpp

HEADERS += backend.h

SOURCES += backend.cpp

if running inside the source tree

MARSYAS_INSTALL_DIR = ../../../

Chapter 9: Writing applications 83

INCLUDEPATH += $$MARSYAS_INSTALL_DIR/src/marsyasqt/

INCLUDEPATH += $$MARSYAS_INSTALL_DIR/src/marsyas/

LIBPATH += $$MARSYAS_INSTALL_DIR/lib/release/

if installed elsewhere

#MARSYAS_INSTALL_DIR = /usr/local

#MARSYAS_INSTALL_DIR = ${HOME}/usr/
#INCLUDEPATH += $$MARSYAS_INSTALL_DIR/marsyas/
#LIBPATH += $$MARSYAS_INSTALL_DIR/lib/

basic OS stuff; do not change!

win32-msvc2005:LIBS += marsyas.lib marsyasqt.lib

unix:LIBS += -lmarsyas -lmarsyasqt -L$$MARSYAS_INSTALL_DIR/lib

!macx:LIBS += -lasound

macx:LIBS += -framework CoreAudio -framework CoreMidi -framework CoreFoundation

main.cpp

/*

** Copyright (C) 2007 Graham Percival <gperciva@uvic.ca>

**

** This program is free software; you can redistribute it and/or modify

** it under the terms of the GNU General Public License as published by

** the Free Software Foundation; either version 2 of the License, or

** (at your option) any later version.

**

** This program is distributed in the hope that it will be useful,

** but WITHOUT ANY WARRANTY; without even the implied warranty of

** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

** GNU General Public License for more details.

**

** You should have received a copy of the GNU General Public License

** along with this program; if not, write to the Free Software

** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

*/

#include "mainwindow.h"

int main(int argc, char *argv[])

{

// to keep this example as simple as possible, we only take the

// filename from the command-line.

string fileName;

if (argc<2)

Chapter 9: Writing applications 84

{

cout<<"Please enter filename."<<endl;

exit(1);
}

else
{

fileName = argv[1];

}

QApplication app(argc, argv);

MarQTwindow marqt(fileName);
marqt.show();
return app.exec();

}

mainwindow.h

/*

** Copyright (C) 2007 Graham Percival <gperciva@uvic.ca>

**

** This program is free software; you can redistribute it and/or modify

** it under the terms of the GNU General Public License as published by

** the Free Software Foundation; either version 2 of the License, or

** (at your option) any later version.

**

** This program is distributed in the hope that it will be useful,

** but WITHOUT ANY WARRANTY; without even the implied warranty of

** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

** GNU General Public License for more details.

**

** You should have received a copy of the GNU General Public License

** along with this program; if not, write to the Free Software

** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

*/

#include <QApplication>

#include <QPushButton>

#include <QSlider>

#include <QVBoxLayout>

#include <QLCDNumber>

#include <iostream>

using namespace std;

#include "backend.h"

Chapter 9: Writing applications 85

class MarQTwindow : public QWidget

{

Q_OBJECT

public:
MarQTwindow(string fileName);

~MarQTwindow();

public slots:

void setMainPosition(int newPos);

private:
MarBackend *marBackend_;

QLCDNumber *lcd_;

};

mainwindow.cpp

/*

** Copyright (C) 2007 Graham Percival <gperciva@uvic.ca>

**

** This program is free software; you can redistribute it and/or modify

** it under the terms of the GNU General Public License as published by

** the Free Software Foundation; either version 2 of the License, or

** (at your option) any later version.

**

** This program is distributed in the hope that it will be useful,

** but WITHOUT ANY WARRANTY; without even the implied warranty of

** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

** GNU General Public License for more details.

**

** You should have received a copy of the GNU General Public License

** along with this program; if not, write to the Free Software

** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

*/

#include "mainwindow.h"

MarQTwindow::MarQTwindow(string fileName)

{

// typical Qt front-end

QPushButton *quit = new QPushButton(tr("Quit"));
connect(quit, SIGNAL(clicked()), qApp, SLOT(quit()));

QPushButton *updatePos = new QPushButton(tr("Update position"));

Chapter 9: Writing applications 86

QSlider *volume = new QSlider (Qt::Horizontal);
volume->setRange(0,100);
volume->setValue(50);

lcd_ = new QLCDNumber();
lcd_->setNumDigits(10);

QVBoxLayout *layout = new QVBoxLayout;

layout->addWidget(volume);
layout->addWidget(updatePos);
layout->addWidget(lcd_);
layout->addWidget(quit);
setLayout(layout);

// make the Marsyas backend

marBackend_ = new MarBackend();
marBackend_->openBackendSoundfile(fileName);

// make connections between the Qt front-end and the Marsyas backend:

// Qt -> Marsyas

connect(volume, SIGNAL(valueChanged(int)),
marBackend_, SLOT(setBackendVolume(int)));

// Marsyas -> Qt

connect(marBackend_, SIGNAL(changedBackendPosition(int)),
this, SLOT(setMainPosition(int)));

// Qt -> Marsyas (getBackendPosition) -> Qt (changedBackend-

Position)

connect(updatePos, SIGNAL(clicked()),
marBackend_, SLOT(getBackendPosition()));

}

MarQTwindow::~MarQTwindow()
{

delete marBackend_;

}

void MarQTwindow::setMainPosition(int newPos)

{

lcd_->display(newPos);
}

Chapter 9: Writing applications 87

backend.h

/*

** Copyright (C) 2007 Graham Percival <gperciva@uvic.ca>

**

** This program is free software; you can redistribute it and/or modify

** it under the terms of the GNU General Public License as published by

** the Free Software Foundation; either version 2 of the License, or

** (at your option) any later version.

**

** This program is distributed in the hope that it will be useful,

** but WITHOUT ANY WARRANTY; without even the implied warranty of

** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

** GNU General Public License for more details.

**

** You should have received a copy of the GNU General Public License

** along with this program; if not, write to the Free Software

** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

*/

#include <QObject>

#include <QTimer>

#include "MarSystemManager.h"

#include "MarSystemQtWrapper.h"

#include <iostream>

using namespace std;

using namespace Marsyas;

using namespace MarsyasQt;

class MarBackend: public QObject

{

Q_OBJECT

public:
MarBackend();
~MarBackend();
void openBackendSoundfile(string fileName);

public slots:

void setBackendVolume(mrs_natural value);

void getBackendPosition();

signals:

void changedBackendPosition(mrs_natural value);

private:

Chapter 9: Writing applications 88

// in order to make the MarSystem act like a Qt object,

// we use this wrapper:

MarSystemQtWrapper *mrsWrapper;

// ... and these pomrs_naturalers:

MarControlPtr filenamePtr;

MarControlPtr gainPtr;

MarControlPtr positionPtr;

// typical Marsyas network:

MarSystem *playbacknet;

};

backend.cpp

/*

** Copyright (C) 2007 Graham Percival <gperciva@uvic.ca>

**

** This program is free software; you can redistribute it and/or modify

** it under the terms of the GNU General Public License as published by

** the Free Software Foundation; either version 2 of the License, or

** (at your option) any later version.

**

** This program is distributed in the hope that it will be useful,

** but WITHOUT ANY WARRANTY; without even the implied warranty of

** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

** GNU General Public License for more details.

**

** You should have received a copy of the GNU General Public License

** along with this program; if not, write to the Free Software

** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

*/

#include "backend.h"

//using namespace Marsyas;

MarBackend::MarBackend()
{

// make a typical Marsyas network:

MarSystemManager mng;

playbacknet = mng.create("Series", "playbacknet");

playbacknet->addMarSystem(mng.create("SoundFileSource", "src"));

playbacknet->addMarSystem(mng.create("Gain", "gain"));

playbacknet->addMarSystem(mng.create("AudioSink", "dest"));

playbacknet->updctrl("AudioSink/dest/mrs_bool/initAudio", true);

Chapter 9: Writing applications 89

// wrap it up to make it pretend to be a Qt object:

mrsWrapper = new MarSystemQtWrapper(playbacknet);
mrsWrapper->start();

// make these pomrs_naturalers so that we can mrs_naturalerface with the net-

work

// in a thread-safe manner:

filenamePtr = mrsWrapper->getctrl("SoundFileSource/src/mrs_string/filename");
gainPtr = mrsWrapper->getctrl("Gain/gain/mrs_real/gain");
positionPtr = mrsWrapper->getctrl("SoundFileSource/src/mrs_natural/pos");

// demonstrates information flow: Marsyas->Qt.

QTimer *timer = new QTimer(this);
connect(timer, SIGNAL(timeout()), this, SLOT(getBackendPosition()));
timer->start(1000);

}

MarBackend::~MarBackend()
{

delete mrsWrapper;

delete playbacknet;

}

void MarBackend::openBackendSoundfile(string fileName)

{

mrsWrapper->updctrl(filenamePtr,fileName);
mrsWrapper->play();

}

void MarBackend::setBackendVolume(mrs_natural vol)

{

mrs_real newGain = vol/100.0;

mrsWrapper->updctrl(gainPtr, newGain);

}

void MarBackend::getBackendPosition()
{

mrs_natural newPos = (mrs_natural) positionPtr->to<mrs_natural>();

emit changedBackendPosition(newPos);
}

After examining that project, see ‘apps/Qt4Apps/MarPlayer/’, followed by the other
examples in the ‘apps/Qt4Apps/’ directory.

Chapter 9: Writing applications 90

9.3.6 Other Qt4 issues

TODO: beautify

Question and answer:

I’d like to analyze sound file to extract pitches and amplitudes. I

have working code without using MarSystemQtWrapper, but for GUI display

reasons, I’d like to do this analysis in a separate thread. (ie a

MarSystemQtWrapper)

Is there any way to do this kind of thing inside a MarSystemQtWrapper?

while (allNet->getctrl("mrs_bool/hasData")->toBool())

allNet->tick();

add the control you are interested to the monitored controls by calling trackctrl (or some-
thing like that) in MarSystemQtWrapper. The MarSystemQtWrapper will emit a signal
either any time the control is changed or at period intervals depending on the withTimer
settting. Either way you can connect the signal ctrlChanged(MarControlPtr cname);

to a slot in your GUI and then call allnet->pause() when that happens.

—– this is working on Meaws, but I’ll need to read my code again to figure out how it
works. Fortunately, I write nice clean readable code. :) -gp

UPDATE: look at src/qt4apps/regressionChecks instead.

Converting between QString and mrs string

QString qs = "Hello world!";

mrs_string mrs_s = qs.toStdString();

mrs_string mrs_s = "foo.wav";

QString qs = QString(mrs_s.c_str());

9.4 Other programming issues

9.4.1 Visualizing data with gnuplot

Gnuplot is an open-source data plotting utility available on every operating system that
Marsyas supports. More information (including downloads and installation instructions)
can be found on the Gnuplot website.

Data in Marsyas can be plotted easily: simply write the realvec to a text file and call
gnuplot on the result.

void someFunction() {

string filename = "dataToPlot.txt";

realvec data;

data.allocate(size);

// ... do whatever processing here...

data.writeText(filename);

data.~realvec();

}

http://www.gnuplot.info/

Chapter 9: Writing applications 91

After compiling and running the program, the dataToPlot.txt file may be plotted with
gnuplot.

gnuplot> plot "dataToPlot.txt"

9.5 Interoperability

9.5.1 Open Sound Control (OSC)� �
Help wanted: missing info!

can be done; read the source code.

If you can fill in any details, please see Section “Contributing doc-
umentation” in Marsyas Developer’s Manual.
 	

9.5.2 WEKA� �
Help wanted: missing info!

can be done; read the source code.

If you can fill in any details, please see Section “Contributing doc-
umentation” in Marsyas Developer’s Manual.
 	

9.5.3 MATLAB

MATLAB is a high-level technical computing language and interactive environment
for algorithm development, data visualization, data analysis, and numeric computation
http://www.mathworks.com/

Marsyas supports the use of the MATLAB engine API for exchanging data at runtime
between Marsyas C++ code and MATLAB enviroment. This allows effortlessly passing
and getting data to/from MATLAB inside Marsyas, and have access to MATLAB plotting
facilities, numerical routines, toolboxes, etc. More information about the MATLAB engine
can be found at in their technical documentation.

Passing data from Marsyas to MATLAB => MATLAB PUT()

To export data from Marsyas into MATLAB, simply use the macro MATLAB_

PUT(marsyasVar, MATLABvarName).

MATLAB PUT() can be used with C++ int, float, double, mrs real, mrs natural,
mrs complex, std::string, std::vector, Marsyas::realvec, among other data types. For a com-
plete list of the types supported, please refer to ‘src/marsyas/MATLAB/MATLABengine.h’.

//create a Marsyas realvec (i.e. a 2 by 3 matrix):

realvec marsyas_realvec(2,3);

marsyas_realvec(0,0) = 0.0;

marsyas_realvec(0,1) = 0.1;

marsyas_realvec(0,2) = 0.2;

http://www.mathworks.com/
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_external/f39903.html

Chapter 9: Writing applications 92

marsyas_realvec(1,0) = 1.0;

marsyas_realvec(1,1) = 1.1;

marsyas_realvec(1,2) = 1.2;

// Send the realvec to MATLAB, and call it marsyasMatrix in MATLAB

MATLAB_PUT(marsyas_realvec,"marsyasMatrix");

// marsyasMatrix is now a normal matrix of doubles in MATLAB

// environment, which can be used as any regular MATLAB matrix.

Please refer to ‘src/apps/mudbox/mudbox.cpp’ for more examples of using the MAT-
LAB engine API in Marsyas (look for the toy with MATLABengine() function).

Executing commands in MATLAB from Marsyas C++ code =>
MATLAB EVAL()

It is possible to execute commands in MATLAB from Marsyas C++ code, as if they were be-
ing input into the MATLAB command line. For this use the macro MATLAB_EVAL(command).

//create a Marsyas realvec (i.e. a 2 by 3 matrix):

realvec marsyas_realvec(2,3);

marsyas_realvec(0,0) = 0.0;

marsyas_realvec(0,1) = 0.1;

marsyas_realvec(0,2) = 0.2;

marsyas_realvec(1,0) = 1.0;

marsyas_realvec(1,1) = 1.1;

marsyas_realvec(1,2) = 1.2;

// Send the realvec to MATLAB, and call it marsyasMatrix in MATLAB

MATLAB_PUT(marsyas_realvec,"marsyasMatrix");

// now we can, for e.g., ask MATLAB to transpose the passed matrix...

MATLAB_EVAL("marsyasMatrix = marsyasMatrix’");

// and, why not, plot the matrix...

MATLAB_EVAL("imagesc(marsyasMatrix)");

// run our own m.files...

MATLAB_EVAL("myFunction(marsyasMatrix);");

// or execute any other MATLAB command!

MATLAB_EVAL("whos");

// Pretty cool, hum? ;-)

Please refer to src/apps/mudbox/mudbox.cpp for more examples of using the MATLAB
engine API in Marsyas (look for the toy with MATLABengine() function).

Getting data from MATLAB into Marsyas => MATLAB GET()

To import data into Marsyas from MATLAB, simply use the macro MATLAB_

GET(MATLABvarName, marsyasVar);

MATLAB GET() can be used for getting data from MATLAB into C++ int,
float, double, mrs real, mrs natural, mrs complex, std::vector, Marsyas::realvec,
among other data types. For a complete list of the types supported, please refer to
src/marsyas/MATLAB/MATLABengine.h.

Chapter 9: Writing applications 93

//create a Marsyas realvec (i.e. a 2 by 2 matrix):

realvec marsyas_realvec(2,2);

marsyas_realvec(0,0) = 0.0;

marsyas_realvec(0,1) = 0.1;

marsyas_realvec(1,0) = 1.0;

marsyas_realvec(1,1) = 1.1;

// Send the realvec to MATLAB, and call it marsyasMatrix in MATLAB

MATLAB_PUT(marsyas_realvec,"marsyasMatrix");

// now we can, for e.g., ask MATLAB to transpose the passed matrix...

MATLAB_EVAL("marsyasMatrix = marsyasMatrix’");

// and calculate its determinant

MATLAB_EVAL("matrixDet = det(marsyasMatrix);");

// we can now get the determinant value back into Marsyas

// (note: Marsyas already has its own efficient C++

// implementation for determinant calculation of realvecs!

// This is just an example of what can be done with the Marsyas MATLAB engine.

mrs_real det;

MATLAB_GET("matrixDet", det);

cout << det << endl;

// but we can also get the (now transposed) matrix back into Marsyas:

MATLAB_GET("marsyasMatrix", marsyas_realvec);

cout << marsyas_realvec << endl;

Please refer to src/apps/mudbox/mudbox.cpp for more examples of using the MATLAB
engine API in Marsyas (look for the toy with MATLABengine() function).

9.5.4 Python

Here are instructions for python/ruby SWIG bindings. These instructions assume Python
and/or Ruby are installed. You might need to install a more recent version of Python (for
example MacPython from the Python website) than the one that comes pre-bundled with
OS X depending on the version of your system.

At the top level directory do :

./configure –enable-bindings

1. make

2. sudo make install

Assuming that python and ruby have been locating your bindings have been compiled
and installed. To check that your bindings are installed.

1. Start any python IDE or shell (for example python or ipython)

2. At the prompt type:

3. import marsyas

4. If you get no error your bindings have been installed

Chapter 9: Writing applications 94

5. Go to swig/python

6. Try some of the examples such as test2.py or bextract.py

9.5.5 OCaml

To combine Marsyas and OCaml, see the MarsyasOCaml documentation at
http://www.cs.uvic.ca/~inb/work/marsyasOCaml/

9.5.6 SonicVisualiser Vamp Plugins

9.5.6.1 Instalation

Requirements:

• CMake (http://www.cmake.org/).

• SonicVisualiser (http://www.sonicvisualiser.org/).

• Vamp Plugin SDK:

• Latest revision: $ svn co https://vamp.svn.sourceforge.net/svnroot/vamp/vamp-

plugin-sdk/trunk vamp-plugin-sdk.

• Distribution: http://sourceforge.net/projects/vamp/files/vamp-plugin-sdk/.

• Build and install the plugin sdk using the supplied instructions.
(vamp-simple-host, a command-line host for Vamp plugins, is installed along)

• Vamp Tester [optional]
A command line application for testing plugins, giving you a very detailed report about
the compliance of the plugin:

• Latest revision: $ svn co https://vamp.svn.sourceforge.net/svnroot/vamp/vamp-

plugin-tester/trunk vamp-plugin-tester.

• Distribution (source + binaries): http://sourceforge.net/projects/vamp/files/vamp-plugin-tester/.

• Add vamp-plugin-tester path to environment PATH.

MacOSX:
(Tested in 10.6 with gcc 4.2 for i386 and x86 64, linking to both the static and dynamic
build of Marsyas.
Note that x86 64 is not supported by Sonic Visualiser yet, but fat binaries with both
architectures work fine.)

1. Building Marsyas Vamp Plugin:

• $ cmake-gui

WITH_VAMP ON;
MARSYAS_STATIC OFF (static linking not supported)
VAMP_LIBRARY: dynamic/static version of libvamp-sdk, from the install path ->
/usr/local/lib/libvamp-sdk.dylib or /usr/local/lib/libvamp-sdk.a
VAMP_INCLUDE_DIR: vamp sdk src main path -> /usr/local/include/

(choose your own paths if different)

• $ make

(If you generate an XCode project, the mvamp target won’t be included so you’ll
need to build using plain "make")

http://www.cs.uvic.ca/~inb/work/marsyasOCaml/
http://www.cmake.org/
http://www.sonicvisualiser.org/
http://sourceforge.net/projects/vamp/files/vamp-plugin-sdk/
http://sourceforge.net/projects/vamp/files/vamp-plugin-tester/

Chapter 9: Writing applications 95

(vamp plugin compiled as shared dynamic library at marsyas_path/build_

dir/lib/libmvamp.dylib)

2. Marsyas Vamp Plugin Integration in SonicVisualiser Transforms:

• Copy libmvamp.dylib to one of the following paths:

~/Library/Audio/Plug-Ins/Vamp (user use)

/Library/Audio/Plug-Ins/Vamp (system use)

(mvamp-plugins.cat, in pre-compiled version or in path/to/marsyas/src/mvamp/, is
a txt file for organizing the plugin functions within SonicVisualiser Transforms - for
such you may also copy it to the chosen path above, yet it seems to be unnecessary)

3. (Optional) Testing Plugin with vamp-plugin-tester:

• $ VAMP_PATH=Path/To/Vamp_Plugins_Directory

• $ vamp-plugin-tester -a

4. (Optional) Testing Plugin with vamp-simple-host:

• $ VAMP_PATH=Path/To/Vamp_Plugins_Directory

• List the plugin libraries and Vamp plugins in the library search path: $ vamp-

simple-host -l

• Run the plugin: $ vamp-simple-host [-s] pluginlibrary[.dylib]:plugin

file.wav [outputno] [-o out.txt]

(check pluginlibrary and plugin name with -l above)

Linux OS:
(Tested in Linux Ubuntu 9.04-32bits with gcc 4.3 -> may work on others)

1. Building Marsyas Vamp Plugin:
(Alternatively simply download pre-compiled plugin for Linux i686 at
http://marsyas.info/download/vamp_plugins)

• $ cmake-gui

WITH_VAMP ON;
MARSYAS_STATIC OFF (static linking not supported)
VAMP_LIBRARY: dynamic/static version of libvamp-sdk, from the install path ->
/usr/local/lib/libvamp-sdk.so or /usr/local/lib/libvamp-sdk.a
VAMP_INCLUDE_DIR: vamp sdk src main path -> /usr/local/include/

(choose your own paths if different)

• $ make

(vamp plugin compiled as shared dynamic library at marsyas_

path/build/lib/libmvamp.so)

2. Marsyas Vamp Plugin Integration in SonicVisualiser Transforms:

• Copy libmvamp.so (or pre-compiled mvamp.so) to one of the following paths:

/home/(user)/vamp (user use)

/usr/local/lib/vamp (system use)

(mvamp-plugins.cat, in pre-compiled version or in path/to/marsyas/src/mvamp/, is
a txt file for organizing the plugin functions within SonicVisualiser Transforms - for
such you may also copy it to the chosen path above, yet it seems to be unnecessary)

3. (Optional) Testing Plugin with vamp-plugin-tester:

http://marsyas.info/download/vamp_plugins

Chapter 9: Writing applications 96

• $ VAMP_PATH=Path/To/Vamp_Plugins_Directory

• $ vamp-plugin-tester -a

4. (Optional) Testing Plugin with vamp-simple-host:

• $ VAMP_PATH=Path/To/Vamp_Plugins_Directory

• List the plugin libraries and Vamp plugins in the library search path: $ vamp-

simple-host -l

• Run the plugin: $ vamp-simple-host [-s] pluginlibrary[.so]:plugin

file.wav [outputno] [-o out.txt]

(check pluginlibrary and plugin name with -l above)

Windows OS:
(Tested in Windows Vista-32bists with VS2008 and Windows 7 with VS2010 -> may work
on others)

1. Building Marsyas Vamp Plugin:

• Run CMake-GUI:
WITH_VAMP ON;
MARSYAS_STATIC OFF (static linking not supported)
VAMP_LIBRARY: static version of libvamp-sdk -> path\to\vamp-plugin-sdk-

x.x\build_dir\Release\VampPluginSDK.lib

VAMP_INCLUDE_DIR: vamp sdk src main path -> path\to\vamp-plugin-sdk-x.x

(choose your own paths if different)

• Load marsyas_path\build\Marsyas.sln in Visual Studio

• Open mvamp project proprieties:

• Go to Configuration Properties -> Linker -> Command Line ->

Additional options

• Add /EXPORT:vampGetPluginDescriptor

• Build marsyas + mvamp in Release mode and in Win32 architecture.
(x64 not currently supported by SonicVisualiser)

2. Marsyas Vamp Plugin Integration in SonicVisualiser Transforms:

• Copy mvamp.dll from marsyas_path\build\bin\Release\ to C:\Program

Files\Vamp Plugins\ (default VAMP_PATH)
(if used different path for Vamp Plugins define it in environment VAMP_PATH)

• Run-time linking to Marsyas (one of the two options below):

• Set marsyas_path\build\bin\Release\ to environment variable PATH

• Copy marsyas.dll from marsyas_path\build\bin\Release\ to SonicVisu-
aliser main directory.

3. (Optional) Testing Plugin with vamp-plugin-tester:

• $ vamp-plugin-tester.exe -a

4. (Optional) Testing Plugin with vamp-simple-host:

Chapter 9: Writing applications 97

• List the plugin libraries and Vamp plugins in the library search path: $ vamp-

simple-host.exe -l

• Run the plugin: $ vamp-simple-host.exe [-s] pluginlibrary[.dylib]:plugin

file.wav [outputno] [-o out.txt]

(check pluginlibrary and plugin name with -l above)

9.5.6.2 Writing Plugin

Check tutorial on http://www.vamp-plugins.org/develop.html

9.6 Using and Extending the Scheduler

Writing applications using the scheduler may require writing additional timer and event
types. This section will try to explain how to customize the scheduler for your own appli-
cations.

9.6.1 Using the Scheduler

In the example below an event is created and posted to the network to set the gain control
to 0 (silence) two seconds after the network starts processing. This is accomplished by
creating a new EvValUpd event which performs a setctrl call when dispatched.

The EvValUpd event requires a MarSystem pointer to act on - we use the topmost
series object because we have a pointer to it. The event also requires a control path
referenced to the supplied MarSystem pointer. Finally, it requires a MarControlValue to
set the control value to on dispatch. This value should have the same type as the one
specified in the control path otherwise the Marsyas system will report an error at dispatch
time.

To post the event to a timer the MarSystem updctrl call is used. The first parameter to
updctrl is the dispatch time. This indicates a scheduled event call to the MarSystem and
it is passed on to the scheduler. In this case the TmTime class is supplied the name of the
timer that the event is to be posted on along with the time of event dispatch. The default
timer for every MarSystem is a TmSampleCount timer, which counts the number of samples
processed, with the name Virtual. The TmSampleCount timer understands the units us,
ms, s, m, h corresponding to microseconds, milliseconds, seconds, minutes, hours, respec-
tively. The supplied time is converted to samples by calling the static method mrs_natural

Marsyas::time2samples(string time, mrs_real srate) in the ‘Conversions.cpp’.

http://www.vamp-plugins.org/develop.html

Chapter 9: Writing applications 98

MarSystemManager mng;

MarSystem* series = mng.create("Series", "series");

series->addMarSystem(mng.create("SineSource", "src"));

series->addMarSystem(mng.create("Gain", "g"));

series->addMarSystem(mng.create("AudioSink", "snk"));

series->updctrl("AudioSink/snk/mrs_bool/initAudio", true);
series->updctrl("SineSource/src/mrs_real/frequency",440.0);
series->updctrl("Gain/g/mrs_real/gain",1.0);

EvValUpd* ev = new EvValUpd(series,"Gain/g/mrs_real/gain",0.0);
series->updctrl(TmTime("TmSampleCount/Virtual","2s"),ev);

while(true) series->tick();

Figure 9.1: Program using the scheduler to set gain to 0 after two seconds.

9.6.1.1 Repeating Events

We can repeat events using the event set_repeat method of the event. This method takes
a Repeat value which is essentially a (rate,count) tuple. In the example below, two events
are posted. One sets the volume to 0, the other to 1. By staggering their dispatch we can
achieve a gating effect. Here we repeat the events forever by specifying the repeat rate only
as in Repeat("1s"). To specify a finite repeat count we could set the repeat count to five
as in Repeat("1s",5). Gaze wonderously at the example.

Chapter 9: Writing applications 99

MarSystemManager mng;

MarSystem* series = mng.create("Series", "series");

series->addMarSystem(mng.create("SineSource", "src"));

series->addMarSystem(mng.create("Gain", "g"));

series->addMarSystem(mng.create("AudioSink", "snk"));

series->updctrl("AudioSink/snk/mrs_bool/initAudio", true);
series->updctrl("SineSource/src/mrs_real/frequency",440.0);
series->updctrl("Gain/g/mrs_real/gain",1.0);

EvValUpd* ev_off = new EvValUpd(series,"Gain/g/mrs_real/gain",0.0);
ev_off->set repeat(Repeat("1s")); // repeat forever

//ev_off->set_repeat(Repeat("1s",4)); // repeat four times

EvValUpd* ev_on = new EvValUpd(series,"Gain/g/mrs_real/gain",1.0);
ev_on->set repeat(Repeat("1s"));

// stagger the dispatch of the events, off by 1 second

series->updctrl(TmTime("TmSampleCount/Virtual","1s"),ev_off);
series->updctrl(TmTime("TmSampleCount/Virtual","2s"),ev_on);

while(true) series->tick();

Figure 9.2: Program using two events that toggle the gain between 0 and 1 every second.

But how does this work under the hood, uhh, so to speak, you ask. For a pending
event (whose time is now), the scheduler will remove it from the queue, call its dispatch
method, check whether it should be repeated by calling its repeat method. If it is to
be repeated, the rate will be read by calling the repeat_interval() method which reads
the rate from the Repeat value originally supplied through the set_repeat method. A
calculation of the next dispatch time is made and the event is reposted to the queue. See
the void TmTimer::dispatch() method of ‘TmTimer.cpp’ for the exact method.

9.6.2 Writing a new Timer

Timers control the scheduling of events with respect to some control rate. When writing new
timers we don’t want to have to worry about this scheduling activity. Instead we wish to
define new control rates. No problem. All we have to do is inherit from the TmTimer class.
For lack of a more creative idea this section will explain a slightly modified TmSampleCount
timer.

When creating new timers we first create a class that inherits from TmTimer. This
class is placed in the src/marsyas directory and added to the build system. Our example,
requires a constructor that takes a MarSystem to read the time from. Our timer will read
the "mrs natural/onSamples" control to find out how long the interval of time is, in samples,
between successive ticks. This will be used to advance our timer. On construction we call
setReadCtrl which gets the control as a MarControlPtr for faster access than calling getctrl
on each tick.

Chapter 9: Writing applications 100

Whenever the scheduler is ticked, it will tick each of the timers it controls. These timers
will call their readTimerSrc() method to advance their clocks. Our readTimerSrc method
will read the onSamples control and return this value (elapsed time since last tick). Our
timer is now operational.

Timers may also require the definition of special time units. In the case of real time
we may want to define what milliseconds or seconds mean with respect to sample count.
To do this we must override the mrs_natural intervalsize(string interval) method.
For our timer, we will simply call the static method time2samples(string) defined in
‘Conversions’ and pass it the string and the current sample rate. Now our timer supports
time defined in samples, microseconds, milliseconds, seconds, minutes, and hours.

Chapter 9: Writing applications 101

#ifndef MARSYAS_TM_SAMPLE_COUNT_H

#define MARSYAS_TM_SAMPLE_COUNT_H

#include "TmTimer.h"

#include "MarControlValue.h"

#include "MarSystem.h"

namespace Marsyas

{

// forward declaration of MarSystem allows Scheduler.getctrl("insamples")

// for scheduler count

class MarSystem; // forward declaration

class TmSampleCount : public TmTimer {

protected:
MarSystem* read_src_;

MarControlPtr read_ctrl_;

public:
// Constructors

TmSampleCount(MarSystem*);
TmSampleCount(const TmSampleCount& s);

virtual ~TmSampleCount();
TmTimer* clone();

void setReadCtrl(MarSystem* ms);

mrs_natural readTimeSrc();
mrs_natural intervalsize(std::string interval);

virtual void updtimer(std::string cname, TmControlValue value);

};

}//namespace Marsyas

#endif

Figure 9.3: TmSampleCount header file example.

Chapter 9: Writing applications 102

#include "TmSampleCount.h"

#include "MarSystem.h"

#include "Scheduler.h"

using namespace std;

using namespace Marsyas;

TmSampleCount::TmSampleCount(MarSystem* ms) : TmTimer("TmSampleCount","Virtual")
{

setReadCtrl(ms);
}

TmSampleCount::TmSampleCount(const TmSampleCount& s) : TmTimer(s)
{

setReadCtrl(s.read_src_);
}

TmSampleCount::~TmSampleCount(){ }

TmTimer* TmSampleCount::clone()
{

return new TmSampleCount(*this);
}

void TmSampleCount::setReadCtrl(MarSystem* ms)

{

read_src_=ms;

if (read_src_!=NULL) read_ctrl_=read_src_->getctrl("mrs_natural/onSamples");
}

mrs_natural TmSampleCount::readTimeSrc()
{

if (read_src_==NULL) {

MRSWARN("TmSampleCount::readTimeSrc() time source is NULL");

return 0;

}

mrs_natural m = read_ctrl_->to<mrs_natural>();

return m;

}

mrs_natural TmSampleCount::intervalsize(string interval)

{

return (read_src_==NULL) ? 0 : time2samples(interval,read_src_->getctrl("mrs_real/israte")->to<mrs_real>());
}

void

TmSampleCount::updtimer(std::string cname, TmControlValue value)

{

bool type_error=false;
if (cname=="MarSystem/source") {

if (value.getType()==tmcv_marsystem) { setReadCtrl(value.toMarSystem()); }

else type_error=true;
}

else
MRSWARN("TmSampleCount::updtimer(string,TmControlValue) unsupported control");

if (type_error)

MRSWARN("TmSampleCount::updtimer(string,TmControlValue) wrong type to "+cname);

}

Figure 9.4: TmSampleCount C++ source file example.

Chapter 9: Writing applications 103

9.6.2.1 Updating timers at run-time

The TmTimer class also supports communication through the updtimer method. An ex-
ample of this is shown in the TmSampleCount timer above. This is not necessary for
the operation of our timer but we might want to support the changing of timer parame-
ters at run-time through the updtimer interface. To do this we simply override the void

updtimer(std::string cname, TmControlValue value) method. We can now parse the
supplied timer control path and set the appropriate value.

Timer control paths have the same format as MarSystem controls. For example, our
timer could be accessed through:

marsys->updtimer("TmSampleCount/Virtual/MarSystem/source",marsys);

Figure 9.5: Setting timer parameters using the updtimer call.

The TmControlValue defines the allowable values that may be passed to timers.
These values are limited to: float, double, int, long, std::string, const char*,

bool, MarSystem*. However, one could always modify the TmControlValue class to add
additional types. Be careful of values clashing such as NULL pointers and the integer
value 0.

9.6.2.2 Timer Factory

New timers can be added to the Timer Factory by modifying ‘TmTimerManager’. Doing so
allows the use of the addTimer method in ‘MarSystem’ by simply specifying the type/name
of the timer as opposed to creating a new timer.

net->addTimer("TmSampleCount","counter");

Figure 9.6: Adding a new timer to MarSystem net using the timer factory.

The instructions for adding new timers to the factory are contained in
‘TmTimerManager’ and repeated here. Basically, a map is created from "Timer-
Name"=>TimerConstructorObject. This makes it possible to use a map for fast access
to specific timers and it prevents having to instantiate each Timer type at startup. The
constructor object simply wraps the new operator so that it constructs objects only when
requested.

• Add the timer’s header file to the top of ‘TmTimerManager.cpp’ as an #include.

• Underneath the includes, wrap the timer name in the macro TimerCreateWrapper.

• In the addTimers function wrap the timer name in the macro registerTimer.

9.6.3 Writing a new Event

Suppose we want to fade the volume down to silence using a Gain MarSystem. We could
accomplish this using the scheduler and several EvValUpd events. Assuming the gain control
is at 1.0 to begin we just issue 10 EvValUpd events each with a progressively lower volume
amount: 0.9, 0.8, 0.7, ... and each at a time that is a little bit later than the previous. This
is messy and repetitive. Why not make a new event, called EvRampCtrl, that encapsulates
this behaviour.

We start by defining a new EvRampCtrl class that inherits from the ‘EvEvent’ class. We
define a constructor that takes a MarSystem to act upon, a control to modify, a starting

Chapter 9: Writing applications 104

value, an ending value, and a step amount. The implicit assumption is that this event will
only work on values of type mrs_real so that values we supply must all be of the correct
type. The header and cpp files are supplied below.

We will need an additional variable to save the current adjustment value. Also, the event
will need to repeat so we will maintain a repeat flag that is true until we pass the end value.
We override the repeat() method of ‘EvEvent’ to return the current value of the repeat
flag. The required variables are shown in the header file below.

Chapter 9: Writing applications 105

#ifndef MARSYAS_EV_RAMPCTRL_H

#define MARSYAS_EV_RAMPCTRL_H

#include <string>

#include "MarControl.h"

#include "EvEvent.h"

#include "TmControlValue.h"

namespace Marsyas

{

class MarSystem; // forward declaration

class EvRampCtrl : public EvEvent {

protected:
MarSystem* target_;

std::string cname_;

double start_, end_, value_, rate_;

bool repeat_flag_;

public:
// Constructors

EvRampCtrl(MarSystem* m, std::string cname, double start, double end, double rate);

EvRampCtrl(EvRampCtrl& e);

virtual ~EvRampCtrl();

virtual EvRampCtrl* clone();

// Set/Get methods

void set(MarSystem* ms, std::string cname, double s, double e, double r);

bool repeat() { return repeat_flag_; };

// Event dispatch

void dispatch();

};

}//namespace Marsyas

#endif

Figure 9.7: EvRampCtrl event header file example.

Chapter 9: Writing applications 106

#ifndef MARSYAS_EV_RAMPCTRL_H

#define MARSYAS_EV_RAMPCTRL_H

#include <string>

#include "MarControl.h"

#include "EvEvent.h"

#include "TmControlValue.h"

namespace Marsyas

{

class MarSystem; // forward declaration

class EvRampCtrl : public EvEvent {

protected:
MarSystem* target_;

std::string cname_;

double start_, end_, value_, rate_;

bool repeat_flag_;

public:
// Constructors

EvRampCtrl(MarSystem* m, std::string cname, double start, double end, double rate);

EvRampCtrl(EvRampCtrl& e);

virtual ~EvRampCtrl();

virtual EvRampCtrl* clone();

// Set/Get methods

void set(MarSystem* ms, std::string cname, double s, double e, double r);

bool repeat() { return repeat_flag_; };

// Event dispatch

void dispatch();

};

}//namespace Marsyas

#endif

Figure 9.8: EvRampCtrl event header file example.

The main logic for our event is contained in the dispatch method. Basically, we check
to see if we have passed the end value during ramping and if so set the repeat flag to false.
The next time that the scheduler checks to see if the event repeats the scheduler will read

Chapter 9: Writing applications 107

the false value and delete the event. If we have not passed the end value then we set the
specified control to the current ramp value and decrement the current value by the ramp
amount. The scheduler will see that the event is to be repeated, it will read the repeat rate
amount, and repost the event to the queue.

Chapter 9: Writing applications 108

#include "EvRampCtrl.h"

#include "MarSystem.h"

using namespace std;

using namespace Marsyas;

EvRampCtrl::EvRampCtrl(MarSystem* m, std::string cname, double start, double end, double rate) : EvEvent("EvRampCtrl","rc")
{

set(m,cname,start,end,rate);
}

EvRampCtrl::EvRampCtrl(EvRampCtrl& e) : EvEvent("EvRampCtrl","rc")
{

set(e.target_,e.cname_,e.start_,e.end_,e.rate_);
}

EvRampCtrl::~EvRampCtrl() { }

EvRampCtrl*

EvRampCtrl::clone() { return new EvRampCtrl(*this); }

void

EvRampCtrl::set(MarSystem* ms, string cname, double start, double end, double rate)

{

target_=ms; cname_=cname;

start_=start; end_=end; rate_=rate;

value_=start_; repeat_flag_=true;
}

void

EvRampCtrl::dispatch()
{

if (target_ !=NULL) {

cout << "target_->updctrl(" << cname_ << ", " << value_ << ")\n";

if(value_<end_) repeat_flag_=false;
else {

target_->updctrl(cname_,value_);
value_ = value_ - rate_;

}

}

}

Figure 9.9: EvRampCtrl event C++ source file example.

The fade1 method shows our EvRampCtrl event in action. We set the repeat rate of
the event to 0.2 seconds.

Chapter 9: Writing applications 109

void fade1() {

MarSystemManager mng;

MarSystem* series = mng.create("Series", "series");

series->addMarSystem(mng.create("SineSource", "src"));

MarSystem* gain = mng.create("Gain", "g");

series->addMarSystem(gain);

series->addMarSystem(mng.create("AudioSink", "snk"));

series->updctrl("AudioSink/snk/mrs_bool/initAudio", true);
series->updctrl("SineSource/src/mrs_real/frequency",440.0);
series->updctrl("Gain/g/mrs_real/gain",1.0);

EvRampCtrl* ev = new EvRampCtrl(gain,"mrs_real/gain",1.0,0.0,0.05);
ev->set repeat(Repeat("0.2s"));

series->updctrl(TmTime("TmSampleCount/Virtual","2s"),ev);

while(true) {

series->tick();
}

}

Figure 9.10: Program using the EvRampCtrl example event.

9.6.3.1 Expression Events

For a large number of events there is commonality. The Expression syntax was developed
to allow the creation of events without having to code new custom event classes. In order
to accomplish this there is a built in compiler for the syntax that is invoked when supplying
the expression as a string to the ‘Ex’ class.

Chapter 9: Writing applications 110

#include <stdio.h>

#include "MarSystemManager.h"

#include "EvExpr.h"

using namespace std;

using namespace Marsyas;

void sched1() {

MarSystemManager mng;

MarSystem* fanin = mng.create("Fanin", "fanin");

fanin->addMarSystem(mng.create("SineSource", "src1"));

fanin->addMarSystem(mng.create("SineSource", "src2"));

fanin->updctrl("SineSource/src1/mrs_real/frequency",3000.0);
fanin->updctrl("SineSource/src2/mrs_real/frequency",1000.0);

MarSystem* series = mng.create("Series", "series");

series->addMarSystem(fanin);

series->addMarSystem(mng.create("AudioSink", "dest"));

series->updctrl("AudioSink/dest/mrs_bool/initAudio", true);

#if 0

// using aliases makes this a little more readable, see the next bit

EvExpr* e = new EvExpr(series,
Ex("Fanin/fanin/SineSource/src1/mrs_real/frequency << 120. + 3000. * R.rand(), \

Fanin/fanin/SineSource/src2/mrs_real/frequency << 120. + 800. * R.rand(),"

"’src1=’+Fanin/fanin/SineSource/src1/mrs_real/frequency+ \

’ src2=’+Fanin/fanin/SineSource/src2/mrs_real/frequency+’\n’>>Stream.op"),

Rp("true"));

#else
EvExpr* e = new EvExpr(series,

// First line to Ex will be the init expression, run once, when event is posted

Ex("Fanin/fanin/SineSource/src1/mrs_real/frequency >> @freq1, \

Fanin/fanin/SineSource/src2/mrs_real/frequency >> @freq2 ",

// Second line to Ex is the expression, repeated each time the event is posted

"freq1 << 120. + 3000. * R.rand(),\

freq2 << 120. + 800. * R.rand(),\

’src1=’ + freq1 + ’ src2=’ + freq2 + ’\n’ >> Stream.op"),

Rp("true"));
#endif

// set event to repeat every 1/4 second

e->set repeat(Repeat("0.25s"));
// post the event

series->updctrl(TmTime("TmSampleCount/Virtual","0s"), e);

while(true) series->tick();

delete series;

}

Figure 9.11: Random sine waves using the Expression syntax.

Chapter 9: Writing applications 111

9.6.4 Marsyas Expression Syntax

Expressing instantaneous change in Marsyas.

Still in development, but what software project isn’t..

The motivation for an expression syntax within the scheduler is purely one of conve-
nience. While the Marsyas scheduler is highly configurable, allowing the programmer to
add their own classes for their own event requirements, eyes tend to glaze over when C++
programming is mentioned. This expression syntax allows a programmer to define an ex-
pression that can be fed to an event and evaluated once or any number of times within the
scheduler. While many functions are available, more can be added with a little ... C++
programming. Read on fearless marsyasian.

9.6.4.1 Type System

• Basic Types

• Bool - can be true and false or shorthand $t and $f.

• Natural - a number without a decimal point.

• Real - floating point number (equivalent of a C double) can be written with leading
or trailing decimal point - .123, 123., and 123.456.

• String - a string of characters delimeted by single quotes - ’hello’ - which may
contain newline \n or tab \t characters - ’1\t2\t3\n’. Strings are also sequence
types and can be modified using the sequence iterators.

• Type coercion

There are a few instances where type coercion may take place. Binary operators such
as + require two values of the same type. Natural numbers are therefore promoted
to reals in such a situation (1 + 1.0 := ((real)1) + 1.0). Real numbers are not con-
verted to naturals in any case. For string concatenation using the + operator, any type
concatenated to a string is converted to a string type (1+’2’ := ’12’).

Type coercion also affects function parameters. For instance, the function
Real.cos(real) when used as Real.cos(1) would result in a type error as 1 is interpreted
to be a natural value. Instead the function call is converted to Real.cos((real)1).

Note that there is a performance penalty for coercion as slight as it may be.

• Type terms used in this document

• bool

• natural

• real

• string

• num t := natural | real

• basic t := natural | real | string | bool

9.6.4.2 Operators

• String

• Binary (+)

• Concatenation (+).

Chapter 9: Writing applications 112

• string + basic t := string ~ ’go ’ + 2 := ’go 2’

• basic t + string := string ~ 2 + ’ much’ := ’2 much’

• string + string := string ~ ’too’ + ’ much’ := ’too much’

• Numbers

• Unary (-)

• Negation (-) - overloaded for Real, Natural.

• - natural := natural ~ - 2 := -4

• - real := real ~ - 2.1 := -2.1

• Binary (+ - * / %)
Operations involving both a Real and Natural type will result in a Real type.

• Addition (+) - overloaded for Real, Natural, and String types.

• natural + natural := natural ~ 2 + 2 := 4

• num t + real := real ~ 2 + 2.3 := 4.3

• real + num t := real ~ 2.3 + 2 := 4.3

• string + basic t := string ~ ’go ’ + 2 := ’go 2’

• basic t + string := string ~ 2 + ’ much’ := ’2 much’

• Subtraction (-) - overloaded for Real and Natural types.

• natural - natural := natural ~ 2 - 2 := 0

• num t - real := real ~ 2 - 2.3 := 0.3

• real - num t := real ~ 2.3 - 2 := 0.3

• Multiplication (*) - overloaded for Real and Natural types.

• natural * natural := natural ~ 2 * 2 := 4

• num t * real := real ~ 2 * 2.3 := 4.6

• real * num t := real ~ 2.3 * 2 := 4.6

• Division (/) - overloaded for Real and Natural types.
The division operator is also used to delimit control name paths so this a/b
or will be interpreted as a path and a /b will be interpreted as variable a
followed by path /b. Division involving variables must be written with the
division separated by spaces as in: a / b or even a/ b.

• natural / natural := natural ~ 2 / 2 := 1

• num t / real := real ~ 2 / 2.3 := 0.8695

• real / num t := real ~ 2.3 / 2 := 1.15

• Remainder (%) - overloaded for Real and Natural types.

• natural % natural := natural ~ 3 % 2 := 1

• num t % real := real ~ 4 % 1.5 := 1.0

• real % num t := real ~ 4.5 % 2 := 0.5

• Boolean

• Negation (!)

• ! bool := bool ~ ! $t := $f

Chapter 9: Writing applications 113

• Relational (& |)

• And (&) - comparison of bool types.

• bool & bool := bool ~ $t & $f := $t

• Or (|) - comparison of bool types.

• bool | bool := bool ~ $t | $f := $t

• Comparison (= != > >= < <=)
Comparisons may only be made between the same types.

• Equal (=) - comparison of types.

• basic t = basic t := bool ~ 3 = 2.1 := $f

• Not Equal (!=) - comparison of types.

• basic t != basic t := bool ~ 3 != 2.1 := $t

• Greater Than (>) - comparison of types.

• basic t > basic t := bool ~ 3 > 2.1 := $t

• Greater Equal (>=) - comparison of types.

• basic t >= basic t := bool ~ 3 >= 2.1 := $t

• Less Than (<) - comparison of types.

• basic t < basic t := bool ~ 3 < 2.1 := $f

• Less Equal (<=) - comparison of types.

• basic t <= basic t := bool ~ 3 <= 2.1 := $f

9.6.4.3 Variables

Variable names must start with a letter but may be followed by letters or numbers. hello
and hi8 are valid names wheras 2much is not. The type of a variable is defined through
assignment. 12 >> x defines variable x of type natural. Once a variable type is defined it
cannot be changed, 12 >> x, ’hello’ >> x results in a type mismatch error. There is no notion
of scope except that all variables are in the same scope so that variables defined within a
conditional statement will exist outside the conditional and after it has been evaluated.

Control Names (/absolute/path or relative/path)

Control names are written using the path notation, /Gain/gain/mrs real/gain.

Aliases (@name)

Control names can be rather long. Aliases can be used to shorten expressions containing
control names. Making an alias is done through assignment to a name preceded by the
symbol: /Gain/gain/mrs real/gain >> @gain. After assignment, the alias can be used as
any other variable name: gain << 0.5.

9.6.4.4 Assignment (<< >>)

Assignment is performed using the assignment operators. Left assignment x << 5 and right
assignment 5 >> x. These operators are equivalent. Assignment of a value to a variable
defines the variable type. Once a variable is ’typed’ it cannot be assigned another type.
Note there is no scope, all variables are at the ’top level.’

Assignment Sugar (<<+ +>> etc...)

Note: left and right assignment do not necessarily yield the same results.

Chapter 9: Writing applications 114

• Add Assign (<<+, +>>) - left assignment is x <<+ 5 is x << x + 5 whereas right
assignment is 5 +>> x is 5 + x >> x.

• Subtract Assign (<<-, ->>) - left assignment is x <<- 5 is x << x - 5 whereas right
assignment is 5 ->> x is 5 - x >> x. Left and right assignment are not the same here.

• Multiply Assign (<<*, *>>) - left assignment is x <<* 5 is x << x * 5 whereas right
assignment is 5 *>> x is 5 * x >> x.

• Divide Assign (<</, />>) - left assignment is x <</ 5 is x << x / 5 whereas right
assignment is 5 />> x is 5 / x >> x. Left and right assignment are not the same here.

• Remainder Assign (<<%, %>>) - left assignment is x <<% 5 is x << x % 5 whereas
right assignment is 5 %>> x is 5 % x >> x. Left and right assignment are not the same
here.

9.6.4.5 Links (-> <-)

Controls may be linked using the link operators. Left and right operators perform the same
actions. There is no bidirectional link since this would require defining a link order. This
order is left to the user who will have to explicity define the order by making two links.

9.6.4.6 Conditional Statements ({? cond expr : exprs1 : exprs2 }
)

The conditional statement is used for making decisions. The cond term is the decision
and must result in a boolean. If cond is true then the then expr is executed otherwise
the else expr is executed. Each of these expressions may be a list of expressions, even the
cond expr so long as cond expr results in a bool type and both expr1 and expr2 result in
the same type. Example: {? 5<3 : 1 : 2}.

9.6.4.7 Multiple Expressions (exprs := expr1 , expr2 , expr3)

Multiple expressions may be executed by separating them with commas as in t << 5, t << t
- 2.

9.6.4.8 Properties (ie Real.pi or ’hello’.2 etc.)

Properties are simply a way of associating methods or values with types. As an example, the
String module supports a number of methods that can accessed using the property notation.
The expression String.len(’hello’) results in the natural value of 5. This expression could
also be written as ’hello’.len() since the value ’hello’ is known to be a string. This is just
sugar for String.len(’hello’). Here the first parameter to String.len is filled with the value.
This can be used for variables of the right type as in s << ’hello’, s.len() is similar to the
previous except that variable s is defined.

All basic types or things that evaluate to basic types can respond to property calls. For
example the conditional operator {?cond:expr1:expr2} evaluates to a single type so can take
on a property as in {?true:’123’:’12’}.len. To take this further a function call resulting in a
basic type can take on properties as well and so on: ’123’.len.max(4).

9.6.4.9 Sequences (Lists)

Sequence types are those data types that have a sequence of elements. Falling into this
category are lists and strings not natural or real numbers.

Chapter 9: Writing applications 115

Lists are denoted using the square brackets as in [1, 2, 3]. Lists can contain other lists
as in [[1,2], [3,4]]. However, all elements of a list must be of the same type. This [1, ’2’]
and this [1, [2, 3]] are not valid lists.

Iterators

There are four different iterators for working with sequence types: map, iter, for, rfor.
There are subtle differences.

• map {map x in xs: <expr>}
The map iterator works in a similar fashion to the functional map. Map iterates from
left to right across each element and replaces each element with a new one of the same
or different type. Map returns a new list without modifying the original. An example:
xs<<[1,2,3], b<<{map x in xs: x+1}.

• iter {iter x in xs: <expr>}

The iter iterator works like map except that it modifies the original list in place. Iter
returns unit. An example: xs<<[1,2,3], {iter x in xs: x+1}.

• for {for x in xs: <expr>}

The for iterator iterates across the list but does not modify the original list and does
not create a new list. for returns unit. An example: xs<<[1,2,3], sum<<0, {for x in xs:
sum <<+ x}.

• rfor {rfor x in xs: <expr>}

The rfor iterator works in the same way as for but from right to left. An example:
xs<<[1,2,3], b<<{rfor x in xs: Stream.opn << x}.

Element Access

Elements of sequences may be accessed using the standard array notation as in a<<[1,2,3],
one<<a[0], three<<a[2]. Note that the first element is position 0. Don’t let me catch you
using an index that’s too big.

Slices

Slices are portions of sequences. A range takes two positions in the list - start position
(included) and end position (not included) separated by a colon [start:end]. If the start
position is left out then the first element is assumed. If the last element is left out then the
end is assumed. The start and end positions may be adjusted to avoid errors, ie negative
start becomes the beginning of the list.

We can take the head and tail of a list using slices: a<<[1,2,3], hd<<a[0], tl<<a[1:].

Concatenation, Joining

Sequences may be joined using the concatentation operator otherwise known as +.
[1,2,3]+[4] joins the two lists into [1,2,3,4].

Chapter 9: Writing applications 116

9.6.4.10 Function Libraries

In most cases library names can be shortened to reduce typing. For example the Real
module can be reduced to R as in R.cos(1.57).

• Real (R)

• mrs real Real.e
e = ~2.718281828

• mrs real Real.pi
pi = ~3.141592654

• mrs real Real.pi2
pi/2 = ~1.570796327

• mrs real Real.pi4
pi/4 = ~0.785398163

• mrs real Real.rpd
Radians per Degree = ~0.017453292

• mrs real Real.dpr
Degrees per Radian = ~57.29577951

• mrs real Real.sqrt2
Square Root of 2 = ~1.414213562

• mrs real Real.cos(mrs real)
Trigonometric cosine in radians.

• mrs real Real.acos(mrs real)
Trigonometric arc cosine in radians.

• mrs real Real.cosh(mrs real)
Hyperbolic cosine in radians.

• mrs real Real.sin(mrs real)
Trigonometric sine in radians.

• mrs real Real.asin(mrs real)
Trigonometric arc sine in radians.

• mrs real Real.sinh(mrs real)
Hyperbolic cosine in radians.

• mrs real Real.tan(mrs real)
Trigonometric tangent in radians.

• mrs real Real.atan(mrs real)
Trigonometric arc tangent in radians.

• mrs real Real.ln(mrs real), mrs real Real.log(mrs real)
Natural logarithm, base e.

• mrs real Real.log2(mrs real)
Logarithm base 2.

• mrs real Real.log10(mrs real)
Logarithm base 10.

• mrs real Real.sqrt(mrs real)
Square root.

Chapter 9: Writing applications 117

• Natural (N)

• mrs natural Natural.randmax
Constant for the maximum random number.

• mrs natural Natural.abs(mrs natural)
Absolute value.

• mrs natural Natural.rand()
Generate a random number.

• mrs natural Natural.srand(mrs natural)
Generate a random number using the given seed.

• mrs natural Natural.min(mrs natural, mrs natural)
Return the minimum of two numbers.

• mrs natural Natural.max(mrs natural, mrs natural)
Return the maximum of two numbers.

• String (S)

• mrs natural String.len(mrs string)
String length.

• Stream

• outstream op
Stream.op and Stream.opn support assignment. Data can be written to stdout by
assigning to this object as in 3.1415 >> Stream.op or ’hello’ >> Stream.op.

• outstream Stream.op(mrs real)
write a mrs real number to stdout.

• outstream Stream.op(mrs natural)
write a mrs natural number to stdout.

• outstream Stream.op(mrs bool)
write a mrs bool number to stdout.

• outstream Stream.op(mrs string)
write a mrs string number to stdout.

• outstream Stream.opn(mrs real)
write a mrs real number to stdout followed by a newline.

• outstream Stream.opn(mrs natural)
write a mrs natural number to stdout followed by a newline.

• outstream Stream.opn(mrs bool)
write a mrs bool number to stdout followed by a newline.

• outstream Stream.opn(mrs string)
write a mrs string number to stdout followed by a newline.

• Timer (Tmr)

• mrs timer Timer.cur
the current timer that the event expression is posted on.

• mrs string Timer.name(mrs timer)
the name of the timer

• mrs string Timer.type(mrs timer)
the type of the timer

Chapter 9: Writing applications 118

• mrs string Timer.prefix(mrs timer)
the prefix of the timer which is type/name

• mrs natural Timer.time(mrs timer)
returns the current time of the timer as a count. This is not in the form of the
specific representation for the particular timer.

• mrs bool Timer.upd(mrs timer, mrs string, mrs bool)
updates a timer control value where the second parameter is the string path and
the third parameter is the value

• mrs bool Timer.upd(mrs timer, mrs string, mrs real)
updates a timer control value where the second parameter is the string path and
the third parameter is the value

• mrs bool Timer.upd(mrs timer, mrs string, mrs natural)
updates a timer control value where the second parameter is the string path and
the third parameter is the value

• mrs bool Timer.upd(mrs timer, mrs string, mrs string)
updates a timer control value where the second parameter is the string path and
the third parameter is the value

• mrs natural Timer.ival(mrs timer, mrs string)
returns a natural value corresponding to the string representation of a time value
in the specific format for the timer. ie "1s" may represent 1 second for a timer.

9.6.4.11 Using

Two examples show simple usage. These examples are in src/scheduler.cpp.

There are a few ways to specify an expression to be parsed.

• new EvExpr(marsym, Ex("x << 3","’hello’ + x >> Stream.opn"),Rp("false"));
specifies a primary expression within the Ex constructor that is to be executed on
every repetition of the event. Values to be used in the expression may be initialised
in the first string, then used in the second string. The first string is evaluated as
soon as the expression event is posted on some timer. The second string is executed
on each repetition. The init string is optional within the Ex constructor (in fact the
Rp exprsession may also have an init expression though it can be combined with the
ExInit expression). However the expression inside the Rp Constructor specifies a repeat
expression that determines if the event is to be repeated. This expression must have a
type boolean.

• new EvExpr(marsym, ExFile("filename.expr"));
the expressions for Ex and Rp can be read in from a file. This eliminates the need to
recompile each time an expression needs to be adjusted. The file format is text where
the lines expected by Ex and Rp are separated by titles:

• #ExInit: - specify an init variables expression.

• #ExExpr: - specify the expression to be repeated.

• #RpInit: - specify an init variables expression for the repeated expression. The
repeat expression may share variables with the primary Ex expression so anything
specified here can be specified in #ExInit:

Chapter 9: Writing applications 119

• #RpExpr: - specify a boolean expression that determines if the expression event is
to be repeated after each repetition. This expression is evaluated after the primary
expression.

• #RpRate: - (Not implemented yet, pending) specify an expression that evalutes
to a mrs string that determines how far into the future the event is to be posted
after it is evaluated. The result must have meaning in the current timer timebase.

9.6.4.12 Extending

There are two ways to extend the libraries with your own functions. The hard way is to
hand code the function as a class in C++ then modify a corresponding loadlib function in
ExNode.cpp. The other way is to use the code generation script in tools/scheduler.

Useful conversion functions

There are a few built in functions for converting to and from the std::string type. These
functions can be used in your new functions.

• ltos(v) - converts v from a mrs natural value to a std::string

• dtos(v) - converts v from a mrs real value to a std::string

• btos(v) - converts v from a mrs bool value to a std::string

• stol(v) - converts v from a std::string value to a mrs natural

Adding new libraries or library functions (C++ way)

Library functions are added by creating a new ExFun class. The first step is creating a
new ExFun class for the new function. The second step is adding it to the loadlib functions
in ExNode.cpp.

Creating a new ExNode

The ExFun class derives from the ExNode which is an expression tree node. The example
here is a function for extracting a substring from a given string.

Functions taken a set number of parameters. The function class is supplied information
on the number of parameters and their types through the setSignature function when the
function class is instantiated in the symbol table. For now we assume this set of parameters
(mrs string,mrs natural,mrs natural) for the original string, the start index, and the end
index.

Creating an Exfun class requires the definition of the constructor, a calc() method that
returns the result of the function call, and a copy method that returns a copy of the function
without its parameters. The example shows the

Chapter 9: Writing applications 120

class ExFun_StrSub : public ExFun { public:
ExFun StrSub() : ExFun("mrs_string","String.sub(mrs_string,mrs_natural,mrs_natural",true) { }

virtual ExVal calc() {

std::string str = params[0]->eval().toString();
int s = params[1]->eval().toNatural();
int e = params[2]->eval().toNatural();
int l = str.length();
if (s<0) { s=0; } else if (s>l) { s=l; }

if (e<s) { e=s; } else if (e>l-s) { e=l-s; }

return str.substr(s,e);
}

ExFun* copy() { return new ExFun StrSub(); }

};

Figure 9.12: String Substring ExFun class.

Note that the constructor takes two parameters where t is the type that the function
evaluates to and n is the signature of the function. These parameters are simply passed on
to the ExFun parent constructor along with a third boolean parameter for the pureness of
the function. Pureness is a flag that determines whether the function is free of side-effects
or not. If the parameters to the function can be determined to be constant then a pure
function can be evaluated at parse time to a constant value.

The calc() method uses the three parameters from the params[] array. These parameters
are set at parse time and placed in the params[] array. Each param[] is an expression so
they are of type ExNode*. Therefore, you need to evaluate each expression prior to using
it. To evaluate, call the eval() method of the ExNode not the calc() method. eval() will
make sure that each expression in a list of expressions will be evaluated whereas calc() only
calculates the current node.

Adding the function to the library

The function can be added to the library by adding a line to the loadlib String method
in ExNode.cpp. The addReserved call made to the symbol table adds a reserved word.
There is some flexibility in how the name appears in the symbol table which in turn defines
how it may be used in an expression. The path to a function is separated by the ’.’ symbol.
Multiple names for a segment of the path can be defined by separating them with the
’|’ symbol where the first among several is the ’true’ name. For example String|Str|S.sub
defines three different leading names where the true name is String.sub but S.sub will get the
same thing. The same is possible for parameter tuples but not the individual parameters.
For example Real|R.cos(mrs real)|(mrs natural) allows the call Real.cos(0.5) as well as
Real.cos(1) as 1 is a natural and not a real. This type information is used to type check
function calls in the parser.

st->addReserved("String|S.sub(mrs_string,mrs_natural,mrs_natural)",
new ExFun StrSub("mrs_string",

"String.sub(mrs_string,mrs_natural,mrs_natural)"));

Figure 9.13: Adding a function to the library.

Chapter 9: Writing applications 121

The second parameter to the addReserved call is a new instantiation of the function
object. Here the return type is the first parameter to the constructor and the ’correct’ or
’true’ full function call is the second parameter. This information is used for type checking
parameters. While type errors are not possible if the first parameter to the addReserved
call is correct, the type information in the second parameter to the constructor is actually
used for type coercion - promoting naturals to reals, etc.

Adding new libraries or library functions (Code Gen way)

In the tools/scheduler directory is a python script for generating library functions from
a simplified source code. The easiest way to explain the process is through an example:

1: lib Foo|F.Bar|B

2:

3: pure mrs_string fun|alt(mrs_real a, mrs_natural b)

4: mrs_string s="hello";

5: mrs_bool x;

6: {

7: mrs_natural z=a+b;

8: if (x) { s=s+" "+ltos(z); }

9: x = z < 0;

10: return s;

11: }

Figure 9.14: Adding a function to the library.

Though not a useful function it does demonstrate the full extent of the code generation
syntax.

Line 1. library definition starts with keyword ’lib’ the names following denote a path
to the library. The true path is Foo.Bar, all functions defined after this statement until
a new lib definition will be in this library. This means that the function fun is called by
’Foo.Bar.fun’. Alternate names or aliases for portions of the path can be defined using the |
symbol. In the above example F is an alias for Foo so the path to fun could also be written
as ’Foo.B.fun’ or ’F.B.fun’ etc.

Line 3. the function definition may start with ’pure’ where pure implies that if the
parameters to the function are constants then the function can be evaluated at parse time
to a constant, ie no side-effects. If pure isn’t specified then the function is not pure. the
return type must be a type supported by the ExVal class (names starting with ’mrs ’). The
function name can also have aliases divided by the | symbol where the first name is the
true name. Parameters must be defined using the ’mrs ’ names.

Line 4. Normally functions do not have state but as a bonus variables whose values
persist may defined after the parameters definition and prior to the opening function body
brace. These types can be the ’mrs ’ types or valid C++ types.

Line 6. The function body begins with a opening brace {.

Line 7-10. The function body contains valid C++ code and will likely use the parameter
values defined on line 3.

Line 11. The function body ends with a closing brace }.

Chapter 9: Writing applications 122

Chapter 9: Writing applications 123

9.6.4.13 Marsyas Expression Examples

#include <stdio.h>

#include "MarSystemManager.h"

#include "EvExpr.h"

using namespace std;

using namespace Marsyas;

void sched1()
{

MarSystemManager mng;

MarSystem* fanin = mng.create("Fanin", "fanin");

fanin->addMarSystem(mng.create("SineSource", "src1"));

fanin->addMarSystem(mng.create("SineSource", "src2"));

fanin->updctrl("SineSource/src1/mrs_real/frequency",3000.0);
fanin->updctrl("SineSource/src2/mrs_real/frequency",1000.0);

MarSystem* series = mng.create("Series", "series");

series->addMarSystem(fanin);

series->addMarSystem(mng.create("AudioSink", "dest"));

series->updctrl("AudioSink/dest/mrs_bool/initAudio", true);

#if 0

// using aliases makes this a little more readable, see the next bit

EvExpr* e = new EvExpr(series,
Ex("Fanin/fanin/SineSource/src1/mrs_real/frequency << 120. + 3000. * R.rand(), \

Fanin/fanin/SineSource/src2/mrs_real/frequency << 120. + 800. * R.rand(),"

"’src1=’+Fanin/fanin/SineSource/src1/mrs_real/frequency+ \

’ src2=’+Fanin/fanin/SineSource/src2/mrs_real/frequency+’\n’>>Stream.op"),

Rp("true"));

#else
EvExpr* e = new EvExpr(series,

// First line to Ex will be the init expression, run once, when event is posted

Ex("Fanin/fanin/SineSource/src1/mrs_real/frequency >> @freq1, \

Fanin/fanin/SineSource/src2/mrs_real/frequency >> @freq2 ",

// Second line to Ex is the expression, repeated each time the event is posted

"freq1 << 120. + 3000. * R.rand(),\

freq2 << 120. + 800. * R.rand(),\

’src1=’ + freq1 + ’ src2=’ + freq2 + ’\n’ >> Stream.op"),

Rp("true"));

#endif

e->set repeat(Repeat("0.25s"));

series->updctrl(TmTime("TmSampleCount/Virtual","0s"), e);

for (int i=1;i<100;i++) series->tick();

delete series;

}

Figure 9.15: How to generate random sine waves

Chapter 9: Writing applications 124

void sched2()
{

MarSystemManager mng;

MarSystem* fanin = mng.create("Fanin", "fanin");

fanin->addMarSystem(mng.create("SineSource", "src1"));

fanin->addMarSystem(mng.create("SineSource", "src2"));

fanin->updctrl("SineSource/src1/mrs_real/frequency",400.0); // A

fanin->updctrl("SineSource/src2/mrs_real/frequency",554.37); // C#

fanin->updctrl("SineSource/src3/mrs_real/frequency",659.26); // E

MarSystem* series = mng.create("Series", "series");

series->addMarSystem(fanin);

series->addMarSystem(mng.create("AudioSink", "dest"));

series->updctrl("AudioSink/dest/mrs_bool/initAudio", true);

EvExpr* e =

new EvExpr(series,
Ex("tmr<<Timer.cur","tmr.prefix + ’ ’ + tmr.time + ’\n’ >> Stream.op"),

Rp("true"));

e->set repeat(Repeat("0.25s"));

series->updctrl(TmTime("TmSampleCount/Virtual","0s"), e);

for (int i=1;i<100;i++) series->tick();

delete series;

}

Figure 9.16: Printing the time of the current timer

Chapter 10: Programming MarSystems 125

10 Programming MarSystems

The main method that each MarSystem must support is process which takes two arguments
both arrays of floating point numbers used to represent slices (matrices where one dimension
is samples in time and the other is observations which are interpreted as happening at the
same time). When the process method is called it reads data from the input slice, performs
some computation/transformation and writes the results to the output slice. Both slices
have to be preallocated when process is called. One of the main advantages of Marsyas is
that a lot of the necessary buffer allocation/reallocation and memory management happens
behind the scene without the programmer having to do anything explicitly.

10.1 Compiling and using a new MarSystem

Writing a new MarSystem is relatively straightforward if you begin with a working example
and modify it for your needs. Fortunately, there is a python script which does precisely
this.

10.1.1 Writing your own MarSystems

To create a “blank” MarSystem to begin programming, use

path/to/marsyas/scripts/createMarSystem.py MyMar

where MyMar is the name of your new MarSystem. This script will create ‘MyMar.h’ and
‘foo.cpp’ in your current directory.

If you want to create these new MarSystems in the ‘src/marsyas/’ directory,
go to that directory and call the script. Relative paths are fine, for example
../../scripts/createMarSystem.py MyMar (on *nix).

10.1.2 Using your MarSystem

Suppose that you have created a MarSystem called MyMar, which implements a filter. To
use this MarSystem in a network (see Chapter 9 [Writing applications], page 71), simply
register the MarSystem with the manager:

MarSystemManager mng;

// add MyMar to MarSystemManager

MarSystem* myMar = new MyMar("hello");

mng.registerPrototype("MyMar", myMar);

// create a network normally

playbacknet = mng.create("Series", "playbacknet");

playbacknet->addMarSystem(mng.create("SoundFileSource", "src"));

playbacknet->addMarSystem(mng.create("MyMar", "mymar"));

playbacknet->addMarSystem(mng.create("Gain", "gain"));

playbacknet->addMarSystem(mng.create("AudioSink", "dest"));

playbacknet->updctrl("AudioSink/dest/mrs_bool/initAudio", true);

10.2 Anatomy of a MarSystem

Chapter 10: Programming MarSystems 126

10.2.1 Methods of the object

A MarSystem is an object which contains these methods. In this example, we use a fake
MarSystem called MyName.

• Constructors / Destructor:

MyName::MyName(string name):MarSystem("MyName", name)

MyName::MyName(const MyName& a) : MarSystem(a)

MyName::~MyName()

MarSystem* MyName::clone() const

• Handling controls:

void MyName::addControls()

void MyName::myUpdate(MarControlPtr sender)

• Actual processing method:

void MyName::myProcess(realvec& in, realvec& out)

Most of the changes that you make to the basic template will be to the ‘Handling
controls’ methods and the myProcess method. For more information, see Section 10.2.3
[Handling controls], page 126 and Section 10.2.4 [myProcess()], page 127.

10.2.2 Constructors / destructor

The first function is the standard C++ constructor; the second function is the copy con-
structor. The destructor is straightforward.

MyName::MyName(string name):MarSystem("MyName", name)

MyName::MyName(const MyName& a) : MarSystem(a)

MyName::~MyName()

MarSystem* MyName::clone() const

clone() is used to create a new MarSystem; Marsyas stores an instance of every MarSys-
tem at run-time, and future MarSystems are simply clone()’d from the initial instance.

Copy constructor

All member pointers to controls must be explicitly reassigned in the copy constructor.
Otherwise these member points would be invalid, which results in trying to de-allocate
them twice! The function should look like this:

MyMar::MyMar(const MyMar& a) : MarSystem(a)

{

ctrl_gain_ = getctrl("mrs_real/gain");

ctrl_other_ = getctrl("mrs_natural/other");

ctrl_dothis_ = getctrl("mrs_bool/dothis");

...

}

10.2.3 Handling controls

addControls() defines which controls a MarSystem uses:

addctrl("mrs_real/frequency", 1000);

Chapter 10: Programming MarSystems 127

//setctrlState("mrs_real/frequency", true);

The addctrl() sets up a control for the MarSystem; this control may be changed by
other C++ code by doing

MarNetwork->updctrl("MyName/myInstanceName/mrs_real/frequency",

500);

This will change the value of the control and call MyName::myUpdate().

If we called setctrl instead of updctrl,

MarNetwork->setctrl("MyName/myInstanceName/mrs_real/frequency",

500);

Then myUpdate() will not be called. If we had set setctrlState to true (ie uncom-
mented the line in the initial example), then setting this control would automatically call
MyName::myUpdate().

10.2.4 myProcess()

myProcess() is called every time the MarSystem receives a tick() (ie all the time the
program is running).

Resource-intensive operations (such as changing the buffer size, computing trigonomic
functions, etc) that only depend on the controls (not the actual dataflow input) should be
performed inside myUpdate(). For more information, see Section 10.2.5 [myUpdate() vs.
myProcess()], page 127

Most myProcess() functions will look like this:

void

MyMar::myProcess(realvec& in, realvec& out)

{

// pre-loop initialization

...

// loop over buffer

for (o=0; o < inObservations_; o++)

for (t = 0; t < inSamples_; t++)

// calculate next value

...

out(o,t) = ...;

// post-loop actions

...

}

10.2.5 myUpdate() vs. myProcess()

Taking a real-world example, consider a simple one-pole high/low-pass filter where we wish
to perform the following operations:

mrs_real fc = ctrl_fc ->to<mrs_real>()();

mrs_real tanf = tan(PI * fc / 44100.0);

mrs_real c = (tanf - 1.0) / (tanf + 1.0);

Chapter 10: Programming MarSystems 128

// main loop

for (t=1; t < inSampes_; t++) {

az = c*in(0,t) + in(0,t-1) - c*out(0,t-1);

out(0,t) = (1-az)/2;

}

Since tanf and c only depend on fc, they may be computed inside myUpdate() instead
of myProcess(). If fc has not changed, we can use the old value c to perform the loop
over our sound buffer; if the value of fc has changed, then c will be recomputed inside
myUpdate().

10.2.6 More details about MarSystems

These files have useful comments:

marsyas/MarSystemTemplateBasic .h .cpp

marsyas/MarSystemTemplateMedium .h .cpp

marsyas/MarSystemTemplateAdvanced .h .cpp

marsyas/Gain .h .cpp

Missing Docs 129

Missing Docs

B
Brief note explaining what is missing. 4

C
can be done; read the source code. 91

D
descriptions of all these programs 26
descriptions of composites, add the other

composites . 50

O

Once you have learned how to use an

undocumented MarSystem, please help

document it. The source documentation

only requires adding a special comment in

the source file, so it is very easy!

Please see Section ‘‘Contributing source

documentation’’ in Marsyas Developer’s
Manual. 64

The Index 130

The Index

B
bextract . 30

C
Compiling, programs . 71

H
Hello world . 73

I
ibt . 35

K
kea . 39

L
Linking, programs . 71

M
MacOSX . 10
MarControlPtr . 82
mkcollection . 27
mrs bool . 64
mrs complex . 64
mrs natural . 64
mrs real . 64
msl . 42
mudbox . 43

O
Open Sound Control (OSC) messages through

OscMapper. 45

P
peakClustering . 40
Perry Cook . 1
phasevocoder . 37
pitchextract . 30
Playing an audio file . 73

R
realvec . 65

S
sfplay . 27
sfplugin . 42
sinusoidal analysis . 40
spectral clustering . 40

T
Tzanetakis, George . 1

U
Ubuntu (kubuntu-8.04.1-desktop-i386) 16

V
Visual Studio . 17

W
Windows XP . 17

	General information
	History
	Context and Related Work
	About the documentation
	Latest version
	User manual and Developer's manual
	Help wanted!

	Beyond the manuals
	Examples
	MarSystem source documentation
	Source code

	Source installation
	Prerequisites
	CMake installation
	Compiler configuration
	Linux compiler configuration
	MacOS X compiler configuration
	Windows compiler configuration

	Download
	Stable(-ish) Version
	Development Version

	Configuring with CMake
	Windows
	Unix (including MacOS X)

	Marsyas options
	Input/Output
	Code messages and optional portions
	Logging options
	Optional software (WITH_*)

	Compiling
	Testing

	Specific installation examples
	Compiling on MacOS X 10.6 Snow Leopard
	Compiling on Ubuntu 11.04 - Natty Narwhal (2011)
	Compiling on Ubuntu
	Compiling with Visual Studio Express 2008 on Windows XP
	Compiling with MinGW on Windows XP
	MacOS X additional notes

	Post-install setup
	Vim editor support
	Datasets

	Structure of distribution

	Tour
	Command-line tools
	User interfaces
	Web information
	Available tools
	Collections and input files
	Creating collections manually
	Labels
	MARSYAS_DATADIR
	mkcollection

	Soundfile Interaction
	sfplay
	sfinfo
	audioCompare
	record
	orcarecord
	sound2png
	sound2sound

	Feature Extraction
	pitchextract
	bextract
	ibt

	Synthesis
	phasevocoder

	Machine Learning
	kea

	Auditory Scene Analysis
	peakSynth
	peakClustering

	Marsystem Interaction
	sfplugin
	msl

	All of the above
	mudbox

	Graphical User Interfaces using Qt4
	MarPlayer
	MarPhaseVocoder
	MarGrid
	MarMonitors
	MarLPC

	Architecture concepts
	Architecture overview
	Building MarSystems
	Dataflow model

	Implicit patching
	Implicit patching vs. explicit patching
	Implicit patching advantages
	Patching example of Feature extraction

	MarSystem composites
	Series
	Parallel
	Fanout
	Accumulator
	Shredder

	Linking of controls
	Scheduling
	Scheduling in Marsyas
	Time
	Event

	Components of the Marsyas Scheduler
	MarSystem
	Scheduler
	Timers
	Events
	Repeat
	TmTime
	TmTimerManager

	System details
	Library reference
	Source documentation
	MarSystem groups
	Limited documentation

	Predefined types
	Variables types
	Constants

	Realvec
	Reading and writing to a realvec
	Resizing a realvec
	Realvec arithmetic
	Applying a function to a realvec
	Realvec input and output to a file
	Statistical analysis
	Other realvec functions

	System limitations
	Stereo vs. mono in a spectrum

	Scripting
	Interactive python
	Getting started with python
	Swig python bindings bextract example

	Writing applications
	Including libraries and linking
	... using qmake
	... writing your own Makefile
	... on Windows Visual Studio

	Example programs
	Hello World (playing an audio file)
	Reading and altering controls
	Writing data to text files
	Getting data from the network
	Command-line options

	Writing Qt4 applications
	Including and linking to libmarsyasqt
	MarSystemQtWrapper
	Passing controls to a MarSystemQtWrapper
	Other classes in MarsyasQt
	Qt4 example
	Other Qt4 issues

	Other programming issues
	Visualizing data with gnuplot

	Interoperability
	Open Sound Control (OSC)
	WEKA
	MATLAB
	Python
	OCaml
	SonicVisualiser Vamp Plugins
	Instalation
	Writing Plugin

	Using and Extending the Scheduler
	Using the Scheduler
	Repeating Events

	Writing a new Timer
	Updating timers at run-time
	Timer Factory

	Writing a new Event
	Expression Events

	Marsyas Expression Syntax
	Type System
	Operators
	Variables
	Assignment (<< >>)
	Links (-> <-)
	Conditional Statements ({? cond_expr : exprs1 : exprs2 })
	Multiple Expressions (exprs := expr1 , expr2 , expr3)
	Properties (ie Real.pi or 'hello'.2 etc.)
	Sequences (Lists)
	Function Libraries
	Using
	Extending
	Marsyas Expression Examples

	Programming MarSystems
	Compiling and using a new MarSystem
	Writing your own MarSystems
	Using your MarSystem

	Anatomy of a MarSystem
	Methods of the object
	Constructors / destructor
	Copy constructor

	Handling controls
	myProcess()
	myUpdate() vs. myProcess()
	More details about MarSystems

	Missing Docs
	The Index

