
1

2

3

6
7

8

VHDL: ONE
LANGUAGE IS
NOT ENOUGH
ModelSim capitalizes on
the strengths of VHDL
and Verilog to bring you
the best simulator on the
market

DEBUG
DETECTIVE
Introducing Debug
Detective: Advanced
debug and analysis
for ModelSim

MARCONI
ModelSim streamlines
distributed system
simulation environment
development

FAQs
Getting the most out
of ModelSim

TIPS AND TRICKS
Expert answers about
ModelSim and the
simulation process

HDL DESIGN
AND TRAINING
SCHEDULE

FROM CONCEPT
TO SILICON
Advanced techniques for
complex FPGA design

MODELUSER Q
3
 0

1

Only a few years ago, the great language

war between VHDL and Verilog was raging.

Many industry experts said one language

would win over the other and that’s what the

design community would use.

Yes, there has been a winner — and it’s

both languages.

As a result, the Hardware Description

Language market continues to grow. VHDL

usage remains strong for a number of

reasons. This article focuses on two: VHDL’s

history and its functionality.

BECOMING A STANDARD

VHDL was first intended as a Hardware

Description Language for documenting

designs. It originated from a US

Government/DOD-sponsored effort to over-

haul the way integrated circuits were

exchanged between companies. In 1987, the

IEEE adopted VHDL as a standard and

many EDA companies began developing

tools supporting the language.

VHDL is widely used today. The biggest

user communities are Europe and the FPGA

markets. Europe always looks for standards

when adopting methodologies — and at the

time, Verilog was owned by Cadence and not

a standard. Conversely, the FPGA vendors

had formed an alliance with EDA vendors

who only developed VHDL tools.

DESIGN DISCIPLINE

VHDL is able to balance its flexibility and

power by enforcing a certain degree of disci-

pline on the designer. Strictly enforced type

and other rules define how and when state-

ments can be used. While these rules may

appear cumbersome at first, their value in

complex designs rapidly overshadows any

aspect of the language that could obstruct the

design process.

Unlike languages such as Verilog, it is not

possible in VHDL to compile code then spend

hours discovering that your problem is a range

or not assigning enough bits to a vector.

VHDL is excellent at the higher levels of

abstraction — Register Transfer and behav-

ioral. It includes features such as enumerated

types, permitting the designer to model

without worrying about implementation and

allowing synthesis tools to choose the best

encoding schemes.

POWERFUL FEATURE SET

VHDL is highly organized, making use of

libraries to store units and allowing connec-

tivity of design units to be controlled by

configurations. It has generated functionality

that permits units to be replicated easily within

loops. You only have to look at the new

Verilog 2001 specifications to see an endorse-

ment of long-standing VHDL language

A publication of Model Technology Incorporated

CONTENTS

V H D L : O N E L A N G U A G E
I S N O T E N O U G H

Model Technology, Inc.
10450 S.W. Nimbus Avenue, Bldg. R-B
Portland, OR 97223
Phone
503-641-1340
Email
sales@model.com, support@model.com,
modeluser@model.com
Web
www.model.com

C
O

N
T

A
C

T

CONTINUED ON PAGE 5

I N T R O D U C I N G D E B U G D E T E C T I V E ,
A D V A N C E D D E B U G A N D A N A L Y S I S
F O R M O D E L S I M

MODELUSER Q3 012

Debug Detective™, a new product in the

HDL Designer Series family of tools,

provides extended debug and design

analysis capabilities to the ModelSim® PE

and SE simulators. This tool was developed

specifically as a natural extension to your

ModelSim user interface by adding visuali-

zation and unique interactive debugging

features.

Debug Detective snaps on to your

ModelSim installation. When you are ready

to use the debug features, they are available

via toolbar buttons, pull-down menus or by

double-clicking on the region in the

Structure window.

By referencing the source code displayed

in ModelSim’s Source window, Debug

Detective renders on-the-fly graphical and

tabular views of any level of your design

hierarchy. These renderings are completed

rapidly and without any change to the

source code or need for a special database.

You can use Debug Detective without any

change to your current ModelSim simula-

tion environment — even your invoke

scripts are not affected.

Debug Detective produces graphical or

tabular representations for any level of your

design hierarchy in the Structure window or

any section of code displayed in any other

ModelSim debug window.

The rendered graphical views include

state machine diagrams for control logic,

flow charts for sequential logic such as test-

benches, and block diagrams for structural

netlists.

In addition to the block diagram view

for VHDL and Verilog netlists, the

Interface-Based Design™ (IBD™) view can

also be rendered. IBD is patent-pending

technology from Mentor Graphics and

offers a unique image of the netlist. The

representation uses a spreadsheet approach

to display blocks (columns), signals (rows),

and their interconnections.

Debug Detective renders views of any and all levels of the design into block, Interface-Based Design,
state, or flow chart diagrams.

Interface-Based Design view of a structural HDL netlist.
CONTINUED ON PAGE 4

M A R C O N I D E V E L O P S D I S T R I B U T E D
S Y S T E M S I M U L A T I O N
E N V I R O N M E N T

Q3 01 MODELUSER 3

Marconi Networks — with 55,000

employees in 100 countries — provides key

technologies, equipment, and services for

the Internet, enterprise networks, and

telecommunications systems.

Jay Adams, manager of ASIC design at

Marconi, was faced with verifying a

complete system while maintaining an

aggressive product delivery date. He realized

that simulation of this magnitude could be

accomplished with ModelSim running on

hardware with 64-bit operating system

support.

“In order to achieve the speed needed to

make this massive system simulation effec-

tive, we needed to explore radical new simu-

lation methods,” explains Adams.

Marconi already had a significant invest-

ment in testbench technology, with the test-

bench linked into ModelSim with the

Foreign Language Interface (FLI) C-inter-

face. The self-checking test cases also had

embedded UNIX®-like scripting built into

them. The sophisticated testbench tech-

nology ran together with ModelSim in a

single threaded application on a single CPU.

CAPITALIZING ON COMPUTE

POWER

The project’s main goal was to achieve

the highest quality product while manufac-

turing it on time. For both hardware and

software developers to accomplish their

goals, the entire system had to be simulated.

Adams wanted to utilize the computing

power of Marconi’s substantial compute

farm. This required Marconi to solve the

problem of linking and synchronizing

separate Modelsim simulations running on

the farm.

To realize that goal, Tim Noh, manager

of verification, and Mark Pleso, a lead engi-

neer, saw the use of Remote Procedure Calls

(RPC) with a client-server model as the

logical next step in the development of

Marconi’s verification environment.

Since the Marconi team was already

familiar with ModelSim’s FLI C interface,

the design of the RPC server-client was

made much easier. The testbench, system

diagnostics and 272 ASICs with embedded

memory would communicate through RPC.

The RPC libraries allow C language

programs to make procedure calls with

other CPUs on a network. This is accom-

plished with a server and client, with each

client running on its own CPU. The client

sends a request to a server, the server

Marconi Networks employed ModelSimin its Distributed
System Simulation environment to verify C diagnostics on its
entire system chassis. Using ModelSim in the distributed CPU
environment also provided unprecedented system-level quality
assurance of the 272 ASIC system prior to tape out.

CONTINUED ON PAGE 4

Marconi partitioned their simulation on 15 separate CPUs. Communication was handled by the RPC server.
This implementation enabled software developers to verify diagnostics on the entire system.

MODELUSER Q3 014

processes the request appropriately and

sends back a response to the client. A sepa-

rate client was set up for the testbench and

C interface to System Diagnostics, and for

the VHDL design. Each part of the VHDL

RTL design was partitioned to a separate

client/CPU with an FLI interface.

EXCEEDING EXPECTATIONS

With 15 separate CPUs running simulta-

neous ModelSim simu-

lations, Marconi was

able to demonstrate a

working BXR™-48000

— a non-blocking

480 Gbps Multiservice

Switch Router — to

diagnostic engineers

and system software

developers.

“Our expectations

of throughput were

exceeded. We were

impressed by the

throughput of this

implementation,” says

Noh. “Each CPU load

was about 25 percent.

For this large of a

network of chips, we

were very happy.

“One of the most

interesting aspects of

this project was the increased communica-

tion between the two disciplines,” Noh

adds. “The software and hardware engi-

neers were making discoveries soon

enough to affect the quality of the system

for less cost.”

MULTI-PLATFORM MODELSIM

DRIVES LOW COST PER

SIMULATION

Because of existing testbench tech-

nology, the decision to keep the simulation

environment based in UNIX was simple.

Deciding which hardware to use was more

challenging.

“ModelSim is available on all the plat-

forms we used, including Linux®,” explains

Noh. “Because of many factors, the 15-

node parallel simulation environment

currently runs on Linux-based hardware.

High CPU frequencies and lower cost make

a very strong argument for this platform.

“ModelSim’s ability to compile the

design on our platform of choice —then to

use the compiled HDL image on other

hardware architectures — made implemen-

tation of a multi-

architecture veri-

fication

environment a

cost-versus-

performance

decision.” he says.

“Parallel

simulation is not

the only mode of

verification,”

Noh adds.

“There is a signif-

icant need to

share the

compute

resources for

normal, single

CPU batch and

interactive simu-

lation runs as

well.”

ENABLES BEST COST-PER-

SIMULATION

ModelSim’s high-performance VHDL

simulation and robust Foreign Language

Interface (FLI) enabled Marconi to use

UNIX Remote Procedure Calls (RPC) to

implement its Distributed System

Simulation environment.

ModelSim’s unique platform independ-

ence also made it possible to implement the

15-CPU Distributed System Simulation

environment on low-cost, high-performance

hardware so Marconi could run valuable

verification with the best cost-per-simula-

tion cycle.

“During the distributed

environment development,

I could not have been more

pleased with the

performance of ModelSim

and the responsiveness of

the Mentor team.”

Jay Adams

Marconi Networks

MARCONI , CONTINUED FROM PAGE 3

All of these graphical and tabular

views speed design understanding, plus

enable advanced debugging techniques.

Via simulation toolbars on each diagram,

you can advance and step simulation time,

set breakpoints on state machines and

flow charts, add signals to the Wave and

List windows, and place probes on your

block diagram. Probes function just like

the ModelSim examine command.

Debug Detective offers animation and

cause analysis for additional debug

productivity. Animation visually displays

the flow of logic in your state diagrams

and flow charts. Color changes help you

easily trace the path of logic, visually

highlighting branches and missed states.

VCR-style buttons control your steps

through the diagram. Cause analysis

works with the ModelSim Wave window

to link a specific signal transition event

back to the source in a rendered diagram

and line in the ModelSim Source window.

For a free 30-day evaluation license

of Debug Detective, please visit

www.debugdetective.com or email

sales@model.com.

Visit

www.model .com

for frequent updates,

including

Application Notes

Product Highlights

and

Tips and Tricks

DEBUG DETECTIVE ,
CONTINUED FROM PAGE 2

features. The new Verilog 2001 specification

includes VHDL-like functionality, such as

generate statements and use of libraries, to

name just a few.

Since the first release of VHDL in 1987,

other standards have come along to comple-

ment the main standard and allow EDA

vendors to accelerate their tools.

In the early days, there was no standard

method of implementing arithmetic func-

tions or wire types and each tool had its

own library. This presented two problems.

First, the functions were not accelerated

and therefore raw code had to be executed,

causing performance problems. And

second, it was difficult to share code

between different tools. Standards such as

std logic 1164 — as well as arithmetic and

numeric standards — have allowed

EDA companies to fully accelerate

their tools and enable code to be

shared by multiple tools. ModelSim

fully accelerates all the standards using

its native compiled code architecture.

GATE-LEVEL ATTENTION

Another area where much work has

been done in VHDL is at the gate level.

This was again necessary because there

was no standard way to model gate-

level libraries and therefore no way the

modeling could be accelerated by the simula-

tors. VITAL (VHDL Initiative Towards

ASIC Libraries) was the first specification to

define a standard way to model at the gate

level. A simulator is VITAL-compliant if it

implements the SDF mapping and if it

correctly simulates designs using the VITAL

packages, as outlined in the VITAL Model

Development Specification.

PLATFORM INDEPENDENCE

ModelSim was the industry’s first native

compiled simulator. ModelSim provides the

high-performance benefits of platform-

specific native code, plus the unique advan-

tage of platform-neutral compile. ModelSim

compiles to a platform-neutral pseudo-RISC

code. When you load your design, ModelSim

generates native code for the architecture you

used to invoke it. ModelSim’s architecture

allows you to compile once and run on any

hardware platform.

All versions of ModelSim — including

OEM versions — are compliant with the

IEEE 1076.4 VITAL ASIC Modeling

Specification. In addition, ModelSim PE and

SE both accelerate the VITAL_Timing and

VITAL_Primitives packages. The procedures

in these packages are hand-optimized and

built into the simulator kernel. They are func-

tionally equivalent to the IEEE 1076.4

VITAL ASIC Modeling Specification

(VITAL v3.0).

An extra level of optimization occurs in the

SE product — a built-in compliance checker in

ModelSim’s VHDL compiler. To qualify for

global acceleration, architecture must be

VITAL Level 1 compliant. This check is

performed automatically on all entities with

the VITAL_Level 0 attribute set and all

architectures with the VITAL_Level 0 or

VITAL_Level 1 attribute set. If the model is

compliant, the complete model is transformed

into a state machine that does the equivalent

behavior more efficiently. The multiple VITAL

primitives become a single model, which can

have a significant effect on the simulation

performance.

VERILOG EFFICIENCIES

Even with this acceleration, using Verilog

at the gate level often is more efficient with

respect to performance and memory utiliza-

tion. This is because the Verilog language was

built to model at the gate level, whereas

VHDL had to be pushed in that direction.

This is why many ModelSim users use the

seamless mixed-language facility within the

tool — they are able to carry on designing at

the RTL and behavioral levels with the

advantages of VHDL, then, for gate-level

modeling, can instantiate a Verilog netlist.

The benefits of using Verilog at the gate

level include more complete ASIC foundry

and backend tool support, plus it allows

ModelSim to handle much larger designs at a

higher performance level.

MODELSIM SUPERIORITY

ModelSim has the highest capability of

any simulator on the market. Its 64-bit

version currently runs on both Solaris and

HP, allowing customers to build processes

larger than the 32-bit limit of 4 Gb. The

recently released ModelSim version 5.5

includes Verilog gate-level optimizations,

providing up to 4X faster simulations and up

to 3X smaller memory images.

One customer using Verilog gate-level

optimizations saw a 6.5 Gb image reduced to

1.9 Gb. That reduction allowed the

customer to take a 6.5 million-gate

design and switch back to the 32-bit

version of ModelSim, eliminating the

need to use more expensive worksta-

tions. The performance of this simula-

tion also improved 2.5X.

ModelSim handles large designs

within 32-bit workstations, preserving

customers’ significant investment in

hardware. Having 64-bit support

increases ModelSim’s capacity beyond

any other simulator on the market.

MEETING YOUR PREFERENCES

ModelSim has accommodated your

simulation language preferences — mixed-

HDL, HW platform and OS neutral, or

native code simulation — since 1995.

Performance and functionality should be

independent of your HDL because your

initial HDL choice most likely will not be

your last.

With integrated tools like Code Coverage,

Waveform Compare, advanced bug tracing,

ModelSim is your choice for simulation.

Today, ModelSim has 60 percent market

share in VHDL, is the industry leader in

mixed-language, and is the fastest growing

Verilog simulator on the market. That’s why

there are more than 60 active partnerships

with companies providing additional value to

ModelSim and why ModelSim is synony-

mous with innovation, industry leading

technology and superior support.

V H D L , C O N T I N U E D Q3 01 MODELUSER 5

CONTINUED FROM PAGE 1

F A Q SMODELUSER Q3 016

QThe waveform compare tool can
perform comparisons based on a refer-

ence signal’s transition. This is commonly
known as a “clocked compare.” This reference
clock often is a clock, but it could also be any
signal such as a data strobe or read enable.

AFollowing is an example of a clocked

compare. The two datasets min and

typ are opened, and a limit of 1000 errors

set. All signals are compared with the

command compare region — recursive —
all. In addition, there are two data compar-

isons related to the clock. Both are done

relative to the rising edge of the

tst_pseudo.clock signal (compare clock
–rising label). The second reference clock

label clocked_delay4 is offset by 4ns. So, the

data is compared 4ns after the rising edge

of the clock. If you changed this to –4ns,

data would be compared 4ns before the

rising edge of the clock. Both examples of

the clocked compare check the

tst_pseudo.data, but with a different clock

label (–clock clock_rising and –clock
clock_delay4):

dataset open min.wlf min
dataset open typ.wlf typ
compare open -maxtotal 1000 min typ
compare region -recursive -all

compare signal min:.tst_pseudo.clock typ:.tst_pseudo.clock

compare with clock
compare clock -rising clock_rising min:.tst_pseudo.clock
compare signal -clock clock_rising -label clocked_data
min:.tst_pseudo.data \

typ:.tst_pseudo.data

compare with clock delay
compare clock -rising -delay {4 ns} clock_delay4 min:.tst_pseu-
do.clock
compare signal -clock clock_delay4 -label clocked_delay4_data
min:.tst_pseudo.data \

typ:.tst_pseudo.data

compare info -write compare_info.txt
compare start

QHow do I convert signal values to
strings?

AYou may want to display certain signal

values as strings. For example, rather

than displaying the value 0, you may want

to display the string idle. The virtual type
command allows you to do this.

The virtual type command creates a new

enumerated type, known only by the GUI.

The steps for using the command are:

1.) Define a virtual type that contains the

states virtual type:
{ state0 state1 state2 state3} myState

2.) Define a virtual function for translating

the signal values to strings virtual func-

tion:
{(mystate)mysignal} myConvertedSignal

3.) Display the translated value add wave
myConvertedSignal

When myConvertedSignal is displayed in

the Wave, List or Signals window, the

string state0 will appear when mysignal ==

0, state1 when mysignal == 1, state2 when

mysignal == 2, etc.

See the virtual type function in the ModelSim

Command Reference for further details.

QHow do I sample signals at a clock
change?

AYou can do this easily by adding

signals to the list window using the

–notrigger argument. –notrigger disables

triggering the display on the specified

signals. For example:
add list clk –notrigger a b c

When you run the simulation, list window

entries for clk, a, b, and c appear only

when clk changes. If you want to display

on rising edges only, you have two options:

1.) Turn off the list window triggering on

the clock signal, then define a repeating

strobe for the list window.

2.) Define a “gating expression” for the list

window that requires the clock to be in

a specified state.

See the add list command in the ModelSim

Command Reference for further details.

QI’m seeing different simulation results
from ModelSim and another Verilog

simulator. Why is this happening?

AThis may happen as a result of simul-

taneous events being executed in a

different order. The Verilog language does

not require simulators to execute simulta-

neous events in a particular order.

Unfortunately, some models are inadver-

tently written to rely on a particular event

order. These models may behave differ-

ently when ported to another Verilog simu-

lator. A model with event order dependen-

cies is ambiguous and should be corrected.

For example, the following code is

ambiguous:
module top;

reg r;

initial r = 0;initial r = 1;

initial #10 $display(r);

endmodule

The value displayed for r depends on the

order that the simulator executes the initial

constructs that assign to r. Conceptually,

the initial constructs run concurrently and

the simulator is allowed to execute them in

any order. ModelSim Verilog executes the

initial constructs in the order they appear

in the module, and the value displayed for

r is 1. Verilog-XL produces the same

result, but a simulator that displays 0 has

also produced correct results.

Since many models have been developed on

Verilog-XL, ModelSim Verilog duplicates

Verilog-XL event ordering as much as

possible to ease the porting of those

models to ModelSim Verilog. However,

ModelSim Verilog does not match Verilog-

XL event ordering in all cases, and, if a

model ported to ModelSim Verilog does

not behave as expected, you should suspect

that there are event order dependencies.

See “Event order issues” in the Verilog

chapter of the ModelSim User’s Manual

for further details.

QHow do I hide library cell signals
when saving a waveform file?

AGate-level simulations may result in

large waveform files because the internal

signals of your library cells are saved. The

following method will prevent these signals

from being saved in a Verilog design.

If your cells are enclosed in Verilog `cellde-
fine and `endcelldefine preprocessor direc-

tives, you can specify –fast on the vlog

command line when compiling the cell

library. This will basically hide the innards

of the cells and hence the internal signals

will not be saved. A further benefit of this

methodology is that the cells compiled

with –fast will consume less memory.

See the “Verilog” chapter in the ModelSim

User’s Manual for further details on –fast.

T I P S A N D T R I C K S Q3 01 MODELUSER 7

W I N A D I G I T A L C A M E R A W I T H A
S N A P S H O T O F Y O U R S U C C E S S

ModelSim 5.6 SE release includes two new
command options that provide Simulation
statistics. The Verilog (vlog) and VHDL
(vcom) compilers include the –time.
ModelSim (vsim) now supports the
command simstats.

The –time option will report the cumula-

tive wall clock time needed to compile your

netlists. The following example reports the

cpu time required to compile the Verilog

code in the mixed-HDL design in the exam-

ples directory. The same format can be used

for VHDL (vcom –time *.vhd).

vlog –time *.v

-- Compiling module cache

-- Compiling module memory

-- Compiling module proc

Top level modules:

cache

memory

proc

Process time 0.211199 seconds

The simstats command will report the

system requirements needed to execute your

ModelSim run. For example, you can

modify the run command to include the

simstats command in the mixed-HDL

design in the examples directory . This vsim
example will provide the simulation statis-

tics after the run simulation has completed

(run –all has stopped):

vsim -c -do ‘view *; add wave *; run -all; simstats’ top

Results in simulation transcript:

{memory 6992} {{working set} 5696} {time 0.015162} {{cpu

time} 0.01}

"memory" is the total process size.

“working set” is current working set of vsim.

"time" is the cumulative wall clock time of the run commands.

"cpu time" is the cumulative processor time of the run com-

mands.

Processor time differs in wall clock in

that process time is only counted when the

CPU is actually running vsim. If vsim is

swapped out for another process, CPU time

does not increase. CPU time eliminates the

impact of other processes on simulation

statistics.

See the ModelSim 5.6 Command

Reference Manual for complete description

of –time compiler option and simstats
command.

Using extended VCD and vcdstim to
re-simulate a component.

The IEEE 1364-2001 Verilog standard

added support for extended VCD which

provides additional information for bidirec-

tional ports. ModelSim can generate

extended VCD files from Verilog, VHDL,

or a mixed-language design. This is done

using the $dumpports system task within the

Verilog language or with the ModelSim vcd
dumpports command. To re-simulate a

component in a design, re-invoke ModelSim

on that component with the -vcdstim option

and an extended VCD file that was gener-

ated from the ports of the component in a

previous run.

Viewing VCD files using the vcd2wlf utility.
VCD provides a standardized method

for saving the output from a simulation.

Whether this output comes from another

design team in the same company or from

an IP vender, a convenient method for

viewing this output is needed. ModelSim

provides a utility called vcd2wlf that can

convert a standard or extended VCD file

into a ModelSim waveform database file.

You can then view the waveforms by

invoking ModelSim using the -view option.

Tell us your most successful implementation of ModelSim

and become eligible to win a Canon PowerShot S300 ELPH.

Send us a paragraph or two about your success to

contest@model.com by December 15th for this drawing.

But if you miss that deadline, don’t despair, you can enter

every quarter (however the prize is subject to change).

More exciting still, if you win, your story will be featured in

the next issue of ModelUser. We’ll give your paragraphs the

full treatment, similar to what we did with Marconi on page 3.

Visit

www.model .com

weekly for

the latest

Tips and Tricks

HDL SIMULATION USING MODELSIM

October 15 Ottawa

November 8 Boston

November 28 San Jose

COMPREHENSIVE VHDL

October 22 San Jose

EXPERT VHDL VERIFICATION

October 15 Toronto

December 3 Boston

December 17 San Jose

COMPREHENSIVE VERILOG

October 29 Boston

DESIGNING WITH FPGA ADVANTAGE®

October 10 Chicago

October 29 Dallas

November 12 Ottawa

HDL DESIGNER SERIES

October 22 Chicago

December 11 Dallas

EDUCATION SERVICES

Call 800-345-2308 or
www.mentor.com/es for updated
training dates and registration.

Mentor Graphics understands the complexities of today’s
electronic designs. Through the public courses listed
above, let us help you gain the experience necessary to
discover and overcome your toughest obstacles.

Mentor Graphics Corporation
8005 S.W. Boeckman Road
Wilsonville, OR 97070-7777
800-547-3000/503-685-7000
www.mentor.com

Model Technology, Inc.
10450 S.W. Nimbus Avenue, Bldg. R-B
Portland, OR 97223-4347
877-435-4255/503-641-1340
www.model.com

E V E N T S

For more details, visit our website
at www.model.com

Copyright © 2001 Model Technology.

Debug Detective, IBD, and Interface-Based Design are trademarks and FPGA Advantage and ModelSim are registered trademarks of
Mentor Graphics Corporation.

All other trademarks mentioned in this document are trademarks of their respective owners.

Printed on Recycled Paper 10-01-WCI 3001810

8

H D L T R A I N I N G

S C H E D U L E

FROM CONCEPT TO SILICON

ADVANCED TECHNIQUES FOR

COMPLEX FPGA DESIGN

With every new design, your challenge

gets bigger. You’re faced with creating a

better solution in half the time. It’s a

daunting task, but there’s a way to succeed.

Advanced design techniques can take you to

the next level in FPGA design. Whether

you’re tackling thousands or millions of

gates, you’ll approach design from a whole

new perspective.

Attend a free, one-day seminar packed

with valuable information:

• Learn how to apply advanced design

techniques for reuse, creation, simula-

tion, synthesis, and management.

• Explore how to take your design into

a team environment and move your

FPGA onto a board in record time.

• Gain insight into the most efficient

ways to take your next design from

concept to silicon — with success.

SCHEDULE

Tuesday, Oct. 16 — Irvine
Thursday , Oct. 18 — San Jose
Tuesday , Oct 23 — Dallas
Thursday , Oct 25 — Raleigh

To see schedules and to register:
www.mentor.com/fpgadesign

