
Dealing with Evidence:
The Programatica Certificate Abstraction

Mark P. Jones

Department of Computer Science & Engineering
OGI School of Science & Engineering at OHSU

20000 NW Walker Road, Beaverton, Oregon OR 97006, USA
mpj@cse.ogi.edu

Abstract. In software projects, developers often rely on a wide variety
of evidence to assure themselves that the system they are building is
functioning correctly. There are many ways to generate evidence—from
code reviews to testing and theorem proving—but the diversity and vol-
ume of evidence can be hard to manage, maintain, or exploit as a project
evolves and meaningful levels of assurance are required.
In this paper, we describe a new kind of tool that facilitates effective use
of evidence throughout a project. Such tools should allow users to capture
and collate evidence with source materials; to exploit dependencies; to
automate combination and reuse; and to understand, manage, and guide
further development and validation efforts. Our work is presented in the
context of a prototype built for the Programatica project at OGI where
evidence is represented by a certificate abstraction, but the key ideas, we
believe, should be more widely useful.

1 Introduction

Throughout the lifetime of a software project, the designers and developers will
typically gather, generate, and rely on many different kinds of evidence, formal
and informal, to assure themselves that the system they are building is function-
ing correctly. The nature, quality, and quantity of this evidence will often vary
depending on factors such as the overall project goals, its stage of development,
the needs of programmers and users, and the level of assurance that is required:

– In the early stages, when many questions about the basic design are yet
to be resolved, one might expect the developers to assemble evidence that
includes descriptions of basic requirements, assumptions about the environ-
ment in which the system will be operated, manufacturer specifications for
components that might be used, and preliminary design documentation such
as rough sketches or simple, proof-of-concept prototypes.

– As the project begins to mature and a body of executable code starts to take
shape, evidence such as unit tests, or specific test data sets, may be collected,
both to document expected behavior, and to ensure that previously detected
and corrected bugs are not inadvertently reintroduced. Detailed assumptions



2 Mark P. Jones

and intuitions about the way the code works—from high-level architectural
perspectives to low-level issues like the selection and implementation of data
structures—may be documented at this time, and the evolving system may
be subjected to code inspections and reviews. Diagnostics from compilers
and program analysis tools may also be used to identify problem areas and
construct to-do lists of tasks that require further attention.

– Once the basic structure is firmly in place, developers might use tools based
on formal methods—such as model checkers or theorem provers—to establish
or obtain evidence for key properties. Effective use of such tools can require
significant investment, both in initial training and in daily use, and may,
therefore, be considered too expensive in the early stages of a project while
significant structural changes are still likely. On the other hand, these tools
can also be used to obtain very strong guarantees about program behavior—
such as freedom from deadlock, or verification of security or communication
protocols—that will be particularly important in safety or security critical
applications where a high degree of assurance is required.

– Finally, as the project approaches a release date or is prepared for deploy-
ment, more emphasis is likely to be placed on compatibility testing, perfor-
mance tuning, usability issues, documentation, and installation procedures.

In practice, few (if any) software projects follow such a simple, linear course
of development with clear and neat divisions between different stages. Instead,
they evolve in complex and unpredictable ways as bugs are detected and fixed,
as users clarify or change their needs or request new functionality, and as the
development efforts adapt to reflect changing priorities and emphasis. This sug-
gests a new opportunity to use evidence as as a mechanism for identifying and
tracking change. Moreover, it suggests that we need new ways to allow evidence
to be reused, repeated, or replayed so that validity of an evolving system can be
checked without the need to reconstruct evidence from scratch at every step.

1.1 This Paper

This paper summarizes our efforts to design new kinds of tools that facilitate
efficient and effective use of evidence throughout a project. More specifically,
our goal is to build tools that allow users to capture evidence and collate it with
source materials; to exploit dependencies between evidence and the programs to
which it refers as a means of tracking change; to automate the process of combin-
ing and reusing evidence; and, finally, to understand, manage, and guide further
development and validation efforts. In addition, we recognize that evidence may
come in many different forms, and that tools must be designed to address this.
For example, each of the following may be useful as evidence:

– An assertion of validity, digitally signed by the person who makes the claim;
– A set of test data, including the expected output and the date when the

tests were last run;
– A citation, URL, or the full text of a document that provides the proof of a

theorem or the specifications of a component;



Dealing with Evidence 3

– An encapsulated session with some external proof tool containing a partially
completed attempt to prove some associated theorem. Such a proof might
be completed at a later date by resuming the session with the external tool.

To support such diversity, our tools will need to handle evidence using generic
interfaces, and they should also be extensible so that they can accommodate
new kinds of evidence as they are needed. There are also some less well-defined
issues that our tools will need to address:

– How can we deal with differing levels of trust and confidence in the different
kinds of evidence that are used?

– What can a tool do to help users visualize and understand the evidence they
have assembled, to prioritize future validation tasks, and to identify areas in
which evidence is either lacking or weak?

These are challenging problems. Certainly, some aspects of confidence and trust
can be quantified. For example, if one test suite includes all of the tests from
another, then the first should offer at least the same degree of assurance as the
second. But many other aspects are subjective and will require a flexible tool that
can adapt to individual preferences and biases. For example, while some users
might be satisfied with proofs from a theorem prover, others more skeptical—
perhaps concerned about the possibility of errors or over-simplification in the
formal model—may prefer careful and extensive testing.

We are not aware of previous work to build tools for evidence management
with the same broad scope we have described here, but there are many more
specialized tools from which we can draw inspiration. The practice of “Extreme
Programming” [3], for example, encourages frequent use of testing as an integral
part of coding and refactoring [9]. These ideas have stimulated the development
of tools to automate the testing process, but they do not attempt to deal with or
incorporate other kinds of evidence. Similarly, compilation tools (such as make
[8], or the SML/NJ compilation manager [5]) track dependencies between source
code units to minimize the need for recompilation, but they do not attempt
to capture other kinds of dependencies or evidence. As a final example, some
systems support “external oracles” that allow users to mix different kinds of
evidence by integrating theorem proving with other validation tools such as
BDDs [10] or model checking [1]. These tools, however, focus heavily on formal
validation and do not directly address evidence capture and management.

Our work to date has been carried out in the context of the Programatica
project1 at OGI, whose goal is to develop a new kind of program development
environment that encourages its users in stating, thinking about, and validat-
ing key properties of the software they are writing. Programatica augments the
functional programming language Haskell [14] with a notation (and an associ-
ated logic) for stating (and reasoning about) properties of executable code; it
provides mechanisms for exporting these properties in an appropriate form to
a variety of external validation tools; and it uses a certificate abstraction as a

1 http://www.cse.ogi.edu/PacSoft/projects/programatica/



4 Mark P. Jones

way to capture evidence of validity. For further context, the screenshot in Fig.1
shows one possible user interface for Programatica, which consists of a main win-
dow with two sub-panes. The pane on the left is a tree-based project browser.

Fig. 1. A mockup of a possible graphical user interface for Programatica.

The pane on the right shows a Programatica source document, including both
definitions of executable code and assertions of key properties. Certificates of
validity have been provided for some of these properties; these are indicated
by the presence of small certificate icons that are embedded in the source text.
Although Programatica has been designed with Haskell in mind, much of the
basic infrastructure could be adapted to other languages. For example, a version
of Programatica for Java might be based around the Java Modeling Language
(JML) [12, 15] as a notation for expressing properties of Java code and integrat-
ing theorem proving via LOOP [16], model checking via Bandera [6], automatic
invariant detection via Daikon [7], extended static checking via ESC/Java [13],
and other techniques such as runtime assertion generation [4].

In short, as we have worked to develop the foundations for Programatica, it
has become clear that the basic certificate mechanisms are essentially orthogonal
to other aspects of the design, and that they may well have much wider applica-
bility. We will see this concretely in the general roles that both documents and
certificates play in this paper.

The remaining sections of this paper are as follows. In Sec.2 and Sec.3, we
describe the use of compound documents and certificates, respectively, in cap-
turing source materials and associated evidence. The role of certificate servers in
supporting different types of evidence is presented in Sec.4. To explore our ideas
in more concrete form, we have built a prototype tool, which has also given us an
opportunity to experiment with user interface issues described in Sec.5. A quick
overview of the prototype implementation is included in Sec.6. We conclude with
a brief summary in Sec.7.



Dealing with Evidence 5

2 Documents

The first challenge of evidence management is in being able to capture many dif-
ferent kinds of evidence, and in collating that evidence with corresponding sec-
tions of source code. To meet these needs, we take inspiration from the so-called
compound document technologies of modern office application suites, which al-
low users to embed spreadsheets, database tables, charts, and other objects in
word processed documents. From the user perspective, each document is stored
in a single file that can be copied, renamed, or deleted just like any other file.
The internal file format, however, provides a structure more like a hierarchical
file system. For example, the main text might be stored in a ‘file’ in the com-
pound document’s root folder, while individual attachments of different types
are placed in separate subdirectories.

The diagram in Fig.2 shows how these ideas are adapted to Programatica
documents. In this case, each compound document contains a program source

�

����� ������	
����
��
�������

���

�����

��	���
�
� ����������	�
���
����	
������������������

���	�������������

Fig. 2. A Programatica compound source document includes conventional program
source text, dependency information, and a collection of certificates.

text; cached information about dependencies between program elements and
certificates (to permit faster recompilation and validation); and a collection of
subdirectories representing certificates. It is also possible for such compound doc-
uments to include image data, media files, property lists, or any other resources
that programmers might wish to package up with particular source files.

In this paper, we focus on the folders that are used to store certificates within
a document. In particular, we need (i) a way to associate individual certificates
with particular points in the program, and (ii) a way to inspect and use the data
in each certificate folder in an appropriate manner.

One way to meet need (i) is to use a special form of comment annotation in
the source text. In Programatica, for example, we can use a Haskell comment of
the form {-#cert:lemma1#-} to indicate the intended position in the document
of the certificate stored in the folder called lemma1. In a GUI editor, like the
one in Fig.1, the annotation can be displayed as an icon. However, by avoiding



6 Mark P. Jones

special syntax or binary representations, the basic program source text will be
kept in a form that can also be used by programmers who prefer conventional
text editors and standard command line programming tools.

To meet need (ii), we will require each certificate folder to contain a descriptor
file that uses a standard format to capture important attributes such as the
name, type, and status of the certificate. Some of these details can be used
to provide a quick description of the certificate, without needing to probe the
contents of its folder more deeply. For other tasks—such as opening a certificate
for editing or validation—the certificate type must be used to determine how
additional files or subfolders should be interpreted.

For flexibility and extensibility, we can adopt a standard technique from
component-based programming, representing each different type of certificate by
a globally unique identifier, or GUID2, and using a registry to associate individ-
ual GUIDs with corresponding certificate servers. Thus each type of certificate
can have a specialized server program that can access and use any extra data in
the corresponding certificate folder.

3 Certificates

Certificates are a mechanism for encapsulating different types of evidence. The
evidence itself, as well as the internal format by which it is represented, will
vary from one certificate to the next. But, from the perspective of an evidence
management tool, every certificate offers the same basic interface, the most im-
portant aspects of which are the attributes that describe a certificate’s sequent
and validity, and the operations that allow certificates to be validated and edited.
Each of these features is described in the following subsections.

3.1 Sequents

The sequent of a certificate formalizes the claim that the accompanying evidence
is intended to support. More generally, sequents provide the means by which
disparate kinds of evidence can be brought together in a single environment.
In this paper, we will write sequents in the form of judgments Γ ` Γ ′, where
the hypotheses in Γ and the conclusions in Γ ′ are lists of logical formulae over
some suitably chosen specification logic3. In particular, the formulae in both
hypotheses and conclusions may include direct references to entities such as
variables and functions that are defined and used in the source text. The intuition
2 It is common to use strings of 128 bits as GUIDs, and to generate new GUIDs by

hashing time, date, and network address information with randomly generated data;
the goal is to make it (practically) impossible for independent developers to pick the
same GUID for different components.

3 Our use of the term ‘sequent’ is consistent with its use in logic, and with the im-
plementation used in our current prototype. It is, however, more specific than we
really need for a general evidence management system, and there are other forms of
sequent that could be used instead.



Dealing with Evidence 7

for a sequent Γ ` Γ ′ is that one or more of the formulae in Γ ′ can be guaranteed
to hold when all of the formulae in Γ are satisfied. Thus sequents may be used
to state both facts with an empty set of hypotheses (for example, limits on
the possible values of a sensor reading, which might influence the selection of
a particular representation), and conditional statements with a non-empty set
of hypotheses. The empty sequent, denoted `, can also be used for some types
of certificate if the claim that they might support is judged to be either too
informal or too specific to be reflected as a formal judgment.

The task of choosing a suitable logic for the formulae in certificates may
not be easy, and will depend on context. For instance, in Programatica, we are
experimenting with a logic of partial functions, while for Java we might adopt
the JML logic [15]. In our prototype, we have so far avoided this issue by allowing
only atoms (i.e., basic propositional variables) as the formulae in sequents.

3.2 Validation and Editing

A certificate is valid if its sequent is consistent with the evidence it provides. For
example, a certificate with sequent ` A is valid if it provides evidence for A, but
invalid if it contains either incomplete evidence or evidence for a different formula
B. In the latter case, there are at least two ways to make the certificate valid,
either by changing its evidence to support A, or by changing its sequent to ` B.
In this way, validity provides an interface between the evidence from external
tools and the language of sequents that is used for evidence management.

The actions needed to determine whether a given certificate is valid will
depend on the type of the certificate, and may, in some cases, involve significant
computation. (Section 4 includes specific examples of the steps that are needed
to validate the certificate types used in our prototype.) To permit a quick test of
validity, each certificate includes a flag that is set to true only when the certificate
is known to be valid. If either the certificate itself or a part of the source text
that it depends on is changed, then the flag will be set to false. This records the
fact that a subsequent validity check is required, and does not necessarily mean
that the certificate is, in fact, invalid.

The actions needed to edit a certificate—such as modifying it so that its
validity can be established—will also depend on the type of the certificate, and
may, in some cases require significant user interaction. The screenshots in Fig.3
show the editors for three of the different kinds of certificate in our prototype.
Clearly, there is some commonality in the editors—each of dialog boxes shows an
icon and a name for a particular type of certificate, and an indication of the given
certificate’s status (either valid or unknown). At the same time, there are also
some significant differences from one certificate type to the next. The leftmost
editor, for example, is for automated testing, and does not display a sequent
because all certificates of that type use the empty sequent, `. The rightmost
editor is used with certificates obtained by resolution (See Sec.4.2) and includes
several fields that are not present in the other examples. Where appropriate,
the editor dialog for a certificate includes buttons allowing the user to invoke
associated external tools with appropriate settings for that certificate and hence



8 Mark P. Jones

Fig. 3. Examples of the certificate editors in our prototype. The three editors shown
are for automated unit testing (left); assertions (center); and resolution (right).

to work with and modify the underlying evidence. (None of the examples in the
figure require this functionality.)

4 Certificate Servers

Certificate servers (or just ‘servers’) play an important role as the primary mech-
anism for creating and using different types of certificate. For example, once an
appropriate server has been located, we can use it to reconstruct the certificate
that is stored in a particular folder of a compound document. Servers are re-
sponsible both for creating appropriate certificates, and for endowing them with
the functionality that is needed for validation and editing.

We distinguish between external servers, which are used for certificates whose
evidence is supplied by external tools, and internal servers, which use function-
ality that is built in to the evidence management tool, and provide a means for
combining different types of evidence. These two kinds of server are described
in Sec.4.1 and Sec.4.2, respectively.

4.1 External Servers

External servers connect the evidence management system to the external tools
that are used to construct and maintain evidence. As such, external servers will
perhaps be most visible to users as the software plug-ins that must be installed
before certificates of a particular type can be edited and validated.

External servers are responsible for translating between the languages used
in source documents and sequents and the languages used by external tools. In
some cases, there will, inevitably, be mismatches that cannot easily be bridged.
For example, an external satisfaction checker that provides a decision procedure
for first-order formulae with quantifiers over booleans only will not accommodate
arbitrary formulae from an evidence management system’s high-order predicate
logic. This does not mean, however, that the two tools cannot be used together,



Dealing with Evidence 9

or that the evidence management system’s choice of logic must be reduced to
some ‘least common denominator’ of all the external tools to which it may be
connected. Instead, we make it the responsibility of the external server to detect
cases where translation is not possible. Amongst other things, this motivates the
use of a rich and expressive internal logic that can accommodate the logics of
many externals tools (or, at least, substantial portions of those logics). It also
suggests that different external tools are described and cataloged carefully so
that users can be quickly guided to an alternative when their first choice of an
external tool proves to be unsuitable. Note also that translation is not a one way
process. For example, to achieve a high level of integration, the counterexamples
that a model checker produces when an asserted condition fails should, ideally, be
translated back to use the same notation in which that assertion was expressed.

A second responsibility of an external server is to capture and package context
from source documents so that it can be used by the external tool. In the context
of an external theorem prover, for example, we refer to this as ‘theory formation’
because it will require assembling a theory that includes the facts and definitions
that are needed to prove a particular theorem.

Translation and theory formation are challenging tasks, and neither one has
been addressed by the (almost trivial) external servers in our prototype. We
expect this to be an important area for future work, but note also that some
significant progress here has already been made in the Programatica project in
developing interfaces to both HOL98 [2] and Alfa [11].

4.2 Internal Servers

Internal servers do not require specific external tools, and so provide built-in
functionality for generating and combining evidence. In this section, we describe
some of the internal servers in our prototype; this is intended as an indication of
the kinds of functionality that can be supported, and not necessarily as examples
of servers that would be included in a full evidence management system.

“Axiom” Servers The simplest kinds of internal servers can directly generate
and validate certificates for sequents of a particular form, and are analogous to
axioms in a logical system. There are two examples of this in our prototype:

– Trivial Sequents: The trivial sequent server produces and validates certifi-
cates for sequents of the form Γ ` Γ . The server requests an initial value
for Γ when it is used to create a certificate of this type. Subsequently, the
left and right hand sides of the sequent may be edited independently. This,
however, will invalidate the certificate, and the server will not allow it to be
revalidated unless the two sides are equal, which may require further edits.

– Monotonicity: The monotonicity server can be used to obtain certificates
with sequents of the form Γ ` Γ ′, where Γ ′ ⊆ Γ . The current implementation
of this server does not prompt the user for Γ or Γ ′ when a new certificate
is created, but instead defaults to the empty sequent, `, which is valid, but



10 Mark P. Jones

not particularly useful. Subsequent edits can be used to set different values
for Γ and Γ ′; the modified certificate can be revalidated whenever Γ ′ ⊆ Γ .

Clearly, the second of these is strictly more powerful than the first because every
trivial sequent can be established using monotonicity. Nevertheless, in a practical
system, when the costs of validation are taken into account, it may be very useful
to have both weak but efficient servers to deal with easy special cases, and more
powerful but also more expensive servers to deal with harder, general cases.

“Rule” Servers Other types of internal server rely on the results of previ-
ously constructed certificates. Servers like this correspond to rules in logical
systems and provide the key mechanism by which individual pieces of evidence
are combined. In general, when a certificate c is constructed by making use of
a previously constructed certificate c′, we refer to c as a client of c′. Of course
the resulting dependencies between certificates must be taken into account in
determining validity. For example, if the user changes, and hence invalidates a
certificate c′, then every client c should also be invalidated. Notice that, by en-
suring each certificate is constructed before its clients, we can at least be sure
that there are no circular dependencies.

Examples of “rule” servers in the prototype include:

– Copy: The copy server will construct a certificate c by using another, pre-
viously constructed certificate c′, and will initialize the sequent for c with
a copy of the sequent for c′. The sequents associated with either or both
of these certificates may be modified by subsequent edits, but this will in-
validate c (at the very least), and the copy server will not allow it to be
revalidated if c′ is invalid or if the sequents of c and c′ differ.

– Weakening: The weakening server supports the construction of certificates
c in which the sequent is obtained by weakening the sequent of another
certificate c′ (i.e., by adding extra hypotheses on either side of the sequent).

– Resolution: The resolution server is the most sophisticated internal server
in the prototype, and is based on resolution (or, to be more precise, on the
‘cut’ rule of sequent calculus; unification plays no part in the prototype’s
underlying propositional logic):

A,X ` B C ` X,D

A,C ` B,D

Here, A, B, C, and D are arbitrary sequences of formulae and we emphasize
the special role that X plays as a part of both hypotheses, by referring to the
rule as “resolution on X.” When the resolution server is invoked, it prompts
the user to enter a value for X, and then searches for ways to apply resolution
on X to the sequents of the currently selected certificates. If resolution cannot
be used, no certificate is constructed and an error diagnostic is displayed.
On the other hand, if there is more than one way to apply resolution, then
the user is presented with a list of possible results and asked to select one
of them. If there is only one possible choice, then the server just constructs
the necessary certificate and inserts it into the host document.



Dealing with Evidence 11

Thinking beyond these specific examples, it is clear that internal servers pro-
vide the infrastructure for interactive theorem proving, with different servers
corresponding to inference rules or, depending on your perspective, tactics. In
a practical system, with a richer underlying logic, it would be useful to include
more powerful internal servers to automate and combine primitive tasks includ-
ing, for example, quantifier elimination, matching and unification, simplification
and rewriting. Adding a degree of programmability would give further flexibility,
allowing users to develop and use custom libraries of derived rules and tactics.

5 User Interface Issues

One of the most challenging practical aspects of building an evidence manage-
ment system is in developing an interface that will help users to work more ef-
fectively and to understand the details of a complex project more easily. In this
section, we describe some of the ideas for visualization of documents, servers and
certificates that we have been experimenting with to address these needs in the
context of our prototype. Several of these ideas are illustrated in Fig.4.

Fig. 4. A screenshot from the prototype showing two views of a particular document.
On the left is a table that lists the certificates in the order they were created. On the
right is a graphical display that highlights dependencies between certificates.

As the figure shows, every certificate is represented visually by an icon. The
standard icon for certificates obtained from an external server is a conventional



12 Mark P. Jones

certificate with a border color that can be used to distinguish between different
servers. Useful information can be conveyed in the choice of colors: for example,
less reliable forms of evidence might be displayed with red borders, alerting users
to the possibility that stronger evidence might be needed.

The icons for the certificates of internal servers are annotated with colored
“ribbons” that represent the external servers on which the certificate depends.
As a result, the red coloring from an unreliable external certificate will propagate
to each of its clients. Of course there is a limit to the number of different ‘rib-
bons’ that can be displayed within an icon, and there are also some interesting
questions about how we might use other visual attributes, such as the ordering
or width of ribbons, to best reflect the quality of the underlying evidence.

Early experiments with the prototype suggested that visualization of depen-
dencies between certificates would be useful. This resulted in the development of
the second (right-most) document view in the figure, which shows these depen-
dencies in a simple and intuitive way. A lingering concern is that this graphical
view will become harder to work with as the number of certificates increases.

A final comment is required to explain the references to confidence levels
and scores that some readers will have spotted in our screenshots. These are
a sign of the pragmatically motivated experiments that we have been using to
evaluate various schemes for comparing the quality of evidence in individual
certificates, and for establishing priorities, based on user specified preferences,
that can guide further validation efforts. At present, user input is provided by
assigning ‘confidence’ levels to servers and to individual certificates, and by se-
lecting between different methods for calculating ‘scores’. For example, one such
algorithm calculates the score of a certificate as the minimum confidence level of
all the certificates and servers on which it depends. Our experiments are ongoing
and we believe that they will contribute significantly to the usability of our tools,
but it is too early to report any conclusions in this paper.

6 Implementation Overview

There is no room here to provide detailed insights into the implementation of
our prototype. In this section, however, we provide brief sketches for the most
important abstractions, hoping that this will help to clarify some of the ideas
presented previously. In particular, we discuss the representation of compound
documents, registry objects, servers, and certificates, which are described by Java
classes called Doc, Registry, Server and Cert, respectively. The code fragments
below should not, however, be read as executable code; they have been been
edited for this presentation to reduce clutter (for example, eliminating modifiers
like public or abstract) and to elide less important implementation details.

We start with the Doc class, which provides methods to construct an empty
document and to load or save a document in a specified file. It also provides
methods for adding, removing, and retrieving the certificates in a document.
(Note that certificates are referred to here by the name of the corresponding
folder in the compound document.)



Dealing with Evidence 13

class Doc {
static Doc empty();
static Doc load(File file);
boolean save(File file);
boolean add(String name, Cert cert);
void remove(Cert cert);
Cert getCert(String name);
Cert[] getCerts();
...

}

As described in Sec.2, each different certificate type is identified by a globally
unique identifier. The server for a particular guid can be obtained by consult-
ing an appropriate Registry. Each registry can also be queried for the set of
all servers that it supports and can be updated by installing new servers (or
uninstalling old ones).

class Registry {
Server getServer(GUID guid);
Server[] getServers();
void install(GUID guid, Server server);
void uninstall(Server server);
...

}

If a user tries to access a certificate on a machine where the corresponding server
has not been installed, then a call to getServer(guid) will return null. Use of
such certificates will be limited: some details can be extracted from its descriptor,
but operations that are specific to particular certificate types—such as editing
or validation—will not be possible.

Each Server includes attributes that specify its guid and a text string that
can be used to describe the server in interactions with users. Once an appropriate
server has been identified, the load method can be used to obtain the certificate
corresponding to a particular folder in a source document. (The matching save
functionality is located in the Cert class.) We can also use a server’s newCert
method to insert a new certificate of the appropriate type into a particular host
document. In responding to this method, the server may query the user for any
additional information that it needs. The server may also choose to decline the
request, in which case it will return a null value.

abstract class Server {
String getDescription();
GUID getGUID();
Cert load(Folder folder);
Cert newCert(Doc host);
...

}



14 Mark P. Jones

Our prototype includes several different implementations of the basic Server
interface, most of which correspond to the server types described in Sec.4.

Individual certificates are represented by Cert objects. Each certificate in-
cludes attributes that specify its server and sequent. In addition, each certificate
may be associated with a particular host document; this association can be set
or broken using the attach or detach methods, respectively.

abstract class Cert {
Server getServer();
Sequent getSequent();
String getDescription();

Doc getHost();
boolean attach(Doc doc);
boolean detach(Doc doc);

boolean save(Folder folder);

boolean isValid();
boolean validate();
void invalidate();
boolean edit();
...

}

The last four methods support validation and editing, as described in Sec.3.2.
The isValid method returns the value of the flag indicating whether the certifi-
cate is known to be valid, but makes no attempt to validate a certificate whose
status is unknown. The latter task must, instead, be handled separately by the
validate method. It is also possible to invalidate a certificate (and all of its
clients) at any time, which sets the flag for each certificate to false. This will
typically be used when the certificate (or something on which it depends) has
been modified in some way that requires the user to recheck its validity. Finally,
the edit method can be used to open an appropriate editor for the certificate.

7 Summary

Many tools have been developed to help programmers produce evidence that
the software they are developing is correct. In this paper, we have described a
new kind of tool that will help users to manage and exploit that evidence in
the context of an evolving project. An initial prototype has been constructed to
validate the basic design and to provide a starting point for experimentation.
Areas where further research will be particularly valuable are in the exploration
of techniques for building external servers, and in the development of mechanisms
that will help users to organize and understand collections of evidence more
effectively.



Dealing with Evidence 15

Acknowledgments

The work described in this paper was carried out in the context of the Progra-
matica project at OGI. It has benefited and been shaped by input from several
members of the Programatica team; from other members of PacSoft; and from
other colleagues in the Department of Computer Science.

References

1. Mark D. Aagaard, Robert B. Jones, and Carl-Johan H. Seger. Lifted-FL: A prag-
matic implementation of combined model checking and theorem proving. In The-
orem Proving in Higher Order Logics (TPHOLs), July 1999.

2. Automated Reasoning Group, University of Cambridge Computer Laboratory. The
HOL98 theorem prover. http://www.cl.cam.ac.uk/Research/HVG/HOL/.

3. Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
1999.

4. Abhay Bhorkar. A run-time assertion checker for java using JML. Technical Report
TR #00-08, Department of Computer Science, Iowa State University, May 2000.

5. Matthias Blume and Andrew W. Appel. Hierarchical modularity. ACM Transac-
tions on Programming Languages and Systems, 21(4), July 1999.

6. James Corbett, Matthew Dwyer, John Hatcliff, Corina Pasareanu, Robby, Shawn
Laubach, and Hongjun Zheng. Bandera: Extracting finite-state models from Java
source code. In 22nd International Conference on Software Engineering, pages
439–448, Limerick, Ireland, June 2000. IEEE Computer Society.

7. Michael D. Ernst. Dynamically Detecting Likely Program Invariants. PhD the-
sis, University of Washington, Department of Computer Science and Engineering,
August 2000.

8. S.I. Feldman. Make-A program for maintaining computer programs. Software—
Practice and Experience, 9(4), 1979.

9. Martin Fowler et al. Refactoring : Improving the Design of Existing Code. Addison-
Wesley, 1999.

10. Michael J.C. Gordon. Reachability programming in HOL98 using BDDs. In The-
orem Proving in Higher Order Logics (TPHOLs), August 2000.

11. Thomas Hallgren et al. The Alfa proof editor. http://www.cs.chalmers.se/~

hallgren/Alfa/.
12. Gary T. Leavens, K. Rustan M. Leino, Erik Poll, Clyde Ruby, and Bart Jacobs.

JML: notations and tools supporting detailed design in Java. In OOPSLA 2000
Companion, Minneapolis, Minnesota, pages 105–106. ACM, October 2000.

13. K. Rustan M. Leino, Greg Nelson, and James B. Saxe. ESC/Java user’s manual.
Technical Report Technical Note 2000-002, Compaq Systems Research Center,
October 2000.

14. Simon Peyton Jones and John Hughes, editors. Report on the Programming Lan-
guage Haskell 98, A Non-strict Purely Functional Language, 1999. Available from
http://www.haskell.org/definition/.

15. E. Poll and B.P.F. Jacobs. A logic for the Java modeling language JML. Technical
Report CSI-R0018, Computing Science Department Nijmegen, November 2000.

16. J.A.G.M. van der Berg and B.P.F. Jacobs. The LOOP compiler for Java and
JML. Technical Report CSI-R0019, Computing Science Department Nijmegen,
December 2000.


