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Wideband RF Front End Daughterboard Based on therdla RFIC
Terrence J. Brisebois

ABSTRACT

The goal of software-defined radio (SDR) is to mtwe processing of radio signals from the
analog domain to the digital domain — to use digiterochips instead of analog circuit
components. Until faster, higher-precision andteghgital (ADCs) and digital-to-analog
converters (DACs) become affordable, however, sanaog signal processing will be
necessary. We still need to convert high-radiqgdescy (RF) signals that we receive to low
intermediate-frequency (IF) or baseband (centererkeoo Hz) signals in order for ADCs to
sample them and feed them into microchips for gsicg). The reverse is true when we
transmit. Amplification is also needed on the reeaide to fully utilize the dynamic range of
the ADC and power amplification is needed on thedmit side to increase the power output
from the DAC for transmission. Analog filteringatso needed to avoid saturating the ADC or
to filter out interference when receiving and toiavtransmitting spurs. The analog frequency
conversion, amplification and filtering sectionaofadio is called the RF front end. This thesis
describes work on a new RF front end daughterbfmarthe Universal Software Radio
Peripheral, or USRP. The USRP is a software-radrdware platform designed to be used with
the GNU Radio software radio software package.ntyhe Motorola RFIC4 chip, the new
daughterboard receives RF signals, converts thdmadeband and does analog filtering and
amplification before feeding the signal into theRFSfor processing. The chip also takes
transmit signals from the USRP, converts them fb@aseband to RF and amplifies and filters
them. The board was designed and laid out by RlaNdaly. | wrote the software driver for
GNU Radio. The driver defines the interface betwd® USRP and the RFIC chip, controls the
physical settings, and calculates and sets theradadf variables necessary to operate this
extremely complex chip correctly. It allows plugdaplay compatibility with the current USRP
daughterboards and supplies additional functionsawailable in any other daughterboard.
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1. Introduction

The Universal Software Radio Peripheral, or USRR,hardware platform for software-
defined radio applications. Called the “motherlgathe USRP itself has high-speed digital-to-
analog converters (DACs) and analog-to-digital @ters (ADCs). The ADCs allow it to
sample, in order to receive and process, radicaisgrp to about 32 MHz in frequency (the ADC
produces 64 million samples per second) and the AOw it to create radio signals, in order
to transmit, up to about 64 MHz (the DAC produc28 fnillion samples per second.

Because most radio signals are higher in frequémay 64 MHz, these frequency limitations
means that the USRP needs an RF front end to domved received signals and to up-convert
transmitted signals. Called “daughterboards,”iterchangeable RF front end cards plug in to
the motherboard and allow the USRP to operateghétifrequency bands and therefore transmit
and receive real-world radio signals. A more caghpnsive description of the USRP can be
seen in Section 2.2 The USRP.

| wanted to build a new daughterboard for the USRRis daughterboard was to make
switching boards a thing of the past. The dauploiands currently available for the USRP
operate in severely limited frequency ranges. Eptasof boards we currently use in the
Cognitive Wireless Technologies (CWT) lab at ViigiiTech are the RFX400 (400-500 MHz)
and the RFX900 (800-1000 MHE]. As a result, we frequently have to use misgtip
daughterboards when we want to transmit or redeiveultiple frequency ranges. CWT has
been developing software-defined radio solutionthéopublic safety interoperability problem.
That problem occurs when different public safetyioa are unable to communicate with one
another. One aspect of the problem is that sorbbcgpsafety radios operate in the VHF range,
around 150 MHz, others in the 700/800 MHz publiesaband, others in the 400 MHz band. It
is also desirable to operate in the FRS (Familyi®k&érvice — off-the-shelf, commercially
available walkie-talkies) range, around 460 MHzppi€al public safety radios can operate in
one of these ranges, but not the other two. Theycommunicate with other public safety
radios in only one frequency range. For our safwadio solution, using the standard USRP
daughterboards from Ettus Research, we would neledst three boards to cover those ranges.
Since a USRP holds two daughterboards, and USRIER toly ong5], we would need to use
multiple USRPs with multiple daughterboards orwitsh out daughterboards, which requires
unplugging the USRP and stopping any software ragmication, in order to operate in all three
bands. This is a serious problem. In order tédbaupractical public safety interoperability
solution, we must be able to operate in all ofghblic safety frequencies without swapping
boards. | wanted to build a new daughterboard vhiculd be able to do that.

We looked into a variety of solutions. The RFX4fifard can be modified to cover
different frequency ranges. Simply replacing aodenductors connected to the voltage-
controlled oscillators (two inductors connectedh® VVCO on the transmit side, two connected
to the VCO on the receive side) changes the cémtguency of the board]. The frequency
range remains about 25% of the center frequenowgti so with any one set of inductors, the
modified RFX400 would still have a narrow frequemagge. Based on the knowledge that the
RFX400 could be modified to operate in differemigiuency ranges by swapping out inductors
on the board, | worked with Innovative Wireless Aralogies (IWT) of Lynchburg, Virginia to
come up with a multi-band modification to the RFX40rhe idea was to be able to swap in
different sets of inductors on the fly and thereftor be able to switch frequency ranges without
swapping daughterboards. IWT produced four praggtyoards with four sets of inductance



values, which could be switched without removing dlaughterboard or stopping GNU Radio.
We never solved the problem of how to control théches automatically with GNU Radio.
Currently, they must be switched by hand, whichasacceptable for a real-world
interoperability solution.

| heard about the Motorola RFIC in my Software-iDefl Radio class, taught by Dr. Jeff
Reed. This magical chip was purportedly able tadlidect-conversion transmission and
reception between 100 MHz and 2.5 GHz. It couldiltering and amplification, had five RF
inputs and three RF outputs, and could be contteleough a single serial peripheral interface,
or SPI, connectiofb]. | immediately thought it should be the basisa new USRP
daughterboard. With a board based on this chipyawdd be able to transmit and receive on
independent channels simultaneously. We couldveeeradio signal in the VHF band, re-
modulate the data and re-transmit on the 700/80@ kihd without resorting to multiple
daughterboards. This would be perfect for puldiety. We could easily bridge between VHF,
FRS and 700/800 MHz bands. The Motorola RFIC csuolge all of our frequency problems.



2. Background
2.1 GNU Radio

Software-defined radio moves signal-processingstd®m analog circuits to digital
circuits. ADCs and DACs transform data receivedbgdio front-end to the digital domain and
from the digital domain to a radio front-end totkensmitted. Analog data must be processed by
electronic circuits. Digital data can be procedsgdhicrochips such as general-purpose
processors (GPPs), digital-signal processors (D&R$field-programmable gate arrays
(FPGASs). These devices are flexible whereas amatogits are not. Computers can be
programmed to perform many different tasks, as Emthey are defined by mathematical
algorithms. Filtering, mixing, modulation and deshatation and phase-locking are just a few
signal processing tasks that can be handled by ctargp Each of those operations is essentially
mathematical. In the last decade, computers hagerbe fast enough and inexpensive enough
to be able to perform those operations quickly eémehply. Software radio has become
practical.

GNU Radio is a free, open-source software radieldpment package. The GNU Radio
homepage ibttp://www.gnu.org/software/gnuradiolhe full documentation and download
instructions are available on that site. GNU Radabudes tools like filters, modulators,
demodulators, phase-lock loops (PLLs) and many mtralso provides a framework for
connecting these tools, called signal-processingKsl, together into a cohesive software-defined
radio. The blocks are connected together in flompgs. Data received by, or transmitted
through, a flow-graph goes through each block specified order. Calculations and
conversions are performed by each block, prepalatg for the next. This data flows from
“sources” to “sinks.” A data source can be a rdhat-end, a noise-generator, a sequence of
data, a sound card receiving audio from a microphona file, among other things. A data sink
might also be a radio front-end, a graph or chasts to the user, a file, or a sound card, which
would then output to a loudspeakéy.

A visual representation of a GNU Radio flow graphi-igure 1, may be seen below.

This is the flow graph for a wideband analog FMereer, containing three signal processing
blocks, a source and a sink. GNU Radio first gpteach component. The USRP Source must
be set so that the RF frequency is correct, theograanplification is correct, the decimation is
correct and the digital down-conversion is correldhe decimation rate and coefficients must be
set for the channel filter. Another block, calleédts contains a demodulator, an audio filter and
a decimator. The demodulation rate and decimatitnmust be set in the Guts block. The
audio filter is a standard component and need eaaseb up. GNU Radio sets up the Volume
Control block to output the desired audio volunme] aets up the Audio Sink, which may be any
audio device. It then connects the flow graph tiogle When the flow graph starts running, an
RF signal is transformed into digital samples by t# SRP. Samples from the USRP Source
block are sent to the Channel Filter. Filtered glasare sent to the Guts. Demodulated,
filtered and decimated samples are sent to ther®lGontrol. Volume-controlled samples are
sent to the Audio Sink. Audio is output, most hkby the sound card to headphones or
speakers. This represents a complete, real-wadid receivef7].
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Figure 1: GNU Radio Block Diagram

A software-radio developer can use existing blpoksreate his own, to put together a
software-defined radio with GNU Radio. It runsstandard PC hardware and is primarily used
with Linux, but has also been ported to Macs andddivs PCs. It sets the bar for entry into
software radio development to be pretty low. Argovith a relatively modern computer can
download it and start using it with a minimum ohé and energy expended. Furthermore, it is
widely used by researchers, hobbyists, studergshe&gs, and professionals, so many
applications have been written, modifications maahe], problems and solutions documerjgd

GNU Radio is written in Python and C/C++. Typlgaprocessing blocks and other low-
level functions are written in C/C++, because nigtaster than Python. Flow-graphs and high-
level functions are written in Python, becauss easier to write. The flexibility of GNU Radio
is nearly limitless. Because anyone can writecggssing block and can connect blocks
however they see fit, nearly any application issgas, limited only by the available radio front-
end hardware and processing speed. Processing lapés how fast any given block can be
calculated. It also limits the ability of the seéire to perform multiple calculations, as in
multiple signal-processing blocks, simultaneousie radio hardware must either retrieve data
from an antenna or send it out the same way or. bibtimits data throughput, signal bandwidth,
RF frequency, transmitting power, dynamic rangatchwng speed between transmit and receive
as well as between frequencies, and the minimuectidile signd6].

2.2 The USRP

The Universal Software-Radio Peripheral, or USRR, radio front-end designed to be
used with GNU Radio. Like GNU Radio, the USRPpgm-source, but unlike GNU Radio it is
not free. Its design schematic, layout, and saftveantrols are open-source and freely available
with GNU Radio. The board itself, at $700, is ipersive and flexible. Called a
“motherboard,” the USRP provides an interface lkmst computer, a stage of
interpolation/decimation and digital frequency wupeersion and down-conversion, analog-to-
digital and digital-to-analog conversion (via AD&sd DACs), and several interfaces to
“daughterboards.” A daughterboard is an analogridnt-end designed to plug into the USRP.
It does analog amplification, mixing and filterin@he daughterboard passes a signal from an
antenna to the USRP, or vice-versa. The USRP passignal from the daughterboard to the
computer, or vice-versa. Each USRP has two “sidash with two connectors for
daughterboards. Each side has a transmit (TXyecelve (RX) connector. Some
daughterboards are transmit-only and use only @dnfiector, some are receive-only and use



only an RX connector, and some are transceiversisadboth. The USRP can support full-
duplex communication on both sides simultaneouslyny subset thereof. Two USRPs may be
connected together in a MIMO configuration, synclizong clocks and daughterboards.
Achieving MIMO, however, requires slight modificarti to the hardware, including the addition
of SMA RF connectors on the motherboard to progaéock input or outpys.

Figure 2, below, shows the major components of x8RP. The DC power port and
USB 2.0 port are at the bottom. In the middlehef board is the Altera Cyclone FPGA. The
Analog Devices Mixed Signal Processors, on eitite sf the FPGA, contain the ADCs and
DACs. Four daughterboards are connected in tharpictwo receive-only daughterboards and
two transmit-only daughterboards. The upper-leét Bwer-right daughterboards are receivers.
The RF interface, such as a connection to an aaténinhis case via SMA connectors), of the
upper-left board is highlighted. On the upper-tighd lower-left of the USRP, there are
transmitter daughterboards. The RF interface @ltbper-right board is also highlighted. A
transceiver daughterboard would take the plackefiX and RX daughterboards shown — either
the two boards on the right side (Side A) or the beards on the left side (Side [B].



Receive Channel Transmit Channel
RF Interface Altera FPGA RF Interface

DC Power USB 2.0 Analog Devices
Port Mixed Signal
Processor

Figure 2: Picture of USRP, © Matt Ettus. Used wprmission. See Appendix D: Permission
from Matt Ettus.

A flow graph of the function of the USRP while redeg is shown in Figure 3. Initially,
the USRP receives an analog signal from the atthideeiver daughterboard, or RF front end.
The signal received is a radio signal, which ther wgshes to receive. It has been manipulated,
typically in frequency and amplitude and throudtefing, by the attached receiver
daughterboard. This signal is located at a loermediate frequency (IF), typically around 4
MHz, or at baseband (centered about 0 Hz). Itbeaim the form of a single signal or as two,
guadrature (I “in-phase” and Q “quadrature” or @¥@yee offset) signals. Quadrature signals
make demodulation easier. The high-speed ADC digjitizes the received signal or signals.
This digital information is sent to the FPGA. Ejithe FPGA decimates the high data rate
signal. It reduces the number of samples per skand either increases the precision to 16 bits,
which is normal operation, or it can reduce thesjsien to 8 bits, which allows a higher
sampling rate with the same overall data rate, wiidesirable for some receiver
implementations. If the digital received signaaisan IF, it is digitally down-converted to
baseband. If the received signal is not quadraiuiel-and-Q mixed to become quadrature. If



the received signal is quadrature and basebandiowa-conversion is necessary. The resulting
digital signal sent out of the FPGA is digital, quature baseband. It is sent to the USB 2.0
controller, which sends the digital, quadratureghbasd data to the host computer. GNU Radio,
or a software radio package like it, can processitiiormation. The baseband information
would typically go into a filter followed by a demwlator, and then the raw data would be
processed.

Signal from
Daughterboard
USRP
Analog IF
FPGA
—Y — Digital
High- | Decimation | Down-
speed g | Conversion
ADC Digital IF
Digital
Baseband
A
A 4
USB 2.0
Controller
v
Host
Computer

Figure 3: USRP Receive Block Diagram

The flow graph below, Figure 4, describes the af@n of the USRP while transmitting.
The host computer, presumably using GNU Radiotesea digital signal to transmit over the
air. This is a digital representation of the agafi- signal the user wishes to send. The data
typically takes the form of I-and-Q, or quadratwsamples at RF. These I-and-Q samples would
be created by the modulator. Usually 16-bit sas)dleey are sometimes 8-bit samples to allow
a higher sampling rate with the same data ratan&tance if bandwidth is more important to the
user than precision. First, the USB 2.0 contraerives the samples from the host computer.
They are sent to the FPGA. The attached transnlittieghterboard may use a low IF or it may
use baseband data. It may also require a singhalsor quadrature signals. The GNU Radio
software driver for the daughterboard would indecahether the daughterboard uses a single
signal or quadrature signals and what the interatedrequency (IF) should be. If the
daughterboard uses a low IF, then the FPGA wilitally up-convert the data to the IF. If it
requires quadrature signals, the FPGA will leawedata as quadrature data streams. Otherwise,



the FPGA will combine the signals into a singleatn. It interpolates (increases the sampling
rate of) the data to take advantage of the higlegAC and converts the data to 14-bit
precision, which the DAC uses. Out of the FPGA o the DAC is sent a digital IF or
baseband signal. The DAC converts it to an ansilggal and sends it to the attached transmitter
daughterboard to be transmitt&q.

Signal to
Daughterboard
A
USRP
Analog IF
FPGA
. : Digital Up-
High- ~ Interpolation | | Conversion
speed - N
DAC Digital IF A
A
USB 2.0
Controller Digital
y Baseband
Host
Computer

Figure 4: USRP Transmit Block Diagram

USB 2.0 provides the connection between the USRFhast computer. The maximum
transfer rate over USB 2.0 is 32 MB/s, which in@sidboth directions of communication
between the host computer and USRP. Since sam@assually sent and received by GNU
Radio as 16-bit, I-and-Q samples, this conneciioitd the sampling rate to about 8
Msamples/s. This means that the maximum RF bartbwét can be transmitted or received at
one time is 4 MHz. This number is reduced if tBeruvishes to transmit and receive
simultaneously. It is also possible to transmd egceive with two daughterboards
simultaneously, for up to 4 simultaneous radio @mtions: any combination of up to two
receivers (one on each daughterboard) and twontiigtess (one on each daughterboard) running
at the same time, further reducing the data raadable to any one connection. The USB
controller chip also includes SPI and 12C interfaaghich control the FPGA and can control
functions on the daughterboards. Timing latenaylanited data throughput are two major
limitations of the USB connectidiO].



The FPGA is connected to the USB controller. teceiver, the FPGA takes high-speed
samples from the ADC, typically representing datauad a low intermediate frequency (IF),
decimates (reduces the sampling rate), and do#&aldrgquency down-conversion to baseband.
The samples from the ADC are a digital representati the low-frequency analog signal
produced by the daughterboard. The samples sébiydbhe FPGA are a digital representation
of the analog signal centered on DC. It also daesl-Q mixing in the down-conversion stage,
if needed, and adjusts resolution of the incomeng@es. The decimation is necessary because
data from the ADC is at a rate too high to transmér the USB connection. Further, if the
receiver and transmitter must be used simultangpasif both ADCs are in use simultaneously,
the data rate must be reduced even further. Magjlderboards send analog data to the ADC at
a low IF, rather than at baseband. This eliminptgential problems from DC offset, 1/f noise
and shot noise that may otherwise occur in a daulgbéard that converts the radio-frequency
(RF) signal directly to baseband. GNU Radio, hosveprocesses signals at baseband, which is
to say that the signal is centered on 0 Hz, whetea#~ signal is typically centered near 4 MHz.
In a transmitter, the FPGA receives data from th& bomputer over USB, does interpolation,
frequency up-conversion and, if necessary, l-andixdng. The interpolation occurs because
the USB connection cannot send data to the DACefastigh. Interpolation is needed to
increase the sampling rate and provide the coresciution. The frequency up-conversion is
done for the same reason as the down-conversithre ireceiver. Most USRP daughterboards
take an analog IF signal from the DAC and up-conthext signal to RF, to avoid DC offset and
other noise sources.

In the final part of the USRP, it converts datanfranalog to digital, or vice-versa. To do
this, it uses a high-speed ADC/DAC chip. The ARD@g at 64 Msamples/s at a resolution of 12
bits per sample. The DAC runs at 128 Msamples#srasolution of 14 bits per sample. This
stage converts analog, low-IF received signalsdiad low-IF samples in the receiver and
digital low-IF transmitted samples to analog lowkiRhe transmitter. Both the ADC and DAC
have two channels: one for | data and one for @.dany given daughterboard need only use
one channel, but most use both. The FPGA, USBeauimn and computer can only work with
digital samples. Daughterboards can only work &ithlog signals. The ADC/DAC chip also
includes several low-speed ADCs and DACs, whichlmnsed to control or monitor signals on
the daughterboards. Low-speed ADCs can monit@ived-signal strength indicators (RSSIs)
or phase-lock detectors on the daughterboards. 028G bias amplifiers or oscillators or
control switches or on/off pins on chips. The ADBLC chip connects directly to the
daughterboardg].

The USRP2 is very similar to the original USRP, Wwith several marked improvements
and two notable disadvantages. It uses higherdspB&€s and DACs: 100 Msamples/s at 14
bits per sample and 400 Msamples/s at 16 bitsgapke, respectively. A larger FPGA allows
many more functions to occur on the board its€tie gigabit Ethernet interface improves
timing accuracy and increases data throughput,iwimeans a broader RF bandwidth, may be
used. The built-in SRAM memory allows some degreautonomous operation, that is, without
a host computer. MIMO connections are easier duestandard cable interface. The two
disadvantages are cost and the fact that the UBR&2nly one set of daughterboard connectors.
It can do full-duplex communication, but only withe daughterboaf@].



2.3 The Daughterboards

Some daughterboards receive radio signals froenaas, amplify and filter them, and
down-convert them to a low IF or baseband and segm to the ADC. Others take baseband or
low-IF signals from the DAC, up-convert them toighhradio frequency (RF) and amplify and
filter them before transmitting them over-the-aithhan antenna. Some do both. Some merely
offer interfaces to external RF front ends. NeallyJJSRP daughterboards are made by Ettus
Research. Since the designs, schematics, layndtsaatrols are open-source, though, some
researchers have built their own custom daughtedisoaNVe at CWT have customized some of
our own daughterboards, as described in the inttomly and in Section 2.4 Modifications,
below, in partnership with Innovative Wireless Teglogies. | have also modified several
myself, by hand. The daughterboard | helped desgsentially from scratch, and wrote the
controls for will have to be introduced in Sect®nThe Driver, below. It will be the focus of
this thesis.

A typical receiver daughterboard, or the recesasmtion of a transceiver daughterboard,
operates similar to the flow graph below, Figurdtieceives an analog RF signal via an
attached antenna. This signal is filtered, typycaith either a low-pass filter or a band-pass
filter, to mitigate the effects of interfering s@s. Because most received signals are low-
amplitude, the low-noise amplifier increases tlymal strength in order to use as much of the
ADC'’s dynamic range as possible. The mixer downveots the received signal to baseband or
alow IF. It may also do quadrature mixing. Tsignal is, or these signals are, sent to the USRP
for analog-to-digital conversion.

Antenna
Low- Mixer .| USRP
pass
Analog RAFilter Low- Analog IF
Noise
Amplifier

Figure 5: Daughterboard Receive Block Diagram

The flow graph below, Figure 6, describes a tyigi@Gmsmitter daughterboard, or the
transmitter section of a transceiver daughterbo&ml analog signal, which may or may not be
guadrature, is sent from the USRP, produced b{p¥h€, to the daughterboard. The mixer up-
converts the low-IF frequency or baseband signaht&®F frequency. If the signal from the
USRP is quadrature, then the | and Q signals aiealy combined in the mixer. | and Q
differential signals are sent to the mixer, alonthwa differential local oscillator signal. The |
and Q signals are simply summed in the mixer, depto output a single RF sigrjall]. The
analog RF signal from the mixer is amplified in@rdo be powerful enough to be received by
the intended receiver. A low-pass filter or baadgfilter removes unwanted signals produced
by non-linearities or noise in the daughterboard 8RP. The powerful signal is then sent over
the air by an attached antenna.
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Figure 6: Daughterboard Transmit Block Diagram

Ettus Research produces several daughterboanuis siboproduct lines (soon to be
seven). The first is the Basic series, with theiBBX and BasicRX. These boards are half-
duplex, but both may be installed into a singlegiaerboard slot (e.g. side A or side B). Their
primary purpose is to interface with an externalfRift end. They have neither amplifiers nor
mixers nor filters. They do provide two SMA contas each, to feed analog data into both
channels of the ADC or to retrieve analog data fbmth channels of the DAC. Headers are also
provided to easily access the SPI and 12C integfate 10 ports from the FPGA, the auxiliary
low-speed ADCs and DACs, and both analog and diigitaund. It is also possible to attach an
RS232 serial communications connector. The bozadgransmit or receive from about 1 MHz
to 250 MHz, ideally connected to the IF stage oésternal RF front end. These boards are
capable of MIMO operation.

The LF series includes the LFTX and LFRX. Thesartls are nearly identical to the
Basic boards, except that they include amplifiexs fiiters. They can transmit or receive from
DC to 30 MHz, where the low-pass filters cut offYRX is a receiver only. With a frequency
range of 50 MHz to 860 MHz, it is ideal for receigiTV signals or any signals in the VHF or
UHF bands. The F-connector on this board provadéS-ohm input for any standard TV or
radio antenna. Its bandwidth is 6 MHz and incluale®matic gain control (AGC), which may
be controlled in software. It is not capable oM. The DBSRX is a receiver that works from
800 MHz to 2.4 GHz. Bandwidth is adjustable intsafe from 1 MHz to 60 MHz. It is capable
of MIMO operation. The SMA connector on this boash power an active antenna.

WBX boards, which are not yet available, include YWBX0510 and the WBX0822.
They are half-duplex boards, so they can transnaitraceive, but cannot do both
simultaneously. Transmit power is expected to @& rmW for both boards. The WBX0510 will
operate from 50 MHz to 1 GHz and the WBX0822 frodd 81Hz to 2.2 GHz. The wide
frequency range of both transceivers makes thenhranticipated. A recent addition to the
USRP daughterboard line is the XCVR2450. It has tyerating ranges: 2.4 to 2.5 GHz and 4.9
to 5.9 GHz. Also capable of transmitting 100 mWs isimilarly half-duplex. Both WBX and
XCVR boards are MIMO capable.

Probably the most widely-used, most useful daupbged line is the RFX series. These
boards are full-duplex transceivers, capable of KIbperation. They are all capable of
transmitting about 100 mW. RFX boards include: RieX400, which operates between 400 and
500 MHz; the RFX900, which operates between 800 Mkt 1 GHz, and includes a filter
around the 902-928 MHz ISM band which can be bygdsthe RFX1200, which operates from
1150 to 1450 MHz; the RFX1800, which operates flohto 2.1 GHz; and the RFX2400, which
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operates from 2.3 to 2.9 GHz, and includes a fdteund the 2400-2483 MHz unlicensed band,
which can be bypasséd.

The picture below, Figure 7, shows an RFX400 deergoard (formerly known as
FLEX400). Being a transceiver daughterboard ki€saup two slots on the USRP: either the TX
and RX slots on the right side (Side A) or the T &X slots on the left (Side B). Most of the
circuitry on the upper half of the board is relatedhe transmitter. Most of the circuitry on the
lower half of the board is related to the receivierthe middle, there are switching circuits to
enable the board to be used as a transmittereedver or as both at the same time. Two SMA
connectors are shown: labeled TX/RX and RX2. Wingsd in half-duplex operation (meaning
that it may transmit or receive, but not both &t shme time), the TX/RX port is used for both
transmitting and receiving signals. This allowargyle antenna to be used, connected to this
port, for both transmitting and receivifit]. The RFX-series driver automatically operates
switches, in half-duplex operation, to make sueeTX/RX port is connected to the transmitter
when transmitting and to the receiver when recegiviwhen used in full-duplex mode, the RX2
port is enabled. The transmitter uses the TX/RX and the receiver uses the RX2 port. In this
mode, two antennas must be used. If the transaitie receiver were connected to the same
port, and were operating simultaneously, the pdveen the transmitter would over-drive the
receiver and possibly destroy it. Hence, when usédl duplex mode, both ports are enabled
and the transmitter and receiver need not shahne. 32-pin headers and nearby EEPROM chips
are in the boxes near the upper left and lowemletthe board. The headers allow access to the
16 digital input/output (1/O) pins on the FPGA, saof which are also used to control functions,
such as switching, on the daughterboard. The EBPRI@p contains a unique identification for
each type of daughterboard and subdef8¢e A subdevice is either a transmitter or a reege
so the EEPROM on the upper part of the board casthie identifier that it is an RFX400
daughterboard, transmitter subdevice. The EEPR@®Rhe lower part of the board contains the
identifier that it is an RFX400 daughterboard, reeesubdevice. These EEPROM chips
connect directly to the TX and RX connectors, retipely, on the USRP and the information
stored within them is used by GNU Radio to deteamirich software driver to use with which
subdevicd13] [14].
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Figure 7: Picture of Daughterboard, © Matt Ettuslsed with permission. See Appendix D:
Permission from Matt Ettus.

2.4 Modifications

The RFX400 can easily be modified to operate ffedint frequency ranges by changing
the center frequency of the oscillator, thoughftequency range remains about 25% of the
center frequency. To control the center frequerfdhe VCO, one must replace two inductors.
Figure 8, below, shows the locations of the indiscemd VCO/PLL chip on the RX side of the
board. The transmitter and receiver use independe@s, so in order to make a daughterboard
send and receive on a specific, modified frequdraryd, one must replace inductors on both
sides. By replacing the existing inductors wittvéo-value inductors, a higher center frequency
is achieved. By replacing the inductors with skortO0 ohm resistors, thereby minimizing
inductance, | have made RFX400 boards operatendshas high as 693-1011 MHz. The
RFX400 boards have low-pass filters with cutoffjisency around 520 MHz, so, in order to use
them at higher frequencies, the filter must beldesh Replacing the inductors with higher
values, up to 33 nH (the maximum allowable, aceaydo the VCO data shefd5]), | have
gotten RFX400 boards to operate in bands as lai43s186 MHz. | believe these are the two
extremes — the upper and lower limits of the RFX40perating rangg].
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Figure 8: Close-up Picture of Daughterboard, © MEttus. Used with permission. See
Appendix D: Permission from Matt Ettus.

GNU Radio code is agnostic as to the frequencyaafighe board. When a program
tells it to set a specific center frequency, GNUIRaimply tries to make the daughterboard
attain that frequency. The RFX-series driver inlGRadio is set up to drive the VCO frequency
to multiples of 1, 2 or 4 MHEL6] [15]. This local oscillator (LO) frequency is tgaily 3 to 5
MHz above the desired center frequency when thgldatboard is transmitting. It is setto 3 to
5 MHz below the desired center frequency when thegtterboard is receiving. Using this
reference frequency, the daughterboard convertREhgignal to a low IF, which is then
translated to baseband by the FPGA on the USREer &ying to set the LO frequency, the
driver checks whether the PLL on the VCO has addduck at this frequency — whether it has
successfully attained the desired frequency. Hag, GNU Radio reports success along with the
actual LO frequency, so the FPGA may be set tdaligiconvert the IF frequency to baseband,
and the program keeps going. If it hasn’'t achidweed, the program reports that and quits. The
driver tries to set the desired frequency regasdiésvhat the frequency is or whether it is in the
ostensible range of the specific daughterboardgoesed. For example, if a user with an RFX-
series daughterboard wants to tune to a centendrexy of 450 MHz, the driver will try to tune
the LO to 454 MHz. If the user wants to tune teater frequency of 150 MHz, the driver will
try to tune the LO to 154 MHz. If the user wardgune to a center frequency of 2000 MHz, the
driver will try to tune the LO to 2004 MHz. It de¢his whether the board in use is an RFX400,
an RFX900, an RFX1200, an RFX1800 or an RFX240@e dnly difference in this regard
between the RFX-series daughterboards and any ieddibards is in whether the VCO will
successfully attain those frequencies. Theretbeemodified RFX400 boards require no
modification to the GNU Radio code. They are phungl-play compatible with the original
boardg16].

Based on this principle, | worked with Innovathéreless Technologies (IWT) to
produce a modified RFX400 board with multiple s#tghductors, which could be switched in at
will. Since each set of inductors could have défe values, switching between them would
effectively change the frequency range of the dergbard. IWT developed a “grand-
daughterboard.” This small PCB attaches to thadtat pads on the original RFX400. It has
four sets of inductors and a solid-state switcbvidich between them. In the prototypes, of
which four were delivered, three frequency rangesavgelectable: 181-218 MHz, 345-459
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MHz, and 393-537 MHz. The last frequency rangehbyiemulates that of the original,
unmodified board. The highest frequency rangeipleswith this modification was limited by
the inductance inherent in the grand-daughterboacditry. No switch setting could provide
the low level of inductance that a 0 ohm resistaa short could provide so no switch setting
could achieve the highest frequency range possibkhe RFX400.

We originally planned on using either the auxili@rxCs on the ADC/DAC chip or
some of the accessible data 10 pins on the FPGAntrol the switch. The prototypes currently
have manual, sliding switches. They work well, andsistently, but switching the frequency
range by hand is awkward, especially if the dautpot@rd is inside an enclosure and the
switches are not readily accessible. We had pthonenserting GNU Radio code to control the
DACs or FPGA pins, but that change would have tanbade in every program that used the
modified boards. The program would have to knowdmance that it was to be run only with
these modified RFX400s, because using the digiiglihs with a daughterboard that uses them
for another purpose could damage the board orB&@A- It would also have to know in
advance which frequencies were available with eagtch setting and be able to make the
switch before trying to achieve the desired freqyemAnother possibility was to modify the
RFX daughterboard controls that come with GNU Radigain, these changes would have to
be made in every computer that used the modifiedldso We also never quite figured out how
to control the DACs or FPGA pins at the time, s ploint was moot. These boards are able to
hit some of the VHF band and the entire FRS banttHey have never been used in a practical
situation. They work with unmodified GNU Radio edNo code changes are necessary to use
these boards.

The RFX900, 1200, 1800 and 2400 use the sames sd#r¢CO, the ADF4360-x series.
The ADF4360-3, -2, -1 and -0 are pin-identical. liklnthe ADF4360-7 in the RFX400, these
chips do not have external inductors to set thegdency ranges. They are interchangeable in
the RFX series boards. The RFX900 uses a -3,awtivide-by 2 frequency divider, to go from
800 to 1000 MHz. The RFX1200 uses a -0, with adéhby-two, to go from 1150 to 1450
MHz. The RFX1800 uses a -3, with no frequencydsy; to go from 1.5to 2.1 GHz. The
RFX2400 uses a -0, with no frequency divider, tdrgm 2.3 to 2.9 GHz. Each of these uses
the same up-converter and down-converter mixetaamglifier. Exploiting this similarity, |
worked with IWT to modify the RFX1800. It was cleosbecause it has no band-pass filter and
its original frequency range is close to the onedesired. We replaced the original -3 chip with
a -2 chip. The new boards were able to operata 670 to 2569 MH{L7]. This frequency
range was desirable for a demo, and was not covgréte original RFX boards. Covering
roughly 800 MHz of RF frequency, this range islfaibroad but does not cover several desirable
frequency ranges for public safety, such as VHFS BRd UHF. Again, these boards are
compatible with GNU Radio and require no modifioas to the code.

2.5 The RFIC

The problem with the current generation of USRe&gthéerboards is that they do not
cover a sufficient frequency range. | wanted tibdoai new daughterboard that could cover the
entire public safety frequency range. | wantednée daughterboard to integrate fully into
GNU Radio. It would require a driver, and enoubhrges to the GNU Radio code to recognize
the board and the driver, but it would not reqaing changes to GNU Radio-based software
radio implementations. Our current public safeigio programs shouldn’t need to be modified.
The solution to the problem can be found in thedvimia RFIC. We have been using version
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RFIC4a. ltis a fully integrated radio transceiwera chip. Programmable through a Serial
Peripheral Interface, or SPI, the direct-conversiansmitter and receiver can operate in RF
frequencies from 100 MHz to 2.5 GHz. Adjustabledizand filtering and amplification is
available on the receive side, as is adjustableldzaxl filtering and amplification and RF power
amplification on the transmit side. DC offset emtion can be done on both sides. Direct
digital synthesis (DDS) is available on the trartgnialong with a Cartesian feedback system to
optimize linearity and DC offset.

Figure 9, below, shows the basic inputs and oatpfithe Motorola RFIC chip. On the
left side of the diagram, there are five RF receimputs. Each of these inputs has different
properties and may be used to meet different reqents. On the right side, there are three RF
transmitter outputs. These outputs have diffepeoperties and, again, may be used to meet
different requirements. Also on the right sidéhis baseband 1/0. Having down-converted a
received RF signal from one of the inputs, the R&Utputs the baseband signal for processing.
A signal to be transmitted is sent to the baselxa@m$mit input of the RFIC. It is up-converted
and then it is put out through one of the RF trahsotputs. On the top is the input for the
reference clock. If a 31.25 MHz crystal oscillatoused as the reference, its frequency is
multiplied by 32 to result in a 1 GHz frequencyereince. Alternatively, a 1 GHz reference
frequency may be used. The bottom of the diagtaows the Serial Peripheral Interface (SPI),
through which most of the functions of the RFIC ematrolled.

1 GHz Reference  31.25 MHz Crystal

Clock Input Oscillator Input
: —» Motorola RFIC > _
RF Receive RF Transmit Outputs
Inputs — " — % TX1, TX2, TX3
RX1,RX2,RX3, ] L 5
RX4, MIX5
—>
Baseband
- g B »  Receiver Output
¢—— Baseband

l I Transmitter Input

SPI
11O

Figure 9: RFIC Input-Output Diagram

SPI, or Serial Peripheral Interface, is a methiotcboxmunicating between two or more
microchips. In this case, the SPI interface cdstower 200 8-bit registers, not including
memory. These registers, in turn, control neavgrg aspect of the chip's operation: from filter
bandwidth to amplification; from synthesizer freqag to DC offset correction. Each 8-bit
register may contain up to eight variables andefoee may control up to eight aspects of the
chip's operation. It is vitally important to seeey register accurately for correct operation. A
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single variable incorrectly set can easily meandifference between correct operation and no
operation.

The exceptional range of frequencies, 100-2500 M#dachieved with a digital
frequency synthesizer, adjustable between 200 MtdzZlaGHz. Furthermore, the oscillator
frequency can be divided by two, used as-is, migtidy two, or multiplied by four. This is
how it is able to achieve such a large frequenogea Three of these synthesizers act as the
local oscillator for the mixers in the receivegrismitter and transmitter feedback systems.
These synthesizers are normally driven by a 31.B& ktystal oscillator. The oscillator would
be on the same board as the RFIC, but it is negrated into the RFIC chip itself. Its frequency
is multiplied by 32 to provide a 1 GHz referengeni which the synthesizers can produce
frequencies from 200 MHz to 1 GHz. Itis also plolesto connect a 1 GHz external reference.
This would serve the same purpose.

There are five receive paths and three transrtfilspar he receive paths each go through
different LNAs, except for the MIX5 input which has LNA, and different mixers before being
multiplexed into the same baseband path. Aftenthkiplexer on the receive side, the signal,
now at baseband, is sent through three amplifyiteys. A diagram of the receive path can be
seen below, in Figure 10.

\ 4
|
[

A 4

A 4
>—’®——’ Multiplexer
RX2 > W
>—>§XF . A ven  Bou
RX3

MIX5

Figure 10: RFIC Receive Block Diagram

Since the chip is made in CMOS, the amplifier inleaf these filters would normally
add significant noise. DC offset, flicker noisedénd-order distortion are all added at low
frequency by any CMOS amplifier. Since the RFI@sldirect-conversion, this noise would be
added to the desired signal. In order to combst &ach of the amplifying filters incorporates a
“chopping” function, which can be turned on or affwill in any of the filters. The chopper
mixes the desired signal up to a low IF beforeaimplifier stage, and then mixes it back to
baseband after the amplification. Since the sigsalf is amplified at a frequency well above
DC, the DC offset noise, flicker noise and 2nd-omistortion is added out-of-band. CMOS
amplifiers do not add significant distortion at imég frequencies. When the signal is mixed back
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to baseband, the noise is mixed out of band ateddd out. This process allows CMOS direct-
conversion receivers to avoid the problems thamadly plague such implementations. The
effects of the chopping mixer can be seen in theupe below, Figure 11: a comparison of the
frequency response of the receiver with no inpgihali with and without the chopper enabled.
The figure shows a plot of the noise floor of tHel®, with the 1/f low-frequency noise
represented by the peak in the middle, at 0 kHizO ®Hz, the noise is clearly higher when the

chopper is disabled. Low-frequency noise in gdrigraso higher when the chopper is disabled.
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Figure 11: Spectrum Graph, With and Without Chopper

Three different transmit paths are designed tustrat in different RF frequency ranges
and with varying levels of power control. Agaihey use different mixers and power amplifiers
but are multiplexed into the same baseband transatiit Two of the paths are designed for
low-frequency operation, one with a high degrepaer control, the other with a lower degree
of power control. The first transmit path, TX1designed to work from DC to 3 GHz. It has 80
dB of power control, 35 dB of which is continuoasd the other 45 dB of which is stepped in
increments of 5 dB. TX2, the second transmit piatbdesigned to work in the same frequency
range as TX1, but with better linearity and onlyd# of power control, stepped in increments of
5 dB. The last transmit path, TX3, is designeditok from 2 GHz to 6 GHz, the theoretical
upper frequency limit of the RFIC. It has lowerdarity than TX1 or TX2 and the same 45 dB
of stepped power control as TX2. A diagram ofttla@smit path can be seen below, in Figure
12.
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Figure 12: RFIC Transmit Block Diagram

In addition to the transmitter and receiver, ti@@Qincorporates a feedback loop for the
transmitter. It can take signals from the trangpath, just before they go off-chip, mix them
back to baseband, amplify and filter them, and autipem on the RX output pins. From there,
they can be converted with the off-chip receiver@dand processed. This path is designed to
allow the user to correct DC offset, gain and phad®lances and distortion without relying on
an external receiver or guess work. DC offsetexdion DACs are available on both the
transmit side and receive side of the RFIC. Thp stze is adjustable and they can correct DC
offset in the |1 and Q paths independetl@] [19].
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3. The Driver

3.1 Goals

| wanted a new daughterboard for the USRP thatldvoaver all of the frequency bands
we use in the lab. The expression my advisorBostian, is fond of is “DC to daylight.” At a
typical 400-790 THz, visible light frequencies arbit of a stretch. Nevertheless, typical radio
use covers frequencies from VHF to UHF to microwageconservative range would be 100
MHz to 2.5 GHz. Our lab frequently uses publicespafrequencies in the 140 MHz range and
Bluetooth or 802.11 devices in the 2.4 GHz unlieghisand and a multitude of frequencies in
between. With our current range of daughterboavésyould need a dozen or so different
boards to completely cover the RF spectrum we niblyrage. This means using, and frequently
switching between, multiple types of daughterboard.

The Motorola RFIC offered a way to end the conssarapping of daughterboards. With
coverage from 100 MHz to 2.5 GHz, a single dauggatard based on this chip could send and
receive signals in every band the RFX400, RFX9®XER00, RFX1800 and any number of
modified RFX400s could cover if put together. Otilg RFX2400, with a frequency range of
2.3 to 2.9 GHz, can hit frequencies outside thgeaof the RFIC.

Minimum detectable signal (MDS) and output powerjast as important as frequency
range. The RFX boards have MDS around -130 dBnoatpult power ranging from about 50
mW to 200 mW. My goal for the RFIC was -120 to@XBm MDS. The RFIC can only output
about 10 mW, so Randall Nealy (the research engimbe designed and laid out the
daughterboard) included optional RF power ampkfi@n the board, capable of outputting 100
mW. Achieving these goals would make the RFIC-Oatmuighterboard comparable to the RFX
boards in every way.

Most importantly, | wanted the RFIC board to beggand-play compatible with the
RFX-series and other daughterboards in GNU Raditicgtions. This was the focus of my own
work. | wrote the GNU Radio driver for the RFICdeal daughterboard. Written in Python, the
driver uses similar functions to those for the R®WBX and XCVR-series daughterboards. At a
bare minimum, a transceiver board must be ablentral transmitter power, receiver
amplification, and transmit and receive frequencies

The RFIC-based daughterboard, designed by RaNdally, incorporates the Motorola
RFIC4a chip, as described above in the SectioMRe5RFIC. It has RF antenna ports for all
three transmit paths and for all five receive pathke version of the RFIC on this board does
not have the RX4 receive path enabled, but it neagriabled in other versions of the chip.
Therefore, there is a place to install an antermmafpr the RX4 path, but no antenna port is
currently installed. The daughterboard designriporates received signal-strength indicator and
transmit/receive switching circuitry. Current pyipes of the board only have one EEPROM
chip, which is on the receive side. This means @MU Radio is unable to recognize the
transmit subdevice of the daughterboard autométieat must be forced to use the RFIC
daughterboard driver | wrote in any transmittergoamn.

My code provides functions to independently tuma transmitter and receiver on and off,
and switch between any of the five receive patlasaanry of the three transmit paths on the RFIC.
It also provides automatic transmit/receive switghiwhich is to be added as an external switch
in an upcoming revision of the board design andu&f20]. Transmit and receive phase offset
functions are also available. The phase offseiach frequency synthesizer may be changed
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independently at will. Functions are also avagail control the bandwidth of either path
independently. Another unique function providedluis board by my code is feedback. The
RFIC has a feedback path from the transmittereéadiceiver, allowing a user to offset I-Q
imbalance, characterize and implement pre-distortio check linearity. A function within the
receiver subdevice allows the user to bypass th@alaeceiver path and down-convert the
signal transmitted from by the RFIC to basebandfalysis. Separate functions are available to
set the RF frequency to be fed back to the recesetithe bandwidth of the feedback signal, and
set the gain of the feedback path. Another functions off the feedback loop and resumes
normal receiver function. Finally, there is a iiged signal-strength indicator function. The
complete code can be seen in Appendix A: The DiGaate.

3.2 Code Overview

The flow graph below, Figure 13, shows a basicaggntation of how my code works.
The thick boxes represent a state. When a stadached for the first time, a function is
performed. The thin boxes represent a functiormows represent possible changes of state or
functions performed. The thictartbox represents the initial condition — GNU Radiayne
running but the daughterboard has not been iragdli If the daughterboard is turned off from
thelnitialize state, the synthesizer frequency multipliers aredd off and the program returns to
the Startstate. When the GNU Radio program tries to usgbalevice (transmitter or receiver),
the state moves taoitialize, where FPGA registers are set to control autontigtitsmit/receive
switching. Many registers are set on the RFIC,naute of the filters or mixers is enabled.
Next, the state moves Toansmitor Receivedepending on whether a transmit subdevice or a
receive subdevice is being initialized. In bothledse states, mixers and filters are turned on,
chopping clocks are turned on and set, and seaddifional variables are set. At this time, the
program must set the transmit frequency or theivedeequency. Power and amplification
default to the maximum setting, bandwidth defatdtthe widest setting and there is no phase
offset by default. Any of these settings can liebgehe program from this state. After
performing any of these functions, the programrreguo theTransmitor Receivestate. If,
however, the subdevice is turned off, or deletied filters and mixers and choppers are turned
off and the driver returns to theitialize state.

21



Start

Initialize

Turn off

Set phase
offset

Set power

Turn off

Set frequency

Set phase
offset
A
Turn off
Set amplifiers
Receive N
Get
RSSI
Set frequency
A 4
Set
bandwidth

Turn off

Transmit

Set
bandwidth

Set amplifiers

Set phase
offset
Feedback
Set frequency Set
bandwidth

Figure 13: Driver Flow Graph

22



The receiver has additional functions not founthmtransmitter. Feedback can be
turned on. Moving to thEeedbaclstate, the driver turns off the receiver filtengldurns on the
feedback from the transmitter. The output of #edback loop to GNU Radio uses the same
pins as that of the receiver, so the receiver nesgtrned off to analyze information from the
feedback loop. Phase offset is set to zero byultetamplification is set to maximum and
bandwidth is set to the highest setting. Frequengst be set by the user. At this point, the data
received by the program is a representation ofrdresmitted signal, amplified, filtered and
converted to baseband by the feedback mixers aptifears and filters. When the program
returns toReceivemode, the feedback chain is turned off and theivec filters turned back on.

A final function checks a Receive Signal-Strengttii¢ator (RSSI). This returns two variables:
one related to how often the signal is in faddyas low signal strength; the other related to how
often the signal is clipping, or has high signatsgth. Both of these values are instantaneous
measurements of a low-pass filtered pulse-widthutaddd (PWM) signal. The PWM signals
from the clip and fade detectors are low-passréitiethen sampled at a single time instant. This
results in two instantaneous values related to di@n the signal is clipping and fading. The
RSSI function will be described in more detail lve iSection 3.4.1 The RFIC Object, below.

3.3 Interface In-Depth

Three things control every aspect of the RFIC d&rpoard's functions: the SPI
interface; the 10 pins on the USRP; and the auyilleDCs and DACs on the USRP ADC/DAC.
The SPI interface is used to control all of thastys and nearly all of the internal settifigg]
[19]. 10 pin 6 on the receive side controls theoawatic TX/RX switching. One of the auxiliary
DACs on the ADC/DAC controls the continuous gaintloa TX1 transmit path. Two of the
auxiliary ADCs poll the received signal-strengthioators[21]. The high-speed ADCs and
DACs are the actual | and Q received and transthitidio signal paths. The diagram below,
Figure 14, shows the 10 ports on the USRP usetdRFIC daughterboard.
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Figure 14: USRP IO Diagram

SPI, or Serial Peripheral Interface, is a standaetl to communicate between electronic
devices. There are five digital lines: MOSI, orstea out, slave in; MISO, or master in, slave
out; SCLK, the clock output by the master devicBEC, or Chip Select; and an optional digital
reset line. The master is the FX2 USB 2.0 corgrathip on the USRR2]. The RFIC is a
slave. All slave chips are controlled by the mas@he MOSI, MISO and SCLK lines are
shared between all devices. Master selects whaste slevice it will output to or take input from
with the CSEL lines. SPI is typically used to ream write data registers on microchips. The
USRP can interface with four devices via SPI: i@ TX port on side A; via RX on side A; via
TX on side B; and via RX on side B. The SPI irded is controlled through GNU Radio in
Python. GNU Radio includes functions for the USBRPead and write SPI registers with
optional header1]. The RFIC chip on the RFIC daughterboardoisrected to the RX SPI
port.

Each SPI register on the RFIC contains one byteight bits, of information. To write a
register on the RFIC, two header bytes are writiger) up to 64 bytes of data, which would
therefore set up to 64 registers. The first bithef header is the write disable bit. It shouldsét
to zero to write a register. The last bit is adrads auto-increment disable bit. If auto-
increment is disabled, one may only write or reathgle register in a single pass. If auto-
increment is enabled, one may write or read upltee§isters in a single pass. The middle 14
header bits contain the number of the registenvaskes to write. The next bytes, up to 64,
contain the data to write to the registers. Famneple, if, in the header, the write disable bit is
set to zero, the auto-increment bit is set to z&nd, the register number is set to 0 and 64 bytes
of data are sent after the header, then registdm®0gh 63 on the RFIC would be set with the
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64 bytes of datf23]. The table below, Table 1. SPI Write Openaticontains a description of
the SPI write operation.

Table 1: SPI Write Operation

SPI Write Operation
Type: Header Data
Byte Number: 0 0 1 1 2—(1+@upto64)
Bits (MSB first): |0 1-7|06 |7 0-7
Contents: Read Register Auto-increment  |Write data
enable |number disable

Reading an SPI register requires no header. fHneng address is set by the previous
write operation. So, too, the auto-increment tdgehe previous write operation. Up to 64
bytes, which is to say 64 registers, may be readsmgle pass if the auto-increment is enabled.
If the auto-increment is disabled, only one registay be read in a single pass. The last register
written will determine which register will be reficst. For instance, if the previous write
operation set register 0 only and enabled the sugtement, the subsequent read operation could
read n registers, from 0 to (n-1), where n is up4o However, if the previous write operation
set registers 0 through 63 and enabled the auteritent, the subsequent read operation could
read n registers 63 to (62 + n), where n is uptf28]. The format of the data can be seen in
Table 2: SPI Read Operation, below.

Table 2: SPI Read Operation

SPI Read Operation

Type: Data

Bytes: 0—(n - 1fn up to 64)
Bits (MSB first): 0-7

Contents: Read data

There are 261 8-bit SPI registers on the RFICainimtg 354 separate variables. Some of
the registers are not occupied or have not yet besigned. Others may contain as many as
eight separate variables. The variables contratraspects of the RFIC's functions. They
control the frequency of each of the three osdait&(transmit, receive and feedback), frequency
multipliers and dividers, phase offset, gain in mafghe amplifiers, bandwidth, and many other
functions. Itis vitally important to set everyriable correctly in order to ensure correct
operation of the chifl8] [19].

There are a total of 32 digital 10 pins availatde transceiver daughterboard: 16 on the
RX side and 16 on the TX side. Each may be usea agput or an output and may be
controlled or polled either manually or automaticéthrough registers on the FPGA. As outputs,
they can be set to 3.3 volts or to 0 volts. Asiispthey simply return a 1 or a 0, depending on
the voltage applied. At present, the receive IDI@_RX_06 is used to control automatic
TX/RX switching.

The ADC/DAC chips on the USRP have high-speed ARCseceiving IF or baseband
radio signals and high-speed DACs for transmittihgr baseband signals. They also have four
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auxiliary ADCs and four auxiliary DACs each for ¢anlling various functions on the
daughterboards. The TX and RX connectors on adeho$ the USRP each have two low-speed
ADC lines available. They share the four low-spP&C lines. The ADCs have 10-bit
precision and sample at 1.25 Msps while three ®3ACs on each side of the USRP have 8-bit
precision and the fourth has 12-bit precision. TBebit DAC controls 35 dB of gain in the TX1
transmit path. The two ADCs on the receive sidepa the on-channel clip and on-channel
fade pins, which provide received-signal strengthidators (RSSI) and may be used in
automatic gain contrg8] [21].

3.4 Code In-Depth

There are four major parts of my RFIC daughterbaiver for GNU Radio: the RFIC
object, which is shared by the transmitter, reaeqwel base class and includes most of the
control functions; the base class, from which thaegmitter and receiver subclasses are derived;
the transmitter subclass; and the receiver subcllssre is a fifth, more minor, part — the auto-
instantiation function. Each major part containdtiple functions — at the very least initialize
and delete functions — and provides tools for GNAdIiR users. Many of the tools are plug-and-
play compatible with existing GNU Radio softwaret beveral are unique to the RFIC board
and this driver. They are easily accessed andgeorcreased functionality compared to
existing daughterboards and existing daughterbdavers.

3.4.1 The RFIC Object

Used by the other three parts of the drj\i&] [24] [25], the RFIC object contains
functions to read and write the SPI registers, galye on the RFIC chip, functions to write
every register specifically on the RFIC, a functionnitialize the RFIC with specific values and
definitions of all of the RFIC variables, a functito shut down the RFIC, functions to set up the
automatic transmit/receive switching, and functiamset the receive and transmit gain,
frequency, phase offset, and bandwidth. It alsdaios functions to enable and disable the
feedback loop and set its gain, frequency, phasetodnd bandwidth. Finally, it contains a
function to poll the RSSI pins and return numbetated to the clip and fade. As shown in the
figure below, Figure 15, the TX Subclass, RX Sukeland Base Class use functions contained
in the RFIC Object to perform the radio operatiohthe daughterboard. Furthermore, the
complete RFIC object code can be seen in Appendikh& Driver Code, under the heading
class rfic(object):.
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Figure 15: RFIC Object Diagram

The RFIC object calculates two variables beforit write SPI registers — the enables
and the format. These variables tell the FX2 USBc@ntroller chip, which controls the SPI
interface, which slave chip to enable on the USRdPreow to format the data. The RFIC uses
the RX port to interface with SPI. A variable pagso the RFIC object by GNU Radio tells it
which side (A or B) the daughterboard is on. Thalxde variable is calculated from the RX port
setting and whether the daughterboard is on sideB\ For the SPI write function, a two-byte
header is required and the format is most sigmtitat first (MSB). The format variable is
calculated based on those two requirements. Eo8H read function, no header is required, but
the format is still MSB. Another format variabkedalculated based on the requirements when
reading an SPI register.

When reading an SPI register, there is no heallee. register at which reading begins is
set by the previous write command. ThereforeRkread function first writes register number
0 with variables in the appropriate bit locatioristhen reads 64 registers into a string five 8me
the first read gets the contents of register Oufhoregister 63 and puts them into the string; the
second gets the contents of register 64 throughth2%hird gets the contents of register 128 to
191; the fourth gets the contents of register B9255; the fifth gets the contents of register 256
to 319. While the highest register number usétbis 320 registers are read in case a future
version of the chip uses more registers. The fanc¢hen returns the contents of the chosen
register number. Several SPI registers in the RFFEead-only and it doesn't make sense to
write a register immediately before reading it.aflts why the first register, a read/write register
of which the contents are known at all times, igtem before every register is read. It ensures
that read-only registers are never written.
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The SPI write function has two inputs: the numifethe register to write and the data to
write in that register. It calculates a two-by&ater, as described in Section 3.3 Interface In-
Depth, to write before the data. The enable anddbvariables are calculated within the RFIC
object, so they may be used by and are automatigatised to the write function. Finally, the
function writes the header, then writes a single lnof data to the register. While the SPI
interface is capable of writing up to 64 registera single pass, | decided to limit each write to
one register. For n up to 64, the function wowglehto write n bytes of data to n registers. This
would allow multiple variables in multiple regissetio be changed in a single pass, saving time,
but it would vastly complicate the functions cajjithe SPI write function. This design decision
is explained below.

All 354 variables located in SPI registers mustbined by the RFIC object. Every
function, class and subclass must have acces®ty eariable. In order to change any variable,
and therefore to set any SPI register, the prognaist know what other variables, if any, occupy
the same register. It must also know the valubedse variables and what bits they occupy.
This makes changing a single register a compliciteki Up to eight variables may share the
same register, so a function setting a single rexgmust keep track of up to eight variables and
their bit positions. This is why | made one uniduection for every register.

There are two kinds of registers on the RFIC: hedte and read-only18] [19].

Because the value of every written variable is kmavall times, it is not necessary to read any
read/write register in order to determine the vatian associated variable. Only the read-only
registers must be read. The function associatddauead/write register will calculate the data
to send to the register from the associated vasadhd their bit positions. It will send this data
along with the register number to the SPI writection. The SPI write function will write the
correct data to the register. A function assodiatgh a read-only register will use the SPI read
function to determine the contents of the regiatet then calculate the values of the associated
variables from their bit position and bit length then sets the associated variables in the RFIC
object so that they may be read by any functicasscbr subclass.

The initialization function for the RFIC objecasts by setting a pointer to the instance of
the USRP sink or source it is associated withaldd sets up a variable with a zero if the
daughterboard is on side A and a one if it is oie 8. It calculates SPI format variables for
writing and reading SPI registers based on thetfattthe RFIC uses MSB formatted data and
the write function requires a two-byte header wthike read function requires no header. An SPI
enable variable, shared by SPI write and read inmgtis calculated based the fact that the RFIC
uses the SPI interface on the RX side of the daulgb&rd and whether the daughterboard is on
side A or side B. Next, every variable associatéh a read/write SPI register on the RFIC is
defined with a specific value within the RFIC olije@ his way, every variable is available to
every function. Next, initial values for the tram#ter, receiver and feedback frequency variables
are set, so as to be available to functions, lufrdquency synthesizers are not set up. The
clock frequency, 1000 MHz, is also defined here réderence. Automatic TX/RX switching is
set up next, as will be described later in thigieagon the 10 pin IO_RX_06 (voltage high for
TX, voltage low for RX). Finally, every read/writegister is written using its individual
associated function. All of the registers areugetvith reasonable default values, but none of the
filters, mixers, choppers or other power-consunadagices is turned on.

The delete function is simpler. It sets the resetables for each of the three frequency
synthesizers, then writes their associated SP$tergi. Next, it turns off the frequency
multipliers associated with the three frequencytisgsizers. It writes the associated registers.
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There is no need to turn off filters or mixers tney power-consuming devices — the deletion
functions for the transmitter, receiver and feedtbait! take care of those.

One function is defined for every SPI registettlom RFIC. Each of these functions takes
no inputs and returns nothing because the varidbésuse are stored in the RFIC object — they
are always available. Because some registers @aatrto be written and others are read-only,
there are two kinds of functions related to the i®gisters. A write function simply puts the
appropriate variables, from the RFIC object, cargdiwithin its associated register together into
a single, one-byte value. It then uses the SRévuinction to write this value to the associated
register. A read function uses the SPI read fondid determine the contents of its associated
register. It then calculates the value of all @blés associated with the register and sets the
variables in the RFIC object. For example, thecfiom set_reg_0 puts the value of variable
Ngt3 into bit 7 of a one-byte number. It puts adue of variable NorNdiv4 into bits 0 through
6 of the one-byte number. Then, it writes the ltedsuregister 0. The function read_reg_208
determines the contents of register 208. It sat&ble rx_lcmpo to the value of the register, bit
5. Then, it sets variable rx_lodac to the valuthefregister, bits 0 through 4. An example of
the operation of the functions that set the indigidSPI registers is shown in the figure, Figure
16, below. The functions that read individual &jisters work in the opposite manner.

Register Contents

SPI Register

8-Bit Register

Variable 1 Bits 0-1

Bits 2-4

Variable 2

Bits 5-7

Variable 3

Figure 16: Register Set Function Example

Several functions set up the automatic TX/RX siiitg. TX/RX switching can use the
IO pins on the TX or RX side of the daughterboaahnected to the FPGA. Both the TX and
RX connectors on the USRP include 16 digital IGsparhich may be set to inputs or outputs.
They can be used to turn on and off amplifiers @mmncers, to interface with external switches to
control antenna arrays, or, as in this case, thayoe used for transmit/receive switching.

While the RFIC board has five receive ports anddtiransmit ports, in the form of
MMCX connectors, for the five receive and threasrait paths on the RFIC chip, it is often
desirable to use a single port for both transngtand receiving signals. A single port used for
both purposes means only one antenna is requiysthg a single port for transmitting and
receiving signals means there must be a switch. hlfh-power transmitted signal were running
to a port being used as a receiver input, the veceiould be over-driven or possibly destroyed.
When using a single antenna port for both trangmgitind receiving, only one of those functions
may be used at a time. To achieve this, Randstihiled a switch on the RFIC daughterboard. It
has two inputs — one to connect to a TX port areltorconnect to an RX port. These inputs also
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take the form of MMCX connectors, which means Mi8CX cables would have to be run from
the RX port and TX port of choice to the RX and iRguts, respectively. The output is also
MMCX, and may be connected to an antenna. Thekustcontrolled by the 10 pin

IO_RX_06.

Included in the FPGA programming on the USRP ia@omatic transmit/receive
switching protocol. It allows the FPGA to autonaatly control the digital 10 pins on the
transmit and receive sides of the USRP. This alowch faster switching compared with
setting the digital 10 pins through GNU Radio aetying on the USB 2.0 connection to set 10
registers on the FPGA. Essentially, any of thétaigins on the TX or RX side of the USRP
may be set up to be controlled automatically byRR&A for transmit/receive switching. First,
the 10 pins that control the switching are set sijpatput pins. GNU Radio has an output enable
function to do this for the 32 10 pins. Next, twasks are set in the FPGA — one for the
transmit 10 pins, one for the receive IO pins. Sdenasks set up which pins in the TX IO and
RX 10 are controlled automatically. Finally, twetsngs for the IO pins are set: one for the
transmit condition and one for the receive conditi®y default, the pins are set to the receive
condition. When data is present in the FPGA’d4insfirst-out (FIFO) data buffer for the
transmitter, the pins are automatically reset éotthnsmit condition. When data is no longer
present in the FIFO buffer, the pins revert torgeeive condition.

For the RFIC daughterboard, the receive side p&nsét up as an output pin. Then, a
mask is sent to the FPGA setting up the IO_RX_(0getthe only pin controlled by the automatic
transmit/receive switching. Next, the receive ladsmit conditions are set up. In the receive
condition, the pin is set to zero, or 0 volts.tHe transmit condition, the pin is set to one, .8r 3
volts. When there is no data in the FPGA'’s trangitiO buffer, the pin is set to zero, ensuring
that the RX port of the switch is connected todhgput. When there is transmit data in the
FIFO buffer, the pin is set to one, ensuring thatTX port of the switch is connected to the
output. A diagram of this operation can be sedhéfigure below, Figure 17.

I0_RX_06 =1

I0_RX_06 =0

I0_RX_06

Antenna Port

Figure 17: Automatic TX/RX Switching Diagram

There are three functions related to gain: onéhfertransmitter; one for the receiver; and
one for the feedback path. They are located irctimemon RFIC object so that a receiver flow
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graph may set the transmitter gain, or vice-veislathree operate on similar principles. Each
function sets the gain in the filters in the RFIThey set the variables in the RFIC object, and
then call the related functions to set the regssitethe chip itself. The transmit path TX1 is
unique in that it has two types of gain controle@montrolled by this function through the SPI
registers; the other controlled by one of the aarilDACs on the USRP, which is controlled in
the transmitter initializer. This gain control Ndle discussed in the Section 3.4.3 The TX
Subclass, below.

Two variables control the gain in the TX path, #uglitional gain control via the DAC
notwithstanding. On register 176 lie variabled ttantrol stepped attenuation in the RF section
of the RFIC. They can provide from zero dB of mtigtion to 45 dB of attenuation. This
translates to 45 dB of gain control. The trangyaith control function is written to set gain in
increments of 5 dB, from 0 dB (45 dB of attenua}itm45 dB (0 dB of attenuation). It adjusts
these two variables based on the input, desiredigalB, to the nearest value available in the 5
dB steps.

The receiver gain is controlled by four variabldhe gain is adjustable in the three
filters, as shown in Figure 10, above: the BiQubtdrf the VGA filter; and the PMA filter. DC
offset step size, another variable, must be adjusésed on the gain of the BiQuad filter.
BiQuad filter gain is set in dB from O to 18 dB.G¥ gain goes from 6 to 14 dB. The PMA
filter gain is set by a ratio of resistor settindsallows up to 10 dB of further gain. Put tduet,
there is 38 dB of gain control available in theaiger. The function uses an input, in the form of
dB gain, to calculate the closest available valugain and set the variables and registers
accordingly.

Feedback gain control is simpler. There are Y@uiables on a single register. They
control gain directly, in 5 dB steps, from 10 tod® each. Therefore, there is 40 dB of total
gain control in the feedback loop. Again, the fume uses a dB gain input, calculates the closest
available gain value, and sets the variables ar@ Régisters accordingly.

Frequency is set by two functions in the RFIC obfer each of the three frequency
synthesizers. Using direct digital synthesis, lbased on the 1 GHz reference, the synthesizers
can produce frequencies from 200 MHz to 1 GHz. sEfoequencies can then be multiplied by
one of four multipliers: a ¥2x multiplier; a 1x miplier; a 2x multiplier and a 4x multiplier.
There is also an 8x multiplier, but it is not usedhis time. The broad frequency range of the
RFIC stems from the frequency range of the frequeyathesizer, multiplied by the range of
multipliers. At the low end, the frequency synikescan produce a 200 MHz signal, which can
then be multiplied by % to send a 100 MHz signatdanixer. At the high end, the frequency
synthesizer can produce a 1000 MHz signal, whichtlean be multiplied by 4 to send a 4 GHz
to its mixer. Practically, however, the transnmifrequency is limited to 2.5 GHz. Above this
frequency, the transmit power drops off sharplye Teceiver can operate up to 4 GHz.
Theoretically, with the 8x multiplier, this chip wial be able to cover a frequency range of 100
MHz to 8 GHz. This would require extremely wideddd®F amplifiers and mixers. A larger
transmit frequency range, perhaps up to 4 GHzglrdri may be practically implemented in a
later revision of the RFIC chid8] [19].

Setting the frequency of the local oscillator tioe receiver, transmitter or feedback loop
is therefore two steps: first, the frequency sysitter must be set to the correct frequency;
second, the correct multiplier must be set uptir@gthe frequency synthesizer involves
calculating three values, which are then placenl $it variables on five registers. A unique
function exists to calculate the values for eaalalde. The values are calculated in the same
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manner for all three signal paths. The reasorethiadues require six variables and five registers
is that one of the values is 26 bits — much latigan the 8-bit registers — and is therefore sjplit u
into four different variables on four different retgrs. Two of the synthesizer values control a
divide-by-four frequency divider within the frequsnsynthesizer. The third value controls the
frequency of the synthesizer. This frequency datou function first determines whether the
desired synthesizer frequency is more thafl df4he reference clock frequency, in this case 1
GHz. If the desired frequency is more tharf™dfithe clock frequency, the synthesizer
frequency need not be divided by four. The thr&lees are calculated from there. If the desired
frequency is less than 1/4th of the clock frequetity synthesizer frequency must be divided by
four and the three values are calculated basedatrdivision. The 26-bit value is split into four
parts to fill the four corresponding variables.eNalues with which to set these four variables
are returned, along with values with which to setather two variables, simply equal to the
other two calculated values. All six values atem@ed by the function. This function is used by
the transmitter, receiver and feedback frequentfusetions to calculate the variables to set
each frequency synthesiZ@6].

There are unique functions to set the LO frequeridiie receiver, transmitter and
feedback loop. They are placed in the shared RBjEct so that, for example, a receiver flow
graph may set the transmitter frequency. Eachethiree functions operates in a similar
manner. The input is the desired frequency, in Adiagram showing the procedure can be
seen in the diagram below, Figure 18. First, threefion determines which multiplier to use. If
the desired frequency is below 500 MHz, the 1/2gf@iency multiplier is used. If it is between
500 MHz and 1 GHz, the 1x frequency multiplier s&d. If it is between 1 GHz and 2 GHz, the
2x frequency multiplier is used. Above 2 GHz, #ixemultiplier is used. Second, the function
sets up the correct frequency multiplier. Thisolwes setting six variables in six registers,
unique to the receiver, transmitter or feedbaclklolh is a two-to-four step process. In the first
step, all six variables are set to specific valuesthe second through fourth steps, a single
variable is adjusted to its final value. Everyeimvariable is set or adjusted, its corresponding
register is also set. Third, if the 1x, 2x or 4ultiplier is in use, it sets eight variables acrsiss
registers to specific values for each multipli€hese are optimizing variables, which will be
described in the Section 3.5 Tuning and Optimizgig®]. Fourth, the function calculates the
frequency synthesizer value, based on the desiegdéncy and the multiplier value, using the
function described above. Fifth, it sets a glokzalable in the RFIC object to the desired
frequency, in Hz. This variable stores the sigrah frequency for reference. Sixth, the six
variables that set the frequency synthesizer cooreding to the transmitter, receiver or feedback
loop are calculated with the above function. Sévethe corresponding registers are set.
Finally, the function returns a true value anddbksired frequency in Hz. The first value, true or
false, should indicate whether the daughterboacdessfully attained the desired frequency. It
is only set to false if the desired RF frequencglisve 4 GHz, where the RFIC is unable to
operate. This is a flaw in the RFIC — there isnay to know, within the chip, whether the
desired frequency has been successfully attaiBedn if the chip fails to attain the desired
frequency, the function must return a success. séleend value, in this case the desired
frequency, is used by GNU Radio to calculate tlggali up-conversion (DUC) or down-
conversion (DDC) frequency. The difference betwimendesired frequency and this returned
value is the IF frequency that the DUC or DDC magstvert from or to baseband. Since the
RFIC is a direct-conversion chip, no digital up-egersion is necessary in the transmitter and no
digital down-conversion is necessary in the reaeive
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Figure 18: Set Frequency Procedure Diagram

Synthesizer phase offset in any of the threlepean be set in the RFIC with three
values, stored in six variables across five reggsté function exists to calculate the values to
correctly set the phase offset. Phase offseticsilzded in a similar manner to frequency, and the
phase offset calculation is identical for eachhaf three frequency synthesizers. Six values are
calculated based on the current synthesizer frexpi¢ime clock frequency, and the desired phase
offset, in degrees. Again, the values are diffedapending on whether the synthesizer
frequency is above or below 1/4th of the clock frerocy. The values needed to set all six
variables are returned and are used by the fursctimat set the transmitter, receiver and
feedback phase-offset.

Each of the transmitter, receiver and feedback |maths have a function that passes the
clock frequency, the current synthesizer frequenog, the desired phase offset to the phase
offset calculator function above. They calcul&e ¢urrent synthesizer frequency from the
current LO frequency and the multiplier used. Tkefrequency for each path is saved as a
global variable, and is therefore readily availabl¢he phase offset function. If the
corresponding LO frequency is below 500 MHz, tH&Ihultiplier is in use and the LO
frequency must be multiplied by 2 to find the sydizer frequency. If the LO frequency is
between 500 MHz and 1 GHz, the 1x multiplier isig® and the LO frequency is equal to the
synthesizer frequency. If the LO frequency is lesw 1 GHz and 2 GHz, the 2x multiplier is in
use and the LO frequency must be divided by 2nd fine synthesizer frequency. If the LO
frequency is above 2 GHz, the 4x multiplier is sewand the LO frequency must be multiplied
by 4 to find the synthesizer frequency. Usingdbeve phase offset calculator function, each
function determines the necessary values forxaNaiiables. They set the corresponding
variables with the six returned values, and thenrgecorresponding registers on the RFIC. The
functions automatically return a success. The Ritight to be able to correctly set any desired
phase offset from 0 to 360 degrees, but there isayto determine whether the offset has been
successfully set.
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The RFIC object contains functions to set the badth of the transmitter, receiver and
feedback loop. These functions are in the RFI@dlgo that either a transmitter or receiver
flow graph may set the bandwidth of any of the éhsgnal paths. In each case, several
bandwidth steps and the settings that correspotidtilem are available, as provided by the
documentation from Motorold 8] [19]. The filtering occurs at baseband in evegnai path.
The functions take in a desired bandwidth, in Kz tse bandwidth variables to the closest
available step, and set the corresponding regisasdwidth adjustment functions are not
available in the standard daughterboard drivetgesé& functions are unique to this driver and
this daughterboard.

For the receiver, bandwidth is set via the adhlsteesistor and capacitor settings in each
of the three amplifying filters (BiQuad, VGA and PRMas seen in Figure 10, above). In setting
the bandwidth of any filter, coarse adjustmentsnaaele by changing resistor values and fine
adjustments are made by changing capacitor valdesy four resistor values are available in
setting the PMA filter bandwidth. Eight resist@wes are available in setting the bandwidth of
the other two filters. In contrast, the PMA capaictan be set to 4,096 different values, the
VGA capacitor can be set to 1,024 different valaresd the BiQuad capacitor can be set to 512
values. Altogether, this allows a very fine adjosit to the total system bandwidth. The
maximum bandwidth is 14.46863 MHz. The minimumdaidth is 3.532 kHz. These are
baseband values — the equivalent pass band vatudd tve 28.93726 MHz and 7.064 kHz. For
the purposes of this driver, fine adjustment ismatessary. Most applications would use the
full available bandwidth and, for all five receisignal paths, the default setting is maximum
bandwidth. Thirteen bandwidth steps are availahlagh, in the receiver bandwidth set
function. The resistor and capacitor settingsefoch bandwidth step were given by Motorola in
the RFIC documentatioi8] [19]. From the desired bandwidth, the functioredetines the
closest bandwidth setting available and sets the wariables corresponding to the resistor and
capacitor settings and sets the seven corresposdthgegisters.

Both transmitter and feedback loop bandwidth ate®re simply. Adjustable resistors
and capacitors need not be set. Two variables/omégisters control the transmitter bandwidth.
One variable and one register control the feedb@mk bandwidth. For the transmitter, the two
variables simply set the two poles of the two baselfilters in the transmit path, as seen in
Figure 12, above. For the feedback loop, a sifitge controls the bandwidth. The transmitter
bandwidth can be set from 6.25 kHz to 14 MHz irvefesteps. The transmitter bandwidth set
function takes the desired bandwidth, determinestbsest step available, and sets the
corresponding variables and registers. For thébf@ek loop, the bandwidth can be 5 MHz, 10
MHz or 14 MHz. The feedback loop bandwidth setction takes the desired bandwidth,
determines the closest step available and setothesponding variable and register.

Also in the RFIC object are functions to enabld disable the feedback loop. This
function is unique to the RFIC daughterboard anthi®driver — it is not available in any of the
standard daughterboards. The feedback loop usd3RIC baseband receive output pins to the
high-speed ADCs to output a baseband representititre signal being transmitted by the
RFIC. Essentially, it takes the RF transmit ougighal from the transmit output pins, amplifies
it and mixes it down to baseband, amplifies artdrfl it at baseband and outputs it. The user can
then look at this baseband representation of #restnitted signal as if it were a received signal.
It can be analyzed with any software-defined ramtacessing tool. Armed with a good
representation of exactly what is being transmjttied user can do DC offset correction or
implement a pre-distortion filter. This can sigegintly improve the performance of the
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transmitter. Feedback can be enabled or disableshi-time, using the functions below,
allowing the user to do DC offset correction or-gdrstortion at runtime, optimizing its effect. A
diagram of the feedback loop can be seen in Fig@ydelow.

EiﬁEbfa”d RF TX Out
S RnP rom To Antenna
Filter LNA Feedback LNA
Mixer
Baseband RF RX In
RX Out from From Antenna
USRP RFIC
< —

Figure 19: Feedback Loop Diagram

The function that enables the feedback loop skardisabling the receiver filter output.
The pins normally used by the receiver to sendagniaiformation to the ADCs must be re-
tasked for the feedback loop. Information receibgdhe RFIC is not relevant at this point — the
transmitted waveform is. Next, the function enalilaseband feedback, with the TX | and Q
paths being fed back through the RX | and Q patfspectively. This allows the user to directly
analyze the transmitted waveform without havingw@p | and Q or do I-and-Q mixing. Next,
baseband feedback calibration is disabled. Thidenshorts the baseband feedback amplifier
input for the purpose of calibration, and is naticeble when feedback is output to the user. The
Cartesian baseband feedback forward path is enabietiis context, Cartesian refers to the I-
and-Q paths. The Cartesian feedback path is eshaBl€ offset correction is enabled. The gain
of the baseband amplifiers is set. Finally, th® z# the Cartesian feedback forward path is
enabled.

Another function is used to disable the feedbadp! This allows a user to return to
receiving normally, after using the transmitterdieack to do DC offset correction or pre-
distortion. The function enables the RX filter jputt, disables the baseband feedback, enables
baseband feedback calibration, disables the baddébamnesian feedback forward path, disables
the Cartesian feedback path, disables Cartesiabéek, disables DC offset correction, sets the
feedback gain to zero, and disables the zero oCtreesian feedback forward path.

The last function in the RFIC object is the RS8Ireceived signal-strength indicator
function. This is another function not availablghathe standard daughterboards. The RFIC has
on-channel clip and fade detectors and an off-chlatiip detector. The off-channel detector
operates similarly to the on-channel clip detea@cept that it has no corresponding fade
detector. Currently, the off-channel detectorasfanctional, so the RSSI function only uses the
on-channel clip and fade detectors. The signahfilee on-channel clip detector is a pulse-width
modulated signal — it is zero volts when the aragkt of the received signal is below a certain
threshold and 2.5 volts when the received signabmve a certain threshold. The on-channel
fade detector returns zero volts when the amplitfdbe received signal is above a certain
threshold and 2.5 volts when the amplitude of #eeived signal is below a certain threshold.
Figure 20, below, shows typical operation of thp ahd fade detectors.
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Figure 20: RSSI Graph

The clip and fade signals are output to two test.pIn the current revision of the RFIC
daughterboard, these test pins may be connectectlglito the two ADCs on the receive side of
the USRP. Since the signals are pulse-width abed, using the signals directly would
require constantly sampling them. This informatrauld have to be sent to GNU Radio over
the USB 2.0 connection, further taxing the avadatrdta rate of the connection. A future
revision of the RFIC daughterboard is planned, Wwhvdl have a low-pass filter between the test
pins and the ADCs. This will convert the pulse-thichodulated signal to an amplitude-
modulated signal. A single sampling at the outguhe low-pass filter will give the user a value
directly related to how often the received sigsatlipping or fading at that time. A large value
from the clip pin will indicate that the signaldBpping often — and that the user should reduce
the gain. A large value from the fade pin willicate that the signal is fading often — and that
the user should increase the gain. This will iy wseful for automatic gain control and to
optimally use the full dynamic range of the higlesg ADCs in the receiver.

The RSSI function in the RFIC object first turrf6tbe test-pin multiplexer. The test-pin
multiplexer allows the test pins to be used foresalvpurposes, but it must be disabled to use the
test pins for clip-and-fade detection. Next, thechannel clip and fade detectors are turned on.
The off-channel clip detector, as mentioned abdwes not work and is turned off. The function
sets the clip and fade thresholds. Finally, itptile auxiliary ADCs connected to the test pins.
It returns these values to the user.

3.4.2 The Base Class

The RFIC base class is an abstract, base clas#l ®FIC daughterboards. Transmit and
receive subclasses are derived from this base. classnsists of four functions: an initialization
function; a deletion function; a function that metsi whether the board is quadrature; and a
function that returns the frequency range of therdo GNU Radio, when trying to perform a
function on a subdevice, tries to run the functiothis class first. If the function is not avéila
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in this class, it tries to run the function in theclass. Functions to set the transmitter and
receiver frequency, amplitude, and gain range, @notiners, are located in the subclasses for the
RFIC board, but may be located in the base classtfer daughterboard types. For instance, if a
transceiver daughterboard uses a single VCO fdr trahsmitting and receiving, and is therefore
half-duplex, it may have only a single frequencyfsaction, which would be placed in the base
class of the driver. The complete base class cadée found in Appendix A: The Driver Code,
under the headingl ass db_rfic_base(db_base. db_base):.

First, and most importantly, there is the iniZalion function. When GNU Radio
initializes an RFIC subdevice, this function is ajw run. The base class for all USRP
daughterboards is initialized first. This is pafrftGNU Radio, not part of this driver, and sets up
various standard functions. Some of these funstaye designed to be over-written by the
daughterboard drivers. Either the base classysabclass in the daughterboard driver can
over-write the functions. Functions related tcoaudtic transmit/receive switching, setting
center frequency, frequency range, setting gaiim, rggage, quadrature operation and antenna
selection are over-written by the RFIC daughterbahiver. These functions will be covered in
the Sections 3.4.3 The TX Subclass and 3.4.4 Th&&¢lass, below.

Next, the initialization function runs a functiom get or make an RFIC object. This
function is part of the driver, but exists outsadfeéhe RFIC object or any of the classes. If the
RFIC daughterboard, which GNU Radio is trying ttiahize, has not already been initialized or
has been deleted, the function creates a new RBjECto This initializes the RFIC object, as
described in the Section 3.4.1 The RFIC Objectyabdt associates the class being initialized
(and subclass about to be initialized) with the BR#WC object. If the RFIC daughterboard has
been initialized, and has not been deleted, thetium associates the class being initialized, and
subclass about to be initialized, with the existRigJC object. It does not need to, and should
not, initialize the RFIC object again.

The deletion function doesn’t really do anythinthe deletion function in the RFIC
object, as described above in Section 3.4.1 Th€RHject, turns off some power-consuming
features, as do the deletion functions in the TX BRIX subclasses, which will be discussed in
the Sections 3.4.3 The TX Subclass and 3.4.4 Th&&¢lass, below.

Another function simply returns “True” when GNU Radsks if the daughterboard is
guadrature. Both the TX and RX sections of the@Rid$e separate I-and-Q paths, so both the
transmitter and receiver benefit from quadratureraion with respect to GNU Radio. On the
transmit side, | and Q samples from the USRP angerted to | and Q signals in the DAC. The
I and Q signals are filtered, amplified and up-cened to RF by the RFIC. The signals are
combined and amplified again before being sertiécantenna port on the daughterboard.
Similarly, on the receive side, the RFIC receivefR#& signal from the antenna port. The RF
signal is mixed down to baseband with a quadratuxer, resulting in | and Q baseband signals.
These signals are amplified and filtered by the@QR&hd sent to the USRP, where the ADC turns
them into digital samples. This function tells GIRddio that the board operates this way.

The last function in the RFIC base class returaedrduency range of the
daughterboard. It also returns the frequency sitegn The minimum frequency returned by this
function is 100 MHz. The maximum is 2.5 GHz. Véhihe receiver can receive signals above
2.5 GHz, the transmitter power level is unacceptéd above 2.5 GHz. This function needs to
account for that limit. It returns a frequencypssize of 1 kHz, which is higher than the step size
of the RFIC, but low enough to be useful for nearhy real radio implementation. This function
is rarely used by GNU Radio. Most programs simphto set the daughterboard frequency to a
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desired value, without checking whether the vadui@ ithe daughterboard’s theoretical operating
range. This is partly because most daughterb@aedable to operate outside their theoretical
range. The values returned by this function semgees as guidelines than as rules.

3.4.3 The TX Subclass

The TX subclass is used when GNU Radio is trangmgitnformation using the RFIC
daughterboard. It is a subclass of the base @dasiescribed in Section 3.4.2 The Base Class,
above. It consists of: an initialization functiangdeletion function; an antenna-selection
function; a gain range function; a gain settingchion; a frequency setting function; a phase-
offset setting function; a bandwidth setting fuontiand a function to invert the RF spectrum.
Most of these functions call functions in, or useiables found in, the RFIC object, as described
above in Section 3.4.1 The RFIC Object. They adrtansmission-related functions on the
RFIC daughterboard. The complete TX subclass cadée found in Appendix A: The Driver
Code, under the headieg ass db_rfic_tx(db_rfic_base):.

When GNU Radio initializes a transmitter subdevitaitializes the TX subclass using
an initialization function. If GNU Radio deletdsetsubdevice, the subclass is deleted but the
base class is not. The base class may be in usd&bysubdevice and should only be deleted if
the entire daughterboard is being deleted. Thiliziation function sets up the daughterboard,
and specifically the RFIC, to transmit signals.isTinvolves setting many variables and their
associated registers on the RFIC along with orteefow-speed auxiliary DACs. The TX
subclass initializer first initializes the basessaas described in Section 3.4.2 The Base Class,
above. This sets up the RFIC object, as desciib8ection 3.4.1 The RFIC Object, above, if it
has not already been set up. It retrieves anrinstaf the RFIC object if it has already been set
up. The base class also sets up two functions aymamthe receiver and transmitter subclasses.

Next, the initialization function sets up the RFI€irst, it gets the direct digital
frequency synthesizer out of reset mode, so tleantbe used. Second, it turns on the forward
baseband reference section of the transmitters Jéution filters, level-shifts, attenuates and
buffers the signals from the high-speed DACs onUB&P. A simplified diagram of this
section can be seen in Figure 21, below. Theditteshifted, buffered signals can be fed to the
forward RF section of the transmitter, a simplifgidgram of which can be seen below in Figure
22. Third, it disconnects the Cartesian error @ifgom the baseband correction feedback loop
and routes the feedback signal through the baseatmanrection feedback loop. This allows
feedback through the Cartesian loop. Fourth,abéss the baseband correction feedback path.
Fifth, it enables the forward RF transmit path.isTiath includes the mixer and stepped
attenuator along with the drivers to output thedrfhal, biased by the RF bias reference and the
AOC bias, which provides continuous power conti®ixth, the Cartesian feedback path is
switched to send feedback data to the error gaoaralock, which allows the feedback loop to
operate. Seventh, a zero in the Cartesian feedbapkrequency response is enabled. This
helps with second-order stability.
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Eighth, the transmit output path is selected. Bfadlt, and when the transmit subdevice
is initialized, the transmit path used is TX1. idgtam above, Figure 12, shows the three TX
output paths. Ninth, the continuous gain for otughannel TX1 is set to the maximum. While
all three transmit paths have 45 dB of stepped gaitrol (in 5 dB steps), transmit path TX1 has
an additional 35 dB of continuous gain control.isIgmin is controlled through a voltage bias on
one of the pins on the RFIC chip. To harnesseakisa gain control, one of the auxiliary DACs,
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AUX_DAC_D, is connected to that pin. Maximum g&rachieved at 2.2 volts, so the value
sent to the DAC, upon initialization, is 2750, whii@sults in an output of 2.2 volts. | decided
not to take advantage of the extra 35 dB of gamtrobin this driver because it was exclusive to
this output. A user who requires the extra gaimid can adjust the value of the DAC manually
without too much trouble. It would have been cairig to advertise 70 dB of gain control when
only 45 dB of control is available when using twidlee three output paths.

Tenth, and finally, the initialization function saip several variables related to the direct
digital frequency synthesizer on the RFIC. It ustasdard values recommended by Motorola
[18][19]. These values work with any of the frequenayltipliers through the entire 200 MHz
to 1 GHz frequency range of the synthesizer. Tdeyot need to be adjusted. It enables the
clock driver, connecting the clock to the digitadduency synthesizer block. It enables two sets
of voltage regulators, which supply power to bathlag and quadrature generator functions. It
takes the windowing function out of reset modegwihg the direct digital synthesizer to output
a signal. Next, it disables the fine line for tugpithe output of the synthesizer, in favor of the
coarse taps. It disables the output of calibragignals off-chip. It allows the frequency
reference, multiplied to 1 GHz, to be sent to thatlsesizer. Finally, it enables control of the
delay line via the DLL loop filter, which is the moal operating state.

The deletion function turns off the transmitterputtentirely, selecting none of the
output paths. It turns off the forward RF transpath and the forward baseband reference
section. It disconnects the Cartesian error aadifack signals from the baseband correction
feedback loop. Next, it switches the Cartesiadlieek path to not send feedback data to the
error generation block, disabling the feedback lodpe zero in the Cartesian feedback path is
disabled. The baseband feedback section is tufiedhll of the functions and variables related
to the frequency synthesizer are turned off. Bmé#he digital synthesizer block is put into a
reset state. All of these measures save power thigetnansmitter is not in use.

The next function in the TX subclass chooses apuiytath. Three output paths are
available on the RFIC: TX1, TX2 and TX3. Eachlude is connected to an antenna port on the
RFIC daughterboard. The paths have different Rffaatteristics: TX1 has 80 dB of gain
control, medium linearity and better low-frequem&rformance; TX2 has 45 dB of gain control,
high linearity and good low-frequency performaraeg TX3 has 45 dB of gain control, low
linearity and better high-frequency performancée Tser can select any of these transmit paths
at will, in order to satisfy varying performanceueements.

Another function returns the gain range of thegnaitter. It also returns the increment.
As described above, the gain range for all thrépuds is 45 dB (the lowest gain being 0 dB and
the highest gain being 45 dB), while the gain igisi@ble in increments of 5 dB. The four
functions to set gain, frequency, phase-offsettartiwidth of the transmitter are very similar.
Each of them calls the corresponding function enR#IC object, which are described in the
Section 3.4.1 The RFIC Object, above. The gaitingetunction takes an input in the form of
the desired gain, in dB. The frequency settingfiom takes an input in the form of the desired
operating frequency, in Hz. The phase-offsetrsgfiinction takes an input in the form of the
desired phase offset, in degrees. The bandwidiingéunction takes an input in the form of the
desired bandwidth, in Hz. These functions alloestiser to specify basic operating parameters
of the transmitter. The last function in the TXbslass tells GNU Radio to invert the RF
spectrum. This can easily be done by swappingd éinel Q samples or by negating | or Q — by
using +l and —Q or —I and +Q.
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3.4.4 The RX Subclass

Similar to the TX subclass, described in the $&c8.4.3 The TX Subclass, above, the
RX subclass is initialized by GNU Radio when cnegta receiver flow graph. Itis also a
subclass of the base class, described in Secdoh Bhe Base Class, above. It consists of
functions to: initialize the receiver subdeviceletle the receiver subdevice; set the receiver path;
return the gain range of the receiver; set the ghthe receiver; set the frequency of the
receiver; set the phase offset of the receivertheebandwidth of the receiver; enable the
feedback loop; disable the feedback loop; retuengtiin range of the feedback loop; set the gain
of the feedback loop; set the frequency of thelieell loop; set the phase offset of the feedback
loop; set the bandwidth of the feedback loop; atdrn received signal-strength indicators.
Most of these functions, like the TX subclass fiore, call functions in the RFIC object, as
described in Section 3.4.1 The RFIC Object, abdMeey are used to set the various operating
parameters of a receiver using the RFIC daughtedboBhe complete RX subclass code can be
found in Appendix A: The Driver Code, under thediegcl ass
db_rfic_rx(db_rfic_base):.

When GNU Radio creates a receiver flow graphyibmatically initializes the RX
subclass of the attached daughterboard. Thelinétien function first initializes the base class.
This also retrieves an existing implementationhef RFIC object, as described in Section 3.4.1
The RFIC Object, above, if one exists. If theraasexisting RFIC object, one is created by the
base class. This ensures that the board is readyandard operation. Initializing the RFIC
object sets the registers on the RFIC to standafi@utt values, sets up variables, sets up USRP
operations and automatic transmit/receive switchamgong other things.

Second, the initialization function takes the t#ibfrequency synthesizer out of its reset
state. Third, it sets the receive path. By defdhis driver sets the receive path to be RX1,
which has the lowest noise floor. It sets the biasent for the LNA. In order to allow the
mixer to operate, it connects the LO to the recemwixer. It enables the baseband receiver
filters. It enables the baseband filter choppeck| and then enables the choppers on all five
receive-path mixers. The choppers improve theflfequency response of the baseband signal,
output to the user. It sets the chopper dividelglavhich sets the LO frequency in the chopper.
The chopper operation is described in the SectibiBe RFIC, above.

Next, the initialization function enables the outptithe receiver filter. Without this, the
user will see no signal regardless of any otheimgmst.  The initialization function sets the
BiQuad Q and the BiQuad and VGA resistor valuestaed®MA feedback resistor. These are
set to default values. It disables compensatiarirobin the BiQuad and VGA filters, which
allows higher bandwidths in the filters. A diagrafithe receiver, including these filters, can be
seen above in Figure 10. Next, it enables the B#Ghe DC offset-correction circuitry and the
DCOC comparator. The function enables RC tunimgtfe baseband filters and enables the
ramp circuit for RC tuning. It selects the dividatio for the DCOC and RC tuning clock. Next,
it enables DC offset correction. Finally, it seéveral variables related to the direct digital
synthesizer. These variables and values are the aa those described in the initialization
function of the TX subdevice, described in the B&cB.4.3 The TX Subclass, above. The only
difference is that the variables and values arengbe RX synthesizer, rather than in the TX
synthesizer.

The deletion function disables everything enabtethe initialization function above.
First, it turns off all five receive signal pathSecond, it disables the LO connection to the
receiver mixer. Third, it disables the receivesdizand filters. Fourth, it disables the clock to
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the choppers. Fifth, it disables the output ofréweiver baseband filters along with the RSSI
indicators. Sixth, it disables the DC offset cotien DAC and the DC offset correction
comparator. Seventh, it disables the RC tuningudiand the ramp circuit in the RC tuning
circuit. Eighth, it disables the DC offset corient Ninth, it disables all of the direct digital
synthesizer-related blocks. These are describ#teidescription of the initialization function
above. Finally, the deletion function puts theedirdigital synthesizer into a reset state. Tugnin
off these blocks and devices saves power wherettever is not in use.

The RX subclass has a function to select an ingtlt, @s the TX subclass has a function
to select an output path. The RFIC has five imgaths: LNAL, LNA2, LNA3, LNA4 and MIX5.
Each of the input paths has different charactessand may be selected by the user at any time
to best meet the current receiver requirementsALtirough LNA4 each has a different LNA
and mixer, while MIX5 has a unique mixer but no LNAhe mixers in LNA2 and LNA4 use
chopping mixers. Chopping is described in theiSe@.5 The RFIC, above, and improves low-
frequency response of the mixer. It improves sdamder harmonic, flicker noise and the DC
offset. The mixers in LNA1, LNA3 and MIX5 are passmixers — they do not have choppers.
MIX5, with no LNA of its own, is designed to opegatith an external LNA.

Another function in the RX subclass returns thengange of the receiver and the step
size. The receive path in the RFIC has 38 dB of,galjustable in 1 dB increments. Therefore,
this function returns 0, 38 and 1 (the minimum gamaximum gain and increment). This
function lets GNU Radio and the user know how mgaim is available on the receive side of
the RFIC daughterboard. Other daughterboard drirave similar functions returning the
appropriate available gain range.

Several functions in the RX subclass call, and pasables to, functions in the RFIC
object, as described in Section 3.4.1 The RFIC @pgbove. These are: set gain; set phase; set
bandwidth; enable feedback; disable feedback;esslifack gain; set feedback frequency; set
feedback phase; set feedback bandwidth; and gettiRfé8nation. These functions and their
operations are described in Section 3.4.1 The RMfect. The set gain function sets the
receive path gain, from 0 to 38 dB, in incremerits dB. The set phase function sets the
receive path phase offset, from 0 to 360 degré&ée set bandwidth function sets the bandwidth
of the receive path, from 3.5 kHz to 14.4 MHz. 3&ealues represent the baseband bandwidth,
set in the baseband filters in the receive path.

Feedback is available in the RX subclass. Bectgsiback data takes the place of
received radio data, when the RFIC daughterboardfeedback mode, the USRP acts as a data
source, in GNU Radio terms. This means that tlire figquency, phase offset, and bandwidth
of the feedback loop should be set in a receimv fjraph. Hence, the feedback functions are in
the RX subclass. Feedback is not available incdingr standard daughterboard — it is a feature
unique to the RFIC daughterboard. The enablebliisaet gain, set frequency, set phase offset,
and set bandwidth functions simply call and passbées to the functions in the RFIC object, as
described in Section 3.4.1 The RFIC Object, abdMee gain range function returns 0, 40, and 5.
This corresponds to a minimum gain of 0 dB, a maximgain of 40 dB, and an increment of 5
dB. The feedback loop in the RFIC has 40 dB ohgange, in increments of 5 dB. This
function tells GNU Radio, and the user, what gailugs are available for the feedback loop.

The last function in the RX subclass is the RS6teoeived signal-strength indicator,
function. This is another function not availablghithe standard USRP daughterboards. Calling
the RSSI function in the RFIC object, as descrilpeSection 3.4.1 The RFIC Object, above, this
function returns to the user values proportiondidw often the signal is clipping (that is, high
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amplitude) and how often the signal is fading (isatow amplitude). These values are very
useful when adjusting receive path gain.

3.4.5 Auto-Instantiation

One last function in the driver is not in the RFEIfject, the base class or either the TX or
the RX subclasses. It hooks the daughterboardasgss into GNU Radio’s automatic
instantiation framework. The classes are addé¢deaaughterboard instantiator, and associated
with the unique daughterboard ID assigned to them.

3.5 Tuning and Optimization

Each of the frequency synthesizers had to be gmohseparatelf27]. The three
synthesizers had to be optimized for three of the multipliers (1x, 2x and 4x) connected to
each synthesizer as well. This optimization pracedioes not work for the 1/2x multiplier.

The optimization was achieved by adjusting valudat® variables in various SPI registers. |
hooked up a signal generator to the RFIC daughéedaoput and used usrp_fft.f838] to view
the received spectrum in order to optimize theiuece To optimize the transmitter, | hooked up
the output of the RFIC daughterboard to a spectanatyzer, produced a tone with
usrp_siggen_rfic.py, and viewed the output spectrisrp_siggen_rfic.py, which may be seen
in Section Appendix C: usrp_siggen_rfic.py, isigldly modified version of usrp_siggen.py,
which is a signal generator program. It is modifie force GNU Radio to recognize the RFIC
daughterboard. In each case, | followed the ictitras in the Motorola document, RFIC4a
Evaluation Board Alignment Procedy&¥].

Eight variables are adjusted in the alignment @doce: Qg00degDelay, Qg90degDelay,
Qg180degDelay, Qg270degDelay, DischargeTapl6, €haml6, DischargeTapnnl6 and
ChargeTapnnl6. All three frequency synthesizeamigmitter, receiver and feedback loop) have
unique instances of these variables. Furtherntbesoptimal settings are different for the 1x, 2x
and 4x multipliers. The QgXXdegDelay variablestcohnthe quadrature phase offset in the
local oscillator. They control exactly where tlgiare-wave signals generated by the frequency
synthesizer shift from low voltage to high voltagéhe diagram below, Figure 23, shows the
guadrature signals from the frequency synthesiZéis alignment, using the QgXXdegDelay
variables, effectively controls the exact phasthefl and Q signals relative to one another. The
alignment does not work for the 1/2x multipliet.id important for the 0-degree, 90-degree, 180-
degree and 270-degree phases to be aligned progéithse mismatch between the | and Q
signals from the LO causes higher spurs, loweradignnoise ratio and more carrier leakage in
the transmitter and lower signal-to-noise ratio higher noise floor in the receiver and feedback
loop.
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Figure 23: Graph of Phase Delay

The DischargeTapl16XX and ChargeTapl6XX variabtfssa the delay-lock loop
(DLL) offset error in the quadrature frequency $wsizers. In each of the frequency
synthesizers, the DLL is part of the circuitry tkhantrols the selection of “rising” and “falling”
edges, where the signals go from low to high acd-viersa, which therefore determines the
synthesized frequency. The signal from the frequesynthesizer, after being sent through one
of the frequency multipliers, is the local oscilasignal, and is sent to the corresponding mixer.
Any error in the delay-lock loop will cause spunghe LO output signal. In the receiver, that
will raise the noise floor. In the transmitterathwill increase the amplitude of unintentional
spurs in the output. In both cases, it will lowss signal-to-noise ratio.

When optimizing the receiver, | attached one efglgnal generators to the RX1 input on
the RFIC daughterboard. |turned on the RF oubptite signal generator and used usrp_fft.py,
which is a spectrum analyzer program in GNU Ramioview the received signal. | adjusted the
QgXXdegDelay variables for the receiver frequengytisesizer and monitored the level of the
received signal. When the level of the receivgdai was highest above the noise floor, with
respect to all four QgXXdegDelay variables, | reftzaf the value of each variable. | repeated the
same process with the DischargeTap16XX and ChapfébéX variables. This process |
repeated for with the 1x frequency multiplier enghghe 2x frequency multiplier engaged, and
the 4x frequency multiplier engaged. The valuesded up with are the optimal values for
aligning the receiver frequency synthesizer, anseld them when setting the variables in the
receiver frequency-selection function, as describesiection 3.4.2 The Base Class, above.
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When optimizing the transmitter, | attached thelToGtput on the RFIC daughterboard
to a spectrum analyzer. | used usrp_siggen_rfieyych is a signal generator program
modified slightly from GNU Radio (to force recogoit of the RFIC daughterboard), to produce
an output from the RFIC daughterboard. Usrp_siggenpy may be seen in Appendix C:
usrp_siggen_rfic.py. While monitoring the spectrana the output signal on the spectrum
analyzer, | adjusted the QgXXdegDelay variableshewall four variables were such that the
output power was maximized and the spurs and hdosiomninimized, | recorded the value of
each variable. | repeated the same process véatBifthargeTapl6XX and ChargeTapl6XX
variables. Again, | recorded the values correspantb the optimal output spectrum with the 1x
multiplier engaged, the 2x multiplier engaged amel4x multiplier engaged. These values |
used in the driver when setting the frequency efttansmitter, as described in Section 3.4.2 The
Base Class, above.
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4. Testing and Results

| thoroughly tested the RF characteristics of ibhthtransmitter and receiver of the RFIC
daughterboard as well as the RFX-series daughtatbodlost of the tests used a spectrum
analyzer and/or a signal generator or two, in otd@mnalyze the performance of the transmitter
and receiver. | also compared the results fronRIREC daughterboard to the results from the
RFX-series daughterboards. These direct compariaglbow quantitative determinations of the
advantages and disadvantages of the RFIC boarthasd of the RFX-series boards. The
testing procedures and complete, tabulated resatde seen below in Appendix B: RF Testing
Procedure and Complete Results

| performed most of the tests at 400 MHz, 900 MEBQO MHz and 2400 GHz. These
values were chosen for the sake of convenienceMHfalls in the frequency range of the
RFX400 as well as the frequency range of the RAWensing the x1/2 frequency multiplier
with the direct digital synthesizer; 900 MHz falltsthe frequency range of the RFX900 as well
as the frequency range of the RFIC while using<th&equency multiplier with the DDS; 1800
MHz falls in the frequency range of the RFX1800 #melfrequency range of the RFIC while
using the x2 frequency multiplier with the DDS; &2wh0 MHz falls in the frequency range of
the RFX2400 and the frequency range of the RFIGendsing the x4 frequency multiplier.
Some tests were only done at lower frequenciegaltree limitations of available testing
equipment. One was done at a higher frequencyerarging special equipment. Most of the
tests were done with all three working RX inputhsatnd both working TX output paths. RX4
is disabled in the version of the RFIC on whichd the testing. RX2 was not working, either. |
do not know why. The TX2 output path was not wogkeither. Performing each test on each
available RF signal path shows the difference betwbe performances of the paths. Allowing
a user to select any of the available signal pallbsvs a much wider range of operation, under a
much wider range of circumstances and with a mudemrange of requirements.

4.1 The Noise Floor

The noise floor is an important measurement ofjiredity of any receiver. Also known
as "minimum detectable signal,” the noise floothie lowest amplitude signal useable by the
receiver. A receiver with a lower noise floor alothe corresponding transmitter to operate at a
lower power, allows the corresponding transmitteoperate from farther away, or allows the
receiver to detect a fainter signal. A lower ndiser is always desirable.

In Appendix B: RF Testing Procedure and CompleteuRg, Section Test 1: Noise
Floor, is the test procedure | used to measuradise floor as well as tables containing the
complete test results. | used usrp_ffi{p§], a program that comes with GNU Radio by defaul
along with a signal generator to measure noise.flisrp_fft.py sets up a USRP and attached
daughterboard to the user’s specifications: cdnéguency, gain and decimation rate are the
most important specs. The program receives badedamples from the USRP, runs an FFT on
the samples, and graphs the result in real-tihes dssentially a spectrum analyzer program and
allows the user to see any received signal, cashedveut a specified center frequency, with a
bandwidth determined by the decimation rate, amigus specified gain, in dB, in the
daughterboard. An example of an FFT graph crdayadgsrp_fft.py can be seen in the figure
below, Figure 24 It is also easy to see the noise floor of theikas. In order to see the signal
of the lowest possible amplitude, | set the reaegaen to the maximum value for each
daughterboard | tested. Further, | used the maxirdecimation rate (causing the real-time
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spectrum graph to show the smallest possible fregquenge) in order to see the spectrum with
the highest possible resolution. Connecting tgeadigenerator to the daughterboard being
tested, | turned on the RF output and saw the kigrthe usrp_fft.py plot. A diagram of this
setup can be seen in the figure below, Figurel2Bduced the amplitude of the signal from the
signal generator until it disappeared into the edisor. The amplitude, in dBm, of the signal
where it disappeared is the noise floor value.
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Figure 24: Usrp_fft.py Output Window
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Figure 25: Noise Floor Test Setup

| ran this test at 400 MHz, 900 MHz, 1800 MHz ad®@ MHz on the RFIC
daughterboard using each of the three working vegeaths: RX1, RX3 and MIX5. RX1 had
the lowest noise floor by a significant margin. |éwer frequencies, the noise floor was better.
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At 400 and 900 MHz, the noise floor was -132 dB#t1.1800 MHz, it was -130 dBm and at
2400 MHz it was -116 dBm. | repeated the tes#08tMHz on the RFX400 daughterboard, at
900 MHz on the RFX900, at 1800 MHz on the RFX1800 at 2400 MHz on the RFX2400: the
RFX400 at 400 MHz recorded a noise floor of -135%jBhe RFX900 at 900 MHz recorded a
noise floor of -126 dBm; the RFX1800 at 1800 MHeawled a noise floor of -116 dBm; and the
RFX2400 at 2400 MHz recorded a noise floor of -@i88n. In the noise floor test, the RX1
input of the RFIC is comparable to — or better thahe RFX-series daughterboards. The other
inputs have significantly lower noise floors. Taessults are in Table 3: Noise Floor Test
Results, below.

I ran the test again on the RFIC at higher fregiesncNo RFX-series daughterboard is
able to cover the 3 GHz to 4 GHz frequency rangethe RFIC can. | had to use a different
signal generator — the one | used for the othés tamuld not reach 4 GHz. | only ran this test on
the RX1 input, because it has the lowest noise fléd 3 GHz, the RFIC daughterboard had a
noise floor of -109 dBm. At 3.5 GHz, the noiseoflavas -112 dBm. At 4 GHz, the noise floor
was -101 dBm. These low noise floor values sha tte RFIC daughterboard is definitely a
viable receiver from 3 to 4 GHz, but with a sometbaer noise floor. The results are in Table
3: Noise Floor Test Results, below.

Table 3: Noise Floor Test Results

Noise Floor (dBm)

Frequency (MHz) RFX-Series RFIC (Input RX1)
400 -135 -132

900 -126 -132

1800 -116 -130

2400 -105 -116

3000 N/A -109

3500 N/A -112

4000 N/A -101

4.2 The 1IP3

The second test | ran was a third-order intertegit This test indicates the linearity of a
receiver. In particular, it indicates the effeatshird-order harmonics on the received signal.
Third-order harmonics are particularly insidiousadio receivers — they occur when two signals
mix with one another, producing a third, spurioigmal — because the spurious signal frequently
falls within in the receiver pass band and canetoee interfere with the intended received
signal. Let’s say that there are two receivedagmixing together to produce a third-order
harmonic at frequencieg &nd §. The interfering signals would be at frequen€®sf; —f,)
and (2 *t—fy). If f; and § are close together, and within the received badthythen the
spurious signals may also be in the received baittiwiThese spurious signals increase in
amplitude three times as fast as the two origilggdads — meaning that they may be strong
interferers. The IIP3, or input-referenced thirder intercept point, is the amplitude at which
two equal-amplitude signals in the receiver withguce a spurious third-order harmonic signal
that, in the receiver, appears to have amplitudeleg that of the original signals. A higher
IIP3 point is always desirable — it indicates tthet third-order harmonics are weaker and will
cause less interference.
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In Appendix B: RF Testing Procedure and CompletsuRs, under Test 2: l1IP3, is the
test procedure | used to measure the 1IP3. Adaised usrp_fft.py28] as a spectrum analyzer.
Usrp_fft.py allows the user to view a graph of spectrum in real-time. This time, 1 used 0 dB
of gain in the receivers, to minimize the non-lingas. However, | used the maximum
decimation again, in order to see the spectrum thghhighest possible resolution. | used two
signal generators to create the tones, or equalitaichp input signals. | used a simple T-
connector to combine the signals from the two digeaerators (a diagram of this setup can be
seen in the figure below, Figure 26), which addsificant loss to both signals. For that reason,
| used a spectrum analyzer to verify the actuallange of each input signal. Another diagram,
showing the setup when testing the actual ampliaidiee signals into the daughterboards, can
be seen in the figure below, Figure 27. Thiswest performed with the two tones 20 kHz apart.
The third-order harmonic signals would appear 2@ kHove the higher tone and 20 kHz below
the lower tone in the usrp_fft.py plot. For ingtanif | were testing at 400 MHz, | set one signal
generator to 400.1 MHz and the other to 400.12 MHEze third-order product would show up at
400.08 MHz and at 400.14 MHz. | increased the @&og#s of the tones until the third harmonic
was clearly visible. | made sure the signal | s@sing was, in fact, the third harmonic. Then, |
checked the amplitude of the harmonic signal. Basethe input amplitudes and the amplitude
of the harmonic, | was able to calculate the 11P3.

Coax Cable

Signal Generator
USRP
T-Connector w/ * Host Computer
Daughterboard
F
| Coax Cable USB Cable
Signal Generator
Coax Cable

Figure 26: 1IP3 Test Setup
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Figure 27: 1IP3 Test Setup to Check Amplitude

| used this test on the RX1, RX3 and MIX5 inputhseaof the RFIC as well as on the
RFX400, RFX900, RFX1800 and RFX2400. I ran théstas400 MHz, 900 MHz, 1800 MHz
and 2400 MHz. The RX1 input on the RFIC daughtarbdad the highest 1IP3 values. At 400
MHz, the 1IP3 was -2.4 dBm; at 900 MHz, it was -dBm; at 1800 MHz, it was -2.7 dBm, and
at 2400, it was 1.3 dBm. With the RFX-series beatke results were similar: at 400 MHz, the
[IP3 of the RFX400 was 0.8 dBm; at 900 MHz, the3Iiif the RFX900 was 0.5 dBm; at 1800
MHz, the 1IP3 of the RFX1800 was -4.6 dBm; and4@@MHz, the IIP3 of the RFX2400 was
1.0 dBm. The RFIC daughterboard is comparablagdFX-series daughterboards in third-
order harmonic performance. The results can beise€able 4: 1IP3 Test Results, below.

Table 4: IIP3 Test Results

[IP3 (dBm)
Frequency (MHz) RFX-Series RFIC (Input RX1)
400 0.8 -2.4
900 0.5 -4.8
1800 -4.6 -2.7
2400 1.0 1.3
4.3 The lIP2

The 1IP2, or input-referenced second-order infgrpeint, is similar to the [IP3. It
displays the linearity of a receiver with resp@csécond-order harmonics. The second-order
harmonics occur either when two signals mix witle amother or when one signal mixes with
itself in the receiver. Either way, a spurioussilgs produced in the receiver. Assuming the
two signals are at frequencigsahd §, the spurious signal will be at frequency«ff,) or at
frequency (f — ) (the frequencies fand £ may be the same, if a signal is mixing with itself
These second-order harmonic signals can causespnebh two ways: if the frequencies of the
two signals add, then the two signals may be oth®feceived band, but the harmonic may be
within the received band; if the frequencies oftilie signals subtract, then the two signals may
be in-band and the harmonic may be in the IF baaeband. Also, the second-order harmonic
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signals rise in amplitude twice as fast as theadggthat produce them. In particular, if a signal
is mixing with itself, its own frequency may be swaoted from its own frequency, resulting in a
spurious signal at DC. This is a significant pesblfor direct-conversion receivers, such as the
Motorola RFIC. The IIP2 is the point at which #purious, second-order harmonic signal
appears to be equal in amplitude to the receivgtbsor signals that produce it. A higher 11P2
point indicates that the second-order harmonicsoaver in amplitude, and less likely to cause
interference, and is always desirable.

| used a two-tone test to determine the 1IP2. giteeedure and full results can be seen in
Appendix B: RF Testing Procedure and Complete Reslést 3: 1IP2. Again, | used two signal
generators connected together and to the receitlei@ir-connector. The test was set up
identically to that in the 1IP3 test, as shownha figure above, Figure 26. This produces losses
in the signals from the signal generators, so tlesspectrum analyzer to verify the amplitudes
of the signals. This is identical to the amplitwaeification setup used in the 1IP3 test, as shown
in the figure above, Figure 27. | used usrp_ff{28] to view the spectrum at the frequency in
guestion and to find the second-order harmonibéréceived signal. | set the signal generator
tones 1 MHz apart, and to roughly half of the freey in question — e.g. if | were testing at 400
MHz, | set one signal generator to 199.55 MHz dmddther to 200.55 MHz. The two signals
mix together to produce a single second-order harret 400.1 MHz. | increased the
amplitudes of the signal generators until the sdamder harmonic was clearly visible on the
usrp_fft.py plot. Then, | verified that the signavas seeing was, in fact, the second-order
harmonic. | recorded the actual received ampldguxfehe two tones and the apparent amplitude
of the second-order harmonic signal. From thegltulated the 11P2 values.

Again, | ran this test on the RX1, RX3 and MIX®in paths of the RFIC and on the
RFX400, RFX900, RFX1800 and RFX2400. In this cise,RX3 receive path had by far the
highest IIP2 values of the three RFIC daughterbogydt paths. This shows that the various
input paths can, and should, be used to meet @iffeequirements. At 400 MHz, 900 MHz,
1800 MHz and 2400 MHz, respectively, the RX3 reegiath had 11P2 values of 60.9 dBm, 47.2
dBm, 45.6 dBm, and 29.4 dBm. These values werérhigher than those of the other two
input paths. The RFX-series daughterboards peddras follows: at 400 MHz, the 1IP2 of the
RFX400 was 8.6 dBm; at 900 MHz, the 1IP2 of the RBB was 57.8 dBm; at 1800 MHz, the
[IP2 of the RFX1800 was 16.8 dBm; and at 2400 MHe,|IP2 of the RFX2400 was 62.0 dBm.
At 400 MHz and 1800 MHz, the RFIC daughterboard$nach higher 11P2 values. At 900
MHz and 2400 MHz, the RFX boards had much highe2 Nalues. This is because the RFX900
and RFX2400 have narrow-band RF filters. The RFEXB8&s a filter around 902-928 MHz and
the RFX2400 has a filter around 2400-2483 MHz. sSEhare unlicensed bands. Ettus Research
puts filters on the RFX900 and RFX2400 to prevlett from causing harmful interference
outside of those unlicensed bands. The filters eftectively block the half-frequency tones in
the two-tone test | ran. The RFX400, RFX1800 havg low-pass filters, so the tones were not
blocked. The RFIC daughterboards | used had terdiinstalled whatsoever. Standard sized
filters can be installed on the RFIC daughterbotiraigh, so in [IP2 performance, the RFIC
board can achieve comparable, or better, performaompared to the RFX-series boards. The
results can be seen in Table 5: 1IP2 Test Rehétew.
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Table 5: IIP2 Test Results

[IP2 (dBm)
Frequency (MHz) RFX-Series RFIC (Input RX3)
400 8.6 60.9
900 57.8 47.2
1800 16.8 45.6
2400 62.0 29.4

4.4 Transmitter Power

Maximum transmit power is an important measurthefquality of a transmitter. A more
powerful transmitter can transmit signals over kmdistances or to receivers with higher noise
floors. Except in portable devices with limitedteay life, a higher maximum transmit power is
always desirable.

The full test procedure | used and results | got loe seen in Appendix B: RF Testing
Procedure and Complete Results, Test 4: Transndtigout Power. | measured transmit power
using usrp_siggen.d®9] and usrp_siggen_rfic.py, which | wrote fortteg purposes. They are
identical except that usrp_siggen_rfic.py forceslGRadio to see an RFIC daughterboard on
both side A and B of the attached USRP. This vezessary because the prototype
daughterboard | tested did not have an EEPROMahighe transmit side. Usrp_siggen_rfic.py
may be seen in Appendix C: usrp_siggen_rfic.pyd&sussed in Section 2.3 The
Daughterboards, above, GNU Radio uses separate @HRRRips to recognize transmit and
receive subdevices. Because the board | was hsthgqqgo EEPROM chip on the transmit side,
GNU Radio was unable to automatically recognizesian RFIC daughterboard and | had to
force GNU Radio to use the RFIC driver. Usrp_siggeg is a signal generator program. It
produces a waveform, chosen from a list, with aifieel frequency and amplitude and mixed up
to a specified RF frequency. By default, for imst, it produces a complex sinusoid with a
frequency of 100 kHz. If this signal is mixed @p400 MHz, the result will be a complex
sinusoid at 400.1 MHz. Also by default, it has &itade of 16000, which is near the maximum
amplitude. The maximum amplitude corresponds ednighest level signal that the DACs can
produce, and therefore the highest amplitude sitp@aUSRP can send to a daughterboard. |
used the default amplitude of 16000 rather tharattslute maximum of 16384 because some
transmitter daughterboards can be damaged by thenma signal from the USRP. The
transmitters on each daughterboard were set tormamigain. | hooked the transmitter up to a
spectrum analyzer to determine the amplitude ofrdresmitted signal. A diagram of the setup
can be seen in the figure below, Figure 28.

52



USRP
w/
Daughterboard

b J
L J

Host Computer Spectrum Analyzer

USB Cable Coax Cable

Figure 28: Transmit Test Power Setup

| tested the two working output paths of the RBEHTighterboard, TX1 and TX2, along
with the RFX400, RFX900, RFX1800 and RFX2400. @& RFIC daughterboard, TX2 had
slightly higher maximum output power. At 400 MHie RFIC put out a maximum of 7.9 dBm
while the RFX400 put out 22.6 dBm; at 900 MHz, RIEIC put out 3.2 dBm while the RFX900
put out 22.0 dBm; at 1800 MHz, the RFIC put ou0-8Bm while the RFX1800 put out 20.8
dBm; and at 2400 MHz, the RFIC put out -15.0 dBnilevthe RFX2400 put out 12.3 dBm.
Clearly, in every case, the RFX-series boards cputdut significantly more power than the
RFIC daughterboard. There is an external powelifierpn the RFIC daughterboard, which |
did not use in this test. It should be able toquitclose to 20 dBm from 100 MHz to 2.4 GHz.
Using that power amp, the power gap between th€ RRH the RFX-series boards should be
narrowed or erased. The test results can be sekabie 6: Transmitter Power Test Results,
below.

Table 6: Transmitter Power Test Results

Transmit Power (dBm)
Frequency (MHz) RFX-Series RFIC (Output TX2)
400 22.6 7.9
900 22.0 3.2
1800 20.8 -3.0
2400 12.3 -15.0

4.5. Local Oscillator Suppression

Local oscillator (LO) suppression is another imipot measure of the quality of a
transmitter. Every mixer leaks some energy froeltital oscillator into the transmitted RF
signal. The LO may interfere with other radio @&, if it is far away from the transmitted
signal, or it may interfere with the transmittedral itself. The latter is especially true with
direct-conversion transmitters, like the RFIC, hesmathe LO signal is at the same frequency as
the intended transmitted signal. LO suppressidhadifference, in dB, between the amplitude
of the intended transmitted signal and the ampditoidthe LO signal. Higher LO suppression is
always desirable.
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The full test procedure | used can be seen in AppeB: RF Testing Procedure and
Complete Results, Test 5: Transmitter LO Suppresshiygain, | used usrp_siggen.[#8] with
the RFX-series daughterboards and usrp_siggempyfwith the RFIC daughterboard. The only
difference between the two programs is that thed&rces GNU Radio to use the RFIC
daughterboard driver, as GNU Radio was unable tonaatically recognize the prototype board
I was using. Usrp_siggen_rfic.py may be seen ipeulix C: usrp_siggen_rfic.py.
Usrp_siggen.py and usrp_siggen_rfic.py produceipédypes of signals of a specified power
at a specified frequency. Again, | had the prograneate a complex sinusoid of power 16000,
close to the maximum transmit power. The trangmston the daughterboards were set to
maximum gain. This time, | set the frequency & tomplex sinusoid to 200 kHz. This would
separate the transmitted sinusoid signal from tRECR.O sufficiently to measure the amplitude
of each individually. For instance, when testihg@0 MHz, the RFIC LO signal would be at
400 MHz and the complex sinusoid would be at 400k%. The RFX-series boards use a low-
IF, several megahertz away from the transmittedadigFor instance, when testing at 400 MHz,
the RFX400 LO would be at 404 MHz and the complaexsoid would be at 400.2 MHz. This
means that the LO in the RFX-series daughterbazadses less interference with the transmitted
signal. | hooked up the transmitter being testea $pectrum analyzer. This setup is identical to
that in the transmit power test, as seen in thad@@bove, Figure 28. With the spectrum
analyzer, | could measure the amplitude of the dexpinusoid and the amplitude of the LO,
both in dB. The difference between the two isliesuppression. A positive-value LO
suppression indicates that the amplitude of theptexnsinusoid is higher than the amplitude of
the LO, which should always be the case.

| tested the RFIC output paths TX1 and TX2 as aglthe RFX-series daughterboards at
400 MHz, 900 MHz, 1800 MHz and 2400 MHz. The TXdrtpon the RFIC had higher LO
suppression than the TX2 port. The RFX-series kengoards had higher LO suppression than
the TX1 port of the RFIC: at 400 MHz, the RFX40@ 4..8 dB of LO suppression and the
RFIC had 34.1 dB; at 900 MHz, the RFX900 had 5@&3tILO suppression and the RFIC had
27.0 dB; at 1800 MHz, the RFX1800 had 43.2 dB ofdu@pression and the RFIC had 27.9; at
2400 MHz, the RFX2400 had 36.1 dB of LO suppresaimh the RFIC had 24.9. In every
instance, the RFX-series daughterboards had hetesuppression than the RFIC
daughterboard. Furthermore, because the RFX-deflegsas further removed from the
transmitted signal, the LO would cause less interfee with the transmitted signal. In LO
suppression, the RFX-series daughterboards ardgisagnly better than the RFIC
daughterboard. The results can be seen in Tall® Buppression Test Results, below.

Table 7: LO Suppression Test Results

LO Suppression (dBc)
Frequency (MHz) RFX-Series RFIC (Output TX1)
400 41.8 34.1
900 50.3 27.0
1800 43.2 27.9
2400 36.1 24.9
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4.6. 2"-Harmonic Suppression

2"harmonic suppression also measures the qual@yt@ismitter. Rather than
measuring leakage, though, it measures linea8gcond-order harmonics can stem from the
transmitted signal mixing with itself, or the tramgted signal mixing with the local oscillator on
the other side (e.g. high-side versus low-sidethdflF signal is at 4 MHz and the RF
transmitted signal is at 400 MHz, the LO may béGt MHz, but there would also be an
unintended harmonic signal at 408 MHz). Thesers@@rder harmonic signals can be out-of-
band — and possibly cause interference with otldiprusers — or they can be in-band and cause
interference with the intended transmitted sigr2df-harmonic suppression measures the
difference, in dB, between the amplitude of themated transmitted signal and the amplitude of
the second harmonic signal. High&f-Barmonic suppression is always desirable.

In Appendix B: RF Testing Procedure and CompletsuRs, under Test 6: Transmitter
2nd-Order Harmonic Suppression is the full tespracedure | used as well as tables containing
the full results. | used usrp_siggen[@9] with the RFX-series boards and usrp_siggeo.nyi
with the RFIC board. Usrp_siggen_rfic.py may bensim Appendix C: usrp_siggen_rfic.py. |
used those programs to produce a high-amplitudelsonsinusoid of frequency 200 kHz, then
mix that up to RF, for example to 400 MHz, resgtin a signal at 400.2 MHz. | measured the
amplitude of the original signal, with a spectrunalgzer, in a setup identical to that in the
figure above, Figure 28, then found the second baitraround twice the RF frequency and
measured the amplitude of that signal. The diffeeebetween the two amplitudes, in dB, is the
2"harmonic suppression. | measured tfifsharmonic signal because it was easy to distinguish
from other harmonics or distortions. PositiV&Rarmonic suppression indicates that the
intended signal has higher amplitude than tfeoeder harmonic. A higher"2harmonic
suppression value is always desirable.

Due to equipment limitations, | only tested the glaterboards at 400 MHz and 900
MHz. The second harmonics were, therefore, ar@@@dand 1800 MHz, respectively. While |
tested the RFIC with both the TX1 and TX2 outpuhpathe TX1 output path demonstrated
higher 2%harmonic suppression. | also tested the RFX4@0RFX900. At 400 MHz, the TX1
path of the RFIC demonstrated 22.8 dB ftzarmonic suppression and the RFX400
demonstrated 34.7 dB of suppression. At 900 Mkkz,TtX1 path of the RFIC demonstrated
23.2 dB of 2%-harmonic suppression and the RFX900 demonstr&idB of suppression.

This is another area where the RFX-series daugtaeds are significantly better than the RFIC
daughterboard. The results can be seen in Tal@iedBHarmonic Suppression Test Results,
below.

Table 8: 2%Harmonic Suppression Test Results

2"“Harmonic Suppression (dBc)
Frequency (MHz) RFX-Series RFIC (Output TX1)
400 34.7 22.8
900 38.8 23.2

4.7. 3"-Harmonic Suppression

Like 2"%harmonic suppression'®sharmonic suppression measures the quality of a
transmitter with respect to linearity. Also likeet?“order harmonic, the'8order harmonic
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may have several sources. Any frequency at a gmatibn of the local oscillator frequency,
intended RF signal frequency and original baselwairifi signal frequency, with three elements,
will have a &-order harmonic. For example, if the LO is &, the IF signal is ajf and the RF
signal is at &, there may be'3order harmonic signals at frequencies: (23) & fre; (2 * fre) —
fLo; 3 * frg Or many more. Some of these harmonics may demiibe desired transmitted
spectrum, and may cause interference with the detgtransmitted signal. Others may be out of
the desired transmitted spectrum and may causddreace with other radio users. The
difference in amplitude, in dB, between the destradsmitted signal and th&®rder harmonic
signal is the %-harmonic suppression. PositivV&-Barmonic suppression indicates that the
intended signal has higher amplitude than tA@&ler harmonic. A higher®order harmonic
suppression value is always desirable.

The complete testing procedure and results caeée in Appendix B: RF Testing
Procedure and Complete Results, Test 7: TransmitteOrder Harmonic Suppression. |
measured the amplitudes of the intended signalefisis the amplitudes of the harmonics with
a spectrum analyzer. This setup is identical &b it the transmit power test, as seen in the
figure above, Figure 28. | produced the signathwsrp_siggen.pj29] when testing the RFX-
series daughterboards and with usrp_siggen_rfighmn testing the RFIC daughterboard.
Usrp_siggen_rfic.py may be seen in Appendix C: usiggen_rfic.py. These programs allowed
me to create a complex sinusoid, with frequenc30df kHz, and mix it up to RF in the
daughterboard. The amplitude of the sinusoid W@sedo the maximum and the transmitter
gain in the daughterboard was set to maximum.

Again, due to limitations in the available equipmjé only tested the daughterboards at
400 MHz and 900 MHz. | looked for the third harrmesnaround 1200 and 2700 MHz,
respectively. | looked for these harmonics inipatar because they were easy to distinguish
from other harmonics or other possible sourcestefierence. Again, | tested the TX1 and TX2
transmit paths on the RFIC. This time, the TXzhpttowed higher3order harmonic
suppression. | tested these against the RFX40R&X®00 daughterboards. At 400 MHz, the
RFX400 demonstrated &aarmonic suppression of 48.4 dB and the RFIC dytpth TX2
demonstrated 19.0 dB. At 900 MHz, the RFX900 destrated 41.7 dB of'3harmonic
suppression and the TX2 path of the RFIC demorestr26.7 dB. Again, the RFX-series
daughterboards are significantly better than thECRfaughterboard in harmonic suppression.
The results can be seen in Table 9: 3rd-Harmonppf&ssion, below.

Table 9: ¥-Harmonic Suppression

3% Harmonic Suppression (dBc)
Frequency (MHz) RFX-Series RFIC (Output TX2)
400 48.4 19.0
900 41.7 26.7
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5. Further Work and Conclusions

5.1 Further Work

A great deal is left to do. The performance ndedse improved, either through software
or hardware tweaks. Several tests still need twbe The driver itself needs to be translated.
This process will continue until the daughterbdaaddware has been finalized, and possibly
further if GNU Radio changes the daughterboardedrigrmat.

The LO suppression"2harmonic suppression, and-Barmonic suppression in the
transmitter of the RFIC daughterboard are not lkeigbugh. The RFX-series daughterboards
clearly out-perform the RFIC daughterboard in &allhese areas. They will, therefore, have
better transmitter performance until these areasddressed. The transmit power deficit, on the
other hand, can be solved with the addition of paameplifiers on the daughterboard itself.
Since power amplifiers are already implementedhédurrent version of the daughterboard, it
will not be necessary to make any significant clesngrhe amplifiers must simply be used. |
chose not to employ the power amplifiers on thegiype daughterboards when running my
tests because | intended to evaluate the RFIC gnsbftware driver, not an off-the-shelf power
amplifier. The LO- and harmonic-suppression protdghowever, remain. The results |
achieved with my driver did not meet the specifaad from Motorold19]. In those
specifications, the LO- and sideband-suppressgurdis were at least 35 dB. The highest |
achieved was 34 dB. The lowest was 14 dB. Clebditer performance may be attained. |
need to run additional optimization, as describe8ection 3.5 Tuning and Optimization. | also
need to optimize the DC offset correction, whicHi improve both LO suppression in the
transmitter and low-frequency noise in the receiveurthermore, subsequent revisions of the
daughterboard hardware may provide better perfoceain particular, the next revisions will
include higher-performance transformers, which shouprove high-frequency performance.
Additionally, new revisions of the RFIC itself maffer improved performance. The chip is not
a regular production model yet, and may see sigmfiimprovements in its life cycle.

More testing is required as well. For instanaggVised and ran a test of frequency-
switching speed. | was not happy with either #stihg procedure or the results, so | chose not
to include it in this thesis. The RFIC daughterdozonsistently took about 5 to 6 ms to switch
from one frequency to another, either in transmitegeive mode. It also took 15 ms to set the
initial frequency. This is far too slow to do akind of frequency-hopping. The RFX-series
daughterboards took about 15 ms to set the ififgdgluency, but subsequently only took about
1.5 to 2 ms to change frequencies. RFX-serieshtatgpards can change frequency almost fast
enough to do frequency hopping. The RFIC daugbterbtook longer to change frequency for
two reasons, one related to limitations in the@ritself, the other related to limitations in the
USRP.

When GNU Radio sends the daughterboard drivercuéecy to set the receiver,
transmitter, or feedback loop, the driver firstides which frequency multiplier to use. This
entire process is described in more detail in #&iSn 3.4.1 The RFIC Object. It then sets up
that frequency multiplier, which is a two-to-fouep process. Next, it sets the alignment
variables, as described in Section 3.5 Tuning apiith@zation. Finally, it calculates the
frequency variables and sets the correspondingtergi Each register set in each step is set
individually. That's up to 19 individual SPI writgperations. Because up to 64 registers can be
set with the same write operation, and all of tiegdiency-, multiplier- and optimization-related
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registers are within 63 registers of one anothealidhree frequency synthesizers, that
procedure could be cut down to two to four writeigbions. Setting the frequency multiplier
still requires two to four passes. Furthermoréhé driver were able to detect if a frequency
multiplier were in use, and if so, which one, tbatild be cut down to one write operation. Upon
startup, no frequency multiplier would be set upttee first time a frequency is set, the driver
would have to set SPI registers two or three timtdswever, when changing frequency
subsequently, the multiplier may already be sateotlly. This is especially true for frequency-
hopping applications, which normally only use aroarrange of frequencies — therefore the
entire frequency range of the frequency-hoppingqua may be covered by a single frequency
multiplier on the RFIC. That solution would recqua re-tooling of the frequency-set functions
within the RFIC object, along with an SPI write @tion that could handle multiple registers in a
single pass. It could cut the frequency-switchinge down by a factor of four or more —
potentially down below 1 ms and possibly fast eroioag some frequency-hopping protocols.
The other limitation on the speed of frequency hiogs the speed of the USB 2.0 interface
between the host computer and the USRP. The bogtwter must send SPI writes over the
USB 2.0 connection, which has uncertain timingisThay improve with the Gigabit Ethernet
interface of the USRP2.

| also need to run real-world tests. | used beraskntx.py and benchmark_tx_rfic.py
(essentially the same as benchmark_tx.py, excaptltke usrp_siggen_rfic.py, it is forced to
recognize the RFIC daughterboard on the USRPatsinit digital signals and
benchmark_rx.py to receive digital signals. Benahmtx.py and benchmark_rx.py are standard
components of GNU Radio, which allow the user tate a real-world digital radio link with a
variety of bit-rates, a range of transmit powemgand receive gain, and a variety of modulation
schemes. When transmitting with an RFX-series kerjoard, the RFIC was able to receive
the signal consistently and correctly. When trattgmg with the RFIC, an RFX-series
daughterboard could only intermittently receive signal. The RFX-series daughterboard
almost never received the signal correctly. Clednheed to do more real-world testing. The
RFIC transmitter also clearly needs work.

Finally, the entire RFIC daughterboard driver mustranslated to C++. It is currently
written in Python, and is therefore compatible WtNU Radio versions 3.0 and 3.1. GNU
Radio 3.2, the latest version, uses daughterbaaredrd written in C++. It is important for this
daughterboard to work with all versions of GNU Radio the driver must be translated. | have
had neither the time nor the C++ coding skill tielpt this yet. It is especially important
because the USRP2 is only compatible with GNU R&d2cand higher. If, in the future, GNU
Radio uses different daughterboard drivers foldB&P, USRP2 or some new piece of
hardware compatible with the RFIC daughterboanshay have to be translated or rewritten
again.

5.2 Conclusions

The RFIC daughterboard, with my driver, has theeptl to revolutionize the GNU
Radio and USRP world. With it, GNU Radio userd Wwave access to a far broader range of
frequencies than was ever available before. Tinginda Tech CWT lab, for instance, will be
able to operate in every public safety band simelbaisly with a single daughterboard. This will
facilitate public safety interoperability.

Much of this work would be applicable for anyoneonkants to build a daughterboard
for the USRP. For instance, if one wanted to baitthughterboard for 700 MHz to 6 GHz based
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on the AsicAhead AA 1001 chip, the structure oft¢bde would be very similar. The AA 1001
is controlled through SPI, and is a CMOS directvagion transceiver with tunable bandwidth
and multiple receiver and transmitter pg®@], just like the Motorola RFIC. While the SPI
format and location and function of the registemild be different, most of the functions in my
driver would exist in a similar form in an AA 10@iksed daughterboard driver.

The transmitter still needs work, but the recefuerctions very well. More optimization
and tuning may improve the performance of the tratter. Also, new revisions of the
daughterboard hardware and of the RFIC itself mgyove performance. Finally, in order to
work with GNU Radio 3.2 and the USRP2, the drivesstrbe translated from Python to C++.

More testing is also needed. Real-world analogdigithl communication systems must
be tested on the RFIC daughterboard. If they dgpadorm well, the board will have very
limited usefulness.

I hope that the daughterboard driver code willmmrporated into GNU Radio in the
future. Every GNU Radio user will be able to ascasd run it. Randall Nealy and Virginia
Tech are working with Motorola and Ettus Reseaocbame up with a deal to distribute the
RFIC daughterboard commercially. This is the ideanario — any radio user, researcher or
university will be able to buy a USRP and an RF#ghterboard, download GNU Radio with
the RFIC driver, and be able to access, operatarahresearch radio waves across nearly the
entire commonly-used spectrum.
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Appendix A: The Driver Code

from gnuradio import usrpl, gru, eng_notation
import time, math, weakref
from math import floor

from usrpm import usrp_dbid

import db_base

import db_instantiator

from usrpm.usrp_fpga_regs import *

# Convenience function
n2s = eng_notation.num_to_str

# TX/RX Switch IO Pin (on the RX side, pin I0O_RX_06

TX_EN=(1<<6) #1=TXon,0=RXon
#

# A few comments about the RFIC:

#

# The board is full duplex, meaning that the transm
# be used simultaneously. There are seperate LOs f
# as a third LO for the feedback from TX to RX, whi
# offset non-linearity or DC offset.

# The feedback can be enabled from the receiver. R
# and feedback can be set independently. Gain and
# controlled in all three modes, as well as phase o

# and bandwidth.

# The board is a direct-conversion transciever, so

# at baseband and any received signal will come int
# at baseband.

#

# Each board is uniquely identified by the *USRP ha
# This dictionary holds a weak reference to existin

# can be created or retrieved as needed.

_rfic_inst = weakref.WeakValueDictionary()
def _get or_make_rfic(usrp, which):
key = (usrp.serial_number(), which)
if not _rfic_inst.has_key(key):
print "Creating new RFIC instance"
inst = rfic(usrp, which)
_rfic_inst[key] = inst

else:
print "Using existing RFIC instance"
inst = _rfic_inst[key]

return inst

#
# Common, shared object for RFIC board. Transmit a
# operate on an instance of this; one instance is ¢

# daughterboard.

itter and receiver ca
or TX and RX as well
ch can be used to

eceiver, transmitter
frequency can be
ffset in the LO

bandwidth is measured

o the host computer

rdware* instance and side
g board controller so it

nd receive classes
reated per physical
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class rfic(object):
def __init__ (self, usrp, which):

which)

print "RFIC: __init__ with %s: %d" % (usrp.serial

self.u = usrp
self.which = which

# For SPI interface, use MSB with two-byte header

# Use RX side for SPI interface

self.spi_format = usrpl.SPI_FMT_MSB | usrpl.SPI_F
self.spi_format_no_header = usrpl.SPI_FMT_MSB |

usrpl.SPI_FMT_HDR_O

self.spi_enable = (usrpl.SPI_ENABLE_RX_A,

usrpl.SPI_ENABLE_RX_B)[which]

# Sane defaults:
# For more information about setting each variabl

register, see RFIC4 SPI Default Variables.xls

#
#

# TRANSMIT SIDE QUIET Frequency Generator
#

™

Calculated#

self.Ngt3 = 0 #Output frequency control bit. Cal
self.NorNdiv4 = 1 #Output frequency control word.
self.RorFrNpRdiv4_25t018 = 0 #Output frequency co

self.RorFrNpRdiv4_17t010 = 0 ##
self.RorFrNpRdiv4_9to2 = 0 ##
self.RorFrNpRdiv4_1to0 = 0 ##

self.Qu_tx_Ngt3 = 0 #Enables divide-by-4 freq div

shift control bit. Calculated#

Calculated.#

self.NorNdiv4_phsh = 1 #Phase shift control word.
self.RorFrNpRdiv4_phsh_25t018 = 0 #Phase shift co

self.RorFrNpRdiv4_phsh_17t010 = 0 ##
self.RorFrNpRdiv4_phsh_9to2 = 0 ##
self.RorFrNpRdiv4_phsh_1to0 = 0 ##
self.Passthru_ref_clk = 0 #A test mode where the

reference is passed directly to the output#

block#

self.Byp_ram = 1 #Bypass the SRAMs#
self.Dis_adr_dith = 1 #Disable the dither generat

self.Dis_p5G_dith = 1 #Disable the dither generat

lup2decod block#

32)#

self.Byp_fine = 1 #Bypass fine delay line control
self.Exclude32 = 0 #Bypass fine delay line contro

self.Dis_risedge = 0 #Disable the rising edges de
self.Dis_faledge = 0 #Disable the falling edges d
self.Spr_puls_en = 0 #enable spur pulsing#
self.Spr_puls_val_a_9to3 = 0 #spur pulsing contro
self.Spr_pulse_val_2to0 = 0 ##
self.Spr_puls_val_b_9to2 = 8 #spur pulsing contro

_number(),

MT_HDR_2

e and SPI

culated.#
Calculated.#
ntrol word.

ider - Phase

Calculated.#
ntrol word.

1 GHz input

or in the ca2adr
or in the

bit#
| bit (exclude

coders#
ecoders#

| word#

| word#
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self.Spr_puls_val_b_1to0 = 0 ##
self.Thru_ris_en = 0 #Put rising edges decoders i

mode#
self.Thru_ris_tap_11to6 = 32 #Through-tap control
self.Thru_ris_tap_5to0 = 0 ##
self.Thru_fal_en = 0 #Put falling edges decoders
mode#

self. Thru_fal_tap_11to6 = 32 #Through-tap control
self. Thru_fal_tap_5to0 = 0 ##
self.Dig_delay = 0 #This bit provides delay to th
into the digital block. It is a remnant of past des
left off because the digClkPhase setting in address
control.#
self.CIk_driver_en = 0 #This allows the clock to
digital block. It first passes through the digital/
synchronization mux, which means that dIEn must be
CIk_driver=1 for the digital block to receive a clo
10, bit 6#
self.qu_reg_en = 0 #This bit enables the voltage
supply 1.2 V to all the analog block functions. The
regulators that are simultaneously enabled by this
self.qq_reg_en = 0 #This bit enables the voltage
supply 1.2 V to all the Quad Gen functions. There a
that are simultaneously enabled by this bit.#
self.win_rst = 0 #When this bit is high, the wind
is in a reset state, which means that no taps will
output regardless of the tap select signals coming
self.fineEn = 0 #This bit, when high, routes the
through the fine line before reaching the output RS
When low, the coarse tap is routed directly to the
self.fineEnb = 0 #Opposite of fineEn#
self.rsffEn = 0 #This bit must be high to send th
180 degree calibration signals off chip. It does no
outputs of the DDS, though it may have some second
self.dl_en = 1 #Allows the PLL reference to enter
line when enabled.#
self.cp_en = 1 #This bit, when enables, activates
that controls the delay line via the single pole (o
filter.#
self.forceCpUpb = 0 #This bit only matters when p
22, bit 1). When low, the pmos device connected to
turns on and sources current into the cap, thereby
control voltage. #
self.forceCpDn = 0 #This bit only matters when pd
22, bit 1). When low, the nmos device connected to
turns off and allows the pmos device to charge up t
above.#
self.pdUpTune_1to0 = 3 #These bits control the pu
the phase detector into the charge up port of the ¢
charge up signal off. 01 is the minimum pulse width
maximum pulse width setting.#
self.pdDnTune_1to0 = 0 #These bits control the pu
the phase detector into the charge down port of the
charge down signal off. 01 is the minimum pulse wid
maximum pulse width setting.#

nto through-tap
word#
into through-tap
word#

e clock going
igns and should always be
23 provides much finer

reach the
analog clock
on (dIEn=1) and
ck. See Byp_fine, address

regulators that
re are 6 separate
bit.#

regulators that
re 3 separate regulators

owing function
be passed to the DDS
from the digital block.#
coarse taps
Flip Flop of the DDS.
output RS Flip Flop.#

e QUIET 0 and
t control the RS Flip Flop
order (coupling) effect.#

the QUIET delay

the charge pump

ne capacitor) DLL loop

dEn=0 (address
the DLL loop filter cap
increasing the delay line

En=0 (address
the DLL loop filter cap
he loop cap as described

Ise width from
harge pump. 00 turns the
setting and 11 is the

Ise width from
charge pump. 00 turns the
th setting and 11 is the
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self.cpUpTune_2to0 = 7 #These bits control amount
is sourced while the charge up signal from the phas
minimum current and 111 is maximum current.#
self.cpDnTune_2to0 = 2 #These bits control amount
is sinked while the charge down signal from the pha
is minimum current and 111 is maximum current.#
self.pdEn = 1 #When enables, the phase detector w
up and down signals to the charge pump and over rid
forceCpDn settings in address 21. When disabled, th
settings will control the charge pump.#
self.digClkPhase_7to0 = 4 #0nly one bit in this f
active at one time. This signal drives a mux that s
phases from the delay line to drive the digital blo
control the windowing function of the DDS.#
self.Rst_n_async = 0 #Digital reset#
self.L1 _lup00_15t08 = [] #Read-only#
self.L1 lup90_15t08 = [] #Read-only#
self.Merg_ris_fin = [] #Read-only#
self.Merg_fal_fin = [] #Read-only#
self.Qg00degDelay_0to4 = 31 #Adjusts series delay
path for the divide-by-two, x1, X2, and x4 quadratu
self.Qg90degDelay 0to4 = 7 #Adjusts series delay
path for the divide-by-two, x1, X2, and x4 quadratu
self.Qg180degDelay 0Oto4 = 31 #Adjusts series dela
degree path for the divide-by-two, x1, x2, and x4 q
self.Qg270degDelay_0Oto4 = 7 #Adjusts series delay
degree path for the divide-by-two, x1, x2, and x4 q
self.DischargeTapl6_0to3 = 15 #Adjusts DLL offset
Quad Gen delay line by controlling down currents in
charge pumps.#
self.ChargeTapl6_0to3 = 4 #Adjusts DLL offset err
Gen delay line by controlling up currents in one of
pumps.#
self.DischargeTapn_0to3 = 15 #Adjusts DLL offset
Quad Gen delay line by controlling down currents in
charge pumps.#
self.ChargeTapnl16_0to3 = 2 #Adjusts DLL offset er
Gen delay line by controlling up currents in one of

pumps.#

self.X1sel_32to39 = 0 #Control for the divide-by-
functions.#

self.X1sel_40to47 = 0 #Control for the divide-by-
functions.#

self.X2sel_32t036 = 0 #Control for the x2 functio
self.X2sel_37to41 = 0 #Control for the x2 functio
self.X4sel_32t036 = 0 #Control for the x4 functio
self.X4sel_37to41 = 0 #Control for the x4 functio
self.X8sel_32t036 = 0 #Bit 41 is used for a fine
control bit. If the fine line is needed, this bit n
Fout is close to Fref (greater than ~ 950 MHz) or f
pass through or thru_rise_en.#
self.X8sel_41 = 0 #hiFout - set for passthrough a
Fref#
self.X8sel_37to40 = 0 ##
self.qutx_fwd_180Cal_en = 0 #Enables the pad driv
the falling edge signal off chip. This falling edge
to trigger the 'Reset' pin of the output RS Flip Fl

of current that
e detector is high. 000 is

of current that
se detector is high. 000

ill send charge
e the forceCpUp and
e forceCpUp and forceCpDn

ield should be
elects one of eight clock
ck. This is needed to

in the 0 degree
re generators.#

in the 90 degree
re generators.#

y in the 180
uadrature generators.#

in the 270
uadrature generators.#

error in the
one of the parallel

or in the Quad
the parallel charge

error in the
one of the parallel

ror in the Quad
the parallel charge

two and x1
two and x1

n.#

n.#

n.#

n.#

line windowing
eeds to be set high if
or some testing modes like

nd Fout close to
er that sends

signal is used internally
op.#
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self.qutx_fwd_0Cal_en = 0 #Enables the pad driver that sends the
rising edge signal off chip. This rising edge signa | is used internally to
trigger the 'Set' pin of the output RS Flip Flop.#
#

# TRANSMIT FEEDBACK QUIET FREQUENCY GENERATOR

Hommmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmee e
self.Ngt3_2 = 0 #Output frequency control bit. C alculated.#
self.NorNdiv4_2 = 1 #Output frequency control wor d. Calculated.#
self.RorFrNpRdiv4_25to18_ 2 = 0 #Output frequency control word.

Calculated.#
self.RorFrNpRdiv4_17t010 2 = 0 ##
self.RorFrNpRdiv4_9to2 2 =0 ##
self.RorFrNpRdiv4_1to0_2 = 0 ##

self.Qu_tx_Ngt3_2 = 0 #Enables divide-by-4 freq d ivider - Phase
shift control bit. Calculated#

self.NorNdiv4_phsh_2 = 1 #Phase shift control wor d. Calculated#

self.RorFrNpRdiv4_phsh_25t018 2 = 0 #Phase shift control word.
Calculated#

self.RorFrNpRdiv4_phsh_17to10_2 = 0 ##

self. RorFrNpRdiv4_phsh_9to2 2 = 0 ##

self.RorFrNpRdiv4_phsh_1to0 2 = 0 ##

self.Passthru_ref clk_2 = 0 #Enable reference clo ck pass-through
mode#

self.Byp_ram_2 = 1 #Bypass the SRAMs#

self.Dis_adr_dith_2 = 1 #Disable the dither gener ator in the
ca2adr block#

self.Dis_p5G_dith_2 = 1 #Disable the dither gener ator in the
lup2decod block#

self.Byp_fine_2 = 1 #Bypass fine delay line contr ol bit#

self.Exclude32_2 = 0 #Bypass fine delay line cont rol bit (exclude
32)#

self.Dis_risedge_2 = 0 #Disable the rising edges decoders#

self.Dis_faledge_2 = 0 #Disable the falling edges decoders#

self.Spr_puls_en_2 = 0 #Enable spur pulsing mode#

self.Spr_puls_val_a_9to3_ 2 = 0 #Spur pulsing mode control word#

self.Spr_pulse_val_2to0_2 = 0 ##

self.Spr_puls_val_b_9to2_ 2 = 8 #Spur pulsing mode control word#

self.Spr_puls_val_b_1to0 2 =0 ##

self. Thru_ris_en_2 = 0 #Put rising edges decoders into through-
tap mode#

self. Thru_ris_tap_11to6_2 = 32 #Through-tap mode control word#

self. Thru_ris_tap_5to0_2 = 0 #Through-tap mode co ntrol word#

self. Thru_fal_en_2 = 0 #Put falling edges decoder s into through-
tap mode#

self.Thru_fal tap_11to6 2 = 32 #Through-tap mode control word#

self. Thru_fal_tap_5to0_2 = 0 #Through-tap mode co ntrol word#

self.Dig_delay_2 = 0 #This bit provides delay to the clock going
into the digital block. It is a remnant of past des igns and should always be
left off because the digClkPhase setting in address 23 provides much finer
control.#

self.CIk_driver_en_2 = 0 #This bit provides delay to the clock
going into the digital block. It is a remnant of pa st designs and should
always be left off because the digClkPhase setting in address 23 provides

much finer control. See Byp_fine, address 10, bit 6#



self.qu_reg_en_2 = 0 #This bit enables the voltag
that supply 1.2 V to all the analog block functions
regulators that are simultaneously enabled by this
self.qgq_reg_en_2 = 0 #This bit enables the voltag
that supply 1.2 V to all the Quad Gen functions. Th
regulators that are simultaneously enabled by this
self.win_rst_2 = 0 #When this bit is high, the wi
is in a reset state, which means that no taps will
output regardless of the tap select signals coming
self.fineEn_2 = 0 #This bit, when high, routes th
through the fine line before reaching the output RS
When low, the coarse tap is routed directly to the
self.fineEnb_2 = 0 #Opposite of fineEn.#
self.rsffEn_2 = 0 #This bit must be high to send
180 degree calibration signals off chip. It does no
outputs of the DDS, though it may have some second
self.dl_en_2 =1 #Allows the PLL reference to ent
delay line when enabled.#
self.cp_en_2 =1 #This bit, when enables, activat
pump that controls the delay line via the single po
loop filter.#
self.forceCpUpb_2 = 0 #This bit only matters when
22, bit 1). When low, the pmos device connected to
turns on and sources current into the cap, thereby
control voltage. #
self.forceCpDn_2 = 0 #This bit only matters when
22, bit 1). When low, the nmos device connected to
turns off and allows the pmos device to charge up t
above.#
self.pdUpTune_1to0_2 = 3 #These bits control the
the phase detector into the charge up port of the ¢
charge up signal off. 01 is the minimum pulse width
maximum pulse width setting.#
self.pdDnTune_1to0_2 = 0 #These bits control the
the phase detector into the charge down port of the
charge down signal off. 01 is the minimum pulse wid
maximum pulse width setting.#

self.cpUpTune_2to0_2 = 7 #These bits control amou

that is sourced while the charge up signal from the
000 is minimum current and 111 is maximum current.#

self.cpDnTune_2to0_2 = 2 #These bits control amou

that is sinked while the charge down signal from th
000 is minimum current and 111 is maximum current.#

self.pdEn_2 =1 #When enables, the phase detector

charge up and down signals to the charge pump and o
forceCpDn settings in address 21. When disabled, th
settings will control the charge pump.#
self.digClkPhase_7to0_2 = 4 #Only one bit in this
active at one time. This signal drives a mux that s
phases from the delay line to drive the digital blo
control the windowing function of the DDS.#
self.Rst_n_async_2 = 0 #Digital reset#
self.L1_lup00_15t08 2 =[] #Read-only#
self.L1_lup90_15t08 2 =[] #Read-only#
self.Merg_ris_fin_2 =[] #Read-only#
self.Merg_fal_fin_2 =[] #Read-only#
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self.Qg00degDelay_0to4 2 = 31 #Adjusts series del
degree path for the divide-by-two, x1, x2, and x4 q
self.Qg90degDelay_0Oto4 2 = 7 ##Adjusts series del
degree path for the divide-by-two, x1, x2, and x4 q
self.Qg180degDelay 0Oto4 2 = 31 #Adjusts series de
degree path for the divide-by-two, x1, x2, and x4 q
self.Qg270degDelay 0Oto4 2 = 7 #Adjusts series del
degree path for the divide-by-two, x1, x2, and x4 q
self.DischargeTapl6_3to0 = 15 #Adjusts DLL offset
Quad Gen delay line by controlling down currents in
charge pumps.#
self.ChargeTapl6_3to0 = 4 #Adjusts DLL offset err
Gen delay line by controlling up currents in one of
pumps.#
self.DischargeTapn_3to0 = 15 #Adjusts DLL offset
Quad Gen delay line by controlling down currents in
charge pumps.#
self.ChargeTapnl6_3to0 = 2 #Adjusts DLL offset er
Gen delay line by controlling up currents in one of

pumps.#

self.X1sel_32to39 2 = 0 #Control for the divide-b
functions.#

self.X1sel_40to47_2 = 0 #Control for the divide-b
functions.#

self.X2sel_32to36_2 = 0 #Control for the x2 funct
self.X2sel_37to41 2 = 0 #Control for the x2 funct
self.X4sel_32t036_2 = 0 #Control for the x4 funct
self.X4sel_37to41 2 = 0 #Control for the x4 funct
self.X8sel_32t036_2 = 0 #Bit 41 is used for a fin
control bit. If the fine line is needed, this bit n
Fout is close to Fref (greater than ~ 950 MHz) or f
pass through or thru_rise_en.#
self.X8sel_41_2 = 0 #hiFout - set for passthrough
to Fref#
self.X8sel_37t040_2 = 0 ##
self.qutx_fb_180Cal_en = 0 #Enables the pad drive
falling edge signal off chip. This falling edge sig
trigger the 'Reset’ pin of the output RS Flip Flop.
self.qutx_fb_0Cal_en = 0 #Enables the pad driver
rising edge signal off chip. This rising edge signa
trigger the 'Set' pin of the output RS Flip Flop.#
self.qutx_fb_180Rsff_en = 0 #off#
self.qutx_fb_ORsff_en = 0 #off#
H

T

# QUIET Dm
#H

™

self.N = 4 ##
self.R_11to8 = 13 ##
self.R_7to0 = 172 ##
self.Asyncrst_n = 0 #off#
self.Cp_sel_6to0 = 63 ##
self.Cp_sel _8to7 = 0 ##
self.ForceFout = 0 #off#
self.ForceFoutb = 0 #off#
self.Out_en = 0 #off#
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self.DIl_en =1 #on#
self.Ana_en = 1 #off#

self.Decod_in_0deg =[] #Read Only#
U

™

# RECEIVE QUIET FREQUENCY GENERATOR
#H

T

self.Ngt3_3 = 0 #Output frequency control bit. C alculated.#
self.NorNdiv4_3 = 0 #Output frequency control wor d. Calculated.#
self.RorFrNpRdiv4_25to18_3 = 0 #Output frequency control word.

Calculated.#
self.RorFrNpRdiv4_17t010_3 =0 ##
self.RorFrNpRdiv4_9to2 3 =0 ##
self.RorFrNpRdiv4_1to0_3 = 0 ##

self.Qu_tx_Ngt3_3 = 0 #Enables divide-by-4 freq d ivider - Phase
shift control bit. Calculated.#

self.NorNdiv4_phsh_3 = 1 #Phase shift control wor d. Calculated#

self.RorFrNpRdiv4_phsh_25t018 3 = 0 #Phase shift control word.

Calculated.#
self.RorFrNpRdiv4_phsh_17to10_3 = 0 ##
self. RorFrNpRdiv4_phsh_9to2 3 = 0 ##
self.RorFrNpRdiv4_phsh_1to0 3 = 0 ##

self.Passthru_ref clk_3 = 0 #Enable reference clo ck pass-through
mode#

self.Byp_ram_3 = 1 #Bypass the SRAMs#

self.Dis_adr_dith_3 = 1 #Disable the dither gener ator in the
ca2adr block#

self.Dis_p5G_dith_3 = 1 #Disable the dither gener ator in the
lup2decod block#

self.Byp_fine_3 = 1 #Bypass fine delay line contr ol bit#

self.Exclude32_3 = 0 #Bypass fine delay line cont rol bit (exclude
32)#

self.Dis_risedge_3 = 0 #Disable the rising edges decoders#

self.Dis_faledge_3 = 0 #Disable the falling edges decoders#

self.Spr_puls_en_3 = 0 #Enable spur pulsing mode#

self.Spr_puls_val_a_9to3_3 = 0 #Spur pulsing mode control word#

self.Spr_pulse_val_2to0_3 =0 ##

self.Spr_puls_val_b_9to2_3 = 8 #Spur pulsing mode control word#

self.Spr_puls_val_b_1to0 3 =0 ##

self. Thru_ris_en_3 = 0 #Put rising edges decoders into through-
tap mode#

self. Thru_ris_tap_11to6_3 = 32 #Through-tap mode control word#

self. Thru_ris_tap_5to0_3 = 0 #Through-tap mode co ntrol word#

self. Thru_fal_en_3 = 0 #Put falling edges decoder s into through-
tap mode#

self.Thru_fal tap_11to6 3 = 0 #Through-tap mode ¢ ontrol word#

self. Thru_fal_tap_5to0_3 = 0 #Through-tap mode co ntrol word#

self.Dig_delay_3 = 0 #This bit provides delay to the clock going
into the digital block. It is a remnant of past des igns and should always be
left off because the digClkPhase setting in address 23 provides much finer
control.#

self.CIk_driver_en_3 = 0 #This allows the clock t o reach the
digital block. It first passes through the digital/ analog clock
synchronization mux, which means that dIEn must be on (dIEn=1) and
CIk_driver=1 for the digital block to receive a clo ck. See Byp_fine, address

10, bit 6#



self.qu_reg_en_3 = 0 #This bit enables the voltag
that supply 1.2 V to all the analog block functions
regulators that are simultaneously enabled by this
self.qgq_reg_en_3 = 0 #This bit enables the voltag
that supply 1.2 V to all the Quad Gen functions. Th
regulators that are simultaneously enabled by this
self.win_rst_3 = 0 #When this bit is high, the wi
is in a reset state, which means that no taps will
output regardless of the tap select signals coming
self.fineEn_3 = 0 #This bit, when high, routes th
through the fine line before reaching the output RS
When low, the coarse tap is routed directly to the
self.fineEnb_3 = 0 #Opposite of fineEn.#
self.rsffEn_3 = 0 #This bit must be high to send
180 degree calibration signals off chip. It does no
outputs of the DDS, though it may have some second
self.dl_en_3 =1 #Allows the PLL reference to ent
delay line when enabled.#
self.cp_en_3 = 1 #This bit, when enables, activat
pump that controls the delay line via the single po
loop filter.#
self.forceCpUpb_3 = 0 #This bit only matters when
22, bit 1). When low, the pmos device connected to
turns on and sources current into the cap, thereby
control voltage. #
self.forceCpDn_3 = 0 #This bit only matters when
22, bit 1). When low, the nmos device connected to
turns off and allows the pmos device to charge up t
above.#
self.pdUpTune_1to0_3 = 3 #These bits control the
the phase detector into the charge up port of the ¢
charge up signal off. 01 is the minimum pulse width
maximum pulse width setting.#
self.pdDnTune_1to0_3 = 1 #These bits control the
the phase detector into the charge down port of the
charge down signal off. 01 is the minimum pulse wid
maximum pulse width setting.#

self.cpUpTune_2to0_3 = 7 #These bits control amou

that is sourced while the charge up signal from the
000 is minimum current and 111 is maximum current.#

self.cpDnTune_2to0_3 = 2 #These bits control amou

that is sinked while the charge down signal from th
000 is minimum current and 111 is maximum current.#

self.pdEn_3 = 1 #When enables, the phase detector

charge up and down signals to the charge pump and o

forceCpDn settings in address 21. When disabled, th

settings will control the charge pump.#
self.digClkPhase_7to0_3 = 4 #Only one bit in this

active at one time. This signal drives a mux that s

phases from the delay line to drive the digital blo

control the windowing function of the DDS.#
self.Rst_n_async_3 = 0 #Digital reset.#
self.L1_lup00_15t08_ 3 =[] #Read-only#
self.L1 lup90_15t08_3 =[] #Read-onnly#
self.Merg_ris_fin_3 =[] #Read-only#
self.Merg_fal_fin_3 =[] #Read-only#
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self.Qg00degDelay_0to4_3 = 31 #Adjusts series del
degree path for the divide-by-two, x1, x2, and x4 q
self.Qg90degDelay_0to4_ 3 = 31 #Adjusts series del
degree path for the divide-by-two, x1, x2, and x4 q
self.Qg180degDelay 0Oto4 3 = 31 #Adjusts series de
degree path for the divide-by-two, x1, x2, and x4 q
self.Qg270degDelay_0Oto4 3 = 31 #Adjusts series de
degree path for the divide-by-two, x1, x2, and x4 q
self.DischargeTapl6_0to3_3 = 15 #Adjusts DLL offs
Quad Gen delay line by controlling down currents in
charge pumps.#
self.ChargeTapl6_0to3_3 = 15 #Adjusts DLL offset
Quad Gen delay line by controlling up currents in o
pumps.#
self.DischargeTapn_0to3_3 = 15 #Adjusts DLL offse
Quad Gen delay line by controlling down currents in
charge pumps.#
self.ChargeTapnl16_0to3_3 = 15 #Adjusts DLL offset
Quad Gen delay line by controlling up currents in o

pumps.#

self.X1sel_32to39 3 = 0 #Control for the divide-b
functions.#

self.X1sel_40to47_3 = 0 #Control for the divide-b
functions.#

self.X2sel_32to36_3 = 0 #Control for the x2 funct
self.X2sel_37to41_3 = 0 #Control for the x2 funct
self.X4sel_32t036_3 = 0 #Control for the x4 funct
self.X4sel_37to41_3 = 0 #Control for the x4 funct
self.X8sel_32t036_3 = 0 #Bit 41 is used for a fin
control bit. If the fine line is needed, this bit n
Fout is close to Fref (greater than ~ 950 MHz) or f
pass through or thru_rise_en.#
self.X8sel_41_3 = 0 #hiFout - set for passthrough
to Fref#
self.X8sel_37t040_3 = 0 ##
self.qurx_180Cal_en = 0 #Enables the pad driver t
falling edge signal off chip. This falling edge sig
trigger the 'Reset’ pin of the output RS Flip Flop.
self.qurx_0Cal_en = 0 #Enables the pad driver tha
rising edge signal off chip. This rising edge signa
trigger the 'Set' pin of the output RS Flip Flop.#
H

#PLL

H

T

self.extCIkEn = 0 #PLL Reg 0#
self.extCIKEnBNOTD7 = 1 #on#
self.div2_rst = 1 #on#

self. TXChClkSel = 0 ##

self. TXChCIKEn = 0 #PLL Reg 1#
#

™

# TRANSMITTER

#

™
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self.tx_bb_en = 0 #BB Fdbk Mux Buffer BW Control.
Forward BB Reference Section of TX#

self.tx_bb_fdbk _bw = 0 #Sets the BW of the BB Cor
amp#

self.tx_bb_fdbk _cal_en = 0 #BB Feedback Mux path
the BB Correction feedback Amp input for self-calib

self.tx_bb_fdbk_cart_err_en = 0 #Routes the Carte
signal through the BB Correction feedback#

self.tx_bb_fdbk_cart_fb_en = 0 #Routes the Cartes
signal through the BB Correction feedback#

self.tx_bb_fdbk_cart_fwd_en = 0 #Routes the Carte
signal through the BB Correction feedback#

self.tx_bb_fdbk_en = 0 #BB Feedback Mux path Rout
the BB Correction feedback path via the RX pins#

self.tx_bb_fdbk_1q_sel = 0 #Chooses between | or
the BB Correction feedback path#

self.tx_bb_fdbk_Ip = 0 #BB Fdbk Mux Buffer curren
current drive capability for BB Correction feedback Amp#

self.tx_bb_fdbk_statt = 3 #BB Fdbk Mux Buffer Gai
Feedback Attenuator. Sets the voltage gain for BB

ration#

Enables the
rection feedback
Routing. Shorts
sian error
ian feedback
sian reference
ing. Enables
Q channel for
t. Sets the

n Control. BB

Correction feedback Amp#

self.tx_bb_fdbk swapi = 0 #Baseband Feedback Swap | & IXx. Swaps
the | and Ix BB signals through the BB Correction f eedback path#
self.tx_bb_fdbk swapq = 0 #Baseband feedback Swap Q & Qx. Swaps

the Q and Qx BB signal through the BB Correction fe
self.tx_bb_gain_cmp = 1 #Baseband Gain 1 dB Compe
and extra 1.3 dB of Forward Baseband Reference Gain #
self.tx_bb_Ip = 0 #BB ref. stage current. BB Amp
Sets the current drive capability for Forward BB Re
self.tx_bb_swapi = 1 #Baseband Swap | & Ix. Swap
BB signals through the Forward BB Reference Path#
self.tx_bb_swapq = 0 #Baseband Swap Q & Qx. Swap
BB signals through the Forward BB Reference Path#
self.tx_butt_bw = 0 #BB ref. Butterworth filter B
the BW of the Forward BB Reference 4-pole Butterwor
self.tx_bw_trck =5 #TX MIM cap tracking filter B
Tracking. Sets tracking BW of all the MIM cap base
self.tx_cart_en = 0 #Cartesian FB path Enable. E
Cartesian Baseband Section of Tx#
self.tx_cart_fb_bb_statt = 15 #Cartesian down-mix
Cartesian FB path BB gain. Sets the voltage gain f
converter PMA#
self.tx_cart_fb_dcoc_dac_I1 = 32 #Sets Cartesian
converter PMA Dc offset correction DAC [1#
self.tx_cart_fb_dcoc_dac_I2 = 32 #Sets Cartesian
converter PMA Dc offset correction DAC [2#
self.tx_cart_fb_dcoc_dac_Q1 = 32 #Sets Cartesian
converter PMA Dc offset correction DAC Q1#
self.tx_cart_fb_dcoc_dac_Q2 = 32 #Sets Cartesian
converter PMA Dc offset correction DAC Q2#
self.CartesianFeedbackpathDCOCenable = 0 #Cartesi
BB BW#
self.CartesianFeedbackpathenable = 0 #off#
self.CartesianFBpathHiResolutionDCOCenable = 0 #0
self.CartesianFBpathBW = 15 ##
self.CartesianFBRFGain = 0 #Cartesian down conv.
self.CartesianFBpathSwaplandix = 0 #Swap | & Ix B
Converter#

th Filters#

edback path#

nsation. Adds

Stage Current.

ference Amps#

s the | and Ix
s the Q and Qx
W control. Sets

W. Bandwidth

d TX Filters (16 states)#

nables the

path BB gain.

or Cartesian BB down

BB down
BB down
BB down
BB down

an down-mix path

fi#

path RF Gain#
B in Down



self.CartesianFBpathSwapQandQx = 0 #off#
self.CartesianFBpathSwitchtoforwardSummer = 0 #of
self.tx_cart_fb_lo_select = 0 #Cart. down conv LO
Gain)#
self.CartesianFBpathAmplGain = 3 ##
self.CartesianFBpathAmp2Gain = 3 ##
self.CartesianFBpathAmp3Gain = 3 ##
self.CartesianFBpathAmp4Gain = 3 ##
self.CartesianFBpathAmpCurrentSelect = 7 ##
self.CartesianFBpathZeroEnable = 0 #off#
self.tx_cart_zero_statt = 1 #Cartesian FB path Ze
the voltage gain for Cartesian Forward BB Zero Amp#
self.tx_inbuf_bw = 0 #Sets the BW of the Forward
Input Buffers#
self.tx_inbuf_statt = 0 #Sets the attenuation of
Ref. Buffers#
self.tx_output_channel_sel = 0 #Selects from the
output paths, 000 is full power down#
self.tx_pl bw = 0 #Sets the BW of the Cartesian F
Pole 1#
self.tx_pw_bw1 = 0 #Cartesian FB path Pole 2 Band
BW of the Cartesian Forward BB Loop Pole 2#
self.tx_p2_bw2 = 0 #Cartesian FB path Pole 2 Band
BW of the Cartesian Forward BB Loop Pole 2#
self.PushPullBufferCurrent = 7 ##
self.tx_rf_aoc_bw = 0 #Sets the BW of the AOC con
self. RFForwardPathEnable_toMUX = 0 #off#
self. RFForwardPathEnable_ExternalPinenable = 1 #0
self.tx_rf_fwd_lp = 0 #RF Forward Bias Reference
Forward Path Current Drain Select. Sets the curren
Forward RF Output Drivers#
self.tx_rf_fwd_stattl = 0 #RF Passive Step Attenu
RF Forward Path Step Attnl. Sets the attenuation |
attenuators#
self.tx_rf_fwd_statt2 = 0 #RF Output Driver Step
RF Forward Path Step Attn2. Sets the attenuation |
Drivers#

self.BBQDivideby2or4Select = 0 #BBQ Quad Gen Divi

(High=1/4)#

f#
curr. (tied to

ro Gain. Sets
BB Reference
the Forward BB
3 RF Forward TX
orward BB Loop
width. Sets the

width. Sets the

trol line#

n#

Control. RF
t drive capability for

ator control.
evel for the RF Step

Attn. Control.
evel for the RF Output

deby2or4

self.BBQQuadGenEnable = 0 #Bypass Quiet LO with e xternal LO#

self. BBQPolyphaseQuadGenEnable = 0 #off#
self.lofb_tun_s = 8 ##

self.lofb_tun_sx = 8 ##

self.lofw_tun_s2 = 8 ##

self.lofw_tun_sx2 = 8 ##

self.reserve_tx26 = 0 ##

self.reserve_tx27 = 0 ##
H

T

# RECEIVER

#

™

self.rx_ldac = 16 #l path DCOC DAC setting. Digi
the DC offset adjustment. 11111 represents the max
adjust and 00000 represents the maximum negative of
codes 10000 and 01111 cause no change in the offset

tal values for
imum positive offset
fset adjust. By design,
voltage.#
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self.rx_dcs = 0 #DCOC step size select. Selects
current reference in the DAC to maintain constant s
baseband filters. This value works in tandem with
(address 198, bits 4:3) to maintain a constant step
output.#
self.rx_den = 0 #Enables the DC offset correction
and Q path.#
self.rx_Qdac = 12 #Q path DCOC DAC setting. Digi
the DC offset adjustment. 11111 represents the max
adjust and 00000 represents the maximum negative of
codes 10000 and 01111 cause no change in the offset
self.rx_cmpen = 0 #Enables the DC offset correcti
used in the DCOC circuitry.#
self.rx_dcoc = 0 #Enables the DC offset correctio
automatic correction of the DC offset in the baseba
self.rx_ten = 0 #Enables the RC tuning circuit to
baseband filters.#
self.rx_ren = 0 #Enables the ramp circuit used in
circuitry to tune the RX and TX baseband filters.#
self.rx_dven = 0 ##
self.rx_dv = 0 #DCOC/tune clock divider select.
clock rate used for clocking the DCOC and RC tuning
set the divider setting used for both the DCOC circ
circuitry. Bits 1 and O set the divider setting fo
the DCOC circuitry. Table below shows the mapping
DCOC clock divider setting is the total divide rati
maximum divide ratio is 8*8 = 64.#
self.rx_extc = 0 #Enables the external capacitor
for external low-frequency pole to be placed in the
mixer and baseband filter.#
self.rx_cen = 0 #Chopper enable for filter stages
enable which amplifier the clock is being applied#
self.rx_chck = 0 #Divider setting for the chopper
self.rx_chcken = 0 #Enables the baseband filter ¢
self.rx_fen = 0 #Enables baseband filters. 0 put
power save mode.#
self.rx_onchen = 0 #Enables on-channel detector.#
self.rx_offchen = 0 #Enables off-channel detector
self.rx_foe = 0 #Enables the output of the baseba
Otherwise the baseband filter outputs are in a Hi-Z
transmitter to use filter output pins. When Filter
outputs are disabled (Hi-Z)#
self.rx_offch = 1 #Sets the Clip Threshold for th
Detector#
self.rx_onchf = 0 #Sets the Fade Threshold for th
Detector relative to the On-channel clip point.#
self.rx_onchc = 2 #Sets the Clip Threshold for th
Detector#
self.rx_gs = 0 #Sets the BiQuad filter Q#
self.rx_bqg = 0 #Set BiQuad filter gain#
#FIXME Maybe setrx_rqto 0
self.rx_rq = 1 #Sets the BiQuad filter resistor v
natural frequency of the BiQuad (wo) is this resist
BiQuad Capacitor value.#
self.rx_rv = 1 #Sets the VGA filter (passive filt
value. The pole frequency of the passive filter is
multiplied by the VGA capacitor value.#

the proper
tep size at ouptut of
the BiQuad Gain Select
size of 24 mV at filter

DACs in the |

tal values for
imum positive offset
fset adjust. By design,
voltage.#

on comparator

n circuitry for
nd filters.#

tune RX and TX

the RC tuning

Selects the
circuit. Bits 3 and 2
uitry and RC Tune
r the dedicated divider in
of divider settings. The
o of both dividers. The

pins to allow
signal path between the

. Settings to
clock#

hopper clock.#
s filter in

#
nd filters.
state to allow
Enable is set LOW,
e Off-channel
e On-channel

e On-channel

alue. The
or value multiplied by the

er) resistor
this resistor value
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self.rx_rip = 0 #Sets the MPA input resistor valu
gain of the PMA. Gain of the PMA is Rf/Rin where R
resistor and Rin is the input resistor. Note that
remains at 2 kohm differential for all settings. A
accomplish this while changing the Rin value.#

self.rx_rfp = 2 #Sets the PMA feedback resistor v
the gain of the PMA as well as the pole frequency (
value). Gain of the PMA is Rf/Rin where Rf is the
Rin is the input resistor.#

self.rx_cp_12to8 = 0 #Sets the PMA filter capacit
pole frequency of the PMA filter is the PMA feedbac
multiplied by this Capacitor value. PMA Capacitor
+ 1#

self.rx_gs = 0 #Sets the gain of the VGA in the b

self.rx_cp_7to0 = 0 #PMA cap select LSBs. Sets't
capacitor value. The pole frequency of the PMA fil
resistor value multiplied by this Capacitor value.
(PMAC) * 0.0625 + 1#

self.rx_cv_10to3 = 0 #VGA cap select MSBs. Sets
(passive) filter capacitor value. This pole freque
is the VGA resistor value multiplied by this Capaci
(in pF) = (VGAC) * 0.0625 + 1#

self.rx_cv_2to0 = 0 #VGA cap select LSBs. Setst
filter capacitor value. This pole frequency of the
resistor value multiplied by this Capacitor value.
(VGAC) * 0.0625 + 1#

self.rx_cc_2to0 = 0 #Compensation control. Disab
compensation capacitance in the VGA and BiQuad op-a
bandwidths. Also increases the op-ampdominate pole
filter response. Bit 4 controls the VGA amplifier,
feedback amplifier in the BiQuad, and Bit 2 control
BiQuad.#

self.rx_cq_9to8 = 0 #BiQuad cap select MSBs. Set
filter capacitor value. The natural frequency of t
BiQuad resistor value multiplied by this Capacitor
(in pF) = (BiQuadC) * 0.125 + 2#

self.rx_cq_7to0 = 0 #BiQuad cap select LSBs. Set
filter capacitor value. The natural frequency of t
BiQuad resistor value multiplied by this Capacitor
(in pF) = (BiQuadC) * 0.125 + 2#

self.rx_Ina = 1 #LNA select#

self.rx_Inab = 0 #LNA bias select#

self.rx_rxchen = 0 #RX mixer enable. Must be set
Mixer operation#

self.rx_bbq_div2or4 = 0 #Selects divide ratio of
using external LO. 0->DIV2, 1 ->DIV1#

self.rx_Loselect = 0 #RX external LO select. Ena
clock source#

self.poly_en = 0 #off#

self.lorx_tun_s = 8 ##

self.lorx_tun_sx = 8 ##

self.rx_lcmpo = [] #| path DCOC comparator output
DCOC comparator - used for test purposes. Output o

self.rx_lodac =[] #| path DCOC DAC output. Outp
DACs - used to read result of DCOC correction circu

self.rx_Qcmpo =[] #Q path DCOC comparator output

DCOC comparator - used for test purposes. Output 0

e that sets the
fis the PMA feedback
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alue that sets
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PMA feedback resistor and
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s the output buffer in the

s the BiQuad
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self.rx_Qodac = [] #Q path DCOC DAC output. Outp
DACs - used to read result of DCOC correction circu

self.rx_rc =[] #0Output word from RC Tune circuit
calculate adjustment needed to TX and RX filter ban

tuning. Output only.#
#

™

# VAG Generator
H

T

self.shft_cml_in = 0 #Enable - 150mV level shift

self.vagenablel = 1 #Enable VAG Gen into Sleep Mo
up)#

self.vagenable2 = 1 #Enable VAG Gen in Full On Mo

from sleep)#
#

# TEST MULTIPLEXER
#

™

self. TestMuxBufferEnable = 0 #Enable Test Mux Buf

self.TestMuxEnable = 0 #Enable Test Mux#

self. TestMuxSetting = 0 #Four Output Description
Test3, Testd)#

self.txgain =0  #Set Transmit Gain#
self.Fclk = 1000e6 #Default clock frequency, in H

self.Fouttx =0  # Default tx frequency is zero#
self.Foutrx =0  # Default rx frequency is zero#
self.Foutfb = 0 # Default feedback frequency is z

# Initialize GP1O and ATR

# GPIO are the general-purpose 10 pins on the dau

#10_RX_06 must be used for ATR (1 = TX, 0 = RX)

# ATR is the automatic transmit/receive switching
FPGA

# FIXME

self.rx_write_io(0, TX_EN)

self.rx_write_oe(TX_EN, TX_EN)

self.rx_set_atr_rxval(0)

self.rx_set_atr_txval(TX_EN)

self.rx_set_atr_mask(TX_EN)

# Initialize Chipset
# Set initial SPI values
# Neither transmit nor receive currently on

self.set_reg_0()
self.set_reg_1()
self.set_reg_2()
self.set_reg_3()
self.set_reg_4()
self.set_reg_5()
self.set_reg_6()
self.set_reg_7()

ut of the DCOC

itry. Output only.#

that is used to

dwidths for correct

of Ref. BB VAG#
de (slow ramp

de (Fast ramp

fer#

(Testl, Test2,

z#

ero#

ghterboard

, done in the
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self.set_reg_8()

self.set_reg_9()

self.set_reg_10()
self.set_reg_12()
self.set_reg_13()
self.set_reg_14()
self.set_reg_15()
self.set_reg_16()
self.set_reg_17()
self.set_reg_18()
self.set_reg_19()
self.set_reg_20()
self.set_reg_21()
self.set_reg_22()
self.set_reg_23()
self.set_reg_24()
self.set_reg_29()
self.set_reg_30()
self.set_reg_31()
self.set_reg_32()
self.set_reg_33()
self.set_reg_34()
self.set_reg_35()
self.set_reg_36()
self.set_reg_37()
self.set_reg_38()
self.set_reg_39()
self.set_reg_40()
self.set_reg_41()
self.set_reg_42()
self.set_reg_43()
self.set_reg_48()
self.set_reg_49()
self.set_reg_50()
self.set_reg_51()
self.set_reg_52()
self.set_reg_53()
self.set_reg_54()
self.set_reg_55()
self.set_reg_56()
self.set_reg_57()
self.set_reg_58()
self.set_reg_60()
self.set_reg_61()
self.set_reg_62()
self.set_reg_63()
self.set_reg_64()
self.set_reg_65()
self.set_reg_66()
self.set_reg_67()
self.set_reg_68()
self.set_reg_69()
self.set_reg_70()
self.set_reg_71()
self.set_reg_72()
self.set_reg_77()
self.set_reg_78()
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self.set_reg_79()

self.set_reg_80()

self.set_reg_81()

self.set_reg_82()

self.set_reg_83()

self.set_reg_84()

self.set_reg_85()

self.set_reg_86()

self.set_reg_87()

self.set_reg_88()

self.set_reg_89()

self.set_reg_90()

self.set_reg_91()

self.set_reg_96()

self.set_reg_97()

self.set_reg_98()

self.set_reg_99()

self.set_reg_104()
self.set_reg_105()
self.set_reg_106()
self.set_reg_107()
self.set_reg_108()
self.set_reg_109()
self.set_reg_110()
self.set_reg_111()
self.set_reg_112()
self.set_reg_113()
self.set_reg_114()
self.set_reg_116()
self.set_reg_117()
self.set_reg_118()
self.set_reg_119()
self.set_reg_120()
self.set_reg_121()
self.set_reg_122()
self.set_reg_123()
self.set_reg_124()
self.set_reg_125()
self.set_reg_126()
self.set_reg_127()
self.set_reg_128()
self.set_reg_133()
self.set_reg_134()
self.set_reg_135()
self.set_reg_136()
self.set_reg_137()
self.set_reg_138()
self.set_reg_139()
self.set_reg_140()
self.set_reg_141()
self.set_reg_142()
self.set_reg_143()
self.set_reg_144()
self.set_reg_145()
self.set_reg_146()
self.set_reg_147()
self.set_reg_152()
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self.set_reg_153()
self.set_reg_156()
self.set_reg_157()
self.set_reg_158()
self.set_reg_159()
self.set_reg_160()
self.set_reg_161()
self.set_reg_162()
self.set_reg_163()
self.set_reg_164()
self.set_reg_165()
self.set_reg_166()
self.set_reg_167()
self.set_reg_168()
self.set_reg_169()
self.set_reg_170()
self.set_reg_171()
self.set_reg_172()
self.set_reg_173()
self.set_reg_174()
self.set_reg_175()
self.set_reg_176()
self.set_reg_177()
self.set_reg_178()
self.set_reg_179()
self.set_reg_180()
self.set_reg_181()
self.set_reg_192()
self.set_reg_193()
self.set_reg_194()
self.set_reg_195()
self.set_reg_196()
self.set_reg_197()
self.set_reg_198()
self.set_reg_199()
self.set_reg_200()
self.set_reg_201()
self.set_reg_202()
self.set_reg_203()
self.set_reg_204()
self.set_reg_205()
self.set_reg_206()
self.set_reg_207()
self.set_reg_220()
self.set_reg_222()

#self.set_reg_220()
#self.set_reg_222()

def __del_ (self):
# Delete instance, shut down
# FIXME
print "RFIC: __del_ "

# Reset all three QUIET synthesizers
self.Rst_n_async=0
self.set_reg_24()



self.Rst_n_async2 =0
self.set_reg_72()
self.Rst_n_async3 =0
self.set_reg_128()

self.X1sel_32to39 .
self.X1sel_40to47__.
self.X2sel_32t036_.
self.X2sel_37to41 .
self.X4sel_32t036_.
self.X4sel_37to41

WWwwWwwww
moammnun

[cNeoNoloNeNe]

self.set_reg_139()
self.set_reg_140()
self.set_reg_141()
self.set_reg_142()
self.set_reg_143()
self.set_reg_144()

self.X1sel_32to39 =0
self.X1sel_40to47 =0
self.X2sel_32t036 =0
self.X2sel_37to41 =0
self.X4sel_32t036 =0
self.X4sel_37to41 =0

self.set_reg_35()
self.set_reg_36()
self.set_reg_37()
self.set_reg_38()
self.set_reg_39()
self.set_reg_40()

self.X1sel_32t039
self.X1sel_40to47__
self.X2sel_32t036__
self.X2sel_37to41
self.X4sel_32t036__
self.X4sel_37to41

[cNeoNoNoNoNe

NNNNNN

self.set_reg_83()
self.set_reg_84()
self.set_reg_85()
self.set_reg_86()
self.set_reg_87()
self.set_reg_88()

H cmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmeee e
# These methods set the RFIC onboard registers ove r the SPI bus.
# Thus, the shift values here are the 0-7 values f rom the data sheet

# For more information about setting each variable and SPI register,
see RFIC4 SPI Default Variables.xls

def set_reg_0O(self):
reg_0 = (
self.Ngt3 << 7 |



self.NorNdiv4 << 0)
self.send_reg(0, reg_0)

def set_reg_1(self):
reg_1=(
self.RorFrNpRdiv4_25t018 << 0)
self.send_reg(1, reg_1)

def set_reg_2(self):
reg_2=(
self.RorFrNpRdiv4_17t010 << 0)
self.send_reg(2, reg_2)

def set_reg_3(self):
reg_3=(
self.RorFrNpRdiv4_9to2 << 0)
self.send_reg(3, reg_3)

def set_reg_4(self):
reg_4 = (
self.RorFrNpRdiv4_1to0 << 6)
self.send_reg(4, reg_4)

def set_reg_5(self):
reg_5=(
self.Qu_tx_Ngt3 << 7 |
self.NorNdiv4_phsh << 0)
self.send_reg(5, reg_5)

def set_reg_6(self):
reg_6 = (
self.RorFrNpRdiv4_phsh_25t018 << 0)
self.send_reg(6, reg_6)

def set_reg_7(self):
reg_7=(
self.RorFrNpRdiv4_phsh_17t010 << 0)
self.send_reg(7, reg_7)

def set_reg_8(self):
reg_8 = (
self.RorFrNpRdiv4_phsh_9t02 << 0)
self.send_reg(8, reg_8)

def set_reg_9(self):
reg_9 = (
self.RorFrNpRdiv4_phsh_1to0 << 6)
self.send_reg(9, reg_9)

def set_reg_10(self):
reg_10 = (
self.Passthru_ref clk << 7 |
self.Byp_ram << 6 |
self.Dis_adr_dith << 5 |
self.Dis_p5G_dith << 4 |
self.Byp_fine << 3|
self.Exclude32 << 2 |
self.Dis_risedge << 1 |
self.Dis_faledge << 0)
self.send_reg(10, reg_10)

def set_reg_12(self):
reg_12 =(
self.Spr_puls_en << 7 |
self.Spr_puls_val_a 9t03 << 0)
self.send_reg(12, reg_12)

def set_reg_13(self):
reg_13 =(



self.Spr_pulse_val _2to0 << 5)

self.send_reg(13, reg_13)
def set_reg_14(self):

reg_14 =(

self.Spr_puls_val b 9to2 << 0)

self.send_reg(14, reg_14)
def set_reg_15(self):

reg_15=(

self.Spr_puls_val b _1to0 << 6)

self.send_reg(15, reg_15)
def set_reg_16(self):

reg_16 = (

self.Thru_ris_en << 7 |

self.Thru_ris_tap_11to6 << 1)

self.send_reg(16, reg_16)
def set_reg_17(self):

reg_17 =(

self.Thru_ris_tap_5to0 << 2)

self.send_reg(17, reg_17)
def set_reg_18(self):

reg_18 =(

self. Thru_fal_en << 7 |

self.Thru_fal_tap_11to6 << 1)

self.send_reg(18, reg_18)
def set_reg_19(self):

reg_19 = (

self. Thru_fal_tap 5to0 << 2)

self.send_reg(19, reg_19)
def set_reg_20(self):

reg_20 = (

self.Dig_delay << 7 |

self.Clk_driver_en << 6 |

self.qu_reg_en << 5|

self.qq_reg_en << 4 |

self.win_rst << 3 |

self.fineEn << 2 |

self.fineEnb << 1 |

self.rsffEn << 0)

self.send_reg(20, reg_20)
def set_reg_21(self):

reg_21=(

self.dl_en<<7 |

self.cp_en<<6 |

self.forceCpUpb << 5 |

self.forceCpDn << 4 |

self.pdUpTune_1to0 << 2 |

self.pdDnTune_1to0 << 0)

self.send_reg(21, reg_21)
def set_reg_22(self):

reg_22 =(

self.cpUpTune_2to0 << 5 |

self.cpDnTune_2to0 << 2 |

self.pdEn << 1)

self.send_reg(22, reg_22)
def set_reg_23(self):

reg_23 =(

self.digClkPhase_7to0 << 0)
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self.send_reg(23, reg_23)
def set_reg_24(self):
reg_24 = (
self.Rst_n_async << 7)
self.send_reg(24, reg_24)
def read_reg_25(self):
reg_25 = self.get_reg(25)
self.L1 lup0O0_15to8 = reg_25

def read_reg_26(self):
reg_26 = self.get_reg(26)
self.L1 lup90_15t08 = reg_26

def read_reg_27(self):
reg_27 = self.get_reg(27)
self.Merg_ris_fin=reg_27 >>2

def read_reg_28(self):
reg_28 = self.get_reg(28)
self.Merg_fal_fin=reg_28 >> 2

def set_reg_29(self):
reg_29 = (
self.Qg00degDelay 0to4 << 3)
self.send_reg(29, reg_29)

def set_reg_30(self):
reg_30 = (
self.Qg90degDelay 0to4 << 3)
self.send_reg(30, reg_30)

def set_reg_31(self):
reg_31=(
self.Qg180degDelay 0to4 << 3)
self.send_reg(31, reg_31)

def set_reg_32(self):
reg_32 =(
self.Qg270degDelay_0to4 << 3)
self.send_reg(32, reg_32)

def set_reg_33(self):
reg_33 =(
self.DischargeTapl6_0to3 << 4 |
self.ChargeTapl6 0to3 << 0)
self.send_reg(33, reg_33)

def set_reg_34(self):
reg_34 =(
self.DischargeTapn_0to3 << 4 |
self.ChargeTapnl6_0to3 << 0)
self.send_reg(34, reg_34)

def set_reg_35(self):
reg_35=(
self.X1sel_32t039 << 0)
self.send_reg(35, reg_35)

def set_reg_36(self):
reg_36 = (
self.X1sel_40to47 << 0)
self.send_reg(36, reg_36)

def set_reg_37(self):
reg_37 =(
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self.X2sel_32t036 << 3)

self.send_reg(37, reg_37)
def set_reg_38(self):

reg_38 = (

self.X2sel_37to41 << 3)

self.send_reg(38, reg_38)
def set_reg_39(self):

reg_39 = (

self.X4sel_32t036 << 3)

self.send_reg(39, reg_39)
def set_reg_40(self):

reg_40 = (

self.X4sel_37t041 << 3)

self.send_reg(40, reg_40)
def set_reg_41(self):

reg_41 =(

self.X8sel_32t036 << 3)

self.send_reg(41, reg_41)
def set_reg_42(self):

reg_42 = (

self.X8sel_41 << 7|

self.X8sel_37t040 << 3)

self.send_reg(42, reg_42)
def set_reg_43(self):

reg_43 = (

self.qutx_fwd_180Cal_en << 7 |

self.qutx_fwd_0Cal_en << 6)

self.send_reg(43, reg_43)
def set_reg_48(self):

reg_48 = (

self.Ngt3_2 << 7|

self.NorNdiv4_2 << 0)

self.send_reg(48, reg_48)
def set_reg_49(self):

reg_49 = (

self.RorFrNpRdiv4_25t018 2 <<0)

self.send_reg(49, reg_49)
def set_reg_50(self):

reg_50 = (

self.RorFrNpRdiv4_17t010_ 2 <<0)

self.send_reg(50, reg_50)
def set_reg_51(self):

reg_51 =(

self.RorFrNpRdiv4_9to2 2 << 0)

self.send_reg(51, reg_51)
def set_reg_52(self):

reg_52 = (

self.RorFrNpRdiv4_1to0 2 << 6)

self.send_reg(52, reg_52)
def set_reg_53(self):

reg_53 =(

self.Qu_tx_Ngt3_ 2 << 7|

self.NorNdiv4_phsh_2 << 0)

self.send_reg(52, reg_53)
def set_reg_54(self):

reg_54 = (

self.RorFrNpRdiv4_phsh_25t018 2 << 0)
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self.send_reg(54, reg_54)

def set_reg_55(self):
reg_55 = (
self.RorFrNpRdiv4_phsh_17t010 2 << 0)
self.send_reg(55, reg_55)

def set_reg_56(self):
reg_56 = (
self.RorFrNpRdiv4_phsh_9to2 2 << 0)
self.send_reg(56, reg_56)

def set_reg_57(self):
reg_57 = (
self.RorFrNpRdiv4_phsh_1to0 2 << 6)
self.send_reg(57, reg_57)

def set_reg_58(self):
reg_58 = (
self.Passthru_ref clk_2 << 7 |
self.Byp_ram_2 << 6 |
self.Dis_adr_dith_2 << 5|
self.Dis_p5G_dith_2 << 4 |
self.Byp_fine_2 << 3|
self.Exclude32_2 << 2|
self.Dis_risedge_2 << 1|
self.Dis_faledge 2 << 0)
self.send_reg(58, reg_58)

def set_reg_60(self):
reg_60 = (
self.Spr_puls_en_2 << 7|
self.Spr_puls_val_a 9to3 2<<0)
self.send_reg(60, reg_60)

def set_reg_61(self):
reg_61 =(
self.Spr_pulse_val_2to0_2 << 5)
self.send_reg(61, reg_61)

def set_reg_62(self):
reg_62 = (
self.Spr_puls_val_b 9t02 2 <<0)
self.send_reg(62, reg_62)

def set_reg_63(self):
reg_63 = (
self.Spr_puls_val_b_1to0 2 <<6)
self.send_reg(63, reg_63)

def set_reg_64(self):
reg_64 = (
self. Thru_ris_en_2 << 7 |
self. Thru_ris_tap_11to6_2 << 1)
self.send_reg(64, reg_64)

def set_reg_65(self):
reg_65 = (
self.Thru_ris_tap_5to0_2 << 2)
self.send_reg(65, reg_65)

def set_reg_66(self):
reg_66 = (
self. Thru_fal_en_2 << 7|
self.Thru_fal tap_11to6 2<<1)
self.send_reg(66, reg_66)

def set_reg_67(self):
reg_67 = (
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self.Thru_fal_tap 5to0_2 << 2)
self.send_reg(67, reg_67)
def set_reg_68(self):
reg_68 = (
self.Dig_delay 2 << 7 |
self.Clk_driver_en_2 << 6 |
self.qu_reg_en 2<<5|
self.qq_reg_en 2 << 4|
self.win_rst_ 2 << 3|
self.fineEn_2 << 2 |
self.fineEnb_2 << 1 |
self.rsffEn_2 << 0)
self.send_reg(68, reg_68)
def set_reg_69(self):
reg_69 = (
self.dl_en_2 << 7|
self.cp_en_2 << 6 |
self.forceCpUpb_2 << 5|
self.forceCpDn_2 << 4 |
self.pdUpTune_1to0_2 << 2 |
self.pdDnTune_1to0 2 << 0)
self.send_reg(69, reg_69)
def set_reg_70(self):
reg_70 = (
self.cpUpTune_2to0_2 << 5|
self.cpDnTune_2to0_2 << 2 |
self.pdEn_2 << 1)
self.send_reg(70, reg_70)
def set_reg_71(self):
reg_71=(
self.digClkPhase_7to0_2 << 0)
self.send_reg(71, reg_71)
def set_reg_72(self):
reg_72 = (
self.Rst_n_async 2 <<7)
self.send_reg(72, reg_72)
def read_reg_73(self):
reg_73 = self.get_reg(73)
self.L1 lup00_15to8 2 =reg_73

def read_reg_74(self):
reg_74 = self.get_reg(74)
self.L1 lup90_15to8 2 =reg_74

def read_reg_75(self):
reg_75 = self.get_reg(75)
self.Merg_ris_fin_2=reg_75>>2

def read_reg_76(self):
reg_76 = self.get_reg(76)
self.Merg_fal_fin_2=reg_76 >>2

def set_reg_77(self):
reg_77 =(
self.Qg00degDelay 0Oto4 2 << 3)
self.send_reg(77, reg_77)

def set_reg_78(self):
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reg_78 = (
self.Qg90degDelay 0Oto4 2 << 3)
self.send_reg(78, reg_78)

def set_reg_79(self):
reg_79 = (
self.Qg180degDelay 0Oto4 2 << 3)
self.send_reg(79, reg_79)

def set_reg_80(self):
reg_80 = (
self.Qg270degDelay 0Oto4 2 << 3)
self.send_reg(80, reg_80)

def set_reg_81(self):
reg_81 = (
self.DischargeTapl6_3to0 << 4 |
self.ChargeTapl6_3to0 << 0)
self.send_reg(81, reg_81)

def set_reg_82(self):
reg_82 = (
self.DischargeTapn_3to0 << 4 |
self.ChargeTapnl6_3to0 << 0)
self.send_reg(82, reg_82)

def set_reg_83(self):
reg_83 =(
self.X1sel_32t039 2<<0)
self.send_reg(83, reg_83)

def set_reg_84(self):
reg_84 = (
self. X1sel_40to47 2<<0)
self.send_reg(84, reg_84)

def set_reg_85(self):
reg_85 = (
self.X2sel_32to36_2 << 3)
self.send_reg(85, reg_85)

def set_reg_86(self):
reg_86 = (
self.X2sel_37to4l 2<<3)
self.send_reg(86, reg_86)

def set_reg_87(self):
reg_87 =(
self.X4sel_32to36_2 << 3)
self.send_reg(87, reg_87)

def set_reg_88(self):
reg_88 = (
self.X4sel_37to41 2<<3)
self.send_reg(88, reg_88)

def set_reg_89(self):
reg_89 = (
self.X8sel_32t036_2 << 3)
self.send_reg(89, reg_89)

def set_reg_90(self):
reg_90 = (
self.X8sel_41 2 << 7|
self.X8sel_37to40 2 << 3)
self.send_reg(90, reg_90)

def set_reg_91(self):
reg_91 = (
self.qutx_fb_180Cal_en<< 7 |
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self.qutx_fb_0OCal_en << 6 |

self.qutx_fb_180Rsff en << 5|

self.qutx_fb_ORsff_en << 4)

self.send_reg(91, reg_91)
def set_reg_96(self):

reg_96 = (

self.N << 4|

self.R_11to8 << 0)

self.send_reg(96, reg_96)
def set_reg_97(self):

reg_97 = (

self.R_7to0 << 0)

self.send_reg(97, reg_97)
def set_reg_98(self):

reg_98 = (

self.Asyncrst_n << 7 |

self.Cp_sel _6to0 << 0)

self.send_reg(98, reg_98)
def set_reg_99(self):

reg_99 = (

self.Cp_sel_8to7 << 6 |

self.ForceFout << 5 |

self.ForceFoutb << 4 |

self.Out_en << 3|

self.DI_en << 2|

self.Ana_en<<1)

self.send_reg(99, reg_99)
def read_reg_100(self):

reg_100 = self.get_reg(100)

self.Decod_in_0deg =reg_100 >> 3

def set_reg_104(self):
reg_104 = (
self.Ngt3_3 << 7|
self.NorNdiv4_3 << 0)
self.send_reg(104, reg_104)

def set_reg_105(self):
reg_105 = (
self.RorFrNpRdiv4_25t018 3 <<0)
self.send_reg(105, reg_105)

def set_reg_106(self):
reg_106 = (
self.RorFrNpRdiv4_17t010_3<<0)
self.send_reg(106, reg_106)

def set_reg_107(self):
reg_107 = (
self.RorFrNpRdiv4_9t02_3<<0)
self.send_reg(107, reg_107)

def set_reg_108(self):
reg_108 = (
self.RorFrNpRdiv4_1to0_3<<6)
self.send_reg(108, reg_108)

def set_reg_109(self):
reg_109 = (
self.Qu_tx_Ngt3_3 << 7|
self.NorNdiv4_phsh_3 << 0)
self.send_reg(109, reg_109)
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def set_reg_110(self):
reg_110 = (
self.RorFrNpRdiv4_phsh_25t018 3 << 0)
self.send_reg(110, reg_110)

def set_reg_111(self):
reg_111 =(
self.RorFrNpRdiv4_phsh_17t010 3<<0)
self.send_reg(111, reg_111)

def set_reg_112(self):
reg_112 = (
self.RorFrNpRdiv4_phsh_9to2 3 <<0)
self.send_reg(112, reg_112)

def set_reg_113(self):
reg_113 =(
self.RorFrNpRdiv4_phsh_1to0_3 << 6)
self.send_reg(113, reg_113)

def set_reg_114(self):
reg_114 = (
self.Passthru_ref clk_3 << 7|
self.Byp_ram_3 << 6 |
self.Dis_adr_dith_3 << 5|
self.Dis_p5G_dith_3 << 4 |
self.Byp_fine_3 << 3|
self.Exclude32_3 << 2|
self.Dis_risedge_3 << 1|
self.Dis_faledge_3<<0)
self.send_reg(114, reg_114)

def set_reg_116(self):
reg_116 = (
self.Spr_puls_en_3 << 7|
self.Spr_puls_val_a 9to3 3<<0)
self.send_reg(116, reg_116)

def set_reg_117(self):
reg_117 = (
self.Spr_pulse_val_2to0_3<<5)
self.send_reg(117, reg_117)

def set_reg_118(self):
reg_118 = (
self.Spr_puls_val_b 9t02 3<<0)
self.send_reg(118, reg_118)

def set_reg_119(self):
reg_119 = (
self.Spr_puls_val_b_1to0_3<<6)
self.send_reg(119, reg_119)

def set_reg_120(self):
reg_120 = (
self. Thru_ris_en_3 << 7 |
self. Thru_ris_tap_11to6_3<<1)
self.send_reg(120, reg_120)

def set_reg_121(self):
reg_121 = (
self.Thru_ris_tap_5to0_3 << 2)
self.send_reg(121, reg_121)

def set_reg_122(self):
reg_122 = (
self. Thru_fal_en_3 << 7|
self. Thru_fal tap 11to6_3<<1)



self.send_reg(122, reg_122)
def set_reg_123(self):
reg_123 = (
self.Thru_fal_tap 5to0_3 << 2)
self.send_reg(123, reg_123)
def set_reg_124(self):
reg_124 = (
self.Dig_delay 3 << 7|
self.Clk_driver_en_3 << 6 |
self.qu_reg_en 3<<5|
self.qq_reg_en 3 << 4|
self.win_rst_3 << 3|
self.fineEn_3 << 2 |
self.fineEnb_3 << 1|
self.rsffEn_3 << 0)
self.send_reg(124, reg_124)
def set_reg_125(self):
reg_125 = (
self.dl_en_3<<7]|
self.cp_en_3<<6 |
self.forceCpUpb_3 << 5|
self.forceCpDn_3 << 4 |
self.pdUpTune_1to0_3 << 2 |
self.pdDnTune_1to0_3<<0)
self.send_reg(125, reg_125)
def set_reg_126(self):
reg_126 = (
self.cpUpTune_2to0_3 << 5|
self.cpDnTune_2to0_3 << 2 |
self.pdEn_3<<1)
self.send_reg(126, reg_126)
def set_reg_127(self):
reg_127 = (
self.digClkPhase_7to0_3 << 0)
self.send_reg(127, reg_127)
def set_reg_128(self):
reg_128 = (
self.Rst_n_async_3<<7)
self.send_reg(128, reg_128)
def read_reg_129(self):
reg_129 = self.get_reg(129)
self.L1 lupO0_15to8 3 =reg_ 129

def read_reg_130(self):
reg_130 = self.get_reg(130)
self.L1 lup90_15to8 3 =reg_ 130

def read_reg_131(self):
reg_131 = self.get_reg(131)
self.Merg_ris_fin_3 =reg_131>>2

def read_reg_132(self):
reg_132 = self.get_reg(132)
self.Merg_fal_fin_3=reg_132>>2

def set_reg_133(self):
reg_133 = (
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self.Qg00degDelay 0Oto4 3 << 3)
self.send_reg(133, reg_133)

def set_reg_134(self):
reg_134 = (
self.Qg90degDelay 0Oto4 3 << 3)
self.send_reg(134, reg_134)

def set_reg_135(self):
reg_135 = (
self.Qg180degDelay 0Oto4 3 << 3)
self.send_reg(135, reg_135)

def set_reg_136(self):
reg_136 = (
self.Qg270degDelay 0to4 3 << 3)
self.send_reg(136, reg_136)

def set_reg_137(self):
reg_137 = (
self.DischargeTapl6_0to3_3 << 4|
self.ChargeTapl6_0to3_3<<0)
self.send_reg(137, reg_137)

def set_reg_138(self):
reg_138 = (
self.DischargeTapn_0to3_3 << 4 |
self.ChargeTapnl6 0to3 3<<0)
self.send_reg(138, reg_138)

def set_reg_139(self):
reg_139 = (
self.X1sel_32t039 3<<0)
self.send_reg(139, reg_139)

def set_reg_140(self):
reg_140 = (
self.X1sel_40to47 3<<0)
self.send_reg(140, reg_140)

def set_reg_141(self):
reg_141 = (
self.X2sel_32t036_3 << 3)
self.send_reg(141, reg_141)

def set_reg_142(self):
reg_142 = (
self.X2sel_37to41 3<<3)
self.send_reg(142, reg_142)

def set_reg_143(self):
reg_143 = (
self.X4sel_32t036_3 << 3)
self.send_reg(143, reg_143)

def set_reg_144(self):
reg_144 = (
self.X4sel_37to41 3<<3)
self.send_reg(144, reg_144)

def set_reg_145(self):
reg_145 = (
self.X8sel_32to36_3<<3)
self.send_reg(145, reg_145)

def set_reg_146(self):
reg_146 = (
self.X8sel_41 3 << 7|
self.X8sel_37to40_3<<3)
self.send_reg(146, reg_146)
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def set_reg_147(self):

reg_147 = (

self.qurx_180Cal_en << 7 |

self.qurx_0Cal_en<<6)

self.send_reg(147, reg_147)
def set_reg_152(self):

reg_152 = (

self.extCIkEn << 7 |

self.extCIKEnBNOTD7 << 6 |

self.div2_rst<< 5|

self. TXChClkSel << 3)

self.send_reg(152, reg_152)
def set_reg_153(self):

reg_153 = (

self. TXChCIKEn << 5)

self.send_reg(153, reg_153)
def set_reg_156(self):

reg_156 = (

self.tx_bb_en<<7|

self.tx_bb_fdbk_bw << 5 |

self.tx_bb_fdbk_cal_en << 4 |

self.tx_bb_fdbk_cart_err_en << 3|

self.tx_bb_fdbk_cart fb_en << 2|

self.tx_bb_fdbk_cart fwd_en << 1)

self.send_reg(156, reg_156)
def set_reg_157(self):

reg_157 = (

self.tx_bb_fdbk_en << 6 |

self.tx_bb_fdbk_1q_sel << 5|

self.tx_bb_fdbk_Ip << 2)

self.send_reg(157, reg_157)
def set_reg_158(self):

reg_158 = (

self.tx_bb_fdbk_statt << 5 |

self.tx_bb_fdbk_swapi << 4 |

self.tx_bb_fdbk_swapqg << 3 |

self.tx_bb_gain_cmp << 2)

self.send_reg(158, reg_158)
def set_reg_159(self):

reg_159 = (

self.tx_bb Ip<<5]|

self.tx_bb_swapi << 4 |

self.tx_bb_swapq << 3 |

self.tx_butt_bw << 0)

self.send_reg(159, reg_159)
def set_reg_160(self):

reg_160 = (

self.tx_bw_trck << 4 |

self.tx_cart_en << 3)

self.send_reg(160, reg_160)
def set_reg_161(self):

reg_161 = (

self.tx_cart_fb_bb_statt << 3)

self.send_reg(161, reg_161)
def set_reg_162(self):

reg_162 = (

self.tx_cart_fb_dcoc_dac 11 <<2)



self.send_reg(162, reg_162)

def set_reg_163(self):
reg_163 = (
self.tx_cart_fb_dcoc_dac 12 << 2)
self.send_reg(163, reg_163)

def set_reg_164(self):
reg_164 = (
self.tx_cart_fb_dcoc_dac_Q1l << 2)
self.send_reg(164, reg_164)

def set_reg_165(self):
reg_165 = (
self.tx_cart_fb_dcoc_dac Q2 << 2)
self.send_reg(165, reg_165)

def set_reg_166(self):
reg_166 = (
self.CartesianFeedbackpathDCOCenable << 7 |
self.CartesianFeedbackpathenable << 6 |
self.CartesianFBpathHiResolutionDCOCenable << 5 |
self.CartesianFBpathBW << 1)
self.send_reg(166, reg_166)

def set_reg_167(self):
reg_167 = (
self.CartesianFBRFGain << 2 )
self.send_reg(167, reg_167)

def set_reg_168(self):
reg_168 = (
self.CartesianFBpathSwaplandIx << 7 |
self.CartesianFBpathSwapQandQx << 6 |
self.CartesianFBpathSwitchtoforwardSummer << 5 |
self.tx_cart_fb_lo_select << 0)
self.send_reg(168, reg_168)

def set_reg_169(self):
reg_169 = (
self.CartesianFBpathAmplGain << 6 |
self.CartesianFBpathAmp2Gain << 4 |
self.CartesianFBpathAmp3Gain << 2 |
self.CartesianFBpathAmp4Gain << 0)
self.send_reg(169, reg_169)

def set_reg_170(self):
reg_170 = (
self.CartesianFBpathAmpCurrentSelect << 5 |
self.CartesianFBpathZeroEnable << 4 |
self.tx_cart_zero_statt << 0)
self.send_reg(170, reg_170)

def set_reg_171(self):
reg_171=(
self.tx_inbuf_bw << 6 |
self.tx_inbuf_statt << 3)
self.send_reg(171, reg_171)

def set_reg_172(self):
reg_172 = (
self.tx_output_channel_sel << 5)
self.send_reg(172, reg_172)

def set_reg_173(self):
reg_173 =(
self.tx_pl bw<<4|
self.tx_pw_bwl << 2)
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self.send_reg(173, reg_173)
def set_reg_174(self):

reg_174 = (

self.tx_p2_bw2 << 4|

self.PushPullBufferCurrent << 1)

self.send_reg(174, reg_174)
def set_reg_175(self):

reg_175 = (

self.tx_rf_aoc_bw << 6 |

self. RFForwardPathEnable_toMUX << 5 |

self. RFForwardPathEnable_ExternalPinenable << 4 |

self.tx_rf fwd_Ip<<1)

self.send_reg(175, reg_175)
def set_reg_176(self):

reg_176 = (

self.tx_rf_fwd_stattl << 5 |

self.tx_rf fwd_statt2 << 2)

self.send_reg(176, reg_176)
def set_reg_177(self):

reg_177 = (

self.BBQDivideby2or4Select << 7 |

self. BBQQuadGenEnable << 6 |

self.BBQPolyphaseQuadGenEnable << 5)

self.send_reg(177, reg_177)
def set_reg_178(self):

reg_178 = (

self.lofb_tun_s << 4|

self.lofb_tun_sx << 0)

self.send_reg(178, reg_178)
def set_reg_179(self):

reg_179 = (

self.lofw_tun_s2 << 4 |

self.lofw_tun_sx2 << 0)

self.send_reg(179, reg_179)
def set_reg_180(self):

reg_180 = (

self.reserve_tx26 << 0)

self.send_reg(180, reg_180)
def set_reg_181(self):

reg_181 = (

self.reserve_tx27 << 0)

self.send_reg(181, reg_181)
def set_reg_192(self):

reg_192 = (

self.rx_Idac << 3 |

self.rx_dcs << 1 |

self.rx_den <<0)

self.send_reg(192, reg_192)
def set_reg_193(self):

reg_193 = (

self.rx_Qdac << 3|

self.rx_cmpen << 1 |

self.rx_dcoc << 0)

self.send_reg(193, reg_193)
def set_reg_194(self):

reg_194 = (

self.rx_ten << 7 |
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self.rx_ren << 6 |

self.rx_dven << 4 |

self.rx_dv<<0)

self.send_reg(194, reg_194)
def set_reg_195(self):

reg_195 = (

self.rx_extc << 7 |

self.rx_cen<<4|

self.rx_chck << 2 |

self.rx_chcken << 1|

self.rx_fen<<0)

self.send_reg(195, reg_195)
def set_reg_196(self):

reg_196 = (

self.rx_onchen << 7 |

self.rx_offchen << 6 |

self.rx_foe << 0)

self.send_reg(196, reg_196)
def set_reg_197(self):

reg_197 = (

self.rx_offch << 5 |

self.rx_onchf << 3 |

self.rx_onchc << 1)

self.send_reg(197, reg_197)
def set_reg_198(self):

reg_198 = (

self.rx_qgs << 5|

self.rx_bgg << 3|

self.rx_rqg<<0)

self.send_reg(198, reg_198)
def set_reg_199(self):

reg_199 = (

self.rx_rv << 5|

self.rx_rip << 2 |

self.rx_rfp << 0)

self.send_reg(199, reg_199)
def set_reg_200(self):

reg_200 = (

self.rx_cp_12to8 << 3 |

self.rx_gs << 0)

self.send_reg(200, reg_200)
def set_reg_201(self):

reg_201 = (

self.rx_cp_7to0 << 0)

self.send_reg(201, reg_201)
def set_reg_202(self):

reg_202 = (

self.rx_cv_10to3 << 0)

self.send_reg(202, reg_202)
def set_reg_203(self):

reg_203 = (

self.rx_cv_2to0 << 5 |

self.rx_cc_2to0 << 2 |

self.rx_cq_9to8 << 0)

self.send_reg(203, reg_203)
def set_reg_204(self):

reg_204 = (
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self.rx_cq_7to0 << 0)

self.send_reg(204, reg_204)
def set_reg_205(self):

reg_205 = (

self.rx_Ina << 5|

self.rx_Inab << 3 |

self.rx_rxchen << 2 |

self.rx_bbq_div2or4 << 1 |

self.rx_Loselect << 0)

self.send_reg(205, reg_205)
def set_reg_206(self):

reg_206 = (

self.poly_en<<7)

self.send_reg(206, reg_206)
def set_reg_207(self):

reg_207 = (

self.lorx_tun_s << 4|

self.lorx_tun_sx << 0)

self.send_reg(207, reg_207)
def read_reg_208(self):

reg_208 = self.get_reg(208)

self.rx_Icmpo =reg_208 >>5

self.rx_lodac = reg_208 % 64

def read_reg_209(self):
reg_209 = self.get_reg(209)
self.rx_Qcmpo =reg_209 >>5
self.rx_Qodac = reg_209 % 64

def read_reg_210(self):
reg_210 = self.get_reg(210)
self.rx_rc =reg_210

def set_reg_220(self):
reg_220 = (
self.shft_cml_in << 7 |
self.vagenablel << 6 |
self.vagenable2 << 5)
self.send_reg(220, reg_220)
def set_reg_222(self):
reg_222 = (
self. TestMuxBufferEnable << 7 |
self. TestMuxEnable << 6 |
self. TestMuxSetting << 0 )
self.send_reg(222, reg_222)

#The SPI format is 8 bits, plus a two-byte header
# The format is:

# Byte sent on MOSI Bit  Description

# _____________________

#1 7 Not W - Read/write indicator, where 0 indi cates
# a write and 1 indicates a read

# 6-0  Upper 7 bits of the register address

=

#2 7-1  Lower 7 bits of the register address



# 0 If 1, will disable the auto-increment of the

# register address.

=

#3,...,n+3 7-0  Optionally n words of write dat a byte

#

# Byte sent on MISO Bit  Description

S

#1 7-0 Read data returned that was read during

# the last transfer

=

#2 7-0  0s will be forced

S

#3,...,n+3 7-0  Optionally n words of read data byte

#Send register read to SPI, get result

# _read_spi()

#Type Sub Function

#Description Read data from SPI bus peripheral.

# Return the data read if successful, else a zero length
string.

#Usage usrp.source_x._read_spi(optional_h eader, enables,
format, len)

# optional_header : 0,1 or 2 bytes to write before buf.

#Parameters

# enables : bitmask of peripherals to write

# format : transaction format. SPI_FMT_*

# len : number of bytes to read.#

#Write register to SPI

#Type Sub Function

#Description Write data to SPI bus peripheral.

# SPI == "Serial Port Interface". SPlisa 3w ire bus plus a
separate enable for each

# peripheral. The common lines are SCLK,SDI an d SDO. The FX2
always drives SCLK

# and SDI, the clock and data lines from the F X2 to the
peripheral. When enabled, a

# peripheral may drive SDO, the data line from the peripheral
to the FX2.

# The SPI_READ and SPI_WRITE commands are form atted
identically.

# Each specifies which peripherals to enable, whether the bits
should be transmistted Most

# Significant Bit first or Least Significant B it first, the
number of bytes in the optional

# header, and the number of bytes to read or w rite in the body.

# The body is limited to 64 bytes. The optiona | header may
contain 0, 1 or 2 bytes. For an

# SPI_WRITE, the header bytes are transmitted to the peripheral
followed by the the body

# bytes. For an SPI_READ, the header bytes are transmitted to

the peripheral, then len
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# bytes are read back from the peripheral.(see
usrp_spi_defs.h file). If format specifies

# that optional_header bytes are present, they
the peripheral immediately

# prior to writing buf.

# Return true if successful. Writes are limite
64 bytes.

#Usage usrp.source_x._write_spi(optional_hea
buf)

#Parameters optional_header: 0,1 or 2 bytes to wr

# enables: bitmask of peripherals to write.

# format: transaction format. SPI_FMT_*

# buf : the data to write#

def send_reg(self, regnum, dat):
#Send 16 bit header over SPI to send register num
#Write 8 bit register
#Set first byte of header
#hdr_hi = int( (regnum >> 7) & 0x7f)
#Set second byte of header
#hdr_lo = int( (regnum << 1) & 0xff)
#Set full two-byte header
#hdr = ((hdr_hi << 8) + hdr_lo) & Ox7fff

hdr = int( (regnum << 1) & 0x7ffe)

#Set byte of write data

s = chr(dat & Oxff)

#Send data over SPI

self.u._write_spi(hdr, self.spi_enable, self.spi_
print 'RFIC4: Writing register %d with %d' % (reg

def get_reg(self, regnum):
#Send 16 bit header over SPI to send register num
#Read 8 bit register
#Set first byte of header
#hdr_hi = chr( ( (regnum >>7) + (1 << 7)) & Oxf
#Set second byte of header
#hdr_lo = chr( (regnum << 1) & 0xff)
#Set full two-byte header
#hdr = ((hdr_hi << 8) + hdr_lo) & Oxffff

#Send data over SPI, get register contents
#r = self.u._read_spi(hdr, self.spi_enable, self.

# First set register zero, to set the SPI registe
zero, then get all registers, then return desired r

# Get data to set register zero
dat = self.Ngt3 << 7 | self.NorNdiv4 << 0

r = self.u._write_spi(0, self.spi_enable, self.sp
chr(dat & 0xff))

# Get all registers, no header required
read = self.u._read_spi(0, self.spi_enable,
self.spi_format_no_header, 64)

are written to

d to a maximum of
der, enables, format,

ite before buf.

ber

format, s)
num, dat)

ber

spi_format, 1)

r number to
egister as integer

i_format,
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read = read + self.u._read_spi(0, self.spi_enable
self.spi_format_no_header, 64)

read = read + self.u._read_spi(0, self.spi_enable
self.spi_format_no_header, 64)

read = read + self.u._read_spi(0, self.spi_enable
self.spi_format_no_header, 64)

read = read + self.u._read_spi(0, self.spi_enable
self.spi_format_no_header, 64)

# Return desired register as integer
r = ord(read[regnum])

print 'RFIC4: Reading register %d' % (regnum)
return r

#
# These methods control the GPIO bus. Since the b
# both the io_rx_* and io_tx_* pins, we define our

so.
# This bypasses any code in db_base.
#
# The board operates in ATR mode, always. Thus, w
first
# initialized, it is in receive mode, until bits s
FIFO.

#
def rx_write_oe(self, value, mask):

return self.u._write_fpga_reg((FR_OE_1, FR_OE_3)[

gru.hexint((mask << 16) | value))

def rx_write_io(self, value, mask):

return self.u._write_fpga_reg((FR_IO_1, FR_IO_3)[

gru.hexint((mask << 16) | value))

def rx_read_io(self):

oard has to access
own methods to do

hen the board is

how up in the TX

self.which],

self.which],

t = self.u._read_fpga_reg((FR_RB_I0_RX_A_IO_TX A,

FR_RB_IO_RX_B_10_TX_B)[self.which])
return (t >> 16) & Oxffff

def rx_set_atr_mask(self, v):
#print 'Set mask to %s' % (v)
return
self.u._write_fpga_reg((FR_ATR_MASK_1,FR_ATR_MASK 3
gru.hexint(v))

def rx_set_atr_txval(self, v):
#print 'Set TX value to %s' % (V)
return
self.u._write_fpga_reg((FR_ATR_TXVAL_1,FR_ATR_TXVAL
gru.hexint(v))

def rx_set_atr_rxval(self, v):
#print 'Set RX value to %s' % (v)
return
self.u._write_fpga_reg((FR_ATR_RXVAL_1,FR_ATR_RXVAL
gru.hexint(v))

)[self.which],

_3)[self.which],

_3)[self.which],
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#
# These methods set control the high-level operati

def set_rx_gain(self, gain):

# Set RX gain

# @param gain: gain in dB

# Four parameters: self.rx_bqg, self.rx_dcs, self
self.rx_rip

# 1 to 39 dB of gain (0 to 38)

# Not all steps available

if gain < 0.0: gain = 0.0

if gain > 38.0: gain = 38.0

if gain <= 3:
self.rx_bgqg =3 #reg 198
self.rx_dcs=0  #reg 192
self.rx_gs=4 #reg 200
self.rx_rip=4  #reg 199

elif gain >= 3 and gain < 4:
self.rx_bqg =3
self.rx_dcs =0
self.rx_gs=4
self.rx_rip =3

elif gain >= 4 and gain < 5:
self.rx_bqg =3
self.rx_dcs=0
self.rx_gs=2
self.rx_rip=4

elif gain >=5 and gain < 6:
self.rx_bgg =3
self.rx_dcs=0
self.rx_gs =3
self.rx_rip=3

elif gain >= 6 and gain < 7:
self.rx_bgg =3
self.rx_dcs=0
self.rx_gs=4
self.rx_rip =2

elif gain >= 7 and gain < 8:
self.rx_bqg =3
self.rx_dcs =0
self.rx_gs=2
self.rx_rip =3

elif gain >= 8 and gain < 9:
self.rx_bgg =3
self.rx_dcs =0
self.rx_gs =3
self.rx_rip =2

elif gain >= 9 and gain < 10:

ng parameters.

IX_gs,
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self.rx_bgg =3
self.rx_dcs =0
selfrx_gs=1
self.rx_rip =3

elif gain >= 10 and gain < 11:

self.rx_bqgg =3
self.rx_dcs=0
self.rx_gs=2
self.rx_rip =2

elif gain >= 11 and gain < 12:

self.rx_bqg =3
self.rx_dcs =0
self.rx_gs=0
self.rx_rip =3

elif gain >= 12 and gain < 13:

self.rx_bqgg =2
self.rx_dcs =0
self.rx_gs=4
self.rx_rip =2

elif gain >= 13 and gain < 14:

self.rx_bgg =3
self.rx_dcs =0
self.rx_gs=2
self.rx_rip=1

elif gain >= 14 and gain < 15:

self.rx_bqg =3
self.rx_dcs =0
self.rx_gs=0
self.rx_rip =2

elif gain >= 15 and gain < 16:

self.rx_bqgg =2
self.rx_dcs =0
selfrx_gs=1
self.rx_rip =3

elif gain >= 16 and gain < 17:

self.rx_bqgg =2
self.rx_dcs=0
self.rx_gs=2
self.rx_rip =2

elif gain >= 17 and gain < 18:

self.rx_bgg =3
self.rx_dcs =0
self.rx_gs=0
self.rx_rip =2

elif gain >= 18 and gain < 19:

self.rx_bgg =3
self.rx_dcs =0
selfrx_gs=1
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self.rx_rip=0

elif gain >= 19 and gain < 20:

self.rx_bqgg =2
self.rx_dcs =0
self.rx_gs=2
self.rx_rip=1

elif gain >= 20 and gain < 21:

self.rx_bqg =3
self.rx_dcs =0
self.rx_gs=0
self.rx_rip=0

elif gain >= 21 and gain < 22:

self.rx_bqgg =2
self.rx_dcs =0
selfrx_gs=1
selfrx_rip=1

elif gain >= 22 and gain < 23:

self.rx_bqgg=1
self.rx_decs =1
self.rx_gs=2
self.rx_rip =2

elif gain >= 23 and gain < 24:

self.rx_bqgg =2
self.rx_dcs=0
self.rx_gs=0
self.rx_rip=1

elif gain >= 24 and gain < 25:

self.rx_bgg =1
self.rx_des=1
selfrx_gs=1
self.rx_rip =2

elif gain >= 25 and gain < 26:

self.rx_bgg =1
self.rx_dcs=1
self.rx_gs=2
self.rx_rip=1

elif gain >= 26 and gain < 27:

self.rx_bgg =1
self.rx_des=1
self.rx_gs=3
self.rx_rip=0

elif gain >= 27 and gain < 28:

self.rx_bgg =1
self.rx_decs =1
selfrx_gs=1
selfrx_rip=1

elif gain >= 28 and gain < 29:
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self.rx_bgg =1
self.rx_dcs =1
self.rx_gs=2
self.rx_rip=0

elif gain >= 29 and gain < 30:

self.rx_bgg=1
self.rx_decs=1
self.rx_gs=0
self.rx_rip=1

elif gain >= 30 and gain < 31.:

self.rx_bqgg =1
self.rx_des =1
selfrx_gs=1
self.rx_rip=0

elif gain >= 31 and gain < 32:

self.rx_bgg =0
self.rx_dcs =3
self.rx_gs=2
self.rx_rip=1

elif gain >= 32 and gain < 33:

self.rx_bgg =1
self.rx_decs=1
self.rx_gs=0
self.rx_rip=0

elif gain >= 33 and gain < 34:

self.rx_bqg =0
self.rx_dcs =3
selfrx_gs=1
selfrx_rip=1

elif gain >= 34 and gain < 35:

self.rx_bqgg =0
self.rx_dcs =3
self.rx_gs=2
self.rx_rip=0

elif gain >= 35 and gain < 36:

self.rx_bqgg =0
self.rx_dcs =3
self.rx_gs=0
self.rx_rip=1

elif gain >= 36 and gain < 38:

self.rx_bgg =0
self.rx_dcs =3
selfrx_gs=1
self.rx_rip=0

elif gain >= 38:

self.rx_bgg =0
self.rx_dcs =3
self.rx_gs=0
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self.rx_rip=0

self.set_reg_198()
self.set_reg_192()
self.set_reg_200()
self.set_reg_199()

def set_tx_gain(self, gain):
# Set TX gain
# @param gain: output gain in dB
# Two parameters:
# self.tx_rf_fwd_stattl, self.tx_rf_fwd_statt2
# (45 dB of range)
#5 dB steps
if gain < 0.0: gain = 0.0
if gain > 45.0: gain = 45.0

if gain <= 2.5:
self.tx_rf fwd_stattl =7
self.tx_rf fwd_statt2 =7

elif gain > 2.5 and gain <= 7.5:
self.tx_rf fwd_stattl =3
self.tx_rf fwd_statt2 =7

elif gain > 7.5 and gain <= 12.5:
self.tx_rf fwd_stattl =1
self.tx_rf fwd_statt2 =7

elif gain > 12.5 and gain <= 17.5:
self.tx_rf fwd_stattl =3
self.tx_rf fwd_statt2 = 3

elif gain > 17.5 and gain <= 22.5:
self.tx_rf fwd_stattl =1
self.tx_rf fwd_statt2 = 3

elif gain > 22.5 and gain <= 27.5:
self.tx_rf fwd_stattl =0
self.tx_rf fwd_statt2 = 3

elif gain > 27.5 and gain <= 32.5:
self.tx_rf fwd_stattl =1
self.tx_rf fwd_statt2 =1

elif gain > 32.5 and gain <= 37.5:
self.tx_rf fwd_stattl =0
self.tx_rf fwd_statt2 =1

elif gain > 37.5 and gain <= 42.5:
self.tx_rf fwd_stattl =1
self.tx_rf fwd_statt2 =0

elif gain > 42.5:

self.tx_rf fwd_stattl =0
self.tx_rf fwd_statt2 =0
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self.set_reg_176()

def set_fb_gain(self, gain):
# Set Feedback path gain
# @param gain: output gain in dB
# parameters:

# self.CartesianFBpathAmp1Gain, self.CartesianFBp athAmp2Gain,
# self.CartesianFBpathAmp3Gain, self.CartesianFBp athAmp4Gain
# (40 dB of range)

#5 dB steps

# FIXME

if gain < 0.0: gain = 0.0
if gain > 40.0: gain = 40.0

if gain <= 2.5:
self.CartesianFBpathAmplGain = 3
self.CartesianFBpathAmp2Gain = 3
self.CartesianFBpathAmp3Gain = 3
self.CartesianFBpathAmp4Gain = 3

elif gain > 2.5 and gain <= 7.5:
self.CartesianFBpathAmplGain = 3
self.CartesianFBpathAmp2Gain = 3
self.CartesianFBpathAmp3Gain = 3
self.CartesianFBpathAmp4Gain = 1

elif gain > 7.5 and gain <= 12.5:
self.CartesianFBpathAmplGain = 3
self.CartesianFBpathAmp2Gain = 3
self.CartesianFBpathAmp3Gain = 1
self.CartesianFBpathAmp4Gain = 1

elif gain > 12.5 and gain <= 17.5:
self.CartesianFBpathAmplGain = 3
self.CartesianFBpathAmp2Gain = 1
self.CartesianFBpathAmp3Gain = 1
self.CartesianFBpathAmp4Gain = 1

elif gain > 17.5 and gain <= 22.5:
self.CartesianFBpathAmplGain = 1
self.CartesianFBpathAmp2Gain = 1
self.CartesianFBpathAmp3Gain = 1
self.CartesianFBpathAmp4Gain = 1

elif gain > 22.5 and gain <= 27.5:
self.CartesianFBpathAmplGain = 1
self.CartesianFBpathAmp2Gain = 1
self.CartesianFBpathAmp3Gain = 1
self.CartesianFBpathAmp4Gain = 0

elif gain > 27.5 and gain <= 32.5:
self.CartesianFBpathAmplGain = 1
self.CartesianFBpathAmp2Gain = 1
self.CartesianFBpathAmp3Gain = 0
self.CartesianFBpathAmp4Gain = 0
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elif gain > 32.5 and gain <= 37.5:
self.CartesianFBpathAmplGain = 1
self.CartesianFBpathAmp2Gain = 0
self.CartesianFBpathAmp3Gain = 0
self.CartesianFBpathAmp4Gain = 0

elif gain > 37.5:
self.CartesianFBpathAmplGain = 0
self.CartesianFBpathAmp2Gain = 0
self.CartesianFBpathAmp3Gain = 0
self.CartesianFBpathAmp4Gain = 0

self.set_reg_169()

def calc_freq_vars(self, Fclk, Fout):

#

#@param Fclk: Clock frequency of board (Hz)
#@type Fclk: float

#@param Fout: Desired clock frequency for one of

synthesizers (Hz)

synthesizers

#@type Fout: float
#
# Calculate RFIC register variables to set freque

# datal corresponds to Ngt, D7, a single bit

# data2 corresponds to NorNdiv4, D6-DO0, up to sev
# data3 corresponds to RorFrNpRdiv4, up to 26 bit
# D7-DO0, D7-DO, D7-D0, D7-D6

# Returns Ngt, NorNdiv4, RorFrNpRdiv4_25t018,

RorFrNpRdiv4_17t010,

# RorFrNpRdiv4_9to2, RorFrNpRdiv4_1to0

if (Fout > Fclk / 4):
NpR = (2 ** -26) * int(2 ** 26 * Fclk / Fout)
datal = 0;
data2 = int(floor(NpR))
data3 = int(2 ** 26 * (NpR - floor(NpR)))

else:
NpR = (2 ** -24) * int(2 ** 24 * Fclk / Fout)
datal =1
data2 = int(floor(NpR / 4))
data3 = int(2 ** 26 * (NpR / 4 - floor(NpR / 4))
Ngt = datal

NorNdiv4 = data2
RorFrNpRdiv4_25t018 = data3 >> 18
temp = data3 % (2 ** 18)
RorFrNpRdiv4_17t010 = temp >> 10
temp = data3 % (2 ** 10)
RorFrNpRdiv4_9to2 = temp >> 2
RorFrNpRdiv4_1to0 = data3 % (2 ** 2)

return (Ngt, NorNdiv4, RorFrNpRdiv4_25t018, RorFr

RorFrNpRdiv4_9to2, RorFrNpRdiv4_1to0)

def calc_phase_vars(self, Fclk, Fout, phsh):

#

three frequency

ncy of frequency

en bits
S

NpRdiv4_17t010,
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#@param Fclk: Clock frequency of board (Hz)
#@type Fclk: float
#@param Fout: Desired clock frequency for one of

synthesizers (Hz)

synthesizers

#@type Fout: float

#@param phsh: Desired phase shift in degrees
#@type phsh: float

#

# Calculate RFIC register variables to set phase

# datal is NGT3_phsh, D7, a single bit

# data2 is NorNdiv4_phsh, D6-DO0, up to 7 bits

# data3 is RorFrNpRdiv4_phsh, up to 26 bits

# D7-DO0, D7-DO, D7-D0, D7-D6

# Returns Ngt_phsh, NorNdiv4_phsh, RorFrNpRdiv4_2

# RorFrNpRdiv4_17t010_phsh, RorFrNpRdiv4_9to2_phs

RorFrNpRdiv4_1to0_phsh

NpR)

/2) * NpR)

RorFrNpRdiv4_17t0o10_phsh, RorFrNpRdiv4_9to2 phsh, R

if (Fout <= Fclk / 4):
mod1 = phsh - 360 * floor(phsh / 360)
NpR = (2 ** -24) * int(2 ** 24 * Fclk / Fout)
tmp = (1 + mod1 /360 /2) * NpR

else:
mod1 = phsh - 360 * floor(phsh / 360)
NpR = (2 ** -26) * int(2 ** 26 * Fclk / Fout)
tmp = (1 + mod1 /360 /2) * NpR

if (tmp < 4):

NpR_ph = (2 ** -26) * int(2 ** 26 * (1 + mod1 /

datal =0

data2 = int(floor(NpR_ph))

data3 = int(2 ** 26 * (NpR_ph - floor(NpR_ph)))
elif ((tmp >=4) and (tmp < 508)):

NpR_ph = (2 ** -24) * int(2 ** 24 * tmp)

datal =1

data2 = int(floor(NpR_ph / 4))

data3 =int(2 ** 26 * (NpR_ph / 4 - floor(NpR_ph
elif (tmp >= 508):

NpR_ph = (2 ** -24) * int(2 ** 24 * (1 + (mod1 -

datal =1
data2 = int(floor(NpR_ph / 4))
data3 = int(2 ** 26 * (NpR_ph / 4 - floor(NpR_ph

Ngt_phsh = datal

NorNdiv4_phsh = data2
RorFrNpRdiv4_25t018 phsh = data3 >> 18
temp = data3 % (2 ** 18)
RorFrNpRdiv4_17to10_phsh =temp >> 10
temp = data3 % (2 ** 10)
RorFrNpRdiv4_9to2_ phsh = temp >> 2
RorFrNpRdiv4_1to0_phsh = data3 % (2 ** 2)

return (Ngt_phsh, NorNdiv4_phsh, RorFrNpRdiv4_25t

three frequency

of frequency

5to18_ phsh,

h,
360/8) *
14)))
360) / 360
14)))

018 phsh,

orFrNpRdiv4_1to0_phsh)
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def set_rx_freq(self, target_freq):

DC in the IF.

#

#@param target_freq: desired receiver frequency i n Hz
#@returns (ok, actual_baseband_freq) where:

# okis True or False and indicates success or failure,

# actual_baseband_freq is the RF frequency that corresponds to
#

# Go through Quadrature Generation Initialization Sequence

#target_freq = target_freq + 4000000

if (target_freq <= 500000000):
# Below 500 MHz
print '‘Below 500 MHz, divide by 2'
# Use QUIET frequency divided by 2
#Step 1
self.X1sel_32to39 3=0
self.X1sel_40to47_3 =62
self.X2sel_32to36_3=0
self.X2sel_37to41 3=0
self.X4sel_32to36_3=0
self.X4sel_37to41 3=0

self.set_reg_139()
self.set_reg_140()
self.set_reg_141()
self.set_reg_142()
self.set_reg_143()
self.set_reg_144()

# Step 2
self.X1sel_40to47_3 =63

self.set_reg_140()

try_freq = target_freq * 2

elif ((target_freq > 500000000) and (target_freq <= 1000000000)):

# Between 500 MHz and 1 GHz
print 'Between 500 MHz and 1 GHz'
# Use QUIET frequency

# Step 1

self.X1sel _32t039 3=1

self. X1sel_40to47_3 =192
self.X2sel_32to36_3=0
self.X2sel_37to41 3=0
self.X4sel_32to36_3=0
self.X4sel_37to41 3=0

self.set_reg_139()
self.set_reg_140()
self.set_reg_141()
self.set_reg_142()
self.set_reg_143()
self.set_reg_144()

106



2000000000)):

# Step 2
self.X1sel _32to39 3 =73

self.set_reg_139()

# Step 3
self.X1sel_32t039 3 =201

self.set_reg_139()
try_freq = target_freq

# Set Quadrature Generator Charge/Discharge Taps
self.DischargeTapl6 _0to3_3=6
self.ChargeTapl6 0to3 3=7
self.DischargeTapn_0to3_3=0
self.ChargeTapnl6_0to3_3=5
# Set Quadrature Generator Delays
self.Qg00degDelay 0Oto4 3 =16
self.Qg90degDelay 0Oto4 3 =31
self.Qg180degDelay 0Oto4 3=0
self.Qg270degDelay 0Oto4 3 =31

self.set_reg_133()
self.set_reg_134()
self.set_reg_135()
self.set_reg_136()
self.set_reg_137()
self.set_reg_138()

elif ((target_freq > 1000000000) and (target_freq <=

# Between 1 GHz and 2 GHz

print '‘Between 1 GHz and 2 GHz, multiply by 2'
# Use QUIET multiplied by 2

#Step 1

self. X1sel_32t039 .
self.X1sel_40to47_.
self.X2sel_32t036__.
self.X2sel_37to41
self.X4sel_32t036__.
self.X4sel_37to41

WWwWwwww
L1 T 1 B | O
OQO~NOOOoO

self.set_reg_139()
self.set_reg_140()
self.set_reg_141()
self.set_reg_142()
self.set_reg_143()
self.set_reg_144()

# Step 2
self.X2sel_32to36_3=9

self.set_reg_141()
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4000000000)):

# Step 3
self.X2sel_32to36_3 =25

self.set_reg_141()

# Step 4
self.X2sel_32t036_3 =16

self.set_reg_141()
try_freq =target freq/ 2

# Set Quadrature Generator Charge/Discharge Taps
self.DischargeTapl6_0to3_3=9
self.ChargeTapl6_0to3 _3=3
self.DischargeTapn_0to3_3=3
self.ChargeTapnl6_0to3_3=5
# Set Quadrature Generator Delays
self.Qg00degDelay 0Oto4 3 =31
self.Qg90degDelay 0Oto4 3 =31
self.Qg180degDelay 0Oto4 3=0
self.Qg270degDelay 0Oto4 3 =31

self.set_reg_133()
self.set_reg_134()
self.set_reg_135()
self.set_reg_136()
self.set_reg_137()
self.set_reg_138()

elif ((target_freq > 2000000000) and (target_freq <=

#2104 GHz

print 'From 2 to 4 GHz, multiply by 4'

# Use QUIET frequency multiplied by 4
# Step 1

self.X1sel_32to39 3=0

self. X1sel_40to47 _3=0
self.X2sel_32to36_3=0
self.X2sel_37to41 3=0
self.X4sel_32t036_3=0
self.X4sel_37to41 3=7

self.set_reg_139()
self.set_reg_140()
self.set_reg_141()
self.set_reg_142()
self.set_reg_143()
self.set_reg_144()

# Step 2
self.X4sel_32to36_3=9

self.set_reg_143()

# Step 3
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self.X4sel_32to36_3 =25
self.set_reg_143()
try_freq = target_freq/ 4

# Set Quadrature Generator Charge/Discharge Taps
self.DischargeTapl6_0to3_3 =16
self.ChargeTapl6_0to3 _3=0
self.DischargeTapn_0to3 3 =7
self.ChargeTapnl6 0Oto3 3=7
# Set Quadrature Generator Delays
self.Qg00degDelay 0Oto4 3=0
self.Qg90degDelay 0Oto4 3 =31
self.Qg180degDelay 0Oto4 3=0
self.Qg270degDelay_0Oto4 3 =31

self.set_reg_133()
self.set_reg_134()
self.set_reg_135()
self.set_reg_136()
self.set_reg_137()
self.set_reg_138()

elif (target_freq > 4000000000):
# Above 4 GHz, doesn't work
return (False, target_freq)

# FIXME

"'# Above 4 GHz

print 'Above 4 GHz, multiply by 8'
# Use QUIET frequency multiplied by 8
# Step 1

self.X1sel_32to39 3=0
self.X1sel_40to47 _3=0
self.X2sel_32to36_3=0
self.X2sel_37to41 3=0
self.X4sel_32to36_3=0
self.X4sel_37to41 3=0
self.X8sel_32t036_3 =0
self.X8sel_ 41 3=0
self.X8sel_37t040 3=7

self.set_reg_139()
self.set_reg_140()
self.set_reg_141()
self.set_reg_142()
self.set_reg_143()
self.set_reg_144()
self.set_reg_145()
self.set_reg_146()

# Step 2
self.X8sel_32to36_3=9
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self.set_reg_145()

# Step 3
self.X8sel_32to36_3 =25

self.set_reg_145()

try_freq =target freq/8

# Set Quadrature Generator Charge/Discharge Taps

self.ChargeTapl6_0to3 3 =15
self.ChargeTapnl6_0Oto3 3 =15

self.DischargeTapl6_0to3_3

_3=6
self.DischargeTapnl16 0to3_3 =

4
self.set_reg_137()
self.set_reg_138()"

self.Foutrx = target_freq

(self.Ngt3_3, self.NorNdiv4_3, self.RorFrNpRdiv4_

self.RorFrNpRdiv4_17t010_3, self.RorFrNpRdiv4_9to2
self.RorFrNpRdiv4_1to0_3) = self.calc_freq_vars(sel

self.set_reg_104()
self.set_reg_105()
self.set_reg_106()
self.set_reg_107()
self.set_reg_108()

return (1, target_freq)
#FIXME -- How do | know if the RFIC successfully

desired frequency?#

def set_tx_freq(self, target_freq):

DC in the IF.

#

#@param target_freq: desired transmitter frequenc
#@returns (ok, actual_baseband_freq) where:

# ok is True or False and indicates success or

# actual_baseband_freq is the RF frequency that

#
# Go through Quadrature Generation Initialization

# FIXME
#target_freq = target_freq + 4000000
#target_freq = target_freq + 1000000

if (target_freq <= 500000000):
print '‘Below 500 MHz, divide by 2'
# Use QUIET frequency divided by 2
#Step 1
self.X1sel_32t039 =0

25t018_3,
31
f.Fclk, try_freq)

attained the

yin Hz

failure,
corresponds to

Sequence
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self.X1sel_40to47 = 62
self.X2sel_32to36 =0
self.X2sel_37to41 =0
self.X4sel_32t0o36 =0
self.X4sel_37to41 =0

self.set_reg_35()
self.set_reg_36()
self.set_reg_37()
self.set_reg_38()
self.set_reg_39()
self.set_reg_40()

# Step 2
self. X1sel_40to47 = 63

self.set_reg_36()
try_freq = target_freq * 2

elif ((target_freq > 500000000) and (target_freq <= 1000000000)):
print 'Between 500 MHz and 1 GHz'
# Use QUIET frequency
# Step 1
self.X1sel_32to39=1
self. X1sel_40to47 = 192
self.X2sel_32t036 =0
self.X2sel_37t041 =0
self.X4sel_32t036 =0
self.X4sel_37t041 =0

self.set_reg_35()
self.set_reg_36()
self.set_reg_37()
self.set_reg_38()
self.set_reg_39()
self.set_reg_40()

# Step 2
self.X1sel_32to39 =73

self.set_reg_35()

# Step 3
self. X1sel_32t039 = 201

self.set_reg_35()

try_freq = target_freq

# Set Quadrature Generator Charge/Discharge Taps and Delays
self.Qg00degDelay_0Oto4 = 15

self.Qg90degDelay_0Oto4 = 12

self.Qg180degDelay 0Oto4 = 3

self.Qg270degDelay_0to4 = 12

self.set_reg_29()
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2000000000)):

self.set_reg_30()
self.set_reg_31()
self.set_reg_32()

self.DischargeTapl6_0to3 =1
self.ChargeTapl6 0to3 =8
self.DischargeTapn_0to3 =7
self.ChargeTapnl6_0to3 =0

self.set_reg_33()
self.set_reg_34()

elif ((target_freq > 1000000000) and (target_freq

print 'Between 1 GHz and 2 GHz, multiply by 2'
# Use QUIET multiplied by 2

#Step 1

self.X1sel_32t039 =0

self.X1sel_40to47 =0

self.X2sel_32to36 =0

self.X2sel_37to41 =7

self.X4sel_32t036 =0

self.X4sel_37to41 =0

self.set_reg_35()
self.set_reg_36()
self.set_reg_37()
self.set_reg_38()
self.set_reg_39()
self.set_reg_40()

# Step 2
self.X2sel_32t036 =9

self.set_reg_37()

# Step 3
self.X2sel_32to36 = 25

self.set_reg_37()

# Step 4
#self.X2sel 32t036 = 16

#self.set_reg_37()
try_freq = target_freq/ 2

# Set Quadrature Generator Charge/Discharge Taps
self.Qg00degDelay 0Oto4 =7
self.Qg90degDelay 0to4 =8
self.Qg180degDelay 0Oto4 =7
self.Qg270degDelay _0Oto4 =5

self.set_reg_29()
self.set_reg_30()
self.set_reg_31()

and Delays
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4000000000)):

self.set_reg_32()

self.DischargeTapl6_0to3 =1
self.ChargeTapl6_0to3 = 13

self.DischargeTapn_0to3 = 3
self.ChargeTapnl6_0to3 =9

self.set_reg_33()
self.set_reg_34()

elif ((target_freq > 2000000000) and (target_freq

print '2-4 GHz, multiply by 4'

# Use QUIET frequency multiplied by 4
#Step 1

self.X1sel_32t039 =0
self.X1sel_40to47 =0
self.X2sel_32to36 =0
self.X2sel_37to41 =0
self.X4sel_32to36 =0
self.X4sel_37to41 =7

self.set_reg_35()
self.set_reg_36()
self.set_reg_37()
self.set_reg_38()
self.set_reg_39()
self.set_reg_40()

# Step 2
self.X4sel_32to36 = 9

self.set_reg_39()

# Step 3
self.X4sel_32t036 = 25

self.set_reg_39()
try_freq =target freq/ 4

# Set Quadrature Generator Charge/Discharge Taps
self.Qg00degDelay 0Oto4 =0
self.Qg90degDelay 0Oto4 = 17
self.Qg180degDelay 0Oto4 = 15
self.Qg270degDelay_0to4 = 20

self.set_reg_29()
self.set_reg_30()
self.set_reg_31()
self.set_reg_32()

self.DischargeTapl6_0to3 = 15
self.ChargeTapl6 0to3 =0

self.DischargeTapn_0to3 = 10

and Delays
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self.ChargeTapnl6_0to3 =8

self.set_reg 33()
self.set_reg 34()

elif (target_freq > 4000000000):
# Above 4 GHz, doesn't work
return (False, target_freq)

self.Fouttx = target_freq

(self.Ngt3, self.NorNdiv4, self.RorFrNpRdiv4_25to

self.RorFrNpRdiv4_17t010, self.RorFrNpRdiv4_9to2, s
self.calc_freq_vars(self.Fclk, try_freq)

self.set_reg_0()
self.set_reg_1()
self.set_reg_2()
self.set_reg_3()
self.set_reg_4()

return (1, target_freq)
#FIXME -- How do | know if the RFIC successfully

desired frequency?#

def set_fb_freq(self, target_freq):

DC in the IF.

#

#@param target_freq: desired transmitter frequenc
#@returns (ok, actual_baseband_freq) where:

# ok is True or False and indicates success or

# actual_baseband_freq is the RF frequency that

#
# Go through Quadrature Generation Initialization

if (target_freq <= 500000000):
print '‘Below 500 MHz, divide by 2'
# Use QUIET frequency divided by 2
#Step 1
self.X1sel_32t039 2=0
self. X1sel_40to47 2 =62
self.X2sel_32t036_2 =0
self.X2sel_37to41 2=0
self.X4sel_32t036_2 =0
self.X4sel_37to41 2=0

self.set_reg_83()
self.set_reg_84()
self.set_reg_85()
self.set_reg_86()
self.set_reg_87()
self.set_reg_88()

# Step 2
self.X1sel_40to47_2 = 63

18,
elf.RorFrNpRdiv4_1to0) =

attained the

yin Hz

failure,
corresponds to

Sequence
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2000000000)):

self.set_reg_84()
try_freq = target_freq * 2

elif ((target_freq > 500000000) and (target_freq
print '‘Between 500 MHz and 1 GHZ'
# Use QUIET frequency
# Step 1
self.X1sel _32t039 2=1
self. X1sel_40to47 2 =192
self.X2sel_32t036_2 =0
self.X2sel_37to41 2=0
self.X4sel_32t036_2 =0
self.X4sel_37to41 2=0

self.set_reg_83()
self.set_reg_84()
self.set_reg_85()
self.set_reg_86()
self.set_reg_87()
self.set_reg_88()

# Step 2
self. X1sel_32t039 2 =73

self.set_reg_83()

# Step 3
self. X1sel_32t039 2 =201

self.set_reg_83()

try_freq = target_freq

# Set Quadrature Generator Charge/Discharge Taps

# FIXME
#self.ChargeTapl6_0to3 2

_2=7
#self.ChargeTapnl6_0to3_2 =

5

#self.DischargeTapl6_0to3 2

_2=6
#self.DischargeTapnl16_0to3_2 =

0

#self.set_reg_81()
#self.set_reg_82()

elif ((target_freq > 1000000000) and (target_freq

print 'Between 1 GHz and 2 GHz, multiply by 2'

# Use QUIET multiplied by 2
# Step 1

self.X1sel_32t039
self.X1sel_40to47__
self.X2sel_32t036__
self.X2sel_37to41
self.X4sel_32t036__
self.X4sel_37to41

NNNNNN
LI I I T 1 I |
OO ~NOOoOOo

<= 1000000000)):
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4000000000)):

self.set_reg_83()
self.set_reg_84()
self.set_reg_85()
self.set_reg_86()
self.set_reg_87()
self.set_reg_88()

# Step 2
self.X2sel_32t036_2 =9

self.set_reg_85()

# Step 3
self.X2sel_32to36_2 =25

# Step 4
#self.X2sel_32t036 = 16

self.set_reg_85()
try_freq = target_freq/ 2

# Set Quadrature Generator Charge/Discharge Taps
# FIXME
#self.ChargeTapl6_0to3_2

_2=7
#self.ChargeTapnl6_0to3 2 =

8

#self.DischargeTapl6_0Oto3 2 =15
#self.DischargeTapnl6_0to3 2 =15

#self.set_reg_81()
#self.set_reg_82()

elif ((target_freq > 2000000000) and (target_freq <=

print '2-4 GHz, multiply by 4'

# Use QUIET frequency multiplied by 4
#Step 1

self.X1sel _32t039 2=0
self.X1sel_40to47 2=0
self.X2sel_32t036_2 =0
self.X2sel_37to41 2=0
self.X4sel_32t036_2 =0
self.X4sel_37to41 2=7

self.set_reg_83()
self.set_reg_84()
self.set_reg_85()
self.set_reg_86()
self.set_reg_87()
self.set_reg_88()

# Step 2
self.X4sel_32to36 2 =9

self.set_reg_87()
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# Step 3
self.X4sel_32to36_2 =25

self.set_reg_87()

try_freq = target_freq/ 4

# Set Quadrature Generator Charge/Discharge Taps

# FIXME
#self.ChargeTapl6_0Oto3 2 =15
#self.ChargeTapnl6_0Oto3 2 =15

#self.DischargeTapl6_0to3 2

_2=6
#self.DischargeTapnl6_0Oto3 2 =

4

#self.set_reg_81()
#self.set_reg_82()

elif (target_freq > 4000000000):
# Above 4 GHz, doesn't work
return (False, target_freq)

self.Foutfb = target_freq

(self.Ngt3_2, self.NorNdiv4_2, self.RorFrNpRdiv4_
self.RorFrNpRdiv4_17t010_2, self.RorFrNpRdiv4_9to2
self.RorFrNpRdiv4_1to0_2) = self.calc_freq_vars(sel

self.set_reg_48()
self.set_reg_49()
self.set_reg_50()
self.set_reg_51()
self.set_reg_52()

return (1, target_freq)
#FIXME -- How do | know if the RFIC successfully
desired frequency?#

def set_rx_phase(self, phsh):
#
#@param phsh: desired phase shift in degrees
#@returns (ok) where:
# ok is True or False and indicates success or
#

phsh = phsh % 360

if (self.Foutrx <= 500000000):
synth_freq = self.Foutrx * 2
elif ( (self.Foutrx > 500000000) and (self.Foutrx
1000000000)):
synth_freq = self.Foutrx
elif ( (self.Foutrx > 1000000000) and (self.Foutr
2000000000)):
synth_freq = self.Foutrx / 2
elif (self.Foutrx > 2000000000):
synth_freq = self.Foutrx / 4

25t018 2,
21
f.Fclk, try_freq)

attained the

failure
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(self.Qu_tx_Ngt3 3, self.NorNdiv4_phsh_3,
self.RorFrNpRdiv4_phsh_25t018_3, self.RorFrNpRdiv4_
self.RorFrNpRdiv4_phsh_9to2_3, self.RorFrNpRdiv4_ph
self.calc_phase_vars(self.Fclk, synth_freq, phsh)

self.set_reg_109()
self.set_reg_110()
self.set_reg_111()
self.set_reg_112()
self.set_reg_113()

return (1)

#FIXME -- How do | know if the RFIC successfully

desired phase?#

def set_tx_phase(self, phsh):
#
#@param phsh: desired phase shift in degrees
#@returns (ok) where:
# ok is True or False and indicates success or
#

phsh = phsh % 360

if (self.Fouttx <= 500000000):
synth_freq = self.Fouttx * 2
elif ( (self.Fouttx > 500000000) and (self.Fouttx
1000000000)):
synth_freq = self.Fouttx
elif ( (self.Fouttx > 1000000000) and (self.Foutt
2000000000)):
synth_freq = self.Fouttx / 2
elif (self.Fouttx > 2000000000):
synth_freq = self.Fouttx / 4

(self.Qu_tx_Ngt3 3, self.NorNdiv4_phsh_3,
self.RorFrNpRdiv4_phsh_25t018_3, self.RorFrNpRdiv4
self.RorFrNpRdiv4_phsh_9to2_3, self.RorFrNpRdiv4_ph
self.calc_phase_vars(self.Fclk, synth_freq, phsh)

self.set_reg_5()
self.set_reg_6()
self.set_reg_7()
self.set_reg_8()
self.set_reg_9()

#FIXME -- How do | know if the RFIC successfully

desired phase?#
return (1)

def set_fb_phase(self, phsh):
#
#@param phsh: desired phase shift in degrees
#@returns (ok) where:
# ok is True or False and indicates success or

phsh_17t010_3,
sh_1to0_3) =

attained the

failure

phsh_17to10_3,

sh_1to0_3) =

attained the

failure
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#
phsh = phsh % 360

if (self.Foutfb <= 500000000):
synth_freq = self.Foutfb * 2
elif ( (self.Foutfb > 500000000) and (self.Foutfb
1000000000)):
synth_freq = self.Foutfb
elif ( (self.Foutfb > 1000000000) and (self.Foutf
2000000000)):
synth_freq = self.Foutfb / 2
elif (self.Foutfb > 2000000000):
synth_freq = self.Foutfb / 4

(self.Qu_tx_Ngt3 3, self.NorNdiv4_phsh_3,
self.RorFrNpRdiv4_phsh_25t018_3, self.RorFrNpRdiv4_
self.RorFrNpRdiv4_phsh_9to2_3, self.RorFrNpRdiv4_ph
self.calc_phase_vars(self.Fclk, synth_freq, phsh)

self.set_reg_53()
self.set_reg_54()
self.set_reg_55()
self.set_reg_56()
self.set_reg_57()

#FIXME -- How do | know if the RFIC successfully

desired phase?#
return (1)

def set_rx_bw(self, bw):
#
#@param bw: desired bandwidth in Hz
#

# Available bandwidth: 4.25 kHz to 14 MHz (baseba

# FIXME

print 'Desired bandwidth: %s' % (bw)

if bw <= 5250:
# Set BW to 3.532 kHz
self.rx_rfp=3
self.rx_cp_12to8 = 31
self.rx_cp_7to0 = 240

self.rx_rv=7
self.rx_cv_10to3 = 254
self.rx_cv_2to0 =0

self.rx_rqg=7
self.rx_cq_9to8 = 3
self.rx_cq_7to0 = 240

elif bw > 5250 and bw <= 10500:
# Set BW to 7.065 kHz
self.rx_rfp=3
self.rx_cp_12to8 = 31
self.rx_cp_7to0 = 240

phsh_17t010_3,
sh_1to0_3) =

attained the

nd)
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selfrx_rv=5
self.rx_cv_10to3 = 254
self.rx_cv_2to0 =0

self.rx_rqg=5
self.rx_cq_9to8 = 3
self.rx_cq_7to0 = 240

elif bw > 10500 and bw <= 21000:
# Set BW to 14.130 kHz
self.rx_rfp =2
self.rx_cp_12to8 = 31
self.rx_cp_7to0 = 240

self.rx_rv=4
self.rx_cv_10to3 = 254
self.rx_cv_2to0 =0

self.rx_rqg=4
self.rx_cq_9to8 = 3
self.rx_cq_7to0 = 240

elif bw > 21000 and bw <= 42000:
# Set BW to 28.259 kHz
self.rx_rfp =2
self.rx_cp_12to8 = 15
self.rx_cp_7to0 = 240

self.rx_rv=3
self.rx_cv_10to3 = 254
self.rx_cv_2to0 =0

self.rx_rg=3
self.rx_cq_9to8 = 3
self.rx_cq_7to0 = 240

elif bw > 42000 and bw <= 84500:
# Set BW to 56.518 kHz
self.rx_rfp =2
self.rx_cp_12to8 =7
self.rx_cp_7to0 = 240

self.rx_rv=2
self.rx_cv_10to3 = 254
self.rx_cv_2to0 =0

self.rx_rqg=2
self.rx_cq_9to8 =3
self.rx_cq_7to0 = 240

elif bw > 84500 and bw <= 169500:
# Set BW to 113.036 kHz
self.rx_rfp =2
self.rx_cp_12to8 =3
self.rx_cp_7to0 = 240

self.rx_rv=1
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self.rx_cv_10to3 = 254
self.rx_cv_2to0 =0

selfrx_rg=1
self.rx_cq_9to8 = 3
self.rx_cq_7to0 = 240

elif bw > 169500 and bw <= 339000:
# Set BW to 226.072 kHz
self.rx_rfp =2
self.rx_cp_12to8 =1
self.rx_cp_7to0 = 240

selfrx_rv=1
self.rx_cv_10to3 = 126
self.rx_cv_2to0 =0

selfrx_rg=1
self.rx_cq_9t08 =1
self.rx_cq_7to0 = 240

elif bw > 339000 and bw <= 667000:
# Set BW to 452.145 kHz
self.rx_rfp=1
self.rx_cp_12to8 =1
self.rx_cp_7to0 = 240

self.rx_rv=0
self.rx_cv_10to3 = 254
self.rx_cv_2to0 =0

selfrx_rg=1
self.rx_cq_9to8 =0
self.rx_cq_7to0 = 240

elif bw > 667000 and bw <= 1356000:
# Set BW to 904.289 kHz
selfrx_rfp=1
self.rx_cp_12to8 =0
self.rx_cp_7to0 = 240

self.rx_rv=0
self.rx_cv_10to3 = 126
self.rx_cv_2to0 =0

selfrx_rq=0
self.rx_cq_9to8 = 3
self.rx_cq_7to0 = 240

elif bw > 1356000 and bw <= 2712500:
# Set BW to 1808.579 kHz
selfrx_rfp=1
self.rx_cp_12to8 =0
self.rx_cp_7to0 =112

self.rx_rv=0
self.rx_cv_10to3 = 62
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self.rx_cv_2to0 =0

self.rx_rg=0
self.rx_cq_9to8 =1
self.rx_cq_7to0 = 240

elif bw > 2712500 and bw <= 5425500:
# Set BW to 3617.157 kHz
self.rx_rfp=0
self.rx_cp_12to8 =0
self.rx_cp_7to0 =112

self.rx_rv=0
self.rx_cv_10to3 = 30
self.rx_cv_2to0 =0

self.rx_rg=0
self.rx_cq_9to8 =0
self.rx_cq_7to0 = 240

elif bw > 5425500 and bw <= 10851000:
# Set BW to 7234.315 kHz
self.rx_rfp=0
self.rx_cp_12to8 =0
self.rx_cp_7to0 = 48

self.rx_rv=0
self.rx_cv_10to3 = 14
self.rx_cv_2to0 =0

self.rx_rq=0
self.rx_cq_9to8 =0
self.rx_cq_7to0 =112

elif bw > 10851000:
# Set BW to 14468.630 kHz
self.rx_rfp=0
self.rx_cp_12to8 =0
self.rx_cp_7to0 =16

self.rx_rv=0
self.rx_cv_10to3 =6
self.rx_cv_2to0 =0

selfrx_rq=0
self.rx_cq_9to8 =0
self.rx_cq_7to0 = 48

self.set_reg_198()
self.set_reg_199()
self.set_reg_200()
self.set_reg_201()
self.set_reg_202()
self.set_reg_203()
self.set_reg_204()
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def set_tx_bw(self, bw):

#

#@param bw: desired bandwidth in Hz

#

# Available bandwidth: 6.25 kHz to 14+ MHz (baseb and)

# FIXME

print 'Desired bandwidth: %s' % (bw)

if bw <= 20000:
# Set BW to 12.5 kHz
selftx pl bw=3
self.tx_p2_bw2 =15

elif bw > 20000 and bw <= 37500:
# Set BW to 25 kHz
selftx pl bw=3
self.tx_p2_bw2 =7

elif bw > 37500 and bw <= 75000:
# Set BW to 50 kHz
self.tx_pl bw=3
self.tx_p2_bw2 =3

elif bw > 75000 and bw <= 150000:
# Set BW to 100 kHz
self.tx_pl bw=3
self.tx _p2 bw2=1

elif bw > 150000 and bw <= 425000:
# Set BW to 200 kHz
selftx pl bw=3
self.tx_p2_bw2 =0

elif bw > 425000 and bw <= 1125000:
# Set BW to 750 kHz
selftx pl bw=1
self.tx_p2_bw2 =15

elif bw > 1125000 and bw <= 2250000:
# Set BW to 1.5 MHz
self.tx_pl bw=1
self.tx_p2_bw2 =7

elif bw > 2250000 and bw <= 4500000:
# Set BW to 3 MHz
selftx pl bw=1
self.tx_p2_bw2 =3

elif bw > 4500000 and bw <= 9000000:
# Set BW to 6 MHz
selftx pl bw=1
self.tx_p2_bw2 =1

elif bw > 9000000 and bw <= 13000000:
# Set BW to 12 MHz
self.tx_pl bw=1
self.tx_p2_bw2 =0
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elif bw > 13000000:
# Set BW to 14+ MHz
self.tx_pl bw=0
self.tx_p2_bw2 =0

self.set_reg_173()
self.set_reg_174()

def set_fb_bw(self, bw):
#

#@param bw: desired bandwidth in Hz
#
# Available bandwidth: 5 MHz to 14+ MHz (baseband )
# FIXME
print 'Desired bandwidth: %s' % (bw)
if bw <= 7500000:
# Set BW to 5 MHz
self.tx_bb_fdbk_bw =3

elif bw > 7500000 and bw <= 12000000:
# Set BW to 10 MHz
self.tx_bb_fdbk_bw =1

elif bw > 12000000:
# Set BW to 14+ MHz
self.tx_bb_fdbk_bw =0

self.set_reg_156()

def enable_tx_fb(self):
#
# Enable transmitter feedback to RX port for DC o ffset
correction, etc.
#
# FIXME
print 'Enabling Transmit Feedback’

# Disable RX Filter
self.rx_foe =0
self.set_reg_196()

# Enable Baseband Feedback, TX and Q viaRX | a nd Q
self.tx_bb_fdbk_en =3
self.set_reg_157()

# Disable Baseband Feedback Calibration
# FIXME
#self.tx_bb_fdbk_cal_ en=0

# Enable Baseband Feedback Cartesian Forward Path
self.tx_bb_fdbk cart fwd_en=1
self.set_reg_156()

# Enable Cartesian Feedback Path

self.tx_cart_en=1
self.set_reg_160()
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# Enable Cartesian Feedback
self.CartesianFeedbackpathenable = 1

# Enable Cartesian Feedback Path DCOC
self.CartesianFeedbackpathDCOCenable = 1
self.set_reg_166()

# Set Cartesian Feedback Path Amplifier Gain
self.CartesianFBpathAmplGain = 0
self.CartesianFBpathAmp2Gain = 0
self.CartesianFBpathAmp3Gain = 0
self.CartesianFBpathAmp4Gain = 0
self.set_reg_169()

# Enable Cartesian Feedback Path Zero
self.CartesianFBpathZeroEnable = 1
self.set_reg_170()

def disable_tx_fb(self):
#
# Disable transmitter feedback to RX port
#
# FIXME
print 'Disabling Transmit Feedback'

# Enable RX Filter
self.rx_foe=1
self.set_reg_196()

# Disable Baseband Feedback
self.tx_bb_fdbk_en =0
self.set_reg_157()

# Enable Baseband Feedback Calibration
# FIXME
#self.tx_bb_fdbk cal en=1

# Disable Baseband Feedback Cartesian Forward Pat h
self.tx_bb_fdbk_cart fwd_en =0
self.set_reg_156()

# Disable Cartesian Feedback Path
self.tx_cart_en=0
self.set_reg_160()

# Disable Cartesian Feedback
self.CartesianFeedbackpathenable = 0

# Disable Cartesian Feedback Path DCOC
self.CartesianFeedbackpathDCOCenable = 0
self.set_reg_166()

# Set Cartesian Feedback Path Amplifier Gain
self.CartesianFBpathAmplGain = 3
self.CartesianFBpathAmp2Gain = 3
self.CartesianFBpathAmp3Gain = 3
self.CartesianFBpathAmp4Gain = 3
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self.set_reg_169()

# Disable Cartesian Feedback Path Zero
self.CartesianFBpathZeroEnable = 0
self.set_reg_170()

def RSSl(self):

Test3, Test4)

Detector

# Return fade, clip from the two RX-side ADCs.
#@returns fade, clip

# variables proportional to how much fading (low
# or clipping (high signal strength) is going on

# Turn off test mux

self. TestMuxBufferEnable = 0 #Disable Test Mux Bu
self.TestMuxEnable = 0 #Disable Test Mux

self. TestMuxSetting = 0 #Four Output Description

self.set_reg_222()

# Turn on on-channel detectors

# Off-channel doesn't work - leave it off
self.rx_onchen = 1 #Enables on-channel detector.
self.rx_offchen = 0 #Disables off-channel detecto
self.set_reg_196()

# Set clip and fade thresholds
self.rx_offch = 1 #Sets the Clip Threshold for th

self.rx_onchf = 0 #Sets the Fade Threshold for th

Detector relative to the On-channel clip point.

Detector

self.rx_onchc = 2 #Sets the Clip Threshold for th
self.set_reg_197()
fade = self.u.read_aux_adc(self.which, 0)

clip = self.u.read_aux_adc(self.which, 1)
return (fade, clip)

class db_rfic_base(db_base. db_base):

#

#Abstract base class for all RFIC boards.

#

#Derive board specific subclasses from db_rfic_bas

#

def __init__(self, usrp, which):

respectively

#
#@param usrp: instance of usrp.source_c
#@param which: which side: 0 or 1 corresponding t

#@type which: int
#

#sets _u _which _tx and _slot
db_base.db_base. _init__ (self, usrp, which)

signal strength)

ffer

(Testl, Test2,

e Off-channel
e On-channel

e On-channel

e {tx,rx}

oside AorB

126



self.rfic = _get_or_make_rfic(usrp, which)
def __del__ (self):

#FIXME#
return True

def is_quadrature(self):

#

#Return True if this board requires both | and Q analog channels.

#

#This bit of info is useful when setting up the U SRP Rx mux
register.

#

return True

def freq_range(self):
# Return frequency range of RFIC daughterboard
#FIXME#
return (1e8, 2.5e6, 1e3)

class db_rfic_tx(db_rfic_base):
def __init__ (self, usrp, which):

#@param usrp: instance of usrp.sink_c

#@param which: 0 or 1 corresponding to side TX_A or TX_B,
respectively.

#

print "db_rfic_tx: __init___

db_rfic_base.__init__(self, usrp, which)

# Get digital block out of digital reset state
self.rfic.Rst_n_async =1
self.rfic.set_reg_24()

# Turn on forward baseband reference section
self.rfic.tx_bb_en=1

# FIXME

#self.rfic.set_reg_156()

# Unroutes the Cartesian error signal through the BB Correction
feedback

# FIXME

self.rfic.tx_bb_fdbk_cart_err_en=0

# Routes the Cartesian feedback signal through th e BB Correction
feedback

# FIXME

self.rfic.tx_bb_fdbk cart fb en=1

self.rfic.set_reg_156()

# Turn on baseband feedback section
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# FIXME
#self.rfic.tx_bb_fdbk_en =3
#self.rfic.set_reg_157()

# Turn on forward RF transmit path
self.rfic. RFForwardPathEnable_toMUX = 1
self.rfic.set_reg_175()

# Turn on Cartesian FB path switch to forward sum mer
self.rfic.CartesianFBpathSwitchtoforwardSummer = 1
self.rfic.set_reg_168()

# Turn on Cartesian zero
self.CartesianFBpathZeroEnable = 1
self.rfic.set_reg_170()

# Select TX output path, default tx1
# FIXME
#self.rfic.tx_output_channel_sel =2
self.rfic.tx_output_channel_sel =1
self.rfic.set_reg_172()

# Set TX Channel 1 Gain

# The gain control on TX channel 1 is controlled by this DAC

# The maximum voltage is 2.2 volts, which corresp onds to 2750

# This controls about 35 dB of gain ONLY ON TX 1

self.rfic.u.write_aux_dac(self.rfic.which, 3, 275 0)

# POR On. This enables the clock that drives the digital block
(which provides the tap selection process). It mus t be enabled to generate

an output. See Byp_fine, address 10, bit 6
self.rfic.Clk_driver_en=1

#POR On
self.rfic.qu_reg_en=1

# POR On
self.rfic.qg_reg_ en=1

# POR Off
self.rfic.win_rst =0

# POR On
self.rfic.fineEn =0

# POR Off
self.rfic.fineEnb = 1

# POR On
#self.rfic.rsffEn = 0

# POR On
self.rfic.dl_en=1

# POR On
self.rfic.cp_en=1
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self.rfic.set_reg_20()
self.rfic.set_reg_21()

def __del__ (self):

feedback

# print "rfic_base_tx.__del_'
# Power down

# Turn off output channel
self.rfic.tx_output_channel_sel =0
self.rfic.set_reg_172()

# Turn off forward RF transmit path

self.rfic. RFForwardPathEnable_toMUX = 0
self.rfic.set_reg_17

# Turn off forward baseband reference section
self.rfic.tx_bb_en=0

self.rfic.set_reg_156()

# Unroutes the Cartesian error signal through the

# FIXME
self.rfic.tx_bb_fdbk_cart_err en=0

# Unroutes the Cartesian feedback signal through

Correction feedback

self.rfic.tx_bb_fdbk_cart fo_ en=0
self.rfic.set_reg_156()

# Turn off Cartesian FB path switch to forward su

self.rfic. CartesianFBpathSwitchtoforwardSummer =

self.rfic.set_reg_168()

# Turn off Cartesian zero
self.CartesianFBpathZeroEnable = 0
self.rfic.set_reg_170()

# Turn off baseband feedback section
# FIXME

#self.rfic.tx_bb_fdbk_en =0
#self.rfic.set_reg_157()

# POR Off. This enables the clock that drives th

(which provides the tap selection process). It mus
an output. See Byp_fine, address 10, bit 6

self.rfic.Clk_driver_en=0

# POR Off
self.rfic.qu_reg_ en=0

# POR Off
self.rfic.qg_reg_en=0

# POR Off
self.rfic.win_rst =0

BB Correction

the BB

mmer

e digital block
t be enabled to generate
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# POR Off
self.rfic.fineEn =0

# POR Off
self.rfic.fineEnb = 0

# POR Off
#self.rfic.rsffEn =0

# POR Off
self.rfic.dl_en=0

# POR Off
self.rfic.cp_en=0

self.rfic.set_reg_20()
self.rfic.set_reg_21()

# Put digital block in digital reset state
self.rfic.Rst_n_async =0
self.rfic.set_reg_24()

db_rfic_base.__del__(self)

def select_tx_antenna(self, which_antenna):

#

#Specify which antenna port to use for transmissi

#@param which_antenna: either 'tx1', 'tx2' or 'tx

#

if which_antenna in (0, 'tx1"):
self.rfic.tx_output_channel_sel = 1
self.rfic.set_reg_172()

elif which_antenna in (1, 'tx2"):
self.rfic.tx_output_channel_sel = 2
self.rfic.set_reg_172()

elif which_antenna in (2, 'tx3"):
self.rfic.tx_output_channel_sel = 4
self.rfic.set_reg_172()

else:
raise ValueError, "which_antenna must be either

'tx2' or 'tx3™

dB

def gain_range(self):
# Gain range for transmitter, in dB, 0to 45 in i

return (0.0, 45.0, 5)

def set_gain(self, gain):
# Set transmit gain, in dB
return self.rfic.set_tx_gain(gain)

def set_freq(self, target_freq):
# Set transmit frequency, in Hz
return self.rfic.set_tx_freq(target_freq)

def set_phase(self, phase):
# Set transmit phase offset, in degrees

on.
3l

"tx1,

ncrements of 5
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return self.rfic.set_tx_phase(phase)

def set_bw(self, bw):
# Set transmit bandwidth, in Hz
return self.rfic.set_tx_bw(bw)

def spectrum_inverted(self):
# FIXME
# Return True if the dboard gives an inverted spe ctrum
return True
#return False

class db_rfic_rx(db_rfic_base):
def __init__ (self, usrp, which):

#

#@param usrp: instance of usrp.sink_c

#@param which: 0 or 1 corresponding to side TX_A or TX_B,
respectively.

#

print "db_rfic_rx: __init__"
db_rfic_base.__init__(self, usrp, which)

# Get digital block out of digital reset state
self.rfic.Rst_ n_async 3=1
self.rfic.set_reg_128()

# Set RX LNA port to LNA1 (SGO non-chopping mixer )
# FIXME

self.rfic.rx_Ina=1

#self.rfic.rx_Ina=5

# Set LNA bias
self.rfic.rx_Inab =1

# Enable LO clock to mixer
self.rfic.rx_rxchen =1

self.rfic.set_reg_205()

# Enable RX Filter
self.rfic.rx_fen =1

# Enable baseband filter chopper clock
self.rfic.rx_chcken = 1

# Enable chopper clock to all mixers
self.rfic.rx_cen =7

# Set chopper divide setting
# FIXME

#self.rfic.rx_chck =0
self.rfic.rx_chck =1

self.rfic.set_reg_195()
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# Enable filter output
self.rfic.rx_foe =1

# Enable on-channel detector
#self.rfic.rx_onchen =1

# Enable off-channel detector
#self.rfic.rx_offchen = 1

self.rfic.set_reg_196()

# Set BQ filter Q to 1.33
self.rfic.rx_gs =2

# Set BQ resistor value to 1.4 kohms
self.rfic.rx_rq=0

self.rfic.set_reg_198()

# Set VGA resistor value to 2.5 kohms
self.rfic.rx_rv=0

# Set PMA Rf resistor to 5 kohms
self.rfic.rx_rfp = 00

self.rfic.set_reg_199()

# Set compensation control
self.rfic.rx_cc =0

self.rfic.set_reg_203()

# Enable DCOC DAC
self.rfic.rx_den=1

self.rfic.set_reg_192()

# Enable DCOC comparator
self.rfic.rx_cmpen =1

self.rfic.set_reg_193()

# RC Tune enable
# FIXME
#self.rfic.rx_ten=1
self.rfic.rx_ten =0

# RC Tune ramp circuit enable
# FIXME

#self.rfic.rx_ren=1
self.rfic.rx_ren =0

# Select DCOC/RC Tune divider, divide by 8
self.rfic.rx_dv =3

self.rfic.set_reg_194()
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# Enable DCOC
self.rfic.rx_dcoc =1

self.rfic.set_reg_193()

# POR On. This enables the clock that drives the digital block
(which provides the tap selection process). It mus t be enabled to generate
an output. See Byp_fine, address 10, bit 6

self.rfic.Clk_driver_en_3=1

# POR On
self.rfic.qu_reg en 3=1

#POR On
self.rfic.qg_reg_en 3=1

# POR Off
self.rfic.win_rst 3=0

# POR On
self.rfic.fineEn_3 =0

# POR Off
self.rfic.fineEnb_3 =1

# POR Off
#self.rfic.rsffEn_3 =0

# POR On
self.rfic.dl_en_3=1

#POR On
self.rfic.cp_en_3=1

self.rfic.set_reg_124()
self.rfic.set_reg_125()

def __del__ (self):
# print "rfic_base_rx.__del
# Power down

# Set RX LNA path (off)
self.rfic.rx_Ina=0

# Disable LO clock to mixer
self.rfic.rx_rxchen =0

self.rfic.set_reg_205()

# Disable RX Filter
self.rfic.rx_fen=0

# Disable baseband filter chipper clock
self.rfic.rx_chcken =0
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# Disable chopper clock to all mixers
self.rfic.rx_cen=0

self.rfic.set_reg_195()

# Disable filter output
self.rfic.rx_foe =0

# Disable on-channel detector
self.rfic.rx_onchen =0

# Disable off-channel detector
self.rfic.rx_offchen =0

self.rfic.set_reg_196()

# Disable DCOC DAC
self.rfic.rx_den =0

self.rfic.set_reg_192()

# Disable DCOC comparator
self.rfic.rx_cmpen =0

self.rfic.set_reg_193()

# RC Tune disable
self.rfic.rx_ten =0

# RC Tune ramp circuit disable
self.rfic.rx_ren =0

self.rfic.set_reg_194()

# Disable DCOC
self.rfic.rx_dcoc =0

self.rfic.set_reg_193()

# POR Off. This enables the clock that drives th e digital block
(which provides the tap selection process). It mus t be enabled to generate
an output. See Byp_fine, address 10, bit 6

self.rfic.Clk_driver_en_3=0

# POR Off
self.rfic.qu_reg_ en_ 3=0

# POR Off
self.rfic.qqg_reg_en_3=0

# POR Off
self.rfic.win_rst 3=0

# POR Off
self.rfic.fineEn_3 =0

# POR Off
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self.rfic.fineEnb_3 =0

# POR Off
#self.rfic.rsffEn_3 =0

# POR Off
self.rfic.dl_en_3=0

# POR Off
self.rfic.cp_en_3=0

self.rfic.set_reg_124()
self.rfic.set_reg_125()

# Put digital block into digital reset state
self.rfic.Rst_n_async_ 3=0
self.rfic.set_reg_58()

db_rfic_base.__del__(self)

def select_rx_antenna(self, which_antenna):
#
#Specify which antenna port to use for reception.
#@param which_antenna: either 'LNA1', 'LNA2', 'LN A3', 'LNA4' or
'MIX5'
#
if which_antenna in (0, 'LNAL1"):
self.rfic.rx_lna=1
self.rfic.set_reg_205()
elif which_antenna in (1, 'LNA2":
self.rfic.rx_lna =2
self.rfic.set_reg_205()
elif which_antenna in (2, 'LNA3):
self.rfic.rx_Ina =3
self.rfic.set_reg_205()
elif which_antenna in (3, 'LNA4":
self.rfic.rx_Ina=4
self.rfic.set_reg_205()
elif which_antenna in (4, 'MIX5"):
self.rfic.rx_Ina=5
self.rfic.set_reg_205()
else:
raise ValueError, "which_antenna must be either 'LNAL',
'LNA2', 'LNA3', 'LNA4' or 'MIX5"

def gain_range(self):
# Receiver gain range, in dB
return (0.0, 38.0, 1)

def set_gain(self, gain):
# Set receiver gain, in dB
return self.rfic.set_rx_gain(gain)

def set_freq(self, target_freq):

# Set receiver frequency, in Hz
return self.rfic.set_rx_freq(target_freq)
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def set_phase(self, phase):
# Set receiver phase offset, in degrees
return self.rfic.set_rx_phase(phase)

def set_bw(self, bw):
# Set receiver bandwidth, in Hz
return self.rfic.set_rx_bw(bw)

def enable_fb(self):
# Enable transmitter feedback to receiver for DC
return self.rfic.enable_tx_fb()

def disable_fb(self):
# Disable transmitter feedback to receiver
return self.rfic.disable_tx_fb()

def fb_gain_range(self):
# Feedback gain range, in dB
# FIXME
return (0.0, 40.0, 5)

def set_fb_gain(self, gain):
# Set feedback gain, in dB
return self.rfic.set_fb_gain(gain)

def set_fb_freq(self, target_freq):
# Set feedback frequency, in Hz
return self.rfic.set_fb_freq(target_freq)

def set_fb_phase(self, phase):
# Set feedback phase offset, in degrees
return self.rfic.set_fb_phase(phase)

def set_fb_bw(self, bw):
# Set feedback bandwidth, in Hz
return self.rfic.set_fb_bw(bw)

def RSSI(self):
# Get received signal strength indicators
# Returns (fade, clip)
# Fade is proportional to how often the signal is
# Clip is proportional to how often the signal is
return self.rfic.RSSI()

H

# hook these daughterboard classes into the auto-in
db_instantiator.add(usrp_dbid.RFIC_TX, lambda usrp,
which),))

db_instantiator.add(usrp_dbid.RFIC_RX, lambda usrp,
which),))

offset, etc.

low
high

stantiation framework
which : (db_rfic_tx(usrp,

which : (db_rfic_rx(usrp,

136



Appendix B: RF Testing Procedure and Complete Results

Test 1: Noise Floor

Procedure:
1. Turn on HP 8648C Signal Generator (Agilent E4438Chigh-speed test). Wait one
hour for device to settle, to ensure correct catibn.
2. Boot host computer with GNU Radio 3.0.
3. Plug daughterboard under test into USRP, side #suEe that the boards fit together
securely and that the daughterboard is seated fiyope

Using USB 2.0 cable, connect USRP to host computer.

Using adapters, if necessary, connect signal gereRé output to RX input on

daughterboard, using coax cable.

6. If using RFIC daughterboard, edit daughterboardedrio default to desired RX input.
Open terminal and change directories to gnuradieggo/src and run “sudo make install”
to reinstall driver.

7. On host computer, open terminal and change direstto gnuradio/gnuradio-
examples/python/usrp/

8. On host computer, run “usrp_fft.py —d 256 —g <maxim» -f <frequency>"
(<maximum> is the maximum gain of the receivertod daughterboard, <frequency> is
the desired frequency — e.qg. to test the RFIC @tMBz, run “usrp_fft.py —d 256 —g 38 —
f 400M”). Change the usrp_fft plot window to talkge the whole screen, to see the
maximum resolution.

9. Set the frequency of the signal generator to tls@reld frequency plus 100 kHz (to avoid
DC offset, etc. and ensure the signal is easilplsn the usrp_fft plot)

10. Set the function of the signal generator to FMLGkHz. Turn off modulation sources.

11. Set the amplitude of the signal generator to Bthd

12.Turn on RF output of the signal generator.

13.0n usrp_fft plot, find signal from signal generator

14. Adjust amplitude and frequency of signal generalightly, to make sure the signal you
see is the one from the signal generator.

15.Reduce the amplitude of the signal generator yatilcannot see the signal anymore on
the usrp_fft plot.

16.Record the minimum amplitude, in dBm, from the sigyenerator, where the signal is
visible.

17.Increase the amplitude to 10 dB above the recoadgglitude.

18. Ensure that the signal appears to be 10 dB abevedise floor.

19.1f it is not, repeat steps 10 to 17. If it is,&hs the noise floor of the daughterboard under
test.

ok

Results:
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Table 10: Receiver Noise Floor Test, RFIC Input RX1

Receiver Noise Floor Test

Device Under
Test:

RFIC Daughterboard (Input RX1)

Test Equipment:

HP 8648C Signal Generator, USRRJ ®isdio 3.0

Spectrum usrp_fft.py Settings| Decimation Rate: 256
Analyzer (maximum)

Program: Gain: 38 dB (maximum)
Frequency Mode (synthesizer frequency Noise Floor
(MHz): multiplier): (dBm):

400 1/2x -132

900 1x -132

1800 2X -130

2400 4x -116

Table 11: Receiver Noise Floor Test, RFIC Input RX3

Receiver Noise Floor Test

Device Under RFIC Daughterboard (Input RX3)

Test:

Test Equipment: | HP 8648C Signal Generator, USRRJ ®&iddio 3.0
Spectrum usrp_fft.py Settings| Decimation Rate: 256
Analyzer (maximum)

Program: Gain: 38 dB (maximum)
Frequency Mode (synthesizer frequency Noise Floor
(MH2z): multiplier): (dBm):

400 1/2x -99

900 1x -102

1800 2X -102

2400 4x -92
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Table 12: Receiver Noise Floor Test, RFIC Input MIX

Receiver Noise Floor Test

Device Under
Test:

RFIC Daughterboard (Input MIX5)

Test Equipment:

HP 8648C Signal Generator, USRRJ ®isdio 3.0

Spectrum usrp_fft.py Settings| Decimation Rate: 256
Analyzer (maximum)

Program: Gain: 38 dB (maximum)
Frequency Mode (synthesizer frequency Noise Floor
(MHz): multiplier): (dBm):

400 1/2x -118

900 1x -118

1800 2X -118

2400 4x -101

Table 13: High-Frequency Receiver Noise Floor TR§IC Input RX1

High-Frequency Receiver Noise Floor Test

Device Under
Test:

RFIC Daughterboard (Input RX1)

Test Equipment:

Agilent E4458C Signal GeneratorRBSGNU Radio

3.0
Spectrum usrp_fft.py Settings| Decimation Rate: 256
Analyzer (maximum)
Program: Gain: 38 dB (maximum)
Frequency Mode (synthesizer frequency Noise Floor
(MH2z): multiplier): (dBm):
3000 4x -109
3500 4x -112
4000 4x -101
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Table 14: Receiver Noise Floor Test, RFX-Series

Receiver Noise Floor Test

Device Under
Test:

RFX-Series Daughterboards

Test Equipment:

HP 8648C Signal Generator, USRRJ ®isdio 3.0

Spectrum usrp_fft.py Settings| Decimation Rate: 256
Analyzer (maximum)

Program: Gain: maximum
Frequency RFX-Series Model Noise Floor
(MHz): (dBm):

400 RFX400 (max. gain: 65 dB) -135

900 RFX900 (max. gain: 90 dB) -126

1800 RFX1800 (max. gain: 90 dB) -116

2400 RFX2400 (max. gain: 90 dB) -105
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Test 2: [IP3

Procedure:

1. Turn on both HP 8648C Signal Generators. Waitlane for device to settle, to ensure
correct calibration.

2. Turn on HP 8594E Spectrum Analyzer. Wait one Houdevice to settle, to ensure
correct calibration.

3. Set spectrum analyzer to desired frequency, wipaam of 1 MHz.

4. Boot host computer with GNU Radio 3.0.

5. Plug daughterboard under test into USRP, side AsuEe that the boards fit together
securely and that the daughterboard is seated rhyope

6. Using USB 2.0 cable, connect USRP to host computer.

7. If using RFIC daughterboard, edit daughterboardedrio default to desired RX input.
Open terminal and change directories to gnuradieggo/src and run “sudo make install”
to reinstall driver.

8. Using adapters, if necessary, and a T-connectaonesz both signal generator RF outputs
to RX input on daughterboard, using coax cable.

9. On host computer, open terminal and change direstto gnuradio/gnuradio-
examples/python/usrp/

10.0n host computer, run “usrp_fft.py —d 256 —g Ofrequency>" (<frequency> is the
desired frequency — e.g. to test the RFIC at 40 Mth “usrp_fft.py —d 256 —g 0 —f
400M”). Change the usrp_fft plot window to takethp whole screen, to see the
maximum resolution.

11. Set the frequency of the signal generators to tieadesired frequency, 20 kHz apart.
E.qg., if the desired frequency is 400 MHz, set sigaal generator to 400.1 MHz and the
other to 400.12 MHz.

12. Set the function of the signal generators to FM,GakHz. Turn off modulation sources.

13. Set the amplitude of the signal generators todBf.

14.Turn on RF output of the signal generators.

15. Ensure that both signals are visible in usrp_ft.pl

16.Increase amplitude of both signal generators 8fitharmonic is clearly visible in
usrp_fft plot. Change frequencies of signal getoesaif necessary, making sure to keep
signals 20 kHz apart, to sed-Barmonic.

17.Turn off and on RF output of both signal genergtore at a time, while watching
usrp_fft plot to ensure that the signal in questsoa harmonic of both signals. Turn both
RF outputs back on.

18. Adjust frequency of one signal generator to ensiethe signal in question is at the
correct frequency (20 kHz from one of the signalegator signals).

19. Turn off RF outputs of both signal generators.

20.Unplug signal generators from daughterboard.

21.Plug signal generators into spectrum analyzer gusame T-connector and coax cable.

22.Turn on RF outputs of both signal generators. Miegvsignals on the spectrum analyzer,
adjusting the amplitude of the spectrum analyzeedessary. Adjust amplitudes of
signal generators until they are equal. Recosldmplitude, in dBm, aBy. This step
records the actual input power — the power disgldyethe signal generators will not be
accurate due to losses in the T-connector.
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23.Turn off RF outputs of both signal generators.
24.Unplug both signal generators from spectrum analyze

25.Plug both signal generators into daughterboard.

26.Turn on RF outputs of both signal generators.
27.Locate 3 harmonic on usrp_fft plot.

28.Adjust frequency and amplitude of one signal getoerta match those of thé’3

harmonic.

29.Turn off RF outputs of both signal generators.
30.Unplug both signal generators from daughterboard.
31.Plug both signal generators into spectrum analyzer.

32.Turn on RF output of signal generator at desireduiency and amplitude of'3

harmonic.

33.Record this amplitude, in dBm, on the spectrum yaeal asPs.

34.Use the following formula to solve f@¥ps. This is the IIP3 of the receiver

daughterboard.

Results:

Pn ¥ X=F +30x =R,

Table 15: Receiver 1IP3 Test, RFIC Input RX1

Receiver IIP3 Test

Device Under
Test:

RFIC Daughterboard (Input RX1)

Test Equipment:

HP 8648C Signal Generator (x2), BSENU Radio

3.0, HP 8594E Spectrum Analyzer

Spectrum usrp_fft.py Settings| Decimation Rate: 256
Analyzer (maximum)
Program: Gain: 0 dB

Frequency Offset: 20 kHz
Frequency Mode (synthesizer frequency [IP3 (dBm):
(MHz): multiplier):
400 1/2x 2.4
900 1x -4.8
1800 2X -2.7
2400 4x 1.3
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Table 16: Receiver 1IP3 Test, RFIC Input RX3

Receiver IIP3 Test
Device Under RFIC Daughterboard (Input RX3)
Test:
Test Equipment: | HP 8648C Signal Generator (x2), BSBNU Radio
3.0, HP 8594E Spectrum Analyzer
Spectrum usrp_fft.py Settings| Decimation Rate: 256
Analyzer (maximum)
Program: Gain: 0 dB
Frequency Offset: 20 kHz
Frequency Mode (synthesizer frequency [IP3 (dBm):
(MH2z): multiplier):
400 1/2x -15.3
900 1x -15.1
1800 2X -14.2
2400 4x -7.1

Table 17: Receiver 1IP3 Test, RFIC Input MIX5

Receiver IIP3 Test
Device Under RFIC Daughterboard (Input MIX5)
Test:
Test Equipment: | HP 8648C Signal Generator (x2), BSBNU Radio
3.0, HP 8594E Spectrum Analyzer
Spectrum usrp_fft.py Settings| Decimation Rate: 256
Analyzer (maximum)
Program: Gain: 0 dB
Frequency Offset: 20 kHz
Frequency Mode (synthesizer frequency [IP3 (dBm):
(MHz): multiplier):
400 1/2x -32.0
900 1x -24.8
1800 2X -24.8
2400 4x -18.2
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Table 18: Receiver IIP3 Test, RFX-Series

Receiver IIP3 Test

Device Under
Test:

RFX-Series Daughterboards

Test Equipment:

HP 8648C Signal Generator (x2), BSBNU Radio
3.0, HP 8594E Spectrum Analyzer

Spectrum usrp_fft.py Settings| Decimation Rate: 256
Analyzer (maximum)
Program: Gain: 0 dB

Frequency Offset: 20 kHz
Frequency RFX-Series Model: [IP3 (dBm):
(MH2z):
400 RFX400 0.8
900 RFX900 0.5
1800 RFX1800 -4.6
2400 RFX2400 1.0
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Test 3: 1IP2

Procedure:

1. Turn on both HP 8648C Signal Generators. Waitlane for device to settle, to ensure
correct calibration.

2. Turn on HP 8594E Spectrum Analyzer. Wait one Houdevice to settle, to ensure
correct calibration.

3. Set spectrum analyzer to desired frequency divine®, with a span of 2 MHz.

4. Boot host computer with GNU Radio 3.0.

5. Plug daughterboard under test into USRP, side AsuEe that the boards fit together
securely and that the daughterboard is seated rhyope

6. Using USB 2.0 cable, connect USRP to host computer.

7. If using RFIC daughterboard, edit daughterboardedrio default to desired RX input.
Open terminal and change directories to gnuradieggo/src and run “sudo make install”
to reinstall driver.

8. Using adapters, if necessary, and a T-connectaonesz both signal generator RF outputs
to RX input on daughterboard, using coax cable.

9. On host computer, open terminal and change direstto gnuradio/gnuradio-
examples/python/usrp/

10.0n host computer, run “usrp_fft.py —d 256 —g Ofrequency>" (<frequency> is the
desired frequency — e.g. to test the RFIC at 40 Mth “usrp_fft.py —d 256 —g 0 —f
400M”). Change the usrp_fft plot window to takethp whole screen, to see the
maximum resolution.

11. Set the frequency of the signal generators tothalfiesired frequency, plus 550 kHz and
minus 450 kHz. E.g., if the desired frequencyd® #Hz, set one signal generator to
199.55 MHz and the other to 200.55 MHz.

12. Set the function of the signal generators to FM,GakHz. Turn off modulation sources.

13. Set the amplitude of the signal generators todBf.

14.Turn on RF output of the signal generators.

15. Increase amplitude of both signal generators @fftiharmonic is clearly visible in
usrp_fft plot. Change frequencies of signal getoesaif necessary, making sure to keep
signals 1 MHz apart, to se&%harmonic.

16. Turn off and on RF output of both signal genergtore at a time, while watching
usrp_fft plot to ensure that the signal in quesisoa harmonic of both signals. Turn both
RF outputs back on.

17. Adjust frequency of one signal generator to ensiethe signal in question is at the
correct frequency (the sum of the frequencies etwo signal generators).

18. Turn off RF outputs of both signal generators.

19.Unplug signal generators from daughterboard.

20.Plug signal generators into spectrum analyzer gusame T-connector and coax cable.

21.Turn on RF outputs of both signal generators. Miegvsignals on the spectrum analyzer,
adjusting the amplitude of the spectrum analyzeedessary. Adjust amplitudes of
signal generators until they are equal. Recoldhiplitude, in dBm, aBy. This step
records the actual input power — the power disgldyethe signal generators will not be
accurate due to losses in the T-connector.

22.Turn off RF outputs of both signal generators.

145



23.Unplug both signal generators from spectrum analyze

24.Plug both signal generators into daughterboard.

25.Turn on RF outputs of both signal generators.

26.Locate 29 harmonic on usrp_fft plot.

27.Adjust frequency and amplitude of one signal getoerta match those of thé®
harmonic.

28.Turn off RF outputs of both signal generators.

29.Unplug both signal generators from daughterboard.

30.Plug both signal generators into spectrum analyzer.

31.Turn on RF output of signal generator at desireduiency and amplitude of%2
harmonic.

32.Record this amplitude, in dBm, on the spectrum yaeal asP,.

33.Use the following formula to solve f@¥p,. This is the IIP2 of the receiver
daughterboard.

Py *X=PF, +20X= P,

Results:

Table 19: Receiver 1IP2 Test, RFIC Input RX1

Receiver 1IP2 Test
Device Under RFIC Daughterboard (Input RX1)
Test:
Test Equipment: | HP 8648C Signal Generator (x2), BSBNU Radio
3.0, HP 8594E Spectrum Analyzer
Spectrum usrp_fft.py Settings| Decimation Rate: 256
Analyzer (maximum)
Program: Gain: 0 dB
Frequency Offset: 1 MHz
Frequency Mode (synthesizer frequency [IP2 (dBm):
(MHz): multiplier):
400 1/2x 18.3
900 1x 15.6
1800 2X 14.2
2400 4x 6.1
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Table 20: Receiver 1IP2 Test, RFIC Input RX3

Receiver IIP2 Test

Device Under
Test:

RFIC Daughterboard (Input RX3)

Test Equipment:

HP 8648C Signal Generator (x2), BSBNU Radio
3.0, HP 8594E Spectrum Analyzer

Spectrum usrp_fft.py Settings| Decimation Rate: 256
Analyzer (maximum)
Program: Gain: 0 dB

Frequency Offset: 1 MHz
Frequency Mode (synthesizer frequency [IP2 (dBm):
(MH2z): multiplier):
400 1/2x 60.9
900 1x 47.2
1800 2X 45.6
2400 4x 29.4

Table 21: Receiver 1IP2 Test, RFIC Input MIX5

Receiver IIP2 Test

Device Under
Test:

RFIC Daughterboard (Input MIX5)

Test Equipment:

HP 8648C Signal Generator (x2), BSENU Radio
3.0, HP 8594E Spectrum Analyzer

Spectrum usrp_fft.py Settings| Decimation Rate: 256
Analyzer (maximum)
Program: Gain: 0 dB

Frequency Offset: 1 MHz
Frequency Mode (synthesizer frequency [IP2 (dBm):
(MHz): multiplier):
400 1/2x 24.8
900 1x 17.8
1800 2X 18.8
2400 4x 12.6
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Table 22: Receiver IIP2 Test, RFX-Series

Receiver IIP2 Test

Device Under
Test:

RFX-Series Daughterboards

Test Equipment:

HP 8648C Signal Generator (x2), BSBNU Radio
3.0, HP 8594E Spectrum Analyzer

Spectrum usrp_fft.py Settings| Decimation Rate: 256
Analyzer (maximum)
Program: Gain: 0 dB

Frequency Offset: 1 MHz
Frequency RFX-Series Model: [IP2 (dBm):
(MH2z):
400 RFX400 8.6
900 RFX900 57.8
1800 RFX1800 16.8
2400 RFX2400 62.0
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Test 4: Transmitter Output Power
Procedure:

1.

Turn on HP 8594E Spectrum Analyzer. Wait one Houdevice to settle, to ensure
correct calibration.

Set spectrum analyzer to desired frequency, wipaan of 1 MHz.

Boot host computer with GNU Radio 3.0.

Plug daughterboard under test into USRP, side AsuEe that the boards fit together
securely and that the daughterboard is seated rhyope

Using USB 2.0 cable, connect USRP to host computer.

If using RFIC daughterboard, edit daughterboardedrio default to desired TX output.
Open terminal and change directories to gnuradiaggp/src and run “sudo make install”
to reinstall driver.

Using adapters, if necessary, connect desired Tpubon daughterboard to RF input on
spectrum analyzer, using coax cable.

On host computer, open terminal and change diriesttw gnuradio/gnuradio-
examples/python/usrp/

On host computer, run “usrp_siggen.py -f <frequeficyf testing the RFIC, run
“usrp_siggen_rfic.py —f <frequency>" (<frequencytihe desired frequency — e.g. to test
the RFIC at 400 MHz, run “usrp_siggen_rfic.py —DBO). Usrp_siggen_rfic.py is the
same program as usrp_siggen.py, except that GNibRad been forced to recognize
the RFIC daughterboard in both transmitter slots.

10. Adjust amplitude on spectrum analyzer, if necesdargee signal.
11.Find transmitted signal, 100 kHz above the dedmeguency, on the spectrum analyzer.

Record the amplitude of this signal in dBm. Tlsishe transmitter output power.

Results:
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Table 23: Transmitter Power Test, RFIC Output TX1

Transmitter Power Test

Device Under
Test:

RFIC Daughterboard (Output TX1)

Test Equipment:

USRP, GNU Radio 3.0, HP 8594E $pecAnalyzer

Signal Generator
Program

usrp_siggen.py

Setting

sSignal Amplitude: 16000
(digital)

Gain: 45 dB (maximum)

Waveform: Complex
Sinusoid

Frequency Mode (synthesizer frequency Output Power
(MHz): multiplier): (dBm)

400 1/2x 6.2

900 1x 0.1

1800 2X -2.0

2400 4x -15.0

Table 24: Transmitter Power Test, RFIC Output TX2

Transmitter Power Test

Device Under
Test:

RFIC Daughterboard (Output TX2)

Test Equipment:

USRP, GNU Radio 3.0, HP 8594E $pecAnalyzer

Signal Generator
Program

usrp_siggen.py

Setting

sSignal Amplitude: 16000
(digital)

Gain: 45 dB (maximum)

Waveform: Complex

Sinusoid

Frequency Mode (synthesizer frequency Output Power
(MHz): multiplier): (dBm)

400 1/2x 7.9

900 1x 3.2

1800 2X -3.0

2400 4x -13.0
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Table 25: Transmitter Power Test, RFX-Series

Transmitter Power Test

Device Under
Test:

RFX-Series Daughterboards

Test Equipment:

USRP, GNU Radio 3.0, HP 8594E $pecAnalyzer

Signal Generator
Program

usrp_siggen.py

Setting

sSignal Amplitude: 16000
(digital)

Gain: 45 dB (maximum)

Waveform: Complex

Sinusoid

Frequency RFX-Series Model: Output Power
(MHz): (dBm)

400 RFX400 22.6

900 RFX900 22.0

1800 RFX1800 20.8

2400 RFX2400 12.3
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Test 5: Transmitter LO Suppression
Procedure:

1.

Turn on HP 8594E Spectrum Analyzer. Wait one Houdevice to settle, to ensure
correct calibration.

Set spectrum analyzer to desired frequency, wipaan of 1 MHz.

Boot host computer with GNU Radio 3.0.

Plug daughterboard under test into USRP, side AsuEe that the boards fit together
securely and that the daughterboard is seated rhyope

Using USB 2.0 cable, connect USRP to host computer.

If using RFIC daughterboard, edit daughterboardedrio default to desired TX output.
Open terminal and change directories to gnuradiaggp/src and run “sudo make install”
to reinstall driver.

Using adapters, if necessary, connect desired Tpubon daughterboard to RF input on
spectrum analyzer, using coax cable.

On host computer, open terminal and change diriesttw gnuradio/gnuradio-
examples/python/usrp/

On host computer, run “usrp_siggen.py -f <frequenay 200000". If testing the RFIC,
run “usrp_siggen_rfic.py —f <frequency>" (<frequgrds the desired frequency — e.g. to
test the RFIC at 400 MHz, run “usrp_siggen_rficgpOOM”). Usrp_siggen_rfic.py is
the same program as usrp_siggen.py, except that Ba&dlib has been forced to
recognize the RFIC daughterboard in both transmnsttgs.

10. Adjust amplitude on spectrum analyzer, if necesdargee signal.
11.Find transmitted signal, 200 kHz above the spetiRE frequency, on the spectrum

analyzer. Record the amplitude of this signalBmd This is the transmitter output
power,Pour.

12.Find LO, at desired frequency, on the spectrumyaeal Record the amplitude of this

signal in dBm. This is the LO powd?,o.

13.Using the equation below, calcul&g the LO suppression.

& = Pour—Po

Results:
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Table 26: Transmitter LO Suppression Test, RFIGOuTX1

Transmitter LO Suppression Test

Device Under
Test:

RFIC Daughterboard (Output TX1)

Test Equipment:

USRP, GNU Radio 3.0, HP 8594E $pecAnalyzer

Signal Generator| usrp_siggen.py
Program

Setting

sSignal Amplitude: 16000

(digital)

Gain: 45 dB (maximum)

Waveform: Complex
Sinusoid

Waveform Frequency: 20(
kHz

Frequency Mode (synthesizer frequency Suppression
(MHz): multiplier): (dBc):

400 1/2x 34.1

900 1x 27.0

1800 2X 27.9

2400 4x 24.9

Table 27: Transmitter LO Suppression Test, RFIGOuTX2

7

Transmitter LO Suppression Test

Device Under
Test:

RFIC Daughterboard (Output TX2)

Test Equipment:

USRP, GNU Radio 3.0, HP 8594E $pecAnalyzer

Signal Generator| usrp_siggen.py
Program

Setting

sSignal Amplitude: 16000
(digital)

Gain: 45 dB (maximum)

Waveform: Complex
Sinusoid

Waveform Frequency: 20(

kHz

4

Frequency Mode (synthesizer frequency Suppression
(MHz): multiplier): (dBc):

400 1/2x 31.3

900 1x 26.6

1800 2X 14.6

2400 4x 18.7
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Table 28: Transmitter LO Suppression Test, RFXeSeri

Transmitter LO Suppression Test

Device Under
Test:

RFX-Series Daughterboards

Test Equipment:

USRP, GNU Radio 3.0, HP 8594E $pecAnalyzer

Signal Generator
Program

usrp_siggen.py | Setting

(digital)

sSignal Amplitude: 16000

Gain: 45 dB (maximum)

Waveform: Complex
Sinusoid

Waveform Frequency: 20(

A

kHz
Frequency RFX-Series Model: Suppression
(MH2z): (dBc):
400 RFX400 41.8
900 RFX900 50.3
1800 RFX1800 43.2
2400 RFX2400 36.1
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Test 6: Transmitter 2"%-Order Harmonic Suppression
Procedure:

1.

Turn on HP 8594E Spectrum Analyzer. Wait one Houdevice to settle, to ensure
correct calibration.

Set spectrum analyzer to desired frequency, wipaan of 1 MHz.

Boot host computer with GNU Radio 3.0.

Plug daughterboard under test into USRP, side AsuEe that the boards fit together
securely and that the daughterboard is seated rhyope

Using USB 2.0 cable, connect USRP to host computer.

If using RFIC daughterboard, edit daughterboardedrio default to desired TX output.
Open terminal and change directories to gnuradiaggp/src and run “sudo make install”
to reinstall driver.

Using adapters, if necessary, connect desired Tpubon daughterboard to RF input on
spectrum analyzer, using coax cable.

On host computer, open terminal and change diriesttw gnuradio/gnuradio-
examples/python/usrp/

On host computer, run “usrp_siggen.py -f <frequenay 200000". If testing the RFIC,
run “usrp_siggen_rfic.py —f <frequency>" (<frequgrds the desired frequency — e.g. to
test the RFIC at 400 MHz, run “usrp_siggen_rficgpOOM”). Usrp_siggen_rfic.py is
the same program as usrp_siggen.py, except that Ba&dlib has been forced to
recognize the RFIC daughterboard in both transmnsttgs.

10. Adjust amplitude on spectrum analyzer, if necesdargee signal.
11.Find transmitted signal, 200 kHz above the spetiRE frequency, on the spectrum

analyzer. Record the amplitude of this signalBmd This is the transmitter output
power,Pour.

12. Set the spectrum analyzer to twice the desiredifeqy. E.g., if the desired frequency is

400 MHz, set the spectrum analyzer to 800 MHz.

13.Find 2"-order harmonic, near twice the desired frequeonythe spectrum analyzer.

Record the amplitude of this signal in dBm. Tlsishe 9% order harmonic poweR;y.

14.Using the equation below, calcul@g;, the 2*harmonic suppression.

S = Pour— P

Results:
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Table 29: Transmitter®-Order Harmonic Suppression Test., RFIC Output TX1

Transmitter 2°-Order Harmonic Suppression Test

Device Under
Test:

RFIC Daughterboard (Output TX1)

Test Equipment:

USRP, GNU Radio 3.0, HP 8594E $pecAnalyzer

Signal Generator
Program

usrp_siggen.py

Setting

sSignal Amplitude: 16000
(digital)

Gain: 45 dB (maximum)

Waveform: Complex
Sinusoid

Waveform Frequency: 20(

kHz

7

Frequency Mode (synthesizer frequency Suppression
(MHz): multiplier): (dBc):

400 1/2x 22.8

900 1x 23.2

Table 30: Transmitter¥-Order Harmonic Suppression Test, RFIC Output TX2

Transmitter 2°-Order Harmonic Suppression Test

Device Under
Test:

RFIC Daughterboard (Output TX2)

Test Equipment:

USRP, GNU Radio 3.0, HP 8594E $pecAnalyzer

Signal Generator
Program

usrp_siggen.py

Setting

sSignal Amplitude: 16000
(digital)

Gain: 45 dB (maximum)

Waveform: Complex
Sinusoid

Waveform Frequency: 20(

4

kHz
Frequency Mode (synthesizer frequency Suppression
(MH2z): multiplier): (dBc):
400 1/2x 19.6
900 1x 22.6
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Table 31: Transmitter™®-Order Harmonic Suppression Test, RFX-Series

Transmitter 2°-Order Harmonic Suppression Test

Device Under
Test:

RFX-Series Daughterboards

Test Equipment:

USRP, GNU Radio 3.0, HP 8594E $pecAnalyzer

Signal Generator
Program

usrp_siggen.py

Setting

(digital)

sSignal Amplitude: 16000

Gain: 45 dB (maximum)

Waveform: Complex
Sinusoid

Waveform Frequency: 20(

7

kHz
Frequency RFX-Series Model Suppression
(MH2): (dBc):
400 RFX400 34.7
900 RFX900 38.8
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Test 7: Transmitter 3"-Order Harmonic Suppression

Procedure:

15.Turn on HP 8594E Spectrum Analyzer. Wait one Houdevice to settle, to ensure
correct calibration.

16. Set spectrum analyzer to desired frequency, wipee of 1 MHz.

17.Boot host computer with GNU Radio 3.0.

18. Plug daughterboard under test into USRP, side #suEe that the boards fit together
securely and that the daughterboard is seated rhyope

19.Using USB 2.0 cable, connect USRP to host computer.

20.1f using RFIC daughterboard, edit daughterboardedrio default to desired TX output.
Open terminal and change directories to gnuradiaggp/src and run “sudo make install”
to reinstall driver.

21.Using adapters, if necessary, connect desired Tpuvon daughterboard to RF input on
spectrum analyzer, using coax cable.

22.0n host computer, open terminal and change direstto gnuradio/gnuradio-
examples/python/usrp/

23.0n host computer, run “usrp_siggen.py -f <frequenay 200000". If testing the RFIC,
run “usrp_siggen_rfic.py —f <frequency>" (<frequgrds the desired frequency — e.g. to
test the RFIC at 400 MHz, run “usrp_siggen_rficpOOM”). Usrp_siggen_rfic.py is
the same program as usrp_siggen.py, except that Ba&dlib has been forced to
recognize the RFIC daughterboard in both transmsttes.

24. Adjust amplitude on spectrum analyzer, if necesdargee signal.

25.Find transmitted signal, 200 kHz above the spatiR€& frequency, on the spectrum
analyzer. Record the amplitude of this signalBmd This is the transmitter output
power,Pour.

26. Set the spectrum analyzer to three times the deBegquency. E.g., if the desired
frequency is 400 MHz, set the spectrum analyz42@) MHz.

27.Find 3%order harmonic, near three times the desired &reqy on the spectrum
analyzer. Record the amplitude of this signalBmd This is the S-order harmonic

power,Psy.
28.Using the equation below, calcul&g;, the 3-harmonic suppression.
Sr = Pour — P
Results:
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Table 32 Transmitter'3Order Harmonic Suppression Test, RFIC Output TX1

Transmitter 8-Order Harmonic Suppression Test

Device Under
Test:

RFIC Daughterboard (Output TX1)

Test Equipment:

USRP, GNU Radio 3.0, HP 8594E $pecAnalyzer

Signal Generator
Program

usrp_siggen.py

Setting

sSignal Amplitude: 16000
(digital)

Gain: 45 dB (maximum)

Waveform: Complex
Sinusoid

Waveform Frequency: 20(

kHz

7

Frequency Mode (synthesizer frequency Suppression
(MHz): multiplier): (dBc):

400 1/2x 18.7

900 1x 22.6

Table 33: Transmitter'3Order Harmonic Suppression Test, RFIC Output TX2

Transmitter 8-Order Harmonic Suppression Test

Device Under
Test:

RFIC Daughterboard (Output TX2)

Test Equipment:

USRP, GNU Radio 3.0, HP 8594E $pecAnalyzer

Signal Generator
Program

usrp_siggen.py

Setting

sSignal Amplitude: 16000
(digital)

Gain: 45 dB (maximum)

Waveform: Complex
Sinusoid

Waveform Frequency: 20(

4

kHz
Frequency Mode (synthesizer frequency Suppression
(MH2z): multiplier): (dBc):
400 1/2x 19.0
900 1x 26.7
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Table 34: Transmitter'3Order Harmonic Suppression Test, RFX-Series

Transmitter 8-Order Harmonic Suppression Test

Device Under
Test:

RFX-Series Daughterboards

Test Equipment:

USRP, GNU Radio 3.0, HP 8594E $pecAnalyzer

Signal Generator
Program

usrp_siggen.py

Setting

(digital)

sSignal Amplitude: 16000

Gain: 45 dB (maximum)

Waveform: Complex
Sinusoid

Waveform Frequency: 20(

7

kHz
Frequency RFX-Series Model: Suppression
(MH2): (dBc):
400 RFX400 48.4
900 RFX900 41.7
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Appendix C: usrp_siggen_rfic.py

#!/usr/bin/env python

from gnuradio import gr, gru

from gnuradio import usrp

from gnuradio.eng_option import eng_option
from gnuradio import eng_notation

from optparse import OptionParser

import sys

class my_graph(gr.flow_graph):
def __init__ (self):
gr.flow_graph.__init__ (self)

# controllable values

self.interp = 64

self.waveform_type = gr.GR_SIN_WAVE
self.waveform_ampl = 16000
self.waveform_freq = 100.12345e3
self.waveform_offset = 0
self._instantiate_blocks ()
self.set_waveform_type (self.waveform_type)

def usb_freq (self):
return self.u.dac_freq() / self.interp

def usb_throughput (self):
return self.usb_freq () * 4

def set_waveform_type (self, type):
valid waveform types are: gr.GR_SIN_WAVE, g r.GR_CONST_WAVE,
gr.GR_UNIFORM and gr.GR_GAUSSIAN
self._configure_graph (type)
self.waveform_type = type

def set_waveform_ampl (self, ampl):
self.waveform_ampl = ampl
self.siggen.set_amplitude (ampl)
self.noisegen.set_amplitude (ampl)

def set_waveform_freq (self, freq):
self.waveform_freq = freq
self.siggen.set_frequency (freq)

def set_waveform_offset (self, offset):
self.waveform_offset = offset
self.siggen.set_offset (offset)

def set_interpolator (self, interp):
self.interp = interp
self.siggen.set_sampling_freq (self.usb_fre q()
self.u.set_interp_rate (interp)
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def _instantiate_blocks (self):
self.src = None
self.u = usrp.sink_c (0, self.interp)
#self.u = usrp.usrpl.sink_c(0, self.interp, 1, 0x9

# This line forces GNU Radio to recognize the RFIC
both sides A and B of the attached USRP

self.u.db = (usrp.db_instantiator._instantiator_ma
usrp.db_instantiator._instantiator_map[160](self.u,

#
self.siggen = gr.sig_source_c (self.usb_fre
gr.GR_SIN_WA
self.wavefor
self.wavefor

self.wavefor

self.noisegen = gr.noise_source_c (gr.GR_UN
self.wav

# self.file_sink = gr.file_sink (gr.sizeof _

def _configure_graph (self, type):

was_running = self.is_running ()

if was_running:
self.stop ()

self.disconnect_all ()

if type == gr.GR_SIN_WAVE or type == gr.GR_
self.connect (self.siggen, self.u)
# self.connect (self.siggen, self.file_
self.siggen.set_waveform (type)
self.src = self.siggen

elif type == gr.GR_UNIFORM or type == gr.GR
self.connect (self.noisegen, self.u)
self.noisegen.set_type (type)
self.src = self.noisegen

else:
raise ValueError, type

if was_running:
self.start ()

def set_freq(self, target_freq):

Set the center frequency we're interested i

@param target_freq: frequency in Hz
@rypte: bool

Tuning is a two step process. First we ask
tune as close to the desired frequency as i
the result of that operation and our target
determine the value for the digital up conv
r = self.u.tune(self.subdev._which, self.su
if r:

8,0,0,"™, "™
daughterboard on

p[160](self.u, 0),
1)

qq0,
VE,

m_freq,
m_ampl,
m_offset)

IFORM,
eform_ampl)

gr_complex, "siggen.dat")

CONST_WAVE:

sink)

_GAUSSIAN:

the front-end to

t can. Then we use
_frequency to

erter.

bdev, target_freq)
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#print "r.baseband_freq =",
eng_notation.num_to_str(r.baseband_freq)
#print "r.dxc_freq =", eng_notatio
#print "r.residual_freq =",
eng_notation.num_to_str(r.residual_freq)
#print "r.inverted =", r.inverted
return True

return False

def main ():

parser = OptionParser (option_class=eng_option)

parser.add_option ("-T", "--tx-subdev-spec", ty
0),
help="select USRP Tx side A
parser.add_option ("-f", "--rf-freq", type="eng
help="set RF center frequenc
parser.add_option ("-i", "--interp", type="int"
help="set fgpa interpolation
[default=%default]")

parser.add_option ("--sine", dest="type", actio
const=gr.GR_SIN_WAVE,
help="generate a complex sin
default=gr.GR_SIN_WAVE)
parser.add_option ("--const", dest="type", acti
const=gr.GR_CONST_WAVE,
help="generate a constant ou
parser.add_option ("--gaussian”, dest="type", a
const=gr.GR_GAUSSIAN,
help="generate Gaussian rand
parser.add_option ("--uniform", dest="type", ac
const=gr.GR_UNIFORM,
help="generate Uniform rando

parser.add_option ("-w", "--waveform-freq", typ
default=100e3,
help="set waveform frequency
[default=%default]")
parser.add_option ("-a", "--amplitude", type="e
help="set waveform amplitude
[default=%default]", metavar="AMPL")
parser.add_option ("-0", "--offset", type="eng_
help="set waveform offset to
[default=%default]")
(options, args) = parser.parse_args ()

if len(args) != 0:
parser.print_help()
raise SystemExit

if options.rf_freq is None:
sys.stderr.write("usrp_siggen: must specify
-f RF_FREQ\n")
parser.print_help()

n.num_to_str(r.dxc_freq)

pe="subdev", default=(0,
or B")

_float", default=None,

y to FREQ")

, default=64,

rate to INTERP
n="store_const",

usoid [default]",

on="store_const",

tput")
ction="store_const",

om output")
tion="store_const",

m output")
e="eng_float",
to FREQ

ng_float", default=16e3,
to AMPLITUDE

float", default=0,
OFFSET

RF center frequency with
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raise SystemExit

fg = my_graph()

fg.set_interpolator (options.interp)
fg.set_waveform_type (options.type)
fg.set_waveform_freq (options.waveform_freq)
fg.set_waveform_ampl (options.amplitude)
fg.set_waveform_offset (options.offset)

# determine the daughterboard subdevice we're u sing
if options.tx_subdev_spec is None:
#options.tx_subdev_spec = usrp.pick_tx_subd evice(fg.u)

options.tx_subdev_spec = (0, 0)

m = usrp.determine_tx_mux_value(fg.u, options.t x_subdev_spec)
print "mux = %#04x" % (m,)
fg.u.set_mux(m)

fg.subdev = usrp.selected_subdev(fg.u, options. tx_subdev_spec)
print "Using TX d'board %s" % (fg.subdev.side_a nd_name(),)
fg.subdev.set_gain(fg.subdev.gain_range()[1]) # set max Tx gain

if not fg.set_freqg(options.rf_freq):
sys.stderr.write('Failed to set RF frequenc y\nY)
raise SystemExit

fg.subdev.set_enable(True) # enable transmitter
try:
fg.run()
except KeyboardInterrupt:
pass
if _name__ =='_ main__"
main ()
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Appendix D: Permission from Matt Ettus

From: Matt Ettus [matt@ettus.com]

Sent: Monday, March 09, 2009 1:11 AM

To: thrisebo@vt.edu

Cc: Randall Nealy

Subject: Re: RFIC-based USRP Daughterboard

tbrisebo@vt.edu wrote:

[..]

> On another subject, my master's thesis is oREFI€-based

> daughterboard. | would like to ask your pernusdio use a few

> photos of the USRP and daughterboards in myghesvould like to
> use the photos below and maybe a few others.

> http://www.ettus.com/images/USRP.jpg

> http://www.ettus.com/images/Flex400.jpg

No problem. Feel free to use any of the picturediagrams on either gnuradio.org or ettus.com

Thanks,
Matt
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