
Chapter 4

Processing Demonstrations

Demonstrations by human instructors are Diligent's primary source of input. Yet, a demon-

stration is not a procedure. A demonstration doesn't identify the procedure's goals or how

the demonstration's steps depend on each other.

This chapter describes the processing involved in transforming demonstrations into

procedures. The chapter addresses a number of issues:

� The interaction between the user (or instructor) and Diligent. This includes assump-

tions about how the instructor demonstrates.

� The algorithms used to transform demonstrations into procedures that Diligent can

output.

� How to construct a hierarchical procedure out of other procedures. A hierarchical

procedure is a procedure that contains another procedure as one of its steps.

This chapter focuses on the interaction between Diligent and the instructor. We will

start by briey discussing authoring with Diligent. We will then discuss the data structures

used to record demonstrations. Afterwards, we will discuss how to demonstrate a simple

procedure and generate a plan for it. We will then discuss how to construct hierarchical

procedures. We will also discuss how to incorporate steps into a procedure that gather

information without changing the state of the simulated domain (or environment). We will

then discuss complexity, and �nish the chapter with related work on basic Programming

By Demonstration (PBD) techniques.

4.1 The Authoring Process

In Chapter 2, we discussed how an instructor could use Diligent to author a procedure.

We will briey review this material.

51

Authoring a procedure involves specifying the procedure's steps and making sure that

Diligent understands the relationships between the steps. After creating a new procedure,

an instructor provides demonstrations for the procedure. Demonstrations can identify the

procedure's steps as well as provide data for learning the preconditions of steps. After the

instructor has de�ned the procedure's steps, Diligent is able to heuristically derive goal

conditions for the procedure and to perform experiments that attempt to identify the pre-

conditions of steps. At some point after the goals have been speci�ed, the instructor can

tell Diligent to derive the dependency relationships (i.e. step relationships) between the

procedure's steps. Whether Diligent derives goal conditions, derives step relationships, or

experiments is controlled by the instructor. The instructor controls when Diligent experi-

ments to prevent experiments initiated by Diligent from causing the instructor undesired

delays. When the instructor is satis�ed with the procedure, he can give it to an automated

tutor where it can be tested.

In order to make authoring easier, Diligent allows instructors to perform many itera-

tions of these activities.

4.2 Types of Demonstrations

So far we've treated one demonstration as if it were analogous to one procedure. While

that is the expected case, Diligent allows multiple demonstrations to be associated with a

single procedure. Diligent supports the following types of demonstrations.1

� Add-step. Add-step demonstrations add steps to a procedure. This type of demon-

stration is used when a procedure is created, and it can also be used to add additional

steps to an existing procedure. Additional steps are added to a procedure by inserting

the new demonstration's steps in between a pair of the procedure's existing steps.

Besides augmenting existing procedures, the ability to perform additional demon-

strations supports error recovery.2

1Section 8.4.2.1 discusses extending Diligent to support additional types of demonstrations. These types
of demonstrations did not appear important for the types of procedures that we used, but it appears that
they would be useful on more complicated procedures.

2An instructor might detect errors by using menus to look at dependencies between steps, or he might
detect errors by testing a procedure by with an automated tutor.

52

� Clari�cation. This type of demonstration lets the instructor illustrate how the do-

main works without adding steps to the procedure. Instead of adding steps, clari�-

cation demonstrations provide more data for machine learning. Clari�cation demon-

strations can be used to show what happens if the demonstration is not performed

properly, and they can be used to provide additional correct, but slightly di�erent,

demonstrations of the procedure.

In Chapter 2, it was mentioned that only an expert user was likely to use this type

of demonstration.

Diligent di�ers from most Programming By Demonstration systems by not requiring

multiple, correct demonstrations of a procedure. Diligent can do this because it has access

to the environment, which contains an executable model of the domain. Access to an

executable model allows Diligent to perform experiments that can reveal information that

would normally be provided by additional demonstrations.

As will be discussed later, both types of demonstrations are used to generate experi-

ments.

4.3 Data Structures

This section presents the data structures used to process demonstrations. This discussion

assumes some knowledge of how procedures are represented as plans (Section 3.2.2.1).

The data structures use the basic data types that were de�ned for the interface to the

environment (Section 3.2.1.1). The data structures will be illustrated later as we discuss

processing demonstrations.

4.3.1 Pre�xes

Each demonstration starts in a particular initial state, and Diligent remembers how to

restore this initial state. Diligent restores the initial state when performing experiments

and when the instructor provides additional demonstrations of the procedure.

The data structure used to store an initial state is called a pre�x. Pre�xes have the

following components:

� Con�guration. A con�guration is a text string (i.e. con�guration-id) that is used by

the instructor and Diligent to communicate about known states of the environment.

53

� Additional-actions. A sequence of actions (i.e. action-ids) that modify the state of

the environment that is speci�ed by the con�guration.

Additional actions are useful for a couple of reasons.

{ Additional-actions can reduce the need for creating additional con�gurations

of the environment. Saving the state of the environment in order get a new

con�guration-id might be expensive: not only could it take a long time, but it

could also use a lot of memory.

{ Besides reducing the cost of saving con�gurations, additional-actions are used

when embedding one demonstration inside another demonstration. This is use-

ful when adding steps to an existing procedure. It is also useful when de�ning

a new subprocedure as a step in another procedure.

4.3.2 Demonstrations

Demonstrations are the major source of input that Diligent receives from the instructor.

To demonstrate, an instructor needs to provide an initial state and use the environment's

graphical interface to perform a series of actions.

A demonstration has the following components:

� Pre�x. The pre�x contains the information necessary to restore the environment to

the demonstration's initial state.

� Previous-step. The previous-step is useful in an add-step demonstration that adds

steps to an existing procedure. The previous-step is a step de�ned by a previous

demonstration. (For a procedure's �rst demonstration, the previous-step is the step

representing the procedure's initial state.) A new demonstration's steps will be

inserted into the procedure between the previous-step and the step immediately

after it.

� Steps. The sequence of steps that the instructor demonstrates. A step is either a

subprocedure or an action performed in the environment. A step in a demonstration

is the same as a step in procedure. How a step changes the environment is recorded

in the action-example that was produced when the step was demonstrated.

� Type. As discussed in Section 4.2, Diligent supports two types of demonstrations:

add-step and clari�cation. (The steps of a clari�cation demonstration are not added

to the procedure, but are used when Diligent experiments.)

54

4.3.3 Paths

One problem with the demonstration data structure is that it can be awkward for Diligent

to use. Not only can a procedure contain steps from several add-step demonstrations, but

a demonstration also references a previous step outside itself.3

To simplify processing, demonstrations are converted into a data structure called a

path. Once the instructor has �nished a demonstration, Diligent adds the demonstration's

data to a path and no longer uses the demonstration. A path is easier to use than a

demonstration because, unlike a demonstration, a path does not reference any steps outside

itself.4

A path contains the following components:

� Pre�x. Speci�es the procedure's initial state.

� Steps. The sequence of steps to be performed.

� Generates-plan. Yes or no. Should the path be used to generate a plan? A \no"

indicates that the path represents a clari�cation demonstration.

4.3.4 Steps

In order to create a plan for a procedure, Diligent needs to identify the preconditions of

steps and the state changes produced by steps.

To illustrate the data associated with a step, we will use the following example:

Consider a step where a valve is opened. Suppose the environment allows the

valve to be opened whenever the valve is shut, but in the procedure being

learned, the valve should only be opened if the alarm light is illuminated.

A step contains the following components:

� Name. Each step has distinct name.

� Type. Abstract, primitive or special. An abstract step represents a subprocedure,

and a primitive step represents an action performed by the instructor. A special step

indicates either the beginning or the end of the procedure.

3If one considers the step that represents the start of a procedure (e.g. begin-procA) as outside a
demonstration, then demonstrations always reference a step outside themselves.

4Diligent uses paths rather than demonstrations to perform experiments.

55

� Subprocedure. The name of the subprocedure performed by an abstract step. This

�eld is empty if the step isn't abstract.

� Operator. The operator that models the action performed by a primitive step. This

�eld is empty if the step isn't primitive.

An operator models how an action changes the environment. An operator does

this by identifying the preconditions necessary for the action to produce a set of

state changes. Because operators can be reused in other procedures, an operator's

preconditions are independent of the current procedure. In the above example, the

operator would indicate that the valve can be opened whenever it is shut. However,

the operator should not contain procedure speci�c preconditions such as requiring

the alarm light to be illuminated.

� Control-preconditions. Control preconditions are procedure speci�c preconditions

for performing the step. In the above example, a control precondition should in-

dicate that the valve should not be opened unless the alarm light is illuminated.

The precondition is needed because the environment allows the the valve to opened

whenever it is shut rather than when the light is illuminated. It appears that control

preconditions are likely to refer to indicators such as lights and gauges that humans

look at for visual cues.

� Mental-conditions. A mental condition is a condition that contains a mental at-

tribute, and a mental attribute is an attribute that is internal to Diligent rather than

present in the environment.

Diligent creates mental-conditions for sensing actions. A sensing action [AIS88,

RN95] gathers information from the environment without changing the state of the

environment. For example, a sensing action might involve checking to see whether a

light is illuminated or checking the value of a gauge. A human student might perform

a sensing action on a light by looking at the light or selecting it with a mouse.

Diligent uses mental-conditions to guarantee that a step is performed. Diligent's

heuristics do this by putting all mental-conditions into the procedure's goal condi-

tions. (Of course, the instructor can reject these goal conditions.5) If a mental-

condition were not in the procedure's goal conditions, then the mental-condition's

step would only be performed if the step's changes to the environment's state were

5Because he is a domain expert, an instructor should be able to determine which goal conditions seem
valid or reasonable.

56

needed to complete the procedure. For example, if a sensing action's mental-condition

was not part of the goal conditions or preconditions of other steps, then the step

would never be needed because it does not change the environment's state.

� Action-example. An action-example (Section 3.2.1.1) is an example of an action

being performed and identi�es the state before the step (pre-state) and after the step

(post-state). The portion of the post-state that changed is called the delta-state.

The action example associated with a step comes from the instructor's demonstration

of the step.

4.3.5 Revisiting the Representation of Procedures

A procedure consists of the following components:

� A plan. Plans are discussed in Section 3.2.2.1. Diligent outputs a procedure in the

form of a plan.

� Set of paths. Diligent uses paths to generate plans. Diligent only allows one of a

procedure's paths to generate a plan. However, it would not be di�cult to extend

Diligent so that multiple paths can generate plans. The path that generates the plan

contains every add-step demonstration, while each clari�cation demonstration has

its own path. Each clari�cation demonstration has its own path because clari�cation

demonstrations are meant to be used only for learning and may not correctly perform

the procedure.

When Diligent experiments on a procedure, Diligent uses the procedure's paths to

generate experiments. This includes paths that generate plans and those that don't.

4.4 Assumptions about How the Instructor Demonstrates

Before presenting some example demonstrations, we will discuss the nature of the demon-

strations presented to Diligent. Diligent makes the following assumptions about demon-

strations.

Correct demonstrations. Diligent assumes that an instructor knows how to correctly

demonstrate a procedure. Diligent uses this assumption when it assumes that a

path's sequence of steps is correct. Diligent also uses this assumption when it uses

the action-example from the demonstration of a step.

57

Diligent allows an instructor to recover from a violation of this assumption by provid-

ing additional demonstrations, editing preconditions, and in the worst case, deleting

a step and demonstrating it again.

Small, modular procedures. Diligent assumes that the instructor breaks large proce-

dures into sets of small modular procedures. The instructor then uses the small

procedures to construct large procedures. This assumption is used when considering

the run-time overhead of some algorithms used to perform experiments or create

plans.

First demonstration contains all steps. Because Diligent assumes correct demonstra-

tions of small modular procedures, Diligent assumes that the �rst demonstration of

a procedure probably contains all the procedure's steps. This assumption is used

by Diligent when it considers only the current demonstration when creating the

preconditions of a new operator. Because of this assumption, we did not focus on

undesirable interactions between steps in di�erent demonstrations of the same pro-

cedure.

Because this assumption is not always correct, Diligent allows the instructor to add

steps to a procedure with additional demonstrations.

Multiple Demonstrations are Consistent. Suppose a procedure has multiple add-

step demonstrations. Diligent assumes that the steps of a new demonstration will not

remove preconditions that are required by steps later in the path. This assumption

allows Diligent to use the action-example from a step's demonstration even though

newer demonstrations may have changed the pre-state in which the step will be

performed.

We did not focus on violations of this assumption because the procedures that we

were looking at did not seem to require multiple demonstrations. This made to it

di�cult to �nd typical examples of how users would inconsistently perform multiple

demonstrations. Instead, we focused on understanding small, modular procedures

that were correctly demonstrated on the �rst demonstration.

Recovery from a violation of this assumption is similar to to recovery from an in-

correct demonstration. Maintaining consistency of action-examples between demon-

strations is an area for future work.

Logically related steps grouped together. Diligent assumes that the instructor groups

logically related steps together in the same small procedure.

58

Violating this assumption not only causes the problems associated with misleading

demonstrations, but also raises questions about whether the procedure being learned

is usable. To some degree, Diligent's plans assume that students will �nish one

subprocedure before starting on the next subprocedure. When deriving a plan's

step relationships, Diligent does not consider what would happen if the steps of two

subprocedures were interleaved.

It is unclear whether authoring interleaved subprocedures is of any relevance. When

an instructor provides demonstrations to Diligent, all subprocedures are performed

sequentially, and thus, it is impossible to provide a demonstration with interleaved

subprocedures. In any case, interleaved subprocedures are beyond Diligent's scope.

4.5 About this Chapter's Extended Example

This chapter's extended example shows how to author procedures by providing a series of

demonstrations.

The demonstrations will be performed on a device called the High Pressure Air Com-

pressor (HPAC). To improve clarity of presentation, the domain has been simpli�ed by

reducing the number of attributes and changing the names of attributes.

This chapter will not discuss the details of Diligent's user interface, which can be found

in Chapter 2 and Appendix D.

4.6 Authoring a New Procedure

Initially, we will assume that Diligent has no knowledge of other procedures or about the

domain.

4.6.1 Creating a New Procedure

The �rst thing that the instructor does is to create a new procedure. When creating

a procedure, the instructor needs to give it a name and to provide a description. The

name identi�es the procedure to the instructor, and the description is used to describe

the procedure to students. The instructor calls the procedure \proc1" and gives it the

description \shut a few valves."

59

4.6.2 Setting Up the Initial State

Before demonstrating the new procedure, the instructor needs to put the environment into

the demonstration's initial state. Since Diligent remembers this initial state, Diligent can

restore the initial state for experiments and additional demonstrations.

Diligent asks the instructor for a con�guration-id that identi�es a known state of the

environment. A con�guration-id is a text string that Diligent and instructor use for com-

munication. Let the instructor specify the con�guration with the string \con�g1." Diligent

then uses \con�g1" to reset the state of the environment with Restore-Environment-

State (Section 3.1.3).

Because creating a new con�guration of the environment may be slow or use a lot of

memory, the instructor may wish to reuse an existing con�guration while modifying the

state associated with the con�guration. For this reason, Diligent now asks the instructor if

he'd like to modify the con�guration \con�g1" by performing some additional actions. In

our case, the instructor indicates that he doesn't want to perform any additional actions.

4.6.3 Demonstrating the Procedure

Now that the environment is in the desired initial state, the instructor can demonstrate

the procedure. The demonstration contains three steps, and its purpose is to shut two

valves. The steps are as follows.

1. The instructor uses the mouse to select the handle (handle1) that opens and shuts

valves. This causes the handle to turn, which shuts the valve (valve1) that is under-

neath the handle.

2. The instructor moves handle handle1 to valve valve2 by selecting valve2 with the

mouse.

3. The instructor selects handle handle1, which shuts valve2.

The instructor then indicates that he has �nished the demonstration.

4.6.4 Creating Primitive Steps

In the above demonstration, none of the steps represents performing a subprocedure. In-

stead, every step represents an action that the instructor performs. When a step represents

an action performed by the instructor, the step is called primitive.

60

Action-example: example1
Action-id: turn handle1
Pre-state:

(valve1 open)(valve2 open)(HandleOn valve1)(AlarmLight1 o�)
(CdmStatus normal)

Delta-state:
(valve1 shut)

Action-example: example2
Action-id: move valve2
Pre-state:

(valve1 shut)(valve2 open)(HandleOn valve1)(AlarmLight1 o�)
(CdmStatus normal)

Delta-state:
(HandleOn valve2)

Action-example: example3
Action-id: turn handle1
Pre-state:

(valve1 shut)(valve2 open)(HandleOn valve2)(AlarmLight1 o�)
(CdmStatus normal)

Delta-state:
(valve2 shut)

Figure 4.1: First Demonstration's Action-Examples

Diligent gets information about how an action a�ects the environment in the form of

action-examples. The action-examples for the demonstration's three steps are shown in

Figure 4.1 and are used by Create-Primitive-Step (Figure 4.2) to create steps.

For the demonstration's �rst step, the instructor turns handle handle1. Diligent uses

Observe-Action (line 1 in 4.2) to get the �rst step's action-example (example1). The

action-example's action-id identi�es which action was performed by indicating the type of

action (turn) and the object being acted upon (handle1).

Diligent models how an action a�ects the environment with operators. Operators

represent reusable, procedure-independent knowledge of the environment and can be used

with multiple steps.

In order to reuse existing knowledge, Diligent searches for an existing operator that

matches the action-id of the step's action-example. Diligent searches with the action-id

because there is a one-to-one correspondence between operators and action-ids.

61

procedure Create-Primitive-Step

Input: demo: The current demonstration.
Result: stp : A step in the procedure.

1. Get the step's action-example ex from the environment
with Observe-Action (Section 3.1.3).

2. Find if an operator op already exists for action-id(ex).

3. If an operator was found, re�ne op using the
action-example ex. (Chapter 5).

4. Otherwise, no operator was found. (Need to create a new operator)

5. Ask the user for an operator name and description.
6. Use the operator name and description to create a new

operator op. Creating the new operator requires
the action-example ex and the current demonstration
demo. (demo is used to create heuristic preconditions.)
(Chapter 5).

7. Initialize the components of the new step stp. (The
< integer > is used to give the step a distinct name.)

name(stp) concatenate: name(op) \-" < integer >

description(stp) description(op)
action-example(stp) ex
operator(stp) op

8. If the step represents a sensing action then initialize the
the components of the step involving control preconditions and
mental attributes. (Section 4.7.4.)

Figure 4.2: Creating a Primitive Step

62

At this point, Diligent doesn't know any operators. Therefore, Diligent needs to create

an operator. First, Diligent asks the instructor to give the operator a name and a descrip-

tion. The instructor names the operator \turn" and approves the default description that

Diligent has generated, \turn the valve handle."6 Once the operator has a name and a

description, the action-example and the current demonstration are used to initialize the

new operator.7

Now that the step has an operator, Diligent uses the operator to create a name for

the step. Since an operator could be used multiple times in a procedure, each step has a

distinct name. The �rst step is called turn-1 and inherits the operator's description.

The last thing to do when creating a primitive step is to check whether it represents

a sensing action (line 8 in Figure 4.2). A sensing action (e.g. checking a light) gathers

information from the environment without changing it. Line 8 is skipped because none of

the steps in this demonstration involve sensing actions.

For the second step, the instructor selects valve2. This moves the handle from valve1

to valve2. The step's action-example is example2. Once again, a new operator is created.

The instructor calls the operator \move-2nd" and approves the default description \move

to the second stage valve." This results in a step called move-2nd-2.

The operator is called move-2nd rather than move because di�erent operators are

needed to move the handle to each valve. An operator only models actions performed

on one object and moving to a valve involves selecting that valve. As far as Diligent can

observe, the only commonality in moving the handle to di�erent values involves the type

of action (move) and the attribute (HandleOn) whose value is changed. The problem is

more di�cult than it appears because the values of attribute HandleOn are actually de-

scriptions of a valve rather than the name of a valve (e.g. \separator drain 1st stage valve"

versus \valve1"). However, for clarity, we will use valve names (e.g. \valve1") as values of

attribute HandleOn.

For the third step (turn-3), the instructor selects the handle again, which now shuts

valve2. The step's action-example is example3. Unlike the �rst step, Diligent �nds an

operator (i.e. turn) that matches the action. Diligent then uses the step's action-example

to re�ne the operator (line 3).

6The generation of default descriptions is described in Section 4.8.1.1.
7See Chapter 5 for details of how operators are created and then later re�ned.

63

4.6.5 Converting the Demonstration into a Path

As the instructor performs the new procedure's �rst demonstration, Diligent records it in

the data structure shown in Figure 4.3. The type of demonstration is add-step because the

demonstration adds steps to the procedure. Because this is the procedure's �rst demon-

stration, the previous-step (begin-proc1) represents the start of the procedure. The pre�x

records how to the demonstration's initial state was created and allows the initial state to

be restored.

To make other processing easier, the demonstration is converted into a data structure

called a path.8 Figure 4.4 shows the algorithm Initialize-Path, which is used to convert

a procedure's �rst demonstration into a path and to convert clari�cation demonstrations

into paths.

Demonstration:
Type: add-step
Pre�x: pre�x1
Previous-step: begin-proc1
Steps:

turn-1 ! move-2nd-2 ! turn-3

Pre�x: pre�x1
Con�guration: con�g1
Additional-actions: none

Step turn-1:
Operator: turn
Action-example: example1

Step move-2nd-2:
Operator: move-2nd
Action-example: example2

Step turn-3:
Operator: turn
Action-example: example3

Figure 4.3: First Demonstration

8The data structures for both paths and demonstrations are de�ned in Section 4.3.

64

procedure Initialize-Path

Input: demo: A demonstration
pname: The procedure's name

Result: pth: A new, initialized path.

1. If the demonstration is of type add-step then the path will be
used to create a plan for the procedure.

generates-plan(pth) yes

Otherwise, the path will not be used to create a plan

generates-plan(pth) no

2. Copy the information necessary to restore the demo's initial state

pre�x(pth) pre�x(demo)

3. Copy the demonstration's steps.

steps(pth) steps(demo)

4. Use the procedure name pname to create step names for
the procedure's beginning (begin-pname) and end (end-pname).

5. Adjust the path's steps so that the step representing the
beginning of the procedure is the �rst step and the step
representing the end of the procedure is the last step.

Figure 4.4: Initializing a Path

Generates-Plan: Yes
Pre�x: pre�x1
Steps:

begin-proc1 ! turn-1 ! move-2nd-2 ! turn-3 ! end-proc1

Figure 4.5: The Initial Path

65

The path created from the demonstration in Figure 4.3 is shown in Figure 4.5. In

Figure 4.5, the step begin-proc1 represents the start of the procedure, and the step end-

proc1 represents the end of the procedure.

4.6.6 A Second Demonstration

So far Diligent has recorded information about the new procedure in a path, but there

may be problems with this information. To correct any problems, the instructor needs

to be able to modify a path. Diligent allows instructors to modify paths by performing

additional demonstrations that add steps to the path.9

Some reasons for adding additional steps to a procedure include

� The instructor wants to elaborate the procedure by adding more steps.

� The instructor wants to correct an error or a problem with the existing steps.

The use of additional demonstrations is limited by Diligent's assumption that the

steps in a path represent a linear sequence of actions that transform the path's initial

state into its �nal state. This assumption supports plans where unnecessary steps can be

skipped at run-time, but the assumption doesn't support plans containing alternative steps

for di�erent initial states. Nevertheless, the assumption is used because it simpli�es the

derivation of the plan's step relationships and because the assumption reects Diligent's

assumptions about demonstrations (Section 4.4).

To illustrate the algorithms for combining demonstrations, we will add a step to the

running example. (Of course, such a simple procedure should only need one demonstra-

tion.)

To augment the procedure, the instructor could have shut additional valves. However,

to simplify the procedure, the instructor will only add a single additional step. We will

assume that the handle (handle1) that is used to shut valves should be stored in a standard

location (i.e. on top of valve1). This means that the instructor will need to move the handle

to valve1.

Now suppose that the instructor starts a new demonstration and indicates that it is

an add-step demonstration.

9Diligent also allows an instructor to delete steps, but deleting steps is an editing feature that we will
not discuss.

66

4.6.6.1 Setting Up the Demonstration's Initial State

The �rst problem is specifying the new demonstration's initial state. One approach would

be to restore the path's initial state and then have the instructor perform steps that put the

environment in state where the new step could be performed. However, this approach has

a few problems. The instructor has to duplicate steps from the previous demonstration.

This not only takes time but is also a potential source of errors. Instead, Diligent takes a

di�erent approach. Diligent has the instructor specify an existing step that is before the

new demonstration. Diligent then performs the procedure through the speci�ed step.

Now suppose that the instructor indicates that the new demonstration should start

after the last step (turn-3) in the procedure's path. This means that the new demonstration

will start in the previous demonstration's �nal state.

To do this, Diligent uses Replay-Pre�x (Figure 4.6) and the path's pre�x (pre�x1 in

Figure 4.3) to restore the path's initial state.

procedure Replay-Pre�x

Input: pre: A pre�x
Result: Resets the state of the environment

1. Use con�guration(pre) and Restore-Environment-State (Section 3.1.3)
to restore the environment to a known state.

2. Now make additional changes using the sequence of actions in
additional-actions(pre). This is done by invoking
Perform-Action (Section 3.1.3).

Figure 4.6: Using a Pre�x

After restoring the path's initial state, Diligent performs all three of the previous

demonstration's steps (i.e. turn-1, move-2nd-2 and turn-3). This results in the new demon-

stration having the pre�x shown in Figure 4.7. The pre�x's additional-actions represent

the action-ids needed to perform the path's existing steps.

4.6.6.2 Performing The Demonstration

The instructor then performs the demonstration by doing the following. The instructor

moves the handle from valve2 to valve1 by selecting valve1 with the mouse. Since no

67

Pre�x: pre�x2
Con�guration: con�g1
Additional-actions: turn handle1 ! move valve2 ! turn handle1

Figure 4.7: The Second Demonstration's Pre�x

matching operator is found, Diligent creates a new operator. The instructor calls the

operator \move-1st" and approves the default description \move to the �rst stage valve."

The new step is called move-1st-4. At this point, the instructor ends the demonstration.

4.6.6.3 Processing the Demonstration

Demonstration:
Type: add-step
Pre�x: pre�x2
Previous-step: turn-3
Steps: move-1st-4

Step move-1st-4

Operator: move-1st
Action-example: example4

Action-id: move valve1
Pre-state:

(valve1 shut)(valve2 shut)(HandleOn valve2)(AlarmLight1 o�)
(CdmStatus normal)

Delta-state:
(HandleOn valve1)

Figure 4.8: The Second Demonstration

As Diligent observes the demonstration, it records the data shown in Figure 4.8.

Diligent then uses this data to insert the demonstration's step into the path. The

algorithm for doing this is shown in Figure 4.9. In Figure 4.9, line 1 is used when a

demonstration adds steps to the start of the procedure. In this case, the path's pre�x is

replaced by the demonstration's pre�x because the new steps might be dependent on the

demonstration's pre�x.

The demonstration could have a di�erent pre�x than the path because the instructor

could have added additional actions to the path's pre�x. For example, the instructor might

68

procedure Add-Demo-To-Path

Input: demo: An add-step demonstration
pth: A path that is used to generate a plan.

Result: The demonstration is incorporated into the path.

1. If the demonstration's previous-step is the step representing the
procedure's initial state (e.g. begin-proc1), then the demonstration
adds steps to the start of the procedure. In this case, replace the
path's initial state (i.e. pre�x) with the demonstration's.

pre�x(pth) pre�x(demo)

2. Insert the demonstration's sequence of steps x1: : :xd
into the path's sequence of steps s1: : :sn.

If the demonstration's previous-step is sj then
steps(pth) s1: : :sjx1: : :xdsj+1: : :sn

Figure 4.9: Adding a Demonstration to a Path

want students to perform an additional step. He could do this by modifying the path's

pre�x so that an additional step was required to successfully perform the procedure.

When using the example demonstration, line 1 in Figure 4.9 is skipped because the

demonstration adds steps to the end of the procedure. The updated path is shown in

Figure 4.10.

Generates-Plan: Yes
Pre�x: pre�x1
Steps:

begin-proc1 ! turn-1 ! move-2nd-2 ! turn-3 !
move-1st-4! end-proc1

Figure 4.10: Updated Path

4.6.7 Generating a Plan

We now have a path that de�nes the procedure's steps, but a path is not usable as a

procedure. A path only contains a linear sequence of steps and does indicate how the

steps are related to each other.

69

As mentioned in Section 4.3.5, a procedure consists a set of paths and a plan (Section

3.2.2.1). In the following sections, we will discuss how the data in a path is transformed

into a plan.10

4.6.7.1 Guessing the Procedure's Goals

The procedures learned by Diligent attempt to put the environment into a given state.

When the state is reached, the procedure is �nished. This state is called the goal state and

is de�ned by a set of goal conditions that need to be satis�ed. A goal condition, like any

other condition, is speci�ed by an attribute and its value. Procedures that terminate when

the environment is put into a given state are said to have goals of attainment [Wel94].

Besides attributes that are present in the environment, goal conditions can also include

conditions that represent the values of mental attributes. A mental attribute is internal to

Diligent and contains information that Diligent has collected during the procedure. For

example, a mental attribute might record that the instructor explicitly checked whether a

light was illuminated.11

Since Diligent �nishes a procedure when all the procedure's goals have been attained,

mental attributes allow Diligent to perform the steps in a path even if the steps cause

no net change in the environment's state. Thus, other systems that only use goals of

attainment but do not have mental attributes (e.g. Instructo-Soar [HL95]) cannot learn

this type of procedure.

Diligent attempts to aid the instructor by identifying likely goal conditions. Diligent

can do this because it is learning goals of attainment and because the action-examples

associated with each step indicate how the environment changed during that step. Diligent

hypothesizes that attributes that changed value during one of the procedure's steps are

involved in a goal condition.

This heuristic technique ignores attributes whose values are constant during a proce-

dure. Although the values of these attributes could be goal conditions, there is no evidence

to indicate that they are goal conditions.

The technique for identifying goals was borrowed from Instructo-Soar [HL95]. However,

Instructo-Soar only looks for attributes with di�erent values in the initial and goal states.

In contrast, Diligent looks for attributes that change value during at least one step. This

10As mentioned before, all paths but one represent clari�cation demonstrations. Clari�cation demon-
strations provide additional data for machine learning without adding steps to the procedure's plan.

11Section 4.7.4 discusses sensing actions and mental attributes in more detail.

70

di�erence allows Diligent to identify attributes whose value is the same in the initial and

goal states but changes during the procedure.

Diligent's technique has some advantages over Instructo-Soar's. Diligent can identify

a larger set of candidate goal conditions. Furthermore, if an instructor makes an e�ort

to undo state changes from earlier in the path, then the values of the attributes involved

might be important. Consider an example from a machine maintenance domain. When

diagnosing a problem, a device might be kept in standard state. During a diagnostic

procedure, a human might perform actions to gather information about the state of the

device before returning the device to the standard state. In this case, the conditions

involved in the standard state are important even if they are the same in the initial and

goal states.

Potential goal conditions are calculated from a path using Derive-Path-Goals (Fig-

ure 4.11). All the steps in our running example's path are primitive (line 4). The goal

conditions derived from our path are shown in Figure 4.12. The condition (HandleOn

valve1) is a goal condition even though the value of attribute HandleOn is the same at the

beginning and end of the path.

4.6.7.2 Deriving Step Relationships

Once the procedure's goals are known, Diligent can attempt to determine how each step

supports establishing the procedure's goal conditions. Steps can do this by directly satis-

fying goal conditions or satisfying preconditions of later steps.

Diligent records the relationships between steps in what we will call step relationships.

Step relationships consist of causal links and ordering constraints. A causal link indicates

that a state change of an earlier step is a precondition for a later step, and an ordering

constraint indicates the relative order for performing a pair of steps.12

Step relationships are updated with Update-Step-Relationships (Figure 4.13).

The data available for computing step relationships consists of the procedure's goal

conditions and a path, which contains a linear sequence of steps. Steps contain the follow-

ing information:

� An operator that is independent of the procedure.

� An action-example that indicates the environment's state before and after the step.

� Step-speci�c control-preconditions that may not be required by the operator.

12The plan representation, including causal links and ordering constraints, is discussed in Section 3.2.2.1.

71

procedure Derive-Path-Goals

Input: pth: A path that is used to generate a plan.
Output: goals : A set of goal conditions.

1. For each step stp in the path do the following. Start with the
last step and iterate backwards through the sequence of steps

2. If the step represents the procedure's initial or goal states then
do nothing.

3. If the step represents an abstract step (i.e. subprocedure), then
add the subprocedure's goal conditions to goals if there is not any
condition in goals with the same attribute.

goals goals [fc1 j c1 2 subprocedure-goals(stp) ^
:9 c2 2 goals where attribute(c1) = attribute(c2)g

4. If the step stp represents a primitive step

goals goals [conditions generated by stp that
involve mental attributes.

Also add any delta-state conditions of the step's action-example
that do not have the same attribute as a condition in goals.

goals goals [fc1 j ex = action-example(stp) ^
c1 2 delta-state(ex) ^ :9 c2 2 goals where
attribute(c1) = attribute(c2)g

Figure 4.11: Deriving Goals from a Path

(valve1 shut)(valve2 shut)(HandleOn valve1)

Figure 4.12: Goal Conditions Derived from Path

72

procedure Update-Step-Relationships

Input: proc: The procedure.
pth: The path containing the procedure's steps.

Result: A procedure with updated causal links and ordering constraints.

1. Use path pth and Derive-Path-E�ect-Skeleton to
create a skeleton for the path. The skeleton indicates which operator e�ects
are associated with each step. The skeleton is an intermediate calculation.

2. Use the path's skeleton and Derive-Causal-Links to generate a
set of candidate causal links (cl-cand). The procedure also
creates a proof, which identi�es which operator e�ects achieve the
procedure's goals.

3. Use the proof and Derive-Ordering-Constraints to generate a
set of candidate ordering constraints (ord-cand).

4. For every causal link in cl-cand, add an ordering constraint
between the causal link's two steps to ord-cand.

Figure 4.13: Computing Step Relationships

73

� Conditions containing mental attributes (mental-conditions) that are established by

the step. Mental attributes are internal to Diligent and are not part of the environ-

ment.

Unfortunately, the data associated with steps is not in a form that can easily be

used. Therefore, Diligent simpli�es the data representation with Derive-Path-E�ect-

Skeleton (line 1). The procedure Derive-Path-E�ect-Skeleton combines the data for

a step's operator, action-example and mental-conditions in order to identify the step's

preconditions and state changes. This data structure is called a skeleton because it is in

an un�nished state and because it provides a framework that identi�es the procedure's

sequence of steps, their preconditions, and their state changes.

Operator: turn
Action-id: turn handle1
E�ect: e�ect1

H-rep preconditions: (valve1 open)
State changes: (valve1 shut)

E�ect: e�ect2
H-rep preconditions: (valve1 shut)(valve2 open) (HandleOn valve2)
State changes: (valve2 shut)

Operator: move-1st
Action-id: move valve1
E�ect: e�ect3

H-rep preconditions: (HandleOn valve2)
State changes: (HandleOn valve1)

Operator: move-2nd
Action-id: move valve2
E�ect: e�ect4

H-rep preconditions: (valve1 shut)(HandleOn valve1)
State changes: (HandleOn valve2)

Figure 4.14: The Operators

The algorithm forDerive-Path-E�ect-Skeleton will be illustrated with our running

example. During the example's two demonstrations, operators were created. These opera-

tors are shown in Figure 4.14. Operators were de�ned in Section 3.2.2.2, but we will briey

review them. An operator models how an action a�ects the environment. Since actions

can produce di�erent state changes in di�erent situations, an operator models di�erent

state changes with di�erent conditional e�ects (or e�ects). Each e�ect identi�es a set of

preconditions that must be met for the given state changes to appear. While an e�ect has

74

three sets of preconditions, Diligent only uses the best guess, heuristic set of preconditions

(h-rep) when creating a plan.

A problem with the operators in Figure 4.14 is that Diligent has only observed each

e�ect performed once. Because of this lack of data, the preconditions contain some er-

rors. For example, e�ect1 is missing the precondition (HandleOn valve1). Unfortunately,

missing preconditions can cause missing step relationships, and unnecessary preconditions

can cause unnecessary step relationships. (In Chapter 6, we will discuss how to correct

preconditions by performing experiments.)

We are now ready to discuss Derive-Path-E�ect-Skeleton (Figure 4.15). The pro-

cedure traverses the path sequentially going from path's �rst step to its last step. For

each step, the algorithm identi�es operator e�ects that transform the state before the step

(pre-state) into the state after the step (post-state).

Notice that steps that represent an action (primitive steps) are treated di�erently than

subprocedures (abstract steps). On line 5, Diligent simulates performing a subprocedure

in order to determine which of its steps are performed when starting in the abstract step's

pre-state. Given the subprocedure's steps, Diligent can compute the abstract step's pre-

conditions. Diligent simulates the subprocedure each time the skeleton is created because

the instructor may have modi�ed the subprocedure. Another concern is that a subproce-

dure can have state changes that are incidental and unimportant. For this reason, lines 6

and 7 only use the subprocedure's goal conditions. By creating an e�ect (line 7) and then

adding it to the skeleton (line 8), subsequent processing can treat a subprocedure like a

primitive step.

Finally, line 12 incorporates conditions involving mental attributes. Because mental

attributes are internal to Diligent, they are not stored in action-examples, which record

the state of the environment.

The computation of the skeleton assumes that each action-example has the correct

delta-state because the instructor demonstrated all steps correctly. That the instructor

demonstrates steps correctly seems a reasonable assumption, especially if most procedures

are relatively short. However, if the instructor makes a mistake and has to provide another

demonstration, some step's action-example may be incorrect.13

Figure 4.16 shows a skeleton for our procedure using the path in Figure 4.10, the

operators in Figure 4.14, and the action-examples in Figures 4.1 and 4.8. Notice that

13The problem of correcting a step's action-example is not addressed by Diligent.

75

procedure Derive-Path-E�ect-Skeleton

Input: pth: A path
Result: skeleton: Identi�es the operator e�ects used by each of

the path's steps. The order of the path's steps is maintained.

1. Initialize skeleton as empty.
2. For each step stp in the path do the following

3. If the step represents the beginning or end of the procedure,
do nothing.

4. If the step represents a subprocedure then
5. Use Internally-Simulate-Subprocedure to determine

the subprocedure's preconditions. (Section 4.7.1)
6. Get the subprocedure's goal conditions.
7. Create an e�ect using the preconditions from 5 with the

state changes of 6.
8. Associate the e�ect with the step in skeleton.

9. Else the step represents an action.
10. Identify the e�ects e�s of the step's operator op

that match the delta-state of the step's action-example ex.

e�s f e1 j e1 2 e�ects(op) ^
state-changes(e1) � delta-state(ex)g

11. Associate e�s with the step in skeleton.
12. If stp produces conditions containing mental attributes, then

create a new e�ect that has the conditions as its state changes.
The new e�ect has no preconditions. Add the e�ect to skeleton.

Figure 4.15: Identifying a Path's E�ects

76

Order of steps:
turn-1 ! move-2nd-2 ! turn-3 ! move-1st-4

Step: turn-1
E�ect: e�ect1

Preconditions: (valve1 open)
State changes: (valve1 shut)

Step: move-2nd-2
E�ect: e�ect4

Preconditions: (valve1 shut)(HandleOn valve1)
State changes: (HandleOn valve2)

Step: turn-3
E�ect: e�ect2

Preconditions: (valve1 shut)(valve2 open)(HandleOn valve2)
State changes: (valve2 shut)

Step: move-1st-4
E�ect: e�ect3

Preconditions: (HandleOn valve2)
State changes: (HandleOn valve1)

Figure 4.16: Skeleton of Procedure

steps turn-1 and turn-3 are associated with the same operator but are compatible with

di�erent e�ects.

Once Diligent has identi�ed the e�ects used by the path's steps, it can determine which

e�ects help achieve the goal conditions. This is important because e�ects can also produce

irrelevant state changes.

Diligent identi�es the e�ects that achieve the procedure's goal conditions while calcu-

lating the causal links. These useful e�ects are stored in a data structure called a proof. It

is called a proof because it records how the preconditions and state changes of the path's

steps transform the path's initial state into its goal state.

Diligent does this calculation with Derive-Causal-Links (Figure 4.17). The algo-

rithm treats the goal conditions as preconditions of the goal state step (line 1). The

algorithm iterates backwards over path's sequence of steps starting at the end of the pro-

cedure (line 2). When iterating over the steps, preconditions of later steps are used as

indices into the array dstnam. Because the path's sequence of steps is known to achieve

the goal conditions, Diligent identi�es earlier steps that establish the preconditions of later

steps. When a state change of an earlier step is found to establish a precondition of a later

step, a causal link is created (line 5). Because the precondition has been established, it

77

procedure Derive-Causal-Links

Input: skeleton: Identi�es e�ects produced
by the path's steps.

proc: The procedure.
Result: cand : Set of candidate causal links.

proof : Similar to skeleton but only contains the e�ects
that help achieve the procedure's goal conditions.

(The following uses the array dstnam that is indexed by a condition.
Each element contains a set of steps that have the condition as a
precondition.)

1. For each of the procedure's goal conditions gcnd, add the
goal state step to dstnam(gcnd).

2. Iterate over each step stp in skeleton starting with the
path's last step and working backwards to the �rst step.

3. For each e�ect e� of stp in skeleton do the following

4. If a condition cnd in e� 's state change has an
element in dstnam, then e� is needed to achieve
the procedure's goal conditions. In this case, do the following.

5. Add causal links to cand for condition cnd between
step stp and later steps that have cnd as a precondition.
These later steps are identi�ed by dstnam(cnd).

6. After adding the causal links, remove dstnam(cnd) in
order to prevent spurious causal links.

7. Add e� to proof for step stp.

8. Create an e�ect for the stp's control-preconditions and add it to proof.
The new e�ect will have preconditions but no state changes.

9. Now add stp's preconditions to dstnam. (For each e�ect e� of stp in
proof and for each precondition pcond of e�, add stp to dstnam(pcond).)

10. Any elements left in dstnam are dependent on the procedure's initial
state. For each element of dstnam add a casual link for that condition from
the initial state step to each of the steps listed for that condition in dstnam.

Figure 4.17: Computation of Causal Links

78

is removed from dstnam (line 6). The algorithm also adds e�ects that produce useful

state changes to the proof (line 7). Line 8 adds the step's control-preconditions to the

proof. Control precondition's control when the step is applicable, but may not be required

by the environment. For example, a control precondition might require that a light be

turned on before opening a valve. After processing a step's state changes, Diligent adds

the preconditions of the step's useful e�ects to dstnam (line 9). After all the steps have

been processed, any preconditions that haven't been established must rely on the initial

state (line 10).

In Figure 4.17, the use of the array dstnam greatly reduces the run-time overhead.

Each of a step's state changes is checked against one array element rather than against

the preconditions of each of the path's later steps.

casual links:
a) begin-proc1 establishes (valve1 open) for turn-1
b) begin-proc1 establishes (HandleOn valve1) for move-2nd-2
c) begin-proc1 establishes (valve2 open) for turn-3
d) turn-1 establishes (valve1 shut) for move-2nd-2
e) turn-1 establishes (valve1 shut) for turn-3
f) turn-1 establishes (valve1 shut) for end-proc1
g) move-2nd-2 establishes (HandleOn valve2) for turn-3
h) move-2nd-2 establishes (HandleOn valve2) for move-1st-4
i) turn-3 establishes (valve2 shut) for end-proc1
j) move-1st-4 establishes (HandleOn valve1) for end-proc1

Figure 4.18: Causal Links

Now suppose that Derive-Causal-Links is used with the skeleton in Figure 4.16 and

the goal conditions in Figure 4.12. Because all the operator e�ects in the skeleton are

needed, the proof produced by the skeleton is the same as the skeleton (Figure 4.16).

The resulting causal links are shown in Figure 4.18. The steps begin-proc1 and end-proc1

represent the procedure's initial and goal states, respectively. In Figure 4.18, row a)

indicates that the procedure's initial state (begin-proc1) establishes the condition (valve1

open), which is a precondition for step turn-1.

Once Diligent has created a proof of the path, Diligent can compute the ordering

constraints between the steps. As mentioned earlier, ordering constraints indicate the

relative order for performing a pair of steps. Diligent's calculation of ordering constraints

is simpler than what would be seen in partial ordered planner [Wel94] because Diligent

79

already knows a sequence of steps that will correctly perform the procedure. For this

reason, Diligent does not have to consider rearranging a procedure's steps.

Usually, there is an ordering constraint for each causal link, but more ordering con-

straints may be needed. Consider two steps that were demonstrated sequentially. Suppose

a precondition of the �rst step was removed by a state change of the second step. If the

�rst step were to be performed earlier in the procedure, the second step would not interfere

with the �rst step, but if the second step were to be performed immediately in front of

the �rst step, the �rst step's precondition would not be satis�ed, and the �rst step would

not cause a necessary state change.

In this situation, Diligent adds an ordering constraint to prevent the state change of

the later step from removing a precondition of the earlier step. The technique of adding

an ordering constraint to a procedure so that a later step doesn't remove a precondition

of an earlier step is called promotion [Wel94].

In Figure 4.19,Derive-Ordering-Constraints only uses promotion to derive ordering

constraints. The array clobberstp improves run-time e�ciency because a precondition is

only checked against steps that change the precondition's attribute rather than against

all later steps. The ordering constraints associated with causal links are calculated in

Update-Step-Relationships (line 8 in Figure 4.13).

The ordering constraints for our running example are shown in Figure 4.20. Any order-

ing constraints involving the procedure's initial state and goal state are ignored because,

by de�nition, the initial state is before all steps and the goal state is after all steps. The or-

dering constraints created with the procedure Derive-Ordering-Constraints are listed

as being created by promotion.

At this point, the instructor is �nished with procedure proc1. The plan is shown in

Figure 4.21.

4.7 Creating a Hierarchical Procedure

The techniques that we've looked at so far have problems scaling to larger procedures. We

need to be able to divide procedures into modular tasks, and we should be able to reuse

existing procedures.

Diligent addresses this issue with hierarchical procedures. A hierarchical procedure

uses another procedure as one of its steps. A procedure used as a step in another procedure

is called a subprocedure, and the procedure containing the subprocedure is called the parent

80

procedure Derive-Ordering-Constraints

Input: proof : Contains the e�ects needed by each
step to achieve the procedure's goals.

Output: cand : Set of candidate ordering constraints.

(The following uses the array clobberstp that is indexed by an
attribute. Each element contains a set of steps that change the
attribute's value. The array is used to reduce searching.)

1. Iterate over each step stp in proof starting with the
path's last step and working backwards to the �rst step.

(Check stp against the steps later in the path.)

2. For each precondition pcond of stp in proof do the following.

3. If the pcond is not equal to a condition for the
same attribute in a later step's (stp2 's) state changes then
add an ordering constraint between the two steps to cand.

cand cand [f ordi j where ordi is an ordering constraint
between steps stp and stp2 ^ e� is an e�ect of stp in proof ^
pcond 2 precondition(e�) ^ attr = attribute(pcond) ^
stp2 2 clobberstp(attr) ^ cond 2 state-change(stp2) ^
attr = attribute(cond) ^ value(cond) 6= value(pcond)g

(Prepare to check stp against steps earlier in the path.)

4. For each state change condition of stp in proof, add stp to
the set of steps in clobberstp using the condition's
attribute as an index.

Figure 4.19: Computation of Additional Ordering Constraints

81

Ordering constraints:
Created by promotion:

turn-3 before move-1st-4
Created by causal links:

turn-1 before move-2nd-2
turn-1 before turn-3
move-2nd-2 before turn-3
move-2nd-2 before move-1st-4

Figure 4.20: Ordering Constraints

procedure. A step representing a subprocedure is called an abstract step, while other steps

are called primitive steps.

4.7.1 Internally Simulating A Subprocedure

When a procedure is created, its steps reect the initial state of its path. However, when

a procedure is used as a subprocedure, it may have a di�erent initial state. This means

that some of the procedure's steps may no longer be needed. To overcome this problem,

Diligent can internally simulate performing a subprocedure.

Diligent also internally simulates the performance of subprocedures for other purposes.

Diligent simulates a subprocedure when computing step relationships in order to determine

the preconditions of the subprocedure's abstract step. Diligent also simulates a subproce-

dure when �guring out which subprocedure steps to perform during one of its experiments

(Chapter 6).

A subprocedure has the same semantics as a STRIPS macro-operator [RN95], and the

criteria used by Diligent for determining when to perform a step was developed by Je�

Rickel for the STEVE tutor [RJ99].14 STEVE examines the current state and determines

which steps are needed to achieve the goal conditions.

However, unlike STEVE, Diligent cannot assume that a step's preconditions are correct.

If a primitive step's operator is not very re�ned, then the step could have unnecessary or

missing preconditions. A missing precondition could cause Diligent to skip the step that

establishes the precondition, and an unnecessary precondition could prevent a necessary

step from being performed because the precondition is never satis�ed.

14Diligent and STEVE were developed as part of the same project [JRSM98].

82

Steps:
begin-proc, turn-1, move-2nd-2, turn-3, move-1st-4, end-proc1

Goal conditions:
(valve1 shut)(valve2 shut)(HandleOn valve1)

Causal links:
begin-proc1 establishes (valve1 open) for turn-1
begin-proc1 establishes (HandleOn valve1) for move-2nd-2
begin-proc1 establishes (valve2 open) for turn-3
turn-1 establishes (valve1 shut) for move-2nd-2
turn-1 establishes (valve1 shut) for turn-3
turn-1 establishes (valve1 shut) for end-proc1
move-2nd-2 establishes (HandleOn valve2) for turn-3
move-2nd-2 establishes (HandleOn valve2) for move-1st-4
turn-3 establishes (valve2 shut) for end-proc1
move-1st-4 establishes (HandleOn valve1) for end-proc1

Ordering constraints:
turn-1 before move-2nd-2
turn-1 before turn-3
move-2nd-2 before turn-3
move-2nd-2 before move-1st-4
turn-3 before move-1st-4

Figure 4.21: The Plan for Procedure proc1

83

procedure Internally-Simulate-Subprocedure

Input: pre-state: The subprocedure's initial state.
proc: The subprocedure.

Result: used-steps : Sequence of steps that achieves proc's goals.
pcond : The preconditions in pre-state.

(In the following, a needed precondition, goal condition or step
is called relevant. A step is only assumed to have
a precondition when the step is enabled by a causal link
that establishes that precondition.)

1. If proc does not yet have any causal links, add
all of proc's steps to used-steps, set
pcond to be empty, and return.

2. Compute the steps that are needed to achieve proc's goal
conditions. This is done by iterating backwards over the
procedure from the goal conditions to the start of the procedure.

i) All goal conditions are relevant.

ii) A step is relevant if it establishes an unsatis�ed goal
condition or an unsatis�ed but relevant precondition.

iii) The conditions of all causal links that enable a relevant step
are relevant preconditions of that step.

iv) Relevant preconditions are satis�ed when the causal link
associated with the precondition is established by either
another step or the subprocedure's pre-state.

3. Add all relevant steps to used-steps. While adding steps
maintain the same step order as the procedure.

4. If a relevant precondition or goal condition is not established
by a relevant step and the condition is true in the subprocedure's
pre-state, then add the condition to the subprocedure's
pcond.

Figure 4.22: Simulating a Subprocedure

84

The algorithm to simulate performing a subprocedure is shown in Figure 4.22. The

calculation is called \simulation" rather than \planning" because it uses a linear sequence

of steps (i.e. a path) and determines which steps will achieve the subprocedure's goal

conditions.

Line 1 deals with the situation when a subprocedure doesn't yet have any step re-

lationships. One solution is to force the instructor to de�ne goal conditions and step

relationships. However, this approach is intrusive, and the goal conditions and step rela-

tionships may not yet be necessary. To keep the interaction with the instructor simple,

Diligent assumes all the path's steps should be performed if a procedure has no causal

links. In this case, because preconditions depend on causal links, no preconditions can be

found.

Line 2 determines which steps are needed to achieve the procedure's goal conditions.

This calculation is similar to the calculation used by STEVE [RJ99].

Line 3 just gathers that the steps that Step 2 identi�ed as relevant (i.e. need to be

performed).

Line 4 identi�es the preconditions of the subprocedure, but is di�erent than what

STEVE would do. STEVE would include all preconditions that were marked as relevant,

while Diligent only includes preconditions that are satis�ed in the subprocedure's initial

state. To see why Diligent took this approach, suppose that an existing procedure is

reused as a subprocedure. In this case, some of the subprocedure's preconditions might be

unsatis�ed. Since the preconditions are unsatis�ed in the subprocedure's initial state, they

cannot be used as preconditions of the subprocedure. (If the subprocedure can achieve its

goals from this initial state, these unsatis�ed preconditions were unnecessary.)

The major problem with simulating a subprocedure is compensating for possible errors

in the preconditions of steps, especially the initial preconditions created with heuristics.

Diligent handles this problem by utilizing the fact that its heuristics for learning precondi-

tions favor creating unnecessary preconditions over skipping potentially necessary ones.15

For this reason, it is sometimes reasonable for Diligent to ignore unsatis�ed preconditions

(line 4).

Another issue is dealing with abstract steps embedded within a subprocedure. In this

case, Diligent assumes that the causal links involving the abstract steps are reasonable.

This allows Diligent to treat abstract steps the same as primitive steps and reduces the

overhead of simulating the abstract steps inside a subprocedure.

15The reasons that the heuristics favor unnecessary preconditions will be discussed in Chapter 5.

85

From this discussion it may seem that the reuse of subprocedures is undesirable. How-

ever, reusing a subprocedure saves time, and performing a subprocedure under di�erent

initial states helps re�ne the preconditions of the subprocedure's steps.

A problem that Diligent does not address is when the internal simulation does not

correctly identify the steps needed to achieve the subprocedure's goal conditions. Ideally,

Diligent would notice this, notify the instructor, and interact with him in order to �x the

problem. This type of dialog is supported by Instructo-Soar [HL95].16

4.7.2 Continuing the Running Example

Now let us return to our running example. We will create a hierarchical procedure that

contains three steps, two of which are abstract. We will look at the two ways of inserting

subprocedures into a parent procedure.

� An existing procedure can be inserted as a subprocedure. This can save an instructor

time and e�ort.

� A new procedure can be de�ned as a subprocedure inside a demonstration of the

parent procedure. This can be a convenient way of authoring a subprocedure in the

desired initial state.

Suppose the instructor now authors a hierarchical procedure that shuts some valves

and checks whether a light works. The instructor will use the same initial state as our

�rst procedure. The instructor calls the procedure \top-level" and gives it the description

\perform a hierarchical procedure." The instructor then demonstrates the new procedure.

1. The Instructor turns the handle and shuts valve1. This step is called turn-5.

2. The second step reuses our �rst procedure proc1 (Figure 4.21). The instructor uses

proc1 by selecting it from a menu of potential subprocedures. This step is called

proc1-6.

3. The third step is a new procedure that checks whether an alarm light is working. The

new procedure is de�ned inside the demonstration of its parent procedure (top-level).

The instructor calls the new procedure \proc2" and gives it the description \check

the alarm light." The instructor �nishes demonstrating and de�ning proc2 before

continuing the demonstration of procedure top-level. This step is called proc2-7.

16Extensions to support unexpected behavior in subprocedures are discussed in Chapter 8.

86

Step turn-5 is a redundant step that performs the work of the �rst step (turn-1) in

procedure proc1 (step proc1-6). Step turn-5 is used to show why subprocedures need to be

internally simulated. Even though step turn-5 is a primitive step, it is meant to illustrate

the situation where the state changes of one subprocedure interact with the preconditions

of a later subprocedure.

Because step turn-5 performs the �rst step of subprocedure proc1, Diligent needs to

simulate proc1 so that it can determine which steps to perform and identify the precon-

ditions of step proc1-6. Diligent simulates the subprocedure using the post-state of step

turn-5 and Internally-Simulate-Subprocedure (Figure 4.22). As expected, Diligent de-

termines that the subprocedure's step turn-1 is unnecessary because the condition (valve1

shut) has already been established. After doing the simulation, Diligent performs the

abstract step proc1-6 by performing the steps shown in Figure 4.23.

In Figure 4.23, the abstract step proc1-6 is also associated with an action-example.

Diligent creates an action-example for an abstract step by recording the state before and

after performing the step.

Steps to perform:
move-2nd-2 ! turn-3 ! move-1st-4

Preconditions:
(valve1 shut)(valve2 open)(HandleOn valve1)

Action-example:
Pre-State:

(valve1 shut)(valve2 open)(HandleOn valve1)(AlarmLight1 o�)
(CdmStatus normal)

Delta-State:
(valve2 shut)

Figure 4.23: Results from Simulating Step proc1-6

4.7.3 A Nested Procedure De�nition

After Diligent has performed abstract step proc1-6, the instructor de�nes a new procedure

inside the current demonstration. The concept of nested procedure de�nitions has been

borrowed from Instructo-Soar [HL95].

87

To construct the new subprocedure's pre�x, the pre�x of the parent procedure has

appended to it every action necessary to reach the subprocedure's initial state.17 When

constructing the pre�x, abstract steps are represented by their primitive steps, and primi-

tive steps are represented by their associated actions. Figure 4.24 shows the pre�x for the

new subprocedure (proc2).

Pre�x: pre�x3
Con�guration: con�g1
Additional-actions:

turn handle1 ! move valve2 ! turn handle1 ! move valve1

Figure 4.24: The Subprocedure's Pre�x

4.7.4 Sensing Actions

The new procedure (proc2) checks whether a light is working. The procedure illustrates

the use of a step that performs an information gathering (or sensing) action [AIS88, RN95].

A sensing action gathers information about the environment without changing it. This

raises three immediate issues:

1. What are the step's preconditions? The environment may place no restrictions on

when the sensing action can be performed.

2. How does Diligent indicate that the step has been performed? Because the sensing

action does not change the environment, what is to prevent the step from being

repeated inde�nitely?

3. Since the step doesn't change the state, what is to prevent Diligent from just skipping

the step?

Diligent addresses these issues by creating preconditions that control when the step

is performed and creating internally maintained mental attributes. A mental attribute

is an attribute that is maintained inside Diligent and is not present in the environment.

A sensing action creates a condition involving a new mental attribute, and the condition

is incorporated into the procedure's goal conditions [RJ99]. Adding the goal condition

ensures that the sensing action is performed once.

17Instructo-Soar does not use pre�xes.

88

To control when the sensing action is performed, Diligent uses heuristics to create

provisional preconditions for the sensing action's step. While creating the preconditions,

Diligent focuses on the current demonstration of the current procedure. Diligent assumes

that attributes that change value are likely to be important. Since earlier steps are likely

to establish preconditions for later steps, the state changes caused by earlier steps are

likely preconditions. The preconditions of sensing actions are calculated with Compute-

Changes-in-Demo (Figure 4.25), which is invoked during a demonstration when a sensing

action is performed.

procedure Compute-Changes-in-Demo

Input: demo: A demonstration.
cur-state: The environment's current state.

Output: chgs : A set of state changes.

(The set attrs contains the names of attributes that change value
during the demonstration.)

1. For each step in demo, add the attribute of every condition in the
delta-state of the step's action-example to attrs.

2. For each attribute that changed value (i.e. in attrs),
add the attribute's condition in the current state (cur-state)
to chgs.

Figure 4.25: Computing State Changes Caused by Earlier Steps

In Compute-Changes-in-Demo, the action-examples of abstract steps are treated

the same as the action-examples of primitive steps. This means that attributes that

change value in the subprocedure but have the same initial and �nal value are ignored.

This approach simpli�es processing and doesn't require a subprocedure's goal conditions

or causal links to be de�ned. Besides, the algorithm for computing state changes only

provides heuristic preconditions.

Because a sensing action might be performed at any time and because a procedure

may contain several sensing actions, we are using the convention that a sensing action

performed by a human student will not be recognized unless all of its preconditions are

satis�ed. Otherwise, a sensing action might not be performed in the proper situation,

which means the sensing action would not be performed properly.

89

Diligent only identi�es preconditions for a sensing action when the sensing action is

demonstrated in an add-step demonstration. Afterwards, the preconditions only change

when the instructor edits them.

In a future system, machine learning techniques could be used to re�ne a sensing

action's preconditions if a sensing action could be demonstrated multiple times. The

system might then look for commonality between the demonstrations.

However, beyond multiple demonstrations, it is unclear how to use machine learning

techniques with sensing actions because they don't a�ect the state of the environment.

Perhaps, it might be possible to use the placement and type of sensing action to make

inferences about other aspects of a procedure

While this approach for identifying sensing action preconditions worked on the proce-

dures that we looked at, it became clear during Diligent's evaluation (which did not use

sensing actions) that the approach would have been more robust if it had also looked at

attributes that changed value after the sensing action. Using the state changes of earlier

steps places the sensing action after the earlier steps, and using attributes that change

value later in the procedure would have placed the sensing action in front of later steps.

Consider the following example of why both sources of preconditions are important.

Suppose a procedure involves pressing the reset button, checking if a light is illuminated,

and turning o� the system by pressing the power button. In this case, checking the light

has no value if it is checked before the reset button has been pressed or after the power

button has been pressed. By using state changes of steps both before and after the sensing

action, the sensing action could have been positioned so that it was correctly performed

as the second step.

4.7.5 Demonstrating the Nested Procedure

Now let us look at the demonstration of the procedure (proc2) containing the sensing

action. During the demonstration, the instructor performs the following steps.

1. The instructor presses the function-test button, which causes the alarm light to turn

on. The instructor calls the operator \press-test" and approves the default descrip-

tion \press the system test button." The step is called press-test-8.

2. The instructor performs a sensing action on the light by selecting the light with

the mouse. The instructor calls the operator \check-light" and approves the default

description \check the alarm light." This step is called check-light-9.

90

3. The instructor turns o� the light by pressing the reset button. The instructor calls

the operator \press-reset" and approves the default description \press the system

reset button." This step is called press-reset-10.

Figure 4.26 shows information for proc2's demonstration. The conditions found by

Compute-Changes-in-Demo are listed as the control preconditions of step check-light-

9. In contrast to the preconditions of an e�ect, which are required by the environment to

produce the e�ect's state changes, control preconditions are speci�c to a step and need to

be true before the step is performed. For this reason, control preconditions are associated

with the step rather than with the operator.

The mental attribute (AlarmLight1-result) created by step check-light-9 is added to the

step's mental-conditions because Diligent associates each mental attribute with a distinct

step. The value of the mental attribute is not considered important (i.e. <any value>)

because none of the procedures used with Diligent could utilize the mental attribute's

value. A more sophisticated use of mental attributes and sensing actions will be discussed

when we talk about potential extensions (Section 8.4.2.3).

At this point, the instructor derives the procedure's goal conditions and step relation-

ships. The plan for proc2 is shown in Figure 4.27.

4.8 The Completed Procedure

After the instructor has �nished subprocedure proc2, he �nishes demonstrating its parent

procedure (top-level). The plan for top-level is shown in Figure 4.28. The plans for the

abstract steps proc1-6 and proc2-7 have already been shown in �gures 4.21 and 4.27,

respectively.

One thing to note about top-level's plan is that subprocedures are treated as black boxes

that achieve their goal conditions. This is done because subprocedures do not terminate

until their goal conditions are satis�ed. Furthermore, a subprocedure's plan supports some

ability to adjust to di�erent initial states. Moreover, treating subprocedures as black boxes

simpli�es processing on hierarchical procedures (e.g. computing step relationships).

Treating subprocedures as black boxes a�ects top-level's plan in several ways. One

way is using subprocedure proc1's goal conditions for the state changes of its step when

computing top-level's goal conditions (line 3 in Figure 4.11). That is why (HandleOn

valve1) is a goal condition of top-level even though the condition is true in top-level's initial

and goal states. Another way that subprocedures are used as black boxes is when the

preconditions and goal conditions of a subprocedure (proc1) are used to create an e�ect

91

Demonstration:
Type: add-step
Pre�x: pre�x3
Previous-step: begin-proc2
Steps: press-test-8 ! check-light-9 ! press-reset-10

Step: press-test-8
Action-example:

Pre-state:
(valve1 shut)(valve2 shut)(HandleOn valve1)(AlarmLight1 o�)
(CdmStatus normal)

Delta-state:
(AlarmLight1 on)(CdmStatus test)

Step: check-light-9
Action-example:

Pre-state:
(valve1 shut)(valve2 shut)(HandleOn valve1)(AlarmLight1 on)
(CdmStatus test)

Delta-state:
<empty>

Control-preconditions:
(AlarmLight1 on)(CdmStatus test)

Mental-conditions:
(AlarmLight1-result <any value>)

Operator: check-light
E�ect:

Preconditions: <empty>
State changes: <empty>

Step: press-reset-10
Action-example:

Pre-state:
(valve1 shut)(valve2 shut)(HandleOn valve1)(AlarmLight1 on)
(CdmStatus test)

Delta-state:
(AlarmLight1 o�)(CdmStatus normal)

Figure 4.26: Subprocedure Demonstration

92

Steps:
begin-proc2, press-test-8, check-light-9, press-reset-10, end-proc2

Goal conditions:
(AlarmLight1 o�)(CdmStatus normal) (AlarmLight1-result <any value>)

Causal links:
begin-proc2 establishes (AlarmLight1 o�) for press-test-8
begin-proc2 establishes (CdmStatus normal) for press-test-8
press-test-8 establishes (AlarmLight1 on) for check-light-9
press-test-8 establishes (CdmStatus test) for check-light-9
press-test-8 establishes (AlarmLight1 on) for press-reset-10
press-test-8 establishes (CdmStatus test) for press-reset-10
check-light-9 establishes (AlarmLight1-result <any value>)

for end-proc2
press-reset-10 establishes (AlarmLight1 o�) for end-proc2
press-reset-10 establishes (CdmStatus normal) for end-proc2

Ordering constraints:
press-test-8 before check-light-9
press-test-8 before press-reset-10
check-light-9 before press-reset-10

Figure 4.27: The Plan for Subprocedure proc2

93

when computing the path's skeleton (line 7 in Figure 4.15). This is why step proc1-6 rather

than step turn-5 establishes the goal condition (valve1 shut) with causal link g).

Steps:
begin-top-level, turn-5, proc1-6, proc2-7, end-top-level

Goal conditions:
(valve1 shut)(valve2 shut)(HandleOn valve1)(AlarmLight1 o�)
(CdmStatus normal)(AlarmLight1-result <any value>)

causal links:
a) begin-top-level establishes (valve1 open) for turn-5
b) begin-top-level establishes (valve2 open) for proc1-6
c) begin-top-level establishes (HandleOn valve1) for proc1-6
d) begin-top-level establishes (AlarmLight1 o�) for proc2-7
e) begin-top-level establishes (CdmStatus normal) for proc2-7
f) turn-5 establishes (valve1 shut) for proc1-6
g) proc1-6 establishes (valve1 shut) for end-top-level
h) proc1-6 establishes (valve2 shut) for end-top-level
i) proc1-6 establishes (HandleOn valve1) for end-top-level
j) proc2-7 establishes (AlarmLight1 o�) for end-top-level
k) proc2-7 establishes (CdmStatus test) for end-top-level
l) proc2-7 establishes (AlarmLight1-result <any value>)

for end-top-level

ordering constraints:
turn-5 before proc1-6

Figure 4.28: The Top Level Procedure

4.8.1 Information Provided by the Instructor

To summarize the previous sections, when an instructor creates a procedure, he needs to

provide demonstrations and names for procedures and operators. He must also provide En-

glish descriptions that can be used to describe procedures to human students. Descriptions

of procedures are entered entirely by the instructor, but for other types of descriptions,

Diligent can generate a default description. Of course, default descriptions still need to be

approved (and possibly modi�ed) by the instructor.

94

4.8.1.1 Generating default descriptions

Diligent provides default descriptions for operators, steps, causal links and goal conditions.

These descriptions exploit Diligent's ability to query the environment for English descrip-

tions of action-types, objects and attributes (Section 3.1.3). Diligent uses the information

returned by the environment to �ll in templates.

� causal links. The template for a causal link is \the<attribute name> to be <value>."

In the template, <attribute name> and <value> represent the description of the

attribute and the attribute's value, respectively. The template does not start with

a complete sentence so that the tutor has exibility in how it starts sentences. For

example, the tutor might say, \Now we want the `�rst valve' to be `open'."

� Goal conditions. Goal conditions are represented by causal links that establish con-

ditions for the plan's goal state step.

� Operators. The template is \<type of action> the <object>." For example, the tutor

could use the template to say \We will now `toggle' the `�rst valve'." Of course,

additional templates would be needed if operators modeled actions that involved

multiple objects.

� Steps. By default, steps use their operator's description.

The templates are simple, but they provide the instructor with a great deal of help.

They correctly identify the objects and attributes involved. Because they usually produce

reasonable descriptions, they save the instructor a great deal of typing. Reducing typing

not only saves time but also prevents errors.

4.9 Complexity

Because Diligent is an interactive system, its algorithms should have reasonable run-time

e�ciency. In this section, we will discuss the run-time complexity of simulating subproce-

dures and deriving step relationships.

These calculations involve identifying connections between steps, and the algorithms

center on the processing of individual steps. For this reason, we will consider the processing

of a step as the basic operation.

We will assume that each step has the maximum number of preconditions and these

result in the maximum number of causal links and ordering constraints. For this reason,

we will consider the processing on each step as approximately the same.

95

We will also ignore the access times of associative arrays. An associative array is

indexed by a symbolic value (e.g. \blue") and can be implemented as a hash table. The

worst case time for accessing an element of an associative array is linear in the number of

elements in the array.

Let n = the number of steps in the current procedure without

considering the steps inside subprocedures.

m = the maximum number of steps in a subprocedure without

considering the steps inside a subprocedure's subprocedures. (m = n)

s = the number of subprocedures in the current procedure.

p = the maximum number of preconditions or state changes

for a step.

In Diligent's algorithms, the causal links and ordering constraints are derived from the

preconditions of steps. The calculations revolve around a step's preconditions rather than

around causal links or ordering constraints. Thus, in the following algorithms, we will

expect to process O(p) preconditions every time we process a step.

When we discuss the steps in a procedure, we mean the steps in the immediate pro-

cedure. By immediate procedure, we mean only the primitive and abstract steps in a

procedure and not the steps inside the subprocedures associated with abstract steps.

First, we will look at simulating a subprocedure (Figure 4.22). The algorithm uses the

subprocedure's causal links. This results in abstract steps inside the subprocedure being

treated exactly like other steps. Determining the relevant preconditions and steps (line

2) involves visiting each of the m steps once. Later, the m steps are visited once again

to identify and store the relevant steps (line 3). Because there are O(p) preconditions,

we expect to process O(p) causal links for every step. Thus, the run-time complexity is

O(pm).

Next, we will look at deriving step relationships (Figure 4.13). The majority of the

time is spent in the algorithms that compute the path skeleton, the causal links and the

ordering constraints. Each algorithm computes intermediate results that are used by the

next algorithm.

The �rst algorithm (4.15) creates a skeleton of a path. The skeleton identi�es which

operator e�ects were used in the path. If a procedure does not contain any subprocedures,

then each step is visited once (lines 9-12) and O(p) preconditions and state changes are

processed. Thus, the complexity is O(pn). However, any subprocedures will need to be

96

simulated (lines 4-8). If there are at most s subprocedures with a length of at most m,

then the run-time complexity is O(pn + spm).

The second algorithm (Figure 4.17) takes the skeleton and computes causal links. Each

step is processed once and associative arrays are used to hold intermediate results. Because

O(p) preconditions are considered, the complexity is O(pn).

The third algorithm (Figure 4.19) computes ordering constraints. The algorithm looks

at preconditions of steps and compares them to state changes of later steps (lines 2-3). In

the worst case, every step would change the same attribute. This would result in a run-

time complexity of O(pn2). However, the algorithm uses an associative array to record

which attributes are changed by which steps (line 4). This reduces the expected number

of comparisons. In practice, the algorithm has been very fast.

Combining the complexity for various algorithms results in a complexity O(pn2 +

spm). The algorithms have been used on procedures as long 10 to 12 steps, and none of

the algorithms have been observed to take more than a few seconds.

Diligent gains e�ciency from its focus on the immediate procedure. The cost of simu-

lating subprocedures is limited because Diligent uses the causal links inside subprocedures.

Once an abstract step's subprocedure has been simulated, overhead is reduced because the

abstract step is treated like a primitive step. Another source of e�ciency is hierarchical

procedures. The hierarchy allows instructors to create relatively small and modular pro-

cedures, and the run-time overhead of creating small and modular procedures is small.

4.10 Related Work

4.10.1 Natural Language Versus Direct Manipulation

When using Diligent, the instructor demonstrates a procedure by directly manipulating

the environment. However, a natural language (e.g. English) could have been used to

specify the procedure's steps. Humans �nd natural languages exible and easy to use.

Unfortunately, computers have di�culty understanding natural languages. One problem

is ambiguity. For example, what does \it" or \the button" mean? Another problem is

indirection. Instead of simply performing an action, a human needs to provide an abstract

description. A system that receives demonstrations with a similar content as Diligent's,

but in English, is Instructo-Soar [HL95].

Although direct manipulation avoids many of the problems of ambiguity inherent in

natural languages, a problem when using direct manipulation is handling abstraction.

Input is very concrete because it deals with individual objects. This raises the issue of

97

how to specify quanti�cation, negation and sets [Coh92]. Because input is directly entered

in the current state, it is also di�cult to specify hypothetical situations. These are areas

where natural language could complement direct manipulation.

4.10.2 Programming By Demonstration

This section will discuss related work in basic techniques for Programming By Demon-

stration (PBD) [C+93]. A PBD system learns how to perform some task by observing a

user perform it. The di�erence between PBD and learning a macro is that PBD involves

a generalization of the task instead of a rote repetition of the user's actions. Diligent can

be classi�ed as a PBD system because it observes demonstrations and uses them to create

plans and operators.

Many PBD systems learn how to perform procedures. These systems typically uti-

lize a helpful user in order to learn how to perform simple procedures after only a few

demonstrations. Diligent di�ers from a typical PBD system because it has the ability to

experiment18 and the ability to learn the relationships between steps (i.e. step relation-

ships). Additionally, few PBD systems can learn hierarchical procedures.

4.10.2.1 Procedure Representation

An important aspect of this chapter is that it provides algorithms that transform demon-

strations into hierarchical partially ordered plans. This plan representation has �ne-

grained ordering constraints and causal links that have been shown to useful for providing

good explanations to humans [ME89].

Some robotic PBD work [FMD+96] has also produced hierarchical partially ordered

plans, but the robotic work learns a very di�erent representation. Each step in a procedure

has a set of disjunctive preconditions that indicate when the step can be performed if zero

to all of the procedure's later steps are not performed. If a procedure is long, then these

preconditions could become very complicated. Thus, it appears that human users could

have di�culty understanding or verifying the preconditions of steps.

18Diligent experiments by replaying a procedure, skipping a step and observing the result.

98

4.10.2.2 Basic Techniques

The PBD literature provides a number of useful basic techniques. Other than some pre-

liminary work on sensing actions, Diligent used basic PBD techniques instead of creating

new ones.

One basic technique is focusing the agent's attention. This can be done by pointing

to objects [Mau94] and identifying important objects by performing extraneous actions on

them [Lew92]. Using extraneous actions probably has limited value for Diligent because

apparently extraneous actions are likely to indicate either that one of the actions is a

sensing action, that Diligent cannot see a relevant attribute, or that Diligent is missing

knowledge of step relationships. Other work on focusing has looked spatial distance and

how quickly actions are performed [Hei89]. However, using spatial distance may have little

value on a device with buttons and switches. Using speed of instruction as focus may also

be inappropriate because hurrying an instructor may negatively impact the quality of a

demonstration.

Besides focusing, another basic PBD technique is asking the user to provide clari�ca-

tion. The user is asked to select between a set of hypotheses in the PRODEGE+ graphics

editor [BS93]. In contrast, Metamouse asks the user to toggle on \thumbtacks" which indi-

cate potentially important features [MW93]. Diligent uses this technique when it presents

an instructor with hypothesized preconditions, goal conditions and step relationships.

Another technique is providing a graphical history or storyboard [KF93]. A graphical

history shows in a sequence of small windows how the window used for instruction varied

throughout a demonstration. One problem with graphical histories is that support for

graphical histories might need to be explicitly designed into a graphical interface. Dili-

gent could not use graphical histories because it did not have enough control over the

environment's graphical interface.

One basic technique is learning hierarchical procedures [KM93]. This promotes reuse

because existing procedures can be used as components of larger procedures. This improves

scalability because it takes less work by a user to enter a large procedure. Diligent's

hierarchical procedures are unusual because of the causal links in subprocedures. Causal

links provide a great deal of exibility because they indicate which steps are necessary

when starting from a variety of initial states.

Still another basic technique is adding textual annotations (e.g. an object's name) to a

graphical representation [Lie94]. A problem with the annotation approach is that Diligent

does not have the ability to insert text into the environment's graphical interface. If

99

Diligent had this ability, it might be able to more clearly communicate with the instructor,

but it is unclear how much e�ect annotations would have.

Another technique is creating graphical rewrite rules. A graphical rewrite rule trans-

forms a graphical pattern into another pattern. This technique works best when the user

can create the new pattern by making �ne-grain changes to a graphical environment. A

system that uses this approach is KidSim [SCS94, CS95], which allows young children to

create simulations. Diligent does not use this technique because it is designed to be used

in environments where it has limited control of the environment.

Work by Bimbo and Viario has addressed an issue that Diligent does not consider,

which is training multiple agents in a virtual environment [BV96]. They do this by having

all but one agent replay a �xed sequence of actions. The system learns how to react to

situations based on spatial and temporal constraints. However, the system does not learn

the knowledge necessary for teaching. An issue with this approach is synchronizing the

actions of all agents. Synchronization is a problem because the agent and the instructor

may be engaged in dialog that conicts with the time line. Synchronization is also an issue

because an agent's actions could cause another agent to deviate from the �xed sequence

of actions being replayed.

While the other basic PBD techniques used by Diligent have been discussed in the PBD

literature, no other system appears to incorporate actions that actively gather information

(i.e. sensing actions) and then use this information to inuence a procedure's ow of

control. Since Diligent learns procedures for the types of domains where test results are

gathered, sensing actions are important.

Most PBD systems merely accept the data provided by the user, but some systems

actively identify data that can be used to re�ne its knowledge. A system is said to engage

in active learning when it identi�es data that can help re�ne its knowledge. One such

system is Disciple [TK98], which �nds an example and asks the user whether it belongs to

a given class. However, other than Diligent, there appears to be no system that uses direct

manipulation and then uses the environment to perform experiments that will reduce the

need for the user to answer questions.

4.11 Summary

The main importance of this chapter is that it provides algorithms that transform demon-

strations into hierarchical partially ordered plans. While many of the algorithms are

original, they tend to be fairly simple or derived from standard planning techniques. This

100

chapter is also important because its algorithms create the basic structure used to learn

operators (Chapter 5) or to perform experiments (Chapter 6).

We will now briey review what this chapter covered.

This chapter discussed how Diligent transforms demonstrations into procedures. To

process a demonstration, Diligent can combine multiple demonstrations into a path. Be-

cause the path contains all the procedure's steps, Diligent uses the path to derive the

procedure's plan. By default, a procedure's goal conditions contain the �nal values of

attribute's whose values changed during the procedure. Once the goals are known, step

relationships can be derived using the path's sequence of steps and the preconditions and

state changes of each step.

To promote scalability, modularity and ease of authoring, procedures can be hierarchi-

cal. Subprocedures can be speci�ed by inserting existing procedures into a demonstration

or by creating a new subprocedure inside a demonstration of the parent procedure. How-

ever, when reusing an existing procedure as a subprocedure, Diligent needs to internally

simulate the subprocedure because the subprocedure's initial state may require skipping

some of the subprocedure's steps.

Another issue is how to incorporate sensing actions into a procedure. Because sensing

actions do not change the environment, Diligent needs to ensure that they are not skipped.

Diligent does this by creating a mental attribute that doesn't exist in the environment and

then using the mental attribute in a goal condition. Diligent also ensures that a sensing

action is performed in the proper state by adding preconditions that control when it is

performed.

101

Chapter 5

Learning Operators

The previous chapter discussed constructing procedures from demonstrations. However,

demonstrations, by themselves, are not useful because they do not explicitly indicate the

dependencies between steps (i.e. step relationships). Without knowledge of dependencies,

an automated tutor could perform the procedure by rote, but could not answer questions

about which steps to perform or how steps depend on each other.

Diligent corrects for this problem by learning operators. An operator models actions

performed in the environment by indicating which preconditions will cause an action to

produce given state changes. Diligent associates the operators that it learns with the steps

of procedures. This allows Diligent to use operator preconditions when calculating the

dependencies between steps.

One of Diligent's contributions is how it balances the techniques used to learn operators

with how it performs experiments. Experiments, which will be discussed in the next

chapter, can more easily remove unnecessary preconditions than identify missing ones. In

contrast, the techniques that Diligent uses to learn operators have a bias favoring likely

but potentially unnecessary preconditions. This bias is important because little data may

be available for learning. Part of this bias is Diligent's novel focus on the heuristic that

the state changes of earlier steps in a demonstration are likely to establish preconditions

for later steps. This heuristic is used when creating new operators.

This chapter discusses how Diligent learns operators. First, we will present require-

ments for the learning problem. We will then discuss heuristics and data structures.

Afterwards, we will discuss how to create new operators and re�ne existing operators.

The chapter will �nish with a discussion of run-time complexity and related work.

102

5.1 Additional Requirements

Earlier in section 3.1, we described the authoring problem in terms of requirements, con-

straints and the interface to the environment. Since then, the discussion of how demon-

strations are processed has made the problem more constrained and concrete. Factors

that have constrained the problem include the procedural representation (i.e. plans), how

operators are used generate plans, and the number and types of demonstrations provided

by the instructor. These additional constraints allow us to de�ne additional requirements

that focus on the problem of learning operators.

Most of these additional requirements arise from the general requirements to make the

instructor's job easier and to maximize the utility of a procedure's few demonstrations.

The new requirements are as follows.

Requires very little domain knowledge. Diligent may start with no domain knowl-

edge. This means that the learning algorithm cannot rely on detailed domain knowl-

edge.

Quick competence because few action-examples. Diligent needs to �nd reasonable

preconditions quickly because it may have seen only a few demonstrations. If Diligent

can �nd reasonable preconditions, then the instructor's job should be easier.

Incremental or appear incremental. The learning algorithm needs to appear incre-

mental for a number of reasons. First, the data arrives incrementally. Second,

instructors would be confused if preconditions looked very di�erent each time an

operator was updated. Third, because Diligent is interactive, the algorithm cannot

perform slow batch processing.

Support error recovery. Because there needs to be quick competence and because

learning is incremental, early preconditions may be incorrect. Thus, Diligent needs

to be able to recover from errors that could include both missing and unnecessary

preconditions.

Humans can understand the precondition representation. An instructor needs to

understand and verify preconditions. Unless the preconditions are concise and ex-

plicit, he will not be able to do so. An instructor must also be able to determine

whether or not a speci�c condition is a precondition.

103

One issue is what representations could an instructor understand. This is a di�cult

question because there are degrees of understandability. There is evidence that hu-

mans have di�culties with some types of simple logical statements [New90]. Because

preconditions are a type of logical statement, we will give the intuitive argument that

simpler representations should be easier to understand. We are also going to argue

that, to avoid problems, the representation should be as simple as feasible.

As an example, consider turning on a car's engine by turning the key. The precon-

ditions for this might be that the key is in the ignition, the seat belt is fastened,

and the door is closed. Two ways of representing these preconditions are shown in

Figure 5.1. The conjunctive representation used in a) would be used by Diligent and

anecdotally appears similar to what humans would use. In contrast, humans appear

unlikely to use b), which might be learned by CDL [She93].

a) (keyLocation ignition) ^ (seatBelt fastened) ^ (door closed)

b) (keyLocation ignition) ^ (:(seatBelt open) _ (door closed))

Figure 5.1: Preconditions for Starting a Car

Important attributes need to be identi�ed The environment may have hundreds, if

not thousands, of attributes, and in a given procedure, most attributes will probably

not change value and will probably be irrelevant. Therefore, the learning algorithm

needs to help distinguish important attributes from unimportant attributes. In con-

trast, the learning algorithm could also have required generalizing object classes and

replacing attribute values by variables.

Bound a precondition's uncertainty. The instructor should receive some indication

of the system's certainty about whether a condition is or is not a precondition. By

indicating its con�dence in a preconditions, Diligent can help focus the instructor's

attention on areas of uncertainty.

5.2 Heuristics

The algorithms in this chapter use some of the heuristics from chapter 3: 1) focus on

attributes that change value; 2) the state changes produced by earlier steps are likely to

be preconditions of later steps; and 3) favor existing knowledge and hypotheses.

This chapter also uses a new heuristic.

104

Prefer extra preconditions over missing ones. In the algorithms that will be used,

it is easier to remove an invalid precondition than to identify a missing precondi-

tion. It should also easier for humans to spot a mistake among a few proposed

preconditions than from a large set of unused conditions.

5.3 About this Chapter's Examples

Like the other chapters, this chapter's examples are taken from the HPAC domain. The

domain has been simpli�ed in order to illustrate the algorithms. Despite the similarity,

the examples in this chapter do not correspond to the extended example of Chapter 4.

5.4 Data Structures

The relevant data structures are the learning algorithm's input and output. The inputs

are action-examples and demonstrations, and the outputs are operators.

The action-examples used for learning operators were de�ned in Section 3.2.1.1. An

action-example records the state of the environment before and after an action is per-

formed. The state before the action is called the pre-state, and the state after is called

the post-state. The part of the post-state that changes is called the delta-state. States

are composed of conjunctive sets of conditions. A condition contains an attribute and its

value. For example, the condition (valve1 open) means that attribute valve1 has the value

open.

The current demonstration is also used when creating new operators. Demonstrations

were de�ned in Section 4.3. Demonstrations contain a sequence of steps, each of which is

associated with an action-example.

The representation of operators was de�ned in Section 3.2.2.2, but because this chapter

focuses on learning operators, we will spend some time discussing and motivating the

representation.

Operators model how actions performed by the instructor in the environment a�ect the

state of the environment. Operators identify the preconditions necessary for an action to

produce a given set of state changes. Because an action may produce di�erent state changes

in di�erent states, an operator's preconditions and state changes are described by one or

more conditional e�ects. Each conditional e�ect (or e�ect) has its own set of preconditions

and state changes. Preconditions and state changes are described by conjunctive sets of

105

conditions. When the preconditions are all satis�ed in an action-example's pre-state, the

associated state changes should be observed in the post-state.

Let c be a condition

c 2 g-rep) c 2 h-rep ^ c 2 s-rep
c 2 h-rep) c 2 s-rep

Let SG, SH and SS be the set of environment states
that satisfy the g-rep, s-rep and s-rep, respectively.

SS � SH � SG

Figure 5.2: Relationship between the Precondition Concepts

E�ects have three sets of preconditions (or precondition concepts). In keeping with the

terminology used by Wang [Wan96c], the precondition sets are called the s-rep, h-rep and

g-rep. However, Wang only used a s-rep and g-rep. The relationship between precondition

sets is shown in Figure 5.2. The most speci�c precondition, s-rep, is a superset of the

other preconditions. Because the s-rep contains the most conditions, it matches fewer

environment states. The heuristic, best guess precondition (h-rep) is a subset of the s-

rep and matches at least as many environment states as the s-rep. The most general

precondition, g-rep, is a subset of the other sets and matches at least as many states as

the other sets. Although e�ects have three sets of preconditions, Diligent only uses the

h-rep when deriving a plan's step relationships.

Figure 5.3 shows an operator. The operator's action-id indicates that the operator

models turning handle handle1. The operator only has one e�ect, which means that only

one set of state changes has been seen. In this case, turning the handle shuts valve1. The

h-rep and s-rep contain the g-rep's only condition, (valve1 open), while the s-rep contains

a condition, (HandleOn valve1), that is absent from the h-rep and g-rep.

5.4.1 Preconditions as a Version Space

Before proceeding, we will discuss the representation of preconditions as three conjunctive

concepts.

An obvious question is whether conjunctive concepts can adequately represent pre-

conditions. An examination of more than 30 domains implemented in PRODIGY showed

106

Action-id: turn handle1

E�ect:

Preconditions:

s-rep: (most speci�c concept)

(valve1 open)(valve2 open)(HandleOn valve1)

h-rep: (intermediate, heuristic concept)

(valve1 open)(valve2 open)

g-rep: (most general concept)

(valve1 open)

State changes:
(valve1 shut)

Figure 5.3: An Operator

that more than 90% of the operators had only conjunctive preconditions. In the remaining

10%, operators with disjunctive preconditions could be split into multiple operators that

have conjunctive preconditions ([Wan96c], page 12). Work on PRODIGY [VCP+95] has

tended to focus on using general purpose operators for planning, while Diligent focuses

on learning a few speci�c procedures and does not generalize operators across multiple

objects of the same class. Therefore, Diligent is less likely than the work on PRODIGY

to need disjunctive preconditions.

The idea of having three concepts for each precondition (i.e. s-rep, h-rep and g-rep)

is based on Mitchell's version spaces [Mit78]. In a version space, there is a most general

concept, G, and a most speci�c concept, S. G and S correspond to Diligent's g-rep and

s-rep, respectively. G and S are used to classify whether an example belongs to a category.

In our case, the \category" is an e�ect's state changes. Examples rejected by S do not

belong to the category, and examples accepted by both S and G belong to the category.

Ideally, training with action-examples should cause S and G to converge to a single concept.

107

Unfortunately, version space algorithms have had run-time complexity problems. Mitchell's

Candidate Elimination algorithm [Mit78, Mit82] learns conjunctive conditions where G

and S may each contain multiple sets of hypothesized conditions. Unfortunately, Haussler

[Hau88] shows that S and G can have an exponential size in relation to the number of

training examples. The complexity problems can be partially overcome by using Focusing

algorithms [BSP85, YPL77], which learn conjunctive tree structured concepts.1 Focusing

allows S to be represented as a single conjunctive concept, but G may still contain many

candidate concepts. Haussler [Hau88] shows that G is still exponential. An exponential

size G can be avoided by using the INBF algorithm [SR90], which is a Focusing algorithm

that represents G as a single concept because G is conservatively specialized. A key idea of

INBF, which Diligent uses, is delaying use of training examples until they can be used and

discarded. More recently, Hirsh, Mishra and Pitt [HMP97] have identi�ed e�cient version

space algorithms for more general classes of concepts; they avoid complexity problems by

not explicitly storing S and G. Instead, they determine whether classifying an example as

an instance of the concept is consistent with the training examples. However, the lack of

an explicit G and S prevents the representation from identifying speci�c attribute values

to use as preconditions. Unfortunately, this violates one of our requirements.

Given that there are many version space algorithms, we will select one for comparison.

We will look at OBSERVER's algorithms [Wan95, Wan96a, Wan96c] because OBSERVER,

like Diligent, learns conjunctive operator preconditions. OBSERVER's algorithm is simi-

lar to INBF. However, instead of learning INBF's tree structured concepts, OBSERVER

generalizes its precondition concepts by unifying training examples with operators. This

uni�cation results in variables being introduced into the operator.

Unlike OBSERVER, Diligent does not introduce variables into operators through uni�-

cation. OBSERVER's uni�cation algorithm requires explicit relations between objects and

their attributes, but Diligent's unstructured environment does not contain these relations.

Additionally, Diligent and OBSERVER have di�erent learning tasks: OBSERVER learns

general operators for planning, while Diligent learns a few speci�ed procedures in domains

where many objects in a given class (e.g. buttons) may have idiosyncratic behavior. For

example, one button may turn on the power, while another starts the motor.

Still, Diligent could have provisionally generalized operators to act on objects of the

same class. This generalization could then have been withdrawn if an object was shown

to have idiosyncratic behavior. However, in domains that Diligent has used, too many

1In a tree structured concept, concepts lower in the tree are specializations of concepts higher in the
tree. For example, birch and elm are specializations of tree and plant.

108

objects (e.g. buttons and switches) have idiosyncratic behavior for generalization to be an

important capability.

Another issue is the convergence of the s-rep and g-rep to a single concept, especially

when there are limited numbers of training examples. What if s-rep and g-rep don't

converge? Which one should be used as the precondition? The g-rep is likely to be too

general, while the s-rep is likely to be too speci�c. Choosing between s-rep and g-rep is

especially problematic immediately after the version space is created; the s-rep and g-rep

are useless because the s-rep matches only one state and the g-rep matches any state. This

issue is complicated by the fact that Diligent is unlikely to get enough examples for the

s-rep and g-rep to converge.

To avoid problems with version space convergence, Diligent creates plans using the

h-rep, which is an heuristic, best guess precondition. The h-rep, which is not present in

OBSERVER, is more speci�c than the g-rep and more general than the s-rep. Thus any

state that satis�es the s-rep also satis�es the h-rep, and any state that satis�es the h-rep

also satis�es the g-rep.

The h-rep serves a number of purposes. The h-rep provides a usable precondition

when there isn't enough data to make the s-rep and g-rep usable. The h-rep also provides

a working hypothesis to actively investigate. The idea of a working hypothesis is apparent

when you view the three precondition concepts as representing su�cient (s-rep), likely

(h-rep) and necessary (g-rep) preconditions.

Even though Diligent uses the h-rep, the s-rep and g-rep are still valuable. As will be

shown, the s-rep and g-rep can be used to detect problems with the learning algorithm.

The s-rep and g-rep are also used to add missing conditions to the h-rep.

5.5 Creating a New Operator

Figure 5.4 shows the algorithm for creating a new operator. The current demonstration

and the action-example of the new operator's action are used to create the operator's �rst

e�ect. On line 2, g-rep is set to the empty set, and on line 3, s-rep is set to the action-

example's pre-state. Thus, g-rep is satis�ed by any state, and s-rep is only satis�ed by

the pre-state. At this point, the g-rep and s-rep are not very useful, but they do bound

uncertainty in the preconditions. On line 4, the initial h-rep is set to the pre-state values of

attributes that have changed value during the demonstration.2 Line 5 gathers the pre-state

2The algorithm for Compute-Changes-in-Demo is in section 4.7.4 on page 4.7.4.

109

procedure Create-New-Operator

Given: demo: A demonstration.
ex : An action-example.

Learn: op: A new operator.

1. Create operator op with e�ect e�
2. g-rep(e�) ;
3. s-rep(e�) pre-state(ex)
4. h-rep(e�) Compute-Changes-in-Demo with demo and pre-state(ex).

(This identi�es attributes that have already changed value in the
demonstration.)

5. h-rep-cand conditions in pre-state(ex) that have the same attributes as
conditions in delta-state(ex).
(Each condition c1 such that c1 2 pre-state(ex) and there exists a
condition c2 2 delta-state(ex) where attribute(c1) = attribute(c2).)

6. h-rep(e�) h-rep(e�) [h-rep-cand
7. state-changes(e�) delta-state(ex)

Figure 5.4: Algorithm for Creating New Operator

conditions of attributes whose value changed in the action-example, and line 6 adds these

conditions to the h-rep. Because the h-rep reects changes during the demonstration, the

h-rep is a better initial precondition than either the g-rep or the s-rep. Finally, on line 7,

the e�ect's state changes are set to the action-example's delta-state, which contains the

post-state values of attributes whose values were changed by the action.

This approach has some similarity with the method used by Instructo-Soar [HL95] to

induce conditions under which an action should be performed. Instructo-Soar looks at two

groups of conditions: the �rst group contains the attributes whose values were changed by

the action, and the second group contains relations between the objects being acted upon

and the objects associated with the procedure's goal conditions.

In contrast, the preconditions of Diligent's operators attempt to model the environment

in a way that is independent of a given step or procedure. That is why Diligent doesn't

need the procedure's goals when learning preconditions and that is why Diligent looks at

the state changes of the demonstration's earlier steps, which are likely to be preconditions

of later steps.

110

Demonstration:
demo1, with the following state change earlier in the demonstration

(HandleOn valve1)

Action-example:
Action-id:

turn handle1
Pre-state:

(valve1 open)(valve2 open)(valve3 open)(HandleOn valve1)
Delta-state:

(valve1 shut)

Figure 5.5: Input for Creating New Operator

Figure 5.5 shows the input for creating a new operator, and Figure 5.6 shows the result-

ing operator. In Figure 5.5, the only state change from earlier steps in the demonstration

is that the handle was moved to valve1 ((HandleOn valve1)); this condition is added to

the new operator's h-rep by line 4 of Figure 5.4. Additionally, the only attribute in the

delta-state (valve1) has its pre-state condition (valve1 open) added to the h-rep by line 5

of Figure 5.4.

Operator: turn-handle

Action-id:
turn handle1

E�ect 1:
Preconditions:

g-rep:
;

h-rep:
(valve1 open)(HandleOn valve1)

s-rep:
(valve1 open)(valve2 open)(valve3 open)(HandleOn valve1)

State changes:
(valve1 shut)

Figure 5.6: A New Operator

111

5.6 Positive and Negative Examples

Desired state change:
(valve1 open)

Positive example:
Pre-state: Post-state: Delta-state:

(valve1 closed) (valve1 open) (valve1 open)

Negative example:
Pre-state: Post-state: Delta-state:

(valve1 closed) (valve1 closed) ;

Indeterminate:
Pre-state: Post-state: Delta-state:

(valve1 open) (valve1 open) ;

Figure 5.7: Some Positive and Negative Examples

Because Diligent may receive little input, it needs to learn quickly. One way of learning

faster is to learn from both success and failure. Success means that an action produces the

desired result, and failure means that an action doesn't produce the desired result. Diligent

learns from success and failure by comparing an operator's e�ects to action-examples.

To use an action-example, each action-example's action-id is matched with the operator

that models that action. The action-example is only used to re�ne that one operator.

To re�ne one of the operator's e�ects with the action-example, Diligent uses the com-

mon machine learning technique of classifying each action-example as either a positive

or negative training example. A positive example contains the e�ect's state changes in

its delta-state, and a negative example does not contain the e�ect's state changes in it

post-state. It is indeterminate whether an action-example should be classi�ed as either

positive or negative if the action-example contains the e�ect's state changes in both its

pre-state and post-state. It is indeterminate because it is unknown whether the action did

not change the attributes in the e�ect's state changes or whether the action did change

the values but to their pre-state values. Figure 5.7 illustrates how to classify examples for

an e�ect that opens valve1. In negative example, the attribute in the e�ect's state change

112

(valve1) doesn't have the desired value in the action-example's post-state. In indetermi-

nate example, the attribute has the desired value in both the pre-state and post-state, and

Diligent only looks at attributes that clearly changed value (i.e. are in the delta-state).

5.7 Re�ning Preconditions

Once action-examples have been classi�ed, Diligent uses the techniques of Incremental

Non-Backtracking Focusing (INBF) [SR90] to generalize precondition concepts with pos-

itive examples and specialize precondition concepts with negative examples. The most

speci�c concept (s-rep) is generalized if it incorrectly classi�es a positive example. The

s-rep is generalized by removing attributes whose pre-state values don't match the values

in the s-rep. The most general concept (g-rep) can be specialized if the g-rep incorrectly

classi�es a negative example. The g-rep is specialized by adding a condition from the

s-rep whose attribute has a di�erent value in the s-rep than in the negative example's

pre-state. Because the g-rep now contains an additional condition, it can correctly classify

the example as negative. Because of the di�culty identifying which condition to add, the

g-rep is only updated if there is a near-miss between the s-rep and the negative example.

There is a near-miss when only one s-rep condition does not match the negative example's

pre-state. Requiring a near-miss is a conservative approach that only adds conditions to

the g-rep when they have been shown to be necessary. Because a negative example may

not be a near-miss, a negative example is kept until it achieves a near-miss or the g-rep

correctly classi�es it as negative. In a similar manner, the h-rep can be generalized like

the s-rep or specialized like the g-rep.

Because the g-rep and s-rep provide an upper and lower bound for the h-rep, the

h-rep doesn't have to be updated as conservatively as the g-rep and s-rep. The g-rep

and s-rep are conservatively updated because they represent the most general and most

speci�c candidate preconditions. Because the g-rep is only specialized and the s-rep is only

generalized, changes to the g-rep and s-rep cannot be undone. In contrast, the h-rep has a

capacity for error recovery since it can be both specialized and generalized. Error recovery

may be necessary for the h-rep because it only represents a \best" working hypothesis.

In the following sections, we will look at re�ning preconditions with positive and neg-

ative examples.

113

procedure Re�ne-Positive-Example

Given: op: An operator.
e� : An e�ect of op.
ex : An action-example that is a positive example of e�.

Learn: Re�ned preconditions for e�.

1. collapse-list ;
2. di� s-rep conditions whose attributes

have di�erent values than in the action-example's pre-state.
(The conditions in di� appear unnecessary.)

3. For each condition cond 2 di�,
a) If cond is in the e�ect's g-rep, then add cond to collapse-list.

4. If collapse-list 6= ; then
a) The version space has collapsed, and the elements of collapse-list

appear to be incorrect. Ask the instructor to update
the preconditions of e� using collapse-list.

b) Return
5. Remove from s-rep any conditions contained in di�.
6. Remove from h-rep any conditions contained in di�.
7. For all unused negative examples neg-ex of e�,

a) Use Re�ne-Negative-Example on op and e� with neg-ex.
(Because conditions have been removed from s-rep, there
are fewer conditions that could distinguish positive and
negative examples.)

Figure 5.8: Re�ning Preconditions with a Positive Example

5.7.1 Re�ning Preconditions with Positive Examples

Positive action-examples are used to remove unnecessary conditions from an e�ect's pre-

condition concepts. The algorithm for re�ning an e�ect's preconditions with a positive

action-example is shown in Figure 5.8.3 To process an example, we need to to iden-

tify unnecessary preconditions. This is done on line 2, which identi�es conditions in the

most speci�c precondition concept (s-rep) that do not match the pre-state of the action-

example.4 The unnecessary conditions from line 2 are removed from the s-rep and h-rep

on lines 5 and 6.

3For clarity, some minor e�ciency improvements have been removed.
4We assume that no attributes were added to or removed from the state.

114

Besides removing unnecessary conditions, we need to check that the preconditions are

consistent with the training data; this is done in lines 3 and 4. A key idea is that the g-rep's

conditions have already been shown to be necessary. Line 3 identi�es necessary conditions

that now appear unnecessary, and line 4 indicates an interaction with the instructor to

correct the problem.

When a condition is shown to be both necessary and unnecessary, the version space

is said to collapse. There are several reasons for a version space to collapse: 1) the

instructor introduced errors when editing preconditions; 2) Diligent cannot see a necessary

environment attribute; or 3) the precondition needs to be represented as a disjunction of

conjunctive conditions. All three of these cases need further interaction with the instructor

and are beyond the scope of our present discussion.

After unnecessary preconditions have been removed by lines 5 and 6, the di�erences

between the preconditions and negative examples might be smaller. For this reason, the

e�ect is checked against negative examples that previously produced far-misses (line 7).

A far-miss indicates that two or more attributes in the s-rep have di�erent values than in

the action-example's pre-state.

Positive example pre-state:
(valve1 open)
(valve2 open)
(valve3 shut)
(HandleOn valve1)
(AlarmLight1 o�)

Preconditions before: Preconditions after:
g-rep: g-rep:

(valve1 open) (valve1 open)
h-rep: h-rep:

(valve1 open) (valve1 open)
(valve3 open) (HandleOn valve1)
(HandleOn valve1)

s-rep: s-rep:
(valve1 open) (valve1 open)
(valve2 open) (valve2 open)
(valve3 open) (HandleOn valve1)
(HandleOn valve1)

Figure 5.9: Using a Positive Example

115

The algorithm for processing positive examples (Figure 5.8) is illustrated by Figure 5.9.

Line 2 computes the set of di�erences between the s-rep and the action-example (di�).

In this case, the set contains (valve3 open) but not (AlarmLight1 o�). The condition

(AlarmLight1 o�) is ignored because the s-rep doesn't contain a condition involving the

attribute AlarmLight1. The version space would collapse (lines 3 and 4) only if (valve1

open) was not in the action-example's pre-state. On lines 5 and 6, the condition (valve3

open) is removed from the s-rep and h-rep.

5.7.2 Re�ning Preconditions with Negative Examples

Before proceeding, we will discuss potentially needed conditions, which are derived from

INBF [SR90]. Potentially needed conditions are de�ned in Figure 5.10.5 At least one of

the potentially needed condition must distinguish a given negative example from positive

examples. In the HPAC domain, there are several dozen conditions in an action-example's

pre-state, but usually only a few potentially needed conditions. There are so few conditions

because Diligent focuses on learning the procedures speci�ed by the instructor rather than

exploring the environment, and this creates a tendency for positive and negative examples

to have similar pre-states.

Potentially-Needed-Conditions � s-rep conditions whose attributes
have di�erent values in an action-example's pre-state.
� f c1 j c1 2 s-rep ^ c2 2 pre-state ^ attribute(c1) = attribute(c2) ^

value(c1) 6= value(c2) g

Figure 5.10: Potentially Needed Conditions

Negative examples are used to add conditions to an e�ect's preconditions. This is done

by looking for a one condition or near-miss mismatch between the s-rep and an action-

example's pre-state. The algorithm is shown in Figure 5.116 and will be illustrated by the

action-examples in Figure 5.12. Note that action-examples are added to a set of unused

negative examples (line 2) and then removed when nothing more can learned from them

(lines 4a and 6b).7

5Instead of potentially needed conditions, INBF used potentially guilty conditions, which contain con-
ditions from the example's pre-state rather than the e�ect's s-rep.

6In Diligent, incrementally storing and updating potentially needed conditions greatly reduced the
number of conditions checked. However, for clarity, these simple changes to the algorithms are not shown.

7Because the s-rep is used to identify potentially needed conditions, both the s-rep and g-rep are
necessary for identifying missing preconditions.

116

procedure Re�ne-Negative-Example

Given: op: An operator.
e� : An e�ect of op.
ex : An action-example of e�.

Learn: Re�ned preconditions for e�.

1.
1. If state-changes(e�) � post-state(ex) then

(This is true when state-changes(e�) � pre-state(ex).)

a) return (The example should be classi�ed as indeterminate rather
than negative.)

2. Add ex to the set of unused negative examples of e�.
(Keep ex until it is rejected by the g-rep(e�).)

3. needed-cond Potentially-Needed-Conditions of ex for e�
(These conditions distinguish ex from positive examples.)

4. If needed-cond \ g-rep(e�) 6= ; then
a) Nothing can be learned from ex because g-rep(e�) classi�es

it as negative. Remove ex from the set of unused negative examples.
b) return

5. If needed-cond = ; then
a) collapse-list conditions in e� 's original s-rep that are not in the

current s-rep.
b) Some of the conditions in collapse-list are required, ask

the instructor to update the preconditions of e� using collapse-list.
c) return

6. If needed-cond has only one condition then
a) Add the condition to e� 's g-rep and h-rep.
b) Nothing more can be learned from ex. Remove it from the set of

unused negative examples.
c) return

7. If needed-cond \ h-rep(e�) 6= ; then
a) return

(h-rep(e�) classi�es the ex as negative, but we are uncertain which
conditions distinguish ex from positive examples.)

8. h-rep(e�) classi�es the ex as a positive example. Attempt to re�ne h-rep(e�)
with ex by invoking Discriminate-With-Other-E�ects.

Figure 5.11: Re�ning Preconditions with Negative Example

117

Action-example 1: Action-example 3:
Pre-State: Pre-State:

(valve1 shut) (valve1 open)
(valve2 open) (valve2 open)
(valve3 open) (valve3 shut)
(HandleOn valve1) (HandleOn valve2)

Delta-State: Delta-State:
(valve2 shut) (valve2 shut)

Action-example 2: Action-example 4:
Pre-State: Pre-State:

(valve1 open) (valve1 shut)
(valve2 open) (valve2 shut)
(valve3 open) (valve3 open)
(HandleOn valve2) (HandleOn valve1)

Delta-State: Delta-State:
(valve2 shut) (valve1 open)

E�ect:

State changes:
(valve1 shut)

Preconditions before: Preconditions after:
g-rep: g-rep:
; (HandleOn valve1)

h-rep: h-rep:
(valve1 open) (valve1 open)

(HandleOn valve1)
s-rep: s-rep:

(valve1 open) (valve1 open)
(valve2 open) (valve2 open)
(valve3 open) (valve3 open)
(HandleOn valve1) (HandleOn valve1)

Figure 5.12: Using Negative Examples

118

Action-example 1 is rejected by line 1 of the algorithm because Diligent cannot deter-

mine whether it is a negative or positive example. The e�ect's state change, (valve1 shut),

is satis�ed in the action-example's pre-state and post-state. Diligent cannot determine

whether attribute valve1's value was constant or was changed back to the attribute's pre-

state value. Because Diligent cannot correctly classify the action-example as either positive

or negative, using the action-example could introduce errors into the e�ect's preconditions.

Action-example 2 adds a condition to the g-rep and h-rep. The preconditions before and

after processing the action-example are shown on the bottom of Figure 5.12. On line 3,

only one potentially needed condition is found ((HandleOn valve1)). Since the condition is

not part of the g-rep, the g-rep misclassi�es the condition as positive (line 4). Since there

is only one potentially needed condition, line 6 specializes the g-rep and h-rep by adding

the condition to them. At this point, the algorithm cannot learn anything more from

the action-example, and the action-example is removed from the set of unused negative

examples.

Action-example 3 is rejected because the g-rep correctly classi�es it as a negative exam-

ple. Line 3 identi�es the potentially needed conditions (f(valve3 open) (HandleOn valve1)g).

Line 4 then checks if any of these conditions are in the g-rep. One of the conditions

((HandleOn valve1)) is in the g-rep. At this point, the action-example is rejected because

nothing can be learned from it. On line 4a, the action-example is removed from the set of

unused negative examples.

Action-example 4 is rejected by the h-rep but not by the g-rep. On line 3, two potentially

needed conditions (f(valve1 open)(valve2 open)g) are found. The test on line 4 fails because

neither condition is in the g-rep.8 Because there is more than one potentially needed

condition, no condition is added to the g-rep and h-rep (line 6). Finally, on line 7, the

action-example is rejected because the h-rep condition (valve1 open) is also one of the

potentially needed conditions. However, unlike action-examples 2 and 3, action-example 4

remains in the set of unused negative examples because it can still be used for identifying

preconditions as necessary (i.e. in g-rep).

Line 5 deals with the collapse of the version space. The version space collapses when

a condition needed for distinguishing between positive and negative examples has been

shown to be unnecessary. The reasons for a collapse were discussed in Section 5.7.1.

8Since the e�ect's state change is (valve1 shut), one might expect (valve1 open) to be in the g-rep.
However, condition (valve1 open) hasn't been shown to be necessary, and attribute valve1 potentially could
have many values.

119

Line 8 is used when the h-rep misclassi�es a negative example as a positive. In this

case, the h-rep will be compared to preconditions in the operator's other e�ects. Although

a condition might be added to the h-rep, no condition will be added to the g-rep. This

processing will be discussed in the next section.

5.7.2.1 Discriminating Between E�ects

There is an additional opportunity to learn when an e�ect's h-rep misclassi�es a nega-

tive example as positive. In this situation, the action-example always has at least two

potentially needed conditions, but none of them are in the h-rep. At least one of these

potentially needed conditions should be in the h-rep.

Fortunately, the operator's other e�ects are likely to have similar preconditions. That

is because the preconditions need to di�erentiate between situations where di�erent state

changes are observed, especially when two e�ects cause the same attribute to have di�erent

values. For example, consider a button that toggles whether the power is on or o�. The

preconditions for turning the power on need to reject every pre-state where pressing the

button will turn the power o�.

This means that we might identify a precondition by examining the preconditions

of other e�ects. In particular, we are interested incompatible e�ects. Two e�ects are

incompatible if they have a state change for the same attribute but with di�erent values.

Comparing incompatible e�ects is a reasonable approach because their preconditions must

di�erentiate their state changes.

When comparing incompatible e�ects, Diligent requires the action-example to be posi-

tive for one incompatible e�ect and negative for the other. We will call the e�ect with the

negative example N and the e�ect with the positive example P. Diligent adds a condition

to e�ect N's h-rep when there is a near-miss between N's potentially needed conditions and

e�ect P's preconditions. Requiring a near-miss provides more evidence for the condition;

without this evidence, an attribute in one e�ect's preconditions might get unnecessarily

added to all the others. When looking for a near-miss, Diligent checks all three of P's

precondition concepts (i.e. s-rep, h-rep and g-rep).

The algorithm in Figure 5.13 will be illustrated with the action-example in Figure 5.14.

Recall from the previous section that procedure Re�ne-Negative-Example invokes

procedure Discriminate-With-Other-E�ects when the h-rep misclassi�es a negative

example as positive. Unless the instructor had edited the preconditions, this can only

happen if an attribute in the e�ect's state changes can take three or more values because,

by default, the pre-state values of attributes in the state change are in the h-rep. The

120

procedure Discriminate-With-Other-E�ects

Given: op: An operator.
e� : An e�ect of op.
ex : An action-example that is a negative example of e�.

Result: Re�ne e�ect e� 's h-rep

1. For each incompatible e�ect (incomp-e�) of e�ect e� for operator op,

E�ect incomp-e� is incompatible when there exists conditions c1 and
c2 such that c1 2 state-change(e�) ^ c2 2 state-change(incomp-e�) ^
attribute(c1) = attribute(c2) ^ value(c1) 6= value(c2).

a) If ex is a positive example of incomp-e�, then attempt to re�ne
h-rep(e�) with Discriminate-Between-E�ects.

procedure Discriminate-Between-E�ects

Given: e� : An e�ect.
incomp-e� : An e�ect that is incompatible with e�.
ex : A negative example of e� and a positive example of incomp-e�.
cands : Candidate conditions for h-rep(e�). These are the potentially

needed conditions of ex for e�.
Result: Re�ne e�ect e� 's h-rep

2. For each of incomp-e� 's precondition concepts (rep) (i.e. s-rep, h-rep or g-rep)
do the following

a) Find all conditions in cands that are not in rep, but
have a common attribute with a condition in rep. Call this
set cands2.

cands2 fc1 j c1 2 cands ^ 9c2 2 rep where
attribute(c1) = attribute(c2) ^ value(c1) 6= value(c2)g

b) If cands2 contains one condition,
i) Add the condition to e� 's h-rep.
ii) Return

Figure 5.13: Discriminating Between E�ects

121

Action-example: Incompatible e�ect:
Pre-state: State changes:

(valve1 open) (status halted)
(valve2 shut)
(pressure high) Preconditions:
(status test) g-rep:

Delta-state: ;
(status halted) h-rep:

(pressure high)
(status test)

s-rep:
(valve1 open)
(valve2 shut)
(pressure high)
(status test)

E�ect:

State changes:
(status normal)

Preconditions before: Preconditions after:
g-rep: g-rep:
; ;

h-rep: h-rep:
(valve1 open) (valve1 open)

(pressure normal)
s-rep: s-rep:

(valve1 open) (valve1 open)
(valve2 open) (valve2 open)
(pressure normal) (pressure normal)

Figure 5.14: An Example of Discriminating Between E�ects

122

h-rep condition can then be removed if the attribute has a di�erent pre-state value in a

positive example.

The procedure Discriminate-With-Other-E�ects (Figure 5.13) �rst identi�es in-

compatible e�ects that merit further processing. Line 1 �nds all incompatible e�ects for

which the given action-example is a positive example. For these incompatible e�ects, pro-

cedure Discriminate-Between-E�ects is invoked. In our example (Figure 5.14), only

one appropriate incompatible e�ect is found.

In procedureDiscriminate-Between-E�ects, the potentially needed conditions (cands)

of the �rst e�ect (e�) are compared against the preconditions of the incompatible e�ect

(incomp-e�). In the example, the potentially needed conditions are f(valve2 open)(pressure

normal)g. When the needed conditions are checked against the s-rep of the incompatible

e�ect (line 2a), both potentially needed conditions match. Because checking the s-rep

failed, the h-rep is checked. In this case, the h-rep and the potentially needed conditions

have a one condition match. This condition, (pressure normal), is then added to e�ect e� 's

h-rep. The updated e�ect is shown in the lower right portion of Figure 5.14.

Another system that compares the preconditions of di�erent state changes is LIVE

[She93, She94], but its algorithm is inappropriate for Diligent. LIVE's learning algorithm,

Complementary Discrimination Learning (CDL), corrects for the misclassi�cation of an

action-example by adding additional conditions to a potentially complicated set of dis-

junctive preconditions. Unfortunately, a complicated precondition can be created when a

simple one could have expressed the same concept. A problem with CDL is that it cre-

ates both disjuncts and negated preconditions. A negated precondition indicates that an

attribute cannot have a given value. For example, a normal condition may indicate that

valve1 is shut, while a negated condition might indicate that valve1 is not open. Because

preconditions may be unnecessarily complicated, the preconditions may not be suitable

for teaching and may not seem reasonable to a human instructor.9

5.8 Putting it all Together

So far we have discussed how to create an operator and its �rst e�ect. We have also

discussed how to re�ne an existing e�ect with positive and negative examples. However,

we have not discussed the higher level processing that deals with operators and action-

examples.

9Figure 5.1 contrasted two preconditions for the same e�ect. The simple one used Diligent's represen-
tation, and the complicated one is typical of what CDL would learn.

123

The next few sections discuss using an action-example to re�ne an operator. First, we

will cover the high level processing that determines how to treat each e�ect. Second, we

will discuss adding a new e�ect to an existing operator. Third, we will discuss splitting

an e�ect with multiple state changes into two e�ects.

5.8.1 Determining How to Process E�ects

A comparison between an action-example's delta-state and the state changes of the oper-

ator's e�ects determines the type of processing performed on the action-example. If the

state changes match an e�ect's delta-state, the action-example is positive for that e�ect;

and if the state changes and delta-state don't match, the action-example is negative or

indeterminate. However, the match might only be partial. Additionally, some of the delta-

state's conditions may not match any e�ect's state changes. These cases need to be taken

into account.

Operators are re�ned by procedure Re�ne-Operator (Figure 5.15).

For an operator to properly model an action-example, the operator needs to predict

all the action-example's delta-state conditions. Diligent does this by matching each delta-

state condition with some e�ect's state changes. Initially, all delta-state conditions are

added to the set of unmatched delta-state conditions (the set delta on line 1). As each

e�ect is processed, any delta-state conditions that match the e�ect's state changes are

removed from the set of unmatched conditions (line 2b). Finally, if any conditions remain

unmatched, a new e�ect is created that has the unmatched conditions as its state changes

(line 3).

To discuss the processing of an e�ect, we will use the data in Figure 5.16. On line 1

(Figure 5.15), the initially unmatched delta-state conditions are f(valve1 shut)(AlarmLight1

on)(AlarmLight3 on)g. Consider e�ect 1. All its state changes match the delta-state (line

2a). Thus, the example is positive (line 2c). Consider e�ect 2. None of its state changes

match the delta-state. Thus, the example is negative or indeterminate (line 2d). Consider

e�ect 3. Some of its state changes match ((AlarmLight1 on)), but some do not ((AlarmLight2

on)). Thus, the e�ect is split into two e�ects (line 2e). Finally, one delta-state condition

((AlarmLight3 on)) is unmatched by any e�ect. In this case, Diligent creates a new e�ect

for the unmatched condition (line 3).

124

procedure Re�ne-Operator

Given: op: An operator.
ex : An action-example for the operator.

Result: Re�ne operator op.

1. delta action-example ex 's delta-state

2. For each e�ect e� of operator op,
a) Identify conditions in e� 's state changes that

match (me�) and do not match (fe�) the action-example ex

me� state-changes(e�) \ delta
fe� state-changes(e�) n me�

b) Remove each condition from delta that matches one of
the e�ect's (e�) state changes.

c) If all state changes match the action-example (fe� = ;),
i) Re�ne e�ect e� with a positive example ex

by invoking Re�ne-Positive-Example.

d) Else if no state changes match the action-example (me� = ;),
i) Example ex is either negative or indeterminate.

Re�ne e�ect e� with example ex
by invoking Re�ne-Negative-Example.

e) Else the action-example only matches some state changes,
i) Split the e�ect e� in two with Split-E�ect. Use the

action-example ex and the matching (me�) and
mismatching (fe�) state changes.

3. If some conditions in the action-example's delta-state haven't been matched
(delta 6= ;),

a) Create a new e�ect by invoking Create-New-E�ect and
using the action-example ex and the unused delta-state
conditions delta.

Figure 5.15: Re�ning an Operator with an Example

125

Action-example:
Pre-state:

(valve1 open)(AlarmLight1 o�)(AlarmLight2 o�)(AlarmLight3 o�)
Delta-state:

(valve1 shut)(AlarmLight1 on)(AlarmLight3 on)

E�ect 1:
State Changes:

(valve1 shut)

E�ect 2:
State Changes:

(valve1 open)

E�ect 3:
State Changes:

(AlarmLight1 on)(AlarmLight2 on)

Figure 5.16: An Example for Assigning Delta-State Conditions to E�ects

5.8.2 Adding a New E�ect

In previous sections, we have discussed how to create operators and re�ne them with

action-examples, but we have not discussed adding new e�ects to existing operators. A

new e�ect is added when no conditions in any existing e�ect's state changes match some

condition in an action-example's delta-state.

When creating a new e�ect, the assumptions used to create the �rst e�ect's precondi-

tions may be inappropriate. For instance, the action-example might occur while Diligent

is performing an experiment rather than during a careful constructed demonstration. Dur-

ing a demonstration an instructor is likely to group related steps together so that earlier

steps establish preconditions of later steps. In contrast, a new e�ect might might be seen

during an experiment because a precondition of an existing e�ect was not satis�ed. For-

tunately, the preconditions of existing e�ects are good sources of knowledge because they

have probably undergone some re�nement. Therefore, when an operator already has an

e�ect, Diligent uses the knowledge already contained in the operator rather than the state

changes of previous steps.

The algorithm for creating the new e�ect is shown in Figure 5.17 and will be discussed

in the next few paragraphs.

126

procedure Create-New-E�ect

Given: op: An operator, ex : An action-example of that operator, and
delta: A set of state changes.

Result: Create a new e�ect for operator op.

1. For operator op, create a new e�ect new-e�.
2. Set the e�ect's state changes to delta.
3. Since action-example ex is new-e� 's �rst positive example,

initialize the version space bounds with ex.

s-rep(new-e�) pre-state(ex) & g-rep(new-e�) ;

4. Find the operator's earlier action-example (similar-ex) that is most similar to ex.
Similarity is measured by the fewest di�erences between action-example pre-states.

5. Find the conditions (h-rep1) in ex 's pre-state that are di�erent than
conditions in similar-ex 's pre-state.

h-rep1 f c1 j c1 2 pre-state(ex) ^ c2 2 pre-state(similar-ex) ^
attribute(c1) = attribute(c2) ^ value(c1) 6= value(c2) g

6. Select an earlier e�ect (old-ce) whose h-rep will used to help initialize
the h-rep for new-e�.
(Diligent chooses the operator's �rst e�ect.)

7. Create a partial h-rep (h-rep2) by making the earlier
e�ect's (old-ce) h-rep consistent the action-example's (ex) pre-state.

h-rep2 f c1 j c1 2 pre-state(ex) ^ c2 2 h-rep(old-ce) ^
attribute(c1) = attribute(c2) g

8. Initialize the new e�ect's best guess precondition concept (h-rep).

h-rep(new-e�) h-rep1 [h-rep2

9. For each previous action-example (old-ex) of the operator,
a) Re�ne the new e�ect new-e� by invoking

Re�ne-Negative-Example with action-example old-ex.

Figure 5.17: Creating a New E�ect

127

The new e�ect's most general (g-rep) and most speci�c (s-rep) precondition concepts

are initialized with the same method as the operator's �rst e�ect. Diligent uses the same

method because incorrect conditions cannot be removed from the g-rep and missing con-

ditions cannot be added to the s-rep. Thus, the initial g-rep contains no conditions, and

the initial s-rep contains every condition in the action-example's pre-state (line 3).

The initialization of the h-rep exploits knowledge of earlier action-examples and other

e�ects by �nding similarities and di�erences. Although the current action-example is

positive for the new e�ect, all earlier action-examples are negative. Because the h-rep needs

to distinguish between positive and negative examples, conditions that distinguish between

the current action-example and the closest negative example are likely preconditions (lines

4 and 5).

The initialization of the h-rep also exploits knowledge of other e�ects by �nding similar-

ities between them and the current action-example. Because the preconditions of di�erent

e�ects need to distinguish between various state changes, the attributes used in one e�ect's

h-rep are likely to be useful in the new e�ect's h-rep (lines 6 and 7). For example, in the

HPAC domain, the attribute that indicates which valve a handle is residing on is equally

important when opening or shutting the valve.

One problem with using existing preconditions is that they may not be very re�ned.

The lack of re�nement can result in missing and unnecessary h-rep conditions. To avoid

this problem, the h-rep belonging to the �rst e�ect is used because Diligent assumes that

the �rst e�ect is probably the most re�ned and accurate (line 6).

Once the new e�ect has been initialized, Diligent re�nes the e�ect with the operator's

earlier action-examples. Since the earlier action-examples are all negative or indeterminate,

Diligent attempts to add conditions to the new e�ect's g-rep and h-rep (line 9).

The creation of a new e�ect is illustrated by Figure 5.18. The \closest earlier action-

example" represents similar-ex on the algorithm's line 4 (Figure 5.17), and the \�rst

e�ect" represents old-ce on line 6.10 The di�erences between the current and previous

action-example (h-rep1 on line 5) are f(HandleOn valve1) (AlarmLight1 on)g. The earlier

e�ect's h-rep and the current action-example's pre-state are compared to produce h-rep2

on line 7. The set h-rep2 contains two conditions: one condition, (HandleOn1 valve1),

matches the earlier e�ect's h-rep and one condition does not, (valve1 shut). Finally, the

two sets, h-rep1 and h-rep2, are combined on line 8 to form the new e�ect's h-rep.

10Diligent does not care whether similar-ex is a positive example of old-ce.

128

Closest earlier example: Current example:
Pre-state: Pre-state:

(valve1 shut) (valve1 shut)
(valve2 shut) (valve2 shut)
(HandleOn valve2) (HandleOn valve1)
(alarm-light1 o�) (alarm-light1 on)
(alarm-light2 o�) (alarm-light2 o�)

Delta-state: Delta-state:
(valve2 open) (valve1 open)

First e�ect: New e�ect
State changes: State changes:

(valve1 shut) (valve1 open)

Preconditions: Preconditions:
g-rep: g-rep:

Don't care ;
h-rep: h-rep:

(valve1 open) (valve1 shut)
(HandleOn valve1) (HandleOn valve1)

(alarm-light1 on)
s-rep: s-rep:

Don't care (valve1 shut)
(valve2 shut)
(HandleOn valve1)
(alarm-light1 on)
(alarm-light2 o�)

Figure 5.18: An Example of Creating a New E�ect

5.8.3 Splitting an E�ect in Two

In the previous section, we discussed how to create a new e�ect from an action-example's

delta-state by using conditions that are unmatched by any e�ect. However, we have not

yet discussed what to do when an e�ect's state changes only match part of the delta-state.

In this case, the e�ect is split into two e�ects; the action-example is positive for one e�ect

and negative or indeterminate for the other e�ect.

The positive and negative examples of the original e�ect are still positive and negative

examples of the new e�ects. This means that preconditions of the original e�ect can be

used to initialize the preconditions of the new e�ects.

129

procedure Split-E�ect

Given: op: An operator.
e� : An e�ect of op.
ex : An action-example of that operator.
me� : State changes of e� that match ex.
fe� : State changes of e� that do not match ex.

Result: Split e� into two e�ects.

1. For operator op, create a new e�ect new-e�.
2. Copy the preconditions of the original e�ect e� to new-e�.

s-rep(new-e�) s-rep(e�)
h-rep(new-e�) h-rep(e�)
g-rep(new-e�) g-rep(e�)

3. Copy the unused negative examples from e� to new-e�.
4. Set the state changes of the e�ects so that

the action-example ex is a positive example of e� and
a negative example of new-e�.

state-changes(e�) me�
state-changes(new-e�) fe�

5. Re�ne e� with the action-example ex by invoking Re�ne-Positive-Example.
6. Re�ne new-e� with the action-example ex by invoking Re�ne-Negative-Example.

Figure 5.19: Splitting an E�ect

The algorithm for splitting e�ects is shown in Figure 5.19 and illustrated with the data

in Figure 5.20. In Figure 5.20, the action-example is a positive example of new e�ect 1

and a negative example of new e�ect 2. When new e�ect 1 is re�ned with the positive

example, the h-rep and s-rep have one condition, (valve2 open), removed. When new e�ect

2 is re�ned with the negative example, the g-rep has one condition, (valve2 open), added.

The above discussion of splitting e�ects and reusing the original preconditions begs

the question { why doesn't each e�ect's state change contain only one condition. This

would remove the need to split e�ects. However, Diligent is an interactive system, and it

takes less work for an instructor to examine and maintain one e�ect's preconditions than

it would if several e�ects had duplicate preconditions.

130

Action-example: Original e�ect:
Pre-state: State changes:

(valve1 open) (valve1 shut)
(valve2 shut) (AlarmLight1 on)
(HandleOn valve1)
(AlarmLight1 o�) Preconditions:

Delta-state: g-rep:
(valve1 shut) (valve1 open)

h-rep:
(valve1 open)
(valve2 open)

s-rep:
(valve1 open)
(valve2 open)
(HandleOn valve1)
(AlarmLight1 o�)

New e�ect 1: New e�ect 2:
State changes: State changes:

(valve1 shut) (AlarmLight1 on)

Preconditions: Preconditions:
g-rep: g-rep:

(valve1 open) (valve1 open)
(valve2 open)

h-rep: h-rep:
(valve1 open) (valve1 open)

(valve2 open)
s-rep: s-rep:

(valve1 open) (valve1 open)
(HandleOn valve1) (valve2 open)
(AlarmLight1 o�) (HandleOn valve1)

(AlarmLight1 o�)

Figure 5.20: An Example of Creating a New E�ect

131

5.9 Complexity Analysis

This section analyzes the complexity of the learning algorithms.

Let

a = number of attributes

= maximum number of conditions in action-example pre-states,

post-states and delta-states

c = maximum length of space to represent a condition

i = maximum length of an identi�er that represents a condition

(i should be a lot smaller than c)

v = maximum number of values for each attribute

m = maximum number of steps in a demonstration

t = maximum number of action-examples for an operator

w = maximum number of unused negative examples per e�ect

o = maximum number of operators

e = maximum number of e�ects in an operator

In the following, sets of conditions are represented as lists. The elements of these lists

are ordered by attribute name. A list can contain at most one condition for any one

attribute.

In order to avoid discussing the merits of di�erent list implementations, the following

discussion will make some assumptions. It is assumed that lists are implemented with

pointers and that many list operations take O(1) time. These include deleting an element,

appending an element to the end and inserting an element in the middle. Of course, �nding

where to delete an element or where to insert an element may require traversing the list

and take O(a) time.

We will also assume that lists of action-examples are stored using identi�ers and that

copying them takes negligible time.

Comparing ordered lists of conditions. In the following, we will repeatedly compare

two ordered lists of O(a) conditions in order to extract some elements from the lists

or to merge the lists. This takes O(a) time. We will depend on the lists being ordered

by attribute name. Consider �nding the common conditions in two lists. The lists are

compared by traversing them and comparing the current element in each list. If the

elements are equal, a match is found, and the condition in one list can be appended

132

to the list of matching conditions in (O(1)) time. If one element is less than the

other, the lesser element is not in the other list. When a list's current element is

found to be missing from the other list, the list's current element is changed to the

list's next element. Since each list has at most O(a) elements, there are at most O(a)

comparisons.

Action-Examples. We will �rst look at time complexity. The action-example needs to

be created and the conditions ordered. The pre-state, post-state and delta-state each

have O(a) conditions. The conditions need to be �rst copied (O(a)) and then sorted

(O(alog(a))). Thus, the complexity is O(a+ alog(a)) = O(alog(a)).

Now look at space complexity. The pre-state, post-state and delta-state each have

O(a) conditions. It takes O(c) space to represent each condition. There are O(t)

action-examples for O(o) operators. A naive method is to store each condition with

each action-example. In this case, the space required for all operators and action-

examples is O(acto). A better approach is to assign each condition a distinct identi�er

of length O(i) and use identi�ers in action-examples. This takes O(aito) space.

Representing conditions by identi�ers requires one identi�er for each attribute value

or O(acv) space. Thus, the space required for all action-examples is O(aito+ acv).

Creating Operators. Here we are only concerned about time complexity. The new

operator has one e�ect. The e�ect's state changes and s-rep can have O(a) conditions.

The g-rep is empty (O(1)). The h-rep can get O(a) conditions from the action-

example's delta-state, but the attribute values in the conditions are incorrect. Thus,

the conditions from the delta-state need to be checked against the action-example's

pre-state with at most O(a) comparisons. The h-rep can also get conditions from

the delta-state of action-examples for the demonstration's earlier steps. Since each

earlier step provides at most O(a) conditions, merging lists for the m earlier steps

takes O(ma). Thus, the time complexity for creating an operator is O(ma).

Comparing incompatible e�ects. Sometimes the preconditions of incompatible e�ects

are compared.

We will look at time complexity. There are O(e) incompatible e�ects. For each

incompatible e�ect, there are at most three comparisons between pairs of ordered

lists of preconditions that contain O(a) attributes. Since the comparison with each

list takes O(a), the time complexity is O(ae).

133

Processing a negative example. We will look at time complexity. A negative exam-

ple's potentially needed conditions are compared to an e�ect's g-rep. There are O(a)

attributes, and the comparison takes O(a). If a near-miss is found, one condition is

inserted in the g-rep and h-rep. Inserting the condition requires O(a) comparisons to

�nd to where to insert the condition. If a condition is not added, the current e�ect

may be compared against incompatible e�ects, which takes O(ae)(see above). Thus,

the time complexity is O(ae).

Processing a positive example. We will look at time complexity. The three precondi-

tion concepts (i.e. s-rep, h-rep and g-rep) are compared against an action-example's

pre-state. There are O(a) attributes, and the comparison takes O(a). Afterwards,

the O(w) unused negative examples are processed. Since processing a negative ex-

ample takes O(ae), the processing of O(w) negative examples takes O(wae). Thus,

the time complexity is O(wae).

Splitting an e�ect. We will look at time complexity. The O(a) attributes in the existing

e�ect's s-rep, h-rep, g-rep and state changes are copied in O(a) time. Then one e�ect

is re�ned with a negative example (O(ae)), and the other one is re�ned with a positive

example (O(wae)). Thus, the time complexity is O(wae).

Creating a new e�ect. We will look at time complexity. The new e�ect's state changes

come from the action-example's delta-state and contain O(a) conditions. The s-rep

initially has O(a) conditions, and the g-rep is empty (O(1)). In the same manner

as when the operator was created, some h-rep conditions are found in the action-

example's delta-state (O(a)). Additional h-rep conditions are found using the h-rep

of the operator's �rst e�ect (O(a) conditions). Comparing �rst e�ect's preconditions

against the action-example's pre-state takes O(a) and then merging the conditions

with the partial h-rep takes O(a). More h-rep conditions are come from di�erences

between the pre-states of the action-example and the most similar negative example.

Finding the negative example takes O(at) comparisons because it involves comparing

O(a) attributes within O(t) action-examples. The di�erences between the action-

examples are then merged with the partial h-rep in O(a) time. Thus, the time

complexity is O(at)

Re�ning an operator with an action-example. Diligent is an interactive system and

cannot spend too much time processing any one action-example. Therefore, we will

look at the time complexity to update an operator with one action-example. First,

134

the action-example needs to be created (O(alog(a))). Second, the O(a) conditions

in the action-example's delta-state are compared against the state changes of O(e)

e�ects (O(ea) comparisons). Finally, the O(e) e�ects are re�ned with the action-

example. Let R represent re�ning an operator with an action-example.

O(R) = O(cost of creating action-example) +

O(cost of comparing the action-example to each e�ect's delta-state)+

O(e(cost of re�ning a positive example)) +

O(e(cost of re�ning a negative example)) +

O(e(cost of splitting a conditional e�ect)) +

O(cost of creating a new e�ect)

= O(alog(a)) + O(ea) + O(wae2) + O(ae2) + O(wae2) + O(at)

= O(alog(a) + wae2 + at)

5.9.1 Scalability

Diligent's approach is scalable because operators are learned for a particular object with

relatively few action-examples. Because there are so few action-examples, it's reasonable

to maximize learning by spending a little extra time on each action-example.

We will discuss the scalability issues from the previous section that appear most im-

portant. They are the space required to store action-examples, the time for creating new

e�ects, the time for processing a positive example, and the time for splitting an e�ect.

The area for storing action-examples is greatly reduced by associating identi�ers with

conditions and storing the identi�er rather than the condition in the action-example. The

savings in space increases as more action-examples are created because most conditions

appear in many action-examples. Furthermore, the same identi�ers can be used in action-

examples for all operators.

The space saved by using identi�ers to represent conditions also enables the storage

of action-examples in hash table. Storing action-examples in a hash table allows Diligent

to check for duplicate action-examples before creating and storing a new action-example.

This is important because Diligent tends to receive duplicate action-examples.

If the space required by action-examples becomes an issue, a limit could be placed on

the number of previous action-examples stored.

Another scalability issue is the time it takes to create a new e�ect. Creating a new

e�ect involves identifying h-rep conditions by comparing the the current positive example

135

against the operator's previous action-examples. This is reasonable because the operator

represents the manipulation of one object and has relatively few action-examples. If time

became an issue, the number of previous action-examples examined could be limited.

A third scalability issue is the time to re�ne an e�ect with a positive example. The time

spent on the positive example is not the issue. Instead, it's the time spent processing the

unused negative examples. These negative examples di�er from the s-rep in two or more

conditions but are still classi�ed as positive by the g-rep. However, processing these action-

examples is not a problem because there tend to be only a few of them. Furthermore, the

number action-examples doesn't get large because, as more negative examples are seen,

the g-rep gets more re�ned and rejects more negative examples.

The �nal scalability issue is the time to split an existing e�ect in two. This has same

time complexity as processing a positive example. Splitting an e�ect happens much less

often than processing a positive example, and the time complexity of splitting an e�ect

is dominated by time complexity of processing a positive example, which we have already

discussed.

5.10 Related Work

Throughout this chapter, related work has been discussed where applicable. However,

some other work should be mentioned.

Diligent can learn in an unstructured environment that does not have any explicit

representation of the relationships between objects and attributes. Another algorithm for

learning in this type of environment is MSDD [OC96], which learns probabilistic state

changes. However, MSDD requires much more data than is available to Diligent.

Diligent is a Programming By Demonstration (PBD) system that focuses on deter-

mining which attributes are important. However, many PBD systems for manipulating

graphical objects have a di�erent type of environment. Instead, these systems have struc-

tured environments, which contain explicit relationships between objects and attributes.

Learning in these systems tends to focus on identifying which relationships are impor-

tant and generalizing object classes. An example of this type of system is Metamouse+

[MWM94].

Disciple has been used in a variety of domains [TK90, THD95, TH96, TK98]. Like

Diligent, Disciple uses a version space algorithm with a single conjunctive concept for its

upper and lower bounds (i.e. g-rep and s-rep). Unlike Diligent's g-rep and s-rep, Disciple's

initial upper and lower bounds are heuristically altered so that they are only probable

136

upper and lower bounds. These heuristic bounds de�ne what is called a Plausible Version

Space [Tec92]. To create these bounds, Disciple uses information about its structured

environment that is unavailable to Diligent. Disciple overcomes errors in its bounds by

allowing conditions to be added and removed from both the upper and lower bounds.

Like Diligent, a few PBD systems have used a version space algorithm for learning pre-

conditions. Metamouse+ [MWM94] learns graphical editing procedures in an environment

that is very di�erent than Diligent's. Disciple [TH96], which is described above, has also

been taught by demonstration. Recently, Lau and Weld [LW99] used an e-mail processing

domain for comparing algorithms that learn preconditions. They looked at a version space

and an inductive logic algorithm; however, their environment is very di�erent than Dili-

gent's, and their version space algorithm only learned a single precondition for an entire

procedure.

Utgo� [Utg86] has looked at speeding up version space learning by dynamically cre-

ating attributes whose values are inferred from other attributes. This is inappropriate

for Diligent because there is little data and because humans may not �nd the inferred

attributes either understandable or reasonable.

5.11 Summary

This chapter discussed how Diligent learns operators. It focused on how Diligent identi�es

the preconditions necessary for an action to produce desired state changes. Good precon-

ditions are important because Diligent uses them to derive a plan's step relationships.

First, we covered some requirements speci�c to learning operators. Diligent needs to

quickly and incrementally learn operators with potentially little data. For these reasons,

Diligent needs to be able to correct errors in the operators. Additionally, the operator rep-

resentation needs to be usable by the human instructor. He needs to be able to understand

the preconditions and to determine whether Diligent believes that a speci�c condition is a

precondition. It would also be useful to provide him with some measure of con�dence in

a precondition. Finally, Diligent's environment contains many attributes, most of which

are not needed by a given procedure. Thus, Diligent's learning methods need to identify

attributes that are likely to be important.

Two types of data are provided to support learning: examples of actions being per-

formed and the sequence of steps in the current demonstration.

Diligent processes the data using three heuristics. One heuristic assumes that attributes

that changed value earlier in the demonstration are likely preconditions. This heuristic

137

is used for creating new operators. The second heuristic favors existing knowledge. This

means that Diligent should use what it already knows rather than general heuristics.

This heuristic is used throughout the learning algorithm, but it particularly inuences the

creation of new e�ects when the operator already has an e�ect. The third heuristic favors

extraneous preconditions over missing ones because it is easier to remove unnecessary

preconditions than to add missing ones.

Preconditions are associated with e�ects, and an e�ect represents preconditions using

a modi�ed version space that has three sets of conjunctive conditions. The version space

still has a most general bound (g-rep) and a most speci�c bound (s-rep), but Diligent

augments the version space with an intermediate, best guess precondition (h-rep). The

h-rep supports learning reasonable preconditions quickly and is used when calculating a

plan's step relationships. The s-rep and g-rep are used for incremental learning, error

recovery, and indicating Diligent's con�dence in a particular precondition. If Diligent

is very con�dent, the precondition is in the g-rep, and if Diligent strongly believes a

precondition is unnecessary, then the precondition is not even contained in the s-rep.

We also discussed how Diligent re�nes preconditions using action-examples. Positive

examples remove unnecessary conditions from the s-rep and h-rep, while negative examples

add conditions to the h-rep and g-rep.

Finally, we looked at the algorithm's complexity and argued that the approach is

scalable.

138

Chapter 6

Experimenting

In the previous chapter, we discussed learning operators. Operators are associated with

each step in a procedure and identify the step's preconditions and state changes. Diligent

uses these preconditions and state changes to derive the dependencies (i.e. step relation-

ships) between steps.

Procedures containing these dependencies will be used by an automated tutor to teach

human students. Consequently, errors in the dependencies may mislead students.

One source of errors is the lack of training data. Because the instructor has limited

time, Diligent may only see a step demonstrated a few times. This forces Diligent to

use heuristics when creating preconditions. Unfortunately, heuristic preconditions may

contain mistakes, and the quality of the preconditions determines the likelihood of errors

in a procedure's step relationships.

One method for re�ning preconditions is to perform a step in several di�erent states

and observe what happens. Diligent does this when it performs experiments.

Besides performing steps in multiple states, experiments need to meet a variety of

objectives. They should minimize the work performed by the instructor. They should

exploit Diligent's access to the environment and focus attention on the procedure being

learned. Experiments should also compensate for the bias in the heuristics used for creating

preconditions.

Diligent meets these objectives with a novel technique: Diligent performs steps in a

variety of states during autonomous experiments that are generated from demonstrations

of a procedure. Demonstrations are useful because they specify a sequence of steps that can

be used to perform a procedure. When experimenting, Diligent performs the procedure but

skips a step. Diligent then observes how skipping the step a�ects subsequent steps. Since

the heuristics used for creating preconditions assume that the state changes of earlier steps

139

are likely preconditions for later steps, skipping steps helps compensate for the heuristic

bias.

This chapter discusses using experiments to re�ne the preconditions of operators. First,

we will describe the problem in terms of requirements. Afterwards, we will discuss issues

that motivate Diligent's approach. We will then discuss Diligent's approach. Finally, we

will end with a discussion of the run-time complexity and related work.

6.1 The Problem

Earlier in Section 3.1, we described the authoring problem in terms of requirements, con-

straints and the interface to the environment. Because the problem has become more

constrained and concrete, we will de�ne some new requirements.

6.1.1 Requirements

Let us consider how the requirements in Chapter 3 relate to experiments. The experi-

mentation approach needs to help understand demonstrations by getting the most out of

each demonstration. Experiments should save the instructor time and reduce the di�-

culty of authoring. When experimenting, Diligent should exploit its ability to access and

manipulate the environment.

We will also de�ne the following additional requirements.

Generate more examples of steps being performed. The goal of experimentation

is to better understand the dependencies between a procedure's steps. To do this,

the operator learning algorithms need examples of the steps being performed in a

variety of states so that operator preconditions can be re�ned.

Compensate for operator learning bias. Some errors in operator preconditions may

result from the bias that favors attributes that change value during a demonstration.

The bias is reasonable because changes caused by earlier steps are often preconditions

for later steps. However, some of these preconditions may be incorrect.

Positive and negative examples should be similar. A positive example is when an

action produces the desired state changes, and a negative example is an example that

is not positive. Positive examples help eliminate unnecessary preconditions, while

negative examples identify necessary preconditions.

140

In Diligent's learning algorithm, it is harder to process negative examples than posi-

tive ones. Unlike positive examples, a negative example requires a near-miss (or one

condition) di�erence between its pre-state and the most speci�c candidate precondi-

tion (i.e. s-rep). The likelihood of �nding a near-miss increases when negative and

positive examples are similar.

Interactive system should be fast. Diligent is an interactive system for instructors

with a limited amount of time. If experiments force instructors wait long periods of

time or even stop, then instructors may have di�culties because a loss of concentra-

tion and focus. Thus, general purpose techniques that do not focus on understanding

the procedure could take a prohibitive amount of time.

A related concern is why are Diligent's experiments performed interactively when

they could have been done o�-line. The reason is that Diligent's experiments focus

on understanding demonstrations and interactive experiments make the tool easier

to use. If experiments were performed o�-line, an instructor might have to wait a

long time to see what an experiment learned. In contrast, an instructor can quickly

see the results of interactive experiments. Because an instructor waits less time, it

should be easier for him to concentrate and focus on the procedures being authored.

Bounded number of steps in an experiment The time required to perform experi-

ments can be controlled only if a limited number of steps are performed. While it

is reasonable to perform additional steps in response to an unexpected observation,

the number of additional steps should not be too large or unpredictable.

The requirements for being fast and bounding the number of steps argue against using

autonomous discovery algorithms that may perform a large, unpredictable number

of steps. This also argues against using techniques that may require a bounded but

large number of steps. This includes systems that attempt to build a correct �nite

state automaton of the environment [Ang87b, Ang87a, RS90, She94].

6.2 Background

This section discusses issues relevant to Diligent's experimentation approach. We will

also discuss other approaches that are inappropriate for Diligent, but might complement

Diligent's approach in a future system.

141

6.2.1 Focused versus Unfocused

An important issue is why a system performs experiments. Diligent experiments because

it's attempting to understand a given procedure well. Experiments that concentrate on

gaining general knowledge may learn to do a lot of things well, but are likely to take more

time and be less useful than those that focus on understanding the steps of the given

procedure.

6.2.2 Supervised versus Unsupervised

Experiments can be viewed as generating a question, asking an \oracle" the question,

and waiting for the oracle to provide the correct answer. When the oracle is human, the

experiment is supervised, and when the oracle is automated (e.g. Diligent's environment),

the experiment is unsupervised.

Some systems perform supervised experiments by generating potential examples of a

concept and then asking the user whether they are examples of the concept. Humans often

�nd this type of yes or no question easy to answer. Systems that use structural domain

knowledge (i.e. class hierarchies and relations between objects) for generating examples

include ALVIN [KW88], MARVIN [SB86] and Disciple [TK98, TH96].

This approach is inappropriate for Diligent because Diligent solves a di�erent problem.

Not only does Diligent try to minimize the e�ort required by the instructor, but Diligent's

unstructured environment does not provide class hierarchies or relations between objects.

Still, Diligent could be viewed as performing supervised experiments when it asks the

instructor to verify goal conditions, ordering constraints and causal links.1 However, these

questions verify information after it has been computed rather than providing input for

machine learning algorithms.

In contrast to supervised experiments, unsupervised experiments reduce the instruc-

tor's work by letting the environment answer the questions. Unsupervised experiments

also reduce the possibility of instructor error. Systems that perform unsupervised experi-

ments include EXPO [Gil92], OBSERVER [Wan96b] and LIVE [She93]. The method used

by these systems to experiment will be discussed in the next section.

1See Chapter 4.

142

6.2.3 Experimenting with Plans

Some systems experiment by building plans that transform an initial state into a goal

state. This can be done two ways: practice problems and explicit experiments. A practice

problem requires a system to create a plan that transforms an initial state into a goal

state. An explicit experiment has two components: an action to be performed and a

desired state in which to perform the action. Placing the environment into the desired

state often involves solving a practice problem where the current state is transformed into

the desired state. Both practice problems and explicit experiments allow a system to learn

by observing how various actions a�ect the environment. Systems that learn by creating

and performing plans include LEX [MUB83], LIVE [She93, She94], OBSERVER [Wan96c],

EXPO [Gil92, CG90] and IMPROV [Pea96].

When creating plans several issues need to be addressed.

� What knowledge does a system utilize when creating a plan? OBSERVER only

utilizes knowledge of operators, and it learns by deliberately not satisfying some

potential preconditions. In contrast, EXPO uses sophisticated domain independent

techniques. EXPO identi�es missing preconditions by favoring hypothesized precon-

ditions that involve 1) attributes of objects involved in the action, 2) predicates that

appear in all successful past situations, and 3) operators similar to the one being

examined. EXPO also restricts the space of plans with seventeen rules that favor

certain types of plans (e.g. avoid long plans).

� When is an experiment �nished? Does it require the goal state to be reached or does

it merely involve performing the steps? Attempting to reach the goal after the initial

plan fails could take a large number of steps.

� How are practice problems generated? Are they automatically generated as in

EXPO, or does someone need to generate them as in OBSERVER? An advantage

of automatically generating problems is that the system has some control over a

problem's apparent di�culty, while an advantage of user selected problems is that

the user can guide learning.

Another issue is whether the system is doing an extensive search during planning or

whether it is doing more limited and controlled planning. An extensive search could take

a long time, while more limited planning might just involve small changes to an existing

plan.

143

For Diligent, an extensive search is inappropriate. If the system were busy experi-

menting, the instructor could not provide additional demonstrations. Furthermore, if each

demonstration resulted in a long delay, instructors might be hesitant to provide additional

demonstrations. Recall that one of Diligent's objectives is allowing instructors to easily

author procedures with demonstrations.

Diligent's potentially limited knowledge is more compatible with limited planning.

However, limited planning raises issues beyond Diligent's scope. Diligent would need

to identify which plans to create and when they should be created. This may be di�cult

when Diligent has seen only a few demonstrations and knows only a few poorly understood

operators. Depending on how plans are created, Diligent might not yet have the minimum

knowledge necessary for planning.

Instead, Diligent needs a basic approach that can be reliably used even when the system

has very minimal knowledge. At this stage, Diligent could have di�culty solving practice

problems whose solutions di�er only slightly from a demonstration. That is why the more

knowledge-intensive planning techniques of EXPO and OBSERVER are not used.

Nevertheless, planning could complement Diligent's experimentation approach. Dili-

gent's experiments could be used as an initial phase to re�ne operators and to identify

situations that merit the use of planning. Later, when enough knowledge has been built-up,

more planning intensive techniques could be used.

6.3 Input

This section describes the input used for performing experiments and de�nes terms that

should make the following discussion easier to understand.

Diligent experiments on procedures, whose basic structure was described in Section

4.3.

Procedures contain one or more paths. A path describes an initial state and a sequence

of steps. The sequence of steps in each path is speci�ed by one or more demonstrations. A

path can represent multiple demonstrations because a demonstration can add steps to an

existing path. Diligent actually uses paths rather demonstrations to generate experiments.

The speci�cation of a path's initial state is called a pre�x. A pre�x identi�es a known

con�guration of the environment (Section 3.1.3) and a sequence of actions that alters the

con�guration.

A step represents a portion of the procedure. Most steps are primitive. A primitive

step represents an action performed in the environment. If a step is not primitive, it

144

is abstract. An abstract step represents a subprocedure that contains its own steps. A

procedure containing an abstract step is called hierarchical.

When Diligent performs an abstract step, it attempts to establish the goal conditions

of the abstract step's subprocedure. A goal condition indicates the value an attribute

should have when the subprocedure is �nished. To establish the goal conditions, some of

the subprocedure's steps are performed.

Associated with each primitive step is an operator (Section 3.2.2.2). An operator rep-

resents an action performed in the environment and identi�es the preconditions needed to

produce given state changes. Because actions can produce di�erent state changes when

performed in di�erent states, some of an operator's state changes may have di�erent pre-

conditions. The purpose of experiments is to re�ne the preconditions of operators.

The preconditions of operators are re�ned with action-examples, which contain the

state of the environment before (pre-state) and after (post-state) performing an operator's

action.

6.4 Diligent's Approach

Diligent experiments by repeatedly performing a procedure but altering it so that a di�er-

ent step is skipped each time. Before performing the procedure, Diligent uses its ability for

resetting the environment so that it, like a student learning the procedure, starts the pro-

cedure from a speci�ed initial state. As Diligent performs the procedure, it observes how

skipping the step a�ects later steps. This examination of how the state changes of earlier

steps a�ect later steps helps compensate for bias used when creating operators. When all

steps have been performed, the experiment is �nished. The experiment is �nished because

its purpose is generating action-examples of the procedure's steps rather than achieving

some goal state. This approach should be quick because it bounds the number of steps

performed in an experiment.

Because a procedure's steps are speci�ed by demonstrations, experiments are really

generated from demonstrations. Generating unsupervised experiments from demonstra-

tions serves a number of purposes. It doesn't require accurate domain knowledge. It

addresses Diligent's requirements to understand demonstrations and to make the instruc-

tor's job easier by making more use of each demonstration. It also uses Diligent's heuristic

focus on attributes that change value, and it exploits Diligent's ability to interact with the

environment, which includes the ability to reset the environment's state and to perform

actions.

145

The approach focuses on validating the preconditions created by the heuristics used to

create operators. One heuristic is that attributes that changed value earlier in a demonstra-

tion are likely to be preconditions of later steps. This results in a bias towards creating

unnecessary preconditions. Experiments remove these unnecessary preconditions when

they show that a later step is not dependent on an earlier step. Experiments may also

identify when a later step is dependent on an earlier step. When this happens, experiments

not only provide evidence that preconditions are correct but also support the identi�cation

of missing preconditions.

As mentioned earlier, positive examples remove preconditions, and negative examples

add and verify preconditions. Because experiments focus so closely on the procedure,

positive and negative examples tend to be similar. This similarity should be bene�cial

because there may be few action-examples and using a negative example requires a one

condition di�erence between it and potential preconditions.

This approach is straightforward for primitive steps, but how does it handle steps that

represent subprocedures? In this case, Diligent uses an heuristic that focuses on the current

procedure. This means that, as much as possible, abstract steps (i.e. subprocedures)

should be treated like other steps. In other words, an abstract step is treated as black box

that achieves the goal conditions of its subprocedure. To allow a subprocedure to achieve

its goal conditions, Diligent internally simulates performing the subprocedure in order to

determine which of the subprocedure's steps to perform. Of course, when performing an

experiment, an abstract step, like other steps, may sometimes fail to establish the desired

state changes.

Diligent's focus on the current procedure reduces the number of steps in an experiment.

Because there are fewer steps, the instructor doesn't have to wait as long.

6.5 The Procedure Being Used

As a procedure, we will use the extended example from the chapter on processing

demonstrations (Chapter 4). Figure 6.1 shows the extended example. The steps repre-

senting a procedure's beginning and end (e.g. begin-proc1 and end-proc1) are not shown

because the experimentation algorithm ignores those steps. The procedure that we will

experiment on is top-level, which uses procedures proc1 and proc2 as subprocedures.

The steps and procedures do the following. Procedure top-level shuts two valves and

checks an alarm light. Procedure proc1 shuts two valves, and procedure proc2 checks an

146

Procedure top-level:
Steps: turn-5 ! proc1-6 ! proc2-7

Procedure proc1
Steps: turn-1 ! move-2nd-2 ! turn-3 ! move-1st-4

Procedure proc2

Steps: press-test-8 ! check-light-9 ! press-reset-10

Figure 6.1: A Hierarchical Procedure

alarm light while in test mode. In our later discussion, we will use the fact that steps

turn-5 and turn-1 both shut valve1.

6.6 The Algorithm

procedure Experiment-On-Procedure

Given: proc : a procedure.
Result: Perform experiments the procedure's paths.

1. Initialize the stack of experimental commands expr-stack as empty.
2. For each path pth of the procedure do the following.

3. If path pth has not been updated since it was in an experiment, then
generate experiments for pth and add them to expr-stack.
Do this with Gen-Skip-Step-Experiment.

4. Perform the experiments contained in expr-stack using Perform-Experiment.

Figure 6.2: The Top Level Experimentation Algorithm

Diligent performs experiments using procedure Experiment-On-Procedure (Figure

6.2). On line 1, the stack of experimental actions to perform is emptied; this merely puts

the stack into a known state. On lines 2 { 3, experiments are generated for each of the

procedure's paths. The experiments are stored in the stack expr-stack. Afterwards, on

line 4, experiments are actually performed.

The experiments are generated by procedure Gen-Skip-Step-Experiment (Figure

6.3). In an experiment, the path's initial state is reset and all but one of the procedure's

steps are performed. This is done for every step but last step in the path. Two types

147

procedure Gen-Skip-Step-Experiment

Given: proc: A procedure.
pth: A path with n steps.
expr-stack : A stack of experimental commands to perform.

Result: expr-stack : Updated stack of commands.

1. Loop over i where i goes from 1 to (n - 1)
2. Compute the sequence seq of steps to perform;

include all the path's steps except the ith step.
(If the path has steps s1: : :sn, then seq = s1: : :si�1si+1: : :sn.)

3. Push each of seq 's steps onto expr-stack as perform-step
commands. Start with the last step in seq and work backwards to
the �rst step. (Pushing the steps in reverse order causes the path's
earlier steps to be performed before the path's later steps.)

4. Push the path pth's pre�x onto expr-stack as an
reset-environment command. (The command will be used to
reset the path's initial state.)

Figure 6.3: Generating Skip-Step Experiments

of commands are placed in the stack of experimental commands: perform-step and reset-

environment. A perform-step command performs one of the path's steps, and a reset-

environment command resets the environment's state to path's initial state. Notice that

a path's steps are pushed onto the stack in reverse order so that a path's later steps are

performed after its earlier steps.

The stack of experimental commands looks like a) of Figure 6.5 after Gen-Skip-

Step-Experiment has processed procedure top-level, which has only one path. The stack

indicates that the procedure will be performed twice: once skipping the �rst step (turn-5)

and once skipping the second step (proc1-6). As we discussed before, abstract steps proc1-6

and proc2-7 (i.e. subprocedures proc1 and proc2) are treated the same as primitive step

turn-1.

The procedure Perform-Experiment is shown in Figure 6.4. Until the stack (exper-

stack) is empty, the procedure keeps popping o� and processing the top command in the

stack (lines 1 and 2). When perform-experiment is invoked, the stack looks like a) in

Figure 6.5, and when it �nishes, the stack is empty.

The procedure Perform-Experiment �rst processes a reset-environment command

(line 4 of Figure 6.4). Performing this command restores the path's initial state.

148

procedure Perform-Experiment

Given: exper-stack : Stack of experimental commands to perform.
Result: Perform all the commands in exper-stack.

1. While expr-stack is not empty
2. Pop the top command o� of expr-stack.
3. Based on the type of command, do one of the following:

4. If the command is a reset-environment command, then
restore the path's initial state using Replay-Pre�x (Section 4.6.6.1)
and the pre�x associated with the command.

5. If the command is a step-perform command and the step is
primitive, do one of the following:

6. If the step just senses the environment without changing it
(i.e. a sensing action), do nothing.

7. Otherwise, perform the step's action. This is done with the
action-id of the step's operator and Perform-Action
(Section 3.1.3). This produces an action-example that is used
to update the step's operator with
Re�ne-Operator (Section 5.8.1).

8. If the command is a step-perform command and the step is
abstract (i.e. a subprocedure), then

9. Compute the sequence seq of steps needed to perform
the subprocedure from the current state with
Internally-Simulate-Subprocedure (Section 4.7.1).

10. Push each step in seq onto expr-stack as
a perform-step command. Start with the last step in seq and
work backwards to the �rst step. By working backwards,
steps that are earlier in seq will performed before later steps.

Figure 6.4: Performing Experiments

149

a) After skip-step experiments have been generated

reset ! proc1-6 ! proc2-7
! reset ! turn-5 ! proc2-7

b) Before processing step proc1-6

proc1-6
! proc2-7
! reset ! turn-5 ! proc2-7

c) After processing step proc1-6

turn-1 ! move-2nd-2 ! turn-3 ! move-1st-4
! proc2-7
! reset ! turn-5 ! proc2-7

Figure 6.5: The Stack of Actions to Perform

If the type of command is perform-step and the associated step is primitive, then

Diligent performs the step's action in order to re�ne the action's operator (lines 5 { 7). Line

6 deals with sensing actions, which are actions that gather knowledge from the environment

without changing it (e.g. check whether a light is illuminated). Diligent assumes that the

environment allows sensing actions to be performed successfully in any state.

Because sensing actions do not change the environment and can be performed success-

fully in any state, it is unclear whether Diligent can learn anything from them. Instead of

changing the environment, sensing actions create mental attributes that record the current

values of environment attributes. However, Diligent only checks for the existence of men-

tal attributes and does not consider their values. Given that mental attribute values are

ignored, Diligent could only potentially re�ne a sensing action's preconditions.2 Consider

a procedure (e.g. proc2) that checks the state of a light while the system is in test mode;

outside of test mode, it is irrelevant whether the light is on or o�. How could a system

with limited knowledge, such as Diligent, know that being in test mode is mandatory? For

this reason, Diligent ignores sensing actions during experiments.

If a future system used the values of mental attributes, then performing sensing actions

during experiments might be useful. This is area for future work.

2A sensing action's preconditions are used to control when the sensing action's step is performed. For
this reason, a sensing action's hypothesized preconditions are associated with the sensing action's step
rather than its operator. The assumption is that a sensing action's preconditions are speci�c to the given
step and procedure rather than independent of a procedure like the preconditions of operators.

150

If the type of command is perform-step and the associated step is abstract, then Diligent

treats the step as a black box that achieves the goal conditions of the step's subprocedure.

Diligent does this by simulating the subprocedure (line 9). Simulating a subprocedure

involves looking at the current state and determining which of the subprocedure's steps

need to be performed. This means that Diligent may perform steps in the subprocedure

that it would normally skip or skip steps that it would normally perform. Consider b) and

c) in Figure 6.5. In b), the top command in the experimental stack is the abstract step

proc1-6, which performs the subprocedure proc1. In c), step proc1-6 has been replaced by

the steps of procedure proc1. Normally, when performing proc1-6, proc1's �rst step (turn-1)

is skipped because step turn-5 has already shut valve1. However, during this experiment,

step turn-5 is skipped. Because Diligent attempts to achieve the goal conditions of proc1,

proc1's �rst step (turn-1) is performed.

6.6.1 What Was Learned From the Experiment

As mentioned earlier, the purpose of experiments is to re�ne operator preconditions.

Therefore, we will briey review how operators are represented. In an operator, each

state change is associated with three conjunctive sets of preconditions. The most general

set of preconditions, g-rep, contains conditions that have been shown to be necessary. The

best guess set of preconditions, h-rep, contains likely preconditions, and the most speci�c

set of preconditions, s-rep, contains unlikely preconditions. All conditions in the g-rep are

contained in the h-rep and s-rep, and all conditions in the h-rep are contained in the s-rep.

Changes to the three sets of preconditions impact the procedure di�erently. It is

desirable to remove conditions that are only in the s-rep, but the s-rep is not used when

deriving a plan's step relationships. In contrast, changes to the h-rep or g-rep are important

because Diligent uses them to derive step relationships.

We will now discuss what is learned when experimenting on the above procedures.

The above experiments illustrate how experiments are performed on hierarchical proce-

dures. Experiments on hierarchical procedures focus on the current procedure and assume

that subprocedures are already re�ned. However, experiments on a hierarchical procedure

can re�ne subprocedures by performing them in di�erent initial states. The experiments

can also reveal unexpected dependencies between subprocedures.3

In our example, Diligent learned little when experimenting on the hierarchical proce-

dure top-level. That is because top-level's three steps are relatively independent of each

3Extensions that deal with unexpected behavior in subprocedures will be discussed in Chapter 8.

151

other. Additionally, few steps were performed in new pre-states. The �rst step turn-5 is

not needed by the second step proc1-6 because procedure proc1 contains step turn-1 that

is equivalent to turn-5. The steps of subprocedure proc2 had some s-rep preconditions re-

moved when step proc1-6 was skipped, but Diligent doesn't use s-rep preconditions when

building plans.

If the instructor had experimented on procedure proc2, nothing would be learned be-

cause the procedure has only three steps and one of them represents a sensing action.

Remember that sensing actions are ignored during experiments.

Step Old Preconditions New Preconditions State changes

turn-1 (valve1 open) (valve1 open) (valve1 shut)
(HandleOn valve1)

move-2nd-2 (valve1 shut)
(HandleOn valve1) (HandleOn valve1) (HandleOn valve2)

turn-3 (valve1 shut)
(valve2 open) (valve2 open) (valve2 shut)
(HandleOn valve2) (HandleOn valve2)

move-1st-4 (HandleOn valve2) (HandleOn valve2) (HandleOn valve1)

The preconditions in italics have been identi�ed as necessary.

Table 6.1: Changes to proc1's Preconditions

In contrast, experimenting on procedure proc1 would have updated preconditions and

caused Diligent to derive di�erent step relationships. The changes to the preconditions

are shown in table 6.1. The preconditions shown italics are in the g-rep, while the others

are in the h-rep. Notice that the preconditions are much better after the experiments.

However, the �nal preconditions in table 6.1 are not perfect. The steps move-2nd-2

and move-1st-4 should have no preconditions. Diligent is unable to remove the attribute

for the pre-state location of the handle (i.e. HandleOn) because it has only seen the handle

move between the two valves. The error would have been corrected if the instructor had

demonstrated moving the handle from other valves. In any case, this is a subtle error that

might escape the notice of an instructor and human students.4

One potential concern is that the upper and lower bounds of the version space (i.e.

g-rep and s-rep) have not converged to the same concept. However, this convergence is

highly unlikely given a potentially large number of attributes and the few action-examples.

4When evaluating Diligent (Chapter 7), none of the test subjects appeared to spot this error.

152

Even OBSERVER [Wan96c], which had a lot more data than Diligent, did not expect con-

vergence. Nevertheless, the version space's upper and lower bounds are still useful because

they provide the instructor with a measure of Diligent's uncertainty. Besides, Diligent's

objective is to provide the instructor with an h-rep containing reasonable preconditions.

6.7 Complexity Analysis

This section discusses the run-time complexity of the experimentation algorithm.

In the following,

� We will consider a procedure to have one path.

� We will ignore the cost of resetting the environment's state and instead focus on the

path's primitive steps. (The environment is reset before performing the procedure's

steps.)

� Because sensing actions are not performed during experiments, we will not consider

them.

Consider a one level procedure (i.e. without subprocedures). If the procedure has n

steps, the procedure is performed (n � 1) times while skipping steps. Each performance

of the procedure takes (n� 1) steps. Thus, experiments on a one level procedure perform

O(n2) steps.

Unfortunately, when experimenting on a one level procedure, 1

2
of the steps may not

provide any information. The problem is that the steps before the skipped step merely

perform the procedure. However, performing the procedure once might be useful if the

procedure's path was created from multiple demonstrations because the path's steps may

not have been performed sequentially from start to �nish.

Experiments could avoid these unnecessary steps if the environment's state before the

last skipped step could be quickly saved and restored. This capability would allow each

performance of the procedure to start at a later step and a di�erent initial state.

When hierarchical procedures are considered, the time complexity improves.

A procedure can be viewed as a tree, where the procedure is the root node and each

primitive step is a leaf node. The direct descendents of a procedure are its primitive and

abstract steps, while its descendents are all the nodes in tree whose root is the procedure.

The length of the path from the root to a node is called its depth. The direct descendents

of the root node have a depth of 1. The height of a tree is the maximum depth of any

153

node. A procedure containing only primitive steps has a height of 1. A procedure of height

2 contains abstract steps, but the procedures performed by the abstract steps contain only

primitive steps.

Let all procedures contain at most b direct descendents. Because a tree of a given

height contains more nodes when it is balanced, we will assume that all procedures have

b direct descendents and that a procedure's direct descendents are either all primitive or

all abstract.

An upper bound on the number of leaves of a tree of height h is bh [CLR90]. In other

words, a procedure of height h contains at most bh primitive steps.

Consider an experiment performed on the hierarchical procedure at the root node with

height h. Diligent only experiments on a given procedure's direct descendents. Assume

that the number of steps performed by subprocedures does not change because earlier steps

were skipped. In this case, Diligent performs the procedure (b� 1) times while skipping

a step. Each performance of the procedure uses (b� 1) direct descendent steps. Because

each direct descendents is an abstract step, each of the direct descendents is realized by

bh�1 primitive steps. Thus, total number of primitive steps performed in an experiment

on the root procedure is at most

= bh�1(b� 1)2

= bh+1 � 2bh + bh�1 (X)

Now consider the case where the root procedure and every descendent subprocedure

have experiments performed on them. We will prove by mathematical induction that this

involves performing h(bh+1 � 2bh + bh�1) primitive steps, where h � 1.

Let G(h) � h(bh+1 � 2bh + bh�1).

Consider a procedure with only primitive steps (i.e. h = 1). In this case, (b� 1) of the

procedure's steps are performed (b � 1) times. Because G(1) = (b� 1)2, the G(h) holds

for h = 1.

Now assume that G(h) is correct for procedures of height h � 1. Consider a root

procedure of height h.

Each of the root procedure's direct descendents represents a procedure of height h� 1.

Since there are b direct descendents, the number of steps performed while experimenting

on procedures other than the root procedure are

bG(h� 1)= b(h� 1)(bh � 2bh�1 + bh�2)

= (h� 1)(bh+1 � 2bh + bh�1)

= G(h)� (bh+1 � 2bh + bh�1) (Y)

154

From (X), we know that the number of primitive steps performed while experimenting

on only the root procedure is bh+1 � 2bh + bh�1. Now if we combine the steps performed

for the root procedure with steps performed for the subprocedures (Y), we get a total of

G(h) primitive steps for performing all experiments.

Thus, by mathematical induction it has been shown that G(h) bounds the number of

primitive actions performed during experiments on a multi-level procedure of height h.

6.7.1 Scalability

Diligent's techniques are meant to be used with short procedures that can be combined

into modular, hierarchical procedures. If procedures are authored in a hierarchical manner,

the number of primitive steps performed by experiments decreases rapidly.

Consider a procedure containing 125 primitive steps. If the procedure were authored

without subprocedures, experiments would perform over 15,000 steps. However, the same

procedure could be authored in a hierarchical manner with a height of 3 and a branching

factor of 5. In this case, experiments would only perform 1,200 steps.

However, we have never seen any procedures close to this length. In the two domains

that we've looked at, the HPAC has the longest procedures. If we ignore sensing actions,

almost all HPAC procedures take less than about 15 steps. The longest procedure ap-

pears to be about 45 steps, but most very long procedures use common subsequences of

steps, such as checking all 14 temperature sensors or opening and closing all 5 separator

drain manifold valves. These common subsequences could easily be modeled by reusable

subprocedures.

Furthermore, our experience has been that the 1 or 2 minutes spent experimenting is

a small portion of the authoring process.

Experiments on the hierarchical procedure may not learn as much about the proce-

dure as experiments on a one level procedure, but Diligent's focus is not autonomous

exploration. Instead, Diligent's experiments should provide a bounded, heuristic aid for

identifying operator preconditions.

Although using a hierarchy of procedures helps, Diligent's approach to experimentation

is probably inappropriate for very large procedures. As Diligent gains more experience,

experiments are likely provide little additional knowledge because by then both operators

and subprocedures are likely to be very re�ned. Instead, Diligent's approach appears more

appropriate for small subprocedures that can be used to construct large procedures.

155

6.8 Related Work

When appropriate, related work has been mentioned throughout this chapter. However,

some other work should be mentioned.

6.8.1 The Self-Explanation E�ect

The self-explanation e�ect [CBL+89, CV91, CLCL94, Ren97] describes the phenomenon

where human students can solve procedural problems better if they study a few problem

solutions in detail rather than many solutions briey. The term \self-explanation" is used

because students need to make a conscious and deliberate e�ort to justify each of the

solution's steps. Besides better problem solving, Chi et al. [CBL+89] found that students

who produced self-explanations when studying physics had a better understanding about

gaps in their knowledge.

Although Diligent does not model human cognition, the self-explanation e�ect mo-

tivates Diligent's experimentation technique of examining each demonstration in detail.

Diligent's demonstrations are comparable to the problem solutions given human students.

To explain a demonstration, Diligent tries to understand how state changes caused by

earlier steps a�ect later steps.

The self-explanation e�ect is modeled by CASCADE [VJC92, Van99], which models

human students learning to solve physics problems by studying the solutions of problems.

Instead of experimenting with a simulation like Diligent, CASCADE uses knowledge of

domain theorems (e.g. physics laws) and problem modeling concepts. CASCADE has

been used as the basis for acquiring knowledge for an automated tutoring system [GCV98].

If a knowledge acquisition system has easy access to a well-de�ned domain theory, then

CASCADE's approach might be appropriate. Unlike CASCADE, Diligent does not require

direct access to a well-de�ned domain theory.

6.8.2 Other Systems

A system that experiments by systematically analyzing demonstrations is PET [PK86].

Unlike Diligent, PET has complete control of the state. PET attempts to understand

a sequence of actions by systematically changing the state and then performing actions.

However, Diligent cannot use this approach because Diligent has limited control over the

environment's state.

156

A system uses that uses demonstrations for generating experiments is CAP [HS91].

CAP observes another agent and creates a theory to describe a sequence of actions. Un-

like Diligent, CAP uses inverse resolution to create new concepts and to generalize the

object classes. As discussed in Chapter 5, Diligent solves a di�erent learning problem.

Furthermore, CAP reactively experiments when the environment is in an opportunistic

state rather than systematically resetting the state and performing experiments.

If you consider a successful plan as equivalent to a demonstration, then some case-

based systems can also use demonstrations to generate experiments. For example, CHEF

[Ham89] performs experiments by adapting and repairing plans for Szechwan cooking.

CHEF experiments by creating a plan and then getting feedback about plan failure from a

simulation. The feedback consists of faults and reasons. A fault is an undesired attribute

value, and a reason is a causal explanation for the fault. Instead of repairing plans, Diligent

learns the type of causal knowledge that is returned to CHEF by the simulation.

6.9 Summary

In this chapter we discussed how Diligent performs autonomous experiments to help it

understand the preconditions of a procedure's steps.

We �rst looked at how this problem �ts into the general requirements: experiments

should make the instructor's job easier while maximizing the use of the limited number of

demonstrations.

We also discussed some speci�c requirements. Experiments should generate action-

examples for re�ning the operators associated with the procedure's steps. The action-

examples should help compensate for the bias used in creating operator preconditions. To

promote learning, a step's action-examples should have similar pre-states so that positive

and negative examples have similar pre-states. Because the system is interactive, it should

be fast and should attempt to bound the number of steps in an experiment.

We then discussed why other approaches were inappropriate: they perform too many

steps, require too much domain knowledge, require too much interaction with the instruc-

tor, and do not focus on understanding the demonstrations of the given procedure.

We then discussed Diligent's approach to experimentation. Diligent performs the proce-

dure while skipping a step and observing how this impacts later steps. Diligent's approach

does not require interaction with the instructor and focuses on understanding the given

procedure's demonstrations. Furthermore, because Diligent does not attempt to achieve

any goal state, each experiment has a bounded number of steps. The number of steps is

157

further limited because experiments treat abstract steps the same as primitive steps. In

other words, Diligent skips steps in the current procedure, but does not perform similar

experiments in the subprocedures associated with abstract steps.

We �nished by showing that hierarchical composition of larger procedures from smaller

procedures can greatly reduce the number of steps performed during experiments.

158

Chapter 7

Empirical Evaluation

So far, we've discussed how Diligent understands demonstrations and how Diligent can be

used for authoring. But is Diligent an e�ective tool for authoring? This chapter addresses

this question. Speci�cally, a study was conducted where people authored procedures with

di�erent versions of Diligent. In the study, everyone authored the same procedures, but

each subject only used a single version of Diligent. The di�erent versions were then

compared using variables such as accuracy, e�ort, time and subjective evaluation.

This chapter is organized as follows. First, we discuss the testable hypotheses and

the three versions of Diligent that were used to test the hypotheses. We then discuss

how we tested the usability of Diligent and its tutorial materials. Afterwards, we dis-

cuss the experimental method, the experimental results, and how the results support the

hypotheses.

7.1 Hypotheses

In the evaluation, we were concerned about two hypotheses that dealt with the bene�ts of

demonstrations and of experiments. One hypothesis is that demonstrations are bene�cial

even if Diligent does not perform experiments. To test this hypothesis, we compared

subjects who used demonstrations without experiments against subjects who only used an

editor. The other hypothesis is that using both experiments and demonstrations is better

than using only demonstrations. To test this hypothesis, we compared subjects who used

both demonstrations and experiments against subjects who only used demonstrations.

When testing these hypotheses, all subjects could use an editor. The subjects who

only used an editor di�ered from the others in that they had to specify a procedure's steps

with the editor. In contrast, the other subjects had to specify steps with demonstrations.

159

To measure these hypotheses, a number of testable claims were created. Each claim

corresponds to one of the dependent variables.1

Claim 1: Subjects require less work to create a procedure when using demonstrations and

experiments than when using only demonstrations. Work in this case means deliberative

changes to Diligent's knowledge base rather than time spent authoring. For example,

adding a step is a deliberative change while looking at a menu is not.

Claim 2: Subjects require less work to create a procedure when using only demonstra-

tions than when using only an editor.

Claim 3: Using demonstrations and experiments results in fewer errors than when

using only demonstrations.

Claim 4: Using only demonstrations results in fewer errors than when using only an

editor.

Demonstrations should be helpful because Diligent uses them to identify preconditions.

When identifying preconditions, Diligent uses an heuristic bias that favors likely but po-

tentially unnecessary preconditions. Thus, subjects who use demonstrations can focus on

a small set of likely preconditions, while subjects who use an editor have to consider a

large set of potential preconditions.

Claim 5: Subjects require less work to create a correct procedure when using demon-

strations and experiments than when using only demonstrations.

Claim 6: Subjects require less work to create a correct procedure when using only demon-

strations than when using only an editor.

Claim 7: Subjects can author in less time using demonstrations and experiments than

when using only demonstrations.

Claim 8: Subjects can author in less time using only demonstrations than when using

only an editor.

Because it did not seem feasible, we did not test of the bene�ts of hierarchical proce-

dures or the reuse of existing procedures.

7.2 The Three Versions of Diligent

In order to test the experimental hypotheses, three versions of Diligent were created. The

versions support di�erent methods for adding steps and for specifying preconditions and

1Section 7.4.3 describes the dependent variables.

160

state changes. All versions allow subjects to edit an existing plan. The three versions are

described below.2

� Demonstrations and Experiments. Subjects can demonstrate procedures, and Dili-

gent can experiment on the procedures.

� Demonstrations. Subjects can demonstrate procedures, but Diligent cannot perform

experiments.

� Editor Only. Subjects cannot demonstrate and Diligent cannot experiment, but

subjects can use an editor to create a declarative speci�cation. A subject adds a

step by selecting an action to perform. The subject then speci�es preconditions and

state changes associated with the step by selecting attributes and typing in their

values. The menus for specifying actions and attribute values are only available in

this version of the system.

Requiring subjects to enter attribute values by typing is reasonable because Diligent

does not know which attribute values are legal. Furthermore, typing isn't that oner-

ous because most attribute values are short (e.g. \shut") and because subjects are

given a list containing each attribute's legal values (see Appendix B). Furthermore,

avoiding typing errors is a bene�t of demonstrating.

Because the subjects were given a list of all legal attribute values, one could argue

that it would be little e�ort to provide menus containing all legal values. However,

the list of legal attribute values was only provided because it was necessary for

subjects who used this version of Diligent.

However, this discussion about whether or not subjects should type in values appears

to be moot because subjects appeared to make so few errors in typing that these

errors had little or no e�ect.

Because this version does not allow demonstrations, this version does not allow

interaction with the environment while steps are being added. While steps are being

added, this version ignores actions performed in the environment, does not perform

actions, and ignores the state of the environment.

This version is meant to correspond to declaratively specifying a procedure using a

text editor, but unlike a text editor, this version automatically collects evaluation

data, guarantees syntactic correctness and allows the system to check for consistency.

2Appendix D describes how to use the di�erent versions.

161

For example, the system checks for consistency when deriving a procedure's step

relationships. A subject is warned about inconsistency when the state changes of

an earlier step establish an attribute value that is di�erent than the value in a later

step's precondition.

The menus used for all three versions are very similar. All versions use the same

procedure and operator representation. The versions also use the same algorithms to

derive goal conditions and step relationships. However, because the editor only version

lacks knowledge of the environment's state, that version uses the preconditions and state

changes of steps to create a pre-state and post-state for each step.

7.3 Usability Analysis

Prior to conducting the study, an informal analysis of Diligent's usability was conducted

to ensure that the user interface and the training documentation were adequate. For the

user interface, this meant that subjects could author procedures with Diligent and knew

how to �nd various types of information. For training documentation, this meant that

subjects could cover the material in 30 to 40 minutes.

In order to avoid using all potential subjects, usability was tested on only three subjects

(1 graduate student and 2 research sta�) over a period of a couple months.

We planned on performing the test in the following manner. Subjects would be video-

taped using Diligent and would vocalize their thoughts. However, unlike a formal protocol

analysis [Chi97, ES84, JH95, GMAB93], the subject's vocalizations would not be system-

atically analyzed. Subjects were to use the same training material as the formal evaluation.

Additionally, the subjects were to learn all three versions of Diligent.

However, the test did not go as planned. Because of problems in the documentation

and, to a lesser extent, the user interface, none of the subjects completed all the training

material. Of the training material for the study's two sessions, the subjects only covered

the �rst session's material.3 Furthermore, subjects had di�culty vocalizing their thoughts.

The most important �nding was that �rst day's training took at least 50 minutes. The

long training period is important because it limited the number of people willing to be

test subjects.

3As will be explained in greater detail (Section 7.4.4), the study took two sessions, one in which the
subjects learned how to use Diligent, and the second in which they reviewed what they had previously
learned and then carried out the test.

162

Although only a few subjects were used, each subject caused substantial improvements

in the materials given the next subject. This phase of the evaluation resulted in the

following changes:

� Too many of the windows looked alike. One subject did not notice the window titles

on the window borders. This created confusion about which menu was being viewed

and about the functionality of di�erent menus. Giving the menus large titles seemed

to solve this problem.

� The interfaces of too many programs were used. Subjects interacted with four pro-

grams that each had a di�erent look and feel. The most problems were caused by the

di�erences between Diligent and the STEVE tutor. At the time, STEVE's interface

was used for testing procedures, but the interface inconsistencies between STEVE

and Diligent made the training more di�cult.

Therefore, Diligent was given control of testing. Although Diligent uses STEVE's

functionality, subjects initiated testing inside Diligent. This has a number of advan-

tages. A lot of debugging activities are combined onto one menu. The approach also

supports easier instrumentation and allows Diligent to disable testing during activ-

ities such as experiments and demonstrations. Earlier, the possibility that subjects

might simultaneously test and demonstrate was a major concern.

This issue has architectural implications for this type of heterogeneous system. Ei-

ther the disparate software components must conform to a common user interface

look and feel, or the components need to support the use of their functionality by

other components. Given that components may come from very di�erent sources,

exporting functionality may be easier than enforcing a common look and feel.

� Use as many forcing functions as possible. A forcing function [Nor88] prevents a

user from performing actions that are unwanted in a given context. For example,

Diligent's windows contain buttons that will close them, but one subject kept using

the X-window exit command. This behavior was unanticipated and caused incon-

sistent data. This problem was solved by preventing the X-window exit command

from closing the window. Another example of a forcing function is disabling testing

during a demonstration.

� The user's manual was transformed into a tutorial. Originally, the user's manual

gave instructions for a running example while extensively describing each window.

Unfortunately, subjects had di�culty remembering the important points. Therefore,

163

the user's manual was transformed into a tutorial by trimming unnecessary descrip-

tions, adding summaries and ignoring unnecessary windows. Surprisingly, most of

the e�ort to improve usability involved improving the tutorial.4

7.4 Experimental Method

After analyzing and improving Diligent's usability, a study was conducted to evaluate

Diligent. The study had a between-subjects design where each subject authored two

procedures and used only one version of Diligent.

7.4.1 Independent Variable

The independent variable was the method of authoring. Each of the three versions of

Diligent (Section 7.2) represented a di�erent method of authoring. Thus, there were three

experimental conditions.

� EC1: Authoring with demonstrations and experiments.

� EC2: Authoring with only demonstrations.

� EC3: Authoring with only an editor.

As mentioned earlier, all three experimental conditions allowed subjects to edit existing

procedures.

7.4.2 Test Subjects

Test subjects were recruited by asking computer science graduate students and sending

email to the sta� at the Information Sciences Institute. Sixteen subjects started the study,

and all but one �nished it.5 Of the �fteen subjects who completed the study, fourteen were

computer science graduate students and one was a member of the technical sta�.6 Most

subjects work in areas related to arti�cial intelligence.

Subjects were paid 20 dollars.

An e�ort was made to balance the subjects' sex, education and whether they were

native English speakers. However, this proved di�cult because few subjects were available

4While the tutorial covered authoring an example procedure in a keystroke by keystroke manner, Diligent
was not used to directly author the tutorial because Diligent cannot capture screen snapshots of its own
menus.

5The subject who quit felt that he was too busy to �nish the study.
6It was initially thought that the subject was a graduate student.

164

and willing, because subjects cancelled, and because of problems that resulted in some lost

data for the �rst procedure. (We will discuss these problems later.)

The �fteen subjects were placed in the three groups in an uneven manner. Groups

EC1, EC2 and EC3 had 4, 6 and 5 subjects, respectively. One factor inuencing this was

the inability to collect some data for EC2 subjects. Another factor was that few subjects

were available later in the evaluation. One subject (subject 11) was switched from EC1 to

EC2 because the subject used demonstrations but no experiments.7

Type of subjects Group

EC1 EC2 EC3

male native speaker 0 1 3

male non-native speaker 3 3 2

female native speaker 1 1 0

female non-native speaker 0 1 0

Table 7.1: Distribution of Subjects Based on Sex and Language

Table 7.1 shows the distribution of subjects based on sex and language. The major

balancing e�ort was attempting to get enough subjects in each group. The next criteria

was trying to balance English ability and then sex. Furthermore, if it was felt that a

subject knew that Diligent uses programming by demonstration, then the subject was put

in groups EC1 or EC2. This was done to avoid preconceptions from biasing the control

group (EC3).
8

Because subjects had to cover around 90 pages of training material, it was felt that

native English speakers would �nd the training easier. For this reason, subjects were

distributed so that no group had more English speakers than the control group (EC3).

One problem with the methodology is that the background questionnaire was �lled out

after the subjects were assigned to an experimental condition. This means that only sex

and English ability were immediately obvious. Thus, the number of years of education

could only be roughly estimated and was, therefore, di�cult to use for assigning subjects

to groups.

7In order to keep Diligent's user interface responsive, Diligent only experiments when asked to do so by
the user.

8For the last few subjects, whether a subject was likely to know that Diligent uses programming by
demonstration was not considered.

165

7.4.3 Dependent Variables

The goal of the experiment was get some measure of the di�culty in authoring. The idea

is that authoring should be faster and more accurate if there is less burden placed on the

instructor.

The dependent variables were

� Time. Time was measured three ways. One time was the training time, which

includes the few minutes used to �ll out the background questionnaire. The second

time was the time spent authoring before the subject started testing the procedure,

and the third time was the total time spent authoring a procedure.

After a subject started testing, the subject still could provide demonstrations and

edit procedures, and Diligent could still perform experiments.

� Logical Edits. A logical edit is an authoring activity that requires knowledge of the

procedure or the domain. Logical edits can be thought of as deliberative changes to

Diligent's knowledge base. Logical edits were used to factor out time-related user

interface e�ciency issues that were highly dependent on the structure and layout of

menus. The follow items were counted as logical edits:9

{ Adding or demonstrating a step.

{ Performing an action as part of a demonstration's pre�x.

{ Deleting a step from a procedure.

{ Editing preconditions, state changes, goal conditions, and step relationships

(i.e. causal links and ordering constraints).

{ Edits to a �lter. A �lter allow a subject to prevent a given attribute from being

used in causal links or ordering constraints.10

Logical edits did not include more passive activities, such as looking at menus or

approving data derived by Diligent. (Diligent uses its knowledge of preconditions

and state changes to derive a procedure's goal conditions and step relationships.)

Logical edits were recorded in two places: immediately before a subject started

testing a procedure and when a subject was �nished with a procedure. During

9Edits to associate an e�ect with a step were also measured for EC3 but were not used because these
edits usually required little thought.

10Filters are meant to remove \nuisance" attributes that an author doesn't care about. Filters were not
needed in the procedures being authored, and none of the subject's used them.

166

authoring, Diligent automatically collected the metrics used for counting logical edits.

After a procedure was �nished, the metrics and Diligent's knowledge base were saved

to �les. After saving the data, Diligent prepared for the next procedure by erasing

its knowledge base and clearing the counters used for gathering metrics.

� Errors. Another metric was number of errors in a procedure's plan. Each plan was

compared against an ideal target plan. Each additional or missing piece of knowledge

was counted as one error. See Section 7.4.3.1 for details on how errors were measured.

� Total required e�ort. This was the amount of work needed to make a procedure

correct. This was the sum of logical edits and errors. For simplicity, we assumed

that each error could be corrected by one logical edit.

� Qualitative Impressions. After authoring both procedures, subjects �lled out a ques-

tionnaire about their subjective impressions of Diligent.

7.4.3.1 Measuring Errors in Plans

When a subject �nished authoring a procedure, the procedure's plan was saved to a log

�le. After all subjects had completed the study, the subjects' plans were compared against

idealized target plans (Appendix B). This comparison identi�ed errors in the subjects'

plans.

Errors occur when a plan has missing or unnecessary steps or step relationships. The

problem is that it is sometimes di�cult to count errors. For example, a plan may have a

necessary step that is repeated several times. Obviously, the step should only be counted

once. However, the subject's plan may contain all the causal links for the target plan's

step without containing a single step that is associated with all the causal links. The issue

is how to decide which step relationships are correct.

Errors were calculated as follows.

� Each di�erence from the target plan counted as one error. In other words, each

incorrect or missing step, causal link or ordering constraint counted as one error.

� A step was correct if the target plan contained a step with the same action. How-

ever, each step in the target could only match a single step in the subject's plan.

When multiple steps in subject's plan mapped to a step in the target, one of the sub-

ject's steps was selected based on the comparison of its relative position compared

to the plan's other steps. In particular, the step was chosen to preserve as many

dependencies between steps as possible.

167

In several instances with the editor only version (EC3), the state changes of several

target steps were produced by a single step. When this happened, the subject's step

was associated with the target step that seemed most reasonable.

� Causal links and ordering constraints were checked by comparing corresponding steps

in the target and subject's plans.

Causal links and ordering constraints could also be matched if only one of their

two steps mapped to a step in the target procedure. In this case, the action of

the excluded step must have matched an action of one of the steps in the target

procedure. However, a step relationship (i.e. causal link or ordering constraint) in

the target plan could only match one step relationship in the subject's plan.

Counting a step relationship when only one matching step helped when a subject's

procedure contained an unnecessary repetition of one of the target procedure's steps.

This most often helped plans by subjects that only used an editor (EC3).

� When authoring a procedure, subjects sometimes authored several plans. When this

happened, the plans were inspected and the most complete and correct plan was

used. (This always appeared to be the most recent plan.) However, the logical edits

for all the plans were counted.

� The �nal version of plans were also inspected to see if STEVE could demonstrate

them. Things that prevented successful demonstrations include

{ Missing steps.

{ Some of the step relationships used in the plan would not be satis�ed by the

environment.

A demonstration was considered possible if the order of the steps in the procedure

was valid, even if some of the necessary step relationships were missing.

7.4.4 Test Procedure

To perform the study, the subjects completed the activities listed in Table 7.2. The

activities took place over two consecutive days. Each day's activities took approximately

two hours.

Participation of each subject covered two days so that subjects could assimilate the

�rst day's training. All subjects appeared more pro�cient on the second day.

168

Day Activity Time

Limit
(min-

utes)

1 Fill out background questionnaire.
Work through the �rst day tutorial. Read short sys-
tem overview. Manipulate the environment's graph-
ical interface. Read about procedural representation
and �ll out procedural representation worksheet. Cre-
ate a procedure. Edit and test the procedure. Review
summary of how to use Diligent.

2 Review the �rst day tutorial by focusing on the
summary

10

Work through the second day tutorial. Review the
�rst day's material by authoring a simple procedure.
Learn how to delete unwanted steps.
Solve a practice problem, which involves creating and
testing a procedure.

10

Look at practice problem solution
Start experiment by authoring the �rst procedure. 30
Author the second procedure 30
Fill out questionnaire about impressions of Diligent

Table 7.2: Activities Performed By Subjects

The training received by all experimental conditions was deliberately very similar.

The training for the group with both demonstrations and experiments (EC1) was nearly

identical to the group that allowed demonstrations but no experiments (EC2). Even the

training for the group who could only use an editor (EC3) was similar to the other groups.

In fact, the tutorial for EC3 di�ered from the other groups only in how steps were added

to a procedure and how preconditions and state changes were speci�ed.

The tutorial starts out very speci�c but becomes more abstract after an activity has

been described. When �rst encountering an activity, the tutorial describes each action

on a button click by button click basis. Associated with these detailed instructions were

dozens of screen snapshots. Later, after an activity has already been covered, the tutorial

only provides a high level description of what needs to be done. The initial detail provides

sca�olding that promotes initial understanding, and the later removal of the sca�olding

promotes competence by reducing the reliance on detailed instructions. For example, the

169

�rst day tutorial for EC1 is 77 pages
11 and has over 48 �gures and tables. In contrast, the

second day tutorial reviews much of the same material in only 7 pages.

Before authoring a procedure on the 1st day (Table 7.2), subjects read about the

procedural representation and �lled out a worksheet on it (Sections B.2 and B.3). This

separation was critical for training. Otherwise, users would be required to author a pro-

cedure before they understood the procedural representation. If subjects were to focus on

learning the representation, they might pay less attention to learning the user interface.

The material on procedure representation was believed to be much more important for

group that used an editor instead of demonstrations (EC3).

The practice problem at the end of training helped ensure that subjects were ready

to perform the experiment. The problem let subjects use the system without directions,

and the solution allowed them to check if they had misconceptions about how they should

author.

Originally, the test monitor was to have little or no communication with a subject that

was not part of the test script. Questions would be answered by pointing to windows or

pre-printed answers, such as \yes" or \no." However, this proved very awkward. Therefore,

during training, pointing to windows and tutorial pages was used, but verbal answers (e.g.

\yes") were sometimes given. An e�ort was made to make verbal answers as short and

as speci�c as possible. Questions were only answered if they were relevant to the tutorial

material that the subject was working on. Because of the detail in the tutorial, questions

were infrequent. In contrast, during the experiment, pre-printed directions were used and

questions could not be answered. However, if there was a software problem during an

experiment, the test monitor spoke to the subject and attempted to put the system back

into a usable state.

Before authoring each procedure, Diligent's existing knowledge of the domain was

erased. The environment was then placed in the procedure's initial state, and the subjects

were then given the following information:

� A functional description of the procedure without an explicit speci�cation of which

steps to perform. The steps were not included because there was concern that

subjects would simply transcribe the description into Diligent's representation.

� A set pictures with labels for relevant objects.

11Many pages contain a great deal of whitespace.

170

� A list of all HPAC attributes and their legal values. (The list was needed by the

control group (EC3), which could not use demonstrations.)

Although both the training and the experiment used the HPAC domain, the HPAC

objects used in the experiment were not used for authoring procedures during training.

Additional information on the test procedure is contained the appendices. Appendix

D contains some of the tutorial material.12 Appendix B contains the other evaluation

materials (e.g. directions). Appendix C contains deviations from the test procedure as

well the other data collected during the study.

7.4.5 The Procedures Being Authored

During the experiment, subjects authored two procedures.13 The procedures are derived

from real procedures in the HPAC domain, but have been adapted to the portion of

the HPAC that is supported by the graphical interface. The simulation that controlled

the environment was modi�ed so that the procedures were supported and were partially

ordered.14 The procedures were chosen for the following reasons:

� They were partially ordered.

� Knowledge of one procedure should provide little or no help on the other procedure.

� Each procedure was logically one procedure rather than a concatenation of two pro-

cedures.

� They had between 6 and 8 steps.

The two procedures have slightly di�erent properties. The �rst procedure has a de-

liberately more abstract description and is more complex than the second procedure. (8

steps, 13 ordering constraints and 30 causal links versus 6 steps, 7 ordering constraints

and 16 causal links.) The procedures were authored in this order because reversing the

order might have caused subjects to include \unwanted" attributes in the more complex

procedure, which would have made scoring the procedure more di�cult.

12The training material for each of the groups contains approximately 90 pages. Because the length and
the similarity of the material between groups, Appendix D combines training material for the three groups.

13The procedures that were authored and the test materials are in Appendix B.
14Diligent is designed for partially ordered procedures. The experiments performed by Diligent may not

learn much if a procedure is totally ordered. A procedure is totally ordered if there is only a single valid
order for performing the steps.

171

There were a number of problems when subjects authored the �rst procedure. First,

there was a memory leak that would cause the environment's graphical interface (i.e. Vista

Viewer) to become less responsive and sometimes crash. This problem was �xed with a

software upgrade. Second, subjects would sometimes demonstrate steps too quickly. This

caused the steps to appear to be simultaneous, and simultaneous steps cause problems

with Diligent's operator learning algorithms. This problem was made more likely as the

Vista Viewer became less responsive. The problem was addressed by �xing the memory

leak and by reminding subjects not to demonstrate too quickly. An additional problem

was that the description of the �rst procedure was unclear. This caused some subjects to

have di�culties identifying the correct steps. This problem was addressed by clarifying

the description.

Because of these problems, di�erent numbers of subjects are used when analyzing the

two procedures. Only the �nal 6 subjects are used for the �rst procedure, while all subjects

are used for the second procedure.

7.4.6 Data Analysis

Section 7.1 contains testable claims about di�erences between groups EC1 and EC2 and

between groups EC2 and EC3. To test for di�erences between groups, we used Analysis of

Variance (ANOVA) [WW72], which tests for the di�erences between all groups. ANOVA

compares variance within groups to variance between groups.15

Because ANOVA depends on groups having a normal distribution and similar variances,

we also used the Kruskal-Wallis test. The Kruskal-Wallis test is a non-parametric test,

which means that it does not depend on the distribution. Instead of using a dependent

variable's values, the Kruskal-Wallis test sorts the values and uses their relative order. Of

course, a non-parametric test requires greater di�erences than an ANOVA test.

Because ANOVA and Kruskal-Wallis compare all groups, we performed post hoc tests

to compare pairs of groups. A post hoc test simultaneously compares pairs of groups to

identify signi�cant di�erences while maintaining a 95% probability that all comparisons

are true. The post hoc test used was Sche��e's F [Sch53], which requires a signi�cant

ANOVA F value but is robust with in regard to heterogeneous variances.

For statistical signi�cance, we used the .05 probability level.

15All statistical calculations were performed with version 5.0 of StatView for Windows by SAS Institute
Inc..

172

A word of caution { the statistical signi�cance of this chapter's results should be viewed

with a little skepticism. Signi�cance was di�cult to establish because there were few

subjects. Furthermore, because there were so few data points, the results are too sensitive

to individual data points. In fact, some researchers do not consider data as statistically

signi�cant unless there several times as many subjects as in this study. Nevertheless, the

results are valuable because they suggest patterns and trends.

7.5 Results

This section presents the data collected during the study.16 (The data will be discussed

in Section 7.6.)

In the following tables, a few conventions are used. The number of digits shown may

not indicate the number of signi�cant digits. The \pre-test" values are the values when

subjects started testing their procedures. If a subject didn't test a procedure, the �nal

value was used.

As mentioned earlier, because there were relatively few subjects, the following data are

used to suggest trends and patterns rather than to provide solid statistical proof.

7.5.1 Results of Background Questionnaire

At the beginning of training, subjects �lled out a background questionnaire. Their re-

sponses were then analyzed to look for patterns in the distribution of subjects between

groups. The experimental condition (e.g. EC1) was used as an ANOVA factor for this

analysis. The results are shown in tables 7.3 and 7.4.17

The only signi�cant di�erence is the typical time spent browsing per week. The group

that demonstrated without experiments (EC2) spent the most time browsing (13 hours).

The variable education represents years of education. This includes 12 years for grad-

uating from high school. The group that demonstrated and experimented (EC1) was the

oldest and the group that only demonstrated (EC2) was the youngest. However, the stan-

dard deviation of the group that only used the editor (EC3) is several times larger than

the standard deviations of the other groups.

The variable English ability indicates a subject's rating of his English pro�ciency. The

subject's rating was converted into a numeric value: good (1), excellent (2), native (3).

16Appendix C contains a more detailed presentation of the data collected during the study.
17The ANOVA values were computed with 12 and 2 degrees of freedom, except for previous week's

computer use, which had 11 and 2 degrees of freedom.

173

Dependent Variable F Probability

Education 1.542 .2535

English ability 1.346 .2969

Sex 0.912 .4278

Age 0.863 .4466

Machine learning knowledge 0.340 .7187

Arti�cial intelligence planning knowledge 0.340 .7187

Programming ability 0.167 .8484

Typical browsing 4.851 .0286

Programming last week 3.806 .0554

Typical hours/week 2.211 .1522

Browsing last week 1.928 .1916

Total hours last week 1.774 .2149

Table 7.3: Background ANOVA Tests

Dependent Variable EC1 EC2 EC3

Mean Std.Dev Mean Std.Dev Mean Std.Dev

Education 21.9 0.85 18.9 1.5 19.5 4.3
English ability 1.7 0.96 2.0 0.89 2.6 0.55
Sex 0.75 0.5 0.67 0.5 1.0 0
Age 33.7 2.5 30.0 3.2 35.0 10.6
Machine learning
knowledge

0.5 0.58 0.3 0.52 0.6 0.55

Arti�cial intelligence
planning knowledge

0.5 0.58 0.3 0.52 0.6 0.55

Programming ability 2.0 0.0 2.0 0.63 2.2 0.84

Typical browsing 8 6 13 5 5 0
Programming last week 8 9 20 10 31 15
Typical hours/week 40 0 49 11 44 9
Browsing last week 10 7 7 6 3 2
Total hours last week 30 8 37 14 45 7

Table 7.4: Background Means and Standard Deviations

174

The variable sex indicates whether a subject is male (1) or female (0). Because several

female subjects canceled, the distribution of females is skewed.

The variable age is the subject's age in years. Because the questionnaire asked subjects

to circle a range of ages, the top age in the interval was used.18 The reason that group

EC3 had the largest age is that the group had the oldest subject (50).

The variables machine learning knowledge and arti�cial intelligence planning knowledge

represent a yes (1) or no (0) about whether a subject felt he had signi�cant knowledge in

that area.

The variable programming ability contains a subject's self rating. A subject's rating

was converted into a numeric value: intermediate (1), good (2), expert (3).

The \typical" computer use numbers represent typical hours per week spent using a

computer, and the \last week" numbers reect the hours spent during the previous week

on a computer.

7.5.2 Time Spent Training

We looked for correlations between the subjects' backgrounds and training time. The data

are shown in tables 7.5 and 7.6.

We expected all groups to have similar training times because all groups received very

similar training. As expected, no signi�cant di�erence between groups was found for

training time.

The �rst day's training time had more variation than the second day's training. The

decrease in variation on the second day was expected because less material was covered

and because the subjects were already familiar with the system.

Dependent Variable F Probability

Day 1 0.916 .4265

Day 2 0.281 .7598

Total time 0.762 .4881

Table 7.5: Background ANOVA Tests

In order to �nd correlations between training time and background variables, a multiple

linear regression was performed. During the regression, a subject's experimental condition

was ignored, and the total training time was used as the dependent variable. The best �t

18A range was used because one usability test subject complained about asking for an exact age.

175

Dependent Variable EC1 EC2 EC3

Mean Std.Dev Mean Std.Dev Mean Std.Dev

Day 1 (min.) 115 25 97 19 97 26
Day 2 (min.) 44 8 43 14 39 10
Total Time (min.) 159 23 140 28 136 35

Table 7.6: Training Time Means and Standard Deviations

that was found is shown in Table 7.7. Three independent variables were identi�ed: years

of education, arti�cial intelligence (AI) planning knowledge and English pro�ciency. Of

the independent variables, only English pro�ciency was expected, and unlike the other

independent variables, English pro�ciency is not statistically signi�cant (P-Value). The

regression coe�cients (Std. Coe�.) indicate that English pro�ciency and AI planning

knowledge decrease training time, while more education increases training time. The

R2 (R Squared) indicates that the independent variables only predict 61 percent of the

variation in training time.

7.5.3 Logical Edits

While subjects authored procedures, Diligent recorded the number of logical edits that

they performed. A logical edit is an authoring activity that requires knowledge of the

procedure or the domain (e.g. demonstrating a step). Logical edits do not include passive

activities, such as looking at menus or approving data derived by Diligent. Instead, a edit

is deliberative change to Diligent's knowledge base.

The data from the analysis are shown in Table 7.8, and graphs of the data are shown

in Figure 7.1. The \pre-test" value is the value when the subjects started testing their

procedures.

Procedure 1's results are weak because only 6 six subjects were used. No signi�cant

di�erences between groups were found, but the values for EC1 (demonstrations and ex-

periments) are much smaller than for the other two groups.

Procedure 2's results are stronger. There is a signi�cant di�erence between the groups

both before and after testing (ANOVA and Kruskal-Wallis). There is also a signi�cant

di�erence between groups EC1 and EC3 and between groups EC2 and EC3. The group

that used demonstrations and experiments (EC1) had the lowest values, while the group

that used an editor (EC3) had the highest values.

176

15

1

.781

.609

.503

20.483

Count

Num. Missing

R

R Squared

Adjusted R Squared

RMS Residual

Regression Summary
total training vs. 3 Independents

3 7195.687 2398.562 5.717 .0131

11 4615.247 419.568

14 11810.933

DF Sum of Squares Mean Square F-V alue P-V alue

Regres s ion

Res idual

Tota l

ANOV A Tab le
to tal tr ain in g vs . 3 Inde p e nde n ts

83.291 54.617 83.291 1.525 .1555

4.915 2.185 .471 2.249 .0460

-11.171 7.706 -.321 -1.450 .1751

-28.569 11.356 -.508 -2.516 .0287

Coefficient Std. Error Std. Coeff. t-Value P-Value

Intercept

education

English ablity

Planning know ledge

Regression Coefficients
total training vs. 3 Independents

Table 7.7: Linear Regression on Total Training Time

Means and Standard Deviations

Dependent Variable EC1 EC2 EC3

Mean Std.Dev Mean Std.Dev Mean Std.Dev

Procedure 1 total edits 9.5 2.1 35.0 12.7 37.5 7.8
Procedure 2 pre-test
edits

8.7 2.1 11.8 5.1 24.6 4.6

Procedure 2 total edits 9.0 2.2 16.8 6.4 26.0 3.8

ANOVA Results

Dependent Variable F Probability

Procedure 1 total edits 6.346 .0836
Procedure 2 pre-test edits 18.048 (*) .0002
Procedure 2 total edits 14.021 (*) .0007

Kruskal-Wallis Results

Dependent Variable Probability

Procedure 1 total edits .1801
Procedure 2 pre-test edits (*) .0079
Procedure 2 total edits (*) .0070

Post Hoc Test Probabilities

Dependent Variable EC1,EC2 EC1,EC3 EC2,EC3

Procedure 1 total edits .1316 .1064 .9601
Procedure 2 pre-test edits .5599 (*) .0006 (*) .0014
Procedure 2 total edits .0785 (*) .0008 (*) .0273

Table 7.8: Logical Edit Analysis

177

Subjects
5

10

15

20

25

30

35

40

45

pr
oc

. 1
 to

ta
l e

di
ts

experiment (EC1)

demonstration (EC2)

editor (EC3)

Subjects
5

10

15

20

25

30

35

pr
oc

. 2
 p

re
-t

es
t e

di
ts

experiment (EC1)

demonstration (EC2)

editor (EC3)

Subjects
5

10

15

20

25

30

35

pr
oc

. 2
 to

ta
l e

di
ts

experiment (EC1)

demonstration (EC2)

editor (EC3)

Figure 7.1: Graphs of Logical Edits

178

7.5.4 Errors

We will now present data on the errors in the subjects' procedures. This has several

aspects: how well were the subjects able to determine a procedure's steps; the number of

components (e.g. causal links) missing from a procedure; and the number of unnecessary

components in a procedure. We will �nish by looking at the total errors.

7.5.4.1 Errors in Identifying Steps

An important inuence on the number of errors is how many of the procedure's steps

are incorrect. This is important because any step relationships involving a missing or

unnecessary step will be counted as errors. It was expected that subjects would have little

di�culty in correctly identifying steps.

Dependent Variable EC1 EC2 EC3

Mean Std.Dev Mean Std.Dev Mean Std.Dev

Procedure 1 �nal missing
steps

0 0 0 0 3.5 .7

Procedure 1 �nal unnec-
essary steps

0 0 1.5 .7 1 1.4

Procedure 2 �nal missing
steps

1.0 .8 0 0 .2 .4

Procedure 2 �nal unnec-
essary steps

0 0 .2 .4 .4 .9

Procedure 1 �nal invalid
steps

0 0 1.5 .7 4.5 .7

Procedure 2 �nal invalid
steps

1 .8 1 2 .6 .9

Procedure 1 works 1 0 1 0 0 0
Procedure 2 works .250 .5 .833 .4 .4 .6

Table 7.9: Means and Standard Deviations on Invalid Steps

How well the subjects were able to determine which steps to perform is shown in Table

7.9. The values in the table represent the �nal versions of the procedures. The \invalid

steps" are the total missing and unnecessary steps. The last two rows (e.g. Procedure 1

works) indicate whether a valid sequence of steps was speci�ed (1 means yes and 0 means

no).

The biggest di�erence in the number of errors was for Procedure 1. A signi�cant

di�erence between the groups was found (ANOVA at a 1% level). The post hoc tests

179

Means and Standard Deviations

Dependent Variable EC1 EC2 EC3

Mean Std.Dev Mean Std.Dev Mean Std.Dev

Procedure 1 �nal errors 4.5 .7 9 4 44 .7
Procedure 2 pre-test
errors

11.5 8.5 3.5 4 11.6 5

Procedure 2 �nal errors 11.5 8.5 6 7 11.8 5

ANOVA Results

Dependent Variable F Probability

Procedure 1 �nal errors 151.605 (*) .0010
Procedure 2 pre-test errors 3.388 .0681
Procedure 2 �nal errors 1.268 .3164

Kruskal-Wallis Results

Dependent Variable Probability

Procedure 1 �nal errors .1017
Procedure 2 pre-test errors .1054
Procedure 2 �nal errors .3371

Post Hoc Test Probabilities

Dependent Variable EC1,EC2 EC1,EC3 EC2,EC3

Procedure 1 �nal errors .3368 (*) .0013 (*) .0018
Procedure 2 pre-test errors .1504 .9978 .1157
Procedure 2 �nal errors .4739 .9978 .3949

Table 7.10: Errors of Omission Analysis

indicates a signi�cant di�erence between EC3 and the other groups. The groups that used

demonstrations (EC1 and EC2) had fewer invalid steps.

The di�erences between groups for Procedure 2 are relatively minor, and no signi�cant

di�erences were found. When considering the percentage of procedures that would have

worked, the subjects in EC2 did a better job of demonstrating than the subjects in EC1.

7.5.4.2 Errors of Omission

If a plan is missing a component (i.e. step relationship or step), the error is called an

error of omission.

The data from the analysis are shown in Table 7.10, and graphs of the data are shown

in Figure 7.2.

Because Diligent's heuristics favor errors of commission, one would expect the group

that used an editor (EC3) to have more errors of omission.

180

Subjects
0

5

10

15

20

25

30

35

40

45

pr
oc

. 1
 e

rr
or

s
of

 o
m

is
si

on

experiment (EC1)

demonstration (EC2)

editor (EC3)

Subjects
-2.5

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

pr
oc

. 2
 p

re
-t

es
t e

rr
or

s
of

 o
m

is
si

on

experiment (EC1)

demonstration (EC2)

editor (EC3)

Subjects
-2.5

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

pr
oc

. 2
 to

ta
l e

rr
or

s
of

 o
m

is
si

on

experiment (EC1)

demonstration (EC2)

editor (EC3)

Figure 7.2: Graphs of Errors of Omission

181

In Procedure 1, the groups are signi�cantly di�erent (ANOVA). Group EC3 has more

errors and is signi�cantly di�erent than the other groups. Group EC1 has slightly fewer

errors than group EC2.

In Procedure 2, there is no signi�cant di�erence between the groups. However, group

EC2 did better than the other groups. This was unexpected because EC1 and EC2 both

used demonstrations.

182

Means and Standard Deviations

Dependent Variable EC1 EC2 EC3

Mean Std.Dev Mean Std.Dev Mean Std.Dev

Procedure 1 �nal errors 6.5 .7 26 18 8.5 .7
Procedure 2 pre-test
errors

4 4 12 5 5 8

Procedure 2 �nal errors 4 4 10 6 6 8

ANOVA Results

Dependent Variable F Probability

Procedure 1 �nal errors 2.037 .2762
Procedure 2 pre-test errors 2.843 .0975
Procedure 2 �nal errors 1.015 .3916

Kruskal-Wallis Results

Dependent Variable Probability

Procedure 1 �nal errors .1017
Procedure 2 pre-test errors .0712
Procedure 2 �nal errors .3566

Post Hoc Test Probabilities

Dependent Variable EC1,EC2 EC1,EC3 EC2,EC3

Procedure 1 �nal errors .3236 .9826 .3808
Procedure 2 pre-test errors .1524 .9577 .2020
Procedure 2 �nal errors .4122 .8765 .6750

Table 7.11: Errors of Commission Analysis

7.5.4.3 Errors of Commission

If a plan has an unnecessary component (i.e. step relationship or step), the error is

called an error of commission.

The data from the analysis are shown in Table 7.11, and graphs of the data are shown

in Figure 7.3.

Diligent's heuristics favor errors of commission over errors of omission because it should

be easier for an instructor to identify a mistake among a small set of unnecessary items

than among a large set of missing items. Thus, we would expect group EC2 to have the

most errors. Group EC1 should have fewer errors than EC2 because experiments should

remove unnecessary conditions. Group EC3 should also have few errors because subjects

have to explicitly specify each unnecessary item.

183

Subjects
0

5

10

15

20

25

30

35

40

45

pr
oc

. 1
 e

rr
or

s
of

 c
om

m
is

si
on

experiment (EC1)

demonstration (EC2)

editor (EC3)

Subjects
-2.5

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

pr
oc

. 2
 p

re
-t

es
t e

rr
or

s
of

 c
om

m
is

si
on

experiment (EC1)

demonstration (EC2)

editor (EC3)

Subjects
-2.5

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

pr
oc

. 2
 to

ta
l e

rr
or

s
of

 c
om

m
is

si
on

experiment (EC1)

demonstration (EC2)

editor (EC3)

Figure 7.3: Graphs of Errors of Commission

184

Means and Standard Deviations

Dependent Variable EC1 EC2 EC3

Mean Std.Dev Mean Std.Dev Mean Std.Dev

Procedure 1 �nal errors 11 1 35 14 53 1
Procedure 2 pre-test
errors

15 5 16 3 17 11

Procedure 2 �nal errors 15 6 16 1 18 10

ANOVA Results

Dependent Variable F Probability

Procedure 1 �nal errors 13.059 (*) .0331
Procedure 2 pre-test errors .039 .9617
Procedure 2 �nal errors .240 .7906

Kruskal-Wallis Results

Dependent Variable Probability

Procedure 1 �nal errors .1017
Procedure 2 pre-test errors .9972
Procedure 2 �nal errors .9842

Post Hoc Test Probabilities

Dependent Variable EC1,EC2 EC1,EC3 EC2,EC3

Procedure 1 �nal errors .1338 (*) .0334 .2402
Procedure 2 pre-test errors .9923 .9626 .9850
Procedure 2 �nal errors .9992 .8432 .8337

Table 7.12: Total Error Analysis

Procedure 1 has a large number of step relationships. Thus, one would expect a large

number of errors for group EC2, while groups EC1 and EC3 would have few errors. This

is what was found. However, there were no signi�cant di�erences between the groups.

Procedure 2 is simpler than Procedure 1. Thus, all groups should have fewer errors.

This is what was found. Although group EC2 had slightly more errors than the other

groups, there were no signi�cant di�erences between the groups.

7.5.4.4 Total Errors

A plan's total errors are the sum of its errors of omission and commission.

The data from the analysis are shown in Table 7.12, and graphs of the data are shown

in Figure 7.4.

Because Procedure 1 is the more complicated procedure, we expect the di�erences be-

tween groups to be larger. The groups are signi�cantly di�erent (ANOVA), and groups

185

Subjects
5

10

15

20

25

30

35

40

45

50

55

pr
oc

. 1
 to

ta
l e

rr
or

s

experiment (EC1)

demonstration (EC2)

editor (EC3)

Subjects
5

10

15

20

25

30

35

pr
oc

. 2
 p

re
-t

es
t e

rr
or

s

experiment (EC1)

demonstration (EC2)

editor (EC3)

Subjects
5

10

15

20

25

30

35

pr
oc

. 2
 to

ta
l e

rr
or

s

experiment (EC1)

demonstration (EC2)

editor (EC3)

Figure 7.4: Graphs of Total Errors

186

Means and Standard Deviations

Dependent Variable EC1 EC2 EC3

Mean Std.Dev Mean Std.Dev Mean Std.Dev

Procedure 1 �nal re-
quired e�ort

20 4 70 1 90 9

Procedure 2 pre-test re-
quired e�ort

24 5 28 6 41 16

Procedure 2 �nal re-
quired e�ort

24 6 32 7 44 13

ANOVA Results

Dependent Variable F Probability

Procedure 1 �nal required e�ort 78.490 (*) .0026
Procedure 2 pre-test required e�ort 3.803 .0526
Procedure 2 �nal required e�ort 5.370 (*) .0216

Kruskal-Wallis Results

Dependent Variable Probability

Procedure 1 �nal required e�ort .1017
Procedure 2 pre-test required e�ort .0775
Procedure 2 �nal required e�ort (*) .0238

Post Hoc Test Probabilities

Dependent Variable EC1,EC2 EC1,EC3 EC2,EC3

Procedure 1 �nal errors (*) .0077 (*) .0028 .0833
Procedure 2 pre-test errors .8565 .0771 .1301
Procedure 2 �nal errors .4162 (*) .0237 .1517

Table 7.13: Total Required E�ort Analysis

EC1 and EC3 are signi�cantly di�erent. The group that demonstrated and experimented

(EC1) did better than the other groups. Most errors for group EC2 were errors of com-

mission, while most errors for groups EC1 and EC3 were errors of omission.

In Procedure 2, each group had roughly the same number of total errors, and no

signi�cant di�erences between the groups were detected. Groups EC1 and EC3 had mostly

errors of omission, while group EC2 had mostly errors of commission. Group EC1 did a

little better than the other groups even though its subjects did the worst job of identifying

the procedure's steps. (Poor demonstrations caused group EC1 to have errors of omission.

187

Subjec ts
10

20

30

40

50

60

70

80

90

100

p
ro

c
.

1
 t

o
ta

l e
ff

o
rt

exper iment (EC1)

demons tration (EC2)

editor (EC3)

Subjec ts
15

20

25

30

35

40

45

50

55

60

65

70

p
ro

c
.

2
 p

re
-t

e
s

t
to

ta
l e

ff
o

rt

exper iment (EC1)

demons tration (EC2)

editor (EC3)

Subjec ts
15

20

25

30

35

40

45

50

55

60

65

70

p
ro

c
.

2
 t

o
ta

l e
ff

o
rt

exper iment (EC1)

demons tration (EC2)

editor (EC3)

Figure 7.5: Graphs of Total Required E�ort

188

7.5.5 Total Required E�ort

The total required e�ort is a measure of the amount of work required to produce a correct

plan. The required e�ort includes the work that has been done as well as the work that

needs to be done. The previous work is measured by logical edits, and the additional work

is estimated by the total errors. Total errors is used because each error can be corrected

by an edit.

The data from the analysis are shown in Table 7.13, and graphs of the data are shown

in Figure 7.5.

Procedure 1, the more complex procedure, has signi�cant di�erences (ANOVA) be-

tween the groups. Group EC1 is signi�cantly di�erent and better than groups EC2 and

EC3. Group EC2 is not as good as EC1 but better than EC3. The di�erences between

the groups result from di�erences in both the logical edits and the total errors.

In Procedure 2, the di�erences between groups are close to signi�cant before testing

and are signi�cant (ANOVA and Kruskal-Wallis) after testing. Like Procedure 1, group

EC1 is signi�cantly di�erent and better than group EC3, while group EC2 is worse than

EC1 but better than EC3. The di�erences between the groups result from the fewer logical

edits required by groups that use demonstrations (EC1 and EC2).

7.5.6 Time Spent Authoring

When subjects authored procedures, two times were measured: when testing started

and when the subject �nished. After testing had started, subjects could still use Diligent's

full capabilities for demonstrating, experimenting and editing.

The data from the analysis are shown in Table 7.14, and graphs of the data are shown

in Figure 7.6. The pre-test times for Procedure 1 are included even though none of the

procedures was modi�ed after testing started.

There was a 30 minute time limit placed on each procedure, and subjects often seemed

to run out of time.

None of the groups are signi�cantly di�erent. However, the times for group EC1 are

slightly less than the times for EC2, and the times for EC2 are slightly less than the times

for EC3.

7.5.7 Subjective Impressions

After the subjects �nished authoring the two procedures, they �lled out a questionnaire

about their impressions of Diligent. The results are shown in Table 7.15.

189

Means and Standard Deviations

Dependent Variable EC1 EC2 EC3

Mean Std.Dev Mean Std.Dev Mean Std.Dev

Procedure 1 pre-test
time

27 4 29 2 30 .9

Procedure 1 total time 29 2 30 .4 30 .9
Procedure 2 pre-test
time

21 3 22 10 25 8

Procedure 2 total time 25 6 26 9 28 5

ANOVA Results

Dependent Variable F Probability

Procedure 1 pre-test time .886 .4377
Procedure 1 total time .777 .4816
Procedure 2 pre-test time .217 .8077
Procedure 2 total time .212 .8118

Kruskal-Wallis Results

Dependent Variable Probability

Procedure 1 pre-test time .6191
Procedure 1 total time .9370
Procedure 2 pre-test time .7952
Procedure 2 total time .4338

Post Hoc Test Probabilities

Dependent Variable EC1,EC2 EC1,EC3 EC2,EC3

Procedure 1 pre-test time .6178 .4567 .9356
Procedure 1 �nal time .4969 .6646 .9618
Procedure 2 pre-test time .9980 .8506 .8536
Procedure 2 �nal time .9526 .8140 .9294

Table 7.14: Analysis of Time Spent Authoring

190

Subjec ts
20

21

22

23

24

25

26

27

28

29

30

31

p
ro

c
.1

 p
re

-t
e

s
t

exper iment (EC1)

demons tration (EC2)

editor (EC3)

Subjec ts
24

25

26

27

28

29

30

31

p
ro

c
.

1
 t

o
ta

l

exper iment (EC1)

demons tration (EC2)

editor (EC3)

Subjec ts
0

5

10

15

20

25

30

35

p
ro

c
.

2
 p

re
-t

e
s

t

exper iment (EC1)

demons tration (EC2)

editor (EC3)

Subjec ts
7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

p
ro

c
.

2
 t

o
ta

l

exper iment (EC1)

demons tration (EC2)

editor (EC3)

Figure 7.6: Graphs of Time Spent Authoring

191

Question Group Distribution of Answers Mean

1 2 3 4 5 6 7

Like the system EC1 1 1 2 5.2
EC2 2 2 2 4.0
EC3 1 1 1 1 1 4.0

Easy to use EC1 1 1 1 1 3.7
EC2 2 1 2 1 3.3
EC3 2 2 1 2.8

Easy to specify a step EC1 1 1 1 1 4.7
EC2 1 2 1 2 4.8
EC3 1 1 2 4.4

Easy to identify preconditions EC1 1 1 1 1 4.2
EC2 2 2 1 1 4.8
EC3 1 1 3 4.7

Easy to identify state changes EC1 1 1 1 1 4.7
EC2 1 1 3 1 4.7
EC3 1 1 3 4.8

Easy to identify how operators EC1 2 2 5.0
inuence preconditions and state EC2 4 2 3.7
changes EC3 1 1 2 1 2.8
Easy to demonstrate EC1 1 1 2 5.0

EC2 1 2 1 1 4.2
Additional demonstrations useful EC1 1 1 1 4.3

EC2 1 2 2 1 4.5
Like experimenting EC1 1 1 1 1 4.2
Experiments quick enough EC1 1 1 2 5.5
Experiments saved work EC1 1 2 6.0
Experiments caught errors that
would have been missed

EC1 1 2 3.0

Table 7.15: Subjective Impressions

192

The data under Distribution of Answers indicates how the subjects rated Diligent: 1

means not at all, 4 means somewhat, and 7 means a great deal. The numbers in a column

indicate how many subjects gave that answer. Blank cells indicate that no subjects gave

that answer.

7.6 Discussion

The previous section (Section 7.5) presented the study's results. In this section, we will

analyze the results and discuss their meaning.

7.6.1 Assumptions About Test Subjects

Our research attempts to identify techniques that could assist domain expert instructors.

By instructor, we mean someone who teaches these procedures to human students.

However, instructors were not available as test subjects. Instead, graduate students

were used because they were the most available pool of subjects. In particular, we used

computer science graduate students who worked mostly in �elds related to arti�cial intel-

ligence.

This raises the question of how similar are graduate students and instructors. To

address this issue, consider the assumptions that we have made about the people who

author with Diligent.

� An author is a domain expert.

A graduate student is not domain expert, but he has access to a functional description

of the procedure.

� An author knows a valid order for performing a procedure's steps.

A graduate student has to identify a valid order of steps when given a functional

description, which does not explicitly specify the order of steps. In this sense, a

graduate student has a more di�cult task than an instructor. In fact, some test

subjects ordered steps incorrectly.

The problem with an invalid step order is that it interferes with the heuristics that

Diligent uses to create initial operator preconditions (i.e. the h-rep). Because the

heuristics assume that the state changes of earlier steps are likely preconditions for

later steps, mistakes in the order that steps are demonstrated interferes with the

identi�cation of likely preconditions. This suggests that the groups who used these

193

heuristics (EC1 and EC2) were more likely to be negatively a�ected by disordered

steps.

� An author may not be familiar with the simulation that models the domain. This

means that he may have problems mapping his knowledge to simulation attributes.

Additionally, the simulation may have some idiosyncrasies that are not obvious to

the author.

A graduate student doesn't know the domain, but his functional description should

describe the necessary attributes. Like an instructor, a graduate student needs to

map domain attributes to simulation attributes.

� The author is an instructor who can articulate dependencies between steps. However,

he may forget to mention some dependencies.

Not applicable to graduate students.

� The author may not be a programmer, and he may have di�culty understanding the

simulation's code. He may also have problems using the rigid syntax required for

declaratively specifying a procedure.

This does not apply to graduate students. Although they have no access to the

simulation's code, they all program and many of them have been exposed to declar-

ative plan representations. Because of their prior exposure to plan representations,

graduate students should learn how to use Diligent more quickly than instructors.

Familiarity with the representation may also allow graduate students to use the

editor only version (EC3) more easily than instructors.

Overall, when comparing graduate students to instructors, the students should have a

harder time authoring, but should learn how to use the system more quickly. Furthermore,

graduate students should have an easier time using the editor only version than would

instructors.

The di�culty that subjects had correctly identifying a procedure's steps (Section

7.5.4.1) lends support to the idea that the authoring task would have easier for instructors.

7.6.2 Discussion of Background Questionnaire

The �rst activity that subjects performed during the study was to �ll out a questionnaire

about their background.

194

Several questions asked subjects to rate themselves in area. A subject's answers seemed

to depend heavily on the subject's modesty. For example, a non-native speaker's English

ability did not appear to correspond to the subject's \real" English ability. Additionally,

a subject's rating of his programming ability did not seem reliable, but this cannot be

determined.

The number hours on a computer both last week and typically also appeared question-

able because a common value was 40, which is the number of hours in a standard work

week. This value seems unlikely for graduate students, who tend to keep irregular hours.

A pair of yes or no questions asked if a subject had knowledge of machine learning

or arti�cial intelligence planning. Some subjects did not provide the desired answers:

subjects who should have answered yes sometimes answered no. In hindsight, a range of

values would have been better than a simple yes or no.

The only signi�cant variable was typical hours spent browsing. There is no obvious

reason why computer use numbers should inuence the results of the experiment, especially

since all subjects are experienced computer users.

7.6.3 Discussion of Training Time

Multiple linear regression identi�ed three variables that seemed to inuence training time:

English ability, knowledge of AI planning techniques, and years of education.

It is not surprising that English ability and knowledge of AI planning techniques re-

duced training time. Better English pro�ciency should increase reading speed, and knowl-

edge of AI planning techniques should make Diligent's plan representation easier to un-

derstand.

In contrast, the correlation with years of education was unexpected. It is unclear why

more education should increase training time. Perhaps, more experienced subjects study

more carefully.

While the training times had a large variance, the group that used demonstrations and

experiments (EC1) had a larger mean training time than the other groups. This might

suggest that group EC1 received better training. However, subjects followed detailed

instructions during training, and the instructions for groups EC1 and EC2 were almost

identical. The di�erence between EC1 and EC2 can be explained by the subjects in EC1

having the worst English pro�ciency and the most education.

195

7.6.4 Discussion of Logical Edits

When comparing groups EC1 and EC2, the results suggest that experiments reduce the

number of logical edits. Group EC1 requires fewer edits than EC2 for both procedures, but

the di�erence is greater for the more complex Procedure 1. The number of edits for EC1

remains fairly constant, while EC2 requires many more edits on Procedure 1. This increase

in EC2's edits on Procedure 1 probably results from Diligent's operator creation heuristics

creating more preconditions. Group EC1's more constant number of edits suggests that

experiments can help remove unnecessary preconditions.

When comparing groupsEC2 and EC3, the results suggest that demonstrations help on

simpler procedures. Group EC2 requires fewer edits than EC3 for the simpler procedure,

but requires the same number of edits on the more complex procedure.

The di�erence between groups EC2 and EC3 does not seem to be inuenced by the

fact that subjects in EC3 had to type in attribute values. For group EC3, entering or

changing an attribute value was only counted as one edit. Additionally, most attribute

values were one word and spelling errors did not appear to be a problem.

This result for groups EC2 and EC3 seems to be a tradeo� between the bene�ts of

demonstrations and Diligent's bias towards creating unnecessary preconditions.19 Demon-

strating a step saves edits because it takes one edit and identi�es the step, its preconditions,

and its state changes. It appears that subjects who demonstrated (EC2) spent their time

removing unnecessary preconditions, while those who used an editor (EC3) spent their

time adding missing preconditions and state changes.

7.6.5 Discussion of Errors in Identifying Steps

An initial concern was that the procedures were too easy, but it turns out that they were

too di�cult. The procedures were meant to be challenging but not to the point where

some subjects had di�culty �guring out which steps to perform. For this reason, the

di�erences between groups in identifying steps were unexpected.

Because Diligent's heuristics for learning operators assume correct demonstrations,

mistakes in identifying steps probably a�ected the groups that learned preconditions from

demonstrations (EC1 and EC2) more severely than the group that speci�ed preconditions

with an editor (EC3).

19It is easier for Diligent to remove unnecessary preconditions than for it to identify missing preconditions
(Chapter 5).

196

On Procedure 1, the groups that demonstrate (EC1 and EC2) have fewer errors. The

di�erence between group EC3 and the other groups may be inuenced by several fac-

tors. One potential factor is the abstraction of Procedure 1's description. However, the

descriptions of both procedures do not seem very di�erent. Procedure 1's description is

simply less explicit in describing the ordering of the steps. Another potential factor is the

complexity of Procedure 1, which has many more step relationships than the other proce-

dure. For Procedure 1, maybe using only an editor (EC3) is more cognitively challenging

than demonstrating the steps (EC1 and EC2). Procedure complexity seems a more likely

explanation than the description's abstraction, but this is area for further study.

Because Diligent assumes that authors know a procedure's steps, group EC3's perfor-

mance suggests performing a future study that eliminates the inuence of invalid steps.

This could be done by giving the subjects a valid sequence of steps. The subjects would

then have to determine the causal links and ordering constraints between the steps, which

is what Diligent is designed to learn.

The di�erences between groups on Procedure 2 are minor. However, groups EC1 and

EC2 should have had similar values because both groups use demonstrations. The subjects

in EC2 did a better job of demonstrating the procedure because that group produced a

higher percentage of procedures that would have worked. Group EC1's problems demon-

strating might have counteracted the bene�ts of Diligent's experiments because group

EC1's procedures had more errors after demonstrations.

7.6.6 Discussion of Errors of Omission

Diligent's heuristics are designed to avoid errors of omission. If a procedure is demonstrated

correctly, there should be few errors of omission.

In Procedure 1, mean errors for all groups are better than they appear because 4 of

those errors are step speci�c control preconditions that are not required by the environment

and, thus, are not learned by Diligent.20

In Procedure 1, group EC3 is much worse than the other groups. However, the sub-

jects in group EC3 did a much worse job of identify the procedure's steps. This poor

identi�cation of steps might have exaggerated the di�erences between groups.

Because Procedure 2 has fewer step relationships than Procedure 1, the number of

errors of omission should be lower. This what was found for all groups but EC1. Although

20In Procedure 1, two valves should be opened when their alarm lights are illuminated and should be
shut when their lights turn o�. The environment requires the valves to opened because of internal pressure.

197

the subjects in group EC1 did a poor job of identifying the procedure's steps, they still

did as well as the subjects in group EC3, who did a better job of identifying the steps.

One striking result is the large number of errors of omission for the group that used

only an editor (EC3). This was not entirely unexpected because subjects in EC3 have to

explicitly specify all steps, their preconditions, and their state changes.

It seems unlikely that group EC3's large numbers of errors result from the group's

being required to type in attribute values. Most attribute values were one word, and

there were not that many preconditions and state changes. Perhaps spelling errors caused

problems? But when examining the subjects' procedures, spelling errors were not an issue,

and when asked, several subjects indicated that spelling errors were not a problem.

When comparing groups EC1 and EC2, experiments did not reduce the number of

errors of omission. This was expected because Diligent has a bias towards errors of com-

mission.

When comparing groups EC2 and EC3, demonstrations reduced the number of errors

of omission in the complex procedure, but appeared to have little bene�t in the simple pro-

cedure. This suggests that, when using an editor (EC3), the number of step relationships

is correlated with the number of errors of omission.

7.6.7 Discussion of Errors of Commission

When comparing groups EC1 and EC2, the results suggest that experiments reduce the

errors of commission. The bene�ts of experiments are greater in the more complex proce-

dure.

When comparing groups EC2 and EC3, the results suggest that demonstrations result

in more errors of commission. More errors were committed in the complex procedure where

Diligent's heuristics created more unnecessary preconditions.

7.6.8 Discussion of Total Errors

When comparing groupsEC1 andEC2, the results suggest experiments will only reduce the

number of errors on complex procedures. If both groups had equally good demonstrations

for the second procedure, then experiments might also have shown a bene�t on the simple

procedure.

When comparing groups EC2 and EC3, the results suggest demonstrations only reduce

the number of errors on complex procedures. This reduction occurred even though the

groups had a similar number of logic edits.

198

7.6.9 Discussion of Total Required E�ort

The total required e�ort is a measure of amount of work required to produce a correct

plan. The required e�ort includes the work that has been done as well as the work that

needs to be done. Work is measured by logical edits, and future work is estimated by total

errors.

On Procedure 2, the increase in total required e�ort after testing suggests that to-

tal errors underestimates the additional work that needs to be done. Because domain

experts might be better able to identify errors, it is unclear whether total errors would

underestimate the future work for domain experts.

When comparing groups EC1 and EC2, the results suggest that experiments reduce

the total required e�ort and have a greater e�ect on more complex procedures.

When comparing groups EC2 and EC3, the results suggest that demonstrations reduce

the total required e�ort and have a greater e�ect on more complex procedures.

7.6.10 Discussion of Time Spent Authoring

There was a 30 minute time limit placed on each procedure. It was assumed that the sub-

jects in group EC1 would be able to author each procedure in approximately 15 minutes.

However, the results indicate that 30 minutes was not enough time. This probably results

from the subjects being unfamiliar with the domain, and the fact that the subjects had

determine which steps to perform. Oftentimes, subjects would spent around 10 minutes

studying the procedure description before starting to author.

In Procedure 2, the last 6 subjects started testing much earlier than most previous

subjects. It is unclear why this so. Maybe there was a change in the experimental setup.

Perhaps, the subjects were able to understand the directions better because they had a

better description for the �rst procedure. However, the statistics involving logical edits

and errors don't appear di�erent for these subjects.

If subjects were given more time, they might have produced better procedures. This

means that they may have made fewer errors and performed more logical edits.

The fact that subjects in group EC3 had to type in attribute values may have increased

the times for this group slightly. However, relatively little typing was needed, and subjects

appeared to make few spelling mistakes. Therefore, the impact of typing is probably

relatively minor.

Because of the time limit placed on subjects, we cannot draw any conclusions about

whether demonstrations or experiments reduce the amount of time spent authoring.

199

7.6.11 Discussion of Subjective Impressions

The last thing the subjects did during the study was �ll out a questionnaire about their

subjective impressions of Diligent. The subjective impressions focus on aspects of the user

interface. The impressions provide some indication of the usability of the three versions

of Diligent. The impressions also indicate how subjects perceived various features.

There is relatively little data and a lot of variation between subjects.

A number of factors probably inuenced the subjects' impressions. The impressions

likely reect both the training and the evaluation. The subjects' ratings may reect am-

biguities in the menus and di�culties with the environment's graphical interface. For

example, some subject's who experienced software problems gave lower ratings. Addition-

ally, the di�culty of the procedures being authored was probably also a factor.

All groups indicated that they liked the system somewhat, and the group that ex-

perimented (EC1) liked it a little better than others. Unfortunately, this question is

ambiguous because it does not indicate whether it is asking about only Diligent or about

all the software used for authoring (e.g. environment's graphical interface).

The subjects found the system a little di�cult to use. However, this may reect the

di�cult procedures being authored. Subjects that experimented (EC1) found it a little

easier than subjects who only demonstrated (EC2). Subjects who only used the editor

(EC3) found it the most di�cult. This pattern was expected because using only an editor

is di�cult.

All groups indicated that it was somewhat easy to specify steps, preconditions and

state changes. This is very desirable. This is an indication that all three systems are

reasonable and that editor only version (EC3) is not a straw man.

The ratings for the ease in identifying \how operators inuence preconditions and state

changes" are confusing. It is unclear why the di�erent groups are so di�erent. The group

that experimented (EC1) found it easier than the group that only demonstrated (EC2).

Maybe this is a reection of how experiments improve preconditions. The group that only

used the editor (EC3) had the most di�culty. Maybe this indicates that representing

preconditions and state changes with operators is more di�cult when using an editor.

This might also indicate that it is harder to determine the correct preconditions and state

changes when using an editor.

Subjects found it somewhat easy to demonstrate. Although the groups that demon-

strated have slightly di�erent means, both groups used the same techniques for demon-

strating. It is surprising that the rating is this high given the problems during the �rst

200

half of the study when a memory leak caused the environment's graphical interface to be

unresponsive and slow.

The subjects also found the ability to provide additional demonstrations of a procedure

somewhat useful. Before starting the evaluation, it was assumed that few subjects would

need this capability. It is unclear whether this rating reects the training or the subjects'

di�culty in identifying a procedure's steps.

Subjects only somewhat liked having Diligent perform autonomous experiments. Some

subjects seemed to feel that experimenting was a strange feature and were not sure what

to think about it. Subject 12 indicated a strong dislike of experiments even though the

subject felt that experiments were useful and quick.

Subjects felt that experiments were quick enough. This provides support for the ar-

guments in Chapter 6 that the experimentation approach has a reasonable run-time com-

plexity.

There was strong support for the correct conclusion that experiments save work, but

subjects had a only moderate belief that experiments would have caught errors that they

would have missed. This contradicts the data for errors of commission on Procedure 1.

The data for Procedure 1 suggest that experiments prevented many errors in the �nal

procedure.

7.7 Reviewing the Claims

Now that we have discussed the results, we will look at how well the results support the

hypotheses presented in Section 7.1.

Because there were few subjects, statistical signi�cance was rarely achieved. Moreover,

the probabilities should be viewed with a little skepticism because they are too sensitive

to individual data points. However, the results are still valuable because they indicate

patterns and trends.

The claims compare group EC1 against EC2 and group EC2 against EC3. However,

group EC2 often has the intermediate value. This means that statistically signi�cant

di�erences between EC1 and EC3 are not used to justify the claims.

The various claims are addressed by data in the following sections. Claims 1 and 2

are addressed by the data for logical edits (Section 7.5.3), which is discussed in Section

7.6.4. Claims 3 and 4 are addressed by the data for total errors (Section 7.5.4.4), which

is discussed in Section 7.6.8. Claims 5 and 6 are addressed by the data for total required

201

e�ort (Section 7.5.5), which is discussed in Section 7.6.9. Claims 7 and 8 are addressed by

the data for the time spent authoring (Section 7.5.6), which is discussed in Section 7.6.10.

� Claim 1: Subjects require less work to create a procedure when using demonstrations

and experiments than when using only demonstrations.

This claim is supported. However, there appears to be less bene�t on simpler pro-

cedures.

� Claim 2: Subjects require less work to create a procedure when using only demon-

strations than when using only an editor.

This claim is partially supported. On complicated procedures, there does not appear

to be a di�erence between using demonstrations or an editor. However, demonstra-

tions appear to provide an advantage on simpler procedures.

� Claim 3: Using demonstrations and experiments results in fewer errors than when

using only demonstrations.

This claim is partially supported. On complicated procedures, experiments appear

to be bene�cial. However, experiments do not appear to be that useful on simpler

procedures.

One problem with this claim is that the subjects who experimented did a poor job

of demonstrating the simpler procedure. This caused the group that experimented

to have more errors of omission than the group that didn't experiment.

� Claim 4: Using only demonstrations results in fewer errors than when using only an

editor.

This claim has weak partial support. On the complicated procedure, demonstrations

seemed to help, but demonstrations did not appear to have much e�ect on the simpler

procedure.

� Claim 5: Subjects require less work to create a correct procedure when using demon-

strations and experiments than when using only demonstrations.

This claim is supported. However, the bene�ts of experiments are less on simpler

procedures.

� Claim 6: Subjects require less work to create a correct procedure when using only

demonstrations than when using only an editor.

202

This claim is supported. However, the bene�ts of demonstrations are less on simpler

procedures.

� Claim 7: Subjects can author in less time using demonstrations and experiments than

when using only demonstrations.

The data are inconclusive. The time spent authoring indicates only a small di�erence,

and most subjects appeared to have run out of time before they were �nished.

� Claim 8: Subjects can author in less time using only demonstrations than when using

only an editor.

The data are inconclusive. The time spent authoring indicates only a small di�erence,

and most subjects appeared to have run out of time before they were �nished.

Dependent Variable Relation Holds on Direction of increased

Simple Complex di�erence

Edits EC1 > EC2 Yes Yes complex
EC2 > EC3 Yes No simple

Errors EC1 > EC2 No Yes complex
EC2 > EC3 No Yes complex

Total E�ort EC1 > EC2 Yes Yes complex
EC2 > EC3 Yes Yes complex

Time EC1 > EC2 - -
EC2 > EC3 - -

Table 7.16: Summary of Results

These results are summarized in Table 7.16. The relations compare the groups that

experimented (EC1), only demonstrated (EC2) and only used an editor (EC3). The re-

lation A > B means that A does better than B. The results indicate that experiments

help more on complex procedures. An interesting result is that subjects who only demon-

strated on the complex procedure had as many edits as those who used the editor, but the

subjects who demonstrated produced fewer errors. Neither experiments or demonstrations

appeared to reduce errors in simple procedures, but they did reduce errors in complex pro-

cedures. The total e�ort required to produce a correct procedure includes both edits and

errors. The total required e�ort was reduced by both experiments and demonstrations.

Because of time restrictions, no conclusions could be made about time spent authoring.

In hindsight, the patterns found in this study appear reasonable, and it seems likely

that the patterns would be maintained if the test subjects were domain experts rather

than graduate students.

203

7.8 Observations

During the study, a few miscellaneous issues were observed.

� After subjects �nished the evaluation, they were given a demonstration of Diligent.

One remark that was heard several times was that they hadn't realized how to use

Diligent e�ectively. One reason for this is that Diligent has a very unusual user inter-

face. The subjects indicated that they would have liked to have seen a demonstration

of Diligent at the start of training. However, demonstrating the system separately

for each subject would have introduced a great deal of variation in the training of

subjects. One way to deal with this issue, when testing systems with unusual types

of user interfaces, is to play a video that illustrates how to use the system.

� There is a tradeo� between asking test subjects to perform simple versus complicated

tasks. A simple task is more likely to get statistically signi�cant results, but if a task

is too simple, the results may be trivial because the task is too much of a toy problem.

The tradeo� is relevant to this study because Diligent focuses more on understanding

demonstrations than on the usability of its user interface. By not telling subjects a

valid sequence of steps, the authoring task was made more challenging, but one of

Diligent's assumptions was violated. The challenging procedures introduced more

variability into the study and placed more emphasis on the user interface.

Before the study, some user interface features were thought to be insurance rather

than necessities (e.g. the ability to delete steps). However, subjects used these fea-

tures quite often. Additional features that were deemed unnecessary were sometimes

requested by subjects (e.g. a dynamically updated graph of a procedure).

A related issue is the amount of exibility allowed by the user interface. The usability

testing identi�ed the need to use forcing functions to prevent very undesirable behav-

ior. The formal evaluation also indicated a need to disable features that are irrelevant

to the task. For example, although the ability to create hierarchical procedures was

not discussed during training, one subject created a hierarchical procedure.

7.9 Summary

This chapter discussed an empirical evaluation of Diligent. Instead of focusing on how well

Diligent could understand demonstrations, the study focused on how Diligent's techniques

help a human author.

204

The study had a between-subjects design where the subjects were divided into three

groups. The subjects in a given group had similar training and used the same version of

Diligent. After approximately two hours of training, the subjects authored two procedures.

One of the procedures could be considered more complicated because it is a little longer

and has many more step relationships. Finally, subjects gave their impressions of Diligent

in a post-test.

The di�erences between the three versions of Diligent involved demonstrations and

experiments. One version supported both demonstrations and experiments, while another

version used demonstrations but did not allow experiments. A third version provided an

editor and did not support demonstrations. The user interface for the three versions was

as similar as possible. The versions that used demonstrations were basically identical. The

version that only provided an editor di�ered from the others in how steps were added to

a procedure and in how preconditions and state changes were speci�ed. The results of the

post-test suggest that subjects felt that the editor only version was reasonable and fair.

The study identi�ed bene�ts of using demonstrations and experiments. Using experi-

ments and demonstrations appeared to be better than just using demonstrations, and using

demonstrations without experiments appeared to be better than using only an editor. The

di�erences between the groups appear greater on complex procedures. Experiments re-

duced the number of edits that subjects performed, while demonstrations only appeared

to reduce the number of edits in simpler procedures. Although neither experiments nor

demonstrations appear reduce errors in simple procedures, both experiments and demon-

strations appear to reduce errors in complicated procedures. When considering both edits

and errors, both experiments and demonstrations appear bene�cial for both simple and

complex procedures. Because of time restrictions, the study could not determine how

experiments and demonstrations inuenced the time spent authoring.

The responses to the post-test suggest that Diligent's experimentation approach is

acceptably fast on procedures of 6 to 8 steps, which is approximately the expected size of

non-hierarchical procedures.

205

Chapter 8

Analysis and Future Work

In Chapter 3, we discussed Diligent at high level. The subsequent chapters then focused on

individual topics, such as processing demonstrations, learning operators and experiment-

ing. This background enables us to have a more uni�ed discussion of Diligent, including

its limitations and potential extensions.

This chapter is organized in the following manner. We will �rst discuss how Diligent's

methods address the problem of understanding demonstrations by discussing several per-

spectives for viewing demonstrations. We will then talk about assumptions and how easily

they can be relaxed. Afterwards, we talk about limitations and potential extensions.

8.1 Perspectives for Understanding Demonstrations

One way that Diligent addresses the problem of understanding demonstrations is by view-

ing a demonstration from multiple perspectives. Each perspective asks a di�erent question,

and by focusing on each question, demonstrations can be better understood.

One could view Diligent as a set of methods that address the following four questions.

When should a step be performed? Under what conditions should a step be per-

formed in order to achieve the procedure's goals? This perspective deals with iden-

tifying knowledge for controlling when steps are performed. In contrast, the other

perspectives deal with how the environment functions independently of the proce-

dure's goals. Diligent methods address this question in the following ways.

Knowing when to perform a step requires knowledge of the procedure's goal condi-

tions. Diligent proposes a set of goal conditions to the instructor that contain the

�nal values of attributes that change value during the procedure. When a proce-

dure's goal conditions are satis�ed, the procedure terminates because no more steps

are necessary.

206

Diligent computes when to perform steps by analytically deriving step relationships

(i.e. causal links and ordering constraints) between a procedure's steps. Later, when

performing the procedure, the step relationships identify which steps are currently

applicable.

Some preconditions of steps come from operators, which reect how the environ-

ment functions independent of the procedure; but other preconditions are associated

with individual steps. Consider sensing actions (e.g. examining a gauge), which

gather information from the environment without changing its state. Because the

environment may allow a sensing action to be performed anytime, a sensing action's

operator might not have any preconditions. For this reason, a sensing action's pre-

conditions are associated with its step. Sensing actions need preconditions to ensure

that they are performed in the proper place within a procedure. By default, a sens-

ing action's preconditions contain the attributes that have changed value before the

sensing action during the demonstration.

What pre-state conditions are common when a given state change is seen? This

is an instance of the standard concept learning question.

Diligent addresses this issue with its version space algorithm for learning operator

preconditions. An advantage of this approach is that Diligent can learn from both

positive and negative examples.

What is di�erent when di�erent state changes are seen? The question deals with

comparing the preconditions of e�ects that produce di�erent state changes.

This perspective is used when creating an e�ect for an operator that already has an

e�ect. When identifying the heuristic preconditions (h-rep), Diligent uses the h-rep

of an existing e�ect but adjusts it with the current action-example's pre-state. The

new h-rep also contains conditions in the current action-example's pre-state that are

di�erent than ones in the most similar earlier action-example. (Only the current

example is positive for the new e�ect, while earlier examples are negative.)

Diligent also compares e�ects with di�erent state changes. When the h-rep of one

e�ect cannot correctly reject a negative example, conditions from the example's pre-

state may be compared to the preconditions of other e�ects for which the example

is positive. If a one condition match is found, a condition is added to the h-rep.

Why isn't a step earlier? The instructor probably has reasons for demonstrating steps

in a given order. One reason is that the state changes of some earlier steps are likely

207

to be preconditions of some later steps. Diligent is novel in how it emphasizes this

question.

Diligent has a couple heuristics that deal with this perspective: focus on attributes

that change value, and earlier steps are likely to establish preconditions of later steps.

Diligent uses this perspective when creating an operator's �rst e�ect. The initial

h-rep contains attributes that have changed value during the current demonstration.

A similar approach is used to create preconditions for sensing actions.

Diligent's experiments also focus on this perspective by skipping a step and observing

how later steps are impacted.

8.2 Assumptions

This section discusses the assumptions used by Diligent and the di�culty in relaxing them.

8.2.1 Easier to Relax

Relaxing the following assumptions appears to be relatively easy.

No attributes are added or removed from the environment. In Diligent's domains,

the number of attributes in the environment's state is constant. This can be reason-

able in tutorial domain because students might get confused if attributes were being

added or removed. In any case, there hasn't been a need to relax this assumption

when using Diligent.

Previous work by Wang [Wan96a] has relaxed this assumption, and her technique

could be incorporated into Diligent.

However, there are a couple special cases where relaxing this assumption would be

more di�cult.

� If the domain is under development, then new attributes could be added to the

environment and existing attributes could be used di�erently. If new attributes

don't a�ect existing procedures, then this might not be a major problem, but

if the new attributes do a�ect existing procedures, then it may be di�cult to

use previously learned knowledge.

� The domain is so large that agents (e.g. Diligent) are given a limited view the

domain. For example, agents in each simulated room might see di�erent sets

208

of attributes. If an agent's current view did not include all relevant attributes,

then there could be di�culties. (This issue is discussed below under relaxing

the assumption that all relevant attributes are visible.)

No generalized conditions. When Diligent uses a condition, the condition always refers

to a speci�c attribute and a speci�c value.1 An alternative would have been to intro-

duce variables into preconditions and state changes. Operators containing variables

could then apply to multiple objects of the same class. Diligent's approach was

used for three reasons: there is relatively little input data; the environment's lack

of structure hides relationships between objects and attributes; and many objects

(e.g. switches) have idiosyncratic behavior. As an example of idiosyncratic behavior,

consider two switches; one switch may turn on some lights, while another switch may

start the motor.

If many objects of the class have similar behavior, then introducing variables into

preconditions and state changes could allow more generally applicable operators.

This type of approach is also looked at by OBSERVER [Wan96c].

Qualitative attribute values. Attributes are assumed to have only a few discrete values

rather than continuous or numeric values. For example, a temperature sensor might

only have the values ok and too-hot.

Qualitative attribute values have several advantages. They are easy to use with

machine learning algorithms, and they may provide descriptions that humans �nd

conceptually easy to understand (e.g. too-hot).

However, sometimes qualitative attributes are not appropriate. It might be di�cult

to identify meaningful qualitative values, or there might be a large number of values

that are associated with qualitatively di�erent behavior. Moreover, sometimes it

may be important for people know numeric values or know relations between values

(e.g. height < 5).

Whether qualitative or quantitative attribute values are used, an important issue is

what is the most e�ective authoring method. Determining this may involve consid-

ering both the ease of authoring and the quality of student remediation.

Qualitative attribute values are required by Diligent's learning algorithms, but this

restriction could be overcome by associating a range of numeric values with a single

1An exception is conditions involving mental attributes. These conditions indicate that their value is
unimportant.

209

qualitative value. This technique also could be used with numeric formulas or con-

ditions involving relations other than equality (e.g. temp < 5) [Wd90]. Providing

the ability to assign numeric ranges to a qualitative value appears easy.

However, it is unclear whether Diligent would ever get enough data to automatically

generate quantitative boundaries (e.g. numeric formulas) that specify a qualitative

attribute value (e.g. too-hot).

Conjunctive preconditions and goals. Although a step might produce state changes

from several of its operator's e�ects, Diligent assumes that the preconditions of a

step are conjunctive. Diligent also assumes that a procedure terminates when its

conjunctive goal conditions are met.

Allowing disjunctive preconditions raises two issues. First, learning disjunctive pre-

conditions may take more data than learning conjunctive preconditions. Second, the

system would need to determine which disjuncts correspond to each step. This should

not pose a problem if the preconditions are very re�ned, but could be problematic

when the preconditions are less re�ned.

Disjunctive preconditions would probably require more interaction with the instruc-

tor. Presently, disjunctions can only be detected when the version space collapses.

Disjunctive goal conditions seem more problematic. Specifying disjunctive goal con-

ditions does not seem di�cult, but would require at least one demonstration of each

disjunct. However, using a subprocedure with disjunctive goals appears more di�-

cult. If a subprocedure's abstract step could have multiple distinct post-states, then

each post-state might require a di�erent sequence of subsequent steps in the parent

procedure.

Instructor correctly demonstrates procedures. If the instructor doesn't correctly

demonstrate a procedure, the procedure's path will not produce a correct plan. More-

over, Diligent's heuristics assume that there is a good reason for the sequencing of a

procedure's steps.

Correcting a path poses no problem, but an invalid sequencing of steps might lead

to worse heuristic preconditions. Although experiments might help, correcting the

preconditions might require that the instructor provide more training data. An

aspect of this problem is that Diligent's learning algorithms can more easily remove

unnecessary hypothesized preconditions than identify missing ones.

210

8.2.2 Harder to Relax

Relaxing the following assumptions appears to be relatively di�cult. Relaxing most of

these assumptions does not appear particularly important.

One action at a time. Diligent assumes that only one action takes place at a time. This

helps in identifying preconditions and state changes. It also helps in determining the

sequence of a path's steps.

If the instructor were able to perform several actions simultaneously and if these

actions could have been performed sequentially, the action-examples of these actions

might be misleading because a post-state could contain the results of several actions.

To handle this situation, Diligent could either use a more robust operator learning

algorithm or delay learning until it has had a chance to replay the demonstration

with the actions separated by time.

Deterministic actions. In a given pre-state, Diligent needs to know which state changes

will be caused by a given action. Actions appear non-deterministic when a relevant

environment attribute is not seen [She94].

Sometimes an action appears non-deterministic when it needs to be repeated several

times. An example from the HPAC domain is a dipstick which needs to be selected

several times when being extracted. When the dipstick is in its intermediate position,

Diligent cannot tell whether selecting it will move dipstick in or out of its hole. An

action, like selecting the dipstick, that is repeated several times could be modeled by

considering the state changes after last action is performed. Understanding repeated

sequences of actions is an important issue for robotic programming by demonstration

systems [Hei93, FMD+96].

Handling non-determinism in actions that can be repeated until they produce the

desired result appears to be easy and important, but it is unclear how the system

should handle other cases of non-determinism.

One problem with non-deterministic actions is handling non-determinism during

experiments. How does the system detect non-determinism? Perhaps, experiments

could be repeated several times.

Can tell when an action begins and ends. It is implicit in Diligent's interface with

environment that action-examples will identify an action's pre-state and post-state.

This knowledge is required to identify preconditions and state changes.

211

Relaxing this assumption in general appears fairly di�cult and may not be very

important.

However, delayed state changes (or delayed e�ects) could important. A delayed

state change occurs when an action is �nished but a future state change has not yet

happened. For example, a copy machine may not �nish warming up for a minute

after it is started. Consider the following cases:

� The delayed state change happens before the next action. In this case, the

system could notice the change and associate it with the previous action.

� The delayed state happens after subsequent unrelated actions and changes to

the state, but does not happen during a later action. In this case, the system

might look for the last action that changed the state change's attribute. For

example, when starting a copy machine, the machine may take one minute to

warm up before it is ready. In this case, the state of the machine might go from

o� to warming-up when the machine is started and after one minute to ready.

A system might then infer that starting the machine eventually caused it to

become ready.

� The delayed state happens after subsequent unrelated actions and changes to

the state and happens during a later action. In this case, the environment would

appear non-deterministic. It is unclear how this should be handled. Perhaps, a

system could detect this if enough training data were available.

Can see all relevant attributes. An attribute is considered relevant when it is needed

for teaching or for operators to appear deterministic. Besides non-determinism,

which we've discussed, this assumption impacts teaching. An attribute is useless for

teaching when neither Diligent nor an automated tutor can see it.

Relaxing this assumption appears di�cult. Maybe missing attributes could be rep-

resented by mental attributes, but it is unclear how well this would work.

Noise-free sensors. Diligent assumes that the data it gets from the environment contains

no errors. This is important because little data is received, and the lack of data would

make recovering from errors more di�cult.

A method for relaxing this assumption would be to replay demonstrations and repeat

experiments. Multiple action-examples for each step could then be compared. Of

course, this approach would take more time.

212

Can see all actions. Diligent's ability to record demonstrations depends on its ability

to observe all actions performed in the environment.

Relaxing this assumption appears fairly di�cult.

No exogenous events Exogenous events are things that happen to the simulated do-

main that are not caused by the user or by the authoring tool (e.g. Diligent).

For example, exogenous events include actions performed by other agents or special

events in the simulated world (e.g. a �re starting in the engine room).

If the authoring tool knew that an exogenous event was an exogenous event, then

it should not be that di�cult to model it. Otherwise, handling exogenous events is

similar to not being able to see all actions.

Partially ordered procedures. If a procedure has only one valid sequence of steps, then

Diligent's experiments might not learn anything useful. Experiments attempt to

produce new action-examples for re�ning the preconditions of desired state changes.

In an experiment on a totally ordered procedure, all examples might be negative.

These negative examples might identify necessary preconditions, but the examples

would not remove any unnecessary preconditions.

Relaxing this assumption appears di�cult.

Modular procedures. Diligent performs fewer actions in experiments when large pro-

cedures are divided into modular subprocedures.

It's unclear how to relax this assumption. Perhaps, a system could perform experi-

ments when the instructor was not present. However, if the instructor is present, the

number of actions performed might be reduced by examining operator preconditions

and only performing experiments likely to re�ne preconditions.

Non-interleaved plans. Interleaved plans [RN95]2 interleave the performance of the

steps of two subprocedures. When the instructor uses subprocedures in demon-

strations, he uses the subprocedures sequentially. This makes Diligent incapable of

learning a procedure whose subprocedures can only achieve their goals by interleaving

their steps.

Relaxing this assumption appears di�cult.

2These types of plans have also been called non-linear.

213

Diligent can reset the environment. Diligent's techniques assume that it can reset

the state of the environment.

Although some of the ideas that Diligent uses to understand demonstrations might

be useful, Diligent's algorithms are probably inappropriate for an agent that cannot

reset the state of the environment.

8.3 Limitations

8.3.1 Coordinated Simultaneous Actions

Besides the limitations inherent in a direct manipulation interface [Coh92], Diligent's use

of a single manipulation device (i.e. mouse) caused problems in the HPAC domain. In

particular, the HPAC's Temperature Monitor requires the user to perform pairs of actions

simultaneously: the read reset and trip temperature buttons need to be depressed simulta-

neously to view the temperature at which the currently selected sensor will illuminate an

alarm light. People can do this with two hands, but it is unclear how to do this with only

one mouse.

A related issue is when to consider similar types of actions �nished. In the above

example, the temperature displayed on the gauge disappears when the buttons are re-

leased. Thus, Diligent would not even see the temperature because its action-examples

treat depressing and releasing a button as an atomic action and hide intermediate states.

An alternative is having separate action-examples (and steps) for pressing and releasing a

button. However, this alternative is likely to irritate humans. This raises the question of

how to uniformly process a given type of action (e.g. pressing buttons).3

Extending Diligent to handle coordinated simultaneous actions might require modeling

a set of simultaneous actions with a single operator.

8.3.2 When Pre-State and Post-State Values are Independent

Diligent has problems learning operators when an attribute's post-state value does not

depend on its pre-state value. When this happens, the attribute may have its value reset

but to the same value as in the pre-state. The problem is distinguishing between situations

where the attribute's value is and is not reset.

3Because Diligent gets action-examples from the environment (Section 3.1.3), it's the environment's
responsibility to make decisions on when to create action-examples.

214

This indeterminism reduces the number of positive examples available for learning. If

an attribute has its value reset to its pre-state value, the example cannot be classi�ed as

positive because Diligent cannot tell that it was reset. If the value wasn't reset, then some

necessary preconditions were unsatis�ed; in this case, treating the example as positive

could eliminate necessary preconditions and cause the version space to collapse.

This problem is worse for attributes that take only two values. If both pre-state values

are equally likely and do not a�ect the post-state value, then one half of the \real" positive

examples cannot be used.

This situation is illustrated by an example from the HPAC domain. In �gure 8.1, the

attribute CurrentValveIsOpen indicates whether the valve under the handle that manipu-

lates valves is open. If the handle is moved to valve2, CurrentValveIsOpen changes its value

without appearing to change. Therefore, the attribute is not listed in the example's delta-

state (delta-state 1). In contrast, if the handle is to valve3, the attribute's value changes

from true to false (delta-state 2).

Action-example:
Pre-state:

(CurrentValveIsOpen true)
(valve1 open)
(valve2 open)
(valve3 shut)
(HandleOn valve1)

Delta-state 1: (when moving to valve2)
(HandleOn valve2)

Delta-state 2: (when moving to valve3)
(CurrentValveIsOpen false)
(HandleOn valve3)

Figure 8.1: An Attribute whose Post-State is Independent of its Pre-State

In this case, the problem results from an attribute (i.e. CurrentValveIsOpen) that

contains redundant information. Instead, this fact could have been inferred from other

observable attributes.4 This suggests that a program that learns preconditions can have

4The STEVE tutor [RJ99] uses an attribute like CurrentValveIsOpen for determining when a handle has
been turned. When evaluating Diligent, the attribute was �ltered out so that neither students nor Diligent

215

problems when the simulation that controls the environment uses certain modeling tech-

niques, but this topic is beyond our present scope.

One way to deal with this problem is to classify an action-example as positive for only

one e�ect. Thus, even if an attribute didn't appear to change value, the action-example

could be classi�ed as positive because of changes in other attributes. Of course, this

approach only works when e�ects contain multiple state changes.

Unfortunately, this approach must deal with misclassi�ed examples. Because an action-

example is a positive example of only one e�ect, multiple e�ects could change the same

attribute. As a result, it could be di�cult to determine which e�ect has the positive exam-

ple. Later, when e�ects are more re�ned, it might be discovered than an action-example

was misclassi�ed as a positive example of a given e�ect. After detecting a misclassi�cation,

there is the overhead of recalculating two e�ects: the e�ect with the false positive and the

e�ect with the false negative. Even worse, the scope of the recalculation is unclear because

recomputing one e�ect may identify a misclassi�cation with a third e�ect.

An algorithm of this type was implemented for Diligent. The algorithm worked well

in the HPAC domain, but was removed out of concern about the worst case performance

in domains where misclassi�cations are likely.5

The type of operators we've just described are called relational (or sometimes rewrite

rules). For relational operators, the entire pre-state as a whole is transformed into the

post-state. An example of a relational operator is a mathematical transformation such as

performing symbolic integration on an integral. Relational operators have been discussed

in work by Langley [Lan80] and by Porter and Kibler [PK86]. Their approaches, however,

use domain dependent state transformation rules.

8.3.3 Transitive Dependencies

Diligent's experimentation approach may not work well when a procedure's set of steps

is totally ordered. A set of steps is totally ordered when there is only one valid order for

performing the steps. The problem is that skipping a step early in the procedure impacts

each of the later steps.

The problem could be classi�ed as involving transitive dependencies. A step Z has a

transitive dependency on an earlier step X when Z depends on intermediate step Y and

saw it. In this case, the attribute's change in value could have been successfully modeled with disjunctive
preconditions.

5Diligent's user interface provides some support for attributes like CurrentValveIsOpen. Instructors can
edit preconditions and can �lter out unwanted attributes so that they do not appear in plans.

216

step Y depends on step X. In other words, there are causal links from X to Y and from

Y to Z. Skipping step X in an experiment interferes with Y, and anything that interferes

with Y also interferes with Z. Thus, Diligent cannot determine whether Z has a causal link

with X or whether Z is indirectly dependent on X through Y's causal link with X.

Other than experimenting with multiple paths, Diligent's experimentation technique

does not address this problem. This appears to be a general problem of systems, like Dili-

gent, that learn procedure independent knowledge (e.g. operators) by observing sequences

of steps. In contrast, it may not be a problem for systems that learn when to perform steps

(i.e. learn control knowledge) without understanding the dependencies between steps (i.e.

causal links).

8.4 Extensions

In this section, we will discuss extensions that could enhance Diligent. We will �rst discuss

extensions to the procedural representation because they motivate some of the extensions

to authoring. We will then �nish the section by discussing extensions to learning and

experimentation.

8.4.1 Procedural Representation

Every procedure has one or more paths, but only one path is actually used to generate a

plan. If Diligent allowed multiple paths to be used for generating plans, then instructors

could author a larger set of procedures. Multiple paths could support starting a procedure

in a variety of initial states. Multiple paths could also support conditionally performing

steps based on the state earlier in the procedure. The following sections discuss ways to

use multiple paths.

8.4.1.1 Multiple Methods for Performing a Procedure

Originally, Diligent allowed the instructor to specify di�erent orders of steps for performing

a procedure. A di�erent order of steps resulted in an additional path. This capability not

only supported di�erent initial states, but also allowed the relative order of some actions

to be reversed in di�erent paths. However, this capability was removed because of the

problems described below and because none of the procedures authored with Diligent

required this capability.

217

When a procedure has di�erent paths for achieving its goals, the relative order of some

actions in di�erent paths might be reversed. If the paths are used to create a single plan,

the plan could contain circular dependencies (i.e. step relationships) between its steps.

This actually happened with the paths shown in �gure 8.2. In the �gure, M2 represents

moving the handle to the second valve, and S2 represents shutting the second valve. There

were two demonstrations, and each created a di�erent path. In one demonstration, the

handle was initially moved to the second valve, while in the other demonstration, it was

initially moved to the �rst valve.

path A:
move to second valve (M2) ! shut second valve (S2) !
move to �rst valve (M1) ! shut �rst valve (S1)

path B:
M1 ! S1 ! M2 ! S2

Desired plan:
goto �rst or second valve ! shut the valve !
goto the other valve ! shut the other valve

The Problem is Step Relationships:
. . .! M2 ! S2 ! M1 ! S1 ! M2 ! S2 ! . . .

Figure 8.2: Incompatible Paths

If the identi�ers used for the steps in one path are reused for the equivalent steps in

the other path, the procedure will only contain four steps (i.e. S1, M1, S2 and M2). When

the step relationships for the two paths are used in the same plan, there is a circular

dependency between steps (i.e. the second valve needs to be shut before the �rst valve,

and the �rst valve needs to be shut before the second valve.). Because of this circularity,

the plan cannot be executed without violating some of the dependencies.

One approach is to create ordering constraints that favor one path over another. How-

ever, it was unclear which was the best method for doing this. An approach used by

Instructo-Soar [HL95] involves asking the user which step to prefer when multiple steps

are applicable. However, this approach was not used by Diligent because we were focusing

on machine learning rather than on complex interaction with the instructor.

A di�erent problem appears when equivalent steps in di�erent paths use di�erent

identi�ers. In this case, the plan would contain eight steps. The problem with the resulting

plan is that the �rst step of each path removes the state changes of the �rst step in the

218

other path. Thus, a system using the plan could inde�nitely move the handle back and

forth between the �rst and second valves without ever shutting either one.

One solution is associating each step with a distance from the goal state. If multiple

steps are applicable, then the system could then choose the step that was closest to the goal

state [PK86]. However, using this approach would have required us to use a non-standard

plan representation.

Another solution is to create several plans, or methods, for the procedure. For our

purposes, a method is a plan of the procedure. When a procedure is started, an automated

tutor would select the appropriate method. If there was a student error or an unexpected

problem, the tutor might recover by switching to another method.

8.4.1.2 Conditional Plans

Diligent cannot learn conditional plans [PS92, DHW94, RN95]. A conditional plan con-

tains branch steps, and di�erent sequences of later steps are performed based on a decision

made at a branch step. A branch step looks at the current state and determines which

subsequent steps to perform based on whether its preconditions are satis�ed. Branch steps

can be thought of as creating a mental attribute whose value is a precondition for the steps

following it. Consider the procedure \If the light is on, press buttons B and C; otherwise,

just shut valve D." In this instance, the branch step checks whether the light is on.

Diligent could produce conditional plans by having two paths for every branch step.

One path would represent an unsatis�ed branch condition, while the other path would

represent a satis�ed branch condition.

Some of the issues involved include

� If a procedure already has multiple paths, how to incorporate demonstrations of each

branch in multiple paths? Otherwise, the instructor may have to demonstrate the

steps in a branch multiple times.

� Identifying the conditions that control which branch is performed. One heuristic is

using the pre-state di�erences between the demonstrations of the two branches.

8.4.1.3 Disjunctive Goal Conditions

Diligent assumes that a procedure has conjunctive goal conditions. However, disjunctive

goals are sometimes desirable, especially in conditional plans. For example, a plan might

have one goal state for successful execution and another for unsuccessful execution.

219

An important issue is how to handle subprocedures that have disjunctive goals. When

inserting a subprocedure into a parent procedure, the parent needs to handle all the sub-

procedure's goal states. Furthermore, after adding a disjunct to a procedure's goals, any

use of that procedure as a subprocedure may require updating each parent procedure.

8.4.2 Authoring

This section discusses extensions that could make authoring easier, especially if procedures

or domains are complicated.

8.4.2.1 Additional Types of Demonstrations

Diligent supports two types of demonstrations (Section 4.2): one type adds steps to a

procedure's plan, and the other type provides data for machine learning without adding

steps to the plan. Only two types of demonstrations were needed because only simple

procedures were needed by the portion of the HPAC domain that was implemented.

However, if the procedure representation were more complicated, then the following

types of demonstrations might also be useful.

Alternative-step-order. This type of demonstration allows instructors to demonstrate

a procedure's steps in a di�erent order or from di�erent initial states. These types

of demonstrations would support more robust procedures and provide more data for

learning.

This type of demonstration was implemented and then later removed. (Section

8.4.1.1 discusses some of the issues.)

Branch. This type of demonstration would support conditional plans. The demonstration

would start at the branch step and perform a sequence of steps based on the branch

conditions. Because a branch requires at least two alternative sequences of steps,

the pre-state of each sequence could help identify the branch conditions.

Undesirable-action. This type of demonstration would teach control knowledge. The

environment would be put in a desired state and an undesirable action performed.

The system could then compare pre-states where the action should be avoided to

the pre-states where the action is applicable. One issue is how to incorporate this

knowledge into the plan.

220

Applicable-state. This is similar to undesired-action demonstrations, but in this case,

performing the action in the pre-state is desirable. This type of demonstration would

be useful for re�ning branch conditions and the preconditions of sensing actions.

8.4.2.2 Continuous/Parameterized Actions

Diligent supports actions where the only parameter associated with an action is the object

selected by the instructor. However, successfully modeling some types of actions requires

associating more parameters with the action. In the two domains used with Diligent,

several actions have this property.

� There is a temperature gauge that shows the temperature associated with one of

about a dozen sensors. The actual sensor shown is determined by the position of a

rotary selector switch.

� The thrust of the ship's engines is determined by the position of a throttle.

Actions involving the selector switch and the throttle attempt to move the object into

a desired position. These types of actions could be modeled by associating the desired

position with the action.

8.4.2.3 Types of Mental Attributes

A mental attribute is an attribute that is stored internally by Diligent, or an automated

tutor, and is not present in the environment. The type of information represented by a

mental attribute is an important issue. At least three types of mental attributes seem

reasonable.

� The attribute is global. It represents the agent's knowledge of the world independent

of which step sets its value. An example from a medical domain is whether someone's

throat is obstructed.

� The attribute is speci�c to sensing actions in one procedure. For example, a con-

ditional plan may test a light and repair it if it doesn't work. Because the state of

the device is uncertain, this may involve several sensing actions that test whether

the light is turned on. The fact that the light turns on might be treated the same

regardless of which step actually observed that the light was on.

� The attribute is speci�c to one step. Diligent supports this type of attribute. For

example, in Chapter 4, a mental attribute was used to represent that an alarm light

221

was checked while the HPAC was in test mode. Later in the same procedure, another

sensing action could have created a di�erent mental attribute to store the result of

checking the alarm light when the system was no longer in test mode.

Another issue is what to do with mental attributes that are created by reused subpro-

cedures. If the same subprocedure is reused multiple times in the same procedure, how

should Diligent distinguish between mental attributes that are created by the di�erent

abstract steps that represent this subprocedure?

8.4.2.4 Inferred Attributes

An inferred attribute represents an attribute whose value is inferred from the values of

other attributes. Inferred attributes could help the instructor create fewer, more abstract

attributes. Consider a subprocedure that checks four alarm lights. Instead of returning

a mental attribute for each sensing action, the instructor might create a single mental

attribute that indicates whether all four lights work.

Inferred attributes could also be used to create qualitative attributes that assign the

state of the environment to one of several categories.6

One approach for creating inferred attributes is using Kelly's Personal Construct Psy-

chology [Kel55], which has been used to acquire knowledge for expert systems [SG88,

Boo85]. This approach is also known as a repertory grid. The basic idea is for the author

to create an attribute that di�erentiates between several examples. As the author creates

more attributes, he constructs a framework for viewing the domain.

8.4.3 Learning

We will �rst discuss some simpler extensions before discussing some more involved exten-

sions.

8.4.3.1 Simple Extensions

There are a few simple ways that learning could be improved.

Negated preconditions. In contrast to Diligent's conditions, which specify the value an

attribute must have, negated conditions specify the value an attribute cannot have.

Negated conditions are occasionally useful as preconditions.

6Diligent assumes that attributes have qualitative values.

222

Negated conditions have already been used with version spaces by OBSERVER

[Wan96c]. In OBSERVER, a negated precondition is added if a negative example's

pre-state has an attribute that was missing from the environment in earlier posi-

tive examples. OBSERVER, however, will not detect that a negated precondition is

required if the attribute is present in earlier positive examples.

With attributes that are constantly present in the environment, negated conditions

are only needed if an attribute can take more than two values. Suppose that an

attribute only takes values X and Y. If the value X was undesirable, the condition

could simple specify that the value has to be Y.

Because Diligent's environment doesn't have attributes added or removed, Diligent

couldn't use OBSERVER's approach for learning negated preconditions. However,

negated preconditions could still be detected. A negated precondition might be

needed if a speci�c attribute value is never present in positive examples, while two

or more other values are present in positive examples.

Correlating attribute values between e�ects. Sometimes an attribute value is highly

correlated with positive examples and poorly correlated with negative examples. Dili-

gent could be extended to infer that these attribute values had a higher likelihood

of being preconditions. If an attribute value gets a high enough likelihood, it could

even be added to Diligent's heuristic preconditions (i.e. h-rep).

Disjunctive preconditions. Assuming that all relevant attributes are visible, a disjunc-

tive precondition can be inferred when the version space collapses. Supporting dis-

junctive preconditions would probably require interaction with the instructor in or-

der to identify the conditions that di�erentiate the disjuncts and to associate each

positive example with the appropriate disjunct.

8.4.3.2 More Involved Extensions

The above extensions are reasonably simple. In this section, we will talk about extensions

that would involve larger changes to Diligent.

Use structural knowledge. Diligent may have an unstructured environment. An un-

structured environment contains a set of attribute values without any indication of

the relations between attributes and objects. While Diligent's techniques can work

in a structured environment, the techniques do not take advantage of knowledge

about the environment's structure. If Diligent used knowledge of how attributes

223

were associated with objects and how objects were related, it might be able to do

a better job of learning preconditions. This knowledge would allow Diligent to fo-

cus on the attributes of objects being manipulated by actions; this might be useful

because some of these attributes are likely to be important. But more importantly,

structural knowledge would make it easier to generalize operators so that they could

apply to a class of objects, contain variables, or even use relations between objects.

Use a deeper domain model. When Diligent starts working on a new domain, it has

no knowledge of the domain. It would be interesting to see how Diligent's approach

to understanding demonstrations could be modi�ed to exploit access to a deeper

domain model.

8.4.4 Experimentation

In the chapter on experimentation, experiments were loosely de�ned as activities initi-

ated by the system that acquire more knowledge. These activities included autonomously

manipulating environment as well as querying the user for more information.

The extensions to Diligent's techniques fall into two categories. One group contains

extensions that follow naturally from Diligent's approach. The other group contains more

involved extensions that could complement Diligent's approach.

8.4.4.1 Simple Extensions

The following extensions follow naturally from Diligent's approach.

� If the system has not seen enough examples of an action producing a desired state

change, then ask the instructor for more data. This extension is inspired by Galdes

[Gal90] study of expert human tutors.

� Notice when a subprocedure's internal step relationships change. This can happen

when the instructor explicitly works on the subprocedure, but it can also happen

during experiments or during demonstrations when a subprocedure is inserted into

another procedure. These situations are a good source of experiments and a good

place to interact with an instructor.

� Notice when a subprocedure unexpectedly misses its goal conditions. At this point,

Diligent needs information about where to add steps or why unused steps are nec-

essary. This extension is also inspired by Galdes [Gal90] study of expert human

tutors.

224

� When all else fails, interact with the instructor. For example, if some necessary

preconditions are missing, the system may continue to classify a negative example as

positive. In this case, the instructor could be presented with several attribute values

and asked about their importance.

Interacting with the instructor to classify examples is explored in much greater depth

by MOLE [EEMT87], which learns diagnostic knowledge from an expert by focusing

on how to classify situations and di�erentiate between hypotheses.

Other work has looked at engaging the instructor in a dialog in order to determine

which action to perform in a given situation [HL95, Gru89].

8.4.4.2 More Involved Extensions

The following extensions are more involved than the ones in the previous section, but could

complement Diligent's approach in some future system.

� Diligent avoids asking the instructor questions. However, the instructor's assistance

could help when the system is confused and the number of questions and answers is

limited. The PRODEGE+ graphics editor [BS93] explores this type of dialog.

� After Diligent has experimented on demonstrations, the system has better knowledge

of operators. At this point, it may be appropriate for the system to experiment

by creating plans. This could involve explicit experiments where the environment

is put in a speci�c state so that action can be tested, or it could involve solving

practice problems where the environment is transformed from some initial state into

a speci�ed goal state.7

With human students, a similar approach is often used. They examine the solutions

of few problems before solving a some related problems.

8.5 Summary

We started the chapter by discussing Diligent's methods in terms of di�erent perspectives

for viewing demonstrations. We then discussed assumptions and how easily they could be

relaxed. We �nished by discussing various limitations and potential extensions.

7This use of plans was discussed in Section 6.2.3.

225

Chapter 9

Related Work

Throughout this document we've discussed related work where appropriate. This chapter

covers other work that hasn't been discussed. The chapter focuses on three somewhat

separate topics. The �rst topic is how to present examples in order to promote learning.

The second topic is intelligent tutoring systems. The third topic is systems that learn from

demonstrations. (Although many systems that learn from demonstrations have already

been discussed, they have not been discussed as a group or as complete systems.)

9.1 The Presentation of Examples

Because demonstrations are the primary input that Diligent receives from instructors, we

will briey look at other work that deals with the presentation of similar types of data. We

will �rst discuss properties of good instruction and then discuss how to present examples.

9.1.1 Felicity Conditions

Good instruction of human students follows a set of conventions. VanLehn [Van83] char-

acterizes some of these conventions and calls them felicity conditions. VanLehn uses the

felicity conditions in SIERRA [Van83, Van87], a system that models human students learn-

ing subtraction.

One di�erence between SIERRA and Diligent is the nature of their inputs. SIERRA

receives an ordered sequence of lessons where each lesson can contain solutions to multiple

similar problems. In contrast, Diligent receives a sequence of demonstrations, and each

demonstration corresponds to a lesson that contains the solution to only one problem.1

1The types of demonstration's supported by Diligent are described in Section 4.2.

226

In the following discussion, keep in mind some of the di�erences between Diligent and

human students. Humans require reinforcement and repetition of what they have learned,

while Diligent never forgets. One advantage Diligent has is its access to a simulation, which

can be used to perform experiments. Usually, human students don't have access to the

equivalent of Diligent's simulation (e.g. when they are learning subtraction). Determining

the beliefs of human students is much more di�cult for a teacher than it is for Diligent's

instructor, who can use menus to look directly at Diligent's knowledge.

A natural question is how well does the relationship between Diligent and the instructor

match VanLehn's felicity conditions. Let us consider each of the felicity conditions.

� Assimilation. A procedure is incrementally improved by adding to the existing pro-

cedure without revising large portions of it. VanLehn writes, \incremental learning

is an important and nearly universal feature of human skill acquisition"([Van83],

page 10).

Diligent's add-step demonstrations guarantee this felicity condition because the in-

structor indicates where to insert steps in an existing procedure. However, demon-

strations can have a large impact when they alter step relationships.

Diligent's clari�cation demonstrations do not have an equivalent in SIERRA. A clar-

i�cation demonstration provides data for machine learning without adding steps to a

procedure's plan. However, clari�cation demonstrations also incrementally improve

a procedure by re�ning operator preconditions.

Because Diligent never forgets and does not get confused when switching between

contexts, Diligent does not have the problems that humans do when large portions of

a procedure are changed. This means that a machine learning system, like Diligent,

may not need to follow this felicity condition. (However, following it may seem

natural to an instructor.)

� Generalization. During a lesson, one way that a student learns is by generalizing the

lesson's example solutions.

Diligent also does this when it uses machine learning techniques to learn precondi-

tions. However, unlike a human student, Diligent does not make generalizations for

whole classes of objects (e.g. how to log into all computers).

� Show work. At least in introductory lessons, all work should be shown.2

2SIERRA also has lessons that optimize an existing procedure by showing how to eliminate unnecessary
work, but this type of lesson may not be necessary.

227

Diligent's instruction meets this condition. Diligent sees all relevant attributes of

the environment and observes all actions performed in the environment. In fact, it

is easier for Diligent's instructor to meet this felicity condition than it is for someone

who teaches human students.

� One disjunct per lesson. In each lesson, the student should need to add at most one

disjunction to his mental model of a procedure. A disjunct contains a sequence of

actions and a conditional test to decide whether to perform the actions. VanLehn

sometimes refers to disjuncts as subprocedures.

Because of di�erent procedural representations, this is harder to characterize. One

of Diligent's add-step demonstrations could be considered a disjunct because an add-

step demonstration contains a sequence of steps that are inserted between existing

steps. However, Diligent learns preconditions for each step rather than one for the

entire demonstration.

This felicity condition does not apply to clari�cation demonstrations because they

don't add steps to the procedure's plan and because they can contain arbitrary

sequences of steps. Unlike a human, Diligent can use clari�cation demonstrations

because it does not forget and does not get confused when switching between con-

texts. Clari�cation demonstrations can be thought of as exploratory demonstrations

in which an instructor illustrates the behavior of the environment.

Other people have adapted VanLehn's felicity conditions. When discussing felicity

conditions, Wenger [Wen87] includes the condition minimal set of examples. This means

that example solutions are su�cient to learn the new subprocedure.

However, Diligent does not assume that the instructor provides a minimal set of ex-

amples. Instead, Diligent uses heuristics to create a \reasonable" procedure that the

instructor can then examine, edit and test. In this sense, Diligent, without instructor

input or critique, is not expected to achieve the mastery or pro�ciency of human students,

which makes Diligent's task much easier.

The felicity conditions have also been adapted for Programming By Demonstration

(PBD) systems [CKM93]. Because Diligent uses PBD, these conditions are relevant.

� Be consistent. The steps in a demonstration need to be performed consistently in

the same order.

228

Consistency is important for typical PBD systems because they only need to know

how to automate a procedure. Because these systems do not usually have access to

a simulation, they use induction to learn how to sequence a procedure's steps.

In contrast, Diligent attempts to acquire the knowledge necessary for teaching, which

requires more knowledge about the dependencies between steps. Diligent not only

needs to be able to answer questions, but it must also be able to monitor students

as they perform a procedure. Because students may legitimately perform steps in

a di�erent order than any demonstration, Diligent needs to be able to recognize

whether an alternative sequence of steps will achieve a procedure's goals.

Diligent can violate this felicity condition because it uses a simulation to induce

operator preconditions that are independent of the current procedure. Later, when

creating a plan, Diligent uses these preconditions to analytically derive the depen-

dencies between steps. Because operator preconditions are not procedure speci�c,

Diligent's clari�cation demonstrations do not cause a problem when they violate the

\be consistent" felicity condition. In fact, clari�cation demonstrations are meant to

violate this felicity condition.

� Correctness. The procedure is correctly demonstrated.

Diligent makes this assumption. If this assumption is violated, then Diligent can still

learn, but the preconditions of its operators may not be as good.

� No extraneous activity. An extraneous step might not be incorrect, but it doesn't

contribute to the goal. One problem is that extraneous activities are likely to confuse

or mislead a typical PBD system.

Diligent can compensate for extraneous activity because it has access to a simulation.

While extraneous steps in add-step demonstrations are undesirable, Diligent learns to

skip them through its experiments. Thus, extraneous steps are not usually a problem

for Diligent. Furthermore, this issue is not relevant for clari�cation demonstrations

because they do not add steps to plans. In fact, extraneous activities are probably

bene�cial in clari�cation demonstrations because they provide more data for learning.

9.1.2 Presenting a Sequence of Examples

Other work by Mittal has focused on how to present sequences of examples to humans

[Mit93, MP93]. This raises two issues: how well do the inputs given Diligent's instruction

meet these criteria and how do Diligent's abilities compare to a human student's.

229

In Mittal's work, \example" is used to describe the training data, and both Diligent's

action-examples and demonstrations (i.e. sequences of action-examples) would be consid-

ered \examples."

Mittal [Mit93] looked at many issues involved in the presentation of examples. Of these

issues, the following appear to be relevant.

� Minimum detail. Studies have shown that people learn best when examples contain

a minimum number of irrelevant features. Mittal calls this the minimum detail

principle.

Diligent's action-examples do not meet this requirement; Diligent learns in an envi-

ronment with a constant number of attributes. However, Diligent uses the minimum

detail principle when it heuristically focuses on a small number of likely operator

preconditions. For example, when creating an operator, Diligent assumes that the

state changes of the demonstration's earlier steps are good candidate preconditions

for the new operator.

The principle of minimum detail applies to Diligent's add-step demonstrations, which

should not contain unnecessary steps. The principle also applies to Diligent's envi-

ronment during demonstrations because only the instructor is performing actions.

Like a human, Diligent learns best when there are few irrelevant details, but unlike

a human, Diligent not forget and can save negative action-examples until it is able

to process them.

� Number of examples. If humans are given too many examples, they tend to have

lapses of attention.

Lapses of attention are not an issue with automated systems, and Diligent learns

best with many examples.

� Order of presentation. The order of presentation helps avoid confusion and focuses

the student's attention. Simpler, more easily understood examples should be pre-

sented before more complicated and di�cult examples. This is closely related to

VanLehn's assimilation and one disjunct per lesson felicity conditions (Section 9.1.1).

Diligent learns best when its demonstrations represent small, modular and logi-

cally coherent procedures. However, since Diligent uses state changes from within a

demonstration to identify likely preconditions, Diligent should learn better when it

has a long logically coherent demonstration rather than several incrementally more

complicated procedures.

230

� Pairing of examples. An example should highlight some feature. This means that

there is a relationship between an example and the principle being taught.

Mittal identi�es three types of examples: A positive example is instance of the

concept being taught; a negative example is not an instance of the concept; and an

anomalous example represents a special case or an exception.

Diligent processes positive and negative examples, but makes no special provision

for anomalous examples. Anomalous examples are treated like any other example. If

Diligent were to make special provision for anomalous examples, it would probably

have to support disjunctive preconditions. For example, a device might normally be

reset by pressing the reset button, but while in test mode, it might only be reset by

pressing the system test button. In this example, resetting the device in test mode

is an anomalous or special case.

Mittal discusses how pairing di�erent types of examples teaches di�erent principles.

Pairing two positive examples allows students to identify unnecessary (or variable)

features. Pairing a positive and a negative example allows students to identify nec-

essary (or critical) features. Furthermore, pairs of positive examples should be as

dissimilar as possible, while a positive and negative example should be as similar

as possible. In fact, Mittal writes that studies [Fel72, HMD73, KGF74, MT69] sug-

gest that the most e�ective pairing of examples are minimally di�erent positive and

negative examples.

Like human students, Diligent's algorithms for re�ning operator preconditions also

do best with maximally di�erent positive examples and minimally di�erent positive

and negative examples.

However, Diligent's demonstrations do not necessarily provide this type of data.

An add-step demonstration only provides one action-example for each step. For a

clari�cation demonstration, it is entirely dependent on the instructor whether the

demonstration provides dissimilar positive examples or similar pairs of positive and

negative examples.

Diligent overcomes its lack of action-examples by performing experiments. Experi-

ments are derived from demonstrations and tend to produce similar pairs of positive

and negative examples.

However, without the help of the instructor, Diligent cannot create very dissimilar

pairs of positive examples. One obstacle is the minimal assumptions that Diligent

231

makes about its ability to manipulate the environment. This problem might be

addressed by using planning techniques to create more elaborate experiments.

Mittal also addresses a couple of issues that don't map well to Diligent. One issue is how

advanced is the material. Because Diligent receives action-examples with a �xed number of

attributes rather than increasing numbers of attributes, Diligent's input doesn't correspond

well the increasingly detailed training given humans. Another type issue is the type of

knowledge being taught. While Diligent can learn about relationships between inputs and

outputs (i.e. operators) and sequences of relationships (i.e. procedures), Diligent does not

learn the types of concepts that a human learns (e.g. apples grow on trees).

9.2 Intelligent Tutoring Systems

Because Diligent creates procedures for a tutoring system, we need to discuss tutoring

systems and authoring systems for tutoring systems. We will �rst discuss computer systems

that provide instruction, and we will then discuss issues and approaches for authoring.

9.2.1 Computer Aided Instruction

Traditional forms of Computer Aided Instruction (CAI) require authors to create a fully

speci�ed presentation of the material, including questions and answers [Wen87, Ric89,

Mur97]. This includes specifying the ow of control through the material. Because the

material is grouped into �xed blocks or \frames" of knowledge, traditional CAI has been

referred to \electronic page turning" [Ric89].

While CAI is useful for some types of instruction, it has problems. CAI systems tend

to be inexible and allow only limited tailoring of instruction to individual students. The

problem is that CAI systems know little or nothing about what is contained in the frames.

A reaction to traditional CAI is Intelligent Tutoring Systems (ITS) [Wen87, Ric89].

A main distinction between CAI and ITS is that, instead of using CAI frames, ITSs use

the knowledge that was used to compose the frames [Wen87]. A primary characteristic

of ITS is using this knowledge for multiple purposes. For example, the same piece of

knowledge might be used for presenting material, formulating a question and answering it.

Consider the STEVE tutor, which is used with Diligent. STEVE uses plans to demonstrate

procedures, monitor students as they perform procedures, answer student questions, and

recover from student errors. STEVE couldn't do this if it just knew about a �xed sequence

of steps.

232

ITS research has focused in a number of areas. One area is modeling the student's

knowledge. The model may include what students have seen as well as what the system

believes about their knowledge [SS98, Wen87, Sel74, Car70]. Another area is modeling

di�erent teaching strategies; this includes how to present material, what type of questions

to ask, and when to intervene [MAW97, Maj95, Hil94, SJ91, Wen87]. And a third area is

using simulations to provide students with a richer, more complex and interactive learning

environment [MJP+97, VD96, Wen87].

In this thesis, we have focused on authoring procedures for use with a simulation. We

have ignored student modeling and teaching strategies because we have assumed that an

automated tutor would already have knowledge of these activities.

Another problem with CAI systems is that authoring these systems takes a long time.

According to Woolf and Cunningham, each hour of instruction typically requires 200 hours

of development [WC87].

Ideally, by reusing knowledge, authoring knowledge for ITSs should be simpler than

for a CAI, but this is not so. Not only do ITSs have an additional capabilities, which

require additional knowledge, but their knowledge also needs to be more structured. In

fact, Murray [Mur97] has written that one of the biggest problems with ITS research is

that ITSs are \di�cult and expensive to build." For this reason, ITS authoring is an active

area of research.

The next few sections will discuss ITS authoring issues.

9.2.2 Who is the Author

A primary concern when considering an ITS authoring tool is what type of person will do

the authoring. Is a tool designed primarily for experienced, expert users or is it designed

for wider class of user? This is important because di�erent tools are designed for di�erent

types of users. When considering various approaches to ITS authoring, we will consider

two types of authors.

� An instructional designer provides materials for many teachers and students. An

instructional designer may have specialized training in instructional design and in

the use of authoring tools. However, an instructional designer might have little

interaction with teachers or students.

� A teacher authors material for his class. The teacher is unlikely to have the same

specialized training as an instructional designer and will most likely have limited

233

time for authoring. However, unlike an instructional designer, a teacher should have

a lot of interaction with students.

Diligent focuses on quick and easy authoring of procedures so that its techniques could

be used by a large class of users that includes both instructional designers and teachers.

9.2.3 Approach to Authoring

Because of the di�culty in creating an ITS, researchers have tried di�erent approaches.

Below are some of the basic ITS authoring approaches.

� Monolithic/evolutionary. These systems contain everything needed for instruction.

This type of system attempts to incrementally evolve the state of the art of commer-

cial CAI authoring tools. The system is usually targeted towards instructional de-

signers. For example, EON adds improved modularity and abstraction to a CAI ap-

proach [Mur98]. In contrast, the IRIS Shell [AFCFG97] structures authoring around

Gagne's theory of instructional design [GBW88].

A problem with this type approach is the time involved. For example, Murray

[Mur98] reports the success of an earlier ITS authoring tool that supported authoring

an hour of instruction in 100 hours. He compares this favorably to the 100 to 300

hours of a traditional CAI approach.

However, using this type of system doesn't have to be laborious. REDEEM [MAW97,

MA97] is targeted towards teachers rather than instructional designers. REDEEM

allows teachers to reuse the content of an existing CAI course and to tailor the teach-

ing strategies used with individual students. When given the CAI data, REDEEM

appears easy to use.

� Framework. This type of system asks the instructor to provide data for use in a

prede�ned instructional framework. The author will provide prede�ned types of

data, and the system will reuse prede�ned pedagogical knowledge. This type of

system is also monolithic.

Much of the work in this area has been done at Northwestern and has focused on Goal

Based Scenarios (GBS) [Sch94, JK97, Bel98, DR98]. GBS systems have students

work on several scenarios using the method determined by the given framework. For

example, the Investigate and Decide framework requires students to make a decision

after investigating the situation with a set of tools. Another framework, Persuade,

234

lets students interact with simulated characters and to build a consensus or to change

the positions of the simulated characters.

To author a GBS, the author provides scenarios, tools, video clips, questions and an-

swers. The GBS framework will then integrate the data when providing instruction.

Unfortunately, authoring with these systems can take several weeks [Bel98] or from

5 to 10 months [DR98]. Because of time involved, a teacher is unlikely to author

with existing GBS frameworks.

In contrast, XAIDA allows quick authoring (i.e. minutes to hours) [Red97, HHR99].

Little work is needed because XAIDA has a great deal of knowledge about how to

present machine maintenance training. XAIDA focuses on what to present rather

than how the domain works. For example, to teach a device's physical characteristics,

the author labels portions of a picture and provides simple knowledge (e.g. the

function of a part). However, XAIDA is self-contained and cannot interact with a

complex simulation of the device.

� Component. In this framework, a heterogeneous group of tools interact [RK96, RB98,

JRSM98]. Not only can high quality components be developed independently, but

components can potentially be reused on other systems. However, when using this

approach, knowledge is localized inside the components. For example, one component

may know a great deal about teaching but little about the domain.

This dissertation deals with the component framework and focuses on helping an

author exploit the domain knowledge already contained in other components.

9.2.4 Easier Data Entry

All ITS authoring research focuses on making ITSs easier to author, but most work has

focused on supporting the additional capabilities not found in CAI. Relatively few systems

have focused on data acquisition with machine learning techniques or using extremely

quick authoring. Systems that acquire knowledge quickly can do so because they focus on

acquiring shallow knowledge about well-de�ned and constrained activities.

One system that we've discussed is XAIDA [HHR99], which knows a great deal about

generating instruction. XAIDA uses data provided by the instructor to instantiate a

generic instruction template.

235

Another system, DIAG [Tow97b, Tow97a], focuses on teaching fault diagnosis. DIAG

generates a probabilistic table of faults by modifying a simulation. Unlike Diligent, DIAG

is contained in the simulation and can directly access and modify it.3

Demonstr8 [Ble97] can author an ACT tutor [A+95]. Demonstr8 allows the author to

create the student's interface using the Graphical User Interface (GUI). Demonstr8 also

induces expert behavior from examples. However, the version of Demonstr8 described in

the paper can only create simple arithmetic tutors. It is unclear how easily the system can

be scaled to domains where functions are not simply lookup tables.

Recently, Disciple [TH96, TK90] has been used to inductively learn how to classify

examples of a given concept [TK98]. Disciple �rst has the author build a semantic net

of object classes and relationships. Then, the author provides Disciple with examples

of a concept. Finally, Disciple asks the author whether other examples are members of

the concept's class. Although Diligent learns procedures rather than individual concepts,

the preconditions of Diligent's operators are similar to Disciple's concepts. Unlike Dis-

ciple, Diligent does not use a semantic net and can perform experiments that query the

environment rather than the author.

Work at the University of Pittsburgh's Learning Research and Development Center

has looked at using human style reasoning to learn how to solve procedural problems (e.g.

physics problems) [GCV98].4 This approach requires access to well-de�ned domain rules

(e.g. physics laws) and problem modeling techniques. In contrast, Diligent is made for

domains where this type of knowledge is not readily available.

Although not strictly an ITS authoring tool, ODYSSEUS [Wil90, Cla86, Wen87] learns

knowledge about medical diagnosis that can be used by the GUIDON family of ITSs.

ODYSSEUS learns best by observing a physician make a diagnosis. It then attempts to

explain the diagnosis using a domain model and a diagnostic strategy model. If an ex-

planation is not found, it uses heuristics to make inductive changes to the domain model.

ODYSSEUS is able to update the domain model because it uses a known problem solving

strategy and assumes that the domain model is almost correct. The validity of the ap-

proach was demonstrated in an experiment [Wil90]. After observing only two diagnoses,

ODYSSEUS showed a 37% improvement in its ability to make a correct diagnosis. This

3DIAG is implemented in RIDES, which is an ITS authoring tool for simulations. After a simulation
has been built, RIDES also supports quick authoring of instruction. RIDES is discussed in section 9.3.1.

4The work at the University of Pittsburgh has explored the use of the human Self-Explanation E�ect,
which was discussed in Section 6.8.1.

236

improvement occurred even though the physician misdiagnosed one of the two cases. How-

ever, ODYSSEUS di�ers from other systems in this section because it uses a deep domain

model. For example, the model used in the experiment was acquired over seven year period

[Wil90].

9.3 Learning From Demonstrations

This section talks about systems that learn from demonstrations. Speci�cally, it discusses

systems that learn from traces. A trace is a record of the procedure being performed. If

this type of system learns by observing users carry out their normal activities, the system

is called a Learning Apprentice System (LAS) [MMS90].

9.3.1 Programming By Demonstration

Diligent's use of demonstrations to learn procedures is called Programming By Demon-

stration (PBD) [C+93]. Unlike simply recording a macro, PBD by de�nition requires some

generalization. Diligent is an unusual PBD system in that it generates data by performing

autonomous experiments.

PBD has been used for several types of purposes, such as creating user interfaces and

learning procedures. We will focus on PBD systems that learn procedures.

A traditional PBD system learns procedures in order to automate tasks. This involves

making procedures work on multiple objects and determining which conditions indicate a

change in a procedure's ow of control. A condition that indicates a change in the ow of

control is called a branch condition. An example of a branch condition is a condition that

indicates whether to exit a loop. However, traditional PBD systems do not attempt to

learn in detail how steps depend on each other (i.e. step relationships). This means that

they would not be able to recognize whether a di�erent sequence of steps was valid or to

provide explanations about the dependencies between steps.

The actions in Diligent's demonstrations bear a lot of similarity to those of robotic

PBD systems [FMD+96, Hei93, Hei89, And85]. However, these systems concentrate on

eliminating sensor noise and �nding loops and branch conditions. Like traditional PBD

systems, these systems learn to perform a task without learning the step relationships

required for the type of teaching that Diligent supports.

237

A system that can use demonstrations to learn similar types of procedures as Diligent

is the RIDES [MJP+97, MJSW93] authoring system.5 RIDES is one of the most used ITS

authoring systems. It supports authoring of graphical simulations without a great deal of

programming expertise. RIDES also supports the ability to enter many types of training

exercises, and it is the training exercises that are relevant to Diligent.6 While training

exercises use the executable simulation model, training exercises are separate objects that

contain little knowledge about the model. Unlike Diligent's plans, these training exercises

do not contain detailed knowledge about the dependencies between steps (i.e. causal links).

Because less has to be known about the procedure, it is much easier to demonstrate in

RIDES than it is in Diligent. Authoring with RIDES involves demonstrating the procedure

and interacting a little with menus. However, because RIDES' exercises lack causal links,

RIDES can only provide limited help and remediation.

9.3.2 Detailed Domain Models

An early robotic demonstration system that only requires one demonstration is ARMS

[Seg87]. Unlike Diligent, ARMS relies on a detailed domain model and a geometric reasoner

to deduce a procedure's structure.

Like ARMS, another system that uses a detailed domain model is LEAP [MMS90].

LEAP uses its theoretical knowledge of circuits for learning how to implement components

of a circuit. LEAP relies on Explanation Based Learning (EBL) [MKKC86, DM86] and can

only learn when its domain theory can explain a training example. In contrast, Diligent

starts with little domain knowledge and focuses on acquiring the domain theory necessary

for explaining a procedure.

LEX [MUB83] does not learn procedures; instead, it is given a set of operators and

learns when to perform them. LEX starts knowing a set of mathematical transforms that

it uses to solve symbolic integration problems. These transforms are analogous to the

operators that Diligent learns. Instead of receiving traces as input, LEX uses the solutions

to problems that it has solved. LEX is relevant because it tries to maximize the use of

its limited problem solutions by minimally modifying the problem and then attempting to

solve it.

5Diligent's environment is controlled by a version of RIDES called VIVIDS.
6RIDES' procedure and goal patterned exercises are similar to Diligent's procedures.

238

CELIA [Red92] can learn machine maintenance procedures similar those learned with

Diligent. However, instead of learning procedures for teaching humans, CELIA mod-

els human performance and learning. Because CELIA contains a detailed but possibly

incomplete domain model, CELIA, unlike Diligent, is able to learn complicated trouble-

shooting tasks. CELIA receives high level English descriptions of diagnostic procedures

and can ask the user questions when it gets confused or discovers problems in its domain

model. Because CELIA emphasizes reducing gaps in its knowledge, CELIA only learns

when a failure identi�es missing knowledge. In contrast, Diligent can learn from both

success and failure because it attempts to reduce the uncertainty in its knowledge. CELIA

focuses on learning how the diagnostic goals of a procedure's steps are related rather than

the low-level preconditions that Diligent uses for creating step relationships. Like many

case-based systems, CELIA's indexing of the steps of a procedure is very dependent on

the order that CELIA receives training examples.

9.3.3 Procedure Recognition

Two systems that require traces of slightly increasing complexity are SIERRA [Van87,

Van83] and NODDY [And85]. SIERRA models children learning subtraction and creates

procedures in the form of AND-OR graphs, while NODDY, an early PBD system for

two dimensional robots, learns procedures in the form of ow charts. Both systems learn

incrementally but non-interactively from traces. These systems learn by matching their

model of a procedure against a trace to �nd di�erences. Because these systems need to

match existing procedures, they rely on the user adding little complexity per trace. For

example, in Section 9.1.1 we discussed SIERRA's assumption that the instructor adds

only one disjunct per lesson. Diligent avoids this problem by requiring the instructor to

specify the position where steps are inserted. Because SIERRA and NODDY learn the

control knowledge necessary to a perform procedure rather than operators that model the

domain, they can only use traces that illustrate how to perform a procedure and could not

use traces similar to Diligent's clari�cation demonstrations. Additionally, neither system

re�nes its knowledge with experiments.

9.3.4 University of Michigan Soar Group

Soar [LNR87] is a production system that implements a uni�ed theory of human cognition

[New90]. Diligent was written in the environment of the Soar community. In fact, the

tutor used with Diligent, STEVE, is implemented primarily as Soar productions. The

239

work on instructable agents in Soar at Michigan heavily inuenced Diligent's interaction

with the instructor.

Instructo-Soar [HL95, Huf94, HL93] receives tutorial instruction in a manner similar

to Diligent but in English rather than by direct manipulation. Unlike Diligent, a user

can tell Instructo-Soar what to do in hypothetical situations (e.g. \when the light is

red, press the green button"). Unlike Diligent, which learns operators, Instructo-Soar is

given set of general-purpose operators that model actions performed its domain. Unlike

Diligent, Instructo-Soar does not modify its operators and does not re�ne its knowledge

by performing autonomous experiments. Instead of learning plans, Instructo-Soar uses

its operators to learn when to reactively perform actions (i.e. operator proposal rules).

If Instructo-Soar's operators were correct, it could generate the step relationships that

Diligent learns. However, if Instructo-Soar's operators were incomplete or incorrect, then it

would have problems generating Diligent's step relationships. If Instructo-Soar's operators

cannot explain a demonstration, it uses heuristics to create operator proposal rules that

allow it to correctly perform a procedure.

Instructo-Soar has been extended by IMPROV [PL96, Pea96], which re�nes its knowl-

edge with experiments. IMPROV performs procedures and re�nes its knowledge when

failure is detected. Unlike Diligent, IMPROV can handle noise and work in dynamic

domains whose properties change. IMPROV experiments by performing actions in the

environment during a search for a sequence of steps that achieves a procedure's goals. In

contrast, Diligent can learn without failure and doesn't care if its experiments achieve the

procedure's goals. When IMPROV �nds a successful plan, it learns to perform the plan's

steps in the same order as the successful plan. IMPROV does this by learning reactive

rules to propose operators. The problem with this approach is that it doesn't learn about

alternative orders of steps that would also achieve the goals. This means that IMPROV's

approach doesn't learn good preconditions for deriving Diligent's step relationships. An-

other problem is how IMPROV represents its reactive rules. IMPROV never forgets a rule

even though it may have missing or unnecessary preconditions; instead, IMPROV creates

a patchwork of overlapping, prioritized rules. It appears likely that a human instructor

would �nd this representation di�cult to comprehend and verify.

9.3.5 Approach to Experimentation

Diligent's approach to experimentation is most similar to PET's approach [PK86]. Unlike

Diligent, PET learns relational rules, which use arbitrarily complex domain dependent

transformations to change the state before the action into the state after the action. In

240

contrast to Diligent, which modi�es a demonstration by changing the actions that are

performed, PET modi�es a demonstration by changing the state. PET's approach to

experimenting requires complete control of the state and involves repeatedly performing

an action after making �ne grain changes to the state. Because Diligent does not have

complete control over the state, it could not use PET's approach.

9.3.6 Systems that Learn Operators

Operators model actions performed in the environment and identify the preconditions

necessary to produce various state changes. Diligent is unusual in that it learns operators

that are only applied to a few instructor speci�ed procedures. In contrast, other systems

learn operators for solving general planning problems. These systems experiment by solv-

ing practice planning problems, where an initial state is transformed into a goal state.

In contrast, Diligent experiments by modifying its demonstrations. Diligent doesn't care

about an experiment's �nal state because its experiments focus on identifying dependencies

between the given procedure's steps.

A system that systematically re�nes its operators is EXPO [Gil92, CG90]. EXPO re-

�nes operator preconditions when an unexpected state change is observed while solving

planning problems. Unlike Diligent, EXPO is given a set of incomplete operators with

their preconditions partially speci�ed. EXPO then re�nes its operators by adding precon-

ditions. Unlike Diligent, EXPO cannot remove incorrect preconditions. EXPO introduces

general heuristics for proposing preconditions that rely on the similarity of objects and

the relationship between objects and actions. Unlike Diligent, EXPO can also learn a

new procedure by an analogy to an existing procedure that uses similar classes of objects.

In contrast, Diligent does not have a hierarchy of object classes, and many of Diligent's

objects (e.g. switches) have idiosyncratic behavior that prevents reuse of operators with

di�erent objects (e.g. switch1 turns on the motor, while switch2 turns on a light).

A system that heavily inuenced Diligent is OBSERVER [Wan96c, Wan96a, Wan95,

Wan96b]. Unlike Diligent, OBSERVER generalizes the objects and attributes in its oper-

ators. Diligent doesn't do this because it has less knowledge of its environment and many

objects in its environment have idiosyncratic behavior. OBSERVER learns operators by

observing traces of many demonstrations and solving many planning problems. In con-

trast, Diligent has only a few demonstrations and does not solve planning problems. Unlike

Diligent, OBSERVER does not consider the relationship between steps in a demonstration

when hypothesizing preconditions.

241

9.3.7 Other Work

A system that learns a di�erent type of operator than Diligent is TRAIL [Ben95]. TRAIL

processes demonstrations and uses inductive logic techniques to learn reactive teleo-operator

proposal rules. Teleo-operators [BN95] model actions that can have a duration. Unfortu-

nately, TRAIL learns only one de�nite state change per operator. The operator's other

state changes have a probability of appearing. This would be unacceptable for teaching

procedures in a domain where an action can change the values of multiple attributes. It

might be possible to learn di�erent conditional e�ects for di�erent state changes; how-

ever, because a conditional e�ect's state change is de�nite, it is unclear whether TRAIL's

probabilistic learning algorithm would still be useful.

Recent work by Bauer [Bau98] takes a di�erent approach for understanding traces. Un-

like Diligent, which focuses on the attributes in the environment, Bauer looks at acquiring

plans using relationships between arguments of di�erent actions. For a number of reasons,

this approach is inappropriate for Diligent. The program that is learning procedures (e.g.

Diligent) may not know how some objects are related to each other. This means that

performing an action may cause changes in distant objects that appear to be unrelated to

the object acted upon. For example, pressing a button may turn on a fan in another room.

Furthermore, in Diligent's procedures, every step may manipulate a di�erent object; thus,

the arguments to a procedure's actions often have little commonality. Finally, Diligent pro-

duces procedures for a type of tutoring that requires causal links between steps, and causal

links are derived from the preconditions of steps. Some of these preconditions may involve

the environment's state rather than the properties of the objects being manipulated.

LIVE [She93, She94] is a system that uses autonomous exploration and experiments

by creating plans. Because LIVE doesn't focus on learning user speci�ed procedures, it

is unclear how well it would scale to more complex domains because of the time involved

and the lack of focus. Because LIVE doesn't process traces, its main relevance is its

machine learning techniques. Besides experimenting with plans, LIVE learns rules to

predict when an action will produce given state changes; these prediction rules are similar

to the preconditions of Diligent's conditional e�ects (or e�ects). Unlike Diligent, LIVE

requires structural domain knowledge and only learns from prediction failure. LIVE's

approach for learning prediction rules, Complementary Discrimination Learning (CDL),

updates prediction rules by comparing the prediction rules for di�erent e�ects. However,

the updated rules can contain both disjuncts and negated conditions. When compared

242

to Diligent's simple conjunctive preconditions, the representation of prediction rules may

seem overly complex to a human instructor.

243

Chapter 10

Conclusion

In this last chapter, we will summarize this thesis and its contributions. We will also

discuss some potential future work.

10.1 Summary of the Approach

This thesis looks at the problem of authoring procedures for an automated tutor that is

used in a heterogeneous, simulation-based training environment. To teach, the automated

tutor needs certain capabilities. It must be able to demonstrate procedures for human stu-

dents, monitor students as they perform procedures, answer questions about a procedure,

and recover from student errors and unusual environment states. Monitoring students is

di�cult because students may use a valid sequence of steps that is di�erent than what was

demonstrated, and answering questions is di�cult because missing or incorrect informa-

tion causes confusion. It is assumed that the tutor has general knowledge of how to teach,

but is missing knowledge of the procedures that it teaches.

Unfortunately, acquiring knowledge from domain experts (e.g. instructors) can be di�-

cult. Domain experts may not be programmers or expert knowledge engineers. Therefore,

Diligent exploits the presence of a simulation to make authoring easier. The techniques

explored in this thesis could potentially allow non-programmers to author procedures by

demonstrating them with a graphical interface that represents the state of a simulation.

Less work is required from an instructor because Diligent uses the simulation to per-

form experiments. These experiments allow Diligent to get answers to questions from the

simulation instead of the instructor. Because Diligent can answer its own questions, not

only is there less chance of instructor error, but Diligent also needs fewer demonstrations.

Because less data is required from the instructor, the di�culty of authoring is also reduced.

244

One way that Diligent's techniques could help an instructor is by providing feedback

about its beliefs. For example, Diligent uses three sets of preconditions (i.e. s-rep, h-

rep and g-rep) and each set represents a di�erent level of con�dence. When users look

at preconditions, Diligent indicates its level of con�dence that a given precondition is

necessary. For example, preconditions that only appear likely (in h-rep but not in g-rep)

have lower level of con�dence than preconditions that have been shown to be necessary

(in g-rep).

Because Diligent may have very little knowledge, it uses heuristics to speed up learning.

It assumes that the state changes of earlier steps are likely to be preconditions of later

steps. It also uses an heuristic, best guess precondition concept (i.e. h-rep) that is in

between the the upper and lower bounds of its version space. Unlike the version space

bounds, the h-rep supports error recovery by allowing preconditions to be both added and

removed.

Diligent also bounds the cost of experimentation. Its experiments change the order of

a procedure's steps by skipping a step and observing what happens to later steps. Because

the purpose of an experiment is to perform the steps rather than to achieve some goal

state, experiments perform a bounded of number of steps. Additionally, in experiments

on hierarchical procedures, Diligent only experiments on the current procedure and treats

subprocedures of the current procedure as single steps.

A nice aspect of Diligent's approaches to experimentation and to learning operators

is that they balance each other. When operators are created, the preconditions tend to

have errors of commission (i.e. unnecessary preconditions). On the other hand, by skip-

ping steps, experiments tend to identify errors of commission. Furthermore, in Diligent's

version space learning algorithm, errors of commission are easier to eliminate than errors

of omission (i.e. missing preconditions).

10.2 Contributions

The main contribution are the following.

� A method that balances the strengths and weaknesses of demonstrations and exper-

iments. Experiments are used to identify missing or unnecessary preconditions, but

can more easily identify unnecessary preconditions. For this reason, operators are

created during demonstrations using heuristics that have a bias towards creating un-

necessary preconditions. While creating operators, the system uses a novel heuristic

that focuses on how earlier steps in a demonstration establish preconditions for later

245

steps. Because experiments compensate for the bias towards creating unnecessary

preconditions, Diligent can learn a great deal from a single demonstration.

� A method for performing useful and focused experiments while requiring only mini-

mal knowledge. The approach only needs to know the sequence of steps in a demon-

stration. The approach exploits the simulation to focus on how the state changes of

early steps in a demonstration a�ect later steps. This approach e�ectively transforms

one demonstration into multiple related demonstrations.

A lesser highlight of the thesis is that it also presents algorithms that show how to

transform demonstrations into hierarchical partially ordered plans. These algorithms,

additionally, provide the framework that supports learning operators and performing ex-

periments.

10.3 Evaluation

An empirical evaluation using human subjects was performed (Chapter 7). The evaluation

looked at the bene�ts of both demonstrations and experiments. The analysis of the study

focused on contrasting a simple versus a complex procedure. The study suggested that

both experiments and demonstrations help, and they help more on complex procedures.

10.4 Future Work

Earlier in Chapter 8, we discussed a number of extensions. Some of the extensions for

demonstrations required multiple paths (or sequences of steps) for performing a procedure.

This would allow additional types of demonstrations and more complicated procedural

representations, including conditional plans. Some of the extensions for machine learn-

ing include supporting disjunctive preconditions, using structural knowledge and using a

deeper domain model. Some of the extensions for experiments include practice problems

and modifying experiments in response to unexpected events.

However, the techniques discussed here could be used for other purposes.

Diligent's techniques could help systems that learn general-purpose operators for plan-

ning by helping them to better understand demonstrations and the solutions to practice

problems, which could be treated like demonstrations.

In Diligent's current project, procedures are learned for a tutor that uses a virtual envi-

ronment. However, Diligent only requires a graphical interface and not a three dimensional

246

virtual environment. One potential application is creating procedures that teach people

how to run a factory using a two dimensional display of various controls and indicators.

Diligent could also be used by students who are attempting understand a device. Stu-

dents could identify the state changes produced by manipulating various controls. Students

could also use Diligent to learn preconditions and to learn procedures.

Another use is debugging simulations, especially when the simulation is developed by

external organization. A major problem with simulations is that it is often di�cult to

determine what type of calculations they perform internally. This means that it is di�cult

to know how normal results are reached or what the simulation will do in unusual situa-

tions. A non-programmer, domain expert could test a simulation by authoring procedures

and looking at looking at the preconditions. This could identify missing and unneces-

sary preconditions. It could also allow the domain expert to identify situations where the

simulation behaves in an undesirable manner.

247

Reference List

[A+95] John R. Anderson et al. Cognitive tutors: Lessons learned. The Journal of
the Learning Sciences, 4(2):167{207, 1995.

[AFCFG97] A. Arruarte, I. Fern�adez-Castro, B. Ferrero, and J. Greer. The IRIS shell:
\how to build ITSs from pedagogical and design requisites". International
Journal of Arti�cial Intelligence in Education, 8:341{348, 1997.

[AIS88] Jose A. Ambros-Ingerson and Sam Steel. Integrating planning, execution and
monitoring. In AAAI 1988, pages 735{740, 1988.

[AJR97] Richard Angros, Jr, W. Lewis Johnson, and Je� Rickel. Agents that learn to
instruct. In AAAI 1997 Fall Symposium Series: Intelligent Tutoring System
Authoring Tools, pages 1{8. AAAI Press, November 1997. Technical Report
FS-97-01.

[Ana83] J. Anania. The inuence of instructional conditions on student learning and
achievement. Evaluation in Education, 7:1{92, 1983.

[And85] Peter Merrett Andreae. Justi�ed Generalization: Acquiring Procedures From
Examples. PhD thesis, MIT, 1985.

[Ang87a] D. Angluin. Learning regular sets from queries and counter-examples. Infor-
mation and Computation, 75(2):87{106, 1987.

[Ang87b] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319{342,
1987.

[Bal93] Cecile Balkanski. Actions, Beliefs and Intensions in Multi-Action Utterances.
PhD thesis, Harvard University, May 1993.

[Bau98] Mathias Bauer. Acquisition of abstract plan descriptions for plan recognition.
In Fifteenth National Conference on Arti�cial Intelligence, pages 936{941,
Madison, WIsconsin, July 1998. The AAAI Press / The MIT Press.

[Bel98] Benjamin Bell. Investigate and decide learning environments: Specializing
task models for authoring tool design. The Journal of the Learning Sciences,
7(1):65{105, 1998.

[Ben95] Scott Benson. Inductive learning of reactive action models. Machine Learn-
ing: Proceedings of the 12th International Conference, pages 47{54, 1995.

248

[Ble97] Stephen B. Blessing. A programming by demonstration authoring tool for
model-tracing tutors. International Journal of Arti�cial Intelligence in Edu-
cation, 8, 1997.

[Blo84] B. S. Bloom. The 2 sigma problem: The search for methods of group instruc-
tion as e�ective as ono-to-one tutoring. Educational Reseacher, pages 4{16,
June/July 1984.

[BN95] Scott Benson and Nils J. Nilsson. Reacting, planning, and learning in an au-
tonomous agent. In Koichi Furakawa, Donald Michie, and Stephen Muggle-
ton, editors, Machine Intelligence, volume 14, pages 29{64. Oxford University
Press, 1995.

[Boo85] J. H. Boose. A knowledge acquisition program for expert systems based
on personal construct psychology. International Journal of Man-Machine
Studies, 23(5):495{525, 1985.

[BS93] Michael S. Bocionek and Siegfried B. Sassin. Dialog-based learning (DBL) for
adaptive interface agents and programming-by-demonstration systems. Tech-
nical Report CMU-CS-93-175, School of Computer Science, Carnegie Mellon
University, July 1993.

[BSP85] Alan Bundy, Bernard Silver, and Dave Plummer. An analytical comparison
of some rule-learning programs. Arti�cial Intelligence, 27:137{181, 1985.

[Bur83] A. J. Burke. Students' potential for learning contrasted under tutorial and
group approaches to instruction. PhD thesis, University of Chicago, 1983.

[BV96] Alberto Del Bimbo and Enrico Viario. Visual programming of virtual worlds
animation. IEEE Multimedia, 3(1), 1996.

[C+93] Allen Cypher et al., editors. Watch What I Do: Programming by Demonstra-
tion. The MIT Press, 1993.

[Car70] J.R. Carbonell. AI in CAI: an arti�cial intelligence approach to
computer-assisted instruction. IEEE Transactions on Man-Machine Systems,
11(4):190{202, 1970.

[CBL+89] M. T. H. Chi, M. Bassok, M. W. Lewis, P. Reimann, and R. Glaser. Self-
explanations: How students study and use examples to solve problems. Cog-
nitive Science, 13:145{182, 1989.

[CBN89] Allan Collins, John Seely Brown, and Susan E. Newman. Cognitive appren-
ticeship: Teaching the crafts of reading, writing, and mathematics. In Lau-
ren B. Resnick, editor, Knowing, learning, and instruction: essays in honor or
Robert Glaser, pages 453{494. L. Erlbaum Associates, Hillsdale, N.J., 1989.

[CG90] Jaime G. Carbonell and Yolanda Gil. Learning by experimentation: The
operator re�nement method. In Yves Kodrato� and Ryszard S. Michalski,
editors, Machine Learning: An Arti�cial Intelligence Approach, volume III,
pages 191{213. Morgan Kaufmann, San Mateo, CA, 1990.

249

[Chi97] Michelene T. H. Chi. Quantifying qualitative analysis of verbal data: A
practical guide. The Journal of the Learning Sciences, 6(3):271{315, 1997.

[CKM93] Allen Cypher, David S. Kosbie, and David Maulsby. Characterizing PBD
systems. In Allen Cypher et al., editors, Watch What I Do: Programming by
Demonstration. The MIT Press, 1993.

[Cla86] William J. Clancey. From GUIDON to NEOMYCIN and HERACLES in
twenty short lessons: ORN �nal report 1979{1985. AI Magazine, 7(3):40{60,
August 1986.

[CLCL94] Michelene T. H. Chi, Nicholas De Leeuw, Mei-Hung Chiu, and Christian
LaVancher. Eliciting self-explanations improves understanding. Cognitive
Science, 18:439{477, 1994.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. The MIT Press, Cambridge, Massachusetts, 1990.

[Coh92] Philip R. Cohen. The role of natural language in a multimodel interface. In
UIST'92, pages 143{149, Monterey California, 1992.

[CS95] Allen Cypher and David Can�eld Smith. KIDSIM: End user programming of
simulations. In SIGCHI '95, pages 27{34, Denver Colorado, May 1995. ACM
SIGCHI.

[CV91] Michelene T. H. Chi and Kurt A. VanLehn. The content of physics self-
explanations. The Journal of the Learning Sciences, 1(1):69{105, 1991.

[Dav84] Randall Davis. Interactive transfer of expertise. In Bruce G. Buchanan
and Edward H. Shortli�e, editors, Rule-Based Expert Systems: The MYCIN
Experiments of the Stanford Heuristic Programming Project, pages 171{205.
Addison-Wesley Publishing Company, 1984.

[DHP+94] Judy Delin, Anthony Hartley, Cecile Paris, Donia Scott, and Keith Vander
Linden. Expressing procedural relationships in multilingual instructions. In
Proceedings of the Seventh International Workshop on Natural Language Gen-
eration, pages 61{70, Kennebunkport, ME, 1994.

[DHW94] Denise Draper, Steve Hanks, and Daniel Weld. Probabilistic planning with
information gathering and contingent execution. In Proceedings of the Second
International Conference on Arti�cial Intelligence Planning Systems, pages
31{36, Chicago, Illinois, 1994. AAAI Press.

[Di 94] Barbara Di Eugenio. Action representation for interpreting purpose clauses
in natural language instructions. In Proceedings of the Fourth International
Conference on Knowledge Representation and Reasoning, 1994.

[DM86] Gerald DeJong and Raymond Mooney. Explanation-based learning: An al-
ternative view. Machine Learning, 1(2):145{176, 1986.

250

[DR98] Wol� Daniel Dobson and Christopher K. Riesbeck. Tools for incremental
development of educational software interfaces. In CHI 98, pages 384{391,
Los Angles, CA, 1998.

[EEMT87] Larry Eshelman, Damien Ehret, John McDermott, and Ming Tan. MOLE: a
tenacious knowledge-acquisition tool. Int. J. of Man-Machine Studies, 26:41{
54, 1987.

[ES84] K. A. Ericsson and H. Simon. Protocol Analysis: Verbal reports as data. MIT
Press, Cambridge, MA, 1984.

[Fel72] Katherine Voerwerk Feldman. The e�ects of the number of positive and
negative instances, concept de�nitions, and emphasis of relevant attributes
on the attainment of mathematical concepts. In Proceedings of the Annual
Meeting of the American Educational Research Association, Chicago, Illinois,
1972.

[FMD+96] H. Friedrich, S. M�unch, R. Dillman, S. Bocionek, and M. Sassin. Robot
programming by demonstration (RPD): Supporting the induction by human
interaction. Machine Learning, 23:163{189, 1996.

[Gai87] Brian R. Gains. An overview of knowledge-acquisition and transfer. Int. J.
Man-Machine Studies, 26:453{472, 1987.

[Gal90] Deborah Krawczak Galdes. An Empirical study of Human Tutors: The Im-
plications for Intelligent Tutoring Systems. PhD thesis, The Ohio State Uni-
versity, 1990.

[GBW88] R. M. Gang�e, L. J. Briggs, and Wager W. W. Principles of Instructional
Design. Holt, Rinehart and Winston, third edition, 1988.

[GCV98] Abigail S. Gertner, Cristina Conati, and Kurt VanLehn. Procedural help in
andes: Generating hints using a bayesian network student model. In Fifteenth
National Conference on Arti�cial Intelligence (AAAI 1998), pages 106{111,
Madison, Wisconson, 1998.

[Gil92] Yolanda Gil. Acquiring Domain Knowledge for Planning by Experimentation.
PhD thesis, Carnegie Mellon University, 1992.

[GMAB93] S. Goldin-Meadow, M.W. Alibali, and R. Breckinridge Church. Transitions in
concept acquisition: Using the hand to read the mind. Psychological Review,
100:279{298, 1993.

[Gru89] Thomas R. Gruber. Automated knowledge acquisition for strategic knowl-
edge. Machine Learning, 4:293{336, 1989.

[Ham89] Kristian J. Hammond. CHEF. In C. Reisbeck and R. Shank, editors, Inside
Case-Based Reasoning. Lawrence Erlbaum Associates, Hillsdale, NJ, 1989.

251

[Hau88] David Haussler. Quantifying inductive bias: Arti�cial intelligence learning
algorithms and valiant's learning framework. Arti�cial Intelligence, 36:177{
221, 1988.

[Hei89] Rosanna Heise. Demonstration instead of of programming: focussing at-
tention in robot task acquisition. Technical Report Research Report No.
89/360/22, University of Calgary, September 1989.

[Hei93] Rosanna Heise. Programming robots by example. International Journal of
Intelligent Systems, 8:685{709, 1993.

[HHR99] Patricia Y. Hsieh, Henry M. Hal�, and Carol L. Red�eld. Four easy pieces:
Development systems for knowledge-based generative instruction. Interna-
tional Journal of Arti�cial Intelligence in Education, 10, 1999.

[Hil94] Randall W. Hill, Jr. Impasse-driven tutoring for reactive skill acquisition.
Technical Report JPL Publication 94{9, Jet Propulsion Laboratory, Califor-
nia Institute of Technology, April 1994. Reprint of University of Southern
California PhD thesis.

[HL93] Scott B. Hu�man and John E. Laird. Learning procedures from interactive
natural language instructions. In P. Utgo�, editor, Machine Learning: Pro-
ceedings of the Tenth International Conference, volume 15, page : a total of
12. ?, Amhearst, Mass., June 1993.

[HL95] Scott B. Hu�man and John E. Laird. Flexibly instructable agents. Journal
of Arti�cial Intelligence Research, 3:271{324, 1995.

[HMD73] John C. Houtz, J. William Moore, and J. Kent Davis. E�ects of di�erent types
of positive and negative examples in learning "non-dimensioned" concepts.
Journal of Educational Psychology, 64(2):206{211, 1973.

[HMP97] Haym Hirsh, Nina Mishra, and Leonard Pitt. Version spaces without bound-
ary sets. In Proceedings of the Fourteenth National Conference on Arti�cial
Intelligence, pages 491{496. AAAI Press/The MIT Press, 1997.

[Hof87] Robert R. Ho�man. The problem of extracting the knowledge of experts from
the perspective of experimental psychology. AI Magazine, 8(2):53{67, 1987.

[HS91] David Hume and Claude Sammut. Using inverse resolution to learn relations
from experiments. In Proceedings of the Eighth Machine Learning Workshop,
Evanston, Il, July 1991.

[Huf94] Scott B. Hu�man. Instructable Autonomous Agents. PhD thesis, University
of Michigan, 1994.

[JH95] B. Jordan and A. Henderson. Interaction analysis: Foundations and practice.
The Journal of the Learning Sciences, 4:39{103, 1995.

252

[JK97] Menachem Jona and Alex Kass. A full-integrated approach to authoring
learning environments: Case studies and lessons learned. In AAAI 1997 Fall
Symposium Series: Intelligent Tutoring System Authoring Tools, pages 39{43.
AAAI Press, November 1997. Technical Report FS-97-01.

[JRSM98] W. Lewis Johnson, Je� Rickel, R. Stiles, and Allen Munro. Integrating peda-
gogical agents into virtual environments. Presence: Teleoperators and Virtual
Environments, 7(6):523{546, December 1998.

[Kel55] G. A. Kelly. The psychology of personal constructs. Norton, New York, 1955.

[KF93] David Kurlander and Steven Feiner. A history of editable graphical histo-
ries. In Allen Cypher et al., editors, Watch What I Do: Programming by
Demonstration, pages 405{413. The MIT Press, 1993.

[KGF74] Herbert J. Klausmeier, E. S. Ghatala, and D. A. Frayer. Conceptual Learning
and Development, a Cognitive View. Academic Press, New York, 1974.

[KM93] David S. Kosbie and Brad A. Myers. A system-wide macro facility based on
aggregate events: A proposal. In Allen Cypher et al., editors, Watch What I
Do: Programming by Demonstration, pages 433{444. The MIT Press, 1993.

[Kri95] Balachander Krishnamurthy, editor. Practical Resusable UNIX Software.
John Wiley & Sons, New York, NY, 1995.

[KW88] Brent J. Krawchuk and Ian H. Witten. On asking the right questions. In 5th
International Machine Learning Conference, pages 15{21. Morgan Kaufmann,
June 1988.

[Lan80] P. Langley. Finding common paths as a learning mechanism. In Third Con-
ference of the Canadian Society for Computational Studies of Intelligence,
pages 12{19, 1980.

[Lew92] John D. Lewis. Task acquisition from instruction. Master's thesis, University
of Calgary, 1992.

[Lie94] Henry Lieberman. A user interface for knowledge acquisition form video.
In Twelfth National Conference of the American Association for Arti�cial
Intelligence, August 1994.

[LNR87] John E. Laird, Allen Newell, and Paul S. Rosenbloom. Soar: An architecture
for general intelligence. Arti�cial Intelligence, 33(1):1{64, 1987.

[LW99] Tessa A. Lau and Daniel S. Weld. Programming by demonstration: An in-
ductive learning formulation. In 1999 International Conference on Intelligent
User Interfaces, pages 145{152, Redondo Beach, CA, January 1999.

[MA97] Nigel Major and Shaaron Ainsworth. Developing intelligent tutoring systems
using a psychologically motivated authoring environment. In AAAI 1997 Fall
Symposium Series: Intelligent Tutoring System Authoring Tools, pages 53{59.
AAAI Press, November 1997. Technical Report FS-97-01.

253

[Maj95] Nigel Major. Modeling teaching strategies. Journal of Arti�cial Intelligence
in Education, 6(2/3):117{152, 1995.

[Mau94] David Maulsby. Instructable Agents. PhD thesis, University of Calgary, June
1994.

[MAW97] Nigel Major, Shaaron Ainsworth, and David Wood. REDEEM: Exploiting
the symbiosis between psychology and authoring environments. International
Journal of Arti�cial Intelligence in Education, 8:317{340, 1997.

[ME89] Chris Mellish and Roger Evans. Natural language generation from plans.
Computational Linguistics, 15(4), 1989.

[Mit78] Tom M. Mitchell. Version Spaces: An Approach to Concept Learning. PhD
thesis, Stanford University, 1978.

[Mit82] Tom M. Mitchell. Generalization as search. Arti�cial Intelligence, 18:203{
226, 1982.

[Mit93] Vibhu O. Mittal. Generating natural language descriptions with integrated
text and examples. Technical Report ISI/RR-93-392, USC/Information Sci-
ences Institute, September 1993.

[MJP+97] Allen Munro, Mark C. Johnson, Quentin A. Pizzini, David S. Surmon, Dou-
glas M. Towne, and James L. Wogulis. Authoring simulation-centered tutors
with RIDES. International Journal of Arti�cial Intelligence in Education,
8:284{316, 1997.

[MJSW93] A. Munro, M. C. Johnson, D. S. Surmon, and J. L. Wogulis. Attribute-
centered simulation authoring for instruction. In Proceedings of the AI-ED
93 World Conference of Arti�cial Intelligence in Education, pages 82{89, Ed-
inburgh, Scotland, 1993.

[MKKC86] Tom M. Mitchell, Richard M. Keller, and Smadar T. Kedar-Cabelli.
Explanation-based generalization: A unifying view. Machine Learning,
1(1):47{80, 1986.

[MMS90] Tom M. Mitchell, Sridbar Mabadevan, and Louis I. Steinberg. LEAP: A
learning apprentice for VLSI design. In Machine Learning An Arti�cial Intel-
ligence Approach, volume III, pages 271{289. Morgan Kaufmann, San Mateo,
CA, 1990.

[MP93] Vibhu O. Mittal and Cecile L. Paris. Generating natural language descrip-
tions with examples: Di�erences between introductory and advanced texts. In
Proceedings of the Eleventh National Conference on on Arti�cial Intelligence,
pages 271{276, Washington, DC, July 1993.

[MR91] David McAllester and David Rosenblitt. Systematic nonlinear planning.
In Proceedings of the Ninth National Conference on Arti�cial Intelligence
(AAAI-91), pages 634{639, Menlo Park, CA, 1991. AAAI Press.

254

[MT69] S. M. Markle and P. W. Tiemann. Really Understanding Concepts. Stipes
Press, Urbana, Illinois, 1969.

[MUB83] Tom M.Mitchell, Paul E. Utgo�, and Ranan Banerji. Learning by experimen-
tation: Acquiring and re�ning problem-solving heuristics. In R. Michalski,
J. Carbonell, and T. Mitchell, editors, Machine Learning An Arti�cial Intel-
ligence Approach, volume I. Morgan Kaufmann, San Mateo, CA, 1983.

[Mur97] Tom Murray. Expanding the knowledge acquisition bottleneck for intelligent
tutoring systems. International Journal of Arti�cial Intelligence in Educa-
tion, 8:222{232, 1997.

[Mur98] Tom Murray. Authoring knowledge-based tutors: Tools for content, instruc-
tional strategy, student model, and interface design. The Journal of the
Learning Sciences, 7(1):5{64, 1998.

[Mus93] Mark A. Musen. An overview of knowledge acquisition. In J. M. David, J. P.
Krivine, and R. Simmons, editors, Second Generation Expert Systems, pages
405{427. Springer-Verlag, 1993.

[MW93] David Maulsby and Ian H.Witten. Metamouse: An instructible agent for pro-
gramming by demonstration. In What What I Do: Programming by Demon-
stration. The MIT Press, 1993.

[MWM94] Antonija Mitrovi�c, Ian H. Witten, and David L. Maulsby. An experiment
in the application of similarity-based learning to programming by example.
International Journal of Intelligent Systems, 9:341{364, 1994.

[New90] Allen Newell. Uni�ed Theories of Cognition. Harvard University Press, 1990.

[Nor88] Donald A. Norman. The Psychology of Everyday Things. Basic Books, New
York, 1988.

[OC96] Tim Oates and Paul R. Cohen. Searching for planning operators with context-
dependent and probabilistic e�ects. In Proceedings of the Thirteenth National
Conference on Arti�cial Intelligence, pages 863{868, 1996.

[Ous94] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, Reading,
Massachusetts, 1994.

[Pea96] Douglas John Pearson. Learning Procedural Planning Knowledge in Complex
Environments. PhD thesis, University of Michigan, 1996.

[PK86] Bruce W. Porter and Dennis F. Kibler. Experimental goal regression: A
method for learning problem-solving heuristics. Machine Learning, 1:249{
286, 1986.

[PL96] Douglas J. Pearson and John E. Laird. Toward incremental knowledge cor-
rection for agents in complex environments. In S. Muggleton, D. Michie, and
K. Furukawa, editors, Machine Intelligence, volume 15. Oxford University
Press, 1996.

255

[Pol90] Martha Pollack. Plans as complex mental attitudes. In Phil Cohen, Jerry
Morgan, and Martha Pollack, editors, Intention in Communication. MIT
Press, 1990.

[PS92] Mark A. Peot and David E. Smith. Conditional nonlinear planning. In Pro-
ceedings of the First International Conference on Arti�cial Intelligence Plan-
ning Systems, pages 189{197, College Park, Maryland, 1992. Morgan Kauf-
mann.

[PV96] Cecile Paris and Keith Vander Linden. An interactive support tool for writing
multilingual manuals. IEEE Computer, 29(7):49{56, 1996.

[PVF+95] Cecile Paris, Keith Vander Linden, Markus Fischer, Anthony Hartley, Lyn
Pemberton, Richard Power, and Donia Scott. A support tool for writting
multilingual instructions. In Proceedings of the Fourteenth International Joint
Conference on Arti�cial Intelligence, pages 1398{1404, Montreal, Canada,
1995.

[RB98] Steven Ritter and Stephen B. Blessing. Authoring tools for component-based
learning environments. The Journal of the Learning Sciences, 7(1):107{132,
1998.

[Red92] Michael A. Redmond. Learning by observing and understanding expert prob-
lem solving. PhD thesis, Georgia Institute of Technology, 1992.

[Red97] Carol Luckhardt Red�eld. An ITS authoring tool: Experimental advanced
instructional design advisor. In AAAI 1997 Fall Symposium Series: Intelli-
gent Tutoring System Authoring Tools, pages 72{78. AAAI Press, November
1997. Technical Report FS-97-01.

[Ren97] Alexander Renkl. Learning from worked-out examples: A study on individual
di�erences. Cognitive Science, 21(1):1{29, 1997.

[Ric89] Je� W. Rickel. Intelligent computer-aided instruction: A survey organized
around system components. IEEE Transactions on Systems, Man and Cy-
bernetics, 19(1):40{57, 1989.

[RJ99] J. Rickel and W. L. Johnson. Animated agents for procedural training in
virtual reality: Perception, cognition, and motor control. Applied Arti�cial
Intelligence, 1999.

[RK96] Steven Ritter and Kenneth R. Koedinger. An architecture for plug-in tutor
agents. Journal of Arti�cial Intelligence in Education, 7(3/4):315{347, 1996.

[RN95] Stuart J. Russell and Peter Norvig. Arti�cial Intelligence A Modern Ap-
proach. Prentice Hall Series in arti�cial intelligence. Prentice Hall, 1995.

[RS90] Ronald L. Rivest and Robert E. Schapire. A new approach to unsupervised
learning in deterministic environments. In Yves Kodrato� and Ryszard S.
Michalski, editors, Machine Learning: An Arti�cial Intelligence Approach,
volume III, pages 670{684. Morgan Kaufmann, San Mateo, CA, 1990.

256

[RS97] Charles Rich and Candace L. Sidner. COLLAGEN: When agents collabo-
rate with people. In Proceedings of the First International Conference on
Autonomous Agents, pages 284{291, February 1997.

[SB86] Claude Sammut and Ranan B. Banerji. Learning concepts by asking ques-
tions. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Ma-
chine Learning: An Arti�cial Intelligence Approach, volume II, pages 167{
191. Morgan Kaufmann, Los Altos, CA, 1986.

[Sch53] H. Sche��e. A method for judging all contrasts in the analysis of variance.
Biometrika, 40:87{104, 1953.

[Sch94] Roger C. Schank. Goal-based scenarios: A radical look at education. The
Journal of the Learning Sciences, 4(3):429{453, 1994.

[SCS94] David Can�eld Smith, Allen Cypher, and Jim Spoher. KIDSIM: Program-
ming agents without a programming language. CACM, 94(7):55{67, July
1994.

[Seg87] Alberto Maria Segre. A learning apprentice system for mechanical assembly.
In IEEE Third Conference on Arti�cial Intelligence Applications, pages 112{
117, 1987.

[Sel74] J.A. Self. Student models in computer-aided instruction. International Jour-
nal of Man-Machine Studies, 6:261{276, 1974.

[SG88] Mildred L. G. Shaw and Brian R. Gaines. An interactive knowledge-elicitation
technique using personal construct technology. In Knowledge Acquisition for
Expert Systems: A Practical Handbook, pages 109{136. Plenum Press, New
York, 1988.

[She93] Wei-Min Shen. Discovery as autonomous learning from the environment.
Machine Learning, 11(4):250{265, 1993.

[She94] Wei-Min Shen. Autonomous Learning From The Environment. W. H. Free-
man, New York, NY, 1994.

[She97] Michael Shermer. Why People Believe Wierd Things. W. H. Freeman and
Company, New York, NY, 1997.

[SJ91] Roger C. Schank and Menachem Y. Jona. Empowering the student: New
perspectives on the design of teaching systems. The Journal of the Learning
Sciences, 1(1):7{35, 1991.

[SMP95] Randy Stiles, Laurie McCarthy, and Michael Pontecorvo. Training studio: A
virtual environment for training. In Workshop on Simulation and Interaction
in Virtual Environments (SIVE-95), Iowa City, IW, July 1995. ACM Press.

257

[SR90] Benjamin D. Smith and Paul S. Rosenbloom. Incremental non-backtracking
focusing: A polynomial bounded generalization algorithm for version spaces.
In Proceedings of the Eighth National Conference on Arti�cial Intelligence,
pages 848{853, 1990.

[SS98] Raymund Sison and Masamichi Shimura. Student modeling and machine
learning. International Journal of Arti�cial Intelligence in Education, 9:128{
158, 1998.

[Tec92] Gheorghe Tecuci. Automating knowledge acquisition as extending, updating,
and improving a knowledge base. IEEE Transactions on Systems, Man and
Cybernetics, 22(6):1444{1460, 1992.

[TH96] Gheorghe Tecuci and Michael R. Hieb. Teaching intelligent agents: the
Disciple approach. International Journal of Human-Computer Interaction,
8(3):259{285, 1996.

[THD95] Gheorghe Tecuci, Michael R. Hieb, and Tomasz Dybala. Building an adaptive
agent to monitor and repair the electrical power system of an orbital satellite.
In Goddard Conference on Space Applications of Arti�cial Intelligence and
Emerging Information Technologies, pages 57{71, NASA Goddard, Greenbelt,
Maryland, 1995.

[TK90] Gheorghe Tecuci and Yves Kodrato�. Apprenticeship learning in imperfect
domain theories. In Machine Learning An Arti�cial Intelligence Approach,
volume III, pages 514{552. Morgan Kaufmann, San Mateo, CA, 1990.

[TK98] Gheorgie Tecuci and Harry Keeling. Delevoping intelligent educational agents
with the Disciple learning agent shell. In Barry P. Goettl, Henry M. Hal�,
Carol L. Red�eld, and Valerie J. Shute, editors, Intelligent Tutoring Systems:
4th international conference, pages 454{463. Springer-Verlag, Berlin, 1998.

[Tow97a] Douglas M. Towne. Approximate reasoning techniques for intelligent diagnos-
tic instruction. International Journal of Arti�cial Intelligence in Education,
8:262{283, 1997.

[Tow97b] Douglas M. Towne. Diagnostic tutoring using qualitative symptom infor-
mation. In AAAI 1997 Fall Symposium Series: Intelligent Tutoring System
Authoring Tools, pages 86{95. AAAI Press, November 1997. Technical Report
FS-97-01.

[Utg86] Paul E. Utgo�. shift of bias for inductive concept learning. In Machine
Learning An Arti�cial Intelligence Approach, volume II, pages 107{148. Mor-
gan Kaufmann, Los Altos, CA, 1986.

[Van83] Kurt VanLehn. Felicity conditions for human skill acquisition: Validating
an AI-based theory. Research report no. CIS-21, Xerox Palo Alto Research
Center, 1983.

258

[Van87] Kurt VanLehn. Learning one subprocedure per lesson. Arti�cial Intelligence,
31:1{40, 1987.

[Van93] Keith Vander Linden. Speaking of Actions: Choosing Rhetorical Status and
Grammatical Form in Instructional Text Generation. PhD thesis, University
of Colorado, Department of Computer Science, 1993.

[Van99] Kurt VanLehn. Rule-learning events in the acquisition of a complex skill: An
evaluation of Cascade. The Journal of the Learning Sciences, 8(1):71{125,
1999.

[VCP+95] Manuela Veloso, Jaime G. Carbonell, M. Alicia P�erez, Daniel Borrajo, Eugene
Fink, and Jim Blythe. Integrating planning and learning: The PRODIGY
architecture. Journal of Experimental and Theoretical Arti�cial Intelligence,
7(1), January 1995.

[VD96] W.R. VanJoolingen and T. DeJong. Design and implementation of
simulation-based discovery environments: the SMISLE solution. Interna-
tional Journal of Arti�cial Intelligence in Education, 7:253{276, 1996.

[VJC92] Kurt VanLehn, Randolph M. Jones, and Michelene T. H. Chi. A model of
the self-explanation e�ect. The Journal of the Learning Sciences, 2(1):1{59,
1992.

[VM95] Keith Vander Linden and James H. Martin. Expressing rhetorical relations
in instructional test: A case study of the purpose relation. Computational
Linguistics, 21:29{57, March 1995.

[Wan95] Xuemai Wang. Learning by observation and practice: An incremental ap-
proach for planning operator acquisition. In The 12th International Confer-
ence on Machine Learning, 1995.

[Wan96a] Xuemai Wang. A multistrategy learning system for planning operator ac-
quisition. In The Third International Workshop on Multistrategy Learning,
Harpers Ferry, West Virginia, May 1996.

[Wan96b] Xuemai Wang. Planning while learning operators. In The Third International
conference on arti�cial planning systems, May 1996.

[Wan96c] Xuemei Wang. Learning Planning Operators by Observation and Practice.
PhD thesis, Carnegie Mellon University, 1996.

[WC87] Beverly Woolf and Patricia A. Cunningham. Multiple knowledge sources in
intelligent teaching systems. IEEE Expert, 2(2):41{54, 1987.

[Wd90] Daniel S. Weld and Johan de Kleer, editors. Readings in Qualitative Reason-
ing About Physical Systems. Morgan Kaufman, San Mateo, CA, 1990.

[Wel94] Daniel S. Weld. An introduction to least commitment planning. AI Magazine,
pages 27{61, Winter 1994.

259

[Wen87] Etienne Wenger. Arti�cial Intelligence and Tutoring Systems: Computational
and Cognitive Approaches to Communication of Knowledge. Morgan Kauf-
mann Publishers, Inc., Los Altos, California, 1987.

[Wil90] David C. Wilkins. Knowledge base re�nement as improving an incorrect and
incomplete domain theory. In Machine Learning An Arti�cial Intelligence
Approach, volume III, pages 493{513. Morgan Kaufmann, San Mateo, CA,
1990.

[WW72] Thomas H. Wonnacott and Ronald J. Wonnacott. Introductory Statistics for
Business and Economics. John Wiley & Sons, 1972.

[You97] R. Michael Young. Generating Descriptions of Complex Activities. PhD
thesis, University of Pittsburgh, 1997.

[YPL77] Richard M. Young, Gordon D. Plotkin, and Reinhard F. Linz. Analysis of
an extended concept-learning task. In Proceedings of the Fifth International
Conference on Arti�cial Intelligence, page 285, 1977.

260

Appendix A

Implementation

A.1 Architecture

Visual

Interface

Audio

Effects

Speech

Generation Recognition

Speech

Dispatcher

Simulation Soar Agent

STEVE Diligent

Message

Figure A.1: The VET Software Architecture

Diligent was implemented in the context of the Virtual Environments for Training (VET)
project [JRSM98]. For purposes of modularity, the di�erent components run as separate
processes on possibly di�erent machines.

The project uses Silicon Graphics workstations running version 6.2 { 6.5 of the IRIX
operating system. Figure A.1 shows a schematic of the VET architecture.

Message Dispatcher. The software components talk to each other via the message dis-
patcher. For this we are using Sun's ToolTalkTM .

Visual Interface. The visual interface is the graphical representation of the environment.
The visual interface is provided by Lockheed Martin's Vista Viewer [SMP95]. On
the VET project, two types of visual interfaces are supported: a browser on the
computer console and an immersive virtual reality environment that uses a head-
mounted display and data gloves. Because of the need to use the keyboard and to

261

interact with Diligent's menus, Diligent only supports authoring with the browser.
However, once a procedure has been authored, the procedure can be used to teach
students with either the browser or the immersive environment.

Audio E�ects. Human students have the ability to hear various sound e�ects on their
head-mounted display. Diligent does not deal with this capability.

Speech Generation. STEVE is able to speak to students. Diligent's test subjects used
this capability when testing procedures. This capability is provided by Entropic's
TrueTalkTM .

Speech Recognition. This component is allows students to communicate with STEVE
agents. The capability is provided by Entropic's GrapHViteTM . Diligent does not
deal with actions that involve communication.

Simulation. The simulation controls the environment. It is implemented with VIVIDS,
which is a version of RIDES [MJP+97]. RIDES was developed at the USC Behavior
Technology Laboratory (BTL). The people at BTL modi�ed VIVIDS so that Diligent
was able to save and restore environment con�gurations.

Soar Agent. The Soar agent [LNR87] is a production system that contains both the
STEVE1 tutor [RJ99] and the Diligent authoring program. STEVE and Diligent
are separate modules that behave like separate programs.

STEVE uses a synthetic body (Figure A.2) to interact with students. STEVE uses
the body to perform activities such as demonstrating procedures and pointing to or
looking at objects. STEVE is primarily implemented as Soar productions. STEVE
uses tksoar version 7.0.0.beta, TCL version 7.4 and TK version 4.0.

Diligent is primarily implemented in TCL/TK [Ous94]. Most of Diligent resides in
the same process as STEVE, but the code that produces graphs of procedures has its
own process. The graph process uses the tkdot portion of the Graph Visualization
tools from AT&T Laboratories and Bell Laboratories (Lucent Technology) [Kri95].
The graph process uses TCL version 7.6, TK version 4.2 and the TK Dash patch by
Jan Nijtmans.

A.2 Maintenance of Agenda

One of problems faced by a system like Diligent is properly sequencing its input. Input
can come from both the environment and the instructor. Furthermore, the environment
and the instructor can be sending input at the same time. Additionally, some activities
may involve a sequence of behaviors, some of which can take variable amounts of time.
For example, consider initializing the environment before the start of a procedure's second
demonstration. The following activities take place.

1Soar Training Expert for Virtual Environments

262

Figure A.2: The STEVE Tutoring Agent

263

1. The instructor is asked for an initial environment con�guration. (Assume that the
con�guration matches the �rst con�guration.)

2. The environment is reset.

3. At this point, Diligent may have records of actions performed in the environment
that have not yet been processed. In order to prevent confusion, Diligent deletes
these records.

4. Actions in the path's pre�x are replayed.

5. The instructor can now add additional actions to the pre�x.

6. The instructor indicates that the demonstration should start.

Because we want the instructor have maximum exibility for interleaving activities, it
is inappropriate to encode a �xed sequence of activities in a procedure or grammar. An
approach is needed that allows maximum exibility and minimizes the code that handles
special cases.

To solve this problem, Diligent manages the interaction with an agenda. Diligent's
agenda has stack of lists. Each level in the stack corresponds to one procedure, and each
list contains activities to perform for that procedure. The dialog with the instructor is
focused on the procedure at the top of the stack. To prevent confusion and to avoid
problems, some activities are only allowed on the top procedure. The restricted activities
include demonstrations, experiments and using STEVE to test the procedure.2

This approach was inuenced by other work. The idea of a stack of procedures where
the agent focuses on the top procedure was borrowed from Instructo-Soar [HL95]. The
idea for each level of the agenda to contain a list of activities was inspired by COLLAGEN
[RS97], whose agenda is a stack of plans for managing user interaction.

A.3 Providing Feedback About Diligent's Beliefs

Another problem faced by Diligent is providing feedback about its con�dence in aspects of
its knowledge base (e.g. how certain is Diligent that a causal link is correct?). By providing
feedback, Diligent indicates what it believes strongly as well as areas of uncertainty where
the instructor could focus.

To compute its con�dence, Diligent could have used a formal numeric approach, such
as certainty factors, fuzzy logic or Dempster-Scafer theory [RN95]. However, Diligent may
have little data from which to calculate numeric values. Furthermore, it was hypothesized
that numeric values might confuse users who are not experts in this area.

Instead, Diligent uses a small set of symbolic status values to describe its beliefs. These
values are not described earlier because they are a minor part of the system and are not
based on a rigorous theory. Nevertheless, the status values are important for two reasons.

� The status values are used in the user interface, which is described in Appendix D.

2Using an agenda greatly reduced the user interface's complexity.

264

� The status values are useful when using multiple paths to generate a plan.3

Status value Is the object
used in a

plan?

Meaning

required yes Instructor has indicated that it be
used.

suspect yes Instructor has indicated that it be
used, but he appears to have made
a mistake. (The object will still be
used.)

provisional yes Likely to be correct.

ignored no Likely to be correct but not needed.

unlikely no Appears to be incorrect.

useless no Evidence strongly suggests it to be
incorrect.

rejected no Instructor has indicated that it should
not be used.

Table A.1: Status Values Used by Diligent

The status values used by Diligent are shown in Table A.1. The types of objects that
have status values are preconditions, goal conditions, causal links and ordering constraints.
By default, Diligent gives a status value of provisional to objects that it believes to be
needed. The status values required and rejected are only used when the instructor explicitly
indicates whether or not that object should be used when building a plan. The status
value ignored is only used with ordering constraints involving a step that represents the
procedure's initial state or goal state.

These status values are similar in concept to the three sets used to contain operator
preconditions (i.e. s-rep, h-rep and g-rep) but are not the same; preconditions in the h-rep
and g-rep have a status of provisional unless the instructor indicates that they should be
required.

As mentioned earlier, the status values are useful when hypothesizing goal conditions
using multiple paths. A useful heuristic is that a condition is a goal condition when the
condition's attribute value changes during at least one path and the condition is present
in the �nal state of every path. These hypothesized goal conditions are given a status
of provisional. The heuristic also identi�es conditions that appear to be goal conditions
in some paths but not in others. These conditions have a status of unlikely or suspect.
Conditions with a status of unlikely indicate that the instructor may have made an error
in one of the paths, while conditions with a status of suspect indicate an error because a
previously required goal condition is not satis�ed in the �nal state of a least one path.

3The capability to generate a plan from multiple paths was removed from Diligent. Some of the issues
are described in Section 8.4.1.1.

265

Appendix B

Evaluation Materials

This appendix contains material used for evaluating Diligent.

B.1 Background Questionnaire

The �rst thing subjects did was �ll out this questionnaire.

Name:

Date:

1) Educational background. How many total years of
education do you have (e.g. 12 years of high school +
4 years of college + 2 years of graduate school)?
What degrees do you have and in what subjects? If you are
a graduate student, when did you start graduate school?

2) How old are you?
<25 <30 <35 <40 <50 >50

3) Are you male or female?

4) Are you color-blind? If so, in what way?

5) Are you right or left handed?

6) Do you have a personal computer at home?

7) Do you use a computer at work?

8) What is your occupation?
9) How many hours a week do you typically use a computer?

10) During a typical week, what are your primary activities
on a computer and how many hours do you spend on each?

266

programming:
word processing:
browsing:
using a spread sheet:
other (name the activities):

11) What are the main activities you have performed on a computer
in the last week? About how many hours have you spent on each?

1.
2.
3.

12) Which programming languages do you have a lot of experience with?

13) How would you rate yourself as a computer programmer?
a) not a programmer
b) novice
c) intermediate
d) good
e) expert

14) Circle the following topics for which you feel that you
have signi�cant knowledge.

a) AI planning techniques
b) machine learning induction techniques
c) programming by demonstration
d) high pressure air compressor maintenance
e) machine maintenance in general
f) Diligent: the system we are testing

15) How would you rate your ability to read English?
a) poor
b) moderate
c) good
d) excellent
e) English is my �rst language

267

B.2 Procedure Representation Description

This section was read by subjects near the start of the �rst day's training. The subjects then
�lled out the worksheet on Diligent's procedure representation (Section B.3).

Note that the tutorial uses the term \ordering relationships" instead of the term \step
relationships" that is used in this thesis.

In this section, we'll discuss how procedures are represented.
First, we need to de�ne some terminology. The environment is represented by a set of

attributes. Each attribute has a value. A condition contains an attribute and its value. A
condition is true, or satis�ed, when the attribute has the value and false when the attribute
doesn't have the value.

A procedure transforms an initial environment state to a desired goal state. The state
is transformed through a sequence of steps, where each step represents some action that
is performed in the environment. A procedure is �nished when all its goal conditions are
true.

268

Figure B.1: Procedure with Steps in Speci�cation Order

Figure B.1 shows a procedure called \example". The \begin-example" step represents
the initial state, and the \end-example" step represents the goal state. The steps \press-
button-1" and \turn-handle-2" represent the actions performed during the procedure. The
steps are ordered by the sequence in which they were speci�ed.

However, a procedure's steps don't have to be performed in the order that they were
speci�ed. Instead, the steps in a procedure can be performed in any order that satis�es
the preconditions of each step.

269

Figure B.2: Procedure with Steps Ordered by Dependencies

Figure B.2 shows procedure \example" where the steps are ordered by dependencies
of later steps on earlier steps.

In order to keep track of the preconditions and state changes of each step, every step is
associated with an operator. An operator models an action performed in the environment.
An operator can have multiple e�ects. Each e�ect has a set of preconditions and a set of
state changes. If an e�ect's preconditions are satis�ed, the e�ect's state changes will be
observed.

Because operators model actions, each operator can be associated with multiple steps.
Because an operator can have multiple e�ects, each step is associated with a subset of

an operator's e�ects.

270

Operator: toggle-valve1

Action: toggling valve Valve1

E�ect 1: E�ect 2:
Preconditions: Preconditions:

(Valve1 = open) (Valve1 = shut)
State changes: State changes:

(Valve1 = shut) (Valve1 = open)

Figure B.3: Operator with Two E�ects

Figure B.3 shows an operator that models the toggling of valve Valve1. The operator
has two e�ects: if the valve is open, it becomes shut (E�ect 1), and if the valve is shut, it
becomes open (E�ect 2).

271

Procedure: Example2
The speci�ed order of steps: toggle-valve-1 ! toggle-valve-2

Step: toggle-valve-1
Operator: toggle-valve
Operator E�ects : E�ect 1

Step preconditions: (Valve1 = open)
Step state changes: (Valve1 = shut)

Step: toggle-valve-2
Operator: toggle-valve
Operator E�ects : E�ect 2
Step prerequisites: (Alarm-light1 on)

Step preconditions: (Valve1 = shut)(Alarm-light1 = on)
Step state changes: (Valve1 = open)

Figure B.4: Example Steps

Figure B.4 shows the steps in procedure Example2. Both steps use the operator in
�gure B.3. The �rst step (toggle-valve-1) shuts Valve1, and the second step (toggle-valve-
2) opens Valve1. All preconditions of the �rst step (toggle-valve-1) come from the operator
e�ect (E�ect 1). Although the second step (toggle-valve-2) also gets preconditions from an
operator e�ect (E�ect 2), the second step has an additional precondition (Alarm-light1 =
on). The additional precondition is step prerequisite. A step prerequisite is a precondition
that belongs only to the step and not to the operator e�ects associated with the step.

A step prerequisite allows you to specify additional preconditions that are not required
by the operator e�ects associated with the step.

Unfortunately, to actually perform a procedure, we need to know more that the precon-
ditions of each step; we need to know the how the steps depend on each other. This involves
knowing which steps establish preconditions of other steps. It also involves knowing if the
state changes of one step will interfere with the preconditions of other steps.

Because the dependencies between steps contain the preconditions of each step, only
the dependencies will be given to the Steve tutor.

Figure B.5 shows the dependencies between the steps in procedure Example2 (�gure
B.4). In this document, these dependencies will be called ordering relationships because
they order a procedure's steps. Diligent uses two types of ordering relationships: causal
links and ordering constraints.

A causal link is an attribute value caused by one step that is a precondition for a later
step. Each step precondition can have a causal link. In the example, the �rst two causal
links are actually dependencies on the procedure's initial state (begin-Example2). The

272

Procedure's initial state (begin-Example2):
(Valve1 = open)(Alarm-light1 = on)

Procedure goals (end-Example2):
(Valve1 = open)

Causal links:
begin-Example2 (Valve1 = open) toggle-valve-1
begin-Example2 (Alarm-light1 = on) toggle-valve-2
toggle-valve-1 (Valve1 = shut) toggle-valve-2
toggle-valve-2 (Valve1 = open) End-Example2

Ordering constraints:
toggle-valve-1 before toggle-valve-2

Figure B.5: Procedure Example2's Dependencies

last causal link is between the last step (toggle-valve-2) and the procedure's goal (end-
Example2). A causal link with the procedure's goal indicates that the step establishes one
of the procedure's goal conditions.

Causal links are used to represent the preconditions of steps and to provide explanations
of how earlier steps a�ect later steps.

An ordering constraint indicates the relative order for performing a pair of steps.
In the example, the �rst step (toggle-valve-1) should be performed before the second
step (toggle-valve-2). There are no ordering constraints involving procedure's initial state
(begin-Example2) and goals (end-Example2) because all steps are performed after the
initial state and before the end of the procedure.

Ordering constraints are used to determine which step to perform when when all the
preconditions of multiple steps are satis�ed.

You may have noticed that the procedure's goal condition is satis�ed in the initial state.
This means that none of the procedure's steps would normally be performed. However, if
the procedure was started when Valve1 was shut, then the second step would be performed.

Because understanding this chapter will prevent confusion, stop reading

the tutorial. Please �ll out the worksheet on the next page in your directions.
When you are satis�ed with with your answers, continue reading the tutorial

and verify that your answers are correct.

273

B.3 The Procedure Representation Worksheet

After subjects read the tutorial chapter on the procedural representation, they �lled out this
questionnaire. When they were done, they checked their answers against those in section B.4.

In the following, circle the correct answers. (More than one answer may be correct.)
If you discover that you've made an mistake, just change your answer.

1. Do the steps in a procedure change the state of the environment? True or False

2. A procedure is �nished when

(a) All its steps are executed

(b) All its goal conditions are true (or satis�ed)

3. Steps have to be performed in the order that they are speci�ed? True or False

4. An operator models an action performed in the environment? True or False

5. Each step

(a) Is Associated with only one operator

(b) Can be associated with multiple operators

(c) Is associated with only one operator e�ect

(d) Can be associated with multiple operator e�ects.

6. Each operator

(a) Is associated with an action performed in the environment

(b) Is associated with multiple actions performed in the environment

(c) Can have multiple e�ects

(d) Is associated with a single step

(e) Can be associated with multiple steps

7. Each operator e�ect

(a) Has preconditions

(b) Has state changes

(c) Has causal links

(d) Has ordering constraints

(e) Produces the given state changes if the preconditions are satis�ed

8. Step preconditions

(a) Include all preconditions from the associated operator e�ects

(b) Do not include the preconditions from the associated operator e�ects

(c) Can include step speci�c preconditions called step prerequisites

274

9. Dependencies between steps

(a) Are called ordering relationships

(b) Include step preconditions

(c) Include operator preconditions

(d) Include causal links

(e) Include ordering constraints

10. Causal links

(a) Indicate that an earlier step establishes a precondition of a later step.

(b) Indicate the relative order for performing a pair of steps

(c) Are used to provide explanations about the dependencies between steps

(d) Can involve more than two steps

11. Ordering constraints

(a) Indicate that an earlier step establishes a precondition of a later step.

(b) Indicate the relative order for performing a pair of steps

(c) Are used to provide explanations about the dependencies between steps

(d) Can involve more than two steps

12. You may want ordering constraints between a pair of steps when

(a) There is a causal link between the steps

(b) The state changes of the later step interfere with the preconditions of the earlier
step

(c) The later step is speci�ed immediately after the �rst step

13. What is given to the Steve tutor?

(a) A set of steps

(b) A set of ordering relationships (i.e. causal links and ordering constraints)

(c) A set of causal links that establish the procedure's goal conditions

(d) A set of step preconditions

(e) A set of operators

275

B.4 Worksheet Answers

These answers were contained in tutorial.

1. True.
2. (b).
3. False.
4. True.
5. (a),(d).
6. (a),(c),(e).
7. (a),(b),(e).
8. (a),(c).
9. (a),(d),(e).
10. (a),(c).
11. (b).
12. (a),(b).
13. (a),(b),(c).

Do you have any questions about these answers?

276

B.5 The Post-Test

The last thing that subjects did was answer the following questions.

How did you like it

In the following, please provide answers from 1 to 7. (1 means not at all, 4 means
somewhat, and 7 means a great deal.) If you cannot answer a question write N/A.

The following questions were only given to subjects who only used an editor

Authoring
a) Did you like the system?
b) Was it easy to use?
c) Was it easy to specify a procedure's steps?
d) Was it easy to identify a step's preconditions?
e) Was it easy to identify a step's state changes?
f) Was it easy to identify how operators inuenced

causal links and ordering constraints?
g) Any other comments about authoring?

The following questions were only given to subjects who demonstrated.

Demonstrating
a) Did you like the system?
b) Was it easy to use?
c) Was it easy to demonstrate a procedure?
d) Did you �nd additional demonstrations useful?
e) Was it easy to specify a procedure's steps?
f) Was it easy to identify a step's preconditions?
g) Was it easy to identify a step's state changes?
h) Was it easy to identify how operators inuenced

causal links and ordering constraints?
i) Any comments about demonstrations?

The following questions were only given to subjects who experimented.

Experiments

a) Did you like experimenting?
b) Did experiments take too long?
c) Did experiments save you work?
d) Did experiments �nd errors that you would have missed?
e) Any comments about experiments?

277

Were there any other aspects of system that were useful or
worth mentioning?

Thank you!

278

B.6 The Directions Given Subjects

This packet contains your directions for authoring procedures using Diligent.
Please go to the next page and answer the questions.

At this point, the subjects �lled out the background questionnaire.

Please indicate that you are ready to continue.

First Day Directions

You will be given the Diligent tutorial.
Please open the tutorial and read through the �rst chapter and stop when you've

�nished it. Indicate that you are done and ask to continue.
Now work through the rest of the tutorial. Since some menus are visited several times,

please follow the directions rather than explore the system.
At this point, the subjects �lled out the Procedure Representation Worksheet.
Continue with the tutorial when you have �nished the above worksheet.

Remember to follow the directions instead of exploring the system.
When you have �nished the tutorial, stop. Indicate that you are done and

ask to continue.
Please look over the tutorial's synopsis.
Do you have any questions?
End of the �rst day

279

Second Day Directions

Please review the tutorial's synopsis (chapter 9) and the worksheet on procedure rep-
resentation. You should focus on those two sections but you can look at other parts of the
tutorial. Do not spend more than ten minutes. Stop when you are �nished. Indicate
that you are done and ask to continue.

Now go over the second day tutorial. Stop when you are �nished. Indicate that
you are done and ask to continue.

At the end of the second day tutorial, subjects solve the practice problem (section B.11
and look at its solution (section B.12).

Do you have any questions?

280

Authoring

Now you will author two procedures. For each procedure, you should

1. Enter the procedure and modify it until you're satis�ed.

2. Test it.

3. Indicate when you are �nished with it.

You cannot spend more than 30 minutes on a procedure.

Instructions

These are the directions given to the subjects who both demonstrated and experimented.
If a subject did not demonstrate or experiment, then directions that mention demonstrations
or experiments were removed.

Remember to consult the tutorial's synopsis chapter if you have questions.
Please do not change status values between \provisional" and \required." Both values

indicate that the object will be used.
When authoring, remember that we are primarily concerned with attributes that

change value during the procedure.
A procedure should only contain necessary ordering relationships.
When demonstrating a procedure, make sure that a step has been processed before

demonstrating the next step. This can be done by making sure that the text \wait2" and
\wait3" is scrolling in the Soar window. Demonstrating the next step too quickly can cause
serious problems. A good rule of thumb is at least 5 to 10 seconds between steps.

Also remember to let Diligent \experiment" with the procedure. After experimenting,
you need to derive the ordering relationships so that they reect what was learned during
the experiments.

Because your activities are being monitored, focus on authoring procedures rather than
exploring the system out of curiosity.

Assume that each procedure starts in the state shown in the Vista window. The
procedure's description assumes that you start in that state.

Please give each procedure a distinct name.
You will now be given

� A description of the procedures to be authored.

� Pictures of the device with labels identifying the names of various objects.

� A description of all attributes and their legal values.

Stop and indicate that you are ready to continue. The person helping you will
prepare the system for the �rst procedure.

Now author the \High Condensate Level Shutdown" procedure.

Stop when you have �nished with the procedure. Indicate that you are
done and ask to continue. The person helping you will prepare the system for the
second procedure.

281

Now author the \Overload Relay Tripped" procedure.
Stop when you have �nished with the procedure. Indicate that you are

done and ask to continue. The person helping you will save the second procedure.
Go to the next page and �ll out the questionnaire.
At this point the subjects, �lled out the post-test.

282

B.7 The List of Attribute Values

This list of attribute values was was given to all subjects, but was only required by subjects
who only used an editor. The list provides some indication of the size and complexity of the
domain.

The following list provides descriptions and values for the HPAC

attributes.

Attribute Name Description

Values

cdm_chnl1_lt_state "first stage alarm light"

"on"

"off"

cdm_chnl2_lt_state "second stage alarm light"

"on"

"off"

cdm_chnl3_lt_state "third stage alarm light"

"on"

"off"

cdm_chnl4_lt_state "fourth stage alarm light"

"on"

"off"

cdm_power_state "condensate drain monitor power"

"on"

"off"

cdm_status "condensate drain monitor status"

"system reset"

"function test"

"halted"

cp_oil_level "oil level"

"normal"

"low"

"high"

ctrl_mon_sel_state "compressor mode"

"monitored"

"unmonitored"

ctrl_motor_status "motor"

"on"

"off"

ctrl_power_status "power"

"on"

"off"

ctrl_relayreset_state "overload relay"

283

"ok"

"tripped"

dipstick_position "dipstick position"

"in"

"halfway"

"out"

gb_air1_state "first air intake valve"

"open"

"shut"

gb_air2_state "second air intake valve"

"open"

"shut"

gb_covstg1_state "first cutout valve"

"open"

"shut"

gb_covstg2_state "second cutout valve"

"open"

"shut"

gb_covstg3_state "third cutout valve"

"open"

"shut"

gb_covstg4_state "fourth cutout valve"

"open"

"shut"

gb_covstg5_state "fifth cutout valve"

"open"

"shut"

sdm_handle_location "location of the handle"

"separator drain 1st stage valve"

"separator drain 2nd stage valve"

"separator drain 3rd stage valve"

"separator drain 4th stage valve"

"separator drain 5th stage valve"

sdm_sep_drnvlv1_pressure "first stage pressure"

"high"

"normal"

sdm_sep_drnvlv1_state "first stage valve"

"open"

"shut"

sdm_sep_drnvlv2_pressure "second stage pressure"

"high"

"normal"

sdm_sep_drnvlv2_state "second stage valve"

"open"

"shut"

284

sdm_sep_drnvlv3_pressure "third stage pressure"

"high"

"normal"

sdm_sep_drnvlv3_state "third stage valve"

"open"

"shut"

sdm_sep_drnvlv4_pressure "fourth stage pressure"

"high"

"normal"

sdm_sep_drnvlv4_state "fourth stage valve"

"open"

"shut"

sdm_sep_drnvlv5_state "fifth stage valve"

"open"

"shut"

student_speaking "student speaking"

"true"

"false"

surge_tank_level "surge tank level"

"empty"

"normal"

"full"

tm_ltcrkcsoil_state "indicator light"

"on"

"off"

tm_ltdis1_state "indicator light"

"on"

"off"

tm_ltdis2_state "indicator light"

"on"

"off"

tm_ltdis3_state "indicator light"

"on"

"off"

tm_ltdis4_state "indicator light"

"on"

"off"

tm_ltdis5_state "indicator light"

"on"

"off"

tm_ltfindis_state "indicator light"

"on"

"off"

tm_ltjkwtrout_state "indicator light"

"on"

285

"off"

tm_ltsuc1_state "indicator light"

"on"

"off"

tm_ltsuc2_state "indicator light"

"on"

"off"

tm_power_state "temperature monitor power"

"on"

"off"

tm_status "temperature monitor status"

"test 100"

"test 350"

NONE

"reset"

"testing"

"test trip temperature"

286

B.8 Labeled Pictures of the HPAC

The following pictures were given to test subjects.

Front of the HPAC

Gauges and valves Separator drain manifold

Condensate drain monitor

287

Gauges and Valves

Air intake valve1 Air intake valve2

open shut

288

Separator Drain Manifold

1st stage valve 2nd stage valve

4th stage valve 5th stage valve3rd stage valve

open shut

289

Condensate Drain Monitor

2nd stage
alarm light

3rd stage
alarm light

1st stage
alarm light

4th stage
alarm light

Function test
button

System reset
button

290

Control Door

Power light
(gray off &
white on)

Motor light (dark
green off & bright
green on)

Power on/off
button

Overload Relay
Reset Switch Motor start/stop button

Latex is not formatting the picture properly.

291

B.9 Procedure Descriptions

This section contains the procedure descriptions that were given to test subjects. The �rst
procedure authored is High Condensate Level Shutdown, and second procedure authored
is Overload Relay Tripped.

B.9.1 High Condensate Level Shutdown

Sometimes high levels of condensation can build up inside the compressor. To avoid
damaging the machine, the compressor's condensate drain monitor turns o� the motor.
At this point, some alarm lights on the drain monitor's panel turn red.

The alarm lights will turn o� only after the pressure is relieved. For each alarm light
that is red, the student can relieve the pressure by opening the separator drain manifold
valve that corresponds to that alarm light. Once the pressure is relieved, valves should be
shut for normal operations.

Once the motor has been started with the control door panel's motor button, the
pressure will be relieved and the alarm lights will turn o�. Before starting the motor, the
student should reset the drain monitor by pressing the drain monitor panel's system reset
button.

The procedure's initial state can be seen in the Vista window. Initially, high levels of
condensation have caused the motor to turn o� and two alarm lights to turn red.

When performing the procedure, the student will need to both open valves and turn
on the motor.

When you are �nished, the alarm lights should be o�, the valves should be shut, and
the motor should be running.

Reminder: you will only be asked to name an operator the �rst time the operator's
action is used. In other words, if the action is used again, you will not be asked for an
operator name.

292

B.9.2 Overload Relay Tripped

When the compressor gets overloaded, a relay will trip and turn o� the motor.
At this point, the compressor's electronics may be in an anomalous state. The student

can correct state by turning o� the power with the power button on the control door panel.
The button is a toggle that turns the power on or o�.

One reason for overload is too much air pressure. To limit the air pressure, the student
should shut the two air intake valves.

Once the relay is tripped, the compressor will not work until the relay switch on the
control door panel is toggled. In order to make sure that the power has been turned o�,
the relay will not reset unless the power is o�.

Once the relay has been reset, the student should turn the power on and then start
the motor with the control door panel's motor button.

When you are �nished, the air intake valves should be shut and the motor should be
running.

293

B.10 Desired Procedures

This section contains the desired procedures against which the subjects are evaluated.

B.10.1 High Condensate Level Shutdown

The �rst procedure restarts the motor after high condensate pressure has shut it done.
The desired procedure has the following steps:

1. Turn the handle and open the second stage valve. Do this by selecting the handle.

2. Move the handle to the �rst stage valve. Do this by selecting the �rst stage valve.

3. Turn the handle and open the �rst stage valve.

4. Press the reset button.

5. Press the motor button and turn the motor on.

6. Turn the handle so that �rst stage valve is shut.

7. Move the handle to the second stage valve.

8. Turn the handle so that the second stage valve is shut.

The plan for the procedure is as follows:

Steps:

begin-clsd turn-1 move-1st-2 turn-3 reset-4 motor-5
turn-6 move-2nd-7 turn-8 end-clsd

Ordering Constraints:

1. turn-1 before move-1st-2
2. turn-1 before motor-5
3. turn-1 before turn-8
4. move-1st-2 before turn-3
5. move-1st-2 before turn-6
6. turn-3 before motor-5
7. turn-3 before turn-6
8. turn-3 before move-2nd-7
9. reset-4 before motor-5
10. motor-5 before turn-6
11. motor-5 before turn-8
12. turn-6 before move-2nd-7
13. move-2nd-7 before turn-8

294

Causal Links:
1. begin-clsd establishes (cdm chnl2 lt state on) for turn-1
2. begin-clsd establishes

(sdm handle location \separator drain 2nd stage valve")
for turn-1

3. begin-clsd establishes (sdm sep drnvlv2 state shut)
for turn-1

4. begin-clsd establishes (cdm chnl1 lt state on) for turn-3
5. begin-clsd establishes (sdm sep drnvlv1 state shut)

for turn-3
6. begin-clsd establishes (cdm status halted) for reset-4
7. begin-clsd establishes (cdm chnl1 lt state on) for motor-5
8. begin-clsd establishes (cdm chnl2 lt state on) for motor-5
9. begin-clsd establishes ((ctrl motor status o�) for motor-5
10. begin-clsd establishes (sdm sep drnvlv1 pressure high)

for motor-5
11. begin-clsd establishes (sdm sep drnvlv2 pressure high)

for motor-5
12. turn-1 establishes (sdm sep drnvlv2 state open)

for motor-5
13. turn-1 establishes (sdm sep drnvlv2 state open)

for turn-8
14. move-1st-2 establishes

(sdm handle location \separator drain 1st stage valve")
for turn-3

15. move-1st-2 establishes
(sdm handle location \separator drain 1st stage valve")
for turn-6

16. turn-3 establishes (sdm sep drnvlv1 state open)
for motor-5

17. turn-3 establishes (sdm sep drnvlv1 state open)
for turn-6

18. reset-4 establishes (cdm status \system reset) for motor-5
19. reset-4 establishes (cdm status \system reset) for end-clsd

295

20. motor-5 establishes (cdm chnl1 lt state o�)
for turn-6

21. motor-5 establishes (cdm chnl2 lt state o�)
for turn-8

22. motor-5 establishes (cdm chnl1 lt state o�)
for end-clsd

23. motor-5 establishes (cdm chnl2 lt state o�)
for end-clsd

24. motor-5 establishes (ctrl motor status on)
for end-clsd

25. motor-5 establishes (sdm sep drnvlv1 pressure normal)
for end-clsd

26. motor-5 establishes (sdm sep drnvlv2 pressure normal)
for end-clsd

27. turn-6 establishes (sdm sep drnvlv1 state shut)
for end-clsd

28. move-2nd-7 establishes
(sdm handle location \separator drain 2nd stage valve")
for turn-8

29. move-2nd-7 establishes
(sdm handle location \separator drain 2nd stage valve")
for end-clsd

30. turn-8 establishes (sdm sep drnvlv2 state shut)
for end-clsd

296

B.10.2 Overload Relay Tripped

The second procedure restarts the motor after high air pressure has caused relay to trip.
The desired procedure has the following steps:

1. Shut the �rst air intake valve.

2. Shut the second air intake valve.

3. Turn o� the power.

4. Toggle the relay reset switch.

5. Turn on the power.

6. Turn on the motor.

The plan for the procedure is as follows:

Steps:
begin-rlytp air1-1 air-2 power-3 reset-4 power-5
motor-6 end-rlytp

Ordering Constraints:

1. air1-1 before motor-6
2. air2-2 before motor-6
3. power-3 before power-5
4. power-3 before reset-4
5. reset-4 before power-5
6. reset-4 before motor-6
7. power-5 before motor-6

297

Causal Links:
1. begin-rlytp establishes (gb air1 state open) for air1-1
2. begin-rlytp establishes (gb air2 state open) for air2-2
3. begin-rlytp establishes (ctrl power status on) for power-3
4. begin-rlytp establishes (ctrl relayreset status tripped)

for reset-4
5. begin-rlytp establishes (ctrl motor status o�) for motor-6
6. air1-1 establishes (gb air1 state shut) for motor-6
7. air1-1 establishes (gb air1 state shut) for end-rlytp
8. air2-2 establishes (gb air2 state shut) for motor-6
9. air2-2 establishes (gb air2 state shut) for end-rlytp
10. power-3 establishes (ctrl power status o�) for reset-4
11. power-3 establishes (ctrl power status o�) for power-5
12. reset-4 establishes (ctrl relayreset status ok)

for motor-6
13. reset-4 establishes (ctrl relayreset status ok)

for end-rlytp
14. power-5 establishes (ctrl power status on) for motor-6
15. power-5 establishes (ctrl power status on) for end-rlytp
16. motor-6 establishes (ctrl motor status on) for end-rlytp

298

B.11 Practice Procedure

At the end of the second day's training, subjects solved the following problem.
Up to this point you have been following very speci�c instructions. In this section you

are going to author with only general directions. To author the procedure, you need de�ne
and test it.

Like the above procedure, the practice procedure will toggle two cutout valves. How-
ever, instead of toggling the �rst and second cutout valves, you will now toggle the third
and fourth cutout valves, which are to the right of the second cutout valve. The attributes
\gb covstg3 state" and \gb covstg4 state" should initially be \open" and should be \shut"
when the procedure is �nished.

You have 10 minutes to �nish this task.

299

B.12 Practice Procedure Solution

Looking at the practice problem's solution was last thing that subject's did during training.
Only the subject's who used demonstrations or experiments saw the parts of the solution that
mention demonstrations or experiments.

The following is a solution for the practice procedure. You should compare your proce-
dure against the solution. Ask questions if you do not understand why this is a reasonable
solution.

Let the procedure be called \practice

Steps: (execution order)
(The order that steps are toggled doesn't matter.)

begin-practice, toggle-3rd-3, toggle-4th-4, end-practice

Causal links:
begin-practice establishes \gb covstg3 state = open" for toggle-3rd-3
begin-practice establishes \gb covstg4 state = open" for toggle-4th-4
toggle-3rd-3 establishes \gb covstg3 state = shut" for end-practice
toggle-4th-4 establishes \gb covstg4 state = shut" for end-practice

Ordering Constraints:
None. (All are \ignored" because they involve the steps

begin-practice and end-practice.)

Operators:
toggle-3rd

Preconditions: (gb covstg3 state = open)
State changes: (gb covstg3 state = shut)

toggle-4th
Preconditions: (gb covstg4 state = open)
State changes: (gb covstg4 state = shut)

Step Prerequisite preconditions:
None are necessary.

Number of demonstrations:
Only one is necessary.

Continued on next page.

300

Experiments resulted in:
The removal of one incorrect precondition, one incorrect causal link,
and one incorrect ordering constraint.

301

Appendix C

Evaluation Data

The following contains data for the three experimental conditions. Experimental condition
EC1 allows demonstrations and experiments. Condition EC2 allows demonstrations but
not experiments. Condition EC3 uses only an editor.

In order to protect the privacy of subjects, the masculine pronoun \he" will always be
used when referring to a subject. The use of \he" does not indicate whether the subject
was male or female.

302

C.1 Background Questionnaire

This data has been withheld to protect the privacy of the subjects. The data is summarized
in section 7.5.1.

303

C.2 Impressions of Diligent

This section contains the data describing the subjects' impressions of Diligent. The last
activity that subjects performed were answering these questions, which are located at the
end of the subjects' directions (appendix B).

Because some of the questions are inappropriate for some of the experiment conditions,
the subjects in each experimental condition answered a di�erent subset of questions.

The answers listed in the following tables represent the following questions. An answer
of 1 means not at all, 4 means somewhat, and 7 means a great deal.

I1 � General Questions about Authoring
I1a � Like the system
I1b � Easy to use
I1c � Easy to specify a step
I1d � Easy to identify a step's preconditions
I1e � Easy to identify a step's state changes
I1f � Easy to identify how operators inuenced

a step's preconditions and state changes
I2 � Questions about demonstrating

I2a � Easy to demonstrate
I2b � Were additional demonstrations useful

I3 � Questions about experiments
I3a � Did you like experimenting
I3b � Where experiments quick enough
I3c � Did experiments save work
I3d � Did experiments �nd errors that would have been missed

Item I3b is di�erent than what the questionnaire asked. The questionnaire asked,
\Did experiments take too long." So that the data is easier to interpret, question was
reformulated so that a lower answer is less positive. When transforming the answers from
the questionnaire to 13b, the following mappings were used: 1 to 7, 2 to 6, 3 to 5 and 4 to
4.

304

C.2.1 Experimental Condition EC1

subject I1a I1b I1c I1d I1e I1f

3 6 2 3 2 4 4

6 5 3 4 5 2 4

12 4 4 5 4 7 6

14 6 6 7 6 6 6

Table C.1: EC1 Impressions about Authoring

subject I2a I2b I3a I3b I3c I3d

3 2 5 4 6 7 1

6 4 N/A 5 2 N/A N/A

12 7 7 1 7 4 4

14 7 1 7 7 7 4

Table C.2: EC1 Impressions about Demonstrations and Experiments

Subject 3 didn't feel that error recovery was covered well enough in training. The subject
also felt that the user interface was confusing.

Subject 6 had di�culty demonstrating while remembering the initial state. The subject
also felt that the ambiguous use of terms made things more di�cult.

Subject 12 answered the questions about experiments (i.e. I3a-I3d) with yes or no
rather than a number. In the table, 1 is used for no, and 4 is used for yes. Because the
data for I3b was transformed, the subject's \no" became a 7.

Subject 14 answered question I3d with yes rather than a number. In the table 4 is
used for yes.

Subject 14 didn't understand how helpful experiments can be during training. Instead,
the subject learned how helpful experiments can be during the evaluation's �rst procedure.

305

C.2.2 Experimental Condition EC2

subject I1a I1b I1c I1d I1e I1f

2 4 4 7 7 5 5

5 5 2 4 5 5 3

8 3 4 1 3 4 3

9 4 5 7 3 3 3

10 3 3 6 6 6 5

11 5 2 4 5 5 3

Table C.3: EC2 Impressions about Authoring

subject I2a I2b I3a I3b I3c I3d

2 4 4 - - - -

5 6 6 - - - -

8 1 4 - - - -

9 4 5 - - - -

10 7 3 - - - -

11 3 5 4 2 N/A 4

Table C.4: EC2 Impressions about Demonstrations and Experiments

Subject 2 complained that the environment was slow to react.
Subject 5 had a few complaints. The descriptions of the procedures authored during

the experiment were \somewhat unclear." The environment was unresponsive; the subject
felt that manipulating an object required the mouse to be clicked in small region. The
subject also had to be told whether lights in the environment were turned on.

Subject 8 had di�culty correcting mistakes. The subject felt that there were a lot
of distractions. The subject also felt that the system was slow and unresponsive. (This
comment appears to be directed at the environment.) However, the subject liked the GUI
and wrote that the GUI, \allowed a feel of ease of use that didn't always come across in
[training]."

Subject 9 would have really preferred to use an editor (e.g. EC3) instead of demonstrat-
ing procedures. The subject wanted to specify all the steps before dealing preconditions
and state changes. The subject wrote, \The system seems to have several features to
automatically do several things, but they are not very useful. I would have liked to specify
my initial state and �nal state option and then go on to de�ne my steps, so I need not be
concerned with preconditions."

Subject 10 couldn't �gure out how to make a step optional so that it would be skipped
if it wasn't needed. This a misunderstanding of procedural presentation. The subject had
di�culty with the experiment's procedure descriptions; it was \not easy" to determine
the steps or the minimal dependencies between the steps. The subject also had problems
removing extraneous dependencies because the removed dependencies didn't immediately
disappear. (The comment on removed dependencies may be related to the fact that the

306

window containing a procedure's graphical representation does not update its graph. To
update the graph, a subject needs to close and re-opening the window.)

Subject 11 was in EC1, but never used experiments. For this reason, the subject was
moved to EC2. The subject said that he didn't know that experiments would remove
excess causal links.

307

C.2.3 Experimental Condition EC3

subject I1a I1b I1c I1d I1e I1f

1 4 2 2 2 2 2

4 5 3 5 6 6 5

7 3 3 5 6 6 3

13 2 2 4 4 4 1

16 6 4 6 6 6 3

Table C.5: EC3 Impressions about Authoring

Subject 1 was confused in a number of areas. The subject was didn't understand the
operator's and steps. The subject didn't understand why both were needed and whether
the relationships was one-to-one or many-to-one. (This is the only subject that did not �ll
out the procedural representation worksheet during the �rst day's training.) The subject
was also confused on how to insert a step in front of another step.

Subject 5 would have liked to use templates for steps with similar preconditions and
state changes. The subject wrote, \The testing and explanation components were very
good."

Subject 7 had quite a few problems. The subject had di�culty familiarizing himself
with the domain's attribute names. The similarity of these names made things more di�-
cult. The subject wrote, \Having predetermined names for the actions actually disoriented
me when solving the the problems." The subject also had problems with the environment.
It was di�cult to zoom in or out. It was also di�cult to determine where to click the
mouse when manipulating an object.

Subject 13 had a number of user interface problems. The subject wanted a button to
press for help. The subject was frustrated because he couldn't �gure out how to delete
unwanted conditional e�ects (you can't). The subject felt that step preconditions could
only be added when the procedure is graphically displayed. (This probably reects the
fact that the procedure's graph is not updated until the graph's window is closed and
re-opened.) The subject was also irritated that windows didn't open more quickly.

Subject 16 had problems with ambiguously ordered steps. In the second procedure,
the subject felt that he had to order the steps \illogically." However, the subject felt that
system was \easy to use once understood." The subject also felt that the second procedure
was easier because the �rst procedure involved a \steep learning curve" on \parts of the
environment and the linking of more complex sets of steps."

308

C.3 Authoring

This section contains the data describing how the subjects authored during the experiment.
The answers listed in the following tables represent the following data. Except for some

of the time values, each procedure of the two procedures has the following data.
Sometimes a subject would abandon a awed procedure and create a new procedure.

When this happens, the edits for the abandoned procedure are still counted.

Edits:
ed1 � Steps added in normal demonstration
ed2 � Steps added in clari�cation demonstration

(EC1 and EC2 only)
ed3 � Actions in pre�x before start of demonstration

(EC1 and EC2 only)
ed4 � Deleted steps
ed5 � Edits to causal links
ed6 � Edits to ordering constraints
ed7 � Edits to goal conditions
ed8 � Edits to �lter attributes out of causal links
ed9 � Edits to �lter attributes out of ordering constraints
ed10 � Edits to conditional e�ect preconditions
ed11 � Edits to conditional e�ect state changes

(EC3 only)
ed12 � Edits to control preconditions

(associated with steps rather than conditional e�ects)
ed13 � Edits to associate conditional e�ects to steps

(EC3 only)
ed14 � Total logical edits. This is the sum of ed1 { ed12.

ed13 is ignored out of concerns for fairness.
Experiments: (EC1 only)

exp1 � Pre�x actions performed preparing experiments
exp1 � Steps performed during experiments experiments

Errors:
er1 missing ordering constraints
er2 unnecessary or incorrect ordering constraints
er3 missing causal links
er4 unnecessary or incorrect causal links
er5 missing steps
er6 unnecessary or incorrect steps
er7 total errors of omission

(i.e. missing objects: er1 + er3 + er5)
er8 total errors of commission

(i.e. unnecessary or incorrect objects: er2 + er4 + er6)
er9 total errors (er7 + er8)

a1 � Number of steps in the procedure
a2 � Could the �nal procedure be demonstrated

309

a3 � total e�ort (total edits(ed14) + total errors(er9))
Time: (in minutes)

t1 � First day training time
t2 � Second day training time
t3 � Total training time
t4 � 1st procedure time before testing
t5 � 1nd procedure total time
t6 � 2nd procedure time before testing
t7 � 2nd procedure total time

In the following tables, the authoring data represents two times: when testing starts
and when the procedure is �nished. If only one value is given, then both are the same.
When a value is of the form A/B, the two values are di�erent. The value at the start of
testing is A, and the value at the end is B.

The times are derived from both log �les and notes taken while the subject was training
and authoring. Some of the times may be o� by � two minutes. The error is this large
because some of the times had to be explicitly logged and because some of the times came
from the notes. When a time was logged, sometimes the procedure had to put into the
proper state, which involved closing windows and deriving the procedure's goals and causal
links from the current database.

Times that were explicitly logged include starting training, �nishing training, starting
a procedure and ending a procedure. However, the total time allowed for authoring a
procedure was measured with an alarm clock.

The start of the training time for the �rst session is when the subject sits down. This
means that �rst session's training time includes the 5 to 10 minutes required to �ll out the
background questionnaire.

310

C.3.1 Experimental Condition EC1

Topic Subject

3 6 12 14

ed1 11 5 8 8

ed2 0 0 0 0

ed3 4 0 0 0

ed4 0 2 0 0

ed5 0 0 1 0

ed6 0 0 0 0

ed7 0 0 1 0

ed8 0 0 0 0

ed9 0 0 0 0

ed10 0 0 0 0

ed11 - - - -

ed12 0 5 1 0

ed13 - - - -

ed14 15 12 11 8

exp1 0 0 0 0

exp2 25 0 49 49

er1 10 12 0 0

er2 3 2 3 3

er3 24 28 5 4

er4 6 7 4 3

er5 3 6 0 0

er6 2 1 0 0

er7 37 46 5 4

er8 11 10 7 6

er9 48 56 12 10

a1 7 3 8 8

a2 no no yes yes

a3 63 68 23 18

Table C.6: EC1 Procedure 1 Authoring Information

311

Topic Subject

3 6 12 14

ed1 5 4 5 6

ed2 0 0 0 0

ed3 0 0 0 0

ed4 0 0 0 0

ed5 0 0 0 0

ed6 0 1 0 0

ed7 1 1 0 0

ed8 0 0 0 0

ed9 0 0 0 0

ed10 0 0 0 0

ed11 - - - -

ed12 0 3/4 4 5

ed13 - - - -

ed14 6 9/10 9 11

exp1 0 0 0 0

exp2 16 9 16 25

er1 6 5 4 0

er2 0 0 4 4

er3 8 13 6 0

er4 0 1/2 2 4

er5 1 2 1 0

er6 0 0 0 0

er7 15 20 11 0

er8 0 1/2 6 8

er9 15 21/22 17 8

a1 5 4 5 6

a2 no no no yes

a3 21 30/32 26 19

Table C.7: EC1 Procedure 2 Authoring Information

312

Topic Subject

3 6 12 14

t1 93 100 149 120

t2 40 48 34 53

t3 133 148 183 173

t4 28 30 30 21

t5 30 30 30 25

t6 22 26 18 20

t7 29 30 18 22

Table C.8: EC1 Time Spent on Activities

313

C.3.2 Experimental Condition EC2

Topic Subject

2 5 8 9 10 11

ed1 17 - - - 29 10

ed2 0 - - - 0 0

ed3 0 - - - 1 0

ed4 0 - - - 0 0

ed5 0 - - - 0 0

ed6 0 - - - 4 14

ed7 0 - - - 2 0

ed8 0 - - - 0 0

ed9 0 - - - 0 0

ed10 0 - - - 8 0

ed11 - - - - - -

ed12 0 - - - 0 2

ed13 - - - - - -

ed14 17 - - - 44 26

exp1 - - - - - -

exp2 - - - - - -

er1 8 - - - 4 3

er2 18 - - - 7 12

er3 11 - - - 8 3

er4 26 - - - 5 25

er5 3 - - - 0 0

er6 5 - - - 1 2

er7 22 - - - 12 6

er8 49 - - - 13 39

er9 71 - - - 25 45

a1 10 - 19 - 9 10

a2 no - yes no yes yes

a3 88 - - - 69 71

Table C.9: EC2 Procedure 1 Authoring Information

Subject 5 demonstrated the steps too quickly. Diligent's implementation could not de-
termine which state changes were caused by a given action. To correct this, the subject
would have had to empty Diligent's knowledge base and start over.

Subject 8 didn't understand the directions. The subject tried to move the valve handle
to every valve. The procedure is so bad that it cannot be easily graded. The procedure
had 51 edits and at least 65 errors.

Subject 9 authored a hierarchical procedure with several subprocedures. This makes it
di�cult to compare the procedure to the other subjects, who did not attempt a hierarchical
procedure. The procedure has two problems: 1) the subject performed unnecessary steps

314

that moved the handle between the valves, and 2) the subject forgot to turn on the motor
at the end of the procedure.

Topic Subject

2 5 8 9 10 11

ed1 7 11 6 7 6 6

ed2 0 0/6 2 0 0 0

ed3 0 0 0 0 0 0

ed4 0 0/5 0 0 0 0

ed5 0 0 0 0 1 0/1

ed6 0 0 10 4 2 0/3

ed7 0 1 0 0 2 0

ed8 0 0 0 0 0 0

ed9 0 0 0 0 0 0

ed10 0 0 0 0 3/12 0

ed11 - - - - - -

ed12 0 0 2 1 0 0/6

ed13 - - - - - -

ed14 7 12/23 20 12 14/23 6/16

exp1 - - - - - -

exp2 - - - - - -

er1 0 0 3 3 0/7 0/1

er2 7 7 3 4 4/0 7/6

er3 0 1/0 7 5 2/10 0

er4 8 8 4 3 5/0 8/7

er5 0 0 0 0 0 0

er6 1 5/0 0 0 0 0

er7 0 1/0 10 8 2/17 0/1

er8 16 20/15 7 7 9/0 15/13

er9 16 21/15 17 15 11/17 15/14

a1 7 11/6 6 6 6 6

a2 yes yes no yes yes yes

a3 23 33/38 37 27 25/40 21/30

Table C.10: EC2 Procedure 2 Authoring Information

The �nal procedure for subject 10 is marked as working because the steps are in the
correct order and all ordering constraints are reasonable. However, the �nal procedure is
basically unordered. (The version before testing was much better.)

315

Topic Subject

2 5 8 9 10 11

t1 119 75 84 91 91 123

t2 38 27 35 66 39 54

t3 157 102 119 157 130 177

t4 24 30 30 30 30 30

t5 29 30 30 30 30 30

t6 5 15 30 30 17 19

t7 8 30 30 30 30 29

Table C.11: EC2 Time Spent on Activities

Subject 9 skipped a day and took longer to train on the second day because of software
problems.

316

C.3.3 Experimental Condition EC3

Topic Subject

1 4 7 13 16

ed1 3 4 10 11 7

ed2 - - - - -

ed3 - - - - -

ed4 0 0 6 4 3

ed5 0 0 0 0 0

ed6 0 0 0 0 0

ed7 0 0 0 0 0

ed8 0 0 0 0 0

ed9 0 0 0 0 0

ed10 3 24 0 21 11

ed11 1 12 2 7 11

ed12 0 0 0 0 0

ed13 3 12 6 11 11

ed14 7 40 18 43 32

exp1 - - - - -

exp2 - - - - -

er1 13 13 13 13 13

er2 0 1 0 0 2

er3 30 30 29 29 27

er4 1 5 0 7 6

er5 7 6 5 3 4

er6 2 2 0 2 0

er7 50 49 47 45 44

er8 3 8 0 9 8

er9 53 57 47 54 52

a1 3 4 3 7 4

a2 no no no no no

a3 60 97 63 97 84

Table C.12: EC3 Procedure 1 Authoring Information

The correct procedure has 8 steps.
Subject 1 didn't have any ed13 data so the value of ed13 equals the number of steps.
For subject 7, it is not clear why (ed1 - ed4 = 4) rather than 3 (a1). This discrepancy

was not reproducible. Subject 7 did so well because he didn't do much authoring. For
example, the subject did not specify a single precondition (ed10 and ed12).

317

Topic Subject

1 4 7 13 16

ed1 7 8 6 6 6

ed2 - - - - -

ed3 - - - - -

ed4 1 0 0 0 0

ed5 0 0 0 0 0

ed6 0 0 0 0 0

ed7 0 0 0 0 1/2

ed8 0 0 0 0 0

ed9 0 0 0 0 0

ed10 9 16 8 8 6

ed11 8 8 9 6 6

ed12 0 0 1 0/2 3/7

ed13 6 11 7 6 6

ed14 25 32 24 20/22 22/27

exp1 - - - - -

exp2 - - - - -

er1 7 5 6 3 2

er2 0 6 0 0/4 0

er3 11 8 7 3 5/6

er4 3 12 2 0/2 0

er5 0 0 1 0 0

er6 0 2 0 0 0

er7 18 13 14 6 7/8

er8 3 20 2 0/6 0

er9 21 33 16 6/12 7/8

a1 6 8 5 6 6

a2 no no no yes yes

a3 46 65 40 26/34 29/35

Table C.13: EC3 Procedure 2 Authoring Information

The correct procedure has 6 steps.
Subject 1 didn't have ed13 data so the value of ed13 equals the number of steps.
For subject 7, it is not clear why (ed1 - ed4 = 6) rather than 5 (a1). This discrepancy

was not reproducible.

318

Topic Subject

1 4 7 13 16

t1 117 114 117 67 72

t2 46 47 43 22 35

t3 163 161 160 89 107

t4 30 30 30 28 30

t5 30 30 30 28 30

t6 30 30 30 14 19

t7 30 30 30 19 30

Table C.14: EC3 Time Spent on Activities

319

C.4 Session Log

This section contains data collected during each subject's two sessions. The section also
mentions changes to the system and training to correct problems with earlier subjects.

The changes were meant to correct problems with the study. First, it was impor-
tant that subjects understood how to correctly use Diligent. Second, subjects needed to
understand what steps were needed in the two procedures being authored.

Two changes that dealing with how subjects authored are not mentioned. One change is
repeatedly reminding EC1 and EC2 subjects to avoid demonstrating too quickly. Demon-
strating too quickly caused problems with Diligent's implementation. In particular, it
caused pairs of actions to appear simultaneous, and Diligent does not handle simultaneous
actions. The other change is telling EC1 subjects to experiment with their procedures.
One EC1 subject, who didn't experiment, was switched group EC2.

The potential for simultaneous actions was aggravated by a memory leak involving the
VIVIDS simulation and the Vista browser. As more memory was lost, the Vista would
get progressively slower and less responsive. Shortly after subject 7, updated versions
of VIVIDS and Vista were installed. This �xed many of the performance problems that
subjects experienced with Vista.

The material in this section is derived from notes rather than the answers to the ques-
tionnaire on the subject's impressions of Diligent. In the following, the experimenter/author
is referred to as the test monitor. Minor errors in manuals, such as typographical and
grammatical errors, are not mentioned.

� Subject 1.

{ Session 1

The subject had questions about using Vista (the environment's graphical in-
terface).

The subject looked at menus that hadn't been discussed yet. The test monitor
told the subject, \it will become clear later on."

The subject was confused that the graph of the procedure was not updated when
a step was added. (The graph is not updated after the window is opened.)

The subject had di�culty understanding the concepts involved in a authoring
procedure. Part of the reason is that he didn't know what he was trying to
produce. He also had di�culty connecting a graph of a procedure with STEVE's
explanation.

The subject felt that he was having to simultaneously learn the procedural
representation and how to use Diligent. The subject felt that he could do
this, but other subjects might have more problems. (This comment caused the
creation of the procedural representation section and worksheet.)

{ Session 2: training

The subject read the procedural representation section (which later subjects
read during the �rst session).

Problems zooming in and out in Vista.

During the practice problem, the subject was told to test his procedure.

320

{ Session 2: 1st procedure

Confused about which steps to perform and their order.

Expressed a desire for a list of available actions. (No subject was given this
list. For this group (EC3), the available actions are listed in one of Diligent's
menus.)

� Changes

The procedural representation section and worksheet were added to the �rst day's
tutorial.

� Subject 2

{ Session 1

The subject was confused about how he could tell whether a precondition is
correct or not. The training material just said a precondition was incorrect.
(This question couldn't be answered because it depends on the domain.)

{ Session 2: training

The subject authored the tutorial's procedure with separator drain manifold
values rather than cutout valves.

{ Session 2: 1st procedure

The subject was confused about the procedure's description. The test monitor
pointed to a description of the procedure's goals.

The subject was surprised when a menu for the operator name did not ap-
pear the second time the subject performed operator's action (i.e. turning the
handle).

The test monitor had to show the subject how to get to the control door.

When the subject indicated that he was �nished, he was told to test the proce-
dure.

� Changes

The domain attribute \sdm handle open" is no longer available to subjects. This
attribute interferes with learning, but is needed by Steve for determining that the
handle has �nished turning.

Subjects that only use the editor (EC3) can now add control preconditions directly
to steps. Before these subjects had to add the preconditions to a conditional e�ect.
The groups using demonstrations (EC1 and EC2) already had this capability.

Modi�ed the description of the �rst procedure by adding a paragraph. The paragraph
reminded the subject that Diligent only asks for an operator's name once. The second
time that the operator's action is seen, Diligent does not ask for the name. In the
�rst procedure, the operator for turning a handle is used multiple times.

� Subject 3

321

{ Session 1

Subject asked if he could play with the system while reading the tutorial. The
subject was told to follow the directions.

The subject thought the procedural representation worksheet questions were
confusing.

{ Session 2: training

The subject had problems zooming in with Vista.

The subject forgot to start testing the tutorial's procedure. The subject then
asked questions about options that are only available during testing.

During the practice problem, the subject asked questions. When asked about
preconditions, the subject was told, \whatever you think is best." The subject
asked if he should test his procedure and was told yes.

{ Session 2: 1st procedure

The subject was not told that he could write on the sheet containing the pro-
cedure's description.

The subject didn't see the picture identifying the separator drain manifold
valves.

{ Session 2: 2nd procedure

The subject was told that he could write on the sheet containing the procedure's
description.

The subject asked about the amount of time left when there were 12 and 5
minutes left.

{ Session 2: later comments

The subject thought Vista was too slow.

The subject didn't feel that he knew the system well enough to recover from
errors.

The subject tried to turn lights on/o� by selecting them with the mouse. (Of
course, this did not work.)

� Subject 4

{ Session 1

Showed the subject how to zoom in with Vista. Vista sometimes responded a
little slowly.

{ Session 2: training

Stopped after �nishing the tutorial instead of reading the directions. The sub-
ject was told to continue.

{ Session 2: 1st procedure

The subject had problems with inconsistent procedure goals. (The subject used
the EC3 editor.)

{ Session 2: later comments

322

The subject said that having to spell attribute values was not a problem when
using the editor.

During the experiment, the subject asked if he could ask questions. He was told
\no."

� Changes

The second day tutorial now shows experimental groups EC1 and EC2 how to give
a second demonstration. This helps with error recovery.

During the experiment, subjects are told to start the procedures from the state shown
in the Vista window.

Sheets with pre-printed statements were created. They are used during training and
for preparing subjects for authoring the experiment's procedures.

Sensing actions are disabled in Diligent. This should not impact subjects because
students shouldn't use sensing actions.

Subjects are now told to test the practice problem. (So far, the subjects have tested
it.)

Limit the review at the start of the second session to 10 minutes.

� Subject 5

{ Session 1

The subject was confused about the use of pseudo-steps that represent the
procedure's initial and goal states.

The subject accidently started de�ning a subprocedure and was told to abort
it.

Sometimes the procedure's graph looks di�erent than what is shown in the
tutorial. This confused the subject.

The subject was a little confused about why causal links and ordering con-
straints are rejected independently. The subject was told that an author may
want an ordering constraint without a causal link when he doesn't want to show
the causal link's condition to students.

{ Session 2: training

At start of session, the subject was told to focus on the synopsis and procedural
representation worksheet. However, the subject could look at other parts of the
tutorial.

Told the subject to do \whatever you think is best" during the practice problem.

{ Session 2: 1st procedure

The subject had a serious error when he demonstrated the procedure too quickly
and experienced the simultaneous actions problem. This hurt the �nal proce-
dure. The test monitor told him what caused the problem.

The subject thought that the second stage valve would turn o� the �rst stage
light. (The �rst stage valve turns o� the �rst stage light.)

In the middle of a demonstration, the subject suspended the demonstration.
However, this prevents learning and is undesirable in the experiment.

323

{ Session 2: 2nd procedure

STEVE did nothing while testing the procedure. The test monitor told the
subject to abort the test. The test monitor appears to have made a mistake
because the symptoms indicated that procedure was bad and that STEVE could
not �nd any appropriate actions to perform.

{ Session 2: later comments

The subject did not like the procedure descriptions.

� Changes

Changed the color of the control door power on and motor on lights. Before this,
subjects were told what color was on and o�.

Disabled Diligent's suspend demonstration command. Subjects should not use this
feature.

The description of the experiment's �rst procedure was changed. It was made explicit
that each alarm light can be turned o� by opening the corresponding separator drain
manifold valve. This change was made because subject 5 thought that opening the
second stage valve would turn o� both the �rst and second stage alarm lights.

� Subject 6

{ Session 1

The subject had to be shown how to reset the view of the device with the
simulation (i.e. VIVIDS).

The subject tried to think about plans in terms �nite state machines.

The subject had to be shown STEVE's control panel.

{ Session 2: training

The subject had di�culty specifying the step after which a new step is inserted.

The subject was told that experiments interacted with the environment.

In the practice problem, the subject was confused about step speci�c precon-
ditions and conditional e�ect preconditions. (The subject had obvious miscon-
ceptions during the practice problem.)

{ Session 2: 1st procedure

The subject demonstrated actions too quickly twice. This problem could not
be �xed.

{ Session 2: later comments

The subject's nearsightedness caused real problems in training and in using the
system.

The subject was frustrated because Vista was slow and moving around in Vista
was di�cult. (Subjects don't need to zoom or pan during the experiment.)

� Changes

Created solution for practice problem. The solution allows subjects to verify that
they understand how to author.

324

The description of the experiment's �rst procedure was changed. It was made explicit
that subjects should focus on turning o� alarm lights that are red.

The description of the experiment's second procedure was changed. It now says to
shut the \two air intake valves" rather than the \air intake valves."

� Subject 7

{ Session 1

The subject refused to follow directions. He read the synopsis at the end of the
tutorial �rst.

The subject was a planning expert that believed that a causal link implies an or-
dering constraint. The subject didn't care about the representation worksheet's
answers.

Showed the subject how to associate an e�ect with a step.

The subject couldn't �nished because Vista crashed. The subject's data was
reloaded, but testing with STEVE didn't work. (STEVE couldn't be used
because Diligent was not providing STEVE with some low-level knowledge.)
The subject �nished the testing section by reading the tutorial.

{ Session 2: training

The subject was told that a procedure's graph was not updated after the window
was opened.

Showed the subject how to answer questions with Steve's control panel. This
was the portion of the �rst session that was skipped after Vista crashed.

{ Session 2: 1st procedure

Wanted to know about checking the condensation, but the test monitor couldn't
say anything.

� Subject 8

{ Session 2: 1st procedure

The subject had problems with his procedure and wanted to start over. The
subject was told to create a new procedure.

{ Session 2: later comments

The subject didn't understand that the ordering relationships shown in a proce-
dure's graph are not updated. The subject felt that this was Diligent's biggest
problem.

The subject thought that each demonstration should contain only one step.
This makes learning preconditions more di�cult.

� Changes

Subjects in EC3 can now only add one step at a time. Before they could, specify
the previous step and add several sequential steps. This change removed a menu
from editor that is very similar to the Demonstration menu used by EC1 and EC2.
However, by skipping a menu, the editor is a little simpler to use.

325

The practice problem solutions for groups EC1 and EC2 now say that only one
demonstration is necessary.

The description of the experiment's �rst procedure was changed. The description
now mentions the initial state. It said that the motor is turned o�, two alarm lights
are red and the initial state can be seen in the Vista window.

� Subject 9

{ Session 1

The subject had problems with Vista. The subject was shown how to select
objects.

The subject was also shown how to reset Vista's the view of environment.

{ Session 2: training

This is the only subject to skip a day between the two sessions.

The subject had some problems manipulating Vista.

The subject had problems with the practice problem, which had to be restarted
twice. Because of these problems, the practice problem took 20 minutes rather
10. One problem is that the subject performed actions too quickly and experi-
enced the simultaneous actions problem. Another problem is that the subject
closed a window with an X-window command instead of using the button pro-
vided for the task. When using the X-window command, the subject ignored a
window that warned her about closing a window in that manner.

{ Session 2: 1st procedure

The subject was confused about the procedure's description. He wasn't sure
whether he needed to open the valves. He was told that needed to open the
valves.

{ Session 2: 2nd procedure

The subject asked if the power had to be turned o�. He was told, \yes."

{ Later comments

This is the only subject that tried authoring with subprocedures, which is a
topic that was not covered during training.

� Changes

The creation and use of subprocedures was disabled.

The directions for the experiment's �rst procedure were changed. It now explicitly
says that the valves need to be opened and the motor turned on. This is meant to
prevent subjects from thinking that either the valves can be opened or the motor
turned on.

� Subject 10

{ Session 1

The subject performed actions too quickly at the start and experienced the
simultaneous action problem. Afterwards, the subject seemed to have no prob-
lems. The subject appeared to be familiar with moving around in Vista.

326

{ Session 2: 1st procedure

The subject expressed concern about her inability to turn o� lights, but subject
did eventually �gure this out.

{ Session 2: later comments

The subject said that editing was hard, but testing with STEVE was easy.

The subject was also trying to put in optional steps so that the steps could be
performed in di�erent orders. (Presently, this is unsupported.)

� Subject 11

{ Session 1

Initially, the subject had problems zooming out too far with Vista.

{ Session 2: training

For the practice problem, the subject was shown how to access causal link
information.

{ Session 2: 2nd procedure

The subject was told that the power light is white rather than gray at the start
of the procedure.

{ Session 2: later comments

The subject felt that the environment was unusual, and it is was di�cult getting
used to it.

The subject didn't realize that experiments would remove dependencies. For
this reason, the subject was moved from group EC1 to moved to group EC2.

� Changes

The practice problem solution for group EC1 now lists how experiments correct the
plan.

� Subject 12

{ Session 1

The subject zoomed in too fast in Vista. The subject was shown how to reset
the view.

The subject was very meticulous when covering the tutorial.

{ Session 2: 1st procedure

Experimented without recomputing ordering relationships.

{ Session 2: 2nd procedure

After the 1st procedure but before starting the 2nd, the subject was told to
recompute the ordering relationships after testing.

{ Session 2: later comments

The subject felt that Vista zoomed in or out too fast.

The subject also didn't think that testing was necessary.

327

� Subject 13

{ Session 1

The subject demonstrated the steps in the wrong order. The subject was told
to edit the procedure so that it resembled the tutorial's procedure. While the
out of order problem was being discovered, the subject saw the test monitor
use menus to identify the problem.

Session 2: later comments

The subject said that he did not have any problems with Vista.

� Subject 14

{ Session 1

Explained to the subject that the Soar window's \wait2" and \wait3" meant
that nothing else was happening.

� Subject 15

Quit after the �rst session.

� Subject 16

{ Session 1

The subject was familiar with STEVE but not Diligent. (The procedures being
authored during the experiment would not work in the versions of the environ-
ment that the subject had seen.)

328

Appendix D

How to Use Diligent

This section contains selected parts of the �rst day's tutorial. It focuses on how to create
a procedure, add steps to it and edit it. These are the areas where the three versions of
Diligent used in the empirical evaluation di�ered.

To limit this section's length, some things have not been shown. Things not shown in-
clude deriving goal conditions, deriving ordering relationships, experimenting and testing.
The chapter and tutorial summaries are also not shown.

Most of the following sections represent the version that was given to subjects who could
both demonstrate and experiment. This material is probably identical to the material given
to subjects who could demonstrate but not experiment. Section D.3 describes how steps,
preconditions and state changes are added by the subjects who could only use an editor.

As mentioned earlier, this thesis uses the term \step relationships" while the tuto-
rial uses the term \ordering relationships." In order to maintain consistency with screen
snapshots, the term \ordering relationships" will be used in this appendix.

Because Diligent used a whole suite of software components, it was not feasible to
include everything in this document. If you would like to get a copy of the system, please
contact.

Center for Advanced Research in Technology for Education
Information Sciences Institute
University of Southern California
4676 Admirality Way, Suite 1001
Marina del Rey, California 90292

329

D.1 Starting to Specify a Procedure

Figure D.1: Main Learning Menu

Option Description

Update existing procedure Select and change an existing procedure.

Create procedure Create a new procedure.

Which attributes are used Allows attributes to ignored when computing
ordering relationships.

Figure D.2: Main Learning Menu \Editing" Options

Now that we can manipulate the Vista browser, we are ready to start de�ning a pro-
cedure.

We will be using Diligent's Main Learning Menu. Figure D.1 shows the Diligent's Main
Learning Menu and �gure D.2 shows the submenu options available under \Editing".

Select the \Create new procedure" option on the Main Learning menu's
\Editing" submenu.

Figure D.3: Procedure Description Menu

The menu shown in �gure D.3 will appear.
Each procedure has a name, that is used to identify it, and a description, that is given

to human students, who are to learn it.
Please enter the procedure name \foo" and the description \demonstrate

how to author a procedure".
Indicate that you want to continue de�ning a procedure by selecting the

\Accept" button.

330

D.2 Demonstrations

This version of the chapter is for when demonstrations are used. The next chapter contains
code that was used for evaluation's control group, which was not allowed to demonstrate.

At this point we have started a procedure and given it a name and description.
We are now ready to de�ne the procedure's steps. A step is another procedure or an

action performed in the simulated environment.
We are going specify actions by performing (or demonstrating) them in the Vista

window.

D.2.1 Chapter Goals

� Learn how to demonstrate a procedure.

� Learn to provide more than one demonstration.

� Learn about di�erent types of demonstrations.

D.2.2 Setting the Initial Environment State

Figure D.4: Simulation Con�guration Menu

Before we demonstrate the procedure, we need put the environment in the proper initial
state.

After de�ning our procedure's name and description, you will see the Simulation Con-
�guration menu (�gure D.4), which speci�es an initial state for the environment.

Select \Ok" to choose the default con�guration.

Resetting the environment takes several seconds. The state has been reset when the
text stops scrolling in the Communications Bus Monitor window (�gure D.5).

After resetting the environment, you could make additional changes to the environment.
Steps will not be added to the procedure until we indicate that we are done making
additional changes (�gure D.6).

Indicate that we are ready to start adding steps by selecting the \Ready"

button �gure D.6.

331

Figure D.5: Communications Bus Monitor Window

Figure D.6: Additional Environment Changes

D.2.3 Adding Steps

At this point the Demonstration menu will appear (�gure D.7). The menu has 3 options
that need to be understood.

1. \De�ne new subprocedure" will start the de�nition of a brand new procedure as a
step in the current procedure.

2. \Insert" allows use of an existing procedure as a step in the current procedure.

3. \End demonstration" will end our demonstration and add the steps we have demon-
strated to the procedure.

Before the demonstration, the Vista window should look like �gure D.8, and afterwards,
it should look like D.9.

Now start the demonstration by toggling the leftmost valve. Toggle the valve by

putting the cursor over it, holding down the SHIFT key, and pressing the left
mouse button.

332

Figure D.7: Demonstration Menu

Figure D.8: Environment before Demonstration

333

Figure D.9: Environment after Demonstration

334

D.2.4 Operator Descriptions

Figure D.10: Operator Description Window

A window will appear that asks for operator information (�gure D.10).
What is an operator? Operators describe the preconditions and state changes for

actions that are performed in the simulated environment. The preconditions and state
changes will be useful for computing the ordering relationships between steps.

The operator's name is used to identify it. Give the operator the name \toggle-
1st". The operator's description is given to human students. Use the default descrip-
tion, \toggle the �rst cutout valve." Close the window by selecting \Accept."

When performing an action, always make sure Soar has �nished processing it. You can
tell that soar is �nished when the Soar window looks something like �gure D.11. When
the processing is �nished, \wait2" and \wait3" will be scrolling in the Soar window.

Wait for Soar to �nish processing the action.

D.2.5 Add More Steps

To elaborate our example, we will add two more steps to the procedure. This will give you
a chance to practice.

Now manipulate the second valve from the left. Do this by pressing the left mouse
button on the valve while holding down the SHIFT key. Call the operator

\toggle-2nd".
Next, manipulate the third value from the left and call the operator \toggle-

3rd". At this point, the picture in the browser should look like �gure D.9.

D.2.6 End Demonstration

To end our demonstration and add the steps to the procedure, select \End
demonstration" on Demonstration menu (�gure D.7).

The Demonstration menu will disappear.

335

Figure D.11: Soar Processing an Action

336

D.2.7 Additional Demonstrations

Figure D.12: Demonstration Version of Procedure Modi�cation Menu

After you �nish demonstrating a procedure, you can provide additional demonstrations.
This is done using the Procedure Modi�cation menu (�gure D.12), which is activated when
you �nish a demonstration.

Start a new demonstration by selecting the \Demonstration" option on the

Procedure Modi�cation menu.

337

Figure D.13: Demonstration Type Menu

A window will appear that asks you to indicate what type of demonstration you want
to perform (�gure D.13).

� \Additional steps" This option allows you to insert additional steps between two
steps that are already in a procedure.

� \Clarify without adding steps" This option allows you to demonstrate how the envi-
ronment works without adding any steps. This type of demonstration helps Diligent
discover the preconditions of a procedure's steps.

Since Diligent assumes the order that steps are performed is signi�cant, a good
heuristic for this type of demonstration is to change the order of the steps as much
as possible. For example, our previous demonstration toggled the 1st cutout valve
before toggling the 2nd and 3rd cutout valves. A good clarifying demonstration
would be to toggle the 3rd cutout valve before toggling the 2nd and 1st cutout
valves.

Indicate that you want to give a clari�cation demonstration by selecting
the diamond next to \Clarify without adding steps". Then select \Ok" to

continue.

D.2.8 Choosing a Previous Step

Once a procedure has some steps, you need to specify which existing step precedes the
�rst step in a new demonstration.

Figure D.14 shows how the previous step is speci�ed. The upper window contains a
graph that shows the order of execution for the procedure's existing steps. The lower
window allows you to specify the previous step.

Cancel the demonstration by selecting the \Cancel" button in the lower

window. Also close the graph's window by selecting \Ok".

338

Figure D.14: Previous Step Menu

D.3 Adding Steps to a Procedure

The previous chapter discussed how to demonstrate a procedure. This chapter describes how
to add steps to a procedure using only an editor.

At this point we have started a procedure and given it a name and description.
We are now ready to de�ne the procedure's steps. A step is another procedure or an

action performed in the simulated environment.

D.3.1 Chapter Goals

� Learn how to add steps to a procedure.

� Learn how to associate operator e�ects with a step.

� Learn how to de�ne operator e�ect preconditions and state changes.

D.3.2 Adding Steps

After de�ning our procedure's name and description, you will see the Procedure Modi�-
cation menu (�gure D.15), which is the main menu for modifying a procedure.

To add steps to the procedure, select the Procedure Modi�cation menu's

\Add a step" option.

339

Figure D.15: Manual Editor Version of Procedure Modi�cation Menu

D.3.3 Choosing a Previous Step

Before we can add a step, we need to specify which existing step goes before the new step.
Figure D.16 shows the windows that help you specify the previous step.

The upper window in �gure D.16 contains a graph that shows order of execution for
the procedure's existing steps. Initially, there are two steps, which indicate the procedure's
beginning and end.

The lower window in �gure D.16 allows you to specify the previous step. You could
change the previous step by selecting the box containing \begin-foo".

Since the procedure is new, \begin-foo" has to be the previous step. Agree to continue
adding a step by selecting \Ok" in the lower window.

Also close the graphical view of the procedure by selecting \Ok" in the

upper window.

D.3.4 Selecting an Action

The Action Selection menu will appear (�gure D.17). The menu describe that the actions
that can be added to the procedure.

We want to toggle the �rst cutout valve. Select \toggle the �rst cutout valve."
Then approve the action by selecting \Ok".

340

Figure D.16: Previous Step Menu

Figure D.17: Action Selection Menu

341

D.3.5 Operator Descriptions

Figure D.18: Operator Description Window

A window will appear that asks for operator information (�gure D.18).
What is an operator? Operators describe the preconditions and state changes for

actions that are performed in the simulated environment. The preconditions and state
changes will be useful for computing the ordering relationships between steps.

The operator's name is used to identify it. Give the operator the name \toggle-
1st". The operator's description is given to human students. Use the default descrip-
tion, \toggle the �rst cutout valve." Close the window by selecting \Accept."

Figure D.19: E�ect Selection Menu Before E�ects De�ned

342

D.3.6 Selecting Operator E�ects

When adding a step not only does the action need to be associated with an operator, but
the step must also be associated with some of the operator's e�ects.

The E�ect Selection menu will appear (�gure D.19). Unfortunately, the new operator
has no de�ned e�ects.

De�ne an e�ect by selecting \Add e�ect to operator".

343

Figure D.20: Initial Operator E�ect Menu

344

D.3.7 Adding Operator E�ects

The Operator E�ect menu will appear (�gure D.20) for operator \toggle-1st"'s �rst e�ect.
Let us �rst add some preconditions by selecting \Modify preconditions",

which allows us to add, delete and modify the e�ect's preconditions.

Figure D.21: Precondition Attribute List

A window will appear that contains a list of environment attribute names that can be
used in preconditions (�gure D.21). If an attribute has a de�ned value for preconditions,
the checkbox (little square box) next to the attribute name will be selected.

Scroll down the list and select the checkbox next to the attribute \gb covstg1 state".

Figure D.22: Attribute Value Input Window

The Attribute Value Input window will appear (�gure D.22). Figure D.22 shows that
attribute \gb covstg1 state" is described as the \�rst cutout valve".

345

Enter the attribute valve \open" and close the window by selecting \Ok".
In the Precondition Attribute list, the square next to attribute's name is now red. Let

us look at the precondition that we just de�ned.
Select the rectangle containing the attribute name (\gb covstg1 state").

Figure D.23: Precondition Value Window

A window containing information about the precondition will appear (�gure D.23).
The attribute's description is \�rst cutout valve," and the attribute's value is \open".

We now want to go back to the Operator E�ect menu. Close the Precondition
Value window and the Precondition Attribute List window by selecting \Ok".

Now that we are back on the Operator E�ect menu, we will add a state change. The
process is exactly like that used to add preconditions.

Add a state change to the e�ect by selecting \Modify state changes", which

allows us to add, delete and modify the e�ect's state changes. Indicate that
the attribute \gb covstg1 state" should have the value \shut". When you are

done, close the State Change Attribute List and go back to the Operator E�ect
menu.

346

Figure D.24: Updated Operator E�ect Menu

347

At this point the Operator E�ect menu should look like �gure D.24. One precondition
and one state change are now de�ned.

You should know a couple of things about the Operator E�ect menu.

1. Only preconditions with a \Likelihood" of \high" or \medium" are used. By default
the preconditions that you add will have a \high" likelihood.

2. By selecting the rectangle containing a precondition's \Condition" (e.g. \gb covstg1 state
= open"), you can look at information about the precondition. You can also change
the precondition's \Status", which control's its \Likelihood".

3. By selecting the rectangle containing a state change (e.g. \gb covstg1 state = shut"),
you can look at information about the state change.

Now add the e�ect to the operator by selecting \Approve" on the bottom

of the Operator E�ect menu.
This returns us to the E�ect Selection menu.

348

Figure D.25: Updated E�ect Selection Menu

349

D.3.8 Selecting Operator E�ect's Revisited

The E�ect Selection menu for our �rst step should now have an e�ect listed (�gure D.25).
Associate the operator's �rst e�ect with the step by selecting the checkbox

next e�ect \1".

Now approve the association of step \toggle-1st-1" to operator \toggle-
1st"'s �rst e�ect by selecting \Ok".

D.3.9 Add a Couple More Steps

To elaborate our example, we will add two more steps to the procedure. This will give you
a chance to practice.

After step \toggle-1st-1", add the \toggle the second cutout valve" action,

name the operator \toggle-2nd," and have attribute \gb covstg2 state" change
its value from \open" to \shut." \open" is the precondition value, and \shut"

is the state change value.
After step \toggle-2nd-2", add the \toggle the third cutout valve" action,

name the operator \toggle-3rd," and have attribute \gb covstg3 state" change
its value from \open" to \shut."

350

D.4 Editing a Procedure

In this chapter will we explore how to edit the objects associated with a procedure.

D.4.1 Chapter Goals

� For objects associated with a procedure,

{ Learn how to examine and modify them.

{ Gain familiarity with their menus.

� Learn about ordering relationships (i.e. causal links and ordering constraints). (See
section D.4.11 on page 363).

� Modify our example procedure in preparation for testing.

D.4.2 Review: Reaching the Procedure Modi�cation Menu

Figure D.26: Main Learning Menu

The Main Learning menu's (�gure D.26) \Editing" submenu allows you to access a pro-
cedure's Procedure Modi�cation menu.

For an existing procedure, select \Update existing procedure", and a list of procedures
appears. Select the name of a procedure and then select \Ok". This will open a Procedure
Modi�cation menu for the selected procedure.

Do nothing, the Procedure Modi�cation menu is visible for procedure \foo".

351

D.4.3 Procedure Graphs

Figure D.27: Procedure Graph from \Ordering relationships"

A Procedure graph presents the steps in a plan as nodes in a graph and allows you to
access data for individual steps.

Create a graph of our procedure by selecting the \Graph" button on the
Procedure Modi�cation menu and choosing \Ordering relationships".

The \ordering relationships" Procedure graph of our procedure is shown in �gure D.27.
The rectangles \begin-foo" and \end-foo" represent the beginning and end of the proce-
dure. The ovals represent the three steps we speci�ed. The arrows represent ordering
relationships between pairs of steps.

The procedure's initial state is represented as state changes caused by the procedure's
start step (\begin-foo"), and the procedure's goals are represented as preconditions of the
procedure's end step (\end-foo") .

352

Figure D.28: Procedure Graph showing \execution order"

353

Figure D.29: Step Modi�cation Menu

Switch to an execution order view of the procedure by selecting the box

containing \ordering relationships" and choosing \execution order".
The \execution order" Procedure graph of our procedure is shown in �gure D.28. The

arrows order the steps in the sequence that we speci�ed when we added them to the
procedure.

D.4.4 Looking at a step

The Step Modi�cation menu allows you to examine and modify objects associated with a
step.

Bring up the Step Modi�cation menu for step \toggle-2nd-2" by moving

the cursor over the oval containing \toggle-2nd-2". When the oval's outline
changes color (becomes black), press the left mouse button.

The Step Modi�cation menu for step \toggle-2nd-2" is shown in �gure D.29. The step's
operator (\toggle-2nd") associates an action in the environment to the step's e�ects. This
step produces the operator's �rst e�ect (\1"). Each e�ect associates a set of preconditions

354

that must be true before the step to a set of state changes that result from executing the
step.

Edit operator \toggle-2nd"'s �rst e�ect by selecting the square that says

\1".

355

D.4.5 Operator E�ect Menu

Figure D.30: Operator E�ect Menu

The Operator E�ect menu maps a set of state changes caused by an action in the envi-
ronment to a set of preconditions.

The Operator E�ect menu for the �rst e�ect of operator \toggle-2nd" is shown in �gure
D.30.

You should know a couple of things about the menu.

1. The area at the top of the menu describes preconditions, which are attribute values
that need to be true before the operator's action is performed.

2. Only preconditions with a \Likelihood" of \high" or \medium" are used.

3. By selecting the rectangle containing a precondition's \Condition" (e.g. \gb covstg2 state
= open"), you can look at information about the precondition. You can also change
the precondition's \Status", which control's its \Likelihood".

4. The bottom of the menu lists state changes produced by the e�ect. State changes
are the values of attributes after the operator's action is performed.

356

5. By selecting the rectangle containing a state change (e.g. \gb covstg2 state = shut"),
you can look at information about a state change.

D.4.6 Precondition Window

Figure D.31: Precondition Window

Using the Operator E�ect menu, look at a precondition by selecting the rect-

angle containing \gb covstg2 state = open".
The Precondition window describes a precondition for an operator e�ect. Figure D.31

tells us that the state of the \second cutout valve" needs to be \open" and that the
precondition is \provisional", which means that it will be used.

Preconditions are used only when their status is \required", \suspect" or \provi-
sional".1

Close the Precondition window by selecting \Ok".

D.4.7 State Change Window

Figure D.32: State Change Window

Using the Operator E�ect menu, look at a state change by selecting the rect-
angle containing \gb covstg2 state = shut".

1In the tutorial, this chapter's summary has a table that describes the various status values. In this thesis,
the calculation of status values is described in Section A.3.

357

The State Change window describes a state change caused by an operator's e�ect.
Figure D.32 tells us that the state of the \second cutout valve" will be \shut".

Close the State Change window by selecting \Ok".

D.4.8 Modifying Preconditions

We will now introduce two preconditions for step \toggle-2nd." The preconditions will
help us when we test the procedure.

D.4.8.1 Using the Operator E�ect menu

The �rst precondition is erroneous. It will be identi�ed when we test the procedure.
The precondition is the last precondition in the Operator E�ect menu's list of precon-

ditions. The precondition has a likelihood of \none" because the experiments determined
that it is unnecessary.

Be aware that the scrollbar next to the preconditions does not indicate the number of
preconditions in the list.

Select the precondition with the condition \gb covstg1 state = shut". In
the Precondition window, set the status to \required".

Select \Ok" to close the Operator E�ect menu.

D.4.8.2 Using the Step Prerequisites menu

The next precondition that we will specify is not required to perform the step. Instead,
the precondition is used to control when the step is performed.

Operator e�ects are inappropriate for this purpose because

� Preconditions are automatically eliminated if they are not required by the environ-
ment.

� The same e�ect could be used with several steps.

You can specifying preconditions for controlling when a step is performed using the
\Step Prerequisites" menu.

On Step Modi�cation menu for step \toggle-2nd-2", open the \Step Pre-

requisites" menu (�gure D.33) by selecting the \Step Prerequisites" button.
We will specify that the �rst stage alarm light should be o� before performing step

\toggle-2nd-2".
Select the precondition for �rst stage alarm light by selecting the rectangle

with the condition \cdm chnl1 lt state = o�". In the Precondition window,

set the status to \required" by selecting the diamond next to \required".
Select \Ok" to close the Step Prerequisites window.

D.4.9 Updated Procedure Graph

After updating the preconditions, we need to close some windows and recalculate the
ordering relationships between the procedure's steps.

358

Figure D.33: Step Prerequisites Menu

Close the Step Modi�cation menu and the Procedure graph by selecting

the \Ok" button on the bottom of each menu.
On the Procedure Modi�cation menu, recalculate our procedure's ordering

constraints by selecting the \Complete" button and choosing \Derive ordering
relationships".

On the Procedure Modi�cation menu, open up a new Procedure graph, by
selecting the \Graph" button and choosing \Ordering relationships".

359

Figure D.34: Incorrect Procedure Graph

360

Figure D.34 shows the Procedure graph when operator \toggle-2nd"'s �rst e�ect con-
tains the erroneous precondition. You can see the error because the second step (\toggle-
2nd-2") should not depend on the �rst step (\toggle-1st-1").

Go to the updated Step Modi�cation menu for step \toggle-2nd-2" by se-
lecting its oval. Remember to look for a change in color of the oval's outline.

D.4.10 Updated Step Modi�cation Menu

Figure D.35: Step Modi�cation Menu with Error

After the error is introduced, the Step Modi�cation menu looks like �gure D.35.
To see dependencies with steps later in the procedure, select \this step

depends upon". You will see two options \this step depends upon" and \depend upon
this step". Choose the \depend upon this step" option.

Only \end-foo" will be listed as depending directly on step \toggle-2nd-2". (The
preconditions for step \end-foo" are the procedure's goals.)

Undo the previous action by selecting \depend upon this step" and choosing
the \this step depends upon".

361

The menu should now say this step (\toggle-2nd-2") depends on steps \begin-foo" and
\toggle-1st-1". (\begin-foo" represents the initial state in which the procedure starts.)

To look at the dependencies between step \toggle-1st-1" and our current

step (\toggle-2nd-2"), select the rectangle containing \toggle-1st-1". This brings
up the Dependencies menu for steps \toggle-1st-1" and \toggle-2nd-2".

362

D.4.11 Dependencies Menu

Figure D.36: Dependencies Menu

Before we can discuss the Dependencies Menu, we need to de�ne some terms. Ordering
Relationships are causal links and ordering constraints. A causal link is an attribute value
caused by one step that is a precondition for a later step. An ordering constraint is
indicates the relative order for performing a pair of steps.

You want an ordering constraint between the steps when

1. There is a causal link between the steps.

2. The state changes of the latter step interfere with the preconditions of the earlier
step.

Figure D.36 shows dependencies between steps \toggle-1st-1" and \toggle-2nd-2". In
�gure D.36, notice three things.

363

1. Near the top of the menu there is a \provisional" ordering constraint between the
two steps. If the diamond next to \rejected" is selected, no ordering constraint will
be included in the procedure.

The ordering constraint says that step \toggle-1st-1" should be performed before
\toggle-2nd-2".

2. There is one causal link between the steps with the condition \gb covstg1 state =
shut". This means that step \toggle-1st-1" causes attribute \gb covstg1 state" to
have the value \shut" and that this value is a precondition for step \toggle-2nd-2".

3. The causal link is the only reason for the ordering constraint.

D.4.12 Looking at the Causal Link Menu

Figure D.37: Causal Link Menu

On the Dependencies menu, look at data for the causal link by selecting the

rectangle containing \gb covstg1 state = shut".
Figure D.37 shows the Causal Link menu. The �gure says that there is a causal link

between steps \toggle-1st-1" and \toggle-2nd-2" where a state change caused by \toggle-
1st-1" is a precondition for \toggle-2nd-2". The state change is that the �rst cutout valve
becomes shut.

The causal link's status is \provisional". Causal links with a status of \rejected" will
not be included in the procedure.

Close the open editing windows by selecting their \Ok" buttons. These
windows are the Causal Link menu, the Dependencies menu, the Step Modi-

�cation menu, and the Procedure Graph window.
The Procedure Modi�cation menu should still be open.

364

