
PsychoPy - Psychology software for
Python

Release 1.81.03

Jonathan Peirce

December 08, 2014

CONTENTS

1 About PsychoPy 1
1.1 Overview . 1
1.2 Credits . 2
1.3 Contributing to the project . 3
1.4 Citing PsychoPy . 4

2 General issues 5
2.1 Monitor Center . 5
2.2 Units for the window and stimuli . 6
2.3 Color spaces . 7
2.4 Preferences . 10
2.5 Data outputs . 11
2.6 Gamma correcting a monitor . 13
2.7 OpenGL and Rendering . 15
2.8 Timing Issues and synchronisation . 17
2.9 Glossary . 25

3 Installation 27
3.1 Overview . 27
3.2 Recommended hardware . 27
3.3 Windows . 27
3.4 Mac OS X . 28
3.5 Linux . 28

4 Dependencies 31
4.1 Essential packages . 31
4.2 Suggested packages . 32

5 Getting Started 33
5.1 Builder . 34
5.2 Builder-to-coder . 36
5.3 Coder . 37

6 Builder 39
6.1 Builder concepts . 40
6.2 Routines . 41
6.3 Flow . 42
6.4 Components . 45
6.5 Experiment settings . 58
6.6 Defining the onset/duration of components . 59
6.7 Generating outputs (datafiles) . 60

i

6.8 Common Mistakes (aka Gotcha’s) . 60
6.9 Compiling a Script . 61
6.10 Set up your monitor properly . 62
6.11 Future developments . 62

7 Coder 63
7.1 Basic Concepts . 63
7.2 PsychoPy Tutorials . 68

8 Reference Manual (API) 77
8.1 psychopy.core - basic functions (clocks etc.) . 77
8.2 psychopy.visual - many visual stimuli . 79
8.3 psychopy.data - functions for storing/saving/analysing data . 80
8.4 Encryption . 97
8.5 psychopy.event - for keypresses and mouse clicks . 97
8.6 psychopy.filters - helper functions for creating filters . 100
8.7 psychopy.gui - create dialogue boxes . 102
8.8 psychopy.hardware - hardware interfaces . 104
8.9 psychopy.info - functions for getting information about the system 116
8.10 psychopy.iohub - ioHub event monitoring framework . 117
8.11 psychopy.logging - control what gets logged . 128
8.12 psychopy.microphone - Capture and analyze sound . 131
8.13 psychopy.misc - miscellaneous routines for converting units etc 135
8.14 psychopy.monitors - for those that don’t like Monitor Center 137
8.15 psychopy.parallel - functions for interacting with the parallel port 142
8.16 psychopy.serial - functions for interacting with the serial port 143
8.17 psychopy.sound - play various forms of sound . 144
8.18 psychopy.tools - miscellaneous tools . 146
8.19 psychopy.web - Web methods . 151

9 Troubleshooting 155
9.1 The application doesn’t start . 155
9.2 I run a Builder experiment and nothing happens . 156
9.3 Manually turn off the viewing of output . 156
9.4 Use the source (Luke?) . 156
9.5 Cleaning preferences and app data . 156

10 Recipes (“How-to”s) 159
10.1 Adding external modules to Standalone PsychoPy . 159
10.2 Animation . 160
10.3 Scrolling text . 160
10.4 Fade-in / fade-out effects . 160
10.5 Building an application from your script . 161
10.6 Builder - providing feedback . 162
10.7 Builder - terminating a loop . 163
10.8 Installing PsychoPy in a classroom (administrators) . 164
10.9 Generating formatted strings . 166
10.10 Coder - interleave staircases . 166
10.11 Making isoluminant stimuli . 167
10.12 Adding a web-cam . 168

11 Frequently Asked Questions (FAQs) 171
11.1 Why is the bits++ demo not working? . 171
11.2 Can PsychoPy run my experiment with sub-millisecond timing? . 171

ii

12 Resources (e.g. for teaching) 173
12.1 P4N . 173
12.2 Youtube tutorials . 173
12.3 Materials for Builder . 173
12.4 Materials for Coder . 173
12.5 Previous events . 174

13 For Developers 175
13.1 Using the repository . 175
13.2 Adding documentation . 179
13.3 Adding a new Builder Component . 179
13.4 Style-guide for coder demos . 182
13.5 Localization (I18N, translation) . 183
13.6 Adding a new Menu Item . 186

14 PsychoPy Experiment file format (.psyexp) 189
14.1 Parameters . 189
14.2 Settings . 189
14.3 Routines . 190
14.4 Components . 190
14.5 Flow . 190
14.6 Names . 190

Python Module Index 193

Index 195

iii

iv

CHAPTER

ONE

ABOUT PSYCHOPY

1.1 Overview

PsychoPy is an open-source package for running experiments in Python (a real and free alternative to Matlab). Psy-
choPy combines the graphical strengths of OpenGL with the easy Python syntax to give scientists a free and simple
stimulus presentation and control package. It is used by many labs worldwide for psychophysics, cognitive neuro-
science and experimental psychology.

Because it’s open source, you can download it and modify the package if you don’t like it. And if you make changes
that others might use then please consider giving them back to the community via the mailing list. PsychoPy has been
written and provided to you absolutely for free. For it to get better it needs as much input from everyone as possible.

1.1.1 Features

There are many advantages to using PsychoPy, but here are some of the key ones

• Simple install process

• Precise timing

• Huge variety of stimuli (see screenshots) generated in real-time:

– linear gratings, bitmaps constantly updating

– radial gratings

– random dots

– movies (DivX, mov, mpg...)

– text (unicode in any truetype font)

– shapes

– sounds (tones, numpy arrays, wav, ogg...)

• Platform independent - run the same script on Win, OS X or Linux

• Flexible stimulus units (degrees, cm, or pixels)

• Coder interface for those that like to program

• Builder interface for those that don’t

• Input from keyboard, mouse, microphone or button boxes

• Multi-monitor support

• Automated monitor calibration (for supported photometers)

1

http://www.python.org

PsychoPy - Psychology software for Python, Release 1.81.03

1.1.2 Hardware Integration

PsychoPy supports communication via serial ports, parallel ports and compiled drivers (dlls and dylibs), so it can talk to any hardware that your computer can! Interfaces are prebuilt for;

• Spectrascan PR650, PR655, PR670

• Minolta LS110, LS100

• Cambridge Research Systems Bits++

• Cedrus response boxes (RB7xx series)

1.1.3 System requirements

Although PsychoPy runs on a wide variety of hardware, and on Windows, OS X or Linux, it really does benefit from
a decent graphics card. Get an ATI or nVidia card that supports OpenGL 2.0. Avoid built-in Intel graphics chips (e.g.
GMA 950)

1.2 Credits

1.2.1 Developers

PsychoPy was initially created and maintained by Jon Peirce but has many contributors to the code:

Jeremy Gray, Sol Simpson, Yaroslav Halchenko, Erik Kastman, Mike MacAskill, William Hogman,
Jonas Lindeløv, Ariel Rokem, Dave Britton, Gary Strangman, C Luhmann, Hiroyuki Sogo

You can see details of contributions on Ohloh.net and there’s a visualisation of PsychoPy’s development history on
youtube.

PsychoPy also stands on top of a large number of other developers’ work. It wouldn’t be possible to write this package
without the preceding work of those that wrote the Dependencies

1.2.2 Support

Software projects aren’t just about code. A great deal of work is done by the community in terms of support-
ing each other. Jeremy Gray, Mike MacAskill, Jared Roberts and Jonas Lindelov particularly stand out in doing
a fantastic job of answering other users’ questions. You can see the most active posters on the users list here:
https://groups.google.com/forum/#!aboutgroup/psychopy-users

1.2.3 Funding

The PsychoPy project has attracted small grants from the HEA Psychology Network and Cambridge Research Systems
. Thanks to those organisations for their support.

Jon is paid by The University of Nottingham (which allows him to spend time on this) and his grants from the BBSRC
and Wellcome Trust have also helped the development PsychoPy.

2 Chapter 1. About PsychoPy

http://www.peirce.org.uk
https://www.ohloh.net/p/PsychoPy/contributors/summary
http://www.youtube.com/watch?v=l0xZvHLFrl4
https://groups.google.com/forum/#!aboutgroup/psychopy-users
http://www.psychology.heacademy.ac.uk/s.php?p=256&db=104
http://www.crsltd.com/
http://www.nottingham.ac.uk
http://www.bbsrc.ac.uk
http://www.wellcome.ac.uk/

PsychoPy - Psychology software for Python, Release 1.81.03

1.3 Contributing to the project

PsychoPy is an open-source, community-driven project. It is written and provided free out of goodwill by people that
make no money from it and have other jobs to do. The way that open-source projects work is that users contribute
back some of their time.

1.3.1 Why make it free?

It has taken, literally, thousands of hours of programming to get PsychoPy where it is today and it is provided absolutely
for free. Without someone working on it full time (which would mean charging you for it) the only way for the software
to keep getting better is if people contribute back to the project.

Please, please, please make the effort to give a little back to this project. If you found the documentation hard to
understand then think about how you would have preferred it to be written and contribute it.

1.3.2 How do I contribute changes?

For simple changes, and for users that aren’t so confident with things like version control systems then just send your
changes to the mailing list.

If you want to make more substantial changes then it’s often good to discuss them first on the developers mailing list.

The ideal model, is to contribute via the repository on github. There is more information on that in the For Developers
section of the documentation.

1.3.3 Contribute to the Forum (mailing list)

The easiest way to help the project is to write to the forum (mailing list) with suggestions and solutions.

For documentation suggestions please try to provide actual replacement text. You, as a user, are probably better placed
to write this than the actual developers (they know too much to write good docs)!

If you’re having problems, e.g. you think you may have found a bug:

• take a look at the Troubleshooting and Common Mistakes (aka Gotcha’s) first

• submit a message with as much information as possible about your system and the problem

• please try to be precise. Rather than say “It didn’t work” try to say what specific form of “not working”
you found (did the stimulus not appear? or it appeared but poorly rendered? or the whole application
crashed?!)

• if there is an error message, try to provide it completely

If you had problems and worked out how to fix things, even if it turned out the problem was your own lack of under-
standing, please still contribute the information. Others are likely to have similar problems. Maybe the documentation
could be clearer, or your email to the forum will be found by others googling for the same problem.

To make your message more useful you should, please try to:

• provide info about your system and PsychoPy version (e.g. the output of the sysInfo demo in coder). A lot
of problems are specific to a particular graphics card or platform

• provide a minimal example of the breaking code (if you’re writing scripts)

1.3. Contributing to the project 3

http://groups.google.com/group/psychopy-users
http://groups.google.com/group/psychopy-dev

PsychoPy - Psychology software for Python, Release 1.81.03

1.4 Citing PsychoPy

If you use this software, please cite one of the papers that describe it.

1. Peirce, JW (2007) PsychoPy - Psychophysics software in Python. J Neurosci Methods, 162(1-2):8-13

2. Peirce JW (2009) Generating stimuli for neuroscience using PsychoPy. Front. Neuroinform. 2:10.
doi:10.3389/neuro.11.010.2008

Citing these papers gives the reviewer/reader of your study information about how the system works, it also attributes
some credit for its original creation, and it means provides a way to justify the continued development of the package.

4 Chapter 1. About PsychoPy

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T04-4MWGYDH-1&_user=5939061&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000009959&_version=1&_urlVersion=0&_userid=5939061&md5=4a09e4ec5b516e9220a1fa5bc3f8f10c
http://www.frontiersin.org/neuroinformatics/paper/10.3389/neuro.11/010.2008/
http://www.frontiersin.org/neuroinformatics/paper/10.3389/neuro.11/010.2008/

CHAPTER

TWO

GENERAL ISSUES

These are issues that users should be aware of, whether they are using Builder or Coder views.

2.1 Monitor Center

PsychoPy provides a simple and intuitive way for you to calibrate your monitor and provide other information about
it and then import that information into your experiment.

Information is inserted in the Monitor Center (Tools menu), which allows you to store information about multiple
monitors and keep track of multiple calibrations for the same monitor.

For experiments written in the Builder view, you can then import this information by simply specifying the name of
the monitor that you wish to use in the Experiment settings dialog. For experiments created as scripts you can retrieve
the information when creating the Window by simply naming the monitor that you created in Monitor Center. e.g.:

from psychopy import visual
win = visual.Window([1024,768], mon=’SonyG500’)

Of course, the name of the monitor in the script needs to match perfectly the name given in the Monitor Center.

2.1.1 Real world units

One of the particular features of PsychoPy is that you can specify the size and location of stimuli in units that are
independent of your particular setup, such as degrees of visual angle (see Units for the window and stimuli). In order
for this to be possible you need to inform PsychoPy of some characteristics of your monitor. Your choice of units
determines the information you need to provide:

Units Requires
‘norm’ (normalised to width/height) n/a
‘pix’ (pixels) Screen width in pixels
‘cm’ (centimeters on the screen) Screen width in pixels and screen width in cm
‘deg’ (degrees of visual angle) Screen width (pixels), screen width (cm) and distance (cm)

2.1.2 Calibrating your monitor

PsychoPy can also store and use information about the gamma correction required for your monitor. If you have
a Spectrascan PR650 (other devices will hopefully be added) you can perform an automated calibration in which
PsychoPy will measure the necessary gamma value to be applied to your monitor. Alternatively this can be added
manually into the grid to the right of the Monitor Center. To run a calibration, connect the PR650 via the serial port
and, immediately after turning it on press the Find PR650 button in the Monitor Center.

5

PsychoPy - Psychology software for Python, Release 1.81.03

Note that, if you don’t have a photometer to hand then there is a method for determining the necessary gamma value
psychophysically included in PsychoPy (see gammaMotionNull and gammaMotionAnalysis in the demos menu).

The two additional tables in the Calibration box of the Monitor Center provide conversion from DKL and LMS colour
spaces to RGB.

2.2 Units for the window and stimuli

One of the key advantages of PsychoPy over many other experiment-building software packages is that stimuli can be
described in a wide variety of real-world, device-independent units. In most other systems you provide the stimuli at
a fixed size and location in pixels, or percentage of the screen, and then have to calculate how many cm or degrees of
visual angle that was.

In PsychoPy, after providing information about your monitor, via the Monitor Center, you can simply specify your
stimulus in the unit of your choice and allow PsychoPy to calculate the appropriate pixel size for you.

Your choice of unit depends on the circumstances. For conducting demos, the two normalised units (‘norm’ and
‘height’) are often handy because the stimulus scales naturally with the window size. For running an experiment it’s
usually best to use something like ‘cm’ or ‘deg’ so that the stimulus is a fixed size irrespective of the monitor/window.

For all units, the centre of the screen is represented by coordinates (0,0), negative values mean down/left, positive
values mean up/right.

2.2.1 Height units

With ‘height’ units everything is specified relative to the height of the window (note the window, not the screen).
As a result, the dimensions of a screen with standard 4:3 aspect ratio will range (-0.6667,-0.5) in the bottom left to
(+0.6667,+0.5) in the top right. For a standard widescreen (16:10 aspect ratio) the bottom left of the screen is (-0.8,-
0.5) and top-right is (+0.8,+0.5). This type of unit can be useful in that it scales with window size, unlike Degrees of
visual angle or Centimeters on screen, but stimuli remain square, unlike Normalised units units. Obviously it has the
disadvantage that the location of the right and left edges of the screen have to be determined from a knowledge of the
screen dimensions. (These can be determined at any point by the Window.size attribute.)

Spatial frequency: cycles per stimulus (so will scale with the size of the stimulus).

Requires : No monitor information

2.2.2 Normalised units

In normalised (‘norm’) units the window ranges in both x and y from -1 to +1. That is, the top right of the window
has coordinates (1,1), the bottom left is (-1,-1). Note that, in this scheme, setting the height of the stimulus to be 1.0,
will make it half the height of the window, not the full height (because the window has a total height of 1:-1 = 2!).
Also note that specifying the width and height to be equal will not result in a square stimulus if your window is not
square - the image will have the same aspect ratio as your window. e.g. on a 1024x768 window the size=(0.75,1) will
be square.

Spatial frequency: cycles per stimulus (so will scale with the size of the stimulus).

Requires : No monitor information

2.2.3 Centimeters on screen

Set the size and location of the stimulus in centimeters on the screen.

6 Chapter 2. General issues

PsychoPy - Psychology software for Python, Release 1.81.03

Spatial frequency: cycles per cm

Requires : information about the screen width in cm and size in pixels

Assumes : pixels are square. Can be verified by drawing a stimulus with matching width and height and verifying that
it is in fact square. For a CRT this can be controlled by setting the size of the viewable screen (settings on the monitor
itself).

2.2.4 Degrees of visual angle

Use degrees of visual angle to set the size and location of the stimulus. This is, of course, dependent on the distance
that the participant sits from the screen as well as the screen itself, so make sure that this is controlled, and remember
to change the setting in Monitor Center if the viewing distance changes.

Spatial frequency: cycles per degree

Requires : information about the screen width in cm and pixels and the viewing distance in cm

Assumes : that pixels are square (see above) and that all parts of the screen are a constant distance from the eye
(i.e. that the screen is curved!). This (clearly incorrect assumption) is common to most studies that report the size of
their stimulus in degrees of visual angle. The resulting error is small at moderate eccentricities (a 0.2% error in size
calculation at 3 deg eccentricity) but grows as stimuli are placed further from the centre of the screen (a 2% error at 10
deg). For studies of peripheral vision this should be corrected for. PsychoPy also makes no correction for the thickness
of the screen glass, which refracts the image slightly.

2.2.5 Pixels on screen

You can also specify the size and location of your stimulus in pixels. Obviously this has the disadvantage that sizes
are specific to your monitor (because all monitors differ in pixel size).

Spatial frequency: ‘cycles per pixel‘ (this catches people out but is used to be in keeping with the other units.
If using pixels as your units you probably want a spatial frequency in the range 0.2-0.001 (i.e. from 1 cycle every 5
pixels to one every 100 pixels).

Requires : information about the size of the screen (not window) in pixels, although this can often be deduce from the
operating system if it has been set correctly there.

Assumes: nothing

2.3 Color spaces

The color of stimuli can be specified when creating a stimulus and when using setColor() in a variety of ways. There
are three basic color spaces that PsychoPy can use, RGB, DKL and LMS but colors can also be specified by a name
(e.g. ‘DarkSalmon’) or by a hexadecimal string (e.g. ‘#00FF00’).

examples:

stim = visual.GratingStim(win, color=[1,-1,-1], colorSpace=’rgb’) #will be red
stim.setColor(’Firebrick’)#one of the web/X11 color names
stim.setColor(’#FFFAF0’)#an off-white
stim.setColor([0,90,1], colorSpace=’dkl’)#modulate along S-cone axis in isoluminant plane
stim.setColor([1,0,0], colorSpace=’lms’)#modulate only on the L cone
stim.setColor([1,1,1], colorSpace=’rgb’)#all guns to max
stim.setColor([1,0,0])#this is ambiguous - you need to specify a color space

2.3. Color spaces 7

PsychoPy - Psychology software for Python, Release 1.81.03

2.3.1 Colors by name

Any of the web/X11 color names can be used to specify a color. These are then converted into RGB space by PsychoPy.

These are not case sensitive, but should not include any spaces.

2.3.2 Colors by hex value

This is really just another way of specifying the r,g,b values of a color, where each gun’s value is given by two
hexadecimal characters. For some examples see this chart. To use these in PsychoPy they should be formatted as a
string, beginning with # and with no spaces. (NB on a British Mac keyboard the # key is hidden - you need to press
Alt-3)

2.3.3 RGB color space

This is the simplest color space, in which colors are represented by a triplet of values that specify the red green and
blue intensities. These three values each range between -1 and 1.

Examples:

• [1,1,1] is white

• [0,0,0] is grey

• [-1,-1,-1] is black

• [1.0,-1,-1] is red

• [1.0,0.6,0.6] is pink

The reason that these colors are expressed ranging between 1 and -1 (rather than 0:1 or 0:255) is that many experiments,
particularly in visual science where PsychoPy has its roots, express colors as deviations from a grey screen. Under
that scheme a value of -1 is the maximum decrement from grey and +1 is the maximum increment above grey.

Note that PsychoPy will use your monitor calibration to linearize this for each gun. E.g., 0 will be halfway between
the minimum luminance and maximum luminance for each gun, if your monitor gammaGrid is set correctly.

2.3.4 HSV color space

Another way to specify colors is in terms of their Hue, Saturation and ‘Value’ (HSV). For a description of the color
space see the Wikipedia HSV entry. The Hue in this case is specified in degrees, the saturation ranging 0:1 and the
‘value’ also ranging 0:1.

Examples:

• [0,1,1] is red

• [0,0.5,1] is pink

• [90,1,1] is cyan

• [anything, 0, 1] is white

• [anything, 0, 0.5] is grey

• [anything, anything,0] is black

Note that colors specified in this space (like in RGB space) are not going to be the same another monitor; they are
device-specific. They simply specify the intensity of the 3 primaries of your monitor, but these differ between monitors.
As with the RGB space gamma correction is automatically applied if available.

8 Chapter 2. General issues

http://www.w3schools.com/html/html_colornames.asp
http://html-color-codes.com/
http://en.wikipedia.org/wiki/HSL_and_HSV

PsychoPy - Psychology software for Python, Release 1.81.03

2.3.5 DKL color space

To use DKL color space the monitor should be calibrated with an appropriate spectrophotometer, such as a PR650.

In the Derrington, Krauskopf and Lennie 1 color space (based on the Macleod and Boynton 2 chromaticity diagram)
colors are represented in a 3-dimensional space using spherical coordinates that specify the elevation from the isolu-
minant plane, the azimuth (the hue) and the contrast (as a fraction of the maximal modulations along the cardinal axes
of the space).

In PsychoPy these values are specified in units of degrees for elevation and azimuth and as a float (ranging -1:1) for
the contrast.

Note that not all colors that can be specified in DKL color space can be reproduced on a monitor. Here is a movie
plotting in DKL space (showing cartesian coordinates, not spherical coordinates) the gamut of colors available on an
example CRT monitor.

Examples:

• [90,0,1] is white (maximum elevation aligns the color with the luminance axis)

• [0,0,1] is an isoluminant stimulus, with azimuth 0 (S-axis)

• [0,45,1] is an isoluminant stimulus,with an oblique azimuth

1 Derrington, A.M., Krauskopf, J., & Lennie, P. (1984). Chromatic Mechanisms in Lateral Geniculate Nucleus of Macaque. Journal of Physiol-
ogy, 357, 241-265.

2 MacLeod, D. I. A. & Boynton, R. M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the
Optical Society of America, 69(8), 1183-1186.

2.3. Color spaces 9

http://youtu.be/xwoVrGoBaWg

PsychoPy - Psychology software for Python, Release 1.81.03

2.3.6 LMS color space

To use LMS color space the monitor should be calibrated with an appropriate spectrophotometer, such as a PR650.

In this color space you can specify the relative strength of stimulation desired for each cone independently, each with
a value from -1:1. This is particularly useful for experiments that need to generate cone isolating stimuli (for which
modulation is only affecting a single cone type).

2.4 Preferences

2.4.1 General settings

winType: PsychoPy can use one of two ‘backends’ for creating windows and drawing; pygame and pyglet. Here you
can set the default backend to be used.

units: Default units for windows and visual stimuli (‘deg’, ‘norm’, ‘cm’, ‘pix’). See Units for the window and stimuli.
Can be overridden by individual experiments.

fullscr: Should windows be created full screen by default? Can be overridden by individual experiments.

allowGUI: When the window is created, should the frame of the window and the mouse pointer be visible. If set to
False then both will be hidden.

2.4.2 Application settings

These settings are common to all components of the application (Coder and Builder etc)

largeIcons: Do you want large icons (on some versions of wx on OS X this has no effect)

defaultView: Determines which view(s) open when the PsychoPy app starts up. Default is ‘last’, which fetches the
same views as were open when PsychoPy last closed.

runScripts: Don’t ask. ;-) Just leave this option as ‘process’ for now!

allowModuleImports (only used by win32): Allow modules to be imported at startup for analysis by source assis-
tant. This will cause startup to be slightly slower but will speedup the first analysis of a script.

2.4.3 Coder settings

outputFont: a list of font names to be used in the output panel. The first found on the system will be used

fontSize (in pts): an integer between 6 and 24 that specifies the size of fonts

codeFontSize = integer(6,24, default=12)

outputFontSize = integer(6,24, default=12)

showSourceAsst: Do you want to show the source assistant panel (to the right of the Coder view)? On Windows this
provides help about the current function if it can be found. On OS X the source assistant is of limited use and is
disabled by default.

analysisLevel: If using the source assistant, how much depth should PsychoPy try to analyse the current script? Lower
values may reduce the amount of analysis performed and make the Coder view more responsive (particularly
for files that import many modules and sub-modules).

analyseAuto: If using the source assistant, should PsychoPy try to analyse the current script on every save/load of the
file? The code can be analysed manually from the tools menu

10 Chapter 2. General issues

PsychoPy - Psychology software for Python, Release 1.81.03

showOutput: Show the output panel in the Coder view. If shown all python output from the session will be output
to this panel. Otherwise it will be directed to the original location (typically the terminal window that called
PsychoPy application to open).

reloadPrevFiles: Should PsychoPy fetch the files that you previously had open when it launches?

2.4.4 Builder settings

reloadPrevExp (default=False): for the user to add custom components (comma-separated list)

componentsFolders: a list of folder pathnames that can hold additional custom components for the Builder view

hiddenComponents: a list of components to hide (e.g., because you never use them)

2.4.5 Connection settings

proxy: The proxy server used to connect to the internet if needed. Must be of the form http://111.222.333.444:5555

autoProxy: PsychoPy should try to deduce the proxy automatically (if this is True and autoProxy is successful then
the above field should contain a valid proxy address).

allowUsageStats: Allow PsychoPy to ping a website at when the application starts up. Please leave this set to True.
The info sent is simply a string that gives the date, PsychoPy version and platform info. There is no cost to
you: no data is sent that could identify you and PsychoPy will not be delayed in starting as a result. The aim
is simple: if we can show that lots of people are using PsychoPy there is a greater chance of it being improved
faster in the future.

checkForUpdates: PsychoPy can (hopefully) automatically fetch and install updates. This will only work for minor
updates and is still in a very experimental state (as of v1.51.00).

2.4.6 Key bindings

There are many shortcut keys that you can use in PsychoPy. For instance did you realise that you can indent or outdent
a block of code with Ctrl-[and Ctrl-] ?

2.5 Data outputs

There are a number of different forms of output that PsychoPy can generate, depending on the study and your preferred
analysis software. Multiple file types can be output from a single experiment (e.g. Excel data file for a quick browse,
Log file to check for error messages and PsychoPy data file (.psydat) for detailed analysis)

2.5.1 Log file

Log files are actually rather difficult to use for data analysis but provide a chronological record of everything that
happened during your study. The level of content in them depends on you. See Logging data for further information.

2.5.2 PsychoPy data file (.psydat)

This is actually a TrialHandler or StairHandler object that has been saved to disk with the python cPickle
module.

2.5. Data outputs 11

http://docs.python.org/library/pickle.html#module-cPickle

PsychoPy - Psychology software for Python, Release 1.81.03

These files are designed to be used by experienced users with previous experience of python and, probably, matplotlib.
The contents of the file can be explored with dir(), as any other python object.

These files are ideal for batch analysis with a python script and plotting via matplotlib. They contain more information
than the Excel or csv data files, and can even be used to (re)create those files.

Of particular interest might be the attributes of the Handler:

extraInfo the extraInfo dictionary provided to the Handler during its creation

trialList the list of dictionaries provided to the Handler during its creation

data a dictionary of 2D numpy arrays. Each entry in the dictionary represents a type of data (e.g.
if you added ‘rt’ data during your experiment using ~psychopy.data.TrialHandler.addData then
‘rt’ will be a key). For each of those entries the 2D array represents the condition number and
repeat number (remember that these start at 0 in python, unlike Matlab(TM) which starts at 1)

For example, to open a psydat file and examine some of its contents with:

from psychopy.misc import fromFile
datFile = fromFile(’fileName.psydat’)
#get info (added when the handler was created)
print datFile.extraInfo
#get data
print datFile.data
#get list of conditions
conditions = datFile.trialList
for condN, condition in enumerate(conditions):

print condition, datFile.data[’response’][condN], numpy.mean(datFile.data[’response’][condN])

Ideally, we should provide a demo script here for fetching and plotting some data (feel free to contribute).

2.5.3 Long-wide data file

This form of data file is the default data output from Builder experiments as of v1.74.00. Rather than summarising
data in a spreadsheet where one row represents all the data from a single condition (as in the summarised data format),
in long-wide data files the data is not collapsed by condition, but written chronologically with one row representing
one trial (hence it is typically longer than summarised data files). One column in this format is used for every single
piece of information available in the experiment, even where that information might be considered redundant (hence
the format is also ‘wide’).

Although these data files might not be quite as easy to read quickly by the experimenter, they are ideal for import and
analysis under packages such as R, SPSS or Matlab.

2.5.4 Excel data file

Excel 2007 files (.xlsx) are a useful and flexible way to output data as a spreadsheet. The file format is open and
supported by nearly all spreadsheet applications (including older versions of Excel and also OpenOffice). N.B. because
.xlsx files are widely supported, the older Excel file format (.xls) is not likely to be supported by PsychoPy unless a
user contributes the code to the project.

Data from PsychoPy are output as a table, with a header row. Each row represents one condition (trial type) as given
to the TrialHandler. Each column represents a different type of data as given in the header. For some data, where
there are multiple columns for a single entry in the header. This indicates multiple trials. For example, with a standard
data file in which response time has been collected as ‘rt’ there will be a heading rt_raw with several columns, one for
each trial that occurred for the various trial types, and also an rt_mean heading with just a single column giving the
mean reaction time for each condition.

12 Chapter 2. General issues

PsychoPy - Psychology software for Python, Release 1.81.03

If you’re creating experiments by writing scripts then you can specify the sheet name as well as file name for Excel file
outputs. This way you can store multiple sessions for a single subject (use the subject as the filename and a date-stamp
as the sheetname) or a single file for multiple subjects (give the experiment name as the filename and the participant
as the sheetname).

Builder experiments use the participant name as the file name and then create a sheet in the Excel file for each loop of
the experiment. e.g. you could have a set of practice trials in a loop, followed by a set of main trials, and these would
each receive their own sheet in the data file.

2.5.5 Delimited text files (.dlm, .csv)

For maximum compatibility, especially for legacy analysis software, you can choose to output your data as a delimited
text file. Typically this would be comma-separated values (.csv file) or tab-delimited (.dlm file). The format of those
files is exactly the same as the Excel file, but is limited by the file format to a single sheet.

2.6 Gamma correcting a monitor

Monitors typically don’t have linear outputs; when you request luminance level of 127, it is not exactly half the
luminance of value 254. For experiments that require the luminance values to be linear, a correction needs to be put
in place for this nonlinearity which typically involves fitting a power law or gamma (𝛾) function to the monitor output
values. This process is often referred to as gamma correction.

PsychoPy can help you perform gamma correction on your monitor, especially if you have one of the supported
photometers/spectroradiometers.

There are various different equations with which to perform gamma correction. The simple equation (2.1) is assumed
by most hardware manufacturers and gives a reasonable first approximation to a linear correction. The full gamma
correction equation (2.3) is more general, and likely more accurate especially where the lowest luminance value of the
monitor is bright, but also requires more information. It can only be used in labs that do have access to a photometer
or similar device.

2.6.1 Simple gamma correction

The simple form of correction (as used by most hardware and software) is this:

𝐿(𝑉) = 𝑎+ 𝑘𝑉 𝛾 (2.1)

where 𝐿 is the final luminance value, 𝑉 is the requested intensity (ranging 0 to 1), 𝑎, 𝑘 and 𝛾 are constants for the
monitor.

This equation assumes that the luminance where the monitor is set to ‘black’ (V=0) comes entirely from the surround
and is therefore not subject to the same nonlinearity as the monitor. If the monitor itself contributes significantly to 𝑎
then the function may not fit very well and the correction will be poor.

The advantage of this function is that the calibrating system (PsychoPy in this case) does not need to know anything
more about the monitor than the gamma value itself (for each gun). For the full gamma equation (2.3), the system
needs to know about several additional variables. The look-up table (LUT) values required to give a (roughly) linear
luminance output can be generated by:

𝐿𝑈𝑇 (𝑉) = 𝑉 1/𝛾 (2.2)

where V is the entry in the LUT, between 0 (black) and 1 (white).

2.6. Gamma correcting a monitor 13

PsychoPy - Psychology software for Python, Release 1.81.03

2.6.2 Full gamma correction

For very accurate gamma correction PsychoPy uses a more general form of the equation above, which can separate
the contribution of the monitor and the background to the lowest luminance level:

𝐿(𝑉) = 𝑎+ (𝑏+ 𝑘𝑉)𝛾 (2.3)

This equation makes no assumption about the origin of the base luminance value, but requires that the system knows
the values of 𝑏 and 𝑘 as well as 𝛾.

The inverse values, required to build the LUT are found by:

𝐿𝑈𝑇 (𝑉) =
((1− 𝑉)𝑏𝛾 + 𝑉 (𝑏+ 𝑘)𝛾)1/𝛾 − 𝑏

𝑘
(2.4)

This is derived below, for the interested reader. ;-)

And the associated luminance values for each point in the LUT are given by:

𝐿(𝑉) = 𝑎+ (1− 𝑉)𝑏𝛾 + 𝑉 (𝑏+ 𝑘)𝛾

2.6.3 Deriving the inverse full equation

The difficulty with the full gamma equation (2.3) is that the presence of the 𝑏 value complicates the issue of calculating
the inverse values for the LUT. The simple inverse of (2.3) as a function of output luminance values is:

𝐿𝑈𝑇 (𝐿) =
((𝐿− 𝑎)1/𝛾 − 𝑏)

𝑘
(2.5)

To use this equation we need to first calculate the linear set of luminance values, 𝐿, that we are able to produce the
current monitor and lighting conditions and then deduce the LUT value needed to generate that luminance value.

We need to insert into the LUT the values between 0 and 1 (to use the maximum range) that map onto the linear range
from the minimum, m, to the maximum M possible luminance. From the parameters in (2.3) it is clear that:

𝑚 = 𝑎+ 𝑏𝛾 (2.6)

𝑀 = 𝑎+ (𝑏+ 𝑘)𝛾

Thus, the luminance value, L at any given point in the LUT, V, is given by

𝐿(𝑉) = 𝑚+ (𝑀 −𝑚)𝑉

= 𝑎+ 𝑏𝛾 + (𝑎+ (𝑏+ 𝑘)𝛾 − 𝑎− 𝑏𝛾)𝑉

= 𝑎+ 𝑏𝛾 + ((𝑏+ 𝑘)𝛾 − 𝑏𝛾)𝑉

= 𝑎+ (1− 𝑉)𝑏𝛾 + 𝑉 (𝑏+ 𝑘)𝛾

(2.7)

where 𝑉 is the position in the LUT as a fraction.

Now, to generate the LUT as needed we simply take the inverse of (2.3):

𝐿𝑈𝑇 (𝐿) =
(𝐿− 𝑎)1/𝛾 − 𝑏

𝑘
(2.8)

and substitute our 𝐿(𝑉) values from (2.7):

𝐿𝑈𝑇 (𝑉) =
(𝑎+ (1− 𝑉)𝑏𝛾 + 𝑉 (𝑏+ 𝑘)𝛾 − 𝑎)1/𝛾 − 𝑏

𝑘

=
((1− 𝑉)𝑏𝛾 + 𝑉 (𝑏+ 𝑘)𝛾)1/𝛾 − 𝑏

𝑘

(2.9)

14 Chapter 2. General issues

PsychoPy - Psychology software for Python, Release 1.81.03

2.6.4 References

2.7 OpenGL and Rendering

All rendering performed by PsychoPy uses hardware-accelerated OpenGL rendering where possible. This means that,
as much as possible, the necessary processing to calculate pixel values is performed by the graphics card GPU rather
than by the CPU. For example, when an image is rotated the calculations to determine what pixel values should result,
and any interpolation that is needed, are determined by the graphics card automatically.

In the double-buffered system, stimuli are initially drawn into a piece of memory on the graphics card called the ‘back
buffer’, while the screen presents the ‘front buffer’. The back buffer initially starts blank (all pixels are set to the
window’s defined color) and as stimuli are ‘rendered’ they are gradually added to this back buffer. The way in which
stimuli are combined according to transparency rules is determined by the blend mode of the window. At some point
in time, when we have rendered to this buffer all the objects that we wish to be presented, the buffers are ‘flipped’ such
that the stimuli we have been drawing are presented simultaneously. The monitor updates at a very precise fixed rate
and the flipping of the window will be synchronised to this monitor update if possible (see Sync to VBL and wait for
VBL).

Each update of the window is referred to as a ‘frame’ and this ultimately determines the temporal resolution with
which stimuli can be presented (you cannot present your stimulus for any duration other than a multiple of the frame
duration). In addition to synchronising flips to the frame refresh rate, PsychoPy can optionally go a further step of not
allowing the code to continue until a screen flip has occurred on the screen, which is useful in ascertaining exactly
when the frame refresh occurred (and, thus, when your stimulus actually appeared to the subject). These timestamps
are very precise on most computers. For further information about synchronising and waiting for the refresh see Sync
to VBL and wait for VBL.

If the code/processing required to render all you stimuli to the screen takes longer to complete than one screen refresh
then you will ‘drop/skip a frame’. In this case the previous frame will be left on screen for a further frame period
and the flip will only take effect on the following screen update. As a result, time-consuming operations such as disk
accesses or execution of many lines of code, should be avoided while stimuli are being dynamically updated (if you
care about the precise timing of your stimuli). For further information see the sections on Detecting dropped frames
and reducingDroppedFrames.

2.7.1 Fast and slow functions

The fact that modern graphics processors are extremely powerful; they can carry out a great deal of processing from
a very small number of commands. Consider, for instance, the PsychoPy Coder demo elementArrayStim in which
several hundred Gabor patches are updated frame by frame. The graphics card has to blend a sinusoidal grating with
a grey background, using a Gaussian profile, several hundred times each at a different orientation and location and it
does this in less than one screen refresh on a good graphics card.

There are three things that are relatively slow and should be avoided at critical points in time (e.g. when rendering a
dynamic or brief stimulus). These are a) disk accesses, b) passing large amounts of data to the graphics card, and c)
making large numbers of python calls.

Functions that are very fast:

1. Calls that move, resize, rotate your stimuli are likely to carry almost no overhead

2. Calls that alter the color, contrast or opacity of your stimulus will also have no overhead IF your graphics
card supports OpenGL Shaders

3. Updating of stimulus parameters for psychopy.visual.ElementArrayStim is also surprisingly fast BUT you
should try to update your stimuli using numpy arrays for the maths rather than for... loops

Notable slow functions in PsychoPy calls:

2.7. OpenGL and Rendering 15

PsychoPy - Psychology software for Python, Release 1.81.03

1. Calls to set the image or set the mask of a stimulus. This involves having to transfer large amounts of data
between the computer’s main processor and the graphics card, which is a relatively time-consuming pro-
cess.

2. Any of your own code that uses a Python for... loop is likely to be slow if you have a large number of cycles
through the loop. Try to ‘vectorise’ your code using a numpy array instead.

2.7.2 Tips to render stimuli faster

1. Keep images as small as possible. This is meant in terms of number of pixels, not in terms of Mb on your
disk. Reducing the size of the image on your disk might have been achieved by image compression such as
using jpeg images but these introduce artefacts and do nothing to reduce the problem of send large amounts
of data from the CPU to the graphics card. Keep in mind the size that the image will appear on your monitor
and how many pixels it will occupy there. If you took your photo using a 10 megapixel camera that means
the image is represented by 30 million numbers (a red, green and blue) but your computer monitor will
have, at most, around 2 megapixels (1960x1080).

2. Try to use square powers of two for your image sizes. This is efficient because computer memory is organ-
ised according to powers of two (did you notice how often numbers like 128, 512, 1024 seem to come
up when you buy your computer?). Also several mathematical routines (anything involving Fourier
maths, which is used a lot in graphics processing) are faster with power-of-two sequences. For the
psychopy.visual.GratingStim a texture/mask of this size is required and if you don’t provide
one then your texture will be ‘upsampled’ to the next larger square-power-of-2, so you can save this inter-
polation step by providing it in the right shape initially.

3. Get a faster graphics card. Upgrading to a more recent card will cost around £30. If you’re currently us-
ing an integrated Intel graphics chip then almost any graphics card will be an advantage. Try to get an
nVidia or an ATI Radeon card.

2.7.3 OpenGL Shaders

You may have heard mention of ‘shaders’ on the users mailing list and wondered what that meant (or maybe you didn’t
wonder at all and just went for a donut!). OpenGL shader programs allow modern graphics cards to make changes to
things during the rendering process (i.e. while the image is being drawn). To use this you need a graphics card that
supports OpenGL 2.1 and PsychoPy will only make use of shaders if a specific OpenGL extension that allows floating
point textures is also supported. Nowadays nearly all graphics cards support these features - even Intel chips from
Intel!

One example of how such shaders are used is the way that PsychoPy colors greyscale images. If you provide a
greyscale image as a 128x128 pixel texture and set its color to be red then, without shaders, PsychoPy needs to create
a texture that contains the 3x128x128 values where each of the 3 planes is scaled according to the RGB values you
require. If you change the color of the stimulus a new texture has to be generated with the new weightings for the
3 planes. However, with a shader program, that final step of scaling the texture value according to the appropriate
RGB value can be done by the graphics card. That means we can upload just the 128x128 texture (taking 1/3 as much
time to upload to the graphics card) and then we each time we change the color of the stimulus we just a new RGB
triplet (only 3 numbers) without having to recalculate the texture. As a result, on graphics cards that support shaders,
changing colors, contrasts and opacities etc. has almost zero overhead.

2.7.4 Blend Mode

A ‘blend function’ determines how the values of new pixels being drawn should be combined with existing pixels in
the ‘frame buffer’.

16 Chapter 2. General issues

PsychoPy - Psychology software for Python, Release 1.81.03

blendMode = ‘avg’

This mode is exactly akin to the real-world scenario of objects with varying degrees of transparency being placed
in front of each other; increasingly transparent objects allow increasing amounts of the underlying stimuli to show
through. Opaque stimuli will simply occlude previously drawn objects. With each increasing semi-transparent object
to be added, the visibility of the first object becomes increasingly weak. The order in which stimuli are rendered is
very important since it determines the ordering of the layers. Mathematically, each pixel colour is constructed from
opacity*stimRGB + (1-opacity)*backgroundRGB. This was the only mode available before PsychoPy version 1.80
and remains the default for the sake of backwards compatibility.

blendMode = ‘add’

If the window blendMode is set to ‘add’ then the value of the new stimulus does not in any way replace that of the
existing stimuli that have been drawn; it is added to it. In this case the value of opacity still affects the weighting of
the new stimulus being drawn but the first stimulus to be drawn is never ‘occluded’ as such. The sum is performed
using the signed values of the color representation in PsychoPy, with the mean grey being represented by zero. So a
dark patch added to a dark background will get even darker. For grating stimuli this means that contrast is summed
correctly.

This blend mode is ideal if you want to test, for example, the way that subjects perceive the sum of two potentially
overlapping stimuli. It is also needed for rendering stereo/dichoptic stimuli to be viewed through colored anaglyph
glasses.

If stimuli are combined in such a way that an impossible luminance value is requested of any of the monitor guns then
that pixel will be out of bounds. In this case the pixel can either be clipped to provide the nearest possible colour, or
can be artificially colored with noise, highlighting the problem if the user would prefer to know that this has happened.

2.7.5 Sync to VBL and wait for VBL

PsychoPy will always, if the graphics card allows it, synchronise the flipping of the window with the vertical blank
interval (VBL aka VBI) of the screen. This prevents visual artefacts such as ‘tearing’ of moving stimuli. This does
not, itself, indicate that the script also waits for the physical frame flip to occur before continuing. If the waitBlanking
window argument is set to False then, although the window refreshes themselves will only occur in sync with the
screen VBL, the win.flip() call will not actually wait for this to occur, such that preparations can continue immediately
for the next frame. For rendering purposes this is actually optimal and will reduce the likelihood of frames being
dropped during rendering.

By default the PsychoPy Window will also wait for the VBL (waitBlanking=True) . Although this is slightly less
efficient for rendering purposes it is necessary if we need to know exactly when a frame flip occurred (e.g. to timestamp
when the stimulus was physically presented). On most systems this will provide a very accurate measure of when the
stimulus was presented (with a variance typically well below 1ms but this should be tested on your system).

2.8 Timing Issues and synchronisation

One of the key requirements of experimental control software is that it has good temporal precision. PsychoPy aims to
be as precise as possible in this domain and can achieve excellent results depending on your experiment and hardware.
It also provides you with a precise log file of your experiment to allow you to check the precision with which things
occurred. Some general considerations are discussed here and there are links with Specific considerations for specific
designs.

Something that people seem to forget (not helped by the software manufacturers that keep talking about their sub-
millisecond precision) is that the monitor, keyboard and human participant DO NOT have anything like this sort of
precision. Your monitor updates every 10-20ms depending on frame rate. If you use a CRT screen then the top is

2.8. Timing Issues and synchronisation 17

PsychoPy - Psychology software for Python, Release 1.81.03

drawn before the bottom of the screen by several ms. If you use an LCD screen the whole screen can take around
20ms to switch from one image to the next. Your keyboard has a latency of 4-30ms, depending on brand and system.

So, yes, PsychoPy’s temporal precision is as good as most other equivalent applications, for instance the duration for
which stimuli are presented can be synchronised precisely to the frame, but the overall accuracy is likely to be severely
limited by your experimental hardware. To get very precise timing of responses etc., you need to use specialised
hardware like button boxes and you need to think carefully about the physics of your monitor.

Warning: The information about timing in PsychoPy assumes that your graphics card is capable of synchronising
with the monitor frame rate. For integrated Intel graphics chips (e.g. GMA 945) under Windows, this is not true
and the use of those chips is not recommended for serious experimental use as a result. Desktop systems can have
a moderate graphics card added for around £30 which will be vastly superior in performance.

2.8.1 Specific considerations for specific designs

Non-slip timing for imaging

For most behavioural/psychophysics studies timing is most simply controlled by setting some timer (e.g. a Clock())
to zero and waiting until it has reached a certain value before ending the trial. We might call this a ‘relative’ timing
method, because everything is timed from the start of the trial/epoch. In reality this will cause an overshoot of some
fraction of one screen refresh period (10ms, say). For imaging (EEG/MEG/fMRI) studies adding 10ms to each trial
repeatedly for 10 minutes will become a problem, however. After 100 stimulus presentations your stimulus and scanner
will be de-synchronised by 1 second.

There are two ways to get around this:

1. Time by frames If you are confident that you aren’t dropping frames then you could base your timing on frames
instead to avoid the problem.

2. Non-slip (global) clock timing The other way, which for imaging is probably the most sensible, is to arrange
timing based on a global clock rather than on a relative timing method. At the start of each trial you add the
(known) duration that the trial will last to a global timer and then wait until that timer reaches the necessary
value. To facilitate this, the PsychoPy Clock() was given a new add() method as of version 1.74.00 and a
CountdownTimer() was also added.

The non-slip method can only be used in cases where the trial is of a known duration at its start. It cannot, for example,
be used if the trial ends when the subject makes a response, as would occur in most behavioural studies.

Non-slip timing from the Builder

(new feature as of version 1.74.00)

When creating experiments in the Builder, PsychoPy will attempt to identify whether a particular Routine has a known
endpoint in seconds. If so then it will use non-slip timing for this Routine based on a global countdown timer called
routineTimer. Routines that are able to use this non-slip method are shown in green in the Flow, whereas Routines
using relative timing are shown in red. So, if you are using PsychoPy for imaging studies then make sure that all the
Routines within your loop of epochs are showing as green. (Typically your study will also have a Routine at the start
waiting for the first scanner pulse and this will use relative timing, which is appropriate).

Detecting dropped frames

Occasionally you will drop frames if you:

• try to do too much drawing

18 Chapter 2. General issues

PsychoPy - Psychology software for Python, Release 1.81.03

• do it in an inefficient manner (write poor code)

• have a poor computer/graphics card

Things to avoid:

• recreating textures for stimuli

• building new stimuli from scratch (create them once at the top of your script and then change them using
stim.setOri(ori)(), stim.setPos([x,y]...)

Turn on frame time recording

The key sometimes is knowing if you are dropping frames. PsychoPy can help with that by keeping track of frame
durations. By default, frame time tracking is turned off because many people don’t need it, but it can be turned on any
time after Window creation setRecordFrameIntervals(), e.g.:

from psychopy import visual win = visual.Window([800,600]) win.setRecordFrameIntervals(True)

Since there are often dropped frames just after the system is initialised, it makes sense to start off with a fixation period,
or a ready message and don’t start recording frame times until that has ended. Obviously if you aren’t refreshing the
window at some point (e.g. waiting for a key press with an unchanging screen) then you should turn off the recording
of frame times or it will give spurious results.

Warn me if I drop a frame

The simplest way to check if a frame has been dropped is to get PsychoPy to report a warning if it thinks a frame was
dropped:

from psychopy import visual, logging
win = visual.Window([800,600])
win.setRecordFrameIntervals(True)
win._refreshThreshold=1/85.0+0.004 #i’ve got 85Hz monitor and want to allow 4ms tolerance
#set the log module to report warnings to the std output window (default is errors only)
logging.console.setLevel(logging.WARNING)

Show me all the frame times that I recorded

While recording frame times, these are simply appended, every frame to win.frameIntervals (a list). You can simply
plot these at the end of your script using pylab:

import pylab
pylab.plot(win.frameIntervals)
pylab.show()

Or you could save them to disk. A convenience function is provided for this:

win.saveFrameIntervals(fileName=None, clear=True)

The above will save the currently stored frame intervals (using the default filename, ‘lastFrameIntervals.log’) and then
clears the data. The saved file is a simple text file.

At any time you can also retrieve the time of the /last/ frame flip using win.lastFrameT (the time is synchronised with
logging.defaultClock so it will match any logging commands that your script uses).

2.8. Timing Issues and synchronisation 19

PsychoPy - Psychology software for Python, Release 1.81.03

‘Blocking’ on the VBI

As of version 1.62 PsychoPy ‘blocks’ on the vertical blank interval meaning that, once Window.flip() has been called,
no code will be executed until that flip actually takes place. The timestamp for the above frame interval measure-
ments is taken immediately after the flip occurs. Run the timeByFrames demo in Coder to see the precision of these
measurements on your system. They should be within 1ms of your mean frame interval.

Note that Intel integrated graphics chips (e.g. GMA 945) under win32 do not sync to the screen at all and so blocking
on those machines is not possible.

Reducing dropped frames

There are many things that can affect the speed at which drawing is achieved on your computer. These include, but are
probably not limited to; your graphics card, CPU, operating system, running programs, stimuli, and your code itself.
Of these, the CPU and the OS appear to make rather little difference. To determine whether you are actually dropping
frames see Detecting dropped frames.

Things to change on your system:

1. make sure you have a good graphics card. Avoid integrated graphics chips, especially Intel integrated chips and
especially on laptops (because on these you don’t get to change your mind so easily later). In particular, try to
make sure that your card supports OpenGL 2.0

2. shut down as many programs, including background processes. Although modern processors are fast and often have multiple cores, substantial disk/memory accessing can cause frame drops

• anti-virus auto-updating (if you’re allowed)

• email checking software

• file indexing software

• backup solutions (e.g. TimeMachine)

• Dropbox

• Synchronisation software

Writing optimal scripts

1. run in full-screen mode (rather than simply filling the screen with your window). This way the OS doesn’t have
to spend time working out what application is currently getting keyboard/mouse events.

2. don’t generate your stimuli when you need them. Generate them in advance and then just modify them later
with the methods like setContrast(), setOrientation() etc...

3. calls to the following functions are comparatively slow; they require more CPU time than most other functions and then have to send a large amount of data to the graphics card. Try to use these methods in inter-trial intervals. This is especially true when you need to load an image from disk too as the texture.

(a) GratingStim.setTexture()

(b) RadialStim.setTexture()

(c) TextStim.setText()

4. if you don’t have OpenGL 2.0 then calls to setContrast, setRGB and setOpacity will also be slow, because they
also make a call to setTexture(). If you have shader support then this call is not necessary and a large speed
increase will result.

20 Chapter 2. General issues

PsychoPy - Psychology software for Python, Release 1.81.03

5. avoid loops in your python code (use numpy arrays to do maths with lots of elements)

6. if you need to create a large number (e.g. greater than 10) similar stimuli, then try the ElementArrayStim

Possible good ideas

It isn’t clear that these actually make a difference, but they might).

1. disconnect the internet cable (to prevent programs performing auto-updates?)

2. on Macs you can actually shut down the Finder. It might help. See Alex Holcombe’s page here

3. use a single screen rather than two (probably there is some graphics card overhead in managing double the
number of pixels?)

Comparing Operating Systems under PsychoPy

This is an attempt to quantify the ability of PsychoPy draw without dropping frames on a variety of hardware/software.
The following tests were conducted using the script at the bottom of the page. Note, of course that the hardware fully
differs between the Mac and Linux/Windows systems below, but that both are standard off-the-shelf machines.

All of the below tests were conducted with ‘normal’ systems rather than anything that had been specifically optimised:

• the machines were connected to network

• did not have anti-virus turned off (except Ubuntu had no anti-virus)

• they even all had dropbox clients running

• Linux was the standard (not ‘realtime’ kernel)

No applications were actively being used by the operator while tests were run.

In order to test drawing under a variety of processing loads the test stimulus was one of:

• a single drifting Gabor

• 500 random dots continuously updating

• 750 random dots continuously updating

• 1000 random dots continuously updating

Common settings:

• Monitor was a CRT 1024x768 100Hz

• all tests were run in full screen mode with mouse hidden

System Differences:

• the iMac was lower spec than the Windows/Linux box and running across two monitors (necessary in order
to connect to the CRT)

• the Windows/Linux box ran off a single monitor

Each run below gives the number of dropped frames out of a run of 10,000 (2.7 mins at 100Hz).

2.8. Timing Issues and synchronisation 21

http://openwetware.org/wiki/Holcombe:VerifyTiming

PsychoPy - Psychology software for Python, Release 1.81.03

_ Windows XP Windows 7 Mac OS X 10.6 Ubuntu 11.10
_ (SP3) Enterprise Snow Leopard
Gabor 0 5 0 0
500-dot RDK 0 5 54 3
750-dot RDK 21 7 aborted 1174
1000-dot RDK 776 aborted aborted aborted
GPU Radeon 5400 Radeon 5400 Radeon 2400 Radeon 5400
GPU driver Catalyst 11.11 Catalyst 11.11 Catalyst 11.11
CPU Core Duo 3GHz Core Duo 3GHz Core Duo 2.4GHz Core Duo 3GHz
RAM 4GB 4GB 2GB 4GB

I’ll gradually try to update these tests to include:

• longer runs (one per night!)

• a faster Mac

• a real-time Linux kernel

2.8.2 Other questions about timing

Can PsychoPy deliver millisecond precision?

The simple answer is ‘yes’, given some additional hardware. The clocks that PsychoPy uses do have sub-millisecond
precision but your keyboard has a latency of 4-25ms depending on your platform and keyboard. You could buy a
response pad (e.g. a Cedrus Response Pad) and use PsychoPy’s serial port commands to retrieve information about
responses and timing with a precision of around 1ms.

Before conducting your experiment in which effects might be on the order of 1 ms, do consider that;

• your screen has a temporal resolution of ~10 ms

• your visual system has a similar upper limit (or you would notice the flickering screen)

• human response times are typically in the range 200-400 ms and very variable

• USB keyboard latencies are variable, in the range 20-30ms

That said, PsychoPy does aim to give you as high a temporal precision as possible, and is likely not to be the limiting
factor of your experiment.

Computer monitors

Monitors have fixed refresh rates, typically 60 Hz for a flat-panel display, higher for a CRT (85-100 Hz are common,
up to 200 Hz is possible). For a refresh rate of 85 Hz there is a gap of 11.7 ms between frames and this limits the
timing of stimulus presentation. You cannot have your stimulus appear for 100 ms, for instance; on an 85Hz monitor
it can appear for either 94 ms (8 frames) or 105 ms (9 frames). There are further, less obvious, limitations however.

For ‘’CRT (cathode ray tube) screens’‘, the lines of pixels are drawn sequentially from the top to the bottom and once
the bottom line has been drawn the screen is finished and the line returns to the top (the Vertical Blank Interval, VBI).
Most of your frame interval is spent drawing the lines with 1-2ms being left for the VBI. This means that the pixels
at the bottom are drawn ‘’‘up to 10 ms later’‘’ than the pixels at the top of the screen. At what point are you going
to say your stimulus ‘appeared’ to the participant? For flat panel displays, or (or LCD projectors) your image will be
presented simultaneously all over the screen, but it takes up to 20 ms(!!) for your pixels to go all the way from black
to white (manufacturers of these panels quote values of 3 ms for the fastest panels, but they certainly don’t mean 3 ms
white-to-black, I assume they mean 3 ms half-life).

22 Chapter 2. General issues

http://www.cedrus.com/responsepads

PsychoPy - Psychology software for Python, Release 1.81.03

Figure 2.1: Figure 1: photodiode trace at top of screen. The image above shows the luminance trace of a CRT recorded
by a fast photo-sensitive diode at the top of the screen when a stimulus is requested (shown by the square wave). The
square wave at the bottom is from a parallel port that indicates when the stimulus was flipped to the screen. Note that
on a CRT the screen at any point is actually black for the majority of the time and just briefly bright. The visual system
integrates over a large enough time window not to notice this. On the next frame after the stimulus ‘presentation time’
the luminance of the screen flash increased.

2.8. Timing Issues and synchronisation 23

PsychoPy - Psychology software for Python, Release 1.81.03

Figure 2.2: Figure 2: photodiode trace of the same large stimulus at bottom of screen. The image above shows comes
from exactly the same script as the above but the photodiode is positioned at the bottom of the screen. In this case,
after the stimulus is ‘requested’ the current frame (which is dark) finishes drawing and then, 10ms later than the above
image, the screen goes bright at the bottom.

24 Chapter 2. General issues

PsychoPy - Psychology software for Python, Release 1.81.03

Warning: If you’re using a regular computer display, you have a hardware-limited temporal precision of 10 ms
irrespective of your response box or software clocks etc... and should bear that in mind when looking for effect
sizes of less than that.

Can I have my stimulus to appear with a very precise rate?

Yes. Generally to do that you should time your stimulus (its onset/offset, its rate of change...) using the frame refresh
rather than a clock. e.g. you should write your code to say ‘for 20 frames present this stimulus’ rather than ‘for
300ms present this stimulus’. Provided your graphics card is set to synchronise page-flips with the vertical blank, and
provided that you aren’t dropping frames the frame rate will always be absolutely constant.

2.9 Glossary

Adaptive staircase An experimental method whereby the choice of stimulus parameters is not pre-determined but
based on previous responses. For example, the difficulty of a task might be varied trial-to-trial based on the
participant’s responses. These are often used to find psychophysical thresholds. Contrast this with the method
of constants.

CRT Cathode Ray Tube ‘Traditional’ computer monitor (rather than an LCD or plasma flat screen).

csv Comma-Separated Value files Type of basic text file with ‘comma-separated values’. This type of file can be
opened with most spreadsheet packages (e.g. MS Excel) for easy reading and manipulation.

Method of constants An experimental method whereby the parameters controlling trials are predetermined at the
beginning of the experiment, rather than determined on each trial. For example, a stimulus may be presented for
3 pre-determined time periods (100, 200, 300ms) on different trials, and then repeated a number of times. The
order of presentation of the different conditions can be randomised or sequential (in a fixed order). Contrast this
method with the adaptive staircase.

VBI (Vertical Blank Interval, aka the Vertical Retrace, or Vertical Blank, VBL). The period in-between video
frames and can be used for synchronising purposes. On a CRT display the screen is black during the VBI and
the display beam is returned to the top of the display.

VBI blocking The setting whereby all functions are synced to the VBI. After a call to
psychopy.visual.Window.flip() nothing else occurs until the VBI has occurred. This is opti-
mal and allows very precise timing, because as soon as the flip has occurred a very precise time interval is
known to have occurred.

VBI syncing (aka vsync) The setting whereby the video drawing commands are synced to the VBI. When psy-
chopy.visual.Window.flip() is called, the current back buffer (where drawing commands are being executed)
will be held and drawn on the next VBI. This does not necessarily entail VBI blocking (because the system may
return and continue executing commands) but does guarantee a fixed interval between frames being drawn.

xlsx Excel OpenXML file format. A spreadsheet data format developed by Microsoft but with an open (published
format). This is the native file format for Excel (2007 or later) and can be opened by most modern spreadsheet
applications including OpenOffice (3.0+), google docs, Apple iWork 08.

2.9. Glossary 25

PsychoPy - Psychology software for Python, Release 1.81.03

26 Chapter 2. General issues

CHAPTER

THREE

INSTALLATION

3.1 Overview

PsychoPy can be installed in three main ways:

• As an application: The “Stand Alone” versions include everything you need to create and run experiments.
When in doubt, choose this option.

• As libraries: PsychoPy and the libraries it depends on can also be installed individually, providing greater
flexibility. This option requires managing a python environment.

• As source code: If you want to customize how PsychoPy works, consult the developer’s guide for installation
and work-flow suggestions.

When you start PsychoPy for the first time, a Configuration Wizard will retrieve and summarize key system settings.
Based on the summary, you may want to adjust some preferences to better reflect your environment. In addition, this
is a good time to unpack the Builder demos to a location of your choice. (See the Demo menu in the Builder.)

If you get stuck or have questions, please email the mailing list.

If all goes well, at this point your installation will be complete! See the next section of the manual, Getting started.

3.2 Recommended hardware

The minimum requirement for PsychoPy is a computer with a graphics card that supports OpenGL. Many newer
graphics cards will work well. Ideally the graphics card should support OpenGL version 2.0 or higher. Certain visual
functions run much faster if OpenGL 2.0 is available, and some require it (e.g. ElementArrayStim).

If you already have a computer, you can install PsychoPy and the Configuration Wizard will auto-detect the card and
drivers, and provide more information. It is inexpensive to upgrade most desktop computers to an adequate graphics
card. High-end graphics cards can be very expensive but are only needed for vision research (and high-end gaming).

If you’re thinking of buying a laptop for running experiments, avoid the built-in Intel graphics chips (e.g. GMA
950). The drivers are crummy and performance is poor; graphics cards on laptops are more difficult to exchange. Get
something with nVidia or ATI chips instead. Some graphics cards that are known to work with PsychoPy can be found
here; that list is not exhaustive, many cards will also work.

3.3 Windows

Once installed, you’ll now find a link to the PsychoPy application in > Start > Programs > PsychoPy2. Click that and
the Configuration Wizard should start.

27

http://groups.google.com/group/psychopy-users
http://upload.psychopy.org/benchmark/report.html
http://upload.psychopy.org/benchmark/report.html

PsychoPy - Psychology software for Python, Release 1.81.03

The wizard will try to make sure you have reasonably current drivers for your graphics card. You may be directed
to download the latest drivers from the vendor, rather than using the pre-installed Windows drivers. If necessary, get
new drivers directly from the graphics card vendor; don’t rely on Windows updates. The Windows-supplied drivers
are buggy and sometimes don’t support OpenGL at all.

The StandAlone installer adds the PsychoPy folder to your path, so you can run the included version of python from
the command line. If you have your own version of python installed as well then you need to check which one is run
by default, and change your path according to your personal preferences.

3.4 Mac OS X

There are different ways to install PsychoPy on a Mac that will suit different users. Almost all Mac’s come with a
suitable video card by default.

• Intel Mac users (with OS X v10.7 or higher; 10.5 and 10.6 might still work) can simply download the standalone
application bundle (the dmg file) and drag it to their Applications folder. (Installing it elsewhere should work
fine too.)

• Users of macports can install PsychoPy and all its dependencies simply with:

sudo port install py25-psychopy

(Thanks to James Kyles.)

• For PPC Macs (or for Intel Mac users that want their own custom python for running PsychoPy) you need to
install the dependencies and PsychoPy manually. The easiest way is to use the Enthought Python Distribution
(see Dependencies, below).

• You could alternatively manually install the ‘framework build’ of python and the dependencies (see below). One
advantage to this is that you can then upgrade versions with:

sudo easy_install -N -Z -U psychopy

3.5 Linux

Debian systems: PsychoPy is in the Debian packages index so you can simply do:

sudo apt-get install psychopy

Ubuntu (and other Debian-based distributions):

1. Add the following sources in Synaptic, in the Configuration > Repository dialog box, under “Other software”:

deb http://neuro.debian.net/debian karmic main contrib non-free
deb-src http://neuro.debian.net/debian karmic main contrib non-free

2. Then follow the ‘Package authentification’ procedure described in http://neuro.debian.net/

3. Then install the psychopy package under Synaptic or through sudo apt-get install psychopy which will install
all dependencies.

(Thanks to Yaroslav Halchenko for the Debian and NeuroDebian package.)

Gentoo PsychoPy is in the Gentoo Sceince Overlay (see this link for the ebuild files). After you have enabled the
overlay simply run:

28 Chapter 3. Installation

https://sourceforge.net/projects/psychpy/files/
http://www.macports.org/
http://neuro.debian.net/
https://github.com/gentoo-science/sci/tree/master/sci-biology/psychopy
http://wiki.gentoo.org/wiki/Overlay
http://wiki.gentoo.org/wiki/Overlay

PsychoPy - Psychology software for Python, Release 1.81.03

emerge psychopy

Other systems: You need to install the dependencies below. Then install PsychoPy:

$ sudo easy_install psychopy
...
Downloading http://psychopy.googlecode.com/files/PsychoPy-1.75.01-py2.7.egg

3.5. Linux 29

PsychoPy - Psychology software for Python, Release 1.81.03

30 Chapter 3. Installation

CHAPTER

FOUR

DEPENDENCIES

Like many open-source programs, PsychoPy depends on the work of many other people in the form of libraries.

4.1 Essential packages

Python: If you need to install python, or just want to, the easiest way is to use the Enthought Python Distribution,
which is free for academic use. Be sure to get a 32-bit version. The only things it misses are avbin, pyo, and flac.

If you want to install each library individually rather than use the simpler distributions of packages above then you can
download the following. Make sure you get the correct version for your OS and your version of Python. easy_install
will work for many of these, but some require compiling from source.

• python (32-bit only, version 2.6 or 2.7; 2.5 might work, 3.x will not)

• avbin (movies) On mac: 1) Download version 5 from google (not a higher version). 2) Start terminal, type sudo
mkdir -p /usr/local/lib . 3) cd to the unpacked avbin directory, type sh install.sh . 4) Start or restart PsychoPy,
and from PsychoPy’s coder view shell, this should work: from pyglet.media import avbin . If you run a script
and get an error saying ‘NoneType’ object has no attribute ‘blit’, it probably means you did not install version
5.

• setuptools

• numpy (version 0.9.6 or greater)

• scipy (version 0.4.8 or greater)

• pyglet (version 1.1.4, not version 1.2)

• wxPython (version 2.8.10 or 2.8.11, not 2.9)

• Python Imaging Library (sudo easy_install PIL)

• matplotlib (for plotting and fast polygon routines)

• lxml (needed for loading/saving builder experiment files)

• openpyxl (for loading params from xlsx files)

• pyo (sound, version 0.6.2 or higher, compile with —-no-messages)

These packages are only needed for Windows:

• pywin32

• winioport (to use the parallel port)

• inpout32 (an alternative method to using the parallel port on Windows)

• inpoutx64 (to use the parallel port on 64-bit Windows)

31

http://www.enthought.com
http://www.enthought.com/products/edudownload.php
http://www.python.org/download/
http://code.google.com/p/avbin/
http://code.google.com/p/avbin/
http://peak.telecommunity.com/DevCenter/setuptools
http://www.numpy.org/
http://www.scipy.org/Download
http://www.pyglet.org
http://www.wxpython.org
http://www.pythonware.com/products/pil/
http://matplotlib.sourceforge.net/
http://lxml.de/
https://bitbucket.org/ericgazoni/openpyxl/downloads
http://code.google.com/p/pyo/
https://sourceforge.net/projects/pywin32/
http://www.geocities.com/dinceraydin/python/indexeng.html
http://logix4u.net/parallel-port/16-inpout32dll-for-windows-982000ntxp
http://logix4u.net/parallel-port/26-inpoutx64dll-for-win-xp-64-bit

PsychoPy - Psychology software for Python, Release 1.81.03

These packages are only needed for Linux:

• pyparallel (to use the parallel port)

4.2 Suggested packages

In addition to the required packages above, additional packages can be useful to PsychoPy users, e.g. for controlling
hardware and performing specific tasks. These are packaged with the Standalone versions of PsychoPy but users with
their own custom Python environment need to install these manually. Most of these can be installed with easy_install.

General packages:

• psignifit for bootstrapping and other resampling tests

• pyserial for interfacing with the serial port

• parallel python (aka pp) for parallel processing

• flac audio codec, for working with google-speech

Specific hardware interfaces:

• pynetstation to communicate with EGI netstation. See notes on using egi (pynetstation)

• ioLabs toolbox

• labjack toolbox

For developers:

• pytest and coverage for running unit tests

• sphinx for building documentation

32 Chapter 4. Dependencies

http://pyserial.sourceforge.net/pyparallel.html
http://flac.sourceforge.net
http://code.google.com/p/pynetstation/

CHAPTER

FIVE

GETTING STARTED

As an application, PsychoPy has two main views: the Builder view, and the Coder view. It also has a underlying API
that you can call directly.

1. Builder. You can generate a wide range of experiments easily from the Builder using its intuitive, graphical
user interface (GUI). This might be all you ever need to do. But you can always compile your experiment
into a python script for fine-tuning, and this is a quick way for experienced programmers to explore some of
PsychoPy’s libraries and conventions.

2. Coder. For those comfortable with programming, the Coder view provides a basic code editor with syntax
highlighting, code folding, and so on. Importantly, it has its own output window and Demo menu. The demos
illustrate how to do specific tasks or use specific features; they are not whole experiments. The Coder tutorials
should help get you going, and the API reference will give you the details.

The Builder and Coder views are the two main aspects of the PsychoPy application. If you’ve installed the StandAlone
version of PsychoPy on MS Windows then there should be an obvious link to PsychoPy in your > Start > Programs. If
you installed the StandAlone version on Mac OS X then the application is where you put it (!). On these two platforms
you can open the Builder and Coder views from the View menu and the default view can be set from the preferences.
On Linux, you can start PsychoPy from a command line, or make a launch icon (which can depend on the desktop
and distro). If the PsychoPy app is started with flags —-coder (or -c), or —-builder (or -b), then the preferences will
be overridden and that view will be created as the app opens.

For experienced python programmers, it’s possible to use PsychoPy without ever opening the Builder or Coder. Install
the PsychoPy libraries and dependencies, and use your favorite IDE instead of the Coder.

33

PsychoPy - Psychology software for Python, Release 1.81.03

5.1 Builder

When learning a new computer language, the classic first program is simply to print or display “Hello world!”. Lets
do it.

5.1.1 A first program

Start PsychoPy, and be sure to be in the Builder view.

• If you have poked around a bit in the Builder already, be sure to start with a clean slate. To get a new Builder
view, type Ctrl-N on Windows or Linux, or Cmd-N on Mac.

• Click on a Text component

34 Chapter 5. Getting Started

http://en.wikipedia.org/wiki/Hello_world_program

PsychoPy - Psychology software for Python, Release 1.81.03

and a Text Properties dialog will pop up.

• In the Text field, replace the default text with your message. When you run the program, the text you type here
will be shown on the screen.

• Click OK (near the bottom of the dialog box). (Properties dialogs have a link to online help—an icon at the
bottom, near the OK button.)

• Your text component now resides in a routine called trial. You can click on it to view or edit it. (Components,
Routines, and other Builder concepts are explained in the Builder documentation.)

• Back in the main Builder, type Ctrl-R (Windows, Linux) or Cmd-R (Mac), or use the mouse to click the Run icon.

5.1. Builder 35

PsychoPy - Psychology software for Python, Release 1.81.03

Assuming you typed in “Hello world!”, your screen should have looked like this (briefly):

If nothing happens or it looks wrong, recheck all the steps above; be sure to start from a new Builder view.

What if you wanted to display your cheerful greeting for longer than the default time?

• Click on your Text component (the existing one, not a new one).

• Edit the Stop duration (s) to be 3.2; times are in seconds.

• Click OK.

• And finally Run.

When running an experiment, you can quit by pressing the escape key (this can be configured or disabled). You can
quit PsychoPy from the File menu, or typing Ctrl-Q / Cmd-Q.

5.1.2 Getting beyond Hello

To do more, you can try things out and see what happens. You may want to consult the Builder documentation. Many
people find it helpful to explore the Builder demos, in part to see what is possible, and especially to see how different
things are done.

A good way to develop your own first PsychoPy experiment is to base it on the Builder demo that seems closest. Copy
it, and then adapt it step by step to become more and more like the program you have in mind. Being familiar with the
Builder demos can only help this process.

You could stop here, and just use the Builder for creating your experiments. It provides a lot of the key features that
people need to run a wide variety of studies. But it does have its limitations. When you want to have more complex
designs or features, you’ll want to investigate the Coder. As a segue to the Coder, lets start from the Builder, and see
how Builder programs work.

5.2 Builder-to-coder

Whenever you run a Builder experiment, PsychoPy will first translate it into python code, and then execute that code.

To get a better feel for what was happening “behind the scenes” in the Builder program above:

36 Chapter 5. Getting Started

PsychoPy - Psychology software for Python, Release 1.81.03

• In the Builder, load or recreate your “hello world” program.

• Instead of running the program, explicitly convert it into python: Type F5, or click the Compile icon:

The view will automatically switch to the Coder, and display the python code. If you then save and run this code, it
would look the same as running it directly from the Builder.

It is always possible to go from the Builder to python code in this way. You can then edit that code and run it as a
python program. However, you cannot go from code back to a Builder representation.

To switch quickly between Builder and Coder views, you can type Ctrl-L / Cmd-L.

5.3 Coder

Being able to inspect Builder-generated code is nice, but it’s possible to write code yourself, directly. With the Coder
and various libraries, you can do virtually anything that your computer is capable of doing, using a full-featured
modern programming language (python).

For variety, lets say hello to the Spanish-speaking world. PsychoPy knows Unicode (UTF-8).

If you are not in the Coder, switch to it now.

• Start a new code document: Ctrl-N / Cmd-N.

• Type (or copy & paste) the following:

from psychopy import visual, core

win = visual.Window()
msg = visual.TextStim(win, text=u"\u00A1Hola mundo!")

msg.draw()
win.flip()
core.wait(1)
win.close()

• Save the file (the same way as in Builder).

• Run the script.

Note that the same events happen on-screen with this code version, despite the code being much simpler than the code
generated by the Builder. (The Builder actually does more, such as prompt for a subject number.)

Coder Shell

The shell provides an interactive python interpreter, which means you can enter commands here to try them out. This
provides yet another way to send your salutations to the world. By default, the Coder’s output window is shown at the
bottom of the Coder window. Click on the Shell tab, and you should see python’s interactive prompt, >>>:

PyShell in PsychoPy - type some commands!

Type "help", "copyright", "credits" or "license" for more information.
>>>

At the prompt, type:

>>> print u"\u00A1Hola mundo!"

5.3. Coder 37

PsychoPy - Psychology software for Python, Release 1.81.03

You can do more complex things, such as type in each line from the Coder example directly into the Shell window,
doing so line by line:

>>> from psychopy import visual, core

and then:

>>> win = visual.Window()

and so on—watch what happens each line::

>>> msg = visual.TextStim(win, text=u"\u00A1Hola mundo!")
>>> msg.draw()
>>> win.flip()

and so on. This lets you try things out and see what happens line-by-line (which is how python goes through your
program).

38 Chapter 5. Getting Started

CHAPTER

SIX

BUILDER

Building experiments in a GUI

You can now see a youtube PsychoPy tutorial showing you how to build a simple experiment in the Builder interface

Note: The Builder view is now (at version 1.75) fairly well-developed and should be able to construct a wide variety
of studies. But you should still check carefully that the stimuli and response collection are as expected.

Contents:

39

http://www.youtube.com/watch?v=VV6qhuQgsiI

PsychoPy - Psychology software for Python, Release 1.81.03

6.1 Builder concepts

6.1.1 Routines and Flow

The Builder view of the PsychoPy application is designed to allow the rapid development of a wide range of experi-
ments for experimental psychology and cognitive neuroscience experiments.

The Builder view comprises two main panels for viewing the experiment’s Routines (upper left) and another for
viewing the Flow (lower part of the window).

An experiment can have any number of Routines, describing the timing of stimuli, instructions and responses. These
are portrayed in a simple track-based view, similar to that of video-editing software, which allows stimuli to come on
go off repeatedly and to overlap with each other.

The way in which these Routines are combined and/or repeated is controlled by the Flow panel. All experiments
have exactly one Flow. This takes the form of a standard flowchart allowing a sequence of routines to occur one after
another, and for loops to be inserted around one or more of the Routines. The loop also controls variables that change
between repetitions, such as stimulus attributes.

6.1.2 Example 1 - a reaction time experiment

For a simple reaction time experiment there might be 3 Routines, one that presents instructions and waits for a keypress,
one that controls the trial timing, and one that thanks the participant at the end. These could then be combined in the
Flow so that the instructions come first, followed by trial, followed by the thanks Routine, and a loop could be inserted
so that the Routine repeated 4 times for each of 6 stimulus intensities.

6.1.3 Example 2 - an fMRI block design

Many fMRI experiments present a sequence of stimuli in a block. For this there are multiple ways to create the experiment:

• We could create a single Routine that contained a number of stimuli and presented them sequentially,
followed by a long blank period to give the inter-epoch interval, and surround this single Routine by a loop
to control the blocks.

• Alternatively we could create a pair of Routines to allow presentation of a) a single stimulus (for 1 sec)
and b) a blank screen, for the prolonged period. With these Routines we could insert pair of loops, one to
repeat the stimulus Routine with different images, followed by the blank Routine, and another to surround
this whole set and control the blocks.

6.1.4 Demos

There are a couple of demos included with the package, that you can find in their own special menu. When you load
these the first thing to do is make sure the experiment settings specify the same resolution as your monitor, otherwise
the screen can appear off-centred and strangely scaled.

Stroop demo

This runs a digital demonstration of the Stroop effect 1. The experiment presents a series of coloured words written
in coloured ‘inks’. Subjects have to report the colour of the letters for each word, but find it harder to do so when the

1 Stroop, J.R. (1935). “Studies of interference in serial verbal reactions”. Journal of Experimental Psychology 18: 643-662.

40 Chapter 6. Builder

PsychoPy - Psychology software for Python, Release 1.81.03

letters are spelling out a different (incongruous) colour. Reaction times for the congruent trials (where letter colour
matches the written word) are faster than for the incongruent trials.

From this demo you should note:

• How to setup a trial list in a .csv or .xlsx file

• How to record key presses and reaction times (using the resp Component in trial Routine)

• How to change a stimulus parameter on each repetition of the loop. The text and rgb values of the word
Component are based on thisTrial, which represents a single iteration of the trials loop. They have been
set to change every repeat (don’t forget that step!)

• How to present instructions: just have a long-lasting TextStim and then force end of the Routine when a
key is pressed (but don’t bother storing the key press).

Psychophysics Staircase demo

This is a mini psychophysics experiment, designed to find the contrast detection threshold of a gabor i.e. find the
contrast where the observer can just see the stimulus.

From this demo you should note:

• The opening dialog box requires the participant to enter the orientation of the stimulus, the required fields
here are determined by ‘Experiment Info’ in ‘Preferences’ which is a python dictionary. This information
is then entered into the stimulus parameters using ‘$expInfo[’ori’]’

• The phase of the stimulus is set to change every frame and its value is determined by the value of tri-
alClock.getTime()*2. Every Routine has a clock associated with it that gets reset at the beginning of the
iteration through the Routine. There is also a globalClock that can be used in the same way. The phase
of a Patch Component ranges 0-1 (and wraps to that range if beyond it). The result in this case is that the
grating drifts at a rate of 2Hz.

• The contrast of the stimulus is determined using an adaptive staircase. The Staircase methods are different
to those used for a loop which uses predetermined values. An important thing to note is that you must
define the correct answer.

6.2 Routines

An experiment consists of one or more Routines. A Routine might specify the timing of events within a trial or the
presentation of instructions or feedback. Multiple Routines can then be combined in the Flow, which controls the
order in which these occur and the way in which they repeat.

To create a new Routine, use the Experiment menu. The display size of items within a routine can be adjusted (see the
View menu).

Within a Routine there are a number of components. These components determine the occurrence of a stimulus, or the
recording of a response. Any number of components can be added to a Routine. Each has its own line in the Routine
view that shows when the component starts and finishes in time, and these can overlap.

For now the time axis of the Routines panel is fixed, representing seconds (one line is one second). This will hopefully
change in the future so that units can also be number of frames (more precise) and can be scaled up or down to allow
very long or very short Routines to be viewed easily. That’s on the wishlist...

6.2. Routines 41

PsychoPy - Psychology software for Python, Release 1.81.03

6.3 Flow

In the Flow panel a number of Routines can be combined to form an experiment. For instance, your study may have a
Routine that presented initial instructions and waited for a key to be pressed, followed by a Routine that presented one
trial which should be repeated 5 times with various different parameters set. All of this is achieved in the Flow panel.
You can adjust the display size of the Flow panel (see View menu).

6.3.1 Adding Routines

The Routines that the Flow will use should be generated first (although their contents can be added or altered at any
time). To insert a Routine into the Flow click the appropriate button in the left of the Flow panel or use the Experiment
menu. A dialog box will appear asking which of your Routines you wish to add. To select the location move the mouse
to the section of the flow where you wish to add it and click on the black disk.

6.3.2 Loops

Loops control the repetition of Routines and the choice of stimulus parameters for each. PsychoPy can generate the
next trial based on the method of constants or using an adaptive staircase. To insert a loop use the button on the left of
the Flow panel, or the item in the Experiment menu of the Builder. The start and end of a loop is set in the same way
as the location of a Routine (see above). Loops can encompass one or more Routines and other loops (i.e. they can be
nested).

As with components in Routines, the loop must be given a name, which must be unique and made up of only alpha-
numeric characters (underscores are allowed). I would normally use a plural name, since the loop represents multiple
repeats of something. For example, trials, blocks or epochs would be good names for your loops.

It is usually best to use trial information that is contained in an external file (.xlsx or .csv). When inserting a loop into
the flow you can browse to find the file you wish to use for this. An example of this kind of file can be found in the
Stroop demo (trialTypes.xlsx). The column names are turned into variables (in this case text, letterColor, corrAns and
congruent), these can be used to define parameters in the loop by putting a $ sign before them e.g. $text.

As the column names from the input file are used in this way they must have legal variable names i.e. they must be
unique, have no punctuation or spaces (underscores are ok) and must not start with a digit.

The parameter Is trials exists because some loops are not there to indicate trials per se but a set of stimuli within a
trial, or a set of blocks. In these cases we don’t want the data file to add an extra line with each pass around the loop.
This parameter can be unchecked to improve (hopefully) your data file outputs. [Added in v1.81.00]

Method of Constants

Selecting a loop type of random, sequential, or fullRandom will result in a method of constants experiment, whereby
the types of trials that can occur are predetermined. That is, the trials cannot vary depending on how the subject has
responded on a previous trial. In this case, a file must be provided that describes the parameters for the repeats. This
should be an Excel 2007 (xlsx) file or a comma-separated-value (csv) file in which columns refer to parameters that are
needed to describe stimuli etc. and rows one for each type of trial. These can easily be generated from a spreadsheet
package like Excel. (Note that csv files can also be generated using most text editors, as long as they allow you to
save the file as “plain text”; other output formats will not work, including “rich text”.) The top row should be a row of
headers: text labels describing the contents of the respective columns. (Headers must also not include spaces or other
characters other than letters, numbers or underscores and must not be the same as any variable names used elsewhere
in your experiment.) For example, a file containing the following table:

42 Chapter 6. Builder

PsychoPy - Psychology software for Python, Release 1.81.03

ori text corrAns
0 aaa left
90 aaa left
0 bbb right
90 bbb right

would represent 4 different conditions (or trial types, one per line). The header line describes the parameters in the 3
columns: ori, text and corrAns. It’s really useful to include a column called corrAns that shows what the correct key
press is going to be for this trial (if there is one).

If the loop type is sequential then, on each iteration through the Routines, the next row will be selected in the order
listed in the file. Under a random order, the next row will be selected at random (without replacement); it can only be
selected again after all the other rows have also been selected. nReps determines how many repeats will be performed
(for all conditions). The total number of trials will be the number of conditions (= number of rows in the file, not
counting the header row) times the number of repetitions, nReps. With the fullRandom option, the entire list of trials
including repetitions is used in random order, allowing the same item to appear potentially many times in a row, and
to repeat without necessarily having done all of the other trials. For example, with 3 repetitions, a file of trial types
like this:

letter
a
b
c

could result in the following possible sequences. sequential could only ever give one sequence with this order: [a b c
a b c a b c]. random will give one of 216 different orders (= 3! * 3! * 3! = nReps * (nTrials!)), for example: [b a c a
b c c a b]. Here the letters are effectively in sets of (abc) (abc) (abc), and randomization is only done within each set,
ensuring (for example) that there are at least two a’s before the subject sees a 3rd b. Finally, fullRandom will return
one of 362,880 different orders (= 9! = (nReps * nTrials)!), such as [b b c a a c c a b], which random never would.
There are no longer mini-blocks or “sets of trials” within the longer run. This means that, by chance, it would also be
possible to get a very un-random-looking sequence like [a a a b b b c c c].

It is possible to achieve any sequence you like, subject to any constraints that are logically possible. To do so, in the
file you specify every trial in the desired order, and the for the loop select sequential order and nReps=1.

Selecting a subset of conditions

In the standard Method of Constants you would use all the rows/conditions within your conditions file. However there
are often times when you want to select a subset of your trials before randomising and repeating.

The parameter Select rows allows this. You can specify which rows you want to use by inserting values here:

• 0,2,5 gives the 1st, 3rd and 5th entry of a list - Python starts with index zero)

• random(4)*10 gives 4 indices from 0 to 10 (so selects 4 out of 11 conditions)

• 5:10 selects the 6th to 9th rows

• $myIndices uses a variable that you’ve already created

Note in the last case that 5:8 isn’t valid syntax for a variable so you cannot do:

myIndices = 5:8

but you can do:

myIndices = slice(5,8) #python object to represent a slice
myIndices = "5:8" #a string that PsychoPy can then parse as a slice later
myIndices = "5:8:2" #as above but

6.3. Flow 43

PsychoPy - Psychology software for Python, Release 1.81.03

Note that PsychoPy uses Python’s built-in slicing syntax (where the first index is zero and the last entry of a slice
doesn’t get included). You might want to check the outputs of your selection in the Python shell (bottom of the Coder
view) like this:

>>> range(100)[5:8] #slice 5:8 of a standard set of indices
[5, 6, 7]
>>> range(100)[5:10:2] #slice 5:8 of a standard set of indices
[5, 7, 9, 11, 13, 15, 17, 19]

Check that the conditions you wanted to select are the ones you intended!

Staircase methods

The loop type staircase allows the implementation of adaptive methods. That is, aspects of a trial can depend on (or
“adapt to”) how a subject has responded earlier in the study. This could be, for example, simple up-down staircases
where an intensity value is varied trial-by-trial according to certain parameters, or a stop-signal paradigm to assess
impulsivity. For this type of loop a ‘correct answer’ must be provided from something like a Keyboard Component.
Various parameters for the staircase can be set to govern how many trials will be conducted and how many correct or
incorrect answers make the staircase go up or down.

Accessing loop parameters from components

The parameters from your loops are accessible to any component enclosed within that loop. The simplest (and default)
way to address these variables is simply to call them by the name of the parameter, prepended with $ to indicate that
this is the name of a variable. For example, if your Flow contains a loop with the above table as its input trial types
file then you could give one of your stimuli an orientation $ori which would depend on the current trial type being
presented. Example scenarios:

1. You want to loop randomly over some conditions in a loop called trials. Your conditions are stored in a csv file
with headings ‘ori’, ‘text’, ‘corrAns’ which you provide to this loop. You can then access these values from any
component using $ori, $text, and $corrAns

2. You create a random loop called blocks and give it an Excel file with a single column called movieName listing
filenames to be played. On each repeat you can access this with $movieName

3. You create a staircase loop called stairs. On each trial you can access the current value in the staircase with
$thisStair

Note: When you set a component to use a parameter that will change (e.g on each repeat through the loop) you should
remember to change the component parameter from ‘constant‘ to ‘set every repeat‘ or ‘set every frame‘ or it
won’t have any effect!

Reducing namespace clutter (advanced)

The downside of the above approach is that the names of trial parameters must be different between every loop, as
well as not matching any of the predefined names in python, numpy and PsychoPy. For example, the stimulus called
movie cannot use a parameter also called movie (so you need to call it movieName). An alternative method can be used
without these restrictions. If you set the Builder preference unclutteredNamespace to True you can then access the
variables by referring to parameter as an attribute of the singular name of the loop prepended with this. For example,
if you have a loop called trials which has the above file attached to it, then you can access the stimulus ori with
$thisTrial.ori. If you have a loop called blocks you could use $thisBlock.corrAns.

Now, although the name of the loop must still be valid and unique, the names of the parameters of the file do not have
the same requirements (they must still not contain spaces or punctuation characters).

44 Chapter 6. Builder

PsychoPy - Psychology software for Python, Release 1.81.03

6.4 Components

Routines in the Builder contain any number of components, which typically define the parameters of a stimulus or an
input/output device.

The following components are available, as at version 1.65, but further components will be added in the future includ-
ing Parallel/Serial ports and other visual stimuli (e.g. GeometricStim).

6.4.1 Aperture Component

This component can be used to filter the visual display, as if the subject is looking at it through an opening. Currently
only circular apertures are supported. Moreover, only one aperture is enabled at a time. You can’t “double up”: a
second aperture takes precedence.

name [string] Everything in a PsychoPy experiment needs a unique name. The name should contain only letters,
numbers and underscores (no punctuation marks or spaces).

start [float or integer] The time that the aperture should start having its effect. See Defining the onset/duration of
components for details.

stop : When the aperture stops having its effect. See Defining the onset/duration of components for details.

pos [[X,Y]] The position of the centre of the aperture, in the units specified by the stimulus or window.

size [integer] The size controls how big the aperture will be, in pixels, default = 120

units [pix] What units to use (currently only pix).

See also:

API reference for Aperture

6.4.2 Code Component

The Code Component can be used to insert short pieces of python code into your experiments. This might be create a
variable that you want for another Component, to manipulate images before displaying them, to interact with hardware
for which there isn’t yet a pre-packaged component in PsychoPy (e.g. writing code to interact with the serial/parallel
ports). See code uses below.

Be aware that the code for each of the components in your Routine are executed in the order they appear on the Routine
display (from top to bottom). If you want your Code Component to alter a variable to be used by another component
immediately, then it needs to be above that component in the view. You may want the code not to take effect until next
frame however, in which case put it at the bottom of the Routine. You can move Components up and down the Routine
by right-clicking on their icons.

Within your code you can use other variables and modules from the script. For example, all routines have a stopwatch-style Clock associated with them, which gets reset at the beginning of that repeat of the routine. So if you have a Routine called trial, there will be a Clock called trialClock and so you can get the time (in sec) from the beginning of the trial by using::
currentT = trialClock.getTime()

To see what other variables you might want to use, and also what terms you need to avoid in your chunks of code,
compile your script before inserting the code object and take a look at the contents of that script.

Note that this page is concerned with Code Components specifically, and not all cases in which you might use python
syntax within the Builder. It is also possible to put code into a non-code input field (such as the duration or text of
a Text Component). The syntax there is slightly different (requiring a $ to trigger the special handling, or \$ to avoid
triggering special handling). The syntax to use within a Code Component is always regular python syntax.

6.4. Components 45

PsychoPy - Psychology software for Python, Release 1.81.03

Parameters

The parameters of the Code Component simply specify the code that will get executed at 5 different points within the
experiment. You can use as many or as few of these as you need for any Code Component:

Begin Experiment: Things that need to be done just once, like importing a supporting module, initialis-
ing a variable for later use.

Begin Routine: Certain things might need to be done just once at the start of a Routine e.g. at the
beginning of each trial you might decide which side a stimulus will appear

Each Frame: Things that need to updated constantly, throughout the experiment. Note that these will
be executed exactly once per video frame (on the order of every 10ms), to give dynamic displays.
Static displays do not need to be updated every frame.

End Routine: At the end of the Routine (e.g. the trial) you may need to do additional things, like check-
ing if the participant got the right answer

End Experiment: Use this for things like saving data to disk, presenting a graph(?), or resetting hardware
to its original state.

Example code uses

1. Set a random location for your target stimulus

There are many ways to do this, but you could add the following to the Begin Routine section of a Code Component at
the top of your Routine. Then set your stimulus position to be $targetPos and set the correct answer field of a Keyboard
Component to be $corrAns (set both of these to update on every repeat of the Routine).:

if random()>0.5:
targetPos=[-2.0, 0.0]#on the left
corrAns=’left’

else:
targetPos=[+2.0, 0.0]#on the right
corrAns=’right’

2. Create a patch of noise

As with the above there are many different ways to create noise, but a simple method would be to add the following to
the Begin Routine section of a Code Component at the top of your Routine. Then set the image as $noiseTexture.:

noiseTexture = random.rand(128,128)*2.0-1

3. Send a feedback message at the end of the experiment

Create a Code Component with this in the Begin Experiment field:

expClock = core.Clock()

and with this in the End Experiment field:

print "Thanks for participating - that took %.2f minutes in total" %(expClock.getTime()/60.0)

(or you could create a Text Component with that as contents rather than printing it).

46 Chapter 6. Builder

PsychoPy - Psychology software for Python, Release 1.81.03

4. End a loop early.

Code components can also be used to control the end of a loop. See examples in Recipes:builderTerminateLoops.

What variables are available to use?

The most complete way to find this out for your particular script is to compile it and take a look at what’s in there.
Below are some options that appear in nearly all scripts. Remember that those variables are Python objects and can
have attributes of their own. You can find out about those attributes using:

dir(myObject)

Common PsychoPy variables:

• expInfo: This is a Python Dictionary containing the information from the starting dialog box. e.g. That generally
includes the ‘participant’ identifier. You can access that in your experiment using exp[’participant’]

• t: the current time (in seconds) measured from the start of this Routine

• frameN: the number of /completed/ frames since the start of the Routine (=0 in the first frame)

• win: the Window that the experiment is using

Your own variables:

• anything you’ve created in a Code Component is available for the rest of the script. (Sometimes you might need
to define it at the beginning of the experiment, so that it will be available throughout.)

• the name of any other stimulus or the parameters from your file also exist as variables.

• most Components have a status attribute, which is useful to determine whether a stimulus has NOT_STARTED,
STARTED or FINISHED. For example, to play a tone at the end of a Movie Component (of unknown duration)
you could set start of your tone to have the ‘condition’

myMovieName.status==FINISHED

Selected contents of the numpy library and numpy.random are imported by default. The entire numpy library is
imported as np, so you can use a several hundred maths functions by prepending things with ‘np.’:

• random() , randint() , normal() , shuffle() options for creating arrays of random numbers.

• sin(), cos(), tan(), and pi: For geometry and trig. By default angles are in radians, if you want the cosine of
an angle specified in degrees use cos(angle*180/pi), or use numpy’s conversion functions, rad2deg(angle) and
deg2rad(angle).

• linspace(): Create an array of linearly spaced values.

• log(), log10(): The natural and base-10 log functions, respectively. (It is a lowercase-L in log).

• sum(), len(): For the sum and length of a list or array. To find an average, it is better to use average() (due to the
potential for integer division issues with sum()/len()).

• average(), sqrt(), std(): For average (mean), square root, and standard deviation, respectively. Note: Be sure
that the numpy standard deviation formula is the one you want!

• np.______: Many math-related features are available through the complete numpy libraries, which are available
within psychopy builder scripts as ‘np.’. For example, you could use np.hanning(3) or np.random.poisson(10,
10) in a code component.

6.4. Components 47

http://docs.scipy.org/doc/numpy/reference/index.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.rand.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randint.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.shuffle.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html

PsychoPy - Psychology software for Python, Release 1.81.03

6.4.3 Dots (RDK) Component

The Dots Component allows you to present a Random Dot Kinematogram (RDK) to the participant of your study.
These are fields of dots that drift in different directions and subjects are typically required to identify the ‘global
motion’ of the field.

There are many ways to define the motion of the signal and noise dots. In PsychoPy the way the dots are configured
follows Scase, Braddick & Raymond (1996). Although Scase et al (1996) show that the choice of algorithm for your
dots actually makes relatively little difference there are some potential gotchas. Think carefully about whether each
of these will affect your particular case:

• limited dot lifetimes: as your dots drift in one direction they go off the edge of the stimulus and are replaced
randomly in the stimulus field. This could lead to a higher density of dots in the direction of motion providing
subjects with an alternative cue to direction. Keeping dot lives relatively short prevents this.

• noiseDots=’direction’: some groups have used noise dots that appear in a random location on each frame
(noiseDots=’location’). This has the disadvantage that the noise dots not only have a random direction but also
a random speed (whereas signal dots have a constant speed and constant direction)

• signalDots=’same’: on each frame the dots constituting the signal could be the same as on the previous frame or
different. If ‘different’, participants could follow a single dot for a long time and calculate its average direction
of motion to get the ‘global’ direction, because the dots would sometimes take a random direction and sometimes
take the signal direction.

As a result of these, the defaults for PsychoPy are to have signalDots that are from a ‘different’ population, noise dots
that have random ‘direction’ and a dot life of 3 frames.

Parameters

name : Everything in a PsychoPy experiment needs a unique name. The name should contain only letters, numbers
and underscores (no punctuation marks or spaces).

start : The time that the stimulus should first appear. See Defining the onset/duration of components for details.

stop : Governs the duration for which the stimulus is presented. See Defining the onset/duration of components for
details.

units [None, ‘norm’, ‘cm’, ‘deg’ or ‘pix’] If None then the current units of the Window will be used. See Units for
the window and stimuli for explanation of other options.

nDots [int] number of dots to be generated

fieldPos [(x,y) or [x,y]] specifying the location of the centre of the stimulus.

fieldSize [a single value, specifying the diameter of the field] Sizes can be negative and can extend beyond the window.

fieldShape : Defines the shape of the field in which the dots appear. For a circular field the nDots represents the
average number of dots per frame, but on each frame this may vary a little.

dotSize Always specified in pixels

dotLife [int] Number of frames each dot lives for (-1=infinite)

dir [float (degrees)] Direction of the signal dots

speed [float] Speed of the dots (in units per frame)

signalDots : If ‘same’ then the signal and noise dots are constant. If different then the choice of which is signal and
which is noise gets randomised on each frame. This corresponds to Scase et al’s (1996) categories of RDK.

noiseDots [‘direction’, ‘position’ or ‘walk’] Determines the behaviour of the noise dots, taken directly from Scase
et al’s (1996) categories. For ‘position’, noise dots take a random position every frame. For ‘direction’ noise

48 Chapter 6. Builder

http://www.sciencedirect.com/science/article/pii/0042698995003258

PsychoPy - Psychology software for Python, Release 1.81.03

dots follow a random, but constant direction. For ‘walk’ noise dots vary their direction every frame, but keep a
constant speed.

See also:

API reference for DotStim

6.4.4 ioLab Systems buttonbox Component

A button box is a hardware device that is used to collect participant responses with high temporal precision, ideally
with true ms accuracy.

Both the response (which button was pressed) and time taken to make it are returned. The time taken is determined by
a clock on the device itself. This is what makes it capable (in theory) of high precision timing.

Check the log file to see how long it takes for PsychoPy to reset the button box’s internal clock. If this takes a while,
then the RT timing values are not likely to be high precision. It might be possible for you to obtain a correction factor
for your computer + button box set up, if the timing delay is highly reliable.

The ioLabs button box also has a built-in voice-key, but PsychoPy does not have an interface for it. Use a microphone
component instead.

Properties

name [string] Everything in a PsychoPy experiment needs a unique name. The name should contain only letters,
numbers and underscores (no punctuation marks or spaces).

start : The time that the stimulus should first appear. See Defining the onset/duration of components for details.

stop : The duration for which the stimulus is presented. See Defining the onset/duration of components for details.

Force end of Routine [checkbox] If this is checked, the first response will end the routine.

Active buttons [None, or an integer, list, or tuple of integers 0-7] The ioLabs box lets you specify a set of active
buttons. Responses on non-active buttons are ignored by the box, and never sent to PsychoPy. This field lets
you specify which buttons (None, or some or all of 0 through 7).

Lights : If selected, the lights above the active buttons will be turned on.

Using code components, it is possible to turn on and off specific lights within a trial. See the API for iolab.

Store [(choice of: first, last, all, nothing)] Which button events to save in the data file. Events and the response times
are saved, with RT being recorded by the button box (not by PsychoPy).

Store correct [checkbox] If selected, a correctness value will be saved in the data file, based on a match with the
given correct answer.

Correct answer: button The correct answer, used by Store correct.

Discard previous [checkbox] If selected, any previous responses will be ignored (typically this is what you want).

Lights off [checkbox] If selected, all lights will be turned off at the end of each routine.

See also:

API reference for iolab

6.4. Components 49

PsychoPy - Psychology software for Python, Release 1.81.03

6.4.5 Keyboard Component

The Keyboard component can be used to collect responses from a participant.

By not storing the key press and checking the forceEndTrial box it can be used simply to end a Routine

Parameters

Name [string] Everything in a PsychoPy experiment needs a unique name. The name should contain only letters,
numbers and underscores (no punctuation marks or spaces).

Start [float or integer] The time that the keyboard should first get checked. See Defining the onset/duration of com-
ponents for details.

Stop : When the keyboard is no longer checked. See Defining the onset/duration of components for details.

Force end routine If this box is checked then the Routine will end as soon as one of the allowed keys is pressed.

Allowed keys A list of allowed keys can be specified here, e.g. [’m’,’z’,‘1’,‘2’], or the name of a variable holding
such a list. If this box is left blank then any key that is pressed will be read. Only allowed keys count as having
been pressed; any other key will not be stored and will not force the end of the Routine. Note that key names
(even for number keys) should be given in single quotes, separated by commas. Cursor control keys can be
accessed with ‘up’, ‘down’, and so on; the space bar is ‘space’. To find other special keys, run the Coder Input
demo, “what_key.py”, press the key, and check the Coder output window.

Store Which key press, if any, should be stored; the first to be pressed, the last to be pressed or all that have been
pressed. If the key press is to force the end of the trial then this setting is unlikely to be necessary, unless
two keys happen to be pressed in the same video frame. The response time will also be stored if a keypress
is recorded. This time will be taken from the start of keyboard checking (e.g. if the keyboard was initiated 2
seconds into the trial and a key was pressed 3.2s into the trials the response time will be recorded as 1.2s).

Store correct Check this box if you wish to store whether or not this key press was correct. If so then fill in the
next box that defines what would constitute a correct answer e.g. left, 1 or $corrAns (note this should not be
in inverted commas). This is given as Python code that should return True (1) or False (0). Often this correct
answer will be defined in the settings of the Loops.

Discard previous Check this box to ensure that only key presses that occur during this keyboard checking period are
used. If this box is not checked a keyboard press that has occurred before the start of the checking period will
be interpreted as the first keyboard press. For most experiments this box should be checked.

See also:

API reference for event

6.4.6 Microphone Component

Please note: This is a new component, and is subject to change.

The microphone component provides a way to record sound during an experiment. To do so, specify the starting time
relative to the start of the routine (see start below) and a stop time (= duration in seconds). A blank duration evaluates
to recording for 0.000s.

The resulting sound files are saved in .wav format (at 48000 Hz, 16 bit), one file per recording. The files appear in a
new folder within the data directory (the subdirectory name ends in _wav). The file names include the unix (epoch)
time of the onset of the recording with milliseconds, e.g., mic-1346437545.759.wav.

It is possible to stop a recording that is in progress by using a code component. Every frame, check for a condition
(such as key ‘q’, or a mouse click), and call the .stop() method of the microphone component. The recording will

50 Chapter 6. Builder

PsychoPy - Psychology software for Python, Release 1.81.03

end at that point and be saved. For example, if mic is the name of your microphone component, then in the code
component, do this on Each frame:

if event.getKeys([’q’]):
mic.stop()

Parameters

name [string] Everything in a PsychoPy experiment needs a unique name. The name should contain only letters,
numbers and underscores (no punctuation marks or spaces).

start [float or integer] The time that the stimulus should first play. See Defining the onset/duration of components for
details.

stop (duration): The length of time (sec) to record for. An expected duration can be given for visualisation purposes.
See Defining the onset/duration of components for details; note that only seconds are allowed.

See also:

API reference for AudioCapture

6.4.7 Mouse Component

The Mouse component can be used to collect responses from a participant. The coordinates of the mouse location are
given in the same coordinates as the Window, with (0,0) in the centre.

Scenarios

This can be used in various ways. Here are some scenarios (email the list if you have other uses for your mouse):

Use the mouse to record the location of a button press

Use the mouse to control stimulus parameters Imagine you want to use your mouse to make your ‘patch’_ bigger
or smaller and save the final size. Call your mouse ‘mouse’, set it to save its state at the end of the trial and set
the button press to end the Routine. Then for the size setting of your Patch stimulus insert $mouse.getPos()[0]
to use the x position of the mouse to control the size or $mouse.getPos()[1] to use the y position.

Tracking the entire path of the mouse during a period

Parameters

Name [string] Everything in a PsychoPy experiment needs a unique name. The name should contain only letters,
numbers and underscores (no punctuation marks or spaces).

start : The time that the mouse should first be checked. See Defining the onset/duration of components for details.

stop : When the mouse is no longer checked. See Defining the onset/duration of components for details.

Force End Routine on Press If this box is checked then the Routine will end as soon as one of the mouse buttons is
pressed.

Save Mouse State How often do you need to save the state of the mouse? Every time the subject presses a mouse
button, at the end of the trial, or every single frame? Note that the text output for cases where you store the
mouse data repeatedly per trial (e.g. every press or every frame) is likely to be very hard to interpret, so you may
then need to analyse your data using the psydat file (with python code) instead. Hopefully in future releases the
output of the text file will be improved.

6.4. Components 51

PsychoPy - Psychology software for Python, Release 1.81.03

Time Relative To Whenever the mouse state is saved (e.g. on button press or at end of trial) a time is saved too. Do
you want this time to be relative to start of the Routine, or the start of the whole experiment?

See also:

API reference for mouse

6.4.8 Movie Component

The Movie component allows movie files to be played from a variety of formats (e.g. mpeg, avi, mov).

The movie can be positioned, rotated, flipped and stretched to any size on the screen (using the Units for the window
and stimuli given).

Parameters

name [string] Everything in a PsychoPy experiment needs a unique name. The name should contain only letters,
numbers and underscores (no punctuation marks or spaces).

start : The time that the stimulus should first appear. See Defining the onset/duration of components for details.

stop : Governs the duration for which the stimulus is presented (if you want to cut a movie short). Usually you can
leave this blank and insert the Expected duration just for visualisation purposes. See Defining the onset/duration
of components for details.

movie [string] The filename of the movie, including the path. The path can be absolute or relative to the location of
the experiment (.psyexp) file.

pos [[X,Y]] The position of the centre of the stimulus, in the units specified by the stimulus or window

ori [degrees] Movies can be rotated in real-time too! This specifies the orientation of the movie in degrees.

size [[sizex, sizey] or a single value (applied to both x and y)] The size of the stimulus in the given units of the
stimulus/window.

units [deg, cm, pix, norm, or inherit from window] See Units for the window and stimuli

See also:

API reference for MovieStim

6.4.9 Patch (image) Component

The Patch stimulus allows images to be presented in a variety of forms on the screen. It allows the combination of an
image, which can be a bitmap image from a variety of standard file formats, or a synthetic repeating texture such as a
sinusoidal grating. A transparency mask can also be control the shape of the image, and this can also be derived from
either a second image, or mathematical form such as a Gaussian.

Patches can have their position, orientation, size and other settings manipulated on a frame-by-frame basis. There is a
performance advantage (in terms of milliseconds) to using images which are square and powers of two (32, 64, 128,
etc.), however this is slight and would not be noticed in the majority of experiments.

Parameters

name [string] Everything in a PsychoPy experiment needs a unique name. The name should contain only letters,
numbers and underscores (no punctuation marks or spaces).

start : The time that the stimulus should first appear. See Defining the onset/duration of components for details.

52 Chapter 6. Builder

PsychoPy - Psychology software for Python, Release 1.81.03

stop : Governs the duration for which the stimulus is presented. See Defining the onset/duration of components for
details.

image [a filename, a standard name (‘sin’, ‘sqr’) or a numpy array of dimensions NxNx1 or NxNx3] This specifies
the image that will be used as the texture for the visual patch. The image can be repeated on the patch (in either
x or y or both) by setting the spatial frequency to be high (or can be stretched so that only a subset of the image
appears by setting the spatial frequency to be low). Filenames can be relative or absolute paths and can refer to
most image formats (e.g. tif, jpg, bmp, png, etc.). If this is set to none, the patch will be a flat colour.

mask [a filename, a standard name (‘gauss’, ‘circle’) or a numpy array of dimensions NxNx1] The mask can define
the shape (e.g. circle will make the patch circular) or something which overlays the patch e.g. noise.

ori [degrees] The orientation of the entire patch (texture and mask) in degrees.

pos [[X,Y]] The position of the centre of the stimulus, in the units specified by the stimulus or window

size [[sizex, sizey] or a single value (applied to x and y)] The size of the stimulus in the given units of the stimu-
lus/window. If the mask is a Gaussian then the size refers to width at 3 standard deviations on either side of the
mean (i.e. sd=size/6)

units [deg, cm, pix, norm, or inherit from window] See Units for the window and stimuli

Advanced Settings

colour : See Color spaces

colour space [rgb, dkl or lms] See Color spaces

SF [[SFx, SFy] or a single value (applied to x and y)] The spatial frequency of the texture on the patch. The units
are dependent on the specified units for the stimulus/window; if the units are deg then the SF units will be
cycles/deg, if units are norm then the SF units will be cycles per stimulus. If this is set to none then only one
cycle will be displayed.

phase [single float or pair of values [X,Y]] The position of the texture within the mask, in both X and Y. If a single
value is given it will be applied to both dimensions. The phase has units of cycles (rather than degrees or
radians), wrapping at 1. As a result, setting the phase to 0,1,2... is equivalent, causing the texture to be centered
on the mask. A phase of 0.25 will cause the image to shift by half a cycle (equivalent to pi radians). The
advantage of this is that is if you set the phase according to time it is automatically in Hz.

Texture Resolution [an integer (power of two)] Defines the size of the resolution of the texture for standard textures
such as sin, sqr etc. For most cases a value of 256 pixels will suffice, but if stimuli are going to be very small
then a lower resolution will use less memory.

interpolate : If linear is selected then linear interpolation will be applied when the image is rescaled to the appropriate
size for the screen. Nearest will use a nearest-neighbour rule.

See also:

API reference for PatchStim

6.4.10 Polygon (shape) Component

(added in version 1.78.00)

The Polygon stimulus allows you to present a wide range of regular geometric shapes. The basic control comes from setting the number of vertices:

• 2 vertices give a line

• 3 give a triangle

6.4. Components 53

PsychoPy - Psychology software for Python, Release 1.81.03

• 4 give a rectangle etc.

• a large number will approximate a circle/ellipse

The size parameter takes two values. For a line only the first is used (then use ori to specify the orientation). For
triangles and rectangles the size specifies the height and width as expected. Note that for pentagons upwards, however,
the size determines the width/height of the ellipse on which the vertices will fall, rather than the width/height of the
vertices themselves (slightly smaller typically).

Parameters

name [string] Everything in a PsychoPy experiment needs a unique name. The name should contain only letters,
numbers and underscores (no punctuation marks or spaces).

nVertices : integer

The number of vertices for your shape (2 gives a line, 3 gives a triangle,... a large number results in a
circle/ellipse). It is not (currently) possible to vary the number of vertices dynamically.

fill settings:

Control the color inside the shape. If you set this to None then you will have a transparent shape (the line
will remain)

line settings:

Control color and width of the line. The line width is always specified in pixels - it does not honour the
units parameter.

size [[w,h]] See note above

start : The time that the stimulus should first appear. See Defining the onset/duration of components for details.

stop : Governs the duration for which the stimulus is presented. See Defining the onset/duration of components for
details.

ori [degrees] The orientation of the entire patch (texture and mask) in degrees.

pos [[X,Y]] The position of the centre of the stimulus, in the units specified by the stimulus or window

units [deg, cm, pix, norm, or inherit from window] See Units for the window and stimuli

See also:

API reference for Polygon API reference for Rect API reference for ShapeStim #for arbitrary vertices

6.4.11 RatingScale Component

A rating scale is used to collect a numeric rating or a choice from a few alternatives, via the mouse, the keyboard, or
both. Both the response and time taken to make it are returned.

A given routine might involve an image (patch component), along with a rating scale to collect the response. A routine
from a personality questionnaire could have text plus a rating scale.

Three common usage styles are enabled on the first settings page: ‘visual analog scale’: the subject uses the
mouse to position a marker on an unmarked line

‘category choices’: choose among verbal labels (categories, e.g., “True, False” or “Yes, No, Not sure”)

‘scale description’: used for numeric choices, e.g., 1 to 7 rating

Complete control over the display options is available as an advanced setting, ‘customize_everything’.

54 Chapter 6. Builder

PsychoPy - Psychology software for Python, Release 1.81.03

Properties

name [string] Everything in a PsychoPy experiment needs a unique name. The name should contain only letters,
numbers and underscores (no punctuation marks or spaces).

start : The time that the stimulus should first appear. See Defining the onset/duration of components for details.

stop : The duration for which the stimulus is presented. See Defining the onset/duration of components for details.

visualAnalogScale [checkbox] If this is checked, a line with no tick marks will be presented using the ‘glow’ marker,
and will return a rating from 0.00 to 1.00 (quasi-continuous). This is intended to bias people away from thinking
in terms of numbers, and focus more on the visual bar when making their rating. This supersedes either choices
or scaleDescription.

category choices [string] Instead of a numeric scale, you can present the subject with words or phrases to choose
from. Enter all the words as a string. (Probably more than 6 or so will not look so great on the screen.) Spaces
are assumed to separate the words. If there are any commas, the string will be interpreted as a list of words or
phrases (possibly including spaces) that are separated by commas.

scaleDescription : Brief instructions, reminding the subject how to interpret the numerical scale, default = “1 = not
at all ... extremely = 7”

low [str] The lowest number (bottom end of the scale), default = 1. If it’s not an integer, it will be converted to
lowAnchorText (see Advanced).

high [str] The highest number (top end of the scale), default = 7. If it’s not an integer, it will be converted to
highAnchorText (see Advanced).

Advanced settings

single click : If this box is checked the participant can only click the scale once and their response will be stored. If
this box is not checked the participant must accept their rating before it is stored.

startTime [float or integer] The time (relative to the beginning of this Routine) that the rating scale should first appear.

forceEndTrial : If checked, when the subject makes a rating the routine will be ended.

size [float] The size controls how big the scale will appear on the screen. (Same as “displaySizeFactor”.) Larger than
1 will be larger than the default, smaller than 1 will be smaller than the default.

pos [[X,Y]] The position of the centre of the stimulus, in the units specified by the stimulus or window. Default is
centered left-right, and somewhat lower than the vertical center (0, -0.4).

duration : The maximum duration in seconds for which the stimulus is presented. See duration for details. Typically,
the subject’s response should end the trial, not a duration. A blank or negative value means wait for a very long
time.

storeRatingTime: Save the time from the beginning of the trial until the participant responds.

storeRating: Save the rating that was selected

lowAnchorText [str] Custom text to display at the low end of the scale, e.g., “0%”; overrides ‘low’ setting

highAnchorText [str] Custom text to display at the low end of the scale, e.g., “100%”; overrides ‘high’ setting

customize_everything [str] If this is not blank, it will be used when initializing the rating scale just as it would
be in a code component (see RatingScale). This allows access to all the customizable aspects of a rating
scale, and supersedes all of the other RatingScale settings in the dialog panel. (This does not affect: startTime,
forceEndTrial, duration, storeRatingTime, storeRating.)

6.4. Components 55

PsychoPy - Psychology software for Python, Release 1.81.03

See also:

API reference for RatingScale

6.4.12 Sound Component

Parameters

name [string] Everything in a PsychoPy experiment needs a unique name. The name should contain only letters,
numbers and underscores (no punctuation marks or spaces).

start [float or integer] The time that the stimulus should first play. See Defining the onset/duration of components for
details.

stop : For sounds loaded from a file leave this blank and then give the Expected duration below for visualisation
purposes. See Defining the onset/duration of components for details.

sound : This sound can be described in a variety of ways:

• a number can specify the frequency in Hz (e.g. 440)

• a letter gives a note name (e.g. “C”) and sharp or flat can also be added (e.g. “Csh” “Bf”)

• a filename, which can be a relative or absolute path (mid, wav, ogg and mp3 are supported).

See also:

API reference for Sound

6.4.13 Static Component

(Added in Version 1.78.00)

The Static Component allows you to have a period where you can preload images or perform other time-consuming
operations that not be possible while the screen is being updated.

Typically a static period would be something like an inter-trial or inter-stimulus interval (ITI/ISI). During this period
you should not have any other objects being presented that are being updated (this isn’t checked for you - you have
to make that check yourself), but you can have components being presented that are themselves static. For instance a
fixation point never changes and so it can be presented during the static period (it will be presented and left on-screen
while the other updates are being made).

Any stimulus updates can be made to occur during any static period defined in the experiment (it does not have to be
in the same Routine). This is done in the updates selection box- once a static period exists it will show up here as
well as the standard options of constant and every repeat etc. Many parameter updates (e.g. orientation are made so
quickly that using the static period is of no benefit but others, most notably the loading of images from disk, can take
substantial periods of time and these should always be performed during a static period to ensure good timing.

If the updates that have been requested were not completed by the end of the static period (i.e. there was a timing
overshoot) then you will receive a warning to that effect. In this case you either need a longer static period to perform
the actions or you need to reduce the time required for the action (e.g. use an image with fewer pixels).

Parameters

name : Everything in a PsychoPy experiment needs a unique name. The name should contain only letters, numbers
and underscores (no punctuation marks or spaces).

start : The time that the static period begins. See Defining the onset/duration of components for details.

56 Chapter 6. Builder

PsychoPy - Psychology software for Python, Release 1.81.03

stop : The time that the static period ends. See Defining the onset/duration of components for details.

custom code : After running the component updates (which are defined in each component, not here) any code in-
serted here will also be run

See also:

API reference for StaticPeriod

6.4.14 Text Component

This component can be used to present text to the participant, either instructions or stimuli.

name [string] Everything in a PsychoPy experiment needs a unique name. The name should contain only letters,
numbers and underscores (no punctuation marks or spaces).

start : The time that the stimulus should first appear. See Defining the onset/duration of components for details.

stop : The duration for which the stimulus is presented. See Defining the onset/duration of components for details.

color : See Color spaces

color space [rgb, dkl or lms] See Color spaces

ori [degrees] The orientation of the stimulus in degrees.

pos [[X,Y]] The position of the centre of the stimulus, in the units specified by the stimulus or window

height [integer or float] The height of the characters in the given units of the stimulus/window. Note that nearly all
actual letters will occupy a smaller space than this, depending on font, character, presence of accents etc. The
width of the letters is determined by the aspect ratio of the font.

units [deg, cm, pix, norm, or inherit from window] See Units for the window and stimuli

opacity : Vary the transparency, from 0.0 = invisible to 1.0 = opaque

flip : Whether to mirror-reverse the text: ‘horiz’ for left-right mirroring, ‘vert’ for up-down mirroring. The flip can
be set dynamically on a per-frame basis by using a variable, e.g., $mirror, as defined in a code component or
conditions file and set to either ‘horiz’ or ‘vert’.

See also:

API reference for TextStim

6.4.15 Entering parameters

Most of the entry boxes for Component parameters simply receive text or numeric values or lists (sequences of values
surrounded by square brackets) as input. In addition, the user can insert variables and code into most of these, which
will be interpreted either at the beginning of the experiment or at regular intervals within it.

To indicate to PsychoPy that the value represents a variable or python code, rather than literal text, it should be preceded
by a $. For example, inserting intensity into the text field of the Text Component will cause that word literally to be
presented, whereas $intensity will cause python to search for the variable called intensity in the script.

Variables associated with Loops can also be entered in this way (see Accessing loop parameters from components for
further details). But it can also be used to evaluate arbitrary python code.

For example:

• $random(2) will generate a pair of random numbers

• $”yn”[randint(2)] will randomly choose the first or second character (y or n)

6.4. Components 57

PsychoPy - Psychology software for Python, Release 1.81.03

• $globalClock.getTime() will insert the current time in secs of the globalClock object

• $[sin(angle), cos(angle)] will insert the sin and cos of an angle (e.g. into the x,y coords of a stimulus)

6.4.16 How often to evaluate the variable/code

If you do want the parameters of a stimulus to be evaluated by code in this way you need also to decide how often it
should be updated. By default, the parameters of Components are set to be constant; the parameter will be set at the
beginning of the experiment and will remain that way for the duration. Alternatively, they can be set to change either
on every repeat in which case the parameter will be set at the beginning of the Routine on each repeat of it. Lastly
many parameters can even be set on every frame, allowing them to change constantly on every refresh of the screen.

6.5 Experiment settings

The settings menu can be accessed by clicking the icon at the top of the window. It allows the user to set various
aspects of the experiment, such as the size of the window to be used or what information is gathered about the subject
and determine what outputs (data files) will be generated.

6.5.1 Settings

Basic settings

Experiment name: A name that will be stored in the metadata of the data file.

Show info dlg: If this box is checked then a dialog will appear at the beginning of the experiment allowing the
Experiment Info to be changed.

Experiment Info: This information will be presented in a dialog box at the start and will be saved with any data files
and so can be used for storing information about the current run of the study. The information stored here can
also be used within the experiment. For example, if the Experiment Info included a field called ori then Builder
Components could access expInfo[’ori’] to retrieve the orientation set here. Obviously this is a useful way to
run essentially the same experiment, but with different conditions set at run-time.

Enable escape: If ticked then the Esc key can be used to exit the experiment at any time (even without a keyboard
component)

Data settings

Data filename: (new in version 1.80.00): A formatted string to control the base filename and path, often based on
variables such as the date and/or the participant. This base filename will be given the various extensions for the
different file types as needed. Examples:

all in data folder: data/JWP_memoryTask_2014_Feb_15_1648
’data/%s_%s_%s’ %(expInfo[’participant’], expName, expInfo[’date’])

group by participant folder: data/JWP/memoryTask-2014_Feb_15_1648
’data/%s/%s-%s’ %(expInfo[’participant’], expName, expInfo[’date’])

put into dropbox: ~/dropbox/data/memoryTask/JWP-2014_Feb_15_1648
on Windows you may need to replace ~ with your home directory
’~/dropbox/data/%s/%s-%s’ %(expName, expInfo[’participant’], expInfo[’date’])

Save Excel file: If this box is checked an Excel data file (.xlsx) will be stored.

58 Chapter 6. Builder

PsychoPy - Psychology software for Python, Release 1.81.03

Save csv file: If this box is checked a comma separated variable (.csv) will be stored.

Save psydat file: If this box is checked a PsychoPy data file (.psydat) will be stored. This is a Python specific format
(.pickle files) which contains more information that .xlsx or .csv files that can be used with data analysis and
plotting scripts written in Python. Whilst you may not wish to use this format it is recommended that you always
save a copy as it contains a complete record of the experiment at the time of data collection.

Save log file A log file provides a record of what occurred during the experiment in chronological order, including
information about any errors or warnings that may have occurred.

Logging level How much detail do you want to be output to the log file, if it is being saved. The lowest level is error,
which only outputs error messages; warning outputs warnings and errors; info outputs all info, warnings and
errors; debug outputs all info that can be logged. This system enables the user to get a great deal of information
while generating their experiments, but then reducing this easily to just the critical information needed when
actually running the study. If your experiment is not behaving as you expect it to, this is an excellent place to
begin to work out what the problem is.

Screen settings

Monitor The name of the monitor calibration. Must match one of the monitor names from Monitor Center.

Screen: If multiple screens are available (and if the graphics card is not an intel integrated graphics chip) then the
user can choose which screen they use (e.g. 1 or 2).

Full-screen window: If this box is checked then the experiment window will fill the screen (overriding the window
size setting and using the size that the screen is currently set to in the operating system settings).

Window size: The size of the window in pixels, if this is not to be a full-screen window.

Units The default units of the window (see Units for the window and stimuli). These can be overridden by individual
Components.

6.6 Defining the onset/duration of components

As of version 1.70.00, the onset and offset times of stimuli can be defined in several ways.

Start and stop times can be entered in terms of seconds (time (s)), by frame number (frameN) or in relation to another
stimulus (condition). Condition would be used to make Components start or stop depending on the status of something
else, for example when a sound has finished. Duration can also be varied using a Code Component.

If you need very precise timing (particularly for very brief stimuli for instance) then it is best to control your on-
set/duration by specifying the number of frames the stimulus will be presented for.

Measuring duration in seconds (or milliseconds) is not very precise because it doesn’t take into account the fact that
your monitor has a fixed frame rate. For example if the screen has a refresh rate of 60Hz you cannot present your
stimulus for 120ms; the frame rate would limit you to 116.7ms (7 frames) or 133.3ms (8 frames). The duration of a
frame (in seconds) is simply 1/refresh rate in Hz.

Condition would be used to make Components start or stop depending on the status of something else, for example
when a movie has finished. Duration can also be varied using a code component.

In cases where PsychoPy cannot determine the start/endpoint of your Component (e.g. because it is a variable) you can
enter an ‘Expected’ start/duration. This simply allows components with variable durations to be drawn in the Routine
window. If you do not enter the approximate duration it will not be drawn, but this will not affect experimental
performance.

For more details of how to achieve good temporal precision see Timing Issues and synchronisation

6.6. Defining the onset/duration of components 59

PsychoPy - Psychology software for Python, Release 1.81.03

6.6.1 Examples

• Use time(s) or frameN and simply enter numeric values into the start and duration boxes.

• Use time(s) or frameN and enter a numeric value into the start time and set the duration to a variable name by
preceeding it with a $ as described here. Then set expected time to see an approximation in your routine

• Use condition to cause the stimulus to start immediately after a movie component called myMovie, by entering
$myMovie.status==FINISHED into the start time.

6.7 Generating outputs (datafiles)

There are 4 main forms of output file from PsychoPy:

• Excel 2007 files (.xlsx) see Excel Data Files for more details

• text data files (.csv or .dlm) see Delimited Text Files for more details

• binary data files (.psydat) see PsychoPy Data Files for more details

• log files (.log) see Log Files for more details

6.8 Common Mistakes (aka Gotcha’s)

6.8.1 General Advice

• Python and therefore PsychoPy is CASE SENSITIVE

• To use a dollar sign ($) for anything other than to indicate a code snippet for example in a Text Component,
precede it with a backslash \$ (the backslash won’t be printed)

• Have you entered your the settings for your monitor? If you are using degrees as a unit of measurement and
have not entered your monitor settings, the size of stimuli will not be accurate.

• If your experiment is not behaving in the way that you expect. Have you looked at the log file? This can point
you in the right direction ? Did you know you can change the type of information that is stored in the log file in
preferences by changing the logging level.

• Have you tried compiling the script and running it. Does this produce a particular error message that points you
at a particular problem area? You can also change things in a more detailed way in the coder view and if you are
having problems, reading through the script can highlight problems. Reading a compiled script can also help
with the creation of a Code Component

6.8.2 My stimulus isn’t appearing, there’s only the grey background

• Have you checked the size of your stimulus? If it is 0.5x0.5 pixels you won’t be able to see it!

• Have you checked the position of your stimulus? Is it positioned off the screen?

6.8.3 The loop isn’t using my Excel spreadsheet

• Have you remembered to specify the file you want to use when setting up the loop?

• Have you remembered to add the variables proceeded by the $ symbol to your stimuli?

60 Chapter 6. Builder

PsychoPy - Psychology software for Python, Release 1.81.03

6.8.4 I just want a plain square, but it’s turning into a grating

• If you don’t want your stimulus to have a texture, you need Image to be None

6.8.5 The code snippet I’ve entered doesn’t do anything

• Have you remembered to put a $ symbol at the beginning (this isn’t necessary, and should be avoided in a Code
Component)?

• A dollar sign as the first character of a line indicates to PsychoPy that the rest of the line is code. It does not
indicate a variable name (unlike in perl or php). This means that if you are, for example, using variables to
determine position, enter $[x,y]. The temptation is to use [$x,$y], which will not work.

6.8.6 My stimulus isn’t changing as I progress through the loop

• Have you changed the setting for the variable that you want to change to ‘change every repeat’ (or ‘change every
frame’)?

6.8.7 I’m getting the error message AttributeError: ‘unicode object has no attribute
‘XXXX’

• This type of error is usually caused by a naming conflict. Whilst we have made every attempt to make sure that
these conflicts produce a warning message it is possible that they may still occur.

• The most common source of naming conflicts in an external file which has been imported to be used in a loop
i.e. .xlsx, .csv.

• Check to make sure that all of the variable names are unique. There can be no repeated variable names anywhere
in your experiment.

6.8.8 The window opens and immediately closes

• Have you checked all of your variable entries are accepted commands e.g. gauss but not Gauss

• If you compile your experiment and run it from the coder window what does the error message say? Does it
point you towards a particular variable which may be incorrectly formatted?

If you are having problems getting the application to run please see Troubleshooting

6.9 Compiling a Script

If you click the compile script icon this will display the script for your experiment in the Coder window.

This can be used for debugging experiments, entering small amounts of code and learning a bit about writing scripts
amongst other things.

The code is fully commented and so this can be an excellent introduction to writing your own code.

6.9. Compiling a Script 61

PsychoPy - Psychology software for Python, Release 1.81.03

6.10 Set up your monitor properly

It’s a really good idea to tell PsychoPy about the set up of your monitor, especially the size in cm and pixels and its
distance, so that PsychoPy can present your stimuli in units that will be consistent in another lab with a different set
up (e.g. cm or degrees of visual angle).

You should do this in Monitor Center which can be opened from Builder by clicking on the icon that shows two
monitors. In Monitor Center you can create settings for multiple configurations, e.g. different viewing distances or
different physical devices and then select the appropriate one by name in your experiments or scripts.

Having set up your monitor settings you should then tell PsychoPy which of your monitor setups to use for this
experiment by going to the Experiment settings dialog.

6.11 Future developments

The builder view still has a few rough edges, but is hopefully fairly usable. Here are some of the ways I hope it will
improve:

• More components. Several of the stimuli and events that PsychoPy can handle don’t currently show up as
components in the builder view, but they can be added easily (take a look inside the components directory to see
how easy it is to create a component).

• Dialogue entry validation. Dialogue boxes currently allow you to type almost anything into their windows. The
only current checking is that a name is given to the component and that this is unique. More checking is needed
to reduce errors.

• Similar to the above, I hope to add suggested entries to go into dialogs, as a form of help. e.g. on right-clicking
an entry box, say for stimulus orientation, a context menu should appear with ideas including numeric values,
known local variables (e.g. “thisTrial.rgb”, based on the existing loops in the Flow) and global variable ideas
(e.g. “frameN*360”)

• Better code output. I hope that the builder output code will illustrate best practice for precise timing and stimulus
presentation (it will probably always take more lines than a man-made script, but it should be at least as precise).
At the moment that isn’t the case. e.g. The builder should strongly recommend an interval between trials where
only static stimuli are drawn (e.g. fixation) and update components for this trial in that interval.

62 Chapter 6. Builder

CHAPTER

SEVEN

CODER

Note: These do not teach you about Python per se, and you are recommended also to learn about that (Python has
many excellent tutorials for programmers and non-programmers alike). In particular, dictionaries, lists and numpy
arrays are used a great deal in most PsychoPy experiments.

You can learn to use the scripting interface to PsychoPy in several ways, and you should probably follow a combination
of them:

• Basic Concepts: some of the logic of PsychoPy scripting

• PsychoPy Tutorials: walk you through the development of some semi-complete experiments

• demos: in the demos menu of Coder view. Many and varied

• use the Builder to compile a script and see how it works

• check the Reference Manual (API) for further details

• ultimately go into PsychoPy and start examining the source code. It’s just regular python!

7.1 Basic Concepts

7.1.1 Presenting Stimuli

Note: Before you start, tell PsychoPy about your monitor(s) using the Monitor Center. That way you get to use units
(like degrees of visual angle) that will transfer easily to other computers.

Stimulus objects

Python is an ‘object-oriented’ programming language, meaning that most stimuli in PsychoPy are represented by
python objects, with various associated methods and information.

Typically you should create your stimulus once, at the beginning of the script, and then change it as you need to later
using set____() commands. For instance, create your text and then change its color any time you like:

from psychopy import visual, core
win = visual.Window([400,400])
message = visual.TextStim(win, text=’hello’)
message.setAutoDraw(True) # automatically draw every frame
win.flip()
core.wait(2.0)
message.setText(’world’) # change properties of existing stim

63

http://www.python.org/

PsychoPy - Psychology software for Python, Release 1.81.03

win.flip()
core.wait(2.0)

Setting stimulus attributes

Stimulus attributes are typically set using either

• a string, which is just some characters (as message.setText(‘world’) above)

• a scalar (a number; see below)

• an x,y-pair (two numbers; see below)

x,y-pair: PsychoPy is very flexible in terms of input. You can specify the widely used x,y-pairs using these types:

• A Tuple (x, y) with two elements

• A List [x, y] with two elements

• A numpy array([x, y]) with two elements

However, PsychoPy always converts the x,y-pairs to numpy arrays internally. For example, all three assignments
of pos are equivalent here:

stim.pos = (0.5, -0.2) # Right and a bit up from the center
print stim.pos # array([0.5, -0.2])

stim.pos = [0.5, -0.2]
print stim.pos # array([0.5, -0.2])

stim.pos = numpy.array([0.5, -0.2])
print stim.pos # array([0.5, -0.2])

Choose your favorite :-) However, you can’t assign elementwise:

stim.pos[1] = 4 # has no effect

Scalar: Int or Float.

Mostly, scalars are no-brainers to understand. E.g.:

stim.ori = 90 # Rotate stimulus 90 degrees
stim.opacity = 0.8 # Make the stimulus slightly transparent.

However, scalars can also be used to assign x,y-pairs. In that case, both x and y get the value of the scalar. E.g.:

stim.size = 0.5
print stim.size # array([0.5, 0.5])

Operations on attributes: Operations during assignment of attributes are a handy way to smoothly alter the appear-
ance of your stimuli in loops.

Most scalars and x,y-pairs support the basic operations:

stim.attribute += value # addition
stim.attribute -= value # subtraction
stim.attribute *= value # multiplication
stim.attribute /= value # division
stim.attribute %= value # modulus
stim.attribute **= value # power

They are easy to use and understand on scalars:

64 Chapter 7. Coder

PsychoPy - Psychology software for Python, Release 1.81.03

stim.ori = 5 # 5.0, set rotation
stim.ori += 3.8 # 8.8, rotate clockwise
stim.ori -= 0.8 # 8.0, rotate counterclockwise
stim.ori /= 2 # 4.0, home in on zero
stim.ori **= 3 # 64.0, exponential increase in rotation
stim.ori %= 10 # 4.0, modulus 10

However, they can also be used on x,y-pairs in very flexible ways. Here you can use both scalars and x,y-pairs
as operators. In the latter case, the operations are element-wise:

stim.size = 5 # array([5.0, 5.0]), set quadratic size
stim.size +=2 # array([7.0, 7.0]), increase size
stim.size /= 2 # array([3.5, 3.5]), downscale size
stim.size += (0.5, 2.5) # array([4.0, 6.0]), a little wider and much taller
stim.size *= (2, 0.25) # array([8.0, 1.5]), upscale horizontal and downscale vertical

Operations are not meaningful for strings.

Timing

There are various ways to measure and control timing in PsychoPy:

• using frame refresh periods (most accurate, least obvious)

• checking the time on Clock objects

• using core.wait() commands (most obvious, least flexible/accurate)

Using core.wait(), as in the above example, is clear and intuitive in your script. But it can’t be used while something
is changing. For more flexible timing, you could use a Clock() object from the core module:

from psychopy import visual, core

#setup stimulus
win=visual.Window([400,400])
gabor = visual.GratingStim(win, tex=’sin’, mask=’gauss’, sf=5, name=’gabor’)
gabor.setAutoDraw(True) # automatically draw every frame
gabor.autoLog=False#or we’ll get many messages about phase change

clock = core.Clock()
#let’s draw a stimulus for 2s, drifting for middle 0.5s
while clock.getTime() < 2.0: # clock times are in seconds

if 0.5 <= clock.getTime() < 1.0:
gabor.setPhase(0.1, ’+’) # increment by 10th of cycle

win.flip()

Clocks are accurate to around 1ms (better on some platforms), but using them to time stimuli is not very accurate
because it fails to account for the fact that one frame on your monitor has a fixed frame rate. In the above, the stimulus
does not actually get drawn for exactly 0.5s (500ms). If the screen is refreshing at 60Hz (16.7ms per frame) and the
getTime() call reports that the time has reached 1.999s, then the stimulus will draw again for a frame, in accordance
with the while loop statement and will ultimately be displayed for 2.0167s. Alternatively, if the time has reached
2.001s, there will not be an extra frame drawn. So using this method you get timing accurate to the nearest frame
period but with little consistent precision. An error of 16.7ms might be acceptable to long-duration stimuli, but not to
a brief presentation. It also might also give the false impression that a stimulus can be presented for any given period.
At 60Hz refresh you can not present your stimulus for, say, 120ms; the frame period would limit you to a period of
116.7ms (7 frames) or 133.3ms (8 frames).

As a result, the most precise way to control stimulus timing is to present them for a specified number of frames. The
frame rate is extremely precise, much better than ms-precision. Calls to Window.flip() will be synchronised to the

7.1. Basic Concepts 65

PsychoPy - Psychology software for Python, Release 1.81.03

frame refresh; the script will not continue until the flip has occurred. As a result, on most cards, as long as frames are
not being ‘dropped’ (see Detecting dropped frames) you can present stimuli for a fixed, reproducible period.

Note: Some graphics cards, such as Intel GMA graphics chips under win32, don’t support frame sync. Avoid
integrated graphics for experiment computers wherever possible.

Using the concept of fixed frame periods and flip() calls that sync to those periods we can time stimulus presentation
extremely precisely with the following:

from psychopy import visual, core

#setup stimulus
win=visual.Window([400,400])
gabor = visual.GratingStim(win, tex=’sin’, mask=’gauss’, sf=5,

name=’gabor’, autoLog=False)
fixation = visual.GratingStim(win, tex=None, mask=’gauss’, sf=0, size=0.02,

name=’fixation’, autoLog=False)

clock = core.Clock()
#let’s draw a stimulus for 2s, drifting for middle 0.5s
for frameN in range(200):#for exactly 200 frames

if 10 <= frameN < 150: # present fixation for a subset of frames
fixation.draw()

if 50 <= frameN < 100: # present stim for a different subset
gabor.setPhase(0.1, ’+’) # increment by 10th of cycle
gabor.draw()

win.flip()

Using autoDraw

Stimuli are typically drawn manually on every frame in which they are needed, using the draw() function. You can
also set any stimulus to start drawing every frame using setAutoDraw(True) or setAutoDraw(False). If you use these
commands on stimuli that also have autoLog=True, then these functions will also generate a log message on the frame
when the first drawing occurs and on the first frame when it is confirmed to have ended.

7.1.2 Logging data

TrialHandler and StairHandler can both generate data outputs in which responses are stored, in relation to the stimulus
conditions. In addition to those data outputs, PsychoPy can created detailed chronological log files of events during
the experiment.

Log levels and targets

Log messages have various levels of severity: ERROR, WARNING, DATA, EXP, INFO and DEBUG

Multiple targets can also be created to receive log messages. Each target has a particular critical level and receives all
logged messages greater than that. For example, you could set the console (visual output) to receive only warnings
and errors, have a central log file that you use to store warning messages across studies (with file mode append), and
another to create a detailed log of data and events within a single study with level=INFO:

from psychopy import logging
logging.console.setLevel(logging.WARNING)
#overwrite (mode=’w’) a detailed log of the last run in this dir
lastLog=logging.LogFile("lastRun.log", level=logging.INFO, mode=’w’)

66 Chapter 7. Coder

PsychoPy - Psychology software for Python, Release 1.81.03

#also append warnings to a central log file
centralLog=logging.LogFile("c:/psychopyExps.log", level=logging.WARNING, mode=’a’)

Updating the logs

For performance purposes log files are not actually written when the log commands are ‘sent’. They are stored in a
list and processed automatically when the script ends. You might also choose to force a flush of the logged messages
manually during the experiment (e.g. during an inter-trial interval):

from psychopy import logging

...

logging.flush()#write messages out to all targets

This should only be necessary if you want to see the logged information as the experiment progresses.

AutoLogging

New in version 1.63.00

Certain events will log themselves automatically by default. For instance, visual stimuli send log messages every
time one of their parameters is changed, and when autoDraw is toggled they send a message that the stimulus has
started/stopped. All such log messages are timestamped with the frame flip on which they take effect. To avoid
this logging, for stimuli such as fixation points that might not be critical to your analyses, or for stimuli that change
constantly and will flood the logging system with messages, the autoLogging can be turned on/off at initialisation of
the stimulus and can be altered afterwards with .setAutoLog(True/False)

Manual methods

In addition to a variety of automatic logging messages, you can create your own, of various levels. These can be
timestamped immediately:

from psychopy import logging
logging.log(level=logging.WARN, msg=’something important’)
logging.log(level=logging.EXP, msg=’something about the conditions’)
logging.log(level=logging.DATA, msg=’something about a response’)
logging.log(level=logging.INFO, msg=’something less important’)

There are additional convenience functions for the above: logging.warn(‘a warning’) etc.

For stimulus changes you probably want the log message to be timestamped based on the frame flip (when the stimulus
is next presented) rather than the time that the log message is sent:

from psychopy import logging, visual
win = visual.Window([400,400])
win.flip()
logging.log(level=logging.EXP, msg=’sent immediately’)
win.logOnFlip(level=logging.EXP, msg=’sent on actual flip’)
win.flip()

Using a custom clock for logs

New in version 1.63.00

7.1. Basic Concepts 67

PsychoPy - Psychology software for Python, Release 1.81.03

By default times for log files are reported as seconds after the very beginning of the script (often it takes a few seconds
to initialise and import all modules too). You can set the logging system to use any given core.Clock object
(actually, anything with a getTime() method):

from psychopy import core, logging
globalClock=core.Clock()
logging.setDefaultClock(globalClock)

7.1.3 Handling Trials and Conditions

TrialHandler

This is what underlies the random and sequential loop types in Builder, they work using the method of constants. The
trialHandler presents a predetermined list of conditions in either a sequential or random (without replacement) order.

see TrialHandler for more details.

StairHandler

This generates the next trial using an adaptive staircase. The conditions are not predetermined and are generated based
on the participant’s responses.

Staircases are predominately used in psychophysics to measure the discrimination and detection thresholds. However
they can be used in any experiment which varies a numeric value as a result of a 2 alternative forced choice (2AFC)
response.

The StairHandler systematically generates numbers based on staircase parameters. These can then be used to define a
stimulus parameter e.g. spatial frequency, stimulus presentation duration. If the participant gives the incorrect response
the number generated will get larger and if the participant gives the correct response the number will get smaller.

see StairHandler for more details

7.2 PsychoPy Tutorials

7.2.1 Tutorial 1: Generating your first stimulus

A tutorial to get you going with your first stimulus display.

Know your monitor

PsychoPy has been designed to handle your screen calibrations for you. It is also designed to operate (if possible) in
the final experimental units that you like to use e.g. degrees of visual angle.

In order to do this PsychoPy needs to know a little about your monitor. There is a GUI to help with this (select
MonitorCenter from the tools menu of PsychoPyIDE or run ...site-packages/monitors/MonitorCenter.py).

In the MonitorCenter window you can create a new monitor name, insert values that describe your monitor and run
calibrations like gamma corrections. For now you can just stick to the [testMonitor] but give it correct values for your
screen size in number of pixels and width in cm.

Now, when you create a window on your monitor you can give it the name ‘testMonitor’ and stimuli will know how
they should be scaled appropriately.

68 Chapter 7. Coder

PsychoPy - Psychology software for Python, Release 1.81.03

Your first stimulus

Building stimuli is extremely easy. All you need to do is create a Window, then some stimuli. Draw those stimuli,
then update the window. PsychoPy has various other useful commands to help with timing too. Here’s an example.
Type it into a coder window, save it somewhere and press run.

1 from psychopy import visual, core # import some libraries from PsychoPy
2

3 #create a window
4 mywin = visual.Window([800,600], monitor="testMonitor", units="deg")
5

6 #create some stimuli
7 grating = visual.GratingStim(win=mywin, mask="circle", size=3, pos=[-4,0], sf=3)
8 fixation = visual.GratingStim(win=mywin, size=0.5, pos=[0,0], sf=0, rgb=-1)
9

10 #draw the stimuli and update the window
11 grating.draw()
12 fixation.draw()
13 mywin.update()
14

15 #pause, so you get a chance to see it!
16 core.wait(5.0)

Note: For those new to Python. Did you notice that the grating and the fixation stimuli both call GratingStim
but have different arguments? One of the nice features about python is that you can select which arguments to set.
GratingStim has over 15 arguments that can be set, but the others just take on default values if they aren’t needed.

That’s a bit easy though. Let’s make the stimulus move, at least! To do that we need to create a loop where we change
the phase (or orientation, or position...) of the stimulus and then redraw. Add this code in place of the drawing code
above:

for frameN in range(200):
grating.setPhase(0.05, ’+’) # advance phase by 0.05 of a cycle
grating.draw()
fixation.draw()
mywin.update()

That ran for 200 frames (and then waited 5 seconds as well). Maybe it would be nicer to keep updating until the user
hits a key instead. That’s easy to add too. In the first line add event to the list of modules you’ll import. Then replace
the line:

for frameN in range(200):

with the line:

while True: #this creates a never-ending loop

Then, within the loop (make sure it has the same indentation as the other lines) add the lines:

if len(event.getKeys())>0: break
event.clearEvents()

the first line counts how many keys have been pressed since the last frame. If more than zero are found then we break
out of the never-ending loop. The second line clears the event buffer and should always be called after you’ve collected
the events you want (otherwise it gets full of events that we don’t care about like the mouse moving around etc...).

Your finished script should look something like this:

7.2. PsychoPy Tutorials 69

PsychoPy - Psychology software for Python, Release 1.81.03

1 from psychopy import visual, core, event #import some libraries from PsychoPy
2

3 #create a window
4 mywin = visual.Window([800,600],monitor="testMonitor", units="deg")
5

6 #create some stimuli
7 grating = visual.GratingStim(win=mywin, mask=’circle’, size=3, pos=[-4,0], sf=3)
8 fixation = visual.GratingStim(win=mywin, size=0.2, pos=[0,0], sf=0, rgb=-1)
9

10 #draw the stimuli and update the window
11 while True: #this creates a never-ending loop
12 grating.setPhase(0.05, ’+’)#advance phase by 0.05 of a cycle
13 grating.draw()
14 fixation.draw()
15 mywin.flip()
16

17 if len(event.getKeys())>0: break
18 event.clearEvents()
19

20 #cleanup
21 mywin.close()
22 core.quit()

There are several more simple scripts like this in the demos menu of the Coder and Builder views and many more to
download. If you’re feeling like something bigger then go to Tutorial 2: Measuring a JND using a staircase procedure
which will show you how to build an actual experiment.

7.2.2 Tutorial 2: Measuring a JND using a staircase procedure

This tutorial builds an experiment to test your just-noticeable-difference (JND) to orientation, that is it determines
the smallest angular deviation that is needed for you to detect that a gabor stimulus isn’t vertical (or at some other
reference orientation). The method presents a pair of stimuli at once with the observer having to report with a key
press whether the left or the right stimulus was at the reference orientation (e.g. vertical).

You can download the full code here. Note that the entire experiment is constructed of less than 100 lines of
code, including the initial presentation of a dialogue for parameters, generation and presentation of stimuli, running
the trials, saving data and outputting a simple summary analysis for feedback. Not bad, eh?

There are a great many modifications that can be made to this code, however this example is designed to demonstrate
how much can be achieved with very simple code. Modifying existing is an excellent way to begin writing your own
scripts, for example you may want to try changing the appearance of the text or the stimuli.

Get info from the user

The first lines of code import the necessary libraries. We need lots of the psychopy components for a full experiment,
as well as python’s time library (to get the current date) and numpy (which handles various numerical/mathematical
functions):

from psychopy import core, visual, gui, data, event
from psychopy.tools.filetools import fromFile, toFile

The try:...except:... lines allow us to try and load a parameter file from a previous run of the experiment. If
that fails (e.g. because the experiment has never been run) then create a default set of parameters. These are easy to
store in a python dictionary that we’ll call expInfo:

70 Chapter 7. Coder

PsychoPy - Psychology software for Python, Release 1.81.03

try:#try to get a previous parameters file
expInfo = fromFile(’lastParams.pickle’)

except:#if not there then use a default set
expInfo = {’observer’:’jwp’, ’refOrientation’:0}

The last line adds the current date to whichever method was used.

So having loaded those parameters, let’s allow the user to change them in a dialogue box (which we’ll call dlg). This
is the simplest form of dialogue, created directly from the dictionary above. the dialogue will be presented immediately
to the user and the script will wait until they hit OK or Cancel.

If they hit OK then dlg.OK=True, in which case we’ll use the updated values and save them straight to a parameters
file (the one we try to load above).

If they hit Cancel then we’ll simply quit the script and not save the values.

#present a dialogue to change params
dlg = gui.DlgFromDict(expInfo, title=’simple JND Exp’, fixed=[’dateStr’])
if dlg.OK:

toFile(’lastParams.pickle’, expInfo)#save params to file for next time
else:

Setup the information for trials

We’ll create a file to which we can output some data as text during each trial (as well as outputting a binary file at
the end of the experiment). We’ll create a filename from the subject+date+”.csv” (note how easy it is to concatenate
strings in python just by ‘adding’ them). csv files can be opened in most spreadsheet packages. Having opened a text
file for writing, the last line shows how easy it is to send text to this target document.

#make a text file to save data
fileName = expInfo[’observer’] + expInfo[’dateStr’]
dataFile = open(fileName+’.csv’, ’w’)#a simple text file with ’comma-separated-values’

PsychoPy allows us to set up an object to handle the presentation of stimuli in a staircase procedure, the
StairHandler. This will define the increment of the orientation (i.e. how far it is from the reference orienta-
tion). The staircase can be configured in many ways, but we’ll set it up to begin with an increment of 20deg (very
detectable) and home in on the 80% threshold value. We’ll step up our increment every time the subject gets a wrong
answer and step down if they get three right answers in a row. The step size will also decrease after every 2 reversals,
starting with an 8dB step (large) and going down to 1dB steps (smallish). We’ll finish after 50 trials.

#create the staircase handler
staircase = data.StairHandler(startVal = 20.0,

stepType = ’db’, stepSizes=[8,4,4,2,2,1,1],
nUp=1, nDown=3, #will home in on the 80% threshold

Build your stimuli

Now we need to create a window, some stimuli and timers. We need a ~psychopy.visual.Window in which to draw our
stimuli, a fixation point and two ~psychopy.visual.GratingStim stimuli (one for the target probe and one as the foil).
We can have as many timers as we like and reset them at any time during the experiment, but I generally use one to
measure the time since the experiment started and another that I reset at the beginning of each trial.

#create window and stimuli
win = visual.Window([800,600],allowGUI=True, monitor=’testMonitor’, units=’deg’)
foil = visual.GratingStim(win, sf=1, size=4, mask=’gauss’, ori=expInfo[’refOrientation’])
target = visual.GratingStim(win, sf=1, size=4, mask=’gauss’, ori=expInfo[’refOrientation’])

7.2. PsychoPy Tutorials 71

PsychoPy - Psychology software for Python, Release 1.81.03

fixation = visual.GratingStim(win, color=-1, colorSpace=’rgb’, tex=None, mask=’circle’,size=0.2)
#and some handy clocks to keep track of time
globalClock = core.Clock()

Once the stimuli are created we should give the subject a message asking if they’re ready. The next two lines create a
pair of messages, then draw them into the screen and then update the screen to show what we’ve drawn. Finally we
issue the command event.waitKeys() which will wait for a keypress before continuing.

#display instructions and wait
message1 = visual.TextStim(win, pos=[0,+3],text=’Hit a key when ready.’)
message2 = visual.TextStim(win, pos=[0,-3],

text="Then press left or right to identify the %.1f deg probe." %expInfo[’refOrientation’])
message1.draw()
message2.draw()
fixation.draw()
win.flip()#to show our newly drawn ’stimuli’
#pause until there’s a keypress

Control the presentation of the stimuli

OK, so we have everything that we need to run the experiment. The following uses a for-loop that will iterate over
trials in the experiment. With each pass through the loop the staircase object will provide the new value for the
intensity (which we will call thisIncrement). We will randomly choose a side to present the target stimulus using
numpy.random.random(), setting the position of the target to be there and the foil to be on the other side of the
fixation point.

for thisIncrement in staircase: #will step through the staircase
#set location of stimuli
targetSide= random.choice([-1,1]) #will be either +1(right) or -1(left)
foil.setPos([-5*targetSide, 0])

Then set the orientation of the foil to be the reference orientation plus thisIncrement, draw all the stimuli (in-
cluding the fixation point) and update the window.

#set orientation of probe
foil.setOri(expInfo[’refOrientation’] + thisIncrement)

#draw all stimuli
foil.draw()
target.draw()
fixation.draw()

Wait for presentation time of 500ms and then blank the screen (by updating the screen after drawing just the fixation
point).

core.wait(0.5) #wait 500ms; but use a loop of x frames for more accurate timing in fullscreen
eg, to get 30 frames: for f in xrange(30): win.flip()

#blank screen
fixation.draw()

Get input from the subject

Still within the for-loop (note the level of indentation is the same) we need to get the response from the subject. The
method works by starting off assuming that there hasn’t yet been a response and then waiting for a key press. For
each key pressed we check if the answer was correct or incorrect and assign the response appropriately, which ends
the trial. We always have to clear the event buffer if we’re checking for key presses like this

72 Chapter 7. Coder

PsychoPy - Psychology software for Python, Release 1.81.03

#get response
thisResp=None
while thisResp==None:

allKeys=event.waitKeys()
for thisKey in allKeys:

if thisKey==’left’:
if targetSide==-1: thisResp = 1#correct
else: thisResp = -1 #incorrect

elif thisKey==’right’:
if targetSide== 1: thisResp = 1#correct
else: thisResp = -1 #incorrect

elif thisKey in [’q’, ’escape’]:
core.quit() #abort experiment

Now we must tell the staircase the result of this trial with its addData() method. Then it can work out whether the
next trial is an increment or decrement. Also, on each trial (so still within the for-loop) we may as well save the data
as a line of text in that .csv file we created earlier.

#add the data to the staircase so it can calculate the next level
staircase.addData(thisResp)
dataFile.write(’%i,%.3f,%i\n’ %(targetSide, thisIncrement, thisResp))

Output your data and clean up

OK! We’re basically done! We’ve reached the end of the for-loop (which occurred because the staircase terminated)
which means the trials are over. The next step is to close the text data file and also save the staircase as a binary file
(by ‘pickling’ the file in Python speak) which maintains a lot more info than we were saving in the text file.

#staircase has ended
dataFile.close()

While we’re here, it’s quite nice to give some immediate feedback to the user. Let’s tell them the intensity values at the
all the reversals and give them the mean of the last 6. This is an easy way to get an estimate of the threshold, but we
might be able to do a better job by trying to reconstruct the psychometric function. To give that a try see the staircase
analysis script of Tutorial 3.

Having saved the data you can give your participant some feedback and quit!

staircase.saveAsPickle(fileName) #special python binary file to save all the info

#give some output to user in the command line in the output window
print ’reversals:’
print staircase.reversalIntensities
print ’mean of final 6 reversals = %.3f’ %(numpy.average(staircase.reversalIntensities[-6:]))

#give some on screen feedback
feedback1 = visual.TextStim(win, pos=[0,+3],

text=’mean of final 6 reversals = %.3f’ %
(numpy.average(staircase.reversalIntensities[-6:])))
feedback1.draw()
fixation.draw()
win.flip()
event.waitKeys() #wait for participant to respond

win.close()

7.2. PsychoPy Tutorials 73

PsychoPy - Psychology software for Python, Release 1.81.03

7.2.3 Tutorial 3: Analysing data in Python

You could simply output your data as tab- or comma-separated text files and analyse the data in some spreadsheet
package. But the matplotlib library in Python also allows for very neat and simple creation of publication-quality
plots.

This script shows you how to use a couple of functions from PsychoPy to open some data files
(psychopy.gui.fileOpenDlg()) and create a psychometric function out of some staircase data
(psychopy.data.functionFromStaircase()).

Matplotlib is then used to plot the data.

Note: Matplotlib and pylab. Matplotlib is a python library that has similar command syntax to most of the plotting
functions in Matlab(tm). In can be imported in different ways; the import pylab line at the beginning of the script
is the way to import matploblib as well as a variety of other scientific tools (that aren’t strictly to do with plotting per
se).

1 #This analysis script takes one or more staircase datafiles as input
2 #from a GUI. It then plots the staircases on top of each other on
3 #the left and a combined psychometric function from the same data
4 #on the right
5

6 from psychopy import data, gui, core
7 from psychopy.tools.filetools import fromFile
8 import pylab
9

10 #Open a dialog box to select files from
11 files = gui.fileOpenDlg(’.’)
12 if not files:
13 core.quit()
14

15 #get the data from all the files
16 allIntensities, allResponses = [],[]
17 for thisFileName in files:
18 thisDat = fromFile(thisFileName)
19 allIntensities.append(thisDat.intensities)
20 allResponses.append(thisDat.data)
21

22 #plot each staircase
23 pylab.subplot(121)
24 colors = ’brgkcmbrgkcm’
25 lines, names = [],[]
26 for fileN, thisStair in enumerate(allIntensities):
27 #lines.extend(pylab.plot(thisStair))
28 #names = files[fileN]
29 pylab.plot(thisStair, label=files[fileN])
30 #pylab.legend()
31

32 #get combined data
33 combinedInten, combinedResp, combinedN = \
34 data.functionFromStaircase(allIntensities, allResponses, 5)
35 #fit curve - in this case using a Weibull function
36 fit = data.FitFunction(’weibullTAFC’,combinedInten, combinedResp, \
37 guess=[0.2, 0.5])
38 smoothInt = pylab.arange(min(combinedInten), max(combinedInten), 0.001)
39 smoothResp = fit.eval(smoothInt)
40 thresh = fit.inverse(0.8)
41 print thresh

74 Chapter 7. Coder

http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/

PsychoPy - Psychology software for Python, Release 1.81.03

42

43 #plot curve
44 pylab.subplot(122)
45 pylab.plot(smoothInt, smoothResp, ’-’)
46 pylab.plot([thresh, thresh],[0,0.8],’--’); pylab.plot([0, thresh],\
47 [0.8,0.8],’--’)
48 pylab.title(’threshold = %0.3f’ %(thresh))
49 #plot points
50 pylab.plot(combinedInten, combinedResp, ’o’)
51 pylab.ylim([0,1])
52

53 pylab.show()

7.2. PsychoPy Tutorials 75

PsychoPy - Psychology software for Python, Release 1.81.03

76 Chapter 7. Coder

CHAPTER

EIGHT

REFERENCE MANUAL (API)

Contents:

8.1 psychopy.core - basic functions (clocks etc.)

Basic functions, including timing, rush (imported), quit

psychopy.core.getTime()
Get the current time since psychopy.core was loaded.

Version Notes: Note that prior to PsychoPy 1.77.00 the behaviour of getTime() was platform dependent (on OSX
and linux it was equivalent to psychopy.core.getAbsTime() whereas on windows it returned time since
loading of the module, as now)

psychopy.core.getAbsTime()
Return unix time (i.e., whole seconds elapsed since Jan 1, 1970).

This uses the same clock-base as the other timing features, like getTime(). The time (in seconds) ignores the
time-zone (like time.time() on linux). To take the timezone into account, use int(time.mktime(time.gmtime())).

Absolute times in seconds are especially useful to add to generated file names for being unique, informative (=
a meaningful time stamp), and because the resulting files will always sort as expected when sorted in chrono-
logical, alphabetical, or numerical order, regardless of locale and so on.

Version Notes: This method was added in PsychoPy 1.77.00

psychopy.core.wait(secs, hogCPUperiod=0.2)
Wait for a given time period.

If secs=10 and hogCPU=0.2 then for 9.8s python’s time.sleep function will be used, which is not especially
precise, but allows the cpu to perform housekeeping. In the final hogCPUperiod the more precise method of
constantly polling the clock is used for greater precision.

If you want to obtain key-presses during the wait, be sure to use pyglet and to hogCPU for the entire time, and
then call psychopy.event.getKeys() after calling wait()

If you want to suppress checking for pyglet events during the wait, do this once::
core.checkPygletDuringWait = False

and from then on you can do:: core.wait(sec)

This will preserve terminal-window focus during command line usage.

class psychopy.core.Clock
A convenient class to keep track of time in your experiments. You can have as many independent clocks as you
like (e.g. one to time responses, one to keep track of stimuli...)

77

PsychoPy - Psychology software for Python, Release 1.81.03

This clock is identical to the MonotonicClock except that it can also be reset to 0 or another value at any
point.

add(t)
Add more time to the clock’s ‘start’ time (t0).

Note that, by adding time to t0, you make the current time appear less. Can have the effect that getTime()
returns a negative number that will gradually count back up to zero.

e.g.:

timer = core.Clock()
timer.add(5)
while timer.getTime()<0:

#do something

reset(newT=0.0)
Reset the time on the clock. With no args time will be set to zero. If a float is received this will be the new
time on the clock

class psychopy.core.CountdownTimer(start=0)
Similar to a Clock except that time counts down from the time of last reset

Typical usage:

timer = core.CountdownTimer(5)
while timer.getTime() > 0: # after 5s will become negative

#do stuff

getTime()
Returns the current time left on this timer in secs (sub-ms precision)

class psychopy.core.MonotonicClock(start_time=None)
A convenient class to keep track of time in your experiments using a sub-millisecond timer.

Unlike the Clock this cannot be reset to arbitrary times. For this clock t=0 always represents the time that the
clock was created.

Don’t confuse this class with core.monotonicClock which is an instance of it that got created when Psy-
choPy.core was imported. That clock instance is deliberately designed always to return the time since the
start of the study.

Version Notes: This class was added in PsychoPy 1.77.00

getLastResetTime()
Returns the current offset being applied to the high resolution timebase used by Clock.

getTime()
Returns the current time on this clock in secs (sub-ms precision)

class psychopy.core.StaticPeriod(screenHz=None, win=None, name=’StaticPeriod’)
A class to help insert a timing period that includes code to be run.

Typical usage:

fixation.draw()
win.flip()
ISI = StaticPeriod(screenHz=60)
ISI.start(0.5) #start a period of 0.5s
stim.image = ’largeFile.bmp’ #could take some time
ISI.complete() #finish the 0.5s, taking into account one 60Hz frame

stim.draw()

78 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

win.flip() #the period takes into account the next frame flip
#time should now be at exactly 0.5s later than when ISI.start() was called

Parameters

• screenHz – the frame rate of the monitor (leave as None if you don’t want this accounted
for)

• name – if a visual.Window is given then StaticPeriod will also pause/restart frame interval
recording

• name – give this StaticPeriod a name for more informative logging messages

complete()
Completes the period, using up whatever time is remaining with a call to wait()

Returns 1 for success, 0 for fail (the period overran)

start(duration)
Start the period. If this is called a second time, the timer will be reset and starts again

8.2 psychopy.visual - many visual stimuli

Window to display all stimuli below.

Commonly used:

• ImageStim to show images.

• TextStim to show texts.

Shapes (all special classes of ShapeStim):

• ShapeStim as a general purpose shape shower.

• Rect to show rectangles.

• Circle to show circles.

• Polygon to show polygons.

• Line to show a line.

Images and patterns:

• ImageStim to show images.

• SimpleImageStim to show images without bells and whistles.

• GratingStim to show gratings

• RadialStim to show annulus, a rotating wedge, a checkerboard etc

Multiple stimuli:

• ElementArrayStim to show many stimuli of the same type.

• DotStim to show and control movement of dots.

Other stimuli:

• MovieStim to show movies.

• RatingScale to collect ratings.

8.2. psychopy.visual - many visual stimuli 79

PsychoPy - Psychology software for Python, Release 1.81.03

• CustomMouse to change the cursor in windows with GUI. OBS: will be depricated soon.

General purpose (applies to other stimuli):

• BufferImageStim to make a faster-to-show “screenshot” of other stimuli.

• Aperture to restrict visibility area of other stimuli.

See also visualhelperfunctions.

8.3 psychopy.data - functions for storing/saving/analysing data

Routines for handling data structures and analysis

8.3.1 ExperimentHandler

class psychopy.data.ExperimentHandler(name=’‘, version=’‘, extraInfo=None, runtime-
Info=None, originPath=None, savePickle=True,
saveWideText=True, dataFileName=’‘, autoLog=True)

A container class for keeping track of multiple loops/handlers

Useful for generating a single data file from an experiment with many different loops (e.g. interleaved staircases
or loops within loops

Usage exp = data.ExperimentHandler(name=”Face Preference”,version=‘0.1.0’)

Parameters

name [a string or unicode] As a useful identifier later

version [usually a string (e.g. ‘1.1.0’)] To keep track of which version of the experiment was
run

extraInfo [a dictionary] Containing useful information about this run (e.g. {‘partici-
pant’:’jwp’,’gender’:’m’,’orientation’:90})

runtimeInfo [psychopy.info.RunTimeInfo] Containining information about the sys-
tem as detected at runtime

originPath [string or unicode] The path and filename of the originating script/experiment If not
provided this will be determined as the path of the calling script.

dataFileName [string] This is defined in advance and the file will be saved at any point that the
handler is removed or discarded (unless .abort() had been called in advance). The handler
will attempt to populate the file even in the event of a (not too serious) crash!

savePickle : True (default) or False

saveWideText : True (default) or False

autoLog : True (default) or False

abort()
Inform the ExperimentHandler that the run was aborted.

Experiment handler will attempt automatically to save data (even in the event of a crash if possible). So if
you quit your script early you may want to tell the Handler not to save out the data files for this run. This
is the method that allows you to do that.

80 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

addData(name, value)
Add the data with a given name to the current experiment.

Typically the user does not need to use this function; if you added your data to the loop and had already
added the loop to the experiment then the loop will automatically inform the experiment that it has received
data.

Multiple data name/value pairs can be added to any given entry of the data file and is considered part of
the same entry until the nextEntry() call is made.

e.g.:

#add some data for this trial
exp.addData(’resp.rt’, 0.8)
exp.addData(’resp.key’, ’k’)
#end of trial - move to next line in data output
exp.nextEntry()

addLoop(loopHandler)
Add a loop such as a TrialHandler or StairHandler Data from this loop will be included in the
resulting data files.

loopEnded(loopHandler)
Informs the experiment handler that the loop is finished and not to include its values in further entries of
the experiment.

This method is called by the loop itself if it ends its iterations, so is not typically needed by the user.

nextEntry()
Calling nextEntry indicates to the ExperimentHandler that the current trial has ended and so further ad-
dData() calls correspond to the next trial.

saveAsPickle(fileName, fileCollisionMethod=’rename’)
Basically just saves a copy of self (with data) to a pickle file.

This can be reloaded if necessary and further analyses carried out.

Parameters fileCollisionMethod: Collision method passed to handleFileCollision()

saveAsWideText(fileName, delim=None, matrixOnly=False, appendFile=False)
Saves a long, wide-format text file, with one line representing the attributes and data for a single trial.
Suitable for analysis in R and SPSS.

If appendFile=True then the data will be added to the bottom of an existing file. Otherwise, if the file
exists already it will be overwritten

If matrixOnly=True then the file will not contain a header row, which can be handy if you want to append
data to an existing file of the same format.

8.3.2 TrialHandler

class psychopy.data.TrialHandler(trialList, nReps, method=’random’, dataTypes=None, ex-
traInfo=None, seed=None, originPath=None, name=’‘, au-
toLog=True)

Class to handle trial sequencing and data storage.

Calls to .next() will fetch the next trial object given to this handler, according to the method specified (random,
sequential, fullRandom). Calls will raise a StopIteration error if trials have finished.

See demo_trialHandler.py

8.3. psychopy.data - functions for storing/saving/analysing data 81

PsychoPy - Psychology software for Python, Release 1.81.03

The psydat file format is literally just a pickled copy of the TrialHandler object that saved it. You can open it
with:

from psychopy.tools.filetools import fromFile
dat = fromFile(path)

Then you’ll find that dat has the following attributes that

Parameters

trialList: a simple list (or flat array) of dictionaries specifying conditions This can be im-
ported from an excel/csv file using importConditions()

nReps: number of repeats for all conditions

method: ‘random’, ‘sequential’, or ‘fullRandom’ ‘sequential’ obviously presents the condi-
tions in the order they appear in the list. ‘random’ will result in a shuffle of the conditions
on each repeat, but all conditions occur once before the second repeat etc. ‘fullRandom’
fully randomises the trials across repeats as well, which means you could potentially run all
trials of one condition before any trial of another.

dataTypes: (optional) list of names for data storage. e.g. [’corr’,’rt’,’resp’] If not provided
then these will be created as needed during calls to addData()

extraInfo: A dictionary This will be stored alongside the data and usually describes the exper-
iment and subject ID, date etc.

seed: an integer If provided then this fixes the random number generator to use the same pat-
tern of trials, by seeding its startpoint

originPath: a string describing the location of the script/experiment file path The psydat
file format will store a copy of the experiment if possible. If no file path is provided here
then the TrialHandler will still store a copy of the script where it was created

Attributes (after creation) .data - a dictionary of numpy arrays, one for each data type stored

.trialList - the original list of dicts, specifying the conditions

.thisIndex - the index of the current trial in the original conditions list

.nTotal - the total number of trials that will be run

.nRemaining - the total number of trials remaining

.thisN - total trials completed so far

.thisRepN - which repeat you are currently on

.thisTrialN - which trial number within that repeat

.thisTrial - a dictionary giving the parameters of the current trial

.finished - True/False for have we finished yet

.extraInfo - the dictionary of extra info as given at beginning

.origin - the contents of the script or builder experiment that created the handler

addData(thisType, value, position=None)
Add data for the current trial

getEarlierTrial(n=-1)
Returns the condition information from n trials previously. Useful for comparisons in n-back tasks. Returns
‘None’ if trying to access a trial prior to the first.

82 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

getExp()
Return the ExperimentHandler that this handler is attached to, if any. Returns None if not attached

getFutureTrial(n=1)
Returns the condition for n trials into the future, without advancing the trials. Returns ‘None’ if attempting
to go beyond the last trial.

getOriginPathAndFile(originPath=None)
Attempts to determine the path of the script that created this data file and returns both the path to that script
and its contents. Useful to store the entire experiment with the data.

If originPath is provided (e.g. from Builder) then this is used otherwise the calling script is the originPath
(fine from a standard python script).

next()
Advances to next trial and returns it. Updates attributes; thisTrial, thisTrialN and thisIndex If the trials
have ended this method will raise a StopIteration error. This can be handled with code such as:

trials = data.TrialHandler(.......)
for eachTrial in trials:#automatically stops when done

#do stuff

or:

trials = data.TrialHandler(.......)
while True: #ie forever

try:
thisTrial = trials.next()

except StopIteration:#we got a StopIteration error
break #break out of the forever loop

#do stuff here for the trial

nextTrial()
DEPRECATION WARNING: nextTrial() will be deprecated please use next() instead. jwp: 19/6/06

printAsText(stimOut=[], dataOut=(‘all_mean’, ‘all_std’, ‘all_raw’), delim=’t’, ma-
trixOnly=False)

Exactly like saveAsText() except that the output goes to the screen instead of a file

saveAsExcel(fileName, sheetName=’rawData’, stimOut=[], dataOut=(‘n’, ‘all_mean’, ‘all_std’,
‘all_raw’), matrixOnly=False, appendFile=True)

Save a summary data file in Excel OpenXML format workbook (xlsx) for processing in most spreadsheet
packages. This format is compatible with versions of Excel (2007 or greater) and and with OpenOffice
(>=3.0).

It has the advantage over the simpler text files (see TrialHandler.saveAsText()) that data can be
stored in multiple named sheets within the file. So you could have a single file named after your experiment
and then have one worksheet for each participant. Or you could have one file for each participant and then
multiple sheets for repeated sessions etc.

The file extension .xlsx will be added if not given already.

Parameters

fileName: string the name of the file to create or append. Can include relative or absolute
path

sheetName: string the name of the worksheet within the file

stimOut: list of strings the attributes of the trial characteristics to be output. To use this
you need to have provided a list of dictionaries specifying to trialList parameter of the
TrialHandler and give here the names of strings specifying entries in that dictionary

8.3. psychopy.data - functions for storing/saving/analysing data 83

PsychoPy - Psychology software for Python, Release 1.81.03

dataOut: list of strings specifying the dataType and the analysis to be performed, in the
form dataType_analysis. The data can be any of the types that you added using trialHan-
dler.data.add() and the analysis can be either ‘raw’ or most things in the numpy library,
including ‘mean’,’std’,’median’,’max’,’min’. e.g. rt_max will give a column of max reac-
tion times across the trials assuming that rt values have been stored. The default values
will output the raw, mean and std of all datatypes found

appendFile: True or False If False any existing file with this name will be overwritten. If
True then a new worksheet will be appended. If a worksheet already exists with that name
a number will be added to make it unique.

saveAsPickle(fileName, fileCollisionMethod=’rename’)
Basically just saves a copy of the handler (with data) to a pickle file.

This can be reloaded if necessary and further analyses carried out.

Parameters fileCollisionMethod: Collision method passed to handleFileCollision()

saveAsText(fileName, stimOut=[], dataOut=(‘n’, ‘all_mean’, ‘all_std’, ‘all_raw’), delim=None, ma-
trixOnly=False, appendFile=True, summarised=True)

Write a text file with the data and various chosen stimulus attributes

Parameters

fileName: will have .dlm appended (so you can double-click it to open in excel) and
can include path info.

stimOut: the stimulus attributes to be output. To use this you need to use a list of
dictionaries and give here the names of dictionary keys that you want as strings

dataOut: a list of strings specifying the dataType and the analysis to be performed,in
the form dataType_analysis. The data can be any of the types that you added using
trialHandler.data.add() and the analysis can be either ‘raw’ or most things in the
numpy library, including; ‘mean’,’std’,’median’,’max’,’min’... The default values
will output the raw, mean and std of all datatypes found

delim: allows the user to use a delimiter other than tab (”,” is popular with file exten-
sion ”.csv”)

matrixOnly: outputs the data with no header row or extraInfo attached

appendFile: will add this output to the end of the specified file if it already exists

saveAsWideText(fileName, delim=’t’, matrixOnly=False, appendFile=True)
Write a text file with the session, stimulus, and data values from each trial in chronological order.

That is, unlike ‘saveAsText’ and ‘saveAsExcel’:

• each row comprises information from only a single trial.

• no summarising is done (such as collapsing to produce mean and standard deviation values across
trials).

This ‘wide’ format, as expected by R for creating dataframes, and various other analysis programs, means
that some information must be repeated on every row.

In particular, if the trialHandler’s ‘extraInfo’ exists, then each entry in there occurs in every row. In builder,
this will include any entries in the ‘Experiment info’ field of the ‘Experiment settings’ dialog. In Coder,
this information can be set using something like:

myTrialHandler.extraInfo = {’SubjID’:’Joan Smith’, ’DOB’:1970 Nov 16, ’Group’:’Control’}

Parameters

84 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

fileName: if extension is not specified, ‘.csv’ will be appended if the delimiter is ‘,’, else
‘.txt’ will be appended. Can include path info.

delim: allows the user to use a delimiter other than the default tab (”,” is popular with file
extension ”.csv”)

matrixOnly: outputs the data with no header row.

appendFile: will add this output to the end of the specified file if it already exists.

setExp(exp)
Sets the ExperimentHandler that this handler is attached to

Do NOT attempt to set the experiment using:

trials._exp = myExperiment

because it needs to be performed using the weakref module.

8.3.3 StairHandler

class psychopy.data.StairHandler(startVal, nReversals=None, stepSizes=4, nTrials=0, nUp=1,
nDown=3, extraInfo=None, method=‘2AFC’, stepType=’db’,
minVal=None, maxVal=None, originPath=None, name=’‘, au-
toLog=True)

Class to handle smoothly the selection of the next trial and report current values etc. Calls to nextTrial() will
fetch the next object given to this handler, according to the method specified.

See Demos >> ExperimentalControl >> JND_staircase_exp.py

The staircase will terminate when nTrials AND nReversals have been exceeded. If stepSizes was an array and
has been exceeded before nTrials is exceeded then the staircase will continue to reverse.

nUp and nDown are always considered as 1 until the first reversal is reached. The values entered as arguments
are then used.

Parameters

startVal: The initial value for the staircase.

nReversals: The minimum number of reversals permitted. If stepSizes is a list then there must
also be enough reversals to satisfy this list.

stepSizes: The size of steps as a single value or a list (or array). For a single value the step size
is fixed. For an array or list the step size will progress to the next entry at each reversal.

nTrials: The minimum number of trials to be conducted. If the staircase has not reached the
required number of reversals then it will continue.

nUp: The number of ‘incorrect’ (or 0) responses before the staircase level increases.

nDown: The number of ‘correct’ (or 1) responses before the staircase level decreases.

extraInfo: A dictionary (typically) that will be stored along with collected data using
saveAsPickle() or saveAsText() methods.

stepType: specifies whether each step will be a jump of the given size in ‘db’, ‘log’ or ‘lin’
units (‘lin’ means this intensity will be added/subtracted)

method: Not used and may be deprecated in future releases.

8.3. psychopy.data - functions for storing/saving/analysing data 85

PsychoPy - Psychology software for Python, Release 1.81.03

stepType: ‘db’, ‘lin’, ‘log’ The type of steps that should be taken each time. ‘lin’ will simply
add or subtract that amount each step, ‘db’ and ‘log’ will step by a certain number of decibels
or log units (note that this will prevent your value ever reaching zero or less)

minVal: None, or a number The smallest legal value for the staircase, which can be used to
prevent it reaching impossible contrast values, for instance.

maxVal: None, or a number The largest legal value for the staircase, which can be used to
prevent it reaching impossible contrast values, for instance.

addData(result, intensity=None)
Deprecated since 1.79.00: This function name was ambiguous. Please use one of these instead:

.addResponse(result, intensity) .addOtherData(‘dataName’, value’)

addOtherData(dataName, value)
Add additional data to the handler, to be tracked alongside the result data but not affecting the value of the
staircase

addResponse(result, intensity=None)
Add a 1 or 0 to signify a correct/detected or incorrect/missed trial

This is essential to advance the staircase to a new intensity level!

Supplying an intensity value here indicates that you did not use the recommended intensity in your last
trial and the staircase will replace its recorded value with the one you supplied here.

calculateNextIntensity()
based on current intensity, counter of correct responses and current direction

getExp()
Return the ExperimentHandler that this handler is attached to, if any. Returns None if not attached

getOriginPathAndFile(originPath=None)
Attempts to determine the path of the script that created this data file and returns both the path to that script
and its contents. Useful to store the entire experiment with the data.

If originPath is provided (e.g. from Builder) then this is used otherwise the calling script is the originPath
(fine from a standard python script).

next()
Advances to next trial and returns it. Updates attributes; thisTrial, thisTrialN and thisIndex.

If the trials have ended, calling this method will raise a StopIteration error. This can be handled with code
such as:

staircase = data.StairHandler(.......)
for eachTrial in staircase:#automatically stops when done

#do stuff

or:

staircase = data.StairHandler(.......)
while True: #ie forever

try:
thisTrial = staircase.next()

except StopIteration:#we got a StopIteration error
break #break out of the forever loop

#do stuff here for the trial

nextTrial()
DEPRECATION WARNING: nextTrial() will be deprecated please use next() instead. jwp: 19/6/06

86 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

printAsText(stimOut=[], dataOut=(‘all_mean’, ‘all_std’, ‘all_raw’), delim=’t’, ma-
trixOnly=False)

Exactly like saveAsText() except that the output goes to the screen instead of a file

saveAsExcel(fileName, sheetName=’data’, matrixOnly=False, appendFile=True)
Save a summary data file in Excel OpenXML format workbook (xlsx) for processing in most spreadsheet
packages. This format is compatible with versions of Excel (2007 or greater) and and with OpenOffice
(>=3.0).

It has the advantage over the simpler text files (see TrialHandler.saveAsText()) that data can be
stored in multiple named sheets within the file. So you could have a single file named after your experiment
and then have one worksheet for each participant. Or you could have one file for each participant and then
multiple sheets for repeated sessions etc.

The file extension .xlsx will be added if not given already.

The file will contain a set of values specifying the staircase level (‘intensity’) at each reversal, a list of
reversal indices (trial numbers), the raw staircase/intensity level on every trial and the corresponding re-
sponses of the participant on every trial.

Parameters

fileName: string the name of the file to create or append. Can include relative or absolute
path

sheetName: string the name of the worksheet within the file

matrixOnly: True or False If set to True then only the data itself will be output (no addi-
tional info)

appendFile: True or False If False any existing file with this name will be overwritten. If
True then a new worksheet will be appended. If a worksheet already exists with that name
a number will be added to make it unique.

saveAsPickle(fileName)
Basically just saves a copy of self (with data) to a pickle file.

This can be reloaded if necess and further analyses carried out.

saveAsText(fileName, delim=’t’, matrixOnly=False)
Write a text file with the data

Parameters

fileName: a string The name of the file, including path if needed. The extension .dlm will
be added if not included.

delim: a string the delimitter to be used (e.g. ‘ ‘ for tab-delimitted, ‘,’ for csv files)

matrixOnly: True/False If True, prevents the output of the extraInfo provided at initialisa-
tion.

setExp(exp)
Sets the ExperimentHandler that this handler is attached to

Do NOT attempt to set the experiment using:

trials._exp = myExperiment

because it needs to be performed using the weakref module.

8.3. psychopy.data - functions for storing/saving/analysing data 87

PsychoPy - Psychology software for Python, Release 1.81.03

8.3.4 MultiStairHandler

class psychopy.data.MultiStairHandler(stairType=’simple’, method=’random’, condi-
tions=None, nTrials=50, originPath=None, name=’‘,
autoLog=True)

A Handler to allow easy interleaved staircase procedures (simple or QUEST).

Parameters for the staircases, as used by the relevant StairHandler or QuestHandler (e.g. the startVal,
minVal, maxVal...) should be specified in the conditions list and may vary between each staircase. In particular,
the conditions /must/ include the a startVal (because this is a required argument to the above handlers) a label to
tag the staircase and a startValSd (only for QUEST staircases). Any parameters not specified in the conditions
file will revert to the default for that individual handler.

If you need to custom the behaviour further you may want to look at the recipe on interleavedStairs.

Params

stairType: ‘simple’ or ‘quest’ Use a StairHandler or QuestHandler

method: ‘random’ or ‘sequential’ The stairs are shuffled in each repeat but not randomised
more than that (so you can’t have 3 repeats of the same staircase in a row unless it’s the only
one still running)

conditions: a list of dictionaries specifying conditions Can be used to control parameters
for the different staicases. Can be imported from an Excel file using psy-
chopy.data.importConditions MUST include keys providing, ‘startVal’, ‘label’ and ‘start-
ValSd’ (QUEST only). The ‘label’ will be used in data file saving so should be unique. See
Example Usage below.

nTrials=50 Minimum trials to run (but may take more if the staircase hasn’t also met its minimal
reversals. See StairHandler

Example usage:

conditions=[
{’label’:’low’, ’startVal’: 0.1, ’ori’:45},
{’label’:’high’,’startVal’: 0.8, ’ori’:45},
{’label’:’low’, ’startVal’: 0.1, ’ori’:90},
{’label’:’high’,’startVal’: 0.8, ’ori’:90},
]

stairs = data.MultiStairHandler(conditions=conditions, nTrials=50)

for thisIntensity, thisCondition in stairs:
thisOri = thisCondition[’ori’]

#do something with thisIntensity and thisOri

stairs.addResponse(correctIncorrect)#this is ESSENTIAL

#save data as multiple formats
stairs.saveDataAsExcel(fileName)#easy to browse
stairs.saveAsPickle(fileName)#contains more info

addData(result, intensity=None)
Deprecated 1.79.00: It was ambiguous whether you were adding the response (0 or 1) or some other data
concerning the trial so there is now a pair of explicit methods:

addResponse(corr,intensity) #some data that alters the next trial value addOtherData(‘RT’, reac-
tionTime) #some other data that won’t control staircase

88 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

addOtherData(name, value)
Add some data about the current trial that will not be used to control the staircase(s) such as reaction time
data

addResponse(result, intensity=None)
Add a 1 or 0 to signify a correct/detected or incorrect/missed trial

This is essential to advance the staircase to a new intensity level!

getExp()
Return the ExperimentHandler that this handler is attached to, if any. Returns None if not attached

getOriginPathAndFile(originPath=None)
Attempts to determine the path of the script that created this data file and returns both the path to that script
and its contents. Useful to store the entire experiment with the data.

If originPath is provided (e.g. from Builder) then this is used otherwise the calling script is the originPath
(fine from a standard python script).

next()
Advances to next trial and returns it.

This can be handled with code such as:

staircase = data.MultiStairHandler(.......)
for eachTrial in staircase:#automatically stops when done

#do stuff here for the trial

or:

staircase = data.MultiStairHandler(.......)
while True: #ie forever

try:
thisTrial = staircase.next()

except StopIteration:#we got a StopIteration error
break #break out of the forever loop

#do stuff here for the trial

nextTrial()
DEPRECATION WARNING: nextTrial() will be deprecated please use next() instead. jwp: 19/6/06

printAsText(delim=’t’, matrixOnly=False)
Write the data to the standard output stream

Parameters

delim: a string the delimitter to be used (e.g. ‘ ‘ for tab-delimitted, ‘,’ for csv files)

matrixOnly: True/False If True, prevents the output of the extraInfo provided at initialisa-
tion.

saveAsExcel(fileName, matrixOnly=False, appendFile=False)
Save a summary data file in Excel OpenXML format workbook (xlsx) for processing in most spreadsheet
packages. This format is compatible with versions of Excel (2007 or greater) and and with OpenOffice
(>=3.0).

It has the advantage over the simpler text files (see TrialHandler.saveAsText()) that the data
from each staircase will be save in the same file, with the sheet name coming from the ‘label’ given in the
dictionary of conditions during initialisation of the Handler.

The file extension .xlsx will be added if not given already.

8.3. psychopy.data - functions for storing/saving/analysing data 89

PsychoPy - Psychology software for Python, Release 1.81.03

The file will contain a set of values specifying the staircase level (‘intensity’) at each reversal, a list of
reversal indices (trial numbers), the raw staircase/intensity level on every trial and the corresponding re-
sponses of the participant on every trial.

Parameters

fileName: string the name of the file to create or append. Can include relative or absolute
path

matrixOnly: True or False If set to True then only the data itself will be output (no addi-
tional info)

appendFile: True or False If False any existing file with this name will be overwritten. If
True then a new worksheet will be appended. If a worksheet already exists with that name
a number will be added to make it unique.

saveAsPickle(fileName)
Saves a copy of self (with data) to a pickle file.

This can be reloaded later and further analyses carried out.

saveAsText(fileName, delim=’t’, matrixOnly=False)
Write out text files with the data.

For MultiStairHandler this will output one file for each staircase that was run, with _label added to the
fileName that you specify above (label comes from the condition dictionary you specified when you created
the Handler).

Parameters

fileName: a string The name of the file, including path if needed. The extension .dlm will
be added if not included.

delim: a string the delimitter to be used (e.g. ‘ ‘ for tab-delimitted, ‘,’ for csv files)

matrixOnly: True/False If True, prevents the output of the extraInfo provided at initialisa-
tion.

setExp(exp)
Sets the ExperimentHandler that this handler is attached to

Do NOT attempt to set the experiment using:

trials._exp = myExperiment

because it needs to be performed using the weakref module.

8.3.5 QuestHandler

class psychopy.data.QuestHandler(startVal, startValSd, pThreshold=0.82, nTrials=None, stopIn-
terval=None, method=’quantile’, stepType=’log’, beta=3.5,
delta=0.01, gamma=0.5, grain=0.01, range=None, ex-
traInfo=None, minVal=None, maxVal=None, staircase=None,
originPath=None, name=’‘, autoLog=True)

Class that implements the Quest algorithm for quick measurement of psychophysical thresholds.

Uses Andrew Straw’s QUEST, which is a Python port of Denis Pelli’s Matlab code.

Measures threshold using a Weibull psychometric function. Currently, it is not possible to use a different psy-
chometric function.

Threshold ‘t’ is measured on an abstract ‘intensity’ scale, which usually corresponds to log10 contrast.

90 Chapter 8. Reference Manual (API)

http://www.visionegg.org/Quest

PsychoPy - Psychology software for Python, Release 1.81.03

The Weibull psychometric function:

p2=delta*gamma+(1-delta)*(1-(1-gamma)*exp(-10**(beta*(x2+xThreshold))))

Example:

setup display/window
...
create stimulus
stimulus = visual.RadialStim(win=win, tex=’sinXsin’, size=1, pos=[0,0], units=’deg’)
...
create staircase object
trying to find out the point where subject’s response is 50/50
if wanted to do a 2AFC then the defaults for pThreshold and gamma are good
staircase = data.QuestHandler(staircase._nextIntensity, 0.2, pThreshold=0.63, gamma=0.01,

nTrials=20, minVal=0, maxVal=1)
...
while thisContrast in staircase:

setup stimulus
stimulus.setContrast(thisContrast)
stimulus.draw()
win.flip()
core.wait(0.5)
get response
...
inform QUEST of the response, needed to calculate next level
staircase.addResponse(thisResp)

...
can now access 1 of 3 suggested threshold levels
staircase.mean()
staircase.mode()
staircase.quantile() #gets the median

Typical values for pThreshold are:

• 0.82 which is equivalent to a 3 up 1 down standard staircase

• 0.63 which is equivalent to a 1 up 1 down standard staircase (and might want gamma=0.01)

The variable(s) nTrials and/or stopSd must be specified.

beta, delta, and gamma are the parameters of the Weibull psychometric function.

Parameters

startVal: Prior threshold estimate or your initial guess threshold.

startValSd: Standard deviation of your starting guess threshold. Be generous with the sd as
QUEST will have trouble finding the true threshold if it’s more than one sd from your initial
guess.

pThreshold Your threshold criterion expressed as probability of response==1. An intensity
offset is introduced into the psychometric function so that the threshold (i.e., the midpoint
of the table) yields pThreshold.

nTrials: None or a number The maximum number of trials to be conducted.

stopInterval: None or a number The minimum 5-95% confidence interval required in the
threshold estimate before stopping. If both this and nTrials is specified, whichever happens
first will determine when Quest will stop.

8.3. psychopy.data - functions for storing/saving/analysing data 91

PsychoPy - Psychology software for Python, Release 1.81.03

method: ‘quantile’, ‘mean’, ‘mode’ The method used to determine the next threshold to test.
If you want to get a specific threshold level at the end of your staircasing, please use the
quantile, mean, and mode methods directly.

stepType: ‘log’, ‘db’, ‘lin’ The type of steps that should be taken each time. ‘db’ and ‘log’ will
transform your intensity levels into decibels or log units and will move along the psycho-
metric function with these values.

beta: 3.5 or a number Controls the steepness of the psychometric function.

delta: 0.01 or a number The fraction of trials on which the observer presses blindly.

gamma: 0.5 or a number The fraction of trials that will generate response 1 when intensity=-
Inf.

grain: 0.01 or a number The quantization of the internal table.

range: None, or a number The intensity difference between the largest and smallest intensity
that the internal table can store. This interval will be centered on the initial guess tGuess.
QUEST assumes that intensities outside of this range have zero prior probability (i.e., they
are impossible).

extraInfo: A dictionary (typically) that will be stored along with collected data using
saveAsPickle() or saveAsText() methods.

minVal: None, or a number The smallest legal value for the staircase, which can be used to
prevent it reaching impossible contrast values, for instance.

maxVal: None, or a number The largest legal value for the staircase, which can be used to
prevent it reaching impossible contrast values, for instance.

staircase: None or StairHandler Can supply a staircase object with intensities and results.
Might be useful to give the quest algorithm more information if you have it. You can also
call the importData function directly.

addData(result, intensity=None)
Deprecated since 1.79.00: This function name was ambiguous. Please use one of these instead:

.addResponse(result, intensity) .addOtherData(‘dataName’, value’)

addOtherData(dataName, value)
Add additional data to the handler, to be tracked alongside the result data but not affecting the value of the
staircase

addResponse(result, intensity=None)
Add a 1 or 0 to signify a correct/detected or incorrect/missed trial

Supplying an intensity value here indicates that you did not use the recommended intensity in your last
trial and the staircase will replace its recorded value with the one you supplied here.

calculateNextIntensity()
based on current intensity and counter of correct responses

confInterval(getDifference=False)
give the range of the 5-95% confidence interval

getExp()
Return the ExperimentHandler that this handler is attached to, if any. Returns None if not attached

getOriginPathAndFile(originPath=None)
Attempts to determine the path of the script that created this data file and returns both the path to that script
and its contents. Useful to store the entire experiment with the data.

92 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

If originPath is provided (e.g. from Builder) then this is used otherwise the calling script is the originPath
(fine from a standard python script).

importData(intensities, results)
import some data which wasn’t previously given to the quest algorithm

incTrials(nNewTrials)
increase maximum number of trials Updates attribute: nTrials

mean()
mean of Quest posterior pdf

mode()
mode of Quest posterior pdf

next()
Advances to next trial and returns it. Updates attributes; thisTrial, thisTrialN, thisIndex, finished, intensities

If the trials have ended, calling this method will raise a StopIteration error. This can be handled with code
such as:

staircase = data.QuestHandler(.......)
for eachTrial in staircase:#automatically stops when done

#do stuff

or:

staircase = data.QuestHandler(.......)
while True: #ie forever

try:
thisTrial = staircase.next()

except StopIteration:#we got a StopIteration error
break #break out of the forever loop

#do stuff here for the trial

nextTrial()
DEPRECATION WARNING: nextTrial() will be deprecated please use next() instead. jwp: 19/6/06

printAsText(stimOut=[], dataOut=(‘all_mean’, ‘all_std’, ‘all_raw’), delim=’t’, ma-
trixOnly=False)

Exactly like saveAsText() except that the output goes to the screen instead of a file

quantile(p=None)
quantile of Quest posterior pdf

saveAsExcel(fileName, sheetName=’data’, matrixOnly=False, appendFile=True)
Save a summary data file in Excel OpenXML format workbook (xlsx) for processing in most spreadsheet
packages. This format is compatible with versions of Excel (2007 or greater) and and with OpenOffice
(>=3.0).

It has the advantage over the simpler text files (see TrialHandler.saveAsText()) that data can be
stored in multiple named sheets within the file. So you could have a single file named after your experiment
and then have one worksheet for each participant. Or you could have one file for each participant and then
multiple sheets for repeated sessions etc.

The file extension .xlsx will be added if not given already.

The file will contain a set of values specifying the staircase level (‘intensity’) at each reversal, a list of
reversal indices (trial numbers), the raw staircase/intensity level on every trial and the corresponding re-
sponses of the participant on every trial.

Parameters

8.3. psychopy.data - functions for storing/saving/analysing data 93

PsychoPy - Psychology software for Python, Release 1.81.03

fileName: string the name of the file to create or append. Can include relative or absolute
path

sheetName: string the name of the worksheet within the file

matrixOnly: True or False If set to True then only the data itself will be output (no addi-
tional info)

appendFile: True or False If False any existing file with this name will be overwritten. If
True then a new worksheet will be appended. If a worksheet already exists with that name
a number will be added to make it unique.

saveAsPickle(fileName)
Basically just saves a copy of self (with data) to a pickle file.

This can be reloaded if necess and further analyses carried out.

saveAsText(fileName, delim=’t’, matrixOnly=False)
Write a text file with the data

Parameters

fileName: a string The name of the file, including path if needed. The extension .dlm will
be added if not included.

delim: a string the delimitter to be used (e.g. ‘ ‘ for tab-delimitted, ‘,’ for csv files)

matrixOnly: True/False If True, prevents the output of the extraInfo provided at initialisa-
tion.

sd()
standard deviation of Quest posterior pdf

setExp(exp)
Sets the ExperimentHandler that this handler is attached to

Do NOT attempt to set the experiment using:

trials._exp = myExperiment

because it needs to be performed using the weakref module.

simulate(tActual)
returns a simulated user response to the next intensity level presented by Quest, need to supply the actual
threshold level

8.3.6 FitWeibull

class psychopy.data.FitWeibull(xx, yy, sems=1.0, guess=None, display=1, expectedMin=0.5)
Fit a Weibull function (either 2AFC or YN) of the form:

y = chance + (1.0-chance)*(1-exp(-(xx/alpha)**(beta)))

and with inverse:

x = alpha * (-log((1.0-y)/(1-chance)))**(1.0/beta)

After fitting the function you can evaluate an array of x-values with fit.eval(x), retrieve the inverse of
the function with fit.inverse(y) or retrieve the parameters from fit.params (a list with [alpha,
beta])

94 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

eval(xx, params=None)
Evaluate xx for the current parameters of the model, or for arbitrary params if these are given.

inverse(yy, params=None)
Evaluate yy for the current parameters of the model, or for arbitrary params if these are given.

8.3.7 FitLogistic

class psychopy.data.FitLogistic(xx, yy, sems=1.0, guess=None, display=1, expectedMin=0.5)
Fit a Logistic function (either 2AFC or YN) of the form:

y = chance + (1-chance)/(1+exp((PSE-xx)*JND))

and with inverse:

x = PSE - log((1-chance)/(yy-chance) - 1)/JND

After fitting the function you can evaluate an array of x-values with fit.eval(x), retrieve the inverse of the
function with fit.inverse(y) or retrieve the parameters from fit.params (a list with [PSE, JND])

eval(xx, params=None)
Evaluate xx for the current parameters of the model, or for arbitrary params if these are given.

inverse(yy, params=None)
Evaluate yy for the current parameters of the model, or for arbitrary params if these are given.

8.3.8 FitNakaRushton

class psychopy.data.FitNakaRushton(xx, yy, sems=1.0, guess=None, display=1, expectedMin=0.5)
Fit a Naka-Rushton function of the form:

yy = rMin + (rMax-rMin) * xx**n/(xx**n+c50**n)

After fitting the function you can evaluate an array of x-values with fit.eval(x), retrieve the inverse of the
function with fit.inverse(y) or retrieve the parameters from fit.params (a list with [rMin, rMax,
c50, n])

Note that this differs from most of the other functions in not using a value for the expected minimum. Rather, it
fits this as one of the parameters of the model.

eval(xx, params=None)
Evaluate xx for the current parameters of the model, or for arbitrary params if these are given.

inverse(yy, params=None)
Evaluate yy for the current parameters of the model, or for arbitrary params if these are given.

8.3.9 FitCumNormal

class psychopy.data.FitCumNormal(xx, yy, sems=1.0, guess=None, display=1, expectedMin=0.5)
Fit a Cumulative Normal function (aka error function or erf) of the form:

y = chance + (1-chance)*((special.erf((xx-xShift)/(sqrt(2)*sd))+1)*0.5)

and with inverse:

x = xShift+sqrt(2)*sd*(erfinv(((yy-chance)/(1-chance)-.5)*2))

8.3. psychopy.data - functions for storing/saving/analysing data 95

PsychoPy - Psychology software for Python, Release 1.81.03

After fitting the function you can evaluate an array of x-values with fit.eval(x), retrieve the inverse of the function
with fit.inverse(y) or retrieve the parameters from fit.params (a list with [centre, sd] for the Gaussian distribution
forming the cumulative)

NB: Prior to version 1.74 the parameters had different meaning, relating to xShift and slope of the function
(similar to 1/sd). Although that is more in with the parameters for the Weibull fit, for instance, it is less in
keeping with standard expectations of normal (Gaussian distributions) so in version 1.74.00 the parameters
became the [centre,sd] of the normal distribution.

eval(xx, params=None)
Evaluate xx for the current parameters of the model, or for arbitrary params if these are given.

inverse(yy, params=None)
Evaluate yy for the current parameters of the model, or for arbitrary params if these are given.

8.3.10 importConditions()

psychopy.data.importConditions(fileName, returnFieldNames=False, selection=’‘)
Imports a list of conditions from an .xlsx, .csv, or .pkl file

The output is suitable as an input to TrialHandler trialTypes or to MultiStairHandler as a conditions
list.

If fileName ends with:

• .csv: import as a comma-separated-value file (header + row x col)

• .xlsx: import as Excel 2007 (xlsx) files. Sorry no support for older (.xls) is planned.

• .pkl: import from a pickle file as list of lists (header + row x col)

The file should contain one row per type of trial needed and one column for each parameter that defines the trial
type. The first row should give parameter names, which should:

•be unique

•begin with a letter (upper or lower case)

•contain no spaces or other punctuation (underscores are permitted)

selection is used to select a subset of condition indices to be used It can be a list/array of indices, a python slice
object or a string to be parsed as either option. e.g.:

“1,2,4” or [1,2,4] or (1,2,4) are the same “2:5” # 2,3,4 (doesn’t include last whole value) “-10:2:”
#tenth from last to the last in steps of 2 slice(-10,2,None) #the same as above random(5)*8 #5 random
vals 0-8

8.3.11 functionFromStaircase()

psychopy.data.functionFromStaircase(intensities, responses, bins=10)
Create a psychometric function by binning data from a staircase procedure. Although the default is 10 bins Jon
now always uses ‘unique’ bins (fewer bins looks pretty but leads to errors in slope estimation)

usage:

intensity, meanCorrect, n = functionFromStaircase(intensities, responses, bins)

where:

intensities are a list (or array) of intensities to be binned

96 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

responses are a list of 0,1 each corresponding to the equivalent intensity value

bins can be an integer (giving that number of bins) or ‘unique’ (each bin is made from aa data for exactly
one intensity value)

intensity a numpy array of intensity values (where each is the center of an intensity bin)

meanCorrect a numpy array of mean % correct in each bin

n a numpy array of number of responses contributing to each mean

8.3.12 bootStraps()

psychopy.data.bootStraps(dat, n=1)
Create a list of n bootstrapped resamples of the data

SLOW IMPLEMENTATION (Python for-loop)

Usage: out = bootStraps(dat, n=1)

Where:

dat an NxM or 1xN array (each row is a different condition, each column is a different trial)

n number of bootstrapped resamples to create

out

• dim[0]=conditions

• dim[1]=trials

• dim[2]=resamples

8.4 Encryption

Some labs may wish to better protect their data from casual inspection or accidental disclosure. This is pos-
sible within PsychoPy using a separate python package, pyFileSec, which grew out of PsychoPy. pyFileSec
is distributed with the StandAlone versions of PsychoPy, or can be installed using pip or easy_install via
https://pypi.python.org/pypi/PyFileSec/

Some elaboration of pyFileSec usage and security strategy can be found here: http://pythonhosted.org//PyFileSec

Basic usage is illustrated in the Coder demo > misc > encrypt_data.py

8.5 psychopy.event - for keypresses and mouse clicks

class psychopy.event.Mouse(visible=True, newPos=None, win=None)
Easy way to track what your mouse is doing.

It needn’t be a class, but since Joystick works better as a class this may as well be one too for consistency

Create your visual.Window before creating a Mouse.

Parameters

visible [True or False] makes the mouse invisible if necessary

newPos [None or [x,y]] gives the mouse a particular starting position (pygame Window only)

8.4. Encryption 97

https://pypi.python.org/pypi/PyFileSec/
http://pythonhosted.org//PyFileSec

PsychoPy - Psychology software for Python, Release 1.81.03

win [None or Window] the window to which this mouse is attached (the first found if None
provided)

clickReset(buttons=[0, 1, 2])
Reset a 3-item list of core.Clocks use in timing button clicks. The pyglet mouse-button-pressed handler
uses their clock.getLastResetTime() when a button is pressed so the user can reset them at stimulus onset
or offset to measure RT. The default is to reset all, but they can be reset individually as specified in buttons
list

getPos()
Returns the current position of the mouse, in the same units as the Window (0,0) is at centre

getPressed(getTime=False)
Returns a 3-item list indicating whether or not buttons 0,1,2 are currently pressed

If getTime=True (False by default) then getPressed will return all buttons that have been pressed since the
last call to mouse.clickReset as well as their time stamps:

buttons = mouse.getPressed()
buttons, times = mouse.getPressed(getTime=True)

Typically you want to call mouse.clickReset() at stimulus onset, then after the button is pressed in reaction
to it, the total time elapsed from the last reset to click is in mouseTimes. This is the actual RT, regardless
of when the call to getPressed() was made.

getRel()
Returns the new position of the mouse relative to the last call to getRel or getPos, in the same units as the
Window.

getVisible()
Gets the visibility of the mouse (1 or 0)

getWheelRel()
Returns the travel of the mouse scroll wheel since last call. Returns a numpy.array(x,y) but for most wheels
y is the only value that will change (except mac mighty mice?)

isPressedIn(shape, buttons=[0, 1, 2])
Returns True if the mouse is currently inside the shape and one of the mouse buttons is pressed. The default
is that any of the 3 buttons can indicate a click; for only a left-click, specifiy buttons=[0]:

if mouse.isPressedIn(shape):
if mouse.isPressedIn(shape, buttons=[0]): # left-clicks only

Ideally, shape can be anything that has a .contains() method, like ShapeStim or Polygon. Not tested with
ImageStim.

mouseMoveTime()

mouseMoved(distance=None, reset=False)
Determine whether/how far the mouse has moved.

With no args returns true if mouse has moved at all since last getPos() call, or distance (x,y) can be set to
pos or neg distances from x and y to see if moved either x or y that far from lastPos , or distance can be an
int/float to test if new coordinates are more than that far in a straight line from old coords.

Retrieve time of last movement from self.mouseClock.getTime().

Reset can be to ‘here’ or to screen coords (x,y) which allows measuring distance from there to mouse
when moved. if reset is (x,y) and distance is set, then prevPos is set to (x,y) and distance from (x,y) to here
is checked, mouse.lastPos is set as current (x,y) by getPos(), mouse.prevPos holds lastPos from last time
mouseMoved was called

98 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

setPos(newPos=(0, 0))
Sets the current position of the mouse (pygame only), in the same units as the Window (0,0) is at centre

Parameters

newPos [(x,y) or [x,y]] the new position on the screen

setVisible(visible)
Sets the visibility of the mouse to 1 or 0

NB when the mouse is not visible its absolute position is held at (0,0) to prevent it from going off the
screen and getting lost! You can still use getRel() in that case.

units None
The units for this mouse (will match the current units for the Window it lives in)

psychopy.event.clearEvents(eventType=None)
Clears all events currently in the event buffer.

Optional argument, eventType, specifies only certain types to be cleared.

Parameters

eventType [None, ‘mouse’, ‘joystick’, ‘keyboard’] If this is not None then only events of the
given type are cleared

psychopy.event.waitKeys(maxWait=inf, keyList=None, timeStamped=False)
Same as ~psychopy.event.getKeys, but halts everything (including drawing) while awaiting input from keyboard.
Implicitly clears keyboard, so any preceding keypresses will be lost.

Parameters

maxWait [any numeric value.] Maximum number of seconds period and which keys to wait
for. Default is float(‘inf’) which simply waits forever.

Returns None if times out.

psychopy.event.getKeys(keyList=None, timeStamped=False)
Returns a list of keys that were pressed.

Parameters

keyList [None or []] Allows the user to specify a set of keys to check for. Only keypresses from
this set of keys will be removed from the keyboard buffer. If the keyList is None all keys
will be checked and the key buffer will be cleared completely. NB, pygame doesn’t return
timestamps (they are always 0)

timeStamped [False or True or Clock] If True will return a list of tuples instead of a list of
keynames. Each tuple has (keyname, time). If a core.Clock is given then the time will be
relative to the Clock‘s last reset

Author

• 2003 written by Jon Peirce

• 2009 keyList functionality added by Gary Strangman

• 2009 timeStamped code provided by Dave Britton

psychopy.event.xydist(p1=[0.0, 0.0], p2=[0.0, 0.0])
Helper function returning the cartesian distance between p1 and p2

8.5. psychopy.event - for keypresses and mouse clicks 99

PsychoPy - Psychology software for Python, Release 1.81.03

8.6 psychopy.filters - helper functions for creating filters

Various useful functions for creating filters and textures (e.g. for PatchStim)

psychopy.filters.butter2d_bp(size, cutin, cutoff, n)
Bandpass Butterworth filter in two dimensions

Parameters

size [tuple] size of the filter

cutin [float] relative cutin frequency of the filter (0 - 1.0)

cutoff [float] relative cutoff frequency of the filter (0 - 1.0)

n [int, optional] order of the filter, the higher n is the sharper the transition is.

Returns

numpy.ndarray filter kernel in 2D centered

psychopy.filters.butter2d_hp(size, cutoff, n=3)
Highpass Butterworth filter in two dimensions

Parameters

size [tuple] size of the filter

cutoff [float] relative cutoff frequency of the filter (0 - 1.0)

n [int, optional] order of the filter, the higher n is the sharper the transition is.

Returns

numpy.ndarray: filter kernel in 2D centered

psychopy.filters.butter2d_lp(size, cutoff, n=3)
Create lowpass 2D Butterworth filter

Parameters

size [tuple] size of the filter

cutoff [float] relative cutoff frequency of the filter (0 - 1.0)

n [int, optional] order of the filter, the higher n is the sharper the transition is.

Returns

numpy.ndarray filter kernel in 2D centered

psychopy.filters.butter2d_lp_elliptic(size, cutoff_x, cutoff_y, n=3, alpha=0, offset_x=0, off-
set_y=0)

Butterworth lowpass filter of any elliptical shape.

Parameters

size [tuple] size of the filter

cutoff_x, cutoff_y [float, float] relative cutoff frequency of the filter (0 - 1.0) for x and y axes

alpha [float, optional] rotation angle (in radians)

offset_x, offset_y [float] offsets for the ellipsoid

n [int, optional] order of the filter, the higher n is the sharper the transition is.

Returns

100 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

numpy.ndarray: filter kernel in 2D centered

psychopy.filters.conv2d(smaller, larger)
convolve a pair of 2d numpy matrices Uses fourier transform method, so faster if larger matrix has dimensions
of size 2**n

Actually right now the matrices must be the same size (will sort out padding issues another day!)

psychopy.filters.getRMScontrast(matrix)
Returns the RMS contrast (the sample standard deviation) of a array

psychopy.filters.imfft(X)
Perform 2D FFT on an image and center low frequencies

psychopy.filters.imifft(X)
Inverse 2D FFT with decentering

psychopy.filters.makeGauss(x, mean=0.0, sd=1.0, gain=1.0, base=0.0)

Return the gaussian distribution for a given set of x-vals

Parameters

mean: float the centre of the distribution

sd: float the width of the distribution

gain: float the height of the distribution

base: float an offset added to the result

psychopy.filters.makeGrating(res, ori=0.0, cycles=1.0, phase=0.0, gratType=’sin’, contr=1.0)
Make an array containing a luminance grating of the specified params

Parameters

res: integer the size of the resulting matrix on both dimensions (e.g 256)

ori: float or int (default=0.0) the orientation of the grating in degrees

cycles:float or int (default=1.0) the number of grating cycles within the array

phase: float or int (default=0.0) the phase of the grating in degrees (NB this differs to most
PsychoPy phase arguments which use units of fraction of a cycle)

gratType: ‘sin’, ‘sqr’, ‘ramp’ or ‘sinXsin’ (default=”sin”) the type of grating to be ‘drawn’

contr: float (default=1.0) contrast of the grating

Returns a square numpy array of size resXres

psychopy.filters.makeMask(matrixSize, shape=’circle’, radius=1.0, center=(0.0, 0.0), range=[-1,
1], fringeWidth=0.2)

Returns a matrix to be used as an alpha mask (circle,gauss,ramp)

Parameters

matrixSize: integer the size of the resulting matrix on both dimensions (e.g 256)

shape: ‘circle’,’gauss’,’ramp’ (linear gradient from center),

‘raisedCosine’ (the edges are blurred by a raised cosine)

shape of the mask

radius: float scale factor to be applied to the mask (circle with radius of [1,1] will extend just
to the edge of the matrix). Radius can asymmetric, e.g. [1.0,2.0] will be wider than it is tall.

8.6. psychopy.filters - helper functions for creating filters 101

PsychoPy - Psychology software for Python, Release 1.81.03

center: 2x1 tuple or list (default=[0.0,0.0]) the centre of the mask in the matrix ([1,1] is top-
right corner, [-1,-1] is bottom-left)

fringeWidth: float (0-1) The proportion of the raisedCosine that is being blurred.

range: 2x1 tuple or list (default=[-1,1]) The minimum and maximum value in the mask ma-
trix

psychopy.filters.makeRadialMatrix(matrixSize, center=(0.0, 0.0), radius=1.0)
Generate a square matrix where each element val is its distance from the centre of the matrix

Parameters

matrixSize: integer the size of the resulting matrix on both dimensions (e.g 256)

radius: float scale factor to be applied to the mask (circle with radius of [1,1] will extend just
to the edge of the matrix). Radius can be asymmetric, e.g. [1.0,2.0] will be wider than it is
tall.

center: 2x1 tuple or list (default=[0.0,0.0]) the centre of the mask in the matrix ([1,1] is top-
right corner, [-1,-1] is bottom-left)

psychopy.filters.maskMatrix(matrix, shape=’circle’, radius=1.0, center=(0.0, 0.0))
Make and apply a mask to an input matrix (e.g. a grating)

Parameters

matrix: a square numpy array array to which the mask should be applied

shape: ‘circle’,’gauss’,’ramp’ (linear gradient from center) shape of the mask

radius: float scale factor to be applied to the mask (circle with radius of [1,1] will extend just
to the edge of the matrix). Radius can be asymmetric, e.g. [1.0,2.0] will be wider than it is
tall.

center: 2x1 tuple or list (default=[0.0,0.0]) the centre of the mask in the matrix ([1,1] is top-
right corner, [-1,-1] is bottom-left)

8.7 psychopy.gui - create dialogue boxes

8.7.1 DlgFromDict

class psychopy.gui.DlgFromDict(dictionary, title=’‘, fixed=[], order=[], tip={})
Creates a dialogue box that represents a dictionary of values. Any values changed by the user are change
(in-place) by this dialogue box. e.g.:

info = {’Observer’:’jwp’, ’GratingOri’:45, ’ExpVersion’: 1.1, ’Group’: [’Test’, ’Control’]}
infoDlg = gui.DlgFromDict(dictionary=info, title=’TestExperiment’, fixed=[’ExpVersion’])
if infoDlg.OK:

print info
else: print ’User Cancelled’

In the code above, the contents of info will be updated to the values returned by the dialogue box.

If the user cancels (rather than pressing OK), then the dictionary remains unchanged. If you want to check
whether the user hit OK, then check whether DlgFromDict.OK equals True or False

See GUI.py for a usage demo, including order and tip (tooltip).

102 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

8.7.2 Dlg

class psychopy.gui.Dlg(title=u’PsychoPy dialogue’, pos=None, size=wx.Size(-1, -1), style=536877057,
labelButtonOK=u’ OK ‘, labelButtonCancel=u’ Cancel ‘)

A simple dialogue box. You can add text or input boxes (sequentially) and then retrieve the values.

see also the function dlgFromDict for an even simpler version

Example:

from psychopy import gui

myDlg = gui.Dlg(title="JWP’s experiment")
myDlg.addText(’Subject info’)
myDlg.addField(’Name:’)
myDlg.addField(’Age:’, 21)
myDlg.addText(’Experiment Info’)
myDlg.addField(’Grating Ori:’,45)
myDlg.addField(’Group:’, choices=["Test", "Control"])
myDlg.show() # show dialog and wait for OK or Cancel
if myDlg.OK: # then the user pressed OK

thisInfo = myDlg.data
print thisInfo

else:
print ’user cancelled’

addField(label=’‘, initial=’‘, color=’‘, choices=None, tip=’‘)
Adds a (labelled) input field to the dialogue box, optional text color and tooltip. Returns a handle to the
field (but not to the label). If choices is a list or tuple, it will create a dropdown selector.

addFixedField(label=’‘, value=’‘, tip=’‘)
Adds a field to the dialogue box (like addField) but the field cannot be edited. e.g. Display experiment
version. tool-tips are disabled (by wx).

addText(text, color=’‘)

show()
Presents the dialog and waits for the user to press either OK or CANCEL.

This function returns nothing.

When they do, dlg.OK will be set to True or False (according to which button they pressed. If OK==True
then dlg.data will be populated with a list of values coming from each of the input fields created.

8.7.3 fileOpenDlg

class psychopy.gui.fileOpenDlg
A simple dialogue allowing read access to the file system.

Parameters

tryFilePath: string default file path on which to open the dialog

tryFileName: string default file name, as suggested file

prompt: string (default “Select file to open”) can be set to custom prompts

allowed: string (available since v1.62.01) a string to specify file filters. e.g. “BMP files
(.bmp)|.bmp|GIF files (.gif)|.gif” See http://www.wxpython.org/docs/api/wx.FileDialog-
class.html for further details

8.7. psychopy.gui - create dialogue boxes 103

http://www.wxpython.org/docs/api/wx.FileDialog-class.html
http://www.wxpython.org/docs/api/wx.FileDialog-class.html

PsychoPy - Psychology software for Python, Release 1.81.03

If tryFilePath or tryFileName are empty or invalid then current path and empty names are used to start search.

If user cancels, then None is returned.

8.7.4 fileSaveDlg

class psychopy.gui.fileSaveDlg
A simple dialogue allowing write access to the file system. (Useful in case you collect an hour of data and then
try to save to a non-existent directory!!)

Parameters

initFilePath: string default file path on which to open the dialog

initFileName: string default file name, as suggested file

prompt: string (default “Select file to open”) can be set to custom prompts

allowed: string a string to specify file filters. e.g. “BMP files (.bmp)|.bmp|GIF files (.gif)|.gif”
See http://www.wxpython.org/docs/api/wx.FileDialog-class.html for further details

If initFilePath or initFileName are empty or invalid then current path and empty names are used to start search.

If user cancels the None is returned.

8.8 psychopy.hardware - hardware interfaces

PsychoPy can access a wide range of external hardware. For some devices the interface has already been created in the
following sub-packages of PsychoPy. For others you may need to write the code to access the serial port etc. manually.

Contents:

8.8.1 Cedrus (response boxes)

The pyxid package, written by Cedrus, is included in the Standalone PsychoPy distributions. See
https://github.com/cedrus-opensource/pyxid for further info.

Example usage:

import pyxid

get a list of all attached XID devices
devices = pyxid.get_xid_devices()

dev = devices[0] # get the first device to use
if dev.is_response_device():

dev.reset_base_timer()
dev.reset_rt_timer()

while True:
dev.poll_for_response()
if dev.response_queue_size() > 0:

response = dev.get_next_response()
do something with the response

104 Chapter 8. Reference Manual (API)

http://www.wxpython.org/docs/api/wx.FileDialog-class.html
https://github.com/cedrus-opensource/pyxid

PsychoPy - Psychology software for Python, Release 1.81.03

Useful functions

pyxid.get_xid_device(device_number)
returns device at a given index.

Raises ValueError if the device at the passed in index doesn’t exist.

pyxid.get_xid_devices()
Returns a list of all Xid devices connected to your computer.

Device classes

class pyxid.ResponseDevice(connection, name=’Unknown XID Device’, keymap=None, trig-
ger_prefix=’Button’)

clear_response_queue()
Clears the response queue

get_next_response()
Pops the response at the beginning of the response queue and returns it.

This function returns a dict object with the following keys:

pressed: A boolean value of whether the event was a keypress or key release.

key: The key on the device that was pressed. This is a 0 based index.

port: Device port the response came from. Typically this is 0 on RB-series devices, and 2 on
SV-1 voice key devices.

time: For the time being, this just returns 0. There is currently an issue with clock drift in the
Cedrus XID devices. Once we have this issue resolved, time will report the value of the RT
timer in miliseconds.

poll_for_response()
Polls the device for user input

If there is a keymapping for the device, the key map is applied to the key reported from the device.

If a response is waiting to be processed, the response is appended to the internal response_queue

response_queue_size()
Number of responses in the response queue

class pyxid.XidDevice(xid_connection)
Class for interfacing with a Cedrus XID device.

At the beginning of an experiment, the developer should call:

XidDevice.reset_base_timer()

Whenever a stimulus is presented, the developer should call:

XidDevice.reset_rt_timer()

Developers Note: Currently there is a known issue of clock drift in the XID devices. Due to this, the dict
returned by XidDevice.get_next_response() returns 0 for the reaction time value.

This issue will be resolved in a future release of this library.

init_device()
Initializes the device with the proper keymaps and name

8.8. psychopy.hardware - hardware interfaces 105

PsychoPy - Psychology software for Python, Release 1.81.03

8.8.2 Cambridge Research Systems Ltd.

8.8.3 egi (pynetstation)

Interface to EGI Netstation

This is currently a simple import of pynetstation That needs to be installed (but is included in the Standalone distribu-
tions of PsychoPy as of version 1.62.01).

installation:

Download the package from the link above and copy egi.py into your site-packages directory.

usage:

from psychopy.hardware import egi

For an example see the demos menu of the PsychoPy Coder For further documentation see the pynetstation website

8.8.4 Launch an fMRI experiment: Test or Scan

Idea: Run or debug an experiment script using exactly the same code, i.e., for both testing and online data acquisition.
To debug timing, you can emulate sync pulses and user responses. Limitations: pyglet only; keyboard events only.

psychopy.hardware.emulator.launchScan(win, settings, globalClock=None, simRe-
sponses=None, mode=None, esc_key=’escape’,
instr=’select Scan or Test, press enter’,
wait_msg=’waiting for scanner...’, wait_timeout=300,
log=True)

Accepts up to four fMRI scan parameters (TR, volumes, sync-key, skip), and launches an experiment in one of
two modes: Scan, or Test.

Usage See Coder Demo -> experiment control -> fMRI_launchScan.py.

In brief: 1) from psychopy.hardware.emulator import launchScan; 2) Define your args; and 3)
add ‘vol = launchScan(args)’ at the top of your experiment script.

launchScan() waits for the first sync pulse and then returns, allowing your experiment script to proceed. The
key feature is that, in test mode, it first starts an autonomous thread that emulates sync pulses (i.e., emulated by
your CPU rather than generated by an MRI machine). The thread places a character in the key buffer, exactly
like a keyboard event does. launchScan will wait for the first such sync pulse (i.e., character in the key buffer).
launchScan returns the number of sync pulses detected so far (i.e., 1), so that a script can account for them
explicitly.

If a globalClock is given (highly recommended), it is reset to 0.0 when the first sync pulse is detected. If a mode
was not specified when calling launchScan, the operator is prompted to select Scan or Test.

If scan mode is selected, the script will wait until the first scan pulse is detected. Typically this would be coming
from the scanner, but note that it could also be a person manually pressing that key.

If test mode is selected, launchScan() starts a separate thread to emit sync pulses / key presses. Note that this
thread is effectively nothing more than a key-pressing metronome, emitting a key at the start of every TR, doing
so with high temporal precision.

If your MR hardware interface does not deliver a key character as a sync flag, you can still use launchScan() to
test script timing. You have to code your experiment to trigger on either a sync character (to test timing) or your
usual sync flag (for actual scanning).

Parameters win: a Window object (required)

settings : a dict containing up to 5 parameters (2 required: TR, volumes)

106 Chapter 8. Reference Manual (API)

http://www.egi.com/
http://code.google.com/p/pynetstation/

PsychoPy - Psychology software for Python, Release 1.81.03

TR : seconds per whole-brain volume (minimum value = 0.1s)

volumes : number of whole-brain (3D) volumes to obtain in a given scanning run.

sync : (optional) key for sync timing, default = ‘5’.

skip : (optional) how many volumes to silently omit initially (during T1 stabilization,
no sync pulse). default = 0.

sound : (optional) whether to play a sound when simulating scanner sync pulses

globalClock : optional but highly recommended Clock to be used during the scan; if one is
given, it is reset to 0.000 when the first sync pulse is received.

simResponses : optional list of tuples [(time, key), (time, key), ...]. time values are seconds
after the first scan pulse is received.

esc_key : key to be used for user-interrupt during launch. default = ‘escape’

mode : if mode is ‘Test’ or ‘Scan’, launchScan() will start in that mode.

instr : instructions to be displayed to the scan operator during mode selection.

wait_msg : message to be displayed to the subject while waiting for the scan to start (i.e., after
operator indicates start but before the first scan pulse is received).

wait_timeout : time in seconds that launchScan will wait before assuming something went
wrong and exiting. Defaults to 300sec (5 minutes). Raises a TimeoutError if no sync pulse
is received in the allowable time.

class psychopy.hardware.emulator.ResponseEmulator(simResponses=None)
Class to allow simulation of a user’s keyboard responses during a scan.

Given a list of response tuples (time, key), the thread will simulate a user pressing a key at a specific time
(relative to the start of the run).

Author: Jeremy Gray; Idea: Mike MacAskill

class psychopy.hardware.emulator.SyncGenerator(TR=1.0, volumes=10, sync=‘5’, skip=0,
sound=False)

Class for a character-emitting metronome thread (emulate MR sync pulse).

Aim: Allow testing of temporal robustness of fMRI scripts by emulating a hardware sync pulse. Adds an
arbitrary ‘sync’ character to the key buffer, with sub-millisecond precision (less precise if CPU is maxed).
Recommend: TR=1.000 or higher and less than 100% CPU. Shorter TR –> higher CPU load.

Parameters: TR: seconds per whole-brain volume volumes: number of 3D volumes to obtain in a given scan-
ning run sync: character used as flag for sync timing, default=‘5’ skip: how many frames to silently omit
initially during T1

stabilization, no sync pulse. Not needed to test script timing, but will give more accurate feel to
start of run. aka “discdacqs”.

sound: simulate scanner noise

8.8.5 fORP response box

fORP fibre optic (MR-compatible) response devices by CurrentDesigns: http://www.curdes.com/ This class is only
useful when the fORP is connected via the serial port.

If you’re connecting via USB, just treat it like a standard keyboard. E.g., use a Keyboard component, and typically
listen for Allowed keys ’1’, ’2’, ’3’, ’4’, ’5’. Or use event.getKeys().

8.8. psychopy.hardware - hardware interfaces 107

http://www.curdes.com/

PsychoPy - Psychology software for Python, Release 1.81.03

class psychopy.hardware.forp.ButtonBox(serialPort=1, baudrate=19200)
Serial line interface to the fORP MRI response box.

To use this object class, select the box use setting serialPort, and connect the serial line. To emulate key
presses with a serial connection, use getEvents(asKeys=True) (e.g., to be able to use a RatingScale object during
scanning). Alternatively connect the USB cable and use fORP to emulate a keyboard.

fORP sends characters at 800Hz, so you should check the buffer frequently. Also note that the trigger event
numpy the fORP is typically extremely short (occurs for a single 800Hz epoch).

Parameters

serialPort : should be a number (where 1=COM1, ...)

baud : the communication rate (baud), eg, 57600

clearBuffer()
Empty the input buffer of all characters

clearStatus()
Resets the pressed statuses, so getEvents will return pressed buttons, even if they were already pressed in
the last call.

getEvents(returnRaw=False, asKeys=False, allowRepeats=False)
Returns a list of unique events (one event per button pressed) and also stores a copy of the full list of events
since last getEvents() (stored as ForpBox.rawEvts)

returnRaw : return (not just store) the full event list

asKeys : If True, will also emulate pyglet keyboard events, so that button 1 will register as a keyboard
event with value “1”, and as such will be detectable using event.getKeys()

allowRepeats : If True, this will return pressed buttons even if they were held down between calls to
getEvents(). If the fORP is on the “Eprime” setting, you will get a stream of button presses while a
button is held down. On the “Bitwise” setting, you will get a set of all currently pressed buttons every
time a button is pressed or released. This option might be useful if you think your participant may be
holding the button down before you start checking for presses.

getUniqueEvents(fullEvts=False)
Returns a Python set of the unique (unordered) events of either a list given or the current rawEvts buffer

8.8.6 iolab

This provides a basic ButtonBox class, and imports the ioLab python library.

class psychopy.hardware.iolab.ButtonBox
PsychoPy’s interface to ioLabs.USBBox. Voice key completely untested.

Original author: Jonathan Roberts PsychoPy rewrite: Jeremy Gray, 2013

Class to detect and report ioLab button box.

The ioLabs library needs to be installed. It is included in the Standalone distributions of PsychoPy as of version
1.62.01. Otherwise try “pip install ioLabs”

Usage:

from psychopy.hardware import iolab
bbox = iolab.ButtonBox()

For examples see the demos menu of the PsychoPy Coder or go to the URL above.

All times are reported in units of seconds.

108 Chapter 8. Reference Manual (API)

http://github.com/ioLab/python-ioLabs
http://www.iolab.co.uk

PsychoPy - Psychology software for Python, Release 1.81.03

clearEvents()
Discard all button / voice key events.

getBaseTime()
Return the time since init (using the CPU clock, not ioLab bbox).

Aim is to provide a similar API as for a Cedrus box. Could let both clocks run for a long time to assess
relative drift.

getEnabled()
Return a list of the buttons that are currently enabled.

getEvents(downOnly=True)
Detect and return a list of all events (likely just one); no block.

Use downOnly=False to include button-release events.

resetClock(log=True)
Reset the clock on the bbox internal clock, e.g., at the start of a trial.

~1ms for me; logging is much faster than the reset

setEnabled(buttonList=(0, 1, 2, 3, 4, 5, 6, 7), voice=False)
Set a filter to suppress events from non-enabled buttons.

The ioLabs bbox filters buttons in hardware; here we just tell it what we want: None - disable all buttons
an integer (0..7) - enable a single button a list of integers (0..7) - enable all buttons in the list

Set voice=True to enable the voiceKey - gets reported as button 64

setLights(lightList=(0, 1, 2, 3, 4, 5, 6, 7))
Turn on the specified LEDs (None, 0..7, list of 0..7)

standby()
Disable all buttons and lights.

waitEvents(downOnly=True, timeout=0, escape=’escape’, wait=0.002)
Wait for and return the first button press event.

Always calls clearEvents() first (like PsychoPy keyboard waitKeys).

Use downOnly=False to include button-release events.

escape is a list/tuple of keyboard events that, if pressed, will interrupt the bbox wait; waitKeys will return
None in that case.

timeout is the max time to wait in seconds before returning None. timeout of 0 means no time-out (=
default).

8.8.7 joystick (pyglet and pygame)

Control joysticks and gamepads from within PsychoPy

You do need a window (and you need to be flipping it) for the joystick to be updated.

Known issues:

• currently under pyglet the joystick axes initialise to a value of zero and stay like this until the first time that
axis moves

• currently pygame (1.9.1) spits out lots of debug messages about the joystick and these can’t be turned off
:-/

Typical usage:

8.8. psychopy.hardware - hardware interfaces 109

PsychoPy - Psychology software for Python, Release 1.81.03

from psychopy.hardware import joystick
from psychopy import visual

joystick.backend=’pyglet’#must match the Window
win = visual.Window([400,400], winType=’pyglet’)

nJoys = joystick.getNumJoysticks()#to check if we have any
id=0
joy = joystick.Joystick(id)#id must be <= nJoys-1

nAxes = joy.getNumAxes()#for interest
while True:#while presenting stimuli

currentjoy.getX()
#...
win.flip()#flipping implicitly updates the joystick info

psychopy.hardware.joystick.getNumJoysticks()
Return a count of the number of joysticks available.

class psychopy.hardware.joystick.Joystick(id)
An object to control a multi-axis joystick or gamepad

Known issues Currently under pyglet backends the axis values initialise to zero rather than reading
the current true value. This gets fixed on the first change to each axis.

getAllAxes()
Get a list of all current axis values

getAllButtons()
Get the state of all buttons as a list

getAllHats()
Get the current values of all available hats as a list of tuples. Each value is a tuple (x,y) where x and y can
be -1,0,+1

getAxis(axisId)
Get the value of an axis by an integer id (from 0 to number of axes-1)

getButton(buttonId)
Get the state of a given button.

buttonId should be a value from 0 to the number of buttons-1

getHat(hatId=0)
Get the position of a particular hat. The position returned is an (x,y) tuple where x and y can be -1,0 or +1

getName()
Returns the manufacturer-defined name describing the device

getNumAxes()
Returns the number of joystick axes found

getNumButtons()
Returns the number of digital buttons on the device

getNumHats()
Get the number of hats on this joystick

getX()
Returns the value on the X axis (equivalent to joystick.getAxis(0))

110 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

getY()
Returns the value on the Y axis (equivalent to joystick.getAxis(1))

getZ()
Returns the value on the Z axis (equivalent to joystick.getAxis(2))

8.8.8 labjack (USB I/O devices)

The labjack package is included in the Standalone PsychoPy distributions. It differs slightly from the standard version
distributed by labjack (www.labjack.com) in the import. For the custom distribution use:

from labjack import u3

NOT:

import u3

In all other respects the library is the same and instructions on how to use it can be found here:

http://labjack.com/support/labjackpython

Note: To use labjack devices you do need also to install the driver software described on the page above

labjack.u3
alias of labjack.u3

8.8.9 Minolta

Minolta light-measuring devices See http://www.konicaminolta.com/instruments

class psychopy.hardware.minolta.LS100(port, maxAttempts=1)
A class to define a Minolta LS100 (or LS110?) photometer

You need to connect a LS100 to the serial (RS232) port and when you turn it on press the F key on the device.
This will put it into the correct mode to communicate with the serial port.

usage:

from psychopy.hardware import minolta
phot = minolta.LS100(port)
if phot.OK:#then we successfully made a connection and can send/receive

print phot.getLum()

Parameters port: string

the serial port that should be checked

maxAttempts: int If the device doesn’t respond first time how many attempts should be made?
If you’re certain that this is the correct port and the device is on and correctly configured
then this could be set high. If not then set this low.

Troubleshooting Various messages are printed to the log regarding the function of this device, but
to see them you need to set the printing of the log to the correct level:

8.8. psychopy.hardware - hardware interfaces 111

http://labjack.com/support/labjackpython
http://www.konicaminolta.com/instruments

PsychoPy - Psychology software for Python, Release 1.81.03

from psychopy import logging
logging.console.setLevel(logging.ERROR)#error messages only
logging.console.setLevel(logging.INFO)#will give a little more info
logging.console.setLevel(logging.DEBUG)#will export a log of all communications

If you’re using a keyspan adapter (at least on OS X) be aware that it needs a driver installed.
Otherwise no ports wil be found.

Error messages:

ERROR: Couldn’t connect to Minolta LS100/110 on ____: This likely
means that the device is not connected to that port (although the port has been found and
opened). Check that the device has the [in the bottom right of the display; if not turn off
and on again holding the F key.

ERROR: No reply from LS100: The port was found, the connection was made and an
initial command worked, but then the device stopped communating. If the first measurement
taken with the device after connecting does not yield a reasonble intensity the device can
sulk (not a technical term!). The “[” on the display will disappear and you can no longer
communicate with the device. Turn it off and on again (with F depressed) and use a reason-
ably bright screen for your first measurement. Subsequent measurements can be dark (or
we really would be in trouble!!).

checkOK(msg)
Check that the message from the photometer is OK. If there’s an error print it.

Then return True (OK) or False.

clearMemory()
Clear the memory of the device from previous measurements

getLum()
Makes a measurement and returns the luminance value

measure()
Measure the current luminance and set .lastLum to this value

sendMessage(message, timeout=5.0)
Send a command to the photometer and wait an alloted timeout for a response.

setMaxAttempts(maxAttempts)
Changes the number of attempts to send a message and read the output Typically this should be low
initially, if you aren’t sure that the device is setup correctly but then, after the first successful reading, set
it higher.

setMode(mode=‘04’)
Set the mode for measurements. Returns True (success) or False

‘04’ means absolute measurements. ‘08’ = peak ‘09’ = cont

See user manual for other modes

8.8.10 PhotoResearch

Supported devices:

• PR650

• PR655/PR670

112 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

PhotoResearch spectrophotometers See http://www.photoresearch.com/

class psychopy.hardware.pr.PR650(port, verbose=None)
An interface to the PR650 via the serial port.

(Added in version 1.63.02)

example usage:

from psychopy.hardware.pr import PR650
myPR650 = PR650(port)
myPR650.getLum()#make a measurement
nm, power = myPR650.getLastSpectrum()#get a power spectrum for the last measurement

NB psychopy.hardware.findPhotometer() will locate and return any supported device for you so
you can also do:

from psychopy import hardware
phot = hardware.findPhotometer()
print phot.getLum()

Troubleshooting Various messages are printed to the log regarding the function of this device, but
to see them you need to set the printing of the log to the correct level:

from psychopy import logging
logging.console.setLevel(logging.ERROR)#error messages only
logging.console.setLevel(logging.INFO)#will give a little more info
logging.console.setLevel(logging.DEBUG)#will export a log of all communications

If you’re using a keyspan adapter (at least on OS X) be aware that it needs a driver installed.
Otherwise no ports wil be found.

Also note that the attempt to connect to the PR650 must occur within the first few seconds after
turning it on.

getLastLum()
This retrieves the luminance (in cd/m**2) from the last call to .measure()

getLastSpectrum(parse=True)
This retrieves the spectrum from the last call to .measure()

If parse=True (default): The format is a num array with 100 rows [nm, power]

otherwise: The output will be the raw string from the PR650 and should then be passed to
.parseSpectrumOutput(). It’s more efficient to parse R,G,B strings at once than each individu-
ally.

getLum()
Makes a measurement and returns the luminance value

getSpectrum(parse=True)
Makes a measurement and returns the current power spectrum

If parse=True (default): The format is a num array with 100 rows [nm, power]

If parse=False (default): The output will be the raw string from the PR650 and should then be passed
to .parseSpectrumOutput(). It’s slightly more efficient to parse R,G,B strings at once than
each individually.

8.8. psychopy.hardware - hardware interfaces 113

http://www.photoresearch.com/

PsychoPy - Psychology software for Python, Release 1.81.03

measure(timeOut=30.0)
Make a measurement with the device. For a PR650 the device is instructed to make a measurement and
then subsequent commands are issued to retrieve info about that measurement

parseSpectrumOutput(rawStr)
Parses the strings from the PR650 as received after sending the command ‘d5’. The input argument “raw-
Str” can be the output from a single phosphor spectrum measurement or a list of 3 such measurements
[rawR, rawG, rawB].

sendMessage(message, timeout=0.5, DEBUG=False)
Send a command to the photometer and wait an alloted timeout for a response (Timeout should be long for
low light measurements)

class psychopy.hardware.pr.PR655(port)
An interface to the PR655/PR670 via the serial port.

example usage:

from psychopy.hardware.pr import PR655
myPR655 = PR655(port)
myPR655.getLum()#make a measurement
nm, power = myPR655.getLastSpectrum()#get a power spectrum for the last measurement

NB psychopy.hardware.findPhotometer() will locate and return any supported device for you so
you can also do:

from psychopy import hardware
phot = hardware.findPhotometer()
print phot.getLum()

Troubleshooting If the device isn’t responding try turning it off and turning it on again, and/or
disconnecting/reconnecting the USB cable. It may be that the port has become controlled by
some other program.

endRemoteMode()
Puts the colorimeter back into normal mode

getDeviceSN()
Return the device serial number

getDeviceType()
Return the device type (e.g. ‘PR-655’ or ‘PR-670’)

getLastColorTemp()
Fetches (from the device) the color temperature (K) of the last measurement

Returns list: status, units, exponent, correlated color temp (Kelvins), CIE 1960 deviation

See also measure() automatically populates pr655.lastColorTemp with the color temp in
Kelvins

getLastSpectrum(parse=True)
This retrieves the spectrum from the last call to measure()

If parse=True (default):

The format is a num array with 100 rows [nm, power]

otherwise:

114 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

The output will be the raw string from the PR650 and should then be passed to
parseSpectrumOutput(). It’s more efficient to parse R,G,B strings at once than each indi-
vidually.

getLastTristim()
Fetches (from the device) the last CIE 1931 Tristimulus values

Returns list: status, units, Tristimulus Values

See also measure() automatically populates pr655.lastTristim with just the tristimulus coor-
dinates

getLastUV()
Fetches (from the device) the last CIE 1976 u,v coords

Returns list: status, units, Photometric brightness, u, v

See also measure() automatically populates pr655.lastUV with [u,v]

getLastXY()
Fetches (from the device) the last CIE 1931 x,y coords

Returns list: status, units, Photometric brightness, x,y

See also measure() automatically populates pr655.lastXY with [x,y]

measure(timeOut=30.0)
Make a measurement with the device.

This automatically populates:

•.lastLum

•‘‘.lastSpectrum‘

•.lastCIExy

•.lastCIEuv

parseSpectrumOutput(rawStr)
Parses the strings from the PR650 as received after sending the command ‘D5’. The input argument
“rawStr” can be the output from a single phosphor spectrum measurement or a list of 3 such measurements
[rawR, rawG, rawB].

sendMessage(message, timeout=0.5, DEBUG=False)
Send a command to the photometer and wait an alloted timeout for a response (Timeout should be long for
low light measurements)

startRemoteMode()
Sets the Colorimeter into remote mode

8.8.11 pylink (SR research)

For now the SR Research pylink module is packaged with the Standalone flavours of PsychoPy and can be imported
with:

import pylink

You do need to install the Display Software (which they also call Eyelink Developers Kit) for your particular platform.
This can be found by following the threads from:

https://www.sr-support.com/forums/forumdisplay.php?f=17

for pylink documentation see:

8.8. psychopy.hardware - hardware interfaces 115

https://www.sr-support.com/forums/forumdisplay.php?f=17

PsychoPy - Psychology software for Python, Release 1.81.03

https://www.sr-support.com/forums/showthread.php?t=14 Performing research with eye-tracking equipment typically
requires a long-term investment in software tools to collect, process, and analyze data. Much of this involves real-time
data collection, saccadic analysis, calibration routines, and so on. The EyeLink® eye-tracking system is designed to
implement most of the required software base for data collection and conversion. It is most powerful when used with
the Ethernet link interface, which allows remote control of data collection and real-time data transfer. The PyLink
toolkit includes Pylink module, which implements all core EyeLink functions and classes for EyeLink connection
and the eyelink graphics, such as the display of camera image, calibration, validation, and drift correct. The EyeLink
graphics is currently implemented using Simple Direct Media Layer (SDL: www.libsdl.org).

The Pylink library contains a set of classes and functions, which are used to program experiments on many different
platforms, such as MS-DOS, Windows, Linux, and the Macintosh. Some programming standards, such as placement
of messages in the EDF file by your experiment, and the use of special data types, have been implemented to allow
portability of the development kit across platforms. The standard messages allow general analysis tools such as
EDF2ASC converter or EyeLink Data Viewer to process your EDF files.

psychopy.hardware.findPhotometer(ports=None, device=None)
Try to find a connected photometer/photospectrometer! PsychoPy will sweep a series of serial ports trying to
open them. If a port successfully opens then it will try to issue a command to the device. If it responds with one
of the expected values then it is assumed to be the appropriate device.

Parameters

ports [a list of ports to search] Each port can be a string (e.g. ‘COM1’, ‘’/dev/tty.Keyspan1.1’)
or a number (for win32 comports only). If none are provided then PsychoPy will sweep
COM0-10 on win32 and search known likely port names on OS X and linux.

device [string giving expected device (e.g. ‘PR650’, ‘PR655’, ‘LS110’).] If this is not given
then an attempt will be made to find a device of any type, but this often fails

Returns

• An object representing the first photometer found

• None if the ports didn’t yield a valid response

• None if there were not even any valid ports (suggesting a driver not being installed)

e.g.:

photom = findPhotometer(device=’PR655’) #sweeps ports 0 to 10 searching for a PR655
print photom.getLum()
if hasattr(photom, ’getSpectrum’):#can retrieve spectrum (e.g. a PR650)

print photom.getSpectrum()

8.9 psychopy.info - functions for getting information about the sys-
tem

Fetching data about the system

class psychopy.info.RunTimeInfo(author=None, version=None, win=None, refreshTest=’grating’,
userProcsDetailed=False, verbose=False)

Returns a snapshot of your configuration at run-time, for immediate or archival use.

Returns a dict-like object with info about PsychoPy, your experiment script, the system & OS, your window and
monitor settings (if any), python & packages, and openGL.

If you want to skip testing the refresh rate, use ‘refreshTest=None’

Example usage: see runtimeInfo.py in coder demos.

116 Chapter 8. Reference Manual (API)

https://www.sr-support.com/forums/showthread.php?t=14

PsychoPy - Psychology software for Python, Release 1.81.03

Author

• 2010 written by Jeremy Gray, with input from Jon Peirce and Alex Holcombe

Parameters

win [None, False, Window instance] what window to use for refresh rate testing (if any) and
settings. None -> temporary window using defaults; False -> no window created, used, nor
profiled; a Window() instance you have already created

author [None, string] None = try to autodetect first __author__ in sys.argv[0]; string = user-
supplied author info (of an experiment)

version [None, string] None = try to autodetect first __version__ in sys.argv[0]; string = user-
supplied version info (of an experiment)

verbose : False, True; how much detail to assess

refreshTest [None, False, True, ‘grating’] True or ‘grating’ = assess refresh average, median,
and SD of 60 win.flip()s, using visual.getMsPerFrame() ‘grating’ = show a visual during the
assessment; True = assess without a visual

userProcsDetailed: False, True get details about concurrent user’s processses (command,
process-ID)

Returns a flat dict (but with several groups based on key names):

psychopy [version, rush() availability] psychopyVersion, psychopyHaveExtRush, git branch
and current commit hash if available

experiment [author, version, directory, name, current time-stamp,] SHA1 digest, VCS info (if
any, svn or hg only), experimentAuthor, experimentVersion, ...

system [hostname, platform, user login, count of users, user process info (count, cmd + pid),
flagged processes] systemHostname, systemPlatform, ...

window [(see output; many details about the refresh rate, window, and monitor; units are
noted)] windowWinType, windowWaitBlanking, ...windowRefreshTimeSD_ms, ... win-
dowMonitor.<details>, ...

python [version of python, versions of key packages (wx, numpy, scipy, matplotlib, pyglet,
pygame)] pythonVersion, pythonScipyVersion, ...

openGL [version, vendor, rendering engine, plus info on whether several extensions are
present] openGLVersion, ..., openGLextGL_EXT_framebuffer_object, ...

psychopy.info.getRAM()
Return system’s physical RAM & available RAM, in M.

Slow on Mac and Linux; fast on Windows. psutils is good but another dep.

8.10 psychopy.iohub - ioHub event monitoring framework

ioHub monitors for device events in parallel with the PsychoPy experiment execution by running in a separate process
than the main PsychoPy script. This means, for instance, that keyboard and mouse event timing is not quantized by
the rate at which the window.swap() method is called.

ioHub reports device events to the PsychoPy experiment runtime as they occur. Optionally, events can be saved to a
HDF5 file.

All iohub events are timestamped using the PsychoPy global time base (psychopy.core.getTime()). Events can be
accessed as a device independent event stream, or from a specific device of interest.

8.10. psychopy.iohub - ioHub event monitoring framework 117

http://www.hdfgroup.org/HDF5/

PsychoPy - Psychology software for Python, Release 1.81.03

A comprehensive set of examples that each use at least one of the iohub devices is available in the psy-
chopy/demos/coder/iohub folder.

Note: This documentation is in very early stages of being written. Many sections regarding device usage details
are simply placeholders. For information on devices or functionality that has not yet been migrated to the psychopy
documentation, please visit the somewhat outdated original ioHub doc’s.

8.10.1 Using psychopy.iohub:

psychopy.iohub Specific Requirements

Computer Specifications

The design / requirements of your experiment itself can obviously influence what the minimum computer specification
should be to provide good timing / performance.

The dual process design when running using psychopy.iohub also influences the minimum suggested specifications as
follows:

• Intel i5 or i7 CPU. A minimum of two CPU cores is needed.

• 8 GB of RAM

• Windows 7 +, OS X 10.7.5 +, or Linux Kernel 2.6 +

Please see the Recommended hardware section for further information that applies to PsychoPy in general.

Usage Considerations

When using psychopy.iohub, the following constrains should be noted:

1. The pyglet graphics backend must be used; pygame is not supported.

2. ioHub devices that report position data use the unit type defined by the PsychoPy Window. However, position
data is reported using the full screen area and size the window was created in. Therefore, for accurate window
position reporting, the PsychoPy window must be made full screen.

3. On OS X, Assistive Device support must be enabled when using psychopy.iohub.

• For OS X 10.7 - 10.8.5, instructions can be found here.

• For OS X 10.9 +, the program being used to start your experiment script must be specifically authorized.
Example instructions on authorizing an OS X 10.9 + app can be viewed here.

Software Requirements

When running PsychoPy using the OS X or Windows standalone distribution, all the necessary python package de-
pendencies have already been installed, so the rest of this section can be skipped.

Note: Hardware specific software may need to be installed depending on the device being used. See the documenta-
tion page for the specific device hardware in question for further details.

If psychopy.iohub is being manually installed, first ensure the python packages listed in the Dependencies section of
the manual are installed.

psychopy.iohub requires the following extra dependencies to be installed:

118 Chapter 8. Reference Manual (API)

http://www.isolver-solutions.com/iohubdocs/
http://mizage.com/help/accessibility.html#10.8
http://mizage.com/help/accessibility.html#10.9

PsychoPy - Psychology software for Python, Release 1.81.03

1. psutil (version 1.2 +) A cross-platform process and system utilities module for Python.

2. msgpack It’s like JSON. but fast and small.

3. greenlet The greenlet package is a spin-off of Stackless, a version of CPython that supports micro-threads called
“tasklets”.

4. gevent (version 1.0 or greater)** A coroutine-based Python networking library.

5. numexpr Fast numerical array expression evaluator for Python and NumPy.

6. pytables PyTables is a package for managing hierarchical datasets.

7. pyYAML PyYAML is a YAML parser and emitter for Python.

Windows installations only

1. pyHook Python wrapper for global input hooks in Windows.

Linux installations only

1. python-xlib The Python X11R6 client-side implementation.

OSX installations only

1. pyobjc : A Python ObjectiveC binding.

Starting the psychopy.iohub Process

To use ioHub within your PsychoPy Coder experiment script, ioHub needs to be started at the start of the experiment
script. The easiest way to do this is by calling the launchHubServer function.

launchHubServer function

psychopy.iohub.client.launchHubServer(**kwargs)
The launchHubServer function is used to start the ioHub Process by the main psychopy experiment script.

To use ioHub for keyboard and mouse event reporting only, simply use the function in a way similar to the
following:

from psychopy.iohub import launchHubServer

Start the ioHub process. The return variable is what is used
during the experiment to control the iohub process itself,
as well as any running iohub devices.
io=launchHubServer()

By default, ioHub will create Keyboard and Mouse devices and
start monitoring for any events from these devices only.
keyboard=io.devices.keyboard
mouse=io.devices.mouse

As a simple example, use the keyboard to have the experiment
wait until a key is pressed.

print "Press any Key to Exit Example....."

keys = keyboard.waitForKeys()

print "Key press detected, exiting experiment."

8.10. psychopy.iohub - ioHub event monitoring framework 119

https://pypi.python.org/pypi/psutil
https://pypi.python.org/pypi/msgpack-python
https://pypi.python.org/pypi/greenlet
http://www.gevent.org/
https://code.google.com/p/numexpr/
http://www.pytables.org
http://pyyaml.org/
http://sourceforge.net/projects/pyhook/
http://sourceforge.net/projects/python-xlib/
http://pythonhosted.org/pyobjc/

PsychoPy - Psychology software for Python, Release 1.81.03

launchHubServer() accepts several kwarg inputs, which can be used when more complex device types are being
used in the experiment. Examples are eye tracker and analog input devices.

Please see the psychopy/demos/coder/iohub/launchHub.py demo for examples of different ways to use the
launchHubServer function.

ioHubConnection Class

The psychopy.iohub.ioHubConnection object returned from the launchHubServer function provides methods for con-
trolling the iohub process and accessing iohub devices and events.

class psychopy.iohub.client.ioHubConnection(ioHubConfig=None, ioHubConfigAb-
sPath=None)

ioHubConnection is responsible for creating, sending requests to, and reading replies from the ioHub Process.
This class can also shut down and disconnect the ioHub Process.

The ioHubConnection class is also used as the interface to any ioHub Device instances that have been created
so that events from the device can be monitored. These device objects can be accessed via the ioHubConnection
.devices attribute, providing ‘dot name’ attribute access, or by using the .deviceByLabel dictionary attribute;
which stores the device names as keys,

Using the .devices attribute is handy if you know the name of the device to be accessed and you are sure it is
actually enabled on the ioHub Process. The following is an example of accessing a device using the .devices
attribute:

get the Mouse device, named mouse
mouse=hub.devices.mouse
current_mouse_position = mouse.getPosition()

print ’current mouse position: ’, current_mouse_position

Returns something like:
>> current mouse position: [-211.0, 371.0]

getDevice(deviceName)
Returns the ioHubDeviceView that has a matching name (based on the device : name property specified in
the ioHub_config.yaml for the experiment). If no device with the given name is found, None is returned.
Example, accessing a Keyboard device that was named ‘kb’

keyboard = self.getDevice(’kb’)
kb_events= keyboard.getEvent()

This is the same as using the ‘natural naming’ approach supported by the .devices attribute, i.e:

keyboard = self.devices.kb
kb_events= keyboard.getEvent()

However the advantage of using getDevice(device_name) is that an exception is not created if you provide
an invalid device name, or if the device is not enabled on the ioHub server (for example if the device
hardware was not connected when the ioHub server started). Instead None is returned by this method.
This allows for conditional checking for the existance of a requested device within the experiment script,
which can be useful in some cases.

Args: deviceName (str): Name given to the ioHub Device to be returned

Returns: device (ioHubDeviceView) : the PsychoPy Process represention for the device that matches the
name provided.

120 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

getEvents(device_label=None, as_type=’namedtuple’)
Retrieve any events that have been collected by the ioHub Process from monitored devices since the last
call to getEvents() or clearEvents().

By default all events for all monitored devices are returned, with each event being represented as a named-
tuple of all event attributes.

When events are retrieved from an event buffer, they are removed from that buffer as well.

If events are only needed from one device instead of all devices, providing a valid device name as the
device_label argument will result in only events from that device being returned.

Events can be received in one of several object types by providing the optional as_type property to the
method. Valid values for as_type are the following str values:

•‘list’: Each event is sent from the ioHub Process as a list of ordered attributes. This is the most
efficient for data transmission, but not for human readability or usability. However, if you do want
events to be kept in list form, set as_type = ‘list’.

•‘astuple’: Each event is converted to a namedtuple object. Event attributes are accessed using natural
naming style (dot name style), or by the index of the event attribute for the event type. The namedtuple
class definition is created once for each Event type at the start of the experiment, so memory overhead
is almost the same as the event value list, and conversion from the event list to the namedtuple is very
fast. This is the default, and normally most useful, event representation type.

•‘dict’: Each event converted to a dict object, keys equaling the event attribute names, values being,
well the attribute values for the event.

•‘object’: Each event is converted into an instance of the ioHub DeviceEvent subclass based on the
event’s type. This conversion process can take a bit of time if the number of events returned is large,
and currently there is no real benefit converting events into DeviceEvent Class instances vs. the default
namedtuple object type. Therefore this option should be used rarely.

Args: device_label (str): Indicates what device to retrieve events for. If None (the default) returns device
events from all devices.

as_type (str): Indicates how events should be represented when they are returned to the user.
Default: ‘namedtuple’.

Returns: tuple: A tuple of event objects, where the event object type is defined by the ‘as_type’ parameter.

clearEvents(device_label=None)
Clears events from the ioHub Process’s Global Event Buffer (by default) so that uneeded events are not
sent to the PsychoPy Process the next time iohub.getEvents() is called.

If device_label is None (the default), then all events in the ioHub Global Event Buffer are cleared, which
leaves the Device Event Buffers unaffected.

If device_label is a str giving a valid device name, then events that were received from that device are
returned and the Device Event Buffer for that device is cleared on the ioHub Server, but the Global Event
Buffer is not affected.

Note: To clear all events from both the ioHub Global Event Buffer and all Device Event Buffer’s, set the
device_label argument to ‘all’.

Args: device_label (str): name of the device to clear events from, or None (the default) to clear all events
from the “Global Event Buffer”, or ‘all’, to clear events from both the Global Event Buffer and all
device level Device Event Buffer’s.

Returns: int: The number of events cleared by the request on the ioHub Server.

8.10. psychopy.iohub - ioHub event monitoring framework 121

PsychoPy - Psychology software for Python, Release 1.81.03

sendMessageEvent(text, category=’‘, offset=0.0, sec_time=None)
Create and send an Experiment MessageEvent to the ioHub Server Process for storage with the rest of the
event data being recorded in the ioDataStore.

Note: MessageEvents can be thought of as DeviceEvents from the virtual PsychoPy Process “Device”.

Args: text (str): The text message for the message event. Can be up to 128 characters in length.

category (str): A 0 - 32 character grouping code for the message that can be used to sort or group
messages by ‘types’ during post hoc analysis.

offset (float): The sec.msec offset to apply to the time stamp of the message event. If you send the
event before or after the time the event actually occurred, and you know what the offset value is, you
can provide it here and it will be applied to the ioHub time stamp for the MessageEvent.

sec_time (float): The time stamp to use for the message in sec.msec format. If not provided, or None,
then the MessageEvent is time stamped when this method is called using the global timer.

Returns: bool: True

createTrialHandlerRecordTable(trials)
Create a condition variable table in the ioHub data file based on the a psychopy TrialHandler. By doing
so, the iohub data file can contain the DV and IV values used for each trial of an experiment session, along
with all the iohub device events recorded by iohub during the session. Example psychopy code usage:

Load a trial handler and
create an associated table in the iohub data file
#
from psychopy.data import TrialHandler,importConditions

exp_conditions=importConditions(’trial_conditions.xlsx’)
trials = TrialHandler(exp_conditions,1)

Inform the ioHub server about the TrialHandler
#
io.createTrialHandlerRecordTable(trials)

Read a row of the trial handler for
each trial of your experiment
#
for trial in trials:

do whatever...

During the trial, trial variable values can be updated
#
trial[’TRIAL_START’]=flip_time

At the end of each trial, before getting
the next trial handler row, send the trial
variable states to iohub so they can be stored for future
reference.
#
io.addTrialHandlerRecord(trial.values())

addTrialHandlerRecord(cv_row)
Adds the values from a TriaHandler row / record to the iohub data file for future data analysis use.

Parameters cv_row –

122 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

Returns None

enableHighPriority(disable_gc=False)
Sets the priority of the ioHub Process to high priority and optionally (default is False) disables the python
GC if the disable_gc parameter is set to True.

This is method is useful for the duration of a trial, or relatively short periods of time where time critial
processing is a priority. The normal usage pattern is to call enableHighPriority() at the start of a trial and
disableHighPriority() is called at the end of a trial.

Improvements in timing and execution speed depend on computer load, hardware configuration, as well as
the OS being used.

This method is not supported on OS X at this time.

Args: disable_gc(bool): True = Turn off the Python Garbage Collector. False (Default) = Leave the
Garbage Collector running.

disableHighPriority()
Sets the priority of the ioHub Process to normal priority and enables the python GC if it had been disabled
by a earlier call to enableHighPriority().

In general enableHighPriority() would be called at start of a trial where time critial processing is important,
disableHighPriority() would be called at the end of thlaunchHubProcesse trial or time critical period.

This method is not supported on OS X at this time.

Args: None

Returns: None

getProcessAffinity()
Returns the current ioHub Process Affinity setting, as a list of ‘processor’ id’s (from 0 to
getSystemProcessorCount()-1). A Process’s Affinity determines which CPU’s or CPU cores a process
can run on. By default the ioHub Process can run on any CPU or CPU core.

This method is not supported on OS X at this time.

Args: None

Returns: list: A list of integer values between 0 and Computer.getSystemProcessorCount()-1, where val-
ues in the list indicate processing unit indexes that the ioHub process is able to run on.

setProcessAffinity(processor_list)
Sets the ioHub Process Affinity based on the value of processor_list. A Process’s Affinity determines
which CPU’s or CPU cores a process can run on. By default the ioHub Process can run on any CPU or
CPU core.

The processor_list argument must be a list of ‘processor’ id’s; integers in the range of 0 to
Computer.processing_unit_count-1, representing the processing unit indexes that the ioHub Server should
be allowed to run on. If processor_list is given as an empty list, the ioHub Process will be able to run on
any processing unit on the computer.

This method is not supported on OS X at this time.

Args: processor_list (list): A list of integer values between 0 and Computer.processing_unit_count-1,
where values in the list indicate processing unit indexes that the ioHub process is able to run on.

Returns: None

flushDataStoreFile()
Manually tell the ioDataStore to flush any events it has buffered in memory to disk.”

Args: None

8.10. psychopy.iohub - ioHub event monitoring framework 123

PsychoPy - Psychology software for Python, Release 1.81.03

Returns: None

shutdown()
Tells the ioHub Process to close all ioHub Devices, the ioDataStore, and the connection monitor between
the PsychoPy and ioHub Processes. Then exit the Server Process itself.

Args: None

Returns: None

quit()
Same as the shutdown() method, but has same name as PsychoPy core.quit() so maybe easier to remember.

ioHub Devices and Device Events

psychopy.iohub supports a large and growing set of supported devices. Details for each device can be found in the
following sections.

Keyboard Device

The iohub Keyboard device provides methods to:

• Check for any new keyboard events that have occurred since the last time keyboard events were checked
or cleared.

• Wait until a keyboard event occurs.

• Clear the device of any unread events.

• Get a list of all currently pressed keys.

class psychopy.iohub.client.keyboard.Keyboard(ioclient, device_class_name, device_config)
The Keyboard device provides access to KeyboardPress and KeyboardRelease events as well as the current
keyboard state.

state None
Returns all currently pressed keys as a dictionary of key : time values. The key is taken from the originating
press event .key field. The time value is time of the key press event.

Note that any pressed, or active, modifier keys are included in the return value.

Returns dict

reporting None

Specifies if the the keyboard device is reporting / recording events.

• True: keyboard events are being reported.

• False: keyboard events are not being reported.

By default, the Keyboard starts reporting events automatically when the ioHub process is started and
continues to do so until the process is stopped.

This property can be used to read or set the device reporting state:

Read the reporting state of the keyboard.
is_reporting_keyboard_event = keyboard.reporting

Stop the keyboard from reporting any new events.
keyboard.reporting = False

124 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

getKeys(keys=None, chars=None, mods=None, duration=None, etype=None, clear=True)
Return a list of any KeyboardPress or KeyboardRelease events that have occurred since the last time either:

•this method was called with the kwarg clear=True (default)

•the keyboard.clear() method was called.

Other than the ‘clear’ kwarg, any non None or empty list kwargs passed to the method filter the possible
events that can be returned using the keyboard event field with the associated name.

If multiple filter criteria are provided, only events that match all specified criteria are returned.

If no KeyboardEvent’s are found that match the filtering criteria, an empty tuple is returned.

Returned events are sorted by time.

Parameters

• keys – Filter returned events using a list of key constant strings. Only events with a .key
value that is within the keys list will be returned.

• chars – Filter returned events using a list of event char values. Only events with a .char
value that is within the chars list will be returned.

• mods – Filter returned events using a list of modifier constant strings. Only events that
have a modifier matching atleast one of the values in the mods list will be returned.

• duration – Applied to KeyboardRelease events only. If the duration kwarg value > 0, then
events where event.duration > duration are returned. If the duration kwarg value < 0.0,
then events where event.duration < -(duration) are returned.

• keys – Filter returned events based on one of the two Keyboard event type constants (Key-
board.KEY_PRESS, Keyboard.KEY_RELEASE).

• etype – True (default) means the keyboard event buffer is cleared after this method is
called. If False, the keyboard event buffer is not changed.

Returns tuple of KeyboardEvent instances, or ()

getPresses(keys=None, chars=None, mods=None, clear=True)
See the getKeys() method documentation. This method is identical, but only returns KeyboardPress events.

getReleases(keys=None, chars=None, mods=None, duration=None, clear=True)
See the getKeys() method documentation. This method is identical, but only returns KeyboardRelease
events.

waitForKeys(maxWait=None, keys=None, chars=None, mods=None, duration=None, etype=None,
clear=True, checkInterval=0.002)

Blocks experiment execution until at least one matching KeyboardEvent occurs, or until maxWait seconds
has passed since the method was called.

Keyboard events are filtered using any non None kwargs values in the same way as the getKeys() method.
See getKeys() for a description of the arguments shared between the two methods.

As soon as at least one matching KeyboardEvent occur prior to maxWait, the matching events are returned
as a tuple.

Parameters

• maxWait – Specifies the maximum time (in seconds) that the method will block for. If 0,
waitForKeys() is identical to getKeys(). If None, the methods blocks indefinately.

• checkInterval – Specifies the number of seconds.msecs between geyKeys() calls while
waiting. The method sleeps between geyKeys() calls, up until checkInterval*2.0 sec prior

8.10. psychopy.iohub - ioHub event monitoring framework 125

PsychoPy - Psychology software for Python, Release 1.81.03

to the maxWait. After that time, keyboard events are constantly checked until the method
times out.

waitForPresses(maxWait=None, keys=None, chars=None, mods=None, duration=None,
clear=True, checkInterval=0.002)

See the waitForKeys() method documentation. This method is identical, but only returns KeyboardPress
events.

getName()
Gets the name given to the device in the ioHub configuration file. (the device: name: property)

Args: None

Returns: (str): the user defined label / name of the device

waitForReleases(maxWait=None, keys=None, chars=None, mods=None, duration=None,
clear=True, checkInterval=0.002)

See the waitForKeys() method documentation. This method is identical, but only returns KeyboardRelease
events.

Keyboard Events

The Keyboard device can return two types of events, which represent key press and key release actions on the keyboard.

KeyboardPress Event
class psychopy.iohub.client.keyboard.KeyboardPress(ioe_array)

An iohub Keyboard device key press event.

char None
The unicode value of the keyboard event, if available. This field is only populated when the keyboard event
results in a character that could be printable.

Returns unicode, ‘’ if no char value is available for the event.

modifiers None
A list of any modifier keys that were pressed when this keyboard event occurred. Each element of the list
contains a keyboard modifier string constant. Possible values are:

•‘lctrl’, ‘rctrl’

•‘lshift’, ‘rshift’

•‘lalt’, ‘ralt’ (the alt keys are also labelled as ‘option’ keys on Apple Keyboards)

•‘lcmd’, ‘rcmd’ (The cmd keys map to the ‘windows’ key(s) on Windows keyboards.

•‘menu’

•‘capslock’

•‘numlock’

•‘function’ (OS X only)

•‘modhelp’ (OS X only)

If no modifiers were active when the event occurred, an empty list is returned.

Returns tuple

time None
The time stamp of the event, in the same time base that is used by psychopy.core.getTime()

126 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

Returns float

type None
The string type constant for the event.

Returns str

KeyboardRelease Event
class psychopy.iohub.client.keyboard.KeyboardRelease(ioe_array)

An iohub Keyboard device key release event.

duration None
The duration (in seconds) of the key press. This is calculated by subtracting the current event.time from
the associated keypress.time.

If no matching keypress event was reported prior to this event, then 0.0 is returned. This can happen, for
example, when the key was pressed prior to psychopy starting to monitor the device. This condition can
also happen when keyboard.reset() method is called between the press and release event times.

Returns float

pressEventID None
The event.id of the associated press event.

The key press id is 0 if no associated KeyboardPress event was found. See the duration property documen-
tation for details on when this can occur.

Returns unsigned int

char None
The unicode value of the keyboard event, if available. This field is only populated when the keyboard event
results in a character that could be printable.

Returns unicode, ‘’ if no char value is available for the event.

id None
The unique id for the event; sometimes used to track associated events.

Returns int

modifiers None
A list of any modifier keys that were pressed when this keyboard event occurred. Each element of the list
contains a keyboard modifier string constant. Possible values are:

•‘lctrl’, ‘rctrl’

•‘lshift’, ‘rshift’

•‘lalt’, ‘ralt’ (the alt keys are also labelled as ‘option’ keys on Apple Keyboards)

•‘lcmd’, ‘rcmd’ (The cmd keys map to the ‘windows’ key(s) on Windows keyboards.

•‘menu’

•‘capslock’

•‘numlock’

•‘function’ (OS X only)

•‘modhelp’ (OS X only)

If no modifiers were active when the event occurred, an empty list is returned.

Returns tuple

8.10. psychopy.iohub - ioHub event monitoring framework 127

PsychoPy - Psychology software for Python, Release 1.81.03

time None
The time stamp of the event, in the same time base that is used by psychopy.core.getTime()

Returns float

type None
The string type constant for the event.

Returns str

Mouse Device and Events

TBC

Computer Device

TBC

XInput Gamepad Device and Events

TBC

Eye Tracker Devices and Events

TBC

Serial Port Device and Events

TBC

Analog Input Device and Events

TBC

Touch Screen Device and Events

TBC

8.11 psychopy.logging - control what gets logged

Provides functions for logging error and other messages to one or more files and/or the console, using python’s own
logging module. Some warning messages and error messages are generated by PsychoPy itself. The user can generate
more using the functions in this module.

There are various levels for logged messages with the following order of importance: ERROR, WARNING, DATA,
EXP, INFO and DEBUG.

128 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

When setting the level for a particular log target (e.g. LogFile) the user can set the minimum level that is required
for messages to enter the log. For example, setting a level of INFO will result in INFO, EXP, DATA, WARNING and
ERROR messages to be recorded but not DEBUG messages.

By default, PsychoPy will record messages of WARNING level and above to the console. The user can silence that by
setting it to receive only CRITICAL messages, (which PsychoPy doesn’t use) using the commands:

from psychopy import logging
logging.console.setLevel(logging.CRITICAL)

class psychopy.logging.LogFile(f=None, level=30, filemode=’a’, logger=None, encoding=’utf8’)
A text stream to receive inputs from the logging system

Create a log file as a target for logged entries of a given level

Parameters

• f: this could be a string to a path, that will be created if it doesn’t exist. Alternatively this
could be a file object, sys.stdout or any object that supports .write() and .flush() methods

• level: The minimum level of importance that a message must have to be logged by this
target.

• mode: ‘a’, ‘w’ Append or overwrite existing log file

setLevel(level)
Set a new minimal level for the log file/stream

write(txt)
Write directy to the log file (without using logging functions). Useful to send messages that only this file
receives

psychopy.logging.addLevel(level, levelName)
Associate ‘levelName’ with ‘level’.

This is used when converting levels to text during message formatting.

psychopy.logging.critical(message)
Send the message to any receiver of logging info (e.g. a LogFile) of level log.CRITICAL or higher

psychopy.logging.data(msg, t=None, obj=None)
Log a message about data collection (e.g. a key press)

usage:: log.data(message)

Sends the message to any receiver of logging info (e.g. a LogFile) of level log.DATA or higher

psychopy.logging.debug(msg, t=None, obj=None)
Log a debugging message (not likely to be wanted once experiment is finalised)

usage:: log.debug(message)

Sends the message to any receiver of logging info (e.g. a LogFile) of level log.DEBUG or higher

psychopy.logging.error(message)
Send the message to any receiver of logging info (e.g. a LogFile) of level log.ERROR or higher

psychopy.logging.exp(msg, t=None, obj=None)
Log a message about the experiment (e.g. a new trial, or end of a stimulus)

usage:: log.exp(message)

Sends the message to any receiver of logging info (e.g. a LogFile) of level log.EXP or higher

8.11. psychopy.logging - control what gets logged 129

PsychoPy - Psychology software for Python, Release 1.81.03

psychopy.logging.fatal(msg, t=None, obj=None)
log.critical(message) Send the message to any receiver of logging info (e.g. a LogFile) of level log.CRITICAL
or higher

psychopy.logging.flush(logger=<psychopy.logging._Logger instance at 0x185f120>)
Send current messages in the log to all targets

psychopy.logging.getLevel(level)
Return the textual representation of logging level ‘level’.

If the level is one of the predefined levels (CRITICAL, ERROR, WARNING, INFO, DEBUG) then you get the
corresponding string. If you have associated levels with names using addLevelName then the name you have
associated with ‘level’ is returned.

If a numeric value corresponding to one of the defined levels is passed in, the corresponding string representation
is returned.

Otherwise, the string “Level %s” % level is returned.

psychopy.logging.info(msg, t=None, obj=None)
Log some information - maybe useful, maybe not

usage:: log.info(message)

Sends the message to any receiver of logging info (e.g. a LogFile) of level log.INFO or higher

psychopy.logging.log(msg, level, t=None, obj=None)
Log a message

usage:: log(level, msg, t=t, obj=obj)

Log the msg, at a given level on the root logger

psychopy.logging.setDefaultClock(clock)
Set the default clock to be used to reference all logging times. Must be a psychopy.core.Clock object.
Beware that if you reset the clock during the experiment then the resets will be reflected here. That might be
useful if you want your logs to be reset on each trial, but probably not.

psychopy.logging.warn(msg, t=None, obj=None)
log.warning(message)

Sends the message to any receiver of logging info (e.g. a LogFile) of level log.WARNING or higher

psychopy.logging.warning(message)
Sends the message to any receiver of logging info (e.g. a LogFile) of level log.WARNING or higher

8.11.1 flush()

psychopy.logging.flush(logger=<psychopy.logging._Logger instance at 0x185f120>)
Send current messages in the log to all targets

8.11.2 setDefaultClock()

psychopy.logging.setDefaultClock(clock)
Set the default clock to be used to reference all logging times. Must be a psychopy.core.Clock object.
Beware that if you reset the clock during the experiment then the resets will be reflected here. That might be
useful if you want your logs to be reset on each trial, but probably not.

130 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

8.12 psychopy.microphone - Capture and analyze sound

(Available as of version 1.74.00; Advanced features available as of 1.77.00)

8.12.1 Overview

AudioCapture() allows easy audio recording and saving of arbitrary sounds to a file (wav format). AudioCapture will
likely be replaced entirely by AdvAudioCapture in the near future.

AdvAudioCapture() can do everything AudioCapture does, and also allows onset-marker sound insertion and de-
tection, loudness computation (RMS audio “power”), and lossless file compression (flac). The Builder microphone
component now uses AdvAudioCapture by default.

Speech2Text() provides speech recognition (courtesy of google), with about 1-2 seconds latency for a 2 sec voice
recording. Note that the sound files are sent to google over the internet. Intended for within-experiment processing
(near real-time, 1-2s delayed), in which priority is given to keeping an experiment session moving along, even if that
means skipping a slow response once in a while. See coder demo > input > speech_recognition.py.

Eventually, other features are planned, including: speech onset detection (to automatically estimate vocal RT for
a given speech sample), and interactive visual inspection of sound waveform, with playback and manual onset
determination (= the “gold standard” for RT).

8.12.2 Audio Capture

psychopy.microphone.switchOn(sampleRate=48000, outputDevice=None, bufferSize=None)
You need to switch on the microphone before use, which can take several seconds. The only time you can
specify the sample rate (in Hz) is during switchOn().

Considerations on the default sample rate 48kHz:

DVD or video = 48,000
CD-quality = 44,100 / 24 bit
human hearing: ~15,000 (adult); children & young adult higher
human speech: 100-8,000 (useful for telephone: 100-3,300)
google speech API: 16,000 or 8,000 only
Nyquist frequency: twice the highest rate, good to oversample a bit

pyo’s downsamp() function can reduce 48,000 to 16,000 in about 0.02s (uses integer steps sizes) So recording
at 48kHz will generate high-quality archival data, and permit easy downsampling.

outputDevice, bufferSize: set these parameters on the pyoSndServer before booting; None means use
pyo’s default values

class psychopy.microphone.AdvAudioCapture(name=’advMic’, filename=’‘, saveDir=’‘, sample-
type=0, buffering=16, chnl=0, stereo=True, au-
toLog=True)

Class extends AudioCapture, plays a marker sound as a “start” indicator.

Has method for retrieving the marker onset time from the file, to allow calculation of vocal RT (or other sound-
based RT).

See Coder demo > input > latencyFromTone.py

compress(keep=False)
Compress using FLAC (lossless compression).

getLoudness()
Return the RMS loudness of the saved recording.

8.12. psychopy.microphone - Capture and analyze sound 131

PsychoPy - Psychology software for Python, Release 1.81.03

getMarkerInfo()
Returns (hz, duration, volume) of the marker sound. Custom markers always return 0 hz (regardless of the
sound).

getMarkerOnset(chunk=128, secs=0.5, filename=’‘)
Return (onset, offset) time of the first marker within the first secs of the saved recording.

Has approx ~1.33ms resolution at 48000Hz, chunk=64. Larger chunks can speed up processing times, at
a sacrifice of some resolution, e.g., to pre-process long recordings with multiple markers.

If given a filename, it will first set that file as the one to work with, and then try to detect the onset marker.

playMarker()
Plays the current marker sound. This is automatically called at the start of recording, but can be called
anytime to insert a marker.

playback(block=True, loops=0, stop=False, log=True)
Plays the saved .wav file, as just recorded or resampled. Execution blocks by default, but can return
immediately with block=False.

loops : number of extra repetitions; 0 = play once

stop : True = immediately stop ongoing playback (if there is one), and return

record(sec, filename=’‘, block=False)
Starts recording and plays an onset marker tone just prior to returning. The idea is that the start of the tone
in the recording indicates when this method returned, to enable you to sync a known recording onset with
other events.

resample(newRate=16000, keep=True, log=True)
Re-sample the saved file to a new rate, return the full path.

Can take several visual frames to resample a 2s recording.

The default values for resample() are for google-speech, keeping the original (presumably recorded at
48kHz) to archive. A warning is generated if the new rate not an integer factor / multiple of the old rate.

To control anti-aliasing, use pyo.downsamp() or upsamp() directly.

reset(log=True)
Restores to fresh state, ready to record again

setFile(filename)
Sets the name of the file to work with, e.g., for getting onset time.

setMarker(tone=19000, secs=0.015, volume=0.03, log=True)
Sets the onset marker, where tone is either in hz or a custom sound.

The default tone (19000 Hz) is recommended for auto-detection, as being easier to isolate from speech
sounds (and so reliable to detect). The default duration and volume are appropriate for a quiet setting
such as a lab testing room. A louder volume, longer duration, or both may give better results when
recording loud sounds or in noisy environments, and will be auto-detected just fine (even more easily). If
the hardware microphone in use is not physically near the speaker hardware, a louder volume is likely to
be required.

Custom sounds cannot be auto-detected, but are supported anyway for presentation purposes. E.g., a
recording of someone saying “go” or “stop” could be passed as the onset marker.

stop(log=True)
Interrupt a recording that is in progress; close & keep the file.

Ends the recording before the duration that was initially specified. The same file name is retained, with the
same onset time but a shorter duration.

132 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

The same recording cannot be resumed after a stop (it is not a pause), but you can start a new one.

uncompress(keep=False)
Uncompress from FLAC to .wav format.

8.12.3 Speech recognition

class psychopy.microphone.Speech2Text(filename, lang=’en-US’, timeout=10, samplin-
grate=16000, pro_filter=2, level=0)

Class for speech-recognition (voice to text), using Google’s public API.

Google’s speech API is currently free to use, and seems to work well. Intended for within-experiment processing
(near real-time, 1-2s delayed), in which its often important to skip a slow or failed response, and not wait a long
time; BatchSpeech2Text() reverses these priorities.

It is possible (and perhaps even likely) that Google will start charging for usage. In addition, they can change
the interface at any time, including in the middle of an experiment. (If so, please post to the user list and we’ll
try to develop a fix, but there could still be some downtime.) Presumably, confidential or otherwise sensitive
voice data should not be sent to google.

Note Requires that flac is installed (free download from https://xiph.org/flac/download.html). If you
download and install flac, but get an error that flac is missing, try setting the full path to flac in
preferences -> general -> flac.

Usage

1.Always import and make an object; no data are available yet:

from microphone import Speech2Text
gs = Speech2Text(’speech_clip.wav’) # set-up only

2.Then, either: Initiate a query and wait for response from google (or until the time-out limit is reached).
This is “blocking” mode, and is the easiest to do:

resp = gs.getResponse() # execution blocks here
print resp.word, resp.confidence

3.Or instead (advanced usage): Initiate a query, but do not wait for a response (“thread” mode: no blocking,
no timeout, more control). running will change to False when a response is received (or hang indefinitely
if something goes wrong–so you might want to implement a time-out as well):

resp = gs.getThread() # returns immediately
while resp.running:

print ’.’, # displays dots while waiting
sys.stdout.flush()
core.wait(0.1)

print resp.words

4.Options: Set-up with a different language for the same speech clip; you’ll get a different response (possibly
having UTF-8 characters):

gs = Speech2Text(’speech_clip.wav’, lang=’ja-JP’)
resp = gs.getResponse()

Example See Coder demos / input / speech_recognition.py

Known limitations Availability is subject to the whims of google. Any changes google makes along
the way could either cause complete failure (disruptive), or could cause slightly different results
to be obtained (without it being readily obvious that something had changed). For this reason,

8.12. psychopy.microphone - Capture and analyze sound 133

https://xiph.org/flac/download.html

PsychoPy - Psychology software for Python, Release 1.81.03

its probably a good idea to re-run speech samples through Speech2Text at the end of a study; see
BatchSpeech2Text().

Author Jeremy R. Gray, with thanks to Lefteris Zafiris for his help and excellent command-line perl
script at https://github.com/zaf/asterisk-speech-recog (GPLv2)

Parameters

filename [<required>] name of the speech file (.flac, .wav, or .spx) to process. wav files will be
converted to flac, and for this to work you need to have flac (as an executable). spx format
is speex-with-headerbyte (for google).

lang : the presumed language of the speaker, as a locale code; default ‘en-US’

timeout : seconds to wait before giving up, default 10

samplingrate : the sampling rate of the speech clip in Hz, either 16000 or 8000. You can record
at a higher rate, and then down-sample to 16000 for speech recognition. file is the down-
sampled file, not the original. the sampling rate is auto-detected for .wav files.

pro_filter : profanity filter level; default 2 (e.g., f***)

level : flac compression level (0 less compression but fastest)

getResponse()
Calls getThread(), and then polls the thread until there’s a response.

Will time-out if no response comes within timeout seconds. Returns an object having the speech data in
its namespace. If there’s no match, generally the values will be equivalent to None (e.g., an empty string).

If you do resp = getResponse(), you’ll be able to access the data in several ways:

resp.word : the best match, i.e., the most probably word, or None

resp.confidence : google’s confidence about .word, ranging 0 to 1

resp.words : tuple of up to 5 guesses; so .word == .words[0]

resp.raw : the raw response from google (just a string)

resp.json : a parsed version of raw, from json.load(raw)

getThread()
Send a query to google using a new thread, no blocking or timeout.

Returns a thread which will eventually (not immediately) have the speech data in its namespace; see
getResponse. In theory, you could have several threads going simultaneously (almost all the time is spent
waiting for a response), rather than doing them sequentially (not tested).

class psychopy.microphone.BatchSpeech2Text(files, threads=3, verbose=False)
Like Speech2Text(), but takes a list of sound files or a directory name to search for matching sound files, and
returns a list of (filename, response) tuples. response‘s are described in Speech2Text.getResponse().

Can use up to 5 concurrent threads. Intended for post-experiment processing of multiple files, in which waiting
for a slow response is not a problem (better to get the data).

If files is a string, it will be used as a directory name for glob (matching all *.wav, *.flac, and *.spx files). There’s
currently no re-try on http error.

8.12.4 Misc

PsychoPy provides lossless compression using FLAC codec. (This requires that flac is installed on your computer. It
is not included with PsychoPy by default, but you can download for free from http://xiph.org/flac/). Functions for

134 Chapter 8. Reference Manual (API)

https://github.com/zaf/asterisk-speech-recog
http://xiph.org/flac/

PsychoPy - Psychology software for Python, Release 1.81.03

file-oriented Discrete Fourier Transform and RMS computation are also provided.

psychopy.microphone.wav2flac(path, keep=True, level=5)
Lossless compression: convert .wav file (on disk) to .flac format.

If path is a directory name, convert all .wav files in the directory.

keep to retain the original .wav file(s), default True.

level is compression level: 0 is fastest but larger, 8 is slightly smaller but much slower.

psychopy.microphone.flac2wav(path, keep=True)
Uncompress: convert .flac file (on disk) to .wav format (new file).

If path is a directory name, convert all .flac files in the directory.

keep to retain the original .flac file(s), default True.

psychopy.microphone.getDft(data, sampleRate=None, wantPhase=False)
Compute and return magnitudes of numpy.fft.fft() of the data.

If given a sample rate (samples/sec), will return (magn, freq). If wantPhase is True, phase in radians is also
returned (magn, freq, phase). data should have power-of-2 samples, or will be truncated.

psychopy.microphone.getRMS(data)
Compute and return the audio power (“loudness”).

Uses numpy.std() as RMS. std() is same as RMS if the mean is 0, and .wav data should have a mean of 0.
Returns an array if given stereo data (RMS computed within-channel).

data can be an array (1D, 2D) or filename; .wav format only. data from .wav files will be normalized to -1..+1
before RMS is computed.

8.13 psychopy.misc - miscellaneous routines for converting units
etc

Wrapper for all miscellaneous functions and classes from psychopy.tools

psychopy.misc has gradually grown very large and the underlying code for its functions are distributed in multiple files.
You can still (at least for now) import the functions here using from psychopy import misc but you can also import
them from the tools sub-modules.

8.13.1 From psychopy.tools.filetools

toFile(filename, data) save data (of any sort) as a pickle file
fromFile(filename) load data (of any sort) from a pickle file
mergeFolder(src, dst[, pattern]) Merge a folder into another.

8.13.2 From psychopy.tools.colorspacetools

dkl2rgb(dkl[, conversionMatrix]) Convert from DKL color space (Derrington, Krauskopf & Lennie) to RGB.
dklCart2rgb(LUM, LM, S[, conversionMatrix]) Like dkl2rgb except that it uses cartesian coords (LM,S,LUM) rather than
rgb2dklCart(picture[, conversionMatrix]) Convert an RGB image into Cartesian DKL space
hsv2rgb(hsv_Nx3) Convert from HSV color space to RGB gun values

Continued on next page

8.13. psychopy.misc - miscellaneous routines for converting units etc 135

PsychoPy - Psychology software for Python, Release 1.81.03

Table 8.2 – continued from previous page
lms2rgb(lms_Nx3[, conversionMatrix]) Convert from cone space (Long, Medium, Short) to RGB.
rgb2lms(rgb_Nx3[, conversionMatrix]) Convert from RGB to cone space (LMS)
dkl2rgb(dkl[, conversionMatrix]) Convert from DKL color space (Derrington, Krauskopf & Lennie) to RGB.

8.13.3 From psychopy.tools.coordinatetools

cart2pol(x, y[, units]) Convert from cartesian to polar coordinates
cart2sph(z, y, x) Convert from cartesian coordinates (x,y,z) to spherical (elevation, azimuth, radius).
pol2cart(theta, radius[, units]) Convert from polar to cartesian coordinates
sph2cart(*args) Convert from spherical coordinates (elevation, azimuth, radius)

8.13.4 From psychopy.tools.monitorunittools

convertToPix(vertices, pos, units, win) Takes vertices and position, combines and converts to pixels from any unit
cm2pix(cm, monitor) Convert size in degrees to size in pixels for a given Monitor object
cm2deg(cm, monitor[, correctFlat]) Convert size in cm to size in degrees for a given Monitor object
deg2cm(degrees, monitor[, correctFlat]) Convert size in degrees to size in pixels for a given Monitor object.
deg2pix(degrees, monitor[, correctFlat]) Convert size in degrees to size in pixels for a given Monitor object
pix2cm(pixels, monitor) Convert size in pixels to size in cm for a given Monitor object
pix2deg(pixels, monitor[, correctFlat]) Convert size in pixels to size in degrees for a given Monitor object

8.13.5 From psychopy.tools.imagetools

array2image(a) Takes an array and returns an image object (PIL)
image2array(im) Takes an image object (PIL) and returns a numpy array
makeImageAuto(inarray) Combines float_uint8 and image2array operations ie.

8.13.6 From psychopy.tools.plottools

plotFrameIntervals(intervals) Plot a histogram of the frame intervals.

8.13.7 From psychopy.tools.typetools

float_uint8(inarray) Converts arrays, lists, tuples and floats ranging -1:1
uint8_float(inarray) Converts arrays, lists, tuples and UINTs ranging 0:255
float_uint16(inarray) Converts arrays, lists, tuples and floats ranging -1:1

8.13.8 From psychopy.tools.unittools

radians radians(x[, out])
degrees degrees(x[, out])

136 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

8.14 psychopy.monitors - for those that don’t like Monitor Center

Most users won’t need to use the code here. In general the Monitor Centre interface is sufficient and monitors setup
that way can be passed as strings to Window s. If there is some aspect of the normal calibration that you wish to
override. eg:

from psychopy import visual, monitors
mon = monitors.Monitor(’SonyG55’)#fetch the most recent calib for this monitor
mon.setDistance(114)#further away than normal?
win = visual.Window(size=[1024,768], monitor=mon)

You might also want to fetch the Photometer class for conducting your own calibrations

8.14.1 Monitor

class psychopy.monitors.Monitor(name, width=None, distance=None, gamma=None, notes=None,
useBits=None, verbose=True, currentCalib={}, autoLog=True)

Creates a monitor object for storing calibration details. This will be loaded automatically from disk if the
monitor name is already defined (see methods).

Many settings from the stored monitor can easilly be overridden either by adding them as arguments during the
initial call.

arguments:

•width, distance, gamma are details about the calibration

•notes is a text field to store any useful info

•useBits True, False, None

•verbose True, False, None

•currentCalib is a dict object containing various fields for a calibration. Use with caution since
the dict may not contain all the necessary fields that a monitor object expects to find.

eg:

myMon = Monitor(’sony500’, distance=114) Fetches the info on the sony500 and overrides its
usual distance to be 114cm for this experiment.

myMon = Monitor(’sony500’) followed by...

myMon[’distance’]=114 ...does the same!

For both methods, if you then save any modifications will be saved as well.

copyCalib(calibName=None)
Stores the settings for the current calibration settings as new monitor.

delCalib(calibName)
Remove a specific calibration from the current monitor. Won’t be finalised unless monitor is saved

gammaIsDefault()
Determine whether we’re using the default gamma values

getCalibDate()
As a python date object (convert to string using calibTools.strFromDate

getDKL_RGB(RECOMPUTE=False)
Returns the DKL->RGB conversion matrix. If one has been saved this will be returned. Otherwise, if
power spectra are available for the monitor a matrix will be calculated.

8.14. psychopy.monitors - for those that don’t like Monitor Center 137

PsychoPy - Psychology software for Python, Release 1.81.03

getDistance()
Returns distance from viewer to the screen in cm, or None if not known

getGamma()

getGammaGrid()
Gets the min,max,gamma values for the each gun

getLMS_RGB(RECOMPUTE=False)
Returns the LMS->RGB conversion matrix. If one has been saved this will be returned. Otherwise (if
power spectra are available for the monitor) a matrix will be calculated.

getLevelsPost()
Gets the measured luminance values from last calibration TEST

getLevelsPre()
Gets the measured luminance values from last calibration

getLinearizeMethod()
Gets the min,max,gamma values for the each gun

getLumsPost()
Gets the measured luminance values from last calibration TEST

getLumsPre()
Gets the measured luminance values from last calibration

getMeanLum()

getNotes()
Notes about the calibration

getPsychopyVersion()

getSizePix()
Returns the size of the current calibration in pixels, or None if not defined

getSpectra()
Gets the wavelength values from the last spectrometer measurement (if available)

usage:

• nm, power = monitor.getSpectra()

getUseBits()
Was this calibration carried out witha a bits++ box

getWidth()
Of the viewable screen in cm, or None if not known

lineariseLums(desiredLums, newInterpolators=False, overrideGamma=None)
lums should be uncalibrated luminance values (e.g. a linear ramp) ranging 0:1

newCalib(calibName=None, width=None, distance=None, gamma=None, notes=None,
useBits=False, verbose=True)

create a new (empty) calibration for this monitor and makes this the current calibration

saveMon()
saves the current dict of calibs to disk

setCalibDate(date=None)
Sets the calibration to a given date/time or to the current date/time if none given. (Also returns the date as
set)

138 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

setCurrent(calibration=-1)
Sets the current calibration for this monitor. Note that a single file can hold multiple calibrations each
stored under a different key (the date it was taken)

The argument is either a string (naming the calib) or an integer eg:

myMon.setCurrent’mainCalib’) fetches the calibration named mainCalib calibName
= myMon.setCurrent(0) fetches the first calibration (alphabetically) for this monitor
calibName = myMon.setCurrent(-1) fetches the last alphabetical calib for this moni-
tor (this is default) If default names are used for calibs (ie date/time stamp) then this will import
the most recent.

setDKL_RGB(dkl_rgb)
sets the DKL->RGB conversion matrix for a chromatically calibrated monitor (matrix is a 3x3 num array).

setDistance(distance)
To the screen (cm)

setGamma(gamma)
Sets the gamma value(s) for the monitor. This only uses a single gamma value for the three guns, which is
fairly approximate. Better to use setGammaGrid (which uses one gamma value for each gun)

setGammaGrid(gammaGrid)
Sets the min,max,gamma values for the each gun

setLMS_RGB(lms_rgb)
sets the LMS->RGB conversion matrix for a chromatically calibrated monitor (matrix is a 3x3 num array).

setLevelsPost(levels)
Sets the last set of luminance values measured AFTER calibration

setLevelsPre(levels)
Sets the last set of luminance values measured during calibration

setLineariseMethod(method)
Sets the method for linearising 0 uses y=a+(bx)^gamma 1 uses y=(a+bx)^gamma 2 uses linear interpola-
tion over the curve

setLumsPost(lums)
Sets the last set of luminance values measured AFTER calibration

setLumsPre(lums)
Sets the last set of luminance values measured during calibration

setMeanLum(meanLum)
Records the mean luminance (for reference only)

setNotes(notes)
For you to store notes about the calibration

setPsychopyVersion(version)

setSizePix(pixels)

setSpectra(nm, rgb)
sets the phosphor spectra measured by the spectrometer

setUseBits(usebits)

setWidth(width)
Of the viewable screen (cm)

8.14. psychopy.monitors - for those that don’t like Monitor Center 139

PsychoPy - Psychology software for Python, Release 1.81.03

8.14.2 GammaCalculator

class psychopy.monitors.GammaCalculator(inputs=[], lums=[], gamma=None, bitsIN=8, bit-
sOUT=8, eq=1)

Class for managing gamma tables

Parameters:

•inputs (required)= values at which you measured screen luminance either in range 0.0:1.0, or range
0:255. Should include the min and max of the monitor

Then give EITHER “lums” or “gamma”:

•lums = measured luminance at given input levels

•gamma = your own gamma value (single float)

•bitsIN = number of values in your lookup table

•bitsOUT = number of bits in the DACs

myTable.gammaModel myTable.gamma

fitGammaErrFun(params, x, y, minLum, maxLum)
Provides an error function for fitting gamma function

(used by fitGammaFun)

fitGammaFun(x, y)
Fits a gamma function to the monitor calibration data.

Parameters: -xVals are the monitor look-up-table vals (either 0-255 or 0.0-1.0) -yVals are the measured
luminances from a photometer/spectrometer

8.14.3 getAllMonitors()

psychopy.monitors.getAllMonitors()
Find the names of all monitors for which calibration files exist

8.14.4 findPR650()

psychopy.monitors.findPR650(ports=None)
DEPRECATED (as of v.1.60.01). Use psychopy.hardware.findPhotometer() instead, which finds
a wider range of devices

8.14.5 getLumSeriesPR650()

psychopy.monitors.getLumSeriesPR650(lumLevels=8, winSize=(800, 600), monitor=None,
gamma=1.0, allGuns=True, useBits=False, auto-
Mode=’auto’, stimSize=0.3, photometer=’COM1’)

DEPRECATED (since v1.60.01): Use psychopy.monitors.getLumSeries() instead

140 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

8.14.6 getRGBspectra()

psychopy.monitors.getRGBspectra(stimSize=0.3, winSize=(800, 600), photometer=’COM1’)

usage: getRGBspectra(stimSize=0.3, winSize=(800,600), photometer=’COM1’)

Params

• ‘photometer’ could be a photometer object or a serial port name on which

a photometer might be found (not recommended)

8.14.7 gammaFun()

psychopy.monitors.gammaFun(xx, minLum, maxLum, gamma, eq=1, a=None, b=None, k=None)
Returns gamma-transformed luminance values. y = gammaFun(x, minLum, maxLum, gamma)

a and b are calculated directly from minLum, maxLum, gamma

Parameters:

•xx are the input values (range 0-255 or 0.0-1.0)

•minLum = the minimum luminance of your monitor

•maxLum = the maximum luminance of your monitor (for this gun)

•gamma = the value of gamma (for this gun)

8.14.8 gammaInvFun()

psychopy.monitors.gammaInvFun(yy, minLum, maxLum, gamma, b=None, eq=1)
Returns inverse gamma function for desired luminance values. x = gammaInvFun(y, minLum, maxLum,
gamma)

a and b are calculated directly from minLum, maxLum, gamma Parameters:

•xx are the input values (range 0-255 or 0.0-1.0)

•minLum = the minimum luminance of your monitor

•maxLum = the maximum luminance of your monitor (for this gun)

•gamma = the value of gamma (for this gun)

•eq determines the gamma equation used; eq==1[default]: yy = a + (b*xx)**gamma eq==2: yy = (a +
b*xx)**gamma

8.14.9 makeDKL2RGB()

psychopy.monitors.makeDKL2RGB(nm, powerRGB)
creates a 3x3 DKL->RGB conversion matrix from the spectral input powers

8.14.10 makeLMS2RGB()

psychopy.monitors.makeLMS2RGB(nm, powerRGB)
Creates a 3x3 LMS->RGB conversion matrix from the spectral input powers

8.14. psychopy.monitors - for those that don’t like Monitor Center 141

PsychoPy - Psychology software for Python, Release 1.81.03

8.15 psychopy.parallel - functions for interacting with the parallel
port

This module provides read/write access to the parallel port for Linux or Windows.

The Parallel class described below will attempt to load whichever parallel port driver is first found on your system
and should suffice in most instances. If you need to use a specific driver then, instead of using ParallelPort
shown below you can use one of the following as drop-in replacemnts, forcing the use of a specific driver:

• psychopy.parallel.PParallelInpOut32

• psychopy.parallel.PParallelDLPortIO

• psychopy.parallel.PParallelLinux

Either way, each instance of the class can provide access to a different parallel port.

There is also a legacy API which consists of the routines which are directly in this module. That API assumes you
only ever want to use a single parallel port at once.

class psychopy.parallel.ParallelPort
This class provides read/write access to the parallel port on Windows & Linux

Usage:

from psychopy import parallel
port = parallel.ParallelPort(address=0x0378)
port.setData(4)
port.readPin(2)
port.setPin(2, 1)

readData()
Return the value currently set on the data pins (2-9)

readPin(pinNumber)
Determine whether a desired (input) pin is high(1) or low(0).

Pins 2-13 and 15 are currently read here

setData(data)
Set the data to be presented on the parallel port (one ubyte). Alternatively you can set the value of each
pin (data pins are pins 2-9 inclusive) using setPin()

examples:

parallel.setData(0) # sets all pins low
parallel.setData(255) # sets all pins high
parallel.setData(2) # sets just pin 3 high (remember that pin2=bit0)
parallel.setData(3) # sets just pins 2 and 3 high

you can also convert base 2 to int v easily in python:

parallel.setData(int("00000011",2))#pins 2 and 3 high
parallel.setData(int("00000101",2))#pins 2 and 4 high

8.15.1 Legacy functions

We would strongly recommend you use the class above instead: these are provided for backwards compatibility only.

142 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

static parallel.setPortAddress(address=888)
Set the memory address or device node for your parallel port of your parallel port, to be used in subsequent
commands

common port addresses:

LPT1 = 0x0378 or 0x03BC
LPT2 = 0x0278 or 0x0378
LPT3 = 0x0278

or for Linux:: /dev/parport0

This routine will attempt to find a usable driver depending on your platform

static parallel.setData(data)
Set the data to be presented on the parallel port (one ubyte). Alternatively you can set the value of each pin (data
pins are pins 2-9 inclusive) using setPin()

examples:

parallel.setData(0) #sets all pins low
parallel.setData(255) #sets all pins high
parallel.setData(2) #sets just pin 3 high (remember that pin2=bit0)
parallel.setData(3) #sets just pins 2 and 3 high

you can also convert base 2 to int v easily in python:

parallel.setData(int("00000011",2))#pins 2 and 3 high
parallel.setData(int("00000101",2))#pins 2 and 4 high

static parallel.setPin(pinNumber, state)
Set a desired pin to be high(1) or low(0).

Only pins 2-9 (incl) are normally used for data output:

parallel.setPin(3, 1)#sets pin 3 high
parallel.setPin(3, 0)#sets pin 3 low

static parallel.readPin(pinNumber)
Determine whether a desired (input) pin is high(1) or low(0).

Pins 2-13 and 15 are currently read here

8.16 psychopy.serial - functions for interacting with the serial port

PsychoPy is compatible with Chris Liechti’s pyserial package. You can use it like this:

import serial
ser = serial.Serial(0, 19200, timeout=1) # open first serial port
#ser = serial.Serial(’/dev/ttyS1’, 19200, timeout=1)#or something like this for Mac/Linux machines
ser.write(’someCommand’)
line = ser.readline() # read a ’\n’ terminated line
ser.close()

Ports are fully configurable with all the options you would expect of RS232 communications. See
http://pyserial.sourceforge.net for further details and documentation.

pyserial is packaged in the Standalone (Windows and Mac distributions), for manual installations you should install
this yourself.

8.16. psychopy.serial - functions for interacting with the serial port 143

http://pyserial.sourceforge.net
http://pyserial.sourceforge.net

PsychoPy - Psychology software for Python, Release 1.81.03

8.17 psychopy.sound - play various forms of sound

8.17.1 Sound

PsychoPy currently supports a choice of two sound libraries: pyo, or pygame. Select which will be used via the
audioLib preference. sound.Sound() will then refer to either SoundPyo or SoundPygame. This can be set on a per-
experiment basis by importing preferences, and setting the audioLib preference to use.

It is important to use sound.Sound() in order for proper initialization of the relevant sound library. Do not use
sound.SoundPyo or sound.SoundPygame directly. Because they offer slightly different features, the differences be-
tween pyo and pygame sounds are described here. Pygame sound is more thoroughly tested, whereas pyo offers lower
latency and more features.

class psychopy.sound.SoundPyo(value=’C’, secs=0.5, octave=4, stereo=True, volume=1.0, loops=0,
sampleRate=44100, bits=16, hamming=True, start=0, stop=-1,
name=’‘, autoLog=True)

Create a sound object, from one of MANY ways.

value: can be a number, string or an array:

• If it’s a number between 37 and 32767 then a tone will be generated at that frequency in Hz.

• It could be a string for a note (‘A’,’Bfl’,’B’,’C’,’Csh’...). Then you may want to specify which octave
as well

• Or a string could represent a filename in the current location, or mediaLocation, or a full path combo

• Or by giving an Nx2 numpy array of floats (-1:1) you can specify the sound yourself as a waveform

By default, a Hamming window (5ms duration) will be applied to a generated tone, so that onset and offset
are smoother (to avoid clicking). To disable the Hamming window, set hamming=False.

secs: Duration of a tone. Not used for sounds from a file.

start [float] Where to start playing a sound file; default = 0s (start of the file).

stop [float] Where to stop playing a sound file; default = end of file.

octave: is only relevant if the value is a note name. Middle octave of a piano is 4. Most computers won’t
output sounds in the bottom octave (1) and the top octave (8) is generally painful

stereo: True (= default, two channels left and right), False (one channel)

volume: loudness to play the sound, from 0.0 (silent) to 1.0 (max). Adjustments are not possible during
playback, only before.

loops [int] How many times to repeat the sound after it plays once. If loops == -1, the sound will repeat
indefinitely until stopped.

sampleRate (= 44100): if the psychopy.sound.init() function has been called or if another sound has al-
ready been created then this argument will be ignored and the previous setting will be used

bits: has no effect for the pyo backend

hamming: whether to apply a Hamming window (5ms) for generated tones. Not applied to sounds from
files.

getDuration()
Return the duration of the sound

getLoops()
Returns the current requested loops value for the sound (int)

144 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

getVolume()
Returns the current volume of the sound (0.0 to 1.0, inclusive)

play(loops=None, autoStop=True, log=True)
Starts playing the sound on an available channel.

loops [int] (same as above)

For playing a sound file, you cannot specify the start and stop times when playing the sound, only when
creating the sound initially.

Playing a sound runs in a separate thread i.e. your code won’t wait for the sound to finish before continuing.
To pause while playing, you need to use a psychopy.core.wait(mySound.getDuration()). If you call play()
while something is already playing the sounds will be played over each other.

setLoops(newLoops, log=True)
Sets the current requested extra loops (int)

setVolume(newVol, log=True)
Sets the current volume of the sound (0.0 to 1.0, inclusive)

stop(log=True)
Stops the sound immediately

class psychopy.sound.SoundPygame(value=’C’, secs=0.5, octave=4, sampleRate=44100, bits=16,
name=’‘, autoLog=True)

Create a sound object, from one of many ways.

Parameters

value: can be a number, string or an array:

• If it’s a number between 37 and 32767 then a tone will be generated at that frequency in
Hz.

• It could be a string for a note (‘A’,’Bfl’,’B’,’C’,’Csh’...). Then you may want to specify
which octave as well

• Or a string could represent a filename in the current location, or mediaLocation, or a full
path combo

• Or by giving an Nx2 numpy array of floats (-1:1) you can specify the sound yourself as a
waveform

secs: duration (only relevant if the value is a note name or a frequency value)

octave: is only relevant if the value is a note name. Middle octave of a piano is 4. Most com-
puters won’t output sounds in the bottom octave (1) and the top octave (8) is generally
painful

sampleRate(=44100): If a sound has already been created or if the

bits(=16): Pygame uses the same bit depth for all sounds once initialised

fadeOut(mSecs)
fades out the sound (when playing) over mSecs. Don’t know why you would do this in psychophysics but
it’s easy and fun to include as a possibility :)

getDuration()
Get’s the duration of the current sound in secs

getVolume()
Returns the current volume of the sound (0.0:1.0)

8.17. psychopy.sound - play various forms of sound 145

PsychoPy - Psychology software for Python, Release 1.81.03

play(fromStart=True, log=True, loops=None)
Starts playing the sound on an available channel.

fromStart [bool] Not yet implemented.

log [bool] Whether or not to log the playback event.

loops [int] How many times to repeat the sound after it plays once. If loops == -1, the sound will repeat
indefinitely until stopped.

If no sound channels are available, it will not play and return None. This runs off a separate thread i.e.
your code won’t wait for the sound to finish before continuing. You need to use a psychopy.core.wait()
command if you want things to pause. If you call play() whiles something is already playing the sounds
will be played over each other.

setVolume(newVol, log=True)
Sets the current volume of the sound (0.0:1.0)

stop(log=True)
Stops the sound immediately

8.18 psychopy.tools - miscellaneous tools

Container for all miscellaneous functions and classes

8.18.1 psychopy.tools.colorspacetools

Functions and classes related to color space conversion

dkl2rgb(dkl[, conversionMatrix]) Convert from DKL color space (Derrington, Krauskopf & Lennie) to RGB.
dklCart2rgb(LUM, LM, S[, conversionMatrix]) Like dkl2rgb except that it uses cartesian coords (LM,S,LUM) rather than
rgb2dklCart(picture[, conversionMatrix]) Convert an RGB image into Cartesian DKL space
hsv2rgb(hsv_Nx3) Convert from HSV color space to RGB gun values
lms2rgb(lms_Nx3[, conversionMatrix]) Convert from cone space (Long, Medium, Short) to RGB.
rgb2lms(rgb_Nx3[, conversionMatrix]) Convert from RGB to cone space (LMS)
dkl2rgb(dkl[, conversionMatrix]) Convert from DKL color space (Derrington, Krauskopf & Lennie) to RGB.

Function details

psychopy.tools.colorspacetools.dkl2rgb(dkl, conversionMatrix=None)
Convert from DKL color space (Derrington, Krauskopf & Lennie) to RGB.

Requires a conversion matrix, which will be generated from generic Sony Trinitron phosphors if not supplied
(note that this will not be an accurate representation of the color space unless you supply a conversion matrix).

usage:

rgb(Nx3) = dkl2rgb(dkl_Nx3(el,az,radius), conversionMatrix)
rgb(NxNx3) = dkl2rgb(dkl_NxNx3(el,az,radius), conversionMatrix)

psychopy.tools.colorspacetools.dklCart2rgb(LUM, LM, S, conversionMatrix=None)
Like dkl2rgb except that it uses cartesian coords (LM,S,LUM) rather than spherical coords for DKL (elev, azim,
contr)

NB: this may return rgb values >1 or <-1

146 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

psychopy.tools.colorspacetools.rgb2dklCart(picture, conversionMatrix=None)
Convert an RGB image into Cartesian DKL space

psychopy.tools.colorspacetools.hsv2rgb(hsv_Nx3)
Convert from HSV color space to RGB gun values

usage:

rgb_Nx3 = hsv2rgb(hsv_Nx3)

Note that in some uses of HSV space the Hue component is given in radians or cycles (range 0:1]). In this
version H is given in degrees (0:360).

Also note that the RGB output ranges -1:1, in keeping with other PsychoPy functions

psychopy.tools.colorspacetools.lms2rgb(lms_Nx3, conversionMatrix=None)
Convert from cone space (Long, Medium, Short) to RGB.

Requires a conversion matrix, which will be generated from generic Sony Trinitron phosphors if not supplied
(note that you will not get an accurate representation of the color space unless you supply a conversion matrix)

usage:

rgb_Nx3 = lms2rgb(dkl_Nx3(el,az,radius), conversionMatrix)

psychopy.tools.colorspacetools.rgb2lms(rgb_Nx3, conversionMatrix=None)
Convert from RGB to cone space (LMS)

Requires a conversion matrix, which will be generated from generic Sony Trinitron phosphors if not supplied
(note that you will not get an accurate representation of the color space unless you supply a conversion matrix)

usage:

lms_Nx3 = rgb2lms(rgb_Nx3(el,az,radius), conversionMatrix)

psychopy.tools.colorspacetools.dkl2rgb(dkl, conversionMatrix=None)
Convert from DKL color space (Derrington, Krauskopf & Lennie) to RGB.

Requires a conversion matrix, which will be generated from generic Sony Trinitron phosphors if not supplied
(note that this will not be an accurate representation of the color space unless you supply a conversion matrix).

usage:

rgb(Nx3) = dkl2rgb(dkl_Nx3(el,az,radius), conversionMatrix)
rgb(NxNx3) = dkl2rgb(dkl_NxNx3(el,az,radius), conversionMatrix)

8.18.2 psychopy.tools.coordinatetools

Functions and classes related to coordinate system conversion

cart2pol(x, y[, units]) Convert from cartesian to polar coordinates
cart2sph(z, y, x) Convert from cartesian coordinates (x,y,z) to spherical (elevation, azimuth, radius).
pol2cart(theta, radius[, units]) Convert from polar to cartesian coordinates
sph2cart(*args) Convert from spherical coordinates (elevation, azimuth, radius)

Function details

psychopy.tools.coordinatetools.cart2pol(x, y, units=’deg’)
Convert from cartesian to polar coordinates

8.18. psychopy.tools - miscellaneous tools 147

PsychoPy - Psychology software for Python, Release 1.81.03

Usage theta, radius = pol2cart(x, y, units=’deg’)

units refers to the units (rad or deg) for theta that should be returned

psychopy.tools.coordinatetools.cart2sph(z, y, x)
Convert from cartesian coordinates (x,y,z) to spherical (elevation, azimuth, radius). Output is in degrees.

usage: array3xN[el,az,rad] = cart2sph(array3xN[x,y,z]) OR elevation, azimuth, radius = cart2sph(x,y,z)

If working in DKL space, z = Luminance, y = S and x = LM

psychopy.tools.coordinatetools.pol2cart(theta, radius, units=’deg’)
Convert from polar to cartesian coordinates

usage:

x,y = pol2cart(theta, radius, units=’deg’)

psychopy.tools.coordinatetools.sph2cart(*args)
Convert from spherical coordinates (elevation, azimuth, radius) to cartesian (x,y,z)

usage: array3xN[x,y,z] = sph2cart(array3xN[el,az,rad]) OR x,y,z = sph2cart(elev, azim, radius)

8.18.3 psychopy.tools.filetools

Functions and classes related to file and directory handling

psychopy.tools.filetools.toFile(filename, data)
save data (of any sort) as a pickle file

simple wrapper of the cPickle module in core python

psychopy.tools.filetools.fromFile(filename)
load data (of any sort) from a pickle file

simple wrapper of the cPickle module in core python

psychopy.tools.filetools.mergeFolder(src, dst, pattern=None)
Merge a folder into another.

Existing files in dst folder with the same name will be overwritten. Non-existent files/folders will be created.

8.18.4 psychopy.tools.imagetools

Functions and classes related to image handling

array2image(a) Takes an array and returns an image object (PIL)
image2array(im) Takes an image object (PIL) and returns a numpy array
makeImageAuto(inarray) Combines float_uint8 and image2array operations ie.

Function details

psychopy.tools.imagetools.array2image(a)
Takes an array and returns an image object (PIL)

psychopy.tools.imagetools.image2array(im)
Takes an image object (PIL) and returns a numpy array

psychopy.tools.imagetools.makeImageAuto(inarray)

148 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

Combines float_uint8 and image2array operations ie. scales a numeric array from -1:1 to 0:255 and converts to
PIL image format

8.18.5 psychopy.tools.monitorunittools

Functions and classes related to unit conversion respective to a particular monitor

convertToPix(vertices, pos, units, win) Takes vertices and position, combines and converts to pixels from any unit
cm2deg(cm, monitor[, correctFlat]) Convert size in cm to size in degrees for a given Monitor object
cm2pix(cm, monitor) Convert size in degrees to size in pixels for a given Monitor object
deg2cm(degrees, monitor[, correctFlat]) Convert size in degrees to size in pixels for a given Monitor object.
deg2pix(degrees, monitor[, correctFlat]) Convert size in degrees to size in pixels for a given Monitor object
pix2cm(pixels, monitor) Convert size in pixels to size in cm for a given Monitor object
pix2deg(pixels, monitor[, correctFlat]) Convert size in pixels to size in degrees for a given Monitor object

Function details

psychopy.tools.monitorunittools.convertToPix(vertices, pos, units, win)
Takes vertices and position, combines and converts to pixels from any unit

The reason that pos and vertices are provided separately is that it allows the conversion from deg to apply
flat-screen correction to each separately.

The reason that these use function args rather than relying on self.pos is that some stimuli use other terms (e.g.
ElementArrayStim uses fieldPos).

psychopy.tools.monitorunittools.cm2deg(cm, monitor, correctFlat=False)
Convert size in cm to size in degrees for a given Monitor object

psychopy.tools.monitorunittools.cm2pix(cm, monitor)
Convert size in degrees to size in pixels for a given Monitor object

psychopy.tools.monitorunittools.deg2cm(degrees, monitor, correctFlat=False)
Convert size in degrees to size in pixels for a given Monitor object.

If correctFlat==False then the screen will be treated as if all points are equal distance from the eye. This means
that each “degree” will be the same size irrespective of its position.

If correctFlat==True then the degrees argument must be an Nx2 matrix for X and Y values (the two cannot be
calculated separately in this case).

With correctFlat==True the positions may look strange because more eccentric vertices will be spaced further
apart.

psychopy.tools.monitorunittools.deg2pix(degrees, monitor, correctFlat=False)
Convert size in degrees to size in pixels for a given Monitor object

psychopy.tools.monitorunittools.pix2cm(pixels, monitor)
Convert size in pixels to size in cm for a given Monitor object

psychopy.tools.monitorunittools.pix2deg(pixels, monitor, correctFlat=False)
Convert size in pixels to size in degrees for a given Monitor object

8.18.6 psychopy.tools.plottools

Functions and classes related to plotting

8.18. psychopy.tools - miscellaneous tools 149

PsychoPy - Psychology software for Python, Release 1.81.03

psychopy.tools.plottools.plotFrameIntervals(intervals)
Plot a histogram of the frame intervals.

Where intervals is either a filename to a file, saved by Window.saveFrameIntervals or simply a list (or array) of
frame intervals

8.18.7 psychopy.tools.typetools

Functions and classes related to variable type conversion

psychopy.tools.typetools.float_uint8(inarray)
Converts arrays, lists, tuples and floats ranging -1:1 into an array of Uint8s ranging 0:255

>>> float_uint8(-1)
0
>>> float_uint8(0)
128

psychopy.tools.typetools.uint8_float(inarray)
Converts arrays, lists, tuples and UINTs ranging 0:255 into an array of floats ranging -1:1

>>> uint8_float(0)
-1.0
>>> uint8_float(128)
0.0

psychopy.tools.typetools.float_uint16(inarray)
Converts arrays, lists, tuples and floats ranging -1:1 into an array of Uint16s ranging 0:2^16

>>> float_uint16(-1)
0
>>> float_uint16(0)
32768

8.18.8 psychopy.tools.unittools

Functions and classes related to unit conversion

psychopy.tools.unittools.radians(x[, out])
Convert angles from degrees to radians.

x [array_like] Input array in degrees.

out [ndarray, optional] Output array of same shape as x.

y [ndarray] The corresponding radian values.

deg2rad : equivalent function

Convert a degree array to radians

>>> deg = np.arange(12.) * 30.
>>> np.radians(deg)
array([0. , 0.52359878, 1.04719755, 1.57079633, 2.0943951 ,

2.61799388, 3.14159265, 3.66519143, 4.1887902 , 4.71238898,
5.23598776, 5.75958653])

150 Chapter 8. Reference Manual (API)

PsychoPy - Psychology software for Python, Release 1.81.03

>>> out = np.zeros((deg.shape))
>>> ret = np.radians(deg, out)
>>> ret is out
True

psychopy.tools.unittools.degrees(x[, out])
Convert angles from radians to degrees.

x [array_like] Input array in radians.

out [ndarray, optional] Output array of same shape as x.

y [ndarray of floats] The corresponding degree values; if out was supplied this is a reference to it.

rad2deg : equivalent function

Convert a radian array to degrees

>>> rad = np.arange(12.)*np.pi/6
>>> np.degrees(rad)
array([0., 30., 60., 90., 120., 150., 180., 210., 240.,

270., 300., 330.])

>>> out = np.zeros((rad.shape))
>>> r = degrees(rad, out)
>>> np.all(r == out)
True

8.19 psychopy.web - Web methods

8.19.1 Test for access

psychopy.web.haveInternetAccess(forceCheck=False)
Detect active internet connection or fail quickly.

If forceCheck is False, will rely on a cached value if possible.

psychopy.web.requireInternetAccess(forceCheck=False)
Checks for access to the internet, raise error if no access.

8.19.2 Upload a file over http

psychopy.web.upload(selector, filename, basicAuth=None, host=None, https=False, log=True)
Upload a local file over the internet to a configured http server.

This method handshakes with a php script on a remote server to transfer a local file to another machine via http
(using POST).

Returns “success” plus a sha256 digest of the file on the server and a byte count. If the upload was not successful,
an error code is returned (eg, “too_large” if the file size exceeds the limit specified server-side in up.php, or
“no_file” if there was no POST attachment).

Note: The server that receives the files needs to be configured before uploading will work. php files and notes
for a sys-admin are included in psychopy/contrib/http/. In particular, the php script up.php needs to be copied to
the server’s web-space, with appropriate permissions and directories, including apache basic auth and https (if
desired). The maximum size for an upload can be configured within up.php

8.19. psychopy.web - Web methods 151

PsychoPy - Psychology software for Python, Release 1.81.03

A configured test-server is available; see the Coder demo for details (upload size is limited to ~1500 characters
for the demo).

Parameters:

selector [(required, string)] a standard URL of the form http://host/path/to/up.php, e.g.,
http://upload.psychopy.org/test/up.php

Note: Limited https support is provided (see below).

filename [(required, string)] the path to the local file to be transferred. The file can be any format:
text, utf-8, binary. All files are hex encoded while in transit (increasing the effective file size).

Note: Encryption (beta) is available as a separate step. That is, first encrypt() the file, then
upload() the encrypted file in the same way that you would any other file.

basicAuth [(optional)] apache ‘user:password’ string for basic authentication. If a basicAuth value
is supplied, it will be sent as the auth credentials (in cleartext); using https will encrypt the
credentials.

host [(optional)] The default process is to extract host information from the selector. The host option
allows you to specify a host explicitly (i.e., if it differs from the selector).

https [(optional)] If the remote server is configured to use https, passing the parameter https=True
will encrypt the transmission including all data and basicAuth credentials. It is approximately as
secure as using a self-signed X.509 certificate.

An important caveat is that the authenticity of the certificate returned from the server is not
checked, and so the certificate could potentially be spoofed (see the warning under HTTPSCon-
nection http://docs.python.org/library/httplib.html). Overall, using https can still be much more
secure than not using it. The encryption is good, but that of itself does not eliminate all risk.
Importantly, it is not as secure as one might expect, given that all major web browsers do check
certificate authenticity. The idea behind this parameter is to require people to explicitly indicate
that they want to proceed anyway, in effect saying “I know what I am doing and accept the risks
(of using un-verified certificates)”.

Example:

See Coder demo / misc / http_upload.py

Author: Jeremy R. Gray, 2012

8.19.3 Proxy set-up and testing

psychopy.web.setupProxy(log=True)
Set up the urllib proxy if possible.

The function will use the following methods in order to try and determine proxies:

1. standard urllib2.urlopen (which will use any statically-defined http-proxy settings)

2. previous stored proxy address (in prefs)

3. proxy.pac files if these have been added to system settings

4. auto-detect proxy settings (WPAD technology)

Returns True (success) or False (failure)

152 Chapter 8. Reference Manual (API)

http://docs.python.org/library/httplib.html

PsychoPy - Psychology software for Python, Release 1.81.03

Further information:

8.19. psychopy.web - Web methods 153

PsychoPy - Psychology software for Python, Release 1.81.03

154 Chapter 8. Reference Manual (API)

CHAPTER

NINE

TROUBLESHOOTING

Regrettably, PsychoPy is not bug-free. Running on all possible hardware and all platforms is a big ask. That said, a
huge number of bugs have been resolved by the fact that there are literally 1000s of people using the software that
have contributed either bug reports and/or fixes.

Below are some of the more common problems and their workarounds, as well as advice on how to get further help.

9.1 The application doesn’t start

You may find that you try to launch the PsychoPy application, the splash screen appears and then goes away and
nothing more happens. What this means is that an error has occurred during startup itself.

Commonly, the problem is that a preferences file is somehow corrupt. To fix that see Cleaning preferences and app
data, below.

If resetting the preferences files doesn’t help then we need to get to an error message in order to work out why the
application isn’t starting. The way to get that message depends on the platform (see below).

Windows users (starting from the Command Prompt):

1. Did you get an error message that “This application failed to start because the application configuration is
incorrect. Reinstalling the application may fix the problem”? If so that indicates you need to update your .NET
installation to SP1 .

2. open a DOS Command Prompt (terminal):

(a) go to the Windows Start menu

(b) select Run... and type in cmd <Return>

3. paste the following into that window (Ctrl-V doesn’t work but you can right-click and select Paste). Replace
VERSION with your version number (e.g. 1.61.03):

"C:\Program Files\PsychoPy2\python.exe" "C:\Program Files\PsychoPy2\Lib\site-packages\PsychoPy-VERSION-py2.6.egg\psychopy\app\psychopyApp.py"

4. when you hit <return> you will hopefully get a moderately useful error message that you can Contribute to the
Forum (mailing list)

Mac users:

1. open the Console app (open spotlight and type console)

2. if there are a huge number of messages there you might find it easiest to clear them (the brush icon) and
then start PsychoPy again to generate a new set of messages

155

http://www.microsoft.com/download/en/details.aspx?id=33
http://www.microsoft.com/download/en/details.aspx?id=33

PsychoPy - Psychology software for Python, Release 1.81.03

9.2 I run a Builder experiment and nothing happens

An error message may have appeared in a dialog box that is hidden (look to see if you have other open windows
somewhere).

An error message may have been generated that was sent to output of the Coder view:

1. go to the Coder view (from the Builder>View menu if not visible)

2. if there is no Output panel at the bottom of the window, go to the View menu and select Output

3. try running your experiment again and see if an error message appears in this Output view

If you still don’t get an error message but the application still doesn’t start then manually turn off the viewing of
the Output (as below) and try the above again.

9.3 Manually turn off the viewing of output

Very occasionally an error will occur that crashes the application after the application has opened the Coder Output
window. In this case the error message is still not sent to the console or command prompt.

To turn off the Output view so that error messages are sent to the command prompt/terminal on startup, open your
appData.cfg file (see Cleaning preferences and app data), find the entry:

[coder]
showOutput = True

and set it to showOutput = False (note the capital ‘F’).

9.4 Use the source (Luke?)

PsychoPy comes with all the source code included. You may not think you’re much of a programmer, but have a go at
reading the code. You might find you understand more of it than you think!

To have a look at the source code do one of the following:

• when you get an error message in the Coder click on the hyperlinked error lines to see the relevant code

• on Windows

– go to Program FilesPsychoPy2Libsite-packagesPsychopy

– have a look at some of the files there

• on Mac

– right click the PsychoPy app and select Show Package Contents

– navigate to Contents/Resources/lib/python2.6/psychopy

9.5 Cleaning preferences and app data

Every time you shut down PsychoPy (by normal means) your current preferences and the state of the application (the
location and state of the windows) are saved to disk. If PsychoPy is crashing during startup you may need to edit those
files or delete them completely.

156 Chapter 9. Troubleshooting

PsychoPy - Psychology software for Python, Release 1.81.03

On OS X and Linux the files are:

~/.psychopy2/appData.cfg
~/.psychopy2/userPrefs.cfg

On Windows they are:

${DOCS AND SETTINGS}\{USER}\Application Data\psychopy2\appData.cfg
${DOCS AND SETTINGS}\{USER}\Application Data\psychopy2\userPrefs.cfg

The files are simple text, which you should be able to edit in any text editor. Particular changes that you might need to
make:

If the problem is that you have a corrupt experiment file or script that is trying and failing to load on startup, you
could simply delete the appData.cfg file. Please also Contribute to the Forum (mailing list) a copy of the file that isn’t
working so that the underlying cause of the problem can be investigated (google first to see if it’s a known issue).

9.5. Cleaning preferences and app data 157

PsychoPy - Psychology software for Python, Release 1.81.03

158 Chapter 9. Troubleshooting

CHAPTER

TEN

RECIPES (“HOW-TO”S)

Below are various tips/tricks/recipes/how-tos for PsychoPy. They involve something that is a little more involved than
you would find in FAQs, but too specific for the manual as such (should they be there?).

10.1 Adding external modules to Standalone PsychoPy

You might find that you want to add some additional Python module/package to your Standalone version of PsychoPy.
To do this you need to:

• download a copy of the package (make sure it’s for Python 2.7 on your particular platform)

• unzip/open it into a folder

• add that folder to the path of PsychoPy by one of the methods below

Avoid adding the entire path (e.g. the site-packages folder) of separate installation of Python, because that may contain
conflicting copies of modules that PsychoPy is also providing.

10.1.1 Using preferences

As of version 1.70.00 you can do this using the PsychoPy preferences/general. There you will find preference for
paths which can be set to a list of strings e.g. [’/Users/jwp/code’, ‘~/code/thirdParty’]

These only get added to the Python path when you import psychopy (or one of the psychopy packages) in your script.

10.1.2 Adding a .pth file

An alternative is to add a file into the site-packages folder of your application. This file should be pure text and have
the extension .pth to indicate to Python that it adds to the path.

On win32 the site-packages folder will be something like:

C:/Program Files/PsychoPy2/lib/site-packages

On OS X you need to right-click the application icon, select ‘Show Package Contents’ and then navigate down to
Contents/Resources/lib/python2.6. Put your .pth file here, next to the various libraries.

The advantage of this method is that you don’t need to do the import psychopy step. The downside is that when you
update PsychoPy to a new major release you’ll need to repeat this step (patch updates won’t affect it though).

159

PsychoPy - Psychology software for Python, Release 1.81.03

10.2 Animation

General question: How can I animate something?

Conceptually, animation just means that you vary some aspect of the stimulus over time. So the key idea is to draw
something slightly different on each frame. This is how movies work, and the same principle can be used to create
scrolling text, or fade-in / fade-out effects, and the like.

(copied & pasted from the email list; see the list for people’s names and a working script.)

10.3 Scrolling text

Key idea: Vary the position of the stimulus across frames.

Question: How can I produce scrolling text (like html’s <marquee behavior = “scroll” > directive)?

Answer: PsychoPy has animation capabilities built-in (it can even produce and export movies itself (e.g. if you want
to show your stimuli in presentations)). But here you just want to animate stimuli directly.

e.g. create a text stimulus. In the ‘pos’ (position) field, type:

[frameN, 0]

and select “set every frame” in the popup button next to that field.

Push the Run button and your text will move from left to right, at one pixel per screen refresh, but stay at a fixed
y-coordinate. In essence, you can enter an arbitrary formula in the position field and the stimulus will be-redrawn at a
new position on each frame. frameN here refers to the number of frames shown so far, and you can extend the formula
to produce what you need.

You might find performance issues (jittering motion) if you try to render a lot of text in one go, in which case you may
have to switch to using images of text.

I wanted my text to scroll from right to left. So if you keep your eyes in the middle of the screen the next word to read
would come from the right (as if you were actually reading text). The original formula posted above scrolls the other
way. So, you have to put a negative sign in front of the formula for it to scroll the other way. You have to change the
units to pixel. Also, you have to make sure you have an end time set, otherwise it just flickers. I also set my letter
height to 100 pixels. The other problem I had was that I wanted the text to start blank and scroll into the screen. So, I
wrote

[2000-frameN, 0]

and this worked really well.

10.4 Fade-in / fade-out effects

Key idea: vary the opacity of the stimulus over frames.

Question: I’d like to present an image with the image appearing progressively and disappearing progressively too.
How to do that?

Answer: The Patch stimulus has an opacity field. Set the button next to it to be “set every frame” so that its value can
be changed progressively, and enter an equation in the box that does what you want.

e.g. if your screen refresh rate is 60 Hz, then entering:

frameN/120

160 Chapter 10. Recipes (“How-to”s)

PsychoPy - Psychology software for Python, Release 1.81.03

would cycle the opacity linearly from 0 to 1.0 over 2s (it will then continue incrementing but it doesn’t seem to matter
if the value exceeds 1.0).

Using a code component might allow you to do more sophisticated things (e.g. fade in for a while, hold it, then fade
out). Or more simply, you just create multiple successive Patch stimulus components, each with a different equation
or value in the opacity field depending on their place in the timeline.

10.5 Building an application from your script

A lot of people ask how they can build a standalone application from their Python script. Usually this is because they
have a collaborator and want to just send them the experiment.

In general this is not advisable - the resulting bundle of files (single file on OS X) will be on the order of 100Mb
and will not provide the end user with any of the options that they might need to control the task (for example,
Monitor Center won’t be provided so they can’t to calibrate their monitor). A better approach in general is to get your
collaborator to install the Standalone PsychoPy on their own machine, open your script and press run. (You don’t send
a copy of Microsoft Word when you send someone a document - you expect the reader to install it themself and open
the document).

Nonetheless, it is technically possible to create exe files on Windows, and Ricky Savjani (savjani at bcm.edu) has
kindly provided the following instructions for how to do it. A similar process might be possible on OS X using py2app
- if you’ve done that then feel free to contribute the necessary script or instructions.

10.5.1 Using py2exe to build an executable

Instructions:

1. Download and install py2exe (http://www.py2exe.org/)

2. Develop your PsychoPy script as normal

3. Copy this setup.py file into the same directory as your script

4. Change the Name of progName variable in this file to the Name of your desired executable program name

5. Use cmd (or bash, terminal, etc.) and run the following in the directory of your the two files: python
setup.py py2exe

6. Open the ‘dist’ directory and run your executable

A example setup.py script:

Created 8-09-2011
Ricky Savjani
(savjani at bcm.edu)

#import necessary packages
from distutils.core import setup
import os, matplotlib
import py2exe

#the name of your .exe file
progName = ’MultipleSchizophrenia.py’

#Initialize Holder Files
preference_files = []
app_files = []
my_data_files=matplotlib.get_py2exe_datafiles()

10.5. Building an application from your script 161

http://www.py2exe.org/

PsychoPy - Psychology software for Python, Release 1.81.03

#define which files you want to copy for data_files
for files in os.listdir(’C:\\Program Files\\PsychoPy2\\Lib\\site-packages\\PsychoPy-1.65.00-py2.6.egg\\psychopy\\preferences\\’):

f1 = ’C:\\Program Files\\PsychoPy2\\Lib\\site-packages\\PsychoPy-1.65.00-py2.6.egg\\psychopy\\preferences\\’ + files
preference_files.append(f1)

#if you might need to import the app files
#for files in os.listdir(’C:\\Program Files\\PsychoPy2\\Lib\\site-packages\\PsychoPy-1.65.00-py2.6.egg\\psychopy\\app\\’):
f1 = ’C:\\Program Files\\PsychoPy2\\Lib\\site-packages\\PsychoPy-1.65.00-py2.6.egg\\psychopy\\app\\’ + files
app_files.append(f1)

#all_files = [("psychopy\\preferences", preference_files),("psychopy\\app", app_files), my_data_files[0]]

#combine the files
all_files = [("psychopy\\preferences", preference_files), my_data_files[0]]

#define the setup
setup(

console=[progName],
data_files = all_files,
options = {

"py2exe":{
"skip_archive": True,
"optimize": 2

}
}

)

10.6 Builder - providing feedback

If you’re using the Builder then the way to provide feedback is with a Code Component to generate an appropriate
message (and then a Text Component to present that message). PsychoPy will be keeping track of various aspects of
the stimuli and responses for you throughout the experiment and the key is knowing where to find those.

The following examples assume you have a Loop called trials, containing a Routine with a Keyboard Component
called key_resp. Obviously these need to be adapted in the code below to fit your experiment.

Note: The following generate strings use python ‘formatted strings’. These are very powerful and flexible but a little
strange when you aren’t used to them (they contain odd characters like %.2f). See Generating formatted strings for
more info.

10.6.1 Feedback after a trial

This is actually demonstrated in the demo, ExtendedStroop (in the Builder>demos menu, unpack the demos and then
look in the menu again. tada!)

If you have a Keyboard Component called key_resp then, after every trial you will have the following variables:

key_resp.keys #a python list of keys pressed
key_resp.rt #the time to the first key press
key_resp.corr #None, 0 or 1, if you are using ’store correct’

To create your msg, insert the following into the ‘start experiment‘ section of the Code Component:

162 Chapter 10. Recipes (“How-to”s)

PsychoPy - Psychology software for Python, Release 1.81.03

msg=’doh!’#if this comes up we forgot to update the msg!

and then insert the following into the Begin Routine section (this will get run every repeat of the routine):

if len(key_resp.keys)<1:
msg="Failed to respond"

elif resp.corr:#stored on last run routine
msg="Correct! RT=%.3f" %(resp.rt)

else:
msg="Oops! That was wrong"

10.6.2 Feedback after a block

In this case the feedback routine would need to come after the loop (the block of trials) and the message needs to use
the stored data from the loop rather than the key_resp directly. Accessing the data from a loop is not well documented
but totally possible.

In this case, to get all the keys pressed in a numpy array:

trials.data[’key_resp.keys’] #numpy array with size=[ntrials,ntypes]

If you used the ‘Store Correct’ feature of the Keyboard Component (and told psychopy what the correct answer was)
you will also have a variable:

#numpy array storing whether each response was correct (1) or not (0)
trials.data[’resp.corr’]

So, to create your msg, insert the following into the ‘start experiment‘ section of the Code Component:

msg=’doh!’#if this comes up we forgot to update the msg!

and then insert the following into the Begin Routine section (this will get run every repeat of the routine):

nCorr = trials.data[’key_resp.corr’].sum() #.std(), .mean() also available
meanRt = trials.data[’key_resp.rt’].mean()
msg = "You got %i trials correct (rt=%.2f)" %(nCorr,meanRt)

10.6.3 Draw your message to the screen

Using one of the above methods to generate your msg in a Code Component, you then need to present it to the
participant by adding a Text Component to your feedback Routine and setting its text to $msg.

Warning: The Text Component needs to be below the Code Component in the Routine (because it needs to be
updated after the code has been run) and it needs to set every repeat.

10.7 Builder - terminating a loop

People often want to terminate their Loops before they reach the designated number of trials based on subjects’
responses. For example, you might want to use a Loop to repeat a sequence of images that you want to continue until
a key is pressed, or use it to continue a training period, until a criterion performance is reached.

To do this you need a Code Component inserted into your routine. All loops have an attribute called finished which is
set to True or False (in Python these are really just other names for 1 and 0). This finished property gets checked on
each pass through the loop. So the key piece of code to end a loop called trials is simply:

10.7. Builder - terminating a loop 163

http://www.numpy.org

PsychoPy - Psychology software for Python, Release 1.81.03

trials.finished=True #or trials.finished=1 if you prefer

Of course you need to check the condition for that with some form of if statement.

Example 1: You have a change-blindness study in which a pair of images flashes on and off, with intervening blanks,
in a loop called presentationLoop. You record the key press of the subject with a Keyboard Component called resp1.
Using the ‘ForceEndTrial’ parameter of resp1 you can end the current cycle of the loop but to end the loop itself you
would need a Code Component. Insert the following two lines in the End Routine parameter for the Code Component,
which will test whether more than zero keys have been pressed:

if len(resp1.keys)>0:
presentationLoop.finished=1

Example 2: Sometimes you may have more possible trials than you can actually display. By default, a loop will
present all possible trials (nReps * length-of-list). If you only want to present the first 10 of all possible trials, you can
use a code component to count how many have been shown, and then finish the loop after doing 10.

This example assumes that your loop is named ‘trials’. You need to add two things, the first to initialize the count, and
the second to update and check it.

Begin Experiment:

myCount = 0

Begin Routine:

myCount = myCount + 1
if myCount > 10:

trials.finished = True

Note: In Python there is no end to finish an if statement. The content of the if or of a for-loop is determined by
the indentation of the lines. In the above example only one line was indented so that one line will be executed if the
statement evaluates to True.

10.8 Installing PsychoPy in a classroom (administrators)

For running PsychoPy in a classroom environment it is probably preferable to have a ‘partial’ network installation.
The PsychoPy library features frequent new releases, including bug fixes and you want to be able to update machines
with these new releases. But PsychoPy depends on many other python libraries (over 200Mb in total) that tend not
to change so rapidly, or at least not in ways critical to the running of experiments. If you install the whole PsychoPy
application on the network then all of this data has to pass backwards and forwards, and starting the app will take even
longer than normal.

The basic aim of this document is to get to a state whereby;

• Python and the major dependencies of PsychoPy are installed on the local machine (probably a disk image to be
copied across your lab computers)

• PsychoPy itself (only ~2Mb) is installed in a network location where it can be updated easily by the administrator

• a file is created in the installation that provides the path to the network drive location

• Start-Menu shortcuts need to be set to point to the local Python but the remote PsychoPy application launcher

Once this is done, the vast majority of updates can be performed simply by replacing the PsychoPy library on the
network drive.

164 Chapter 10. Recipes (“How-to”s)

PsychoPy - Psychology software for Python, Release 1.81.03

10.8.1 1. Install dependencies locally

Download the latest version of the Standalone PsychoPy distribution, and run as administrator. This will install a copy
of Python and many dependencies to a default location of

C:\Program Files\PsychoPy2\

10.8.2 2. Move the PsychoPy to the network

You need a network location that is going to be available, with read-only access, to all users on your machines. You
will find all the contents of PsychoPy itself at something like this (version dependent obviously):

C:\Program Files\PsychoPy2\Lib\site-packages\PsychoPy-1.70.00-py2.6.egg

Move that entire folder to your network location and call it psychopyLib (or similar, getting rid of the version-specific
part of the name). Now the following should be a valid path:

<NETWORK_LOC>\psychopyLib\psychopy

10.8.3 3. Update the Python path

The Python installation (in C:\Program Files\PsychoPy2) needs to know about the network location. If Python finds a
text file with extension .pth anywhere on its existing path then it will add to the path any valid paths it finds in the file.
So create a text file that has one line in it:

<NETWORK_LOC>\psychopyLib

You can test if this has worked. Go to C:\Program Files\PsychoPy2 and double-click on python.exe. You should get a
Python terminal window come up. Now try:

>>> import psychopy

If psychopy is not found on the path then there will be an import error. Try adjusting the .pth file, restarting python.exe
and importing again.

10.8.4 4. Update the Start Menu

The shortcut in the Windows Start Menu will still be pointing to the local (now non-existent) PsychoPy library. Right-
click it to change properties and set the shortcut to point to something like:

"C:\Program Files\PsychoPy2\pythonw.exe" "<NETWORK_LOC>\psychopyLib\psychopy\\app\psychopyApp.py"

You probably spotted from this that the PsychoPy app is simply a Python script. You may want to update the file
associations too, so that .psyexp and .py are opened with:

"C:\Program Files\PsychoPy2\pythonw.exe" "<NETWORK_LOC>\psychopyLib\psychopy\app\psychopyApp.py" "%1"

Lastly, to make the shortcut look pretty, you might want to update the icon too. Set the icon’s location to:

"<NETWORK_LOC>\psychopyLib\psychopy\app\Resources\psychopy.ico"

10.8.5 5. Updating to a new version

Fetch the latest .zip release. Unpack it and replace the contents of <NETWORK_LOC>\psychopyLib\ with the contents
of the zip file.

10.8. Installing PsychoPy in a classroom (administrators) 165

PsychoPy - Psychology software for Python, Release 1.81.03

10.9 Generating formatted strings

A formatted string is a variable which has been converted into a string (text). In python the specifics of how this is
done is determined by what kind of variable you want to print.

Example 1: You have an experiment which generates a string variable called text. You want to insert this variable into
a string so you can print it. This would be achieved with the following code:

message = ’The result is %s’ %(text)

This will produce a variable message which if used in a text object would print the phrase ‘The result is’ followed by
the variable text. In this instance %s is used as the variable being entered is a string. This is a marker which tells the
script where the variable should be entered. %text tells the script which variable should be entered there.

Multiple formatted strings (of potentially different types) can be entered into one string object:

longMessage = ’Well done %s that took %0.3f seconds’ %(info[’name’], time)

Some of the handy formatted string types:

>>> x=5
>>> x1=5124
>>> z=’someText’
>>> ’show %s’ %(z)
’show someText’
>>> ’%0.1f’ %(x) #will show as a float to one decimal place
’5.0’
>>> ’%3i’ %(x) #an integer, at least 3 chars wide, padded with spaces
’ 5’
>>> ’%03i’ %(x) #as above but pad with zeros (good for participant numbers)
’005’

See the python documentation for a more complete list.

10.10 Coder - interleave staircases

Often psychophysicists using staircase procedures want to interleave multiple staircases, either with different start
points, or for different conditions.

There is now a class, psychopy.data.MultiStairHandler to allow simple access to interleaved staircases of
either basic or QUEST types. That can also be used from the Loops in the Builder. The following method allows the
same to be created in your own code, for greater options.

The method works by nesting a pair of loops, one to loop through the number of trials and another to loop across the
staircases. The staircases can be shuffled between trials, so that they do not simply alternate.

Note: Note the need to create a copy of the info. If you simply do thisInfo=info then all your staircases will end up
pointing to the same object, and when you change the info in the final one, you will be changing it for all.

from psychopy import visual, core, data, event
from numpy.random import shuffle
import copy, time #from the std python libs

#create some info to store with the data
info={}
info[’startPoints’]=[1.5,3,6]
info[’nTrials’]=10

166 Chapter 10. Recipes (“How-to”s)

http://docs.python.org/library/stdtypes.html#string-formatting-operations

PsychoPy - Psychology software for Python, Release 1.81.03

info[’observer’]=’jwp’

win=visual.Window([400,400])
#---------------------
#create the stimuli
#---------------------

#create staircases
stairs=[]
for thisStart in info[’startPoints’]:

#we need a COPY of the info for each staircase
#(or the changes here will be made to all the other staircases)
thisInfo = copy.copy(info)
#now add any specific info for this staircase
thisInfo[’thisStart’]=thisStart #we might want to keep track of this
thisStair = data.StairHandler(startVal=thisStart,

extraInfo=thisInfo,
nTrials=50, nUp=1, nDown=3,
minVal = 0.5, maxVal=8,
stepSizes=[4,4,2,2,1,1])

stairs.append(thisStair)

for trialN in range(info[’nTrials’]):
shuffle(stairs) #this shuffles ’in place’ (ie stairs itself is changed, nothing returned)
#then loop through our randomised order of staircases for this repeat
for thisStair in stairs:

thisIntensity = thisStair.next()
print ’start=%.2f, current=%.4f’ %(thisStair.extraInfo[’thisStart’], thisIntensity)

#---------------------
#run your trial and get an input
#---------------------
keys = event.waitKeys() #(we can simulate by pushing left for ’correct’)
if ’left’ in keys: wasCorrect=True
else: wasCorrect = False

thisStair.addData(wasCorrect) #so that the staircase adjusts itself

#this trial (of all staircases) has finished
#all trials finished

#save data (separate pickle and txt files for each staircase)
dateStr = time.strftime("%b_%d_%H%M", time.localtime())#add the current time
for thisStair in stairs:

#create a filename based on the subject and start value
filename = "%s start%.2f %s" %(thisStair.extraInfo[’observer’], thisStair.extraInfo[’thisStart’], dateStr)
thisStair.saveAsPickle(filename)
thisStair.saveAsText(filename)

10.11 Making isoluminant stimuli

From the mailing list (see there for names, etc):

Q1: How can I create colours (RGB) that are isoluminant?

A1: The easiest way to create isoluminant stimuli (or control the luminance content) is to create the stimuli in DKL
space and then convert them into RGB space for presentation on the monitor.

10.11. Making isoluminant stimuli 167

PsychoPy - Psychology software for Python, Release 1.81.03

More details on DKL space can be found in the section about Color spaces and conversions between DKL and RGB
can be found in the API reference for psychopy.misc

Q2: There’s a difference in luminance between my stimuli. How could I correct for that?

I’m running an experiment where I manipulate color chromatic saturation, keeping luminance constant. I’ve coded the
colors (red and blue) in rgb255 for 6 saturation values (10%, 20%, 30%, 40%, 50%, 60%, 90%) using a conversion
from HSL to RGB color space.

Note that we don’t possess spectrophotometers such as PR650 in our lab to calibrate each color gun. I’ve calibrated the
gamma of my monitor psychophysically. Gamma was set to 1.7 (threshold) for gamm(lum), gamma(R), gamma(G),
gamma(B). Then I’ve measured the luminance of each stimuli with a Brontes colorimeter. But there’s a difference in
luminance between my stimuli. How could I correct for that?

A2: Without a spectroradiometer you won’t be able to use the color spaces like DKL which are designed to help this
sort of thing.

If you don’t care about using a specific colour space though you should be able to deduce a series of isoluminant colors
manually, because the luminance outputs from each gun should sum linearly. e.g. on my monitor:

maxR=46cd/m2
maxG=114
maxB=15

(note that green is nearly always brightest)

So I could make a 15cd/m2 stimulus using various appropriate fractions of those max values (requires that the screen
is genuinely gamma-corrected):

R=0, G=0, B=255
R=255*15/46, G=0, B=0
R=255*7.5/46, G=255*15/114, B=0

Note that, if you want a pure fully-saturated blue, then you’re limited by the monitor to how bright you can make your
stimulus. If you want brighter colours your blue will need to include some of the other guns (similarly for green if you
want to go above the max luminance for that gun).

A2.1. You should also consider that even if you set appropriate RGB values to display your pairs of chromatic stimuli
at the same luminance that they might still appear different, particularly between observers (and even if your light
measurement device says the luminance is the same, and regardless of the colour space you want to work in). To make
the pairs perceptually isoluminant, each observer should really determine their own isoluminant point. You can do this
with the minimum motion technique or with heterochromatic flicker photometry.

10.12 Adding a web-cam

From the mailing list (see there for names, etc):

“I spent some time today trying to get a webcam feed into my psychopy proj, inside my visual.window. The solution
involved using the opencv module, capturing the image, converting that to PIL, and then feeding the PIL into a
SimpleImageStim and looping and win.flipping. Also, to avoid looking like an Avatar in my case, you will have to
change the default decoder used in PIL fromstring to utilize BGR instead of RGB in the decoding. I thought I would
save some time for people in the future who might be interested in using a webcam feed for their psychopy project.
All you need to do is import the opencv module into psychopy (importing modules was well documented by psychopy
online) and integrate something like this into your psychopy script.”

from psychopy import visual, event, core
import Image, time, pylab, cv, numpy

168 Chapter 10. Recipes (“How-to”s)

PsychoPy - Psychology software for Python, Release 1.81.03

mywin = visual.Window(allowGUI=False, monitor=’testMonitor’, units=’norm’,colorSpace=’rgb’,color=[-1,-1,-1], fullscr=True)
mywin.setMouseVisible(False)

capture = cv.CaptureFromCAM(0)
img = cv.QueryFrame(capture)
pi = Image.fromstring("RGB", cv.GetSize(img), img.tostring(), "raw", "BGR", 0, 1)
print pi.size
myStim = visual.GratingStim(win=mywin, tex=pi, pos=[0,0.5], size = [0.6,0.6], opacity = 1.0, units = ’norm’)
myStim.setAutoDraw(True)

while True:
img = cv.QueryFrame(capture)
pi = Image.fromstring("RGB", cv.GetSize(img), img.tostring(), "raw", "BGR", 0, 1)
myStim.setTex(pi)
mywin.flip()
theKey = event.getKeys()
if len(theKey) != 0:

break

10.12. Adding a web-cam 169

PsychoPy - Psychology software for Python, Release 1.81.03

170 Chapter 10. Recipes (“How-to”s)

CHAPTER

ELEVEN

FREQUENTLY ASKED QUESTIONS (FAQS)

11.1 Why is the bits++ demo not working?

So far PsychoPy supports bits++ only in the bits++ mode (rather than mono++ or color++). In this mode, a code (the
T-lock code) is written to the lookup table on the bits++ device by drawing a line at the top of the window. The most
likely reason that the demo isn’t working for you is that this line is not being detected by the device, and so the lookup
table is not being modified. Most of these problems are actually nothing to do with PsychoPy /per se/, but to do with
your graphics card and the CRS bits++ box itself.

There are a number of reasons why the T-lock code is not being recognised:

• the bits++ device is in the wrong mode. Open the utility that CRS supply and make sure you’re in the right
mode. Try resetting the bits++ (turn it off and on).

• the T-lock code is not fully on the screen. If you create a window that’s too big for the screen or badly positioned
then the code will be broken/not visible to the device.

• the T-lock code is on an ‘odd’ pixel.

• the graphics card is doing some additional filtering (win32). Make sure you turn off any filtering in the advanced
display properties for your graphics card

• the gamma table of the graphics card is not set to be linear (but this should normally be handled by PsychoPy,
so don’t worry so much about it).

• you’ve got a Mac that’s performing temporal dithering (new macs, around 2009). Apple have come up with a
new, very annoying idea, where they continuously vary the pixel values coming out of the graphics card every
frame to create additional intermediate colours. This will break the T-lock code on 1/2-2/3rds of frames.

11.2 Can PsychoPy run my experiment with sub-millisecond timing?

This question is common enough and complex enough to have a section of the manual all of its own. See Timing Issues
and synchronisation

171

PsychoPy - Psychology software for Python, Release 1.81.03

172 Chapter 11. Frequently Asked Questions (FAQs)

CHAPTER

TWELVE

RESOURCES (E.G. FOR TEACHING)

There are a number of further resources to help learn/teach about PsychoPy.

If you also have PsychoPy materials/course then please let us know so that we can link to them from here too!

12.1 P4N

There will be a 3-day workshop in April 2014 at Nottingham University. It won’t be only about PsychoPy, but about
Python for science more generally and focussing on coding rather than using the Builder interface. We hope this year
to run intermediate and novice sessions in parallel (rather than novice only).

12.2 Youtube tutorials

• Youtube PsychoPy tutorial showing how to build a basic experiment in the Builder interface. That’s a great way
to get started; build your own complete experiment in 15 minutes flat!

• There’s also a subtitled version of the stroop video tutorial (Thanks Kevin Cole for doing that!)

12.3 Materials for Builder

• At School of Psychology, University of Nottingham, PsychoPy is now used for all first year practical class
teaching. The classes that comprise that first year course are provided below. They were created partially with
funding from the former Higher Education Academy Psychology Network. Note that the materials here will
be updated frequently as they are further developed (e.g. to update screenshots etc) so make sure you have the
latest version of them!

PsychoPy_pracs_2011v2.zip (21MB) (last updated: 15 Dec 2011)

• The GestaltReVision group (University of Leuven) wiki covering PsychoPy (some Builder info and great tuto-
rials for Python/PsychoPy coding of experiments).

12.4 Materials for Coder

• Gary Lupyan runs a class on programming experiments using Python/PsychoPy and makes his lecture materials
available on this wiki

173

http://www.youtube.com/watch?v=VV6qhuQgsiI
https://www.universalsubtitles.org/en/videos/rBzTFjunIDB2
http://www.nottingham.ac.uk/psychology
http://www.pnarchive.org/
http://gestaltrevision.be/wiki/python
http://sapir.psych.wisc.edu/
http://sapir.psych.wisc.edu/wiki/index.php/Psych711

PsychoPy - Psychology software for Python, Release 1.81.03

• The GestaltReVision group (University of Leuven) wiki offers a one-day crash course to Python and PsychoPy
on a IPython Notebook, and has lots of great information taking you from basic programming to advanced
techniques.

• Radboud University, Nijmegen also has a PsychoPy programming course

12.5 Previous events

• ECEM, August 2013 : Python for eye-tracking workshop with (Sol Simpson, Michael MacAskill and Jon
Peirce). Download Python-for-eye-tracking materials

• VSS

• Yale, 21-23 July : The first ever dedicated PsychoPy workshop/conference was at Yale, 21-23 July 2011. Thanks
Jeremy for organising!

• EPS Satellite workshop, 8 July 2011

• BPS Maths Stats and Computing Section workshop (Dec 2010):

For developers:

174 Chapter 12. Resources (e.g. for teaching)

http://gestaltrevision.be/wiki/python
http://nbviewer.ipython.org/7036997
http://nbviewer.ipython.org/7036997
https://www.socsci.ru.nl/~wilberth/nocms/psychopy/print.php
https://scanlab.psych.yale.edu/public/psychopy
http://bps-msc.blogspot.com/

CHAPTER

THIRTEEN

FOR DEVELOPERS

There is a separate mailing list to discuss development ideas and issues.

For developers the best way to use PsychoPy is to install a version to your own copy of python (preferably 2.6 but 2.5
is OK). Make sure you have all the Dependencies, including the extra recommendedPackages for developers.

Don’t install PsychoPy. Instead fetch a copy of the git repository and add this to the python path using a .pth file. Other
users of the computer might have their own standalone versions installed without your repository version touching
them.

13.1 Using the repository

Note: Much of the following is explained with more detail in the nitime documentation, and then in further detail in
numerous online tutorials.

13.1.1 Workflow

The use of git and the following workflow allows people to contribute changes that can easily be incorporated back
into the project, while (hopefully) maintaining order and consistency in the code. All changes should be tracked and
reversible.

• Create a fork of the central psychopy/psychopy repository

• Create a local clone of that fork

• For small changes

– make the changes directly in the master branch

– push back to your fork

– submit a pull request to the central repository

• For substantial changes (new features)

– create a branch

– when finished run unit tests

– when the unit tests pass merge changes back into the master branch

– submit a pull request to the central repository

175

http://nipy.sourceforge.net/nitime/devel/git_development.html

PsychoPy - Psychology software for Python, Release 1.81.03

13.1.2 Create your own fork of the central repository

Go to github, create an account and make a fork of the psychopy repository You can change your fork in any way you
choose without it affecting the central project. You can also share your fork with others, including the central project.

13.1.3 Fetch a local copy

Install git on your computer. Create and upload an ssh key to your github account - this is necessary for you to push
changes back to your fork of the project at github.

Then, in a folder of your choosing fetch your fork:

$ git clone git@github.com:USER/psychopy.git
$ cd psychopy
$ git remote add upstream git://github.com/psychopy/psychopy.git

The last line connects your copy (with read access) to the central server so you can easily fetch any updates to the
central repository.

13.1.4 Fetching the latest version

Periodically it’s worth fetching any changes to the central psychopy repository (into your master branch, more on that
below):

$ git checkout master
$ git pull upstream master # here ’master’ is the desired branch of psychopy to fetch

13.1.5 Run PsychoPy using your local copy

Now that you’ve fetched the latest version of psychopy using git, you should run this version in order to try out
yours/others latest improvements. See this guide on how to permanently run your git version of psychopy instead of
the version you previously installed.

Run git version for just one session (Linux and Mac only): If you want to switch between the latest-and-greatest
development version from git and the stable version installed on your system, you can choose to only temporarily run
the git version. Open a terminal and set a temporary python path to your psychopy git folder:

$ export PYTHONPATH=/path/to/local/git/folder/

To check that worked you should open python in the terminal and try to import psychopy:

$ python
Python 2.7.6 (default, Mar 22 2014, 22:59:56)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import psychopy

PsychoPy depends on a lot of other packages and you may get a variety of failures to import them until you have them
all installed in your custom environment!

176 Chapter 13. For Developers

http://www.github.com
https://github.com/psychopy/psychopy
http://book.git-scm.com/2_installing_git.html
http://www.ehow.com/how_8510325_set-python-path.html

PsychoPy - Psychology software for Python, Release 1.81.03

13.1.6 Fixing bugs and making minor improvements

You can make minor changes directly in the master branch of your fork. After making a change you need to commit a
set of changes to your files with a message. This enables you to group together changes and you will subsequently be
able to go back to any previous commit, so your changes are reversible.

I (Jon) usually do this by opening the graphical user interface that comes with git:

$ git gui

From the GUI you can select (or stage in git terminology) the files that you want to include in this particular commit
and give it a message. Give a clear summary of the changes for the first line. You can add more details about the
changes on lower lines if needed.

If you have internet access then you could also push your changes back up to your fork (which is called your origin
by default), either by pressing the push button in the GUI or by closing that and typing:

$ git push

13.1.7 Commit messages

Informative commit messages are really useful when we have to go back through the repository finding the time that a
particular change to the code occurred. Precede your message with one or more of the following to help us spot easily
if this is a bug fix (which might need pulling into other development branches) or new feature (which we might want
to avoid pulling in if it might disrupt existing code).

• BF : bug fix

• FF : ‘feature’ fix. This is for fixes to code that hasn’t been released

• RF : refactoring

• NF : new feature

• ENH : enhancement (improvement to existing code)

• DOC: for all kinds of documentation related commits

• TEST: for adding or changing tests

NB: The difference between BF and FF is that BF indicates a fix that is appropriate for back-porting to earlier versions,
whereas FF indicates a fix to code that has not been released, and so cannot be back-ported.

13.1.8 Share your improvement with others

Only a couple of people have direct write-access to the psychopy repository, but you can get your changes included
in upstream by pushing your changes back to your github fork and then submitting a pull request. Communication is
good, and hopefully you have already been in touch (via the user or dev lists) about your changes.

When adding an improvement or new feature, consider how it might impact others. Is it likely to be generally useful,
or is it something that only you or your lab would need? (It’s fun to contribute, but consider: does it actually need
to be part of PsychoPy?) Including more features has a downside in terms of complexity and bloat, so try to be sure
that there is a “business case” for including it. If there is, try at all times to be backwards compatible, e.g., by adding
a new keyword argument to a method or function (not always possible). If it’s not possible, it’s crucial to get wider
input about the possible impacts. Flag situations that would break existing user scripts in your commit messages.

Part of sharing your code means making things sensible to others, which includes good coding style and writing some
documentation. You are the expert on your feature, and so are in the best position to elaborate nuances or gotchas. Use
meaningful variable names, and include comments in the code to explain non-trivial things, especially the intention

13.1. Using the repository 177

http://nipy.sourceforge.net/nitime/devel/development_workflow.html#asking-for-your-changes-to-be-merged-with-the-main-repo

PsychoPy - Psychology software for Python, Release 1.81.03

behind specific choices. Include or edit the appropriate doc-string, because these are automatically turned into API
documentation (via sphinx). Include doc-tests if that would be meaningful. The existing code base has a comment /
code ratio of about 28%, which earns it high marks.

For larger changes and especially new features, you might need to create some usage examples, such as a new Coder
demo, or even a Builder demo. These can be invaluable for being a starting point from which people can adapt things
to the needs of their own situation. This is a good place to elaborate usage-related gotchas.

In terms of style, try to make your code blend in with and look like the existing code (e.g., using about the same level
of comments, use camelCase for var names, despite the conflict with the usual PEP – we’ll eventually move to the
underscore style, but for now keep everything consistent within the code base). In your own code, write however you
like of course. This is just about when contributing to the project.

13.1.9 Add a new feature branch

For more substantial work, you should create a new branch in your repository. Often while working on a new feature
other aspects of the code will get broken and the master branch should always be in a working state. To create a new
branch:

$ git branch feature-somethingNew

You can now switch to your new feature branch with:

$ git checkout feature-somethingNew

And get back to your master branch with:

$ git checkout master

You can push your new branch back to your fork (origin) with:

$ git push origin feature-somethingNew

13.1.10 Completing work on a feature

When you’re done run the unit tests for your feature branch. Set the debug preference setting (in the app section) to
True, and restart psychopy. This will enable access to the test-suite. In debug mode, from the Coder (not Builder) you
can now do Ctrl-T / Cmd-T (see Tools menu, Unit Testing) to bring up the unit test window. You can select a subset
of tests to run, or run them all.

It’s also possible to run just selected tests, such as doctests within a single file. From a terminal window:

cd psychopy/tests/ #eg /Users/jgray/code/psychopy/psychopy/tests
./run.py path/to/file_with_doctests.py

If the tests pass you hopefully haven’t damaged other parts of PsychoPy (!?). If possible add a unit test for your new
feature too, so that if other people make changes they don’t break your work!

You can merge your changes back into your master branch with:

$ git checkout master
$ git merge feature-somethingNew

Merge conflicts happen, and need to be resolved. If you configure your git preferences (~/.gitconfig) to include:

178 Chapter 13. For Developers

PsychoPy - Psychology software for Python, Release 1.81.03

[merge]
summary = true
log = true
tool = opendiff

then you’ll be able to use a handy GUI interface (opendiff) for reviewing differences and conflicts, just by typing:

git mergetool

from the command line after hitting a merge conflict (such as during a git pull upstream master).

Once you’ve folded your new code back into your master and pushed it back to your github fork then it’s time to Share
your improvement with others.

13.2 Adding documentation

There are several ways to add documentation, all of them useful: doc strings, comments in the code, and demos to
show an example of actual usage. To further explain something to end-users, you can create or edit a .rst file that will
automatically become formatted for the web, and eventually appear on www.psychopy.org.

You make a new file under psychopy/docs/source/, either as a new file or folder or within an existing one.

To test that your doc source code (.rst file) does what you expect in terms of formatting for display on the web, you
can simply do something like (this is my actual path, unlikely to be yours):

$ cd /Users/jgray/code/psychopy/docs/
$ make html

Do this within your docs directory (requires sphinx to be installed, try “easy_install sphinx” if it’s not working). That
will add a build/html sub-directory.

Then you can view your new doc in a browser, e.g., for me:

file:///Users/jgray/code/psychopy/docs/build/html/

Push your changes to your github repository (using a “DOC:” commit message) and let Jon know, e.g. with a pull
request.

13.3 Adding a new Builder Component

Builder Components are auto-detected and displayed to the experimenter as icons (builder, right panel). This makes it
straightforward to add new ones.

All you need to do is create a list of parameters that the Component needs to know about (that will automatically
appear in the Component’s dialog) and a few pieces of code specifying what code should be called at different points
in the script (e.g. beginning of the Routine, every frame, end of the study etc...). Many of these will come simply from
subclassing the _base or _visual Components.

To get started, Add a new feature branch for the development of this component. (If this doesn’t mean anything to you
then see Using the repository)

You’ll mainly be working in the directory .../psychopy/app/builder/components/. Take a look at several existing Com-
ponents (such as ‘image.py’), and key files including ‘_base.py’ and ‘_visual.py’.

There are three main steps, the first being by far the most involved.

13.2. Adding documentation 179

PsychoPy - Psychology software for Python, Release 1.81.03

13.3.1 1. File: newcomp.py

It’s pretty straightforward to model a new Component on one of the existing ones. Be prepared to specify what your
Component needs to do at several different points in time: before the first trial, every frame, at the end of each routine,
and at the end of the experiment. In addition, you may need to sacrifice some complexity in order to keep things
streamlined enough for a Builder (see e.g., ratingscale.py).

Your new Component class (in your file newcomp.py) should inherit from BaseComponent (in _base.py), VisualCom-
ponent (in _visual.py), or KeyboardComponent (in keyboard.py). You may need to rewrite some or all some of these
methods, to override default behavior.:

class NewcompComponent(BaseComponent): # or (VisualComponent)
def __init__(...):

super(NewcompComponent, self).__init__(...)
...

def writeInitCode(self, buff):
def writeRoutineStartCode(self, buff):
def writeFrameCode(self, buff):
def writeRoutineEndCode(self, buff):

Calling super() will create the basic default set of params that almost every component will need: name, startVal, start-
Type, etc. Some of these fields may need to be overridden (e.g., durationEstim in sound.py). Inheriting from Visual-
Component (which in turn inherits from BaseComponent) adds default visual params, plus arranges for Builder scripts
to import psychopy.visual. If your component will need other libs, call self.exp.requirePsychopyLib([’neededLib’])
(see e.g., parallelPort.py).

At the top of a component file is a dict named _localized. These mappings allow a strict separation of internal string
values (= used in logic, never displayed) from values used for display in the Builder interface (= for display only,
possibly translated, never used in logic). The .hint and .label fields of params[’someParam’] should always be set to
a localized value, either by using a dict entry such as _localized[’message’], or via the globally available translation
function, _(‘message’). Localized values must not be used elsewhere in a component definition.

Very occasionally, you may also need to edit settings.py, which writes out the set-up code for the whole experiment
(e.g., to define the window). For example, this was necessary for ApertureComponent, to pass “allowStencil=True” to
the window creation.

Your new Component writes code into a buffer that becomes an executable python file, xxx_lastrun.py (where xxx is
whatever the experimenter specifies when saving from the builder, xxx.psyexp). You will do a bunch of this kind of
call in your newcomp.py file:

buff.writeIndented(your_python_syntax_string_here)

You have to manage the indentation level of the output code, see experiment.IndentingBuffer().

xxx_lastrun.py is the file that gets built when you run xxx.psyexp from the builder. So you will want to look at
xxx_lastrun.py frequently when developing your component.

Name-space

There are several internal variables (er, names of python objects) that have a specific, hardcoded meaning within
xxx_lastrun.py. You can expect the following to be there, and they should only be used in the original way (or
something will break for the end-user, likely in a mysterious way):

’win’ = the window
’t’ = time within the trial loop, referenced to trialClock
’x’, ’y’ = mouse coordinates, but only if the experimenter uses a mouse component

Handling of variable names is under active development, so this list may well be out of date. (If so, you might consider
updating it or posting a note to psychopy-dev.)

Preliminary testing suggests that there are 600-ish names from numpy or numpy.random, plus the following:

180 Chapter 13. For Developers

PsychoPy - Psychology software for Python, Release 1.81.03

[’KeyResponse’, ’__builtins__’, ’__doc__’, ’__file__’, ’__name__’, ’__package__’, ’buttons’, ’core’, ’data’, ’dlg’, ’event’, ’expInfo’, ’expName’, ’filename’, ’gui’, ’logFile’, ’os’, ’psychopy’, ’sound’, ’t’, ’visual’, ’win’, ’x’, ’y’]

Yet other names get derived from user-entered names, like trials –> thisTrial.

Params

self.params is a key construct that you build up in __init__. You need name, startTime, duration, and several other
params to be defined or you get errors. ‘name’ should be of type ‘code’.

The Param() class is defined in psychopy.app.builder.experiment.Param(). A very useful thing that Params know is
how to create a string suitable for writing into the .py script. In particular, the __str__ representation of a Param will
format its value (.val) based on its type (.valType) appropriately. This means that you don’t need to check or handle
whether the user entered a plain string, a string with a code trigger character ($), or the field was of type code in the
first place. If you simply request the str() representation of the param, it is formatted correctly.

To indicate that a param (eg, thisParam) should be considered as an advanced feature, set its category to advanced:
self.params[’thisParam’].categ = ‘Advanced’. Then the GUI shown to the experimenter will place it on the ‘Advanced’
tab. Other categories work similarly (Custom, etc).

During development, it can sometimes be helpful to save the params into the xxx_lastrun.py file as comments, so I
could see what was happening:

def writeInitCode(self,buff):
for debugging during Component development:
buff.writeIndented("# self.params for aperture:\n")
for p in self.params.keys():

try: buff.writeIndented("# %s: %s <type %s>\n" % (p, self.params[p].val, self.params[p].valType))
except: pass

A lot more detail can be inferred from existing components.

Making things loop-compatible looks interesting – see keyboard.py for an example, especially code for saving data at
the end.

13.3.2 Notes & gotchas

syntax errors in new_comp.py: The PsychoPy app will fail to start if there are syntax error in any of
the components that are auto-detected. Just correct them and start the app again.

param[].val : If you have a boolean variable (e.g., my_flag) as one of your params, note that
self.param[”my_flag”] is always True (the param exists –> True). So in a boolean context you
almost always want the .val part, e.g., if self.param[”my_flag”].val:.

However, you do not always want .val. Specifically, in a string/unicode context (= to trigger the self-
formatting features of Param()s), you almost always want “%s” % self.param[’my_flag’], without
.val. Note that it’s better to do this via “%s” than str() because str(self.param[”my_flag”]) coerces
things to type str (squashing unicode) whereas %s works for both str and unicode.

13.3.3 2. Icon: newcomp.png

Using your favorite image software, make an icon for your Component with a descriptive name, e.g., ‘newcomp.png’.
Dimensions = 48 x 48. Put it in the components directory.

In ‘newcomp.py’, have a line near the top:

iconFile = path.join(thisFolder, ’newcomp.png’)

13.3. Adding a new Builder Component 181

PsychoPy - Psychology software for Python, Release 1.81.03

13.3.4 3. Documentation: newcomp.rst

Just make a descriptively-named text file that ends in .rst (“restructured text”), and put
it in psychopy/docs/source/builder/components/ . It will get auto-formatted and end up at
http://www.psychopy.org/builder/components/newcomp.html

13.4 Style-guide for coder demos

Each coder demo is intended to illustrate a key PsychoPy feature (or two), especially in ways that show usage in
practice, and go beyond the description in the API. The aim is not to illustrate every aspect, but to get people up to
speed quickly, so they understand how basic usage works, and could then play around with advanced features.

As a newcomer to PsychoPy, you are in a great position to judge whether the comments and documentation are
clear enough or not. If something is not clear, you may need to ask a PsychoPy contributor for a description; email
psychopy-dev@googlegroups.com.

Here are some style guidelines, written for the OpenHatch event(s) but hopefully useful after that too. These are
intended specifically for the coder demos, not for the internal code-base (although they are generally quite close).

The idea is to have clean code that looks and works the same way across demos, while leaving the functioning mostly
untouched. Some small changes to function might be needed (e.g., to enable the use of ‘escape’ to quit), but typically
only minor changes like this.

• Generally, when you run the demo, does it look good and help you understand the feature? Where might there
be room for improvement? You can either leave notes in the code in a comment, or include them in a commit
message.

• Standardize the top stuff to have 1) a shbang with python2 (not just python), 2) utf-8 encoding, and 3) a comment:

#!/usr/bin/env python2
-*- coding: utf-8 -*-
"""Demo name, purpose, description (1-2 sentences, although some demos need more explanation).
"""

For the comment / description, it’s a good idea to read and be informed by the relevant parts of the API (see
http://psychopy.org/api/api.html), but there’s no need to duplicate that text in your comment. If you are unsure, please
post to the dev list psychopy-dev@googlegroups.com.

• Follow PEP-8 mostly, some exceptions:

– current PsychoPy convention is to use camelCase for variable names, so don’t convert those to underscores

– 80 char columns can spill over a little. Try to keep things within 80 chars most of the time.

– do allow multiple imports on one line if they are thematically related (e.g., import os, sys, glob).

– inline comments are ok (because the code demos are intended to illustrate and explain usage in some detail,
more so than typical code).

• Check all imports:

– remove any unnecessary ones

– replace import time with from psychopy import core. Use core.getTime() (= ms since the script started) or
core.getAbsTime() (= seconds, unix-style) instead of time.time(), for all time-related functions or methods
not just time().

– add from __future__ import division, even if not needed. And make sure that doing so does not break the
demo!

• Fix any typos in comments; convert any lingering British spellings to US, e.g., change colour to color

182 Chapter 13. For Developers

http://www.psychopy.org/builder/components/newcomp.html
mailto:psychopy-dev@googlegroups.com
http://psychopy.org/api/api.html
mailto:psychopy-dev@googlegroups.com

PsychoPy - Psychology software for Python, Release 1.81.03

• Prefer if <boolean>: as a construct instead of if <boolean> == True:. (There might not be any to change).

• If you have to choose, opt for more verbose but easier-to-understand code instead of clever or terse formulations.
This is for readability, especially for people new to python. If you are unsure, please add a note to your commit
message, or post a question to the dev list psychopy-dev@googlegroups.com.

• Standardize variable names:

– use win for the visual.Window(), and so win.flip()

• Provide a consistent way for a user to exit a demo using the keyboard, ideally enable this on every visual frame:
use if len(event.getKeys([’escape’]): core.quit(). Note: if there is a previous event.getKeys() call, it can slurp up
the ‘escape’ keys. So check for ‘escape’ first.

• Time-out after 10 seconds, if there’s no user response and a timeout is appropriate for the demo (and a longer
time-out might be needed, e.g., for ratingScale.py):

demoClock = core.clock() # is demoClock’s time is 0.000s at this point
...
if demoClock.getTime() > 10.:

core.quit()

• Most demos are not full screen. For any that are full-screen, see if it can work without being full screen. If it
has to be full-screen, add some text to say that pressing ‘escape’ will quit.

• If displaying log messages to the console seems to help understand the demo, here’s how to do it:

from psychopy import logging
...
logging.console.setLevel(logging.INFO) # or logging.DEBUG for even more stuff

• End a script with win.close() (assuming the script used a visual.Window), and then core.quit() even though it’s
not strictly necessary

13.5 Localization (I18N, translation)

PsychoPy is used worldwide. Starting with v1.81, many parts of PsychoPy itself (the app) can be translated into any
language that has a unicode character set. A translation affects what the experimenter sees while creating and running
experiments; it is completely separate from what is shown to the subject. Translations of the online documentation
will need a completely different approach.

In the app, translation is handled by a function, _translate(), which takes a string argument. (The standard name
is _(), but unfortunately this conflicts with _ as used in some external packages that PsychoPy depends on.) The
_translate() function returns a translated, unicode version of the string in the locale / language that was selected
when starting the app. If no translation is available for that locale, the original string is returned (= English).

A locale setting (e.g., ‘ja_JP’ for Japanese) allows the end-user (= the experimenter) to control the language that will
be used for display within the app itself. (It can potentially control other display conventions as well, not just the
language.) PsychoPy will obtain the locale from the user preference (if set), or the OS.

Workflow: 1) Make a translation from English (en_US) to another language. You’ll need a strong understanding of
PsychoPy, English, and the other language. 2) In some cases it will be necessary to adjust PsychoPy’s code, but only if
new code has been added to the app and that code displays text. Then re-do step 1 to translate the newly added strings.

See notes in psychopy/app/localization/readme.txt.

13.5. Localization (I18N, translation) 183

mailto:psychopy-dev@googlegroups.com

PsychoPy - Psychology software for Python, Release 1.81.03

13.5.1 Make a translation (.po file)

As a translator, you will likely introduce many new people to PsychoPy, and your translations will greatly influence
their experience. Try to be completely accurate; it is better to leave something in English if you are unsure how
PsychoPy is supposed to work.

To translate a given language, you’ll need to know the standard 5-character code (see psy-
chopy/app/localization/mappings). E.g., for Japanese, wherever LANG appears in the documentation here,
you should use the actual code, i.e., “ja_JP” (without quotes).

A free app called poedit is useful for managing a translation. For a given language, the translation mappings (from
en_US to LANG) are stored in a .po file (a text file with extension .po); after editing with poedit, these are converted
into binary format (with extension .mo) which are used when the app is running.

• Start translation (do these steps once):

Start a translation by opening psychopy/app/locale/LANG/LC_MESSAGE/messages.po in Poedit. If there is no
such .po file, create a new one:

– make a new directory psychopy/app/locale/LANG/LC_MESSAGE/ if needed. Your LANG will be auto-
detected within PsychoPy only if you follow this convention. You can copy metadata (such as the project
name) from another .po file.

Set your name and e-mail address from “Preferences...” of “File” menu. Set translation properties (such as
project name, language and charset) from Catalog Properties Dialog, which can be opened from “Properties...”
of “Catalog” menu.

In poedit’s properties dialog, set the “source keywords” to include ‘_translate’. This allows poedit to find the
strings in PsychoPy that are to be translated.

To add paths where Poedit scans .py files, open “Sources paths” tab on the Catalog Properties Dialog, and set
“Base path:” to ”../../../../../” (= psychopy/psychopy/). Nothing more should be needed. If you’ve created new
catalog, save your catalog to psychopy/app/locale/LANG/LC_MESSAGE/messages.po.

Probably not needed, but check anyway: Edit the file containing language code and name mappings, psy-
chopy/app/localization/mappings, and fill in the name for your language. Give a name that should be familiar
to people who read that language (i.e., use the name of the language as written in the language itself, not in
en_US). About 25 are already done.

• Edit a translation:

Open the .po file with Poedit and press “Update” button on the toolbar to update newly added / removed strings
that need to be translated. Select a string you want to translate and input your translation to “Translation:” box.
If you are unsure where string is used, point on the string in “Source text” box and right-click. You can see
where the string is defined.

• Technical terms should not be translated: Builder, Coder, PsychoPy, Flow, Routine, and so on. (See the Japanese
translation for guidance.)

• If there are formatting arguments in the original string (%s, %(first)i), the same number of arguments must
also appear in the translation (but their order is not constrained to be the original order). If they are named (e.g.,
%(first)i), that part should not be translated–here first is a python name.

• If you think your translation might have room for improvement, indicate that it is “fuzzy”. (Saving Notes does
not work for me on Mac, seems like a bug in poedit.)

• After making a new translation, saving it in poedit will save the .po file and also make an associated .mo file.
You need to update the .mo file if you want to see your changes reflected in PsychoPy.

• The start-up tips are stored in separate files, and are not translated by poedit. Instead:

184 Chapter 13. For Developers

PsychoPy - Psychology software for Python, Release 1.81.03

• copy the default version (named psychopy/app/Resources/tips.txt) to a new file in the same directory, named
tips_LANG.txt. Then replace English-language tips with translated tips. Note that some of the humor might
not translate well, so feel free to leave out things that would be too odd, or include occasional mild humor that
would be more appropriate. Humor must be respectful and suitable for using in a classroom, laboratory, or other
professional situation. Don’t get too creative here. If you have any doubt, best leave it out. (Hopefully it goes
without saying that you should avoid any religious, political, disrespectful, or sexist material.)

• in poedit, translate the file name: translate “tips.txt” as “tips_LANG.txt”

• Commit both the .po and .mo files to github (not just one or the other), and any changed files (e.g., tips_LANG,
localization/mappings).

13.5.2 Adjust PsychoPy’s code

This is mostly complete (as of 1.81.00), but will be needed for new code that displays text to users of the app (experi-
menters, not study participants).

There are a few things to keep in mind when working on the app’s code to make it compatible with translations. If you
are only making a translation, you can skip this section.

• In PsychoPy’s code, the language to be used should always be English with American spellings (e.g., “color”).

• Within the app, the return value from _translate() should be used only for display purposes: in menus,
tooltips, etc. A translated value should never be used as part of the logic or internal functioning of PsychoPy. It
is purely a “skin”. Internally, everything must be in en_US.

• Basic usage is exactly what you expect: _translate("hello") will return a unicode string at run-time,
using mappings for the current locale as provided by a translator in a .mo file. (Not all translations are available
yet, see above to start a new one.) To have the app display a translated string to the experimenter, just display
the return value from the underscore translation function.

• The strings to be translated must appear somewhere in the app code base as explicit strings within
_translate(). If you need to translate a variable, e.g., named str_var using the expression
_translate(str_var), somewhere else you need to explicitly give all the possible values that str_var
can take, and enclose each of them within the translate function. It is okay for that to be elsewhere, even in
another file, but not in a comment. This allows poedit to discover of all the strings that need to be translated.
(This is one of the purposes of the _localized dict at the top of some modules.)

• _translate() should not be given a null string to translate; if you use a variable, check that it is not ‘’ to
avoid invoking _translate(’’).

• Strings that contain formatting placeholders (e.g., %d, %s, %.4f) require a little more thought. Single place-
holders are easy enough: _translate("hello, %s") % name.

• Strings with multiple formatting placeholders require named arguments, because positional arguments
are not always sufficient to disambiguate things depending on the phrase and the language to be
translated into: _translate("hello, %(first)s %(last)s") % {’first’: firstname,
’last’: lastname}

• Localizing drop-down menus is a little more involved. Such menus should display localized strings, but
return selected values as integers (GetSelection() returns the position within the list). Do not use
GetStringSelection(), because this will return the localized string, breaking the rule about a strict sep-
aration of display and logic. See Builder ParamDialogs for examples.

13.5.3 Other notes

When there are more translations (and if they make the app download large) we might want to manage things differ-
ently (e.g., have translations as a separate download from the app).

13.5. Localization (I18N, translation) 185

PsychoPy - Psychology software for Python, Release 1.81.03

13.6 Adding a new Menu Item

Adding a new menu-item to the Builder (or Coder) is relatively straightforward, but there are several files that need to
be changed in specific ways.

13.6.1 1. makeMenus()

The code that constructs the menus for the Builder is within a method named makeMenus(), within class
builder.BuilderFrame(). Decide which submenu your new command fits under, and look for that section (e.g., File,
Edit, View, and so on). For example, to add an item for making the Routine panel items larger, I added two lines within
the View menu, by editing the makeMenus() method of class BuilderFrame within psychopy/app/builder/builder.py
(similar for Coder):

self.viewMenu.Append(self.IDs.tbIncrRoutineSize, _("&Routine Larger\t%s") %self.app.keys[’largerRoutine’], _("Larger routine items"))
wx.EVT_MENU(self, self.IDs.tbIncrRoutineSize, self.routinePanel.increaseSize)

Note the use of the translation function, _(), for translating text that will be displayed to users (menu listing, hint).

13.6.2 2. wxIDs.py

A new item needs to have a (numeric) ID so that wx can keep track of it. Here, the number is self.IDs.tbIncrRoutineSize,
which I had to define within the file psychopy/app/wxIDs.py:

tbIncrRoutineSize=180

It’s possible that, instead of hard-coding it like this, it’s better to make a call to wx.NewId() – wx will take care of
avoiding duplicate IDs, presumably.

13.6.3 3. Key-binding prefs

I also defined a key to use to as a keyboard short-cut for activating the new menu item:

self.app.keys[’largerRoutine’]

The actual key is defined in a preference file. Because psychopy is multi-platform, you need to add info to four
different .spec files, all of them being within the psychopy/preferences/ directory, for four operating systems (Darwin,
FreeBSD, Linux, Windows). For Darwin.spec (meaning Mac OS X), I added two lines. The first line is not merely
a comment: it is also automatically used as a tooltip (in the preferences dialog, under key-bindings), and the second
being the actual short-cut key to use:

increase display size of Routines
largerRoutine = string(default=’Ctrl++’) # on mac book pro this is good

This means that the user has to hold down the Ctrl key and then press the + key. Note that on macs, ‘Ctrl’ in the spec
is automatically converted into ‘Cmd’ for the actual key to use; in the .spec, you should always specify things in terms
of ‘Ctrl’ (and not ‘Cmd’). The default value is the key-binding to use unless the user defines another one in her or his
preferences (which then overrides the default). Try to pick a sensible key for each operating system, and update all
four .spec files.

13.6.4 4. Your new method

The second line within makeMenus() adds the key-binding definition into wx’s internal space, so that when the key is
pressed, wx knows what to do. In the example, it will call the method self.routinePanel.increaseSize, which I had to

186 Chapter 13. For Developers

PsychoPy - Psychology software for Python, Release 1.81.03

define to do the desired behavior when the method is called (in this case, increment an internal variable and redraw the
routine panel at the new larger size).

13.6.5 5. Documentation

To let people know that your new feature exists, add a note about your new feature in the CHANGELOG.txt, and
appropriate documentation in .rst files.

Happy Coding Folks!!

13.6. Adding a new Menu Item 187

PsychoPy - Psychology software for Python, Release 1.81.03

188 Chapter 13. For Developers

CHAPTER

FOURTEEN

PSYCHOPY EXPERIMENT FILE FORMAT (.PSYEXP)

The file format used to save experiments constructed in PsychoPy builder was created especially for the purpose, but
is an open format, using a basic xml form, that may be of use to other similar software. Indeed the builder itself could
be used to generate experiments on different backends (such as Vision Egg, PsychToolbox or PyEPL). The xml format
of the file makes it extremely platform independent, as well as moderately(?!) easy to read by humans. There was a
further suggestion to generate an XSD (or similar) schema against which psyexp files could be validated. That is a low
priority but welcome addition if you wanted to work on it(!) There is a basic XSD (XML Schema Definition) available
in psychopy/app/builder/experiment.xsd.

The simplest way to understand the file format is probably simply to create an experiment, save it and open the file
in an xml-aware editor/viewer (e.g. change the file extension from .psyexp to .xml and then open it in Firefox). An
example (from the stroop demo) is shown below.

The file format maps fairly obviously onto the structure of experiments constructed with the Builder interface, as
described here. There are general Settings for the experiment, then there is a list of Routines and a Flow that describes
how these are combined.

As with any xml file the format contains object nodes which can have direct properties and also child nodes. For
instance the outermost node of the .psyexp file is the experiment node, with properties that specify the version of
PsychoPy that was used to save the file most recently and the encoding of text within the file (ascii, unicode etc.), and
with child nodes Settings, Routines and Flow.

14.1 Parameters

Many of the nodes described within this xml description of the experiment contain Param entries, representing different
parameters of that Component. Nearly all parameter nodes have a name property and a val property. The parameter
node with the name “advancedParams” does not have them. Most also have a valType property, which can take values
‘bool’, ‘code’, ‘extendedCode’, ‘num’, ‘str’ and an updates property that specifies whether this parameter is changing
during the experiment and, if so, whether it changes ‘every frame’ (of the monitor) or ‘every repeat’ (of the Routine).

14.2 Settings

The Settings node contains a number of parameters that, in PsychoPy, would normally be set in the Experiment settings
dialog, such as the monitor to be used. This node contains a number of Parameters that map onto the entries in that
dialog.

189

https://groups.google.com/forum/?fromgroups=#!topic/psychopy-dev/j3XkZEYj_PQ

PsychoPy - Psychology software for Python, Release 1.81.03

14.3 Routines

This node provides a sequence of xml child nodes, each of which describes a Routine. Each Routine contains a number
of children, each specifying a Component, such as a stimulus or response collecting device. In the Builder view, the
Routines obviously show up as different tabs in the main window and the Components show up as tracks within that
tab.

14.4 Components

Each Component is represented in the .psyexp file as a set of parameters, corresponding to the entries in the appropriate
component dialog box, that completely describe how and when the stimulus should be presented or how and when the
input device should be read from. Different Components have slightly different nodes in the xml representation which
give rise to different sets of parameters. For instance the TextComponent nodes has parameters such as colour and
font, whereas the KeyboardComponent node has parameters such as forceEndTrial and correctIf.

14.5 Flow

The Flow node is rather more simple. Its children simply specify objects that occur in a particular order in time. A
Routine described in this flow must exist in the list of Routines, since this is where it is fully described. One Routine
can occur once, more than once or not at all in the Flow. The other children that can occur in a Flow are LoopInitiators
and LoopTerminators which specify the start and endpoints of a loop. All loops must have exactly one initiator and
one terminator.

14.6 Names

For the experiment to generate valid PsychoPy code the name parameters of all objects (Components, Loops and
Routines) must be unique and contain no spaces. That is, an experiment can not have two different Routines called
‘trial’, nor even a Routine called ‘trial’ and a Loop called ‘trial’.

The Parameter names belonging to each Component (or the Settings node) must be unique within that Component, but
can be identical to parameters of other Components or can match the Component name themselves. A TextComponent
should not, for example, have multiple ‘pos’ parameters, but other Components generally will, and a Routine called
‘pos’ would also be also permissible.

<PsychoPy2experiment version="1.50.04" encoding="utf-8">
<Settings>
<Param name="Monitor" val="testMonitor" valType="str" updates="None"/>
<Param name="Window size (pixels)" val="[1024, 768]" valType="code" updates="None"/>
<Param name="Full-screen window" val="True" valType="bool" updates="None"/>
<Param name="Save log file" val="True" valType="bool" updates="None"/>
<Param name="Experiment info" val="{’participant’:’s_001’, ’session’:001}" valType="code" updates="None"/>
<Param name="Show info dlg" val="True" valType="bool" updates="None"/>
<Param name="logging level" val="warning" valType="code" updates="None"/>
<Param name="Units" val="norm" valType="str" updates="None"/>
<Param name="Screen" val="1" valType="num" updates="None"/>

</Settings>
<Routines>
<Routine name="trial">

<TextComponent name="word">
<Param name="name" val="word" valType="code" updates="constant"/>

190 Chapter 14. PsychoPy Experiment file format (.psyexp)

PsychoPy - Psychology software for Python, Release 1.81.03

<Param name="text" val="thisTrial.text" valType="code" updates="set every repeat"/>
<Param name="colour" val="thisTrial.rgb" valType="code" updates="set every repeat"/>
<Param name="ori" val="0" valType="code" updates="constant"/>
<Param name="pos" val="[0, 0]" valType="code" updates="constant"/>
<Param name="times" val="[0.5,2.0]" valType="code" updates="constant"/>
<Param name="letterHeight" val="0.2" valType="code" updates="constant"/>
<Param name="colourSpace" val="rgb" valType="code" updates="constant"/>
<Param name="units" val="window units" valType="str" updates="None"/>
<Param name="font" val="Arial" valType="str" updates="constant"/>

</TextComponent>
<KeyboardComponent name="resp">

<Param name="storeCorrect" val="True" valType="bool" updates="constant"/>
<Param name="name" val="resp" valType="code" updates="None"/>
<Param name="forceEndTrial" val="True" valType="bool" updates="constant"/>
<Param name="times" val="[0.5,2.0]" valType="code" updates="constant"/>
<Param name="allowedKeys" val="[’1’,’2’,’3’]" valType="code" updates="constant"/>
<Param name="storeResponseTime" val="True" valType="bool" updates="constant"/>
<Param name="correctIf" val="resp.keys==str(thisTrial.corrAns)" valType="code" updates="constant"/>
<Param name="store" val="last key" valType="str" updates="constant"/>

</KeyboardComponent>
</Routine>
<Routine name="instruct">
<TextComponent name="instrText">
<Param name="name" val="instrText" valType="code" updates="constant"/>
<Param name="text" val=""Please press;
1 for red ink,
2 for green ink
3 for blue ink
(Esc will quit)

Any key to continue"" valType="code" updates="constant"/>
<Param name="colour" val="[1, 1, 1]" valType="code" updates="constant"/>
<Param name="ori" val="0" valType="code" updates="constant"/>
<Param name="pos" val="[0, 0]" valType="code" updates="constant"/>
<Param name="times" val="[0, 10000]" valType="code" updates="constant"/>
<Param name="letterHeight" val="0.1" valType="code" updates="constant"/>
<Param name="colourSpace" val="rgb" valType="code" updates="constant"/>
<Param name="units" val="window units" valType="str" updates="None"/>
<Param name="font" val="Arial" valType="str" updates="constant"/>

</TextComponent>
<KeyboardComponent name="ready">
<Param name="storeCorrect" val="False" valType="bool" updates="constant"/>
<Param name="name" val="ready" valType="code" updates="None"/>
<Param name="forceEndTrial" val="True" valType="bool" updates="constant"/>
<Param name="times" val="[0, 10000]" valType="code" updates="constant"/>
<Param name="allowedKeys" val="" valType="code" updates="constant"/>
<Param name="storeResponseTime" val="False" valType="bool" updates="constant"/>
<Param name="correctIf" val="resp.keys==str(thisTrial.corrAns)" valType="code" updates="constant"/>
<Param name="store" val="last key" valType="str" updates="constant"/>

</KeyboardComponent>
</Routine>
<Routine name="thanks">
<TextComponent name="thanksText">
<Param name="name" val="thanksText" valType="code" updates="constant"/>
<Param name="text" val=""Thanks!"" valType="code" updates="constant"/>
<Param name="colour" val="[1, 1, 1]" valType="code" updates="constant"/>
<Param name="ori" val="0" valType="code" updates="constant"/>
<Param name="pos" val="[0, 0]" valType="code" updates="constant"/>
<Param name="times" val="[1.0, 2.0]" valType="code" updates="constant"/>
<Param name="letterHeight" val="0.2" valType="code" updates="constant"/>
<Param name="colourSpace" val="rgb" valType="code" updates="constant"/>
<Param name="units" val="window units" valType="str" updates="None"/>
<Param name="font" val="arial" valType="str" updates="constant"/>

</TextComponent>

14.6. Names 191

PsychoPy - Psychology software for Python, Release 1.81.03

</Routine>
</Routines>
<Flow>
<Routine name="instruct"/>
<LoopInitiator loopType="TrialHandler" name="trials">
<Param name="endPoints" val="[0, 1]" valType="num" updates="None"/>
<Param name="name" val="trials" valType="code" updates="None"/>
<Param name="loopType" val="random" valType="str" updates="None"/>
<Param name="nReps" val="5" valType="num" updates="None"/>
<Param name="trialList" val="[{’text’: ’red’, ’rgb’: [1, -1, -1], ’congruent’: 1, ’corrAns’: 1}, {’text’: ’red’, ’rgb’: [-1, 1, -1], ’congruent’: 0, ’corrAns’: 1}, {’text’: ’green’, ’rgb’: [-1, 1, -1], ’congruent’: 1, ’corrAns’: 2}, {’text’: ’green’, ’rgb’: [-1, -1, 1], ’congruent’: 0, ’corrAns’: 2}, {’text’: ’blue’, ’rgb’: [-1, -1, 1], ’congruent’: 1, ’corrAns’: 3}, {’text’: ’blue’, ’rgb’: [1, -1, -1], ’congruent’: 0, ’corrAns’: 3}]" valType="str" updates="None"/>
<Param name="trialListFile" val="/Users/jwp...troop/trialTypes.csv" valType="str" updates="None"/>

</LoopInitiator>
<Routine name="trial"/>
<LoopTerminator name="trials"/>
<Routine name="thanks"/>

</Flow>
</PsychoPy2experiment>

192 Chapter 14. PsychoPy Experiment file format (.psyexp)

PYTHON MODULE INDEX

p
psychopy.core, 77
psychopy.data, 80
psychopy.filters, 100
psychopy.hardware.crs, 106
psychopy.hardware.egi, 106
psychopy.hardware.emulator, 106
psychopy.hardware.forp, 107
psychopy.hardware.iolab, 108
psychopy.hardware.joystick, 109
psychopy.hardware.minolta, 111
psychopy.hardware.pr, 113
psychopy.info, 116
psychopy.iohub.client, 119
psychopy.iohub.client.keyboard, 124
psychopy.logging, 128
psychopy.misc, 135
psychopy.parallel, 142
psychopy.sound, 144
psychopy.tools, 146
psychopy.tools.colorspacetools, 146
psychopy.tools.coordinatetools, 147
psychopy.tools.filetools, 148
psychopy.tools.imagetools, 148
psychopy.tools.monitorunittools, 149
psychopy.tools.plottools, 149
psychopy.tools.typetools, 150
psychopy.tools.unittools, 150
pylink, 116
pyxid, 105

193

PsychoPy - Psychology software for Python, Release 1.81.03

194 Python Module Index

INDEX

A
abort() (psychopy.data.ExperimentHandler method), 80
Adaptive staircase, 25
add() (psychopy.core.Clock method), 78
addData() (psychopy.data.ExperimentHandler method),

80
addData() (psychopy.data.MultiStairHandler method), 88
addData() (psychopy.data.QuestHandler method), 92
addData() (psychopy.data.StairHandler method), 86
addData() (psychopy.data.TrialHandler method), 82
addField() (psychopy.gui.Dlg method), 103
addFixedField() (psychopy.gui.Dlg method), 103
addLevel() (in module psychopy.logging), 129
addLoop() (psychopy.data.ExperimentHandler method),

81
addOtherData() (psychopy.data.MultiStairHandler

method), 88
addOtherData() (psychopy.data.QuestHandler method),

92
addOtherData() (psychopy.data.StairHandler method), 86
addResponse() (psychopy.data.MultiStairHandler

method), 89
addResponse() (psychopy.data.QuestHandler method), 92
addResponse() (psychopy.data.StairHandler method), 86
addText() (psychopy.gui.Dlg method), 103
addTrialHandlerRecord() (psy-

chopy.iohub.client.ioHubConnection method),
122

AdvAudioCapture (class in psychopy.microphone), 131
array2image() (in module psychopy.tools.imagetools),

148

B
BatchSpeech2Text (class in psychopy.microphone), 134
bootStraps() (in module psychopy.data), 97
butter2d_bp() (in module psychopy.filters), 100
butter2d_hp() (in module psychopy.filters), 100
butter2d_lp() (in module psychopy.filters), 100
butter2d_lp_elliptic() (in module psychopy.filters), 100
ButtonBox (class in psychopy.hardware.forp), 107
ButtonBox (class in psychopy.hardware.iolab), 108

C
calculateNextIntensity() (psychopy.data.QuestHandler

method), 92
calculateNextIntensity() (psychopy.data.StairHandler

method), 86
cart2pol() (in module psychopy.tools.coordinatetools),

147
cart2sph() (in module psychopy.tools.coordinatetools),

148
char (psychopy.iohub.client.keyboard.KeyboardPress at-

tribute), 126
char (psychopy.iohub.client.keyboard.KeyboardRelease

attribute), 127
checkOK() (psychopy.hardware.minolta.LS100 method),

112
clear_response_queue() (pyxid.ResponseDevice method),

105
clearBuffer() (psychopy.hardware.forp.ButtonBox

method), 108
clearEvents() (in module psychopy.event), 99
clearEvents() (psychopy.hardware.iolab.ButtonBox

method), 108
clearEvents() (psychopy.iohub.client.ioHubConnection

method), 121
clearMemory() (psychopy.hardware.minolta.LS100

method), 112
clearStatus() (psychopy.hardware.forp.ButtonBox

method), 108
clickReset() (psychopy.event.Mouse method), 98
Clock (class in psychopy.core), 77
cm2deg() (in module psychopy.tools.monitorunittools),

149
cm2pix() (in module psychopy.tools.monitorunittools),

149
complete() (psychopy.core.StaticPeriod method), 79
compress() (psychopy.microphone.AdvAudioCapture

method), 131
confInterval() (psychopy.data.QuestHandler method), 92
conv2d() (in module psychopy.filters), 101
convertToPix() (in module psy-

chopy.tools.monitorunittools), 149
copyCalib() (psychopy.monitors.Monitor method), 137

195

PsychoPy - Psychology software for Python, Release 1.81.03

CountdownTimer (class in psychopy.core), 78
createTrialHandlerRecordTable() (psy-

chopy.iohub.client.ioHubConnection method),
122

critical() (in module psychopy.logging), 129
CRT, 25
csv, 25

D
data() (in module psychopy.logging), 129
debug() (in module psychopy.logging), 129
deg2cm() (in module psychopy.tools.monitorunittools),

149
deg2pix() (in module psychopy.tools.monitorunittools),

149
degrees() (in module psychopy.tools.unittools), 151
delCalib() (psychopy.monitors.Monitor method), 137
disableHighPriority() (psy-

chopy.iohub.client.ioHubConnection method),
123

dkl2rgb() (in module psychopy.tools.colorspacetools),
146, 147

dklCart2rgb() (in module psy-
chopy.tools.colorspacetools), 146

Dlg (class in psychopy.gui), 103
DlgFromDict (class in psychopy.gui), 102
duration (psychopy.iohub.client.keyboard.KeyboardRelease

attribute), 127

E
enableHighPriority() (psy-

chopy.iohub.client.ioHubConnection method),
123

endRemoteMode() (psychopy.hardware.pr.PR655
method), 114

error() (in module psychopy.logging), 129
eval() (psychopy.data.FitCumNormal method), 96
eval() (psychopy.data.FitLogistic method), 95
eval() (psychopy.data.FitNakaRushton method), 95
eval() (psychopy.data.FitWeibull method), 94
exp() (in module psychopy.logging), 129
ExperimentHandler (class in psychopy.data), 80

F
fadeOut() (psychopy.sound.SoundPygame method), 145
fatal() (in module psychopy.logging), 129
fileOpenDlg (class in psychopy.gui), 103
fileSaveDlg (class in psychopy.gui), 104
findPhotometer() (in module psychopy.hardware), 116
findPR650() (in module psychopy.monitors), 140
FitCumNormal (class in psychopy.data), 95
fitGammaErrFun() (psy-

chopy.monitors.GammaCalculator method),
140

fitGammaFun() (psychopy.monitors.GammaCalculator
method), 140

FitLogistic (class in psychopy.data), 95
FitNakaRushton (class in psychopy.data), 95
FitWeibull (class in psychopy.data), 94
flac2wav() (in module psychopy.microphone), 135
float_uint16() (in module psychopy.tools.typetools), 150
float_uint8() (in module psychopy.tools.typetools), 150
flush() (in module psychopy.logging), 130
flushDataStoreFile() (psy-

chopy.iohub.client.ioHubConnection method),
123

fromFile() (in module psychopy.tools.filetools), 148
functionFromStaircase() (in module psychopy.data), 96

G
GammaCalculator (class in psychopy.monitors), 140
gammaFun() (in module psychopy.monitors), 141
gammaInvFun() (in module psychopy.monitors), 141
gammaIsDefault() (psychopy.monitors.Monitor method),

137
get_next_response() (pyxid.ResponseDevice method),

105
get_xid_device() (in module pyxid), 105
get_xid_devices() (in module pyxid), 105
getAbsTime() (in module psychopy.core), 77
getAllAxes() (psychopy.hardware.joystick.Joystick

method), 110
getAllButtons() (psychopy.hardware.joystick.Joystick

method), 110
getAllHats() (psychopy.hardware.joystick.Joystick

method), 110
getAllMonitors() (in module psychopy.monitors), 140
getAxis() (psychopy.hardware.joystick.Joystick method),

110
getBaseTime() (psychopy.hardware.iolab.ButtonBox

method), 109
getButton() (psychopy.hardware.joystick.Joystick

method), 110
getCalibDate() (psychopy.monitors.Monitor method),

137
getDevice() (psychopy.iohub.client.ioHubConnection

method), 120
getDeviceSN() (psychopy.hardware.pr.PR655 method),

114
getDeviceType() (psychopy.hardware.pr.PR655 method),

114
getDft() (in module psychopy.microphone), 135
getDistance() (psychopy.monitors.Monitor method), 137
getDKL_RGB() (psychopy.monitors.Monitor method),

137
getDuration() (psychopy.sound.SoundPygame method),

145
getDuration() (psychopy.sound.SoundPyo method), 144

196 Index

PsychoPy - Psychology software for Python, Release 1.81.03

getEarlierTrial() (psychopy.data.TrialHandler method),
82

getEnabled() (psychopy.hardware.iolab.ButtonBox
method), 109

getEvents() (psychopy.hardware.forp.ButtonBox
method), 108

getEvents() (psychopy.hardware.iolab.ButtonBox
method), 109

getEvents() (psychopy.iohub.client.ioHubConnection
method), 120

getExp() (psychopy.data.MultiStairHandler method), 89
getExp() (psychopy.data.QuestHandler method), 92
getExp() (psychopy.data.StairHandler method), 86
getExp() (psychopy.data.TrialHandler method), 82
getFutureTrial() (psychopy.data.TrialHandler method), 83
getGamma() (psychopy.monitors.Monitor method), 138
getGammaGrid() (psychopy.monitors.Monitor method),

138
getHat() (psychopy.hardware.joystick.Joystick method),

110
getKeys() (in module psychopy.event), 99
getKeys() (psychopy.iohub.client.keyboard.Keyboard

method), 124
getLastColorTemp() (psychopy.hardware.pr.PR655

method), 114
getLastLum() (psychopy.hardware.pr.PR650 method),

113
getLastResetTime() (psychopy.core.MonotonicClock

method), 78
getLastSpectrum() (psychopy.hardware.pr.PR650

method), 113
getLastSpectrum() (psychopy.hardware.pr.PR655

method), 114
getLastTristim() (psychopy.hardware.pr.PR655 method),

115
getLastUV() (psychopy.hardware.pr.PR655 method), 115
getLastXY() (psychopy.hardware.pr.PR655 method), 115
getLevel() (in module psychopy.logging), 130
getLevelsPost() (psychopy.monitors.Monitor method),

138
getLevelsPre() (psychopy.monitors.Monitor method), 138
getLinearizeMethod() (psychopy.monitors.Monitor

method), 138
getLMS_RGB() (psychopy.monitors.Monitor method),

138
getLoops() (psychopy.sound.SoundPyo method), 144
getLoudness() (psychopy.microphone.AdvAudioCapture

method), 131
getLum() (psychopy.hardware.minolta.LS100 method),

112
getLum() (psychopy.hardware.pr.PR650 method), 113
getLumSeriesPR650() (in module psychopy.monitors),

140
getLumsPost() (psychopy.monitors.Monitor method), 138

getLumsPre() (psychopy.monitors.Monitor method), 138
getMarkerInfo() (psychopy.microphone.AdvAudioCapture

method), 131
getMarkerOnset() (psy-

chopy.microphone.AdvAudioCapture method),
132

getMeanLum() (psychopy.monitors.Monitor method),
138

getName() (psychopy.hardware.joystick.Joystick
method), 110

getName() (psychopy.iohub.client.keyboard.Keyboard
method), 126

getNotes() (psychopy.monitors.Monitor method), 138
getNumAxes() (psychopy.hardware.joystick.Joystick

method), 110
getNumButtons() (psychopy.hardware.joystick.Joystick

method), 110
getNumHats() (psychopy.hardware.joystick.Joystick

method), 110
getNumJoysticks() (in module psy-

chopy.hardware.joystick), 110
getOriginPathAndFile() (psy-

chopy.data.MultiStairHandler method), 89
getOriginPathAndFile() (psychopy.data.QuestHandler

method), 92
getOriginPathAndFile() (psychopy.data.StairHandler

method), 86
getOriginPathAndFile() (psychopy.data.TrialHandler

method), 83
getPos() (psychopy.event.Mouse method), 98
getPressed() (psychopy.event.Mouse method), 98
getPresses() (psychopy.iohub.client.keyboard.Keyboard

method), 125
getProcessAffinity() (psy-

chopy.iohub.client.ioHubConnection method),
123

getPsychopyVersion() (psychopy.monitors.Monitor
method), 138

getRAM() (in module psychopy.info), 117
getRel() (psychopy.event.Mouse method), 98
getReleases() (psychopy.iohub.client.keyboard.Keyboard

method), 125
getResponse() (psychopy.microphone.Speech2Text

method), 134
getRGBspectra() (in module psychopy.monitors), 141
getRMS() (in module psychopy.microphone), 135
getRMScontrast() (in module psychopy.filters), 101
getSizePix() (psychopy.monitors.Monitor method), 138
getSpectra() (psychopy.monitors.Monitor method), 138
getSpectrum() (psychopy.hardware.pr.PR650 method),

113
getThread() (psychopy.microphone.Speech2Text

method), 134
getTime() (in module psychopy.core), 77

Index 197

PsychoPy - Psychology software for Python, Release 1.81.03

getTime() (psychopy.core.CountdownTimer method), 78
getTime() (psychopy.core.MonotonicClock method), 78
getUniqueEvents() (psychopy.hardware.forp.ButtonBox

method), 108
getUseBits() (psychopy.monitors.Monitor method), 138
getVisible() (psychopy.event.Mouse method), 98
getVolume() (psychopy.sound.SoundPygame method),

145
getVolume() (psychopy.sound.SoundPyo method), 144
getWheelRel() (psychopy.event.Mouse method), 98
getWidth() (psychopy.monitors.Monitor method), 138
getX() (psychopy.hardware.joystick.Joystick method),

110
getY() (psychopy.hardware.joystick.Joystick method),

110
getZ() (psychopy.hardware.joystick.Joystick method),

111

H
haveInternetAccess() (in module psychopy.web), 151
hsv2rgb() (in module psychopy.tools.colorspacetools),

147

I
id (psychopy.iohub.client.keyboard.KeyboardRelease at-

tribute), 127
image2array() (in module psychopy.tools.imagetools),

148
imfft() (in module psychopy.filters), 101
imifft() (in module psychopy.filters), 101
importConditions() (in module psychopy.data), 96
importData() (psychopy.data.QuestHandler method), 93
incTrials() (psychopy.data.QuestHandler method), 93
info() (in module psychopy.logging), 130
init_device() (pyxid.XidDevice method), 105
inverse() (psychopy.data.FitCumNormal method), 96
inverse() (psychopy.data.FitLogistic method), 95
inverse() (psychopy.data.FitNakaRushton method), 95
inverse() (psychopy.data.FitWeibull method), 95
ioHubConnection (class in psychopy.iohub.client), 120
isPressedIn() (psychopy.event.Mouse method), 98

J
Joystick (class in psychopy.hardware.joystick), 110

K
Keyboard (class in psychopy.iohub.client.keyboard), 124
KeyboardPress (class in psychopy.iohub.client.keyboard),

126
KeyboardRelease (class in psy-

chopy.iohub.client.keyboard), 127

L
launchHubServer() (in module psychopy.iohub.client),

119
launchScan() (in module psychopy.hardware.emulator),

106
lineariseLums() (psychopy.monitors.Monitor method),

138
lms2rgb() (in module psychopy.tools.colorspacetools),

147
log() (in module psychopy.logging), 130
LogFile (class in psychopy.logging), 129
loopEnded() (psychopy.data.ExperimentHandler

method), 81
LS100 (class in psychopy.hardware.minolta), 111

M
makeDKL2RGB() (in module psychopy.monitors), 141
makeGauss() (in module psychopy.filters), 101
makeGrating() (in module psychopy.filters), 101
makeImageAuto() (in module psy-

chopy.tools.imagetools), 148
makeLMS2RGB() (in module psychopy.monitors), 141
makeMask() (in module psychopy.filters), 101
makeRadialMatrix() (in module psychopy.filters), 102
maskMatrix() (in module psychopy.filters), 102
mean() (psychopy.data.QuestHandler method), 93
measure() (psychopy.hardware.minolta.LS100 method),

112
measure() (psychopy.hardware.pr.PR650 method), 113
measure() (psychopy.hardware.pr.PR655 method), 115
mergeFolder() (in module psychopy.tools.filetools), 148
Method of constants, 25
mode() (psychopy.data.QuestHandler method), 93
modifiers (psychopy.iohub.client.keyboard.KeyboardPress

attribute), 126
modifiers (psychopy.iohub.client.keyboard.KeyboardRelease

attribute), 127
Monitor (class in psychopy.monitors), 137
MonotonicClock (class in psychopy.core), 78
Mouse (class in psychopy.event), 97
mouseMoved() (psychopy.event.Mouse method), 98
mouseMoveTime() (psychopy.event.Mouse method), 98
MultiStairHandler (class in psychopy.data), 88

N
newCalib() (psychopy.monitors.Monitor method), 138
next() (psychopy.data.MultiStairHandler method), 89
next() (psychopy.data.QuestHandler method), 93
next() (psychopy.data.StairHandler method), 86
next() (psychopy.data.TrialHandler method), 83
nextEntry() (psychopy.data.ExperimentHandler method),

81
nextTrial() (psychopy.data.MultiStairHandler method),

89

198 Index

PsychoPy - Psychology software for Python, Release 1.81.03

nextTrial() (psychopy.data.QuestHandler method), 93
nextTrial() (psychopy.data.StairHandler method), 86
nextTrial() (psychopy.data.TrialHandler method), 83

P
ParallelPort (class in psychopy.parallel), 142
parseSpectrumOutput() (psychopy.hardware.pr.PR650

method), 114
parseSpectrumOutput() (psychopy.hardware.pr.PR655

method), 115
pix2cm() (in module psychopy.tools.monitorunittools),

149
pix2deg() (in module psychopy.tools.monitorunittools),

149
play() (psychopy.sound.SoundPygame method), 145
play() (psychopy.sound.SoundPyo method), 145
playback() (psychopy.microphone.AdvAudioCapture

method), 132
playMarker() (psychopy.microphone.AdvAudioCapture

method), 132
plotFrameIntervals() (in module psy-

chopy.tools.plottools), 149
pol2cart() (in module psychopy.tools.coordinatetools),

148
poll_for_response() (pyxid.ResponseDevice method),

105
PR650 (class in psychopy.hardware.pr), 113
PR655 (class in psychopy.hardware.pr), 114
pressEventID (psychopy.iohub.client.keyboard.KeyboardRelease

attribute), 127
printAsText() (psychopy.data.MultiStairHandler method),

89
printAsText() (psychopy.data.QuestHandler method), 93
printAsText() (psychopy.data.StairHandler method), 86
printAsText() (psychopy.data.TrialHandler method), 83
psychopy.core (module), 77
psychopy.data (module), 80
psychopy.filters (module), 100
psychopy.hardware.crs (module), 106
psychopy.hardware.egi (module), 106
psychopy.hardware.emulator (module), 106
psychopy.hardware.forp (module), 107
psychopy.hardware.iolab (module), 108
psychopy.hardware.joystick (module), 109
psychopy.hardware.minolta (module), 111
psychopy.hardware.pr (module), 113
psychopy.info (module), 116
psychopy.iohub.client (module), 119
psychopy.iohub.client.keyboard (module), 124
psychopy.logging (module), 128
psychopy.misc (module), 135
psychopy.parallel (module), 142
psychopy.sound (module), 144
psychopy.tools (module), 146

psychopy.tools.colorspacetools (module), 146
psychopy.tools.coordinatetools (module), 147
psychopy.tools.filetools (module), 148
psychopy.tools.imagetools (module), 148
psychopy.tools.monitorunittools (module), 149
psychopy.tools.plottools (module), 149
psychopy.tools.typetools (module), 150
psychopy.tools.unittools (module), 150
pylink (module), 116
pyxid (module), 105

Q
quantile() (psychopy.data.QuestHandler method), 93
QuestHandler (class in psychopy.data), 90
quit() (psychopy.iohub.client.ioHubConnection method),

124

R
radians() (in module psychopy.tools.unittools), 150
readData() (psychopy.parallel.ParallelPort method), 142
readPin() (psychopy.parallel static method), 143
readPin() (psychopy.parallel.ParallelPort method), 142
record() (psychopy.microphone.AdvAudioCapture

method), 132
reporting (psychopy.iohub.client.keyboard.Keyboard at-

tribute), 124
requireInternetAccess() (in module psychopy.web), 151
resample() (psychopy.microphone.AdvAudioCapture

method), 132
reset() (psychopy.core.Clock method), 78
reset() (psychopy.microphone.AdvAudioCapture

method), 132
resetClock() (psychopy.hardware.iolab.ButtonBox

method), 109
response_queue_size() (pyxid.ResponseDevice method),

105
ResponseDevice (class in pyxid), 105
ResponseEmulator (class in psy-

chopy.hardware.emulator), 107
rgb2dklCart() (in module psy-

chopy.tools.colorspacetools), 146
rgb2lms() (in module psychopy.tools.colorspacetools),

147
RunTimeInfo (class in psychopy.info), 116

S
saveAsExcel() (psychopy.data.MultiStairHandler

method), 89
saveAsExcel() (psychopy.data.QuestHandler method), 93
saveAsExcel() (psychopy.data.StairHandler method), 87
saveAsExcel() (psychopy.data.TrialHandler method), 83
saveAsPickle() (psychopy.data.ExperimentHandler

method), 81

Index 199

PsychoPy - Psychology software for Python, Release 1.81.03

saveAsPickle() (psychopy.data.MultiStairHandler
method), 90

saveAsPickle() (psychopy.data.QuestHandler method),
94

saveAsPickle() (psychopy.data.StairHandler method), 87
saveAsPickle() (psychopy.data.TrialHandler method), 84
saveAsText() (psychopy.data.MultiStairHandler method),

90
saveAsText() (psychopy.data.QuestHandler method), 94
saveAsText() (psychopy.data.StairHandler method), 87
saveAsText() (psychopy.data.TrialHandler method), 84
saveAsWideText() (psychopy.data.ExperimentHandler

method), 81
saveAsWideText() (psychopy.data.TrialHandler method),

84
saveMon() (psychopy.monitors.Monitor method), 138
sd() (psychopy.data.QuestHandler method), 94
sendMessage() (psychopy.hardware.minolta.LS100

method), 112
sendMessage() (psychopy.hardware.pr.PR650 method),

114
sendMessage() (psychopy.hardware.pr.PR655 method),

115
sendMessageEvent() (psy-

chopy.iohub.client.ioHubConnection method),
122

setCalibDate() (psychopy.monitors.Monitor method), 138
setCurrent() (psychopy.monitors.Monitor method), 138
setData() (psychopy.parallel static method), 143
setData() (psychopy.parallel.ParallelPort method), 142
setDefaultClock() (in module psychopy.logging), 130
setDistance() (psychopy.monitors.Monitor method), 139
setDKL_RGB() (psychopy.monitors.Monitor method),

139
setEnabled() (psychopy.hardware.iolab.ButtonBox

method), 109
setExp() (psychopy.data.MultiStairHandler method), 90
setExp() (psychopy.data.QuestHandler method), 94
setExp() (psychopy.data.StairHandler method), 87
setExp() (psychopy.data.TrialHandler method), 85
setFile() (psychopy.microphone.AdvAudioCapture

method), 132
setGamma() (psychopy.monitors.Monitor method), 139
setGammaGrid() (psychopy.monitors.Monitor method),

139
setLevel() (psychopy.logging.LogFile method), 129
setLevelsPost() (psychopy.monitors.Monitor method),

139
setLevelsPre() (psychopy.monitors.Monitor method), 139
setLights() (psychopy.hardware.iolab.ButtonBox

method), 109
setLineariseMethod() (psychopy.monitors.Monitor

method), 139
setLMS_RGB() (psychopy.monitors.Monitor method),

139
setLoops() (psychopy.sound.SoundPyo method), 145
setLumsPost() (psychopy.monitors.Monitor method), 139
setLumsPre() (psychopy.monitors.Monitor method), 139
setMarker() (psychopy.microphone.AdvAudioCapture

method), 132
setMaxAttempts() (psychopy.hardware.minolta.LS100

method), 112
setMeanLum() (psychopy.monitors.Monitor method),

139
setMode() (psychopy.hardware.minolta.LS100 method),

112
setNotes() (psychopy.monitors.Monitor method), 139
setPin() (psychopy.parallel static method), 143
setPortAddress() (psychopy.parallel static method), 142
setPos() (psychopy.event.Mouse method), 98
setProcessAffinity() (psy-

chopy.iohub.client.ioHubConnection method),
123

setPsychopyVersion() (psychopy.monitors.Monitor
method), 139

setSizePix() (psychopy.monitors.Monitor method), 139
setSpectra() (psychopy.monitors.Monitor method), 139
setupProxy() (in module psychopy.web), 152
setUseBits() (psychopy.monitors.Monitor method), 139
setVisible() (psychopy.event.Mouse method), 99
setVolume() (psychopy.sound.SoundPygame method),

146
setVolume() (psychopy.sound.SoundPyo method), 145
setWidth() (psychopy.monitors.Monitor method), 139
show() (psychopy.gui.Dlg method), 103
shutdown() (psychopy.iohub.client.ioHubConnection

method), 124
simulate() (psychopy.data.QuestHandler method), 94
SoundPygame (class in psychopy.sound), 145
SoundPyo (class in psychopy.sound), 144
Speech2Text (class in psychopy.microphone), 133
sph2cart() (in module psychopy.tools.coordinatetools),

148
StairHandler (class in psychopy.data), 85
standby() (psychopy.hardware.iolab.ButtonBox method),

109
start() (psychopy.core.StaticPeriod method), 79
startRemoteMode() (psychopy.hardware.pr.PR655

method), 115
state (psychopy.iohub.client.keyboard.Keyboard at-

tribute), 124
StaticPeriod (class in psychopy.core), 78
stop() (psychopy.microphone.AdvAudioCapture

method), 132
stop() (psychopy.sound.SoundPygame method), 146
stop() (psychopy.sound.SoundPyo method), 145
switchOn() (in module psychopy.microphone), 131

200 Index

PsychoPy - Psychology software for Python, Release 1.81.03

SyncGenerator (class in psychopy.hardware.emulator),
107

T
time (psychopy.iohub.client.keyboard.KeyboardPress at-

tribute), 126
time (psychopy.iohub.client.keyboard.KeyboardRelease

attribute), 127
toFile() (in module psychopy.tools.filetools), 148
TrialHandler (class in psychopy.data), 81
type (psychopy.iohub.client.keyboard.KeyboardPress at-

tribute), 127
type (psychopy.iohub.client.keyboard.KeyboardRelease

attribute), 128

U
u3 (in module labjack), 111
uint8_float() (in module psychopy.tools.typetools), 150
uncompress() (psychopy.microphone.AdvAudioCapture

method), 133
units (psychopy.event.Mouse attribute), 99
upload() (in module psychopy.web), 151

V
VBI, 25
VBI blocking, 25
VBI syncing, 25

W
wait() (in module psychopy.core), 77
waitEvents() (psychopy.hardware.iolab.ButtonBox

method), 109
waitForKeys() (psychopy.iohub.client.keyboard.Keyboard

method), 125
waitForPresses() (psychopy.iohub.client.keyboard.Keyboard

method), 126
waitForReleases() (psy-

chopy.iohub.client.keyboard.Keyboard
method), 126

waitKeys() (in module psychopy.event), 99
warn() (in module psychopy.logging), 130
warning() (in module psychopy.logging), 130
wav2flac() (in module psychopy.microphone), 135
write() (psychopy.logging.LogFile method), 129

X
XidDevice (class in pyxid), 105
xlsx, 25
xydist() (in module psychopy.event), 99

Index 201

	About PsychoPy
	Overview
	Credits
	Contributing to the project
	Citing PsychoPy

	General issues
	Monitor Center
	Units for the window and stimuli
	Color spaces
	Preferences
	Data outputs
	Gamma correcting a monitor
	OpenGL and Rendering
	Timing Issues and synchronisation
	Glossary

	Installation
	Overview
	Recommended hardware
	Windows
	Mac OS X
	Linux

	Dependencies
	Essential packages
	Suggested packages

	Getting Started
	Builder
	Builder-to-coder
	Coder

	Builder
	Builder concepts
	Routines
	Flow
	Components
	Experiment settings
	Defining the onset/duration of components
	Generating outputs (datafiles)
	Common Mistakes (aka Gotcha's)
	Compiling a Script
	Set up your monitor properly
	Future developments

	Coder
	Basic Concepts
	PsychoPy Tutorials

	Reference Manual (API)
	psychopy.core - basic functions (clocks etc.)
	psychopy.visual - many visual stimuli
	psychopy.data - functions for storing/saving/analysing data
	Encryption
	psychopy.event - for keypresses and mouse clicks
	psychopy.filters - helper functions for creating filters
	psychopy.gui - create dialogue boxes
	psychopy.hardware - hardware interfaces
	psychopy.info - functions for getting information about the system
	psychopy.iohub - ioHub event monitoring framework
	psychopy.logging - control what gets logged
	psychopy.microphone - Capture and analyze sound
	psychopy.misc - miscellaneous routines for converting units etc
	psychopy.monitors - for those that don't like Monitor Center
	psychopy.parallel - functions for interacting with the parallel port
	psychopy.serial - functions for interacting with the serial port
	psychopy.sound - play various forms of sound
	psychopy.tools - miscellaneous tools
	psychopy.web - Web methods

	Troubleshooting
	The application doesn't start
	I run a Builder experiment and nothing happens
	Manually turn off the viewing of output
	Use the source (Luke?)
	Cleaning preferences and app data

	Recipes (``How-to''s)
	Adding external modules to Standalone PsychoPy
	Animation
	Scrolling text
	Fade-in / fade-out effects
	Building an application from your script
	Builder - providing feedback
	Builder - terminating a loop
	Installing PsychoPy in a classroom (administrators)
	Generating formatted strings
	Coder - interleave staircases
	Making isoluminant stimuli
	Adding a web-cam

	Frequently Asked Questions (FAQs)
	Why is the bits++ demo not working?
	Can PsychoPy run my experiment with sub-millisecond timing?

	Resources (e.g. for teaching)
	P4N
	Youtube tutorials
	Materials for Builder
	Materials for Coder
	Previous events

	For Developers
	Using the repository
	Adding documentation
	Adding a new Builder Component
	Style-guide for coder demos
	Localization (I18N, translation)
	Adding a new Menu Item

	PsychoPy Experiment file format (.psyexp)
	Parameters
	Settings
	Routines
	Components
	Flow
	Names

	Python Module Index
	Index

