Object\Wel b
JsfztmsmK =

ProActive

Programming, Composing, Deploying on the Grid

ProActive Scheduler

OASIS Research Team and ActiveEon Team

1 CENTRE MATIOMAL
DE LA RECHERCHE
SOPHIA ANTIFOLLE SCIENTIFIGUE

Version 2008-07-16 10:47:41 2008-07-16 10:47:41 Copyright © 1997-2008 INRIA

1

ProActive Scheduler v2008-07-16 10:47:41 Documentation

ProActive Scheduler
OASIS Research Team and ActiveEon Team

L egal Notice
The ProActive Scheduler is being distributed under the GPL2 license.

Copyright INRIA 1997-2008.

Pro

@ Contributors and Contact Information

Contributors and Contact Information

Team Leader:

Denis Caromel
INRIA 2004, Route des Lucioles

BP 93
06902

Sophia Antipolis Cedex
France

phone: +33 492 387 631

fax: +33 492 387 971
Denis.Caromel @inria.fr

OASISTeam
Guillaume Laurent Baptiste De Stefano
Robert Lovas Nicolas Dodelin
Jonathan Martin Yu Feng
Elton Mathias Imen Filiali
Maxime Menant Johann Fradj
Guilherme Perretti Pezzi Abhijeet Gaikwad
Franca Perrina Regis Gascon
Kamran Qadir Jean-Michael Guillamume
Bastien Sauvan Abhishek-Rajeev Gupta
Germain Sigety Elaine Isnard
Etienne Vallette-De-Osia Vasile Jureschi
Laurent Vanni Francoise Baude
Yulai Yuan Antonio Cansado
Sylvain Cussat-Blanc MarcelaRivera
Boutheina Bennour Ludovic Henrio
Vincent Cave Fabrice Huet
Guillaume Chazarain Virginie Contes
Clement Mathieu Mario Leyton
Eric Madelaine Paul Naoumenko
Brian Amedro Viet Dong Doan
Florin Bratu Fabien Viale
Tomasz Dobek Cédric Damasso
Khan Muhammad Jean-Luc Scheefer

Julian Krzeminski
Zhihui Dai

ActiveEon Team
Christian Delbé
Arnaud Contes

Vladimir Bodnartchouk
Emil Salageanu

Past And External Important Contributors

Laurent Baduel
Alexandre di Costanzo
Romain Quilici
Nadia Ranaldo
Julien Vayssiere

Lionel Mestre
Matthieu Morel
Guillaume Chazarain

Public questions, comments, or discussions can pe posted on the ProActive public mailing list

proactive@ow?2.0rg
Themailing list archiveis placed at

http://www.objectweb.org/wws/arc/proactive

Bugs can be posted on the ProActive Jira bug-tracking system

https://galpage-exp.inria.fr:8181/jira

mailto:Denis.Caromel@inria.fr
mailto:proactive@ow2.org
http://www.objectweb.org/wws/arc/proactive
https://galpage-exp.inria.fr:8181/jira

Pro &
Table of Contents
TS 0 {00 - PS R v
I ES 0 == 0 0] o] -SSP %

Part |. ProActive Scheduler

Chapter 1. ProACtIVE SCNEAUIES ..o st 2
1.2 IMPORTANT NOTE ..ottt ettt ettt e e e e e ettt bbb e e e e e e e e ee bbb e e e e e e e eee bbbt aaeeaaaaeene 2
2 @ Y= VL= PPN 2
1.3, SCREAUIES CONCEPLeete ettt ettt ettt ettt ettt ettt ettt ettt e et e et e et e et e et e et e e e enba e e e ennen 2

TN BT o 13- TN o o I SO S 2
1.3.2. WAL 1S 8 TASK 2 . .eeiiiiiiiitie ettt ettt e e oo ettt bt e e e e e e e et tebb s e e e e e e e e ebbbban e e e e eaaaeenerans 2
1.3.3. DependenCieS DEWEEN TaSKScceuuuiiiiii ettt e ettt e e et e e e 3
1.3.4. SChEAUITNG POLICY ...ttt e e et e e 4
U s < |V = 0 PP 4
I O (= (- o] o PSP PPTTRPPPRTPI 4
1.4.2. Create @ TaskFIOW JODcoouun e e e 5
1.4.3. Create @ PrOACHVE JOD ettt 6
1.4.4. Create and Add atask T0 @ JODuuiiiiii e 7
1.4.5. Submit a job to the ProActive SChedUlerooooiii i 22
R R T = T o) o BN (=== U | SR PT 23
1.4.7. Register to ProACtive SChedUIer BVENLES it 23
1.5, ADMINIStrator IMBNUEL ... oottt e et et e et e et e e e e e et e e e e ean e aeen 24

Chapter 2. ProActive Scheduler ECpliSe PIUGINooiiiiiiiee e 25
2.1. The SChedUIEr PEISPECLIVEttt et et e e et e et e e et e e e an e eaaeeeens 25
2.2. Views compoSiNg the PEISPECIIVEcuuniii ittt e e et et e et e e et e e e e aeanns 27
2.3. Connect to the started ProACtive SChedUIEYooiiiiiii e 31
2.4. The Scheduler perspective DUITONS it e 32

2.4.1. The Jobs view DUttoNS iN USEr MOOEcuuiiiiiiiiieieii et 32
2.4.2. The Jobs view buttons in AdMINIStrator MOOEuiiieiiiiiiiii e 33

3.3. Resource Manager arChiteCIUIEcuuiii e e e e e e e e e e e e e e 36
3.4. Static Node Source and DyNamiC NOGE SOUICEcvuueiiiei et e e e e eeans 37
3.5, INOOES SEALES ...ttt ettt et e et ettt et et et e e et et e e e e e anas 37
3.6. Starting the RESOUICE IMBNAJETuiiiiii e e e ettt et e e e e e e e e et e e et e e e et e et e ea e anaeanaasnaesnes 38
Chapter 4. Resource Manager's EClipSE PIUGINoovveiiiieiece et 39

Part 111. ProActive Scheduler's Matlab extension

Chapter 5. ProActive Scheduler's Matlab EXTENSIONoooiiiiiiiie i 41
LT I o === g1 [o PPN 41

Pro &

5.2. Quick Start with the Matlah EXTENSIONuiiiiiiii et e e e e e et e e eenns 41
L B | 0 = = (o PP PPPPPI 41
5.2.2. Writing a simple example : the Matlah SCriptc.uiiiiiiiiiiii e 41
5.2.3. Writing a simple example : the Scheduler job deSCIiPLOrccovuiiiiiiiii e 41

5.3. A More Complex Example : a Matlal task fFIOWcoouuuiiiiiiiiii e 45
5.3.1. DESCIPLOr VATADIESeeeeeee et 47
5.3.2. New Tasks : MatlabSplitter and MatlabCOIECIONiiiiiiiiiiii e 47
5.3.3. TaSK EPENAENCIES .. .cevtieeiiit ettt e et e et e et e et e e e 47
5.3.4. New parameter in SimpleMatlal tasks: INAEXoooeiieiiiiiii e 47
5.3.5. Matlab Scripts for thiS @XampPleoouuiiii e 48

Part V. ProActive Scheduler's Scilab extension

Chapter 6. ProActive Scheduler's Scilab EXTENSIONccoeieiiiiiniicieeee e 50
Lo I . =57 o1 e o] o PPN 50

6.2. Quick Start with the SCilal EXIENSIONoiuiiii et e e ees 50
L% I 1 0= = = 1 o o I PP 50

6.2.2. The SCilah JOD TESCIIPLONceeetiieeeet ettt e e e e enanns 50

Pro &

List of Figures

O I Lo YA o) o T == 4 3
1.2. Cancel OnError and ReStartONEITOr DENAVIONiieiii et e e et e e e e e eaeees 21
D T SIS o 0= [0 = = 0= o 1 Y= PP 26
N 4 ST o o LY = PRSP 27
PG T 4 SO0 g1 o LRV 1= Y PSP 28
A SR I Y= PSPPSR 29
S N TSI o o T) (o TR Y APPSR 30
2.6. THE RESUIT PrEVIEW VIBW . .vuiitiiitiiii ittt ettt et e e e e e e e e e e et e et e et e e et e et e et e st e e et eaa e e e et e easeenesnees 31
P B a4 T B (o T v 0= o U= PRSP 31
PR R o0 T = B (o JE= v 0= o U= PPN 32
2.9. DIisconNECt from the SCHEAUIEYcovniiiiii et e e e et e e e e e e e et e eneeens 32
2.10. Change view from Vertical t0 HOMZONtal MOoiuuiiiii e e e e e e e e e e e aaeees 32
2.11. Change view from Horizontal t0 VertiCal MOOEcouuiiiiiiiii e e e e e e e e e 32
2280 2 T o3 - T o o S 32
2.13. PalSE/RESUME @ J0D ..iiiiiii it e e e e et e e e e e e e e e e e e e e e e 32
250 @147 o TN o o TN o o1 32
b8 LT I T o] = YA o] I 1 o 11 | 32
2200 1 T S| o o N 33
A v A 1 ST =0 U 1= SO PRPRPRN 33
2.18. StOP the SCNEAUIESee i e et e e e et e e et e e et et et e e et e e et a e et eean e aet e e eaneeean s 33
2.19. Freeze the SChEAUIEYiieii e e ettt et e e et e e e e e e e et e et e et e e et e et e et eeaeenns 33
2.20. PalISE the SCNEAUIETttt ettt et et et e e et e et e et e et e et e e et et e et e e b e et e et eaneeansesneees 33
2.21. RESUME the SCREAUIEYceiiieiiiii e e et e e e e et et e e e e et e et e et e et e e eaneeaeees 33
2.22. ShULAOWN the SCHEAUIEY ... cve it ettt et et et e e et e et e et e et e et e et e e e s eaaees 33
2 R N L= 7= LU= PSRN 33
3.1, resource Manager arChitECIUIE i et e e e e e e e e e e e e et e e et e e et e e aa e e et e eetnaeeanaees 37

Pro &
List of Examples
5.1. Simple Matlab Job desCriptor EXAMPIEcviiiiii e e e e e e e e e e aa 44
5.2. Complex Matlah Job deSCriptor EXAMPIE ... c.uuiiii e e e e e e e e e e e e e et e et e e ean e e et e e e aaeeanaees 46
6.1. SCilabh JOb dESCIIPLOr EXBMPIE .. ceuiiiii e et e e e e e e e et e e e et e e et e e e et e e et e e et reean e etn e eaaneaeanaaes 51
I 141 =o = =] o 52
T V= o 1T o T o PP 52

Part I: ProActive Scheduler Pro &

Part |. ProActive Scheduler

Table of Contents

Chapter 1. ProACHIVE SCNEAUIEY ...ttt sb e b s 2
0 1Y I A 1L 2
O Y= V1= PP UUPPTS 2
1.3, SCREOUIEr CONCEPL ...ttt ettt e ettt e e et e et et e e et et e e e e et e e et e b e e e e et e e e eaban s 2

IS T I VAT o R S T o] o I PP 2
L.3.2. WL 1S @ T8SK 2 1eeeiiiiiiiit ettt ettt e et e e et e e et et e e et e e e et e e et e e e et 2
1.3.3. DependencieS DEIWEEN TaSKS .. .ccuuuiiiii ettt ettt et e e et e aaaas 3
1.3.4. SChEAUITNG POLICY ... eeeetiee ittt ettt et et e e et et e e et et n et e et e e e e aba e eeennan 4
LA USEN IMTANUAL <.ttt et e e et e e ettt e et e e e e oo e e b et e e et e et e e e b 4
O I O 1= (I N o] o PSPPSR 4
1.4.2. Create @ TASKFIOW JODuuiiiiii e ettt e et e e e et e e e 5
1.4.3. Create @ PrOACHIVE JOD ... et eaaan 6
1.4.4. Create and Add @taSK 10 80Diiiiiici e 7
1.4.5. Submit ajob to the ProACHVE SChEUIES i 22
N R CTc A= T o] o N == U PP 23
1.4.7. Register t0 ProACtiVe SChedUIEr BVENESiiiiii e 23
1.5, AAMINISIFEION MBIUBLceeieee ettt ettt e e et e e e et e e e e et e e e e et e e e e et e e e e eban s 24

Chapter 2. ProActive Scheduler ECPliSe PIUGINcoouiiiiiieececeseee et 25
2.1, The SCREOUIES PEISPECHIVEttt e ettt e ettt e et et e e e et et e et e e e eba e e enaan s 25
2.2. Views compoSiNg the PEISPECTIVEc.uuieiiiii ettt ettt e e et e e et e e e et e e e e s 27
2.3. Connect to the started ProACtive SChedUIEYoo i 31
2.4. The Scheduler Perspective DULLONSo.uuiiiii et e e et e e e 32

2.4.1. The Jobs view DULEONS IN USEr IMOTEcouuiiiiiii et 32

2.4.2. The Jobs view buttons in AAMINISITAIOr MOOEcuieiinieiiee e e e e 33

Part I: ProActive Scheduler Pro @ Chapter 1: ProActive Scheduler

Chapter 1. ProActive Scheduler

1.1. IMPORTANT NOTE

- Some parts of the ProActive Scheduler and ProActive Resource Manager rely on Java Scripting capabilities (JSR 223 [http://
jep.org/en/jsr/detail 2id=223]). As a consequence, it requires either:

* al.6 or greater Java Runtime Environment, without any maodifications,
 or,withal5 JRE, the JSR 223 jar files [http://jcp.org/aboutJava/communityprocess/final/jsr223/index.html] :

* Firgt, the script-api.jar , script-js.jar and js.jar files must be added in the /ProActive/dist/lib/ directory if you are using the
bin release or ProActive, or in the /ProActive/lib/ directory if you build ProActive from the source release.

* Thenthejava5_jsr223 patch.jar patch (released with the Scheduler RCP Client) should be executed in the Scheduler RCP
Client directory : unzip the java5_jsr223_patch.zip file and execute java -jar java5_jsr223_patch.jar .

1.2. Overview

The execution of parallel tasks on a pool of distributed resources (what we call 'nodes), such as network of desktops or clusters,
requires a main system for managing resources and handling task execution: a batch scheduler . A batch scheduler provides an
abstraction of resources to users. Users submit jobs containing tasks to the scheduler , who isin charge of executing these tasks on
theresources. A scheduler allows several usersto share a same pool of resources and also to manage all issuesrelated to distributed
environment, such as faulted resources. The ProActive Scheduler is connected to a resource manager that will do the resource
abstraction.(see Chapter 3, ProActive Resource Manager)

In this chapter we present a ProActive based Scheduler accessible either from a Java programming APl , a command-line based
job submitter. Itisalsorecommended to use thegraphical user or administration interface (Eclipse RCP Plugin, see Chapter 2,
ProActive Scheduler Ecplise Plugin) which can be plugged on the scheduler core application.

In the rest of this chapter, we will expose how the scheduler works, what policies govern the job management, how to create ajob
and how to get the jobs and the nodes state using either the shell communicator or the GUI.

NOTE - Additionaly, you can find here [http://proactive.inria.fr/userfiles/file/tutorial ProActiveSchedulerTutorial .pdf] a fully
documented exampl e of the Scheduler and Resource Manager usage. This tutorial does not require Java nor ProActive knowledge
sinceit'sisonly based on graphical interface and command line actions.

1.3. Scheduler Concept

1.3.1. What is a Job ?

A Job istheentity to be submitted to the scheduler. It is composed of one or more Tasks. A Job can have one of thefollowing types:

 TASKSFLOW , represents a Job that contains a bag of Tasks, which can be executed in parallel or according to adependency
tree. The Tasks inside this Job type can be either Java (A task written in Java extending a given interface) or Native (Any
native process).

 PROACTIVE, represents a Job that contains a ProActive application (embedded in only one ProActive Task). Its execution

starts with a given predefined number of resources on which the user can start the ProActive application. This kind of Job
requires the usage of the ProActive AP, in order to be able to build ProActive application.

A finished Job contains a result that is provided by the scheduler once the job terminated, which in term contains all of its tasks
results. However, it is possible to mark some task as precious in order to retrieve their result easily in the job result. In the event
of afailure, the finished Job contains the causes of the exception. Further details on how to create a Job and the different options
can befound in: Section 1.4.1, “Create ajob” .

1.3.2. What is a Task ?

The Task is the smallest schedulable entity. It isincluded in a Job (see Section 1.3.1, “What isa Job ?”) and will be executed in
accordance with the scheduling policy (see Section 1.3.4, “ Scheduling Policy”) on the available resources.

http://jcp.org/en/jsr/detail?id=223
http://jcp.org/en/jsr/detail?id=223
http://jcp.org/aboutJava/communityprocess/final/jsr223/index.html
http://proactive.inria.fr/userfiles/file/tutorials/ProActiveSchedulerTutorial.pdf

Part I: ProActive Scheduler Pro @ Chapter 1: ProActive Scheduler

There are three types of Tasks:

* JAVA ; its execution is defined by a Java class extending the
org.ow2.proactive.scheduler.common.task.executable.JavaExecutable class.

* NATIVE ; its execution can be any user program specified by a simple command line, or by a 'generation script', that can
dynamically generates the command line to be executed.

» PROACTIVE ; its execution is defined by a Java class extending the
org.ow2.proactive.scheduler.common.task.executable.ProActiveExecutable class, which defines a ProActive
application. Coding this last one requires a knowledge base on the use of ProActive. Needed resources are provided, it isno
need to learn about the deployment.

During its execution, a Task can crash due to host or code failure. It's good to know that a Task can be re-started a parameterizable
number of time (see re-runnable in section Section 1.4.4, “ Create and Add atask to ajob”).

A Task may optionally be accompanied by 3 kinds of scripts (pre-script, post-script and selection-script), that allow to select the
suitable resource for a given task and possibly configure it before and after task execution (see Section 1.4.4, “Create and Add a
task toajob”).
Dependencies between Tasks can also be defined; this aspect is detailed in next section.

1.3.3. Dependencies between Tasks
Dependencies can be set between Tasks in a TaskFlow Job. It provides away to execute your tasks in a specified order, but also to

forward the results of an ancestor task to its children as parameter. Dependency between task is then both a tempora dependency
and a data dependency.

e SN RN R

Figure 1.1. Task flow job example

In this example we made an 8 Tasks Job (where the Job's type is TaskFlow). As you can see, Task 4 depends on Task 1, Task 5
depends on Tasks 2 and 3, etc... In other words, Task 4 will wait for Task 1 to finish before starting, Task 5 will wait for Task 2

Part I: ProActive Scheduler Pro @ Chapter 1: ProActive Scheduler

AND 3, etc... In addition, the order in which you specify that Task 5 depends of Task 2 and 3 is very important. Indeed, if you set
thelist of dependenciesfor Task 5 as: 2 then 3, the result of these two task will be given to Task 5in this order.

1.3.4. Scheduling Policy

By default , the scheduler will schedule tasks according to the default FIFO (First In First Out) with job priority policy. So, if
you want ajob to be scheduled quickly, increase its priority, or ask your administrator for an other policy.

1.4.

User Manual

1.4.1. Create a job

A jobisthe entity that will be submitted to the ProActive Scheduler. Asit has been explained in the Section 1.3.1, “What isaJob 7’
it's possible to create more than one type of job. A job can also be created using an XML descriptor or the provided ProActive
Scheduler Java API.

1.4.1.1. Create a job using XML descriptor

Just follow the example below in order to create your Job with XML description :

<?xml version="1.0" encoding="UTF-8"?>

<job xmlIns="urn:proactive:jobdescriptor:0.91"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal ocation="urn:proactive:jobdescriptor:0.91
http://proactive.inria.fr/schemas/jobdescriptor/0.91/schedulerjob.xsd"

id=

"job_name" priority="normal" projectName="project_name" cancelOnError="true" logFile=

"path/to/a/log/file.log">
<description>Job description</description>
<variables>
<variable name="vall" value="toto"/>
</variables>
<genericlnformation>
<info name="varl" value="${vall}"/>
<info name="var2" value="val2"/>
</genericinformation>

<!-- Job will be completed here later --->

</job>

As shown, several features can be set on thisjob :

id isaway to identify your job or just simply name it. If this value is left to the empty string, the Scheduler will set it by a
default one.

projectName (optional) can be define in your job. Thisinformation also goes to the policy in order to group different job by
project name for example.

priority (optional) isthe scheduling priority level for your job. A user can only set itsjob priority to 'lowest', 'low', or ‘normal’.
CancelOnError (optional) isaway to defineif your job will continue if auser exception or error occurs during the whole job
process. It meansthat if the value of this property is true, the job will stop immediately every running task if one error occurs

in one of the task of thisjob. It will have the consequence to failed the job, but free resources for other jobs. It is useful when
it isno need to go further after atask failure.

logFile (optional) is the path of an optional log file. Set it if you want to save the job generated log in afile.
description (optional) isahuman readabl e description of thejob, for human useonly. Thisfieldisoptional but it'sbetter to set it.

variables (optional) is away to define variables which can be reused throughout this descriptor. Inside this tag, each variable
can be reused (even in another following variable definition) by using the syntax ${ name_of _variable}.

Part I: ProActive Scheduler Pro @ Chapter 1: ProActive Scheduler

genericl nformations (optional) is a way to define some informations inside your job. These informations could be read by
the policy of the Scheduler. It can be useful to modify the scheduling behavior. Contact your administrator if you want an
information to be interpreted by the policy.

To specialize your job to ataskFlow job, go to Section 1.4.2.1, “Create a TaskFlow job using XML descriptor”.

To specialize your job to a ProActive job, go to Section 1.4.3.1, “Create a ProActive job using XML descriptor”.

1.4.1.2. Create a job using Java API

To make anew instance of a TaskFlow job, go to Section 1.4.2.2, “Create a TaskFlow job using Java API".

To make anew instance of a ProActive job, go to Section 1.4.3.2, “Create a ProActive job using Java API”.

Then, just follow the example below in order to create your Job using the Java Scheduler API :

/ljob has already been created under the -'job' variable
job.setName("job_name");
job.setProjectName("project_name");
job.setPriority(JobPriority. NORMAL);
job.setCancelOnError(true);
job.setLogFile("path/to/a/log/file.log");
job.setDescription("Job description”);
job.addGenericlnformation(“varl","vall");
job.addGenericlnformation(“var2","val2");

As shown, several features can be set on thisjob :

name is a way to identify your job or just simply name it. If this value is left to the empty string, the Scheduler will set it
by a default one.

projectName (optional) can be define in your job. Thisinformation also goes to the policy in order to group different job by
project name for example.

priority (optional) isthe scheduling priority level for your job. A user can only set itsjob priority to 'lowest', 'low', or ‘normal’.
CancelOnError (optional) isaway to define if your job will continue if a user exception or error occurs during the whole job
process. It means that if the value of this property istrue, the job will stop immediately every running task if one error occurs
in one of the task of thisjob. It will have the consequence to failed the job, but free resources for other jobs. It is useful when
it is no need to go further after atask failure.

logFile (optional) is the path of an optional log file. Set it if you want to save the job generated log in afile.

description (optional) isahuman readabl e description of thejob, for human useonly. Thisfieldisoptional but it'sbetter to set it.
genericlnformation (optional) is a way to define some informations inside your job. These informations could be read by
the policy of the Scheduler. It can be useful to modify the scheduling behavior. Contact your administrator if you want an
information to be interpreted by the policy.

To create and add tasks to your Job, just go to Section 1.4.4, “Create and Add atask to ajob”.

1.4.2. Create a TaskFlow job

The TaskFlowJob or dataflow job isajob that can contain one or more task(s) with the dependencies you want.

To start with the job creation, please first read Section 1.4.1, “Create ajob”.

1.4.2.1. Create a TaskFlow job using XML descriptor

To specify that the job is a TaskFlow Job, just add the taskFlow' tag. Here's an example of how to go on to a TaskFlow Job using
the previous job descriptor :

Part |: ProActive Scheduler

Pro Chapter 1: ProActive Scheduler

@

<?xml version="1.0" encoding="UTF-8"?>
<job xmiIns="urn:proactive:jobdescriptor:0.91"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal.ocation="urn:proactive:jobdescriptor:0.91
http://proactive.inria.fr/schemas/jobdescriptor/0.91/schedulerjob.xsd"

id="job_name" priority="normal" projectName="project _name" cancelOnError="true" logFile=
"path/to/a/log/file.log">

<description>Job description</description>
<variables>
<variable name="vall" value="toto"/>
</variables>
<genericlnformation>
<info name="varl" value="${vall}"/>
<info name="var2" value="val2"/>
</genericinformation>

<taskFlow>

<l-- Job will be completed here later --->

</taskFlow>
</job>

To create and add tasks to your Job, just go to Section 1.4.4, “Create and Add atask to ajob”.
1.4.2.2. Create a TaskFlow job using Java API

To make anew instance of a TaskFlow job, just create it as shown below :

TaskFlowJob job = new TaskFlowJob();

To parameterize your TaskFlow Job, just go to Section 1.4.1.2, “Create ajob using Java API”.

1.4.3. Create a ProActive job

To create a non-specialized job, please first read Section 1.4.1, “Create ajob”.

1.4.3.1. Create a ProActive job using XML descriptor

To specify that the job is a ProActive Job, just add the 'proActive' tag. Here's an example of how to go on to a ProActive Job using
the previous job descriptor :

<?xml version="1.0" encoding="UTF-8"?>
<job xmlIns="urn:proactive:jobdescriptor:0.91"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal ocation="urn:proactive:jobdescriptor:0.91
http://proactive.inria.fr/schemas/jobdescriptor/0.91/schedulerjob.xsd"

id="job_name" priority="normal" projectName="project_name" cancelOnError="true" logFile=
"path/to/a/log/file.log">

<description>Job description</description>
<variables>

<variable name="vall" value="toto"/>
</variables>
<genericlnformation>

Part I: ProActive Scheduler Pro Chapter 1: ProActive Scheduler

@

<info name="varl" value="${vall}"/>
<info name="var2" value="val2"/>
</genericinformation>

<proActive neededNodes="10">
<l-- Job will be completed here later --->

</proActive>
</job>

To create and add tasks to your Job, just go to Section 1.4.4, “Create and Add atask to ajob”.

1.4.3.2. Create a ProActive job using Java API

To make anew instance of a ProActive job, just create it as shown below :

ProActiveJob job = new ProActiveJob();

To parameterize your ProActive Job, just go to Section 1.4.1.2, “Create ajob using Java API”.

1.4.4. Create and Add atask to a job

Asit has been said, it is possible to create 3 types of tasks. Native and Java tasks can be add to TaskFlow Job, and one ProActive
Task to one ProActive Job.

1.4.4.1. Create and Add a Java task
Note: It isonly possible to add a Javatask in a TaskFlow Job.

To learn how to create a TaskFlow Job, just go to Section 1.4.2, “Create a TaskFlow job”. Once your TaskFlow Job created, you
can add as many Javatasks as needed to perform an application.

1.4.4.1.1. Define your own Java executable

First of all, you must know that you can create your own java executable by implementing scheduler executable interfaces. What
is called ‘executabl€e' isin fact, the executed process (that is a Java class in this case). Here's an example to create your own Java

executable :

public class WaitAndPrint extends JavaExecutable {

@Override
public Object execute(TaskResult... results) throws Throwable {

String message;

try {
System.err.printin("Démarrage de la tache WaitAndPrint");

System.out.printin("Parameters are -: -");

for (TaskResult tRes -: results) {

if (tRes.hadException()) {

System.out.printin("\t -" + tRes.getTaskld() + " -: -" + tRes.getException().getMessage());
}else {

System.out.printin("\t -" + tRes.getTaskld() + ": -" + tRes.value());

Part I: ProActive Scheduler Pro Chapter 1: ProActive Scheduler

@

}
}

message = URIBuilder.getLocalAddress().toString();
Thread.sleep(10000);

} catch (Exception e) {
message = “crashed”;
e.printStackTrace();

}

System.out.printin("Terminaison de la tache");

return (message + "\t slept for 10 sec");

}
}

This executable will print an initial message, then check if there are results from previous tasks and if so, print the value of these
"parameters’. It will then return a message containing what the task did. The return value will be store in the job result.

It is aso possible to get alist of arguments that you can give to the executable at its start by overriding the init method on a Java
executable. How to give arguments to the task will be explain further. We get back the foo, bar and test arguments to illustrate the
task creation example below :

private boolean foo;
private int bar;
private String test;

@Override

public void init(Map<String, Object> args) {
foo = (Boolean)args.get("'fo0");

bar = (Integer)args.get('bar");

test = args.get("test");

}

To sum up, create an executable is just extend the JavaExecutable abstract class, and fill the execute method. The given
TaskResult... results arguments permit to get the results from previous dependent tasks that have finished their execution.

As shown in the following lines, the given array of TaskResults(r esults) will be an array of two results (TaskResult 2 and 3) in this
order if the dependences of Task 5is Task 2 and Task 3 in this order. Therefore you can use them to perform Task 5 process.

@Override

public Object execute(TaskResult... results) throws Throwable {
/[TaskResult

tResult2 = results[0];

/[TaskResult

tResult3 = results[1];

}

Finally, overriding the init() method can be useful if you want to retrieve some parameters.

The task is the entity that will be scheduled by ProActive Scheduler. As it has been explained in the Section 1.3.2, “What is a
Task 7, it's possible to create and add Java tasks to your TaskFlow Job. A Javatask can aso be created using an XML descriptor
or the provided ProActive Scheduler Java API.

Part I: ProActive Scheduler Pro @ Chapter 1: ProActive Scheduler

1.4.4.1.2. Create and Add a Java task using XML descriptor

Just take alook at the example below to understand the syntax of atask :

<task id="taskl1" retries="2">
<description>human description</description>
<javaExecutable class="org.ow2.proactive.scheduler.examples.WaitAndPrint">
<parameters>
<parameter name="foo" value="true"/>
<parameter name="bar" value="1"/>
<parameter name="test" value="toto"/>
</parameters>
</javaExecutable>
</task>

<task id="task2">
<depends>
<task ref="task1"/>
</depends>
<javaExecutable class="org.ow2.proactive.scheduler.examples.WaitAndPrint">
<parameters>
<parameter name="foo" value="false"/>
<parameter name="bar" value="12"/>
<parameter name="test" value="titi"/>
</parameters>
</javaExecutable>
</task>

The Java Task is composed of one 'javaExecutable’ that specified the 'executable’ Java classto use. A set of parameters has also be
defined to provide the executable some informations. These parameters will be available into the HashMap of the init(HashMap)
method into your JavaExecutable. This example a so shows the definition of two tasks with dependencies. We can easily see that
'task 2' depends on 'task 1'. So 'task 2' will be executed when 'task 1' has finished. To put these two tasks inside your TaskFlow job,
just put it between the 'taskFlow' tags. Here's how a complete ready-to-be-scheduled TaskFlow Job seems like :

<?xml version="1.0" encoding="UTF-8"?>
<job xmlIns="urn:proactive:jobdescriptor:0.91"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal.ocation="urn:proactive:jobdescriptor:0.91
http://proactive.inria.fr/schemas/jobdescriptor/0.91/schedulerjob.xsd"

id="job_name" priority="normal" projectName="project_name" cancelOnError="true" logFile=
"path/to/a/log/file.log">

<description>Job description</description>
<variables>
<variable name="vall" value="toto"/>
</variables>
<genericlnformation>
<info name="varl" value="${vall}"/>
<info name="var2" value="val2"/>
</genericinformation>

<taskFlow>

<task id="taskl" retries="2">
<description>human description</description>
<javaExecutable class="org.ow2.proactive.scheduler.examples.WaitAndPrint">

Part I: ProActive Scheduler ProActive Q/ Chapter 1: ProActive Scheduler

<parameters>
<parameter name="foo" value="true"/>
<parameter name="bar" value="1"/>
<parameter name="test" value="toto"/>
</parameters>
</javaExecutable>
</task>

<task id="task2">
<depends>
<task ref="task1"/>
</depends>
<javaExecutable class="org.ow2.proactive.scheduler.examples.WaitAndPrint">
<parameters>
<parameter name="foo" value="false"/>
<parameter name="bar" value="12"/>
<parameter name="test" value="{iti"/>
</parameters>
</javaExecutable>
</task>

</taskFlow>
</job>

It isobviously possible to mix Javaand Native task inside a taskFlow Job. Some other stuffs and options can be set onto a Javatask,
here's two examples of what can be done with task XML descriptors:

<task id="taskName" preciousResult="true">
<description>Testing the pre and post scripts.</description>
<selection>
<script type="static">
<file path="${SCRIPT_DIR}/host_selection.js">
<arguments>
<argument value="${EXCLUSION_STRING}"/>
</arguments>
<[file>
</script>
</selection>
<pre>
<script>
<file path="${SCRIPT_DIR}/set.js"/>
</script>
</pre>
<javaExecutable class="org.ow2.proactive.scheduler.examples.PropertyTask"/>
<post>
<script>
<file path="${SCRIPT_DIR}/unset.js"/>
</script>
</post>
</task>

<task id="PI_Computation" walltime="00:10" >
<genericlnformation>

10

Part I: ProActive Scheduler Chapter 1: ProActive Scheduler

Pro

@

<info name="namel" value="vall"/>
</genericinformation>
<javaExecutable fork="true" class=
"org.objectweb.proactive.extensions.scheduler.examples.MonteCarlo" >
<forkEnvironment javaHome="" jymParameters="-d32" -/>
<parameters>
<parameter name="steps" value="20"/>
<parameter name="iterations" value="100000000"/>
</parameters>
</javaExecutable>
</task>

To have an exhaustive list of which options are available and what they are suppose to do, just go to the task explanation section
at Section 1.4.4.6, “ Tasks options and explanations”.

1.4.4.1.3. Create and Add a Java task using Java API

To createaJavatask usethe JavaT ask class. In thistype, you must specify the class you want to start with, by mentioning a Class
of your executable. (To make your own executable see the proper section Section 1.4.4.1.1, “Define your own Java executable”
). In addition, you can add arguments with which the task will be launched. These launching arguments will be given to the Java
executableasaMap. Just take al ook at the exampl e below to see how to usethetask creation Java APl (see aso JavaDOCumentation
of the Scheduler to learn more) :

/[create a Java Task with the default constructor that we'll call -'aTask'
JavaTask aTask = new JavaTask();

/lthen, set the desired options -: (for example)

aTask.setName("task 1");

aTask.setDescription("This task will do

something...");

aTask.addGenericlnformation("key","value");
aTask.setPreciousResult(true);

aTask.setRerunnable(2);
aTask.setRestartOnError(RestartMode . ELSEWHERE);
aTask.setResultPreview(UserDefinedResultPreview.class);

/ladd arguments (optional)

aTask.addArgument('foo",new Boolean(true));
aTask.addArgument('bar",new Integer(12));
aTask.addArgument('test","test1");

/ladd executable class or instance
pat.setExecutableClassName("org.ow2.proactive.scheduler.examples.WaitAndPrint");

//ISCRIPTS EXAMPLE

//If the script to use is in a file or URL

String[] args = new String('foo","bar");

File scriptFile = new File("path/to/script_file");

//URL scriptURL = new URL("url/to/script_file");

Script script = new SimpleScript(scriptFile, args);

/I Script script = new SimpleScript(scriptURL, args);
aTask.setPreScript(script);

//If the script to use is in a Java string for example

Script script = new SimpleScript("Script_content", "type_of language");
[lwhere type_of language can be any language supported by the underlying JRE
aTask.setPreScript(script);

/[same construction for the post script
aTask.setPostScript(script);

11

Part I: ProActive Scheduler Pro @ Chapter 1: ProActive Scheduler

/lsame construction for the selection script

/lthe last parameter is still not used in the current implementation
SelectionScript selScript = new SelectionScript(script, true);
aTask.setSelectionScript(selScript);

To complete your job by adding the task inside the job, just add it as followed :

/ladd the task to the job
job.addTask(aTask);

Here's some other features than can be performed on tasks such as dependencies or wallTime :

/ladmitting task 2 and task 3 has been create just before

/lwe have to create task 5.

/[create a new task

JavaTask task5 = new JavaTask();

/1... (fill task5 as describe above)

/lthen specify dependencies by using the addDependence(Task) method
task5.addDependence(task2);

task5.addDependence(task3);

/lor use the addDependences(list<Task>) method as shown
/ltask5.addDependences(new ArrayList<Task>(task2,task3));

/Iset this task as forked
aTask.setFork(true);
/lor set a walltime
aTask.setWallTime(10000);
/lyou can also define a fork environment (for example)
ForkEnvironment env = new ForkEnvironment();
env.setJavaHome("Your/java/home/path”);
env.setJVMParameters("-d12");
aTask.setForkEnvironment(env);

To have an exhaustive list of which options are available and what they are for, just go to Section 1.4.4.6, “Tasks options and
explanations”.

1.4.4.2. Create and Add a native task
Note: Itisonly possible to add a native task in a TaskFlow Job.

To learn how to create a TaskFlow Job, just go to Section 1.4.2, “Create a TaskFlow job”. Once your TaskFlow Job created, you
can add as many native tasks as needed to perform an application. A native task can be any native application such as programs,
scripts, process, €tc...

1.4.4.2.1. Create and Add a native task using XML descriptor

Just take alook at the example below to understand the syntax of a native task :

<!l-- This native task example shows a native executable directly started as a
command. --->
<task id="taskl native" retries="2">

12

Part I: ProActive Scheduler Pro @ Chapter 1: ProActive Scheduler

<description>Will display 10 dots every 1s</description>
<nativeExecutable>
<l-- Consider that the ${VAR_NAME} has been defined in the job description as describe in
the job creation section --->
<staticCommand
value="${WORK_DIR}/native_exec">
<arguments>
<argument value="1"/>
</arguments>
</staticCommand>
</nativeExecutable>
</task>
<!l-- This native task example shows a native executable started by a shell script. --->
<task id="task2_native">
<description>Will display 10 dots every 2s</description>
<depends>
<task ref="taskl native"/>
</depends>
<nativeExecutable>
<staticCommand
value="${SCRIPT_DIR}/launcher.sh">
<arguments>
<argument value="${WORK_DIR}/native_exec"/>
<argument value="2"/>
</arguments>
</staticCommand>
</nativeExecutable>
</task>

The native Task is composed of one 'nativeExecutable' that specified the 'executable’ processto use. A set of parameters has also be
defined to provide the executable some informations. These parameters will be append to the command line starting by your native
executable. This example also shows the definition of two tasks with dependencies. We can easily see that 'task2_native' depends
on 'taskl_native. So 'task2_native' will be executed when 'task1_native' has finished. To put these two tasks inside your TaskFlow
job, just put it between the 'taskFlow' tags. Here's how a complete ready-to-be-scheduled TaskFlow Job seemslike :

<?xml version="1.0" encoding="UTF-8"?>
<job xmiIns="urn:proactive:jobdescriptor:0.91"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal.ocation="urn:proactive:jobdescriptor:0.91
http://proactive.inria.fr/schemas/jobdescriptor/0.91/schedulerjob.xsd"
id="job_name" priority="normal" projectName="project _name" cancelOnError="true" logFile=
"path/to/a/log/file.log">
<description>Job description</description>
<variables>
<variable name="WORK_DIR" value="path/to/your/working/dir" -/>
<variable name="SCRIPT_DIR" value="path/to/your/script/dir" -/>
</variables>
<genericlnformation>
<info name="varl" value="${WORK_DIR}"/>
<info name="var2" value="val2"/>
</genericinformation>

<taskFlow>

<task id="taskl native" retries="2">

13

Part I: ProActive Scheduler Pro @ Chapter 1: ProActive Scheduler

<description>Will display 10 dots every 1s</description>
<nativeExecutable>
<l-- Consider that the ${VAR_NAME} has been defined in the job description as describe
in the job creation section --->
<staticCommand
value="${WORK_DIR}/native_exec">
<arguments>
<argument value="1"/>
</arguments>
</staticCommand>
</nativeExecutable>
</task>
<task id="task2 native" retries="2">
<description>Will display 10 dots every 1s</description>
<nativeExecutable>
<staticCommand
value="${SCRIPT_DIR}/launcher.sh">
<arguments>
<argument value="${WORK_DIR}/native_exec"/>
<argument value="1"/>
</arguments>
</staticCommand>
</nativeExecutable>
</task>

</taskFlow>
</job>

It is obviously possible to mix Java and Native task inside a taskFlow Job. Some other stuffs and options can be set onto a native
task, here's two examples of what can be done with task XML descriptors:

<task id="taskName" preciousResult="true">
<description>Testing the pre and post scripts.</description>
<selection>
<script type="static">
<file path="${SCRIPT_DIR}/host_selection.js">
<arguments>
<argument value="${ECLUSION_STRING}"/>
</arguments>
<ffile>
</script>
</selection>
<p|’e>
<script>
<file path="${SCRIPT_DIR}/set.js"/>
</script>
</pre>
<nativeExecutable>
<staticCommand
value="${WORK_DIR}/native_exec">
<arguments>
<argument value="1"/>
</arguments>
</staticCommand>
</nativeExecutable>

14

Part I: ProActive Scheduler Chapter 1: ProActive Scheduler

Pro

@

<post>
<script>
<file path="${SCRIPT_DIR}/unset.js"/>
</script>
</post>
</task>

<task id="P|_Computation" walltime="00:10" >
<genericlnformation>
<info name="namel" value="vall"/>
</genericinformation>
<nativeExecutable>
<l-- Consider that the ${VAR_NAME} has been defined in the job description as describe in
the job creation section --->
<staticCommand
value="${WORK_DIR}/native_exec">
<arguments>
<argument value="1"/>
</arguments>
</staticCommand>
</nativeExecutable>
</task>

To have an exhaustive list of which options are available and what they are suppose to do, just go to the task explanation section
at Section 1.4.4.6, “Tasks options and explanations”.

1.4.4.2.2. Create and Add a native task using Java API

To create a native task use the NativeTask class. In this type, you must specify the executable you want to start, by mentioning
a 'command lin€'. In addition, you can add arguments with which the task will be launched. These launching arguments will be
append to the 'command line. Just take a look at the example below to see how to use the task creation Java APl (see also Java
DOCumentation of the ProActive Scheduler to learn more) :

/lcreate a native task with the default constructor that we'll call -'aTask’
NativeTask aTask = new NativeTask();

/lthen, set the desired options -: (for example)

aTask.setName("task 1");

aTask.setDescription("This task will do

something...");

aTask.addGenericlnformation("key","value");
aTask.setPreciousResult(true);

aTask.setRerunnable(2);
aTask.setRestartOnError(RestartMode.ELSEWHERE);
aTask.setResultPreview(UserDefinedResultPreview.class);

//set the command line with the parameter append to the process name
aTask.setCommandLine("/path/to/command/cmd paraml1 param?2");

/ISCRIPTS EXAMPLE

//If the script to use is in a file or URL

String[] args = new String("foo","bar");

File scriptFile = new File("path/to/script_file");
//URL scriptURL = new URL("url/to/script_file");
Script script = new SimpleScript(scriptFile, args);

15

Part I: ProActive Scheduler Chapter 1: ProActive Scheduler

Pro

@

/I Script script = new SimpleScript(scriptURL, args);

aTask.setPreScript(script);

//If the script to use is in a Java string for example

Script script = new SimpleScript("Script_content", "type_of language");

/lwhere type_of language can be any language supported by the underlying JRE
aTask.setPreScript(script);

/[same construction for the post script
aTask.setPostScript(script);

/[same construction for the selection script

/lthe last parameter is still not used in the current implementation
SelectionScript selScript = new SelectionScript(script, true);
aTask.setSelectionScript(selScript);

To complete your job by adding the task inside the job, just add it as followed :

/ladd the task to the job
job.addTask(aTask);

Here's some other features than can be performed on tasks such as dependencies or wallTime :

/ladmitting task 2 and task 3 has been create just before

/lwe have to create task 5.

/lcreate a new task

NativeTask task5 = new NativeTask();

/l.... (fill task5 as describe above)

/lthen specify dependencies by using the addDependence(Task) method
taskb.addDependence(task2);

task5.addDependence(task3);

/lor use the addDependences(list<Task>) method as shown
/ltask5.addDependences(new ArrayList<Task>(task2,task3));

/Iset a walltime to stop the process after the given time even it is not finish
aTask.setWallTime(10000);

Here'salast examplethat describe how to create anativetask with adynamic command, i.e. generated by ascript called ageneration
script. The generation script can only be associated to a native task: the execution of a generation script must set the string variable
command. The value of this variableisthe command line that will be executed by the ProActive Scheduler astask execution.

/[create a new native task

NativeTask task2 = new NativeTask();

/lcreate a generation script with a script as shown above
GenerationScript gscript = new GenerationScript(script);
/Iset the command to execute as a string
task2.setGenerationScript(gscript);

To have an exhaustive list of which options are available and what they are for, just go to Section 1.4.4.6, “Tasks options and
explanations”.

16

Part I: ProActive Scheduler Pro @ Chapter 1: ProActive Scheduler

1.4.4.3. Create and Add a ProActive task
Note: It isonly possible to add a ProActive task only in a ProActive Job.

To learn how to create a ProActive Job, just go to Section 1.4.3, “Create a ProActive job”. Once your ProActive Job created, it is
possible to just add ONE ProActive task inside your job.

1.4.4.3.1. Define your own ProActive executable

First of all, you must know that you can create your own ProActive executable by implementing scheduler executable interfaces.

What is called 'executabl€e’ is in fact, the executed process (that is a Java class in this case). Here's an example to create your own
ProActive executable application :

public class ProActiveExample extends ProActiveExecutable {
private int numberToFind = 5003;

@Override
public Object execute(ArrayList<Node> nodes) {
System.out.printin("ProActive job started -!!");

/I create workers (on local node)
Vector<Worker> workers = new Vector<Worker>();

for (Node node -: nodes) {

try {
Worker w = (Worker)PAActiveObject.newActive(Worker.class.getName(),

new Object[] { -}, node);

workers.add(w);

} catch (ActiveObjectCreationException e) {
e.printStackTrace();

} catch (NodeException e) {
e.printStackTrace();

}

}

I create controller Controller controller = new Controller(workers);
int result = controller.findNthPrimeNumber(hnumberToFind);

System.out.printin(“last prime -: -" + result);

return result;

}
}

Asshown in aProActivetutorial, this example uses the given nodes with the ProActive API in order to start ‘workers on them. The
execute(nodes) method shows what can be done inside this kind of task. For more details about how to use the ProActive AP,
see the appropriate documentation. The complete example file can be found under 'jobs_descriptors/Job_ProActivexml'.

1.4.4.4. Create and Add a ProActive task using XML descriptor
Just take alook at the example below to understand the syntax of the ProActivetask :

<task id="Controller">
<description>Will control the workers in order to find the prime number</description>

17

Part I: ProActive Scheduler Pro @ Chapter 1: ProActive Scheduler

<proActiveExecutable
class="org.ow2.proactive.scheduler.examples.ProActiveExample">
<parameters>
<parameter name="numberToFind" value="200"/>
</parameters>
</proActiveExecutable>
</task>

The ProActive Task is composed of one ‘proActiveExecutable’ that specified the 'ProActiveExecutable’ Java classto use. A set of
parameters has also be defined to provide this executable some informations. These parameters will be availableinto the HashMap
of the init(HashMap) method into your ProActiveExecutable. To put this task inside your ProActive job, just put it between
the 'ProActive' tags. On thisjob it is necessarily to set the number of node you desired for your ProActiveExecutable. Instead of

deploying resources as it must be done in ProActive Suite, the resources are provides by the ProActive Scheduler. Here's how a
complete ready-to-be-scheduled ProActive Job seemslike:

<?xml version="1.0" encoding="UTF-8"?>
<job xmlIns="urn:proactive:jobdescriptor:0.91"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal ocation="urn:proactive:jobdescriptor:0.91
http://proactive.inria.fr/schemas/jobdescriptor/0.91/schedulerjob.xsd"

id="job_name" priority="normal" projectName="project name" cancelOnError="true" logFile=
"path/to/a/log/file.log™>

<description>Job description</description>
<variables>
<variable name="WORK_DIR" value="path/to/your/working/dir" -/>
<variable name="SCRIPT_DIR" value="path/to/your/script/dir" -/>
</variables>
<genericlnformation>
<info name="varl" value="${WORK_DIR}"/>
<info name="var2" value="val2"/>
</genericlnformation>

<proActive neededNodes="10">

<task id="Controller">
<description>Will control the workers in order to find the prime number</description>
<proActiveExecutable
class="org.ow2.proactive.scheduler.examples.ProActiveExample">
<parameters>
<parameter name="numberToFind" value="200"/>
</parameters>
</proActiveExecutable>
</task>

</proActive>
</job>

Some other stuffsand options can be set onto a ProActivetask, here'sanew example of what can be donewith task XML descriptors:

<task id="Controller">

<description>Will control the workers in order to find the prime number</description>
<selection>

<script type="static">

18

Part I: ProActive Scheduler Chapter 1: ProActive Scheduler

Pro

@

<file path="${SCRIPT_DIR}/host_selection.js">
<arguments>
<argument value="${EXCLUSION_STRING}"/>
</arguments>
<ffile>
</script>
</selection>
<p|’e>
<script>
<file path="${SCRIPT_DIR}/set.js"/>
</script>
</pre>
<proActiveExecutable
class="org.ow2.proactive.scheduler.examples.ProActiveExample">

<parameters>
<parameter name="numberToFind" value="200"/>
</parameters>
</proActiveExecutable>
<post>
<script>
<file path="${SCRIPT_DIR}/unset.js"/>
</script>
</post>
</task>

To have an exhaustive list of which options are available and what they are suppose to do, just go to the task explanation section
at Section 1.4.4.6, “ Tasks options and explanations’.

1.4.4.5. Create and Add a ProActive task using Java API

To create a ProActive task use the ProActiveTask class. In this type, you must specify the class you want to start with, by
mentioning a Class of extending ProActiveExecutable. (To make your own executable see the proper section Section 1.4.4.3.1,
“Defineyour own ProActive executable”). In addition, you can add argumentswith which the task will belaunched. Theselaunching
arguments will be given to the ProActive executable as a Map. Just take a look at the example below to see how to use the task
creation Java APl (see also Java DOCumentation of the Scheduler to learn more) :

/[create a ProActive Task using the default constructor that we'll call -'aTask'

ProActiveTask aTask = new ProActiveTask();

/lthen, set the desired options -: (for example)

aTask.setName("task 1");

aTask.setDescription("This task will do

something...");

aTask.addGenericlnformation("key","value");

aTask.setResultPreview(UserDefinedResultPreview.class);

/ladd arguments (optional)

aTask.addArgument('foo",new Boolean(true));

aTask.addArgument('bar’,new Integer(12));

aTask.addArgument(‘test”,"test1");

/ladd executable class or instance

pat.setExecutableClassName("org.ow2.proactive.scheduler.examples.ProActiveExample");

/ladd number of nodes needed for the application
pat.setNumberOfNodesNeeded(10);

IISCRIPTS EXAMPLE
//If the script to use is in a file or URL
String[] args = new String(‘foo","bar");

19

Part I:

ProActive Scheduler Pro Chapter 1: ProActive Scheduler

@

File scriptFile = new File("path/to/script_file");

/IURL scriptURL = new URL("url/to/script_file");

Script script = new SimpleScript(scriptFile, args);

/I Script script = new SimpleScript(scriptURL, args);

aTask.setPreScript(script);

//If the script to use is in a Java string for example

Script script = new SimpleScript("Script_content", "type_of language");

/lwhere type_of language can be any language supported by the underlying JRE
aTask.setPreScript(script);

/[same construction for the post script
aTask.setPostScript(script);

/[same construction for the selection script

/lthe last parameter is still not used in the current implementation
SelectionScript selScript = new SelectionScript(script, true);
aTask.setSelectionScript(selScript);

To complete your job by adding the task inside the job, just add it as followed : (note that you can only add ONE ProActive task
in a ProActive Job)

/ladd the task to the job
job.addTask(aTask);

To have an exhaustive list of which options are available and what they are for, just go to Section 1.4.4.6, “Tasks options and
explanations”.

1.4.4.6. Tasks options and explanations

Asit has been shown in the different examples, it is possible to create 3 types of tasks. These 3 types have some common features
like name, description, scripts, etc... Here's the details of each of these common features:

id is the name assigned to the task. It can be whatever you want as a String. This hame must be unique for each task.

description (optional) is a human readable description of the task. It is for human use only. This field is optional but it is
better to set it.

genericinformations (optional) isaway to define some informationsinside your task. Thisinformations could be read inside
the policy (similar to job's one). It can be useful to add new complex scheduling behavior.

preciousResult (optional - default is false) is the way to define that a result of atask isimportant or not. For example, in a
job result, you could have to retrieve only some task results that are important for you. By setting the precious result to 'true,
you'll be ableto retrieve easily these results.

retries (optional - default is 1) is a way to define how many times a task will be reran if a network problems occur. Set this
value to n if you want the task to be restarted n times and so, started a maximum of n+1 times.

restartOnError (optiona - default isfalse) is an option that define if atask hasto be restarted if an error occurred. Error can
be both exception for Javatask or error code (1-255) for native task. It isaway to managed user error. If not defined, the task
will never restart. This option can be set to anywher e that means the task will restart on the first available node. It can also be
set to elsewher e meaning that the task will restart on a different node that the last used. In these 2 last cases, the job will be
failed if the maximum number of retries (retries option) is reached. (This option is not available for proActive Task)

Combined with the job cancelOnError option it can be useful to know the behavior of your job. Here's atable that explains
what can be done with tasks and job :

20

Part I: ProActive Scheduler ProActive ‘Qf Chapter 1: ProActive Scheduler

CancelOnError & RestartOnError mechanism

CancelConError False True
RestartCOnError False Anywhere Elsewhere False Anywhere Elsewhere
-1*
Mative Task
Result

Exception

Java Task Object
Result Exception

Legend :
Tast is restarted without condition

Task resut is returned at the end of the first execution

Task is retried on the first ready node until the define number of retries
(default is one)

Task is retried on the first ready node -that is different from the previous
one - until the define number of retries (default is one)

Job will be canceled atthe end of the first execution

* Used forinternal management only
** Job will be failed at the end of retries

Figure 1.2. CancelOnError and RestartOnError behavior

» Walltime (optional) Task Walltime is a maximum allowed execution time of a task. It can be specified for any task,
irrespectively of itstype. If atask does not finish beforeits walltime it is terminated by the ProActive Scheduler. An example
has been given above with the walltime specified. Note that, the walltime is defined in a task, thus it can be used for any
type of atask. The general format of the walltime attribute is [hh:mm:ss], where h is hour, m is minute and s is second. The
format still allows for more flexibility. We can define the walltime simply as “5” which correspondsto 5 seconds, “10” is 10
seconds, “4:10” is 4 minutes and 10 seconds, and so on. The walltime mechanism is started just before a task is launched. If
atask does finish before its walltime, the mechanism is canceled. Otherwise, the task is terminated. Note that, the tasks are
terminated without any prior notice. If the walltime is specified for a Java task (as in the example) it enforces the creation of
aforked Javatask instead.

fork and forkEnvironment (optional only for Java Task) The purpose of a new type of atask Forked Java Task isto gain
more flexibility with respect to the execution environment of a task. A new JVM is started with an inherited classpath and
(possibly) redefined Java home path and JVM properties. It alowsto use aJVM from adifferent provider and specify options
to be passed to VM (like memory usage). A Forked Java Task is defined as a Java Task with aforkEnvironment element. The
aim of aforkEnvironment element is providing javaHome and jvmParameters attributes. For any undefined attribute a default
environment value will be applied. Note that, the javaHome attribute points only to the Javainstallation directory and not the
Java application itself. If the javaHome is not specified then the ProActive Scheduler will execute smply a Java command
assuming that it is defined in the user path. The 'jvmParameters' attribute is a string composed of a sequence of Java options
divided by a space.

parameter s (optional, only for Javaand ProActive Task) isaway to define some parametersto be transfered to the executable.
Thisis best explained in Section 1.4.4.1.1, “Define your own Java executable”. Each parameters is define with aname and a
value and will be passed to the Java Executable as an HashMap.

arguments (optional, only for native Task) isaway to define arguments for your native process. Each arguments is define by
avalue that will be append to the process name to create acommand line.

resultPreview (optional) alows to specify how the result of a task should be displayed in
the Scheduler graphical client. The wuser should implement a result preview class (that extends

21

Part I: ProActive Scheduler Pro @ Chapter 1: ProActive Scheduler

org.objectweb.proactive.extensions.scheduler.common.task.ResultPreview abstract class) which specifies result

rendrering in two different manners :

* atextua manner, by implementing public abstract String getTextualDescription(TaskResult result); . This method,
similarily to String Object.toString() should return a String bject that describes the result;

e agraphica manner, by implementing public abstract JPanel getGraphicalDescription(TaskResult result); . This
method should return a Swing JPanel object that describes the result.

Some useful methods to create a specific preview class can be found in
org.objectweb.proactive.extensions.scheduler.common.task.util.ResultPreviewTool , such as automatic display of an
image file, or automatic trandation between windows and unix path.

» scripts(optional) The ProActive scheduler supports portable scripts execution through the JSR 223 Java Scripting capabilities;
scripts can bewritten in any language supported by the underlying Java Runtime Environment. Scriptsare used in the ProActive
scheduler to :

» Execute some simple pre and post processing: optional pre-script and post-script
« Select among available resourcesthe node that suitable for the execution: optional selection-script can be associated to atask.
« Dynamic building of acommand line for a native task: optional generation-script (detailed in next section).

Here are some details and examples:

e pre-script The pre-script isaways executed on the node that has been selected by the resource manager befor e the execution
of the task itself.

e post-script The pre-script isaways executed on the node that has been selected by the resource manager after the execution
of the task itself.

« selection script The selection script is always executed before the task itself on any candidate node: the execution of a
selection script must set the boolean variable selected , that indicates if the candidate node is suitable for the execution
of the associated task.

Now that your have your job created, next step isto submit it to the ProActive Scheduler.
1.4.5. Submit a job to the ProActive Scheduler

The submission will perform some checking to ensure that a job is correctly formed. Then the job is inserted in the pending list
and wait for executions until free resources become available. Once done, the job will be started on the resources deployed by the
resource manager. Finally, once finished, the job goesin afinish queue and will wait until user to retrieve its result. Their are three
ways to submit ajob to The Scheduler :

1.4.5.1. Submit ajob using the Graphical User Interface (Scheduler Eclipse Plugin)
To submit a job using the graphical tools, you must have first created ajob XML Descriptor. Then refer toChapter 2, ProActive
Scheduler Ecplise Plugin documentation to submit it.

1.4.5.2. Submit ajob using shell command
Use the provided shell script jobL auncher.sh to submit a job using command line. This script (bin/unix/jobLauncher.sh) has 1

mandatory option and 3 optional :

» The path to thejob file descriptor is mandatory (using the "-j PATH" option)

» The URL of a started scheduler. (using the"-u URL" option) If not mentioned, the script will connect an existing localhost
Scheduler.

* Your login (using the"-1 LOGIN" option). If you usethisoption, only your password will be requested. Otherwise, both will be.

* The number of jobsto submit, by default only 1 will be submitted (using the "-n A_NUMBER" option).

For example: ./jobLauncher.sh-j ../../jobs descriptors/Job_with_dep.xml -l login -n 12 -u //localhost/ will submit 12 timesthe
Job_with_dep job to alocal ProActive Scheduler and only your password will be requested. Authorized username and password
are defined by the administrator.

For more informations, use -h (or --help) option (i.e. "jobLauncher.sh -h")
1.4.5.3. Submit a job using Java API

To connect the ProActive Scheduler and submit a Job using Java API, just proceed as following :

22

Part I: ProActive Scheduler Pro @ Chapter 1: ProActive Scheduler

/ljoin an existing ProActive Scheduler retrieving an authentication interface.
SchedulerAuthenticationinterface auth = SchedulerConnection.join("//host/SCHEDULER_OBJECT_ _NAME");
/lconnect and log to the Scheduler. Valid username and password are define by the administrator.
UserSchedulerInterface scheduler = auth.logAsUser("username”, "password");

/I submitting a new job and get the associated id

Jobld myJobld = scheduler.submit(job);

As you can see submitting a job will return a Job ID. This is the identification code of the submitted Job. It is useful to saveit in
order to retrieve future informations on this job.

1.4.6. Get a Job result
Once a Job terminated, it is possible to get its result. Y ou can only get the result of the job that you own.

1.4.6.1. Get a Job result using the Graphical User Interface (Scheduler Eclipse Plugin)
To get ajob result using the graphical tools, please refer to Chapter 2, ProActive Scheduler Ecplise Plugin documentation.

1.4.6.2. Get a Job result using shell command

To get the result of ajob using a command line, use the getResult.sh script in the (bin/unix/getResult.sh) directory. This script
has 2 optional options:

» The URL of astarted scheduler. (using the "-u URL" option). If you don't use this, it will try to connect to a started scheduler
onloca host.

» Your login (using the "-1 LOGIN" option). If you use this option, only your password will be requested. Otherwise, both will
be requested.

It will print the result on the screen as the toString() Java method could have done it.

For more informations, use -h (or --help) option (i.e. "jobLauncher.sh -h")

1.4.6.3. Get a Job result using Java API

Todoitin Java, usethe getJobResult(Jobld)method inthe User SchedulerInterface and thejob ID you got when you submitted
it. Itisalso possibleto create anew ID based on theinteger id you got. A job result isin fact alist of task result ordered in threelists:

» A full list that contains every result or exception of every tasks.
» A failed list that contains every result or exception returned by atask that failed.
» And apreciousresult list that contains every result or exception returned by the task marked precious.

This result will be given to you exactly like you returned it in your executable. To know when ajob that you have submitted has
finished its execution, you can subscribe to the scheduler to be notified of some events. Thiswill be explain in the next section.

/I get the user interface

UserSchedulerinterface scheduler = auth.logAsUser("username”, "password");
/I get the result of the job

JobResult myResult = scheduler.getJobResult(myJobld);

/Nlook at inside the JobResult to retrieve TaskResult...

1.4.7. Register to ProActive Scheduler events

If you are using the Java API, it is possible to get events from the Scheduler. In order to be notified about the scheduler activities,
you can add a Scheduler listener that will inform you of some events, like job submitting, job or task finished, scheduling state
changing, etc... To add alistener, just make your listener by implementing the Scheduler EventL istener interface and add it to the
scheduler. You will then receive the scheduler initial state containing some informations about the current scheduling state. See the
ProActive Scheduler JAVADOC for more details.

23

Part I: ProActive Scheduler Pro @ Chapter 1: ProActive Scheduler

/Imake your listener
SchedulerEventListener mySchedulerEventListener = new chedulerEventListener () {

public void jobRunningToFinishedEvent(JobEvent event){
[lif my job is finished

if (event.getJobld().equals(myJobld))}{

/lget its result

JobResult myResult = scheduler.getJobResult(myJobld);

}
}

/limplement other methods...

}

/ladd the listener to the scheduler specified which events you want to receive.
scheduler.addSchedulerEventListener(MySchedulerEventListener,SchedulerEvent.JOB_RUNNING_TO_FINISHE

D);

This example shows you how to listen to the scheduler events (here the finished job event only). But you can listen for every events
you want containing in this interface.

For more details and features on the user scheduler interface, please refer to the java Documentation.

1.5. Administrator Manual
TODO

24

Part I: ProActive Scheduler Pro @ Chapter 2: ProActive Scheduler Ecplise
Plugin

Chapter 2. ProActive Scheduler Ecplise
Plugin

The Scheduler Eclipse Plugin isagraphical client for remote monitoring and control of the ProActive Scheduler (see Chapter 1,
ProActive Scheduler), including remote submission of XML -defined jobs (see Section 1.4.1.1, “Create ajob using XML descriptor”

).
The Scheduler Eclipse Plugin is available in two forms:

* A Java stand alone application based on Eclipse Rich Client Platform (RCP) [http://wiki.eclipse.org/index.php/
Rich_Client_Platform] , available for any platform (Windows, Linux, Mac OSX, Solaris, ...)

* Asetof Eclipse [http://www.eclipse.org] plugins : with all the functionalities within the stand a one application, enhanced
with atool that makes easier the scheduling and monitoring of jobs and applications.

2.1. The Scheduler perspective

The Scheduler plugin provides the Scheduler per spective [http://help.eclipse.or g/help31/index.jsp?topic=/
org.eclipse.platfor m.doc.user/gettingStarted/qs-43.htm] displayed in the Figure 2.1, “The Scheduler Perspective’ .

This perspective defines the following set of views [http://wiki.eclipse.org/index.php/FAQ_What_is a view%3F] :
» The Jobsview: shows pending, running and finished jobsin the scheduler.
e The Console view: shows jobs standard and error output (on demand).
» The Tasksview: displays detailled informations on tasks contained in the selected job.
» TheJobsInfo view: displays all informations of the selected job.
e The Result Preview view: displays atextual or graphical preview of the result of the selected task.

25

http://wiki.eclipse.org/index.php/Rich_Client_Platform
http://wiki.eclipse.org/index.php/Rich_Client_Platform
http://www.eclipse.org
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.platform.doc.user/gettingStarted/qs-43.htm
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.platform.doc.user/gettingStarted/qs-43.htm
http://wiki.eclipse.org/index.php/FAQ_What_is_a_view%3F

Part |: ProActive Scheduler

ProActive &

Chapter 2: ProActive Scheduler Ecplise
Plugin

@ 'S

Eduer=Eipse SR

Figure 2.1. The Scheduler Perspective

file Edit Mavigate Project Window Help
I>aal - s -
|3 jobs 13 4= 2 PHSED W= - @ RTO
Pending (1)
i State User Priarity Hame Hame
5 Pending chi MNormal Matlab_job job_2_tasks
jib_2_tasks
)
STARTED]
@ Console | 3 Tasks &3 =0 Tipbifo i [Result Preview. =
Job 5 has 8 tasks Progerty vakie H
id State Rame HosE name Start time Finished time Re-nu Description W 5
5006 Pending tasks na Mot yer Mot yet 01 This task wil sieep fs State Stalled |
5007 Pending task? nja Noit yet Not yet 072 This task will sheep &s Name job_with_dep :
5004 Pending tasks nja Not yer Not yet 071 This task will sleep Bs Priarity Norrnal |
5005 Pending task3 na Mot yet ok yet 01 This task will sleep 45 Pending tasks number &
5002 Pending taskd nfa Not yet ot yet 02 This task will sleep 55 Running tasks number 0 | u
5003 Finished task2 cheypainrafr 15:46:21 112207 15:46:45 112207 01 This task wil sleep 10s Finished tasks number 2
5001 Pending tasks na Not yet Mok yet 01 This task wil sleep 2s Total tasks number] |
5008 Finished taskl duff inria.fr 15:46:22 1122007 15:46:45 112207 02 This task will sleep 63 Submitted time 15:46:20 112207 |
EhartadHms 1KARA1 11030 |7
A [1)

26

Part I: ProActive Scheduler Pro @ Chapter 2: ProActive Scheduler Ecpllge
Plugin
2.2. Views composing the perspective
2 jobs 2 - = @ | B oz (0 ® %
Pending (7) Running (11) Finished (8)
Id State User Priority Name ld State Progress | # Finish Use — Id State User Priority Namm
362 Pending chri Low job_proAd (351 Running E 3/4 |l 49 Finished chri Mormal job ¥
375 Pending admin Normal Job with | |361 Running E 7/8 |l 50 Finished chri Normal job_F
376 Pending jo Normal Job_with | (364 Running E 0/8 jo 354 Finished admin Normal Matlab,
377 Pending jo Normal Job_with_| 366 Running E 1/4 nad 350 Finished |l Normal job_na
379 Pending chri Normal job_P| |367 Running E 1/4 nad 363 Finished jo Normal Matlab
380 Pending jo Low job_proAc (368 Running E 1/9 johr 365 Finished admin Normal job_pre|
381 Pending jo Low job_proAd (369 Running S 0/9 john 370 Finished chri Normal job_pre_
371 Running S 2/8 |l 372 Finished admin Normal job_pre_|
373 Running S 1/4 nad
374 Running S 2/8 adn—
270 Daumesime nan .—lm-lE‘
(] [) [I I B
RESUMED

Figure2.2. The Jobsview
All buttons (on upper right) are describein the

Thisview is composed of 3 tableswhich represents pending, running and finished jobs. In each table you can watch many different
informations about jobs, astheir state, their name, their id...

27

Part I: ProActive Scheduler Pro @ Chapter 2: ProActive Scheduler Ecplise
Plugin
El Console i3 w oo G~
Job #11
task7@l3:47: Démarrage de la tache numero 7 []

Parameters are :

INIT(4) : sleepTime=5

INIT(4) : number=4

Démarrage de la tache numero 4
Parameters are :

INIT(3) : sleepTime=8

INIT(3) : number=3

D?marrage de la tache numero 3
Parameters are :

INIT(1l) : sleepTime=8 F
INIT(1l) : number=Ll

Démarrage de la tache numero 1
Parameters are :

Terminaison de la tache numero
Terminaison de la tache numero
Terminaison de la tache numero
Terminaison de la tache numero
Terminaison de la tache numero
Terminaison de la tache numero
Terminaison de la tache numero
Terminaison de la tache numero

task7@l3:47:
task4@l3:47:
task4@l3: 47:
task4@l3: 47:
task4@l3: 47:
task3@13:47:
task3@l3: 47:
task3@l3:47:
task3@13:47:
taskl@l3: 47:
taskl@l3: 47:
taskl@l3: 47:
taskl@l3: 47:
task7@l3:48:
task6@l3: 48:
task4@l3: 48:
task5@13: 48:
task2@l3:48:
task3@l3: 48:
taskl@l3: 48:
task8@l3: 48:

e T e O e O TR JOE B .y gy I 6 5 Iy 8 R [) O I g Iy |
[I L I e e N R B R e T B N I) I o I) R 1 |

rrrrrmhrrarrrarraTraTrrBarrBmarrHBeMraOrrearraeaarreeaOrreT e e
e e

00 = L) kI OWD s O]

Pl &
[Wy |

[

[B

Figure 2.3. The Console view

Thisview displays all jobs standard and error output (only on demand).

28

Part |: ProActive Scheduler

Pro

&

Chapter 2: ProActive Scheduler Ecplise

Plugin

2 Tasks 2

Id

50007 Pending
50005 Pending
50003 Pending
50001 Running
50008 Finished
50009 Finished
50006 Finished
50004 Finished
50002 Finished

This view provides many informations on tasks composing ajob as:

Thetask id
The task state
The task name

Averagel
LastAverage
Averagez
Computation6
Computation2
Computation5
Computation3
Computationl
Computationd

Host name

nfa

nfa

nfa
nahuel.inria.fr
amda.inria.fr
puravida.inria.fr
pincoya.inria.fr
macyavel.inria.fr

trans04.inria.fr

The host name which execute the task
Thetask started time

The task finished time
In the column "Re-runnable", the first number represents how many times the task was re-executed, and the second number

how many times the task can be re-executed

The description of the task

Job 50 has 9 tasks

Start time

Not yet

Not yet

Not yet

13:52:39 11/23/07
13:52:36 11/23/07
13:52:24 11/23/07
13:52:36 11/23/07
13:52:37 11/23/07
13:52:38 11/23/07

Finished time

Not yet

Not yet

Not yet

Not yet

13:53:14 11/23/07
13:53:09 11/23/07
13:53:08 11/23/07
13:53:09 11/23/07
13:53:09 11/23/07

Figure2.4. The Tasksview

Re-run
011
011
0/1
011
071
01
01
01
0/1

Description

Do the average of 1 2 3 and return it.

Do the average of average 1 2 and return it.
Do the average of 4 5 6 and retum it.
Compute Piand return it

Compute Piand return it

Compute Piand return it

Compute Piand return it

Compute Pi and return it

Compute Piand return it

29

Part | ProActive Scheduler Pro & Chapter 2: ProActive Scheduler Eplcral é =

] Job Info 3

Property Value

Id b7

State Stalled

Name job_nativ

Priority Normal

Pending tasks number 1

Running tasks number 0

Finished tasks number 3

Total tasks number 4

Submitted time 13:53:42 11/23/07

Started time 13:53:48 11/23/07

Finished time Mot yet

Pending duration 6s 298ms

Execution duration Mot yet

Total duration Mot yet

Description Will execute 3 native C ta
] | B

Figure 2.5. The Job Info view

This view provides many informations on the selected job as:
e Thejobid
e Thejob state
* Thejob name
e Thejaob priority
» The number of pending task
e The number of running task
» The number of finished task
e The number of task composing the job
* Thejob submitted time
* Thejab started time
* Thejob finished time
» The description of the job

30

Part I: ProActive Scheduler ProActive g Chapter 2: ProActive Scheduler Ecplise
Plugin

;
= Result Preview &3

[DEFAULT DESCRIPTION] 3.14162024 »

[4]

q] I | | ¥

Figure 2.6. The Result Preview view

This view display the result of the selected task (in task view), according to the ResultPreview field (see Section 1.4.4, “Create
and Add atask to ajob”

2.3. Connect to the started ProActive Scheduler

In order to establish a connection to the ProActive Scheduler:

1. open the Scheduler Perspective: Window->Open Per spective->Other...->Scheduler (it could be already opened as it is
the default perspective).

2. select " Connect to the ProActive scheduler” in the Scheduler menu or in the contextual menu (right click) , it opens
the "Connect to the ProActive scheduler" dialog displayed in the Figure 2.7, “ Connect to scheduler” .

3. enter informationsrequired about the remote scheduler, and click OK .

note: If you check "log as admin" in the previous dialogue, if the ProActive scheduler accepts your connection, you'll be able to do
more actions than an "simple" user (see Section 2.4.2, “ The Jobs view buttonsin Administrator Mode ").

R Y .

Url: |rmi:/ffiacre.inria.fr:6622/SCHEDULER v |

login : |jnhann v | password : | |

[] log as admin

oK | Cancel

Figure 2.7. Connect to scheduler

31

Part I: ProActive Scheduler Chapter 2: ProActive Scheduler Ecplise

Plugin

Pro

@

2.4. The Scheduler perspective buttons

2.4.1. The Jobs view buttons in User Mode

g

Figure 2.8. Connect to scheduler

Display the "Connect to scheduler” dialog in order to establish a connection to a remote ProActive scheduler.

-

Figure 2.9. Disconnect from the scheduler

Figure2.10. Changeview from Vertical to Horizontal mode

Allows to switch the job's display to Horizontal from Vertical mode.

Figure 2.11. Change view from Horizontal to Vertical mode

Allowsto switch the job's display from Horizontal to Vertical mode.

&

Figure 2.12. Submit ajob
Display the "Choosefile" dialog in order to submit a XML-defined job to the scheduler.
[
g
Figure 2.13. Pause/Resume a job

Pause or resume the selected job (only if you are the job owner).

Figure 2.14. Changejob priority

Change job priority (only if you are the job owner). Priority allowed are:
e Lowest.
e Low.
e Normal.

Figure 2.15. Display job output

To display the selected job's standard and error output (only if you are the job owner).

32

Part I: ProActive Scheduler Pro Chapter 2: ProActive Scheduler Ecplise

Plugin

@

(I

Figure 2.16. Kill Job
To kill the selected job (only if you are the job owner).
2.4.2. The Jobs view buttons in Administrator Mode

All buttons alowed in user mode are also allowed in Administrator mode. Moreover you can execute any action even you aren't
the job owner.

In Administrator mode, 3 other choices for job priority are available :

* Idle, lower priority than the 3 User Mode priorities
 High, higher priority than the 3 User Mode priorities
 Highest, higher priority than the 3 User Mode priorities and than High

b=
Figure2.17. Start the scheduler

Figure 2.18. Stop the scheduler
£Z2

Figure 2.19. Freeze the scheduler

This freezes the scheduler. When the scheduler receives this event, it pauses all running jobs, and no other pending jobs will be
scheduled.

ud

Figure 2.20. Pause the scheduler

This pauses the schedul er. When the scheduler receivesthis event, no pending jobswill be scheduled, but all running jobs complete.
O
Figure 2.21. Resume the scheduler
[

Figure 2.22. Shutdown the scheduler

This shutdowns the scheduler. When the scheduler receives this event, job submission is no more allowed, but all running jobs
complete. When al jobs are finished, the scheduler is shutdown.

*®

Figure 2.23. Kill scheduler

33

Part I: ProActive Scheduler Pro @ Chapter 2: ProActive Scheduler Ecplise
Plugin

This shutdown immediately the scheduler, without waiting for any job completion.

Part I1: ProActive Resource Manager Pro @

Part Il. ProActive Resource Manager

Table of Contents

Chapter 3. ProAcCtive RESOUICE MANAGETccoiiiiiierierie ettt sttt e bbb bbb enes 36
0 I O 111 o N VI N I 36
R 2 o = T 36
3.3. ResoUrce Manager arChItECLUIE iiiii ettt e et e e et e e e e tb e e e ab e e e eaeans 36
3.4. Static Node Source and DYNamiC NOTE SOUICEuuuiieutietiiii ettt e et e et eeeab e eenans 37
B B N[0 (=S 1 - 37
3.6. Starting the RESOUICE IMANAJES ittt ettt e ettt e ettt e e e et e e e et e e e eban s 38

Chapter 4. Resource Manager's ECliPSe PIUGIN ..ot 39

Part I1: ProActive Resource Manager Pro @ Chapter 3: ProActive Resource Manager

Chapter 3. ProActive Resource Manager

3.1. IMPORTANT NOTE

- Some parts of the ProActive Scheduler and ProActive Resource Manager rely on Java Scripting capabilities (JSR 223 [http://
jcp.org/en/jsr/detail 7id=223]). As aconsequence, it requires either:

» al.6or greater Java Runtime Environment, without any modifications,

» or,withal5 JRE, the JSR 223 jar files [http://jcp.org/aboutJava/communityprocess/final/jsr223/index.html] :

* First, the script-api.jar , script-js.jar and js.jar files must be added in the /ProActive/dist/lib/ directory if you are using the
bin release or ProActive, or in the /ProActive/lib/ directory if you build ProActive from the source release.

* Thenthejava5_jsr223 patch.jar patch (released with the Scheduler RCP Client) should be executed in the Scheduler RCP
Client directory : unzip the java5_jsr223_patch.zip file and execute java -jar java5_jsr223_patch.jar .

NOTE - A RCP/Eclipse graphical client isavailable, but not yet documented for monitoring and controlling a Resource Manager.
You can find it in the ProActive Download page.

3.2. Role

As Scheduler manages pool of jobs to execute, Resource manager is in charge of supplying Scheduler in resources : ProActive
nodes. Resource Manager (RM) takes benefits of the ProActive library, so it can handle resources from LAN, on cluster, on P2P
desktop Grids, or on Internet Grids. ResourceManager provides scheduler in nodes, according to criteria of the task to execute on
it (operating system, dynamic libraries, memory...). Itsmain functions are :

« Creation, acquisition and removal of ProActive nodes.

» Supplying nodes to scheduler for tasks executions, Scheduler can ask nodes that verify criteria, these criteria are defined in
a selection script.

* Maintaining and monitoring its list of node resources, and manage states of its handled nodes (free, busy, down...).

3.3. Resource Manager architecture

Resource Manager is made of five components:

» User Resource Manager'sfrontend for the Scheduler, this component providesfor scheduler an entry to get and give back nodes.

» Admin Frontend for RM's administrator, provides administrator actions,; add and remove nodes, add and remove different node
sources, shutting down the Resource manager.

» Core Main component, selects and gives nodes to scheduler, maintains different nodes states for each node, and receive new
available nodes acquired by Node Sources.

* Monitoring component Resource manager can have monitors connected toit. Monitorsare external programs (such asmonitor
GUI) that want to beinformed about RM current activity; numbers of nodes and their availability for example. The Monitoring
component isin charge of throwing RM information to its monitors.

» Node Sour ces Resource manager can handle nodes coming from heterogeneous environments, a Node source component is
in charge of nodes acquisition, deployment and monitoring for a dedicated infrastructure. It means we can have a Node source
which manages nodes deployed by a ProActive descriptor, one for nodes acquired from a Peer to peer infrastructure, and
another for nodes acquired from a cluster.

36

http://jcp.org/en/jsr/detail?id=223
http://jcp.org/en/jsr/detail?id=223
http://jcp.org/aboutJava/communityprocess/final/jsr223/index.html

Part I1: ProActive Resource Manager ProActive g Chapter 3: ProActive Resource Manager

RESOURCE MANAGER

Figure 3.1. resource Manager architecture

3.4. Static Node Source and Dynamic Node Source

Node Sources objects are aimed to acquire nodes for the RM, there are two kinds of Node Sources :
 Static Node Sour ce defined for deploying and acquiring nodes by a ProActive descriptor. All nodes handled by the source are
kept permanently by the Resource Manager, i.e until the termination of the RM or if Administrator ask to remove some of them.

» Dynamic Node Sour ce designed to acquire nodes from an infrastructure which can provide nodes just for alimited time. So
this Node Source get a node from a specific infrastructure, keep it during a defined time. When this keeping time is elapsed,
dynamic node source remove the node from the RM and give back node to its infrastructure. A dynamic node source have
three main parameters :

Max number of nodes : number of nodes that dynamic Node Source has to get from its corresponding infrastructure. The
dynamic node source tries to acquire this number of node source, but its infrastructure may not be able to provide as many
nodes. So thisisthe number of acquired nodes that Dynamic Node Source tries to reach.

Timeto release(TTR) : keeping duration of an acquired node. when this keeping duration is reached by a node, dynamic node
source releasesiit.

Nicetime: After anoderelease, timetowait for the dynamic node source before trying to get anew nodefrom itsinfrastructure.
After each node release, dynamic node source waits "nice time", and after tries to acquire a new node.

3.5. Nodes states

Resource Manager has to maintain states of its handled nodes, here the different nodes states :

» Free Nodeisavailable, and there is no task launched on it. Node can be supplied to a scheduler.

37

Part I1: ProActive Resource Manager Pro @ Chapter 3: ProActive Resource Manager

» Busy Node has been given to scheduler and atask is executed on it.

» Tobereleased Nodeis busy, and administrator or its (dynamic) Node Source has asked to remove the node. So the node will
be removed from RM &fter task's end.

» Down Node has a problem (unreachable, fallen...) and can't execute tasks anymore.

3.6. Starting the Resource Manager

To start the Resource Manager, run the RMlauncher.sh script in scripts/scheduler directory. Without arguments, Resource Manager
will start and create four ProActive nodes on the local host. RMlauncher.sh can be started with 1 optional argument:

 Path of aProActive descriptor file (for example: ProActive/descriptors/Workers.xml). Descriptor is deployed and nodes added
to the RM by a static Node Source at the RM's startup.

Y ou can also start Resource Manager using thejava APl. Resource Manager can be started with static functions of RM Factory class.
Hereashort sampleof RM instantiation with deployment of aProActive descriptor. Nodes deployment isasked to RMAdmin object :

RMFactory.startLocal(); //creates Resource Manager
components RMAdmin admin = RMFactory.getAdmin(); //get
RMAdmin object

/lcreates ProActive Descriptor object from an xml file
ProActiveDescriptor pad =
PADeployment.getProactiveDescriptor(“myDescriptor.xml");

/IAsk to RMAdmin component to deploy the ProActive
Descriptor //and add deployed nodes to the RM
admin.addNodes(pad);

38

Part I1: ProActive Resource Manager Pro @ Chapter 4: Resource Manager's Eclipse
Plugin

Chapter 4. Resource Manager's Eclipse
Plugin

39

Part 111: ProActive Scheduler's Matlab Pro @
extension

Part Ill. ProActive
Scheduler's Matlab extension

Table of Contents

Chapter 5. ProActive Scheduler's Matlah EXLENSIONccooviiiiiiiiiccie et

oI 15T 01 - 1o PSP
5.2. Quick Start with the Matlah EXIENSIONuiiiiiiii i e e e e e e e et e e et e e et e e at e e e et e eeanaaees
oI I 1 0= - | = [o PSP
5.2.2. Writing a simple example : the Matlah SCIPEcovviiiiii e e
5.2.3. Writing a simple example : the Scheduler job desCriptorooviiii i
5.3. A More Complex Example : a Matlab task fIOWooiiiiiiii e
TN B B 1= o 1 (0 Y = - o ==
5.3.2. New Tasks : MatlabSplitter and MatlabCollECtOruiiii e e
G T = Qo (= o= 10 (= o1 =S
5.3.4. New parameter in SimpleMatlab tasks: iNAEXccuiiiiiiiiiii e
5.3.5. Matlab Scripts for this @XamPIEooueiiiii e

Part 111: ProActive Scheduler's Matlab Pro @ Chapter 5: ProActive Scheduler's Matlab
extension Extension

Chapter 5. ProActive Scheduler's Matlab
Extension

5.1. Presentation

MATLAB isanumerical computing environment and programming language. Created by The MathWorks, MATLAB allows easy
matrix manipulation, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with
programs in other languages.

The Goal of ProActive Scheduler's Matlab Extension is to:

« alow usersto easily launch Matlab scripts over an heterogeneous grid

« describe complex task flows in Matlab using human-readable XML descriptors

« Ability to communicate the result of one task as input of another task.

* userswon't have to write any other code than Matlab script code

* support the following Matlab types : Double, Complex, Int or String Arrays. Cells. Records.

A good way to start manipulating and scheduling Matlab scripts is to have alook at the standalone (and simple) Matlab/Scilab
GUI described in the ProActive documentation. If you want to directly through more complex Matlab job scheduling, go on with
the following tutorial.

5.2. Quick Start with the Matlab Extension

To get quickly our hands in, we'll write avery simple Matlab job example. This simple example will compute the roots of several
polynomials.

5.2.1. Installation

Before starting to use the Matlab interface, you need to install the Matlab interface to Java. You'l find al the instructions on
PROACTIVE/scripts/unix/matlab/README. This interface will build the native libraries of the Java Interface to Matlab. As this
library is native, it isimportant that you build it for each couple <Matlab version, Architecture> inside your grid infrastructure. I
you are using a ProActive installation on a centralized NFS folder, this will be sufficient. Otherwise, you will have to build and
install the native library inside your ProActive installation on each machine used.

The good news are, if you successfully run the configuration script, you won't have to bother where Matlab isinstalled at runtime,
the Scheduler will determine it for you. A little drawback to thisis that the scheduler will use the first Matlab installation found on
the system, so it might not do what you want when several Matlab installations are on the same machine. Further releases of the
extension will allow afiner control over that by specifying Matlab's minimum version requirement inside job descriptors.

5.2.2. Writing a simple example : the Matlab Script
We write avery simple script which computes the roots of a single given polynomial.
out=roots(in);

Thein and out variables are specific variables which describe the inputs and outputs of a Matlab script for the Scheduler. in and out
can contain anything supported by the extension (Double, Complex, or String arrays, Cells, Records).

5.2.3. Writing a simple example : the Scheduler job descriptor
Thisis astep by step guide to write this job descriptor.

5.2.3.1. The job definition

Thejob tag isthe root tag of our descriptor, it must have a name attribute which holds an id of the job. It is generally followed by
adescription tag which gives textual description of the job. Finally, the next tag will be the type of job to schedule. In our case it
will be ataskFlow job (ajob containing several tasks).

41

Part 111: ProActive Scheduler's Matlab Pro @ Chapter 5: ProActive Scheduler's Matlab
extension Extension

<job xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal ocation="urn:proactive:jobdescriptor:0.91
http://proactive.inria.fr/schemas/jobdescriptor/0.91/schedulerjob.xsd"
xmins="urn:proactive:jobdescriptor:0.91" name="Matlab_job_simplest">
<description>A simple Matlab job, which computes the roots of several polynomials</
description>
<taskFlow>
</taskFlow>
</job>

5.2.3.2. The task definition

Thetask tag contains all theinformation for asingle task executed on a single machine. In our example, thistask will be the matlab
script calculating the root of a polynomial.

The task tag must contain a name attribute like the job tag. Here it contains as well the attribute preciousResult which tells the
scheduler that we need the result of this task as final output for our job. The task tag isimmediately followed by adescription tag
containing atextual description of thistask.

The description tag is followed by a selection tag. This tag describes a script which will select, among all the machine resources
that the Scheduler controls, the specific resources (machine) that can effectively run this task. This script can for example test that
Matlab isinstalled and has the right version, that specific Toolboxes are installed... We provide a generic script which simply tests
if Matlab isinstalled. The script is retrieved from the URL http://proactive.inria.fr/userfiles/file/scripts/checkMatlab.js

<task name="rootl" preciousResult="true">
<description>Calculates the root of a polynomial</description>
<selection>
<script>
<file url="http://proactive.inria.fr/userfiles/file/scripts/checkMatlab.js"/>
</script>
</selection>

</tai.s.k>
5.2.3.3. The Matlab script definition

Now we finally write the script that will be executed on the remote machine. The javaExecutable tag is a container for our Matlab
script, it'sajava program that will connect to the Matlab engine and launch the given script insideit.

<javaExecutable class="org.objectweb.proactive.extensions.scheduler.ext.matlab.SimpleMatlab">
<parameters>
<parameter name="input" value="in=[1 0 3 --2 5 1];"/>
<parameter name="script" value="out=roots(in);"/>
</parameters>
</javaExecutable>

The javaExecutable tag contains an attribute class which tells which type of Matlab task will be used, here we'll describe only the
task called SimpleMatlab . In Section 5.3.2, “ New Tasks : MatlabSplitter and MatlabCollector " , we describe more advanced
tasks. The javaExecutable tag contains a child tag called parameters. Thistag contains alist of parameter tags which define the
task parameters. Each parameter tag, has name/value couple attributes.

The SimpleMatlab task accepts the following parameters:

 script : defines which matlab script will be launched. The value attributes will contain the matlab script code (useful for one
line scripts only).

 scriptFile: defines which matlab script will be launched. The file at the given path will be loaded.
» scriptUrl : defines which matlab script will be launched. Thefile at the given remote url will be loaded.

42

http://proactive.inria.fr/userfiles/file/scripts/checkMatlab.js

Part 111: ProActive Scheduler's Matlab Pro @ Chapter 5: ProActive Scheduler's Matlab
extension Extension

* input : defines an input script which will be launched before the actual matlab script. The value attribute needs to contain the
script code (which must be single-line only).

43

<?xml version="1.0" encoding="UTF-8"?>
<job xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal.ocation="urn:proactive:jobdescriptor:0.91
Pa http://proactive.inria.fr/schemas/jobdescriptor/0.91/schedulerjob.xsd"
ext xmlns="urn:proactive:jobdescriptor:0.91" id="Matlab_job_simplest">
<description>A simple Matlab job, which computes the roots of several polynomials</
5-description>
<taskFlow>
<task id="root1" preciousResult="true">
<description>Calculates the root of a polynomial</description>
<selection>
<script>
<file url="http://proactive.inria.fr/userfiles/file/scripts/checkMatlab.js"
/>
</script>
</selection>
<javaExecutable class="org.ow2.proactive.scheduler.ext. matlab.SimpleMatlab">
<parameters>
<parameter name="input" value="in=[1 0 3 --2 5 1];"/>
<parameter name="script" value="out=roots(in);"/>
</parameters>
</javaExecutable>
</task>
<task id="root2" preciousResult="true">
<description>Calculates the root of a polynomial</description>
<selection>
<script>
<file url="http://proactive.inria.fr/userfiles/file/scripts/checkMatlab.js"
/>
</script>
</selection>
<javaExecutable class="org.ow2.proactive.scheduler.ext. matlab.SimpleMatlab">
<parameters>
<parameter name="input" value="in=[1 0 3 --2 5 2];"/>
<parameter name="script" value="out=roots(in);"/>
</parameters>
</javaExecutable>
</task>
<task id="root3" preciousResult="true">
<description>Calculates the root of a polynomial</description>
<selection>
<script>
<file url="http://proactive.inria.fr/userfiles/file/scripts/checkMatlab.js"
/>
</script>
</selection>
<javaExecutable class="org.ow2.proactive.scheduler.ext. matlab.SimpleMatlab">
<parameters>
<parameter name="input" value="in=[1 0 3 --2 5 3];"/>
<parameter name="script" value="out=roots(in);"/>
</parameters>
</javaExecutable>
</task>
<task id="root4" preciousResult="true">
<description>Calculates the root of a polynomial</description>
<selection>
<script>
<file url="http://proactive.inria.fr/userfiles/file/scripts/checkMatlab.js"
/>
</script>
</selection>
<javaExecutable class="org.ow2.proactive.scheduler.ext. matlab.SimpleMatlab">
<£arameters> .
Example 5dpa:ite MatlabJob deseriptor Example ;. />
<parameter name="script" value="out=roots(in);"/>
_ </parameters>
</javaExecutable>
</task>
</taskFlow>
</iob>

Part 111: ProActive Scheduler's Matlab Pro @ Chapter 5: ProActive Scheduler's Matlab
extension Extension

5.3. A More Complex Example : a Matlab task flow

Now we will get through amore complex example. Thisexamplewill use an interesting feature of the Matlab extension : the ability
to pass results of onetask asinputs of another task. This exemple, on the contrary of the previous one, is not asimple parallel batch
processing, it's aflow of tasks, which depends from each others.

Thisexamplewill compute the sum of abig, randomly-generated array, valuestaken from -50 to +50. The example contains 3 steps:

1. It splitsthe big array into several smaller arrays.
2. It computes the sum of each array in parallel.
3. It merges the results from each parallel sub-total to compute the final sum.

Thisisnot, of course, areal-case example as computing the sum of abig array will be much faster on a single machine (due to the
overhead of launching Java and a Matlab engine and the network latency), but it is meant to illustrate a simple task flow in Matlab.

Well go through the new concepts introduced in this example compared to the previous one. Have alook at the new job descriptor
first:

45

Part I11: ProActive Scheduler's Matlab ProActive Q/ Chapter 5: ProActive Scheduler's Matlab
extension Extension

<?xml version="1.0" encoding="UTF-8"?>
<job xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal ocation="urn:proactive:jobdescriptor:0.91
http://proactive.inria.fr/schemas/jobdescriptor/0.91/schedulerjob.xsd"
xmIns="urn:proactive:jobdescriptor:0.91" id="Matlab_job" priority="normal" logFile=
"${HOME}/matlab_job.log" >
<description>A simple Matlab taskflow, which computes the sum of a randomly-generated
array</description>
<variables>
<variable name="PROACTIVE_HOME"
value="/home/user/ProActive" -/>
<variable name="MATLAB_SCRIPTS"
value="${PROACTIVE_HOME}/scripts/unix/matlab/examples" -/>
</variables>
<taskFlow>
<task id="splitter">
<description>Splits a big array</description>
<selection>
<script>
<file url="http://proactive.inria.fr/userfiles/file/scripts/checkMatlab.js"
/>
</script>
</selection>
<javaExecutable class="org.ow2.proactive.scheduler.ext. matlab.MatlabSplitter">
<parameters>
<parameter name="scriptFile" value="${MATLAB_SCRIPTS}/splitter.m"/>
<parameter name="input" value="in=round(rand(1,1000000)*100-50)"/>
<parameter name="number_of children" value="6"/>
</parameters>
</javaExecutable>
</task>
<task id="sum1">
<description>Calculates the sum of the elements in the array</description>
<depends>
<task ref="splitter"/>
</depends>
<selection>
<script>
<file url="http://proactive.inria.fr/userfiles/file/scripts/checkMatlab.js"
/>
</script>
</selection>
<javaExecutable class="org.ow2.proactive.scheduler.ext.matlab.SimpleMatlab">
<parameters>
<parameter name="index" value="0"/>
<parameter name="scriptFile" value="${MATLAB_SCRIPTS}/summer.m"/>
</parameters>
</javaExecutable>
</task>
<task id="sum2">
<description>Calculates the sum of the elements in the array</description>
<depends>
<task ref="splitter"/>
</depends>
<selection>
<script>
Example 5&ZilComplex Matlaly Job descriptos/ExamplecheckMatlab js”
/>
</script>
</selection>
<javaExecutable class="org.ow?2.proactive.scheduler.ext.matlab.SimpleMatlab">
<parameters>
<parameter name="index" value="1"/>

Part 111: ProActive Scheduler's Matlab Pro @ Chapter 5: ProActive Scheduler's Matlab
extension Extension

5.3.1. Descriptor variables

The variables declaration allows a user to define a variable which can be used as a pattern in other parts of the descriptor. This
helps writing more generic descriptors and replacing only the variables values to adapt the descriptor to many contexts. Here isthe
variables declaration in the preceding descriptor:

<variables>

<variable name="HOME" value="/user/fviale/home"/>

<variable name="MATLAB_SCRIPTS" value="${HOME}/matlab"/>
</variables>

the variables tag contains alist of variable tags which each defines a variable through a name and a value attribute. The variable
can then be used by writing the pattern ${name_of_the variable} . Variable can be reused inside the variable declaration itself, but
the variables are processed sequentially from top to bottom. Therefore, in this example, In this example the MATLAB_SCRIPTS
variable could not be used before the HOME variable.

5.3.2. New Tasks : MatlabSplitter and MatlabCollector

<javaExecutable class="org.objectweb.proactive.extensions.scheduler.ext.matlab.MatlabSplitter">
<parameters>
<parameter name="scriptFile" value="${MATLAB_SCRIPTS}/splitter.m"/>
<parameter name="input" value="in=round(rand(1,1000000)*100-50)"/>
<parameter name="number_of children" value="6"/>
</parameters>
</javaExecutable>

<javaExecutable class="org.objectweb.proactive.extensions.scheduler.ext.matlab.MatlabCollector">
<parameters>
<parameter name="scriptFile" value="${MATLAB_SCRIPTS}/collector.m"/>
</parameters>
</javaExecutable>

Two new tasks appear in this descriptor : the MatlabSplitter and the MatlabCollector . The Splitter task is used to split an input
into alist of several chunks. The Collector task is used to collect and merge the results from severa paralel tasks. Each of these
tasks come with the same parameter asthe SimpleMatlab tasks with an addition: The Splitter expects an additional parameter called
number_of children . Thisparameter tellsthe Matlab script responsible for splitting in how many partstheinput should be divided.

5.3.3. Task dependencies

In order to do complex task flows, it is necessary to add the concept of dependencies between tasks.

<task name="sum1">
<description>Calculates the sum of the elements in the array</description>
<depends>
<task ref="splitter"/>
</depends>
-...<[task>

The dependstag in thistask definition defines a dependency of the task named "sum1" to the task named "splitter". This means that
the task sum1 will be launched afer the task splitter is complete, and that the outputs of splitter will be fed as inputs to sum1.

You'l notice that in this example, al the sumX SimpleMatlab tasks depend from the Splitter. This means that the output from the
Splitter will be fed to each sum task. On the other hand, the Collector depends on every sumX task. It will be launched only after
all these tasks have completed, and the results of all these tasks will be the inputs of the Collector, you'll see on

5.3.4. New parameter in SimpleMatlab tasks: index

<task name="sum1">
<description>Calculates the sum of the elements in the array</description>
<depends>

47

Part 111: ProActive Scheduler's Matlab
extension

Chapter 5: ProActive Scheduler's Matlab
Extension

Pro

@

<task ref="splitter"/>
</depends>
<selection>

<script>

<file url="http://proactive.inria.fr/userfiles/file/scripts/checkMatlab.js"/>

</script>
</selection>
<javaExecutable class="org.objectweb.proactive.extensions.scheduler.ext. matlab.SimpleMatlab"

<parameters>
<parameter name="index" value="0"/>
<parameter name="scriptFile" value="${MATLAB_SCRIPTS}/summer.m"/>
</parameters>
</javaExecutable>
</task>

A new parameter appearsin thisdescriptor for the SimpleMatlab task : theindex . The parameter isrelated to the splitting mechanism.
It can be defined only inside a SimpleMatlab task and has sense only if the Simple task has a Splitter task as parent. The Splitter
sends an output in the form of alist of results to each child task. The same list will be sent to every children. Therefore, each one
needs to specify at which index of thelist it will look at. For example, a splitter task splits the array [1,2,3,4] into two arrays [1,2]
and [3,4], thefirst child needs to specify index 0 and second index 1 (note that the indexes range from 0 to number_of children-1).
By specifying these indexes, the first child will get asinput the array [1,2] and the second child will get [3,4].

5.3.5. Matlab Scripts for this example

5.3.5.1. Script of the Splitter Task

n = fix(length(in)/nout);
fori=1:nout-1
out(i)= {in(1+n*(i-1):n*i)};
end
out(nout)= {in(1+n*(nout-1):end)};

The Splitter script contains two important aspects:

« It containstwo inputs, thevariablein whichisfed by the "input" script of the splitter task, and the variable nout which contains
the value of the number_of children parameter.

» Theout variable, which is the output of the script must be acell array of size nout.
5.3.5.2. Script of the Summing Task
out = sum(in);
5.3.5.3. Script of the Collector Task
out=0
for i = L:length(in)
out = out + in{i}

end

The important aspect of the The Collector script is that the input parameter in isacell array.

48

Part 1V: ProActive Scheduler's Scilab Pro @
extension

Part IV. ProActive
Scheduler's Scilab extension

Table of Contents

Chapter 6. ProActive Scheduler's Scilab EXIENSIONoocviiiiiiiecieccce e 50
T 15T 01 - 1o TP 50

6.2. Quick Start with the SCilah EXIENSIONciiiiiiii e e e e e et e e e e e e eanas 50
L2 I 1 0= = = o PSPPSR 50

S A I (- IS W T = o B o] o Jo == o] o] (o) (S 50

Part 1V: ProActive Scheduler's Scilab Pro @ Chapter 6: ProActive Scheduler's Scilab
extension Extension

Chapter 6. ProActive Scheduler's Scilab
Extension

6.1.

Presentation

Scilab is a scientific software for numerical computations. Developed since 1990 by researchers from INRIA and ENPC, it is
now maintained and developed by Scilab Consortium since its creation in May 2003. Scilab includes hundreds of mathematical
functionswith the possibility to add interactively programsfrom variouslanguages (C, Fortran...). It has sophisticated data structures
(including lists, polynomials, rational functions, linear systems...), an interpreter and a high level programming language. Scilab
works on most Unix systems (including GNU/Linux) and Windows (9X/2000/XP).

Similarly to ProActive Scheduler's Matlab extension, the goal of the Scilab Extension is to:

allow usersto easily launch Scilab scripts over an heterogeneous grid
describe complex task flows in Scilab using human-readable XML descriptors
Ability to communicate the result of onetask as input of another task.
userswon't have to write any other code than Scilab script code

support the following Scilab types : Double, Complex and String Arrays (the extension currently supports fewer types than
the Matlab's one).

A good way to start manipulating and scheduling Scilab scriptsisto have alook at the standalone (and simple) Matlab/Scilab GUI
described in the ProActive documentation. If you want to directly through more complex Scilab job scheduling, go on with the
following tutorial.

6.2.

Quick Start with the Scilab Extension

Welll write asimple Scilab job example. This example will assume that you are familiar with the examplein Section 5.3, “A More
Complex Example : a Matlab task flow” . This example will compute the numerical integration of sin(x) between 0 and PI.

6.2.1. Installation

Before starting to use the Scilab interface, you need to install Scilab in your environment. You'll find all the instructions on
PROACTIVE/scripts/unix/scilab/README_Scheduler (Scilab section).

Once Scilab isinstalled, you won't need at runtime to bother where Scilab isinstalled, the Scheduler will determine it for you.

6.2.2. The Scilab Job descriptor

Thisisthe descriptor of the scilab job which will be executed inside the schedul er

50

Part IV: ProActive Scheduler's Scilab ProActive Q/ Chapter 6: ProActive Scheduler's Scilab

extension

Extension

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href=
"..l..l..Isrc/Extra/org.ow2.proactive.scheduler/common/xml/stylesheets/variables.xsl"?>
<job xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:proactive:jobdescriptor:0.91
http://proactive.inria.fr/schemas/jobdescriptor/0.91/schedulerjob.xsd"
xmlns="urn:proactive:jobdescriptor:0.91" id="Scilab_job"
priority="normal" logFile="${HOME}/scilab_job.log">
<description>
A simple Scilab batch job, which computes the numerical
integration of sin(x) between 0 and PI
</description>
<variables>
<variable name="PROACTIVE_HOME"
value="/home/user/ProActive" -/>
<variable name="SCILAB_SCRIPTS"
value="${PROACTIVE_HOMEY}/scripts/unix/scilab/examples" -/>
</variables>
<taskFlow>
<task id="t1">
<description>
Calculates the numerical integration of sin(x) between
i*Pl/n and (i+1)*Pl/n
</description>
<selection>
<script>
<file
url="http://proactive.inria.fr/userfiles/file/scripts/checkScilab.js" -/>
</script>
</selection>
<javaExecutable
class="org.ow2.proactive.scheduler.ext.scilab.SimpleScilab">
<parameters>
<parameter name="scriptFile"
value="${SCILAB_SCRIPTSY/intsin.sci" -/>
<parameter name="input" value="i=0;n=5;" -/>
<parameter name="outputs" value="out" -/>
</parameters>
</javaExecutable>
</task>
<task id="t2">
<description>
Calculates the numerical integration of sin(x) between
i*Pl/n and (i+1)*Pl/n
</description>
<selection>
<script>
<file
url="http://proactive.inria.fr/userfiles/file/scripts/checkScilab.js" -/>
</script>
</selection>
<javaExecutable
class="org.ow2.proactive.scheduler.ext.scilab.SimpleScilab">
<parameters>
<parameter name="scriptFile"
value="${SCILAB_SCRIPTSY/intsin.sci" -/>
Example 6 dnseiteirdobndescniptovaExample=5;" -/>
<parameter name="outputs" value="out" -/>
</parameters>
</javaExecutable>
</task>
<task id="t3">
<description>

Part 1V: ProActive Scheduler's Scilab Pro Chapter 6: ProActive Scheduler's Scilab
extension Extension

@

Hereisthe Scilab script that calculatesindividual integrals
out = integrate('sin(x)’,'x",i*%pi/n, (i+1)*%pi/n);
Example 6.2. Integral script

Here isthe Scilab script that merges the individual results and computes the final answer

out=outl+out2+out3+out4+outb;

Example 6.3. Merging script

This descriptor is very similar to the descriptor Example 5.2, “Complex Matlab Job descriptor Example” . Well go through the
similarities and differences of these two descriptors.

6.2.2.1. Similarities with Matlab job descriptor

» Concepts of job, tasks and dependences are common to all ProActive Scheduler jobs, so we find here the same concepts than
in Matlab's.

« Definitions of task's main and input scripts are done through the same task parameters script , scriptFile, scriptUrl and input
6.2.2.2. Differences with Matlab job descriptor
For examplein the following task :

<javaExecutable
class="org.objectweb.proactive.extensions.scheduler.ext.scilab.SimpleScilab">
<parameters>
<parameter name="scriptFile"
value="${SCILAB_SCRIPTS}/intsin.sci" -/>
<parameter name="input" value="i=3;n=5;" -/>
<parameter name="outputs" value="out" -/>
</parameters>
</javaExecutable>

» Themain Scilab task is now called SimpleScilab . There exists no splitting mechanism yet, but there is a merging mechanism
explained below.

* A new important task parameter appears : outputs. This parameter is used to specify which variables will be extracted from
the Scilab environment at task's end. Y ou can specify multiple output variables by separating them with commas. If you don't
specify an output parameter, the variable called out will be extracted (leading to an error if it doesn't exist).

» Themerging mechanismisdifferent than for Matlab's. If atask dependsfrom abunch of other tasks. An automatic environment
merging will be done. For exampleif we have 3tasks A,B,C and C depends of A and B. if task A outputsavariable"a" and task
B outputs avariable "b", task C will get asinput both variable "a" and "b". Now a problem arise when several tasks output the
same variable name. In order to avoid overlapping, and to allow merging of results, thisvariable will be renamed by appending
index at the end of the conflicting variable name. In the current example, each taskstl - t5 output the same variable "out". task
t6 will accordingly get asinput variable outl - out5. The index starts from 1 and the order matches the depends list order.

52

	ProActive Scheduler v2008-07-16 10:47:41 Documentation
	Table of Contents
	Part I. ProActive Scheduler
	Chapter 1. ProActive Scheduler
	1.1. IMPORTANT NOTE
	1.2. Overview
	1.3. Scheduler Concept
	1.3.1. What is a Job ?
	1.3.2. What is a Task ?
	1.3.3. Dependencies between Tasks
	1.3.4. Scheduling Policy

	1.4. User Manual
	1.4.1. Create a job
	1.4.1.1. Create a job using XML descriptor
	1.4.1.2. Create a job using Java API

	1.4.2. Create a TaskFlow job
	1.4.2.1. Create a TaskFlow job using XML descriptor
	1.4.2.2. Create a TaskFlow job using Java API

	1.4.3. Create a ProActive job
	1.4.3.1. Create a ProActive job using XML descriptor
	1.4.3.2. Create a ProActive job using Java API

	1.4.4. Create and Add a task to a job
	1.4.4.1. Create and Add a Java task
	1.4.4.1.1. Define your own Java executable
	1.4.4.1.2. Create and Add a Java task using XML descriptor
	1.4.4.1.3. Create and Add a Java task using Java API

	1.4.4.2. Create and Add a native task
	1.4.4.2.1. Create and Add a native task using XML descriptor
	1.4.4.2.2. Create and Add a native task using Java API

	1.4.4.3. Create and Add a ProActive task
	1.4.4.3.1. Define your own ProActive executable

	1.4.4.4. Create and Add a ProActive task using XML descriptor
	1.4.4.5. Create and Add a ProActive task using Java API
	1.4.4.6. Tasks options and explanations

	1.4.5. Submit a job to the ProActive Scheduler
	1.4.5.1. Submit a job using the Graphical User Interface (Scheduler Eclipse Plugin)
	1.4.5.2. Submit a job using shell command
	1.4.5.3. Submit a job using Java API

	1.4.6. Get a Job result
	1.4.6.1. Get a Job result using the Graphical User Interface (Scheduler Eclipse Plugin)
	1.4.6.2. Get a Job result using shell command
	1.4.6.3. Get a Job result using Java API

	1.4.7. Register to ProActive Scheduler events

	1.5. Administrator Manual

	Chapter 2. ProActive Scheduler Ecplise Plugin
	2.1. The Scheduler perspective
	2.2. Views composing the perspective
	2.3. Connect to the started ProActive Scheduler
	2.4. The Scheduler perspective buttons
	2.4.1. The Jobs view buttons in User Mode
	2.4.2. The Jobs view buttons in Administrator Mode

	Part II. ProActive Resource Manager
	Chapter 3. ProActive Resource Manager
	3.1. IMPORTANT NOTE
	3.2. Role
	3.3. Resource Manager architecture
	3.4. Static Node Source and Dynamic Node Source
	3.5. Nodes states
	3.6. Starting the Resource Manager

	Chapter 4. Resource Manager's Eclipse Plugin

	Part III. ProActive Scheduler's Matlab extension
	Chapter 5. ProActive Scheduler's Matlab Extension
	5.1. Presentation
	5.2. Quick Start with the Matlab Extension
	5.2.1. Installation
	5.2.2. Writing a simple example : the Matlab Script
	5.2.3. Writing a simple example : the Scheduler job descriptor
	5.2.3.1. The job definition
	5.2.3.2. The task definition
	5.2.3.3. The Matlab script definition
	5.2.3.4. Complete Job Descriptor

	5.3. A More Complex Example : a Matlab task flow
	5.3.1. Descriptor variables
	5.3.2. New Tasks : MatlabSplitter and MatlabCollector
	5.3.3. Task dependencies
	5.3.4. New parameter in SimpleMatlab tasks: index
	5.3.5. Matlab Scripts for this example
	5.3.5.1. Script of the Splitter Task
	5.3.5.2. Script of the Summing Task
	5.3.5.3. Script of the Collector Task

	Part IV. ProActive Scheduler's Scilab extension
	Chapter 6. ProActive Scheduler's Scilab Extension
	6.1. Presentation
	6.2. Quick Start with the Scilab Extension
	6.2.1. Installation
	6.2.2. The Scilab Job descriptor
	6.2.2.1. Similarities with Matlab job descriptor
	6.2.2.2. Differences with Matlab job descriptor

