
ÎÎ

Programmable Control Products

Single-Slot
PC Interface Module (PCIM)

User’s Manual

GFK–0881 March 2010

GE
Intelligent Platforms

 GFL-002

Warnings, Cautions, and Notes
as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that hazardous voltages,
currents, temperatures, or other conditions that could cause personal injury exist in this
equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to equipment,
a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is not taken.

Note: Notes merely call attention to information that is especially significant to
understanding and operating the equipment.

This document is based on information available at the time of its publication. While efforts
have been made to be accurate, the information contained herein does not purport to cover all
details or variations in hardware or software, nor to provide for every possible contingency in
connection with installation, operation, or maintenance. Features may be described herein
which are not present in all hardware and software systems. GE Intelligent Platforms assumes
no obligation of notice to holders of this document with respect to changes subsequently made.

GE Intelligent Platforms makes no representation or warranty, expressed, implied, or statutory
with respect to, and assumes no responsibility for the accuracy, completeness, sufficiency, or
usefulness of the information contained herein. No warranties of merchantability or fitness for
purpose shall apply.

* indicates a trademark of GE Intelligent Platforms, Inc. and/or its affiliates. All other
trademarks are the property of their respective owners.

©Copyright 2010 GE Intelligent Platforms, Inc.

All Rights Reserved

Contact Information

If you purchased this product through an Authorized Channel Partner, please contact the seller
directly.

General Contact Information
Online technical support and
GlobalCare

1H2Hhttp://www.ge-ip.com/support

Additional information 3Hhttp://www.ge-ip.com/

Solution Provider 4Hsolutionprovider.ip@ge.com

Technical Support
If you have technical problems that cannot be resolved with the information in this guide, please
contact us by telephone or email, or on the web at 5Hwww.ge-ip.com/support

Americas
Online Technical Support 6H7Hwww.ge-ip.com/support

Phone 1-800-433-2682

International Americas Direct Dial 1-780-420-2010 (if toll free 800 option is unavailable)

Technical Support Email 8H9Hsupport.ip@ge.com

Customer Care Email 10H11Hcustomercare.ip@ge.com

Primary language of support English

Europe, the Middle East, and Africa
Online Technical Support 12H13Hwww.ge-ip.com/support

Phone +800-1-433-2682

EMEA Direct Dial +352-26-722-780 (if toll free 800 option is unavailable or if
dialing from a mobile telephone)

Technical Support Email 14H15Hsupport.emea.ip@ge.com

Customer Care Email 16H17Hcustomercare.emea.ip@ge.com

Primary languages of support English, French, German, Italian, Czech, Spanish

Asia Pacific
Online Technical Support 18H19Hwww.ge-ip.com/support

+86-400-820-8208 Phone

+86-21-3217-4826 (India, Indonesia, and Pakistan)

20H21Hsupport.cn.ip@ge.com (China)

22H23Hsupport.jp.ip@ge.com (Japan)

Technical Support Email

24H25Hsupport.in.ip@ge.com (remaining Asia customers)

26H27Hcustomercare.apo.ip@ge.com Customer Care Email

28Hcustomercare.cn.ip@ge.com (China)

v GFK-0881

Preface

The intent of this manual is to supply the user with enough information to establish the
GE Single-slot PC Interface Module (PCIM) as an entry point into the Genius I/O
System. The PCIM is designed to be integrated into a user–developed IBM PC
microprocessor–based system. It provides a low cost ‘tap’ on the Genius I/O bus,
allowing a host system to monitor and control remote I/O utilizing the extensive
diagnostics, high reliability and noise immunity of GEs Genius I/O System.

This manual is intended for design engineers and systems or applications programmers
who are already familiar with Basic or C programming in the IBM PC environment.
Readers are further assumed to be familiar with the Genius I/O System.

Content of this Manual
This manual contains 7 chapters and 1 appendix:

Chapter 1: Introduction. Chapter 1 provides a Genius I/O system overview, description
and specifications of the PCIM, and information about the PCIM software.

Chapter 2: Operation. Chapter 2 describes PCIM electrical characteristics, and explains
how the host can interact directly with a PCIM, reading status information and setting
control bits.

Chapter 3: Getting Started. Chapter 3 provides procedures for installing and
configuring a PCIM. Chapter 3 also describes an external connector that can be added to
the serial bus for interface to a Genius Hand-held Monitor.

Chapter 4: C Programming for the PCIM. Chapter 4 is a programmer’s reference for
creating a C language interface to the PCIM.

Chapter 5: BASIC Programming for the PCIM. Chapter 5 is a programmer’s reference
for creating a BASIC language interface to the PCIM.

Chapter 6: Communications. Chapter 6 describes Global Data and datagram
communications for a PCIM.

Chapter 7: Troubleshooting Chapter 7 lists basic diagnostic procedures.

Appendix A: Example Applications. Appendix A shows three programming examples
for the PCIM.

Related Publications
For more information, refer to these publications:

Genius I/O System User’s Manual (GEK–90486–1). Reference manual for system
designers, programmers, and others involved in integrating Genius I/O products in a
PLC or host computer environment. This book provides a system overview, and
describes the types of systems that can be created using Genius products. Datagrams,
Global Data, and data formats are defined.

Preface

vi Single-slot PCIM User’s Manual – January 1994 GFK-0881

Genius Discrete and Analog Blocks User’s Manual (GEK–90486–2). Reference manual
for system designers, operators, maintenance personnel, and others using Genius
discrete and analog I/O blocks. This book contains a detailed description, specifications,
installation instructions, and configuration instructions for all currently–available
discrete and analog blocks.

Series 90–70 Remote I/O Scanner User’s Manual (GFK–0579). Reference manual for the
Remote I/O Scanner, which interfaces a drop containing Series 90–70 modules to a
Genius bus. Any CPU capable of controlling the bus can be used as the host. This book
describes the Remote I/O Scanner features, configuration, and operation.

Series Six� Bus Controller User’s Manual (GFK–0171). Reference manual for the Bus
Controller, which interfaces a Genius bus to a Series Six PLC. This book describes the
installation and operation of the Bus Controller. It also contains the programming
information needed to interface Genius I/O devices to a Series Six PLC.

Series Five� Bus Controller User’s Manual (GFK–0248). Reference manual for the Bus
Controller, which interfaces a Genius bus to a Series Five PLC. This book describes the
installation and operation of the Bus Controller. It also contains the programming
information needed to interface Genius I/O devices to a Series Five PLC.

We Welcome Your Comments and Suggestions
At GE Intelligent Platforms, we strive to produce quality technical documentation. After
you have used this manual, please take a few moments to complete and return the
Reader ’s Comment Card located on the next page.

Jeanne L. Grimsby

Senior Technical Writer

Contents

viiGFK–0881 Single-Slot PCIM User’s Manual – January 1994

Chapter 1 Introduction 1-1 .

Description 1-2 .

Daughterboard 1-3 .

Motherboard 1-3 .

Faceplate 1-3 .

Genius I/O System Overview 1-4 .

Specifications 1-5 .

PCIM Software 1-6 .

Chapter 2 Operation 2-1 .

PCIM Electrical Characteristics 2-1 .

Signal Conditioning 2-1 .

PCIM Status and Control 2-2 .

Daughterboard Shared RAM 2-5 .

Chapter 3 Getting Started 3-1 .

Introduction 3-1 .

Hardware Required 3-1 .

Software Required 3-1 .

Setting the Board Address DIP Switch 3-2 .

PCIM Installation 3-2 .

Connecting the Bus 3-3 .
Removing the PCIM from the Bus 3-4 .

Installing a Hand-held Monitor Connector 3-5 .
PCIM Startup 3-7 .
Using the Configuration Software 3-8 .

Notifying the Configuration Software of DIP Switch Change 3-8

Running the Configuration Software 3-9 .

Configuration Entries 3-10 .

Configuration Example 3-13 .

Chapter 4 C Programming for the PCIM 4-1 .

Compiling your Application with Microsoft 4-1 .

Software File Linkage 4-1 .

Software Driver Function Calls 4-2 .

Using Software Driver Function Calls 4-3 .

C Software Driver Function Call Parameters 4-4 .

���
� �
���� ��� �������� �	
� ����

	��
�
���� � 	����� �	
� 	������������ ����

Contents

viiiGFK–0881 Single-Slot PCIM User’s Manual – January 1994

GetIMState – Get Configuration and Status Information 4-20
GetBusConfig – Get Serial Bus Configuration 4-22 .
GetDevConfig – Get Device Configuration 4-24 .
DisableOut – Disable/Enable Device Outputs 4-26 .
GetBusIn – Read all Input Values 4-28 .
PutBusOut – Write all Output Values 4-30 .
GetDevIn – Read Device Data Only 4-32 .
PutDevOut – Write Device Data Only 4-34 .
GetIMIn – Read Directed Input Table 4-36 .
PutIMOut – Write the Global Output Table 4-37 .
GetCir – Read Input Circuit Value 4-38 .
PutCir – Write Output Circuit Value 4-40 .
GetWord – Read Input Word Value 4-42 .
PutWord – Write Output Word Value 4-44 .
SendMsg – Send a Message 4-46 .
SendMsgReply – Send a Message Requesting a Reply 4-48
ChkMsgStat – Read Message Progress Status 4-50 .
GetMsg – Read Received Message 4-52 .
GetINTR – Read Interrupt Status Table 4-54 .
PutINTR – Write to the Interrupt Disable Table 4-56 .

Chapter 5 BASIC Programming for the PCIM 5-1 .

Basic Software Driver Installation 5-1 .
Software Driver Function Calls 5-2 .

Using Software Driver Function Calls 5-3 .

Basic Software Driver Function Call Parameters 5-4 .
Basic Data Array Structures 5-4 .

Error Status Indication 5-10 .
Access from BASIC 5-11 .
Coding Basic Function Calls 5-12 .

INITIM CALL Statement 5-13 .
CHGIMSETUP CALL Statement 5-16 .
GETIMSTATE CALL Statement 5-18 .
GETBUSCONFIG CALL Statement 5-20 .
GETDEVCONFIG CALL Statement 5-22 .
DISABLEOUT CALL Statement 5-24 .
GETBUSIN CALL Statement 5-26 .
PUTBUSOUT CALL Statement 5-28 .
GETDEVIN CALL Statement 5-30 .
PUTDEVOUT CALL Statement 5-32 .
GETIMIN CALL Statement 5-34 .
PUTIMOUT CALL Statement 5-35 .
GETCIR CALL Statement 5-36 .
PUTCIR CALL Statement 5-38 .
GETWORD CALL Statement 5-40 .
PUTWORD CALL Statement 5-42 .
SENDMSG CALL Statement 5-44 .

Contents

ixGFK–0881 Single-Slot PCIM User’s Manual – January 1994

SENDMSGREPLY CALL Statement 5-46 .
CHKMSGSTAT CALL Statement 5-48 .
GETMSG CALL Statement 5-50 .
GETINTR CALL Statement 5-52 .
PUTINTR CALL Statement 5-54 .

Chapter 6 Communications 6-1 .

Introduction 6-1 .

Global Data 6-1 .

Datagram Data 6-3 .

Chapter 7 Troubleshooting 7-1 .

Introduction 7-1 .

Replacement Module Concept 7-1 .

PCIM Troubleshooting 7-2 .

LEDS 7-2 .

Fault Isolation and Repair 7-2 .

Appendix A Example Applications G-1 .

Example Application 1 G-1 .

Example Application 2 G-5 .

Example Application 3 G-10 .

1 section level 1 1
figure bi level 1
table_big level 1

restart lowapp ARestart oddapp: ARestarts for autonumbers that do not restart in
each chapter. figure bi level 1, reset table_big level 1, reset chap_big level 1, reset1
Lowapp Alwbox restart evenap:A1app_big level 1, resetA figure_ap level 1, reset
table_ap level 1, reset figure level 1, reset table level 1, reset these restarts
oddbox reset: 1evenbox reset: 1must be in the header frame of chapter 1. a:ebx, l 1
resetA a:obx:l 1, resetA a:bigbx level 1 resetA a:ftr level 1 resetA c:ebx, l 1 reset1
c:obx:l 1, reset1 c:bigbx level 1 reset1 c:ftr level 1 reset1 Reminders for
autonumbers that need to be restarted manually (first instance will always be 4)
let_in level 1: A. B. C. letter level 1:A.B.C. num level 1: 1. 2. 3. num_in level 1: 1. 2.
3. rom_in level 1: I. II. III. roman level 1: I. II. III. steps level 1: 1. 2. 3.

1-1GFK-0881

Chapter 1 Introduction

This manual provides a description of the GE Genius I/O IBM PC Interface Module
(PCIM). It includes procedures for setup, programming, operation, and
troubleshooting in conjunction with the ��
�
� ��� �����	.

This manual also describes the PCIM Software Library, software which is supplied with
the PCIM. The Software Library provides a high level interface between applications
software you develop and the PCIM. The PCIM Software Library consists of easy to use
macro–oriented function calls you code appropriately in your C language or Basic
language applications routines.

 Suitable Computers

The PCIM has been tested successfully in many types of IBM PC XT and AT-type
computers. It is fully compatible with the ISA backplane, and provides host system
address decoding over the full PC, XT or AT memory maps.

However, it has not been possible to test the PCIM with all computers that may be
available. Therefore, proper operation of the PCIM in every type of host computer
cannot be assured.

 Using Other Interface Software
A number of companies have developed software for the PCIM, to be used in place
of the PCIM Software Library.

If you are using such software, and have questions or are experiencing problems,
please contact the software company. GE cannot provide customer support for
other companies’ PCIM software products.

1

1-2 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

Description

The Single-Slot PC Interface Module (PCIM) is an entry point into the Genius I/O
System for the IBM PC/AT/XT� family. The PCIM is an “AT” style board, designed to be
integrated into a user–developed microprocessor system. It is fully compatible with all
Genius protocols, mechanical, electrical levels, and communications timing.

daughterboard A daughterboard B motherboard

46350

Bus Connector
for Daughter-
board A

Bus Connector
for Daughter-
board B

The PCIM is available with either one or two daughterboard(s). Each PCIM
daughterboard provides a low cost ‘tap’ on a Genius I/O bus, allowing a host system to
control remote I/O utilizing the extensive diagnostics, high reliability and noise
immunity of the Genius I/O System. Each daughterboard is independently configurable
using the configuration software supplied with the PCIM.

Board-edge connectors are used to connect the PCIM to the Genius bus. If the PCIM has
two daughterboards, they can be connected to the same bus or to independent busses.

LEDs for Daughterboard A

Bus Connector for
Daughterboard A

LEDs for Daughterboard B

Bus Connector for
Daughterboard B

shown 50% actual size

46351

Daughterboard OK

Communications OK

1

1-3GFK-0881 Chapter 1 Introduction

Daughterboard

A PCIM daughterboard is a general purpose I/O Controller for the Genius I/O System. It
provides a convenient method to control devices on the Genius serial bus. The PCIM
daughterboard performs the housekeeping tasks of initialization and fault management
for up to 30 bus devices, keeps up–to–date images of the I/O controlled by each device
(whether the device is a Genius I/O Block or other bus device), and can communicate
with other Controllers on the Genius bus by passing background messages not
associated with I/O commands or Global Data. The interface to this RAM is optimized
for the IBM personal computer bus.

Motherboard

The PCIM motherboard provides a convenient way to interface an Open Architecture
daughterboard like the PCIM daughterboard to an IBM compatible Host system. All the
signals necessary to communicate to a daughterboard are buffered through the
motherboard to the Host bus. In addition to the normal interface lines, the motherboard
provides the following daughterboard control and monitoring functions:

� A standard ‘unit load’ to the IBM bus.

� Works in ISA–compatible backplanes.

� Low supply voltage detection.

� Power up RESET signal sequencing.

� Host system address decoding over the full PC, XT or AT memory maps.

� A built–in watchdog timer that can monitor system operation and shut down the
daughterboard if the Host system faults, preventing any conflicts on the Genius bus.
Note that this timer is not used with the Software Library.

Faceplate

For each daughterboard, two LEDs (Board OK
and Communications OK are provided in the
PCIM faceplate. For each daughterboard, the
LEDs are as shown below:

Openings in the faceplate accommodate the
serial bus connectors for the PCIM
daughterboard(s).

1

1-4 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

Genius I/O System Overview

The Genius I/O is a system of inherently distributed inputs and outputs, which consists
of:

� ������ ��
 ������ AC, DC, Isolated, Analog, and others (mounted at the point of
control),

� A ��� ���������� (which serves as the interface between the Genius I/O system and
a programmable controller),

�����

� A ���	 for interface with IBM PC ATs, XTs, or CIMSTAR I,

� A �
�� ���� 	������ (the portable diagnostic and configuration tool used for
addressing, trouble–shooting, monitoring, scaling and configuring the I/O Blocks),

� And the ������ ����
� ���, which provides communications between the Bus
Controller, Hand Held Monitor, and up to 30 I/O Blocks over a single shielded
twisted wire pair.

Normally, Genius I/O will be controlled by a PLC in machine control and fast closed loop
control applications. There are various applications, however, where systems based on
Genius I/O blocks will be utilized with IBM PC products.

Genius I/O Blocks provide superior, built–in ��
�������� which detect open circuits,
short circuits, overloads, and a variety of other malfunctions which are beyond the
power of conventional PLCs to detect.

A simplified diagram of a typical Genius I/O System is shown below.

Host

Host

Communications Bus (up to 32 devices)

Hand-held
Monitor

46201

PCIM

1

1-5GFK-0881 Chapter 1 Introduction

Specifications

Catalog Numbers

Single-channel PCIM IC660ELB921

Dual-channel PCIM IC660ELB922

MicroGENI daughterboard IC660ELB912

LEDs (2 for each daughterboard) ���� �	� ��

 �	 ��������������� �	�

Electrical

Power Requirements 5 volts DC +/– 10%, 400 ma (maximum)

Bus Loading 1 LS TTL load per input line

Bus Drive Capability 10 LS TTL loads per output line

Mechanical

PCIM board type Single-slot “AT” style board

Hand-held Monitor connection External connector with HHM and bus terminals

Serial bus connection Board-edge terminals or external connector. Board-edge
terminals accept two AWG #20 (avg .55mm2 cross sec-
tion) wires or three AWG #22 (avg .36mm2 cross section)
wires .

Host backplane interface fully ISA compatible

Memory Requirements

Motherboard 4 bytes

Each daughterboard 16K bytes

Environmental Requirements – Operating

Temperature 0 to 60 degrees C (ambient temperature at board)

Humidity 5% to 95% non–condensing

Altitude 10,000 feet

Vibration 0.2 inch displacement 5 to 10 Hz
1 G 10 to 200 Hz

Shock 5 G, 10 ms duration per MIL–STD 810C, method 516.2

Environmental Requirements – Non–operating

Temperature –40 to 125 degrees C (ambient temperature at board)

Humidity 5% to 95% non–condensing

Altitude 40,000 feet

Vibration 0.2 inch displacement 5 to 10 Hz
1 G 10 to 200 Hz

Shock 5 G, 10 ms duration per MIL–STD 810C,
method 516.2
5 G, 10 ms duration per MIL–STD 810C,
method 516.2

1

1-6 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

PCIM Software

The PCIM is supplied with two types of software:

� Configuration software

� Interface software: the PCIM Software Library

PCIM Configuration Software
The configuration software is used to set up the characteristics of one or more PCIMs
that will be installed in the computer.

Setup parameters include the base addresses used by the Single-Slot PCIM and its
daughterboard(s), baud rate, serial bus address, outputs enable, and Watchdog Timer
enable. Configuration data is stored in EPROM memory on the PCIM, and is retained if
power is removed.

The configuration software can be run from diskette or the configuration files can be
copied to a hard disk.

PCIM Software Library
The PCIM Software Library provides a high level interface between applications
software you develop and the PCIM; and through the PCIM, devices on the Genius
serial bus. The PCIM Software Library is accessed through a set of subroutine calls.

The PCIM Software Library is provided in versions compatible with C language and
Basic language, specified as a set of function calls in order to allow a consistent interface
with both languages. Library software is delivered in the form of object code in a single
.exe (.COM) file. This user’s guide covers both C language and Basic language
applications.

The PCIM Software Library is supplied in a version compatible the MSDOS operating
system, as follows:

C/MSDOS

BASIC/MSDOS

2 section level 1 1
figure bi level 1
table_big level 1

2-1GFK-0881

Chapter 2 Operation

PCIM Electrical Characteristics

Power Supply Requirements
The PCIM requires a 5 volt DC source for logic power. Supply voltage should not vary
more than 10% above or below nominal (below 4.5 V DC or above 5.5 V DC), or the
PCIM will not function correctly. The PCIM with one daughterboard (single-channel
PCIM) typically draws 1.0 Amps. The PCIM with two daughterboards (dual-channel
PCIM) typically draws 1.5 Amps.

Bus Loads/Drive Capability
All input lines to the PCIM present no more than one standard LSTTL load to the host
interface connector.

All output lines from the PCIM are capable of driving 10 standard LSTTL loads. These
lines, with the exception of the /INT and /PCIM OK lines, are tri–state outputs. The
/INT line is an open–collector output that can be wired–ORed to a single interrupt
input. The /PCIM OK and /COMM OK lines are low–true open collector type outputs
with built–in current limiting to 10 ma suitable for driving LEDs directly.

All input signals to the PCIM from the Host system look like one LSTTL load to the host
system. These signals are TTL compatible and switch at TTL levels.

Control output signals to the host are open–collector LSTTL drivers with 10K resistive
pull–ups, capable of sinking 4 mA while maintaining an output voltage of 0.4V or lower.

The data transceiver is a tri–state LSTTL device capable of sourcing or sinking 12 mA
with VOL = 0.4V and VOH = 2.0V.

The PCIM is fully compatible with ISA backplanes.

Signal Conditioning
The PCIM has two connectors that you can access when the PCIM is installed in a PC
type rack. Both connectors are for the standard twisted pair connection to a serial bus.

The Hand-held Monitor can be connected through an interface cable to the separate
Genius connectors.

All of the lines in from both connectors are either isolated or impedance limited to
protect the PCIM from voltage spikes or the misapplication of high voltages on the serial
bus connections.

2

2-2 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

PCIM Status and Control

The PCIM motherboard uses four bytes of mapped I/O memory space. These four bytes
start at the I/O base address and are configured by the software utility, and have the
functions shown below. Only the first two bytes are used.

 Byte # A7 – A0 Description

0 XXXXXXX00 PCIM Status byte
1 XXXXXXX01 PCIM Control byte

For example, if the the address selected is 3E0 (hex), you can perform operations on
these addresses:

 (3E0 + 0) = 3E0 PCIM Status Byte

 (3E0 + 1) = 3E1 PCIM Control Byte

Bit definitions for the Status Byte and Control Byte are given on the following pages.

2

2-3GFK-0881 Chapter 2 Operation

PCIM Status Byte: Bit Definitions

The individual bits in the PCIM Status byte have the following functions:

7 6 5 4 3 2 1 0

Low voltage/host Reset detect

Watchdog Timer status

Interrupt request

PCIM OK

Communications OK

unlabelled bits not used 46352

0 – Low Voltage/Host RESET Detect

This input goes to 0 and stays 0 (until reset) whenever the voltage on the
motherboard drops below 3.12 volts or the Host system has gone into RESET. This
bit is reset by the ‘1’ bit of the PCIM Output byte (see next page). During normal
operation this bit should be 1.

Note

Do not enable interrupts, or read/write to the PCIM for 2 seconds (the period of
time required for hardware/software initialization) after reset. One false interrupt
occurs within this time period. Reading or writing to the PCIM during this time may
cause the watchdog timer to time out. The PCIM OK flag will be invalid during this
period of time.

1 – Watchdog Timer Status

(Not used with the software library). This bit is 1 if the watchdog timer as been
enabled by the configuration software and is being pulsed every 727mS by PCIM
Control bit 0 (see next page). If the timer expires, this bit goes to 0. It will also go to 0
if the voltage detector detects low voltage. If not enabled by configuration, the timer
does not need to be pulsed.

2 – Interrupt Request

When the daughterboard generates an interrupt to the motherboard, this goes to 1
and stays 1 until reset by Control bit 2 (see next page).

3 – PCIM OK

The state of this bit follows the condition of the PCIM OK LED on the
daughterboard. If the LED is lit, the PCIM OK bit is 0.

4 – COMM (Communications) OK

Like the BOARD OK bit, this bit follows the output of one of the LEDs on the
daughterboard. This bit is 0 if the COMM OK LED on the daughterboard is lit.

2

2-4 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

PCIM Control Byte: Bit Definitions

The individual bits in the PCIM Control byte are used for the following functions:

7 6 5 4 3 2 1 0

Watchdog Timer Pulse

Clear Reset

Clear Interrupt Request

HHM present test

Reset the PCIM

unlabelled bits not used 46353

0 – Watchdog Timer Pulse

The watchdog timer is a hardware timer that can be enabled by the configuration
software. If the watchdog timer is enabled, it must be reset periodically or it will put
the PCIM into RESET. You can toggle the watchdog timer and use it as a failsafe
timer to ensure that if the Host system ‘hangs up’, the PCIM will not send any
erroneous messages to the serial bus. If the watchdog timer is disabled by by the
configuration software, you do not have to toggle it; it will stay turned off and will
not put the PCIM into RESET.

If the watchdog timer is enabled by the configuration software, this bit must be
pulsed at least every 727mS to keep the watchdog timer from expiring. This bit must
be pulsed at least once to allow the daughterboard to come out of RESET.

1 – Clear RESET Request

When the system is Reset, or when the voltage detector on the motherboard detects
a low voltage condition, status bit 0 (see previous page) goes to 0. Command bit 1
(Clear Reset) clears the reset request when set to 0. To prepare for the next detection
of RESET or low voltage condition, it must be reset to 1.

2 – Clear Interrupt Request

This bit is used to clear an interrupt to the motherboard from a daughterboard.
Setting the bit to 0 clears the interrupt. It must then be set back to 1 to prepare it for
the next interrupt.

3 – HHM Test

An HHM present can be indicated even when one is not plugged in by raising this
bit to 1. After power up and under normal conditions, this bit should be 0.

6 – PCIM RESET

When this bit is 0 it resets the PCIM. Under normal conditions, it should be left high.

2

2-5GFK-0881 Chapter 2 Operation

Daughterboard Shared RAM

Each PCIM daughterboard uses 16K bytes of host memory. For information purposes
only, the structure of this area is illustrated below.

You do not need to understand how this Shared RAM memory works if your application
program will use the PCIM Software Driver functions (described in chapters 4 and 5) to
interact with this memory area.

Relative
Location

Content Size
in Bytes

dec. hex.
in Bytes

0000 0000 Request Queue (2176) Request Queue: Queue for incoming Read Device, Write Device,
and Write Point datagrams to the host.

2176 0880 Request Queue Head
Pointer*

(1) Request Queue Head Pointer: Number of the Request Queue
buffer currently being read.

2177 0881 Request Queue Tail Pointer (1) Request Queue Tail Pointer: Indicates the most recent entry in the
Request Queue.

2178 0882 µGENI Setup Table (16) µGENI Setup Table: Characteristics of µGENI and the bus.
2194 0892 µGENI Status Table (16) µGENI Status Table: Diagnostics for µGENI and the bus.
2210 08A2 Interrupt Status Table (16) Interrupt Status Table: Current status of interrupts to host.
2226 08B2 Interrupt Disable Table (16) Interrupt Disable Table: Used to enable/disable host interrupts.
2242 08C2 Command Block* (16) Command Block: Used by host to send Read Datagram, Transmit

Datagram, Transmit Datagram with Reply, and Configuration
Change commands to µGENI.

2258 08D2 Transmit Datagram Buffer (240) Transmit Datagram Buffer: Temporary location for sending data-
grams.

2498 09C2 Read Datagram Buffer (134) Read Datagram Buffer: Location where host may read incoming
datagrams.

2632 0A48 I/O Table Lockout Request * (1) I/O Table Lockout Request/Relinquish: Used to set or release µGE-
NI lockout of I/O Tables.

2633 0A49 I/O Table Lockout State (1) I/O Table Lockout State: Actual lockout state.
2634 0A4A Host Clear (1) Host Clear: Used by mGENI to clear Interrupts from the host.
2635 0A4B Reserved (64) Reserved Area: The host should NOT read or write here.
2699 0A8B Auxiliary Request Queue (48) Auxiliary Request Queue: Used in conjunction with Request

Queue.
2747 0ABB Heartbeat Enable (2) Heartbeat Enable: Used to enable host to mGENI heartbeat moni-

toring.
2749 0ABD Heartbeat Timeout Multiplier (1) Heartbeat Timeout Multiplier: Sets the heartbeat interval.
2751 0ABF Reserved (4930) Reserved Area: The host should NOT read or write here.
7680 1E00 Device Configuration Table (256) Device Configuration Table: Location of device ID, status, and

setup information.
7936 1F00 Directed Control Input Table (128) Directed Control Input Table: Location for receiving Directed

Control Data.
8064 1F80 Broadcast Control Output

Table
(128) Broadcast Control Output Table: Buffer for sending Global Data.

8192

16383

2000

3FFF

Device I/O Table (8192) Device I/O Table: Contains all device inputs and outputs, and
incoming Global Data.

* Host write causes interrupt to µGENI daughterbaord

3 section level 1 1
figure bi level 1
table_big level 1

3-1GFK-0881

Chapter 3 Getting Started

Introduction

In order for you to interface the PCIM with the Genius serial bus, you must first perform
the following steps:

� Set the configuration I/O address on the DIP switches.

� Install the PCIM in the host.

� Connect the PCIM to the serial bus.

� Run the configuration software.

Hardware Required

In addition to the devices normally considered part of the Genius I/O system, the
following hardware is required to effect a Genius I/O – PCIM – Host communications
interface:

� An IBM PC/AT, IBM PC/XT, or compatible computer

� A PCIM

Software Required

The following software is required to effect Genius I/O – PCIM – Host
communications:

� MS DOS� version 3.0 or higher

and
� dpcimcfg.exe (configuration software)
� pcim.lib (C Software Driver – small memory model)

� lpcim.lib (C Software Driver – large memory model)
� pcim.h (C Software Driver – include file)

or

� pcimx.exe (BASIC Software Driver)
� pcim.bas (BASIC startup sequence)

3

3-2 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

Setting the Board Address DIP Switch

Before installing the PCIM in the computer, it may be necessary to set its
address-selection DIP switches. The default setting is 222hex. The board address must be
unique for each module; if there are multiple PCIMs or if the address conflicts with
addresses used by other modules in the system, you must change it to an address in the
range 102hex to 3FE hex.

Switch positions are numbered 1 through 8. Use switches 1 and 2 to set the high hex
digit, switches 3, 4, 5, and 6 to set the middle hex digit, and switches 7 and 8 to set the
low hex digit.

3

#
#
#
#
#
#
#
#
"
"
"
"
"
"
"
"

4

#
#
#
#
"
"
"
"
#
#
#
#
"
"
"
"

5

#
#
"
"
#
#
"
"
#
#
"
"
#
#
"
"

6

#
"
#
"
#
"
#
"
#
"
#
"
#
"
#
"

1

#
#
"
"

2

#
"
#
"

7

#
#
"
"

8

#
"
#
"

0
1
2
3

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

2
6
A
E

high
digit

middle
digit

low
digit

switches switches switches

" means down toward board
means up away from board

8 1 46354

PCIM Installation
1. Power OFF the Host computer and unplug from power source.

2. Install the PCIM according to the computer manufacturer’s instructions for option cards.

3. Connect the bus (see next page) to the PCIM.

4. DO NOT

� Mount the PCIM where air flow across it is obstructed

� Mount the PCIM nearer than 1/8�(.318cm) to any other boards or rack components

� Use adhesives or conformal coatings on any part of the PCIM

3

3-3GFK-0881 Chapter 3 Getting Started

Connecting the Bus

Devices can be placed in any physical sequence on the bus. Each connector on the PCIM
has four terminals for the bus cable (Serial 1, Serial 2, Shield In, and Shield Out). Note
that the sequence of these terminals on a PCIM connector is not the same as on other
bus devices (for example, I/O blocks).

Bus Connector for
Daughterboard A

Bus Connector for
Daughterboard B

Shield Out

Shield In

Serial 2

Serial 1

46355

These terminals accept two AWG #20 wires (each avg .54mm2 cross-section) plus one
lead of a quarter-Watt resistor (optional: used for bus termination). The minimum
recommended wire size is AWG #22 (avg .36mm2 cross-section).

Connect the Serial 1 terminal of each connector to the Serial 1 terminals of the previous
device and the next device. Connect the Serial 2 terminal of each connector to the Serial
2 terminals of the previous device and the next device. If the PCIM has two
daughterboards, they may be connected to different busses or to the same bus.

Shield In of each connector must be connected to Shield Out of the preceding device. For
the first device on the bus, Shield In can be left unconnected. For the last device on the
bus, Shield Out can be left unconnected.

Serial 1
Serial 2
Shield In
Shield Out

Start
of Bus

End
of BusTerminating

Resistor

Serial 1
Serial 2
Shield In
Shield Out

Terminating
Resistor

46356

When making bus connections, the maximum exposed length of bare wires should be
two inches. For added protection, each shield drain wire should be insulated with
spaghetti tubing to prevent the Shield In and Shield Out wires from touching each other.

3

3-4 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

Bus Termination

A bus must be terminated at each end by impedance that is correct for that cable type.
Impedance will be 75, 100, 120, or 150 ohms. If a PCIM connector is at either end of its
bus, install the appropriate terminating resistor across the Serial 1 and Serial 2 terminals.
The Genius I/O System and Communications User’s Manual lists appropriate terminating
resistors for each recommended bus cable type.

Removing the PCIM from the Bus

The PCIM’s bus connectors are removable; they can be removed while the system is
operating without compromising data integrity on the bus. To remove a bus connector,
hold it carefully by its top and bottom sides and pull it away from the PCIM. If an
operating cable is presently attached to the bus, be very careful not to touch the bus
wires to each other or to anything else. Do not put the connector down on a conductuve
surface.

Individual bus wires should never be removed from the connector terminals while the bus
is in operation; the resulting unreliable data on the bus could cause hazardous control
conditions.

3

3-5GFK-0881 Chapter 3 Getting Started

Installing a Hand-held Monitor Connector

The PCIM does not have a built-in connector for a Genius Hand-held Monitor. However,
a Hand-held Monitor connector can be added directly to the serial bus at any location.

The unit shown below (catalog number 44A736310–001–R001) is provided with the
PCIM. It provides a Hand-held Monitor connector and serial bus terminals.

Hand-held Monitor
Connector

Serial Bus Terminals

Panel Mounting Ear
2.834 in
7.198 cm

1.673 in
4.249cm

.5 in
1.27 cm

shown at 100% of actual size

X1

X1 X2

X2 SA SB

SA SB
X1 Serial 1
X2 Serial 2
SA Shield In
SB Shield Out

46357

Mounting the HHM Connector
This unit can be easily mounted on a rail such as a standard 35mm (shown below) or
15mm DIN rail. The panel-mounting ears are not used if the unit is installed on a DIN
rail.

35mm DIN rail

(Removable) DIN rail
Mounting Feet

side view: shown at 50% of actual size

46358

Alternatively, it can be installed directly on a panel using screws through its mounting
ears. The DIN rail feet on the back of the unit are removed when the unit is
panel-mounted.

3

3-6 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

Making the Bus Connections
The HHM connector has two sets of terminals; one for incoming cable and the other for
outgoing cable.

Connect the Serial 1, Serial 2, and Shield In terminal of either connector to the previous
device. Connect the Serial 1, Serial 2, and Shield Out terminal of the other connector to
the next device. (For the first device on the bus, Shield In can be left unconnected. For
the last device on the bus, Shield Out can be left unconnected.)

X1

X1 X2

X2 SA SB

SA SB

X1 Serial 1
X2 Serial 2
SA Shield In
SB Shield Out

Bus In

Bus Out

46366

When making bus connections, the maximum exposed length of bare wires should be
two inches. For added protection, each shield drain wire should be insulated with
spaghetti tubing to prevent the Shield In and Shield Out wires from touching each other.

As with other devices, if the HHM Connector is at either end of its bus, install an
appropriate terminating resistor across the Serial 1 and Serial 2 terminals. The Genius I/O
System and Communications User’s Manual lists appropriate terminating resistors for each
recommended bus cable type.

3

3-7GFK-0881 Chapter 3 Getting Started

PCIM Startup

You may now activate the PCIM as follows:

1. Plug in and power ON the Host computer.

2. If the PCIM has not been configured, insert the diskette containing the Software
Driver and associated files into Drive B.

3. Set the disk drive to B.

4. Run the Configuration Software, as described on the next page.

Beyond the self tests, the PCIM will do nothing until it is explicitly taken out of
RESET. This is accomplished via the application program code you write –
specifically, through the INITIM Software Driver function call.

3

3-8 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

Using the Configuration Software

The configuration software is used to set up the characteristics of one or more PCIMs.
The PCIM(s) must be present in the same computer to complete the configuration.

Setup parameters include the base addresses used by the PCIM and its
daughterboard(s), baud rate, serial bus address, outputs enable, and Watchdog Timer
enable. Configuration data is stored in EPROM memory on the PCIM, and is retained if
power is removed.

The configuration software can be run from diskette or the configuration files can be
copied to a hard disk.

It has a tutorial mode that can be used to practice entering data without actually
changing the parameters of any installed PCIM.

The software configures one PCIM at a time. Follow the instructions to configure the
first PCIM. Write the configuration to the first PCIM then exit the configuration software.
Configurate the next PCIM by restarting the configuration software, specifying the
second PCIM’s DIP switch address in the command, as described below.

Notifying the Configuration Software of DIP Switch Change

The configuration software for the PCIM expects the default DIP Switch setting of
222hex. If you change the DIP switch setting (for example, when using multiple PCIMs),
you must also inform the configuration software in either of the following ways:

D. For one or more PCIMs, you can set an address flag when entering the command to
execute the configuration software, as described on the next page.

E. For just one PCIM, you can set a variable in the DOS startup file, AUTOEXEC.BAT.
The format of the command is:

SET DPCIMCFG=xxx

where xxx is the new address.

3

3-9GFK-0881 Chapter 3 Getting Started

Running the Configuration Software

With the configuration software diskette installed, or with the software files copied to
your hard disk, type the following command at the DOS prompt:

(drive)>DPCIMCFG[=Pxxx][=T]

(optional) tutorial mode

(optional) changed I/O Address

(optional) drive where software
is located (if different from
present drive)

46359

The I/O Address, if entered, must match the DIP Switch setting on the PCIM board. If
this flag is not used, or if the value entered is not in the range 100 hex to 3FF hex, the
configuration software will use the default setting of 222hex.

Running the Program Normally
In normal mode, the software establishes communications with the PCIM. Therefore,
the PCIM must already have its I/O Address assigned using the DIP switches. The
software will look for it at its assigned address.

To run the configuration software in normal (not tutorial) mode, type:

DPCIMCFG to run the software without specifying a new address
 or DPCIMCFG=Pxxx to run the software with a new PCIM address

The software establishes communications with the PCIM at the specified address.
Complete the configuration entries as explained on the following pages.

Lack of Communications

If communications cannot be established, check the DIP switch settings. The DIP Switch
address should match the address shown on the screen. For the default setting 222 hex,
the correct DIP Switch settings are:

 " # # # " # # #

If communications are disrupted, press any key to continue.

If you then want to exit the configuration software, press the ESC key.

If you want to reset the PCIM, press F10. Communications should be re-established.

3

3-10 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

Writing the Configuration Data to the PCIM

After you finish making the configuration entries for a PCIM, if you want to write them
to the PCIM, press the F5 key. The configuration software then reads the new
configuration data back from the PCIM and displays it. The “Last Update” field displays
the time the configuration was updated.

If the two daughterboards have the same enabled memory or I/O Base Address, the
update will NOT be performed.

If you want to read a configuration previously stored to the PCIM, press F3. If you want
to reset the PCIM, press F10.

Use the ESC key when you are ready to exit the configuration utility.

Running the Program in Tutorial Mode
If you want to run the configuration software in tutorial mode but you do not want to
change the I/O Address, type:

DPCIMCFG=T

In tutorial mode, the software supplies default values for the entries, and does not send
entries you make to the PCIM.

Configuration Entries

The software displays the configuration for the specified PCIM’s two daughterboards.

Use the Up Arrow and Down Arrow keys to move between configuration fields and
between daughterboards.

Type in entries where required (see the following table), or use the Right Arrow and
Left Arrow keys to display the available choices for each field. A configuration example
follows the table.

3

3-11GFK-0881 Chapter 3 Getting Started

Definitions of Configuration Entries

Option Entries / Choices Comment

Memory base:

Address

Enabled/Disabled

If the daughterboard will
be used, enter a hexadeci-
mal address. The next field
should be set to “Enabled”.

If the daughterboard will
not be used, it is not neces-
sary to enter an address.
Select “Disabled”.

Each daughterboard on a PCIM requires 16K of
system memory. This memory is used to store I/O
data, buffers for communications data, and a
variety of other information. You can locate this
memory anywhere space is available.

The memory base address is truncated down to
the nearest 16K boundary. That is, the fourth, fifth,
and sixth digits of the hexadecimal address for the
start of the memory space must be 0. The third
digit must always be 0, 4, 8, or C. So valid memory
addresses for the start of the block could be
F4C000, 288000, 0E0000, etc...

I/O base:

Address

Enabled/Disabled

If the daughterboard will
be used, enter a hexadeci-
mal address. The next field
should be set to “Enabled”.

If the daughterboard will
not be used, it is not neces-
sary to enter an address.
Select “Disabled”.

The I/O Base Address is a hexadecimal address
used for PCIM command and status data
(described in chapter 2). The address is truncated
down to the nearest 4 byte boundary. That is, the
third digit of the address must be a 0, 4, 8 or C.

Interrupt Not used with the Soft-
ware Library; select “Dis-
able” when using the li-
brary routines.

If not using the Software
Library, select “Enabled”
and enter the Interrupt:
IRQ2
IRQ3
IRQ4
IRQ5
IRQ6
IRQ9
IRQ10
IRQ11

NMI (non-maskable
interrupt)

IRQ2 and IRQ9 are the same pin on the
motherboard connector. IRQ is used by PC/XTs.
IRQ9 is used by PC.ATs and all new PCs. Either
may be selected for configuration.

Do not select IRQ3 if serial port 2 is installed.

Do not select IRQ4 if serial port 1 is installed.

Do not select IRQ5 if parallel port 2 is installed.

Do not select IRQ6 if a diskette controller is
present.

IRQ9, 10, and 11 are only present on 286, 386, and
486 PCs.

NMI is normally not selected.

The two daughterboards on the PCIM may have
different interrupt levels. They may also have the
same interrupt level, if you plan to poll both
boards with the same interrupt service routine.

Device This is the Serial Bus Ad-
dress. Enter a (decimal)
number from 0 to 31.

Each device on a Genius bus must have a unique
serial bus address. If two daughterboards on the
same PCIM will be connected to the same bus,
they are considered independent devices, and
each must have a unique bus address.

3

3-12 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

Option CommentEntries / Choices

Baud Specify the baud rate of
the serial bus: 38.4K,
76.8K, 153.6K standard, or
153.6K extended.

All devices on the same bus must be set to use the
same baud rate.
If two daughterboards on the same PCIM are con-
nected to separate busses that operate at different
baud rates, their configuration should match the
baud rates of the busses to which they are at-
tached.

Outputs Enabled or Disabled This entry selects whether outputs from a PCIM
daughterboard to other devices on the bus will be
enabled at startup.

Watchdog Timer Enabled or Disabled This timer is not used with the Software Library,
and should be disabled for Software Library
applications.

For other applications, it can be used to monitor
the Host system and shut off the PCIM when the
Host malfunctions. When the timer is enabled,
you must pulse the timer input every 727 ms or
the motherboard will reset the daughterboard.
Chapter 2 explains how this is done.

With the watchdog timer disabled no input from
the Host system is needed. The other portions of
the RESET circuit, the voltage detection and Host
RESERDRV monitor, still provide RESET
capability, even with the watchdog timer
disabled.

3

3-13GFK-0881 Chapter 3 Getting Started

Configuration Example

PCIM 2 Configuration

Daughterboard A
Memory Base Address 0E8000

I/O Base Address 3E8

 Enabled

Interrupt Disabled

Enabled

Device 28

Baud 76.8K

Outputs Enabled

Watchdog Disabled

Daughterboard B
Memory Base Address 0EC000

Enabled

I/O Base Address 3EC

Enabled

Interrupt Disabled

Device 28

Baud 153.6K std

Outputs Enabled

Watchdog Disabled

Serial port 2 is installed.
Serial port 1 is installed.
Parallel port 2 is installed.
Diskette controller is present.

(These devices generate host
interrupts, so their interrupt lines
cannot be assigned to a PCIM.)

PCIM 1 Configuration

Daughterboard A
Memory Base Address 0E0000

Enabled

I/O Base Address 3E0

Enabled

Interrupt Disabled

Device 31

Baud 153.6K ext

Outputs Enabled

Watchdog Disabled

Daughterboard B
Memory Base Address 0E4000

Enabled

I/O Base Address 3E4

Enabled

Interrupt Disabled

Device 30

Baud 153.6K ext

Outputs Enabled

Watchdog Disabled

A B

�

�

Both daughterboards
connected to the
same bus

A B

�
Connected to
two busses

46360

4 section level 1 1
figure bi level 1
table_big level 1

4-1GFK-0881

Chapter 4 C Programming for the PCIM

This chapter explains programming for a PCIM in C. Programming requires: C/MSDOS

Compiling your Application with Microsoft
In order to make your C application compatible with the PCIM library, you must first
invoke the Microsoft compiler with the following switch (option):

 /Zp

This option permits user–packed data structures and is required for the GetIMState,
GetBusConfig, and GetDevConfig calls. For example:

 C> msc application /Zp; (small model)

OR
 C> msc application /Zp/AL; (large model)

Software File Linkage
It is necessary to link and load the file named “SPCIM.LIB” (small model) or
“LPCIM.LIB” (large model) to use the C Software Drivers in your programs. There are
several ways to link the PCIM.LIB using the Microsoft Linker.

1. The simplest way is to type all of the necessary module information on the
command line:

 ’LINK PROGRAM+MODULE,,,\SEARCH\PATH\SPCIM.LIB;’ (small model)

OR

 ’LINK PROGRAM+MODULE,,,\SEARCH\PATH\LPCIM.LIB;’ (large model)

2. However, if the program is divided up into several modules too numerous to fit on
the command line, you can set up a response file to link all of the associated object
files. The contents of a response file might look like:

 program+module1+module2+module3+
 module4+....+moduleN,
 program.exe,
 program.map,
 \search\path\pcim.lib

The command to link the response file is:

 LINK @RESPONSE.FIL

4

4-2 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

Software Driver Function Calls

The PCIM Software Driver consists of easy to use macro–oriented function calls you
code appropriately in your C language or Basic language applications routines. Function
calls are summarized below.

Functions that deal with PCIM configuration:
������ – assigns PCIM numbers and Global data parameters to all PCIMs. Performs
any required hardware activation and initialization of the PCIMs (such as Reset).

�����	���� – writes to the Setup Table of the selected PCIM from the Host
memory to change PCIM parameters.

�����	���� – reads PCIM configuration and status from the selected PCIM Status
Table and Setup Table into Host memory.

Functions that deal with bus configuration:
������������ – reads all Device Configuration Tables from the selected PCIM into
Host memory.

������������ – reads one device’s configuration from the selected PCIM into Host
memory.

���������� – writes to the Device Configuration Table of the selected PCIM to
enable/disable outputs to selected devices or to all devices.

Functions that deal with control data movement:
�������� – reads the entire Input Table (control data inputs) from a selected PCIM
into Host memory.

��������� – writes the entire Output Table (control data outputs) to a selected
PCIM from Host memory.

�������� – read control data inputs from a selected bus device into Host memory.

��������� – write control data outputs to a selected bus device from Host memory.

������� – reads all PCIM control data from Directed Control Input Table of selected
PCIM into Host memory.

�������� – writes all PCIM control data to Global Data Table of selected PCIM
from Host memory.

������ – reads an input circuit value (variable) into the Host memory from the
Input Table of a selected PCIM.

���
��
 – reads an input word value (variable) into the Host memory from the
Input Table of a selected PCIM.

������ – writes an output circuit value (variable) from the Host memory to the
Output Table of a selected PCIM.

���
��
 – writes an output word value (variable) from the Host memory to the
Output Table of a selected PCIM.

4

4-3GFK-0881 Chapter 4 C Programming for the PCIM

Functions that deal with communications:
�����
 – reads a received message from a selected PCIM into Host memory.

������
 – writes a message from Host memory to the PCIM for transmission onto
the bus.

������
����� – writes a message from Host memory to the PCIM for transmission
onto the bus and expects a specified reply message from the destination.

�����
��
� – allows the Host to detect when a transmitted message has actually
been completed, or if transmission is incomplete or has failed.

Functions that deal with interrupt processing:
�����	� – reads the entire Interrupt Status Table from a selected bus device into
Host memory.

�����	� – writes the entire Interrupt Status Table to a selected PCIM from Host
memory.

Using Software Driver Function Calls

When coding the PCIM Software Drivers in your application programs, you should have
at hand the following:

� Starting Address (Segment Address) of the Shared RAM Interface (or address of
daughterboard).

� I/O Port Base Address.

� Status Table Address (PCIMs) or Reference Address (Series Six or Series Five PLC).

� Serial Bus Address of each bus device.

� Global, Input, Output Data lengths.

It is also helpful to have the Genius I/O System and Communications User’s Manual
(GEK–90486–1) handy for reference.

4

4-4 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

C Software Driver Function Call Parameters

C Software Driver function calls require that you specify a number of parameters for
each call. The data structures for each parameter, which are linked and loaded from
your “pcim.h” file. Parameters are summarized on the pages following the pcim.h file.

PCIM.H File
The pcim.h file defines the data structures and macros used with the PCIM Software
Library. The pcim.h file is listed below.

typedef
struct
{

unsigned int Segment; /* Starting address of SRI */
unsigned int IOPort; /* I/O Port Base Address */

} IMBOARD;

/* The following template is to be used with
the functions InitIM and the ChgIMSetup.

*/

typedef
struct
{

IMBOARD im; /* Board values for PCIM */
unsigned int IMRef; /* Status Table or

 Reference Address */
unsigned char OutputLength; /* Broadcast I/O Data Length */
unsigned char InputLength; /* Directed I/O Data Length */
unsigned char Active; /* Turn ON or OFF PCIM. */

} IMPARMS;

/* The following Macros are to be used with
 the functions InitIM and the ChgIMSetup.
*/
 #define ON 1 /* Active set ON will enable the PCIM */
 #define OFF 0 /* Active set OFF will disable the PCIM */

4

4-5GFK-0881 Chapter 4 C Programming for the PCIM

/* The following template is to be used with
 the function GetIMState
*/

typedef
struct {

unsigned char DipSwitch; /* GENI Board Dip Switch value */
unsigned int IMRef; /* Reference Address */

 unsigned char OutputLength; /* Output Control Data Length */
unsigned char InputLength; /* Input Control Data Length */
unsigned char Revision; /* GENI Revision Number */
unsigned char GENI_OK; /* every 200mS, set to one */
unsigned char Fault; /* Overall fault byte */
unsigned char Active; /* Hand Held Monitor Present */
unsigned int SBerr; /* Serial Bus error count */
unsigned int ScanTime; /* Bus Scan Time in milliseconds */

} IMSTATE;

/*
The following Macros are to be used with
the function GetIMStatus and define the position of the Fault byte.

*/

#define RAMERR 0
#define EPROMERR 1
#define CPUERR 2
#define COMMERR 3
#define SBAMASK 0x1F
#define BAUDMASK 0x60
#define OUTPUTMASK 0x80

/*
The following template is to be used with
the function GetBusConfig.

*/

typedef
struct {

unsigned char Model; /* Model Number of device */
unsigned char OutputDisable; /* Output Disable flag */
unsigned char Present; /* Device Present flag */
unsigned int Reference; /* Status Table or Reference Address */
unsigned char InputLength; /* Control Input Data Length */
unsigned char Config /* Device Configuration */

7 6 5 4 3 2 1 0

not used

Device Configuration

} DEVICE;

4

4-6 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

/*
The following Macros are to be used with the function GetBusConfig.

*/
#define ENABLE 0 /* Enable Outputs to a Node */
#define DISABLE 1 /* Disable Outputs to a Node */
#define ALL 32 /* Value to select all Nodes */
#define MAXDEVICE 32 /* Maximum devices per PCIM */
#define MAXIMS 64 /* Maximum number of PCIMs */
#define PRESENT 1 /* Device currently present on PCIM */
#define NOTPRESENT 0 /* Device currently offline from PCIM */
#define INPUTO 1 /* Input Data Only Device */
#define OUTPUTO 2 /* Output Data Only Device */
#define COMBO 3 /* Combination of Input and Output Data */

/* The following templates are to be used with
 all of the MSG functions.
*/

typedef
struct {

unsigned char Source; /* Source Address of Serial Bus Device */
unsigned char Function; /* Function Code */
unsigned char SubFunction; /* Sub Function Code */
unsigned char DB Indicator; /* Flag for Directed (1) or Broadcast (0) */
unsigned char Length; /* Length of Buffer */
unsigned char Data[134]; /* Message buffer which will */

} READ_MESSAGE

typedef
struct {

unsigned char Destination; /* Destination Address of Serial Bus Device */
unsigned char Function; /* Function Code */
unsigned char SubFunction; /* Sub Function Code */
unsigned char Priority ; /* Priority (0 (normal) or 1 (high)) */
unsigned char Length; /* Data Buffer (134 bytes max) */
unsigned char Data[134]; /* Message buffer which will */

} SEND_MESSAGE;

typedef
struct {

unsigned char Destination; /* Destination Address of Serial Bus Device */
unsigned char Function; /* Function Code */
unsigned char T_SubFunction; /* Sub Function Code (transmitted) *
unsigned char R_SubFunction;/* Sub Function Code (received) */
unsigned char Priority ; /* Priority (0 (normal) or 1 (high)) */
unsigned char Length; /* Trans. Data Buff. Length (134 bytes max) */
unsigned char Data[134]; /* Message buffer which will */

} SEND_MESSAGE_REPLY;

4

4-7GFK-0881 Chapter 4 C Programming for the PCIM

/* The following Macros are used with all the _MESSAGE_ templates
*/

#define BROADCAST 255
#define NORMALP 0 /* Normal Priority */
#define HIGHP 1 /* High Priority */

 /*
The following describes the tables necessary to read and write the PCIM’s Interrupt
Status Table and Interrupt Disable Table.

*/
#define I_ENABLE 0 /* Enable the interrupt level */
#define I_DISABLE 1 /* Disable the interrupt level */

#define I_SUMMARY 0 /* Summary set if interrupt occurred */
#define I_REQUEST_Q 1 /* Received memory datagram */
#define I_PCIM_STAT 2 /* PCIM Status Change – usually fatal */‘

#define I_DEV_STAT 3 /* Device Status Change */
#define I_OUT_SENT 4 /* Outputs sent – end of bus access */
#define I_CCOMPLETE 5 /* Command Block complete */
#define I_RECEIVE_D 6 /* Received Datagram */
#define I_LOCKOUT 7 /* Lockout granted */

/*
The following Macros are used as Return values for all functions. The FAIL codes should
be listed with each individual function description.
*/

#define SUCCESS 0 /* Successful completion of function */
#define INITFAIL 1 /* Initialization Failure */
#define IMFAIL 2 /* PCIM Failure */
#define BADSEG 3 /* Invalid Segment address */
#define BADPORT 4 /* Invalid I/O Port Address */
#define BADCFG 5 /* Invalid Configuration parameter */
#define NOCFG 6 /* No Configuration changes found */
#define NOINIT 7 /* PCIM selected is not initialized */
#define NODATA 8 /* No data found */
#define UNDERFLOW 9 /* Insufficient device data length */
#define OVERFLOW 10 /* Exceeds device data length */
#define OFFLINE 11 /* Device is offline */
#define IMBUSY 12 /* PCIM busy */
#define BADPARM 13 /* Invalid message parameter */
#define TXERR 14 /* Message transmit failure */
#define NOMSG 15 /* No Message available */
#define IMFREE 16 /* No message activit */
#define BADSBA 17 /* Invalid Serial Bus Address */
#define BADIMNUM 18 /* Invalid PCIM Number */
#define PCIMERR 19 /* PCIM firmware problem */
#define DUPSEG 20 /* Duplicate segment values given */
#define DUPPORT 21 /* Duplicate I/O port values given */

4

4-8 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

Data Structures for Initialization
The following data structures may be defined for use with the IMPARMS function call:

Type Name Range Description

unsigned int im.Segment; 0–FFFE(h) Starting address defined by
configuration software

unsigned int im.IOport; 100(h) – 3FC(h) I/O Port base address (DIP
switch SW1)

unsigned int IMRef; 0–8001 – 0–FFFF(h) Global Data Address of PCIM
daughterboard.

unsigned char OutputLength; 0–128 Global Data length in BYTEs

unsigned char InputLength; 0–128 Directed Input Data length
(normally 0)

unsigned char Active; ON/OFF Turn PCIM on or off (see
ChgIMSetup)

Macros for Initialization and Setup Change

The following Macros are to be used with the variable Active in the functions InitIM and
the ChgIMSetup. Any structures which do not indicate setting by Dipswitch (hardware
actuated) are set by the Software Drivers (software actuated).

Macro Value Explanation

#define ON 1 Active set ON will enable the PCIM

#define OFF 0 Active set OFF will disable the PCIM

4

4-9GFK-0881 Chapter 4 C Programming for the PCIM

Data Structures for PCIM Configuration
The following data structures are to be used for the GetIMState function call.

Type Name Range Description
unsigned char DipSwitch; 0–255(d) Daughterboard Dip Switch value. See below.
unsigned int IMRef; 0–8001(d)

or
0–FFFF(h)

Global Data Reference: Beginning address of
the Global Data of the broadcasting CPU.

unsigned char OutputLength; 0–128 Global Data Length: Number of bytes of Glob-
al Data to be broadcast by the PCIM.

unsigned char InputLength; 0–128 Directed Input Data Length; normally 0.
unsigned char Revision; PCIM Firmware Revision Number.
unsigned char GENI OK; 1/0 PCIM OK; every 200 ms, set to ’1’.
unsigned char Fault; 0–15 Overall fault byte: any PCIM fault shown below.
unsigned char Active; 0–5 Hand Held Monitor Present – one or com-

bination of bit positions:bination of bit positions:
bit 0 = HHM present (1=pres)
bit 1 = reservedbit 1 = reserved
bit 2 = 10 CRC errors in 10 seconds. On for

one second, does not stop PCIM. This bit is et
bit 2 = 10 CRC errors in 10 seconds. On for

one second, does not stop PCIM. This bit is et
of 10 errors occur in 10 seconds.

unsigned int SBerr; 0–FFFF
FFFF–0

Serial Bus error count; roll over counter. Goes
from 0 to FFFF to 0.

unsigned int ScanTime; Bus Scan Time in mS.

Content of DipSwitch is:

7 6 5 4 3 2 1 0

Serial Bus Address

Baud Rate: 00 = 153.6 ext

01 = 38.4

10 = 76.8

11 = 153.6 std

Outputs enable/disable at powerup

1 = disable

0 = enable

Macros for GetIMState

The following Macros are to be used with the variable Fault in the function GetIMState.

Macro Value Explanation

#define RAMERR 0 Random Access Memory error

#define EPROMERR 1 EPROM error

#define CPUERR 2 CPU error

#define COMMERR 3 Communications (Bus) error

#define SBAMASK 0x1F Serial Bus Address mask

#define BAUDMASK 0x60 Baud Rate Mask

#define OUTPUTMASK 0x80 Output Enable/Disable mask

4

4-10 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

Data Structures for Bus Configuration
The following data structures are to be used for the GetBusConfig function call.

Type Name Range Description

unsigned char Model; 4–139 Model Number of serial bus de-
vice.

unsigned char OutputDisable; 1/0 Output Disable flag values
shown below.

unsigned char Present; 1/0 Device Present flag shown below

unsigned int Reference; 0–8001(d)
0–FFFF(h)

Global Data Reference: Begin-
ning address of the Global Data
of the broadcasting CPU.

unsigned char InputLength; 0–128 Device input data length.

unsigned char OutputLength; 0–128 Device output data length.

unsigned char
Config;

1–3 Device Configuration as shown
below.

7 6 5 4 3 2 1 0

Device Configuration

Not Used

Macros for GetBusConfig

The following Macros are to be used with the function GetBus Config.

Macro Value Explanation

In the variable Output Disable:

#define ENABLE 0 Enable Outputs to a device

#define DISABLE 1 Disable Outputs to a device

#define ALL 32 Value to select all devices

#define MAXDEVICE 32 Maximum devices per PCIM

#define MAXIMS 64 Maximum number of PCIMs

In the value Present:

#define PRESENT 1 Device Present on PCIM

#define NOTPRESENT 0 Device Offline from PCIM

In the value Config:

#define INPUT 1 Input Data Only Device

#define OUTPUT 2 Output Data Only Device

#define COMBO 3 Input and Output Data Device

4

4-11GFK-0881 Chapter 4 C Programming for the PCIM

Data Structures for Communications: Read Message

The following data structures are to be used for the ReadMsg function call.

Type Name Range Description

unsigned char Source; 0–31 Serial Bus Address of device.

unsigned char Function; normally 20(h) for
Genius messages

Function Code

unsigned char SubFunction; (hex value) Sub Function Code. See
GEK–90486–2

unsigned char DB Indicator; 1/0 Message type:
 Directed (1)

Broadcast (0).

unsigned char Length; 0–134 Length of message in bytes.

unsigned char Data[134]; Actual Message Data in bytes.

Data Structures for Communications: Send Message

The following data structures are to be used for the SendMsg function call.

Type Name Range Description

unsigned char Destination; 0–31 or broadcast Serial Bus Address of device.

unsigned char Function; normally 20(h) for
Genius messages

Function Code

unsigned char SubFunction; (hex value) Sub Function Code. See
GEK–90486–2

unsigned char Priority; 1/0 Priority at which message is to be
sent:

Normal Priority (0).
High priority (1)

unsigned char Length; 0–134 Length of message in bytes.

unsigned char Data[134]; Actual message data in bytes.

4

4-12 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

Data Structures for Communications: Send Message with Reply

The following data structures are to be used for the SendMsgReply function call.

Type Name Range Description

unsigned char Destination; 0–31 Serial Bus Address of device.

unsigned char Function; 10/20(h) Function Code

unsigned char T_SubFunction; (hex value) Sub Function Code (transmitted
message). See GEK–90486–2

unsigned char R_SubFunction; (hex value) Sub Function Code (expected re-
ply). See GEK–90486–2

unsigned char Priority; 1/0 Priority at which message is to be
sent:

Normal Priority (0).
High priority (1)

unsigned char T_Length; 0–134 Length of message in bytes.

unsigned char Data[134]; Actual message data in bytes.

Macros for the Message Functions

The following Macro is to be used by the Destination variable in the message structures.

Macro Value Explanation

#define BROADCAST 255 Message to be sent in broadcast mode.

The following Macros are to be used by the Priority variable in the message structures.

Macro Value Explanation

#define NORMALP 0 Message to be sent at normal priority.

#define HIGHP 1 Message to be sent at high priority.

4

4-13GFK-0881 Chapter 4 C Programming for the PCIM

Macros for Interrupts

The following Macros are used in the PutINTR and GetINTR function calls.

Macro Value Explanation

#define I_ENABLE 0 Enable the interrupt level.

#define I_DISABLE 1 Disable the interrupt level.

#define I_SUMMARY 0 Summary if interrupt occurred.

#define I_REQUEST_Q 1 Received memory datagram.

#define I_PCIM_STAT 2 PCIM Status Change – unless initiated by
the host, this is usually fatal.

#define I_DEV_STAT 3 Device Status Change.

#define I_OUT_SENT 4 Outputs sent – end of bus access.

#define I_CCOMPLETE 5 Command Block completed.

#define I_RECEIVE_D 6 Received Datagram.

Miscellaneous Character Buffers and Integers

The following character buffers and integers are used in various calls:

Type Name Range Description

int IMcount; 1–64 Total number of PCIMs.

int IMnum; 1–64 Relative number of PCIM.

int Devicenum; 0–31 Specifies device on Serial Bus.

unsigned int Offset; 1–1024 Specifies device on Serial Bus.

unsigned int Worddata; 0–FFFF Pointer to store the word re-
quested.

char IMflags; 0–63 Tells you which PCIMs initialized
properly (or improperly).

char Flag; 0/1 Enable/Disable outputs.

char Datalngth; 0–128 Character pointer to size of data
buffer.

char DevData; 0–128 Character pointer to a buffer
where data to be written will be
located.

char State; 0/1 ON or OFF condition of circuit
read from PCIM.

4

4-14 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

Macros for Return Values for All Calls

The following Macros are used as as return values for all calls.

Macro Value Explanation

#define SUCCESS 0 Successful completion of function.

#define INITFAIL 1 Initialization Failure.

#define IMFAIL 2 PCIM Failure.

#define BADSEG 3 Invalid Segment address.

#define BADPORT 4 Invalid I/O Port Address.

#define BADCFG 5 Invalid Configuration parameter.

#define NOCFG 6 No Configuration changes found.

#define NOINIT 7 PCIM selected is not initialized.

#define NODATA 8 No data found.

#define UNDERFLOW 9 Insufficient device data length.

#define OVERFLOW 10 Exceeds device data length.

#define OFFLINE 11 Device is offline.

#define IMBUSY 12 PCIM busy.

#define BADPARM 13 Invalid message parameter.

#define TXERR 14 Message transmit failure.

#define NOMSG 15 No Message available.

#define IMFREE 16 No message activity.

#define BADSBA 17 Invalid Serial Bus Address.

#define BADIMNUM 18 Invalid PCIM Number.

#define PCIMERR 19 PCIM firmware problem.

#define DUPSEG 20 Duplicate segments given.

#define DUPPORT 21 Duplicate I/O port values given.

4

4-15GFK-0881 Chapter 4 C Programming for the PCIM

InitIM – Setup and Activate PCIM

Code Summary
 #include <pcim.h>

 int
 InitIM (IMcount, IMparms, IMflags)

 unsigned int IMcount;
 IMPARMS IMparms[];
 unsigned char *IMflags;

Description
The Initialize PCIM call specifies the total number of PCIMs in the host system through the
parameter “IMcount”, and the characteristics of each PCIM through the parameter
“IMparms”.

InitIM resets the IMcount of PCIMs in the host system and initializes each PCIM as defined
by IMparms. You must create a separate IMparms entry for each PCIM in IMcount.

The format of “IMPARMS” is:

IM 1 – Segment Address of PCIM shared RAM (two bytes LSB – MSB)
IM 1 – I/O Port Address (two bytes LSB – MSB)
IM 1 – PCIM Global Reference (two bytes LSB – MSB)
IM 1 – Global data length (one byte)
IM 1 – Input data length (input directed data length, normally 0)
IM 1 – Active (one byte) 1 = ON, 0 = OFF)

IM 2 – Segment Address of PCIM shared RAM (two bytes LSB – MSB)
IM 2 – I/O Port Address (two bytes LSB – MSB)
IM 2 – PCIM Global Reference (two bytes LSB – MSB)
IM 2 – Global data length (one byte)
IM 2 – Input data length (reserved – one byte always set to ’0’)
IM 2 – Active (one byte) 1 = ON, 0 = OFF)

etc...

Note
The memory pointer and I/O port assignments must correspond to the
configuration of the PCIM.

The last parameter, “IMflags” is used by InitIM to tell you which of the PCIMs initialized
properly (or improperly, as the case may be). The number of flags should equal IMcount.

Parameters are summarized as follows:

Parameter Values Function

IMcount 1–64 Total number of PCIMs
 IMparms varies shows the characteristics of each module – see above

IMflags varies tells you which PCIMs initialized properly – see above

4

4-16 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

The InitIM call performs the following sequence of actions:

1. Brings each defined PCIM out of reset, or (if the PCIM is already running), into reset
then out of reset.

2. Downloads Global data parameters to each PCIM after its PCIM OK LED turns ON
(may take up to two seconds).

3. After all PCIMs have been downloaded or a two second timeout has occurred,
returns with a 64 byte Status array (one byte for each defined PCIM). If any syntax
or execution errors detected, the status returned is Fail. An example of an execution
error is failure of the PCIM OK flag to be ON within two seconds after Reset.

Return Value (Status)
InitIMreturns SUCCESS if all resets and data parameters are accepted by each PCIM.
The following failure codes may be returned:

BADIMNUM IMnum is out of range (a count of 64 or greater). No more
InitIM processing is performed.

INITFAIL An initialization problem occurred in one or more PCIM. The
individual status for each PCIM on the bus is located in the
IMflags parameter.

One of the following status codes will be returned in the appropriate location in the
IMflags parameter if the return code is INITFAIL. Each status value in the IMflags array
is unique to the associated PCIM and does not reflect the status of any other PCIM.

SUCCESS This PCIM has been powered up and configured as specified.

IMFAIL This PCIM never powered up.

BADCFG This PCIM rejected the configuration because a parameter was
out of range.

BADSEG The segment value in IMparms is set to the illegal value 0
(zero)

BADPORT The I/O port address is set to some illegal value less than 256.

Note

If any of the PCIMs fail to initialize as you have specified in IMparms,
InitIM turns OFF the failed PCIM.

4

4-17GFK-0881 Chapter 4 C Programming for the PCIM

Coding Example
In this example there are two PCIMs.

 #include <pcim.h>

 #define COUNT 2

int status; char IMflags[COUNT];
IMPARMS IMparms[COUNT];

IMparms[0].im.Segment = 0xD000; /* Shared RAM begins at D000(h) */

 IMparms[0].im.IOPort = 0x3E4; /* Port Base Address at 3E4(h) */
 IMparms[0].IMRef = 0x7000; /* PCIM Global Reference – 7000(h) */
 IMparms[0].OutputLength = 0; /* No Global Data */
 IMparms[0].InputLength = 0; /* No Directed Input data */
 IMparms[0].Active = ON; /* Turn PCIM #1 ON by default */

 IMparms[1].im.Segment = 0xCC00; /* Shared RAM begins at CC00(h) */
 IMparms[1].im.IOPort = 0x3E0; /* Port Base Address at 3E0(h) */
 IMparms[1].IMRef = 0x8001; /* PCIM Global Reference – 8001(h) */
 IMparms[1].OutputLength = 20; /* No Global Data */
 IMparms[1].InputLength = 0; /* No Directed Input data */
 IMparms[1].Active = ON; /* Turn PCIM #2 ON by default */

 status = InitIM (COUNT, IMparms, IMflags);

4

4-18 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

ChgIMSetup – Change PCIM Configuration

Code Summary

 #include <pcim.h>

 int
 ChgIMSetup (IMnum, IMparms)

 unsigned int IMnum;
 IMPARMS *IMparms;

Description

Following initialization, any changes you make to the configuration of a specific PCIM
must use the Change PCIM Setup call. This call allows you to make configuration
changes to a specific PCIM Setup Table by writing the IMparms parameter from Host
memory to it.

The “IMnum” parameter is an index to the IMparms array which, after initialization,
indicates the specific PCIM in the host system for which configuration changes are
intended.

Note

Configuration changes to any PCIM while online causes that PCIM to
stop transmitting on the serial bus for 1.5 seconds.

The format of “IMPARMS” is:

IM 1 – Segment Address of PCIM shared RAM (two bytes LSB – MSB)
IM 1 – I/O Port Address (two bytes LSB – MSB)
IM 1 – PCIM Global Reference (two bytes LSB – MSB)
IM 1 – Global data length (one byte)
IM 1 – Input data length (reserved – one byte always set to ’0’)
IM 1 – Active (one byte) 1 = ON, 0 = OFF)

IM 2 – Segment Address of PCIM shared RAM (two bytes LSB – MSB)
IM 2 – I/O Port Address (two bytes LSB – MSB)
IM 2 – PCIM Global Reference (two bytes LSB – MSB)
IM 2 – Global data length (one byte)
IM 2 – Input data length (reserved – one byte always set to ’0’)
IM 2 – Active (one byte) 1 = ON, 0 = OFF)

etc...

Parameters are summarized as follows:

Parameter Values Function

IMnum 1–64 Relative number of PCIM

 IMparms varies shows the characteristics of each module – see above

4

4-19GFK-0881 Chapter 4 C Programming for the PCIM

Return Value (Status)
ChgIMSetup will return SUCCESS if all changes were accepted by the target IM. If the
PCIM fails to change to the new parameters, the following FAIL indications will be
returned:

BADIMNUM IMnum is out of range (a count of 64 or greater).

NOINIT Indicated PCIM has not been initialized (InitIM).

IMFAIL The indicated PCIM has failed (PCIM OK = 0), or never com-
pleted processing the config change command.

IMBUSY The PCIM is otherwise engaged and cannot accept the con-
fig change command.

BADCFG This PCIM rejected the configuration because a parameter
was out of range.

NOCFG The PCIM, after examining the received the config change
command, found no changes to make.

INITFAIL Change of Global Data output or Global Data reference or
Directed Data input length required a reset of PCIM daugh-
terboard and the daughterboard failed to reinitialize.

Coding Example
Change the PCIM Global Reference for PCIM #1.

 #include <pcim.h>

 #define COUNT 2

 int status;
 IMPARMS IMparms[COUNT];

 IMparms[0].IMref = 0x8010;

 status = ChgIMSetup (1, &IMparms);

Turn OFF PCIM #2.

 #include <pcim.h>

 int status;
 IMPARMS IMparms[COUNT];

 IMparms[1].Active = OFF;

 status = ChgIMSetup (2, &IMparms);

4

4-20 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

GetIMState – Get Configuration and Status Information

Code Summary
 #include <pcim.h>

 int
 GetIMState (IMnum, IMstate)

 unsigned int IMnum;
 IMSTATE *IMstate;

Description
The Get PCIM State call allows you to access configuration and status information about
a specific PCIM by reading its Setup Table and Status Table into the “IMstate” parameter
in Host memory.

The format of IMstate is:

DipSwitch – Daugherboard Dip Switch Value
IMRef – Reference Address
OutputLength – Output Control Data Length
InputLength – Input Control Data Length
Revision – PCIM Firmware Revision Number
GENI OK – PCIM OK – every 200 ms, set to ’1’. If 0, board has faulted.
Fault – Overall fault byte – any PCIM fault
Active – Hand Held Monitor Present
SBerr – Serial Bus error count
ScanTime – Bus Scan Time in ms

Since the PCIM periodically sets its PCIM OK flag, this call allows the implementation of
a PCIM OK heartbeat procedure.

Parameters are summarized as follows:

Parameter Values Function

IMnum 1–64 Relative number of PCIM

 IMstate varies PCIM Configuration and Status – see above

4

4-21GFK-0881 Chapter 4 C Programming for the PCIM

Return Value (Status)
GetIMState will almost always return SUCCESS. If the target PCIM is currently offline,
has not been initialized, or is out of range, the following FAIL indications will be
returned:

 BADIMNUM – IMnum is out of range (a count of 64 or greater).

 NOINIT – Indicated PCIM has not been initialized (InitIM).

 IMFAIL – The indicated PCIM has failed (PCIM OK = 0).

Coding Example
Examine the state of PCIM #1.

 #include <pcim.h>

 int status;
 IMSTATE IMstate;

 status = GetIMState (1, &IMstate);

4

4-22 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

GetBusConfig – Get Serial Bus Configuration

Code Summary
 #include <pcim.h>

 int
 GetBusConfig (IMnum, Config)

 unsigned int IMnum;
 DEVICE Config [];

Description
The Get Bus Configuration call allows you to read device configuration information
about all devices on a serial bus (except the PCIM). GetBusConfig reads all 32 Device
Configuration Tables from the PCIM selected by IMnum into the Host memory ”Config”
parameter. This information is not packed and will fill the entire Config parm – 256
bytes in length.

The format of Config is:

unsigned char Model – Model Number of device
unsigned char OutputDisable – Output disable flag
unsigned char Present – Device Present flag
unsigned int Reference – Status Table or Reference Address
unsigned char InputLength – Control Input Data Length
unsigned char OutputLength – Control Output Data Length
unsigned char Config – Device Configuration

 1 = all inputs
 2 = all outputs
 3 = combination

7 6 5 4 3 2 1 0

Device Configuration

Not Used

Parameters are summarized as follows:

Parameter Values Function

IMnum 1–64 Relative number of PCIM

 Config 256 bytes Device configuration information about all devices
on a serial bus – see above

4

4-23GFK-0881 Chapter 4 C Programming for the PCIM

Return Value (Status)
GetBusConfig will almost always return SUCCESS. If the target PCIM is currently
offline, has not been initialized, or is out of range, the following FAIL indications will be
returned:

BADIMNUM IMnum is out of range (a count of 64 or greater).

NOINIT Indicated PCIM has not been initialized (InitIM).

IMFAIL The indicated PCIM has failed (PCIM OK = 0).

OFFLINE No devices are currently active on the bus. However, the
appropriate buffer is still returned and will contain configura-
tion data for devices once logged in. Zeros will be returned if
no device has logged in to a particular slot.

Coding Example
Examine the configuration of the devices on PCIM #1.

 #include <pcim.h>

 int status;
 DEVICE Config[MAXDEVICE];

 status = GetBusConfig (1, Config);

4

4-24 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

GetDevConfig – Get Device Configuration

Code Summary
 #include <pcim.h>

 int
 GetDevConfig (IMnum, Devicenum, Config)

 unsigned int IMnum;
 unsigned int Devicenum;
 DEVICE *Config;

Description
The Get Device Configuration call allows you to read device configuration information
about a specific device on the serial bus. GetDevConfig reads this information from the
PCIM selected by IMnum into the Host memory “Config” parameter, which should
point to a character buffer with the format of one DEVICE structure.

Again, the format of Config is:

unsigned char Model – Model Number of device
unsigned char OutputDisable – Output disable flag
unsigned char Present – Device Present flag
unsigned int Reference – Status Table or Reference Address
unsigned char InputLength – Control Input Data Length
unsigned char OutputLength – Control Output Data Length
unsigned char Config – Device Configuration

1 = all inputs
2 = all outputs
3 = combination

7 6 5 4 3 2 1 0

Device Configuration

Not Used

Parameters are summarized as follows:

Parameter Values Function

IMnum 1–64 Relative number of PCIM

Devicenum 0–31 Specifies device on serial bus

 Config 8 bytes Device configuration information about all devices on a
serial bus – see above

4

4-25GFK-0881 Chapter 4 C Programming for the PCIM

Return Value (Status)
GetDevConfig will almost always return SUCCESS. If the target PCIM is currently
offline, has not been initialized, or is out of range, the following FAIL indications will be
returned:

BADIMNUM IMnum is out of range (a count of 64 or greater).

BADSBA Specified Devicenum is not in the range for Genius bus de-
vices (0 –31 decimal).

NOINIT Indicated PCIM has not been initialized (InitIM).

IMFAIL The indicated PCIM has failed (PCIM OK = 0), or never com-
pleted processing the config change command.

OFFLINE The device requested is currently not on the bus, however,
the appropriate buffer is still returned and will contain configu-
ration data for devices once logged in.

Coding Example
Examine the configuration of device #30 on PCIM #1.

 #include <pcim.h>

 int status;
 DEVICE Configbuf;

 status = GetDevConfig (1, 30, Configbuf);

4

4-26 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

DisableOut – Disable/Enable Device Outputs

Summary
 #include <pcim.h>

 int
 DisableOut (IMnum, Devicenum, Flag)

 unsigned int IMnum, Devicenum;
 char Flag;

Description
The Disable (/Enable) Outputs call allows you to selectively disable (or enable) outputs to
a specific device, or to all devices, on a serial bus.

If Flag is �	����
	 (‘1’), outputs to the device will be ��������; if Flag is zero (‘0’), outputs
will be ������� to that device. If you code the Devicenum value equal to ‘ALL’, then the
outputs to all devices will be set to the value of Flag. If Devicenum is a serial bus address
value between 0 – 31 decimal, then the flag value will only affect that device. PCIM.H
contains macros defined for ON or OFF values for Flag.

Parameters are summarized as follows:

Parameter Values Function

IMnum 1–64 Relative number of PCIM

 Devicenum 0–31 Specifies device on serial bus on which circuit resides
32 Specifies all devices

 Flag 0 or 1 Enable/disable outputs

4

4-27GFK-0881 Chapter 4 C Programming for the PCIM

Return Value (Status)
DisableOut will return SUCCESS if the device specified by IMnum is present on the
serial bus. Otherwise, DisableOut will return FAIL. If Devicenum indicates ALL, then
DisableOut will almost always return SUCCESS. The following FAIL indications will be
returned:

BADIMNUM IMnum is out of range (a count of 64 or greater).

BADSBA Specified Devicenum is not in the range for Genius bus de-
vices (0 – 31 decimal), or is the serial bus address of the
daughterboard.

NOINIT Indicated PCIM has not been initialized (InitIM).

IMFAIL The indicated PCIM has failed (PCIM OK = 0).

Coding Example
Enable outputs to device #8 on PCIM #1.

 #include <pcim.h>

 int status;

 status = DisableOut (1, 8, ENABLE);

Disable outputs to all devices on PCIM #1.

 #include <pcim.h>

 int status;

 status = DisableOut (2, ALL, DISABLE);

4

4-28 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

GetBusIn – Read all Input Values

Code Summary
 #include <pcim.h>

 int
 GetBusIn (IMnum, IOdata)

 unsigned int IMnum;
 unsigned char *IOdata;

Description
A Get Bus Inputs call allows you to read input values from all active devices in the Input
Table of the specified PCIM. Active inputs are those for which the Device Present flag is
set to ‘1’ (it is the application’s responsibility to know which devices are present on the
bus via the GetBusConfig call). Active input values are placed into the Host memory
“IOdata” parameter. IOdata must point to a 4096–byte buffer where the I/O
information will be saved. The IOdata parm has the same format as the Input Table –
32 slots of 128 bytes each. Slots are in serial bus address order.

When GetBusIn is called, it begins by “locking out” the PCIM from updating its Input
Table (ensures data coherency across bus scans). GetBusIn then transfers the entire
Input Table to the IOdata parameter, even for devices that are not active. When the
entire PCIM Input Table has been searched, the PCIM is “unlocked”.

Parameters are summarized as follows:

Parameter Values Function

IMnum 1–64 Relative number of PCIM

 IOdata 4096 bytes Data parameter will be copied from Host memory to
specified PCIM

4

4-29GFK-0881 Chapter 4 C Programming for the PCIM

Return Value (Status)
GetBusIn will return SUCCESS if any of the devices specified by the IMnum are active
and data was transferred. If no devices are present on the target IM, if the target PCIM
is currently offline, has not been initialized, or is out of range, the following FAIL
indications will be returned:

BADIMNUM IMnum is out of range (a count of 64 or greater).

NOINIT Indicated PCIM has not been initialized (InitIM).

IMFAIL The indicated PCIM has failed (PCIM OK = 0).

OFFLINE No devices are currently on the bus, however, the appropri-
ate buffer is still returned and will contain input data for de-
vices once logged in.

Coding Example
Read all inputs from all active devices on PCIM #1.

 #include <pcim.h>

 int status;
 unsigned char IOdata;

 status = GetBusIn (1, IOdata);

4

4-30 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

PutBusOut – Write all Output Values

Code Summary
 #include <pcim.h>

 int
 PutBusOut (IMnum, IOdata)

 unsigned int IMnum;
 unsigned char *IOdata;

Description
The Put Bus Outputs call allows you to update outputs to all devices in the Output Table
of the specified PCIM. All output values are written from the Host memory IOdata
parameter. IOdata must point to a 4096–byte buffer where the I/O information is saved.
The IOdata parm has the same format as the Output Table – 32 slots of 128 bytes each.
Slots are in serial bus address order.

When PutBusOut is called, it begins by “locking–out” the PCIM from updating its
Output Table (ensures data coherency across PCIM scans). PutBusOut then transfers all
data from IODATA to the Output Tables. When the entire PCIM Output Table has been
searched, the PCIM is “unlocked”.

Parameters are summarized as follows:

 Parameter Values Function

IMnum 1–64 Relative number of PCIM

 IOdata 4096 bytes Data parameter will be copied from Host memory to
specified PCIM

4

4-31GFK-0881 Chapter 4 C Programming for the PCIM

Return Value (Status)
PutBusOut will return SUCCESS if any of the devices specified by the IMnum are active
and data was transferred. If no devices are present on the target IM, if the target PCIM
is currently offline, has not been initialized, or is out of range, the following FAIL
indications will be returned:

 BADIMNUM – IMnum is out of range (a count of 64 or greater).

 NOINIT – Indicated PCIM has not been initialized (InitIM).

 IMFAIL – The indicated PCIM has failed (PCIM OK = 0).

 OFFLINE – Data was transferred to the Output Tables, however, no
 devices were found on the bus.

Coding Example
Write all outputs to all active devices on PCIM #1.

 #include <pcim.h>

 int status;
 unsigned char IOdata[4096];

 IOdata[128] = 1;
 IOdata[256] = 2;
 IOdata[384] = 4;
 IOdata[512] = 8;
 IOdata[640] = 0x10h;

 status = PutBusOut (1, IOdata);

4

4-32 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

GetDevIn – Read Device Data Only

Code Summary
 #include <pcim.h>

 int
 GetDevIn (IMnum, Devicenum, DataLngth, Devdata)
 unsigned int IMnum, Device;
 unsigned char *DataLngth, *Devdata;

Description
The GetDevIn function allows you to read the control data inputs received from a single
serial bus device into the Host memory “Devdata” parameter.

IMnum is the PCIM number configured during initialization. The Devicenum parameter
specifies the serial bus address of the device from which input data is to be written. The
“DataLngth” parameter points to the location where the number of data bytes read from
device is to be stored. The “Devdata” parameter is a character pointer to a buffer where
the data to be written will be located. The size of this buffer is determined by the
“InputLength” parameter located in the device’s configuration data.

Parameters are summarized as follows:

Parameter Values Function

IMnum 1–64 Relative number of PCIM

Devicenum 0–31 Specifies device on serial bus from which input
word will be read

 DataLngth 0–128 Character pointer to size of data buffer

 Devdata variable Character pointer to a buffer where the data to be
read from device is written – see above

4

4-33GFK-0881 Chapter 4 C Programming for the PCIM

Return Value (Status)
GetDevIn will return SUCCESS if the device specified by IMnum is present on the serial
bus, and after the data is transferred to the DevData buffer. If the target device is not
present, or is out of range, the following FAIL indications will be returned:

BADIMNUM IMnum is out of range (a count of 64 or greater).

BADSBA Specified Devicenum is not in the range for Genius bus de-
vices (0 –31 decimal), or is that of the PCIM itself.

NOINIT Indicated PCIM has not been initialized (InitIM).

IMFAIL The indicated PCIM has failed (PCIM OK = 0).

OFFLINE The device requested is currently not on the bus, and data is
NOT transferred.

Coding Example
Get the inputs from device #8 on PCIM #1.

 #include <pcim.h>

 int status;
 unsigned char Devdata[expected data length];
 Length;

 status = GetDevIn (1, 8, &Length, Devdata);

4

4-34 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

PutDevOut – Write Device Data Only

Code Summary
 #include <pcim.h>

 int
 PutDevOut (IMnum, Devicenum, DataLngth, Devdata)

 unsigned int IMnum, Device;
 unsigned char DataLngth, *Devdata;

Description
The PutDevOut call allows you to write all of the control data outputs to a single serial
bus device from the Host memory Devdata parameter.

IMnum is the PCIM number configured during initialization. The Devicenum parameter
specifies the serial bus address of the device to which output data is to be written. The
DataLngth parameter is the number of data bytes to write. If the value differs from the
PCIMs current data base, an Overflow or Underflow error will be returned. The
Devdata parameter is a character pointer to a buffer where the data to be written is
located. The size of this buffer is determined by the “OutputLength” parameter located
in the device’s configuration data.

Parameters are summarized as follows:

Parameter Values Function

IMnum 1–64 Relative number of PCIM

Devicenum 0–31 Specifies device to which output word will be written

 Datalngth 0–128 Character size of data buffer in bytes

 Devdata variable Character pointer to a buffer where the data to be
written will be located – see above

4

4-35GFK-0881 Chapter 4 C Programming for the PCIM

Return Value (Status)
PutDevOut will return SUCCESS if the device indicated is present on the given IMnum
and after the data is transferred to that device. If the target device is not present, or is
out of range, the following FAIL indications will be returned:

BADIMNUM IMnum is out of range (a count of 64 or greater).

BADSBA Specified Devicenum is not in the range for Genius bus de-
vices (0 –31 decimal), or is that of the PCIM.

NOINIT Indicated PCIM has not been initialized (InitIM).

IMFAIL The indicated PCIM has failed (PCIM OK = 0).

OFFLINE The device requested is currently not on the bus, and data is
NOT transferred.

OVERFLOW Specified DataLngth is greater than actual device’s output
length.

UNDERFLOW Specified DataLngth is less than actual device’s output
length.

Coding Example
Write 2 bytes of output data to device #8 on PCIM #1.

 #include <pcim.h>

 int status;
 unsigned char Devdata[data length];

 Devdata[0] = 1;
Devdata[1] = 0x10;

 status = PutDevOut (1, 8, 2, Devdata);

4

4-36 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

GetIMIn – Read Directed Input Table

Code Summary
 #include <pcim.h>

 int
 GetIMIn (IMnum, IMdata)

 unsigned int IMnum;
 unsigned char *IMdata;

Description
The Get IM Inputs call allows you to read the Directed Control Input Table of a specified
PCIM and write its contents into the Host memory “IMdata” parameter.

IMnum is the PCIM number configured during initialization. The “IMdata” parameter is
a buffer where the data to be read will be located. The size of this buffer is determined
by the “InputLength” parameter located in the PCIMs configuration data.

When GetIMIn is called, it begins by “Locking–out” the PCIM from updating the
Directed Control Input Table (ensures data coherency across bus scans). GetIMIn then
transfers all the data in this table into Host memory. Once the transfer is complete, the
PCIM is ”unlocked”.

Parameters are summarized as follows:

Parameter Values Function

IMnum 1–64 Relative number of PCIM
 IMdata variable Buffer where the data read will be located – see above

Return Value (Status)
GETIMIN will return SUCCESS if the InputLength is non–zero and the data transfer is
complete. The following FAIL indications will be returned:

 BADIMNUM – IMnum is out of range (a count of 64 or greater).
 NOINIT – Indicated PCIM has not been initialized (InitIM).
 IMFAIL – The indicated PCIM has failed (PCIM OK = 0).
 UNDERFLOW – The InputLength of the PCIM is set to zero (0).

4

4-37GFK-0881 Chapter 4 C Programming for the PCIM

PutIMOut – Write the Global Output Table

Code Summary
 #include <pcim.h>

 int
 PutIMOut (IMnum, IMdata)

 unsigned int IMnum;
 char *IMdata;

Description
The PutIMOut call allows you to write Global Data from the Host memory IMdata
parameter to the Global Data Output Table of a specified PCIM. This data is
subsequently broadcast to all CPUs on the bus every bus scan.

IMnum is the PCIM number configured during initialization. The IMdata parameter is a
character pointer to a buffer where the data to be written is located. The size of this
buffer is determined by the “OutputLength” (Global Data Length) parameter located in
the PCIM’s configuration data.

When PutIMOut is called, it begins by “locking–out” the PCIM from reading from its
Output Table (ensures data coherency across bus scans). PutIMOut then transfers all the
data from this parm to the PCIMs Global Output buffer. Once the transfer is complete,
the PCIM is “unlocked”.

Parameters are summarized as follows:

Parameter Values Function
IMnum 1–64 Relative number of PCIM
IMdata variable Character pointer to a buffer where the data is

located. Length of buffer is equal to output length
as specified in InitIM.

Return Value (Status)
PutIMOut will return SUCCESS if the Global Data Length is non–zero and the transfer
is complete. The following FAIL indications will be returned:

 BADIMNUM – IMnum is out of range (a count of 64 or greater).
 NOINIT – Indicated PCIM has not been initialized (InitIM).
 IMFAIL – The indicated PCIM has failed (PCIM OK = 0).
 UNDERFLOW – The GlobalLength parameter in IMPARMS is set to zero (0).

Coding Example
Write the specified Global Data to PCIM #1.

 #include <pcim.h>

 int status;
 char IMdata[128];

 IMdata [2] = 0x10;
 status = PutIMOut (1, IMdata);

4

4-38 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

GetCir – Read Input Circuit Value

Code Summary
 #include <pcim.h>

 int
 GetCir (IMnum, Devicenum, Offset, State)

 unsigned int IMnum, Devicenum;
 unsigned int Offset;
 char *State;

Description
A Get Circuit call allows the state of a single input circuit to be read from the specified
PCIMs Input Table and be placed into the Host memory “State” parameter.

IMnum is the PCIM number configured during initialization. The Devicenum parameter
specifies the serial bus address of the device which contains the input circuit. The
“Offset” parameter indicates which bit of Devicenum is to be read. This value ranges
from 1 through 1024 (in bits).

“State” is a character pointer in which GetCir will store the value of the circuit as
indicated by the above parameters. The contents of State will be either a ‘1’ or ‘0’ (ON or
OFF).

Parameters are summarized as follows:

Parameter Values Function

IMnum 1–64 Relative number of PCIM

Devicenum 0–31 Specifies I/O device from which input circuit will be read

Offset 1–1024 Input circuit offset in specified I/O device, in bits

 State 0/1 ON or OFF condition of circuit read from PCIM

4

4-39GFK-0881 Chapter 4 C Programming for the PCIM

Return Value (Status)
GetCir will return SUCCESS if the target device is present on the given IMnum. If the
target device is not present, or is out of range, GetCir will return FAIL. If SUCCESS is
returned, then the character pointed to by State will contain the value of the circuit
requested. The following FAIL indications will be returned:

BADIMNUM IMnum is out of range (a count of 64 or greater).

BADSBA Specified Devicenum is not in the range for Genius bus de-
vices (0 –31 decimal), or is that of the PCIM.

NOINIT Indicated PCIM has not been initialized (InitIM).

IMFAIL The indicated PCIM has failed (PCIM OK = 0).

OFFLINE The device requested is currently not on the bus, and data is
NOT transferred.

OVERFLOW The Offset specified is greater than the devices InputLength
in circuits.

UNDERFLOW The Offset is specified as zero (0).

Coding Example
Get the State value of circuit 2 of device #8 on PCIM #1.

 #include <pcim.h>

 int status;
 char State;

 status = GetCir (1, 8, 2, &State);

4

4-40 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

PutCir – Write Output Circuit Value

Code Summary
 #include <pcim.h>

 int
 PutCir (IMnum, Devicenum, Offset, State)

 unsigned int IMnum, Devicenum;
 unsigned int Offset;
 char State;

Description
A Put Circuit call allows the state of a single output circuit to be changed from ON to
OFF or vice–versa. In this call, the State parameter is written from the Host memory to
the specified PCIMs Output Table.

IMnum is the PCIM number configured during initialization. The Devicenum parameter
specifies the serial bus address of the device which contains the target output circuit.
The Offset parameter indicates which bit of Devicenum is to be written. This value
ranges from 1 through 1024 (in bits).

State is a character in which PutCir will use as desired the value of the circuit. The
contents of State should be either a ‘1’ or ‘0’ (ON or OFF).

Parameters are summarized as follows:

Parameter Values Function

IMnum 1–64 Relative number of PCIM

Devicenum 0–31 Specifies I/O device to which output circuit will be written.

Offset 1–1024 Output circuit offset in specified I/O device, in bits

State 0 /1 Variable “State” is written from the Host memory to the
 specified PCIM

4

4-41GFK-0881 Chapter 4 C Programming for the PCIM

Return Value (Status)
PutCir will return SUCCESS if the target device is present on the given IMnum. If the
target device is not present, or is out of range, PutCir will return FAIL. The following
FAIL indications will be returned:

BADIMNUM IMnum is out of range (a count of 64 or greater).

BADSBA Specified Devicenum is not in the range for Genius bus de-
vices (0 –31 decimal), or is that of the PCIM.

NOINIT Indicated PCIM has not been initialized (InitIM).

IMFAIL The indicated PCIM has failed (PCIM OK = 0).

OFFLINE The device requested is currently not on the bus, and data
is NOT transferred.

OVERFLOW The Offset specified is greater than the devices Output-
Length in circuits.

UNDERFLOW The Offset is specified as zero (0).

Coding Example
Set the State value of circuit 2 of device #8 on PCIM #1 to ’1’.

#include <pcim.h>

int status;

status = PutCir (1, 8, 2, (Char) 1);

4

4-42 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

GetWord – Read Input Word Value

Code Summary
 #include <pcim.h>

 int
 GetWord (IMnum, Devicenum, Offset, Worddata)

unsigned int IMnum, Devicenum;
unsigned int Offset;
unsigned int *Worddata;

Description
A Get Word call allows you to read the value of a single input word from the specified
PCIM’s Input Table into the Host memory “Worddata” parameter. The “Worddata”
parameter is an integer pointer which GetWord uses to store the word requested.

IMnum is the PCIM number configured during initialization. The Devicenum parameter
specifies the serial bus address of the device where the input word is located. The Offset
parameter indicates which word of the specified device is to be read. This value ranges
from 1 through 64 (in word quantities).

When GetWord is called, it begins by “locking–out” the PCIM from updating the Shared
RAM (ensures data coherency across bus scans). GetWord then transfers the word data
into Host memory. Once the transfer is complete, the PCIM is “unlocked”.

Parameters are summarized as follows:

Parameter Values Function

IMnum 1–64 Relative number of PCIM
Devicenum 0–31 Specifies I/O device from which input word will be read
Offset 1–64 Input word offset in specified I/O device, in words
Worddata 2 bytes Integer pointer used to store the word requested

– see above

4

4-43GFK-0881 Chapter 4 C Programming for the PCIM

Return Value (Status)
GetWord will return SUCCESS if the device specified by IMnum is present on the serial
bus, and after the data is transferred to the DevData buffer. If the target device is not
present, or is out of range, GetWord will return FAIL. If SUCCESS is returned, then the
requested word value will be saved in the location pointed to by Worddata. The
following FAIL indications will be returned:

BADIMNUM IMnum is out of range (a count of 64 or greater).

BADSBA Specified Devicenum is not in the range for Genius bus devices
(0 –31 decimal), or is that of the PCIM.

NOINIT Indicated PCIM has not been initialized (InitIM).

IMFAIL The indicated PCIM has failed (PCIM OK = 0).

OFFLINE The device requested is currently not on the bus, and data is
NOT transferred.

OVERFLOW The Offset specified is greater than the devices InputLength in
circuits.

UNDERFLOW The Offset is specified as zero (0).

Coding Example
Get the first word of device #8 on PCIM #1.

 #include <pcim.h>

 int status;
 unsigned int Worddata;

 status = GetWord (1, 8, 1, &Worddata);

4

4-44 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

PutWord – Write Output Word Value

Code Summary
 #include <pcim.h>

 int
 PutWord (IMnum, Devicenum, Offset, Worddata)

 unsigned int IMnum, Devicenum;
 unsigned int Offset, Worddata;

Description
A Put Word call allows you to write a single output word from the Host memory
Worddata parameter to the specified PCIMs Output Table. The Worddata parameter is
an integer which PutWord uses for the word to be transmitted.

IMnum is the PCIM number configured during initialization. The Devicenum parameter
specifies the serial bus address of the device where the output word is to be sent. The
Offset parameter indicates which word of the specified device is to be written. This
value ranges from 1 through 64 (in word quantities).

When PutWord is called, it begins by “locking–out” the PCIM from updating the Shared
RAM (ensures data coherency across bus scans). PutWord then transfers the word data
to the device. Once the transfer is complete, the PCIM is “unlocked”.

Parameters are summarized as follows:

Parameter Values Function

IMnum 1–64 Relative number of PCIM

Devicenum 0–31 Specifies device to which output word will be written

Offset 1–64 Output word offset in specified device, in words

Worddata 2 bytes Integer used to store the word requested
– see above

4

4-45GFK-0881 Chapter 4 C Programming for the PCIM

Return Value (Status)
PutWord will return SUCCESS if the device specified by IMnum is present on the serial
bus. If the target device is not present, or is out of range, PutWord will return FAIL. The
following FAIL indications will be returned:

BADIMNUM IMnum is out of range (a count of 64 or greater).

BADSBA Specified Devicenum is not in the range for Genius bus devices
(0 –31 decimal), or is that of the PCIM.

NOINIT Indicated PCIM has not been initialized (InitIM).

IMFAIL The indicated PCIM has failed (PCIM OK = 0).

OFFLINE The device requested is currently not on the bus, and data is
NOT transferred.

OVERFLOW The Offset specified is greater than the devices OutputLength in
circuits.

UNDERFLOW The Offset is specified as zero (0).

Coding Example
Set the second word of device #8 on PCIM #1 to 10 hex.

#include <pcim.h>

 int status;

 status = PutWord (1, 8, 2, 0x10);

4

4-46 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

SendMsg – Send a Message

Code Summary
 #include <pcim.h>

 int
 SendMsg (IMnum, Msg)

 int IMnum;
 SEND_MESSAGE *Msg;

Description
The Send Message call allows you to write a memory or non–memory message from
the Host to the selected PCIM for transmission onto the serial bus (using the Transmit
Datagram command). SendMsg will return control to the calling program without delay,
before the message has been processed or transmitted by the PCIM.

IMnum defines the PCIM, as configured during initialization, from which to transmit the
message. The Msg parameter is a pointer to the buffer where the transmit message is
stored.

The format of SEND MESSAGE is:

Destination (0–31/255 brdcst) – Destination address of Device
Function code (0–111) – Function Code (normally 20 hex)
SubFunction code (0–255) – Sub Function Code
Priority – 0 – Normal, 1 – High
Length – Data field length/length of message
Data (0–134) – Message Data – depends on length parm

You should check the status of the message using ChkMsgStat to determine if the
message completed processing properly.

Parameters are summarized as follows:

Parameter Values Function

IMnum 1–64 Relative number of PCIM

Msg see above Pointer to the buffer where the transmitted
message will be stored – see above

4

4-47GFK-0881 Chapter 4 C Programming for the PCIM

Return Value (Status)
SendMsg will return SUCCESS if a message has been transferred from the Host memory
to the PCIM. Otherwise, one of the following FAIL indications will be returned:

 BADIMNUM – IMnum is out of range (a count of 64 or greater).

 NOINIT – Indicated PCIM has not been initialized (InitIM).

 IMFAIL – The indicated PCIM has failed (PCIM OK = 0).

 IMBUSY – The PCIM is otherwise engaged and cannot accept the command.

Note

You are responsible for �������� the device, the Function code, the
Sub–F unction code and the length of the transmit Datagram.

Note

You cannot issue a SendMsg call or read a received unsolicited message
while a SendMsgReply call is in progress. If this presents a timing
problem, use the SendMsg call.

See Also: SendMsgReply, GetMsg and ChkMsgStat

Coding Example
Send a Read Diagnostics message to device #8 on PCIM #1. This message will read 10
bytes of diagnostic data beginning at offset 0.

 #include <pcim.h>

 int status;
 SEND_MESSAGE Msg;

Msg.Destination = 8; /*Device #8*/
Msg.Function = 0x20; /*Genius Function Code*/
Msg.SubFunction = 8; /*Read Diagnostic Subfunction Code*/
Msg.Priority = NORMALP; /*Transmit at Normal priority*/
Msg.Length = 2; /*Length of data in Data Buffer*/
Msg.Data[0] = 0; /*Offset of 0*/
Msg.Data[1] = 0xA; /*Length of 10 decimal*/

status = SendMsg (1, &Msg);

To see how message function calls work together, see Appendix A, Example 2.

4

4-48 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

SendMsgReply – Send a Message Requesting a Reply

Summary
 #include <pcim.h>

 int
SendMsgReply (IMnum, Msg)

 int IMnum;
SEND_MESSAGE_REPLY *Msg;

Description
The Send Message Reply call allows you to write a memory or non–memory message
from the Host to the selected PCIM for transmission onto the bus (using the Transmit
Datagram With Reply command). SendMsgReply will return control to the calling
program without waiting for the reply. You must call ChkMsgStat or GetMsg to check
for completion or to read the reply message.

IMnum defines the PCIM, as configured during initialization, from which to transmit the
message. The Msg parameter is a pointer to the buffer where the transmit message is stored.

The format of SEND MESSAGE REPLY is:

 Destination (0–31/255 brdcst) – Destination address of Device
Function code (0–111) – Function Code
T_SubFunction code (0–255) – Transmitted Reply Sub Function Code
R_SubFunction code (0–255) – Expected Reply Sub Function Code
Priority – 0 – Normal, 1 – High
T_Length – Data field length/length of message
Data (0–134) – Message Data – depends on length parm

You can check the status of the message using ChkMsgStat to determine if the message
completed processing properly.

Parameters are summarized as follows:

Parameter Values Function

IMnum 1–64 Relative number of PCIM
Msg see above Pointer to the buffer where the transmitted

message will be stored – see above

The advantage of the SendMsgReply call over the SendMsg call is that it reduces user
programming since a 10 second timeout to a non–responding device is automatically
provided by the PCIM for a SendMsgReply call.

The Host program sequence for a SendMsgReply is as follows:

1. Host sends a SendMsgReply to the PCIM.

2. Host issues GetMsg calls until the Status indicates completion. GetMsg will also
return the reply message into Host memory.

4

4-49GFK-0881 Chapter 4 C Programming for the PCIM

Return Value (Status)

SendMsgReply will return SUCCESS if a message has been transferred from the Host
memory to the PCIM. Otherwise, one of the following FAIL indications will be
returned:

 BADIMNUM – IMnum is out of range (a count of 64 or greater).

 NOINIT – Indicated PCIM has not been initialized (InitIM).

 IMFAIL – The indicated PCIM has failed (PCIM OK = 0).

 IMBUSY – The PCIM is otherwise engaged and cannot accept the command.

Note

 You are responsible for defining the device, the Function code, the
Sub–F unction code and the length of the transmit Datagram.

It is also your responsibility to interpret the Function code, the
Sub–F unction code and the meaning of the Reply message. See
GEK–90486–1 for predefined message codes.

Note

You cannot issue a SendMsg call or read a received unsolicited message
while a SendMsgReply call is in progress. If this presents a timing
problem, use the SendMsg call.

See Also: SendMsg, GetMsg and ChkMsgStat

Coding Example

This example sends a Read Diagnostics Message to device #8 on PCIM #1 and expects a
reply message of Read Diagnostic Reply. This message requests 10 bytes of diagnostic
data beginning at offset 0.

#include <pcim.h>

int status;
SEND_MESSAGE_REPLY Msg;

Msg.Destination = 8; /*Device #8*/
Msg.Function = 0x20; /*Genius Function Code*/
Msg.T SubFunction = 8; /*Read Diagnostic Subfunction Code*/
Msg.R SubFunction = 9; /*Read Diagnostic Reply Subfunction Code*/
Msg.Priority = NORMALP; /*Transmit at Normal priority*/
Msg.T Length = 2; /*Length of data in Data Buffer*/
Msg.Data[0] = 0; /*Offset of 0*/
Msg.Data[1] = 0xA; /*Length of 10 decimal*/

status = SendMsgReply (1, &Msg);

To see how message function calls work together, see Appendix A, Example 2.

4

4-50 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

ChkMsgStat – Read Message Progress Status

Summary
 #include <pcim.h>

 int ChkMsgStat (IMnum, Replystatus)

 int IMnum;
 char *Replystatus;

Description
The Check Message Status call allows you to determine the status of a previous
SendMsg call – that is, to determine when a transmitted message has actually been
received, and its completion status.

IMnum is the PCIM number configured during initialization. The “Replystatus”
parameter is a pointer to a buffer where the Status will be stored.

The “Replystatus” parameter will contain the following Macro values:

IMFREE There is currently no activity.
IMBUSY Message is still in progress.
SUCCESS Message has successfully completed.
BADPARM Message contained a syntax error.
TXERR Message was not transmitted successfully.

Parameters are summarized as follows:

 Parameter Values Function

IMnum 1–64 Relative number of PCIM

 Replystatus 0/1 Pointer to a buffer where the Status will be stored
 –see above

4

4-51GFK-0881 Chapter 4 C Programming for the PCIM

Return Value (Status)
ChkMsgStat will normally return the Status requested and a SUCCESS indication.
Otherwise, one of the following FAIL indications will be returned:

BADIMNUM – IMnum is out of range (a count of 64 or greater).

NOINIT – Indicated PCIM has not been initialized (InitIM).

IMFAIL – The indicated PCIM has failed (PCIM OK = 0).

PCIMERR – There may be a problem with the PCIM firmware.

See Also: SendMsgReply, SendMsg and GetMsg

Coding Example
Check the message status area of PCIM #1.

 #include <pcim.h>

int status;
char Status;

status = ChkMsgStat (1, &Status);

switch [STATUS]
{
case SUCCESS:

–––;
break;

case IMFREE:
–––;

break;
case IMBUSY:

–––;
break

case BADPARM:
 –––;
 break

case TXERR:
–––;

break
case PCIMERR:

–––;
break

default:
–––;

break
}

4

4-52 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

GetMsg – Read Received Message

Code Summary
 #include <pcim.h>

 int
 GetMsg (IMnum, Msg)

 int IMnum;
 READ_MESSAGE *Msg;

Description
The Get Message call allows you to read a received memory or non–memory message
(or a reply to a previous SendMsgReply call) from the selected PCIM into the Host
memory “Msg” parameter.

IMnum is the PCIM number configured during initialization. The “Msg” parameter is a
pointer to the buffer where the received message will be stored.

The format of READ MESSAGE is:

 Source (0–31 – Source address of Device
 Function code (0–111) – Function Code
 SubFunction code (0–255) – Sub Function Code
 DB Indicator (0–134) – Directed (1)/Broadcast (0)
 Length – Data field length/length of message
 Data (0–134) – Message Data –depends on length parm

Parameters are summarized as follows:

 Parameter Values Function

 IMnum 1–64 of PCIM
 Msg see above Pointer to the buffer where the received message

will be stored – see above

GetMsg performs the following sequence:

1. If there is a previous call to SendMsgReply, GetMsg checks to see if the transmission
has successfully completed, and transfers the response back to you. If the response
completed with an error, or if in progress, GetMsg will return a FAIL indication.

2. If there is no previous call to SendMsgReply, GetMsg checks to see if there is a
memory message, and transfers that message back to you.

3. If no memory messages exist, then GetMsg checks to see if there is a non–memory
message, and transfers that message back to you.

4. If no messages are present, GetMsg returns with a FAIL status.

Note
Unsolicited memory or non–memory Datagrams received by the PCIM
may not be read by the Host while a SendMsg/Reply is in progress. This
significantly affects Host response time to service received Datagrams.
If this is a problem, use the SendMsg call instead of SendMsgReply.

4

4-53GFK-0881 Chapter 4 C Programming for the PCIM

Return Value (Status)
GetMsg will return SUCCESS if a memory or non–memory message is returned to you.
Otherwise, one of the following FAIL indications will be returned:

BADIMNUM – IMnum is out of range (a count of 64 or greater).

NOINIT – Indicated PCIM has not been initialized (InitIM).

 IMFAIL – The indicated PCIM has failed (PCIM OK = 0).

IMBUSY – The PCIM is otherwise engaged and cannot accept the command.

NOMSG – No message is available to be received at this time.

TXERR – A message transmission has failed or response to SendMsgReply
 has not arrived after 10 seconds.

PCIMERR – There may be a problem with the PCIM firmware.

BADPARM – Syntax error from previous SendMsgReply

See Also: SendMsgReply, SendMsg and ChkMsgStat

Coding Example
Check to see if any messages exist on PCIM #1 and if so, store them into the location
‘Msg’.

 #include <pcim.h>

 int status;
 READ_MESSAGE Msg;

 status = GetMsg (1, &Msg);

4

4-54 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

GetINTR – Read Interrupt Status Table

Code Summary
 #include <pcim.h>

 int
 GetINTR (IMnum, Intr)

 unsigned int IMnum;
 unsigned char *Intr;

Description
The Get Interrupt call allows you to read the selected PCIMs Interrupt Status Table. You
can read this table to:

� See why an interrupt in the Host system has occurred

� Report the event in a non–interrupt environment, as is the default state of the
Software Driver concept (the PCIM will still report the event even though the
interrupt is disabled).

Thus, the Interrupt Status Table can be polled (by reading and interpreting it) to
determine what is causing an interrupt from the PCIM.

When GetINTR is called, it transfers the data from the PCIMs Interrupt Status Table to
the Host memory “Intr” parameter. The format of the Interrupt Status Table and its
associated macros (shown below) is defined in the summary of data structures in this
chapter and in <pcim.h>.

IMnum defines the PCIM, as configured during initialization, from which the Interrupt
Status Table is to be read. The Intr parameter is a pointer to the buffer where the
Interrupt Status Table information is stored.

The format of the Intr table is:

 unsigned char Intr;

The following Macros are used as shown in the Interrupt Status Table.

 Macro Position Explanation

 #define I ENABLE 0 – Enable the interrupt level.
 #define I DISABLE 1 – Disable the interrupt level.

 #define I SUMMARY 0 – Summary if interrupt occurred.
 #define I REQUEST Q 1 – Received memory datagram.
 #define I PCIM STAT 2 – PCIM Status Change – usually fatal.
 #define I DEV STAT 3 – Device Status Change.
 #define I OUT SENT 4 – Outputs sent – end of bus access.
 #define I CCOMPLETE 5 – Command Block completed.
 #define I RECEIVE D 6 – Received Datagram.

After data transfer to the Host is complete, GetINTR clears all of the PCIMs Interrupt
Status Table bytes each time it is called. This way, you can see the lastest event that has
occurred each call.

4

4-55GFK-0881 Chapter 4 C Programming for the PCIM

Parameters are summarized as follows:

 Parameter Value Function

 IMnum 1–64 Relative number of PCIM

 Intr see above Pointer to the buffer where the table data will be stored

Return Value (Status)
GetINTR will return SUCCESS if the device specified by IMnum is present on the serial
bus. If the target device is not present, or is out of range, GetINTR will return FAIL. The
following FAIL indications will be returned:

BADIMNUM – IMnum is out of range (a count of 64 or greater).

NOINIT – Indicated PCIM has not been initialized (InitIM).

IMFAIL – The indicated PCIM has failed (PCIM OK = 0).

Coding Example
This example shows how, if an interrupt occurs on PCIM #1, to transfer the contents of
that PCIMs Status Table. Interpretation of bits will depend on which interrupt is
Enabled, and which application is to be run.

 #include <pcim.h>

 int status;
 unsigned char Intr[8];

 if ((status = GetINTR (1, Intr)) !=SUCCESS)
 report–err (1, status);

 else
 { /*do what is necessary for interrupt processing*/
 }

4

4-56 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

PutINTR – Write to the Interrupt Disable Table

Code Summary
 #include <pcim.h>

 int
PutINTR (IMnum, DisableIntr)

 unsigned int IMnum;
unsigned char *DisableIntr;

Description
The Put Interrupt call allows you to write to the selected PCIM’s Interrupt Disable Table.
The PutINTR call first initializes a table to Enable and Disable individual interrupts as
you require. The PutINTR call then writes this table to the Interrupt Disable Table on the
PCIM. You can Enable or Disable interrupts in any mix; that is, on a single call, some
interrupts may be Enabled and some Disabled, all may be Enabled, or all of the
interrupts may be Disabled.

When PutINTR is called, it transfers the data from the Host memory “DisableIntr”
parameter to the PCIMs Interrupt Disable Table. The format of the Interrupt Disable
Table and its associated macros (shown below) is defined in the summary of data
structures in this chapter and in <pcim.h>

IMnum defines the PCIM, as configured during initialization, to which DisableIntr will
be read. The DisableIntr parameter is a pointer to the buffer where the Interrupt Disable
Table information is stored.

The format of the DisableIntr table is:

 unsigned char DisableIntr;

The following Macros are used as shown in the Interrupt Disable Table.

 Macro Position Explanation

 #define I ENABLE 0 – Enable the interrupt level.
 #define I DISABLE 1 – Disable the interrupt level.

 #define I SUMMARY 0 – Summary if interrupt occurred.
 #define I REQUEST Q 1 – Received memory datagram.
 #define I PCIM STAT 2 – PCIM Status Change – usually fatal.

#define I DEV STAT 3 – Device Status Change.
 #define I OUT SENT 4 – Outputs sent – end of bus access.
 #define I CCOMPLETE 5 – Command Block completed.
 #define I RECEIVE D 6 – Received Datagram.

Parameters are summarized as follows:

Parameter Values Function

IMnum 1–64 Relative number of PCIM
DisableIntr see above Pointer to the buffer from which enable/disable data

 is sent

4

4-57GFK-0881 Chapter 4 C Programming for the PCIM

Return Value (Status)
PutINTR will return SUCCESS if the device specified by IMnum is present on the serial
bus. If the target device is not present, or is out of range, PutIntr will return FAIL. The
following FAIL indications will be returned:

 BADIMNUM – IMnum is out of range (a count of 64 or greater).

 NOINIT – Indicated PCIM has not been initialized (InitIM).

 IMFAIL – The indicated PCIM has failed (PCIM OK = 0).

Coding Example
This example enables the Receive Datagram interrupt.

 #include <pcim.h>

 int status;
 x;

 unsigned char DisableIntr[8];

 /*Initialize the Disable Table*/
 for (x = 0; x < 8; x++)

DisableIntr [x] = I_DISABLE /* Disable all Interrupts*/

 /*Enable Receive Datagram Interupt*/
DisableIntr [I_RECEIVE_D] = I_ENABLE;

 /*Now call use the call*/
 if ((status = PitiNTR (1, DisableIntr)) ! = SUCCESS)

report–err (1, status)

5 section level 1 1
figure bi level 1
table_big level 1

5-1GFK-0881

Chapter 5 BASIC Programming for the PCIM

This chapter explains programming for a PCIM in BASIC. Programming requires:
BASIC/MSOS

Basic Software Driver Installation

The Basic Software driver function call subroutines are made resident in your system
when you execute the driver code file once under MS/OS as follows:

� Type ‘PCIMX’ in response to the DOS prompt ‘A’> (if disk is in drive A).

� The Driver code file is loaded into memory.

� A short initialization sequence inside the Driver is executed.

� The Driver code displays the message ‘PCIM Drivers Version x.x are Resident’ and
exits to DOS.

� The Driver is resident in memory and available for use.

� BASICA or GWBASIC can be loaded and calls to the Drivers performed.

If you need to recover the memory space occupied by the Driver, you must perform a
system reset. In most cases, this will not be necessary since Driver code occupies only a
small amount of memory (13K). If you plan to access the Driver frequently, the Driver
code file can be moved to your system disk and executed from inside your
AUTOEXEC.BAT file at startup. This will automatically make the Driver resident.

5

5-2 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

Software Driver Function Calls

The PCIM Software Driver consists of easy to use macro–oriented function calls you
code appropriately in your C language or Basic language applications routines. Function
calls are summarized below.

Functions that deal with PCIM configuration:
������ – assigns PCIM numbers and Global data parameters to all PCIMs. Performs
any required hardware activation and initialization of the PCIMs (such as Reset).

�����	���� – writes to the Setup Table of the selected PCIM from the Host
memory to change PCIM parameters.

�����	���� – reads PCIM configuration and status from the selected PCIM Status
Table and Setup Table into Host memory.

Functions that deal with bus configuration:
������������ – reads all Device Configuration Tables from the selected PCIM into
Host memory.

������������ – reads one device’s configuration from the selected PCIM into Host
memory.

���������� – writes to the Device Configuration Table of the selected PCIM to
enable/disable outputs to selected devices or to all devices.

Functions that deal with control data movement:
�������� – reads the entire Input Table (control data inputs) from a selected PCIM
into Host memory.

��������� – writes the entire Output Table (control data outputs) to a selected
PCIM from Host memory.

�������� – read control data inputs from a selected bus device into Host memory.

��������� – write control data outputs to a selected bus device from Host memory.

������� – reads all PCIM control data from Directed Control Input Table of selected
PCIM into Host memory.

�������� – writes all PCIM control data to Global Data Table of selected PCIM
from Host memory.

������ – reads an input circuit value (variable) into the Host memory from the
Input Table of a selected PCIM.

���
��
 – reads an input word value (variable) into the Host memory from the
Input Table of a selected PCIM.

������ – writes an output circuit value (variable) from the Host memory to the
Output Table of a selected PCIM.

���
��
 – writes an output word value (variable) from the Host memory to the
Output Table of a selected PCIM.

5

5-3GFK-0881 Chapter 5 BASIC Programming for the PCIM

Functions that deal with communications:
�����
 – reads a received message from a selected PCIM into Host memory.

������
 – writes a message from Host memory to the PCIM for transmission onto
the bus.

������
����� – writes a message from Host memory to the PCIM for transmission
onto the bus and expects a specified reply message from the destination.

�����
��
� – allows the Host to detect when a transmitted message has actually
been completed, or if transmission is incomplete or has failed.

Functions that deal with interrupt processing:
�����	� – reads the entire Interrupt Status Table from a selected bus device into
Host memory.

�����	� – writes the entire Interrupt Status Table to a selected PCIM from Host
memory.

Using Software Driver Function Calls

When coding the PCIM Software Drivers in your application programs, you should have
at hand the following:

� Starting Address (Segment Address) of the Shared RAM Interface.

� I/O Port Base Address.

� Status Table Address (PCIMs) or Reference Address (Series Six).

� Serial Bus Address of each bus device.

� Global, Input, Output Data lengths for all devices.

It is also helpful to have the Genius I/O System and Communications User’s Manual
(GEK–90486–1) handy for reference.

5

5-4 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

Basic Software Driver Function Call Parameters

Software Driver function calls require that you specify a number of parameters for each
call. The data structures for each parameter, which are linked and loaded from the
Software Driver .exe file, are summarized below.

IBM PC BASICA interpreter does not allow the passing of constants in the parameter list
of a CALL statement. Only variables may be passed. You must load all variables which
supply information to the Driver before performing a function call. In the parameter
lists which follow, all parameters are either single integers or are arrays of integers.

Note

BASICA interpreter requires that all arrays be called with subscript. If
this is violated, incorrect data and/or system crash is the usual result.

Basic Data Array Structures

IMPARMS
The user–supplied IMPARMS() array sets parameters for the initialization of each IM.

The format of “IMPARMS()” is:

0 – Segment address of 1st PCIM daughterboard

1 – I/O Port address (dip switch setting)

2 – Starting Ref addr for global data

Variable, depending on how
many IMs are to be initialized

3 – Global data length (0–127), p g
many IMs are to be initialized,
(can be up to 383)

4 – Input data length (0–127)
(can be up to 383)

5 – Active (1=ON, 0=OFF)

6 – Segment address of 2nd PCIM SIR

7 – I/O Point address (DIP switch setting)

8 •
• •
• •

5

5-5GFK-0881 Chapter 5 BASIC Programming for the PCIM

IMFLAGS
The IMFLAGS() array is a system return used by INITIM to tell you which PCIMs
initialized properly (on improperly, as the case may be). The length of IMFLAGS should
be equal to the number of IMs or IMCOUNT.

The format of “IMFLAGS()” is:

0 – Flag for the 1st IM

1 – Flag for the 2nd IM

2 – Flag for the 3rd IM

Variable depending on the num-
ber of IMs (can be up to 64)

3 – Flag for the 4th IMp g
ber of IMs (can be up to 64) • •

• •
• •
• •

IMSTATE
The IMSTATE() array is a system return used for accessing configuration and status
information about a specific PCIM by reading its Setup Table and Status Table.

The format of “IMSTATE()” is:

0 – Daughterboard configuration
1 – Global Data Reference

2 – Global Data Length

" 3 – Normally set to 0

4 – PCIM Firmware Revision number

 10 5 – PCIM Hardware OK flag 10

#
6 – PCIM Fault Description

 # 7 – PCIM Present/Excess Bus Errors flag #
8 – HHM Present/Excess Bus Errors flag
9 – Serial Bus Error Count

10 * – Bus Scan Time in mS

For more information about the content of the IMSTATE() array, particularly the
daughterboard configuration parameters, see page 4-9.

5

5-6 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

BUSCONFIG
The BUSCONFIG() array is a system return used to access the configuration of all 32
devices from the PCIM selected by the IMNUM parameter.

The format of “BUSCONFIG()” is:

0 – Model number of device #1

1 – Output disable flag for device #1

"
2 – Device present flag for device #1

 " 3 – Reference address for device #1

224
4 – Control Input data length for device #1

 224
(7 for each device)

5 – Control Output data length for device #1
(7 for each device)

6 – Configuration for device #1

 # 7 – Model number of device #2 #
8 – Output disable flag for device #2

• •
• •

For more information about the content of the BUSCONFIG() array, see page 4-10.

DEVCONFIG
The user–supplied DEVCONFIG() array is a system return very similar to BUSCONFIG
array, except that it can only read the configuration of 1 device at a time.

The format of “DEVCONFIG()” is:

0 – Model number of device specified

"
1 – Output disable flag

 " 2 – Device present flag

 7
3 – Reference address for device 7

#
4 – Control Input data length for device

 # 5 – Control Output data length for device #
6 – I/O Configuration for device

For more information about the content of the BUSCONFIG() array, see page 4-10.

5

5-7GFK-0881 Chapter 5 BASIC Programming for the PCIM

IODATA
The IODATA() array is used to read and/or write I/O data to and from the PCIM
input/output tables to all the devices on the bus (User supplied for PUTBUSOUT
call/System returned for GETBUSIN call).

The format of “IODATA()” is:

circuit #4 if discrete
8 circuit block

Device #1

circuit #13 if discrete
16 circuit block

Device #2

circuit #32 if analog
32 circuit block

Device #3

4096
(128 each device)

0

128

129

256

257

258

259

384 .
.
.
.

46361

DEVDATA
The DEVDATA() array is very similar to IODATA() except that it is used to read and/or
write I/O data to and from the PCIM input/output tables to a device on the bus (User
supplied for PUTBUSOUT call/System returned for GETBUSIN call).

The format of “DEVDATA()” is:

Data to / from
device specified

128

0

127

46362

5

5-8 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

IMDATA
The IMDATA() array is a buffer where Global Data to be read will be located. The size of
this parameter is determined by the “Inputlength” parameter located in the PCIMs
configuration data.

The format of “IMDATA()” is:

Data to / from
PCIM specified

128

0

127

46363

MSG
The MSG() array is a buffer where the message to be sent (SENDMSG) or message to be
received (GETMSG) will be stored.

The format of “MSG()” is:

139

0

138

46364

For explanations of the content of the MSG() array, see pages 4-11 and 4-12.

5

5-9GFK-0881 Chapter 5 BASIC Programming for the PCIM

INTR/DISABLEINTR
The INTR and DISABLEINTR arrays are used to read the selected PCIMs Interrupt
Status Table and write to the selected PCIMs Interrupt Disable Table, respectively.

The format of “INTR” and “DISABLEINTR” is:

0 – Summary if interrupt occurred

"
1 – Received memory datagram

 " 2 – PCIM status change – usually fatal

 7
3 – Device status change 7

#
4 – Outputs sent – end of bus access

 # 5 – Command Block completed #
6 – Received datagram

5

5-10 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

Error Status Indication

Any function call may return an error condition. You are informed of error conditions
by a non–zero error code returned in the STATUS variable included as the first
parameter in every call. Normal completion of a function call is indicated by a zero
STATUS returned. The table of error codes that follows will help you interpret these
codes. A simple check for non–zero STATUS must be performed after each driver call to
detect error conditions.

 The following error codes are returned for all calls:

Error Code Explanation

SUCCESS 0 Successful completion of function.

INITFAIL 1 Initialization Failure.

IMFAIL 2 PCIM Failure.

BADSEG 3 Invalid Segment address.

BADPORT 4 Invalid I/O Port Address.

BADCFG 5 Invalid Configuration parameter.

NOCFG 6 No Configuration changes found.

NOINIT 7 PBIM selected is not initialized.

NODATA 8 No data found.

UNDERFLOW 9 Insufficient device data length.

OVERFLOW 10 Exceeds device data length.

OFFLINE 11 Device is offline.

IMBUSY 12 PCIM busy.

BADPARM 13 Invalid message parameter.

TXERR 14 Message transmit failure.

NOMSG 15 No Message available.

IMFREE 16 No message activity.

BADSBA 17 Invalid Serial Bus Address.

BADIMNUM 18 Invalid PCIM Number.

PCIMERR 19 PCIM firmware problem.

DUPSEG 20 Duplicate segment values given.

DUPPORT 21 Duplicate IO Port values given.

5

5-11GFK-0881 Chapter 5 BASIC Programming for the PCIM

Access from BASIC

Every BASIC program which accesses the PCIM Software Driver must perform a short
startup sequence to let BASIC know where each of the function call subroutines is
located. This startup sequence is listed below. It is also included on the Driver diskette
in the file PCIM.BAS so you can copy it at the beginning of new programs rather than
re–code it every time you need it.
 10 OPTION BASE 0
 20 DEFINT A–Z
 30 DIM IMPARMS(383),IMFLAGS (63),IMSTATE (9),IMDATA(127),BUSCONFIG(223)
 40 DIM DEVDATA(127),IODATA(4095),MSG(139),DEVCONFIG(7)
 50 DIM INTR(6),DISABLEINTR(7)
 60 DEF SEG=0
 70 SUBSEG=(PEEK(&H4F1)*256) + PEEK(&H4F0)
 80 DROFFSET=(PEEK(&H4F3)*256) + PEEK(&H4F2)
 90 IF SUBSEG0 THEN 180
 100 ’
 110 ’ Non–resident return
 120 ’
 130 PRINT “PCIM Drivers not resident.”
 140 SYSTEM
 150 ’
 160 ’ Continue normally
 170 ’
 180 DEF SEG=SUBSEG
 190 INITIM=0+DROFFSET
 200 GETDEVIN=4+DROFFSET
 210 PUTDEVOUT=8+DROFFSET
 220 GETBUSIN=12+DROFFSET
 230 PUTBUSOUT=16+DROFFSET
 240 GETIMIN=20+DROFFSET
 250 PUTIMOUT=24+DROFFSET
 260 GETCIR=28+DROFFSET
 270 GETWORD=32+DROFFSET
 280 PUTCIR=36+DROFFSET
 290 PUTWORD=40+DROFFSET
 300 CHGIMSETUP=44+DROFFSET
 310 GETIMSTATE=48+DROFFSET
 320 GETBUSCONFIG=52+DROFFSET
 330 GETDEVCONFIG=56+DROFFSET
 340 DISABLEOUT=60+DROFFSET
 350 GETMSG=64+DROFFSET

360 SENDMSG=68+DROFFSET
370 SENDMSGREPLY=72+DROFFSET
380 CHKMSGSTAT=76+DROFFSET
390 GETINTR=80+DROFFSET
400 PUTINTR=84+DROFFSET
410 ’
420 ’ Get inputs for initialization function call INITIM.
430 ’ INITIM must be called first to initialize PCIMs and
440 ’ check that they were initialized.
450 ’
460 CALL INITIM (STATUS,IMCOUNT,IMPARMS(0),IMFLA)

5

5-12 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

In the above sequence:

� Line 10 forces array indexing to start at zero since this is more convenient when
using the Driver,

� Line 20 defaults all variables to integer type (use the type overrides for single and
double precision reals),

� Lines 60 through 180 find the segment address in memory where the Driver has
previously been installed and ensures that it is present,

� And Lines 190 through 400 define the offsets in the segment for each of the function
call subroutines.

� Lines 410 through 460 are simply a reminder to call for initialization first (see the
INITIM call).

Coding Basic Function Calls

There are two ways to call a function in Basic, as shown below:

1. Segment relocation – first relocate the segment, perform the the call, then restore
the segment. For example, to call INITIM, code:

1000 DEF SEG=SUBSEG
1010 CALL INITIM(parameters)
1020 DEF SEG

2. No relocation – if you know in advance that other BASICA statements which
depend on segment relocation (PEEK, POKE, BLOAD, BSAVE, DEF USR, or CALLs
to other user routines) will not be used, then the code in line 1000 above can be
executed once at startup to set the segment to the Driver. Function calls can then be
coded on a single line without segment relocation. Using the same example:

1010 CALL INITIM(parameters)

5

5-13GFK-0881 Chapter 5 BASIC Programming for the PCIM

INITIM CALL Statement

Syntax

CALL INITIM (STATUS, IMCOUNT, IMPARMS(0), IMFLAGS(0))

Action

Setup and Activate PCIM

Description

The Initialize IM call specifies the total number of PCIMs in the Host system through the
parameter “IMCOUNT”, and the characteristics of each PCIM through the parameter
“IMPARMS”.

INITIM resets the IMcount of PCIMs in the Host system and initializes each PCIM as
defined by IMPARMS. You must create a separate IMPARMS entry for each PCIM in
IMCOUNT. Each PCIM requires the entries in IMPARMS array.

The format of “IMPARMS” is:

IMPARMS(0) IM 1 – Segment Address of PCIM shared RAM (two bytes LSB – MSB)
IMPARMS(1) IM 1 – I/O Port Address (two bytes LSB – MSB)
IMPARMS(2) IM 1 – PCIM Global Reference (two bytes LSB – MSB)
IMPARMS(3) IM 1 – Global data length (one byte)
IMPARMS(4) IM 1 – Input directed data length (normally 0)
IMPARMS(5) IM 1 – Active (one byte) 1 = ON, 0 = OFF)

IMPARMS(6) IM 2 – Segment Address of PCIM shared RAM (two bytes LSB – MSB)
IMPARMS(7) IM 2 – I/O Port Address (two bytes LSB – MSB)
IMPARMS(8) IM 2 – PCIM Global Reference (two bytes LSB – MSB)
IMPARMS(9) IM 2 – Global data length (one byte)
IMPARMS(10)IM 2 – Input directed data length (normally 0)
IMPARMS(11) IM 2 – Active (one byte) 1 = ON, 0 = OFF)

etc...

Note

The memory pointer and I/O port assignments must correspond to the
dip switch settings on the PCIM.

The last parameter, “IMFLAGS”, is an array the size of IMCOUNT, used by INITIM to tell
you which PCIMs initialized properly (or improperly, as the case may be). The number
of flags should equal IMCOUNT.

5

5-14 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

Parameters are summarized as follows:

Parameter Values Function

IMCOUNT 1–64 Total number of PCIMs
 IMPARMS varies shows the characteristics of each module – see above

 (6 entries/IM)
IMFLAGS varies tells you which PCIMs initialized properly – see above
STATUS 0 / 1 success / fail

The INITIM call performs the following sequence of actions:

1. Brings each defined PCIM out of reset, or (if the PCIM is already running) into reset
then out of reset.

2. downloads Global data parameters to each PCIM after its PCIM OK LED turns ON
(may take up to two seconds).

3. After all PCIMs have been downloaded or a two second timeout has occurred,
returns with an IMFLAGS array (one for each defined PCIM). Status returned will
be Fail for any syntax or execution errors detected. An example of an execution error
is failure of the PCIM OK flag to be ON within two seconds after Reset.

Status Value
INITIM will return SUCCESS if all resets and data parameters were accepted by each
PCIM. The following failure codes are returned:

BADIMNUM IMcount is out of range (a count of 64 or greater). No more
InitIM processing is performed.

INITFAIL An initialization problem occurred in one or more PCIM. The
individual status for each PCIM on the bus is located in the
IMflags parameter.

One of the following status codes will be stored in the appropriate location in the
IMFLAGS parameter if the return code is INITFAIL. Each status value in the IMFLAGS
array is unique to the associated PCIM and does not reflect the status of any other PCIM.

INITFAIL This PCIM failed to power up. (Incorrect segment address or
port address).

SUCCESS This PCIM has been powered up and configured as specified.

IMFAIL This PCIM never powered up.

BADCFG This PCIM rejected the configuration because a parameter was
out of range.

BADSEG The segment value in IMparms is set to the illegal value 0
(zero)

BADPORT The I/O port address is set to some illegal value less than 256.

DUPSEG The segment address is a duplicate of another PCIM.

DUPPORT The port address is a duplicate of another PCIM.

5

5-15GFK-0881 Chapter 5 BASIC Programming for the PCIM

Note

If any of the PCIMs fail to initialize as you specified in IMPARMS,
INITIM turns OFF the failed PCIM.

Coding Example
In this example are two PCIMs.

410 IMCOUNT = 2 ; 2 PCIMs
420 IMPARMS (0) = &HD000 ;IM1 – PCIM #1 Segment address
430 IMPARMS (1) = &H3E4 ;IM1 – Port address
440 IMPARMS (2) = &H7000 ;IM1 – Reference address
450 IMPARMS (3) = 0 ;IM1 – No global data
460 IMPARMS (4) = 0 ;IM1 – No Directed input data
470 IMPARMS (5) = 1 ;IM1 – Turn PCI on by default
480 IMPARMS (6) = &HCC00 ;IM2 – PCIM #2 Segment address
490 IMPARMS (7) = &H3E0 ;IM2 – Port address
500 IMPARMS (8) = &H8001 ;IM2 – Global Data Reference address (Series 6

 register 1)
510 IMPARMS (9) = 0 ;IM2 – No global data
520 IMPARMS (10) = 0 ;IM2 – No Directed input data
530 IMPARMS (11) = 1 ;IM1 – Turn PCI on by default
540 Call INITIM(STATUS,IMCOUNT,IMPARMS(0),IMFLAGS(0))

5

5-16 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

CHGIMSETUP CALL Statement

Syntax
CALL CHGIMSETUP (STATUS, IMNUM, IMPARMS(0))

Action
Change PCIM Configuration

Description
Following initialization, any changes you make to the configuration of a specific PCIM
must use the Change IM Setup call. This call allows you to make configuration changes
to a specific PCIM Setup Table by writing the IMPARMS parameter from Host memory
to it.

The “IMNUM” parameter is an offset of the IMPARMS parameter which, after
initialization, indicates the specific PCIM in the host system for which configuration
changes are intended.

Note

Configuration changes to any PCIM while online causes that IM to stop
transmitting on the serial bus for 1.5 seconds.

The format of “IMPARMS” is the same as shown in the INITIM call. However only four
of the parameters should be allowed to be changed. These are as follows:

IMPARMS(I+2) – Reference Address
IMPARMS(I+3) – Global data length
IMPARMS(I+4) – Input data length
IMPARMS(I+5) – Active (1 = ON, 0 = OFF)

I = (IMNUM–1)*6

Parameters are summarized as follows:

Parameter Values Function

IMNUM 1–64 Relative number of PCIM
 IMPARMS varies shows the characteristics of each module – see above

STATUS 0 / 1 success / fail

5

5-17GFK-0881 Chapter 5 BASIC Programming for the PCIM

Status Value
CHGIMSETUP will return SUCCESS if all changes were accepted by the target IM. If the
IM fails to change to the new parameters, the following FAIL indications will be
returned:

BADIMNUM IMnum is out of range (a count of 64 or greater).

NOINIT Indicated PCIM has not been initialized (InitIM).

IMFAIL The indicated PCIM has failed (PCIM OK = 0), or never com-
pleted processing the config change command.

IMBUSY The PCIM is otherwise engaged and cannot accept the con-
fig change command.

BADCFG This PCIM rejected the configuration because a parameter
was out of range.

NOCFG The PCIM, after examining the received the config change
command, found no changes to make.

INITFAIL Change of Global Data output or Directed Data input length
required a reset of PCIM daughterboard and the daughter-
board failed to reinitialize.

Coding Example
Change the reference address for PCIM #1.

600 IMNUM = 1
610 IMPARMS (2) = &H6000 ;new reference address
620 Call CHGIMSETUP(STATUS, IMNUM, IMPARMS(0))

Turn off PCIM #2.

690 IMNUM = 2
700 IMPARMS (5) = 0
720 Call CHGIMSETUP(STATUS,IMNUM,IMPARMS(0))
730 ’Check status for next action
740 If STATUS = 0 Then 760 else 800

5

5-18 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

GETIMSTATE CALL Statement

Syntax
CALL GETIMSTATE (STATUS, IMNUM, IMSTATE(0))

Action
Get Configuration and Status Information

Description
The Get IM State call allows you to access configuration and status information about a
specific PCIM by reading its Setup Table and Status Table into the “IMSTATE” parameter
in Host memory.

The format of IMSTATE is:

IMSTATE(0) DipSwitch – See page 4-9.
IMSTATE(1) IMRef – Reference Address
IMSTATE(2) OutputLength – Output Control Data Length
IMSTATE(3) InputLength – Input Control Data Length
IMSTATE(4) Revision – PCIM Firmware Revision Number
IMSTATE(5) PCIM OK – PCIM OK – every 200 ms, set to 1.

 If PCIM OK=0, board has failed.
IMSTATE(6) Fault – Overall fault byte – any PCIM fault
IMSTATE(7) Active – Hand Held Monitor Present
IMSTATE(8) SBerr – Serial Bus error count
IMSTATE(9) ScanTime – Bus Scan Time in ms

Since the PCIM periodically sets its PCIM OK flag, this call allows the implementation of
a PCIM OK heartbeat procedure.

Parameters are summarized as follows:

Parameter Values Function

IMNUM 1–64 Relative number of PCIM

 IMSTATE varies PCIM Configuration and Status – see above

 STATUS 0/1 Success/Fail

5

5-19GFK-0881 Chapter 5 BASIC Programming for the PCIM

Status value
GETIMSTATE will almost always return SUCCESS. If the target IM is currently offline,
has not been initialized, or is out of range, the following FAIL indications will be
returned:

 BADIMNUM – IMNUM is out of range (a count of 64 or greater).

 NOINIT – Indicated PCIM has not been initialized (INITIM).

 IMFAIL – The indicated PCIM has failed (PCIM OK = 0).

Coding Example
Examine the state of PCIM #1.

1000 IMNUM = 1
1010 CALL GETIMSTATE(STATUS,IMNUM,IMSTATE(0))

5

5-20 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

GETBUSCONFIG CALL Statement

Syntax
CALL GETBUSCONFIG (STATUS, IMNUM, BUSCONFIG(0))

Action
Get Serial Bus Configuration

Description
The Get Bus Configuration call allows you to read device configuration information
about all devices on a serial bus (except the PCIM). GETBUSCONFIG reads all 32 Device
Configuration Tables from the PCIM selected by IMNUM into the Host memory
“BUSCONFIG” parameter. BUSCONFIG parm – 224 in length, 7 entries per device.

The format of BUSCONFIG is:

BUSCONFIG (0) Model – Model Number of device
BUSCONFIG (1) OutputDisable – Output disable flag
BUSCONFIG (2) Present – Device Present flag
BUSCONFIG (3) Reference – Status Table or Reference Address
BUSCONFIG (4) InputLength – Control Input Data Length
BUSCONFIG (5) OutputLength – Control Output Data Length
BUSCONFIG (6) Config – Device Configuration

 1 = all inputs
 2 = all outputs
 3 = combination

7 6 5 4 3 2 1 0

Device Configuration

Not Used

46365

Parameters are summarized as follows:

Parameter Values Function

IMNUM 1–64 Relative number of PCIM

BUSCONFIG 224 entries Device configuration information about all
(7 per device) devices on the bus – see above.

 STATUS Success/Fail

5

5-21GFK-0881 Chapter 5 BASIC Programming for the PCIM

Status Value
GETBUSCONFIG will almost always return SUCCESS. If the target IM is currently
offline, has not been initialized, or is out of range, the following FAIL indications will be
returned:

BADIMNUM IMNUM is out of range (a count of 64 or greater).

NOINIT Indicated PCIM has not been initialized (InitIM).

IMFAIL The indicated PCIM has failed (PCIM OK = 0).

OFFLINE None of the devices specified are currently active on the bus.
However, the appropriate buffer is still returned and will con-
tain configuration data for devices once logged in. Zeros will
be returned if no device has logged in to a particular slot.

Coding Example
Examine the configuration of the devices on PCIM #1.

1100 IMNUM = 1
1110 Call GETBUSCONFIG (STATUS,IMNUM,BUSCONFIG(0))

5

5-22 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

GETDEVCONFIG CALL Statement

Syntax
CALL GETDEVCONFIG (STATUS, IMNUM, DEVICENUM, DEVCONFIG(0))

Action
Get Device Configuration

Description
The Get Device Configuration call allows you to read device configuration information
about a specific device on the serial bus. GETDEVCONFIG reads this information from
the PCIM selected by IMNUM into the Host memory “DEVCONFIG” parameter.

Again, the format of DEVCONFIG is:

DEVCONFIG(0) Model – Model Number of device
DEVCONFIG(1) OutputDisable – Output disable flag
DEVCONFIG(2) Present – Device Present flag
DEVCONFIG(3) Reference – Status Table or Reference Address
DEVCONFIG(4) InputLength – Control Input Data Length
DEVCONFIG(5) OutputLength – Control Output Data Length
DEVCONFIG(6) Config – Device Configuration

 1 = all inputs
 2 = all outputs
 3 = combination

7 6 5 4 3 2 1 0

Device Configuration

Not Used

46365

Parameters are summarized as follows:

Parameter Values Function

IMNUM 1–64 Relative number of PCIM

DEVICENUM 0–31 Specifies device on serial bus

DEVCONFIG 7 entries Device configuration of DEVICENUM

STATUS Success/Fail

5

5-23GFK-0881 Chapter 5 BASIC Programming for the PCIM

Status Value
GETDEVCONFIG will almost always return SUCCESS. If the target IM is currently
offline, has not been initialized, or is out of range, the following FAIL indications will be
returned:

BADIMNUM – IMNUM is out of range (a count of 64 or greater).

BADSBA – Specified DEVICENUM is not in the range for Genius bus
 devices (0 –31 decimal).

 NOINIT – Indicated PCIM has not been initialized (INITIM).

 IMFAIL – The indicated PCIM has failed (PCIM OK = 0), or never
 completed processing the config change command.

 OFFLINE – The device requested is currently not on the bus, however,
 the appropriate buffer is still returned and will contain

 configuration data for devices once logged in.

Coding Example
Examine the configuration of device #30 on PCIM #1.

1200 IMNUM = 1
1210 DEVICENUM = 30
1220 Call GETDEVICECONFIG (STATUS,IMNUM,DEVICENUM,DEVCONFIG(0))

5

5-24 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

DISABLEOUT CALL Statement

Syntax
CALL DISABLEOUT (STATUS, IMNUM, DEVICENUM, FLAG)

Action
Disable/Enable Device Outputs

Description
The Disable (/Enable) Outputs call allows you to selectively disable (or enable) outputs to
a specific device, or to all devices, on a serial bus.

If FLAG is � � (‘1’), outputs to the device will be ��������; if FLAG is ��
	 (‘0’),
outputs will be ������� to that device. If you code the DEVICENUM value equal to
‘ALL’(32), then the outputs to all devices will be set to the value of FLAG. If
DEVICENUM is a serial bus address value between 0 – 31 decimal, then the flag value
will only affect that device.

Parameters are summarized as follows:

Parameter Values Function

IMNUM 1–64 Relative number of PCIM

 DEVICENUM 0–31 Specifies device on serial bus on which circuit resides
 32 Specifies all devices

 FLAG 0 or 1 Enable/disable outputs

 STATUS Success/Fail

5

5-25GFK-0881 Chapter 5 BASIC Programming for the PCIM

Status Value
DISABLEOUT will return SUCCESS if the device specified by IMNUM is present on the
serial bus. Otherwise, DISABLEOUT will return FAIL. If DEVICENUM indicates ALL,
then DISABLEOUT will almost always return SUCCESS. The following FAIL indications
will be returned:

 BADIMNUM – IMNUM is out of range (a count of 64 or greater).

 BADSBA – Specified DEVICENUM is not in the range for Genius bus
 devices (0 – 31 decimal).

 NOINIT – Indicated PCIM has not been initialized (INITIM).

 IMFAIL – The indicated PCIM has failed (PCIM OK = 0).

Coding Example
Enable outputs to device #8 on PCIM #1.

1600 DEVICENUM = 8
1610 IMNUM = 1
1620 FLAG = 0
1630 Call DISABLEOUT(STATUS,IMNUM,DEVICENUM,FLAG)

Disable outputs to all devices on PCIM #1.

1700 DEVICENUM = 32
1710 IMNUM = 1
1720 FLAG = 1
1730 Call DISABLEOUT(STATUS,IMNUM,DEVICENUM,FLAG)

5

5-26 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

GETBUSIN CALL Statement

Syntax
CALL GETBUSIN (STATUS, IMNUM, IODATA(0))

Action
Read all Input Values

Description
A Get Bus Inputs call allows you to read input values from all active devices in the Input
Table of the specified PCIM. Active inputs are those for which the Device Present flag is
set to ‘1’ (it is the application’s responsibility to know which devices are present on the
bus via the GETBUSCONFIG call). Active input values are placed into the Host memory
“IODATA” parameter. IODATA must be an array buffer where the I/O information will
be saved. The IODATA parm is 4096 in length, 128 entries/device, times 32 devices. Slots
are in serial bus address order.

When GETBUSIN is called, it begins by “locking out” the PCIM from updating its Input
Table (ensures data coherency across bus scans). GETBUSIN then transfers the entire
Input Table to the IODATA parameter, even for devices that are not active. When the
entire PCIM Input Table has been searched, the PCIM is “unlocked”.

Parameters are summarized as follows:

Parameter Values Function

IMNUM 1–64 Relative number of PCIM

 IODATA 4096 bytes Data parameter will be copied to Host memory from
specified PCIM

 STATUS Success/Fail

5

5-27GFK-0881 Chapter 5 BASIC Programming for the PCIM

Status Value
GETBUSIN will return SUCCESS if any of the devices specified by the IMNUM are
active and data was transferred. If no devices are present on the target IM, if the target
IM is currently offline, has not been initialized, or is out of range, the following FAIL
indications will be returned:

 BADIMNUM – IMNUM is out of range (a count of 64 or greater).

 NOINIT – Indicated PCIM has not been initialized (INITIM).

 IMFAIL – The indicated PCIM has failed (PCIM OK = 0).

 OFFLINE – No devices are currently on the bus, however,
 the appropriate buffer is still returned and will contain
 data for devices once logged in.

Coding Example
Read all inputs from all active devices on PCIM #1.

 2000 IMNUM = 1
2010 Call GETBUSIN(STATUS,IMNUM,IODATA(0))

5

5-28 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

PUTBUSOUT CALL Statement

Syntax
CALL PUTBUSOUT (STATUS, IMNUM, IODATA(0))

Action
Write all Output Values

Description
The Put Bus Outputs call allows you to update outputs to all active devices in the
Output Table of the specified PCIM. Active outputs are those with the Device Present
flag set to ‘1’ (it is the application’s responsibility to know which devices are present on
the bus via the GETBUSCONFIG call). Active output values are written from the Host
memory IODATA parameter. IODATA must be an array buffer where the I/O
information is saved. The IODATA parm is 4096 in length, 128 entries/device, times 32
devices. Slots are in serial bus address order.

When PUTBUSOUT is called, it begins by “locking–out” the PCIM from updating its
Output Table (ensures data coherency across PCIM scans). PUTBUSOUT then transfers
all data from IODATA to the Output Table. When the entire PCIM Output Table has
been searched, the PCIM is “unlocked”.

Parameters are summarized as follows:

 Parameter Values Function

IMNUM 1–64 Relative number of PCIM

 IODATA 4096 bytes Data parameter will be copied from Host memory to
specified PCIM.

 STATUS Success/Fail

5

5-29GFK-0881 Chapter 5 BASIC Programming for the PCIM

Status Value
PUTBUSOUT will return SUCCESS if any of the devices specified by the IMNUM are
active and data was transferred. If no devices are present on the target IM, if the target
IM is currently offline, has not been initialized, or is out of range, the following FAIL
indications will be returned:

 BADIMNUM – IMNUM is out of range (a count of 64 or greater).

 NOINIT – Indicated PCIM has not been initialized (INITIM).

 IMFAIL – The indicated PCIM has failed (PCIM OK = 0).

 OFFLINE – Data was transferred to the output tables, however, no devices
were found on the bus.

Coding Example
Write all outputs to all active devices (4) on PCIM #1.

2100 IMNUM = 1
2110 IODATA (0) = 1
2120 IODATA (128) = 2
2130 IODATA (256) = 4
2140 IODATA (384) = 8
2150 Call PUTBUSOUT(STATUS,IMNUM,IODATA(0))

5

5-30 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

GETDEVIN CALL Statement

Syntax
CALL GETDEVIN (STATUS, IMNUM, DEVICENUM, LENGTH, DEVDATA(0))

Action
Read Device Data Only

Description
The GETDEVIN function allows you to read the control data inputs received from a
single serial bus device into the Host memory “DEVDATA” parameter.

IMNUM is the PCIM number configured during initialization. The DEVICENUM
parameter specifies the serial bus address of the device from which input data is to be
read. The “LENGTH” parameter is the length of the input data the device sent. This
way, the function can determine whether or not it should update its current data base.
The “DEVDATA” parameter is a buffer data read will be located. The size of this buffer is
determined by the “InputLength” parameter located in the device’s configuration data.

Parameters are summarized as follows:

Parameter Values Function

IMNUM 1–64 Relative number of PCIM

DEVICENUM 0–31 Specifies device on serial bus from which input
data will be read

LENGTH 0–128 Size of data buffer

DEVDATA variable Buffer where data in Host stored – see above

STATUS Success/Fail

5

5-31GFK-0881 Chapter 5 BASIC Programming for the PCIM

Status Value
GETDEVIN will return SUCCESS if the device specified by IMNUM is present on the
serial bus, and after the data is transferred to the DEVDATA buffer. If the target device is
not present, or is out of range, the following FAIL indications will be returned:

BADIMNUM IMNUM is out of range (a count of 64 or greater).

BADSBA Specified Devicenum is not in the range for Genius bus de-
vices (0 –31 decimal), or is that of the PCIM.

NOINIT Indicated PCIM has not been initialized (InitIM).

IMFAIL The indicated PCIM has failed (PCIM OK = 0).

OFFLINE The device requested is currently not on the bus, and data is
NOT transferred.

Coding Example
Get the inputs from device #8 on PCIM #1.

2300 IMNUM = 1
2310 DEVICENUM = 8
2320 Call GETDEVCONFIG(STATUS,IMNUM,DEVICENUM,DEVDATA(0))
2330 LENGTH = DEVCONFIG(4))
2340 Call GETDEVIN(STATUS,IMNUM,DEVICENUM,LENGTH,DEVCONFIG(0))

5

5-32 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

PUTDEVOUT CALL Statement

Syntax
CALL PUTDEVOUT (STATUS, IMNUM, DEVICENUM, LENGTH, DEVDATA(0))

Action
Write Device Data Only

Description
The PUTDEVOUT call allows you to write all of the control data outputs to a single serial
bus device from the Host memory DEVDATA parameter.

IMNUM is the PCIM number configured during initialization. The DEVICENUM
parameter specifies the serial bus address of the device to which output data is to be
written. The LENGTH parameter is length of data to be sent to the device. If the value
differs from the PCIMs current data base, an Overflow or Underflow error will be
returned. The DEVDATA parameter is a buffer where the data to be written is located.
The size of this buffer is determined by the “LENGTH” parameter located in the device’s
configuration data.

Parameters are summarized as follows:

Parameter Values Function

IMNUM 1–64 Relative number of PCIM

 DEVICENUM 0–31 Specifies device to which output word will be written

 LENGTH 0–128 Size of data buffer in bytes

 DEVDATA variable Buffer where the data to be written
will be located – see above

 STATUS Success/Fail

5

5-33GFK-0881 Chapter 5 BASIC Programming for the PCIM

Status Value
PUTDEVOUT will return SUCCESS if the device indicated is present on the given
IMNUM and after the data is transferred to that device. If the target device is not
present, or is out of range, the following FAIL indications will be returned:

 BADIMNUM – IMNUM is out of range (a count of 64 or greater).

 BADSBA – Specified DEVICENUM is not in the range for Genius bus devices
 (0 –31 decimal), or is that of the PCIM, which has its own function.

 NOINIT – Indicated PCIM has not been initialized (INITIM).

 IMFAIL – The indicated PCIM has failed (PCIM OK = 0).

 OFFLINE – The device requested is currently not on the bus, and data
 is NOT transferred.

 OVERFLOW – The Offset specified is greater than the device’s InputLength
in circuits.

 UNDERFLOW – The Offset is specified as zero (0).

Coding Example
Write 2 bytes of output data to device #8 on PCIM #1.

2500 IMNUM = 1
2510 DEVICENUM = 8
2520 DEVDATA (0) = 1
2530 DEVDATA (1) = &H10
2540 LENGTH = 2
2550 Call PUTDEVOUT(STATUS,IMNUM,DEVICENUM,LENGTH,DEVDATA(0))

5

5-34 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

GETIMIN CALL Statement

Syntax
CALL GETIMIN (STATUS, IMNUM, IMDATA(0))

Action
Read Directed Input Table

Description
The Get IM Inputs call allows you to read the Directed Control Input Table of a specified
PCIM and write its contents into the Host memory “IMDATA” parameter.

IMNUM is the PCIM number configured during initialization. The “IMDATA” parameter
is a buffer where the data to be read will be located. The size of this buffer is determined
by the “InputLength” parameter located in the PCIMs configuration data.

When GETIMIN is called, it begins by “Locking–out” the PCIM from updating the
Directed Control Input Table (ensures data coherency across bus scans). GETIMIN then
transfers all the data in this table into Host memory. Once the transfer is complete, the
PCIM is ”unlocked”.

Parameters are summarized as follows:

Parameter Values Function

IMNUM 1–64 Relative number of PCIM
 IMDATA variable Buffer where the data read will be located – see above
 STATUS Success/Fail

Status Value
GETIMIN will return SUCCESS if the InputLength is non–zero and the data transfer is
complete. The following FAIL indications will be returned:

 BADIMNUM – IMNUM is out of range (a count of 64 or greater).
 NOINIT – Indicated PCIM has not been initialized (INITIM).
 IMFAIL – The indicated PCIM has failed (PCIM OK = 0).
 UNDERFLOW – The InputLength of the PCIM is set to zero (0).

Coding Example
Get the directed input data from PCIM #1.

2700 IMNUM = 1
2710 Call GETIMIN(STATUS,IMNUM,IMDATA(0))

5

5-35GFK-0881 Chapter 5 BASIC Programming for the PCIM

PUTIMOUT CALL Statement

Syntax
CALL PUTIMOUT (STATUS, IMNUM, IMDATA(0))

Action
Write the Global Output Table

Description
The PUTIMOUT call allows you to write Global Data from the Host memory IMdata
parameter to the Global Data Output Table of a specified PCIM. This data is
subsequently broadcast to all CPUs on the bus every bus scan.

IMNUM is the PCIM number configured during initialization. The IMDATA parameter
is a buffer where the data to be written is located. The size of this buffer is determined
by the “GlobalLength” parameter located in the PCIM’s configuration data.

When PUTIMOUT is called, it begins by “Locking–out” the PCIM from reading from its
Control Output Table (ensures data coherency across bus scans). PUTIMOUT then
transfers all the data from this parm to the PCIMs Global Output buffer. Once the
transfer is complete, the PCIM is ”unlocked”.

Parameters are summarized as follows:

Parameter Values Function
IMNUM 1–64 Relative number of PCIM

 IMDATA variable Buffer where the data to be written will be located.
 see above

 STATUS 0/1 Success/Fail

Status Value
PUTIMOUT will return SUCCESS if the Global Data Length is non–zero and the
transfer is complete. The following FAIL indications will be returned:

 BADIMNUM – IMNUM is out of range (a count of 64 or greater).
 NOINIT – Indicated PCIM has not been initialized (INITIM).
 IMFAIL – The indicated PCIM has failed (PCIM OK = 0).
 UNDERFLOW – The GlobalLength parameter in IMPARMS is set to zero (0).

Coding Example
Write the specified global data to PCIM #1.

2800 IMNUM = 1
2810 IMDATA (0) = &H10
2820 Call PUTIMOUT(STATUS,IMNUM,IMDATA(0))

5

5-36 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

GETCIR CALL Statement

Syntax
CALL GETCIR (STATUS, IMNUM, DEVICENUM, CIROFFSET, STATE)

Action
Read Input Circuit Value

Description
A Get Circuit call allows the state of a single input circuit to be read from the specified
PCIMs Input Table and be placed into the Host memory “STATE” parameter.

IMnum is the PCIM number configured during initialization. The DEVICENUM
parameter specifies the serial bus address of the device which contains the input circuit.
The “CIROFFSET” parameter indicates which bit of DEVICENUM is to be read. This
value ranges from 1 through 1024 (in bits).

“STATE” is a variable in which GETCIR will store the value of the circuit as indicated by
the above parameters. The contents of STATE will be either a ‘1’ or ‘0’ (ON or OFF).

Parameters are summarized as follows:

Parameter Values Function

IMNUM 1–64 Relative number of PCIM

 DEVICENUM 0–31 Specifies I/O device from which input circuit will be read

 DIROFFSET 1–1024 Input circuit offset in specified I/O device in bits

 STATE 0/1 ON or OFF condition of circuit read from PCIM

 STATUS Success/Fail

5

5-37GFK-0881 Chapter 5 BASIC Programming for the PCIM

Status Value
GETCIR will return SUCCESS if the target device is present on the given IMNUM. If the
target device is not present, or is out of range, GETCIR will return FAIL. If SUCCESS is
returned, then STATE will contain the value of the circuit requested. The following FAIL
indications will be returned:

 BADIMNUM – IMNUM is out of range (a count of 64 or greater).

BADSBA – Specified DEVICENUM is not in the range for bus devices
(0 –31 decimal), or is that of the PCIM.

 NOINIT – Indicated PCIM has not been initialized (INITIM).

IMFAIL – The indicated PCIM has failed (PCIM OK = 01).

 OFFLINE – The device requested is currently not on the bus, and data is
NOT transferred.

 OVERFLOW – The OFFSET specified is greater than the devices InputLength
in circuits.

 UNDERFLOW – OFFSET is specified as zero (0).

Coding Example
Get the state value of circuit 2 of device #8 on PCIM #1.

3000 IMNUM = 1
3010 DEVICENUM = 8
3020 CIROFFSET = 2
3030 Call GETCIR(IMNUM,DEVICENUM,CIROFFSET,STATE)

5

5-38 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

PUTCIR CALL Statement

Syntax
CALL PUTCIR (STATUS, IMNUM, DEVICENUM, CIROFFSET, STATE)

Action
Write Output Circuit Value

Description
A Put Circuit call allows the state of a single output circuit to be changed from ON to
OFF or vice–versa. In this call, the STATE parameter is written from the Host memory
to the specified PCIMs Output Table.

IMNUM is the PCIM number configured during initialization. The DEVICENUM
parameter specifies the serial bus address of the device which contains the target output
circuit. The CIROFFSET parameter indicates which bit of DEVICENUM is to be written.
This value ranges from 1 through 1024 (in bits).

STATE is a variable containing the value of the circuit as indicated by the above
parameters. The contents of STATE should be either a ‘1’ or ‘0’ (ON or OFF).

Parameters are summarized as follows:

Parameter Values Function

IMNUM 1–64 Relative number of PCIM

 DEVICENUM 0–31 Specifies I/O device to which output will be written.

 CIROFFSET 1–1024 Output circuit offset in specified I/O device, in bits

 STATE 0/1 Variable “STATE” is written from the Host memory to
the specified PCIM

 STATUS Success/Fail

5

5-39GFK-0881 Chapter 5 BASIC Programming for the PCIM

Status Value
PUTCIR will return SUCCESS if the target device is present on the given IMNUM. If the
target device is not present, or is out of range, PUTCIR will return FAIL. If SUCCESS is
returned, then the character pointed to by STATE will contain the value of the circuit
changed. The following FAIL indications will be returned:

BADIMNUM IMNUM is out of range (a count of 64 or greater).

BADSBA Specified Devicenum is not in the range for Genius bus de-
vices (0 –31 decimal), or is that of the PCIM.

NOINIT Indicated PCIM has not been initialized (InitIM).

IMFAIL The indicated PCIM has failed (PCIM OK = 0).

OFFLINE The device requested is currently not on the bus, and data
is NOT transferred.

OVERFLOW The Offset specified is greater than the devices Output-
Length in circuits.

UNDERFLOW The Offset is specified as zero (0).

Coding Example
Set the state value of circuit 2 of device #8 on PCIM #1 to ’1’.

3200 IMNUM = 1
3210 DEVICENUM = 8
3220 STATE = 1
3230 CIROFFSET = 2
3240 Call PUTCIR(STATUS,IMNUM,DEVICENUM,CIROFFSET,STATE)

5

5-40 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

GETWORD CALL Statement

Syntax
CALL GETWORD (STATUS, IMNUM, DEVICENUM, CIROFFSET, WORDDATA)

Action
Read Input Word Value

Description
A Get Word call allows you to read the value of a single input word from the specified
PCIMs Input Table into the Host memory ”WORDDATA” parameter. The ”WORDDATA”
parameter is an integer.

IMNUM is the PCIM number configured during initialization. The DEVICENUM
parameter specifies the serial bus address of the device where the input word is located.
The CIROFFSET parameter indicates which word of the specified device is to be read.
This value ranges from 1 through 64 (in word quantities).

When GETWORD is called, it begins by “Locking–out” the PCIM from updating the
Shared RAM (ensures data coherency across bus scans). GETWORD then transfers the
word data into Host memory. Once the transfer is complete, the PCIM is ”unlocked”.

Parameters are summarized as follows:

Parameter Values Function

IMNUM 1–64 Relative number of PCIM
DEVICENUM 0–31 Specifies I/O device from which input word will be read
OFFSET 1–64 Input word offset in specified I/O device, in words
WORDDATA 1 entry Word requested

 STATUS Success/Fail

5

5-41GFK-0881 Chapter 5 BASIC Programming for the PCIM

Status Value
GETWORD will return SUCCESS if the device specified by IMNUM is present on the
serial bus, and after the data is transferred to WORDDATA. If the target device is not
present, or is out of range, GETWORD will return FAIL. If SUCCESS is returned, then
the requested word value will be saved in the location WORDDATA. The following FAIL
indications will be returned:

BADIMNUM IMNUM is out of range (a count of 64 or greater).

BADSBA Specified Devicenum is not in the range for Genius bus devices
(0 –31 decimal), or is that of the PCIM.

NOINIT Indicated PCIM has not been initialized (InitIM).

IMFAIL The indicated PCIM has failed (PCIM OK = 0).

OFFLINE The device requested is currently not on the bus, and data is
NOT transferred.

OVERFLOW The Offset specified is greater than the devices InputLength in
circuits.

UNDERFLOW The Offset is specified as zero (0).

Coding Example
Get the first word of device #8 on PCIM #1.

 3300 IMNUM = 1
3310 DEVICENUM = 8
3320 CIROFFSET = 1
3330 Call GETWORD(STATUS,IMNUM,DEVICENUM,CIROFFSET,WORDDATA)

5

5-42 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

PUTWORD CALL Statement

Syntax
CALL PUTWORD (STATUS, IMNUM, DEVICENUM, CIROFFSET, WORDDATA)

Action
Write Output Word Value

Description
A Put Word call allows you to write a single output word from the Host memory
WORDDATA parameter to the specified PCIMs Output Table. The WORDDATA
parameter is an integer which PUTWORD uses for the word to be transmitted.

IMNUM is the PCIM number configured during initialization. The DEVICENUM
parameter specifies the serial bus address of the device where the output word is to be
sent. The CIROFFSET parameter indicates which word of the specified device is to be
written. This value ranges from 1 through 64 (in word quantities).

When PUTWORD is called, it begins by “Locking–out” the PCIM from updating the
Shared RAM (ensures data coherency across bus scans). PUTWORD then transfers the
word data to the PCIM. Once the transfer is complete, the PCIM is ”unlocked”.

Parameters are summarized as follows:

Parameter Values Function

IMNUM 1–64 Relative number of PCIM

 DEVICENUM 0–31 Specifies device to which output word will be written

 CIROFFSET 1–64 Output word offset in specified device, in words

 WORDDATA 1 entry Word requested

 STATUS Success/Fail

5

5-43GFK-0881 Chapter 5 BASIC Programming for the PCIM

Status Value
PUTWORD will return SUCCESS if the device specified by IMNUM is present on the
serial bus. If the target device is not present, or is out of range, PUTWORD will return
FAIL. The following FAIL indications will be returned:

BADIMNUM IMNUM is out of range (a count of 64 or greater).

BADSBA Specified Devicenum is not in the range for Genius bus devices
(0 –31 decimal), or is that of the PCIM.

NOINIT Indicated PCIM has not been initialized (InitIM).

IMFAIL The indicated PCIM has failed (PCIM OK = 0).

OFFLINE The device requested is currently not on the bus, and data is
NOT transferred.

OVERFLOW The Offset specified is greater than the devices OutputLength in
circuits.

UNDERFLOW The Offset is specified as zero (0).

Coding Example
Set the second word of device #8 on PCIM #1 to 10 hex (circuit #21 if discrete block).

3400 IMNUM = 1
3410 DEVICENUM = 8
3420 CIROFFSET = 2
3430 WORDDATA = &H10
3440 Call PUTWORD(STATUS,IMNUM,DEVICENUM,CIROFFSET,WORDDATA)

5

5-44 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

SENDMSG CALL Statement

Syntax
CALL SENDMSG (STATUS, IMNUM, MSG(0))

Action
Send a Message

Description
The Send Message call allows you to write a memory or non–memory message from
the Host to the selected PCIM for transmission onto the serial bus (using the Transmit
Datagram command). SENDMSG will return control to the calling program without
delay, before the message has been processed or transmitted by the PCIM.

IMNUM defines the PCIM, as configured during initialization, from which to transmit
the message. The MSG parameter is the buffer where the transmit message is stored.

The format of SENDMSG is:

 MSG(0) Destination (0–31/255 brdcst) – Destination address of Device
MSG(1) Function code (0–111) – Function Code (normally 20 hex)
MSG(2) SubFunction code (0–255) – Sub Function Code
MSG(3) Priority – 0 – Normal, 1 – High
MSG(4) Length – Data field length/length of msg
MSG(5) Data (variable) – Message Data – length per MSG(4)

You should check the status of the message using CHKMSGSTAT to determine if the
message completed processing properly.

Parameters are summarized as follows:

Parameter Values Function

IMNUM 1–64 Relative number of PCIM

 MSG see above Buffer where message to be sent is stored – see above

 STATUS Success/Fail

5

5-45GFK-0881 Chapter 5 BASIC Programming for the PCIM

Status Value
SENDMSG will return SUCCESS if a message has been transferred from the Host
memory to the PCIM. Otherwise, one of the following FAIL indications will be
returned:

 BADIMNUM – IMNUM is out of range (a count of 64 or greater).

 NOINIT – Indicated PCIM has not been initialized (INITIM).

 IMFAIL – The indicated PCIM has failed (PCIM OK = 0).

 IMBUSY – The PCIM is otherwise engaged and cannot accept the command.

Note

You are responsible for defining the device, the Function code, the
Sub–F unction code and the length of the transmit Datagram.

Note

You cannot issue a SENDMSG call or read a received unsolicited
message while a SENDMSGREPLY call is in progress. If this presents a
timing problem, use the SENDMSG call.

See Also: SENDMSGREPLY, GETMSG and CHKMSGSTAT

Coding Example
Send a Read Diagnostics message to device #8 on PCIM #1. This message will read 10
bytes of diagnostic data beginning at offset 0.

3800 IMNUM = 1
3810 MSG(0) = 8 ’Destination
3820 MSG(1) = &H20 ’Function Code
3830 MSG(2) = 8 ’Sub Function Code
3840 MSG(3) = 0 ’Priority
3850 MSG(4) = 2 ’Message Length Sent
3860 MSG(5) = 0 ’Offset
3870 MSG(6) = 10 ’Length to be Read
3880 Call SENDMSG(STATUS,IMNUM,MSG(0))

To see how the message function calls work together, see Appendix A, Example 2.

5

5-46 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

SENDMSGREPLY CALL Statement

Syntax
CALL SENDMSGREPLY (STATUS, IMNUM, MSG(0))

Action
Send a Message requesting a Reply

Description
The Send Message Reply call allows you to write a memory or non–memory message
from the Host to the selected PCIM for transmission onto the bus (using the Transmit
Datagram With Reply command). SENDMSGREPLY will return control to the calling
program without waiting for the reply. You must call CHKMSGSTAT or GETMSG to
check for completion or to read the reply message.

IMNUM defines the PCIM, as configured during initialization, from which to transmit
the message. The MSG parameter is a pointer to the buffer where the transmit message
is stored.

The format of SENDMSGREPLY is:

MSG(0) Destination (0–31/255 brdcst) – Destination address of Device
MSG(1) Function code (0–111) – Function Code
MSG(2) T SubFunction code (0–255) – Transmitted Reply SubFunction Code
MSG(3) R SubFunction code (0–255) – Expected Reply SubFunction Code
MSG(4) Priority – 0 – Normal, 1 – High
MSG(5) Length (0–134) – Data field length/length of msg
MSG(6) Data (variable) – Message Data – length per MSG(5)

You can check the status of the message using CHKMSGSTAT to determine if the
message completed processing properly.

Parameters are summarized as follows:

Parameter Values Function

IMNUM 1–64 Relative number of PCIM
 MSG see above Pointer to the buffer where the received message

will be stored – see above
 STATUS Success/Fail

The advantage of the SENDMSGREPLY call over the SENDMSG call is that a 10 second
timeout to a non–responding device is automatically provided by the PCIM for a
SENDMSGREPLY call.

The Host program sequence for a SENDMSGREPLY is as follows:

1. Host sends a SENDMSGREPLY to the PCIM.

2. Host issues GETMSG calls until the Status indicates completion. GETMSG will also
return the reply message into Host memory.

5

5-47GFK-0881 Chapter 5 BASIC Programming for the PCIM

Status Value
SENDMSGREPLY will return SUCCESS if a message has been transferred from the Host
memory to the PCIM. Otherwise, one of the following FAIL indications will be
returned:

 BADIMNUM – IMNUM is out of range (a count of 64 or greater).

 NOINIT – Indicated PCIM has not been initialized (InitIM).

 IMFAIL – The indicated PCIM has failed (PCIM OK = 0).

 IMBUSY – The PCIM is otherwise engaged and cannot accept the command.

Note

You are responsible for �������� the device, the Function code, the
Sub–F unction code and the length of the transmit Datagram.

It is also your responsibility to ��	�����	 the Function code, the
Sub–F unction code and the meaning of the Reply message. See
GEK–90486–1 for message codes.

Note

You cannot issue a SENDMSG call or read a received unsolicited
message while a SENDMSGREPLY call is in progress. If this presents a
timing problem, use the SENDMSG call.

See Also: SENDMSG, GETMSG and CHKMSGSTAT

Coding Example
This example sends a Read Diagnostics message to device #8 on PCIM #1 and expects a
reply message of Read Diagnostics Reply. This message requests 10 bytes of diagnostic
data beginning at offset 10.

4000 IMNUM = 1
4010 MSG(0) = 8 ’Destination
4020 MSG(1) = &H20 ’Function Code
4030 MSG(2) = 8 ’Transmit SubFunction Code
4040 MSG(3) = 9 ’Excepted Reply SubFunction Code
4050 MSG(4) = 0 ’Priority
4060 MSG(5) = 2 ’Message Length Transmitted
4070 MSG(6) = 16 ’Offset
4080 MSG(7) = 10 ’Message Length to be Read
4090 Call SENDMSGREPLY(STATUS,IMNUM,MSG(0))

To see how the message function calls work together, see Appendix A, Example 2.

5

5-48 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

CHKMSGSTAT CALL Statement

Syntax
CALL CHKMSGSTAT (STATUS, IMNUM, MSGSTATUS(0))

Action
Read Message Progress Status

Description
The Check Message Status call allows you to determine the status of a previous
SENDMSG call – that is, to determine when a transmitted message has actually been
received, and its completion status.

IMNUM is the PCIM number configured during initialization. The “MSGSTATUS”
parameter is the returned message status.

The “MSGSTATUS” parameter will contain the following values:

IMFREE There is currently no activity.
IMBUSY Message is still in progress.
SUCCESS Message has successfully completed.
BADPARM Message contained a syntax error.
TXERR Message cannot be transmitted.

Parameters are summarized as follows:

 Parameter Values Function

IMNUM 1–64 Relative number of PCIM

 MSGSTATUS 0/1 Returned message status

 STATUS Success/Fail

5

5-49GFK-0881 Chapter 5 BASIC Programming for the PCIM

Status Value
CHKMSGSTAT will normally return the Status requested and a SUCCESS indication.
Otherwise, one of the following FAIL indications will be returned:

 BADIMNUM – IMNUM is out of range (a count of 64 or greater).

 NOINIT – Indicated PCIM has not been initialized (INITIM).

 IMFAIL – The indicated PCIM has failed (PCIM OK = 0).

 PCIMERR – There may be a problem with the PCIM firmware.

See Also: SENDMSGREPLY, SENDMSG and GETMSG

Coding Example
Check the message status area of PCIM #1.

4200 IMNUM = 1
4210 Call CHKMSGSTATUS(STATUS,IMNUM,MSGSTATUS)

To see how the message function calls work together, see Appendix A, Example 2.

5

5-50 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

GETMSG CALL Statement

Syntax
CALL GETMSG (STATUS, IMNUM, MSG(0))

Action
Read Received Message

Description
The Get Message call allows you to read a received memory or non–memory message
(or a reply to a previous SENDMSGREPLY call) from the selected PCIM into the Host
memory “MSG” parameter.

IMNUM is the PCIM number configured during initialization. The “MSG” parameter is
the buffer where the received message will be stored.

The format of GETMSG is:

MSG (0) Source (0–31) – Source address of Device
MSG (1) Function code (0–111) – Function Code
MSG (2) SubFunction code (0–255) – Sub Function Code
MSG (3) DB Indicator – Directed (1)/Broadcast (0)
MSG (4) Length (0–134) – Data field length/length of message
MSG (5) Data (variable) – Message Data – length per MSG(4)

Parameters are summarized as follows:

 Parameter Values Function

 IMNUM 1–64 Relative number of PCIM

 STATUS Success/Fail

 MSG see above Buffer where the received message will be stored

GETMSG performs the following sequence:

1. If there is a previous call to SENDMSGREPLY, GETMSG checks to see if the
transmission has successfully completed, and transfers the response back to you. If
the response completed with an error, or if in progress, GETMSG will return a FAIL
indication.

2. If there is no previous call to SENDMSGREPLY, GETMSG checks to see if there is a
memory message, and transfers that message back to you.

3. If no memory messages exist, then GETMSG checks to see if there is a non–memory
message, and transfers that message back to you.

4. If no messages are present, GETMSG returns with a FAIL status.

Note
Unsolicited memory or non–memory Datagrams received by the PCIM
may not be read by the Host while a SENDMSGREPLY is in progress.
This significantly affects Host response time to service received
Datagrams. If this is a problem, use the SENDMSG call instead of
SENDMSGREPLY.

5

5-51GFK-0881 Chapter 5 BASIC Programming for the PCIM

Status Value
GETMSG will return SUCCESS if a memory or non–memory message is returned to
you. Otherwise, one of the following FAIL indications will be returned:

BADIMNUM – IMNUM is out of range (a count of 64 or greater).

NOINIT – Indicated PCIM has not been initialized (INITIM).

 IMFAIL – The indicated PCIM has failed (PCIM OK = 0).

 IMBUSY – The PCIM is otherwise engaged and cannot accept the command.

 NOMSG – No message is available to be received at this time.

TXERR – A message transmission has failed or response to SendMsgReply
 has not arrived after 10 seconds.

PCIMERR – There may be a problem with the PCIM firmware.

BADPARM – Syntax error from previous SendMsgReply

See Also: SENDMSGREPLY, SENDMSG and CHKMSGSTAT

5

5-52 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

GETINTR CALL Statement

Syntax
CALL GETINTR (STATUS, IMNUM, INTR(0))

Action
Read Interrupt Status Table

Description
The Get Interrupt call allows you to read the selected PCIMs Interrupt Status Table. You
can read this table to:

� See why an interrupt in the Host system has occurred.

� Report the event in a non–interrupt environment, as is the default state of the
Software Driver concept (the PCIM will still report the event even though the
interrupt is disabled).

Thus, the Interrupt Status Table can be polled (by reading and interpreting it) to
determine what is causing an interrupt from the PCIM.

When GETINTR is called, it transfers the data from the PCIMs Interrupt Status Table to the
Host memory “INTR” parameter. The format of the Interrupt Status Table is shown below.

IMNUM defines the PCIM, as configured during initialization, from which the Interrupt
Status Table is to be read. The INTR parameter is the buffer where the Interrupt Status
Table information is stored. The values in the table below are: 0 = No interrupt
occurred, 1 = Interrupt occurred.

The format of the INTR table is:

Position Explanation

INTR(0) – Summary if interrupt occurred.
INTR(1) – Received memory datagram.
INTR(2) – PCIM Status Change – usually fatal.
INTR(3) – Device Status Change.
INTR(4) – Outputs sent – end of bus access.
INTR(5) – Command Block completed.
INTR(6) – Received Datagram.

After data transfer to the Host is complete, GETINTR clears all of the PCIMs Interrupt
Status Table bytes each time it is called. This way, you can see the latest event that has
occurred each call.

Parameters are summarized as follows:

 Parameter Value Function

 IMNUM 1–64 Relative number of PCIM
 INTR see above Buffer where the table data will be stored

Status Success/fail

5

5-53GFK-0881 Chapter 5 BASIC Programming for the PCIM

Status Value
GETINTR will return SUCCESS if the device specified by IMNUM is present on the serial
bus. If the target device is not present, or is out of range, GETINTR will return FAIL.
The following FAIL indications will be returned:

 BADIMNUM – IMUM is out of range (a count of 64 or greater).

 NOINIT – Indicated PCIM has not been initialized (INITIM).

 IMFAIL – The indicated PCIM has failed (PCIM OK = 0).

Coding Example
This example shows how, if an interrupt occurs on PCIM #1, to transfer the contents of
that PCIMs status table. Interpretation of bits will depend on which interrupt is enabled,
and which application is to be run.

4300 IMNUM = 1
4310 Call GETINTR(STATUS,IMNUM,INTR(0))
4320 ’Do what is necessary for interrupt processing

5

5-54 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

PUTINTR CALL Statement

Syntax
CALL PUTINTR (STATUS, IMNUM, DISABLEINTR(0))

Action
Write to the Interrupt Disable Table

 Description
The Put Interrupt call allows you to write to the selected PCIM’s Interrupt Disable Table.
The PUTINTR call first initializes a table to Enable and Disable individual interrupts as
you require. The PUTINTR call then writes this table to the Interrupt Disable Table on
the PCIM. You can Enable or Disable interrupts in any mix; that is, on a single call, some
interrupts may be Enabled and some Disabled, all may be Enabled, or all of the
interrupts may be Disabled.

When PUTINTR is called, it transfers the data from the Host memory “DISABLEINTR”
parameter to the PCIMs Interrupt Disable Table. The format of the Interrupt Disable
Table is shown below.

IMNUM defines the PCIM, as configured during initialization, to which DISABLEINTR
will be read. The DISABLEINTR parameter is the buffer where the Interrupt Disable
Table information is stored. The values in the table below are: 0 = Enable, 1 = Disable.

The format of the DISABLEINTR table is:

Position Explanation

DISABLINTR(0) – Summary if interrupt occurred.
DISABLINTR(1) – Received memory datagram.
DISABLINTR(2) – PCIM Status Change – usually fatal.
DISABLINTR(3) – Device Status Change.
DISABLINTR(4) – Outputs sent – end of bus access.
DISABLINTR(5) – Command Block completed.
DISABLINTR(6) – Received Datagram.

Parameters are summarized as follows:

Parameter Values Function

IMNUM 1–64 Relative number of PCIM

DISABLEINTR see above Buffer from which enable/disable data is sent

STATUS Success/fail

5

5-55GFK-0881 Chapter 5 BASIC Programming for the PCIM

Status Value
PUTINTR will return SUCCESS if the device specified by IMNUM is present on the serial
bus. If the target device is not present, or is out of range, PUTINTR will return FAIL.
The following FAIL indications will be returned:

 BADIMNUM – IMNUM is out of range (a count of 64 or greater).

 NOINIT – Indicated PCIM has not been initialized (InitIM).

 IMFAIL – The indicated PCIM has failed (PCIM OK = 0).

Coding Example
This example enables the Receive Datagram Interrupt.

7000 IMNUM = 1
7010 For I = 0 to 6
7020 DISABLEINTR(I) = 0
7030 NEXT I
7040 DISABLEINTR(6) = 1
7050 Call PUTINTR(STATUS,IMNUM,DISABLEINTR(0))

6 section level 1 1
figure bi level 1
table_big level 1

6-1GFK-0881

Chapter 6 Communications

Introduction

PCIM applications may be considered on two levels; ‘basic’ operation, consisting of that
which is necessary to set up the PCIM and use it as a simple I/O controller; and
‘advanced’ operation. Advanced operation details the use of expanded diagnostics,
message handling, and other more sophisticated features – a class of applications
dependent on the Genius I/O Network for low cost, peer–to–peer moderate
performance communications between Hosts and I/O devices.

Chapters 4 and 5 outlined the ‘basic’ operational level – providing you with enough
information to code the PCIM Software Driver function calls and run a system consisting
of I/O blocks. Chapter 6 explains the ‘advanced’ communications features of the PCIM.

Global Data
Global Data is data used for communicating data between CPUs simply, automatically,
and repetitively. Once set up by the user at power up, assigned data is automatically
and periodically routed among CPUs without further user programming. Such data is
termed “Global Data” since it is broadcast to all other CPUs on the bus and thus allows
the formation of a global data base. Up to 128 bytes may be broadcast by each PCIM or
Bus Controller. The PCIM or Bus Controller will broadcast these bytes once per bus scan.

A block of data is assigned to be broadcast by downloading a Global Data Reference and
Global Data Length. The Global Data Reference is the beginning address of the Global Data
where a receiving Series Six or Series Five PLC will place the data. A Series 90-70 or Series
90-30 PLC does not use this reference. If no PLCs are involved, this reference can be defined
for any suitable application purpose. This reference is called IMRef in the PCIM. The
Global Data length is the number of bytes of Global Data to be broadcast by the PCIM.

Global Data Length is called OutputLength. You will use the Software Driver function
call InitIM to set IMRef and OutputLength parameters. Always set the MSB (Most
Significant Bit) of the IMRef to ‘1’, if it is to be used with a Series Six or Series Five PLC.

The location where the receiving host will place the Global Data can be specified using
IMRef. The 16 bit register address must have the two upper bits set as shown below. A
Series Six or Series Five PLC will only use the bottom 14 bits.

1 0 a a a a a d b 0 a a a a a a

161514 13 12 11 10 9 8 7 6 5 4 3 2 1

Register Address

46233

6

6-2 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

For example:

IMRef = 8005 hex will send Global Data to all Series Six /Series Five CPUs on the bus
starting at Register 5. The Global Data Length (OutputLength) is always specified in
bytes. Therefore, if 15 Registers of Global Data are to be sent, OutputLength should
be set to 1E hex, 30 decimal.

Global Data is automatically broadcast by the PCIM every serial bus scan. The user
application program updates the PCIM with the latest Global Data by using the
Software Driver PutIMOut.

If the program sweep time is longer than the bus scan time, new Global Data may not be
available each bus scan; in that case, the same data may be sent more than once. If the
program sweep time is much shorter than the bus scan time, it is possible that Global
Data might change more quickly than the bus controller can send it. If that happens,
some data could be lost. The host must accommodate these timing issues to assure data
integrity. Bus scan time increases by approximately 72µS for each byte of Global Data
transmitted.

When the PCIM receives Global Data, it appears in the Input Table slot corresponding to
the Serial Bus Address (device number) of the device that sent the Global Data. You will
use the Software Driver function call GetBusIn or GetDevIn to read this data.

Example:

In a three–host system, the PCIM with serial bus address 30 broadcasts 128 bytes of
Global Data to PCIMs with serial bus addresses 29 and 31.

Global Output
Table

Input Table

buffer 29

buffer 30

buffer 31

Output Table

PCIM 29

Global Output
Table

Input Table

buffer 29

buffer 30

buffer 31

Output Table

Global Output
Table

Input Table

buffer 29

buffer 30

buffer 31

Output Table

128 bytes 128 bytes

46

PCIM 30 PCIM 31

For More Information

For more information about Genius datagrams, refer to the Genius I/O System and
Communications User’s Manual (GEK-90486-1).

6

6-3GFK-0881 Chapter 6 Communications

Datagram Data

A Datagram is a message comprised of application–specific information with up to 128
bytes of user supplied data. Datagrams may be directed from one bus device to another,
or broadcast to all devices.

A directed Datagram is secure in that the data link control layer of the protocol ensures it
will be received at the destination device once and only once, or aborted and alarmed
after retry.

Datagram Service should be considered instead of Global Data if any of the following are
true:

1. Global Data takes up too much serial bus scan time for the application

2. More than 128 bytes of data are to be sent from one CPU to another

3. The data does not need to be sent every serial bus scan

4. The PLC CPU sweeptime receiving Global Data becomes too large for the
application.

A Datagram may be transmitted with High Priority or at Normal Priority. Normal
Priority ensures that the bus scan time will only be modestly affected. High priority will
be sent as soon as the token is held by the PCIM. Normal priority requires that no
datagrams be sent for 1 bus scan prior to transmission of this datagram. Bus scan time
affects the response time of any I/O data on the bus.

Using the same serial bus for CPU to CPU communications and I/O
block control may result in variable I/O service times unless Normal
Priority datagrams are used.

Your application must service the Datagram queue at least once every 10 milliseconds to
ensure that the Datagram queue will not fill up, causing datagrams to be dropped
without Host notification.

Use the Software Driver function calls GetMsg, SendMsg, SendMsgReply, and
ChkMsgStat to transmit Datagrams. For the the bit/byte format of the following specific
Genius I/O Datagrams, see the Genius I/O System and Communications Manual,
GEK–90486–1.

The following Datagrams are transmitted to and from I/O blocks:

Report Fault – faults are reported as they occur to the defined Controller of a
specific I/O block or device. The controller of a device is the device which sends
outputs to the device. The GetMsg call is used to access this message from the
PCIM.

Clear Circuit Fault – the Host may clear a single circuit or controller fault using this
message. The Host requires a SendMsg call to transmit this message to an I/O Block.

Clear All Circuit Faults – the Host may clear all circuit faults using this message. The
Host again requires a SendMsg call to transmit this message.

Write Configuration – downloads either partial or full configuration from the Host
to an I/O Block or other bus device. The Host requires a SendMsg call to transmit
this message to an I/O Block.

6

6-4 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

Read Diagnostics, Read Diagnostics Reply – allows the Host to read the current
diagnostic state of all circuits or controllers. Use a SendMsgReply call, then a
GetMsg call to perform this function using the PCIM.

Read Configuration, Read Configuration Reply – allows the Host to read the
current configuration of an I/O Block or I/O device. Use a SendMsgReply call, then a
GetMsg call to perform this function with the PCIM.

Switch BSM – allows the Host to switch a Bus Switching Module (BSM) to a
specified bus and therefore test redundant bus operation while a system is running.
The Host requires a SendMsg call to send this message to an I/O block.

Assign Monitor – allows the Host to receive a Report Fault message from an I/O
block even though it is not defined as the controller of (is not sending data to) that
device. Use a SendMsg call to send this message to the block.

Pulse Test, Pulse Test Complete – allows the Host to toggle all outputs on a specific
discrete I/O block briefly to the opposite state. Any faults are reported from the
block to the Host through a Report Fault message, and the block will reply with a
Pulse Test Complete message when the test is finished. The Host uses a
SendMsgReply call to transmit this message to the block, and a GetMsg call to
retrieve the reply and any fault reports.

Configuration Change – I/O blocks and other I/O devices will report any
configuration changes of I/O circuit configuration, Status Table (Reference) Address,
HHM forces, filter values, etc. The Host requires a GetMsg call to access this
message from the PCIM.

Memor y-Access Datagrams

Communications applications of the PCIM will for the most part be established between
devices such as PLC CPUs and PCIM Hosts (IBM PC AT/XTs). These applications will use
four memory access Datagrams.

Read Device – the CPU may read the memory of another CPU on the bus through
this message. The CPU may use the SendMsgReply call, then the GetMsg call, in
order to send the Read Device message and access the eventual reply, respectively.

Read Device Reply – When a Read Device message is received, the PCIM (and
Host) will service it by returning a Read Device Reply to the requesting CPU
through the SendMsg call.

Write Device – the CPU may write the memory of another CPU using this message.
Write Device allows byte writes. Use the SendMsg call to transmit this message.

Bit Write – the CPU may write the memory of another CPU using this message. Bit
Write is for setting or resetting a single circuit. Use the SendMsg call to transmit this
message.

These Datagrams allow the registers or I/O Tables of a PLC CPU to be read or written
from other bus devices.

If a Host wishes its internal database to be accessible, user application programming
must supply GetMsg calls to service Read Device and Write Device messages received by
the PCIM. The PCIM Host need not allow Write Device access to its memory. This can
be accomplished by rejecting all or specific Write Device messages.

6

6-5GFK-0881 Chapter 6 Communications

Software Driver function calls are also used to transmit Datagram data.

The SendMsg call is used to send Read Device and Write Device datagams.

For More Information
For applications using datagrams, refer to the Genius I/O System and Communications
User’s Manual (GEK-90486-1) for detailed information.

7 section level 1 1
figure bi level 1
table_big level 1

7-1GFK-0881

Chapter 7 Troubleshooting

Introduction

As with program debugging, hardware/firmware troubleshooting is accomplished by
thinking logically of the function of each part of the system and how these functions
interrelate. A basic understanding of the various indicator lights will help you quickly
isolate the problem to the PCIM, a Bus Controller, an I/O rack, an I/O Block, or the CPU.

The total system has to be considered when problems occur. The CPU, Host computer,
I/O Blocks and external devices connected to or controlled by the Genius I/O system
must all be operating and connected properly. All cable connections as well as all
screw–down or soldered connections should be checked carefully.

Sometimes you need someone to talk to who can answer your questions. When you do,
first call your local authorized GE distributor. After business hours, please do not
hesitate to call the Programmable Control Emergency Service Number, (804) 978–5747.

Replacement Module Concept

When a problem arises, first isolate it to the major assembly, then to the defective
module within that assembly. The defective module is then replaced from a duplicate
set of modules maintained on site. Your production line or system is back up fast.

The defective module can be returned through normal channels under warranty or for
service without keeping your production line or system down for an extended period of
time. The replacement concept minimizes downtime to minutes as contrasted
(potentially) to days. The potential savings far outweigh the comparatively small cost of
duplicate modules.

If you did not purchase a duplicate set of modules with your initial system, we
recommend that you contact your authorized GE distributor and do so. Then,
with the help of this manual and the staff of your local authorized GE distributor,
you will be able to troubleshoot and repair just about any problem that may arise.

7

7-2 Single-slot PCIM User’s Manual – January 1994 GFK-0881

PCIM Troubleshooting

LEDS

A malfunction causing the improper operation of a PCIM can generally be isolated by
checking the condition of the status indicator LEDs on the PCIM. The normal condition
of the status indicator LEDs is the ON state. If a LED is not ON, check the
troubleshooting sequence in this section for the proper course of action.

Indicator Status Definition

BOARD OK

ON Power is available to the PCIM (adequate power must be
available for it to function properly), and the on–board self–
diagnostics test was passed.BOARD OK

OFF The watchdog timer has timed out, indicating a board failure
or improper address assignment or /RST input line is low.

COMM OK

ON Power is available, the controller ’s communications hard-
ware is functional, and it can send data (receives the token)
every serial bus scan.COMM OK

OFF (or FLASHING) means an error has been detected in the
communications hardware or access to the Genius serial bus.

Fault Isolation and Repair

If the status indicator LEDs are in the correct state but the bus is not functioning
properly, the malfunctions below may describe the problem. If so, follow the procedures
listed under the appropriate malfunction.

� An LED does not come ON when a PCIM is plugged in and powered up and /RST
input is high.

If Board OK ���/Comm OK �� –

� Check the parameters entered using the configuration software.

If set different then the InitIM parameter, the BOARD OK LED will not come on.

� Check to see if the PCIM is completely inserted in the host backplane connector,
and that all connector pins are properly aligned.

If all appears to be in order, assume hardware failure – replace PCIM.

If Board OK ��/Comm OK ��� –

� Check for correct cable type and length (see Genius I/O System and
Communications User’s Manual, GEK–90486–1).

� See if correct terminating resistors (see Genius I/O System and Communications
User’s Manual, GEK–90486–1) are installed at both ends of bus.

� Determine if serial bus wiring has been completed in a daisy chain fashion.

� Make sure cabling is not in proximity to high voltage runs.

� Look for a broken cable.

7

7-3GFK-0881 Chapter 7 Troubleshooting

If ���� LEDs off –

� Check to see if the PCIM is plugged in, seated properly, and receiving power.

� Check voltage receiving level of /RST. It must remain at 2.4 volts or higher (TTL
logic 1).

If ���� LEDs flashing together –

� Two devices on the same bus have probably been configured with the same
device number (serial bus address).

Check using the HHM.

� Repeated bus errors

� Ensure that cable shielding is properly installed and grounded (see Genius I/O
System and Communciations User’s Manual, GEK–90486–1).

� Unplug bus communications cable from PCIM, refer to the Device number
sheets from which you configured the system, and use the HHM to read
configuration/compare device numbers and I/O reference numbers.

� If all appears to be in order, replace PCIM.

� System shuts down with parity errors.

Duplicate or overlapping PCIM/I/O References.

� Input duplicated on same bus.

� Input references from other PCIMs overlap.

� Bus Errors – cannot get PCIM up and running

� Serial 1/Serial 2 crossed

� Intermittent or total lack of communications.

� Mixed Baud Rates

Power up blocks one at a time and confirm baud rate. Any change to baud rate in
block will not take effect until block power is cycled.

� No Global Data.

� Destination device off–line

Verify destination on–line.

� Unsuccessful Datagram completion.

� Destination device off–line

Verify destination on–line.

A section level 1 1
figure_ap level 1
table_ap level 1

A-1GFK-0881

Appendix A Example Applications

Example Application 1

This programming example uses the InitIM and GetDevConfig function calls. Example
devices include two PCIMs connected to a serial bus. The PCIMs have the following
Configurations (The IMPARMS Structure is defined in PCIM.H):

PCIM #2

Serial Bus Address: 30 Dec
IMPARMS.Segment: D000 Hex
IMPARMS.IOPort: 3E4 Hex
IMPARMS.IMRef: 3434 Hex
IMPARMS.OutputLength: 0
IMPARMS.InputLength: 0
IMPARMS.Active: ON

PCIM #1

Serial Bus Address: 31 Dec
IMPARMS.Segment: CC00 Hex
IMPARMS.IOPort: 3E0 Hex
IMPARMS.IMRef: 1212 Hex
IMPARMS.OutputLength: 0
IMPARMS.InputLength: 0
IMPARMS.Active: ON

These are the only two devices on our example Genius bus. The GetBusConfig
function can be used for any device on the bus by giving the Serial Bus Address (device
number) of the device desired. If the Device given is not online, GetDevConfig will
return OFFLINE (11).

A

A-2 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

This example can be built using MicroSoft C Compiler Ver 4.0 or greater with the
following syntax:

 C> MSC gdctst /Zp;
 C> LINK gdctst, , , pcim;
*/

#include <stdio.h>
#include <pcim.h> /* PCIM header file */

extern int
 InitIM(),
 ChgIMSetup(),
 GetDevConfig();

IMPARMS local[2]; /* PCIM Configuration Structure. . .
 allocate an element per PCIM in your PC */

char flags[2]; /* Error return for PCIM Init. . .allocate an
 element per PCIM in your PC. */

DEVICE config; /* Device Config Structure. . .32 may be allocated */

#define PCIM1 &local[0] /* Macro for easier remembering */
#define PCIM2 &local[1] /* Macro for easier remembering */

*/

main()
{
 int ret,
 x,
 y,
 loop = 1;

 printf(“\n\nThis is a test of the GetDevConfig function. . .\n”);

 printf(“\nTurning on two PCIMs\n\n”);

/* Initialize the PCIM #1 Parameters */
 local[0].im.Segment = 0xCC00;
 local[0].im.IOPort = 0x3E0;
 local[0].IMRef = 0x1212;
 local[0].OutputLength = 0;
 local[0].InputLength = 0;
 loca[0]l.Active = ON;

/* Initialize the PCIM #2 Parameters */
 local[1].im.Segment = 0xD000;
 local[1].im.IOPort = 0x3E4;
 local[1].IMRef = 0x3434;
 local[1].OutputLength = 0;
 local[1].InputLength = 0;
 local[1].Active = ON;

 if ((ret = InitIM (2, local, flags)) != SUCCESS)
 {
 printf(”\nInitIM returned %d\ntest exit”,ret);
 loop = 0;
 }
 while(loop)
 {

A

GFK-0881 A-3Appendix A Example Applications

/*
 From PCIM #1 (which is SBA 31), GetDevConfig(uration) for SBA 30, which
 in this case is PCIM #2. This can be used for any devices on the bus.
*/
 if ((ret = GetDevConfig (1, 30, &config)) != SUCCESS)
 {
/*
 returned an error code...probably 7 or 11...look in PCIM.H
 for Error Return MACROS
*/
 printf(”\nGetDevConfig returned %d\ntest exit”,ret);
 loop = 0;
 }/*

*/

 else
 {
 printf(”\n\nFor Serial Bus Address 30”);
 printf(”\nModel = %2d”, config.Model);
 printf(”\nOutputs are %s”, ((config.OutputDisable) ? ”DI
 SABLED” : ”ENABLED”));
 printf(”\nDevice is%spresent”, ((config.Present) ? ” ” :
 ” NOT ”));
 printf(”\nInput Length = %2d”, config.InputLength);
 printf(”\nOutput Length = %2d”, config.OutputLength);
 printf(”\nDevice type is ”);
 switch (config.Config)
 (
 case 1:
 printf(”Input Only”);
 break;
 case 2:
 printf(”Output Only”);
 break;
 case 3:
 printf(”Combination”);
 break;
 }
 }

A

A-4 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

/*
 From PCIM #2 (which is SBA 30), GetDevConfig(uration) for SBA 31, which
 in this case is PCIM #1. This can be used for any devices on the bus.
*/
 if ((ret = GetDevConfig (2, 31, &config)) != SUCCESS)
 {
/*
 returned an error code...probably 7 or 11...look in PCIM.H
 for Error Return MACROS.

*/
 printf(”\nGetDevConfig returned %d\ntest exit”,ret);
 loop = 0;
 }
 else
 {
 printf(”\n\nFor Serial Bus Address 31”);
 printf(”\nModel = %2d”, config.Model);
 printf(”\nOutputs are %s”, ((config.OutputDisable) ? ”DI
 SABLED” : ”ENABLED”));
 printf(”\nDevice is%spresent”, ((config.Present) ? ” ” :
 ” NOT ”));
 printf(”\nInput Length = %2d”, config.InputLength);
 printf(”\nOutput Length = %2d”, config.OutputLength);
 printf(”\nDevice type is ”);
 switch (config.Config)
 {
*/
 case 1:
 printf(”Input Only”);
 break;

 case 2:
 printf(”Output Only”);
 break;/*

 case 3:
 printf(”Combination”);
 break;
 }
 }
 printf(”\n\nPress return to continue ”);
 x = getchar();
 if (x == ’q’ || x == ’Q’)
 loop = 0;
 }
 printf(”\n\nThat is all”);
/*
 These next instructions turn the two PCIMs off
*/
 local[0].Active = OFF;
 local[1].Active = OFF;
/*
 These next two function calls may be checked for
 Error Returns
*/
 ChgIMSetup (1, PCIM1);
 ChgIMSetup (2, PCIM2);
}

A

GFK-0881 A-5Appendix A Example Applications

Example Application 2

This example provides uses the most common call routines for the PCIM. Each call
routine will be provided with a section of C code showing the proper use of the driver.

These call routines have been set up using a discrete block connected to the PCIM in the
following configuration:

 Serial Bus Address – 1
 Reference Address – 65
 Point Configuration – Pt 1 Input

Pt 5 Output
Pt 2 Output
Pt 6 Input
Pt 3 Output
Pt 7 Input
Pt 4 Output
Pt 8 Input

Any failures by the call routines will be displayed with the returned failure code.

Time delays are inserted within the program to visually verify the correct operation of
the driver where appropriate.

*/

#include <stdio.h>
#include ”pcim.h”

extern int
 InitIM(),
 ChgIMSetup(),
 GetIMState(),
 GetBusConfig(),
 GetDevConfig(),
 DisableOut(),
 GetBusIn(),
 PutBusOut(),
 GetDevIn(),
 PutDevOut(),
 GetCir(),
 GetWord(),
 PutCir(),
 PutWord();

/* Using the PCIM.H library, declare the following variables.
*/
IMPARMS imparm;
IMSTATE imstate;
DEVICE device[32];
DEVICE config;

/* The following arrays are declared for use as data storage
 in the program.
*/

unsigned char INdata [4096],
 OUTdata [4096],
 INDdata [128];

A

A-6 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

main()
{
 int ret,
 x = 0,
 y = 0,
 pnum = 1,
 dnum = 1,
 offset = 3;

 char val,
 valword [1],
 flags;

 unsigned char lgth,
 length;

/* Define the PCIM parameters. This assignment reflects the hardware
 setup of the PCIM and it is DIP switches.
*/
 imparm.im.Segment = 0xD000;
 imparm.im.IOPort = 0x3E4;
 imparm.IMRef = 0x0000;
 imparm.OutputLength = 0;
 imparm.InputLength = 0;
 imparm.Active = ON;

/* Use the InitIM driver to initialize the PCIM.
*/
 for (x=0; x<0xFFF; x++);
 if ((ret = InitIM (pnum, &imparm, &flags)) != SUCCESS)
 {
 printf(”\nInitIM failure, returned %d\n”,ret);
 }
 else
 {
 printf(”\nInitIM driver successful\n”);
 }
 for (x=0; x<0xFFFF; x++)
 for (y=0; y<0xF; y++);

/* Use the ChgIMSetup driver to change the IMREF value from
 0 to 0x1212. Note that all parameters in the imparm array
 are transferred to the PCIM.
*/
 imparm.IMRef = 0x1212;
 if ((ret = ChgIMSetup (pnum, &imparm)) != SUCCESS)
 {
 printf(”\nChgIMSetup failure, returned %d\n”,ret);
 printf(”\nSegment %x”,imparm.im.Segment);
 printf(”\nIOPort %x”,imparm.im.IOPort);
 printf(”\nIMRef %d”,imparm.IMRef);
 printf(”\nOutLength %d”,imparm.OutputLength);
 printf(”\nInputLength %d”,imparm.InputLength);
 printf(”\nActive %d”,imparm.Active);
 }
 else

 {
 printf(”\nChgIMSetup driver successful\n”);
 }

/* Use the GetIMState driver to read the Status Table and Setup
 Table of the PCIM. Display the DIP Switch value which is
 returned as part of this call.

A

GFK-0881 A-7Appendix A Example Applications

*/
 if ((ret = GetIMState (pnum, &imstate)) != SUCCESS)
 {
 printf(”\nGetIMState failure, returned %d\n”,ret);
 }
 else
 {
 printf(”\nGetIMState driver successful\n”);
 printf(” DipSwitch value %x\n”,imstate.DipSwitch);
 }
/*
 Use the GetBusConfig driver to display the configuration of
 the Genius Bus. Display a subset of the information returned.
*/
 for (x=0; x<0xFFFF; x++)
 for (y=0; y<0xF; y++);

 if ((ret = GetBusConfig (pnum, device)) != SUCCESS)
 {
 printf(”\nGetBusConfig failure, returned %d\n”, ret);
 }
 else
 {
 printf(”\nGetBusConfig successful\n”);
 printf(” Model # Device 1 = %d”, device[1].Model);
 printf(”\n Device Present = %d”, device[1].Present);
 printf(”\n Device Configuration = %x\n”, device[1].Config);
)

/* Use the GetDevConfig driver to display the configuration of a
 specific block. Display the reference address of the block.
*/
 if ((ret = GetDevConfig (pnum, dnum, &config)) != SUCCESS)
 {
 printf(”\nGetDevConfig failure, returned %d\n”);
 }
 else
 {
 printf(”\nGetDevConfig successful\n”);
 printf(” Device Present = %d”,config.Present);
 printf(”\n Device reference address = %d\n”,config.Reference);
 }

/* Use the PutCir driver to turn on pt 3 of the Genius I/O block.
*/

 for (x=0 ; x<0xFFFF; x++)
 for (y=0; y<0xF; y++);
 if ((ret = PutCir (pnum, dnum, offset, (char) 1)) != SUCCESS)

 {
 printf(”\nPutCir failure, returned %d\n”, ret);
 }
 else
 {
 printf(”\nPutCir driver successful. Pt 3 should be ON.\n”);
 }
 for (x=0 ; x<0xFFFF; x++)
 for (y=0; y<0xF; y++);

/* Use the DisableOut driver to disable the updating of the block
 thus turning pt 3 off.
*/
 if ((ret = DisableOut (pnum, dnum, DISABLE)) != SUCCESS)

A

A-8 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

 {
 printf(”\nDisableOut failure, returned %d\n”, ret);
 }
 else
 {
 printf(”\nDisableOut driver successful – Outputs shd be off\n”);
 }
 for (x=0 ; x<0xFFFF; x++)
 for (y=0; y<0xF; y++);

 DisableOut (pnum,dnum,ENABLE);

/* Use the GetBusIn driver to read all input data on the PCIM bus.
 Display input data for device 1.

*/
 if ((ret = GetBusIn (pnum, INdata)) != SUCCESS)
 {
 printf(”\nGetBusIn failure, returned %d\n”, ret);
 }
 else
 {
 printf(”\nGetBusIn successful”);
 printf(”\n Input data = %X\n”,INdata);
)
/* Use the PutBusOut driver to write output data to the discrete
 block. Turn on pt 3,4,5 .
*/
 OUTdata[128] = 0x1C;

 if ((ret = PutBusOut (pnum, OUTdata)) != SUCCESS)
 {
 printf(”\nPutBusOut failure, returned %d\n”, ret);

 }
 else
 {
 printf(”\nPutBusOut successful”);
 printf(”\n Output data[128] = %X\n”,OUTdata);
 printf(” Pt 3, 4, and 5 should be ON\n”);
 }
 for (x=0; x<0xFFFF; x++)
 for (y=0; y<0xF; y++);

/* Use the GetDevIn driver to read input data from the discrete
 block. Value should indicate 0x1C.
*/
 if ((ret = GetDevIn (pnum, dnum, &length, INDdata)) != SUCCESS)
 {
 printf(”\nGetDevIn failure, returned %d\n”, ret);
 }
 else
 {
 printf(”\nGetDevIn successful”);
 printf(”\n Discrete Block Input Data = %X\n”,INDdata[0]);
 }

/* Use the PutDevOut driver to turn on pt 3 and 5 on the discrete
 block.
*/
 lgth=1;

A

GFK-0881 A-9Appendix A Example Applications

 OUTdata[0]=0x14;

 if ((ret = PutDevOut (pnum, dnum, lgth, OUTdata)) != SUCCESS)
 {
 printf(”\nPutDevOut failure, returned %d\n”, ret);
 }
 else
 {
 printf(”\nPutDevOut successful”);
 printf(”\n Pt 3 and Pt 5 should be ON\n”);
 }

/* Use the GetCir and GetWord drivers to read the input status of
 the discrete block.
*/
 offset = 3;

 if ((ret = GetCir (pnum, dnum, offset, &val)) != SUCCESS)
 {
 printf(”\nGetCir failure, returned %d\n”, ret);
 }
 else
 {
 printf(”\nGetCir successful”);
 printf(”\n Value read should be 1, val= %x\n”, val);
 {
 offset = 1;

 if ((ret = GetWord (pnum, dnum, offset, valword)) != SUCCESS)
 {
 printf(”\nGetWord failure, returned %d\n”, ret);
 }
 else
 {
 printf(”\nGetWord successful”);
 printf(”\n Value read should be x14, val= %x\n”, valword[0]);
 }
 for (x=0; x<0xFFFF; x++)
 for (y=0; y<0xF; y++);

/* Use the PutWord driver to turn on pt 4 on the discrete block.
*/
 offset = 1;
 valword[1] = 0x08;

 if ((ret = PutWord (pnum, dnum, offset, valword[1])) != SUCCESS)
 {
 printf(”\nPutWord failure, returned %d\n”, ret);
 }
 else
 {
 printf(”\nPutWord successful”);
 printf(”\n Pt 4 should be ON”);
 }

 for (x=0; x<0xFFFF; x++)
 for (y=0; y<0xF; y++);

/* Exit the program by turning off the module.
*/
 imparm.Active = OFF;
 ChgIMSetup (pnum, &imparm);
)

A

A-10 Single-Slot PCIM User’s Manual – January 1994 GFK-0881

Example Application 3

This example shows in BASIC the way the SENDMSG (or SENDMSGREPLY) and
CHKMSGSTATUS message functions must be used together. The comments in the text
provide a running commentary for the use of each driver.

010 CALL SENDMSG (or SENDMSGREPLY) (STATUS, IMNUM, MSG(0))
2020 IF STATUS = 12 THEN 2050 ;IF PCIM is busy go to 2050
2030 IF STATUS <> 0 THEN 2170 ;IF STATUS is anything other then ”0”;
2040 ;something is wrong – go to 2170
2050 GO TO 2110 ;SENDMSG was executed O.K.; go to 9110 to
2060 ;check msg status
2070 CALL CHKMSGSTAT (STATUS,IMNUM,MSGSTATUS)
2080 IF STATUS <> 0 THEN 2170 ;If STATUS is anything other then ”0”;
2090 ;something is wrong – go to 2170
2100 If MSGSTATUS = 12 THEN 2050 ;If PCIM busy, stay in this loop and go
2110 ;back to 2050
2120 IF MSGSTATUS = 16 THEN 2010 ;If PCIM is free; go back to 2010 and
2130 ;execute SENDMSG
2140 IF MSGSTATUS <> 0 THEN 2170 ;If MSGSTATUS is anything else; go to 2170
2150 ;and decode
2160 ,
2170 CALL CHKMSGSTAT (STATUS, IMNUM, MSGSTATUS) ;Did SENDMSG get
 ;on the bus
2180 IF STATUS <> 0 THEN 2170 ;If STATUS is anything other than ”0”; go to
2190 ;2170 and decode
2200 IF MSGSTATUS = 12 THEN 2110 ;PCIM is busy; stay in this loop and go
2210 ;back to 2110
2220 If MSGSTATUS <> 0 THEN 2170 ;If MSGSTATUS is anything other than ”0”;
2230 ;go to 2170 and decode
2240 RETURN ;The SENDMSG call was executed properly; If
2250 ;SENDMSGREPLY the reply msg is ready to
2260 ;read with GETMSG
2270 CLS ;Clear Screen
2280 PRINT STATUS, MSGSTATUS ;Interpret the code for STATUS and/or
2290 ;message status

Index

Index-1GFK-0881

A
Address selection, 2-2 , 3-10

DIP switches, 3-2
in software, 3-8

Auxiliary Request Queue, 2-5

B
BASIC programming, 5-1

Baud Rate, 3-12 , 7-3

Broadcast Control Output Table, 2-5

Bus
configuration, reading, 4-2 , 4-22 , 5-2 ,

5-20
connection to, 1-2 , 1-3 , 3-3
errors, 7-3
overview, 1-4
termination, 3-3 , 3-4

Bus controller, 1-4

C
C programming, 4-1

Catalog numbers, 1-5

Changing the setup parameters, 4-2 , 4-18
, 5-2 , 5-16

ChgIMSetup, 4-2 , 4-18 , 5-2 , 5-16

ChkMsgStat, 4-3 , 4-50 , 5-3 , 5-48

Clear Reset Request, 2-4

COMM OK status, 2-3

Command Block, 2-5

Compiling a C program, 4-1

Computer, compatible types, 1-2

Configuration, example, 3-13

Configuration choices, 3-10

Configuration software
overview, 1-6
running, 3-8

Connectors, 1-3

Control bits, 2-2 , 2-4

D
Datagrams, 6-3 , 7-3

Daughterboard, 1-2 , 1-3

Device Configuration Table, 2-5

Device configuration, reading, 4-2 , 4-24 ,
5-2 , 5-22

Device I/O Table, 2-5

Device number, 3-10

DIP switch settings, 3-2

Directed Control Input Table, 2-5

DisableOut, 4-2 , 4-26 , 5-2 , 5-24

DOS interrupt, 3-10

DOS requirements, 1-6 , 3-1

Drive capability, 2-1

E
Electrical characteristics, 2-1

Electrical specifications, 1-5

Environmental specifications, 1-5

Error status, 5-10

F
File linkage for C program, 4-1

Functions, software, 4-2 , 5-2

G
GetBusConfig, 4-2 , 4-22 , 5-2 , 5-20

GetBusIn, 4-2 , 4-28 , 5-2 , 5-26

GetCir, 4-2 , 4-38 , 5-2 , 5-36

GetDevConfig, 4-2 , 4-24 , 5-2 , 5-22

GetDevIn, 4-2 , 4-32 , 5-2 , 5-30

GetIMIn, 4-36 , 5-34

GetIMState, 4-2 , 4-20 , 5-2 , 5-18

GetINTR, 4-3 , 4-54 , 5-3 , 5-52

GetMsg, 4-3 , 4-52 , 5-3 , 5-50

GetWord, 4-2 , 4-42 , 5-2 , 5-40

Global Data, 6-1 , 7-3
sending, 4-37 , 5-35

Index

Index-2 GFK-0881

H
Hand-held Monitor, 1-4

Hand-held Monitor connector, 3-5

Heartbeat Enable, 2-5

Heartbeat Timeout Multiplier, 2-5

HHM Test bit, 2-4

Host Clear, 2-5

I
I/O blocks, 1-4

I/O Table Lockout, 2-5

Initialization function, 4-2 , 4-15 , 5-2 , 5-13

InitIM, 4-15 , 5-13

Inputs, read, 4-2 , 4-28 , 4-32 , 4-38 , 4-42 ,
5-2 , 5-26 , 5-30 , 5-36 , 5-40

Installation, 3-2

Interrupt Disable Table, 2-5

Interrupt request, 2-3

Interrupt Status Table, 2-5

Interrupts, 3-11 , 4-3 , 4-54 , 5-3 , 5-52
disable, 4-56 , 5-54

L
LEDs, 1-3 , 1-5 , 7-2

Low voltage detection, 2-3

M
Mechanical specifications, 1-5

Memory requirements, 1-5

Message, reading, 4-52 , 5-50

Message status, 4-50 , 5-48

Message, reading, 4-3 , 5-3

Motherboard, 1-3

MS DOS requirements, 3-1

O
Operating system, 1-6

Outputs
disable, 3-10 , 4-2 , 4-26 , 5-2 , 5-24
writing, 4-2 , 4-30 , 4-34 , 4-40 , 4-44 , 5-2

, 5-28 , 5-32 , 5-38 , 5-42

P
Parameters, BASIC, 5-4

Parameters, C, 4-4

Parity errors, 7-3

PCIM
catalog numbers, 1-5
control data, 2-2 , 2-4
daughterboard, 1-2 , 1-3
electrical characteristics, 2-1
host memory required, 1-5
motherboard, 1-3
size and appearance, 1-1
software driver, 1-1 , 1-6
specifications, 1-5
status data, 2-2 , 2-3

PCIM OK status, 2-3

PCIM Reset command bit, 2-4

PCIM software driver, 4-1

PCIM.H file, 4-4

Power supply requirements, 2-1

PutBusOut, 4-2 , 4-30 , 5-2 , 5-28

PutCir, 4-2 , 4-40 , 5-2 , 5-38

PutDevOut, 4-2 , 4-34 , 5-2 , 5-32

PutIMOut, 4-37 , 5-35

PutINTR, 4-3 , 4-56 , 5-3 , 5-54

PutWord, 4-2 , 4-44 , 5-2 , 5-42

R
Read Datagram Buffer, 2-5

Reading configuration and status data, 4-2
, 4-20 , 5-2 , 5-18

Reading inputs, 4-2 , 4-28 , 4-32 , 4-38 ,
4-42 , 5-2 , 5-26 , 5-30 , 5-36 , 5-40

Reading the bus configuration, 4-2 , 4-22 ,
5-2 , 5-20

Index

Index-3GFK-0881

Reset detection, 2-3

Reset Request, clear, 2-4

S
Sending message on the bus, 4-3 , 4-46 ,

4-48 , 5-3 , 5-44 , 5-46

SendMsg, 4-3 , 4-46 , 5-3 , 5-44

SendMsgReply, 4-3 , 4-48 , 5-3 , 5-46

Serial bus address, 3-10

Service, telephone number, 7-1

Setup Table, 2-5

Shared RAM, 2-5

Signal conditioning, 2-1

Software driver, 1-6 , 4-1
files, 3-1
function calls, 4-2 , 5-2
installation, 5-1

overview, 1-1

Startup, 3-7

Status bits, 2-2 , 2-3

Status Table, 2-5

System overview, 1-4

T
Transmit Datagram Buffer, 2-5

W
Watchdog timer

enable, 3-12
pulse, 2-4
status, 2-3

Wiring specifications, 1-5

Writing outputs, 4-2 , 4-34 , 4-40 , 4-44 , 5-2
, 5-32 , 5-38 , 5-42

	Chapter 1 Introduction
	Suitable Computers
	Using Other Interface Software
	Description
	Daughterboard
	Motherboard
	Faceplate

	Genius I/O System Overview
	Specifications
	PCIM Software
	PCIM Configuration Software
	PCIM Software Library

	Chapter 2 Operation
	PCIM Electrical Characteristics
	Power Supply Requirements
	Bus Loads/Drive Capability
	Signal Conditioning

	PCIM Status and Control
	PCIM Status Byte: Bit Definitions
	PCIM Control Byte: Bit Definitions

	Daughterboard Shared RAM

	Chapter 3 Getting Started
	Introduction
	Hardware Required
	Software Required

	Setting the Board Address DIP Switch
	PCIM Installation
	Connecting the Bus
	Bus Termination

	Removing the PCIM from the Bus
	Installing a Hand-held Monitor Connector
	Mounting the HHM Connector
	Making the Bus Connections

	PCIM Startup
	Using the Configuration Software
	Notifying the Configuration Software of DIP Switch Change
	Running the Configuration Software
	Running the Program Normally
	Running the Program in Tutorial Mode
	Configuration Entries

	Configuration Example

	Chapter 4 C Programming for the PCIM
	Compiling your Application with Microsoft
	Software File Linkage
	Software Driver Function Calls
	Functions that deal with PCIM configuration:
	Functions that deal with bus configuration:
	Functions that deal with control data movement:
	Functions that deal with communications:
	Functions that deal with interrupt processing:
	Using Software Driver Function Calls
	C Software Driver Function Call Parameters
	PCIM.H File
	Data Structures for Initialization
	Data Structures for PCIM Configuration
	Data Structures for Bus Configuration

	InitIM – Setup and Activate PCIM
	ChgIMSetup – Change PCIM Configuration
	GetIMState – Get Configuration and Status Information
	GetBusConfig – Get Serial Bus Configuration
	GetDevConfig – Get Device Configuration
	DisableOut – Disable/Enable Device Outputs
	GetBusIn – Read all Input Values
	PutBusOut – Write all Output Values
	GetDevIn – Read Device Data Only
	PutDevOut – Write Device Data Only
	GetIMIn – Read Directed Input Table
	PutIMOut – Write the Global Output Table
	GetCir – Read Input Circuit Value
	PutCir – Write Output Circuit Value
	GetWord – Read Input Word Value
	PutWord – Write Output Word Value
	SendMsg – Send a Message
	SendMsgReply – Send a Message Requesting a Reply
	ChkMsgStat – Read Message Progress Status
	GetMsg – Read Received Message
	GetINTR – Read Interrupt Status Table
	PutINTR – Write to the Interrupt Disable Table

	Chapter 5 BASIC Programming for the PCIM
	Basic Software Driver Installation
	Software Driver Function Calls
	Functions that deal with PCIM configuration:
	Functions that deal with bus configuration:
	Functions that deal with control data movement:
	Functions that deal with communications:
	Functions that deal with interrupt processing:
	Using Software Driver Function Calls

	Basic Software Driver Function Call Parameters
	Basic Data Array Structures
	IMPARMS
	IMFLAGS
	IMSTATE
	BUSCONFIG
	DEVCONFIG
	IODATA
	DEVDATA
	IMDATA
	MSG
	INTR/DISABLEINTR

	Error Status Indication
	Access from BASIC
	Coding Basic Function Calls
	INITIM CALL Statement
	CHGIMSETUP CALL Statement
	GETIMSTATE CALL Statement
	GETBUSCONFIG CALL Statement
	GETDEVCONFIG CALL Statement
	DISABLEOUT CALL Statement
	GETBUSIN CALL Statement
	PUTBUSOUT CALL Statement
	GETDEVIN CALL Statement
	PUTDEVOUT CALL Statement
	GETIMIN CALL Statement
	PUTIMOUT CALL Statement
	GETCIR CALL Statement
	PUTCIR CALL Statement
	GETWORD CALL Statement
	PUTWORD CALL Statement
	SENDMSG CALL Statement
	SENDMSGREPLY CALL Statement
	CHKMSGSTAT CALL Statement
	GETMSG CALL Statement
	GETINTR CALL Statement
	PUTINTR CALL Statement

	Chapter 6 Communications
	Introduction
	Global Data
	For More Information

	Datagram Data
	Memory-Access Datagrams
	For More Information

	Chapter 7 Troubleshooting
	Introduction
	Replacement Module Concept
	PCIM Troubleshooting
	LEDS
	Fault Isolation and Repair

	Appendix A Example Applications
	Example Application 1
	Example Application 2
	Example Application 3

	Index

