Afdel ing der

Elektroctechniek

Technische Hogeschool Eindhoven
Vakgroep Automatisch Systeemontwerpen

An

door

FRapport van
vitgevoerd
in opdracht
ondeer leidi

Lavout

Intergztive
Qoijen

T.G.M,wvan

het afstudeerwerk

Editor/compactor

van cktober 1981 tot oktober 1982
wvan prof. de. ing, J.Jess
ng van ir. HM.van der Woude.

3

TECHNISCHE 1o
. EMOHOVEN
ELEKTHUTComn

SESCHOOL,

BLIOTHERK

Table of contents

Summary.

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Chapter

4 s
2

3
4 3
5
6 3
7 :
8 :
9

Appendix A

Appendix B

Page

Cesteeceanaaessecnn et etessrecsscae s .3

Introduct ion..eeec e ssecncancncesancnnsnensh

StickS. . viveneviaaneenns 4
Layout editor..vceercnecesncsansassorennssil
Data structure....scecvesarsescannassns .16
Design rule checking...oceevcacees ceea e .19
Compactlion.ces v onneansnannsnosnasnaansses 22
Conclusionssy recommandationS..eeceeeeansns .25
Description of program and subroutines....27
Description of error messages.......oe..,.40
Figures. . iseeesenscsnsnnssassnsannnnsnsnsnas 43
Bibliography...iicicveesosssanscancanses ceae s

PAGE 3

Summary.

This report describes a program made by T.G.M.van
Goijens student for masters degree at the Eindhoven
University of Technology. The purpose of the program
is threefold:

The first part of the program is a symbolic Llayout
editor: An interactive program with wich a user can
build a circuits consisting of sticks (symbolic
elements) on a grafics terminal.

The second part checks the circuit to see if there are
violations against design rules»s rules concerning
minimum distancess minimum linewidth's etc.

The Last part is the start of a compaction programs a
program that will shift all elements together as far as
possibles without violating the design rules.

Interactive Layout Editor/Compactor PAGE 4

Chapter 1 ¢ Introduction.

Interactive Layout Editor/Compactor PAGE 5

The department of Electrical Engineering of the Eindho-
ven University of Technology is planning an
IC-production unit. For this units wich will be become
operational in 1983+ IC’s have to be designed at the
same university. In the section ESy a group of stu-~
dents developeds in co-operation with professor J.Jess
and ir. M.van der Woudes a laycut system to help fu-
ture designers. On the computer of the section ESy a
PDP 11/40 an interactive Fortran program was set up for
this purpose. We wanted this program to take over the
drawing of the gecmetrical layout from the designers so
he <can concentrate himself on the electronic designs
and on the relative placement of the elements (the to-
pology of the layout).

One of the demands for an integrated circuit 1is that
its surface stays as small as possible. Because the
designer from now cn only choses a good topology for
the elementss the program has to perform a "compaction”
on the layout.

A few features such a program should contain are stated
below:

-Symbolic input: A line or transistor is placed as
a symbol in the layout.

~Input via a graphics terminal.

~Hierarchical structure: 1t should be possible to
define a macro: wich is a lavout consisting of a
number of sticks and/or other macro’ss and later use
this macro as one of the simple elements like a
line.

-Hierarchical database: The database should have
the same hierarchys the contents of a macro appears
only onces and each other time the macro is used;
only a peointer to the macro should be added in the
database.

-The program has to be able to check whether the de-
sign rules (minimal distancess minimal linewidth’s
etc.) have been violated.

~-The symbolic has to be translated to a geometrical
layout.

-The program has to perform a compaction on the lay-
outs if desired by the user.

-1t has to be possible that a designer draws part of
the layout in the geometrical way.

Interactive Layocut Editor/Compactor PAGE &

During the period 1 stayed in section ES ¢« I worked on
three programs: A symbolic layout editorsy a design
rule checker and a compactor. Realized are the first
version of the tayout editor (wich cannot handle hier-
archical struyctures?s and the design rule checker:
while the work on the compactor has been taken over by
X.Timmermans,
An improved version of the layout editor was made by
K.Delhij [33. Major improvements are the hierarchical
structures and a better database.
The functicns the editor is able to perform are:
- Adding elements.
- Deleting elements.
- Drawing elements.
- Printing the array wich contains the
information about the elements.
- Retrieve the situation as it was
before the last command.
For further informations see chapter 3, The Layout Edi-
tor. Information about the symbolic elements itself
can bhe found in chapter 2Z: Sticks.
The design rule checker and compactor are described in
chapter 5 and 6: Design Rule Checking and Compactor.
In shorty the design rule checker is able to detect the
fellecwing errors:
- Not allowed overlap of elements.
- Distances between elements that are smaller than
the minimal distances.
- Not closed lines (lines with dead ends’.
- Not connected transistors or contacts.
- Double placed elements (elements of the same type:
that completely overtap each otherd.
Other design rules are enforced by the translation of
symbolic to geometric layout: Lines automatically get
their minimum width when translated (when the user did
not specify a special widths otherwise the width is
greater).
Sc far for this short overvieuw of my work. 1 Llike to
thank everyene who helped with advisess specially my
coaches professor J.Jess and ir. M.van der Woudes and
also mr. H.O.Koopmans for his help concerning the com-
puter.,

v Interactive Layout Editor/Compactor PAGE 8

-

Before going into the details of the design processy we
should take a <close Llook at the elementss called
"sticks"s our symbolic layout consists of.

As there ares in NMOS, three layers for interconnecting
elements (diffusion-y» polysilicon—- and metallayer), we
also have three different symbols in the symbolic lay-
out for these connectionsy each of them symbolizing one
of the aforementioned layers.

These three symbols are straight lines with a different
dashing. A fourth line type is used only in the sym-
bolie Llayout, having ne meaning in the geometric
layout: The RUNX-line. This lLine (name from L 3 3>
can't be used for connectionsy but only for boxes ar-
ound groups of elementss and to write comment into the
symbolic layout.

See figure 2 in Appendix A for these lines.

Normally a line gets a width that is equal to its mini-
mal width (2 lambday see below for lambda). However:
it is possible for a user to specify a width wich is
greater, This is explained in chapter Js the layout
editor. Also the size of transistors and contacts can
be ajusted in a similar way.

Other symbols used are the contactsy also called via’s.
They connect the three layers of different types and so
we find three of them:

-The polysilicon-metal contact (P-M contacts P-MCT
in the menu).

~The diffusion-metal contact (D-M contacts D-MCT in
the menu).

-The diffusion-polysilicon contact (Buried contacts
BURCT in the menu).

The next group of symbols consists of transistorss beth
driver- and loadtransistors. In fact a drivertransis-
tor is nothing more than a crossing of a polysilicon-
and a diffusicnliney but we chose to have a special
symbol for it. The benefits are obvious:
-When the user has to place a transistor by expli-
citly giving the command TRANs the program will be
able to find all not desired transistors that result
from crossings of the two lines (diffusion and poly-
silicon).

| Interactive Layout Editor/Compactor PAGE 9

*

-Furthermores the transistor symbol will make the

picture easy understandable for designers without
experiance with the program.
The symbol of the drivertransistor consists of two rec-
tangless drawn over each other. They reaoresent the two
crossing linessy and are dashed in the same way as those
lines. When a transistor is called "vertical": this
means that the polysilicon line is verticals and the
diffusion Lline 1is horizontal. Figure 2 in appendix A
shows the transistor symbols.
For a loadtransistors a third rectangle is drawns:s sym-
bolizing the implantation area.

Another symbol that won’t reappear in the geometric la-
ycut Like the RUNX-lLine is the terminals also called
pin. When & user places a box around a group of ele-
mentss there is need for a contact to the world ocutside
the box. Terminals are the only symbols that are al-
lowed to be placed on the surrounding rectangle (box).
Lines may end on the surrcunding rectangles but only if
a terminal is placed on that end.

The last symbol is the box. A box is the surrounding
rectancle of a group elementss and consists of four
linepieces of type RUNX. Howevers it is stored in mem-
ory as one elements not as four.

The symbols used and their names are taken from "CAB-
BAGE"™s [31.)

Figure 1 in appendix A (page 453) shows the screen after
the program is started up. On the upper right we see
the menu with the commands: below it the messages and a
legenda of used symbels and linetypes. Left we see the
window or picture window.

The picture window has scale marks and scale numbers
that indicate a grid. Sticks can be placed only on the
grid. 5o when a user tries to place one of the sticks
besides a gridpoints the program looks for the closest
gridpoint and places it there.

The width of the grid can be specified by the user (in
mm.>. Howevers: the distance between two gridlines will
always be one lambdas lambda being the minimal stepsize
of the proces. F.i. a good value for lambda at the
moment is 3 micron. By specifying all distances in
Lambda the inputprogram will be independent of future
improvements of the proces that will force lambda down.
Note = The menucommand IMPL is not operational any-
mores and won't reappear in a next version.

Figure 2 in appendix A (page 46) shows the stickss the
grid has a width of 20 mm. The following sticks appear
from left to right, and from top down:

The four linetypess metals, polysilicoens diffusien and
RUNYX, the vertical and horizontal drivertransistors the

Interactive Layout Editor/Compacter PAGE 10

vertical and horizontal loadtransistors the poly-metal
contact: the diffusion-metal contacts the buried con-
tacts the terminal and the box.

i Interactive Layout Editor/Compactor PAGE 11

Chapter 3. Layout editor.

Interactive Layout Editor/Compactor

The lLayout editor is an interactive program:

PAGE 12

used to

put the description of a circuit into the computermemo-—
ry in an easy and fast way. The editer produces a disk

files in wich all information is stored.' 1t

is possi-

ble to start editing a new files» it is alse possible to
read in an old file from disk and then to start making

changes. Files can be saved under a user
name.

specified

Input of elements in the computer will be done via the
grafics terminals a Tektronix T4014y equiped with a

joystick. Placement of sticks will always
next order:

in the

Firsty the menucommand is selected. The terminal shows

a crosshairy steerable with the joystick,.
the crosshair in the rectangle (see figure 1

By placing

appen-—

dix As page 45) with the desired command and pressing

the spacebars the command is given. After thats
nends on the type of command what further

needed.

it de-

input is

The menuitems can be divided into the next groups:

1. Commands that add an element. These

are:

METALs DIFF, POLYs, RUNXs LOADHs LOADVs TRANH,

commands

TRANV,

TERMs P-MCTs» D-MCTs BURCT and BOX. After this type

of commandsy the wuser should supply one

points in the picture window.

or moere

2. Command to delete elements. Following this com-
mand (DELT)s the user should indicate an element on

the screen with the crosshair.

3. Digﬁts 0 to 2. Only used after menucommands of
type 1 (adding an element)s with one exception:

After the DRAW-command the program needs

to know

whether output should go to the Tektronix terminal
or to the Calcom plotter. This is indicated with

the figures 1 or 2 respectively.

4. Other commands: UNDGs PRNTs DRAWs STOP.

UNDO

“"undoes" the last command if this command was of

type 1 or 2 = Adding or deleting an element.

Interactive Layout Editor/Compactor PAGE 13

PRANT clears the screen and prints the contents of

array LIST (see chapter 4y datastructure),.
DRAW clears the screen and makes a new drawing.
STOP terminates the input session.

'Group number 1: Adding an element.
The elements can be divided in three groups: Line ele-
mentss point elements and BOX.

1a. Adding line elements.
Placing such an element is done by steering the
crosshair into the rectangle with the command
{METAL: DIFFs POLYs RUNX) and pressing the space-
bar. After the commands: the user can either place
the crosshair in the column with digits to indi-
cate that the line should get a specialy
non-default width:s or directly chose the place in
the window where the line should start.
Supplying the program with a point outside the
menu and outside the window will give rise to an
error message (QUTSIDE MENU or QUTSIDE WINDOW}.
For a Line that consists of only one Llinepiece:
two points in the window should be indicated. 1t
is also possible to indicate more than two points:
For each extra point a linepiece is drawn (and
written to array LIST) between the two Llast
points. In this way a Lline in the form of a
staircase can he drawn very fast. When more lines
of the same type have to be drawns the user can do
sc without going back to the menu each time. Only
the Llast point of the first Lline should be
indicated using the c~key instead of the spacebar.
The following point (via the spacebar again) will
bhe the starting point of the second lines and so
on. Figure 3 in appendix A (page 47) shows a
drawing for wich only once a command (METAL) was
given.
If the user wants the width of a Line to changes
he has to give the command again.
Every ltinepiece has to be horizontal or vertical.
Otherwise an errormessage is displayed (LINE NOT
ORTHO). If sos the user can try to place the last
point agains or chose a new command.

1b. Adding point elements.

This group consists of transistors (both driver-
and loadtransistors)s the contacts and the termi-
nal. After giving the command for one of these
elements (and eventually a figure)s only one point
on the screen should be indicated. But also in
this case it is allowed to indicate more points:
Then more elements will be drawn at each indicated
point.

Interactive Layout Editer/Compactor PAGE 14

1c. Adding an element of type BOX.

The first point indicated in the window will be
the anchor point of the box. Two more points need
to be indicateds they are the two diagonal points
of the box. The user may select the points
left-under plus top-rights or right-under and
top-tleft.

Deleting elements.

To delete an elements it has to be indicated with
the crosshair after the menuccemmand DELT is given.
Point elements are indicated by placing the cros-
shair in the middle of the symbols Line elements
by placing the crosshair in the Llittle circle in
the middle of it. When the indicated point is
mocre than half a grid unit away from the nearest
anchor peoint: the program displays the error mes-
sage "ITEM NOT FOUND",

After a succesfull deletions the message "DRAWING
NOT CORRECT" is shown. Because the terminal is
not able to wipe out one elements the deleted ele-
ments stay visible. To make a correct drawing the
command DRAW has to be given (followed by figure 1
wich directs the drawing to the T4014).

3 bigits 0O to 9.
As stated befores these digits are used to give
lines: transistors and contacts other sizes than
their default ones. For lines and contacts one
digit can be supplieds for transistors (both
driver— and loadtransistors) twe digits are al-
lowed: denoting the width of its polysilicon and
diffusion Lines and hence the length and width of
its channel.
After the DRAW commands the user has to give the
figure 1 or 2 depending on where the new drawing
should be mades on the Tektronix or on the Calcom
plotter.

43, UNDO,
The UNDO command can be given directly after one
of the commands of type 1 or 2. The situation
that existed before that command will be
retrieved. The effect of UNDO is also that an
element will be added or deleted. Therefores the
command UNDO itself can be "undone". The effect
of twice a command UNDO is nil.
When an UNDQ command is given after a type 3 or
type 4 command (except for UNDO itself)s an error
message (WRONG USAGE UNDO) is displayed.

4b. PRNT.

PRNT gives the user the opportunity to inspect the

1 Interactive Layout Editor/Compactor PAGE 15

array in wich all elements are placed. This can
- bes for instances for the next reason:

The user wants to know the width’s of the lines on
the screen. These width's are not visible in the
symbolic layout. The PRNT <command clears the
screen and then prints the array LIST (see chapter
4y datastructursl,

For each element one line is printeds starting
with the address of the first integer of the ele-
ment {(the first integer of the first element has
address 1y the first integer of the second element
has address 7 and so conJ.

4c. DRAUW,

When the drawing is not correct anymores a new one
can be made using the DRAW command. The progranm
asks whether the drawing should be directed to the
Tektronix terminal or te the Calcom plotter with
the message ! "T4014/CALS563 7 172", The user
has to answer with the figure 1 or 2 in the menu
(not by pressing the key 1 or 2).

4d., STOP.
Commang STOP terminates the input session. The
procgram now asks the user whether the contents of
the array should be saveds and if sosy wunder wich
filename. The next guestion will be whether the
user wants to go on editing a new file or wants te
stop the progranm.

1 Interactive Layout Editor/Compactor PAGE 16

Chapter 4. Datastructure.

Interactive Layout Editor/Compactor PAGE 17

Datastructure of the progranm.

The elements will be placed in a linear arrays called
LIST. The Llength of the array is 1600 integers and for
each element LIST contains eight integerss sco 200 ele-
ments can be placed.

When 200 elements shouldn’'t be enoughs the maximum
number of elements can be increased simply by adjusting
the tength of array LIST.

The information concerning one element consists of
eigth integers:
1 ¢t Type of the element. This is an integer in the
range from 1 until 17, its meaning is :

. Vertical Lline of type metal.
. Vertical line of type diffusion.
. Vertical line of type polysilicon.
Vertical Lline of type runx.
D-M contact.
P-M contact.
Buried contact.
Terminal element.
Vertical drivertransistor.
Horizontal drivertransistor.
Vertical lcadtransistor.
Horizontal loadtransistor.
Herizontal line of type metal.
14, Horizontal line of type diffusion.
15. Heorizontal Line of type polysilicen.
156. Horizontal Lline of type runx.
17. Surrounding rectangle (box).

(=9

> g ~Jo- U GE D

o
L™]

[N
-3

r

ey
d

2 1 Orijentation of the element.
When placed the orientation of the elements always
will be 1.

3s4 ¢ Co-ordinates of the anchorpoint of the ele-
ment. For a point element (transistor:s contact,
terminal) the anchorpoint is in the middle of the
symbols for a line element the anchorpoint is in the
middle for a linepiece with a length of an wuneven
times Llambdas and in the middle plus or minus half
lambda for a lLinepiece with a Llength of an even
times lambda.

5:6 ¢ C(Co-ordinates of the left-under point of the
surrounding rectangle of the geometrical representa-
tion of the element.

Interactive Layout Editor/Compactor PAGE 18

7+8 ¢ Co-ordinates of the right-upper point of the
surrounding rectangle of the geometrical representa-
tion of the element.

The elements will be placed sorted: in order of
increasing X co-ordinate of the ancherpoints and: when
more elements share the same X co-ordinates in order of
increasing Y co-ordinate.

From the sorting of the elements it follows that part
of the contents of array LIST has to be shifted when
etements have to be inserted. To find out whether this
shifting is nect slowing down the interactive editing
process a testprogram was written to check this. With
this testprogram it was pessible to shift 7400 integers
per seconds that is about 440 elements in 0.5 second
thalf a second 1is taken as the maximum average delay
timei. Because the average number to be shifted is
1a3lf of the number of the elements that are present,
there shouldn’t be more than 920 elements in the array.
With ZC0 elements we are on the fair side (average
delay time about 0.1 second).

All information is kept in main memory as long as the
user goes on with his input session. When he stops
doing scs the program asks if the contents of the array
should be saved:; and if sos under wich filename. The
fila that is made by the program gets the following at-
tributes ¢

NAME = Name as supplied by the user.
TYPE = UNKNOWN,

FORM = FORMATTED.

ACCESS = DIRECT.

RECORD SIZE = 4,

ASSOCIATE VARIABLE = NFOP.

DDisk files are in readable format and can be displayed
on the screen via the PIP program.

Throughout the program a few pointers are used. The
most important ones are IEND and IPTR.

IEND peints always to the last integer of the last ele-
ment in array LIST (IEND = 146 when two elements reside
in LISTY.

IPTR points to the lLast integer of an element in array
LIST.

Interactive Layout Editor/Compactor PAGE 19

Chapter 5. Design rule checking.

' Interactive Layout Editor/Compactor PAGE 20

There are two kinds of design rules : Design rules
wich are implicitly obeyed and design rules the program
has to check the circuit on., To the first group belong
rules dealing with minimal Llinewidth’s and minimal
cverlap of the lines of a transistor. When the symbol-
ic layout is translated to a geometrical layout: an
elements f.i. a lines automatically changes to a geo-
metrical Lline of minimum width., That means that the
program doesn’t have to check this width anymore.

The second group of design rules are the rules the pro-
aram has to check.

The next errors will then be found :

- Distances between elements that are smaller than
the

minimal distances f.i. between two lines.
- Not allowed overlap of elementss f.i. a transis-

tor
and a contact.
- Not closed tines (lines with a dead end). - Not

connected transistors or contacts or terminals. -
Couble placed elements (elements of the same type
that completely overlap each other?.

There are also errors that won't be detected

- Lines that are longer than a maximum length,.
- Parasitic capacitances.

The design rule check is performed after the edit
session 15 terminated. It would be better for the
designers if each element he draws during his ed-
iting would be checked against all other elements
that are present at the moment. There are two re-
asons why we still chose to perform the check
afterwards

The first reason is the fact that there are a few
cases two elements are allowed to overlap only if
g third element is placed on the crossing (exam-
ples are a crossing of a diffusion and a polysili-
con lLlines on wich a buried contact has to be
placeds and a crossing of a RUNX-line with a Lline
of cne of the other three types: on wich a termi-
nal should be placed). At the moment the crossing
is established it is impessible for the program to
know if this third element indeed will be placed.

Interactive Layout Editor/Compactor PAGE 21

The second reason is that for design rule checking

each element has to be checked against each other
element. In the compactor the program is going to
perform exactly the same checks to see if they are
connected. By placing the design rute checker in
the compactors this proces (order N¥%2) is execut-
ed only once» wich saves computer time.

The design rules specifvying the minimal distances
are taken from Mead and Conway [13.

Interactive Layout Editor/Compacter PAGE 22

Chapter 6. Compaction.

Interactive Layout Editor/Compactor PAGE 23

When we would translate a symbotic Ltayout to a
geometrical Llayouts the latter would be rather
"lLoose". To shift the elements together is the
pupose of the compaction progranm.

There are a few methods by wich such a compactor
could work =

- Compression Ridge Method [71.
This method removes bands of continuous area.
Drawback ¢ This is a trial and error method: be-
cause the optimal place for compression ridges is
unknown.

- Logalized Placement Method.
This method f{used in “STICKS"s L[61) places succes-
sive elements on basis of connectivity. If par-
rallet path's exist in the graphsy this method has
3 low efficiency.

- Critical Path Method.
This method is used in programs like ™FLOSS" (81
and “CABBAGE™ [31.

We chose for the critical path method. In the first
fase of the compaction program:; the elements are divid-
ed into groups

Two elements are placed in the same group if they are
connected in the direction perpendicular on the compac-
tion direction (connection direction is the direction
of the line element involved).

Groups will be shifted as a whole. The LlLine elements
in the direction of compaction will be regarded as
elastic connections. They are not placed in any group:
and their length is calculated after the compaction
from the co-ordinates of the elements they connect.
The dividing into groups serves two goals @

- The problem gets a lower complexity.
- It prevends connected elements to float away from
each other.

We can map the groups on a graph ¢ The groups itself
form the nodes of the graphs while the distances
between them form the branches. At each branch both
the minimal and the actual distance can be written.

There exist two of these graphs ¢ One for compaction
in herizontal direction and one for compaction in vert-

Interactive Layout Editor/Compactor PAGE Zz4

ical direction.
Once the graph is knowns the critical path can be cal-

culated. New all groups residing on the critical path
get their new locations based on the minimum distance
to their predecessor. The other groups shift along

with the first groupss but afterwards they will stitl
have a certain amount of "freedom" in their placement.
There is still a tot of work tc be done before the com-
paction program witl function as described. The fol-
towing pieces of the program are realized : A datas-
tructure is set up for dividing the etements in groups:
and for setting up the graph.

For the division of the elementss a program is written
that will make a List with all connections a certain
element has with other elements.

Interactive Layout Editecr/Compactor PAGE 25

Chapter 7. Conclusions.

Interactive Layout Editor/Compactor PAGE 24

An interactive layout editor has been made. It can be
improved in the following ways

- By making it possible to define macro’'ssy and in
that way introducing hierarchy into the progran.

- By making it possible to indicate a line (f.i.
when deleting it) on every point of its lengths not
only on its anchorpoint.

- By making it possible to define a linepiece on the
border of the box to be a terminal: instead of just
one point.

The first two problems are already solved by K.Delhij
[S51. The last one remains for the future.

Although the editor isn’t perfect yets it is possible
to enter a symbolic circuit into the computer in a sim-
ple and fast way.

The szcond programs the design rule checkers has been
implementeds and initial tests show good result @ It
detects violstions of the most common design rules.
However it could be improved hy extending it in a way
it can calculate lineresistances and —-capacitances.

The compactor hasn't been finished vet. One of the
major problems we can see at this moment is the appear-
arnce of maximum constraints in the graph ¢ Two groups
that have a minimum distance to each other and a maxi-
umum distance to each other as well.

' Intepractive Layout Editor/Compactor PAGE 27

Chapter 8 ¢ Descripticn of program and subroutines.

Interactive Layout Editor/Compactor PAGE 28

Subroutines of the layout editor are

Subroutine ADDARCIEND).

IEND is & pointer to the lasts filled place in array
LIST.

ADGAR adds one slement to array LIST. The elements are
plsced in order of increasing x—coordinate of the an-
chory and when more elements share the s5ame X
co-ordinates in order of increasing vy co-ordinate.
From thizs it follows that before an element can be in-
serteds part of the array LIST has to be shifted. In
cthapter it is shown by a test programs that
moving 3 part of the array is not significantly slowing
down the programs when the amount of elements stavs
under Z00.

Subrcutine ADDAR checks the number of placed elements
and displays an error message in case this numbher
exceeds 200.

Subreoutine DELARCIENDSITEMLLETTERY.

IEND is a pointer to the last filled place 1in array
LIST.

ITEM is the number of a menu command. (When a user
first selects DEL (DELete uses subroutine DELAR) in the
menus but then changes his mind and selects a3 new menu
command instead of indicating an anchors the command
has to be passed on to subroutine OOYENS)

LETTER contains a number indicating wich key was used
in subroutine DELAR to indicate the anchor (see routine
CURDEF in the GINO-manual L[2]).

This subroutine deletes one element from array LIST.
The contents of the array following the deleted element
are shifted upward to fill the open space.

In the case the subroutine is not able te find the ele-
ment pointed to: or when the array is emptys the error
message "ITEM NOT FOUND" is displayed,

Interactive Layout Editer/Compactor PAGE 29

Subroutine PRARCIEND).

IEND is a pointer to the last filled place in array
LIST.

Subroutine PRAR erases the screen and then prints the
contents of array LIST. For each element one line ap-
pears onh the screensy each line giving the eight in-
tegers of an element s preceeded by a pointer telling
the address of the first integer of the element.

Subroutine GETMENCX YsITEMINOT).

X and Y are codrdinates on the screens read in by the
GINO-routine CURSOR.

ITEM is the number of a menu command (see DELAR).

NOT indicates whether the point with co-ordinates (XsY)
lies within the menu (NOT = D) or outside the menu (NOT
= 1),

Ingcut for subroutine GETMEN are the codrdinates of a
point, Output are ITEM and NOT. NOT = 1 indicates the
point was not within the boundaries of the menu. When
the point was inside the menus the value of ITEM will
b2 a numker in the range 1 - 40 denoting wich command
was selected.

Subroutine LINEC(IENDSsITEMSLETTERY.

IEND is a pointer to the last, filled place in array
LIST.

ITEM is the number of a menu command (see subroutine
DELARY.

LETTER is a figure indicating wich key was used in su-
broutine LINE to indicate the last point of the Lline.

Subroutine LINE asks for co-ordinates of points inside
the picture window (via GINO-subroutine CURSOR)s draws
a3 Lline between thems and stores the Line element in
array LIST.

Error messages are given if the points do not indicate
an crthogonal Line or if one of the points lies outside
the rectangle (except if it were a new menu command).
The anchor point of a Line will be drawn in the middle
as a little circle., At lasts LINE calls subroutine
ADDAR to store the element in array LIST.

Interactive Layout Editor/Compactor PAGE 30

Subroutine ERROR(NUMBER).

NUMBER is the number of the indication. If Number is
in the range 1 to 8 an error is indicated. If it's
highery the prcgram asks the user for more input.

ERRQR draws the users attention by lighting a point in
front of one of the error messages or indications.

Subroutine EOXC(IENDsITEM,LETTER),

IEND is a pointer to the lLasts filled place in array
LIST.

ITEM is the number of a menu command (see subroutine
CELAR).

LETTER is a number indicating wich key was used in su-
broutine BOX to enter points (see GINO-manuwal [2]y su-
breoutina CURSOR),

Subroutine BOX asks for two points on the screen. The

points are two diagonal points of the surrounding rec-
tangte. The surrounding rectangle is drawn: and stored
in array LIST.

Subroutine CNTACTCIEND,ITEM,LETTER).

IEND is a pointer to the lasty filled place in array
LIST.

ITEM is5s the numbher of a menu command (see subroutine
DELARY.

LETTER is a figure indicating wich key was used in su-
broutine CNTACT to enter points (see GINO-manual [23],

subroutine CURSOR).

CNTACT asks for one point on the screen and then draws
the symbcl of 3 contact or a pins at the indicated
place. Depending on the type of the contact or pin» a
different symbeol is drawn (see legenda underneath the
menti). Appendix A contains a few drawings where con-
tacts and other symbols appear.

Subroutine TRAMCIEND,ITEM,LETTER.LOAD) .,

IEND is 3 pointer to the lLasts filled place in array
LIST.

Interactive Layout Editor/Compactor PAGE 31

ITEM is the number of a menu command (see subroutine
DELARY .,

LETTER is a figure indicating wich key was used in su-
broutine TRAN to enter a point.

LOAD i5 a flag telling the transistor is of the driver
type (LOAD = 0) or cof the toad type (LOAD = 1).

After asking the co-ordinates of a point inside the
reatangle where the transistcr has to be placeds its
symbot i5 drawn (symbol of thorizontal transistor if
command was TRANH: symbel of vertical transistor if
command was TRANV? and the element is stored in array
LIST,

Sukroutine DRAWCIEND) .

IEND iz a pointer to the last filled place in array
LIST,

DRAW wtl draw all elements present in array LIST. When
symbols hkhave been deleteds they remain visible on the
szreen, On the user command DRAW the screen will be
erased and a new picture drawn.

Subrcoutine UNDODCIEND?Y.,

IEND is 2 pointer to the last filled place in array
LIETY.

This subroutine restores the situation as it was before
the last given command: if this command was of the type
“adding or deleting an element”™ (METALs DIFFs POLY>
IMPLs TRANYs TRANH: LOQADVs LOADH, BOXs D-MCTs P-MCT:
BURCTs RUNX; TERM and DELT). An error message is dis-
played 1in the case the last command cannot be "undone"
anymore.

Subroutine MENUFRAME.

MENUFRAME erases the screens draws the menu and writes
the error messages underneath it. Furthermore a legen-
da is drawn of linepieces and symbols.

Subroutine MENUFICIR IKsIHOL)Y.

IR i5 a rownumber in the menu.

Interactive Layout Editer/Compactor PAGE 32

IK is a columnnumber in the menu.

IHOL is a Hollerith strings containing the string to be
placed in the menu.

MENUFI fills a place in the menus indicated by the row-
and columnnumbers with the string in IHOL.

Subroutine MENUT,

MENU1 draws the complete menu by first calling MENU-
FRAME and then calling MENUFI as many times as there
are menuitems. Characterstrings handed over to MENUFI
are of the format:
GHTEXT*.

As shown: the string to be written in the menus "TEXT"s
fnas to be succeeded by ¥, and preceeded by H and the
number of letters plus 2 (for the *.).

Subroutine ROOSTC(CALCOM) .,

CALCOM is a flag indicating whether drawing should be
done on the Tektronix tube (CALCOM = 0) or on the Cal-
comp plottar C(CALCOM = 1),

This subroutine draws the window on the screens includ-

ing scale marks and scale numbers. If CALCOM = 1 no
scale numbers are drawn.

Subroutine OOYENS(NEW).

NEW is a flag indicating whether or not it is the first
time this subroutine is called. Except for the first
time {initializatien in subprogram BLOCK DATA}s array
LIST has to be initialized again f(every element of LIST
becomes zerol.

This subroutine deals with all input via the menu.
First it calls GINO-routines like CURDEFs T4014 etc.
to initialize GINO-commonssy and the Tektronix terminal.
Then some variables of the program itself get their in-
itial value. To do the same with the scaling factors
IX1 and 1IY1y the user is asked for the width of the
grid of the window IWIDTH,.

Mow the menu and the window are drawn and the user can
give his first menu command. Each command is checked
and if found valids the program calls the corresponding
subroutine.

To depart from QOOYENSs the menu command STOP should be
used.

Interactive Layout Editor/Compactor PAGE 33

Subroutine TITLE (NAMEsUNITNRY.

NAME is the name of the file to be opened.
UNITNR 1s the logical wunit number of the file.

TITLE opens a diskfiley wich will have the following
attributes:

UNIT = UNITNR
NAME = NAME

TYPE = UNKNOWN
FORM = FORMATTED

ACCESS = DIRECT
RECORDSIIE = 4
ASS50CIATE VARIABLE = NFOP

Suborogram BLOCK DATA.

ThHig subprogram: coensisting of a group of
non-executable statements, defines and initializes var-
iables and constants. In BLOCK DATA one blank common
bleck appears and the named common blocks MENUCM:
DRAWCHM and UNDOGCM.

The following arrays and variables are placed in common
blocks:

Blank common block.

IREC(8) ¢ Array containing eight integers:,
used as a temporary storage for one element.
LIST(14600) ¢ Main array: containing the in-
formation about all elements that are present
at the moment. LIST is initialized to zero
at the start of the program.

IWIDTH & Width of one grid uwunit (in mm.) of
the window.

X1s X2+ Y1+, YZ ' Boundaries of the window.
Present values are 10, 298y 10 and 270 res-
pectively.

LRECs NREC : Length of the datablock of one
element and the maximum number of elements,
prasent values 8 and 200.

COMMON/DRAWCHM.
IX1s 1Y1 ¢ Bcaling constants used when draw-

ing symbols on the screen.

COMMON/MENUCH.,
XML+ ¥YML+ XMRs YMR ¢ Boundaries of the menu.
Their present value is 300s 130, 3468 270.
IROWSy ICOLS * Number of rows and columns in

Interactive Layoul! Editor/Ccmpactor PAGE 34

the menuy initial values 10 and 4.
COMMON/UNDOCHM

IUNDO = The current command is "undoable" if
IUNDO 15 2 or 3.

Subroutine INIT(NUMBER).

NUMBER is a digit telling INIT wich initialization rou-
tines should be called.

Subroutine INIT initiatlizes GINO-commons and devices.
For instances when the Tektronix terminal will be used:,
INIT calls the (GINO) subroutines T4014s DEVSPE and
WINDOW (see GINO-manual (21 for the meaning of these
routinesl.

Program QOYEN4,

This i5 the main program. In this part the wuser is
asked if he desires to open an existing files or wants
to start editing a new file. When the editing is done
the program asks if the contents of LIST should be
saved in a disk filer and if the user wants to go on
using the programs start editing a new or existing file
again. After thesz questions subroutine OQYENS is
called wich takes over all user—-program interaction.

Interactive Layout Editer/Compactor PAGE 35

Subroutines of the design rule checker/compactor are :

Subroutine ADDGRF.

This subroutine adds the element peinted to by ITMPTR
to the group pointed to by GRPPTR. The number of ele-
ments in the group is incremented by 1y and a pointer
to the element i5 added in the greoup. Finally the sur-
rounding rectangle ¢f the group is adapted if the ele-
ment or a part of the element falls outside the exist-
ing surrounding rectangle of the group.

Subroutine MEWGRP.

NEWGRP creates 3 new group. The List of items is
cthecked fer an element not yet placed in a group (the
zlement may nmeot be a line in the direction of compac-
tiony. It thare is such an elements its surrounding
rectargle is copied into the surrounding rectangle of
the ogroup. The number of elements in the group is set
te 1y & pointer to the element is added and the lLlist of
groupindexes 5 extended with a pointer to the new
group.

Logical functien OVRLAPCITMPT1,ITMPTZ,LAMBDA).

ITMPT1 and ITMPTZ are pointers to elements in the ele-
ment List.

LAMEBDA is a flag.

Function OVRLAP checks if the elements pecinted to by
ITMPT1 and ITMPTZ overlap each other. When the flag
LAMBDA is set to O OVRLAP becomes true only when the
elements actusily overlap each other. If LAMBDA is set
to 1 OVRLAP becomes true when the elements overlap each
gthery or when they have a mutual distance less than
NLAMBD.

Logicatl function CONNECC(ITMPTY,ITMPTZ2).

ITMPTY and ITMPTZ are pointers to elements in the ele-

Interactive Layout Editor/Compactor PAGE 346

ment Llist.

This function checks if the elements pointed to by
ITMPTY and ITMPTZy wich overlap each others are allowed
to be connected. One of the e2lements always is a Lline,
while the other isn't.

The information concerning these connecticns is placed
in an array of size (8,10}, The subscribt variables
are calculated frem the type numbers of the two ele-
ments.

Logical function DISTANCITMPT4,ITMPTZ).

ITMPT1 and ITMPTZ are pointers to elements in the ele-
ment Llist.

DISTAN is made true when the distance between the ele-
ments (calculated in the function IDIST) is greater
than the minimal distance following from the design
rutes. The desian rules specifying the minimal dis-
tances are taken from Mead and Conway (1131,

They are placed in a linear array, because placing them
in a square array would mean all figures appear twice.
Howavers this implicates that the index has to be cal-
culated in the subroutine.

Function IDISTC(ITMPT1,ITHMPTZ) .

ITMPTY and ITMPTZ are pointers to elements in the ele-
ment list.

This function calculates the distance between elements
pointed to by ITMPT1 and ITMPT2. When the elements
have a piece of the X-a%xis or Y-axis in commons the
value of IDIST will be the real distance between them.
If not soy IDISBT is calculated by taking the root of
the sum of squares of the distances in X- and
Y-directionsy and truncating the result.

Subroutine NXTITM(FLAG).

FLAG is a flag indicating whether pointer ITMPTR
(FLAG=0) or pointer GRITPT (FLAG=1) will be altered.

Depending on the type of the element pointed tos the
pointer is incremented by 8 (line element)s by & (point
element)s or » in the case of a compound element by 7
plus the number of terminals times 5 (length of termi-
nal information).

Interactive Layout Editor/Compactor PAGE 37

Function NXTGRP.

NXTGRP updates the grouppointer. The value of NXTGRP
will be GRPPTR plus 5 plus the number of elements in
the group.

Subroutine NXTCONCCONPTY),

CONPT1 is the peointer to be updated.

NXTCON updates the connection pointer. The value of
CONPTY1 will hbhe its old value plus 1 plus the number of
connections.

Subreoutine CNECT.

This subrcutine checks all pairs of elements if they
are overlapping: then: if they overlaps CNECT calls su-
broutine DRCHCK to see if this overlapping is allowed.
If nots an errcr message is displtayed. In the case it
was allowads one of the elements is a Line and subrou-
tine LINCLO will be called to fill in the pointer(s? to
the elements that close the Lline.

Subroutine GROUP,

Subroutine GROUP places the elements in groups.
Linepieces in the direction of compaction are not in-
cluded in the groups.

Legical function COVERCITMPT1,ITMPT2).

ITMPT1 and ITMPTZ are pointers to elements in the etle-
ment Llist.

This function checks if two elementss pointed to by

ITMPTY and ITMPT 2 completely cover each other. If
they do COVER becomes true.

Subroutine LINCLOCJFLAG).

JFLAG equal 1 means ITMPTR points to Line element and
GRITPT points to a non-line elements JFLAG equal 2
means ITMPTR points to a non-line element and GRITPT
points to a Lline elementy while JFLAG equal J means
that both ITMPTR and GRITPT point to lLine elements.

Subroutine LINCLO fills in the addresses of the ele-

Interactive Layout Editor/Compactor FAGE 38

ments that close a line., Each datablock of a Line ele-
ment contains two pointers to its <closing elements.
Both pointers are zero when the program is started up.
Subroutine CNECT calls LINCLO when it finds a pair of
overlapping elements of wich at least one is a line.

Subroutine DRCHCK{ITMPT1,ITMPTZ .NOT,I41,J1,TRMPTRY,

ITMPT1 and ITMPTZ are pointers to elements in the ele-
ment List.

NOT is a flag * NOT = 1 means one of the design rules
has been viclated.

I1 and !1 are equal to J and K in (the calling) subrou-
tine CMECT.

TRMPTR is a pointer to a terminal of a compound.

Subroutine DRCHCK is the design rule checker, It
checks whether the elements pointed to by ITMPT1 and
ITMPTZy wich gverlap each other (with LAMBDA = 1y so
there doesn’t have to be a real overlap)s are aliowed
to be connecteds or if they are at a distance greater
than their minimat distance. In the case one of the
elements {or bhoth) is a Llines subroutine CHKTYP is
called wich takes over the check. In all other cases
DRCHCK performs the check itself.

Subroutine CHKLIN.

This subrgoutine checks if all Lines have been terminat-

ed properly. If one of the two pointers to the closing
elements of one of the line elements is zeros an error

message is displayed on the screen.

Subroutine CHKTYP(ITMPT1.ITMPTZ,NOT,I1,J1sTERMPT).

ITMPT1 and ITMPTZ2 are pointers to elements in the ele-
ment List,

NOT is a ftag ¢ NOT = 1 means one of the design rules
has been violated.

I1 and J1 are equal to J and K in subroutine CNECT.

TERMPT is a pointer to a terminal of a compounds and
equal to TRMPTR in DRCHCK.

Interactive Layout Editor/Compactor PAGE 39

Subroutine SAVE(ITMPT1,ITMPT2),

ITMPT1 and ITMPTZ are pointers to elements in the oele~-
ment tist.

Subroutine SAVE saves the addresses of the two elements
wich overlap each other (LAMBDA = 0, sc real overlap):
when this is allowed only when a third element is
placed on the cressing. This routine is called in the
gase a polysilicon line and a diffusion Lline cross (a
buried contact should be placed on the crossing) or in
case a polysilicon liney a diffusien line or a metal
Line «crosses a RUNX line (a terminal should be placed
on the crossing?.

Pregram COMPAC.

This is the main program of the design rule
checker/compactor., It initializes the variables used
in the subroutines and fills the memcocry with informa-
tion to test the design rule checker.

Afterwardsy it writes the contents of the memery (array
MEM) to the screens so the user can see wich errors
were detected by the program.

Interactive Layout Editer/Compactor PAGE 40

Chapter 9@ Description of error messages.

Interactive Layout Editor/Compactor PAGE 41

Error messages are written on the screen every time the
menu is drawn. A peoint will Llit up in front of an
error message whenever this error occurs. The last two
messages inform the wuser that the program requires
further input ("1 or "2Z" in the case the lLast command
was a DRAW commands to inform the program whether out-
put should be send to the T4014 or to the Calcom
pleotter)s or that the drawing on the screen is not any-
mocre a correct mapping of the contents of array LIST
{for instance after deletion of elements).

The user can encounter the following errors:

Error 1 ¢ OQUTSIDE WINDOW

The program expected ingut from the window:
vhile the user supplied a point outside it.
After this error messages the user can either
give a correct point or chcocose anothar menu
item.

Error & ¢ OUTSIDE MENU

Like 2rror 1y except that this time the pro-
gram expected input from the menu. The user
must now give a menu command.

Error 3 ¢ TOO MANY ITEMS

This error message is displayed when array
LIST already contained 200 elements at the
moment the user tried to store another ele-
ment. This Last element will not be placed
in LIST. The maximum of 200 elements can be
increased (at the cost of computer memory) by
changing the length of array LIST teo eight
times the desired maximum number of elements:
and then recompiling the progranm.

Errer &4 ¢ ARRAY EMPTY

An attempt has been made to draw the circuit
while array LIST was empty. The user should
first fill the array by placing elements be-
fore giving the DRAW command.

Error S ¢ ITEM NOT FOUND

Interactive Layout Editor/Compactor ~ PAGE 42

After the command DELT (delete)s the program
expects the user to point to an anchor point
of one of the elements on the screen. The
maximum distance between the indicated point
and the anchor point is half the width of a
grid wnits in order to let the program be
able to locate the element. If the distance
iz grester this message is displayedsy and the
user should try again: or choose a new com-
mand.

Error & ¢ COMMAND NOT OK

Some places in the menu are reserved for fu-
ture extensions of the program. When a user
selects one of thems or selects a figure in
the menu not following one of the commands
METAs DIFFs POLYs RUNXs TRANV:s TRANH: LOADV
or LOADH» this message 1is displayed. The
user sheuld select an existing commands or an
allowed sequence of commands.

Error 7 ¢ LINE NOT ORTHO

Seeing this message on the screen means that
the the Llast two points of a Lline do not
share the same X or Y ceo-ordinate. This last
linepiece 15 rejecteds and the user can ei-
ther supply a new points wich has to be on a

horizontal or vertical tine with the
second-last peints or select a new menu com-
mand.

Error 8 ¢ WRONG USAGE UNDO

The command UNDO is allowed only if the Llast
command added or deleted an element.

Message 9 ¢ T4014/CALSS63 7 1/2

Informs the user that further input is re-
gquired. This message appears after the DRAW
command. A "1" directs the output to the
T4014 and 3 "2" to the Calcom plotter.

Message 10 : DRAWING NOT CORRECT

After a deletion of an element this message
appears. At this moment the screen contains
more elements than array LIST. To get a cor-
rect drawing: the DRAW command has to be
given.

Interactive Laycut Editor/Compactor PAGE 43

Appendix A ¢ Figures.

Interactive Layout Editer/Compactor PAGE 44

In this appendix the reader will find a few drawings.
They are respectively :

Figure 1.
A drawing of the screen with the menu and an empty
windows grid spacing is 4 mm.

Figure 2.

A drawing of the screen Llike figure 1. Grid spac-
ing is 20 mm. and all sticks are drawn: see
chapter 2 fer a description.

Figure 3.

Like figqure 1., Grid spacing is 8 mm. A few lines
are drawns type metal (all lines are drawn with
only one menucommand),

Figure 4,
A drawing of the screen with the symbolic Llayout
of a T-flipflop.

'.1II|IIII|I'I1ITIHIIIIIIIIIIIIIIHITIHTHIIITHIIIIIIIlllllflll'ﬂlll
- Al TAL 9
- - oLY i
— —lreany, 2
- Z
- -1|IPRNT IDELT 3
— .
- " =MneTY 4
— —]|Box lp-net 5
= \ e fgerl |6
- ~1lunpo {TERM 7
;; “lLoapylLoapH 8 |
-
- —L__lstop
- -] Eer1: outsIDE wINDOW
[~ ~| ER2' OUTSIDE MENU
il] ER3: TOO MANY ITEMS
-] ER4: ARRAY EMPTY
- —{ ERS: ITEM NOT FOUND
- ~{ ER6: CMMAND NOT 0.K.
- —7 ER?: LINE NOT ORTHO
(- =] ER8. LRONG USAGE UNDO
— ~ T4014/CALSE3 ? 1/8
- -] INCORRECT DRAWING
— -
il -2 mETAL: =
| - DIFF + —
- - POLY +~-e-e-m-
- - RUNX & —-mmme—em
- O IMPL s e eeee-e -
—1 D-M cONTACT: [X
. - p-m CONTACT: [
l | l I I | | J | l‘* BUR CONTACT %)
o b b bco bbb oo b b bves e b TERM.POINT + L

)
] 5 10 15 290 a5 30 35 40 45 50 S5 60 65 70

SV

- e venms e wtme o ~asy e syponm o

o encs cncadeoy

¥
.

...... [RV
- -n
po-bede
1
.
v
HE
9 [
¢
[
[
[O W

’
Il
L

-

................................

i N— 1.
I]
i ro— \

]
M e—py
{ i
[]
]
bfucnvannon d

PL_IMETAL o |
OLY i
TRANV|TRANH g |
IPRNT_|DELT 3
D-MCT 4
-MCT g
RUNX |BURCT g
unpo [TERN ?
Loaultoapn! - 8 15
ToP 9

10

ER1: OUTSIDE WINDOW
ER2' OUTSIDE MENU
ER3: TOO MANY ITEMS
ER4: ARRAY EMPTY

ERS: 1TEM NOT FOUND
ERE: CMMAND NOT 0.K.
ER7: LINE NOT ORTHO
ERB: WRONG USAGE UNDO
T4014/CAL563 7 1/2
INCORRECT DRAUWING

INPL @ ----~---- s
D-M CONTACT: [X]
P-M CONTACT: 3]
BUR CONTACT: [X]
TERM.POINT » L

—4|II‘IIIII]IIIIIIIIIH|1|IIH|III||:
TAL 2 |
— oLY 1
f] TRATRAN 2
—|eRNT_{DELT 3
— e - e
~— p-MCT 4
4, _ Pu—ncx 5
]] BURCT 6
. : D— ____Fums_
&__1 | - TERN i
& —
& — |LOADYL.OADH 8
) | _
| — ER1: OUTSIDE WINDOW
| __| ER2. OUTSIDE MENU
ER3' TOO MANY ITEMS
+ — ER4: ARRAY EMPTY
ERS: ITEM NOT FOUND
— J S
[""‘“"—""I ER8: WRONG USAGE UNDO
| ~— T4014/CALS63 ? 1/8
1 i _| INCORRECT DRAWING
| J] —
— | S —
i
~— INPL +oc-coices T
D-M CONTACT: [X
| | | | | | H ki g
LUttt tlg] TERM.POINT + L]
5 10 15 20 25 30 35

Ly

|||||r|,||||'| IIIIIIIIIITI

S

HH,K[

I

1]

IJI!IIJ!IUH!TF

rrT';ﬂ

]

IMPL_{METAL

DIFF |POLY

TRANY

TRAN

RELT

kenr

DRAW

RD-NCT

=HMCT

BURCT

TERN

LOADY

LOADH

i

STOP

BEE

o

!IT' UW”?

| l L 111 LJJ | |

l'lllLIJ

‘I Il||l|l|

- TT

ER1:
ER2:
ER3:
ER4:
ERG:
ER6:
ER?:

ER8:

OUTSIDE WINDOW
OUTSIDE MENU
TOO MANY ITEMS
ARRAY EMPTY

ITEM NOT FOUND
CMMAND NOT 0 K.
LINE NOT ORTHO
WRONG USAGE UNDO

T4014/CALS63 ? 1/2
INCORRECT DRAWING

IMPL : -c--cvemne

D-N
P-M
BUR

CONTACT: X
CONTACT: [&]
CONTACT 2

TERM.POINT

8v

PAGE 48

Interactive Layout Editor/Compactor PAGE 49

£413 C.Mead and L.Conway: "Introduction to VLSI Systems":
Addisen - Wesly 1980,

23 QINC-F User Manuals:s CAD Centre Cambridges 1980.

£33 M.Y.Hsueh, "“Cabkage"sy 1979.

T41 M.van der Woudes "IDS5 ! An Interactive Design System for
Integrated Circuits”s THE Computing Centre Note 11s 1982,

£31 K.Delhijs "Isles an Interactive Layout Editor"s 198%.

L6131 J.D.Williamssy "STICKS: a Graphical Compiler for High Level
LSI Design"s AFIPS Conference Proceedingss VYol.47: 1978.

£73 2.B.Akensy J.M,Geyer and D.L.Robertss "IC Mask Layout

Wwith a Single Layer"s Proceedings 7'th Design Automation
Werksheops San Fransiscos 1970,
£s83 R.Auerbach: “FLOSS t Macrocell Compaction System"s 1979
IEEE
Design Automation Werkshops East Lansings Michigans 197%.

	An interactive layout editor/compactor

	Table of contents

	1. Introduction

	2. Sticks

	3. Layout editor

	4. Datastructure

	5. Design rule checking

	6. Compaction

	7. Conclusions

	8. Description of program and subroutines

	9. Description of error messages

	Appendix

	Bibliography

