
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-6, January, 2013

358

Abstract— The presented work envisaged to explore the

possibility of developing ultra-low cost experimental setup for

teaching and learning Real-Time systems. The presented work

demonstrates, in steps, the development of a real-time control

system with free open source code softwares. The free suite utilized

and experimented within the present work composed by Linux

operating system and the Real Time Application Interface (RTAI)

add-on, the Scilab Computer Aided Control System Design

(CACSD) software and the Control & Measurement Device

Interface (COMEDI) drivers. Scilab/Scicos, a free scientific

software package for numerical computations and control system

simulation is used with RTAI to provide hard real-time extensions

in to Linux environment. The development and deployment

platform are the same and consisted of the (i) Linux, (ii) Scilab/

Scicos (iii) RTAI and (iv) COMEDI drivers running in a PC. The

investment is reduced to the hardware as well as in software cost,

which consists of a standard PC, dc motor and a COMEDI

compatible acquisition board. The most obvious advantage of the

proposed solution is that all the software or codes are free &

available in the web. The whole idea is demonstrated by real time

speed control of a dc motor using Pulse Width Modulation

(PWM).

Index Terms— RTAI, CACSD, COMEDI, SCILAB/ SCICOS,

PWM.

I. INTRODUCTION

Rapid Control Prototyping (RCP) requires two components

[1, 2] Viz. Computer Aided Control System Design (CACSD)

software and a dedicated hardware with a hard real-time

operating environment. Popular & widespread RCP

environments are based on the commercial software

Matlab/Simulink/Realtime-Workshop (RTW) - Real Time

Windows Target (RTWT) CACSD software or LABVIEW

which can be used to generate and compile codes for different

targets. The main disadvantage of this solution is the cost of

the software. The proposed solution overcomes the said

problem as it can be freely downloaded from the web.

Development system is based on Scilab/Scicos and Linux

RTAI, a hard real-time extension of the Linux operating

system [3]. This environment allows to quickly creating

real-time controllers for real plants by generating and

compiling the full control application directly from the Scicos

scheme.

A real time system must respond to a signal, event or

request fast enough to satisfy some time constraints with

extreme reliability.

In order to get a real-time eration a standard kernel must be

configured in a Linux base and before this configuration it

will include the patching of Hardware Abstraction Layer

Manuscript received on January, 2013.

Ujjwal Mondal, Department of Applied Electronics & Instrumentation

Engineering, RCC Institute of Information Technology, Kolkata, India.

Parthasarathi Satvaya, Department of Electrical Engineering, Haldia

Institute of Technology, Haldia, India.

Sourav Kumar Das, Department of Electrical Engineering, Haldia

Institute of Technology, Haldia, India.

(HAL) or Adaptive Domain Environment for Operating

Systems (ADEOS) with the kernel. After patching and

configuring the kernel (to make it real time compatible),

installation of the RTAI package must be carried out

including rtai-lab and comedi. After this whole process, a set

of kernel modules are created in the user specified directory

(“/usr/realtime”). Loading these modules, the real-time

functionality is obtained [4].

In this stage keeping the entire previous configuration we

should include COMEDI support over RTAI. The RTAI

package with rtai-lab and COMEDI can be access through

Scilab, when RTAI with COMEDI add-ons to Scilab and

loads COMEDI modules. Scilab/Scicos gives the GUI to

make RT simulation and as well as to generate codes and

executable for RT operation [5]. In our experiments a

COMEDI supported DAQ card is taken to set the RT target.

Running the created RT executable in a Linux terminal we can

observe the RT simulated signal through a CRO. Farther work

may be the generating of RT control signal for a small plant.

II. DEVELOPMENT SYSTEMS

A. Hardware

1. A P4 or equivalent processor

2. Minimum 512MB RAM

3. DC motor

4. Driver electronics circuit

5. Data Acquisition Card (DAQ)

B. Softwares or Codes

1. Operating System: Functional GNU/Linux

environment, better with a Debian or a Debian-like

(e.g. Ubuntu) distribution.

2. A Kernel: it is necessary to ensure the best when the

kernel version of the Linux-OS is as close as possible

to the kernel we are going to compile and to merge

with the RTAI.

3. RTAI source code

4. Scilab source code

5. COMEDI and COMEDI-LIB source

Another two supporting source codes are required to

install. First one is “Mesa 3D” graphical library from and

second one is the “EFLTK” graphic widgets library. Some

software packages may have to upgrade and those are

Automake, autoconf bison (for comedi) cpp, ftgl-dev (for

efltk), gcc, g77, g++, gtk, libbind, libglu1-mesa-dev,

libglut-dev, libfltk, libgtk-dev, libdrm-dev, libncurses,

libperl-dev,mesa (related all packages),tcl8.4, tk8.4,

tcl-8.4-dev, tk8.4-dev, tcllib-1.9, x11-proto.

III. DEVELOPMENT PROCESS

A. Software development process in steps

1. Operating System: Functional GNU/Linux environment,

(experimented with Ubuntu 6.06)

Real-Time Speed Control of a DC Motor using

Open Source Code Tools

Ujjwal Mondal, Parthasarathi Satvaya, Sourav Kumar Das

Real-Time Speed Control of a DC Motor using Open Source Code Tools

359

2. Unpacking of kernel and RTAI source codes in the

directory “/usr/src” in the installed Linux. To ensure the

best performance, the kernel version we are going to

compile and to merge with the RTAI, should be as close

as possible to the kernel version of the Linux-OS.

3. Patching of the HAL or ADEOS over the kernel under

configuration.

4. Configuring the kernel for real time applications.

5. Compilation and Installation of the newly configured

kernel.

6. Updating of the boot loader to access newly installed

kernel.

7. Mesa and EFLTK installation

8. Installation of COMEDI and COMEDI-LIB

9. Configuration, compilation and Installation of RTAI.

10. Installation of Scilab & RTAI add-on to it [6].

11. Creating shared memory inodes for the activation of

RTAI and COMEDI.

12. Loading RTAI, COMEDI and DAQ modules.

B. Hardware development process

1) DC Motor Specifications

A dc motor is taken for real time experimentation purpose

with following details:

Model name: RF-500TB-12560

 Voltage: Operating range: 6 volts to 12 volts.

 Nominal=12 volts constant.

At No load:

 Speed=5600 rpm.

 Current=0.03 amp.

At maximum efficiency:

 Speed=4653 rpm.

 Current=0.11 amp.

 Torque=18 g-cm.(1.76 mN-m)

 Efficiency=67%

At stall:

 Current=0.6A

 Torque=12 g-cm(11.76 mN-m).

2) DC Motor Driver Electronics

As a digital driver of the dc motor model

RF-500TB-12560, we have taken L293D push-pull four

channel driver. A little modification is done in the input

section. For the safety of data acquisition card and PC,

Optocoupler PC817 is used in the input section to keep Data

Acquisition Card and dc motor driver circuitry optically

coupled or isolated from direct contact (Fig. 1).

Fig. 1 dc motor driver electronics

3) Data Acquisition Card

A data acquisition card plugs directly into a personal

computer's bus. All the power required for the A/D converter

and associated interface components on the data acquisition

card is obtained directly from the PC bus. For the presented

work, RTAI with COMEDI provides a built-in graphical tools

and libraries for data acquisition and analysis. “Advantech

PCI-1711” data acquisition card is used which is a powerful

and multifunction cards for the PCI bus and supported by

COMEDI library.

IV. EXPERIMENTATION

A. Creating block diagram for Square wave generation

Open the TERMINAL and type “scilab”, it will open scilab

window and in the scilab window type „scicos‟ and it will

open untitled window shown in Fig. 2. Then open menu “edit”

and Select palettes. In the Palettes, select Sources at the top of

the pop-up window [7, 8]. This will open a window with a

group of source blocks as shown in Fig. 3. Take the red clock

on the Scicos diagram page. Open the RTAI-Lib palette in a

similar way as before and it will look like Fig. 4. From the

RTAI-Lib palette, take the “Square” block, “Scope” block &

“COMEDI D/A” block and place it in the main Scicos

window. Connect those blocks. After drawing the Block

diagram, we should make the “super block”. So we should go

to menu “Diagram” and select “Region to super block”. Cover

all the blocks excluding the Clock and dragging the mouse i.e.

we must draw an elastic frame around all the blocks as in Fig.

5 and it will make the required super block as shown in Fig. 6.

Double clicking on the super block we can again open those

basic blocks to set parameters as shown in Fig. 7.

 Set parameters of Super-blocks:

Square block- “Val[0]/amplitude=1”, “Val[1]/time

period=1” and “Val[2]/On time=0.5”

& leave other parameter to default value.

Comedi block- Keep default value (channel 0)

Scope block- Keep default value.

 Close the window and set clock parameter.

Clock: Set “Period =0.001” and “Init Time=0” Connect the

analog output (Channel 0) and analog ground of the signal

acquisition card to a real oscilloscope. For example: with the

“advantech PCI-1711” DAQ card, connect pins 58

(DAC0OUT) and 57 (AOGND).

Fig.2 Scicos Interface

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-6, January, 2013

360

Fig.3 Scicos Source Blocks

Fig.4 RTAI-Lib palette

Fig.5 Making of RTAI Super block

Fig.6 RTAI Super block

Fig.7 Inside of Super block

B. Checkout of RT signal through X-rtailab and

Oscilloscope

Now going to the “RTAI” menu select “Set Target” and

click over super block. Now we have to compile using

“RTAI-Code gen” again through menu “RTAI”. If

compilation is properly done then on the scilab prompt a

group of information will come with the lat line “Created

Executable” as in Fig. 8.

Fig.8 Compilation Information

Real-Time Speed Control of a DC Motor using Open Source Code Tools

361

Let the new executable is renamed as “rt_square” and

saved in the current directory.

• In one terminal type: “rt_square –v” to run the executable

in Hard RTS mode with verbose output as in Fig. 9.

• In another terminal type: “xrtailab” to open a GUI &

from “File” menu select “Connect” and it will give the

option to set the target. Click on “OK” as shown in Fig.

10.

• A square wavelike wave form can be seen on the

Oscilloscope.

In xrtailab going to “View” select “parameters” and

“scope”. Now visualization parameters can be adjusted in the

“xrtailab” to see the square wave properly in to the

oscilloscope as shown in Fig. 11, 12.

Fig.9 Running the Executable

Fig.10 xrtailab Interface

Fig.11 Square wave in the scope of xrtailab

Fig.12 Square wave in the Oscilloscope

C. Real-time speed control of dc motor using PWM

Pulse-width modulation (PWM) or duty-cycle variation

methods are commonly used in speed control of DC motors.

The duty cycle is defined as the percentage of digital „high‟ to

digital „low‟ plus digital „high‟ pulse-width during a PWM

period i.e. PWM the output voltage is the average of the

supplied voltage over ON/OFF time.

 Vav =Vs*D= (Ton*Vs)/(Ton+Toff)

When Vav=average voltage, D= duty cycle, Vs =Supply

Voltage, Ton=On time of the signal, Toff=Off time of the

Signal. Controlling the period (Ton+Toff) and on time (Ton) of

input pulses, the speed of the dc motor can be controlled as the

dc motor speed varies with the variation of the average

amplitude of input voltage to it. Steps to control the dc motor

are as follows:

 Generate a real time square wave (Sec-IV).

 Take that output signal from DAQ.

 Fed that signal to the input section of a DC motor driver

(Sec. III).

 Connect the DC motor driver output to the input of DC

motor (SEC. III).

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-6, January, 2013

362

 Change the parameters on the fly in “xrtailab” interface

(Fig. 11).

 Choose the “source” block parameter and set values as:

 Val (0) = 1 (amplitude of pulses)

 Val (1) = 0.0009 (Ton + Toff = Period of pulse)

 Val (2) = 0.0002 (Ton)

Now varying Val (2) = 0.0002 to 0.0009 (Pulse Width

Modulation) on the fly, speed of the motor can be changed. It

has been successfully experimented and variation in speed of

the motor is observed. The dc motor with following details is

connected to the driving circuit.

Supply voltage to driver circuit= 5V.

Voltage across motor=5 volts.

Current=0.03 amps

Short circuit current=0.5 amps.

A set of results is tabulated in Table 1.

TABLE 1

Sl.

No.

Duty cycle

 (%)

Voltage across

motor (V)

Current through

motor (A)

1 22.22 1.11 0.007

2 33.33 1.67 0.010

3 44.44 2.20 0.014

4 55.55 2.78 0.017

5 66.66 3.34 0.021

6 77.77 3.91 0.025

7 88.89 4.44 0.028

8 99.99 4.91 0.031

Table 1: Parameters reading during RT control of dc motor

V. CONCLUSIONS

Successful implementation of the real-time system

development and deployment were demonstrated by Speed

Control of a DC Motor using Pulse Width Modulation.

The advantage of the proposed solution is that all the

softwares are freely available on the web. However, unlike the

(costly) commercial packages, the information available

about these free softwares is scanty or sometimes confusing.

The contribution of this work is the attempt to remove some

of the difficulties by tracing through the development steps

and pitfalls.

In conclusion, this paper shows that with some adjustments

and moderate additional effort, control system designing tools

Scilab/Scicos and RTAI with COMEDI can successfully

replace the costly commercial alternatives for teaching and

learning Real Time Systems.

REFERENCES

[1] R. Bucher and L. Dozio, Paolo Mantegazza, “Rapid Control

Prototyping with Scilab/Scicos and Linux RTAI”, The Vlsi Journal

(2004) pp. 739-744

[2] J. Jang, C. K. Ahn, S. Han, and W. H. Kwon, “Rapid Control

Prototyping for Robot Soccer System using SIMTool,” in

ProcSICE-ICASE International Joint Conference 2006, Busan, Korea,

Oct. 2006, vol. 2, pp. 3035–3039.

[3] R. Bucher and L. Dozio, “CACSD with Linux RTAI and RTAI-Lab,”

in Real Time Linux Workshop, Valencia, 2003.

[4] Giovanni Racciu and Paolo Mantegazza. RTAI 3.3 User Manual,

2006. URL www.rtai.org.

[5] “RTAI-Lab Tutorial” by Roberto Bucher, Simone Mannori and

Thomas Netter, 2006

[6] Ramine Nikoukhah and Serge Steer, SCICOS - A Dynamic System

Builder and Simulator, User‟s Guide, 1998.

http://www.scilabsoft.inria.fr/doc/scicos/scicos.htm

[7] Stephen L. Campbell, Jean-Philippe Chancelier, and Ramine

Nikoukhah. Modeling and Simulation in Scilab/Scicos. Springer,

Berlin, Germany, 2006. URL www.scicos.org

[8] Roberto Bucher and Silvano Balemi “Scilab/Scicos and Linux RTAI

–A unified approach” 2005 IEEE Conference on Control Applications

Toronto, Canada, August 28-31, 2005

Ujjwal Mondal (b.1977) received his B.Tech. degree

in Electronics & Instrumentation Engineering from

University of Kalyani, West Bengal, India, in 2005, the

M.E. degree in Control Systems from Jadavpur

University, West Bengal, India, in 2008. His research

interests include Real Time Systems, Electronic

Instrumentation; Wavelet based system analysis &

Repetitive Control. At present, He is an assistant

professor, Applied Electronics & Instrumentation

Engineering, RCC Institute of Information Technology, Kolkata, and West

Bengal, India.

Parthasarathi Satvaya (b.1985) received his B.Tech.

degree in Electronics & Instrumentation Engineering

from Bankura Unnayani Institute of Engineering, West

Bengal University of Technology, West Bengal, India, in

2006, the M.E. degree in Illumination Engineering from

Jadavpur University, West Bengal, India, in 2008. His

research interests include Smart Lighting, Real Time

Systems, Electronic Instrumentation. At present, He is an Assistant

Professor, Department of Electrical Engineering, Haldia Institute

Technology, Haldia, and West Bengal, India.

Sourav Kumar Das (b.1984) received his B.Tech.

degree in Electronics & Communication Engineering

from Dumkal Institute of Engineering & Technology

under West Bengal University of Technology, West

Bengal, India, in 2006, the M.E. degree in Control

Systems from Bengal Engineering & Science

University, Shibpur, West Bengal, India, in 2009. His

research interests include Real Time Systems, Power

Electronics, DSP & Advanced Control Systems. At

present, He is an assistant professor, Electrical Engineering, Haldia Institute

Technology, Haldia, and West Bengal, India.

