
We recently bought our 12-year-old son, David,  
a drum set. He already plays piano and saxophone, 
but drums have lately become something of a passion 
for him. He’s been taking lessons for a few weeks, 
and it was either buy him a drum set or replace the 
cushions on the couch and possibly the kitchen 
counters, because he was drumming on everything. 
His 9-year-old sister, Megan, is also quite musical, 

playing the piano and recorder. Next year, she plans to take up the flute. Much of this  
musical talent comes from their mother, and obviously skipped a generation on their father’s 
side of the family.

The day after we bought the drums was Mother’s 
Day here in the U.S., and David and Megan decided 
to perform a concert for their mom. The finale of the 
concert was a duet of “The Entertainer,” by Scott 
Joplin, with Megan on the piano and David on the 
drums. The problem was that the piano is in the 
“music room” on the first floor and David’s drums 
are in his bedroom on the second floor. In order to 
perform, the children were going to have to figure  
out how to work together from different locations.

Sound familiar?

In this issue of Verification Horizons, we’ll see how many of our users and partners have 
applied Mentor technology and tools to address a similar problem that we often see in our 
industry. How does a team apply new approaches to a problem, especially when the team is 
geographically dispersed? As we’ll see, it requires an understanding of the existing structure, 
the new technology, and sometimes just a little bit of common sense and cooperation.

We start off this issue with “Accellera’s Universal Verification Methodology (UVM): The 
Real Story,” by your humble correspondent and my colleague, Dennis Brophy. Having been 
embroiled in standards efforts for longer than either of us would care to admit, it’s easy 
sometimes for us to think that the minutiae that consume our time in committees are therefore 
of the highest concern to everyone else in the industry as well. Of course, that’s not always 
the case, but for those of you who have heard that Accellera is working on a verification base 
class library and methodology, we hope this article sheds some light on where we came from, 
where we are, and where we’re going. Besides, since I’m the editor, I get to put my article first.

Staying in the standards arena, our friend Kaiming Ho, of Fraunhofer IIS in Germany, shares 
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his experiences in “Using SystemVerilog Packages in Real Verification 
Projects.” You’ll find some really useful recommendations on how best 
to use packages to organize your code to make it easier to reuse and 
share. The article concludes with an interesting discussion of how 
to use classes and packages together to achieve some very useful 
results.

For those of you who have been “banging on the countertops” about 
formal verification, our next article by our colleague Harry Foster will 
show you that it’s “Time to Adopt Formal Property Checking.” Harry 
gives three reasons that it is indeed the right time to adopt, and gives 
you a straightforward 7-step process for getting started. With the 
technology maturing to the point where you don’t need to be a formal 
expert, there’s really no reason not to check it out.

In “Multi-method Verification of SoC Designs in an OVM Testbench,” 
a team takes you through many of the issues you’ll encounter in 
verifying a typical SoC design, in this case using the AMBA inter-
connect with multiple peripherals and one or more CPU cores. 
The article shows, once again, how OVM serves as a verification 
platform that enables block-to-top reuse of verification infrastructure, 
including pre-packaged interface-specific VIP in the form of Questa 
Multi-view Verification Components (MVCs). You’ll also see how this 
infrastructure enables you to adopt formal property checking using 
assertions built into the MVCs and also provides the flexibility to use 
Intelligent Testbench Automation and ultimately software running 
on the processor model to augment the stimulus and coverage of 
your verification efforts. Another example of combining different 
“instruments” in perfect harmony!

We next take a more in-depth look at MVCs in “Reusable OVM 
Sequences Boost Verification Productivity” and “Faster Verification 
and Debugging Using an MVC at Multiple Abstraction Levels.” First we 
show you the advantages of some sequence extensions provided by 
MVCs, enabling you to write sequences at a higher level of abstraction, 
and how to use the existing OVM infrastructure to control which 
sequence runs on a particular MVC. The second article shows how the 
MVC makes it easier to debug at the transaction level and plan your 
verification efforts to ensure protocol compliance.

Our Partners’ Corner section, as always, includes several articles 
from our Questa Vanguard partners. We continue the discussion of 
debugging with “Accelerated Debug: A Case Study” from our friends 
at Vennsa Technologies. This article provides an example of their new 
OnPoint automated debugging tool running in concert with Mentor’s 
0-In to quickly diagnose the cause of failing assertions. Next, we find 
PSI Electronics showing us how they accomplished “Verification of 
a Complex IP Using OVM and Questa: From Testplan Creation to 
Verification Success.” 

Our friends at XtremeEDA follow up their “Agile Transformation in IC 
Development” article from our February 2010 issue with the other side 
of the coin in “Agile Transformation in Functional Verification.” In part 
one, they lay out a feature-based approach to verification planning, 
with emphasis on prioritization and incremental planning. In our next 
issue, they’ll share some practical results from an actual project. 

Our next article is “Simulation-Based FlexRayTM Conformance 
Testing – an OVM success story” from our partner Verilab. Here we 
see a good example of OVM’s flexibility being used to implement 
multiple levels of abstraction in a constrained-random environment. 
Their work was used as part of the FlexRay Consortium effort to 
produce a SystemC executable model and a conformance test 
specification – all made possible by OVM and some knowledgeable 
folks at Verilab.

Our final Partners’ Corner article lets you take advantage of  
the excellent insight John Aynsley of Doulos offers in “Making OVM 
Easier for HDL Users.” This article includes some practical rules and 
guidelines to help those of you in the “HDL designer” community  
enter the wonderful world of OVM.

We close this issue with a collaboration between Mentor’s 
Emulation Division and our friends at ARM in “Accelerating Software 
Debug Using ARM’s VSTREAM with Veloce™ Hardware Emulation.” 
This article shows Veloce’s TestBench XPress technology, TBX, 
being used with ARM’s VSTREAM debug transactor to connect a 
software debugger directly to an ARM-based design in the same way 
the debugger can be used with Questa, but with the much greater 
performance you’d expect from using an emulator.

Now I know you’re wondering how David and Megan managed 
to pull off a concert from two different rooms on two different floors. 
Fortunately, David’s drums were loud enough that Megan could hear 
them downstairs. For David to hear Megan, they used our walkie-
talkies! Megan’s was broadcasting from the piano and David had 
his up in his room so he could hear the piano. The concert was a 
smashing success – it even brought a tear to their mom’s eye.  
I couldn’t have been a prouder dad. 

Have a great DAC, and be sure to drop by the Mentor booth  
to say hello.

 
 
Respectfully submitted, 
 
Tom Fitzpatrick 
Verification Technologist 
Mentor Graphics 
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“The very essence of leadership is that you have to have vision.  
You can’t blow an uncertain trumpet”

                                                           - Theodore Hesburgh

Once upon a time, there were three verification methodologies. 
One was too hard. It was based on a language that only one vendor 
supported and, while it had some good ideas, the language and lack of 
multi-vendor support limited its use. One was too closed (and wasn’t all 
that easy, either). It was based on SystemVerilog, a standard language 
that almost everyone supported, but its vendor tried to keep customers 
locked in and competitors locked out. And one methodology, based 
on Mentor Graphics’ vision that a methodology should be made from 
an open base class library that all of the “Big-3” EDA vendors could 
support, was just right.

The first vendor eventually realized that they would have to support 
SystemVerilog, and joined Mentor in developing the OVM. The OVM 
incorporated some ideas from the Cadence® eRM and aligned them 
with Mentor’s AVM to provide the first open-source, multi-vendor 
SystemVerilog verification methodology. And the crowd went wild.  
In just over a year, OVM established that Mentor’s vision was indeed 
“just right” in that it quickly challenged and then overtook the VMM  
as the de facto standard verification methodology.

This, of course, caused a certain amount of consternation in many 
corners of our industry, both among VMM users, who no longer 
wanted to be locked into a proprietary methodology, and among 
VMM-based IP suppliers, who now had to create both OVM and 
VMM versions of their IP to meet their customers’ demands. Perhaps 
nowhere was this consternation greater than among our friends at 
Synopsys®, who realized that their vision of a proprietary methodology 
tied to VCS was not what customers wanted.

As usually happens when things like this come to such a point, 
the industry turned to Accellera to try and resolve things, and the 
Verification Intellectual Property Technical Subcommittee (VIP-
TSC) was born. Its first job was to develop a standard solution so 
that OVM and VMM IP could work together. This standard, with an 
accompanying library, was released in September, 2009. 

It was during this effort that Synopsys finally relented and released 
VMM in open-source form, from which it was learned that VMM (tied 
as tightly as it was to VCS) included non-standard SystemVerilog 
code. This then allowed Mentor and Cadence to release a version of 
VMM that complied with the standard and, for the first time, allowed 
users to run VMM code on Questa and Incisive. Combined with the 
interoperability library, VMM users now had the ability to migrate to 
OVM and away from VCS. And the crowd went wild.

After the completion of this short-term goal, the VIP-TSC moved 
on to its longer-term goal:  Develop a single base class library 
for verification that all vendors would support and all users could 
embrace. In other words, Accellera took on the task of fulfilling 
Mentor’s vision. This vision was further justified when the TSC chose 
OVM2.1.1 as the basis for what is now called the Universal Verification 
Methodology (UVM).

In May, 2010, the TSC released an “Early Adopter” version of the 
UVM. Here’s how the UVM 1.0EA kit was created:

1.	The TSC took OVM2.1.1 and ran a script to change “ovm” to “uvm” 
and “tlm” to “uvm_tlm.” 1 

2.	We enhanced the callback and objection mechanisms to add 
a bit more functionality. Note that these are not fully backward-
compatible with the OVM2.1.1 implementation of these features, 
but everything else is backward-compatible.

3.	We added a new “message catching” feature that lets you add 
callbacks to control the processing and printing of messages.

Keep in mind that this is not an official Accellera standard, but it 
is nonetheless a great opportunity for folks to try it out and provide 
feedback to the TSC. We’ve already received word from several users 
who have run the conversion script on their existing code (as a test - 
we don’t recommend you convert to UVM in the middle of a project) 
and run it with the UVM-EA kit successfully, proving that UVM is, for 
all intents and purposes, about 99 & 44/100% pure OVM. Because of 
this, all existing OVM training material, including Mentor’s Verification 
Academy and the Open Verification Methodology Cookbook still serve 
as great resources to get you started with OVM/UVM. We will continue 
to work with the other members of the TSC to add functionality to UVM 
to ensure that the UVM1.0 release, when it becomes available, will 
satisfy user requirements while keeping “code-bloat” to a minimum.

Accellera’s Universal Verification Methodology (UVM): The Real Story 
by Tom Fitzpatrick and Dennis Brophy, Mentor Graphics
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So what should you do now? First of all, relax. UVM1.0EA works 
today in Questa so you can take a look at UVM at your leisure. Mentor 
is committed to your success, and when UVM 1.0 gets officially 
released, we will support it fully and will continue to do so. If you’re 
an OVM user today, you can continue using OVM and switch to UVM 
when you’re comfortable doing so. 

While it may be the case that some VMM concepts eventually 
become part of UVM, given the two different code bases it is almost 
certain that VMM code will not be incorporated, nor will UVM be 
backward-compatible with VMM. So, if you’re a VMM user, you’re 
going to have to switch at some point. We recommend you do it sooner 
rather than later and Mentor offers UVM-compatible VIP and skilled 
consulting services to facilitate your transition to UVM. Meanwhile, you 
can use the Accellera interoperability library to begin moving to OVM 
while keeping some of your VMM IP during the transition.

What began with Mentor’s release of the open-source AVM has now 
reached the point of industry-wide cooperation to realize the vision 
of a single open-source verification class library and methodology, 
supported by the three major EDA vendors and endorsed by many 
other vendors and users. Four years ago, such a story might have 
seemed like a fairy tale, but now, we can all live happily ever after.

 
1 The “seed kit” used for UVM development was, in fact, OVM2.1.1 
with this script run on it. This task was done by Synopsys, which is the 
reason that the files in the UVM1.0EA kit have a Synopsys copyright 
on them, in accordance with the Apache license.

All trademarks and registered trademarks listed are the property  
of their respective owners.
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This paper details some of the key features and frustrations of using 
the package construct in SystemVerilog.  The package construct is 
compared to similar features in other languages such as the identically 
named construct in VHDL and namespaces in C++.  Valuable lessons 
learned over the course of multiple projects in the development 
of verification environments are described, and the paper makes 
recommendations for basic DOs and DONTs for SystemVerilog 
package use. The theme of code reusability is always important, and 
tips on how packages can be used to achieve this are discussed.

Users of languages such as VERA, which does not have the 
package construct, are more accustomed to using include files, which 
provide some but not all the features packages provide.  The paper 
discusses why the continuance of this approach, while possible in 
SystemVerilog, is not recommended and why the package construct is 
superior. 

Finally, the paper discusses how SystemVerilog allows packages 
and classes to be mixed in interesting ways not seen in other 
languages.

 
I. INTRODUCTION

The package construct is one of the many incremental 
improvements added to SystemVerilog that Verilog notably lacked.  
With its introduction, all users of SystemVerilog, from RTL designers 
to verification engineers, now have an encapsulation mechanism 
that VHDL users have had for many years.  Since SystemVerilog 
also added the class data type many interesting usage models for 
packages are possible as a consequence, some of which are not 
applicable to VHDL since VHDL does not provide classes.

This paper is divided into three sections.  The first summarizes the 
properties of the package construct, highlighting important features 
that underpin the rationale for using packages.  Similar constructs in 
other languages, such as VHDL packages and C++ namespaces are 
discussed and compared.  Important changes to the semantics of the 
construct made between IEEE 1800-2005 [1] and 1800-2009 [2] that 
are of interest to verification engineers are highlighted.

The second section describes practical issues that arise from the 
deployment of SystemVerilog verification environments.  Problems that 
we have encountered in recent projects are described and the pros 
and cons of various solutions discussed.  The last section explores 

advanced things one can achieve with packages.  The discussion 
centres on how packages and classes can be used together to 
implement common design patterns, solving problems such as 
bridging hierarchical boundaries.

 
II. PROPERTIES OF SYSTEMVERILOG PACKAGES

SystemVerilog (SV) packages are a top-level design element that 
provides an encapsulation mechanism for grouping together data 
types (including classes), tasks/functions, constants and variables.  
Additionally, assertion related constructs such as sequences and 
properties can be encapsulated, which is of particular interest to 
verification engineers.  Once encapsulated into a named package, 
the contents are available for use in other design elements (such as 
modules, programs, interfaces or other packages) irrespective of 
module or class hierarchy.

Surprisingly, this construct is unavailable to Verilog (1364-1995 
and 1364-2001) users, who often resort to using modules to emulate 
package behaviour.  Modules also serve as an encapsulation 
mechanism, and when left uninstantiated, become a top-level module 
whose contents are accessible through hierarchical reference.  It is 
common in FPGA libraries to have global definitions and/or variables, 
and it is informative to note that the VHDL version of these libraries 
use the package construct while the equivalent library in Verilog 
uses modules [6].  Caution must be exercised to ensure that the 
module must never be instantiated more than once since variables 
encapsulated inside will then exist multiple times.  The use of 
packages avoids this problem, since packages are not instantiated, 
thereby guaranteeing that all variables inside are singletons (with 
exactly one instance in existence).

Packages can be considered as stand-alone elements, dependent 
only on other packages and not on anything in the context they 
are used.  Thus, they can be compiled separately into libraries of 
functionality, pulled in only when required.  One can view this to be 
conceptually equivalent to how ‘C’ libraries are organised and used.  
This stand-alone property means that code inside packages cannot 
contain hierarchical references to anything outside the package, 
including the compilation unit.  Other encapsulation mechanisms such 
as modules and classes do not require this, so a module/class meant 
to be reusable must rely on the discipline of the writer to avoid these 
external dependencies.  Thus packages represent a much better 

Using SystemVerilog Packages in Real Verification Projects 
by Kaiming Ho, Fraunhofer IIS, Erlangen, Germany
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mechanism for encouraging reuse, since external dependencies are 
explicitly disallowed and checked at compile-time.  Users of purchased 
verification IP should insist that their vendors provide the IP in the form 
of a package.

While the stand-alone property of packages may make it seem that 
it is impossible to tightly integrate outside code with package code, this 
is not the case.  By using callbacks and abstract base classes, this is 
possible.  A subsequent section describes this further.

SV packages were inspired by and share many commonalities 
with similar constructs in other languages.  Namespaces in C++ are 
similar, providing a scope for encapsulating identifiers.  Explicit access 
is given through the :: scope operator, identical in both SV and C++.  
Importation of namespace symbols in C++ with the using keyword 
mirrors the use of the import keyword in SV.  A notable difference is 
that nested C++ namespaces can be hierarchically referenced using 
multiple :: operators.  A user which imports a SV package, top_pkg, 
which imports another package, bottom_pkg, does not automatically 
have access to any of the symbols in bottom_pkg, and access through 
multiple :: operators is not possible.  This lack of package “chaining”, 
and the closely related export statement, is described in more detail in 
a subsequent section.

VHDL packages also share many common features with SV 
packages.  One notable feature of packages in VHDL absent in SV is 
the explicit separation of the package header and body.  The header 
represents the publically visible interface to the package, giving access 
to type definitions and function prototypes.  The body implements 
the various functions described in the header, and are invisible and 
irrelevant to the user.

SystemVerilog allows the collection of files defining a simulation 
to be broken into compilation units, the definition of which is 
implementation dependent.  This is often a function of the compile 
strategy implemented by the tool, with an “all-in-one” command line 
defining one large compilation unit for all files, and an “incremental-
compile” strategy defining compilation units on a per file basis.  
Various issues ranging from visibility to type compatibility are linked 
to compilation units, leading to unpleasant surprises when switching 
compile strategies.  Using packages avoids this problem, since the 
rules of visibility and type compatibility surrounding package items are 
independent of compilation unit.  The problems described later in III-E 
do not occur when packages are used.

 
III. PRACTICALITIES IN PACKAGE USE

Over the past several years, we have deployed SV environments 
using packages in multiple projects.  With each passing project, 

lessons learned from the previous mistakes refine the implementation 
choices made going forward.  This section discusses some selected 
lessons from this experience.

 
A. COMPILE PACKAGES BEFORE USE.  While this may 
sound obvious, it is sometimes not as trivial as it seems.  Nicely written 
packages are good reuse candidates and may be referred to by other 
packages, bringing up the issue of inter-package dependencies.  
Large projects typically have many packages with complex inter-
dependencies, with some packages reused from other projects and 
others reused from block to cluster to chip level environments.  The 
mechanism which controls how all the files for a particular simulation 
are compiled, be it one file at a time, or all files together, must infer the 
dependency structure of the packages and generate an appropriate 
compile order.  This is most easily done by a tree graph with each 
node representing a package.  From the resultant tree, the packages 
furthest away from the root must be compiled first.  As the project 
evolves, careless modifications can lead to the formation of circular 
dependencies, resulting in no suitable compile order.  This is most 
likely to occur in projects with a large set of packages and multiple 
environments that use different subsets of packages.

The following guidelines are suggested to minimize the chance of 
circular dependencies among packages as well as promote better 
reuse. 

•	 Prefer smaller packages to larger ones.
•	 Don’t let the entire team modify packages.
•	 Adequately document the contents of every package and what 

each package item does.  It is also important to document which 
projects and environments use a particular package.

•	 Categorize packages into two types: those reused from other 
projects, and those reused from block to cluster to chip levels. 

Finer grained package structuring reduces the possibility of 
unintended dependencies.  Packages designed to be reused 
over multiple projects should be as flat and dependency free as 
possible.  This allows re-users of the package to not pull in additional 
dependencies, which may cause problems.  A typical package 
structure involves separate packages for each block level, which are 
brought together to form packages for higher-level environments.  
The direction of reuse should start from block environments and 
move upwards.  Monolithic environments are particularly at risk 
of introducing downward dependencies as code evolves, creating 
potential circular dependencies.
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When circular compile dependencies do occur, they can be resolved 
by repartitioning code between packages.  The extreme solution of 
creating one huge package, guaranteed to have no circular compile 
dependencies, is always an option if one gets desperate.

 
B. IMPORTING PACKAGES.  The easiest way to use 
packages is through a wildcard import, with the “import pkg::*” 
statement. This gives the importing scope access to all identifiers 
inside the package without having to use explicit imports for each 
desired identifier, or prefixing each identifier with the package name.  
While the latter two methods of package use are legal, they can be 
overly verbose and unpractical.  Prefixing at each use has the added 
disadvantage of making it difficult to quickly determine package 
dependencies.  Thus, using wildcard imports while understanding their 
disadvantages is the most practical strategy.  These disadvantages 
are discussed below.

When a package is wildcard imported, the importer’s namespace 
is widened to include every possible symbol from the package, even 
the undesired ones, or the ones that the package designer had no 
intention of making externally visible.  Noteworthy is that the labels of 
enumerated types are also added.  Thus, special care must be made 
to avoid naming conflicts, when possible.  This is sometimes difficult 
with packages containing a lot of code, or where the code has been 
split out into multiple sub-files.

Purchased IP may be in package form, but encrypted, meaning 
that the user has no way of knowing what a wildcard import will bring.  
When the user imports multiple packages, the risk of naming conflicts 
between the various packages or with the importing scope is even 
higher.  While naming conflicts are legal in some situations, the rules 
defining how these are resolved are lengthy and complex.  Following a 
naming convention using reasonable and relatively unique names can 
greatly reduce the changes of naming conflicts, thus avoiding the task 
of having to learn SV’s name resolution rules.

The various importing mechanisms lack a form which compromises 
between explicit importing of individual items and wildcard importing of 
all items.  Work has begun on the next revision of the SV LRM and we 
urge that a new importing form, which accepts regular expressions, be 
added.  This allows the user to remain explicit in what is to be imported 
while being more expansive to cover multiple items per import line.

When one package imports items from a second package, the 
question of whether importers of the first package see the second 
package’s items is referred to as package chaining.  The SV-2005 
LRM was silent in this regard, which has led to the unfortunate 
situation of diverging behaviour between implementations from  
 

different vendors.  Package chaining has been addressed in the 
SV-2009 LRM, which states that such chaining does not occur 
automatically.  The new export statement was added to allow users of 
packages explicit control on which symbols are chained and visible at 
the next level up.

The addition of the export statement alone does not satisfactorily 
solve all the issues surrounding package chaining and imports.  It does 
not give the author of a package any control over which items may 
be imported.  The local keyword, which currently can only be applied 
to class items, can be adopted for packages to provide this access 
control functionality.  This optional qualifier can be applied to package 
items such as tasks, functions, and data types.  We urge that this 
enhancement, which can be viewed as complimentary to the export 
statement be added to the next revision of the SV LRM.  The example 
below shows how a helper function, for use only inside the package, 
can be hidden from the user of the package.

package my_pkg;

    // both public_func1() and public_func2()

    // call helper_func(), using the type

    // data_t as input

 function void public_func1(); ... endfunction

 function void public_func2(); ... endfunction

 local typedef struct { ... } data_t;

 local function int helper_func (data_t din);

   ...

 endfunction

endpackage

Being able to use the local qualifier allows the public and private 
portions of packages to be clearly separated.  This partitioning is 
exactly what is provided in VHDL through the use of package headers 
and bodies.

Package items that are local may not be imported, regardless of 
which importation method is used.  The package’s author makes this 
decision.  In contrast, the use of the export statement controls which 
items, once imported, may be imported by the next level up.  Here, 
the package’s user decides which items are chained.  It is interesting 
to note that using the export statement in combination with a wrapper 
package can emulate the effect of specifying certain package items as 
local. 
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C. USING SUB-INCLUDES.  When many large classes are 
defined in a package, the sheer amount of code can lead to very large 
and difficult to maintain files.  It is tempting to separate the package 
contents into multiple files, then have the package definition consist 
simply of a list of `include statements.  This solution is seen often, but 
several dangers need to be managed, as discussed below.

By separating package code out into other files, the original context 
can be easily forgotten.  Allowed dependencies owing to the fact 
that multiple files make up the compilation unit, as well as disallowed 
ones are not readily evident. A further problem is that the file could 
be included in multiple places, resulting in several packages with 
the same definition.  These packages could then be used together, 
causing problems at import.  Specifically, identical type definitions 
included into two different packages may not be compatible.  One must 
remember that with packages, it is no longer required or appropriate to 
implement reuse at the file level using `include statements.

The context loss problem can be easily addressed by having a clear 
warning comment at the top of the file indicating that only the intended 
package may include the file.  An example is shown below.

file: my_huge_pkg.sv 

package my_huge_pkg;

  `include “my_class1.svh”

  `include “my_class2.svh”

endpackage

file: my_class1.svh 

// WARNING:

// This file is meant to be used only by

// “my_huge_pkg.sv”.  DO NOT directly include

// in any other context.

class my_class1;

  ...

endclass

A more robust mechanism, for people who don’t read comments, is 
to use an #ifdef check with an #error clause to trigger an immediate 
compilation error in cases of unintended inclusion.  Modelled after 
the mechanism used by ‘C’ include files, the main package file would 
define a unique pre-processor symbol, then include the various 

sub-files.  Each included file would check that the symbol is defined 
and trigger an error if it is not.  The previous example, modified to 
incorporate this, is shown below.

file: my_huge_pkg.sv 

package my_huge_pkg;

  `define _IN_MY_HUGE_PKG_

  `include “my_class1.svh”

endpackage

file: my_class1.svh 

`ifndef _IN_MY_HUGE_PKG_

** ERROR     ERROR      ERROR

** This file is meant to be used only by

** “my_huge_pkg.sv”.  DO NOT directly include

** in any other context.

`error “SV doesn’t have this”

`endif

class my_class1;

   ...

endclass

Since the SV pre-processor does not have the `error directive, 
inserting text which will cause a compile syntax error can be used to 
do the same thing.

 
D. THE PARAMETER PROBLEM.  Parameters can be 
used to define constants.  They can also be used to facilitate generic 
programming, where the parameterized values can be varied.  The 
usage of constant parameters in packages is problem free and a 
recommended replacement for pre-processor `defines for constants.  
This effectively gives a namespace to constants and avoids the 
potential problem of multiple (and/or conflicting) pre-processor 
symbols in the same compilation unit.

The second usage, for generic programming, causes a serious 
problem when used in the context of a package.  When a function 
defined in a package uses a parameter, one might think a template 
function is defined.  However, since packages are not instantiated, 
there is no way to vary the parameter to create different specializations 
of the function.  The example below shows the problem for both type 
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and value parameters.  The same function defined in a module does 
not suffer this problem, since many instances of the modules may be 
created, with varying parameterizations.

package utils_pkg;

  parameter type T = int;

  typedef T T_list[];

  // extend ‘n’ samples right

  // extend ‘m’ samples left

  function T_list dwt_extend(T sin[],int n,m);

    T sout[$] = sin;

    int unsigned size = sin.size();

    for (int i=0; i<m; i++)

      sout = {sout[2*i+1], sout};

    for (int i=1; i<=n; i++)

      sout = {sout, sout[$-(2*i)+1]};

    return sout;

  endfunction

parameter win = 8;

localparam wout = win+1;

  function void do_rct(

    input bit signed[win:1] rgb[3],

    output bit signed[wout:1] ycbcr[3]);

  endfunction

endpackage

To overcome this problem, a static class can be used to wrap 
the function.  The class can be parameterized, and access to the 
function is through the class resolution operator along with the 
parameterization.  This, however, leads to unsynthesizable code,  
a problem if the code is to be used for RTL design.  We have found 
that this problem occurs often in modelling mathematical algorithms 
meant for a DSP where the bit-depth of the operands is parameterized.  
An example of the solution is shown following.

package utils_pkg;

  virtual class colour_trans#(int win=8);

  localparam wout = win+1;

  static function void do_rct(

    input bit signed[win:1] rgb[3],

    output bit signed[wout:1] ycbcr[3]);

  endfunction

  endclass

endpackage 

import utils_pkg::*;

initial

  begin

  bit signed [18:1] rgb[3];

  bit signed [19:1] ycbcr[3];

  colour_trans#(18)::do_rct(rgb, ycbcr);

  end

 
E. DEFINING CLASSES AT TOP-LEVEL.  Class definitions 
may appear in various design elements, but packages remain by far 
the best place for classes.  Alternatives such as modules or program 
blocks suffer from problems such as poor accessibility or reusability 
issues due to hierarchical references.

Users with a VERA background often do not appreciate the 
multitude of choices where classes may be defined.  In VERA, all 
classes are typically defined in separate files, included when required 
and exist in a single global scope — in other words, “floating” at 
top-level.  The code example below illustrates this, with each box 
representing a separate file and compile.

class logger {

  integer curr_sev;

  task put_msg(integer lvl, string msg);

}

task logger::put_msg(integer lvl, string msg)

{  ...  }
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#include “logger.vrh”

class ahb_trans {

  logger log_obj;

  task new(logger l) { log_obj = l; }

}

#include “logger.vrh”

#include “ahb_trans.vrh”

class ahb_write_trans extends ahb_trans {

  task new(logger l) { super.new(l); }

}

#include “logger.vrh”

#include “ahb_trans.vrh”

#include “ahb_write_trans.vrh”

program top {

  logger log_obj;

  ahb_trans       a1;

  ahb_write_trans a2;

  log_obj = new;

  a1 = new(log_obj);

  a2 = new(log_obj);

}

While an equivalent structure is possible in SV, this usage style is 
not recommended.  Not only are these potentially non-reusable, the 
rules governing such structures (compilation-units) have changed 
between SV-2005 and SV-2009.

When class (or other) definitions do not appear in a module, 
package or program block scope, these “floating” definitions are part 
of the compilation unit scope (also called $unit).  SV-2005 specifies 
that $unit behaves as an anonymous package.  The consequences 
of this are significant and negative.  Since the package is unnamed, 
there is no way to refer to any of its contents outside the compilation 
unit.  Additionally, having to adhere to the rules governing packages 
means the code in $unit may not have hierarchical references.  Unable 
to enjoy the advantages of package membership but still subject to its 
restrictions, the anonymous package concept is overall a bad idea and 
should be avoided.

SV-2009 has completely eliminated the term “anonymous package” 
from the LRM and changes the semantics of compilation-units to allow 

hierarchical references.  The reasoning behind this is that compilation-
units are not considered stand-alone, but rather always considered 
within some other context.  This allows for the use of top-level 
classes with hierarchical references (consistent with the VERA usage 
described above), but the code cannot be reasonably considered 
reusable.

Notwithstanding the relaxation of rules in SV-2009, we recommend 
against the use of “floating” code in compilation- unit scopes.  As 
previously mentioned, situations may arise where the definition of 
compilation unit boundaries is dependent not only on the way the 
source files are specified on the command-line to the compiler, but 
also compiler implementation decisions allowed by the LRM and 
outside the control of the user.

Further complicating the issue is the inconsistent application of the 
rules among different simulators.  One product strictly enforces the 
SV-2005 hierarchical reference rule for compilation units even as the 
LRM has changed to allow for it.  Surveying the releases over the past 
3 years of another product shows that early versions falsely allowed 
hierarchical references in packages, with later versions corrected 
to produce a compile error, compliant with SV-2005.  The latest 
revision adopts SV-2009 rules, reallowing hierarchical references in 
compilation units.

Another important issue is the type compatibility rules in SV (both 
2005 and 2009 versions) surrounding compilation units.  User-defined 
types and classes residing in the compilation-unit scope, as will be 
the case when top-level include files are used, are not equivalent 
to another type with the identical name and contents in another 
compilation-unit.  Using the same include file for both compiles, 
ensuring that the type’s name and contents are identical, does not 
make the types equivalent.  An “all-in-one” compilation strategy with 
one large compilation-unit solves this problem, but this precludes 
the advantages of using separate compile, including the creation of 
libraries of reusable code.  Using packages for these user-defined 
types is a superior approach, independent of compilation strategy 
adopted or how any tool implements compilation-units.

The type checking that an SV simulator performs occurs after all the 
source files are compiled, at the elaboration (linking) stage.  In other 
words, the problem described above passes compile, but fails to link.  
One may wonder why the same approach in “C” does not encounter 
this problem.  The key difference lies in the nature of the object file, 
which is low-level assembly code for the case of a “C” compiler.  
The type information is long gone, and the linker resolves symbols, 
reporting an error when symbols are not found or duplicated.
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IV. ADVANCED USE CASES (CLASSES  
AND PACKAGES)

Packages and classes may be mixed together to implement 
interesting and useful things.

 
A. SINGLETON IMPLEMENTATION.  The pure nature 
of its specification means that packages are singletons, or objects 
with exactly one instantiation.  One can use classes with a private 
constructor to also implement the singleton design pattern and both 
approaches are equally effective.

Singletons find several uses in testbenches, from the encapsulation 
of global variables to the creation of testbench services such as 
logging objects and abstract factories.  While ultimately a question of 
style, the author has the flexibility to choose between package- and 
class-based implementations.  We find the package-based approach 
more lightweight, suitable for global variables such as error counters.  
The class-based approach is more suitable when the singleton is used 
as part of another design pattern, such as factories.

 
B. CALLBACKS AND ABSTRACT BASE CLASSES.  
The value of packages being standalone is its reusability.   
However, each reuse situation might have slightly different 
requirements in its interaction with package code.  Hierarchical 
references from package code are not allowed and a workaround 
using DPI and strings with paths, suggested in [5], violates the spirit of 
the rule.  We strongly recommend against it.  A better solution, using 
callbacks, is recommended.

Well-defined and placed callbacks provide a mechanism for 
customization while at the same time keeping the package code 
closed.  This technique is well proven in multiple verification 
methodologies and found in software libraries such as the standard 
C library.  It is instructive to illustrate from there the signal() function, 
shown below.

signal(int sig, void (*func)(int));

This allows the user to register a callback, func, to be called when 
the named event occurs.  Here, the callback is a function pointer, 
reminding us that an object-oriented language is not required for 
implementations.  SV has no function pointers, so implementations 
using abstract base classes are used.  The example below illustrates 
this.

package ebcot_pkg;

  // define callback function interface that

  // ‘ebcot_enc’ will use.

  // (pure not in SV-2005)

  virtual class ebcot_encoder_cb;

    pure virtual task push(...);

  endclass

  function ebcot_enc(data, state,

                  ebcot_encoder_cb cb=null);

    // iterate over rows/cols, calling ‘doit’

    for (int r=0; r<nrows; r+=4)

      for (int c=0; c<ncols; c++)

        begin

        partial = doit(data,state);

          // execute callback, if it exists

        if (cb!=null) cb.push(partial);

        end

  endfunction

endpackage

// Application which uses ebcot_pkg::ebcot_enc

module enc(clk, data, data_valid);

import ebcot_pkg::*;

  // customize callback for this application

class my_enc_cb extends ebcot_encoder_cb;

   task push(...); ... endtask

endclass

my_enc_cb cb = new;

always @(posedge clk)

    // call encoder, passing in callback

  if (data_valid) ebcot_enc(data,state,cb);

endmodule
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An abstract base class with a pure virtual method is defined in the 
package alongside all the other contents.  In each use situation, this 
base class is extended to concretely implement what the function is 
to do.  An object of this extension is then indicated when the package 
code is used.  The example above provides the callback procedurally 
as part of the entry point to the package code.  Many other techniques 
of “registering” the callback are possible.

 
C. CONNECTING TESTBENCH COMPONENTS  
WITH ABSTRACT BASE CLASSES.  The SV language 
unifies a hardware description language, with its statically elaborated 
module hierarchy with features from object-oriented programming, with 
dynamic elements such as class objects.  It is sometimes necessary 
to merge the two worlds together in a testbench.  The combination of 
classes and packages, along with abstract base classes is one way to 
achieve this.

When testbench components (such as transactors), written 
as SV modules need to interface to other class-based testbench 
components, a bridge needs to be created.  The interface that the 
module wishes to expose needs to be written as a set of tasks/
functions forming an API.  The class-based component may assume 
this API in its abstract base class form.  The module-based component 
implements the concrete class extended from this virtual base.  The 
abstract base class needs to be globally visible and thus must be 
implemented in a package.  The concrete extension is normally local 
and defined in the module, since access to the variables/ports in the 
module’s scope is required.  A handle to an instance of the concrete 
extension class is obtained through an accessor function, which can 
then be bound to the class-based world.

This technique, an extension of the one described in [4], allows 
testbench components, regardless of their hierarchical relationship, to 
communicate with each other.  This is done without the use of hard-
coded XMRs (cross-module references), or virtual interfaces.  While 
the motivation in [4]  centered around BFMs, our treatment is more 
general, abstracting the communication with an API embodied in an 
abstract base class.  Not only a class object and module instance can 
be bridged, but also two modules can also be bridged.  One recent 
project uses this technique to embody the API of a module-based 
testbench-top (test harness), of which there were several varieties 
including multiple block levels to chip level harnesses.  This API was 
then passed to a series of testcases (scenarios), which could be 
implemented either as top-level modules or classes. 

An example of this technique is following.  A module-based memory 
with a set of backdoor tasks exists in the statically elaborated world.  

The API for these tasks can be exported and connected to any other 
component, be it another module (as shown) or another class (not 
shown).  All components are independent, with only a single place (in 
‘harness’) where everything is tied together.

The package that holds the abstract base class representing the API 
is shown below:

package mem_access_pkg;

  virtual class mem_access;

  pure virtual function bit [7:0]

      backdoor_read(bit [31:0] addr);

  pure virtual function void

      backdoor_write(bit[31:0] a, bit[7:0] d);

  endclass

endpackage

The module based memory model, ‘ddr’, implements backdoor 
memory access functions.  The module-based version of the functions 
may be called using hierarchical reference.  The class-based version 
may be used by any component regardless of hierarchy, once a handle 
to the API object has been obtained.

module ddr;

  bit [7:0] mem_array[bit[31:0]];

    // backdoor memory access functions

  function bit [7:0] backdoor_read(

                            bit [31:0] addr);

    return mem_array[addr];

  endfunction

  function void backdoor_write(

                bit [7:0] d, bit[31:0] addr);

    mem_array[addr] = d;

  endfunction

    // implement class-based version

  import mem_access_pkg::*;

  class my_mem_access extends mem_access;

    function bit[7:0] backdoor_read(

                               bit[31:0] addr);
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      return ddr.backdoor_read(addr);

    endfunction

      // NB:arguments swapped for illustration

    function void backdoor_write(

                          bit [31:0] a, bit [7:0] d);

      ddr.backdoor_write(d,a);

    endfunction

  endclass

  // definition of object, with accessor

my_mem_access _obj;

  function mem_access get_mem_access();

    if (_obj==null) _obj=new;

    return _obj;

  endfunction

endmodule

 

The module below shows how the class-based API enables the 
backdoor access functions to be used, without knowledge of the 
hierarchical relationship between the two modules.  Only the package 
holding the abstract base class is required.

module sister_module;

  import mem_access_pkg::*;

  mem_access ma_handle;

  function void put_mem_access(mem_access a);

    ma_handle = a;

  endfunction

initial

  begin

  wait (ma_handle != null);

  ma_handle.backdoor_write(100, 8’h2b);

  $display (“read=%x”,

               ma_handle.backdoor_read(100));

  end

The top level testbench module ties everything together and is the 
only place where the hierarchical relationships (u_ddr and u_oth) are 
used.

module harness;

  ddr u_ddr();

  sister_module u_oth();

initial

  begin

    // this triggers u_oth to do mem accesses

  u_oth.put_mem_access(u_ddr.get_mem_access);

  #10;

    // again, but with hierarchical reference

    // to functions in u_ddr

  u_ddr.backdoor_write(8’h45, 100);

  $display (“read=%x”,

                 u_ddr.backdoor_read(100));

  end

endmodule

Without the use of packages to store the abstract base class, this 
technique becomes hard to implement.  One can use an include file for 
the class, including it in each place that requires it.  However, this runs 
into the type compatibility problems described previously.

Alternatives to this approach include using hard-coded XMRs from 
the class to module in question.  Not only is this not reusable due to 
the hard-coded XMRs, this is not even legal when the class is defined 
in a package or program block scope.

 
D. BINDS, PACKAGES, AND WHITE-BOX TESTING.  
The combination of the SV bind construct along with a package 
implementing a global symbol-table allows verification code to 
be deeply embedded in a DUT with no hard-coded hierarchical 
references.  A module or interface with the verification code, be it 
assertions, a monitor, or coverage collector is bound to the DUT 
module in question.  Access to the results of the monitor or coverage 
collector is normally problematic, requiring hierarchical references 
through the DUT module hierarchy to reach the target.
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By using packages, each monitor can define an API and register 
it in a global symbol table implemented in the package.  The end-
user of the monitor/coverage result can access the API through the 
package.  The symbol table acts as a drop-box and avoids the need 
for hierarchical references.

 
E. POOR MAN’S INHERITANCE.  Packages containing 
variables and tasks/functions can be compared to classes with data 
and methods.  However support for inheritance of packages is not 
as flexible as that in classes.  A so-called poor man’s inheritance 
mechanism is possible, allowing for static (compile-time) polymorphism 
but not the dynamic polymorphism that classes can implement.  A 
wrapper package can be created which redefines some of the 
functions in the underlying package, provided the prototypes are 
identical.  In the extreme case where all functions are redefined 
a complete substitute package can be made, with a different 
implementation of all functions provided by the package.

It is interesting to note that VHDL, a non object-oriented language, is 
capable of this by strictly separating the package implementation from 
its declaration.  Modules from ordinary Verilog can be said to have the 
same capability.

 
F. MIXED USE OF VHDL AND SV PACKAGES.  Mixed 
language simulation is sometimes a necessary evil.  The combination 
that we see most often is an SV testbench verifying a VHDL design. 
Often, a rich set of records, types and functions on the VHDL side 
is defined in packages.  Unfortunately, neither SV nor VHDL LRMs 
specify how these definitions can be mapped across the language 
boundary, even though most package items have exact parallels in SV.  
Tool specific implementations, often as simple as adding an additional 
compile-line switch, are available.

 
V. CONCLUSION

We have given an overview of the SystemVerilog package construct, 
from its motivation to the characteristics that make it an important 
feature of the language.

Practical issues that arose when using packages in real projects 
were described.  Suggestions to avoid or overcome these issues were 
made.  We further discussed how packages and classes could be 
used together to implement interesting constructs.
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There are three reasons the time is right for formal property 
checking, even for design teams whose project schedules are 
measured in months instead of years. First, the technology has 
matured. Second, standards now exist to express interesting functional 
properties. And third, formal property checking is well-suited to today’s 
problem domain. 

Technology has matured:  About twenty years ago, the state of 
the technology was such that formal property checking could reliably 
handle about two hundred state elements. Today, formal property 
checking can handle tens of thousands of state elements. You might 
ask, don’t today’s designs have many more than tens of thousands of 
state elements? Well yes, but that’s not the point when you consider 
that a formal tool only needs to consider the design state elements 
that are covered by a specific functional property. In fact, because 
formal technology has matured, it is now possibly to specify practical 
functional properties about today’s design that can be reliably proved.

Another longtime limitation of formal property checking was that the 
technology required lots of manual interactions, generally performed 
by a formal expert, to simplify and complete a proof. In contrast, 
today’s tools are architected with multiple specialized proof engines, 
whose execution is orchestrated in such a way to automatically 
partition and apply abstractions to a complex design, all under-the-
hood. Thus, the mainstream user can apply the technology.

Finally, formal technology that automatically extract functional 
properties and then formally verify them, has begun to show up under-
the-hood of many different functional verification tools, such as clock-
domain checking, reset verification, and other automatic-applications. 
Thus, the user no longer has to be a formal expert in either writing 
functional properties or running formal tools to get value out of 
applying formal technology.

Standards exist:  The arrival of standards has been another huge 
benefit, one that’s accrued both to tool users and developers. Seven 
years ago, industry assertion language standards didn’t exist—a 
situation that created confusion. Fears of lock-in loomed as each tool 
vendor had its own proprietary language. 

Today we have the IEEE 1850 Property Specification Language 
standard and the IEEE 1800 SystemVerilog standard. Together, these 
standards are creating an ecosystem of tools and solutions around 
functional properties. For example, a number of EDA vendors are 
now delivering assertion-based IP based on these new standards. In 

addition, several new startups are exploring new solutions based on 
these standards, such as advanced debugging techniques. Finally, 
we are now seeing an emerging pool of skilled consultants providing 
application services and training on how to use these standards. 
The bottom line is that users now feel confident that they can adopt 
a standard that will be supported by multiple verification tools and 
vendors.

Good fit for today’s problems:  Formal property checking is 
increasingly well suited for today’s problem domain, especially project 
teams doing SOC designs, which is a majority of the market. In fact, 
the Collett International Research “IC/ASIC Functional Verification 
Study” published in 2004 found that about one-third of all designs 
at that point in time had an embedded processor, and thus an SOC. 
Today that percentage has doubled.  In addition, when you look at 
today’s SOC designs, your find that the makeup (on average) consists 
of about 33 percent internally developed IP and 13 percent purchased 
IP. These IP blocks are generally connected using standard bus 
protocols, such as AXI and AHB. This natural partitioning of the design 
into IP with well-defined interfaces connected to busses lends itself 
to a formal property checking methodology.  For example, assertion-
based IP can either be purchased or developed for the bus interfaces, 
and then reused in multiple blocks to prove interface compliance. This 
use of formal generally requires minimal skills. Furthermore, the same 
set of functional properties can be reused as constraints on many IP 
blocks to prove additional internal or end-to-end properties about the 
block. Not surprisingly, companies that are doing SOC design and that 
have adopted this methodology have identified productivity benefits 
achieved by reducing the debugging time due to bugs found sooner 
in the flow, as well as quality benefits of delivering formally verified 
blocks for integration. 

Getting started: So the time for formal property checking is now. Yet, 
one of the first questions I’m generally asked concerning implementing 
a formal methodology is: How do you get started?  Here are my 
thoughts.

There’s an ancient proverb that states “he who fails to plan, plans 
to fail.” Yet in the disciplined, process-oriented world of verification, 
failure is more likely to stem from confusion about how to best plan 
the integration of formal property checking into an existing simulation-
based flow than from a failure to plan in the first place. 

Time to Adopt Formal Property Checking 
by Harry Foster, Chief Scientist, Verification, Mentor Graphics 
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Some projects set the bar too low when first evaluating formal 
property checking. Engineers might throw a design with a set of ad 
hoc assertions at a formal property checking tool, just to see what 
value the process has to offer. The problem with this approach is that 
all assertions are not created equal. Many lower-level assertions, 
while they are ideal for reducing simulation debugging time, provide 
little or no value as formal proofs when considered in the context of a 
project’s overall verification objectives. In such cases, it’s natural – and 
inaccurate – to declare that formal proofs deliver too little return on the 
project team’s investment. 

Projects teams’ first attempts at formal property checking can just 
as easily fail due to overreach, particularly when the team’s ambition 
far surpasses its skill set. An inexperienced project team that selects 
a complex design block beyond the push-button capability of today’s 
formal verification technology will likely be stuck until they acquire 
sufficient advanced skills required to manually assist in completing 
the proof. (This problem is not unique to formal property checking. 
Consider the likely outcome when a team that lacks object-oriented 
programming skills first attempts to construct a contemporary 
constrained-random, coverage-driven testbench.)

 Of course many design blocks do lend themselves to formal 
property checking and require minimum or no advanced skills. In 
the following section, we outline a testplanning process that helps to 
identify such blocks and nurture the organization’s current skill set.

Turing Award winner Fred Brooks once quipped that “even the 
best planning is not so omniscient as to get it right the first time.” 
Notwithstanding Brooks’ wisdom, there are a few preliminary steps 
which if followed help to build a good test plan. First among these 
is identifying the design blocks that are most suitable for formal 
verification in the first place.

Step 1: Identify suitable design blocks for formal. The key criterion 
for choosing design blocks suitable for formal: whether the block is 
mostly sequential (that is, non-concurrent) or mostly concurrent. 

Sequential design blocks (Figure 1) typically operate on a single 
stream of input data, even though there may be multiple packets at 
various stages of the design pipeline at any instant. An example of 
this sequential behavior is an instruction decode unit that decodes a 
processor instruction over many stages. Another example is an MPEG 
encoder block that encodes a stream of video data. Formal verification 
usually faces state explosion for sequential designs because generally 
the most interesting properties involve a majority of the flops within the 
design block.

 

Figure 1: Sequential paths

Concurrent design blocks (Figure 2) deal with multiple streams of 
input data that collide with each other. An example is a multi-channel 
bus bridge block, which essentially transports packets unchanged from 
multiple input sources to multiple output sources.

Figure 2: Concurrent  paths

As a rule of thumb, when applying formal, choose blocks that are 
control-oriented or perform data transport with high concurrency.
Now, which candidate blocks are easy and require no (or minimal 
formal skills), and which candidate blocks are difficult and require more 
advanced skills and additional manual work to complete the proof? In 
Table 1 we attempt to answer these questions, listing a broad class 
of design blocks. Our commonsensical advice: if your organization 
has no prior formal experience, then start with a candidate block that 
requires minimal skills and gradually work to grow the organization’s 
skill set over time.
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Table 1: Candidate blocks vs, required formal skills

Step 2: Create a block diagram and interface description. Create 
a block diagram and table that describe the details for the design’s 
design component interface signals that must be referenced 
(monitored) when creating the set of assertions and coverage items. 
Use this list to determine completeness of the requirement checklist 
during the review process.

Step 3: Create an overview description. Briefly describe the key 
characteristics of the design’s design component. It is not necessary to 
make the introduction highly detailed, but it should highlight the major 
functions and features. Waveform diagrams are useful for describing 
temporal relationships for temporal signals.

Step 4: Create a natural language list of properties. In a natural 
language, list all properties for the design’s design component. A 
recommended approach is to create a table to capture the list of 
properties. For each property, use a unique label identifier that helps 
map the assertions back to the natural language properties.

Step 5: Convert natural language properties into formal properties. 
Convert each of the natural language properties into a set of 
SystemVerilog Assertions or PSL assertions or coverage properties, 
using any additional modeling required for describing the intended 
behavior.

Step 6: Define coverage goals. Essentially this is a step of 
identifying formal constraints or assumptions.  It is critical that these 
assumptions are verified in simulation as assertions, and sufficient 
interface coverage goals have been identified and added to the overall 
verification plan as coverage goals for the blocks being proved.

Step 7: Select a proof strategy.

After completing steps 1 through 6, our final step is 
to define an effective strategy to verify each property 
we defined in our formal testplan. Generally, the 
strategy you select is influenced by your verification 
goals and project schedule and resource constraints. 
The four strategies I recommend are:

1.	Full proof

2.	Bug-hunting

3.	Interface formalization

4.	Improved coverage

Before you select a strategy, you should first order 
your list of properties (created in step 4) to help you identify the high-
value properties with a clear return-on-investment (ROI) and the 
potential high-effort properties in terms of proof or lack of designer 
support. To help order your list of properties, answer the following 
questions:

•	 Did a respin occur on a previous project for a similar property? 
(high ROI)

•	 Is the verification team concerned about achieving high coverage 
in simulation for a particular property? (high ROI)

•	 Is the property control-intensive? (high likelihood of success)

•	 Is there sufficient access to the design team to help define 
constraints for a particular property? (high likelihood of success)

After ordering your list, assign an appropriate strategy for each 
property in the list based on your project’s schedule and resource 
constraints. Your verification goals, project schedule, and resource 
constraints influence the strategy you select. We recommend you 
choose a strategy from the following:

a. Full proof. Projects often have many properties in the list that 
are of critical importance and concern. For example, to ensure that 
the design is not dead in the lab, there are certain properties that 
absolutely must be error-free. These properties warrant applying  
the appropriate resources to achieve a full proof.
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b.	 Bug-hunting. Using formal verification is not limited to full 
proofs. In fact, you can effectively use formal verification as a bug-
hunting technique, often uncovering complex corner cases missed by 
simulation. The two main bug-hunting techniques are bounded model 
checking, where we prove that a set of assertions is safe out to some 
bounded sequential depth, and dynamic formal, which combines 
simulation and formal verification to reach deep complex states. 

c.	 Interface formalization. The goal here is to harden your 
design’s interface implementation using formal verification prior to 
integrating blocks into the system simulation environment. In other 
words, your focus is purely on the design’s interface (versus a focus 
on internal assertions or block-level, end-to-end properties). The 
benefit of interface formalization is that you can reuse your interface 
assertions and assumptions during system-level simulation to 
dramatically reduce integration debugging time.

d.	 Improved coverage. Creating a high-fidelity coverage model 
can be a challenge in a traditional simulation environment. If a corner 
case or complex behavior is missing from the coverage model, then 
it is likely that behaviors of the design will go untested. However, 
dynamic formal is an excellent way to leverage an existing coverage 
model to explore complex behaviors around interesting coverage 
points. The overall benefits are improved coverage and the ability to 
find bugs that are more complex.

 
Summary

In this article I outline a simple set of steps for getting started with 
formal. So, why adopt formal now? The technology behind formal 
property checking has matured to the point where it can now handle 
many functional properties on today’s designs without the need for a 
formal expert. With the recent standardization of assertion languages, 
an entire assertion-based technology ecosystem is emerging. With the 
rapid adoption of IP and bus-based SOC design practices, there are 
many ideal candidate blocks that lend themselves to formal. Finally, 
SOC designs provide an opportunity for functional property reuse for 
compliance checking of standard interfaces.

 
“By using an implementation inside a model checking tool (0in) 
from Mentor Graphics, we successfully prove properties on all 
possible initial states and avoid false negatives..”

		  — Xiushan Feng, et al., AMD,  
		      published at MTV 2009

“Clearly, FPC improved quality with an engineering effort 
similar to that for simulation at the block level.”

		  — Richard Boulton, et al., Icera,  
		      published at DVCon 2009

”A quality set of assertions provides a means for effective 
measurement of functional coverage in simulation and 
enhancement of coverage using formal methods to counter  
the declining success rate of silicon design teams.”

		  — Jim O’Connor, et al., iVivaty,  
		       published at DVCon 2007

“The bug was eventually isolated and reproduced through 
a process of formal verification based on model checking. In 
particular, we used an approach based on targeting sets of 
conditions called waypoints, which are hypothesized by the 
user to necessarily occur en route to the bug in question.”

		  — C. Richard Ho, et al., DEShaw,  
		       published at DAC 2008

Formal Property Checking Success Stories
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Introduction
The demand for smarter, more powerful consumer electronics 

devices is increasing the complexity and integration of underlying SoC 
designs. This, in turn, is making it harder to build a comprehensive test 
environment. The availability of the Open Verification Methodology 
(OVM) [1] has helped to at least partially ease the burden on 
verification engineers. Based on the IEEE 1800 SystemVerilog 
standard and fully open, the OVM is non-vendor-specific and works 
with multiple languages and simulators. OVM provides a library of 
base classes as building blocks for creating modular and reusable 
verification environments that support a constrained random stimulus 
generation methodology. With OVM, verification IPs (VIP) can be 
developed with a well defined structure to help make them simple to 
use and re-use. Such VIPs are already available to target common 
interfaces, such as AHB, AXI3 and AXI4 in the AMBA family [2]. 

However, the use of constrained random stimulus generation does 
have its limitations. The coverage state space continues to grow 
due to the inexorable move towards a flexible, power efficient and 
high performance AMBA interconnect; multiple CPU cores, such 
as the Cortex-A series [3]; increasing numbers of peripherals; and 
the introduction of new and more stringent Quality-of-Service (QoS) 
requirements [4]. Coverage closure becomes more difficult, requiring

Figure 1: Heterogeneous verification using constrained random 
stimulus in combination with advanced methodologies 

multiple simulation runs with different test sequences, constraints 
and seeds. Simulation performance degrades exponentially as the 
complexity and number of constraints increase. Although constrained 
random techniques will continue to be a key part of the verification 
methodology, sophisticated design teams are gradually introducing 
even more advanced technologies to help achieve coverage closure 
more quickly and reliably. Two such methodologies are static formal 
verification [5] and intelligent testbench automation [6]. 

 
OVM-based verification IPs

Today, companies doing ARM-based SoC designs depend on 
VIP for block-level and system-level validation. Mentor’s Multi-View 
Verification Components (MVCs) [7] support OVM with stimulus 
generation, reference checking, monitoring, and functional coverage. 
In March 2010 Mentor announced that its library of Questa® MVCs 
has been expanded to support phase one of the AMBA 4 specification, 
recently announced by ARM. Introduced by ARM more than 15 years 
ago, the AMBA specification is the de-facto standard for on-chip 
interconnects. Unlike other solutions, MVCs combine transaction-
based protocol debugging and abstraction adaptation, enabling 
designers to connect to any level of design and testbench abstraction. 
For AMBA, MVCs are available to support the APB, AHB, AXI3 and 
AXI4 interfaces.

Each MVC includes a number of OVM test components. There 
is an agent, interface and configuration typical of OVM verification 

components. Additional 
components range 
from a simple analysis 
component to log 
transactions to a file 
through to more complex 
analysis components, 
such as coverage 
collectors that ensure 
the complete protocol 
is exercised. MVCs 
are also supplied with 
scoreboards that can 
be used as is for simple 
memory models, or 

Multi-Method Verification of SoC Designs in an OVM Testbench 
by Ping Yeung, Mike Andrews, Marc Bryan and Jason Polychronopoulos, Product Solution Managers, Verification, Mentor Graphics
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extended to incorporate more complex DUT functionality. With MVCs, 
users can build a consistent and reusable verification environment 
to verify that the design adheres to internal and external protocols 
throughout the verification process. 

Figure 2: Verification IP: AXI Multi-view Verification Components

Each MVC has an agent that can be configured to be in active or 
passive mode. For generating stimulus the agent operates in active 
mode. It instantiates the sequencer, driver, monitor, and analysis 
components such as a transaction logger or coverage collector.  
For system-level simulation, transactions might be driven between 
two user devices, such as the processor or a DMA controller and the 
interconnect. In this scenario, the agent can operate in passive mode, 
allowing the coverage and scoreboard from block level tests  
to be re-used.

 
Block-level verification

One way to verify a block such as a memory controller is to build 
a simulation environment with the MVCs and OVM components to 
perform a mixture of directed and constrained random tests. This type 
of environment is suitable for verifying many types of functionality. 
However, once the state space reaches a level of complexity that 
is moderate by today’s standards, it can become very inefficient at 
uncovering all corner case behaviors. Diligence in investigating such 
corner cases and ensuring robust functionality is key, especially if the 
block being verified is a good candidate for reuse in multiple designs. 

The need to discover and diagnose design flaws and to accelerate 
coverage closure often leads to the usage of static verification. Static 
verification is a collection of verification technologies including RTL 
lint, static checks, formal checks, and formal property checking. 
Stimulus is not required to exercise the design. Mentor Graphic’s 0-In 

Formal Verification [8] is one such tool using formal property checking 
to improve design quality and to complement dynamic verification. 

 Figure 3: Block-level constrained random  
and formal property checking

Formal property checking analyzes the functionality of a block 
in the context of its environment (such as operational modes and 
configurations). Initialization sequences can be incorporated as well. 
It represents how the design will operate clock cycle by cycle and 
hence can determine whether various scenarios are even possible. We 
recommend performing checks relating to the following areas at the 
block level: 

 
Coverage closure checks 

Most blocks have dead code, unreachable statements and 
redundant logic. This is especially true for IP or reused blocks, which 
often have unneeded functionality that is a vestige of earlier designs. If 
passive coverage metrics (line coverage, FSM coverage, or expression 
coverage) are part of the closure criteria, then this unused functionality 
will have a negative impact on the coverage grade. Coverage closure 
checks can be used to identify these unreachable statements and 
redundant logic so they can be excluded from the coverage grade 
calculation. 

 
Clock domain crossing (CDC) checks 

CDC signals continue to be a trouble spot for functional verification, 
especially as these problems often do not cause simulations to fail; 
instead they commonly manifest themselves as intermittent post-
silicon failures. To ensure CDC signals will be sampled correctly by  
the receiving clock domain, they need to be synchronized before use.  
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Static verification helps identify any unsynchronized or incorrectly 
synchronized CDC signal early.

 
X-propagation checks 

Another class of potential post-silicon failures is related to 
x-generation and consumption. The goal is to eliminate pessimistic 
x-propagation as seen in simulation and to make sure any unknown 
or x-state is not generated or consumed unintentionally in the design. 
When an unknown or uninitialized state is sampled, the resultant value 
is unpredictable, thus the importance of ensuring that registers are 
initialized before they are used. 

   
Finite state machine checks 

Finite state machines are fundamental building structures for control 
logic. Simulation can verify the basic functionality of an FSM. Finite 
state machine checks can catch corner case misbehaviors such as 
unreachable states and transitions, and also live/deadlock states— 
all of which are difficult to verify with simulation alone. 

   
Interface compliance checks 

Inter-module communication and interface protocol compliance are 
infamous for causing design and verification failures. Leveraging the 
protocol assertion monitors in the MVCs helps to catch problems in 
these areas early. Such assertion monitors enable formal property 
checking to be performed seamlessly on the block. Consider, for 
example, the use of AXI and the DDR2 protocol monitors  
to perform static verification on the memory controller  
(shown in Figure 3 on the previous page). 

   
Resource control logic 

Computational resources, such as floating point 
units; interconnections, such as the bus matrix; and 
DMA channels and memories are among the structures 
usually controlled by arbiters and complex control 
logic. Simulation environments tend to focus on high-
level specifications, which all too often fail to consider 
concurrency of operations. This is problematic given 
that parallel processing and concurrency are common 
characteristics of today’s devices and thus need to 
be verified. Formal property checking has been used 
successfully to verify such resource control logic. This 
technology ensures that control logic can correctly  
 

arbitrate multiple, concurrent requests and transactions. 

 
Partition-level verification

At the subsystem or partition-level, the design consists of multiple 
masters and slaves connected via an AXI bus matrix. The AXI MVC 
may also be used in active mode generating stimulus to replace any 
AXI component. As shown in figure 4, other MVCs, such as High-
Definition Multimedia Interface (HDMI), DDR2 SDRAM, USB2.0 
and Gigabit Ethernet, are used to provide inputs at, and validate, the 
external interfaces. Since the possible combinations of legal activity 
increase exponentially as the number of devices increase the chance 
of achieving full coverage with constrained random stimulus alone is 
low. Coverage closure at this level is a real challenge. 

Many verification projects therefore rely on supplementing a 
constrained random methodology with directed tests to handle the 
random-resistant cases. Instead, an intelligent testbench automation 
tool can be used to achieve more comprehensive coverage goals 
by generating more complex verification scenarios for partitions or 
subsystems of a design. An intelligent testbench, such as Mentor 
Graphics inFact[9] tool, offers a more systematic approach allowing 
such corner cases to be targeted and covered deterministically. It 
allows users to maintain a single testbench which can be configured to 
achieve specific coverage goals in the fewest simulation cycles.

 

Figure 4: Partition-level constrained random and intelligent 
testbench verification
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Figure 5: A graph representing transaction parameters for 
intelligent testbench

When used in conjunction with MVCs, an intelligent testbench 
allows the user to define the interesting and relevant transaction types 
in a simple and compact graph or rule-based format. Figure 5 shows a 
partial graph presenting the transaction parameters of an AXI master. 
The algorithms in the intelligent testbench will pick a combination 
of transaction parameters to form a path for execution. To achieve 
a certain verification goal, the user can add a coverage strategy to 
the graph which controls the variables that are targeted for coverage 
and/or cross coverage. A particular goal might require that multiple 
masters connected via an AXI bus matrix should collectively produce 
all interesting transaction types. This is simple to achieve, as the 
algorithms in the tool can distribute the transaction types to multiple 
AXI MVCs acting as masters. During simulation runtime, they will all 
contribute to the same verification goal. 

An intelligent testbench allows the specification of 
application-specific stimulus to control individual interfaces, 
or, to control the synchronization of activity on two or 
more interfaces at once. This allows for a much more 
comprehensive verification of the interrelation of the various 
types of subsystem interfaces. A higher level graph can be 
created that defines and helps to prioritize the interesting 
combinations. For the design in Figure 4, a graph would 
be created for each interface type (AXI, DDR2, HDMI, 
USB, Ethernet), and a further high-level graph would be 
responsible for coordinating activity across two or more of 
the interfaces to produce higher level verification scenarios 
to meet verification goals. Depending on the selected 
coverage strategy, the same testbench could target coverage 
of the high-level scenarios, the individual protocols, or the 
combination of both. Once specific coverage goals are 
achieved, the testbench automatically reverts to generation of 
random transactions for as long as the simulation is allowed 
to run. 

An example of a high level scenario that might be captured 
in a graph is a stress test where combinations of transactions 
are generated on each interface simultaneously to cause the 
highest possible resource utilization in the system. Another 
example, from a design team at one of our customers working 
on a multiple-CPU design, is using the graph to ensure that 

all combinations of simultaneous memory accesses from two different 
CPUs are attempted. This was done to uncover issues when multiple 
CPUs are accessing the cache at the same time. 

 
System-level verification

Thorough block- and partition-level verification is a necessary but 
often insufficient part of the effort to full vet and debug a design prior 
to tapeout. This is because at the system-level, software/firmware that 
runs on an ARM processor must be verified with the hardware before 
the system on chip (SoC) product is ready to ship to the manufacturer 
that will build the smart phone, table, MP3 player or other SoC-based 
device. Much of the critical functionality of the SoC occurs at the HW/
SW interface. For example, the “bare metal” initialization code, power 
control and state change management, interrupt control, and device 
drivers, just to name a few, only work when embedded software and 
hardware interact correctly. Of course, it is necessary to fix as many 
bugs as possible in this area in simulation, well before the chip is 
fabricated. Let’s look at a few ways to create a comprehensive system-
level verification environment using an ARM CPU.
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 Figure 6: System-level hardware and software co-simulation  
and debug

 
Early hardware/software integration

System-level verification can begin when the ARM processor, 
some embedded software, and the hardware blocks that interact 
with this embedded software, are available and connected. Once the 
connections and register maps are made, the embedded software can 
be loaded into the program memory and the design can be simulated. 
The initial software program has to configure the virtual memory 
and various devices in the system. Until this initialization is working 
properly, efforts to verify the SoC feature set are impaired.

 
Real hardware stimulus

As shown in Figure 6, because the ARM processor is a bus master, 
the instruction sequences executing on the embedded ARM CPU 
act as stimulus to the design. Memory transactions, such as memory 
reads caused by instruction fetches originated by the ARM CPU, will 
start to happen when the ARM CPU comes out of reset, provided the 
reset logic is working properly. Instruction fetches and memory read/
write instructions executing in the ARM CPU cause activity in the bus 
matrix and connected bus slaves.  The same embedded code running 
on the ARM CPU can be used in simulation, emulation, hardware 
prototypes, and the finished SoC.

 

System-level  
debug challenge

Among the greatest challenges 
of verifying the hardware using 
the embedded software is figuring 
out what happened when things 
go wrong and verifying, when 
things work, that they worked 
as expected.  Without proper 
visibility into the execution of the 
processor and other hardware, 
diagnosing a problem can be 
very difficult.  The verification 
engineer must concentrate on 
very small details of the processor 
execution behavior, such as 

which processor register contains the result of a particular memory 
read instruction.  The verification engineer must also track all of 
these details just to figure out what was happening in the processor 
at the moment of the problem or even many instructions before the 
problem. Logic waveforms are not an effective means to show the 
state of the processor. The detailed processor execution behavior has 
been automated by Mentor Graphics Questa Codelink[10] tool so the 
verification engineer can see the behavior of the processor instructions 
together with the logic waveforms.  

 
Lots of software

Later in project design cycles when the SoC is complete from the 
hardware logic perspective, there often is much additional relatively 
untested software ready to run on the SoC. A hardware abstraction 
layer can help in this task by isolating the large volume of software 
from the hardware. For example, the project specification may 
indicate that the SoC requires a Unified Extensible Firmware Interface 
(UEFI) in order to be compatible with a standard UEFI-compliant 
operating system. A robust hardware abstraction layer can make it 
easier on those engineers working on system middleware and other 
applications closely tied to the software-hardware interface. Verifying 
the hardware-dependent software requires sufficient speed for 
software execution, a high degree of visibility and control, and a short 
turnaround time for fixing defects. Codelink offers a variety of means 
to accelerate software execution, including executing printf and pre-
verified memory read/write operations in zero simulation time. These 
Codelink capabilities provide the tools needed to quickly verify the 
hardware abstraction layer.  
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Summary
Starting with OVM, in this article we have attempted to describe 

a few advanced verification technologies that expand the current 
methodology of using directed and constrained-random stimulus 
generation in simulation. We discussed use of OVM and available 
verification IPs (from Mentor’s Questa MVCs [7]) to build up a 
complete and reusable verification environment for simulation. We 
then introduced additional advanced technologies including static 
verification for the block-level (Mentor’s 0-in Formal Verification tool 
[8]), intelligent testbench automation for the sub-system or partition 
level (Mentor’s inFact tool [9]) and finally hardware/software debugging 
for the system level (Mentor’s Codelink tool [10]). Each of these tools 
enables project teams to improve the time to verification closure, and 
as a result, deliver robust designs to meet market windows.
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1) Introducing OVM Sequences
Today’s design process is increasingly dynamic due to smaller 

manufacturing process technologies and the corresponding higher 
gate counts. The tough economic climate also exacerbates matters for 
verification engineers, who are driven to meet increasingly ambitious 
time-to-market demands. One major source of help is efficient and 
reusable stimulus, especially for use in random or constrained random 
verification. OVM sequences enables a user to develop such stimuli 
across a range of design activities. Based on OVM sequences, 
the sequences in PCIe Multi-View Verification Component (MVC) 
help verify the PCIe design in a simple yet elegant manner. (Mentor 
Graphics Questa MVCs allow a verification team to connect to any 
level of abstraction, from system to gates. For more details about 
PCIe MVC please refer to the whitepaper “Tool improves PCI-E DUT 
verification” at http://www.mentor.com/resources/techpubs/upload/
mentorpaper_55635.pdf.)

OVM sequences are used to build reusable stimulus generators. 
Sequences are objects extended from ovm_objects that produce 
streams of sequence items for stimulating a driver.The sequences are 
channeled in/out and to/from the driver via an OVM component called 
the sequencer.

Sequence flow through Sequencer and driver in OVM 
environment

 

2) Flexible MVC sequence usage  
with the DUT

A transaction with extra bookkeeping members, the MVC sequence 
item is a parameterized class providing access to the transaction 
parameters. The MVC sequence items help the user to generate 
scenarios called MVC sequences. 

An OVM component named MVC_AGENT arbitrates among 
multiple sequences and then passes the selected sequence to the 
driver through the sequencer. The MVC_AGENT also provides lots 
of configurable parameters for sequence selection, arbitration and so 
on. The 2009 “Open Verification Methodology Cookbook” provides 
additional details on use of MVC_AGENT.

The MVC’s power lies in its sequence items and sequences. These 
have all the features of OVM sequences while also making use of 
design interface tasks to send and receive the transaction on the 
physical interface.	

The backbone of the MVC sequence items are two tasks – do_
activate and do_receive – that initiate the transaction on the driver. 
These tasks are customized to run on the MVC interface but can be 
modified as shown in the sample code.

Reusable Sequences Boost Verification Productivity  
and Reduce Time to Market for PCIe  
by Rajender Kumar Jindal and Sharat Kumar, Lead Members Technical Staff, Mentor Graphics
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Memory read sequence using sequence item pcie_device_end_
request. 

Code snippet showing how existing sequence item can be 
modified for user dut interface.

So all the sequences bundled with MVC can also be used with user 
design interface and hence reduces time to market. Also if any change 
occurs in the DUT interface or the design itself there is no need to 
modify entire sequence scenarios. The only changes required are in 
the do_activate and do_recieve task of the sequence item or in the 
sequence item parameters. Thus a scenario can be developed once 
and used with multiple designs.

 
3) MVC sequences and  
their basic building blocks:  

The PCIE MVC package provides many sequence items to handle 
all abstraction levels, such as from the transaction to the physical layer. 

These sequence items provide controllability and observability for 
all layers on all abstraction levels. Here are the sequence items of all 
layers and the corresponding usage on layers:

pcie_device_end_request: this sequence item is for TL interface 
request TLP, providing  control of all request TLP-related fields like tc, 
type.

pcie_device_end_completion: this sequence item is for TL 
interface completion TLP, providing  control of all completion-related 
fields like cmpl_stts.

pcie_device_end_tlp_to_dll: this sequence item is for TL interface 
TLP, providing  control of all the TLP field as bit fields.

pcie_device_end_tl_to_dll: this sequence item is for DL interface 
TLP, providing  control of dll fields like sequence number and LCRC.

pcie_device_end_dllp_top: this sequence item for DL interface 
DLLP, providing  control of all the DLLP fields.

pcie_device_end_os_plp: this sequence item is for  PL interface 
OS, providing control of relevant fields of OS packets.

pcie_device_end_tlp_dllp_to_mac: this sequence item is for PL 
interface TLP/DLLP, providing control of all the TLP/DLLP fields as bit 
fields.

pcie_device_end_symbol: this sequence item is for PL interface 
symbol packet, providing control of data, special/normal PL fields
Sequence items available at each layer of the PCIe MVC.

 
4) Sequence items usage  
and scenarios available in PCIe MVC 

The aforementioned sequence items have created lots of sequence 
scenarios. Below listed are the ones available in PCIe MVC package.

pcie_tlp_msg_sequence: this sequence is for initiating the 
message request; the user needs to provide the message code and 
the corresponding routing fields; the rest of the request parameter is 
taken care by the MVC.

pcie_tlp_interrupt_sequence: this sequence, depending on the 
interrupt mechanism (which in turn depends on the configuration 
space setting), initiates an msi or interrupt msg from the corresponding 
device.
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pcie_tlp_enumeration_sequence: this sequence is the most 
commonly used sequence in PCIe verification and can only be initiated 
from the root complex (RC); this sequence parses the whole PCIe 
fabric to look for available devices on various bus numbers and then 
configure them per the user input configuration.

The PCIe MVC package also includes commonly used scenarios for 
verifying PCIe components, including: 

pcie_random_requester_sequence: this sequence initiates the 
scenarios – such as mwr followed by mrd, Iowr followed by IORD, 
and so on – in random fashion; the sequence includes a provision to 
control the randomness between various transfer categories, such as 
Memory, Input-Output, and Configuration.

pcie_random_completer_sequence: when included in the 
environment the sequence responds to the received request as per 
the protocol specification (i.e., successful completion, unsupported 
request, and so on).

pcie_plp_os_all_all_lanes_sequence: this sequence allows user 
to send any type of ordered set packets on all available lanes of the 
PCIe component.   

Error scenarios for DUT recovery are also provided in the package 
at all transaction layers. A user can develop customized error 
scenarios if those provided do not meet his requirement.

pcie_coverage_tl_malform_requester_sequence: this sequence 
is used to insert all types of transaction layer packet malformation 
errors in directed and random order.

pcie_coverage_tl_malform_completer_sequence: this sequence 
is used to insert all types of malformed responses for the valid 
incoming requests in directed and random order.

pcie_coverage_dll_master_sequence: this sequence initiates the 
subsequences with data link layer related error injection capabilities.

pcie_error_symbol_sequence: this sequence allows the user to 
inject the symbol-level error at the physical-layer interface.

PCI-SIG, the governing body of PCIe, has provided the checklist 
(see www.pcisig.com/specifications/pciexpress/technical_library/) 
to which every PCIe component should be compliant before it is 
introduced in the market. MVC has sequences for each layer i.e. 
transaction layer, data link layer and physical layer thus these  
sequences can be used for checklist-compliant functional testing. 
Below is the list of sequences:  

pcie_coverage_random_requester_sequence: this sequence 
issues the random tlp transfers on the bus in random order.

pcie_coverage_random_completer_sequence: this sequence 
responds to the incoming legal transaction layer requests.

pcie_coverage_tl_malform_requester_sequence: this sequence 
inserts all types of tlp packet malformation errors in directed and 
random order.

pcie_coverage_tl_malform_completer_sequence: this sequence 
inserts all types of malformed responses for valid incoming requests in 
directed and random order.

pcie_coverage_dll_master_sequence: this sequence injects 
data link layer packet malformation errors and created illegal scenario 
related to data link layer protocol. 

pcie_coverage_rc_pl_sequence: this sequence inserts all type of 
framing and 8b/10b errors along with illegal scenario (physical layer) 
creation.

pcie_coverage_ep_pl_sequence: this sequence generates 
directed scenarios (legal) related to the physical layer from endpoint; 
(i.e., pcie_ep_pl_gen1_to_gen2_transition_sequence).

pcie_coverage_pmg_sequence: this sequence generates 
directed scenarios (legal) related to power management; (i.e., pcie_
pmg_configure_l1_sequence).

The coverage sequences are configurable, providing control in 
selecting the subsequences. In coverage sequences at various layers 
there are subsequences for valid/invalid scenarios that can be chosen 
in the top-level environment. By default the subsequences run in 
random order but their execution can be controlled.
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Code snippet showing various use model of pcie_coverage_
random_requester_sequence in user sequence  i.e. pcie_user_
sequence

 

5) Using a different sequence  
in the same environment

All previously described sequences are provided as open source 
code and can be tweaked as necessary. The sequences are driven via 
MVC_AGENT in the top-level configuration of the environment. 

For example, m_rc_cfg, m_ep_cfg are the two configuration classes 
where m_rc_cfg is for the root complex(RC) and m_ep_cfg is for the 
endpoint (EP) device in the environment. Thus one MVC_AGENT 
will be created for RC and the other will be for the EP. In the top-level 
configuration,  the testing sequence can be controlled via set_default_
sequence task: m_rc_cfg.set_default_sequence(sequence_type). 

The sequence type can be any of those mentioned previously in 
this document. Depending on the requirement, any sequence can be 
used in a single environment. For example, if the sequence type is 
pcie_coverage_random_requester_sequence then the random TLP 
requests will be initiated for transaction-layer functional coverage.

Code snippet showing how user can plug/control different 
sequence in the same testing environment.
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Although the package contains many sequences, it is difficult to 
meet everyone’s requirements. Given the flexibility, though, a user can 
employ sequences or sequence items to develop the desired scenario 
for testing DUT functionality.

Once the sequence is developed it is easy to plug in the OVM 
environment using the MVC_AGENT in the top-level configuration 
of the existing environment as follows: m_cfg.set_default_sequence 
(user_sequence); where m_cfg is the configuration of available 
component in the verification environment.

 
6) Multiple sequences arbitration  
in the same environment

Where there are multiple sequences, the MVC_AGENT arbitrates 
among the sequences. Below are the arbitration options available in 
MVC_AGENT:

Example of arbitration order of multiple sequences available  
in MVC agent.

SEQ_ARB_FIFO FIFO: FIFO ordering; this is the default arbitration 
mode

SEQ_ARB_WEIGHTED: randomly chooses the next sequence; 
uses weights specified by wait_for_grant() calls to bias the selection

SEQ_ARB_RANDOM: randomly chooses the next sequence

SEQ_ARB_STRICT_FIFO: all high priority requests are granted 
in FIFO order

SEQ_ARB_STRICT_RANDOM: all high priority requests are 
granted randomly

SEQ_ARB_USER: user supplies his own arbitration algorithm 

 
7) Conclusion 

In OVM2.0 sequence items and usage help the user develop 
scenarios and migrate test bench components when changes occur 
during the design process. This flexibility is further enhanced by 
using MVCs. The MVC sequences can be extended to accommodate 
changes at a higher abstraction level. The user need not be bothered 
with low level protocol changes. The MVC is highly configurable, in 
terms of which sequence should be used. This allows the user to drive 
the stimulus and observe attributes that correspond to any abstraction 
level. This helps in reducing the verification time, which in turn reduce 
the time to market. 
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This paper describes how incorporating multi-abstraction-level 
BFM in PCIe verification intellectual property (VIP) can yield a host 
of benefits, including faster, more flexible verification and easier 
debugging. (One specific example that is discussed: how a transaction 
GUI that links a top-level parent to its wire-level child is generally far 
superior to a more traditional GUI when it comes to locating bugs.) 
By providing methodology-based sequences, PCIe VIP speeds 
verification by helping to structure primary and secondary test 
sequences. Also discussed: how the combination of PCIe VIP based 
on coverage-driven methodology and protocol-capturing XML plans 
can boost verification completeness.

  
Overview

Verification IP (VIP) streamlines the path to compliance signoff. 
In general, VIP enables reuse and multilevel abstraction. Other 
features include layered verification methodology supported by highly 
configurable and feature-rich transactors, a protocol assertions 
monitor, advanced debug support, comprehensive functional coverage 
and compliance checklist test suites. PCI Express (PCIe)-based 
design IPs require a complex verification system. 

A compliance checklist with standalone Verilog testing can kick 
start verification planning, but is not sufficient to complete verification. 
What’s needed is a well-planned and executed VIP and methodology 
that addresses the following questions: Is the captured protocol 
in design IP verified? What compliance items are verified? Have 
you covered all required compliance scenarios? Can you provide a 
progress report to your manager? 

These challenges are not new for verification engineers, however 
complex verification projects often force teams to do more planning. 
If they don’t, their verification engineer can easily get lost in technical 
detail, which slips the project schedule, jeopardizes the quality and 
increases the risk of re-spin.

The combined use of PCIe Multi-View Component (MVC), Open 
Verification Methodology (OVM), coverage-driven verification metrics 
for all compliance items and the Questa GUI transaction view can 
provide much needed predictability.

 
 

PCI Express Multi-View Component (MVC)
The PCIe MVC is a multi-abstraction-level VIP that provides fast 

and flexible verification along with easy debugging of PCIe designs. 
PCIe MVC is OVM-based verification IP. It is compliant with PCIe 
protocol specification version 1.0a, 1.1, 2.0 and 3.0 draft revision 0.7 
provided by the PCI-SIG. 

PCIe MVC comes with the interoperable PCIe physical layer. It 
provides the SystemVerilog interface for hooking up the design under 
test (DUT) at various defined interfaces:

•	 serial interface
•	 8-, 16- or 32-bit PIPE interface
•	 8b/10b parallel interface up to the 2.0 version

The PCIe MVC implements the transaction, data link and physical 
layers and its configuration space emulates the real RTL behavior.  It 
supports all device configuration switch ports, native end points and 
root complexes and provides highly scalable bandwidth by way of 
configurable link width, data path width and clock frequency. 

PCIe MVC can be connected to either MAC or PHY designs through 
the PIPE interface and supports all types of error injection capabilities 
at all abstraction layers. It comes with the prerequisite sequences 
mapped to messages at different levels required by any device to get 
started with verification. And PCIe MVC is able to correlate the low-
level pin wiggles to high-level functional occurrences. 

 
Protocol tree of PCIe MVC

The figure below shows the structured approach to understanding 
the PCIe protocol. The main focus is on the communication at all 
levels of abstraction. All three layers of PCIe have separate levels of 
message hierarchy and capture the protocol flow accordingly. The 
last message of the first layer calls the first message of the second 
layer, which in terms provides the information of the transaction 
to be initiated to the lower layers. The different messages from a 
given layer are exposed to the user so that they can be used to 
initiate a transaction at that level of abstraction. This helps the user 
to understand data corresponding to that abstraction level, which 
provides the flexibility to hook up the DUT to various interfaces: TL to 
DLL, DLL to PL, and so on. 

Advanced/Faster Verification and Debugging  
Using Multi Abstraction Level PCIe MVC  
by Yogesh Chaudhary, Lead Member Technical Staff, Mentor Graphics
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The figure to the left shows the 
data link layer tree flow of the PCIe 
protocol along with the end interface 
of the layer. The top level message 
is dllp_top and the lowest level of 
message is dllp, which talks with the 
physical layer by calling the message 
tlp_dllp_to_mac. Also note the 
specific top level messages to initiate 
the data link layer packets.

More specifically, the figure to the right shows  
the transaction layer tree flow of the PCIe protocol 
along with the end interface of the layer. Note that 
the top level message is transport and the lowest 
level of message is tlp, which talks with the data link 
layer by calling the message tlp_to_dll. Also it has a 
message Update_FC, which calls the dll message 
dllp_top.
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This figure shows the physical layer tree flow of the PCIe protocol 
along with the end interface of the layer. The top level message is 
tlp_dllp_to_mac and the lowest level of message is symbol, which talks 
with the PHY by toggling the wires with respect to the type of interface.  
     Also note the specific top level messages to initiate  
           the physical layer packets.

 
 
Verification approaches

PCIe MVC provides the two kinds of verification environments. One 
is the pure random sequence-based environment, which generates the 
valid transaction traffic dynamically on the bus. Sequences randomly 
provide all the fields and parameters of the transactions such as read/
write, burst lengths, byte enables, address, and so. Sequences ensure 
that transactions are transmitted and received properly under various 
timing conditions regardless of buffer size, status, type and order in 
which each packet is arrived.

The second environment is the directed random approach, which is 
mainly used for the error injection. With this approach, the sequences 
are tightly constrained so as to generate only the predefined required  
         transaction either with valid values or erroneous cases.  
            PCIe MVC also facilitates the error configurations for direct  
           error injection, which can be used with any of the approaches.

   PCIe MVC can be used in any one of these environments or in an 
environment made up of both approaches. Consider, though, that using 
only the random approach can mean increased time in reproducing a 
bug while the directed random approach often hits the bug straight  
                away, which makes it easier to reproduce and ultimately  
                       eliminate them at faster rate.  

 
 
 
OVM based Verification environment

By facilitating use of SystemVerilog VIP, OVM allows for the writing 
of structured, interoperable, and reusable verification components. 
OVM creates and provides reusable OVM components and templates 
to write specific scenarios. These provide standardized packages and 
automated code.
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PCIe OVM Verification environment  

The testbench structure of PCIe MVC uses OVM components. 
PCIe MVC agents are made that stimulate the link and generate the 
transactions. Each PCIe MVC agent has a corresponding sequence 
with a set of configurations. Use of OVM methodology, components 
and templates helps to structure the primary and secondary test 
sequences. PCIe MVC comes with the three types of pre-defined 
sequences: basic, general and scenario-based. 

Basic sequences are the building blocks for stimulus generation 
and are customizable. General sequences are layer-specific, initiating 
the various kinds of transactions on to the bus depending upon the 
layer. Scenario-based sequences are specific to the device behavior 
and depend on the transaction being initiated by the requester or 
completed by the completer. These also include coverage-specific 
sequences that initiate the legal and illegal transactions, and thus help 
to achieve full coverage of the DUT. 

The random requester sequences issues the random legal 
tlp transaction traffic on the bus continuously per the provided 
configuration. These sequences can also be configured for initiating 
the illegal transaction. The completer sequences respond to the 
incoming transactions with the legal and illegal packets. The lower 
physical layer also provides sequences to generate LTSSM-directed 
scenarios along with the power management and Gen1, Gen2 and 
Gen3 (or vice-versa) data rate transition sequences. Physical layer 
error sequences allow for injection of all types of 8b/10b errors.

 

Coverage driven Verification
In coverage-driven verification an engineer can 

keep track of which part of the protocol being verified 
in the run. With coverage in place for a given protocol, 
an engineer can easily tell what tests need to be 
written to cover all the features of the device. Since 
verification is directly related to the time and resources 
available, most teams focus mainly on the newly added 
blocks and interfaces in the design. A major source of 
uncertainty is those bugs in previously verified blocks 
stemming from  the integration of new design blocks. 
The use of coverage-driven verification is an antidote, 
showing when you have eliminated enough risks/bugs 
from all parts of your design.   

 
XML plan capturing protocol

The compliance checklist provided by PCI-SIG is ported in an Excel 
sheet as the test plan; from this it’s straightforward to generate the 
XML test plan, which can be easily linked to the simulation coverage 
results provided by Questa in the form of the Unified Coverage 
Database (UCDB). This database is the repository for all coverage 
information – including code coverage, cover directives, cover points 
and assertion coverage – collected during the simulation by the 
Questa infrastructure. Questa provides the ability to merge the XML 
test plan with all coverage results in the form of UCDB, which is 
accessible both via log file and GUI. 

 
Compliance checklist items

Mapping of English protocol definitions to a mechanism for 
verification can be a major challenge. It’s easy to underestimate the 
workload and get confused between checking a single scenario and 
proving that a specific feature works in all scenarios. 

Consider an example: a certain PCIe compliance checklist item 
says that permitted Fmt[1:0] and Type[4:0] field values are shown in 
the spec table. All other encodings are reserved. Fmt and Type fields 
determine the type of transaction layer packet (TLP) and associated 
decoding. Without a metric or indicator that reports the types of TLPs 
generated and transmitted, the information from the DUT is almost 
meaningless. Further complicating matters is the fact that there are 
128 possible field values, while only 25 are valid.
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Functional coverage is one solution. You can define functional 
coverage to track the values of Fmt and Type for all transmitted and 
received TLPs by the DUT. This in turn makes it easier to check the 
validity of the field values and track all TLPs transmitted and received 
by the DUT. 

For complex PCIe problems, plan ahead and write the metrics 
in such a way that can easily be converted to a verification plan. 
Next, analyze the concerns in the verification plan and implement 
the functional and code coverage infrastructure. Finally, map the 
verification plan items to the implemented coverage infrastructure. The 
result is a trackable, predictable verification plan environment that can 
assess and refocus on the verification effort accordingly. 

 
Verification holes and completeness

A successful coverage verification process can leverage UCDB to 
identify bugs and automatically rerun the failed test during regressions. 
The first step is to find and fix the root cause of the failure. From the 
UCDB you find whichever item is not covered in the regressions and 
straight away fix that issue; you don’t have to go through huge log 
files. Progress toward completeness can be automatically tracked with 
respect to the XML verification plan that comes with the PCIe MVC, 
which can be used along with the Questa Verification Management 
feature.  

Efficient and faster simulation debugs 
using parent-child hierarchy linking

Transaction-level modelling (TLM) describes the top to lowest level 
extracted from design implementation. But this level of detail is often 
not sufficient for today’s SOC designs. The Questa transaction view 
provides enhanced detail by linking the top-level transaction to the 
lowest level pin wiggles. 

Here, we present our research and development efforts in the 
development of multi-level adaptors and transformers, as well as a 
more robust transaction view for analysis, visualization, and debug 
facilities that resolve all the TLM issues. The Questa transaction view 
displays information about the transaction at any abstraction level, 
rather than the sequence of certain signal transitions at that level. 
Errors detected in the transactions during simulation are highlighted 
and recorded. As a result, the source of the error can be easily 
tracked. All the relationships among each transaction are displayed 
along with the concurrency (i.e., order/pipelined transactions). Simple 
blocks defined by start and end times give the relative position of the 
transactions, which makes it easier to find the out of order initiated 
transactions due to the ordering rules of the protocol.

The Questa GUI transaction view shows the linking and relationship 
of the top-level parent to its wire level child. It’s very hard to figure out 
the issues in the PCIe serial interface because the data flows at every 

The figure to the right 
shows how simulation 

transactions can be 
presented in sequence 

view for debugging.
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edge of the clock. And the symbols and transactions are made only 
after getting the correct data for the complete symbol. Finding an issue 
that appears in the symbol bit stream can take an inordinate amount 
of time. The Questa GUI packs the coming bit stream to provide 
complete transaction information for both good and bad symbols, 
which reduces debugging time. And it does the same for transactions 

sent to the serial interface as a bit stream; that is, both good and 
bad transactions are recoded as request and malformed requests 
respectively. This figure below shows how the top-level transaction 
is linked to the lower level wires. Once the top level transaction is 
highlighted, then the corresponding wires automatically get highlighted.     
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Debugging is one of the most painful and time consuming tasks 
within the design and verification cycle. Day in and day out, engineers 
trace signals in the design, stare at waveforms, and analyze lines of 
code in order to understand why failures occur. In today’s advanced 
design environments, debugging is one of the few tasks that has not 
changed for decades. As result it has been reported that debug is the 
fastest growing verification component and now takes as much as 
52% of the total verification effort [1]. This article introduces, OnPoint, 
the first and only automated debugging tool that analyzes failures 
and returns the source of errors with no user guidance. Through a 
case study we illustrate how 0-in and OnPoint can accelerate the 
verification and debugging of assertions. 

 
Introduction

The majority of project managers will identify verification as their 
primary efficiency challenge. And among the various tasks associated 
with verification, debug is generally the biggest contributor to long 
verification times and release date uncertainties. It has been reported 
that debug is that fastest growing verification component and now 
takes as much as 52% of the total verification effort [1]. Debug tasks 
are performed by engineers hundreds or thousands of times during  
the lifespan of a project, and effort associated with many such tasks  
 
 

can be especially hard to predict or estimate. Whether at the RTL  
verification stage or at the post-fabrication validation stage, debug is a 
time consuming process that must be addressed and accelerated.

The debugging process starts with the discovery of a failure. In 
functional verification, a failure occurs when a specified expected 
behavior is not observed. For instance, at the RTL stage, an assertion 
may fire during simulation or through the analysis of a formal tool. In 
this context, debugging the observed failure incorporates the following 
tasks.

1.	Understanding the conditions under which the failure occurs
2.	Determining the root cause of the failure
3.	Developing a fix that prevents the failure from occurring

Today, these tasks are performed manually by engineers with the 
help of debug assistance tools such as waveform viewers, design 
navigators and visualization tools. In other words, once a failure occurs 
engineers must analyze the design and testbench source code, the 
waveforms and the specifications to identify which components are 
responsible for the problem. In this process, they traverse the design 
and testbench codes, annotate simulation values onto the source code 
and perform “what-if” analysis. The failure may be due to different 
components such as an unexpected stimulus, a bug in the design, or 
an error in the expected behavior of the design. The stimulus can be  
 

Accelerated Debug: A Case Study  
by Sean Safarpour and Yibin Chen, Vennsa Technologies Inc.
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a testbench data generation model, the design can be an RTL module, 
and the expected behavior can be an assertion. With the complexity 
and size of today’s design, such components are rarely designed by 
the same engineers. As a result few engineers are equipped with 
the adequate level of familiarity of the overall verification and design 
environments to be able to effectively address the issues that may 
arise. After undergoing a time consuming investigation process, 
which may involve multiple engineers and may take hours or days, 
certain lines of source code are found as the culprit of the failure and 
are modified to correct the bad behavior. The described debugging 
techniques are resource intensive and time consuming. There has to 
be a better way.

This article introduces OnPoint, the first and only intelligent 
debugging tool that automatically performs root cause failure analysis 
to significantly eliminate much of the manual debug effort. To illustrate 
the power of the tool we walk through a  debugging case study of a 
MIPS processor core with multiple bugs. We first find a number of 
failing assertions using Mentor Graphics’ 0-in tool and debug and 
correct the bugs using Vennsa Technologies’ OnPoint. The case study 
shows that the seamless debugging environment offered by these 
tools is a departure from the traditional debug process, providing 
considerable time savings in the verification flow.

 
Design Overview

The design used in this case study is a MIPS processor [2] written 
in Verilog that is composed of 142 modules totaling 5,378 lines of code 
and approximately 92,000 synthesized gates. The implementation 
consists of 5 pipeline stages: an instruction fetch/decoder stage (IF/
ID), a register fetch stage (RF), an execution stage (EX), a memory 
stage (MEM), and a write back stage (WB). Pipeline operations are 
coordinated by a device controller implemented using a finite state 
machine (FSM). A diagram outlining the major system components is 
outlined in Figure 1.

The IF/ID stage reads the instruction from memory based on the 
program counter and decodes the instruction. The RF stage fetches 
any required registers and generates the next program counter. 
Branching instructions are also handled at this stage. The EX stage 
that follows then executes the instruction as required. Finally, the MEM 
and WB stages perform the remaining memory and register operations 
based on the output of the EX stage and the instruction.

Figure 1: MIPS High Level Functional Block Diagram

 
Failing Assertions: we have bugs

A total of 54 assertions and 4 assumptions are written in System 
Verilog by a verification engineer with no prior experience with this 
IP core, based solely on the specification [2] of the design. The 
process of becoming familiar with the specifications, writing the 
assertions, setting up and running Mentor’s 0-in  took approximately 
9 days. During this time, easy bugs discovered by 0-in were fixed 
as soon as they were found. The challenging debug process starts 
with  4 out of the 54 assertions failing as their root cause cannot be 
quickly determined. The firing assertions are discussed in detail in the 
following sections. The 0-in results at this stage are shown in Figure 2. 

 
Fixing the first bug: missing assumption

We begin our debugging process by first picking an assertion we 
want to focus on. We pick the assertion mul_to_idle since it is a low 
level assertion targeting  only the device controller. This assertion 
states that if the device controller is in the multiplier state (`MUL) for 
33 consecutive clock cycles, then the FSM must transition into the idle 
state (`IDLE) in the next clock cycle.

mul_to_idle: assert property(@(posedge clk) disable iff(!rst)

	 (CurrState == `MUL)[*33] |=> (CurrState == `IDLE)); 

OnPoint integrates easily with 0-in and we stitch the two tools 
through a simple script to automatically diagnose all failures that 
0-in discovers. Thus, to debug the assertion we can simply open the 
OnPoint diagnose report as shown in Figure 3. OnPoint returns 8 RTL 
suspects that could be the source of our problem.
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Figure 2: 0-in Results with four failing assertions

 

Figure 3: RTL suspects for assertion mul_to_idle

Each suspect is ranked by priority with three stars being the most 
likely source of the bug and zero stars being the least likely. The three 
highest ranked RTL suspects in our case point to the main FSM of 
the system controller. A code snippet of the FSM with the these three 
suspects highlighted is shown on the next page. 
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always @ (posedge clk)
	 if (~rst) CurrState  <= `RST;
	 else if (~pause)
		  CurrState  <= NextState;
always @ (*)
begin
	 case (CurrState) /*Finite State Machine part2*/
	 ...
	 `MUL:
	 begin
		  if (delay_counter==32) NextState  = `__TP  `IDLE;
		  else  NextState  = `__TP  `MUL;
	 end
	 default NextState  =`__TP `IDLE;
	 endcase

end

Each suspect points to a line in the RTL where changing the logic or 
timing can rectify the failure. We can quickly rule out these statements 
as they either adhere to the specification (the default transition should 
be to IDLE) or our statements are simply correct (CurrState <= 
NextState). 

Since a failure can be caused by a bug in the RTL, assertion or 
stimulus, we now look for non-RTL sources. In addition to the RTL 
suspects, OnPoint also found 7 input suspects in the design as shown 
in Figure 4 . Input suspects point to problems stemming from the 
testbench stimulus or from under constrained problems in formal tools.  
In the case of formal, it means that the counter-example found may be 
a false negative that cannot occur under the normal operation of the 
core. 

  
Figure 4: Input suspects for assertion mul_to_idle

The highest ranked input suspect for our example is the pause 
signal meaning that changing the value of pause can fix the problem. 
One powerful feature of OnPoint is the ability to generate a “fix” 
waveform for inputs, wires and register suspects that show what 
values can correct the failure. In this case, the fix waveform suggests 
that if the pause signal is low in the last three clock cycles (in contrast 
to the simulated value), the assertion will not fail.  Figure 5 shows a 
screenshot that displays the simulated value that causes the failure 
(the third signal mips_sys/pause) and the fix waveform (the last signal 
mips_sys/pause_fix).

Upon seeing the pause as the top input suspect with its 
corresponding the fix waveform, it became clear that an assumption 
was needed to constrain pause. We went back to the specification and 
collected all other instructions that required a similar constraint and 
added the following assumption to the code.

sequence INST_MUL;

	 (inst_op == 0)

	 && (inst_func == MULT||inst_func == MULTU

	 || inst_func == DIV || inst_func == DIVU);

endsequence

assume property (@(posedge clk) disable iff(!rst)

	 INST_MUL |-> ~pause[*35]);

The assumption states that the pause signal cannot be asserted 
for 35 clock cycles if any multiply or division instructions are being 
processed. We rerun 0-in to verify that the assumption resolves our 
assertion error, as shown in Figure 6. 0-in returns a bounded pass for 
the instruction with a radius of 45. Considering that the depth of our 
pipeline is less than 45 , this result is acceptable and we can move on 
to resolve the other assertion failures.

 
Fixing the second 
bug: default 
condition

For the next failure we target 
the inst_SYSCALL assertion 
which states that the program 
counter (zz_pc_o) is incremented 
after a SYSCALL instruction (two 
consecutive clock cycles where  
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Figure 5: Actual and fix waveform for pause signal

Figure 6: 0-in results after first correction 

the operator instruction (inst_op) is 0 and the function instruction 
(inst_func) is 6’b001100). 

 .
inst_SYSCALL: assert property (@(posedge clk) disable iff(!rst)

	 $rose(rst) ##0 ((inst_op==0 && inst_func==6’b001100)[*2])

	 |=> zz_pc_o == ($past(zz_pc_o)+4));

 

The length of the counterexample is only three clock cycles so we 
might be able to resolve this problem fairly quickly as well. Opening the 
suspect view in OnPoint we find seven 3-star RTL suspects as shown 
in Figure 7 on the following page.

 

The top two 3-star suspects suggest that the problem lies with the 
state transition of the FSM based on the CurrState variable. The third 
suspect gives more insight as it points to an assignment in the same 
case block as the first suspect. The code snippet for this statement 
with the first and third suspect highlighted is given as follows:

always @ (*)

begin

	 case (CurrState) /*Finite State Machine part2*/

	 `IDLE:

	 begin

		  if (~rst)                           NextState = `__TP `RST;

		  else if ((irq)&&(~riack))  NextState = `__TP `IRQ;



44

		  else if (id_cmd ==ID_NI)      NextState = `__TP `NOI;

		  else if (id_cmd==ID_CUR    NextState = `__TP `CUR;

		  else if (id_cmd==ID_MUL)   NextState = `__TP `MUL;

		  else if (id_cmd==ID_LD)      NextState = `__TP `LD;

		  else if (id_cmd==ID_RET    NextState = `__TP `RET;

		  else                                        NextState = `__TP `RST;

	 end

	 ...

Figure 7: Suspects for assertion inst_SYSCALL

At first sight, everything looks okay, but upon a closer look we start 
doubting the default state. When no instructions are available and not 
interrupts are present, instead of transitioning to the `RST (reset) state 
the FSM should transition to the `NOI (no instruction) state. We quickly 
make the correction and rerun 0-in to confirm the fix. We find that only 
one assertion remains, as shown in Figure 8. 

  
Fixing the last bug: careless mistake

Finally, the last failing assertion, inst_MULTU_1, checks that 
the multiply instructions operates according to specification. The 
sequences inst_mul_1_1 and inst_mflo_0 used in the property are 
defined as follows.

inst_MULTU_1: assert property (@(posedge clk) disable iff(!rst)

	 $rose(rst) ##0 inst_mul_1_1[*35] ##1 inst_mflo_0[*2]

	 |=> ##1 cop_addr_o==($past(rs,32))*($past(rt,32)));

// instruction: $LO = $r1 * $r1

sequence inst_mul_1_1;

	 (inst_op==0) && (inst_ops==1) 

	 && (inst_opt==1) && (inst_func==MULTU);

endsequence

// instruction: move from $LO to $r0

sequence inst_mflo_0;

	  (inst_op==0) && (inst_dest==0) && (inst_func==MFLO);

endsequence

It takes the processor a total of 40 clock cycles to 
execute a multiply instruction. Of these 37 cycles 35 are 
used to perform the actual multiply operation (inst_mul_1_1 
holds) and two are used to move the product to register r0 
(inst_mflo_0 holds). The assertion checks that the product of 
operand registers rs and rt is correctly stored in cop_addr_o.

Examining the OnPoint results for the last bug we find 11 
3-star suspects. In this case, we use the tree suspect view 
to look at OnPoint results. The tree view shows suspects 
encapsulated within their modules and “always” blocks thus 
allowing us to focus on the general location at a glance. 

A screenshot of the 3-star suspects displayed using the tree view is 
shown in Figure 9. Since the bug is related to the multiply instruction, 
it’s probably a good idea to look at the multiplier/divider module first.

 The first suspect points to a block of code in the reset logic of the 
muldiv_ff module:

if(~rst_i)

begin

	 count                    = 6’bx;

	 hilo                       = 65’b0;

	 op2_reged           = 33’bx;

	 op1_sign_reged  = 1’bx;

	 op2_sign_reged  = 1’bx;

	 ...

end

After a quick look, we confirm that the reset behavior of the block is 
correct so we check the next suspect which is a statement within the 
same always block as the previous suspect:
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Figure 8: 0-in results after the second correction

Figure 9: RTL suspects for module assertion inst_MULTU_1

if (sign)

begin

	 ...

else begin

	 if(hilo[0]) hilo[64:32] = hilo[64:32] + op2_reged;

	 hilo = {1’b0,hilo[63:0]};

end

This is a statement in the multiplier 
implementation and the purpose of the 
RTL is to shift the entire contents of the 
register to the right. However, instead of 
using the upper 64 bits of the hilo register, 
the lower 64 bits are used. We correct the 
the careless mistake as follows:

	 hilo = {1’b0,hilo[64:1]};

Rerunning 0-in indicates that all the 
assertions now pass verification.

 
Conclusion

In this article we walked through a 
debugging case study where 0-in and 
OnPoint were used to locate a variety of 
bugs in a MIPS core. We showed that 
for each failure OnPoint automatically 
generated a list of high likely error 
sources where corrections could be 
applied. As a result, all failing assertions 
were resolved in a matter of minutes 
with no manual tracing required. We 
should emphasize that OnPoint does 
not eliminate the need for conventional 
debug techniques, but can significantly 
reduce the amount of effort involved.

[1] Harry Foster, “Ensuring RTL Functional Correctness in FPGA Design”, DAC.com 
Knowledge Center Article, May 2010

[2] MIPS Technologies, MIPS32 Architecture, http://www.mips.com/products/

architectures/mips32/
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PSI-E Verification Flow
For flexibility and reuse concerns, PSI-Electronics verification flow 

has been developed using open and standard solutions. XML was 
chosen some years ago to describe plans, as it is easily processed 
to generate documentation for a lot of tools like Microsoft Office or 
OpenOffice or parsed to extract suitable information. The verification 
plan is captured as XML files. For the first time the design features 
and properties are listed and grouped by functionality to build the 
verification plan. In a second time, testcases and functional coverage 
are added and will allow the verification engineer to measure 
completeness of his work.

As an OVM partner, PSI-Electronics has built an expertise in OVM 
testbench and Verification IP development. The fact that OVM is now 
supported by a lot of simulators, and in a permanent evolution (thanks 
to many contributors and a large developer community) led us to use 
it for almost all our IP verification activities. Last year, OVM register 
packages appeared from Cadence and Mentor and they have provided 
us a way to easily model and check registers and a quicker way to 
write tests at a register level.

Beyond OVM reporting features, we have used Questa transaction 
viewing capabilities to easily analyze sequences series and 
transactions properties. Debug at this high level enables us to identify 
bug source faster and provide quicker return to our designers. Finally 
coverage and assertions counts are evaluated as achievement metrics 
but we were facing trouble communicating with the large sets of data 
we got when running regressions (set of tests). This article shows how 
we solved this issue through an IP verification example.

 
Design and testbench example  
presented in this article

Description of our verification methodologies will be illustrated with 
the verification of a concrete example we designed last year. The 
design under test is an implementation of the ARM Debug Interface 
version 5 [1]. Its main goal is to give a user a way to debug System 
on Chip components. A host can take full control of a microprocessor 
with this implementation, access JTAG scan chains, trace accesses of 
interconnect bus and so on.

ADI is divided in 2 parts:

-	 One external interface called Debug Port, which is unique and has 
been implemented as a JTAG-DP.

-	 One or more resource(s) interface(s) called Access Port, which is 
resource protocol dependant and has been implemented to enable 
JTAG and AHB connections. As an Access port is closely related 
to resource, it can be integrated into the resource.

 

To verify ADI design, 2 verification components were created 
using the Paradigm-Works template generator [2] to ensure their 
homogeneity.

Each OVC is composed of an “agent” which can be configured to be 
a slave or a master. An agent includes a sequencer that feeds a driver 
and a monitor to get interface transactions.

We created a JTAG agent to drive and monitor both Debug Port and 
Access Port when configured as a slave or a master. An AHB slave 
agent is used to drive and monitor Access Port master AHB interface.

In order to model the ADI registers, a register package was used [3] 
[4]. This package permits the building of register accesses by name 
or by address. It also monitors accesses to DUT registers, check their 
consistency and add coverage on registers fields. As it is compliant 
with IP-XACT, writing a XML register file is possible to automatically 
generate register model SystemVerilog code.

The register sequencer is plugged on the JTAG Debug Port while its 
database updates and compares by getting transactions from JTAG-
DP monitor.

Following the OVM methodology, the verification environment is 
mainly composed of the testbench, the top testbench and the DUT. 
Connection between DUT and drivers is done in the top testbench.  All 
the tests scenarios are included in the test library. These scenarios are 
built by running some virtual sequencer sequences or directly register 
package sequences. Those virtual sequences invoke subsequencers 
sequences (Figure 3 – ADI verification environment, plain lines), i.e 
here JTAG or AHB sequences.

Verification of a Complex IP Using OVM and Questa:  
from Testplan Creation to Verification Success  
by Julien Trilles, verification engineer, PSI-Electronics
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Figure 1: ADI v5 structure

Figure 2: OVM Agent description

Figure 3: ADI verification environment

Top monitor and checker modules are 
connected to agent monitors using analysis 
ports (Figure 3 – ADI verification environment, 
dotted lines). Top monitor collects transactions 
information for functional coverage whereas 
checker uses that information to run SVA 
assertions.

 
Debugging at a higher level 

with OVM and Questa
The environment we created provides much information for 

accelerating debug. Having high level debug information dramatically 
speeds up results interpretation. Almost all errors are captured in test 
logs so it prevents us to go at signal level into waveforms. After running 
a test we can look at its log to find out errors or warnings reported by 
user-defined checkers or register package:

# --- OVM Report Summary ---

# 

# ** Report counts by severity

# OVM_INFO :4078

# OVM_WARNING :  25

# OVM_ERROR :   7

# OVM_FATAL :    0

Figure 4 - OVM Report Summary

# OVM_ERROR @ 1786995: adi_mem_map.jtag_debug_port.CTRL_STAT  
       [OVMRGM] Mismatch : Following fields miscompared : 

#   [ 23: 12] ‘trnct’ : Exp=12’h0 Rcvd=12’h429 Mask=12’hfff

#   [ 11:  8] ‘masklane’ : Exp=4’h2 Rcvd=4’h5 Mask=4’hf

#   [  3:  2] ‘trnmode’ : Exp=2’h0 Rcvd=2’h1 Mask=2’h3

Figure 5 – Example of register error report
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# OVM_ERROR @ 1787195: reporter [AHB_PUSHED_VERIFY_SEQ]  
        STICKYCMP must be asserted

# OVM_ERROR @ 1787195: reporter [AHB_PUSHED_VERIFY_SEQ]  

       TRNCNT must be h0FF

Figure 6 – Example of user-defined checker report

Before going deeper into waveform signals we use Questa 
transaction viewing feature to analyze transactions in a waveform 
window. For example we can verify that a register access generates 
AHB master port accesses with correct characteristics (size, type, 
burst or single…).

Figure 7: Questa transaction viewing

 
Reporting and managing results  
with Questa

Over the past few years we tried to find the proper way to measure 
verification completeness against verification plan. The different 
solutions were quite difficult to set up as they involved tools from many 
providers, with the result that many datas were modified and even lost 
during the process.

Questa Verification Management provides the flow we needed as it 
allows us to import our verification plan in a UCDB (Unified Coverage 
DataBase) format and merge it with all the verification datas like 
coverages, test datas or assertions results.

Here is the way we adapted our flow from the Questa User Manual.

 

Figure 8: PSI Verification Management Flow (adapted  
from Questa User Manual)

 
Flow description:

1) Create verification plan. Use of Questa XML 
Import Hint feature is the best way to avoid errors 
with the item path. For example, all assertions  
can be listed in this window and then linked into  
the Verification plan. This is a crosscheck to  
ensure each assertion or coverage is detailed  
in the plan too.

This work is done once and for all unless you 
change your testbench architecture. However architecture and items 
names are supposed to be frozen at this time of verification.

2) Import XML verification plan to a UCDB file using xml2ucdb 
Questa script and a corresponding XSL stylesheet (gameplan.xsl 
here):

% $QUESTA_HOME/linux/xml2ucdb -format GamePlan  
        verif_plan.xml -ucdbfilename verif_plan.ucdb -stylesheet 

        $QUESTA_HOME/vm_src/gameplan.xsl

3) Merge selected UCDB testfiles: This can be done with the 
“vcover merge” utility and tests can be selected using UNIX wildcard 
characters:

% vcover merge -out merged_tests.ucdb testdir/test_*.ucdb

UCDB files are saved when the test is finished. They contain  
all information about coverage and assertions results.
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Figure 9: Questa XML Import hint

4) Merge verification plan with merged tests: We use again “vcover 
merge” utility like this:

% vcover merge -out results/backannotated_vp.ucdb verif 

         _plan.ucdb merged_tests.ucdb

This step automatically links verification plan sections with matching 
merged results. Unlinked items are not lost and are still available 
in their corresponding window (Cover Groups, Assertions, Toggle, 
FSM…).

5) Generate a HTML report: HTML reports have improved 
significalnty to give design engineers and project managers a clear 
status of the verification, by including all results like tests pass/fail 
criteria, functional, code coverage and assertions percentages.  
Details are available to everyone by browsing the design and 
testbench architecture or 
the testplan. It is important 
that people interested in 
results only don’t have to 
run an EDA tool they don’t 
necessarily know, they just 
have to use their common 
web browser.  

 
 

Figure 10: Questa  
HTML report

Of course that report provides 
the verification engineer a 
quick way to identify errors 
and weaknesses of his 
verification achievement.

Questa commands to 
generate a HTML report in 
Unix console are:

% vsim -viewcov results/backannotated_vp.ucdb -c -do gen_html_report.do

 
where gen_html_report.do file is: 

coverage report -html -htmldir html_results

quit -f

Questa HTML Coverage Report is divided into four main areas, 
where all coverage, tests and assertions results can be found. The 
verification plan can be browsed at the left to read sections and see 
their linked items results.

6) And-or open final results UCDB in view mode: 

% vsim -viewcov reg_results/backannotated_vp.ucdb
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Figure 11: Questa UCDB view mode

This view can be used for active result analyzing. One can exclude 
some coverage item or modify a verification item weight or goal for 
example.

7) Analyze result datas: Functional Coverage, code coverage, 
assertions and tests are the metrics we use to measure our verification 
completion. They tell us if we exercised all the design logic and 
features and if additional tests have to be written. Importing all 
these metrics into the verification plan allow us to use a plan driven 
methodology instead of coverage driven methodology.

8) Speed up functional coverage completion: In order to avoid 
running too many redundant sequences and to accelerate coverage 
convergence, we introduced get_coverage SystemVerilog function 
in our tests. High level sequences are generated and started until a 
calculated functional coverage percentage reaches a threshold. The 
selected coverage items fully depend on test goal and are typically a 
combination of transaction parameters such as command or response 
types. This technique allows us to save about 10% of time running the 
full regression.

These 8 steps are automated in a Makefile to run daily regressions 
with randomized seeds. They permits to get different sets of tests 
and catch some corner cases bugs much quicker. After each new 
RTL delivery, we run an identified small subset of tests called “smoke 
regression” that provides us a first level of confidence. Based on this 
status, we go deeply in verification or notify the design team of the 
problem found. 

That verification flow is 
more efficient and less time 
consuming than our previous 
one: we gained about 20% 
of the overall project time for 
6 months with 5 engineers 
by reducing the verification 
bottleneck. 

  
CONCLUSION

OVM and Questa provided 
us a reliable and complete 
solution for our complex IP 
verification. Adding OVM 
register package eases 
writing complex scenarios 
and report high level 

messages to get errors closer to their source, before checks at IP 
outputs. This package also adds functional coverage for register fields 
which gives new metrics to measure verification completeness.

Moreover Questa Verification Management feature was easy to 
integrate inside our custom verification flow due to its flexibility. It helps 
us to deal with the large amount of datas we get when verifying a large 
IP by unifying results and merging them into a single UCDB file. It not 
only provides engineers and managers a way to check verification 
completion at a glance but also a nice interface to check precise 
results like FSM covered states or assertions pass/fail counts. 

Finally the integration in the SoC and the validation of the system 
were quickly achieved thanks to the high quality level of our debug IP. 
The efficiency of our new verification flow [5] based on plan driven 
methodology has been proven with the first correct FPGA prototype.
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The potential for agile methods in IC development is large. Though 
agile philosophy suggests the benefits of an agile approach are most 
profound when applied across an entire team, reality often dictates 
that new techniques and approaches are proven on a smaller scale 
before being released for team wide application.

This article is the first in a two part series that describes how 
a functional verification team may benefit from and employ agile 
planning and development techniques while paving the way for use in 
RTL design and ultimately, team wide adoption.

Part I of Agile Transformation in Functional Verification opens 
with the limitations and consequences of big up front design (BUFD) 
from the perspective of a functional verification engineer. It continues 
with a discussion on how software engineers have overcome similar 
limitations through the use of iterative planning and incremental 
development. The summary includes a preview part II of Agile 
Transformation in Functional Verification and its recommendations for 
how functional verification engineers become more agile.

 
Big Up Front Design and Constrained 
Random Verification

Big up front design (BUFD) is common in IC development. In BUFD, 
a team attempts to build detailed plans, processes and documentation 
before starting development. Features and functional requirements 
are documented in detail; architectural decisions are made; functional 
partitioning and implementation details are analyzed; test plans are 
written; functional verification environments and coverage models are 
designed.

While BUFD represents a dominant legacy process in IC 
development, wide adoption of constrained random verification 
with functional coverage presents a relatively recent and significant 
shift in IC development. As has been documented countless times, 
constrained random verification better addresses the exploding state 
space in current designs. Relative to directed testing, teams are able 
to verify a larger state space with comparable teams and resources.

But is constrained random verification with functional coverage 
living up to its potential? Constrained random verification employed 
with BUFD contains one significant flaw. From a product point of view, 
a design of even moderate complexity is near incomprehensible  
 

to a single person or even a team of people; the combination of 
architecture and implementation details are just too overwhelming. 
While the technique and associated tools may be adequate for 
addressing all these details, the human brain is not!

The flaws of constrained random verification and the limitation of 
the human brain are easy to spot during crunch time, near project end, 
when the verification team is fully engaged in its quest toward 100% 
coverage. Because of the random nature of stimulus, it is very difficult 
for verification engineers to predict progress in the test writing phase 
of a project. All coverage points are not created equal so the path 
toward 100% coverage is highly non-linear in terms of time required 
per coverage item.

To account for the unforeseen limitations in the environment, 
it is common for verification engineers to rework portions of the 
environment–or write unexpected and complicated tests–to remove 
such limitations. This is particularly relevant as the focus of testing 
moves beyond the low hanging fruit and toward more remote areas of 
the state space. 

Taking the opportunity to rework the environment is rarely 
accounted for in the project schedule and can cause many small 
but significant slips in schedule. Ever wonder why tasks sit at 90% 
complete for so long? It is because those tasks are sucking in work 
that was not originally accounted for in the first place.

What is truly amazing is not the fact that tasks sit at 90% for so long, 
it is that it is always a surprise when it happens! This should not be a 
surprise. It is impossible for people to understand and plan a coverage 
model that will give you meaningful 100% coverage with BUFD. It is 
also impossible to comprehend the requirements of the environment 
and tests, especially when considering the random nature and 
uncertainty of the stimulus. BUFD will not give a team all the answers; 
rework of the environment will happen regardless of whether or not the 
schedule says so!

It is this type of uncertainty that an agile approach to IC 
development that includes functional verification can help address. 
Uncertainty is an inherent part of functional verification and cannot 
be eliminated. The extent to which it negatively influences delivery 
objectives and product quality, however, can be mitigated significantly.

Agile Transformation in Functional Verification, Part 1  
by Neil Johnson, Principal Consultant and Brian Morris, Vice President Engineering, XtremeEDA 



52

Other tools, such as intelligent testbench design and formal 
analysis, can of course be used to supplement or even replace 
constrained random verification. In the end, however, functional 
verification is a process that critically depends on people and 
teamwork for success. Functional verification must be seen as a 
continuous, people centric process of understanding, refining, and 
validating potential solutions. This as an alternative to trivializing 
functional verification as a two step process of capturing, then 
verifying a list of requirements.

 
An Agile Alternative to BUFD

Chess is a game that plays out through a combination of strategy 
and tactics.

Strategy describes a player’s general approach to the game. Will 
the player go for the win or play for a draw? How can they exploit 
the weaknesses of their opponent? Will they choose a defensive or 
attacking posture? Will attacks be launched through the center or on 
the flanks? Which opening moves best support the strategy?

Good players strive for a well crafted strategy and then move their 
pawns and pieces in support of that strategy. Throughout a game, 
great players examine how successful their strategy has been and 
change it if they perceive an advantage in doing so.

Tactics are described as short sequences of moves that either limit 
the moves of an opponent or end in material gain (Wikipedia). They 
are the tools that enable creation of a dominant position, or capture 
of an opposing pawn or piece. They rely more on current positioning, 
recognition and opportunism than planning. They are short term 
execution based on a player’s immediate situation.

Up front planning in functional verification should be similar to 
forming a strategy in chess. As part of a strategy, a team should have 
a clear picture of what they want to accomplish with some general 
guidelines for execution. A solid strategy should also acknowledge the 
fluidity and unforeseen circumstances that await the team. A functional 
verification strategy should start with identifying the following:

•	 a prioritized feature set;
•	 a methodology; and
•	 a high-level schedule.

Most teams already start functional verification with a feature list. 
While some may resist prioritizing features because “all the features 
are important”, prioritizing is almost guaranteed to happen anyway as 
budget and delivery pressures intensify. Feature prioritization in initial 

planning is the key to having a team focus on verifying high value 
features early, making them less vulnerable to reduction in scope later 
in the project.

Ignoring the more technical definitions normally associated with the 
word methodology in functional verification, this article uses a grander 
definition stated by Alistair Cockburn in Agile Software Development: 
The Cooperative Game:

“everything you regularly do to get your [hardware] out. 
It includes who you hire, what you hire them for, how they 
work together, what they produce, and how they share. It is 
the combined job descriptions, procedures, and conventions 
of everyone on your team. It is the product of your particular 
ecosystem and is therefore a unique construction of your 
organization.”

Specific to functional verification, a methodology may include 
identifying team members, skill-sets and suitable roles, where people 
work and who they work with, modes of interaction with design and 
modeling teams, reporting structure, coding standards, general 
delivery requirements, verification libraries, bug-tracking systems, 
documentation and anything else that governs daily operation within 
the team. Methodologies need not supply strict rules but they should 
be visible and universally accepted. A methodology is something that 
a team can create in a day or less (Cockburn 2006) and should be 
accessible to anyone with a stake in the functional verification effort.

The schedule produced in initial planning should be very high-level 
and include feature-based delivery milestones. Most importantly, the 
team should recognize that the first schedule that gets built is very 
likely to be wildly optimistic, totally inaccurate and in desperate need of 
continuous refinement.

With a strategy completed, a team may start identifying the tools–
tactics–that they are likely to use through the coarse of the project. 
This would include things like:

•	 options for environment structure
•	 functional coverage methods
•	 test writing strategy

o	directed
o	constrained random
o	combination of both

•	 use of formal verification
•	 stimulus modeling
•	 verification code reviews
•	 black-box/white-box assertions
•	 hardware/software co-simulation
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•	 emulation/acceleration
•	 modeling and scoreboarding strategies
•	 exact/approximated response checking
•	 block or chip-level testing
•	 available 3rd party IP
•	 internal/external outsourcing

Early in the project, it is only important to identify tactics with the 
teams’ strengths or deficiencies related to each. Ensure training 
is arranged if necessary but also ensure training is delivered at an 
appropriate time (i.e. as tactics are required as opposed to months 
before hand).

Resist the urge to assume legacy tactics will be well-suited to new 
development. While wild deviation may not be necessary–or even 
recommended–the applicability of legacy tactics should at least be 
assessed prior to use.

While it is not necessary to eliminate detailed discussion on when 
and how certain tactics will be employed, detailed discussion should 
be at least limited. Remember that tactics require recognition and 
opportunism as opposed to detailed planning. Learn to recognize and 
react to situations on the immediate horizon instead of planning for 
situations that may never arise.

Chess players that are known strategists may not be great tacticians 
nor are tacticians always great strategists. While the two are obviously 
required, they are independent skills. The same is true in functional 
verification. While strategies keep a complete but concise view into the 
future, they are fluid and may change during a project given changing 
conditions. Tactics are tools of high relevance in the short term that 
cannot be accurately planned for in the long term. To minimize wasted 
planning effort and enable accurate, high confidence decisions, teams 
must understand the difference between the two. A team should also 
understand their strengths and weaknesses and deliberately and 
methodically work to improve both areas.

 
Growing Hardware  
with an Agile Approach

Throughout a project, there are two techniques in particular that 
can help a team differentiate between long term strategy and short 
term tactics: iterative planning and incremental development. Both are 
used extensively used in agile software development. In functional 
verification, they can be used to promote analysis and refinement of 
the teams’ verification strategy, perform just-in-time tactical decision 
making with respect to implementation and provide objective metrics 
for overall effectiveness.

Iterative Planning
Using iterative planning, the detailed planning and analysis is done 

continuously through the life of the project. It is assumed that long 
term planning is inaccurate at best so detailed planning is limited to the 
immediate horizon; anywhere from 1 week to 3 months into the future 
depending on the project circumstances. Long term planning is kept to 
a very coarse level of detail to minimize the time spent updating and 
maintaining the long term plan.

Agile teams see two advantages to iterative planning. First is that 
details are limited to a period of time that developers can comprehend. 
For example, it is relative easy to confidently plan one week of work 
in great detail. One month of detailed planning, while not as easy as 
one week, is also very realistic. When planning a year or more into the 
future, however, it is impossible to have the same level of accuracy or 
confidence. Changing project dynamics will surely obsolete planning 
decisions and with time lost to rework the plan and/or implementation.

A second advantage seen in iterative planning is that past 
experience can be used to plan future progress. This roughly equates 
to delaying decisions to a time when it is more reasonable to expect 
that those decisions will be correct. With more experience, subsequent 
decisions can be made with increasingly greater confidence.

 
Incremental Development

With BUFD and defined process, progress is generally measured  
as a completion percentage derived from the work breakdown 
structure. For example, when half the tasks in the WBS are done,  
a project is half done.

A problem with measuring progress relative to planned effort 
identified in Cohn 2005 is that individual tasks have little correlation 
to the end product and minimal value in the eyes of a customer. 
Further, Cohn 2005 suggests features do hold value by virtue of being 
demonstrable to a customer, so many agile teams develop products 
incrementally and track feature based progress.

In Agile Transformation in IC Development (Johnson, Morris 2010), 
we describe incremental development as:

“…an approach where functionality is built and tested as a 
thin slice through the entire development flow, start to finish. 
A product starts as a small yet functional subset and steadily 
grows as features are completed. Progress is based on code 
that works rather than code that’s written. Working code is a 
great metric for measuring real progress and demonstrating  
and clarifying implementation decisions.”
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Features offer a far more objective metric to measure progress. 
They are tangible and demonstrable to a customer. They also hold the 
word completion to a higher standard in that to be complete, a feature 
must be designed, implemented, tested, documented, etc. such that it 
could theoretically be delivered to a customer.

 
Preview: Agile Transformation  
in Functional Verification – Part II

Critical, objective analysis of a problem is key to implementing the 
right solution. While the concepts in part I are somewhat abstract, they 
are critical for motivating functional verification teams that crave an 
agile alternative to BUFD.

In Agile Transformation in Functional Verification – Part II, we 
look at the details of how a team actually uses agile planning and 
development techniques.

The opening sections continue the discussion on distributed 
planning as an alternative to BUFD. They include firm guidelines for 
conducting up front planning and building a functional verification 
strategy. The process of feature capture, prioritization and high-level 
scheduling is also explained in greater detail. Planning discussion 
continues to a method for iterative planning where past progress is 
critiqued, the team’s verification strategy is analyzed and short term 
detailed planning is done.

Part II continues with goals and recommendations for agile 
functional verification teams at familiar stages of development.

Environment Development

Strive for a working code base as early as possible with an 
environment that is functional from day one.

RTL Integration

Neither the design nor the verification environment need be 
complete to warrant integration of the RTL. There is plenty that can 
be done with partially completed RTL and a minimal yet functional 
verification environment

Transaction Development

Transactions define communication mechanisms between adjacent 
components in the DV and between the RTL and DV environment. 
Ensure they are well designed and tested prior to wide spread use.

Component Development

Define and integrate all the components up front then incrementally 
add functionality to each component on a feature-by-feature basis.

Block-level and Top-level Testing

Until features are integrated and verified at the top-level (aka the 
customer perspective), they are not ready for production nor release, 
and are therefore incomplete.

All of the above are described within the context of incremental 
development where a functional verification team executes the iterative 
planning approach to produce a growing subset of verified RTL.

Part II also includes case study examples from a real project to 
illustrate how functional verification engineers can tailor an agile 
approach to their particular project circumstances.
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Overview
This article presents a case study on how the Open 

Verification Methodology (OVM) was successfully 
applied to implement a SystemVerilog simulation-
based conformance test environment for next 
generation FlexRay™ 3.0 Communications System 
controllers. 

Complex application requirements and a need to 
run conformance tests on multiple vendor simulators, 
including Mentor’s Questa, with reliable, repeatable 
and identical results provided the design team with 
specific challenges. The OVM helped meet these 
challenges and proved that OVM has achieved its goal 
to “facilitate true SystemVerilog interoperability”.

 
Introduction

The FlexRay Communications System is a robust, scalable, 
deterministic, and fault-tolerant serial bus system designed for use in 
automotive applications [1]. Some of the basic characteristics of the 
FlexRay protocol include: are synchronous and asynchronous frame 
transfer, guaranteed frame latency and jitter during synchronous 
transfer, prioritization of frames during asynchronous transfer, single 
or multi-master clock synchronization, time synchronization across 
multiple networks, error detection and signalling, and scalable fault 
tolerance [2]. The next generation V3.0 of the FlexRay Protocol 
Specification [2] supports new applications such as drive-by-wire, 
through enhancements and additional features.  

From a verification point of view FlexRay is a challenge since it 
represents a complex and highly configurable protocol. This article 
discusses how the OVM was effectively applied an application 
typically handled by many directed tests implemented in hardware. 
The requirement was to implement a simulation-based environment 
capable of validating conformance of FlexRay Communications 
Controller devices, described at the Register Transfer Level (RTL), 
or clock-accurate behavioral level, with a set of very specific tests 
developed by the FlexRay Protocol Conformance Test Working Group 
and defined in an 800-page FlexRay Protocol Conformance Test  
Specification document [3]. 

 
Figure 1: A basic top-level view of the conformance test structure 

 

The main requirements for the conformance test environment 
include:

•	 Deterministic repeatable operation across different  
SystemVerilog simulators

•	 Support for different target implementations from multiple suppliers
•	 Capability to run all tests with different configurations  

and modifications

In order to satisfy the requirement for identical and repeatable 
operation across simulators we had to ensure that all aspects of 
stimulus, including sequence and transaction field values and timing, 
were tightly constrained during test runs. However, using constrained 
random verification techniques and the OVM to implement such an 
environment meant that a flexible and extensible solution could be 
developed much more quickly than a large number of directed tests. 

SystemVerilog interfacing and multi-language support made it a 
natural choice to support the different Implementations Under Test 
(IUT) which could be coded in Verilog, SystemVerilog, VHDL or clock-
accurate SystemC behavioral models such as the FlexRay Executable 

Simulation-Based FlexRayTM Conformance Testing—
an OVM Success Story 
by Mark Litterick, Co-founder & Verification Consultant, Verilab
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Model (FREM) used throughout the development 
phase. Mapping from the test environment 
Controller Host Interface (CHI) Abstract Physical 
Interface (API) to the physical registers of the 
IUT is provided by the CHI Adaption Layer shown 
in Figure 1; this enables the conformance test 
environment to remain independent of the IUT 
but requires an IUT-specific adaption layer to be 
implemented for each target device.

OVM built-in automation allowed the scope of 
the test space to be easily managed. This was 
particularly important, as FlexRay has more 
than 60 node and cluster related configuration 
parameters which for the purposes of testing are 
organized into a set of basic configurations with 
additional test-specific modifications requiring more than 10,000 total 
test runs for the 430 tests specified in the conformance test suite.

 
Project Overview

The project plan was broken down into three main phases which fit 
in with OVM environment development goals and customer deliverable 
expectations:

•	 Phase 1: develop the main testbench architecture with all major 
building blocks in place. Demonstrate operation with both SystemC 
and RTL IUTs. Implement stimulus and checks for a small number 
of tests.

•	 Phase 2: implement 80% of the tests against the evolving 
Conformance Test Specification, including stimulus and checks but 
with allowances for unimplemented features and checks as well as 
failing tests.

•	 Phase 3: conclude 100% of the tests against the final release of 
the Conformance Test Specification, including all features and 
checks, with 100% explained test results.

Figure 2 provides an overview of the project timeline and shows 
the test and environment development curves throughout the plan 
phases. The OVM was especially valuable in establishing the steep 
implementation ramp for environment capability during the initial phase 
of the project. During the test implementation phase the majority of 
activity was application-specific sequence, checker and model  
development. Note also that towards the end of the project the test 
implementation overtook the environment, since tests were required 
before all modelling corner cases and checking could be completed.

Figure 2: An overview of the project timeline

 As shown in Figure 2 we managed to engineer the implementation 
of the overall conformance test environment to follow a quite linear 
pattern. In this case, as with many client engagements, we succeeded 
in our aim to perform agile, feature-based releases. After the initial 
development work we could perform functional snapshot releases 
of the environment at any stage with known stimulus and modelling 
features and checker capability and omissions. The secret here is to 
engineer the capability to support all the required features, get the 
communication structure and transactions right, but once you are 
confident that it can be made to work, focus on the missing pieces 
of the puzzle rather than taking any particular thread all the way to 
completion. 

A key requirement, and one of the justifications for adopting a 
simulation-based approach, was the ability to adapt to the evolving 
Conformance Test Specification which was under development by 
the FlexRay Protocol Conformance Test Working Group in parallel 
with the implementation activity. In fact the scope and complexity of 
the test specification grew considerably during the project, partly due 
to contributions from JasPar [4] and partly due to increased protocol 
coverage goals, so Phase 3 was sub-divided into several intermediate 
milestones in order to control the deliverables. 

 
OVM Architecture 

The mapping of the conformance test environment to generic OVM 
component building blocks (such as sequencers, drivers, monitors and 
agents) is shown in Figure 3. The following key capabilities of OVM 
were used to full advantage in the conformance test environment: 
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Figure 3: mapping of the conformance test environment to 
generic OVM component building blocks

•	 OVM factory was used to build all components in the environ-
ment, and was fundamental in managing the proliferation of 
configuration objects which allowed single tests to be run across 
multiple configurations by overloading the derived classes from  
the test files.

•	 Sequences were used as the basis for all stimuli providing a 
clean and consistent approach to stimulus generation and well 
encapsulated control from the test description files.

•	 TLM ports were used for all transaction level communication 
within the environment, for example between the monitors and  
the scoreboard 

•	 OVM events were used for timing events, shared between 
components via an event pool

 

The basic operation of each of the sub-components is:

•	 Lower Tester Agent (LT) is responsible for emulating all of the 
cluster channel traffic and checking physical signals. It comprises 
a timebase agent and two instances of the channel agent. The 
agents contain sequencers, drivers and monitors. Tests interact 
with a virtual sequencer in the LT agent which in turn sends  
 
 

sequences to the appropriate physical sequencer. 
All checks are carried out by the monitors or in the 
scoreboard via TLM ports. The LT has extensive 
error injection capability and supports all legal and 
illegal traffic scenarios required by the conformance 
test suite.
•	Upper Tester Agent (UT) is responsible for 
interacting with the IUT via the CHI software API 
and the IUT-specific adaption layer. Tests can 
interact with the UT sequencer directly to stimulate 
the CHI in order to control all operating modes, 
configuration, status, buffer, FIFO and interrupt 
operation within the IUT.  Since there is no physical 
interface to monitor (only a software API) the 
checks performed in the UT monitor must also be 
stimulated directly by UT CHI sequences. 
•	Scoreboard is used to validate all traffic between 

the Upper and Lower tester which passes through the IUT. For 
instance if the model predicts that the IUT must send frames 
then these are posted to the scoreboard by the UT, when the IUT 
actually sends the frame the LT also sends transactions to the 
scoreboard for comparison – mismatches, out-of-order traffic or 
missing transactions all result in conformance test failures.

•	 Event Pool is used to share timing events between the Upper and 
Lower Tester (and also within the lower tester agent). Most of these 
events also communicate additional information by passing simple 
data structures (for example slot or cycle counts) as objects within 
the event.

A key design aim for the conformance test environment was to 
encapsulate the test files in such a way that they could be read and 
understood by non-verification experts. This was achieved in an OVM-
like manner using macros for background tasks such as configuration 
class generation and environment build overheads. Since most of the 
checks were fully automatic in the monitors of the environment, this left 
concise sequence instantiation in the test implementation files with a 
very close match to the test specification requirements. For example, if 
the test description were:

•	 In cycle 9, the LT simulates a startup frame in slot 1 with wrong 
header CRC (bit flip in the LSB of the header CRC). 



58

This is represented in the actual test as:

`fr_do_lt_with(lt_er_seq,{

     lt_ch        == FR_AB; 

     lt_cycle   == 9; 

     lt_kind     == FR_STARTUP_PAYLOAD; 

     lt_slot      == 1; 

     lt_error    == FR_HEADER_CRC;

})

As a result of the single sequence call in the test, sequences 
are executed on both channels with default values for all frame 
content including payload, as well as a timing sequence running in 
the timebase sequencer and all the downstream driver and CODEC 
functionality. In addition, the frame sent to the IUT is decoded by the 
channel monitors and sent to respective scoreboards for subsequent 
comparison when slot status is read at the end of the corresponding 
communication cycle.  Users only need to handle calls to fr_do_lt and 
fr_do_ut macros – these in turn perform ovm_do_on_with sequence 
calls to the appropriate sequencer path inside the environment.

The scope of the conformance test environment was such that 
about 130,000 non-comment lines of code were required for the final 
implementation. The approximate distribution of the code is shown in 

Figure 4: Code volume distribution

 

The pie-chart gives a good overview of the volume of code required 
for the different aspects of the project, but it does not accurately 
represent the development effort. For example the configuration 
library is a large portion, but is mainly generated automatically 
from the test specification file using a script (the implementation of 
which was of course considerable effort, but not 30% of the project). 
Sequences provided excellent reuse in the test specifications, resulting 
in considerable payback. The sequence definitions are relatively 
easy to replicate and build up into an extensive library; however, the 
much fewer lines of code required in the transaction definition and 
associated environment components are much more intense and 
time-consuming to generate. Pulling together test definitions from a 
library of sequences is not too difficult, but debugging the complex 
interactions of the sequences with the checkers and of course the IUT 
can be a much more time-consuming activity. 

One important thing to note is that the total project time spent on 
OVM infrastructure implementation was very small – with a working 
codebase from other projects to draw on we spent most of the project 
forgetting that OVM was even there. The infrastructure was pulled 
together quickly and the details of the methodology could be forgotten 
about. 

Simulator interoperability with the OVM was not a problem on the 
project. SystemVerilog language interoperability in the application 
code on the other hand consumed a lot of effort. Some problems 
were encountered with general language support, including 
different scoping rules, constraint capabilities for complex layered 
transactions and support for some basic syntactical constructs. In total 
approximately 10% of project effort was consumed handling issues 
with multi-tool requirements: analysis, experimentation and validation 
of solutions. While this is expected to improve over time, our current 
recommendations are: 

•	 Build up awareness of each tool’s capability
•	 Focus on one tool rather than getting bogged-down with parallel 

development
•	 Once you have extensive working regressions, bring the next tool 

into the mix
•	 Do not wait until the end to investigate code compromises that will 

work with all tools
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Conclusion 
The Simulation-Based FlexRay Conformance Test Environment 

was a very challenging project with complex technical and multi-
tool requirements. By successfully applying constrained-random 
verification techniques using the OVM we were able to demonstrate 
that OVM has achieved its goal to “facilitate true SystemVerilog 
interoperability” [5].  

Throughout the project the Verilab implementation team were able 
to detect and report many issues with the SystemC Executable Model, 
the Conformance Test Specification, as well as some issues with the 
Protocol Specification itself. With the help of the OVM testbench the 
FlexRay Protocol Conformance Test Working Group could quickly 
analyse the issues, proposed fixes for the IUT and the specifications, 
and release updates at regular intervals. 

As well as achieving the obvious goals of pre-silicon conformance 
validation, improved debug resulting from RTL visibility, reduced cost, 
risk mitigation and improved quality for the IP providers, the project 
also facilitated highly effective validation of the evolving Conformance 
Test Specification thereby improving the quality and accuracy of 
the final document which benefits all FlexRay stakeholders from IP 
providers, through OEMs to automobile manufacturers. 
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INTRODUCTION
There is currently much discussion concerning the use of 

constrained random verification techniques with the SystemVerilog 
language and the OVM and UVM methodologies. The debate is 
largely the province of experts, of verification professionals who eat, 
sleep and breathe functional verification every day of their lives. This 
particular article has been written with a different kind of engineer in 
mind. Do you use Verilog or VHDL for ASIC or FPGA design, writing 
RTL code and block-level test benches? Are you still playing catch-up 
with the latest functional verification techniques? Then this article is for 
you.

VHDL and Verilog can take you just so far with functional 
verification. Though you may have your particular favorite, these 
languages have both proven to be effective for RTL hardware design 
and for creating monolithic behavioral test benches, but run out-of-
steam when it comes to test bench re-use. Sure, you can do anything 
in VHDL or Verilog if you try hard enough, but the key benefit of 
moving to a specialized verification language like SystemVerilog is 
that it allows you to efficiently re-use existing verification intellectual 
property (VIP) and to create your own verification components for re-
use on other projects. VHDL and Verilog are excellent for RTL re-use 
but are not the best choice for verification re-use.

 
OVM OR UVM?

By the way, for OVM you can read UVM throughout. Early releases 
of UVM, the Unified Verification Methodology from Accellera, 
are based on OVM version 2.1.1, so guidelines for OVM will be 
equally applicable to UVM. At Doulos we welcome UVM as the 
first SystemVerilog verification methodology that is being actively 
supported by all simulation vendors.

 
TEST BENCH REUSE

So what is the best way to structure a test bench to allow a high 
level of component re-use? There are several aspects to this, but 
the most important include having a standardized way of coding 
verification components, having transaction-level communication 
between verification components, and the ability to override the 
behavior of verification components without touching their source  
 

code. And how is this enabled? Using object-oriented (or aspect-
oriented) programming techniques coupled with specialized language 
constructs, such as those found in SystemVerilog, which enable you 
to express verification-oriented behaviors such as checking, coverage 
collection, and the generation of layered sequential stimuli. Object-
oriented programming is key because it enables well-structured 
communication using function calls and allows verification components 
to be specialized to the needs of a specific test bench or test without 
modifying their source code.

As a language, SystemVerilog provides the mechanisms you need 
to create verification components for checking, coverage collection, 
and stimulus generation, and to modify the behavior of those 
components as you write specific tests. But SystemVerilog provides 
more than this, so much more in fact that the learning curve can be 
daunting for non-specialists. If you are not a verification specialist, 
what you might need is just enough SystemVerilog to get you going 
so you can start to benefit from VIP re-use and as a base on which 
to build as your experience and confidence increase. The aim of this 
article is to introduce you to some coding guidelines for OVM that will 
enable you to do just that.

Easier OVM is not a distinct functional verification methodology, but 
rather a set of guidelines that enable you to use a simple, clean subset 
of OVM features to best effect. You still have access to the entire OVM 
library to use as you chose and for compatibility with any external IP.

 
OVM’S UNIQUE SELLING POINTS

What specifically does OVM (or UVM) offer that cannot be achieved 
equally well in Verilog or VHDL?

Well, let’s start by laying out the similarities, because many of the 
concepts of OVM will be immediately familiar to HDL users. OVM, 
Verilog and VHDL each allow a test bench to be partitioned into 
hierarchically organized components (Verilog modules or VHDL 
design entities); each provides structural connections between those 
components so they can communicate (Verilog or VHDL ports); 
and each provides a mechanism so that those components can be 
parameterized from the outside (Verilog parameters or VHDL generics 
and configurations). OVM, Verilog and VHDL each support procedural 
code, concurrency, and event-driven timing and synchronization 
mechanisms.

Making OVM Easier for HDL Users 
by John Aynsley, CTO, Doulos
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But there are some critical differences. The first difference lies in the 
mechanism used to communicate between verification components. 
OVM supports transaction-level communication using well-structured 
mechanisms derived from the SystemC TLM standard and enabled by 
the object-oriented programming (OOP) constructs of SystemVerilog. 
Neither Verilog nor VHDL are able to support TLM communication 
in the same way because they lack the necessary OOP language 
features. Thus although you can contrive ways to pass transactions 
between components in Verilog and in VHDL, the resulting code is not 
reusable in the same way.

The second advantage of OVM over an HDL is that SystemVerilog 
offers language constructs to express temporal assertions, functional 
coverage collection, and stimulus constraints. The presence of 
functional coverage constructs in SystemVerilog makes coding much 
more productive, and the constraint solver engine provides facilities 
for constrained random verification that are simply absent from Verilog 
and VHDL simulators.

Thirdly, OVM offers mechanisms for the customization of verification 
components in unanticipated ways. These include the OVM factory, 
configurations, and callbacks, mechanisms that allow structure, 
behavior, transactions, and stimulus constraints to be modified after 
instantiation in ways that go far beyond the parameterization features 
provided by Verilog and VHDL.

Finally, OVM offers a standard set of conventions used when 
organizing and structuring a test bench that ensure consistency and 
interoperability across projects, teams, and vendors. These includes a 
standard way of structuring the verification components that comprise 
the test bench, a standard way of structuring the flow of control 
through the various phases of initialization, simulation, and clean-up, 
and a standard way of constructing hierarchical sequential stimulus 
(sequences) that enables stimulus reuse.

(A sequence is a conventional way of building an object (requiring 
OOP) that corresponds to an ordered set of transactions. There is no 
way to code a sequence in Verilog or VHDL in a way that maintains 
the proper separation of concerns and hence achieves the required 
degree of verification reuse.)

The above points about OVM combine to enable some critical 
differences in the verification reuse capabilities of OVM versus Verilog 
or VHDL. OVM allows the separation of individual test cases from 
the test bench, and enables VIP to be reused and customized to the 
needs of each verification environment and each test case without 
modification to the source code.

 
 

CODING GUIDELINES FOR EASIER OVM
The coding guidelines below are not intended to be restrictive or 

draconian. There are several guidelines below that verification experts 
may take exception to, and rightly so; these are not guidelines for 
expert constrained random verification. If your own favorite OVM 
feature happens to be excluded from these guidelines, there is nothing 
to stop you from using it anyway! The idea is to provide one simple 
way of doing things that can help you make the transition from HDL 
designer to SystemVerilog coder and verification engineer. 

Naming conventions

Naming conventions are a soft guideline, but it is a good idea to 
adopt a consistent practice. The suggestion is to use lower case letters 
with words separated by _, as used by the OVM library itself. Handles 
should have the suffix _h, types _t, interfaces _if, virtual interfaces _vi, 
ports _port and analysis ports _aport. Macros and constants can be 
upper case.

One declaration or statement per line

Declare each name on a separate line, keep to one statement per 
line, and use consistent indentation. Always use begin…end where 
appropriate, even around single statements.

Component class template

Where you would use a module in Verilog or a design entity in 
VHDL, the OVM equivalent is a user-defined class that extends 
ovm_component. Whereas an HDL module contains declarations that 
take effect at elaboration-time and statements that execute at run-
time, an OVM component contains multiple methods that are called at 
the various phases of the verification run. It is this use of classes and 
object-oriented programming (OOP) that opens the door to verification 
component reuse:

class my_component extends ovm_component;
  
  `ovm_component_utils(my_component)

  ovm_analysis_port #(my_transaction) aport;
  virtual dut_if dut_vi;
  // other ports, exports, and virtual interfaces, i.e. external connections

  function new(string name, ovm_component parent);
    super.new(name, parent);

  endfunction: new
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  function void build;
    super.build();
    …
  function void connect;
    …
  function void start_of_simulation;
    …
  task run;
    …
  function void check;
    …
  function void report;
    …

endclass: my_component

The parts of the component shown above in bold text should appear 
exactly as shown and in the order shown. The constructor new should 
typically not have any additional arguments or statements. The build, 
connect, start_of_simulation, run, check and report methods are 
optional. Other class members may be included as needed. 

Methodology components

The various OVM methodology components ovm_test, 
ovm_env, ovm_agent, ovm_sequencer, ovm_driver, ovm_monitor, 
ovm_subscriber and so forth should be used in preference to the 
undifferentiated base class ovm_component. The OVM agent structure 
incorporating sequencer, driver and monitor should be used wherever 
appropriate. This helps ensure consistency and interoperability 
between verification environments.

Simple component hierarchy

The run_test() method should be called from a top-level 
SystemVerilog module. Each individual test should extend ovm_test 
and should instantiate a component that extends ovm_env and that 
represents the verification environment. Then everyone knows what to 
expect.

Clock and reset logic

The clock and reset generation logic should be contained within the 
same top-level module that instantiates the DUT and calls run_test(), 
not within the class-based test bench. This makes synchronization 
between the clock, the RTL code, and the verification environment 
straightforward to achieve without getting into the idiosyncrasies of the 
SystemVerilog scheduler regions.

Post a virtual interface wrapper into the 
configuration table

The class-based OVM test bench should communicate with the 
DUT through a virtual interface that references a SystemVerilog 
interface instantiated at the top level. This virtual interface should be 
made visible within the OVM test bench by putting it within a wrapper 
object and posting that object into the configuration table using set_
config_object().

Use the factory method

Make uniform use of the factory method name::type_id::create() 
whenever instantiating a component, a transaction, or a sequence. 
This provides a consistent coding style for all instantiations and allows 
the instantiation to be overridden later using the factory mechanism, 
whether or not you anticipate that happening.

String name should match class member name

When naming components, transactions and sequences, the string 
name should match the SystemVerilog class member name. For 
example

my_env_h = my_env::type_id::create(“my_env_h”, this);

Note that the arguments passed when creating a component are 
always string name followed by this.

Use only port-export connections between 
components

Apart from the virtual interface connection to the DUT described 
above, all structural connections between verification components 
should take the form of TLM port-export connections, including 
analysis ports. This provides for a very simple uniform connection 
mechanism between OVM components. For example:

function void connect;

  my_driver_h.seq_item_port.connect( my_sequencer_h.seq_item_export );

  my_monitor_h.aport.connect( aport );

endfunction: connect

In particular, do not instantiate FIFOs to connect components; where 
FIFOs are needed, bury them inside components behind TLM exports.
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Restrict hierarchical names

The use of hierarchical names should be restricted to picking 
out the port and export objects when making TLM connections, as 
shown above. Avoid arbitrary hierarchical references between OVM 
components just as you would generally try to avoid hierarchical 
references between Verilog modules.

Transaction class template

As well as components, an OVM test bench also contains classes 
that represent transactions and sequences. These should extend 
ovm_sequence_item and ovm_sequence respectively. In OVM, a 
transaction or a sequence is an object that contains methods (that 
is, behaviors) as well as properties (that is, data). This allows new 
types of transaction or sequence to be created by extending existing 
transactions, something that is only possible in object-oriented 
programming languages:

class my_transaction extends ovm_sequence_item;

  

  `ovm_object_utils(my_transaction)

  

  // Data members, constraints and covergroups

  rand int data;

  constraint …

  covergroup … 

    

  function new (string name = “”);

    super.new(name);

  endfunction: new

    

  function string convert2string;

    …

  function void do_copy(ovm_object rhs);

    ...

  function bit do_compare(ovm_object rhs, ovm_comparer comparer);

    ..

endclass: my_transaction

The sequence item methods convert2string(), do_copy(), and 
do_compare() should be implemented wherever they are needed. 
This approach avoids the use of the ovm_field_* macros, which are 
fine in the hands of experts but can obscure the learning process for 
beginners.

(Note for the experts: I am not religious about macros! There are 
many good ways of using SystemVerilog for verification, and macros 
can be cool! But I would always advocate beginners taking a simple, 
uniform approach to coding as they climb what can be a long, steep 
learning curve.)

Sequence class template

User-defined sequences should follow a similar pattern but should 
include a body method:

class my_sequence extends ovm_sequence #(my_transaction);

  `ovm_object_utils(my_sequence)

  // Data members, constraints and covergroups

  rand int n;

  constraint …

  covergroup …

    

  function new (string name = “”);

    super.new(name);

  endfunction: new

  task body;

    …

    tx = my_transaction::type_id::create(“tx”);

    start_item(tx);

    assert( tx.randomize() with …

    finish_item(tx);

    …

endclass: my_sequence
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Within the body method, individual sequence items should be 
generated and sent to the driver by calling create(), start_item(), 
finish_item(), get_response(), grab(), and so forth. Once these 
methods have been understood and mastered, it is also possible to 
use the OVM sequence macros such as `ovm_do to abbreviate the 
code.

Start sequences explicitly

Sequences should be started on sequencers explicitly by calling 
their start() method. This means not using ovm_sequence_utils to 
register a sequence with a sequencer and have it start automatically.

Use sequence libraries

A good way to organize sequences is to store them in a sequence 
library (a separate SystemVerilog package) and then start them as 
required for each individual test. Sequences can also start other 
sequences. 

Use set_config_object and get_config_object

Use OVM configuration rather than class parameters or constructor 
arguments to parameterize components. Group multiple configuration 
values into objects that can be set using set_config_object. Retrieve 
configuration values explicitly by calling get_config_object, typically 
from the build() method.

 
CONCLUSION

OVM (or UVM) is a rich and capable class library that has evolved 
over several years from much experience with real verification 
projects large and small, and SystemVerilog itself is a large and 
complex language. As a result, although OVM offers a lot of powerful 
features for verification experts, it can present a daunting challenge 
to Verilog and VHDL designers who want to start benefitting from test 
bench reuse. The guidelines presented in this article aim to ease the 
transition from HDL to OVM.

These guidelines are further explained and illustrated in the Mentor 
Graphics Verification Academy module entitled OVM Basics, available 
from www.verificationacademy.org. You can also download tutorial 
information on OVM from http://www.doulos.com/knowhow
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Hardware emulators, like Mentor Graphics’ 
Veloce, are widely used to debug SoCs that 
include one or more processors. Although 
hardware designers are the traditional target for 
emulators, software developers are increasingly 
using hardware emulation for early firmware, 
kernel and driver development. The traditional 
connection of a software debugger to an emulator 
is done with a debug probe connected to the 
JTAG port of the design, but this solution is slow 
because of the serial nature of the JTAG protocol. 
This article explores the use of ARM’s VSTREAM 
co-emulation transactor connected to a Veloce hardware emulator, to 
accelerate the connection from the debugger to the hardware target. 

 
Efficiency in SoC design

Time-to-market and cost control are critical factors when planning 
the design of a SoC while design complexity continues to increase 
exponentially. Many new devices include one or more embedded 
processors, memory controllers and an array of complex peripherals.

The SoC design flow, shown in figure 1, has adapted to this 
challenge by parallelizing hardware and software design activities so 
that boot code, operating system support packages and applications 
are available by the time the device tapes out. In many designs, 
functional validation and software availability are on the critical path to 
release the SoC and there is a need to start software development as 
early as possible and on increasingly fast platforms.

Hardware emulation can greatly accelerate system integration and 
hardware validation activities by running test vectors several orders 
of magnitude faster than RTL simulators. Emulation has therefore 
become widely used by hardware development and validation teams.

 
Figure 2: Veloce hardware emulator  
and its debug application environment

Emulators are often the first platforms to implement a functionally 
accurate representation of a SoC running at reasonable speed. 
Therefore, software development teams have become interested in 
them to run their SoC bring-up firmware, operating system boot code, 
kernel and drivers. Not only does emulation enable them to perform 
this critical activity earlier in the design cycle, but they also provide the 
SoC verification engineer the visibility to resolve software/hardware 
integration issues.  Figure 2 shows the typical debug environment 
using Veloce emulation.

 
Software development  
on hardware emulators

To enable software developers to be more efficient in their code 
development, they require tools that provide full processor control 
and debug visibility. This includes tool features such as the ability to 
set breakpoints, single step through the code, view and change the 

contents of memory and memory-mapped peripherals,  
and so on.  

Figure 1: A simplified view  
of the SoC design cycle

Accelerating Software Debug Using ARM’s VSTREAM  
with Veloce™ Hardware Emulation 
by Javier Orensanz, ARM and Richard Pugh, Mentor Graphics
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Complex processor features such as virtual-to-memory  
address mapping and hardware cross-triggering must be 
handled by the tools automatically to save development time.

Most embedded processors include interfaces to allow the 
connection to a software debugger. These interfaces are normally 
accessible on the JTAG or serial debug port of the SoC.

The connection between the software debugger and the SoC 
is done with a debug probe - for example, the ARM® RealView® 
Debugger connects to the JTAG port of ARM processor-based  
SoCs with a RealView ICE unit, as shown in figure 3.

 Figure 3: ARM software development tools

The same debug probe used to connect to a SoC can also connect 
to a processor synthesized on a Veloce hardware emulator via the 
emulator’s In-Circuit Emulation (ICE) interface. 

Unfortunately, this JTAG debug interface is relatively slow and 
debug operations such as memory download and single stepping can 
take several seconds to complete. This limitation hinders the usability 
of emulators as software development platforms.

 
Accelerating software development  
on hardware emulators

Depending on the processor synthesized on the emulator, different 
debug speeds can be achieved.

 
Figure 4: Debug connection to ARM9 and ARM11 family processors

For example, the debugger connection to ARM9™ and ARM11™ 
family processors is comparatively slow. These processors have native 

JTAG debug interfaces that can be daisy-
chained.

Because of the nature of the JTAG 
protocol, the JTAG clock (TCK) is driven by 
the debug probe. In order to synchronize 
TCK with the processor clock TCK needs to 
be sampled with a chain of flip-flops, which 
effectively limits its speed to about 100 KHz 
on emulators.

However, the debugger connection 
to Cortex TM processors on hardware 
emulators is faster, as a parallel debug 
interface may be used rather than a serial 
JTAG connection. The SoC normally 
includes a CoreSight TM Debug Access 
Port (DAP) which provides an interface 
between JTAG and the internal debug bus.

In the DAP, the synchronization between TCK and the system 
clock is only required when a 32-bit access goes to the debug bus. In 
practice this means that in emulation the JTAG interface can run at 
up to 500 KHz, a five-fold increase compared to ARM9 and ARM11 
processor family-based systems. 

As hardware emulation speeds are typically in the 1-2 MHz range, 
the TCK frequency cannot be increased significantly to enable 
more throughput to the software debugger. However, a faster debug 
connection may be achieved by bypassing the JTAG interface 
and implementing a direct connection to the debug bus. A direct 
connection can provide a significant speed increase, as each 32-bit 
access on the debug bus is done in a single bus clock cycle instead of 
several JTAG clock cycles. The speed of the processor, memories and 
peripherals running on the emulator remains the same. 
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Figure 5: Debug connection to Cortex processors

 
Figure 6: Virtual debug connection, using ARM’s VSTREAM

 
Implementing a debug transactor - 
VSTREAM

Transaction-based acceleration, as supported by Veloce with its 
TestBench XPress technology, TBX, provides a very high bandwidth 
connection between a C/C++, SystemC, or SystemVerilog application 
running on a workstation, and the RTL running on Veloce.  A debug 
transactor, like ARM’s VSTREAM, can make use of the infrastructure  
provided by Veloce-TBX to connect a software debugger directly to the 
DAP RTL. There are two benefits to the use of a debug transactor:

1.	Transactors eliminate the need to use the I/O expansion on the 
emulator to connect the JTAG signals to the debug probe. With 
no dependence on external hardware the job can be run on any 
emulation resource, maximizing machine utilization and availability. 
A virtual connection to the emulator is also more convenient than a 
physical one, as different jobs can be run on the emulator without 
concern for the hardware set-up.

2.	Transactors can be reused to connect a software debugger to RTL 
simulators, such as Questa, which enables very early functional 
validation of the debug infrastructure of a SoC.

ARM and Mentor have collaborated to prove the concept 
and speed of debug transactors, such as VSTREAM, by 
connecting the ARM RealView Debugger to a Mentor 
Graphics Veloce hardware emulator via a SCE-MI v2.0 
interface. ARM aims to release VSTREAM by mid-2010. 
 
VSTREAM Performance with Veloce

By eliminating the hardware probe and replacing the 
serial JTAG debug port with the 32-bit Debug Access Port 
(DAP), interactive SW debug is, well, highly interactive. 
Stepping through source or assembly is snappy and 
transferring a 1 MByte file between the workstation and 
the ARM core’s memory space modelled in Veloce drops 

from 30 seconds with JTAG to 5 seconds with VSTREAM. And 
these performance improvements are even more impressive when 
debugging software on multi-core designs.

We’ve all come to expect technical advances to be accompanied 
by minor drawbacks and limitations, but with Veloce and VSTREAM 
everything falls on the plus side.

-	 The debug probe is eliminated, reducing cost and eliminating 
the reliability issues associated with the hardware, cables, and 
connectors.

-	 Debug interactivity is greatly improved, especially loading code 
and memory transfers.

-	 Flexibility to run the job on any Veloce user partition of suitable 
size is achieved through elimination of debug probe hardware 
dependencies.

The VSTREAM collaboration between ARM and Mentor Graphics 
delivers measurable improvement in software debug productivity. With 
the advent of multi-core processors and more complex embedded 
software, these improvements will transition quickly from nice-to-have 
to becoming mandatory for the comprehensive validation of complex 
SoC designs.

Figure 7: Complete debug solution  
based on VSTREAM transactors 
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