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AUTOMATIC ON-DEMAND PRESCALE 
CALIBRATION ACROSS MULTIPLE 
DEVICES WITH INDEPENDENT 
OSCILLATORS OVER AN I2C BUS 

INTERFACE 

RELATED APPLICATION 

This application is a Continuation-In-Part of Parent Appli 
cation, OSCILLATOR PRESCALE CALIBRATION FOR 
HARMONIZING MULTIPLE DEVICES WITH INDE 
PENDENT OSCILLATORS OVER AN I2C BUS INTER 
FACE, US. patent application Ser. No. 12/269,018, ?led 
Nov. 11, 2008, now US. Pat. No. 7,930,127. 

The invention relates generally to methods and devices for 
harmonizing independent oscillators on slave devices in 
industry-standard inter-integrated circuit (I2C) Bus applica 
tions, and more particularly to automating the harmonization 
of such frequencies Without requiring signi?cant user 
involvement. 
Many I2C devices utiliZe independent, loW-cost, loW 

poWer, un-calibrated oscillators for timing functions. Such 
oscillators can vary as much as 140% in their nominal fre 
quencies due to process, operating voltage, and temperature 
variations. An obvious solution When frequency harmoniZa 
tion is needed is to clock all the devices With a single external 
system clock. But this requires an extra pin on the device, and 
that particular solution may add too much expense and/or 
push the manufacturing of the device into requiring a larger 
more expensive package. 

The Parent Application to this one describes a method of 
using standard I2C commands and signals to determine an 
individual device’s oscillator frequency, to calculate a neW 
prescale value, and then to Write the neW prescale value back 
into the device. But such method can necessitate signi?cant 
user action. What is needed is a method and device that 
require the user to supply something quite simple, e.g., the 
desired frequency of a SCL clock, e.g., using an I2C Calibra 
tion command. 
LED devices are noW being Widely used to replace con 

ventional lamps in vehicle turn signals and taillights, advert 
iZing signs, cellphones, etc. Sometimes many individual LED 
devices are used to replace a single incandescent lamp in 
applications that require blinking, dimming, or on-off opera 
tion. That job often falls on LED drivers that are controlled by 
signals on I2C Buses. One example of a conventional device 
is the NXP PCA963x series of blinkers. 

In conventional LED blinking applications, getting all of 
the LEDs to dim or blink on-off together at the same instant 
has been troublesome. Many I2C devices include their oWn 
oscillators folloWed by ?xed prescalers and programmable 
dividers for timing functions. Having an on-board oscillator 
can reduce the tra?ic on the I2C Bus by eliminating the need 
to explicitly command every on-off operation by a master 
device to a slave device. An exemplary prior art device has a 
25-MHZ oscillator, With a 130% frequency variability, fol 
loWed by a programmable prescaler that defaults to a divide 
by-1024, and a ?xed divide-by-tWo and a ?xed divide-by-512 
divider. The blink frequency, at a default prescale factor of 
1024, is therefore 23.84 HZ. The output is used to control 
When an LED Will actually blink on or off. 

HoWever, because the typical on-board oscillators are loW 
cost, loW-poWer, and un-calibrated, they can have Wide 
device-to-device frequency variations of up to 140%. The 
device-to-device frequency variations are hard to control 
because they result from process, operating voltage, and tem 
perature differences. So in side-by-side applications of the 
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2 
same I2C device, it is possible for a ?rst device to have an 
oscillator that runs at 25.00 MHZ, the second at 32.50 MHZ, 
and the third at 17.50 MHZ. So, sending the same I2C com 
mand to multiple LEDs to prescale each device by 1024 
Would result in blink frequencies of 23.84 HZ, 31.00 HZ, and 
16.69 HZ, respectively. Those differences could cause prob 
lems that Will be very visible to users Watching the LEDs 
being controlled. Conventional I2C devices do not alloW the 
consequential output frequencies to be readback, checked, or 
calibrated. 

In a typical application, an equation for the Blink Rate 
resulting in the example Would be, (N +1)/BlinkFrequency, 
Where N is a factor that is programmed into a blink rate 
register that controls a timer. If a user Wanted three LEDs to 
blink together at a 1.00 HZ rate, the ideal blink frequency 
Would be 24.00 HZ, and the ideal oscillator frequency before 
prescaling Would be 25.16582 MHZ (24 HZ><512><2><1024). 
So N needs to be “23”, and that factor Would normally be 
loaded into a blink rate register using I2C commands. But 
because of the variability in the on-board oscillator frequen 
cies, the actual blink rates for the three devices in the example 
Would be: (23+1)/23.84 HZ:1.0067 seconds; (23+1)/31.00 
HZ:0.7742 seconds; and, (23+1)/16.69 HZ:1.438 seconds. 
The differences Would be highly visible to the human eye. 
One solution Would be to eliminate the independent on 

board oscillators and clock all of the I2C devices With one 
external system clock, but that Would require putting an extra 
pin on each device. Adding pins to devices requires larger 
more complex packages, and that can make each device more 
expensive to produce. What is needed are solutions that do not 
require adding more pins to standard devices. 

In an embodiment, standard I2C commands and signals are 
used to set an individual I2C device’s oscillator frequency, to 
calculate a neW prescale factor, and to Write the necessary 
prescale factor back into the device. 
A system, device, protocol, and method for on-demand 

prescale calibration across multiple devices With independent 
oscillators over an I2C Bus are described. NeW I2C general 
call commands MEASURE PULSE and RESET PRES 
CALE are included to be able to obtain a measurement from 
an oscillator in a number of slave devices, and for a master 
device to compute and load appropriate prescale factors for 
use in the oscillator prescaler of the corresponding slave 
devices. In one embodiment, the slave devices independently 
control individual LEDs that need to be blinked and dimmed 
in uni son. Other embodiments of the system and method are 
also described. 

Other aspects and advantages of the present invention Will 
become apparent from the folloWing detailed description, 
taken in conjunction With the accompanying draWings, illus 
trating by Way of example the principles of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates an embodiment of an I2C system in Which 
a master device and many slave devices are able to issue and 
respond to neW I2C general call commands MEASURE 
PULSE and RESET PRESCALE. 

FIG. 2 illustrates a serial bit structure for the MEASURE 
PULSE general call command embodiment. 

FIG. 3 illustrates a circuit for implementation in a slave 
device embodiment that can measure a corresponding on 
board oscillator frequency. 

FIG. 4 illustrates a state machine logic useful in the mea 
surement state machine of FIG. 3. 

FIG. 5 illustrates a serial bit structure for the RESET 
PRESCALE general call command embodiment. 
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FIG. 6 illustrates a programmable prescale circuit for 
implementation in a slave device embodiment that can accept 
a prescale factor for a corresponding on-board oscillator. 

FIG. 7 illustrates a master device embodiment Which can 
issue the MEASURE PULSE and RESET PRESCALE com 
mands, and calculate an appropriate prescale factor for a 
group of slave devices. 

FIG. 8 illustrates a slave device embodiment Which can 
respond to the MEASURE PULSE and RESET PRESCALE 
commands, and is able to accept an appropriate prescale 
factor that Was computed for it in particular. 

FIG. 9 illustrates a ?owchart for a method embodiment 
Which can issue the MEASURE PULSE and RESET PRES 
CALE commands, and calculate an appropriate prescale fac 
tor for a group of slave devices. 

FIG. 10 illustrates a ?owchart for a method embodiment 
Which can respond to the MEASURE PULSE and RESET 
PRESCALE commands, and is able to accept an appropriate 
prescale factor that Was computed for a particular slave 
device. 

FIG. 11 illustrates an LED blinker device embodiment of 
an I2C bus slave device application Which can respond to 
CALIBRATE and ZERO COUNTERS General Call com 
mands. 

FIG. 12 illustrates an application in Which an I2C bus 
master controller can harmoniZe three LED blinker devices 
like that of FIG. 11 using CALIBRATE and ZERO 
COUNTERS General Call commands. 

FIG. 13 illustrates the bit serial construction of a CALI 
BRATE General Call commands useful in the examples of 
FIGS. 11 and 12. 

FIG. 14 illustrates the bit serial construction of a ZERO 
COUNTERS General Call commands useful in the examples 
of FIGS. 11 and 12. 

Throughout the description, similar reference numbers 
may be used to identify similar elements. 

In the folloWing description, speci?c details of various 
embodiments are provided. HoWever, some embodiments 
may be practiced With less than all of these speci?c details. In 
other instances, certain methods, procedures, components, 
structures, and/or functions are described in no more detail 
than is necessary to enable the various embodiments of the 
invention, e.g., for the sake of brevity and clarity. 

While particular embodiments are described herein, there 
are no doubt many Ways in digital hardWare and computer 
softWare to accomplish the same ends. In all embodiments, 
the methods and circuits include reading a test count of the 
number of frequency ticks that a slave device’s on-board 
oscillator produces during a standard pulse Width observable 
by all slave devices and master devices on an I2C Bus. Then 
computing and loading an appropriate prescale factor to use 
on each respective on-board oscillator that Will harmonize 
and coordinate them all. Some embodiments use I2C general 
call commands to effectuate the measurement, calculating, 
and loading. Other embodiments could use different methods 
of command. Still further embodiments may need to harmo 
niZe and coordinate their on-board local oscillator frequen 
cies to blink or dim LEDs in unison, and alternative embodi 
ments do it for purposes particular to their applications that 
have nothing at all to do With LEDs. 

FIGS. 1-10 and their corresponding descriptions here are 
exactly as presented in the Parent Application, and are 
repeated here instead of incorporating the material by refer 
ence. The characterizing aspects of the present methods and 
devices begins With FIG. 11. 

The I2C Bus uses bi-directional serial clock (SCL) and a 
serial data (SDA) lines to communicate in half-duplex mode 
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4 
on tWo Wires and a ground. Four transfer rates are possible: 

standard, 100 kbps [bits per second]; fast, 400 kbps; high 
speed, fast plus, 1 Mbps; and 3.4 Mbps. The I2C Bus interface 
uses 8-bit long bytes, and each device has a unique address. 
Any device may be a transmitter or receiver, and a master 
device or slave device. Herein, calling a particular device a 
slave device or a master device is only a temporary label to 
help better describe Which device at any one instant is con 
trolling another device. 

Data and clock are sent from a Bus master device, and the 
data is valid While the clock line is high. The link may have 
multiple master devices and slave devices on the bus, but only 
one master device is alloWed to control the I2C Bus at any one 
time. Slaves may receive or transmit data to the master device. 
Operating poWer voltages, VDD, may be different for each 
device, and all devices use pull-up resistors on open-drain 
outputs to the I2C Bus. 

Before any transaction can proceed on the I2C Bus, a 
START condition must be issued. The device issuing the 
START condition pulls the SDA data line (data) line loW, and 
then pulls the SCL clock line (clock) line loW. The START 
condition acts as a signal to every device that something is 
about to be transmitted on the bus. All devices connected 
listen to the bus to see if they are to be involved in the 
upcoming transaction. 

After a message has been completed, a STOP condition is 
sent in Which the Bus master device releases the SCL clock 
line and then releases the SDA data line. This is the signal for 
all devices on the bus that the bus is available for a neW master 
device. Any device that received data during the last transac 
tion can then begin processing it. 
Once the START condition has been sent, a byte can be 

transmitted by the master device to the slave device. This ?rst 
byte after a START condition Will identify the slave device on 
the I2C Bus by its address, and Will select a mode of operation. 
The meaning of the bytes that folloW depend on the slave 
device. A number of addresses have been reserved for special 
purposes. One of the reserved addresses is used to sWitch to a 
10-bit, ExtendedAddressing Mode. If a standard slave device 
that is not able to resolve extended addressing receives this 
address, it Won’t do anything (since it’s not its address). If 
there are slave devices on the I2C Bus that can operate in the 
extended l0-bit addressing mode, they Will all respond to the 
ACK cycle issued by the master device. The second byte that 
gets transmitted by the master device Will then be taken in and 
evaluated against their address. 
When addresses or data bytes have been transmitted onto 

the I2C Bus, they must be ACKNOWLEDGED by a slave 
device. A slave device can respond to the address With an 
ACK only if the address matches. When a data byte is trans 
mitted to an already addressed slave device, then that slave 
device Will be the one to respond With an ACK. The ACK 
consists of pulling the SDA data line loW immediately after 
reception of the eighth bit transmitted. Or, in case of an 
address byte, immediately after the evaluation of its address. 
As soon as a master device pulls the SCL clock line loW to 
complete the transmission of the bit, the SDA data line is 
pulled loW by the slave device. The master device then issues 
a clock pulse on the SCL clock line. The slave device releases 
the SDA data line at the end of the clock pulse. The bus is then 
available for the master device to continue sending data or to 
generate a stop. 

In a GENERAL CALL, all devices on the bus are 
addressed. If a device does not need the information provided, 
it simply issues a not-acknoWledge. A second byte in the 
GENERAL CALL includes a special command. The conven 
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tional commands are described in the 12C Bus Speci?cation, 
e.g., as published in June 2007 as Version 03 by NXP Semi 
conductors. 

In one embodiment, the divide-by-1024 default used in a 
device’s programmable prescale register is made program 
mable With an appropriate factor that is calculated to com 
pensate for its oscillator’s actual frequency. A target device’s 
oscillator clock frequency must therefore be readable, e.g., 
over the 12C Bus, such as by using 12C Bus commands. Once 
the raW clock frequency is sampled, an 12C master device can 
calculate an appropriate prescale factor to correct it, and load 
the prescale factor into the target slave device’s prescale 
register. 

FIG. 1 illustrates a system 100 in Which there are three 
LEDs 101-103 that need to seemingly blink in sync With one 
another. An 12C Bus 104 includes an SDA data line 106 and an 
SCL clock line 108. A master device 110 has control of the 
12C Bus and is able to issue commands to slave devices 
111-113. Embodiments are able to issue general call com 
mands that order the slave devices to take frequency measure 
ments of their respective oscillators, and then return the mea 
surements to the master device 110. The master device 110 
computes a prescale factor for each slave device 111-113, and 
commands the slave devices to accept these prescale factors. 

Embodiments therefore include tWo neW 12C Bus GEN 
ERAL CALL commands. FIG. 2 illustrates a ?rst command, 
e.g., a MEASURE PULSE command 200, and is shoWn in a 
bit-serial 12C data How format. TWo bits in the command, 
labeled n, de?ne the number of 1 ’s to be sampled in the next 
data byte. It is set based on the 12C Bus SCL clock line 
frequency. The start bit is labeled S, acknowledge is A, and 
stop is P. 

FIG. 3 illustrates a circuit 300 that can be used on-board 
each slave device 111-113 to measure its private oscillator 
frequency. Circuit 300 does this indirectly by using a time 
base (pWm_clk) derived from the on-board oscillator to mea 
sure the Width of the 12C Bus command data pulse observable 
on the SDA data line and SCL clock lines 106 and 108. Such 
command data pulse is visible to all 12C devices in parallel 
because they all connect to the same SDA data line and SCL 
clock line, and such serves here as a common reference by 
Which to measure. Any on-board measurement differences 
can therefore be attributed 100% to the unique individual 
differences in each slave device’s oscillator frequency. 
A ?rst ?ip-?op 302 has its D-input connected to the SDA 

data line 304 and is triggered by SCL clock line 306. The ?rst 
?ip-?op produces a “cSD ” signal 308 that is connected to 
the D-input of a second ?ip-?op 310. A “pWm_clk” signal 
312 from the oscillator on-board the 12C device is used to 
trigger all of the other devices. Since the command data 
pulses observed on the SDA data line 304 and SCL clock line 
306 Will be the same for all devices on a particular 12C Bus, it 
is the frequency of the pWm_clk signal 312 that is really being 
measured by circuit 300. Flip-?ops 310 and 314 are used to 
synchronize the cSDA signal 308 data into the pWm_clk 
domain, to arrive at an “sSD ” signal 316 for a measurement 
state machine 318. An 8-bit counter 320 is used to produce a 
digital measurement 322 for an 12C shift register that can be 
read by an 12C Bus master device. Counting is stopped in 
counter 320 if the count reaches 255 (PP hex), Which is an 
over?oW condition. 

FIG. 4 illustrates the logic of a state machine 400 that can 
be included in the measurement state machine 318 of FIG. 3. 

FIG. 5 illustrates the second of the neW 12C Bus commands 
included in the embodiments, e.g., a RESET PRESCALE 
command 500. The ?rst byte of the general call command is 
all Zeroes, e.g., 00000000, indicating a Write byte folloWs. 
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6 
The next byte is the 8-bit prescale factor to load into the 
prescale register in the slave device. 

FIG. 6 illustrates a prescaler 600 for inclusion in a slave 
device 111-113. The receipt of a RESET PRESCALE com 
mand 601 Will restart a prescaler counter 602. A serial-in, 
parallel-out shift register 604 clocks in the 12-bits of the 
prescale factor from the 12C Bus that Was sent by master 
device 110. A prescale register 606 loads in the 12-bit pres 
cale factor in parallel and holds it for reference during divide 
by-N operations. Counter 602 then proceeds to count 
upWards at its 12-bit parallel output With each tick pWm_clk 
from the local on-board oscillator. A 12-bit digital comparator 
610 Waits for the count from counter 602 to match the pres 
cale factor from register 606. When they match, a pulse 612 is 
output that triggers divide-by-tWo ?ip-?op 614 and causes a 
restart of counter 602 through OR-gate 616. The ?nal divide 
by-N operation appears on output 618. 

Table-l, Table-ll, and Table-Ill, shoW some pulse measure 
ment examples that canbe applied, e. g., to system 100 in FIG. 
1. 

TABLE I 

With the 12C Bus in Fast Mode Plus, and the SCL clock running at 
1 MHZ, the Pulse Width is four clocks of SCL clock line (4 HS): 

Measurement command —> 0000i1011 binary 
slave device 111 measures 4 HS x 25.0 MHZ —> count = 100 

slave device 112 measures 4 HS x 32.5 MHZ —> count = 130 

slave device 113 measures 4 HS x 17.5 MHZ —> count = 70 

TABLE 11 

With the 12C Bus in Fast Mode, and the clock ofthe 
SCL clock line running at 400-KHZ, 

the Pulse Width is tWo clocks ofthe SCL clock line (5 HS): 

Measurement command —> 0000i1001 binary 
slave device 111 measures 5 HS x 25.0 MHZ —> count = 125 

slave device 112 measures 5 HS x 32.5 MHZ —> count = 162.5, 

truncate to 162 

slave device 113 measures 5 HS x 17.5 MHZ —> count = 87.5, 

truncate to 87 

TABLE III 

For the 12C Bus in Standard Mode, and the clock ofthe 
SCL clock line running at 100-KHZ, 

the Pulse Width is one clock ofthe SCL clock line (10 HS): 

Measurement command —> 0000i1000 binary 
slave device 111 measures 10 HS x 25.0 MHZ —> count = 250 

slave device 112 measures 10 HS x 32.5 MHZ —> count = 255 (over?ow) 
slave device 113 measures 10 HS x 17.5 MHZ —> count = 175 

As seen in Table-Ill, there is an over?oW condition in slave 
device 112, so the choice of an SCL clock of 100-KHZ Will 
not Work. The minimum SCL clock frequency is 254/325 
MHZ:7.82 uS, or 128-KHZ. (Note, “254” is used in the above 
equation because “255” indicates an over?oW condition.) If 
loWer SCL clock frequencies than that are required, then the 
bit-Width of the measurement counter must be greater than 
8-bits. The 12C Bus 104 is an 8-bit bus, so adding to the Width 
of the counter Will require an extra read sequence to retrieve 
more bytes that describe the entire count. 
An 12C Bus master device 110 can then read a measure 

ment register in each slave device 111-113 using standard 12C 
Bus protocol. The oscillator frequency for each device can be 
calculated, as in Table-IV and Table-V, for example, using, 
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Device oscillator frequency:((SCL clock frequency)/n)>< 
measurement read, Where n is the pulse Width count. The I2C 
Bus in Standard Mode is not calculated. 

TABLE IV 5 

IZC Bus in Fast Mode Plus, SCL clock at 1.00-MHZ, n = 4: 

slave device 111 oscillator —> (1 MHZ/4) x 100 = 25.0 MHZ 10 
slave device 112 oscillator —> (1 MHZ/4) x 130 = 32.5 MHZ 

slave device 113 oscillator —> (1 MHZ/4) x 70 = 17.5 MHZ 

15 

TABLE V 

IZC Bus in Fast Mode, SCL clock at 400-KHZ, n = 2: 

slave device 111 oscillator —> (400-KHZ/2) x 125 = 25.0 MHZ 

slave device 112 oscillator —> (400-KHZ/2) x 162 = 32.4 MHZ 20 

slave device 113 oscillator —> (400-KHZ/2) x 87 = 17.4 MHZ 

If the I2C Bus master device 110 knows the actual SCL 
clock frequency, it can use that frequency in its calculations. 
Ideally, the master device measures the time the actual pulse 25 
is high on the SDA data line. If an absolute measurement of 
the frequencies is unnecessary, as in applications Where the 
blink rate is not critical but their blinking altogether synchro 
nously is, then a virtual frequency can be assumed and the 30 
measurements and corrections Will all have the same relative 
basis. 

An appropriate device prescale factor is calculated. The 
nominal prescale divide is 1024, With 1023 being used in the 
equation beloW because of hoW the prescale is implemented 35 
in the examples. 

The prescale factor is equal to the calculated device fre 
quency divided by the nominal oscillator frequency, times 
1023, and rounded, e.g., 40 

{(calculated device frequency)/ (nominal oscillator fre 
quency)}><1023. 

Using a nominal oscillator frequency, in one example of 
25.00-MHZ, Table-VI and Table-VII shoW the calculations. 45 

TABLE VI 

IZC Bus in Fast Mode Plus, SCL clock at 1 MHZ: 

slave device 111 Prescale —> (25.0 MHZ/25 MHZ) x 1023 = 1023 50 
slave device 112 Prescale —> (32.5 MHZ/25 MHZ) x 1023 = 1329.9 = 
1330 
slave device 113 Prescale —> (17.5 MHZ/25MHZ) x 1023 = 716.1 = 716 

55 
TABLE VII 

IZC Bus in Fast Mode, SCL clock at 400-KHZ: 

slave device 111 Prescale —> (25.0 MHZ/25 MHZ) x 1023 = 1023 
slave device 112 Prescale —> (32.4 MHZ/25 MHZ) x 1023 = 1325.8 = 60 
1326 
slave device 113 Prescale —> (17.4 MHZ/25 MHZ) x 1023 = 712 

The I2C Bus master device Writes the calculated prescale 
factors into the prescale register using standard I2C protocol. 65 
The results are summariZed in Table-VIII for an SCL clock of 
1.00 MHZ, and in Table-IX for an SCL clock of 400 HZ. 

8 
TABLE VIII 

For the IZC Bus in Fast Mode Plus, SCL clock at 1.00 MHZ: 

slave device 111 Blink Frequency: {(25.0 MHZ/(1023 + 1))/2}/ 
512 = 23.84185 HZ 

512 = 23.84544 HZ 

512 = 23.83520 HZ 

Ifthe user Wants all LEDs to blink at a 1.00 HZ rate, 
the neW blink rates Will actually be: 

slave device 112 Blink Frequency: 

slave device 113 Blink Frequency: 

slave device 111 Blink Rate: (23 + 1)/23.84185 HZ = 1.00663 
seconds 
(23 + 1)/23.84544 HZ = 1.00648 
seconds 
(23 +1)/23.83520 HZ = 1.00691 
seconds 

slave device 112 Blink Rate: 

slave device 113 Blink Rate: 

TABLE IX 

For IZC Bus in Fast Mode, SCL clock at 400 HZ: 

slave device 111 Blink Frequency: {(25.0 MHZ/(1023 + 1))/2}/ 
512 = 23.84185 HZ 

512 = 23.91731 HZ 

512 = 23.96892 HZ 

Ifthe user Wants all LEDs to blink at a 1.00 HZ rate, 
the neW Blink Rates are: 

slave device 112 Blink Frequency: 

slave device 113 Blink Frequency: 

slave device 111 Blink Rate: (23 + 1)/23.84185 HZ = 1.00663 
seconds 

slave device 112 Blink Rate: (23 + 1)/23.91731 HZ = 1.00346 
seconds 

slave device 113 Blink Rate: (23 + 1)/23.96892 HZ = 1.00130 
seconds 

The blink rates are not exact, so the I2C Bus master device 
110 should periodically send the RESET PRESCALE gen 
eral call command to restart all of the prescale counters in 
slave devices 111-113 at Zero. This Will resynchroniZe and 
restart all of the prescale counters at the same time. 

Over time, the respective oscillators in slave devices 111 
113 Will independently drift in frequency, e.g., due to tem 
perature differences and other factors. The calibration 
method can be used at any time to re-calibrate and reset the 
starting times so they all fall back into step. 

FIG. 7 illustrates a master device 700 in an embodiment for 
use on the I2C Bus, and is equivalent to master device 110 in 
FIG. 1. Master device 700 has a controller 702 that is able to 
issue a MEASURE PULSE and a RESET PRESCALE pair of 
general call commands on a standardiZed I2C Bus. The MEA 
SURE PULSE command requests corresponding slave 
devices to return a measurement factor related to their local, 
otherWise private oscillator. The RESET PRESCALE com 
mand tells the corresponding slave devices to accept a pres 
cale factor that folloWs that has been speci?cally calculated 
for it to normaliZe its local private oscillator With a prescale 
correction. A calculator 704 computes the measurements 706 
gathered and computes an appropriate prescale factor 708 for 
each of many slave devices Which Will harmoniZe their col 
lective operation. An initial calibration trigger 710 provides 
the ?rst impetus for all of the slave devices to have their 
oscillators normaliZed to the same frequency, or nearly the 
same frequency as the digital granularity alloWs. A periodic 
calibration trigger 712 is used to keep long-term drift of the 
individual slave device oscillators under control, it can also be 
used to re-Zero the starting points of the dividers When their 
respective digital granularity has caused less-than-ideal divi 
sion quotients to be loaded as prescale factors. 
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FIG. 8 illustrates a slave device 800 in an embodiment for 
use on the 12C Bus, and is equivalent to any of slave devices 
111-113 in FIG. 1. Slave device 800 has a controller 802 that 
is able to respond to a MEASURE PULSE and a RESET 
PRESCALE pair of general call commands from a standard 
iZed 12C Bus. A local on-board oscillator 804 produces a raW 
frequency output 806 that is free-running and that can vary 
from slave device-to-slave device due to component and tem 
peratures variations. A programmable prescaler 808 alloWs 
this raW frequency to be prescaled into a corrected frequency 
output 810. The programmable prescaler 808 is similar to 
prescaler 600 shoWn in FIG. 6. 

Ideally, a group of slave devices 800 on the same 12C Bus 
can have their oscillators collectively corrected by appropri 
ate prescaling so that their respective corrected frequency 
outputs 810 all match one another. A programmable divider 
812 alloWs application programs to control the frequency, 
pulse-Width, or one-shot time of a ?nal output 814. A mea 
surement circuit 816 is similar to circuit 300 in FIG. 3. It takes 
a sample of the raW frequency output 806 according to mea 
surement WindoWs controlled by an 12C Bus SDA data line 
signal 818 and an SCL clock line signal 820. A measurement 
822 is output and forWarded by the slave device controller 802 
to a master device When it receives a MEASURE PULSE 
command. 

FIG. 9 illustrates a master device embodiment of a method 
900 for issuing MEASURE PULSE commands to collect 
oscillator measurements from a plurality of slave devices, for 
computing appropriate prescale factors, and for issuing 
RESET PRESCALE commands to Write the computed pres 
cale factors to respective slave devices on an 12C Bus. The 
bit-structures can be like those of FIGS. 2 and 5, respectively. 
A step 902 is an initial calibration trigger that gets the loop 
started the ?rst time, e.g., after a poWer up reset. A step 904 
issues a general call command, MEASURE PULSE, to the 
12C Bus. A responsible slave device Will respond With an 
acknowledgement and a measurement of its oWn raW oscil 
lator frequency. That measurement is received in a step 906 
and used in the computing of an appropriate prescale factor in 
step 908. Once the computed prescale factor is ready, a step 
910 issues a general call command, RESET PRESCALE, to 
the 12C Bus. The next one or tWo bytes sent in a step 912 are 
data With the prescale factor, e.g., l0-bits Wide. The process is 
repeated for all of the slave devices that need to have their 
oscillators harmonized, and different methods of broadcast 
and collection can be used apart from the ones described in 
particular here. A periodic calibration trigger 914 repeats the 
process every so often to keep constituent oscillator drift 
under control. 

FIG. 10 illustrates a slave device embodiment of a method 
1000 for responding to MEASURE PULSE commands from 
a master device Wanting to collect oscillator measurements 
from a plurality of slave devices. Method 1000 also provides 
for accepting appropriate prescale factors When it receives a 
RESET PRESCALE command on an 12C Bus. The bit-struc 
tures can be like those of FIGS. 2 and 5, respectively. A step 
1002 receives a general call command, MEASURE PULSE, 
on the 12C Bus. The slave device Will respond by collecting a 
measurement in step 1002, e. g., using the circuitry of FIG. 3. 
That measurement is sent in a step 1006 and used by the 
master device in the computing of an appropriate prescale 
factor. Once the computed prescale factor is ready, a step 
1008 receives a general call command, RESET PRESCALE, 
from the 12C Bus. The next one or tWo bytes are the data With 
the prescale factor, e.g., l0-bits Wide. A step 1010 resets the 
prescale divider, and a step 1012 loads the programmable 
prescale divider, e.g., using the circuits of FIG. 6. The slave 
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10 
device noW has its oscillator harmonized With the other oscil 
lators on the other slave devices in the system. 
More sophisticated embodiments reduce the user interac 

tions required by the foregoing to only requiring the user to 
send the frequency of the SCL clock. Such is described in 
kilohertZ Within an otherWise ordinary 12C Calibration com 
mand. The necessary calculations are begun Within each 
device once the appropriate command is received. 

Calibrated oscillators can have cost disadvantages, e.g., 
they need additional silicon area that shares space With the 
non-volatile memory and calibration circuitry. There is also a 
cost added for the time needed for calibration. Frequency 
differences Will still exist in these devices, they are just not as 
pronounced in uncalibrated devices. 

Each device requires a ?xed-point multiplier, a calibration 
state machine, and knoWledge of the 12C General Call Com 
mands used to enter into an Auto Calibration Mode. Such 
Auto Calibration function can be run in background While the 
device is performing its primary functions. 

FIG. 11 represents an LED blinker device 1100 for an 12C 
bus application that includes an oscillator 1102 and a ?xed 
prescale counter 1104 that Will produce a ?xed rate clock 
1106. For example, With an oscillator frequency of 25 MHZ, 
and a ?xed prescale value of “256”, clock 1106 Will nomi 
nally be about 97.656 KHZ. A second part is used to generate 
user-programmable frequencies or blink rates, such as for an 
LED. 
A calibration prescale 1108 is programmed automatically 

With a correction factor that compensates for a large part of 
the frequency errors of oscillator 1102. The calibration pres 
cale 1108 typically has a default divide value set to “2048”, 
e.g., binary l000i0000i0000. A correction factor is com 
puted in calibration device 1 11 0 by counting, for example, the 
number of cycles output by oscillator 1102 during the tWenty 
seven SCL clocks that are required to communicate a CALI 
BRATE general call command over the 12C bus. 
A user-programmable divider 1112 is available to users 

and can be loaded With a range of divider values, e.g., 2-256, 
for different blinker rates in LED driver applications. A ?xed 
divider 114 then outputs a user selected frequency output 
1116 that is at least partially frequency compensated and 
much closer to nominal values in spite of rather loose pro 
duction and operational tolerances. 
The oscillator frequencies and tolerances given in FIG. 11 

are examples used only here for sake of discussion. Other 
frequencies and tolerances could, of course, also be gener 
ated. In real World practice, the 130% output frequency from 
oscillator 1102 could vary 17.5 MHZ to 32.5 MHZ. The result 
ing blink frequency 1116 Would also have the same high level 
of uncertainty. 
The essential aspect here is that a system-Wide SCL clock 

is used as a universal basis to calibrate or correct independent 
oscillators on different 12C bus devices. 

FIG. 12 represents an application 1200 in Which three LED 
blinkers 1201-1203 are connected to independently drive 
three discrete LEDs 1204-1206. Each LED blinker 1201 
1203 is similar to blinker device 1100, and the object is to 
blink LEDs 1204-1206 in synchronism. The problem is that 
the three blinker devices 1201-1203 each have their oWn free 
running oscillators, and the blinking of LEDs 1204-1206 
Would appear to the eye to be unsynchroniZed Were it not for 
the present method and device embodiments. An 12C master 
controller 1210 is able to issue CALIBRATE and ZERO 
COUNTERS General Call commands, e. g., as represented in 
FIGS. 13 and 14. The LED blinkers 1201-1203 are I2C slave 
devices able to respond to such CALIBRATE and ZERO 
COUNTERS General Call commands. 12C master controller 
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1210 further includes a trigger providing for a periodic issu 
ance of said CALIBRATE command and ZERO 
COUNTERS General Call commands. 

Given three different LED Blinkers 1201-1203, and 
the 130% tolerances that can occur, the ?rst could have an 
oscillator 1102 (typical of FIG. 11) running right at the nomi 
nal 25.00 MHZ, the second one’s oscillator 1102 could 
be +30% at 32.50 MHZ, and the third one’s oscillator 1102 
could be —30% putting out 17.50 MHZ. If the user program 
mable divider 1110 in each ofthe LED Blinkers 1201-1203 is 
set to divide-by-tWo, then the blink frequency outputs to 
LEDs 1204-1206 Will respectively be: 

Blinker 1201: 25.000 MHZ/2048/2/256:23.842 HZ; 
Blinker 1202: 32.500 MHZ/2048/2/256:30.994 HZ; and 
Blinker 1203: 17.500 MHZ/2048/2/256:16.689 HZ; 
And, the blink rate Will be: 

(N + l) 
BlinkiFrequency’ 

Where N is a number, 0 to 255, is the value that should be 
loaded into each of the three user programmable dividers 
1110 to compensate for the differences Within the 130% 
range of tolerance. The blinking LEDs 1204-1206 then 
should appear to the eye to more or less all blink at the same 
rate. 

In one example, if a user Wants the three LEDs 1204-1206 
to blink at a 1 HZ rate, the ideal blink frequency Would be 24 
HZ, and the ideal oscillator frequency Would be 25.16582 
MHZ (24 HZ><512><2><1024). A 1 HZ blink rate Would simply 
require loading a value of “23” into the blink rate register, 
e.g., user programmable divider 1110 (FIG. 11). But, given 
the :30% tolerances in the above example, the three resulting 
blink rates, as in FIG. 12, could be very different: 

Blinker 1201; w = 1.0066 seconds‘ 
23.842 HZ ‘ 

, (23 + 1) 
Blinker 1202: = 0.7743 seconds; and 

Blinker 1203; w = 1.4381 seconds. 
16.689 HZ 

The solution here is to adjust the value of calibration pres 
cale 1108 from its default value of “2048”. The value is 
adjusted to reduce the blink frequency errors that occur 
because of the tolerances possible, the real operational differ 
ences that occur betWeen otherWise identical devices. Making 
the appropriate adjustments depends on being able to deter 
mine the true clock frequency of each oscillator 1102, or hoW 
they all compare to some standard clock. In an I2C system as 
shoWn in FIG. 12, the SCL clock can be used as a standard for 
relative comparison. The absolute frequencies do not need to 
be determined With precision. 

The I2C system-Wide SCL clocks seen at each LED blinker 
1201-1203 can be used as a basis to calculate respective 
frequencies of their respective local oscillators 1102. Such 
calculation in calibration device 1110 is triggered by neWly 
de?ned I2C Bus General Call Commands. 

FIG. 13 represents an I2C bus CALIBRATE general call 
command 1300 that begins With a start bit (S) 1301, a General 
Call byte 1302, an acknoWledge bit (A) 1303, a CALIBRATE 
command byte 1304, an acknoWledge bit (A) 1305, an SCL 
frequency loWer byte 1306, an acknoWledge bit (A) 1307, an 
SCL frequency upper byte 1308, an acknoWledge bit (A) 
1309, a process byte 1310, an acknoWledge bit (A) 1311, and 
a stop (P) bit 1312. 

The tWenty-seven SCL clock measurement period men 
tioned for calibration device 1110 occurs during the transmis 
sion of the CALIBRATE command byte 1304, acknoWledge 
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12 
bit (A) 1305, SCL frequency loWer byte 1306, acknoWledge 
bit (A) 1307, SCL frequency upper byte 1308, and acknoWl 
edge bit (A) 1309, over the I2C bus. 
CALIBRATE command 1300, is shoWn in FIG. 13 in a 

bit-serial I2C data How format, and each bit takes one SCL 
clock period. The SCL frequency values are expressed in 
units of KHZ. In one example, the SCL frequency is 1000 
KHZ, e.g., “3E8” hex. 
The number of oscillator clocks produced locally on each 

LED blinker 1201-1203 by corresponding oscillators 1102 
are counted during the common period spanned by the com 
munication of the CALIBRATE Command, a total of tWenty 
seven SCL clock periods. The resulting counts collected 
respectively for each LED blinker are then used indepen 
dently by all three to compute a calibrated blink prescale 
correction factor needed locally in the respective prescale 
counter 1108. The SCL frequency is described as tWo bytes, 
upper and loWer in the CALIBRATE command. That number 
is divided by the number of SCL clocks in the measurement 
period, here that Will be tWenty-seven. That result is multi 
plied by hoW many local oscillator clocks that occurred in that 
measurement period. The result is the true local oscillator 
frequency. This can be expressed mathematically by: 

EQUATION- 1 

( S CLifrequency (1) 
m] X osciclockicount : oscifrequency 

The true local oscillator frequency is divided by the ideal 
oscillator frequency, and multiplied by the ideal blink pres 
cale value. This results in a calibrated blink prescale value, 
that can be expressed mathematically by: 

EQUATION- 2 

oscifrequency , , 4 4 

(,i ] >< idealiblinkiprescale : calibratediblinkiprescale idealioscifreq 

Combining EQUATION-1 and EQUATION-2, the SCL 
frequency times the oscillator clock count, times a constant, 

2048 

((25000 X 27))’ 

is the calibrated blink prescale, or the “correction factor” in 
FIG. 11 sent by calibration device 1110 to calibration pres 
cale 1108, and is expressed mathematically by: 

( idealiblinkiprescale ] 
(idealioscifreq >< nurniSCLiclocks) X 

SCLifrequencyX osciclockicount : calibratediblinkiprescale 

Reducing 

( 2048 
m] X SCLifrequencyX osciclockicount : 

calibratediblinkiprescale 

Yield 5: 

SCLifrequencyX osciclockicountx 0.003034074 : 

calibratediblinkiprescale 
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Preferably, a 24-bit ?xed-point multiplier is included in 
calibration device 1110 for these calculations. This can 
require converting constants into 24-bit ?xed-point numbers, 
e.g.: 

0.003034074 ((iziu ]><10]+5 
: 50,903 l t : INT[ ca icons 10 

A blink clock prescale is thus calculated for each device, 
e.g., LED blinkers 1201-1203. The “cal_const” value is not 
an exact conversion, but an approximation and constant num 

ber, 0.003034055, that can be used, e.g.: 
Given, SCL Frequency:1 MHz:1000 KHZIl 11S cycle 

time; 
For Blinker 1201, the osc_clock_count:1 uS’27><25.000 
MHz:675.0:675 counts; 

For Blinker 1202, the osc_clock_count:1 uS><27><32.500 
MHz:877.5Qtruncated—>877 counts; 

For Blinker 1203, the osc_clock_count:1 uS><27><17.500 
MHz:472.5Qtruncated—>472 counts; 

And, calibrated_blink_prescale:osc_clock_count><SCL_ 
frequency><cal_const. 

For Blinker 1201, its calibrated blink prescale,:675>< 
1000><0.003034055I2047.997125arounded—>2048; 

For Blinker 1202, its calibrated blink prescale:877><1000>< 
0.003034055:2660.866235Qroundeda2661; 

For Blinker 1203 its calibrated blink prescale,:472><1000>< 
0.003034055I1432.073960Qroundeda1432. 

Calculating the neW blink clock frequencies With the user 
programmable divider 1112 be set to divide-by-2. The blink 
frequencies are: 

Blinker 1201: 25.000 MHz/2048/2/256:23.842 Hz; 
Blinker 1202: 32.500 MHz/2661/2/256:23.854 Hz; and 
Blinker 1203: 17.500 MHz/1432/2/256:23.868 Hz, 

Calculating the neW blink rates: 

Blinker 1201: @ =1.0066 seconds‘ 
23.842 Hz ' 

, (23 + 1) 
Blinker 1202: = 1.0061 seconds; and 

, (23 + 1) 
Blinker 1203: = 1.0055 seconds. 

And, the original blink rates Were: 

Blinker 12011: E = 1.0066 seconds‘ 
23.842 Hz ' 

Blinker 1202: w = 0.7743 seconds‘ and 
30.994 Hz ' 

Blinker 1203: w = 1.4381 seconds. 
16.689 Hz 

Even after calibration, the blink rates for each LED 1204 
1206 Will be slightly different due to divider granularities. 
Combined With the corresponding local oscillator drift due to 
temperature and other factors, over time, the blinking of the 
three LEDs 1204-1206 can slip noticeably out of synchroni 
zation. 

So a second 12C bus General Call Command, ZERO 
COUNTERS, is needed, and is represented in FIG. 14. As 
shoWn in FIG. 11, the receipt of ZERO COUNTERS is con 
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14 
nected, for example, to reset dividers 1108, 1110, and 1112, 
and thus resynchronizes all the LED blinkers, such as 1201 
1203 in a system 1200, to a common starting count. Both the 
CALIBRATE and the ZERO COUNTERS General Call com 
mands can be sent automatically at any time during operation 
from a 12C bus master controller common to all the 12C bus 
slave devices. For example, con?gured as in FIG. 12. 
Embodiments can be used in applications that require on 

demand harmonization of otherWise independent clocks. The 
methods described here include adjusting a relatively small 
prescale counter of 8-bits Width, but a prescale of differing bit 
Widths and counts is entirely possible. 

In an alternative embodiment, the individual 12C bus slave 
devices could skip determining their oWn exact local oscilla 
tor frequencies and Would not need the 12C bus master con 
troller to tell them the SCL clock frequency. Calibration 
devices 1110 on respective LED blinkers 1201-1203, for 
example, could all assume the SCL clock frequency is some 
constant. They Woulduse that constant compared to their oWn 
local oscillators as a norm to calculate their oWn prescale 
correction factors. The object is to harmonize the clocks to 
one another, not primarily to correct their absolute frequency 
accuracies. This could eliminate having to communicate the 
upper and loWer SCL frequency bytes 1306 and 1308 (FIG. 
13) in the General Call CALIBRATE command 1300. 

In general, the method, protocol, device, and system 
embodiments described act to harmonize the oscillator fre 
quencies of a plurality of 12C Bus slave devices sharing a 
particular 12C Bus. A prescale factor is calculated from an 
automatic measurement obtained. The prescale factor is 
loaded into a programmable prescale divider associated With 
an oscillator providing the raW operating frequency. The esti 
mating, calculating, and loading are conducted for a plurality 
of slave devices on the particular 12C Bus to harmonize the 
respective output frequencies of each programmable prescale 
divider. 

Although speci?c embodiments of the invention have been 
described and illustrated, the invention is not to be limited to 
the speci?c forms or arrangements of parts as described and 
illustrated herein. The invention is limited only by the claims. 
What is claimed is: 
1. A method for harmonizing the after-prescaled oscillator 

frequencies of a plurality of 12C Bus slave devices, compris 
ing: 

estimating a raW operating frequency of each oscillator on 
an individual 12C Bus slave device by counting hoW 
many independent local oscillator cycles occur during a 
measurement WindoW period spanned by a ?xed number 
of serial clock line (SCL) transitions observed in a par 
ticular 12C Bus common to the plurality of 12C Bus slave 
devices; 

automatically calculating a prescale factor from a measure 
ment obtained in the step of estimating; and 

automatically loading said prescale factor into a corre 
sponding programmable prescale divider associated 
With an oscillator providing said raW operating fre 
quency; 

Wherein, the estimating, calculating, and loading When 
conducted for a plurality of 12C Bus slave devices on said 
particular 12C Bus results in a harmonization of the 
respective output frequencies of a respective program 
mable prescale divider. 

2. The method of claim 1, further comprising: 
sending a CALIBRATE general call command over said 

particular 12C Bus from a 12C Bus master device to each 
said 12C Bus slave device to trigger the step of estimat 
ing. 




