
IV

I2qA UILU-ENG-7S-2030

4.2~
cV 3 CIVIL ENGINEERING STUDIES

STRUCTURAL RESEARCH SERIES NO. 424

TECHNOLOGY FOR THE FORMULATION
AND EXPRESSION OF SPECIFICATIONS

VOLUME II: PROGRAM USER'S MANUAL

Metz Reference Room
C· '1 E' . D 1 VI .:ngJ.:t.1G<3I':::..ng. epartment
BI06 C. E. Buil:ing
University of Illinois
Urbana, Illinois 61801

By
J. R. HARRIS

J. W. MELIN

C. ALBARRAN

A Report on a Research Project

Sponsored by

THE NATIONAL BUREAU OF STANDARDS

Contract 5-35844

UNIVERSITY OF ILLINOIS

AT URBANA-CHAMPAIGN

URBANA, ILLINOIS

DECEMBER 1975

TECHNOLOGY FOR THE FORMULATION

AND EXPRESSION OF SPECIFICATIONS

VOLUME II: PROGRAM USER1S MANUAL

by

J.R. Harris, J.t'/. t·1elin, ·and C. Albarran

A report on a research project sponsored by:

THE ilAT I or~AL BU REAU 0 F ST Ar~DARDS

Contract :~o. 5-35844

DEPARTMLJT OF CIVIL ENGINEERI[~G

UrJ I VERSITY OF ILL HJOIS

URBANA, ILL HIO IS

Decp.mber 1975

i

INTRODUCTION

This report describes the use of three computer programs

(DECISION TABLE, NETHORK, AND OUTLINE) produced as a part of the study,

"Technology for the Formulation and Expression of Specifications. II The

programs are designed for interactive use from a remote console, and the

communication with the programs. is in free format, making the programs

easy to use for those with limited experience in working with computers.

The programs are operational on the Burroughs B6700 computer at the Civil

Engineering Systems Laboratory (CESL) at the Department of Civil Engineerinn,

University of Illinois, Urbana, Illinois.

The principles on \'Jhich the programs are based and examples .of

the application of these principles are contained in volume I of this

. report,while a more technical description'of the three programs, including

logic diagrams, dat~ structure, and program listings, is contained in

volume III. This volume contains a description of the use of each program

preceded by a chapter describing access to and use of the computer facility

at which the programs are operational.

ii

PROGRAM USER'S MANUAL

TABLE OF CONTENTS

INTRODUCTION

TABLE OF CONTENTS

LIST OF FIGURES AND TABLES

CHAPTER

2

GENERAL INFORMATION

1 . 1 Computer Facility

1 .2 Access

1 .3 Machine Communications

1 .3. 1 Symbolism

1 .3.2 Control Commands

1 .4 Files

1 .4. ": CANOE Commands

1 .4.2 File Manipulation Commands

1.4.3 File Editing Commands

1.4.4 File Maintenance

DECISION TABLE PROGRAM

2.1 General Description

2.2

2.1.1 Formulation and Decomposition of Logic

2.1.2 Guide to Expression

Definitions and Conventions

2.2. 1 Terminology

2.2.2 Operating Mode Philosophy

2.2.3 Data Storage

2.2.4 Restrictions

2.2.5 Decomposition Algorithm

Page

i

ii

v

1

1

2

3

3

4

5

5

6

7

8

8

8

9

9

9

10

11

11

12

iii

CHAPTER P.age

2.3 Input and Operating Instructions 12

2.3.1 Starting the Program 12

2.3.2 Data Input Routine 14

2.3.3 Operational Commands 16

2.4 Output 17

2.5 Errors and Error Messages 18

2.5.1 Incorrect Input or Command 18

2.5.2 Non-Unique Rules 18

2.5.3 Else Rules 18

2.6 Example Problem 19

3 INFORMATION NETWORK PROGRAM 26

3. 1 General Description 26

3.2 Definitions and Concepts 26

3.2.1 Terminology 26

3.2.2 Restrictions 28

3.2.3 Operations Performed 28

3.3 Input and Operating Instructions 29

3.3. 1 Starting the Program 29

3.3.2 Data Input Routine 29

3.3.3 Opera ti ana 1 Comrrands 32

3.4 Output 34

3.5 Errors and Error Messages 35

3.6 Example Prob 1 em 35

iv

CHAPTER Page

4 OUTl IN E PROGRAM 40

4.1 General Description 40

4.2 Definitions and Concepts 40

4.3 Input and Operating Instructions 41

4.3.1 Starting the Program 41

4.3.2 Data Input Routine 42

4.3.3 Ope ra t i 0 na 1 Commands 43

4.4 Output 43

4.5 Error Messages 44

4.6 Exampl e 44

REFERENCES 48.

FIGURES 49

v

PROGRAM USERS MANUAL

LIST OF FIGURES AND TABLES

FIGURE Page

2.1 Decision Table Terminology 49

2.2 Decision Tree 50

2.3 Flow Chart for Problem Initialization 51

2.4 Flow Chart for Data Input (TABLE) 52

2.5 Flow Chart for Program Control (TABLE) 53

3. 1 Flow Chart for Data Input (NETWORK) 54

3.2 Flow Chart for Operational Commands (NETWORK) 55

3.3 Network Representation 56

4. 1 Argument Tree Structure 57

TABLE

4. 1 List of Arguments and Thei r Parents 45

4.2 Major Provisions with their Associated Argument Numbers 45

1.1 Computer Facility

Chapter One

GENERAL INFORMATION

The facility at which the computer programs are operational

is the Civil Engineering Systems Laboratory (CESL), located in the Depart­

ment of Civil Engineering, Univ.ersity of III inois, Urbana, Illinois.

CESL operates a Burroughs B6700 computer on a time sharing basis for use

from remote terminals. The programs described in this manual were

. written in FORTRAN IV and are operational on the B6700 installed at

CESL.

1 .2 Access

Remote terminals (teletype machines or cathode ray tubes) may

be connected to the 86700 via conventional telephone lines. The personnel

at CESL will assign appropriate telephone numbers to users. Before

dialing the telephone number, switch. the terminal to full duplex. If

the terminal does not have a duplex switch, check the duplex after making

the phone connection by typing any message and pressing the carriage

return. If the message is repeated by the computer, the terminal is

operating at half duplex. In that case enter the command t HALF and

press the ca rri age return.

Once the proper phone connection is made, the session is init­

iated by pressing the carriage return. The receiving computer will

respond with the message;

CENTS OF: date, time of message, informative messages for users

-2-

Make the connection to the 86700 computer by typing t CON 86700 and

pressing carriage return. This may be abbreviated as t CON B6. The

computer will respond with a greeting, such as:

CESL TIMESHARING 86700 CANOE ... YOU ARE STATION 36

ENTER USERCOOE PLEASE

The usercode and password assigned to the user by personnel at

CESL should then be entered even if the second message above was not received).

If the computer 'accepts the entry, it will send a message like:

SESSION 7054

At this point it is possible to run any of the programs described

in the following chapters or perform any of the operations listed in

sections 1.3 and 1.4.

When the user is finished, he may terminate the session by

typing the word BYE and pressing the carriage return. The session will

also be terminated if the telephone connection with CESL is broken.

1.3 Machine Communication

Communication with the computer is accomplished with the

Command AND Edit language (CANOE). Most users will not need to learn

the syntax of this language, because their communication with the

computer will be directly controlled by the program being executed.

That is, all programs are designed to be operated in an interactive mode,

with the user simply responding to instructions from the program.

Chapters 2, 3 and 4 describe this interaction in detail. If more infor-

-3-

mation is desired on the syntax and use of CANOE beyond what is presented

herein, it may be obtained from CESL or the Burroughs Corp. (ref. 1.1)

1.3.1 Symbolism

The following conventions are used in the description of the

commands:

1) Upper case letters are commands recognized by CANOE. If a

portion of the word is underlined, it is permissib1e to use

only that portion.

2) Lower case letters enclosed by the symbols < > are variables

which represent information to be supplied by the user.

3) !lde1 imll represents any arbitrary del imiter which may generally

be any non-alphanumeric character except one that occurs in the

variables being separated. The slash, /, is a particularly

convenient" delimiter.

4) A sequence number refers to the number associated with a par­

ticular line of information.

5) A sequence range list is an inclusive range of sequence numbers,

such as 500-1000 or 100-END.

1.3.2 Control Commands

Backspace: depress the keys II CTRL II and II Hli s imul taneously.

Delete the line: depress the keys IICTRL II and "0" simultaneously.

Terminate the execution of a program (this "killsll the program

while it is running): type ?OS and press the carriage return.

-4-

Terminate the listing of output on the remote tenninal: type

?BRK and pres s the ca rri age return,. .2.!.. press the key rna rked II BREAK" .

Question the status of a program while it is running: type

?STATUS and press the carriage return.

Program operation: type ~UN <program name> and press carriage

return.

1 .4 Fi 1 es

Each timesharing user of the B6700 operates on and with files that

are stored on magnetic disc. A file may be the FORTRAN source code for a

program, the compiled object version of the program~ a set of input or

output data, or any other collection of records. The name ufile" is probably

derived from the use of the word file to describe a group of punched computer

cards. The files of interest to the reader include the three programs

described in this manual and the files of data stored from previous problems

run on these programs. Files may be manipulated and edited by the user

from his terminal with CANOE.

The programs will automatically create a data file for each probl~m

the user runs, assigning a name given by the user. The data in these files

will allow the user to rerun the problem in the future without re-entering

the input data. Although each program contains a routine for modifying

data, a few users will find it convenient to examine the data file and

modify it directly. It is also possible for the user to create new files

if he wishes. A feature that will be incorporated into the programs in the

future will allow a user to create a file that may be used as original

input to the programs. At present,. the original input must be made with the

-5-

program operating in interactive communication witfi the user.

1 .4. 1 CAN DE Corrma nds

In the following commands, a carriage return is required at

the end of the line in order to dispatch the command to the computer.

The term work file means the file that is actively being examined or

modified from the terminal. A filename consists of 1 to 12 words sep­

arated by slashes. Each word may contain up to 17 characters, but the

total name is limited to 136 characters. Generally 4 to 8 characters

are sufficient to describe files without ambiguity. Note that the

sequence numbers are of importance for editing, but they are otherwise

ignored by the computer.

1.4.2 File Manipulation Commands

MAKE < filename> - creates a new workfile

GET < filename> - recalls a file as the workfile

SAVE < filename> - saves the file in the user's library

REMOVE < filename> - removes the file from the user's library

LIST < filename> - displays the contents of the file on the

us e r 1st e rm i na 1 .

TITLE < filename> TO < filename> - changes the title of a file.

FILES - causes a list of all the names of the user's files to

be printed on the terminal.

Note that the variables < filename> may be omitted from the commands SAVE,

REMOVE, LIST, and TITLE (the first filename only for TITLE) if the file in

question is the current workfile.

-6-

1.4.3 File Editing Commands

~QUENCE - invokes the automatic sequence mode, causing the com­

puter to provide the sequence number for each new line. The automatic

sequence may be stopped by pressing the carriage return directly after the

sequence number is printed. The sequence numbers generally start with 100

and have increments of 100, so it is possible to enter new lines between

old ones. It is possible to ov.erride these values by entering the desired

base number and increment thus:

~EQUENCE < base > ~ < increment>

When a sequence has been stopped, it may be resumed by invoking the

sequence command with the new base desired. If the workfile has not

changed between stopping and restarting a sequence, the computer will

automatically begin with the correct new base.

RESEQUENCE < base > ~ < increment> - assigns new sequence

numbers without changing the order or content of the lines of the workfile.

If the base and increment are not specified, 100 will be used for both.

DELETE < sequence range list> - discards the specified lines

from the workfile

~IX < sequence number >< delim >< old text >< delim >< new text>

replaces the specified item in a line by new material. Some examples of

this useful procedure are shown below:

original line: 700 NUMBER AF NODES 267

FIX command: FIX 700 /AF/OF

new 1 i ne: 700 NUMBER OF NODES 267

original line 1150 GO TO 733

FIX command:

ne'tJ line:

FIX 1150 /3/4

11 50 GO TO 743

Metz Reference Room
Civil Engineering De~artme~

106 C "'[i1 1'"'),j l' "~ "1 -n.D" B . l:J. .D t.._ • ..: •. '- - --0 •

Urti versit~T of ~C1.1=l.r.lo l S

Urbana, I11inol.3 61:301

-7 -

Note that only the fi rst occurance of the 01 d text is repl aced by the new

text.

INSERT « fi 1 ename » <, sequence range 1 ist > AT < base>

(~< increment » - causes the specified lines to be copied in the workfile

beginning at the specified base. The items in parentheses are optional,

so that the workfile is assumed and an increment of 100 is assumed.

MOVE < sequence range, 1 is t > TO < base > (±.. < increment » moves

lines from one point to another in the workfile.

FIND < del im >< text >< del im > - searches the workfile for the

specified text.

REPLACE < delim >< text >< delim >< delim >< new text >< delim >

« sequence range list » - replaces the specified text with the new text

at all occurrences within the sequence range list. If no range is given,

the command affects the entire workfile.

1.4.4 File Maintenance

It may be necessary for the personnel at CESL to occasionally

remove a user's files from the disc and store them on magnetic tape. When

this occurs, the computer will give a message similar to:

FILES NOT PRESENT

When this occurs, a phone request to the personnel at CESL to place the

user's files on the disc will be necessary.

2.1 General Description

-8-

Chapter Two

DECISION TABLE PROGRAM

This program is designed to accept input describing a limited

entry decision table and perform operations upon it to aid the user in

checking the logical fonnulatio.n of the decision tabl e and in preparing

textual expression of the content of the decision table. It'is assumed

that the user is familiar with decision tables and has a rudimentary

understanding of what a network is, the second in order to interpret a

portion of the output of the program. Decision tables and networks are

described in Volume I of this report. The text by Pollack (ref. 2.1) i,s

also a good reference for decision tables.

2.1.1 'Formulation and Decomposition of Logic

The logical formulation of the decision table is checked by

decomposing it into a decision tree, which is simply a graphical repre­

sentation of the logical content in the form of a network rather than in

a tabular display. The process of decomposition will identify all re­

dundant or contradictory rules (that is, all rules that are not unique).

Non-unique rules will prevent the synthesis of a unique path in the network

for each rule, and the program will call this to the user's attention.

The decision tree also identifies any combinations of condition entries

that are not given as a rule by showing a branch in the decision tree

labeled as an lIelse" rule. Detection of the else rules allows the user

to study the situations that his decision table has not covered and make

modifications if it is desired to have a complete table.

-9-

2.1.2 Guide to Expression

Textual expression of the logical content of a decision table

is generally done in a rulewise manner. That is~ each rule (that requires

expression) can be associated with a phrase, clause, or sentence. It is

expected that the decision network will aid the ordering of the rules, but

no specific principles are yet formulated.

2.2 Definitions and Conventions

2.2.1 Terminology

It is not the purpose of this manual to introduce the user to

decision tables. The user should understand what is meant by decision

table, condition, condition stub, condition entry, action, action stub,

action entry and rule (see figure 2.1). This program deals only with

limited entry tables, meaning that the condition and action entries must

all be'logical values. However, the program will accept a somewhat wider

range of values than what has been conventional for limited entry tables

in the past. The acceptable condition entries are:

T True

F False

Immaterial

+ Implicitly true

Implicitly false

The implicit entries are for use in arule where the value of a condition

may be predetermined by the values of the other conditions. It is not

necessary to test an immaterial entry in order to verify a rule. Implicit

entries are useful when the conditions are not independent.

-10-

The acceptable action entry for input is a number indicating

which action is to be executed for each rule. The output displays an IIX II

in the action entry to indicate which action is to be executed.

The decision tree is a special kind of network. The name tree implies

a network that has one root and has no closed loops. The decision tree is con­

structed by showing one condition at each node. Each node, has one branch entering

it and two branches leaving it" one representing a true value, the other a

false value. At the end of each path is a terminal node representing a

rule. There is no unique decision tree for anyone decision table, each

tree depends on the order that the conditions are used in constructing it.

However, each of the possible trees does represent the same decision logic.

It is worthwhile to note that the same condition can appear at more than

one node, and that the same rule can appear on more than one path, although

the la~ter only occurs when there is an immaterial entry in the rule and

the condition which corresponds to it appears in the network where the two

paths diverge. See figure 2.2 for an example.

2.2.2 Operating Mode Philosophy

The program is designed to be operated in an interactive mode

from a teletypewriter or cathode ray tube terminal. The output may be

displayed on the remote terminal or on the line printer at the computer

installation. It will be possible to run the program in a batch mode,

in the future. The interactive mode seems to be advantageous because of

the short response time and the relatively small amount of input data

required.

-11-

2.2.3 Data storage

The program creates a data file in permanent memory (magnetic

dis~) for each decision table with the name supplied by the user. All of

the necessary information for recreating the decision table and network

is stored in this data file so that it may be re-used at any time. The

data file is automatically updated as modifications to the decision table

are made. It is possible to gain access to these data files when operating

outside of this program, since they are stored in a formatted form. This

feature allows use of the more sophisticated editing capabilities of the

Command and Edit Language (CANOE) that is a part of the Burroughs B6700

system, as described in Chapter One.

2.2.4 Restrictions

The program is dimensioned to accept tables with up to 27 rules,

27 conditions and 27 actions. Modifying this limitation would require

changes in the source code and permanent data file structure of the pro­

gram. Because of the width of paper on remote terminals, only tables with

twelve or fewer rules can be printed in one unit. Larger tables are

printed in two portions when the output is to be sent to a teletype

terminal.

The condition entries and action entries must correspond to the

definition of limited entries discussed previously. The descriptive title

of the table is limited to 60 characters in length. The expressions in

the condition and action stubs are limited to 10 lines of 30 characters

each (total of 300 characters per stub). In addition, the total number of

characters in all the condition stubs or action stubs is limited to 1200.

-12-

2.2.5 DecompositiohAlgorithm

The program automatically decomposes the decision table into a

decision tree using a procedure similar to the IIquick" rule of M. Montalbano

(ref. 2.2). It tends to produce a network with some short and some long

branches, i.e., a skewed network that isolates a few rules quickly. This

is advantageous if those rules are the ones that occur most frequently.

The program will also produce a. decision tree using a procedure similar to

Montalbano's "de1ayed ll rule if the proper command is entered (see Section

2.3.3). This tends to produce a net\A/ork with branches of relatively equal

length. In decision tables with only explicit entries, this network tends

to minimize the number of conditions tested, on the average, in order to

isolate a rule. Both of these algorithms are described in detail in the

technical reference manual.

2.3 Input and Operating Instructions

2.3.1 Starting the Program

The first step is to connect the remote terminal to the Buroughs

B6700 computer and to enter the usercode and password. These steps are

described in detail in the initial chapter of this manual. The program

is initiated by the command:

RUN T A.BLE

Once the program has begun, most of the communication will be a two-way

interchange between the program and the user. In the following list, the

upper case letters without underlining are the program responses and the

underlined lines are the user input.

ENTER P FOR OUTPUT ON THE ONSITE PRINTER,

OTHERWISE THE OUTPUT WILL BE ON THE REMOTE TERMINAL

-13-

Any character other than P, or a blank will cause the output to be sent

to the user's terminal. If the user's response to this was a P, the pro­

gram will respond

DO YOU ~~ANT THE INPUT ECHOED ON THE OUTPUT

Simply answer YES or NO. The yes answer will cause each line of input from

the terminal to be reproduced on the output. The next response from the

program wi 11 be

ENTER THE DATA FILE NAME

The user should respond with the particular name he wishes to use, for

example:

ABCXYZ

The name consists of a list of one to twelve identifiers separated by

slashes. Each identifier may contain up to seventeen characters, but the

total must not exceed 136 characters. Generally, it will only be

necessary to use one identifier with five to ten characters. If more than

one identifier is used, enclose the entire name in quotation marks.

If the program does not find any file with the name oiven, it

will assume that the fil'e will contain new data and will proceed to the

data input routine (see section 2.3.2). If a file does exist with the

name given, the rrogram will respond:

FILE EXISTS WITH THIS NAME.

DO YOU \4ANT TO USE IT?

If the user does not intend to use data from an existing file,

the correct response is NO. The program will return to request for a

file name and the user should give a new name.

only the most recent data is retained in a file.

This is important because

Valuable data may be

-14-

lost by inadvertently using the name of an existing file when enteri.ng

new data.

If the user does intend to use data from an existing file, the.

correct response to the question above is YES. The program will then ask:

DO YOU WANT TO ~10DIFY THE EXISTING DATA?

Simply answer YES or NO. A YES sends the program to the input routine.

A NO initiates the automatic de.composition of the table into a tree. See

section 2.3.3 for the subsequent interaction. The sequence of commands

described in this section is shown in the flow chart in Fig. 2.3.

2.3.2 Data Input Routine

The program will give the following message when it enters the

input routine:

BEGIN INPlIT INSTRUCTIONS. ENTER THE WORD END WHEN FINISHED.

The input of the table is keyed to a series of headings which are nearly

self explanatory. The headings may be entered in any order, except as

noted. The headings are shown below. with the following conventions: The

underlined letters are the key letters that the machine looks for, the

remainder are used only to increase the readibility; the symbol i means

that an integer number must be entered at this point; the symbols < rule>

means that the condition entries must be entered using T, F, +, - and.

as described previously; <" ... 11> means that any descriptive phrase for

use as a title, condition stub, or action stub may be entered between the

quotation marks--note that these titles only serve to make the output

more readable, they are not involved in the logic of the program.

-15-

NUMBER of RULES i

NUMBER OF CONDITIONS i

NUMBER OF ACTIONS i

TITLE < "title of the decision table" >

RULES - begins the sequence of inputing the rules; the pro-

gram will print the following:

ENTER THE RULE NUMBER, THE CONDITION ENTRIES, AND THE

ACTION ENTRY, ONE RULE TO A LINE. ENTER THE ~IORD LAST

vJH EN FIN ISH ED .

i < rule> i-the first i is the rule number followed by

condition entries; the last i is the action number.

LAST terminates the sequence of rules

CONDITIONS begins the sequence of input for the condition

stubs; the program prints out:

ENTER, THE CONDITION NUMBER AND THE STRINGS, ONE 30

CHft.RACTER STRING TO A LINE. ENTER THE WORD LAST

WHEN FINISHED.

i < " ... " > i is the condition number.

< 11 ••• 11 > It is not to be repeated if more

< II ••• II > than one stri ng is necessary to

i < II II > express the stub. The sequence

i < II II > of strings is terminated when a new

< II II > condition number is encountered.

LAST terminates the sequence of conditions

ACTIONS begins the sequence if input for the action stubs.

The messages and sequence of commands are exactly analogous to those for the

condi ti on stubs.

-16-

END terminates the input routine.

The only headings that must follow a specific order are LAST and END. This

same routine is used for both new data and for modification of old data.

For example, if a mistake is discovered in a previous entry, such as a con­

dition stub, simply re-enter the condition heading, give the condition

number, the new stub, and the LAST command. Any item of data may be changed

in this manner. The syntax diagram for the input routine commands is shown

in Fig. 2.4.

2.3.3 Operational Commands

Once the decision table data is entered, whether from the input

routine or from retrieval of an old data file, the original table is

printed out and the decomposition into a decision tree proceeds automatically.

When it is complete the program prints out the decision tree as described in

section 2.4 and issues the following statement, if the table does not contain

redundant or contradictory rules:

commands:

DECISION NETWORK SUCCESSFULLY COMPLETED

ENTER A PROGRAM COMMAND

At this point the program will accept any of the following

WRITE - the program will print out a version of the table

with the rules and conditions ordered as they are encountered in the decision

tree.

DELAY - this creates a new decision tree using a modified

algorithm. See section 2.2.5 for a brief discussion. The new tree is

printed out, and control is returned to the statement ENTER A PROGRAM

COMMAND.
Metz Reference Room
Civil Engineering De~artment
. 10" C Tj1 n'iJ' -; - -j "l.'"'g 8 b . l:..J. Dv .• -'-~'--'- .,.

. "t ~ 7~~;~ois Qni verSl Y OL .i.":"_·L..L··

·,"l'rl--tana. Ill.J.IJ.oj.G 61801
Vol .. ~ . ..

-17-

SORT - This reorders the branches of the decision tree so

that shorter branches are first. The reordered tree is printed out, and

control is returned to the statement, ENTER A PROGRAM COMMAND.

MODIFY - This returns control to the input routine.

NEXT - This allows a new problem to begin. The program will

respond ENTER THE DATA FILE NAME.

STOP - This stops the program.

If the decomposition of the table into a decision tree finds any

redundant or contradictory rules, the following message will be printed:

THE FOLLOWING RULES ARE REDUNDANT OR CONTRADICTORY (rule number)

YOU MUST MODIFY THE DATA. ENTER THE MODIFY OR STOP COMMAND

The flow chart for the operational commands is shown in Fig. 2.5.

2.4 Output

The original version of the table is printed out once all of the

data is in the program. If the decomposition of the table is successful.

then the decision tree is displayed with the following conventions:

1) Each condition node is displayed with the letter C followed by

the number of the condition;

2) The true branch emanating from each condition node is shown as

a series of + symbols;

3) The false branch emanating from each condition node is shown as

a series of - symbols;

4) Each branch terminates at a rule node displayed with the letter

R followed by the rule number, unless it is an else rule, in which

case it is shown as ELSE;

-18-

5) Unl ess the network is· sorted, the true branch is shown above

the false branch.

If the WRITE command is issued, the table is reprinted after .the

decision network with the conditions and rules ordered as they are encountered

in the network. This ordering corresponds to pre-order as defined by Knuth

(ref. 2.3).

2.5 Errors and Error Messages

2.5.1 Incorrect Input or Command

Any line of input that the program cannot interpret will cause

the message

INCORRECT INPUT --- RE-ENTER ON A NEW LINE

to be printed. If the program is being used in a batch mode, such an error

will terminate the program.

2.5.2 Non-Unique Rules

Redundant or contradictory rules will cause the program to suspend

decomposition of the table. The incorrect rules will be identified to the

user, so that the data may be modified. Rules are redundant if they have

no logical difference in the condition entry and have the same action entry.

Rules are contradictory if they have no logical difference·in the condition

entry and have different action entries.

2.5.3 Else Rules

The program will identify all the possible else rules in the

decision tree. The user can examine the else rule simply by traversing the

path back to the start of the network, noting the appropriate condition

entries as he goes. Any conditions that do not appear on the branch have

immaterial entries.

-19-

The user must be cautioned that spurious else rules 'may be

generated from tables with implicit entries. A spurious ~lse rule is

defined as a rule that is not included in the original table because some,

implicit entry prohibits it. It can be identified because it will have

the same condition entries as the rule with the implicit entry, except at

that entry it will have the opposite logical value. Not all tables with

implicit entries will develop these spurious else rules; in fact, most will

not. The program will not automatically label them as spurious.

2.6 Example Problem

The following example is self-explanatory, and illustrates most

of the features of the program. The lines with a "U ll marked on the left

a re user input.

U RUN TABLE
#RUNN ING 1278

-20-

ENTER P FOR OUTPUT ON THE ON-SITE PRINTER~
OTHERWISE THE OUTPUT WILL BE ON THE REMOTE TERMINAL

U

ENTEq THE DATA FILE NAME
u t'A IS I/COM?R"

BE GIN IN P UT INS T R U C T ION S • EN T E R THE WO RD EN D \v HEN FIN I SHE D •
u TITLE "COMPRESSION ON UNSTIFFENED ELEMENTS"
u NUMBER OF RULES 6
u ~JMBER OF CONDITIONS 6
u NUMBER OF ACTIONS 5
u RULES

ENTE~ THE RULE NU~1BER.I THE CONDITION ENTRIES~ AND THE ACTION ENTRY.,
mE RULE TO A LINE. ENTER THE WORD LAST WHEN FINISHED.

u 1 TTl
u 2 F T T T • F 2
u 3 F F T T • F 3
u4 •• FTT. 3
u5 •• FTF. 4
u 6 F • T T • T 5
u L' AST
u CONDITIONS

ENTER THE CONDITION NUMBER AND THE STRINGS~
30 CHARACTERS TO A LINE. ENTER THE WORD LAST \vHEN FIN ISHED.

u 1 " WIT c 63.3/SRFY"
u 2 .. 'I.']/T I c-

u 2 .. WIT c 144/SRFY"
u 3 .. WIT c 25"
u 4 .. WIT c 60"
u 5 .. MEMBER TYPE = ANGLE STRUT"
u 6 .. FY c 33"
u LAST
u ACT IONS

ENTER THE ACTION NUMBER AND THE STRING~ ONE ACTION TO A LINE.
ENTER THE WORD LAST WHEN FINISHED.

u 1 .. FC = O. 60 rY 0
'

u 2 .0 FC = O. 7 67 IT - "
u 0.00264 WIT (FY)**1.5"
u 3 .. FC = 8000/(W/T)**2"
u 4 .. F C = 1 9. 8 - O. 2 8 '\v IT
u 5 II FC = O. 60 FY - ..
U (WIT - 63.3/SRFY)*
U (0 • 60 FY - 1 2 • 8) I
U 25(1 - 2.53/SRFY")"
u lAST
u END

-21-
ORIGINAL DECISION TABLE

COMPRESSION ON ·UNST I FFENED ELEMENTS

2 3 4 5 6
1 laJ/T < 63.3/SRFY * T F F' F
2 WIT < 144/SRFY * T T F
3 WIT < 25 * T T F F T
4 WIT < 60 * T T T T T
5 MEMBER TYPE = AN GLE STRUT * T F
6 FY < 33 * F F T

**
1 FC = O. 60 IT * X
2 FC = O. 7 67 FY - * X

o .00264 WIT (IT) ** 1 .5 *
3 FC = 8000/(W/T)**2 * X X
4 FC = 19.8 - 0.28 WIT· * X
5 FC = O. 60 FY - * X

(WIT - 63. 3 IS R IT) * *
(0 • 60 FY - 12. 8) I *

25(1 - 2.53/SRFY). *
THE FOLLO\vING RULES ARE REDUNDANT OR CONTRADICTORY: 4
YOUR MUST MODIFY THE DATA. ENTER THE MODIFY OR STOP COMMAND.<-

u MJDIFY

BEGIN INPUT INSTRUCTIONS. ENTER THE WORD END WHEN FINISHED.
u RULES

ENTER THE RULE NUMBER~ THE CONDITION ENTRIES~ AND THE ACTION ENTRY~
mE RULE TO ALINE. ENTER THE WORD LAST WHEN FIN ISHED.

u 4 F·. F T 7. 3
u5F. FTF. 4
u lAST
u END

ORIGINAL DECISION TABLE

COMPRESSION ON UNSTIFFENED ELEMENTS

2 3 4 5 6
1 \aJ/T < 63. 3/SR IT * T F F F F F
2 WIT < 144/SR FY * T T F
3 1JIT < 25 * T T F F T

4 ~JIT < 60 * T T T T T

5 MEMBER TYPE = ANGLE STRUT * T F

6 FY < 33 * F F T

**
1 FC = o • 60 IT * X

2 FC = O. 767 FY - * X
O. 00264 WIT (FY)**1.5 *

3 FC = 8000/(W/T)**2 * X X

4 FC = 19.8 - 0.28 WIT * X

5 Fe = o • 60 IT - * X
(WIT - 63.3/SRFY)* *
(0 • 60 IT - 12.8)1 *

25 (1 - 2.53/SRFY) * -..

-22-

DEC IS ION NETWORK SUCCESS FULLY COl'1PLETED

DERIVED DECISION NETWORK

Cl + + + C2 + + + RI

- - ELSE

- - - C4 + + + C3 + + + C6 + + + R6

- - - C2 + + + R2

- - ELSE

ENTER A PROGRAM COMMAND
u MJDI FY

- - - R3

- - - C5 + + + R4

- - - R5

BEGIN INPUT INSTRUCTIONS. ENTER THE WORD END WHEN FINISHED.
u RULES

ENTER THE RULE NUMBER" THE CONDITION ENTRIES" AND THE ACTION ENTRY"
OJE RULE TO A LINE. ENTER THE WORD LAST WHEN FIN ISHED.

u 1 T + + + 1
u 2 F T + + • F 2
u3-FT+. F3
u 4 - • F T T • 3
u 5 - • F T F • 4
u 6 F • T + • T 5
u LAT

INCORRECT INPUT---REENTER ON A NE'!} LINE U LAST
U END

ORIGINAL DECISION TABLE

COt1?RESS ION ON ur'J 5) T I FFEN ED ELEt1ENTS

2 3 4 5 6
\~7IT < 63. 3/SR FY * T F F

2 \vlT < 144lSRFY ~~ + T F
3 \J,TIT < 25 *' + + T F F T
4 l,JIT < 60 -l~ + + + T T +
5 MEMBER TYPE = A~\J GLE STRUT .. ~ T F
6 FY < 33 * F F T

**
1 FC = o • 60 FY * X
2 Fe = 0.767 FY - * X

o • 0 0264 \v/T (FY)*-~·1.5 *
3 FC = 80 001 (1,:,1IT)~~*2 * X X
4 FC = 1 9. 8 - 0.28 'tviT * X

5 Fe = o • 60 FY - * X
(HIT - 63. 3 IS R FY) * *
(0 • 60 FY - 12.8)1 *

25(1 - 2.53/SRFY) .~,

DECISION NET'{.lORK SUCCESSFULLY COtv1PLETED

DER IVED DECISION NETi"lORK

C3 + + + Cl + + + RI

- - - C6 + + + R6

- - - C2 +. + + R2

- - - R3

- - - eLl + + + C5 + + + R4

- - - R5

- - ELSE

ENTER A PRO GRAt-1 COMMAND
u SORT

· -24-

DECISION NETWORK SORTED BY BRANCH LENGTH

C3 - - - C4 - - ELSE
+ +
+ +
+ + + + + CS
+
+
+
+
+
+ + + + CI + + + RI

- - - C6

ENTER A PROGRAM COMMAND
U \t}R I TE

+ + + R4

- - - R5

+ + + R6

- - - C2 + + + R2

- - - R3

DECISION TABLE WITH CONDITIONS AND RULES IN PREORDER

COMPRESSION ON UNSTIFFENED ELEMENTS

4 5 I 6 2 3
3 WIT < 25 * + + T F F T
4 WIT < 60 * + + + T T +
5 MEMBER TYPE = ANGLE STRUT * T F
1 WIT < 63.3/SRFY * T F F
6 FY < 33 * F F T
2 \al/T < 144/SRFY * + T F

**
1 FC = o • 60 IT * X
2 FC = 0.767 IT - * X

O. 00264 WIT (FY)**1.5 *
3 FC = 8 0 0 0 I (\v IT) * * 2 * X X
4 FC = 19.8 - 0.28 WIT * X

5 FC = o • 60 IT - * X
(WIT - 63. 3/SRFY) * *
(0 .060 IT - 12.8)1 *

25 (1 - 2.53/SRFY) *

u

ENTER A PROGRAM COMMAND
u DELAY

-25- .

DEC IS tON NET lV-ORK SUCCESS FULLY COMPLETED

DECISION NETWORK DERIVED

C3 + + + Cl + + + RI

- - - C6

- - - CS + + + C4

- - - C4

ENTER A PROGRAM COMMAND
STOP

WITH THE

+ + + R6

- - - C2

+ + + R4

- - ELSE

+ + + RS

- - ELSE

#ET=33:20.3 PT=lS.2 10=1.3

DELAYED DECISION

+ + + R2

- - - R3

RULE

-26-

Chapter Three

INFORMATION NETWORK PROGRAM

3.1 General Description

This program accepts data describing the nodes in a network and

their connections to adjacent nodes. The network is assembled by the

program, and the information is. displayed for the user as a modified tree

ina vari ety of di fferent orderi ng schemes. The user shou1 d be famil i a r

with the concept of a network, especially as it relates to the

of information in a specification. Volume I of this report describes

information networks and their place in the organization of specifications.

Knuth (ref. 2.3) contains a discussion of operations on information

structures that is the basis for many of the operations in this program.

3.2 Definitions and Concepts

The operating mode philosophy and the method of data storage

for this program are essentially the. same as described previously for the

decision table program (sections 2.2.2 and 2.2.3). It should be noted

that the amount of data required to define an information network for any

portion of a specification larger than a page or so is considerably

larger than the amount of data for an average decision table.

3.2.1 Terminology

There are several words that are important for the proper use

of the program:

NODE - any item of information in the specification, such as

an input parameter, a criterion, or a value defined by

functional or logical operation.

-27-

INGREDIENT - any node that may be directly required to establish

the value of a second node is said to be an ingredient of

the second node.

DEPENDENT - any node whose value may be directly affected by the

value of a second node is said to be a dependent of the

second node.

INGREDIENCE - (of a node) is the network beginning at the node

and including all of its ingredient nodes ~ then all of

their ingredients and so on, the process being repeated

until those with no ingredients are reached.

DEPENDENCE (of a node) is the network beginning at the node

and including all of its dependent nodes, then all of. their

dependents, and so on until the nodes with no dependents

are reached.

INPUT NODES - those nodes that have no ingredients.

OUTPUT NODES - those nodes that have no dependents.

INPUT LEVEL OR OUTPUT LEVEL - the number of steps from the node

in question to the input (or output) nodes along the long­

est path that goes through the node in question.

FLOAT - the numerical difference between the longest path from

input to output through a given node and the longest

such path in the entire network.

TREE - a network that has one root and has no closed loops.

-28-

3.2.2 .Restrictions

The maximum size of network that the program will accept is 500

nodes and 1000 branches. The output will not display more than 23 levels

. in a network, however, this has not proved to be a limitation since the

largest number of levels encountered in the information network for any

specification that has been analyzed at the University of Illinois is ten.

The textual descriptions of the nodes are limited to 60 characters in

1 ength.

3.2.3 Operations Performed

The required input to the program consists of the number· of each

node and the numbers of each of its ingredients. Once this data is entered,

the program calculates the dependents, the levels from inpui and output,

and the float for each node. After these calculations are complete the

user may request to see the ingredience or dependence network for any node.

If the user wishes to see the entire network he may request it as the

IIcomplete li ingredience or' dependence. The user may also request that the

order in which the ingredients and dependents of a node are listed be

altered by sorting them with respect to their levels or floats. The sorting

algorithm can order the ingredients (or dependents) so that those with the

largest (or smallest) level (or float) occur' first in the network.

As was pointed out in volume I of this report, an ingredience

network can be used to order the textual definition of a specification

accordirlg to Ilconditionalll ordering; that is, the items are only defined

once they are used. The dependence network is used in a similar fashion

to order the text according to IIdirect ll ordering; each item being defined

-29-

before it is used. The sorting a.' gorithm does not cha.nge th is property; it

merely refines it. An ingredience network sorted so that those ingredients

with the largest float or level are first corresponds to conditional ordering

with those items that have the smallest number of levels of precedence

involved in their definition being defined first. There is generally some

correlation between the depth of precedence and the complexity of definition,

so that this particular ordering generally places the simpler definition

first. It is useful to experiment with the various possible sorts to gain

experience in their possible benefits.

3.3 Input and Operating Instructions

3.3.1 Starting the Program

The steps in starting the information network program are exactly

the same as those used to start the decision table program, with one excep-

tion: the name of the program to be used in the RUN command is NETWORK.

Following the command RUN NETWORK the procedure is just as described in

section 2.3.1 and figure 2.3

3.3.2 Data Input Routine

The following message is printed when the program enters the data

input routine:

ENTER THE NODE NUMBERS AND ASSOCIATED DATA, nNE NODE TO A

LINE. IF IT IS NECESSARY TO USE TWO LINES FOR THE INGREDIENTS,

ENTER A CO~~~1A AT THE BEGINNING OF THE SECOND LINE. ENTER

'ENOl TO SIGNIFY THE END OF THE DATA.

-30-

.Each node is identified by a cardinal number. The program

requires the number of each node and the number of its dependents. The

program will also accept a label of six characters or less and a descrip-.

tive title of sixty characters or less. The labels and titles are useful

as aids in interpreting the output, but they are not used in the logic

of the program.

The set of numbers used to identify the nodes must be inclusive;

that is, the largest number used must be the total number of nodes in the

network, and no smaller number may be left unused. It is not necessary

to enter the nodes in order, however.

The first entry on each line of input should be a node number,

with one exception. Following the node number, the label, description,

or ingredients may be entered in any order.

<node> <label> <"title ll> <ingredients>

The first character of each label must be a letter, and the description

must be enclosed in quotation marks. The exception will be discussed

following this example.

Example: the following lines are all acceptable

ways of entering information about node 176; which has

ingredient nodes 75, 150, and 201, a label of FAX, and

description of "allowable axial compression stress".

Method 1:

176 75 150 201 FAX

176 "ALLOWABLE AXIAL COMPRESSION STRESS II

-31-

Method 2:

176 FAX II ALLOWABLE AXIAL COMPRESSION STRESS"

176 75 150 201

Method 3:

176 IIALLOWABLE AXIAL COMPRESSION STRESS Il

176 FAX 75 150 201

Not all possible ways. of entering the data have been shown. The

important point is that the first number on a line is the node number about

which the information is going to be entered. The exception to this occurs

when there are too many ingredients to fit on one line of input. In this

case a comma is entered at the beginning of the second line to indicate that

the list of ingredients is being continued. For example:

177 101 119 212 203 331 222 262

, 275 309

all of the numbers represent ingredients of node 177.

It is possible to change any of the information associated with

a node simply by entering the new data. For example if it were desired to

change the label of node 176 as entered above to AXSTRS and to include node

119 among its ingredients, the following instruction would suffice:

176 AXSTRS 75 119 150 201

If anyone of the ingredients is to be changed, the entire list

of ingredients must be re-entered. In the special case that a node with

no ingredients had been incorrectly given some ingredients, the following

command is to be used:

<node number> 0

-32-

The zero (the number, not the letter) is the key entry that allows a node

to be disassociated from its old ingredients without entering new ingredients

for it.

When data is being entered in the input routine it is not stored

on the disc until a SAVE or END command is issued. When entering networks

with a large amount of data, it is prudent to protect against a machine

failure by issuing a SAVE command periodically (every 20 lines or so).

Once the SAVE has been issued, simply continue entering the data. For

examp 1 e:

74 TIME "LENGTH OF TIME ERECTED II

75 CONDSS "CONDITION OF SIGN AND SUPPORT"

76 SIZACC "SIZE ACCEPTABLE" 73 7 48 69

SAVE

77 FMACC "FRAME AND MATERIALS ACCEPTABLE" 8 73 7

The command END is used to terminate the input routine and

return control to the main program. The input routine is used for both

entry of new data and correction of old data. The flow diagram for use'

input is shown in figure 3.1.

3.3.3 Operational Commands

~Jhen the da ta entry is comp 1 ete, the program ca 1 cul a tes the

dependents, levels from input and output, and the float for each node.

If this work is successfully completed, the program will issue the state­

ment:

ENTER A PROGRAM COMMAND

-33-

At this point, the program wi 11 accept any of th.e followi,ng

comma nds: (the symbol ism used herei n is the same as descri bed in secti ons

1.3.1 and 2.3.l).

INGREDIENCE (TITLE) - the program will prepare to print

out an ingredience network. If the word TITLE is included, the descriptive

titles will be used in the output; if not, the labels will be used. The

program will respond with the following instruction:

ENTER THE ROOT NODE NUMBER--OR THE WORK I COMPLETE

The word complete causes the entire network to be displayed as an ingred­

ience network of a ficticious node assumed to be a dependent of all those

nodes in the network with no dependents.

DEPENDENCE (TITLE) - the program will prepare to print out

a dependence network. The format of the command and the program response

are identical to that described above for INGREDIENCE.

SORT ~ the program will prepare to reorder the ingredients

and dependents of each node. The program will make three requests to

obtain parameters for the sorting process.

ENTER THE VALUE FOR FIRST PRIORITY SORTING

Either FLOAT or LEVEL should be entered.

ENTER THE MODE FOR FIRST PRIORITY SORTING.

Either SMALL OR LARGE should be entered.

ENTER THE MODE FOR SECOND PRIORITY SORTING

Either SMALL or LARGE should be entered.

When describing the mode for sorting, SMALL is taken to mean the

selection of the ingredients or dependents with the smallest float or level

first. This corresponds to the most densely populated and longest branches

of the network being placed first. LARGE causes the apposite process to occur.

-34-

Once the network has been sorted, it will remain so until a

new sort is ordered or the problem is ended, so the subsequent use of

INGREDIENCE or DEPENDENCE will display the sorted network.

MODIFY - the program will return to the input routine so

that the data may be changed.

WRITE - the program will print a tabular display of all

the information entered and derived for each node: the label~ description,

ingredients, dependents, input level, output level, and float. When the

output is being printed on a remote terminal, the table will be printed in

two portions.

NEXT - the program will accept a new problem, the first

response of the program will be ENTER THE DATA FILE NAME.

STOP - this stops the program.

The flow chart for the operational commands is shown in fig. 3.2.

3.4 Output

The output of the program is a graphical representation of the

network. The form of the network is modified to that of a tree. That

is, all the closed loops (meshes) in the network are broken. The break

is shown by repeating the node with a negative sign in front of it. The

negative sign indicates that the node has appeared previously (above)

in the network, so that the branch actually would be directed upward to

that previous occurrence. An example of a network and its modified computer

printed version is shown in figure 3.3. The asterisk after a node with a

negative sign indicates that the network continues on past the node and

that this continuation is only shown at the first occurrencejof the node.

Note that the tracing of nodes is always done vertically since each node

is always printed at the same level from input or output.

-35-

3.5 Errors and Error Messages

As with the program TABLE, any line of input that the program

cannot interpret will cause the message

INCORRECT INPUT RE-ENTER ON A NEW LINE

to be printed. If the program is being used in a batch node, the error

will terminate the program.

The only other error messages generated by the program are

caused by defects in the definition of the network. The message:

PROGRAM STOPPED -- NO STARTING NODE IN THE NETWORK

indicates that no node exists for which there are no ingredients. The

message:

PROGRAM STOPPED -- NETWORK CONTAINS A CIRCULAR LOOP

indicates that some node appears in its own ingredience network. The

progra~ accepts networks with closed loops if it is not possible to

travel around the loop without changing the direction of the branches

at least once. If such a circuit is possible, it means that the value of

some node depends on a prior definition of its value. This type of

iterative procedure is rare in design specifications. If such a case

is encountered, it will be necessary to break the loop by defining two

nodes, an initial value and a final value, in order to use this program.

3.6 Exampl e Probl em

The following example illustrates many of the features of the

programs. The lines with a "U" marked on.the left are user input ..

-36-
U RUN NETWO.RK

#RUNN IN G 1334

ENTE~ P FOR OUTPUT ON THE ON-SITE PRINTER~
OTHERWISE THE OUTPUT WILL BE ON THE REMOTE TERMINAL

u REMOTE

ENTER THE DATA FILE NAME
u "BO CAl 623"

ENTER THE NODE NUMBERS AND ASSOCIATED DATA~ ONE NODE TO A LINE.
IF IT IS NECESSARY TO USE T\vO LINES FOR THE INGREDIENTS"
ENTER A COMMA AT THE BEGINNING OF THE SECOND LINE.
ENTER #END # TO SIGN I IT THE END 0 F THE DATA.

INPUT ERROR---RE-ENTER ON A NEtv LINE
u 1 ACCEPT "FIRE ESCAPE ACCEPTABLE 2 3 4 6 7 8 9
u 2 GROUP "USE GROUP"
u 3 SPORD "SPECIAL ORDER OF BUILDING OFFICIAL"
u 4 EXBLDG "EXISTING BUILDING"
u 5 HTLMT "HEIGHT LIMEIT"
u 5 "HEIGHT LIMIT"
u 56 NSTOR "NUMBER OF STORIES"
u 7 HIEEIGHT "HEIGHT" FEET"
u 8 CONSWR "CONSTRUCTION IN ACCORD WITH RULES "
uu 8 2 16 27 29 30 31
u 9 NOALT "MORE ADEQUATE EXITWAY IMPOSSIBLE"
u to. FRONT .. FRONT 0 F BU ILD ING"
u 11 PROJ "PROJECTING BEYOND FUILCIN"
u 11 "PROJECTION BEYOND BUILDING LINE"
U SAVE

u
u
U

U

U

U

U

U

U

U

U

U

u
u
u
u
u
u
U

u
u
u
u
u
u

WPUT ERROR---RE-ENTER ON A NEW LINE
12 HTLL .. HEIGHT LOtvEST LANDING ABOVE GRADE"
1.3 CBALST ··COUNTER BALANCED· STAIR TO STREET"
14 FLROOF "FIXED LADDER TO ROOF"
15 ALLEY "ALLEY OR THOROUGHFARE LEESS THAN 30 FEET 'vIDE"
1.6 LIVELD "DESINGGN LIVE LOAD"
1.7 NONCOM "STEEL OR OTHER NONCOHBUSTIBLE MATERIAL"
1.8 1,.JOOD "1,.,TOOD NOT LESS THAN TWO INCHES THIC1{"
19 TYPE "TYPE OF CONSTRUCTION"
2Q FDIST "FIRE DISTRICT"
21 SUIDTH "STAIR WIDTH"
22 RISER "RISER HEIGHT"
SAVE

mpUT ERROR---RE-ENTER ON A NEW LINE
23 TREAD "TREAD DEPTH"
24 Lt.JIDTH "LANDING HIDTH t

•

25 LLENG "LANDING LENGTH"
26 LBL1JJ "LANDING BELOttl ACCESS"
27 OPPROT "HOUR OPENING PROTECTIVE"
28 WFL "WITHIN FIRE LIMITS"
29 LCLEAR "PROPER LANDING CLEARANCE"
30 ACAMAT. "AGCEF:TAELE MATERIAL" 6 7 17 18 19 20 28 32 33
2Q 1 0 1 1 1 2 1 3 1 4 1 5
31 ACDIM "ACCEPTALBLE DIHEl'JSIONS" 21 22 23 2 4 25 26
32 NOCC "NUMBER a F OCCUPANTS·"
33 COMEUS "WOOD OR SIMILARILY CONMBUSTIBLE"
END

ENTER A PRO GRAM CONMAND
U INGREDIENCE

ENTER THE ROOT NODE NUMBER---OR THE vlORD ~COMPLETE ~
U COHPLETE

'lNSORTED

GLOBAL INGREDIENCE OF COMPLETE NETWORK

Ex:TREME LEVEL FRON OUTPUT

o 2
1 ACCEPT
3 SPORD
4 EXBLDG
5 HTLMT
8 CONS \IJR
: •••••••• 31 ACDIM

: •••••• 0.26 LBLW
:s •••••• ~25 LLENG
:00 •••••• 24 LWIDTH
: •••••••• 23 TREAD
: •••••••• 22 RISER
: •••••••• 21 SWIDTH

: •••••••• 30 ACMA T
: •••••••• 33 COMBUS
: •••••••• 32 NOCC
: •••••••• 28 WFL
: •••••••• 80 FDIST
: •••••••• 19 TYPE
: •••••••• 18 WOOD
: •••••••• 1 7 N ON CO M
.: ••••••••• 7 HEIGHT
: ••••••••• 6 NSTOR

: •••••••• 29 LCLEAR.
: •••••••• 15 ALLEY
: •••••••• 14 FLROO F
: ••• ~ •••• 13 CBALST
: ••••• ~ •• 12 HTLL
: •••••••• t 1 PRO J
: •••••••• 10 FRONT

: •••••••• 27 OPPROT
: •••••••• 16 LIVELD
: ••••••••• 2 GROUP
9 NOAL T

ENTER A PROGRAM COMMAND
u MJDI FY

ENTER THE NODE NUMBERS AND ASSOCIATED DATA~ ONE NODE TO A LINE.
IF IT IS NECESSARY TO USE TWO LINES FOR THE INGREDIENTS~

ENTER A COMMA AT THE BEG INN ING 0 F THE SECOND LINE.
ENTER ~END~ TO SIGNIFY THE END OF THE DATA.

U 1 234 678 9
u END

ENTER A PRO GRAM COMt-1AND
u INGREDIENCE

ENTER THE ROOT NODE NUMBER---OR THE ~'JORD 'COMPLETE"
u COMPLETE

u

u

u

u

u

u

-38-

tNSQRTED

GLOBAL INGREDIENCE OF COMPLETE NETl.JORK

EXTREME LEVEL FROM OUTPUT

o. _ 1 2 3
1 ACCEPT
: ••••••••• 9 NOALT
: • • • • • • • • • 8 CON S i.ffi

: •••••••• 31 ACDIM
: •••••••• 26 LBLW
: ••••••• 025 LLENG
: •••• ~ ••• 24 LWIDTH
: •••••••• 23 TREAD
: •••••••• 28 RISER
: •••••••• 21 SWIDTH

: ••••••• • 30 ACMAT
: •••••••• 33 COMBUS
: •••••••• 32 NOCC
: •••••••• 28 t.JFL
: • ••••••• 20 FD I ST
: •••••••• l9 TYPE
: •••••••• l8 WOOD
: •••••••• 17 NONCOM
: ••••••••• 7 HEIGHT
: ••••••••• 6 NSTOR

: •••••••• 29 LCLEAR
: •••••••• l5 ALLEY
: ..•••.•• 14 FLROOF
: •••••••• 13 CBALST
: •••••••• 12 HTLL
: •••••••• 1.1 PROJ
: •••••••• 10 FRONT

: .•...••• 27 OPPROT
: •••••••• 16 LIVELD
:~ ••••••• ·.2 GROUP

: ••••••••••••••••••••.••••••• -7 HEIGHT
: ••••••••••••••••• ~ •• ~ ••••••• -6 NSTOR
: ••••••••• 4 EXBLDG
: ••••••••• 3 SPORD
: •••••••••••••••••• -2 GROUP
5 HTLMT

ENTER A PRO GRAM COMMAND
SORT

ENTER THE VALUE FOR FIRST PRIORTY SORTING
FLOAT

ENTER THE MODE FOR FIRST PRIORTY SORTING
LARGE

ENTER THE MODE FOR SECOND PRIORTY SORTING
LARGE Metz Refe:::':·2:YJ.oe Hoom

Civil Engineel"ing Department
ENTER A PROGRAM COMMAND 3106 C. E. Buil~ing
II\JGREDIENCE TITLE >:'ivGrsit~l of Illinois

ENTER THE ROOT NODE NUMBER---OR THE WBftB8. PC6j;~tf:Ti)~ 6180.1
COMPLIETE

-39-

SORTED FIRST BY LARGE FLOAT AND THEN BY LARGE LEVEL·

GLOBAL IN GREDIENCE 0 F COMPLETE NETWORK

EXTREME LEVEL FROM OUTPUT

o 1 234 5
5 HEIGHT LIMIT
1 FIRE ESCAPE ACCEPTABLE 2 3 4 6 7 8 9
: ••••••••• 9 MORE ADEQUATE EXITWAY IMPOSSIBLE
: ••••••••• 4 EXISTING BUILDING
: ••••••••• 3 SPECIAL ORDER OF BUILDING OFFICIAL
: 2 USE GROUP
: •••••••••••••••• ~.~ •••••••••• 6 NUMBER OF STORIES
: ••••••••••••••••••••••••••• ~.7 HEIGHT~ FEET
: •••••• 8 •• 8 CONSTRUCTION ·IN ACCORD WITH RULES

: •••••••• 27 HOUR OPENING PROTECTIVE
:~.~;;.;;16 DESIGN LIVE LOAD
: •••••••• -2 USE GROUP
: ••.•••.••• 31 ACCEPTABLE D IMEN S ION S

: •••••••• 26 LANDING BELOW ACCESS
: 25 LANDING LENGTH
: •• · •••••• 24 LANDING 'WIDTH
: .'.- .- •.•• ' •• 23 TREAD DEPTH
: •• ~ •• ~.~22 RISER HEIGHT
: •••••••• 21 STAIR WIDTH

: •••••••• 30 ACCEPTABLE MATERIAL

6

: •••••••• 33 WOOD OR SIMILARILY COMBUSTIBLE
: •••••••• 32 NUMBER OF OCCUPANTS
:; ••••••• 28 WITHIN FIRE LIMITS
: •••••••• 20 FIRE DISTRICT
: •••••••• 19 TYPE 0 F CON STRUCT ION

7

: ••• e •••• 18 WOOD NOT LESS THAN TWO INCHES THICK
: 1 7 STEEL OR OTHER NONCOMBUSTIBLE MATEJi
: •••••••• ~7 HEIGHT~ FEET
: ••••• ; •• -6 NUMBER OF STORIES

: ••• ~ •••• 29 PROPER_LANDING CLEARANCE
: •••••••• 15 ALLEY OR THOROUGHFARE LESS THAN 30E
: •.••••• ~ • t4 FIXED LADDER TO ROO F
: ••.•••••• 13 COUNTER BALANCED STAIR TO STREET
: •••••••• 12 HEIGHT LOT.JEST LANDING ABOVE GRADE
: tl PROJECTION BEYOND BUILDING LINE
: •••• · •••• 10 FRONT 0 F BUILDING

SO~TED FIRST BY LARGE FLOAT AND THEN BY LARGE LEVEL

~OBAL INGREDIENCE OF COMPLETE NETWORK

EXTREME LEVEL FROM OUTPUT

7 8

ENTER A PROGRAM COMMAND
u STOP

9

#ET=26:43.3 PT=9.6 10=5.7

1 0 1 1 12 13

4.1 General Description

-40- .

Chapter Four

OUTL INE PROGRA~1

The input for this program consists of the arguments selected

for classification of the specification and the major provisions selected

to appear in the outline. Each provision must be associated with at least

one argument. The arguments represent headings in the outline. They are

entered in a trial outline format which provides the guide for the final

structure of the outline. Such arguments taken as a set must provide a

reasonable basis for organizing the specification as described in volume

of this report.

The output of the program is a refined version of the trial

outline given by the input. It is not related to the hierarchical struc­

ture of the information network of the specification, allowing an appli­

cability to the wide variety of specifications and freedom to explore

alternative organizations.

4.2 Definitions and Concepts

The operating mode philosophy and the method of data storage

for this program are essentially the same as described previously for

the decision table and information network programs (see sections 2.2.2

and 2.2.3).

The arguments used for headings in the outline are stored as a group

of trees. A tree is a special kind of network that has one root and has no

closed loops. The headings of a conventional outline with indentations can be

-41-

represen~ed as a group of trees. Each of the headings on the extreme

left is called a root and all the subsequent headings until the next root

belong to one tree. Each heading in the tree is associated with its parent,

which is the last previous heading that projects to the left. Figure

4.1 shows the correspondence of a set of headings and a tree for a

hypothetical outline.

The program will accept up to 30 arguments and 30 provisions.

Modification of this limit is relatively simple, but does require a

few changes in the FORTRAN code of the program. No more than five

arguments may be associated with anyone provision.

The algorithm maps the provisions onto the argument trees.

t~here provisions are associated with more than one argument (a frequent

case), the algorithm appends the trees of the secondary arguments onto

the tr~e of the first argument listed for the provision. Thus no provision

is mapped onto the outline until all of its associated arguments have

been entered. Arguments are omitted from the appended trees if they are

not associated with any provisions at that point in the outline. The

overall order of the outline can be varied by changing the order in which

the trees are taken.

4.3 Input and Operating Instruction

4.3.1 Starting the Program

The steps in starting the outline program are the same as those

for the decision table and information network programs except that the

name of the program to be used in the RUN command is OUTLINE. Refer to

2.3.1 and figure 2.3 for the details.

-42-

4.3.2 Data'Input'R6utine

The following message is printed when the program enters the

input rout i ne:

BEGIN INPUT INSTRUCTIONS. ENTER THE WORD

END WHEN FINISHED.

The input is keyed to three headings which are nearly self explanatory.

They may be entered in any order. The symbolism used in the following is

the same as that used in chapters 2 and 3.

ARGUMENTS - begin the sequence for input of arguments.

The program will respond:

ENTER THE LIST OF ARGUMENTS AND THEIR PARENTS,

ONE LINE FOR EACH ARGUMENT

The correct format for the input is:

<argo no.> <lItitle ll > <parent argo no.>

The title is not necessary for the calculations, but makes

interpretation of the output much easier. The title must be inside quo­

tation marks and less than 30 characters long. The argument numbers

must be sequential, beginning with one.

PROVISIONS - begins the sequence for input of the provisions.

The program will respond:

ENTER THE LIST OF PROVISIONS AND ASSOCIATED

ARGUMENTS, ONE LINE FOR EACH PROVISION.

the correct format for the input is:

<provo no.> <"title"> <assoc. argo nos.>

-43-

The title has the same requirements as for the argument titles.

The provision numbers must once again be sequential. There must be at

least one associated argument for each provision. If there is more than

one, separate the adjacent numbers with at least one blank space.

ORDER - prepares the program to accept the numbers of the

roots of the argument trees in the order that the user desires to make

the outline. The numbers may be entered on the same line as the word

ORDER or on the line following.

END - terminates the sequence of input instructions.

4.3.2 Operational Commands

The mapping algorithm proceeds automatically after the input

is completed. When the outline is finished, the program will request:

ENTER A PROGRAM CO~1MAND

Any of the following commands may be used:

ORDER - a new sequence of argument trees may be entered,

as described for the input routine. The command END must be used when the

order statement is finished. The new outline will be generated and the

program will once again request a program command.

NEXT - a new problem may be entered. The first response

of the program will be to request a data file name.

4.4 Output

The output contains the outline, or "table of contents,1I and

consists of a hierarchical structure of headings and a list of related major

provisions under these headings.

-44-

4.5 Error Messages

In general, the program cannot be killed by inadvertent errors

in input. Improper types of input will be ignored and the user will be

instructed again to enter the proper type of data. The program will stop

if improper input is encountered ten times in succession.

If the program is being used in a batch mode, an input error

will cause the message:

IIPROGRAM STOPPED---INCORRECT INPUT II

Another possible error in the data structure that will stop

the program is caused when any associated argument provision is not found

in the hierarchical trees of arguments.

In this case, the message given by the program is:

"PROGRAM STOPPED---SOME PROVISIONS HAVE NOT BEEN OUTLINED II

4.6 Examp 1 e .

The following example is taken from the initial text of the

section 618 from the 1974 BOCA changes.

The arguments selected for outlining are shown in table 4.1.

It can be noticed, that there are three trees of arguments, headed by the

following argument roots: No.1, Types of Interior Stairways, No.5,

Design Requirements, and No. 11 Appurtenances. The major provisions along

with their associated arguments, are shown in the table 4.2.

The order in which the argument trees will be expressed in this

example is defined by the argument-root numbers 1, 5, 11.

The input, as well as the resulting outline, are printed on the

following pages.

-45-

Tabl e 4.1 List of Arguments and th~ir Parents

ARGUMENT
NUMBER ARGUMENT TITLE PARENT

1 TYPES OF INTERIOR STAIRWAYS 0
2 REQUIRED EXIT 1
3 SUPPLEMENTARY EXIT 1
4 OTHER 1
5 DESIGN REQUIREMENTS 0
6 DIMENSIONS 5
7 STRENGTH 5
8 MATERIALS 5
9 COMBUSTIBLE· 8

10 NON -COMBUST I BLE 8
11 APPURTENAN CES 0
12 LANDING PLATFORMS 11
13 HANDRAILS AND GUARDS 11
14 ENCLOSURES 11
15 DOORS 11

Table 4.2 Major Provisions with their Associated Argument Numbers

PROVISION
NUMBER PROVISION TITLE

1 ADQ. INTERIOR EXIT STAIRWAY
2 ACC. RISE BETWEEN LANDING PLATFORMS
3 ACCEPTABLE WINDERS
4 ACCEPTABLE HANDRAILS
5 ACCEPTABLE HANDRAIL EXTENSION
6 ACCEPT ,ll.BLE GUARDS
7 ACC. HANDRAILS AND GUARDS
8 ACCEPTABLE STAIRWAY DIMENSIONS
9 ACCEPTABLE LANDING PLATFOR~ DIM.

10 ACC. STAIRWAY EXIT DOORS
11 ACCEPTABLE FIRE DOOR
12 ACCEPTABLE SPIRAL STAIRWAY
13 MEETS COMBUSTIBILITY REQUIREMENTS
14 ACCEPTABLE SUPPLEMENTARY EXIT
15 ACCEPTABLE STAIRWAY CONSTRUCTION
16 ADEQUATE DESIGN LOADS
17 ADEQUATE ENCLOSURES
18 ACC. TREAD AND RISER DIMENSIONS

ARGU~1ENT
NUMBERS

2
12
4
13
13
13
13
6
12
2, 15
2, 15
3
2, 9
3
2, 5
7
2, 14
6

RUN OUTLIN_E
HRUNN IN G 1 3 77

-46-

ENTER P FOR OUTPUT ON THE ON-SITE PRINTER~
OTHERWISE THE OUTPUT WILL BE ON THE REMOTE TERMINAL REM

OJ YOU \vANT THE PR INTOUT 0 F THE INPUT NO

ENTER THE DATA FILE NAME "BOGA/61S It

BEGIN INPUT INSTRUCTIONS. ENTER THE WORD END WHEN FINISHED.
INPUT ERROR --- RE~ENTER ON A NEW LINE<-
PROVIS IONS

ENTER THE LIST OF PROVISIONS AND ASSOCIATED ARGUMENTS
ONE LINE FOR EACH PROVISION<~
1 " A D (~. TNT E ~ I n.-(t X 1 1 S TAL R ~ A Y Pf 2
? tI Ace. R I S l tj F r I'd:. E 1"'1 L A !.~ 0 l f~ r, .s " 1 2
3 "A C C r PTA 8 L [III ll~ ;) [H ')" 4

4 "A C C E PTA r~ L F H L\ f~ U i(AlL ~ " 1.3
'5 "A C C [PTA 8 L f. 1../ I~ .'l tJ i< ~\ ! L L X f [I'J S I l) "'~ " 1:;
~ "f~ C C r PTA f1 L F !;;j!~ ~ i) S 0' 1:3
7 "A C C. H J\ N iJ R A I L S A I~ iJ Il U A H I) S" 1 j
R Pf ACe F P T ~ R L [S T j\ 1 H i~ I~ Y U I i1 t. .. ~ ~ I !.L'J S" ()
9 "A C C r: P T f., R L F. L"~ r~ l) r i~!i U I l-1l !~ :; 1 U t'J ,.; " 1 2
10 "AC~EpTArlLE .:jTAIL~"'1AY (;(Ir IjUiJqS" 21)"
1 1 " Ace E PTA j L l r r R E u fJ Ll H" ? ~ ')
1 2 ~ .4 cr.. . S P I f~ A I. S r ,:4 I tC~ ~ Y" .i
" "t~ E [T s C [J t~ n l) . .) T 1 H I L I r Y t1 E ,~ T ') .·t I~ t~

1 I.. "A C r. E P LA H L t. .; · J P P L u~ E (~ r ~ I ~ Y t: 1\ 1 T " j

1 5 ., Ace E p T~ j L t l; 0 il S r Ie) C T I L1 N " ? :)
16 "AiJr:(~UATE tJF:jIGi\j LUAI)S" 1
1 7 "A I) E Q I I ATE t:. :'J ~ L J S iJ ~< E S" t!. 1 4

1 Ii "A Cr.. T :~ t .4 u ;.\ I~ rJ H 1 S t R .j I ttl!:. .\~ .::' L n i'I" ~
AHGUMENTS

ENTER THE LIST OF ARGUMENTS AND THEIR PARENTS
CNE LINE FOR EACH ARGUNENT<-
1 ~TyP~S OF INT~R10~ STA1~~AYS J
2 "RF:Q!JI~Ef) [X! f t

' 1
3 "S U P P L F t1 [:~ TAR y t(I r f, 1
4 "r)TH~R" 1
5 " f) [S T G "l R E '.~ lJ I !, r:: M l:. ;~ r s f1 tJ
" "[) I t-1 F.: N S I rJ "~ S" j

7 "S T R J: ~~ G T H f1 5
R "11ATFRTALS" 5
Q "COMRUSTlrlLt" rl
10 "Nn~cn~8USrT1L~" j

11 "~PPURTENANCES" 0
1 2 " L A ~~ D T N r, P L A f F IJ ~ I~ ::l " 1 1
1 3 " H A "J 0 n A I L S A ~ J :"~ :J ~ ~ : J S "I' 1 1
14 "ENCLnSURES" t1
t5 "OOORS" 11
r)RnER 1 c=; 11

END

o u T l I N E

HE A'O IN G

TypES OF INTERIUR STAIHWAYS
REQUIRED EXIT
• •• • •

ENCLOSURES
• • • •
DOORS
• •

• •
OESIGN RE~UIREMENTS

• •
C OM~U STIELf

, .
SUPPLEMENTARY EXlr
• • ,
• • •
OTHER
• •

DESIGN REQUIREMENTS
DIMENSIONS
• ,
• • ,
STRENGTH · , .
MATERIALS

COMBUTIBL£
NONCOMBUSTIBLE

APPURTENANCES
LANDING PLATrQRMS
• •
•
HANDRAILS AND GUARUS
•
•
• •
• •

•

•
•

-47-

PRO V I S ION
-----.---------_.

1 ADQ, INTERIOR EXTT STAIRWAY

• 17 AD[QUATE ENC~OSURES

• 10 ACCEPTA8LE STAIRWAY EXIT DOORS
• 11 Ace. fiRE DOOR

• 15 ACCEPIA~LE STAIRWAY CONSTRUCT!

• 13 MEETS caM8USTI~ILIYY REQUIREME

• 12 ACC. SPIRAL STAIRWAy.
• 14 ACCEP1A8LE SUPPLEMENTARy EXIT

3 ACCEPTABLE WINDES

8 ACCEPTABLE STAIRWAY DIMENSIONS
, 18 ACC, THEAO AND RySER DIMENSION

• 16 ADEQUATE DESIGN LOADS

2 Ace. HISE BETwEEN LANDING PLAT
9 ACCEPTABLE LANDING P~ATrORM 01

4 ACCEPTABLE HANDRAILs
5 ACCEPTABLE HANDRAIL EXTENSION
6 ACCEPJABLE GUAROS
7 Ace, HANDRAILS AN!) GUAROS

1 • 1

2. 1

2.2

2.3

. ~4.8-

REFERENCES

Burroughs Corp. B670G/B770Q Command and Edit (CANOE) Language
Manua1, Form No. 5000318.

Pollack, A. L., Decision Tables: Theory and Practice, Wi1ey­
Interscience, New York, N.Y., 1971.

M. Mantalbano, IITables, Flow Charts, and Program Logic,Il·IBM
Systems Journal, Sept., 1962, pp. 51-63. ---

Knuth, D. E., The Art of Computer Programmin
r
, Vol. I, Fundamental.

Algorithms, Addison-Wesley, New York, N.Y., 968.

CONDIT IONS

ACTIONS

{
{

RAIN 1NG?

-A9-

RULES

\. J

STUBS ENTRIES

a) Regions of a Decision Table

RULE 1 RULE 2 RULE 3

F F T

EARLIER THAN 7:45? T F

USE B1 CYCLE " X

USE CAR X X

b) A simple dec.ision table with two conditions,
two actions, and three rule~ written in limited
entry fonnat.

Figure Z.l Decision Table Terminology

Cl

C2

C3

-50-

Rl R2 R3 R4

T T T F

T T F .
T F . .

a) Decision table showing the condition entry only.

F T

b) Dec; s i on network formed by testi ng condi ti on Cl
first, then condition C2.

F
--------~CI ~------~

T

F C I r------.

F T
r-----< C3

c) Decision network formed by testing condition C2
first, then condition Cl. Note that rule R4
appears on two paths, and that they converge at
C2 where R4 has an immaterial entry.

Figure 2.2 Decision Table and Decision Trees

-51.-

RUN TABLE

ENTER P FOR OUTPUT ON THE ON-SITE PRINTER,
OTHERWISE THE OUTPUT WILL BE ON THE REMOTE TERMINAL

?
P entered

00 YOU WANT THE INPUT
ECHOED ON THE OlITPlJT

Yes No

ENTER THE DATAFILE NAME

New ? Existin----------"" . >-----=:.:..:..:..;:;;..;;..:.~

DATAFILE EXISTS WITH THIS
~iAME. DO YOU l~IANT TO USE IT?

Yes ? No
~----~~~ r-~----------~

DO YOU WANT TO MODIFY THE DATA?

Go to INPUT Go to EXECUTE
at 2 on fig. 2.4 at 3 on fig. 2.5

Figure 2.3 Flow Chart for Problem Initialization

-52-

BEGIN INPUT INSTRUCTIONS. ENTER
THE WORD END WHEN FINISHED

CONDITIONS

N

Accepts
y

)O....-~ I nteger I---------~
'--------'

number
y

Error

title as a string-.----------.........

y

Accepts rule number,
condition entries and

'---...... action number

stores

line

~~~Same logic as for CONDITIONSi---------------j~ 
'------

t--~"""'EXECUTE - Go to 3 on fi g. 2.5 

Error 
Figure 2.4 Flow Chart for Data Input 



-53-

Decompose into tree using the quick -rule. 
Check for dependent rules. 

DECISION NET~JORK 
SUCCESS FULLY COMPLETED 

THE FOLLOWING RULES ARE 
REDUNDANT OR CONTRADI CTORY 

ENTER A PROGRAM COMMAND 

t--y----~ Pri nt reordered table t------I 

...-y----_410111 Pri nt sorted network t---..... 

~y----....... Decompose with the delayed rulet-----------' --
\oo---Y.:...--.-----4I...-I Go to IN P lIT , 2 on fi 9 .2 • 4 

"--'.....--

)--y-------i .... Go to on Fig. 2.3 

...-y-------.-.-.t S top the pro gram 

N 

Error 

Fi gure 2.5 Flow Chart for Program Control 



-54-

ENTER THE NODE NUMBERS AND ASSOCIATED DATA, ONE NODE TO A 
LINE'. IF IT IS NECESSARY TO USE TWO LINES FOR THE INGREDIENTS, 
ENTER A COMMA AT THE BEGINNING OF THE SECOND LINE. ENTER 
'END' TO SIGNIFY THE END OF T.~H=E-=D:.:..:A:..:..:TA..:.::.~ _____ _ 

'----r---' 
............ ---f Accept as an ingredient t--~ 

~----t Accept as the label·t-------.... 
---......,~ 

---......------t Accept as the description 

END OF LINE J-------------~ 

Y 

Y 

J----~ Store data on disc filet-------------

,.....----.-.1 Store data on di sc .. fi 1 e and 
return to the main program 

ERROR 

Figure 3.1 Flow Chart for Data Input 



ENTER A PROGRAM 
. COMMAND 

-55'-

INGREDIENCE .......... -......... .--=-....-t Use ti tl es in output 1 __ -

N 

DEPENDENCE 

N 

in output 

ENTER THE ROOT NODE NUMBER 
-- OR THE WORK COMPLETE 

Prepare and pri nt .--_____ _._1 

the network 

t----'"--.-t ENTER THE VALUE FOR 

N 

FIRST PRIORITY SORTING 

FLOAT 0 r LEVEL 

ENTER THE NODE FOR 
FIRST· PRIORITY SORTING 
(SECOND) 

.......... 
ClJ 
E 

or-

LARGE or SMALL )-----...&.-------......-1 

o to INPUT (fig. 3.1) 

J---~ Print table of data t----------...... 
N 

"'--~Begin a new problem 

)---~ Stop the program 

Fi.gure 3.2 Flow Chart for Operational Corrrnands 



-56~ 

a) Hypothetical Network 

GLOBAL INGREDIENCE OF COMPLETE NETWORK 

EXTREME LEVEL FROM OUTPUT 

o 2 3 

1 
: ......... 2 

: ................... 5 
: ........• 3 
: •••••••.• 4 

: •.•.•.... 6 
: : ........ -5 
: ••.•••••• 7 
: ......... 8 

: .................. -6* 

b) Printed Representation 

Figure 3.3 Network Representation 



HEADING 1 

HEADING 2 

HEADING 3 

HEADING 4 

-57 -

HEADING 5 

HEADING 6 

HEADING 7 

HEADING 8 

a) Hypothetical Outline 

c) Table of Parents 

Heading No. 

2 

3 

4 

5 

6 

7 

8 

b) Trees 

Parent Heading No. 

4 

5 

5 

4 

Figure 4.1 Argument Tree Structure 



RUN OUTLINE 
#RUNN ING 3447 

ENTER P FOR OUTPUT ON THE ON-SITE PRINTER~ 
OTHERWISE THE OUTPUT WILL BE ON THE REMOTE TERMINAL REM 

DO YOU WANT THE PRINTOUT OF THE INPUT NO 

ENTER THE DATA FILE NAME EXAMPLE 

BEGIN INPUT INSTRUCTIONS. ENTER THE WORD END WHEN FINISHED. 
INPUT ERROR --- RE-ENTER ON A NEW LINE<-
PROVISIONS 

ENTER THE LIST OF PROVISIONS AND ASSOCIATED ARGUMENTS 
ONE LINE FOR EACH PROVISION<-
1 "ADQ. INTEIOR EXIT STAIRWAY" 2 
2 "A C C • R I S E BET WEEN LAN DIN G S .. 1 2 
3 "ACCEPTABLE WINDERS" 4 
4 "ACCEPTABLE HANDRAILS"1 13 
5 "ACCEPTABLE HANDRAIL EXTENS ION" 13 
6 "ACCEPTABLE GU~ARDS" 13 
7 "ACC. HANDRA ILS AND GUARDS" 13 
8 "ACCEPTABLE STAIRWAY DIMENSIONS" 6 
9 "ACCEPTABLE LANDING DIMENS IONS" 12 
10 "ACCEPTABLE STA I R~vA Y EX I T DOORS" 2 1 5 
11 "ACCE?TABLE FIRE DOOR" 2 15 
12 "A C C • S P I RAL S TAl R WA Y" 3 
13 "MEETS COMBUSTIBILITY REQTS." 2 9 
14 "ACCEPTABLE SUPPLEMENTARY EXIT" 3 
15 "ACCEPTAB~E ~ONSTRUCTION" 2 5 
16 "ADEQUATE DESI~N LOADS" 7 
17 "ADEQUATE ENCLOSURES" 2 14 
18 "ACC. VEAD AND RISER DIMENS IONS" 6 
ARGUr-1ENTS 

ENTER THE LIST OF ARGUMENTS AND THEIR PARENTS 
ONE LINE FOR EACH ARGUMENT<-
1 "T~ES OF INTERIOR STAIRWAYS" a 
2 "REQUIRED EXIT" 1 
2 .. SUPPLEMENTARY EX IT" 
3 "SUPPLEMENTARY EXIT" 
2 "RE2UIRED EXIT" 1 
4 "OTHER" 1 
5 "DESIGN REQUIREMENTS" a 
6 "DIMENSIONS" 5 
7 "STRENGTH %5 
8 "MATERIALS" 5 
9 "COMBUSTIBLE" 8 
10 "NONCOMBULSTIBLE" 8 
11 "APPURTENANCES" a 
12 "LANDING PLATFORMS" 11 
13 "ENCLOSURES" 11 
14 "ENGLO SURES II 11 
13 "HANDRAILS AND GURARDS" 11 
15 It DOORS" 1 1 
ORDER 1 5 11 


