I\
T29A UILU-ENG-75-2030

42
cy 3 CIVIL ENGINEERING STUDIES

STRUCTURAL RESEARCH SERIES NO. 424

TECHNOLOGY FOR THE FORMULATION

AND EXPRESSION OF SPECIFICATIONS
VOLUME II: PROGRAM USER'S MANUAL

Metz Refersn m
Civil Enginosring Department
B106 C. E. Buililing
University of Illinois
Urbana, Illinois 61801

snce Roo

By
J. R. HARRIS
J. W. MELIN
C. ALBARRAN

A Report on a Research Project
Sponsored by
THE NATIONAL BUREAU OF STANDARDS
Contract 5-35844

UNIVERSITY OF ILLINOIS
AT URBANA-CHAMPAIGN
URBANA, ILLINOIS
DECEMBER 1975

TECHNOLOGY FOR THE FORMULATION
AHND EXPRESSION OF SPECIFICATIONS

VOLUME II: PROGRAM USER'S MANUAL

by

J.R. Harris, J.i. Melin, :and C. Albarran

A report on a research project sponsored by:

THE HATIONAL BUREAU QF STANDARDS

Contract No. 5-35844

DEPARTMENT OF CIVIL ENGINEERING
UHIVERSITY OF ILLIHOIS

URBANA, ILLINOIS

Decemher 1975

INTRODUCTION

This report describes the use of three computer programs
(DECISION TABLE, NETWORK, AND OUTLINE) produced as a part of the study,
“Technology for the Formulation and Expression of Specifications." The
programs are designed for interactive use from a remote console, and the
communication with the programs is in free format, making the programs
easy to use for those with Timited experience in working with computers.
The programs are opefationa] on the Burroughs B6700 computer at the Civil
Engineering Systems Laboratory (CESL) at the Department of Civil Engineering,
University of I11inois, Urbana, I11linois.

The principles on which the programs are hased and examples of
the application of these principles are contained in volume I of this
.reportlwhiTe a more technical description of the three programs, including
logic diagrams, data structure, and program 1listings, is contained in
volume III. This volume contains a description of the use of each program
preceded by a chapter describing accéss.to and use of the computer facility

at which the programs are operational.

ii

PROGRAM USER'S MANUAL
TABLE OF CONTENTS
INTRODUCTION
TABLE OF CONTENTS
LIST OF FIGURES AND TABLES
CHAPTER
1 GENERAL INFORMATION
1.1 Computer Facility
1.2 Access
1.3 Machine Communications
1.3.1 Symbolism
1.3.2 Control Commands
1.4 Files
1.4.. CANDE Commands
1.4.2 File Manipulation Commands
1.4.3 'Fiie Editing Commands
1.4.4 File Maintenance
2 DECISION TABLE PROGRAM
2.1 General Description
2.1.1 Formulation and Decomposition of Logic
2.1.2 Guide to Expression
2.2 Definitions and Conventions
2.2.1 Terminology
2.2.2 Operating Mode Philosophy
2.2.3 Data Storage
2.2.4 Restrictions

2.2.5 Decomposition Algorithm

Page

ii

10
1
11
12

CHAPTER
2.3

2.4
2.5

2.6

3.1
3.2

3.3

3.4
3.5
3.6

Input and Operating Instructions
2.3.1 Starting the Program
2.3.2 Data Input Routine

2.3.3 Operational Commands
Output

Errors and Error Messages

2.5.1 Incorrect Inpuf or Command
2.5.2 Non-Unigue Rules

2.5.3 Else Rules

Example Problem

INFORMATION NETWORK PROGRAM

General Description
Definitions and Concepts
3.2.1 Terminology

3.2.2 Restrictions

3.2.3 Operations Performed
Input and Operating Instructions
3.3.1 Starting the Program
3.3.2 Data Input Routine
3.3.3 Operational Commands
Qutput

Errors and Error Messages

Example Problem

Page
12
12
14
16
17
18
18
18
18
19
26
26
26
26
28
28
29
29
29
32
34
35
35

iv

CHAPTER Page
4 QUTLINE PROGRAM 40
4.1 General Description 40

4.2 Definitions and Concepts 40

4.3 Input and Operating Instructions 41
4.3.1 Starting the Program 41

4.3.2 Data Input Routine 42

4.3.3 Operational Commands 43

4.4 OQutput 43

4.5 Error Messages 44

4.6 Example 44
REFERENCES 48

FIGURES 49

FIGURE
2.1

TABLE
4.1
4.2

PROGRAM USERS MANUAL
LIST OF FIGURES AND TABLES

Decision Table Terminology

Decision Tree

Flow Chart for Problem Initialization

Flow Chart for Data Input (TABLE)

Flow Chart for Program Control (TABLE)

Flow Chart for Data Input (NETWORK)

Flow Chart for Operational Commands (NETWORK)
Network Representation

Argument Tree Structure

List of Arguments and Their Parents

Major Provisions with their Associated Argument Numbers

Page
49
50
51
52
53
54
55
56
57

45

Chaptér One
GENERAL INFORMATION

1.1 Computer Facility

The facility at which the computer programs are operational
is the Civil Engineering Systems Laboratory (CESL), located in the Depart-
ment of Civil Engineering, University of I1linois, Urbana, I11inois.
CESL operates a Burroughs B6700 computer on a time sharing basis for use
from remote terminals. The programs described in this manual were
-written in FORTRAMN IV and are operational on the B6700 installed at
CESL.

1.2 Access

Remote terminals (teletype machines or cathode ray tubes) may
be connected to the B6700 via conventional telephone Tines. The personnel
at CESL will assign appropriate telephone numbers to users. Before
dialing the telephone number, switch. the terminal to full duptex. If
the terminal does not have a duplex switch, check the duplex after making
the phone connection by typing any message and pressing the carriage
return. If the message is repeated by the computer, the terminal is
operating at half duplex. In that case enter fhe command 4+ HALF and
press the carriaae return.

Once the proper phone connection is made, the session is init-
iated by pressing the carriage return. The receiving computer will

respond with the message;

CENTS OF: - date, time of message, informative messages for users

Make the connection to the B6700 computer by typing 4+ CON B6700 and
pressing carriage return. This may be abbreviated as 4+ CON B6. The
computer will respond with a greeting, such as:

CESL TIMESHARING B6700 CANDE... YOU ARE STATION 36

ENTER USERCODE PLEASE

The usercode and password assigned to the user by personnel at
CESL should then be entered even if the second message above was not received).

If the computer accepts the entry, it will send a message like:

SESSION 7054

At this point it is possible to run any of the programs described
in the following chapters or perform any of the operations listed in
sections 1.3 and 1.4.

When the user is finished, he may terminate the session by
typing the word BYE and pressing the carriage return. The session will

also be terminated if the telephone connection with CESL is broken.

1.3 Machine Communication

Communication with the computer is accomplished with the
Command AND Edit language (CANDE). Most users‘will not need to Tearn
the syntax of this tanguage, because their communication with the
computer will be directly controlled by the program being executed.
That is, all programs are designed to he operated in an interactive mode,
with the user simply responding to instructions from the program.

Chapters 2, 3 and 4 describe this interaction in detail. If more infor-

mation is desired on the syntax and use of CANDE beyond what is presented

herein, it may be obtained from CESL or the Burroughs Corp. (ref. 1.1)

1.3.17 Symbolism

The following conventions are used in the description of the
commands:

1) Upper case letters are commands recognized by CANDE. If a
portion of the word is underlined, 1t is permissible to use
only that portion.

2) Lower case letters enclosed by the symbols < > are variables
which represent information to be supplied by the user.

3) "delim" represents any arbitrary delimiter which may generally
be any non-alphanumeric character except one that occurs in the
variables being separated. The slash, /, is a particularly
convenient delimiter.

4) A sequence number refers to the number associated with a par-
ticular line of information.

5) A sequence range 1ist is an inclusive range of sequence numbers,

such as 500-1000 or 100-END.

1.3.2 Control Commands

Backspace: depress the keys "CTRL" and "H" simultaneously.
Delete the 1ine: depress the keys "CTRL" and "D" simultaneously.

Terminate the execution of a program (this "kills" the program

while it is running): type ?DS and press the carriage return.

Terminate the listing of output on the remote terminal: type
?BRK and press the carriage return, or press the key marked "BREAK".

Question the status of a program while it is running: type

?STATUS and press the carriage return.

Program operation: type RUN <program name> and press carriage

return.

1.4 Files

Each timesharing user of the B6700 operates on and with files that
are stored on magnetic disc. A file may be the FORTRAN source code for a
program, the compiled object version of the program, a set of input or
output data, or any other collection of records. The name “file" is probably
derived from the use of the word file to describe a group of punched cbmputer
cards. The files of interest to the reader include the three programs
described in this manual and the files of data stored from previous problems
run on these programs. Files may be manipulated and edited by the user
from his terminal with CANDE.

The programs will automatically create a data file for each probiem
the user runs, assigning a name given by the user. The data in these files
will allow the user to rerun the problem in the future without re-entering
the input data. Although each program containsva routine for modifying
data, a few users will find it convenient to examine the data file and
modify it directly. It is also possible for the user to create new files
if he wishes. A feature that will be incorporated into the programs in the
future will allow a user to'create a file that may be used as original

input to the programs. At present, the original input must be made with the

program operating in interactive communication with the user.

1.4.1 CANDE Commands

In the following commands, a carriage return is required at
the end of the 1ine in order to dispatch the command to the computer.
The term work file means the file that is actively being examined or
modified from the terminal. A filename consists of T to 12 words sep-
arated by slashes. Each word méy contain up to 17 characters, but the
total name is 1imited to 136 characters. Generally 4 to 8 characters
are sufficient to describe files without ambiguity. Note that the
sequence numbers are of importance for editing, but they are otherwise

ignored by the computer.

1.4.2 File Manipulation Commands

MAKE < filename > - creates a new workfile
GET < filename > - recalls a file as the workfile
SAVE < filename > - saves the file in the user's library
REMOVE < filename > - removes the file from the user's library
LIST < filename > - displays the contents of the file on the
user's terminal.
TITLE < filename > TO < filename > - changes the title of a file.
FILES - causes a 1list of all the names of the user's files to
be printed on the terminal.
Note that the variables < filename > may be omitted from the commands SAVE,
REMOVE, LIST, and TITLE (the first filename only for TITLE) if the file in

question is the current workfile.

1.4.3 File Editing Commands

SEQUENCE - invokes the automatic sequence mode, causing the com-
puter to provide the sequence number for each new line. The automatic
sequence my be stopped by pressing the carriage return directly after the
sequence number is printed. The sequence numbers generally start with 100
and have increments of 100, so it is possible to enter new lines between
old ones. It is possible to override these values by entering the desired
base number and increment thus:

SEQUENCE < base > + < increment >
When a sequence has been stopped, it may be resumed by invoking the
sequence command with the new base desired. If the workfile has not
changed between stopping and restarting a sequence, the computer will
automatically begin with the correct new base.

RESEQUENCE < base > * < increment > - assigns new sequence
numbers without changing the order or content of the lines of the workfile.
If the base and increment are not specified, 100 will be used for both.

DELETE < seguence range 1i$t > - discards the specified Tines
from the workfile

FIX < sequence number >< delim >< old text >< delim >< new text >
replaces the specified item in a 1ine by new material. Some examples of
this useful procedure are shown below:

original line: 700 NUMBER AF NODES 267
FIX command: FIX 700 /AF/OF
new line: 700 NUMBER OF NODES 267

original Tine 1150 GO TO 733

Reference Room
FIX command: FIX 1150 /3/4 %23?1 Fngineering Departmeznt

Bt

D, PBuli in
new line: 1150 GO TO 743 B106 C.‘%.AJJ}quév
University ol ~iiiil

Note that only the first occurance of the old text is replaced by the new
text.

INSERT (< filename >) < sequence range list > AT < base >
(+ < increment >) - causes the specified Tines to be copied in the workfile
beginning at the specified base. The items in parentheses are optional,
so that the workfile is assumed and an increment of 100 is assumed.

MOVE < sequence range 1ist > T0 < base > (+ < increment >) moves
lines from one point to another in the workfile.

FIND < delim >< text >< delim > - searches the workfile for the
specified text.

REPLACE < delim >< text >< delim >< delim >< new text >< delim >
(< sequence range 1ist >) - replaces the specified text with the new text
at all occurrences within the sequence range list. If no range is given,

the command affects the entire workfile.

1.4.4 File Maintenance

It may be necessary for the personnel at CESL to occasionally
remove a user's files from the disc and store them on magnetic tape. When
this occurs, the computer will give a message similar to:

FILES NOT PRESENT
When this occurs, a phone request to the personnel at CESL to place the

user's files on the disc will be necessary.

-8~

Chapter Two
DECISION TABLE PROGRAM

2.1 General Description

This program is designed to accept input describing a Timited
entry decision table and perform operations upon it to aid the user in
checking the logical formulation of the decision table and in preparing
textual expression of the content of the decision table. It is assumed
that the user is familiar with decision tables and has a rudimentary
understanding of what a network is, the second in order to interpret a
portion of the output of the program. Decision tables and networks are
described in Volume I of this report. The text by Pollack (ref. 2.1) is

also a good reference for decisjon tables.

2.1.1 Formulation and Decomposition of Logic

The 1ogica1 formulation of the decision table is checked by
decomposing it into a decision tree, which is simply a graphical repre-
sentation of the Tlogical content in the form of a network rather than in
a tabular display. The process of decomposition will identify all re-
dundant or contradictory rules (that is, all rules that are not unique).
Non-unique rules will prevent the synthesis of a unique path in the network
for each rule, and the program will call this to the user's attention.
The decision tree also identifies any combinations of condition entries
that are not given as a rule by showing a branch in the decision tree
Tabeled as an "else" rule. Detection of the else rules allows the user
to study the situations that his decision table has not covered and make

modifications if it is desired to have a compliete table.

2.1.2 Guide to Expression

Textual expression of the logical content of a decision table
is generally done in a rulewise manner. That is, each rule (that requires
expression) can be associated with a phrase, clause, or sentence. It is
expected that the decision network will aid the ordering of the rules, but

no specific principles are yet formulated.

2.2 Definitions and Conventioné

2.2.1 Terminology

It is not the purpose of this manual to introduce the user to
decision tables. The user should understand what is meant by decision
table, condition, condition stub, condition entry, action, action stub,
action entry and rule (see figure 2.1). This program deals only with
Timited entry tables, meaning that the condition and action entries must
all be logical values. However, the program will accept a somewhat wider
range of values than-what has been conventional for limited entry tables

in the past. The acceptable condition entries are:

T True
F False
Immaterial

+ Implicitly true

- Implicitly false
The implicit entries are for use inarule where the value of a condition
may be predetermined by the values of the other conditions. It is not
necessary to test an immaterial entry in order to verify a rule. Implicit

entries are useful when the conditions are not independent.

-10-

The acceptable action entry for input is a number indicating
which action is to be executed for each rule. The output displays an "X"
in the action entry to indicate which action is to be executed.

The decision tree is a special kind of network. The name tree implies
a network that has one root and has no closed loops. The decision tree is con-
structed by showing one condition at each node. Each node has one branch entering
it and two branches leaving it, one representing a true value, the other a
false value. At the end of each path is a terminal node representing a
rule. There is no unique decision tree for any one decision table, each
tree depends on the order that the conditions are used in constructing it.
However, each of the possible trees does represent the same decision logic.
It is worthwhile to note that the same condition can appear at more than
one node, and that the same rule can appear on more than one path, although
the latter only occurs when there is an immaterial entry in the rule and
the condition whiéh corresponds to it appears in the network where the two

paths diverge. See figure 2.2 for an example.

2.2.2 Operating Mode Philosophy

The program is designed to be operated in an interactive mode
from a teletypewriter or cathode ray tube terminal. The output may be
displayed on the remote terminal or on the Tine printer at the computer
installation. It will be possible to run the program in a batch mode,
in the future. The interactive mode seems to be advantageous because of
the short response time and the relatively small amount of input data

required.

-11-

2.2.3 Data Storage

| The program creates a data file in permanent memory (magnetic
dise) for each decision table with the name supplied by the user. A1l of
the necessary information for recreating the decision table and network |
is stored in this data file so that it may be re-used at any time. The
data file is automatically updated as modifications to the decision table
are made. It is possible to gain access to these data files when operating
outside of this program, since they are stored in a formatted form. This
feature allows use of the more sophisticated editing capabilities of the
Command and Edit Language (CANDE) that is a part of the Burroughs B6700

system, as described in Chapter One.

2.2.4 Restrictions

The program is dimensioned to accept tables with up to 27 rules,
27 conditions and 27 actions. Modifying this limitation would require
changes in the source code and permanent data file structure of the pro-
gram. Because of the width of paper on remote terminals, only tables with
twelve or fewer rules can be printed in one unit. Larger tables are
printed in two portions when the output is to be sent to a teletype
terminal.

The condition entries and action entries must correspond to the
definition of limited entries discussed previously. The descriptive title
of the table is Timited to 60 characters in length. The expressions in
the condition and action stubs are 1imited to 10 1ines of 30 characters
each (total of 300 characters per stub). In addition, the total number of

characters in all the condition stubs or action stubs is Timited to 1200.

-12-

2.2.5 Decomposition Algorithm

The program automatically decomposes the decision table into a
decision tree using a procedure similar to the "quick" rule of M. Montalbano
(ref. 2.2). It tends to produce a network with some short and some long
branches, i.e., a skewed network that isolates a few rules quickly. This
is advantageous if those rules are the ones that occur most frequently.
The program will alse produce a. decision tree using a procedure similar to
MontaTbano's "delayed" rule if the proper command is entered (see Section
2.3.3). This tends to produce a network with branches of relatively equal
length. 1In decision tables with only explicit entries, this network tends
to minimize the number of conditions tested, on the average, in order to
isolate a rule. Both of these algorithms are described in detail in the

technical reference manual.

2.3 Input and Operating Instructions

2.3.1 Starting the Program

The first step is to connect the remote terminal to the Buroughs

B6700 computer and to enter the usercode and password. These steps are
described in detail in the initial chapter of this manual. The program
is initiated by the command:

RUN TABLE
Once the program has begun, most of the communication will be a two-way
interchange between the program and the user. In the following 1ist, the
upper case letters without underlining are the program responses and the
underlined 1ines are the user input.

ENTER P FOR OUTPUT ON THE ONSITE PRINTER,

OTHERWISE THE OUTPUT WILL BE ON THE REMOTE TERMINAL

-13-

Any character other than P, or a blank will cause the output to be sent
to the user's terminal. If the user's response to this was a P, the pro-
gram will respond

DO YOU WANT THE INPUT ECHOED ON THE OUTPUT
Simply answer YES or NO. The yes answer will cause each line of input from
the terminal to be reproduced on the output. The next response from the
program will be

ENTER THE DATA FILE NAME
The user shoﬁ]d respond with the particular name he wishes fo use, for
exampTle:

ABCXYZ
The name consists of a 1ist of one to twelve identifiers separated by
slashes. Each identifier may contain up to seventeen characters, but fhe
total must not exceed 136 characters. Generally, it will only be
necesséry to use one identifier with five to ten characters. If more than
one identifier is uséd, enclose the entire name in quotation marks.

If the program does not find any file with the name aiven, it
will assume that the file will contain new data and will proceed to the
data input routine (see section 2.3.2). If a file does exist with the
name given, the program will respond:

FILE EXISTS WITH THIS NAME.
DO YOU WAMT TO USE IT?

If the user does not intend to use data from an existing file,
the correct response is NO. The program will return to request for a
file name and the user should give a new name. This is important because

only the most recent data is retained in a file. Valuable data may be

-14-

lost by inadvertently using the name of an existing file when entering
new data.
If the user does intend to use data from an existing file, the .
correct response to the question above is YES. The program will then ask:
DO YOU WANT TO MODIFY THE EXISTING DATA?
Simply answer YES or NO. A YES sends the program to the input routine.
A NO initiates the automatic decomposition of the table into a tree. See
section 2.3.3 for the subsequent interaction. The sequence of commands

described in this section is shown in the flow chart in Fig. 2.3.

2.3.2 Data Input Routine

The program will give the following message when it enters the

input routine:

BEGIN INPUT INSTRUCTIONS. ENTER THE WORD END WHEN FINISHED.
The input of the table is keyed to a series of headings which are nearly
self explanatory. The headings may be entered in any order, except as
noted. The headings are shown below with the following conventions: The
underlined letters are the key letters that the machine looks for, the
remainder are used only to increase the readibility; the symbol 1 means
that an integer number must be entered ﬁt this point; the symbols < rule >
means that the condition entries must be enteréd using T, F, +, - and .
as described previously; <"..."> means that any descriptive phrase for
use as a title, condition stub, or action stub may be entered between the
quotation marks--note that these titles only serve to make the output

more readable, they are not involved in the Togic of the program.

-15-

NUMBER of RULES 1

NUMBER OF CONDITIONS i

NUMBER OF ACTIONS i

TITLE < "title of the decision table" >

RULES - begins the sequence of inputing the rules; the pro-
gram will print the following:

ENTER THE RULE NUMBER, THE CONDITION ENTRIES, AND THE

ACTION ENTRY, ONE RULE TO A LINE. ENTER THE WORD LAST

WHEN FINISHED.

i< rule> i~ the first 1 is the rule number followed by
condition entries; the last i is the action number.

LAST terminates the sequence of rules

CONDITIONS begins the sequence of input for the condition
stubs; the program prints out:

ENTER. THE CONDITION NUMBER AND THE STRINGS, ONE 30

CHARACTER STRING TO A LINE. ENTER THE WORD LAST

WHEN FINISHED.

i<"..."> i 1is the condition number.
<",.."> It is not to be repeated if more
< ",.." > than one string is necessary to
i<™"™..."m> express the stub. The sequence
i<, of strings is terminated when a new
<", .." > condition number is encountered.

LAST terminates the sequence of conditions
ACTIONS begins the sequence if input for the action stubs.

The messages and sequence of commandsare exactly analogous to those for the

condition stubs.

-16-

END terminates the input routine.
The only headings that must follow a specific order are LAST and END. This
same routine is used for both new data and for modification of old data.
For example, if a mistake is discovered in a previous entry, such as a con-
dition stub, simply re-enter the condition heading, give the condition
number, the new stub, and the LAST command. Any item of data may be changed
in this manner. The syntax diagram for the input routine commands is shown

in Fig. 2.4.

2.3.3 Operational Commands

Once the decision table data is entered, whether from the input
routine or from retrieval of an old data file, the original table is
printed out and the decomposition into a decision tree proceeds automatically.
When it is complete the program prints out the decision tree as described in
section 2.4 and issues the followinag statement, if the table does not contain
redundant or contradictory rules:
DECISION NETWORK SUCCESSFULLY COMPLETED
ENTER A PROGRAM COMMAND
At this point the program will accept any of the following
commands:
WRITE - the program will print out a version of the table
with the rules and conditions ordered as they are encountered in the decision
tree.
DELAY - this creates a new decision tree using a modified
algorithm. See section 2.2.5 for a brief discussion. The new tree is

printed out, and control is returned to the statement ENTER A PROGRAM

COMMAND.
Metz Reference Room

civil Engineering Depa
3106 C. E. Buiiiing .

Jniversity of TIiinols
Jrhana, T1linnis 61801

rtment

-17-

SORT - This reorders the branches of the decision tree so
that shorter branches are first. The reordered tree is printed out, and
control is returned to the statement, ENTER A PROGRAM COMMAND.

MODIFY - This returns control to the input routine.

NEXT - This allows a new problem to begin. The program will
respond ENTER THE DATA FILE NAME.

STOP - This stops the program.

If the decomposition of the table into a decision tree finds any
redundant or contradictory rules, the following message will be printed:
THE FOLLOWING RULES ARE REDUNDANT OR CONTRADICTORY (rule number)
YOU MUST MODIFY THE DATA. ENTER THE MODIFY OR STOP COMMAND

The flow chart for the operational commands is shown in Fig. 2.5.

2.4 OQutput
The original version of the table is printed out once all of the
data is in the program. If the decomposition of the table 1§ successful.
then the decision tree is displayed With the following conventions:
1) Each condition node is displayed with the letter C followed by
the number of the condition;
2) The true branch emanating from each condition node is shown as
a series of + symbols;
3) The false branch emanating from each condition node is shown as
a series of - symbols;
4) Each branch terminates at a rule node displayed with the Tetter
R followed by the rule number, unless it is an else rule, in which

case it is shown as ELSE;

-18-

5) _Un]ess the network is sortéd, the true branch is shown above
the false branch.
If the WRITE command is issued, the table is reprinted after the
decision network with the conditions and rules ordered as they are encountered
in the network. This ordering corresponds to pre-order as defined by Knuth

(ref. 2.3).

2.5 Errors and Error Messages

2.5.1 Incorrect Input or Command

Any Tine of input that the program cannot interpret will cause
the message
INCORRECT INPUT --- RE-ENTER ON A NEW LINE
to be printed. If the program is being used in a batch mode, such an érror

will terminate the program.

2.5.2 Non-Unique Rules

Redundant or contradictory rules will cause the program to suspend
decomposition of the table. The incbrrect rules will be identified to the
user, so that the data may be modified. Rules are redundant if they have
no logical difference in the condition entry and have the same action entry.
Rules are contradictory if they have no logical difference. in the cond%tion

entry and have different action entries.

2.5.3 Else Rules

The program will identify all the possible else rules in the
decision tree. The user can examine the else rule simply by traversing the
path back to the start of the network, noting the appropriate condition
entries as he goes. Any conditions that do not appear on the branch have

immaterial entries.

-19-

~The user must be cautioned that spurious else rules may be
generated from tables with implicit entries. A spurious else rule is
defined as a rule that is not included in the original table because some
implicit entry prohibits it. It can be identified because it will have
the same condition entries as the rule with the implicit entry, except at
that entry it will have the opposite logical value. Not all tables with
implicit entries will develop these spurious else rules; in fact, most will

not. The program will not automatically label them as spurious.

2.6 Example Problem

The following example is self-explanatory, and illustrates most
of the features of the program. The lines with a "u" marked on the left

are user input.

cocoCcocoCcCcoe cococ e c

coCcCcCcCcocaoCccCcoco

c CcoLcCcCcCcoCcoCcocCocco

-20-

RUN TABLE
#RUNN ING 1278

ENTER P FOR QOUTPUT ON THE ON-SITE PRINTER.,
OTHERWISE THE OUTPUT WILL BE ON THE REMOTE TERMINAL

ENTER THE DATA FILE NAME
"AISI/COMPR"

BEGIN INPUT INSTRUCTIONS. ENTER THE WORD END WHEN FINISHED.
TITLE "COMPRESSION ON UNSTIFFEVED ELEMENTS"

NUMBER OF RULES 6

NUMBER OF CONDITIONS 6

NUMBER OF ACTIONS 5

RULES

ENTER THE RULE NUMBER., THE CONDITION ENTRIES, AND THE ACTION
(NE RULE TO A LINE. ENTER THE WORD LAST WHEN FINISHED.

T T .
FT
FF

.hrj'n.
nswn -

F .
L AST
CONDITIONS

o e B B B B

T
T
F
F
T

[0 NN €20 SR VI A I g

T
F

Lo IR

ENTER THE CONDITION NUMBER AND THE STRINGS.

30 CHARACTERS TO A LINE. ENTER THE WORD LAST WHEN FINISHED.
" W/T < 63.3/SRFY"

" W/T/ <~

“ W/T < 144/S5SRFY"

W/T < 25"

" W/T < 60"

* MEMBER TYPE = ANGLE STRUT"

“ FY < 33"

(o, 3K & B0 SR A VIV I

2

ACTIONS

ENTER THE ACTION NUMBER AND THE STRINGs ONE ACTION TO A LINE.
ENTER THE WORD LAST WHEN FINISHED.

1 " FC = 0.60 FY™
2 »* FC = 0.767 FY - "~
= 0.00264 W/T (FY)¥*#*],.,5"
3 " FC = 8000/ CW/T)Hx=2"
4 " FC = 19.8 - 0. 28 W/T
5" FC = 0.60 FY - "
" (W/T = 63.3/SRFY)#*
" (0.60 FY - 12.8)/
" 25(¢(1 - 2.53/SRFY")"
LAST
END

ENTRY,

ccoccoc

-21-
ORIGINAL DECISION TABLE :

COMPRESSION ON ‘UNSTIFFENED ELEMENTS

)
n

W/T 63+3/SRFY
W/T 144/SRFY
W/T 25
W/T < 60
MEMBER TYPE = ANGLE STRUT .
FY < 33

36 36 3 3F 26 36 3 3 3 36 36 35 35 36 3F 36 3 3 3F 36 36 36 3F 3 35 36 3% 36 30 3 3 36 3 3 3 3 30 36 36 36 3F 98 3F 3 G H 3¢
FC 0«60 FY X
FC 0.767 FY =~

«00264 W/T (FY)®%#].5

8000/ CW/T Y2
19.8 - 0.28 W/T:
0.60 FY ~-
(W/T -~ 63.3/SRFY)*
(0.60 FY - 12.8)/
25(¢1 - 2.53/SRFY). *

THE FOLLOWING RULES ARE REDUNDANT OR CONTRADICTORY: 1 4

YOUR MUST MODIFY THE DATA. ENTER THE MODIFY OR STOP COMMAND.<=-

MODIFY

1
T
T

A A A

% % ¥ % %

T T G REV R
e g W
SR
g e

*

6

F

T

T

. . . T

3* #* 3¢

*

= x0T > W -,

X

o

FC
FC
FC

a b~ w
won

#* kR %k % %k %
=

BEGIN INPUT INSTRUCTIONS. ENTER THE WORD END WHEN FINISHED.
RULES)

ENTER THE RULE NUMBER, THE CONDITION ENTRIES, AND THE ACTION ENTRY.
(NE RULE TO A LINE. ENTER THE WORD LAST WHEN FINISHED.

4 F-« FT T .« 3

5S5F e« FTF .. 4

LAST ’

END

ORIGINAL DECISION TABLE

COMPRESSION ON UNSTIFFENED ELEMENTS

. . 1 2 3 4 S5 6
1 W/T < 63.3/SRFY #*® T F F F F F
2 W/T < 144/SRFY # T T F o . N
3 W/T < 25 # o+ T T F F T
4 W/T < 60 #* . T T T T T
5 MEMBER TYPE = ANGLE STRUT L . « T F
6 FY < 33 # . F F « « T

PXXXZ2ZIETEEEEEEIIEE LR LR 22 2 R 5 8 L5 8 22 21X LR X Tk LR R Rk R R X
1 FC = 0.60 FY * X)
2 FC = 0.767 FY - * X

0.00264 W/T (FY)X¥#].5 *
3 FC = 8000/ CW/TH#*2 * X X

4 FC = 19.8 - 0.28 W/T * X

5 FC =0.60 FY - * X
(W/T - 63.3/SRFY)#* *
(Do 60 Fr - 12.8>/ *
3*

25(1 - 2.53/SRFY)

Cc CcCCcCoCccCcCccoe

-22-

DECISION NETWORK S.UCCESSFULLY COMPLETED

DERIVED DECISION NETWORK

Ci + + + C2 + + + RI

- - - - ELSE
- - = = C4 + + + C3 + + + C6 + + + R6
- - - - - =-C02 + 4+ + R2

- - - - - - R3

- - - ELSE

ENTER A PROGRAM COMMAND
MODIFY

BEGIN INPUT INSTRUCTIONS. ENTER THE WORD END WHEN FINISHED.
RULES

ENTER THE RULE NUMBER, THE CONDITION ENTRIES, AND THE ACTION ENTRY.

(NE RULE TO A LINE. ENTER THE WORD LAST WHEN FINISHED.

T + + e o
T . F

- F F

e

= B

F.
LAT

oW
1

S 3+

+ 993+ + 4+

b wWwwN -

INCORRECT INPUT---REENTER ON A NEW LINE U LAST
END

ORIGINA

1 W/T
o W/T
3 W/T
4 /T
5 MEM
6 FY
1 FC
> FC
3 FC
4 FC
5 FC
2

-£3=

L DECISION TABLE

COMPRESSION ON UNSTIFFENED ELEMENTS

63¢3/SRFY

144/SRFY

25

< 60

EER TYPE = ANGLE STRUT
< 33

R S R - R
0.60 FY

0e767 FY -

.00264 W/T (FY)®%1.5
8000/ CW/THr**2

198 = 0.28 W/T

A N A

o= nn

i

= 0.60 FY -

(W/T - 63.3/SRFY)>*
(0. 60 FY - 12.8>/
5(1 - 2.53/SRFY)

DECISION NETWORK SUCCESSFULLY COMPLETED

DERIVED

DECISION NETWORK

+ Cf + + + Rf

-

- = - - C6 + 4+ +

- C4 + + + (C5 + 4+ o+

R4

R5

1 2
* T F
* 4+ T
*o+ o+
L +
3

e e
* 0, F
S H AR K%
® X
* %
*
%
#*
*
¥*
*
%,
+ + + R2
- - - R3

+ 371 W

£

+ 3 o

—24-

ENTER A PROGRAM COMMAND
u SORT

DECISION NETWORK SORTED BY BRANCH LENGTH

ELSE

C3 - --0C4 - -

+ +

+ +

+ + + + + C5 + + + R4
+ -

+ -

+ - - - -R5
-+

+ .

+ + + + (CI + + + RI

- - - - (02 + + + R2

ENTER A PROGRAM COMMAND
u WRITE

DECISION TABLE WITH CONDITIONS AND RULES IN PREORDER

COMPRESSION ON UNSTIFFENED ELEMENTS

4 S 1 6 2 3
3 W/T < 25 ¥ 4+ + T F F T
4 W/T < 60 ¥ + + + T T +
5 MEMBER TYPE = ANGLE STRUT #* . . . T F .
1 W/T < 63.3/SRFY # T F - = = F
6 FY < 33 * . F F . . T
2 W/T < 144/S5RFY #* + T F . . .
**
1 FC = 0.60 FY * X
2 FC = 0.767 FY =~ B * X
0.00264 W/T (FY)¥%].5 3*
3 FC = 8000/(W/T)s#2 # X X
4 FC = 19.8 = 0.28 W/T # X
5 FC = 0.60 FY =- * X
(W/T - 63.3/SRFY)* #
(0.60 FY - 12.8)/ #*
25(¢1 - 2.53/SRFY) *

-25- -

ENTER A PROGRAM COMMAND
u DELAY :

DECISION NETWORK SUCCESSFULLY COMPLETED

DECISION NETWORK DERIVED WITH THE DELAYED DECISION RULE

C3 + + + Cf + + + Rf

- - - = -C6 + + + R6

- : - - - =02 + + + R2

- = -~ =C5 4+ + + C4 + + + R4

- - = = ELSE

- =~ = ELSE

ENTER A PROGRAM COMMAND
u STOP _
#ET=33:20.3 PT=15.2 I0=1.3

-26-~

Chapter'Three
INFORMATION NETWORK PROGRAM

3.1 General Description

This program accepts data describing the nodes in a network and
their connections to adjacent nodes. The network is assembled by the
program, and the information is displayed for the user as a modified tree
in a variety of different ordering schemes. The user should be familiar
with the concept of a network, especially as it relates to the
of information in a specification. Volume I of this report describes
information networks and their place in the organization of specifications.
Knuth (ref. 2.3) contains a discussion of operations on information

structures that is the basis for many of the operations in this program.

3.2 Definitions and Concepts

The operatﬁng mode philosophy and the method of data storage
for this program are essentially the.same as described previously for the
decision table program (sections 2.2.2 and 2.2.3). It should be noted
that the amount of data required to define an information network for any
portion of a specification larger than a page or so is considerably

larger than the amount of data for an average decision table.

3.2.1 Terminology
There are several words that are important for the proper use
of the program:
NODE - any item of information in the specification, such as
an input parameter, a criterion, or a value defined by

functional or logical operation.

-27-

INGREDIENT - any node that may be directly required to establish
the value of a second node is said to be an ingredient of
the second node.

DEPENDENT - any node whose value may be directly affected by the
value of a second node is said to be a dependent of the
second node.

INGREDIENCE - (of a node) is the network beginning at the node
and including all of its ingredient nodes , then all of
their ingredients and so on, the process being repeated
until those with no ingredients are reached.

DEPENDENCE - (of a node) is the network beginning at the node
and including all of its dependent nodes, then all of their
dependents, and so on until the nodes with no dependents
are reached. |

INPUT NODES - those nodes that have no ingredients.

OUTPUT NODES - those nodes that have no dependents.

INPUT LEVEL OR OUTPUT LEVEL - the number of steps from the node
in question to the input (or output) nodes along the long-
est path that goes through the node in question.

FLOAT - the numerical difference between the longest path from
input to output through a given node and the longest
such path in the entire network.

TREE - a network that has one root and has no closed loops.

-28-

3.2.2 .Restrictions

' The maximum size of network that the program will accept is 500
nodes and 1000 branches. The output will not display more than 23 Tevels
in a network, however, this has not proved to be a limitation since the
largest number of levels encountered in the information network for any
specification that has been analyzed at the University of I1linois is ten.
The textual descriptions of the nodes are Timited to 60 characters in

1ength}

3.2.3 Operations Performed

The required input to the program consists of the number of each
node and the numbers of each of its ingredients. Once this data is entered,
tﬁe)program calculates the dependents, the levels from input and output,
aﬁd the float for each node. After these calculations are complete the
user may request to see the ingredience or dependence network for any node.
If the user wishes to see the entire network he may request it as the
"complete" ingredience or dependence. The user may also request that the
order in which the ingredients and dependents of a node are Tisted be
altered by sorting them with respect to their levels or floats. The sorting
algorithm can order the ingredients (or dependents) so that those with the
largest (or smallest) level (or float) occur first in the network.

As was pointed out in volume I of this report, an ingredience
network can be used to order the textual definition of a specification
according to "conditional" ordering; that is, the items are only defined
once they are used. The dependence network is used in a similar fashion

to order the text according to "direct" ordering; each item being defined

-29-

before it is used. The sorting a]gofithm does not change this property; it
merely refines it. An ingredience network sorted so that those ingredients
with the largest float or level are first corresponds to conditional ordering
with those items that have the smallest number of levels of precedence
involved in their definition being defined first. There is generally some
correlation between the depth of precedence and the complexity of definition,
so that this particular ordering generally places the simpler definition
first. It is useful to experiment with the various possible sorts to gain

experience in their possible benefits.

3.3 Input and Operating Instructions

3.3.1 Starting the Program

The steps in starting the information network program are exéctly
the same as those used to start the decision table program, with ;ne excep-
tion: the name of the program to be used in the RUN command is NETWORK.
Fdl1owing the command RUN NETWORK the procedure is just as described in

section 2.3.1 and figure 2.3

3.3.2 Data Input Routine

The following message 1s printed when the program enters the data
input routine:
ENTER THE NODE NUMBERS AND ASSOCIATED DATA, ONE NODE TO A
LINE. IF IT IS NECESSARY TO USE TWO LINES FOR THE INGREDIENTS,

ENTER A COMMA AT THE BEGINNING OF THE SECOND LINE. ENTER
'END' TO SIGNIFY THE END OF THE DATA.

-30-

Each node is identified by'a cardinal number. The program
requires the number of each node and the number of its dependents. The
program will also accept a label of six characters or less and a descrip-.
tive title of sixty characters or less. The Tabels and titles are useful
as aids in interpreting the output, but they are not used in the logic
of the program.

The set of numbers used to identify the nodes must be inclusive;
that is, the largest number used must be the total number of nodes in the
network, and no smaller number may be left unused. It is not necessary
to enter the nodes 1in order, however.

The first entry on each 1ine of input should be a node number,
with one exception. Following the node number, the label, description,
or ingredients may be entered in any order.

<node> <label> <"title"> <ingredients>
The first character of each label must be a letter, and the description
must be enclosed in quotation marks. The exception will be discussed
following this example.
Example: the following Tines are all acceptable
ways of entering information about node 1763 which has
ingredient nodes 75, 150, and 201, a label of FAX, and
description of "allowable axial compression stress".
Method 1:
176 75 150 201 FAX
176 "ALLOWABLE AXIAL COMPRESSION STRESS"

-31-

~ Method 2:
176 FAX "ALLOWABLE AXIAL COMPRESSION STRESS"
176 75 150 201
Method 3:
176 "ALLOWABLE AXIAL COMPRESSION STRESS"
176 FAX 75 150 201
Not all possible ways of entering the data have been shown. The’
important point is that the first number on a line is the node number about
which the information is going to be entered. The exception to this occurs
when there are too many ingredients to fit on one line of input. In this
case a comma is entered at the beginning of the second line to indicate that
the Tist of ingredients is being continued. For example:
177 101 119 212 203 331 222 262
, 275 309
all of the numbers represent ingredients of node 177.
It is possible to change any of the information associated with
a node simply by entering the new dafa. For example if it were desired to
change the label of node 176 as entered above to AXSTRS and to include node
119 among its ingredients, the following instruction would suffice:
176 AXSTRS 75 119 150 201
If any one of the ingredients is to be changed, the entire 1ist
of ingredients must be re-entered. In the special case that a node with
no ingredients had been incorrectly given some ingredients, the following
command is to be used:

<node number> 0

-32-

The zero (the number, not the letter) is the key entry that allows a node
to be disassociated from its old ingredients without entering new ingredients
for it.

When data is being entered in the input routine it is not stored
on the disc until a SAVE or END command is issued. When entering networks
with a large amount of data, it is prudent to protect against a machine
fajlure by issuing a SAVE command periodically (every 20 lines or so).

Once the SAVE has been issued, simply continue entering the data. For

example:

74 TIME "LENGTH OF TIME ERECTED"

75 CONDSS "CONDITION OF SIGN AND SUPPORT"

76 SIZACC "SIZE ACCEPTABLE" 73 7 48 69

SAVE

?7 FMACC "FRAME AND MATERIALS ACCEPTABLE" 8 73 7

The command END is used to terminate the input routine and
return control to the main program. The input routine is used for both
entry of new data and correction of old data. The flow diagram for use-

input is shown in figure 3.1.

3.3.3 Operational Commands

When the data entry is complete, the program calculates the
dependents, levels from input and output, and the float for each node.
If this work is successfully completed, the program will issue the state-

ment:

ENTER A PROGRAM COMMAND

-33-

.At this point, the program will accept any of the following
commands: (the symbolism used herein is the same as described in sections
1.3.1 and 2.3.7).

INGREDIENCE (TITLE) - the program will prepare to print
out an ingredience network. If the word TITLE is included, the descriptive
titles will be used in the output; if not, the labels will be used. The
program will respond with the following instruction:

ENTER THE ROOT NODE NUMBER--OR THE WORK 'COMPLETE
The word complete causes the entire network to be displayed as an ingred-
ience network of a ficticious node assumed to be a dependent of all those
nodes in the network with no dependents.

DEPENDENCE (TITLE) - the program will prepare to print out
a dependence network. The format of the command and the program response
are identical to that described above for INGREDIENCE.

SORT - the program will prepare to reorder the ingredients
and dependents of each node. The program will make three requests to
obtain parameters for the sorting prdcess.

ENTER THE VALUE FOR FIRST PRIORITY SORTING
Either FLOAT or LEVEL should be entered.

ENTER THE MODE FOR FIRST PRIORITY SORTING.

Either SMALL OR LARGE should be entered.

ENTER THE MODE FOR SECOND PRIORITY SORTING
Either SMALL or LARGE should be entered.

When describing the mode for sorting, SMALL is taken to mean the
selection of the ingredients or dependents with the smallest float or level
first. This corresponds to the most dense1y populated and Tongest branches

of the network being placed first. LARGE causes the apposite process to occur.

-34-

Once the network has been sorted, it will remain so until a

new sort is ordered or the problem is ended, so the subsequent use of
INGREDIENCE or DEPENDENCE will display the sorted network.

MODIFY - the program will return to the input routine so
that the data may be changed.

WRITE - the program will print a tabular display of all
the information entered and derived for each node: the label, description,
ingredients, dependents, input level, output level, and float. When the
output is being printed on a remote terminal, the table will be printed in
two portions.

NEXT - the program will accept a new problem, the first
response of the program will be ENTER THE DATA FILE NAME.

STOP - this stops the program.

The flow chart for the operational commands is shown in fig. 3.2.

3.4 OQutput

The output of the program is a graphical representation of the
network. The form of the network is modified td that of a tree. That
is, all the closed loops (meshes) in the network are broken. The break
is shown by repeating thg node with a negative sign in front of it. The
negative sign indicates that the node has appeéred previously (above)
in the network, so that the branch actually would be directed upward to
that previous occurrence. An example of a network and its modified computer
printed version is shown in figure 3.3. The asterisk after a node with a
negative sign indicates that the network continues on past the node and
that this continuation is only shown at the first occurrence.of the node.
Note that the tracing of nodes is always done vertically since each node

is always printed at the same level from input or output.

-35-

3.5 Errors and Error Messages

As with the program TABLE, any 1ine of input that the program
cannot interpret will cause the message

INCORRECT INPUT -~ RE-ENTER ON A NEW LINE
to be printed. If the program is being used in a batch node, the error
will terminate the program.

The only other error messages generated by the program are
caused by defects in the definition of the network., The message:

PROGRAM STOPPED -- NO STARTING NODE IN THE NETWORK
indicates that no node exists for which there are no ingredients. The
message:

PROGRAM STOPPED -- NETWORK CONTAINS A CIRCULAR LOOP
indicates that some node appears in its own ingredience network. The
program accepts networks with closed loops if it is not possible to
travel around the Toop without changing the direction of the branches
at Teast once. If such a circuit is possible, it means that the value of
some node depends on a prior definitfon of its value. This type of
iterative procedure is rare in design specifications. If such a case
is encountered, it will be necessary to break the 1oop by defining two

nodes, an initial value and a final value, in order to use this program.

3.6 Example Problem

The following example illustrates many of the features of the

programs. The lines with a "u" marked on the left are user input.

[el sl oo g o ool collS ond ond

o
c

cCCccCcoco

cocococcCcCcoCcocococeco

[o co i n Y ol ool ndil ool nd el e o

-36-
RUN NETWORK
#RUNNING 1334

ENTER P FOR OUTPUT ON THE ON-SITE PRINTER.
OTHERWISE THE OUTPUT WILL BE ON THE REMOTE TERMINAL
REMOTE :

ENTER THE DATA FILE NAME
"BOCA/ 623"

ENTER THE NODE NUMBERS AND ASSOCIATED DATA., ONE NODE TO
IF IT IS NECESSARY TO USE TWO LINES FOR THE INGREDIENTS.
ENTER A COMMA AT THE BEGINNING OF THE SECOND LINE.

ENTER “END”* TO SIGNIFY THE END OF THE DATA.

INPUT ERROR---RE-ENTER ON A NEW LINE

ACCEPT "FIRE ESCAPE ACCEPTABLE 2 3 4 6 7 8 9
GROUP "USE GROUP"

SPORD "SPECIAL ORDER OF BUILDING OFFICIAL"
EXBLDG "EXISTING BUILDING"

HTLMT ®“HEIGHT LIMEIT"

"HEIGHT LIMIT"

56 NSTOR "NUMBER OF STORIES"

7 HIEEIGHT "HEIGHTs, FEET"

g CONSWR "CONSTRUCTION IN ACCORD VWITH RULES *
8 2 16 27 29 30 31

9 NOALT "MORE ADEQUATE EXITWAY IMPOSSIBLE"

10 FRONT "FRONT OF BUILDING"

11 PROJ "PROJECTING BEYOND FUILCIN"

11 "PROJECTION BEYOND BUILDING LINE"

SAVE

aumd -

INPUT ERROR--~RE-ENTER ON A NEW LINE

12 HTLL " HEIGHT LOWEST LANDING ABOVE GRADE"

13 CBALST “COUNTER BALANCED STAIR TO STREET"

14 FLROOF "FIXED LADDER TO ROOF*"

15 ALLEY "ALLEY OR THOROUGHFARE LEESS THAN 380 FEET WIDE"
16 LIVELD "DESINGGN LIVE LOAD"

17 NONCOM "STEEL OR OTHER NONCOMBUSTIBLE MATERIAL"
18 WOOD "WOOD NOT LESS THAN TWO INCHES THICHK"

19 TYPE "TYPE OF CONSTRUCTION"

20 FDIST "FIRE DISTRICT"

21 SWIDTH "STAIR WIDTH"

22 RISER "RISER HEIGHT"

SAVE

INPUT ERROR---RE-ENTER ON A NEW LINE

23 TREAD "TREAD DEPTH"

24 LWIDTH "LANDING WIDTH"

25 LLENG "LANDING LENGTH"

26 LBLW "LANDING BELOW ACCESS"

27 OPPROT "HOUR OPENING PROTECTIVE"

28 WFL "WITHIN FIRE LIMITS"

29 LCLEAR "PROPER LANDING CLEARANCE" .

30 ACAMAT "ACCEPTABLE MATERIAL" 6 7 17 18 19 20 28 32 33
29 10 11 12 13 14 15 -

3! ACDIM "ACCEPTALBLE DIMENSIONS" 2! 22 23 2 4 25 26
32 NOCC "NUMBER OF OCCUPANTS"

33 COMBUS "WOOD OR SIMILARILY CONMBUSTIBLE"

END

A LINE.

-37-

ENTER A PROGRAM COMMAND
INGREDIENCE

ENTER THE ROOT NODE NUMBER---0R THE WORD “COMPLETE*
COMPLETE

WNSORTED
GLOBAL INGREDIENCElOF COMPLETE NETWORK

EXTREME LEVEL FROM OUTPUT

0 . . 1 2

I ACCEPT

3 SPORD

4 EXBLDG

S HTLMT

g CONSWR . .
leessesssl3l ACDIM

H toocesecoelb LBLW

H Ssceseeeclh LLENG
: :Oﬁ'.‘...24 L[JIDTH
: teesesses23 TREAD
. 3.-...--.22 RISER
: toeesesseol]l SWIDTH
teeessss el ACMAT

. Seveveeeesl3 CoMBUS
: Sessessseel32 NOCC

H tecessesel8 WFL

: teesceesell FDIST
: feseescesld TYPE

. :-ooo.o--Lg woQD

. Seesesocsel? NONCOM
: feeesssseese?7 HEIGHT
H lecocseese NSTOR
tecosseee29 LCLEAR .

tesesesesneld ALLEY
:a--o..--1_4 FLROOF
:-..4.-..L3 CBALST
tesseeseesl2 HTLL
:.-ao.n-ol_l PROJ
tesessessell FRONT
tesreeesee27 OPPROT
leseesseel6 LIVELD
teesssesee?2 (GROUP

9 NOALT
EINTER A PROGRAM COMMAND
MODIFY

EINTER THE NODE NUMBERS AND ASSOCIATED DATA, ONE NODE TO A LINE.
IF IT IS NECESSARY TO USE TWC LINES FOR THE INGREDIENTS.

ENTER A COMMA AT THE BEGINNING OF THE SECOND LINE.

ENTER ‘END* TO SIGNIFY THE END OF THE DATA.

123461789

END

ENTER A PROGRAM COMMAND
INGREDIENCE

ENTER THE ROOT NODE NUMBER---OR THE WORD ‘COMPLETE’
COMPLETE

-38-
WSORTED
GLOBAL INGREDIENCE OF COMPLETE NETWORK
EXTREME LEVEL FROM QOUTPUT
0. 1 2 3
ACCEPT
..'..‘...9 NOALT
.........8 CONS‘IJR ‘-
H SIS | ACDIM
. teescssseslb LBLW
' tescsseeolh LLENG
teecsseneldd LWIDTH
teeesseee23 TREAD
teeeceesel22 RISER
Sesscsensell SWIDTH
eseesesee30 ACMAT
teeseeese33 COMBUS
tecsesesee 32 NOCC
teeveeseel8 WFL
lteecseceese2l FDIST
:-...-.--LQ TYPE
:-.......1_8 WOoOoD
teeecosesel? NONCOM
" lesecesees? HEIGHT
:l...‘....é NSTOH
esseseees29 LCLEAR .
:no--oo-oLS ALLEY
teeeeesseld FLROOF
feeeassesl3 CBALST
:-oo..-coL2 HTLL
$eecssseell PROJ
:.'....'.IU FRONT
esesceeer?7 OPPROT
seeesseeel 6 LIVELD
csseceese2 GROUP
onoos.n.-oon.u--c-'? HEIGHT
oooo-oc-o-.--oc;o;ooooﬁooco-“é NSTOR
esseseesed EXBLDG
essesseseld SPORD
.....-..........o--Q GROUP
HTLMT o
ENTER A PROGRAM COMMAND
SORT

"9 W0 45 48 40 40 00 er er 00 49 65 G4 SE 64 P BE b |

88 83 #5809 P oG8 00 58 e €V S4 68 O3 ea S5 60 @0 U WP A0 S5 s es &

® 80800008

40 8% a0 60 40 00 P &5 o4 eC e® an o0 eo

Ul o0 se e

ENTER THE VALUE FOR FIRST PRIORTY SORTING
FLOAT

ENTER THE MODE FOR FIRST PRIORTY SORTING
LARGE

ENTER THE MODE FOR SECOND PRIORTY SORTING

LARGE Metz Refersnscs Roon
Civil Enginsering Department
ENTER A PROGRAM COMMAND 3106 C. B. Builling
INGREDIENCE TITLE niversity of Illinois
2 6 le

»

ENTER THE ROOT NODE NUMBER=---0R THE WORDF’COMPLETE
COMPLIETE

-39-

SORTED FIRST BY LARGE FLOAT AND THEN BY LARGE LEVEL.

GLOBAL INGREDIENCE OF COMPLETE NETWORK

EXTREME LEVEL FROM OUTPUT
0 1 2 3
5 HEIGHT LIMIT

4 5 6 7

1 FIRE ESCAPE ACCEPTABLE 2 3 4 6 7 8 9

teeseseceass @
tesecsscesed EXISTING BUILDING
:oo.occooo3
R R 1
tecosecosssesescccsnssssconseceed
Seeoecssscsseseseveosnssescovsccl

teesocseceed

:........27

MORE ADEQUATE EXITWAY IMPOSSIBLE

SPECIAL ORDER OF BUILDING OFFICIAL
USE GROUP

NUMBER OF STORIES
HEIGHT, FEET

CONSTRUCTION IN ACCORD WITH RULES
HOUR OPENING PROTECTIVE

tesececessl & DESIGN LIVE LOAD

:aoootooo-a USE GROUP
ACCEPTABLE DIMENSIONS

teseecessll
’ ' leessescel6
:..;-.;-»25
teneseseseld
teessoessl23
:-ao-;;o;ez
tesevesesll
sevecesall
2ececseseell
:'0..‘...32
:4.--00..28
:0000000.20
Scacseeesl®
:o..ac-.ols
:.ooo-occ17

:-.ooooo'f7

86 B8 08 B0 %0 00 se e €0 48 ap 62 40 6 As e

:-..o;;-o-é

LANDING BELOW ACCESS
LANDING LENGTH
LANDING WIDTH

TREAD DEPTH

RISER HEIGHT

STAIR WIDTH

ACCEPTARBLE MATERIAL

WOOD OR SIMILARILY COMBUSTIBLE
NUMBER OF OCCUPANTS

WITHIN FIRE LIMITS

FIRE DISTRICT

TYPE OF CONSTRUCTION

WOOD NOT LESS THAN TWO INCHES THICX
STEEL OR OTHER NONCOMBUSTIBLE MATER
HEIGHT., FEET

NUMBER OF STORIES

:aooao-oceg PROPERALANDING CLEARANCE

toeesessoeld

:;;-o;-;ola
:.J.....-L3
:o--ao;o-lz
teeesssescll
:u-;‘.;oolﬂ

SORTED FIRST BY LARGE FLOAT AND THEN

ALLEY OR THOROUGHFARE LESS THAN 30E
FIXED LADDER TO RCOF

COUNTER BALANCED STAIR TO STREET
HEIGHT LOWEST LANDING ABOVE GRADE
PROJECTION BEYOND BUILDING LINE
FRONT OF BUILDING

BY LARGE LEVEL

GLOBAL INGREDIENCE OF COMPLETE NETWORK

EXTREME LEVEL FROM OUTPUT
7 8 9 10
ENTER A PROGRAM COMMAND

STOP .
#ET=26:43+3 PT=9.6 10=5.7

11 12 13 a

-40- -

Chapter Four
OUTLINE PROGRAM

4.1 General Description

The input for this program consists of the arguments selected
for classification of the specification and the major provisions selected
to appear in the outline. Each provision must be associated with at least
one argument. The arguments represent headings in the outline. They are‘
entered in a trial outline format which provides the guide for the final
structure of the outline. Such arguments taken as a set must provide a
reasonable basis for organizing the specification as described in volume 1
of this report.

The output of the program is a refined version of the trial
outline given by the input. It is not related to the hierarchical struc-
ture of the 1nformation network of the specification, allowing an appli-
cability to the wide variety of specifications and freedom to explore

alternative organizations.

4.2 Definitions and Concepts

The operating mode philosophy and the method of data storage
for this program are essentially the same as described previously for
the decision table and information network programs (see sections 2.2.2
and 2.2.3).
The arguments used for headings in the outline are stored as a group
of trees. A tree is a special kind of network that has one root and has no

closed loops. The headings of a conventional outline with indentations can be

-41-

represented as a group of trees. Each of the headings on the extreme
left is called a root and all the subsequent headings until the next root
belong to one tree. Each heading in the tree is associated with jts parent,
which is the last previous heading that projects to the left. Figure
4.1 shows the correspondence of a set of headings and a tree for a
hypothetical outline.

The program will accept up to 30 arguments and 30 provisions.
Modification of this 1limit is relatively simple, but does require a
few changes in the FORTRAN code of the program. No more than five
arguments may be associated with any one provision.

The algorithm maps the provisions onto the argument trees.
Where provisions are associated with more than one argument (a freguent
case), the algorithm appends the trees of the secondary arguments onto
the tree of the first argument listed for the provision. Thus no provision
is mapped onto the outline until all of its associated arguments have
been entered. Arguments are omitted from the appended trees if they are
not associated with any provisions ét that point in the outline. The
overall order of the outline can be varied by changing the order in which

the trees are taken.

4.3 1Input and Operating Instruction

4.3.1 Starting the Program

The steps in starting the outline program are the same as those
for the decision table and information network programs except that the
name of the program to be used in the RUN command is OUTLINE. PRefer to

2.3.1 and figure 2.3 for the details.

-42-

4.3.2 Data Input Routine

The following message is printed when the program enters the

input routiné:

BEGIN INPUT INSTRUCTIONS. ENTER THE WORD

END WHEN FINISHED.
The input is keyed to three headings which are nearly self explanatory.
They may be entered in any order. The symbolism used in the following is |
the same as that used in chapters 2 and 3.

ARGUMENTS - begin the sequence for input of arguments.
The program will respond:

ENTER THE LIST OF ARGUMENTS AND THEIR PARENTS,

ONE LINE FOR EACH ARGUMENT

The correct format for the input is:

<arg. no.> <"title"> <parent arg. no.> ‘

The title is not necessary for the caiculations, but makes
interpretation of the output much easier. The title must be inside quo-
tation marks and less than 30 characters long. The argument numbers
must be sequential, beginning with one.

PROVISIONS - begins the sequence for input of the provisions.
The program will respond:

ENTER THE LIST OF PROVISIONS AND ASSOCIATED

ARGUMENTS, ONE LINE FOR EACH PROVISION.

the correct format for the input is:

<prov. no.> <"title"> <assoc. arg. nos.>

-43-

~ The title has the same requirements as for the argument titles.
.The provision numbers must once again be sequential. There must be at
least one associated argument for each provision. If there is more than .
one, separate the adjacent numbers with at least one blank space.

ORDER - prepares the program to accept the numbers of the
roots of the argument trees in the order that the user desires to make
the outline. The numbers may be entered on the same Tine as the word
ORDER or on the 1ine following.

END - terminates the sequence of input instructions.

4.3.2 Qperational Commands

The mapping algorithm proceeds automatically after the input
is completed. When the outline is finished, the program will request{
ENTER A PROGRAM COMMAND
Any of the following commands may be used:
QBQER - a new sequence of argument trees may be entered,
“as described for the input routine. . The command END must be used when the
order statement is finished. The new outline will be generated and the
program will once again request a program command.
NEXT - a new problem may be entered. The first response

of the program will be to request a data file name.

4.4 Qutput

The output contains the outline, or "table of contents," and

consists of a hierarchical structure of headings and a Tist of related major

provisions under these headings.

-44-

4.5 Error Messages

In general, the program cannot be killed by inadvertent errors
in input. Improper types of input will be ignored and the Qser will be
instructed again to enter the proper type of data. The program will stop
if improper input is encountered ten times in succession.

If the program is being used in a batch mode, an input error
will cause the message: »

"PROGRAM STOPPED---INCORRECTVINPUT"

Another possible error in the data structure that will stop
the program is caused when any associated argument provision is not found
in the hierarchical trees of arguments.

In this case, the message given by the program is:

"PROGRAM STOPPED---SOME PROVISIONS HAVE NOT BEEN OUTLINED"

4.6 Example
The following example is taken from the initial text of the

section 618 from the 1974 BOCA changes.

The arguments selected for outlining are shown in table 4.1.
It can be noticed, that there are three trees of arguments, headed by the
following argument roots: No. 1, Types of Interior Stairways, No. 5,
Design Requirements, and No. 11 Appurtenances. The major provisions along
with their associated arguments, are shown in the table 4.2.

The order in which the argument trees will be expressed in this
example is defined by the argument-root numbers 1, 5, T1.

The input, as well as the resulting outline, are printed on the

following pages.

-45-

Table 4.1 List of Arguments and their Parents

ARGUMENT
NUMBER ARGUMENT TITLE PARENT
1 TYPES OF INTERIOR STAIRWAYS 0
2 REQUIRED EXIT 1
3 SUPPLEMENTARY EXIT 1
4 OTHER 1
5 DESIGN REQUIREMENTS 0
6 DIMENSIONS 5
7 STRENGTH 5
8 MATERIALS A 5
9 COMBUSTIBLE 8
10 NON-COMBUSTIBLE 8
11 APPURTENANCES 0
12 LANDING PLATFORMS 11
13 HANDRAILS AND GUARDS 11
14 ENCLOSURES 11
15 DOORS 11

Table 4.2 Major Provisions with their Associated Argument Numbers

PROVISION ARGUMENT
NUMBER PROVISION TITLE NUMBERS
1 ADQ. INTERIOR EXIT STAIRWAY 2
2 ACC. RISE BETWEEN LANDING PLATFORMS 12
3 ACCEPTABLE WINDERS 4
4 ACCEPTABLE HANDRAILS 13
5 ACCEPTABLE HANDRAIL EXTENSION 13
6 ACCEPTABLE GUARDS - 13
7 ACC. HANDRAILS AND GUARDS 13
8 ACCEPTABLE STAIRWAY DIMENSIONS 6
9 ACCEPTABLE LANDING PLATFORM DIM. 12
10 ACC. STAIRWAY EXIT DOORS : 2, 15
11 ACCEPTABLE FIRE DOOR 2, 15
12 ACCEPTABLE SPIRAL STAIRWAY 3
13 MEETS COMBUSTIBILITY REQUIREMENTS 2, 9
14 ACCEPTABLE SUPPLEMENTARY EXIT 3
15 ACCEPTABLE STAIRWAY CONSTRUCTION 2, 5
16 ADEQUATE DESIGN LOADS 7
17 ADEQUATE ENCLOSURES 2, 14
18 ACC. TREAD AND RISER DIMENSIONS 6

-46-

RUN OUTLINE
#RUNNING 1377

ENTER P FOR OUTPUT ON THE ON-SITE PRINTER., .
OTHERWISE THE OUTPUT VWILL BE ON THE REMOTE TERMINAL REM

D0 YOU WANT THE ?RINTOUT OF THE INPUT NO

ENTER THE DATA FILE NAME "BOCA/ 618"

BEGIN INPUT INSTRUCTIONS. ENTER THE WORD END WHEN FINISHED.
INPUT ERROR --- RE-ENTER ON A NEVW LINE<-

PROVISIONS

EINTER THE LIST OF PROVISIONS AND ASSOCIATED ARGUMENTS
ONE LINE FOR EACH PRQOVISION<=

"ADR. THTERINS EXIT STALRwAY™ 2
“ACC. RISE BFTWEEN LAKDINGS™ 12
"ACCFPTARLE wINJERS™ 4

TACCEPTARLE HawuRALLS"™ 13
WACCEPTARLE waNuURALL EXTENSIuyT 13
TACCFPTARLFE 5gakis™ 13

"ACCe HANODRAILS AYU GUAKYS™ 13
"ACCFPTARLE STAIRwAY pldbaSTONST" o
"ACCFPTARLE LaWNuTwNt DIMEN3Lyns™ 12
"ACREPTARLE STAIRQAAY EXIT NDUGRS™ 2 15
"ACCERTABRLLE rIRE ufldRrR™ 2 %

"ACC. SPIRAL, STAIRWAY®™ 3

"MEETS COMoUSTIBILITY KEWTSert 2 4
"ACCEPTARLE SJPPLILHMENTARY EALT™ 3
MACCEPTASLE COUSTHUCTIgNT 2 o
"ADFQUATE DFslan Lianse 7

17 "™ADEQUATE ENGLUSURES™ ¢ 14

18 "ACh. TREAU aAnd RLISER IMENS[Onr A
ARGUMENTS

R e e, 0 ON O UL O

D

EINTER THE LIST OF ARGUMENTS AND THEIR PARENTS
(NE LINE FOR EACH ARGUMENT<-
nTYPFS OF INTeRLiQdR STALgsaYS
"REQUIIREND EXIj™ 1
"SUPPLFMENTARY EXIT™ 1
"OTHER™ 1§
"NESTGN REQWUILEMENTS® O
"DIMENSINANS™ 5
“STRENGTH™ 3
"MATFRTALS" 5
"COMRUSTIRLE" 8
10 "NAONCNHRUST T 4L 3
11 "APPURTENANCES™ O
12 "LANDING PLAFFUIRM43™ |1
13 "HANDRAILS AyD 344957 {1
14 "ENCLASURES" 11
15 "NNARsS"™ 11
ARNDFR 1 5 11
END

O X NIJ £ W) -

0 U

T

L

HE ADINSG

TYPES OF INTERIUR STAIRWAYS
REQUIRED EXIT

SUPPLEMENTAR

ENCLOSURES

DOQR

. ° . . .
DESIGN REQUIREMENTS

L]]
OTHER

L] .] []
DESIGN REQUIREMENTS
DIMENSTIONS

STRE

NGTH

S

COMBUSTIBLE

L] . e L)
MATERIALS

COMBUTIBLE
NONCOMBUSTIBLE

APPURTENANCES
LANDING PLATFURMS

Y EXLT

N

L]

.
L]

L] L] L] L] L] L}
HANDRAILS AND GUARUDS

L

L

. . 3
[L]]
e . L]

. ®» e @

-47-

» © o »

PROVISION

17

10
11

15
13

12
14

16

O N

~NoNU e

ADQes INTERIQR ExX1T STAIRWAY
ADEQUATE ENCLOSyYURES

ACCEPTABLE STAIRwAY EXIT 0O0ORS
AcC. FLRE DOQOR

ACCEPTABLE STAIRwAY CONSTRUCTI
MEETS COMBUSTIBI{IYY REQUIREME

ACCe SPIRAL STAIRWAY.
ACCEPTABLE SUPPLEMENTARY EXIT

ACCEPTABLE WINDEgs

ACCEPTABLE STAIRwAY DIMENSIONS
ACC, TREAD AND RISER DIMENSION

ADEQUATE DESIGN | DADS

ACC, RISE BETWEEN LANDING PLAT
ACCEPTABLE LANDING PLATFORM DI

ACCEPTABLE HANDRAILS
ACCEPTABLE HANDRAIL EXTENSION
ACCEPTABLE GUARDS

ACCe. HANDRAILS AN GUARDS

1.1

2.1

2.2

2.3

<48~
REFERENCES

Burroughs Corp. B6700/B770Q Command and Edit (CANDE) Language

Manual, Form No. 5000318.

Pollack, A. L., Decision Tables: Theory and Practice, Wiley-
Interscience, New York, N.Y., 1971.

M. Mantalbano, "Tables, Flow Charts, and Program Logic," IBM
Systems Journal, Sept., 1962, pp. 51-63.

Knuth, D. E., The Art of Computer Programming, Vol. I, Fundamental
Algorithms, Addison-Wesley, New York, N.Y., 1968.

-49-

RULES
CONDITIONS
ACTIONS
AL J 0 "y
STUBS ‘ ENTRIES
a) Regions of a Decision Table
RULE 1 RULE 2 RULE 3
RAINING? F F T
EARLIER THAN 7:45? T F
USE BICYCLE ~ ' X
USE CAR X X

b) A simple decision table with two conditions,
two actions, and three rules written in Timited
entry format.

Figure 2.1 Decision Table Terminology

-50-

Rl R2 R3 R4

C1 T

—_{
_..i
-

—
-

c2 T

s | T |F [|-

a) Decision table showing the condition entry only.

b) Decision network formed by testing condition CI
first, then condition C2.

c) Decision network formed by testing condition C2
first, then condition C1. Note that rule R4
appears on two paths, and that they converge at
C2 where R4 has an immaterial entry.

Figure 2.2 Decision Table and Decision Trees

-51-

\. RUN TABLE /

\

ENTER P FOR OUTPUT ON THE ON-SITE PRINTER,
OTHERWISE THE OUTPUT WILL BE ON THE REMOTE TERMINAL

P entered

[DO YOU WANT THE INPUT
ECHOED ON THE OUTPUT

{ Turn ECHO onj

Existing

1
DATAFILE EXISTS WITH THIS
NAME.

DO YOU WANT TO USE IT?

Go to INPUT Go to EXECUTE
at 2 on fig. 2.4 at 3 on fig. 2.5

Figure 2.3 Flow Chart for Problem Initialization

-52-

®

BEGIN INPUT INSTRUCTIONS. ENTER
THE WORD END WHEN FINISHED

Accepts

(CONDITIONS }— }- Integer

'rN number

ACT1ONS }—
N

Error

TITLE

Accepts title as a string

|

(RULES)—Y—~{TEE LAST}—

N

Accepts rule number,
condition entries and
action number

\V

N 'N - stores
@MING Y new
N N line
)
ACTION Same logic as for CONDITIONS}
N

(END)——EXECUTE - Go to 3 on fig. 2.5

Error
Figure 2.4 Flow Chart for Data Input

-53-

¥

Decompose into tree using the quick rule.
Check for dependent rules.

No dependent rules ?\Dependent rules

1 Y

DECISION NETWORK THE FOLLOWING RULES ARE
SUCCESSFULLY COMPLETED ‘ REDUNDANT OR CONTRADICTORY
__./

ENTER A PROGRAM COMMAND

__/A

~ Print reordered table }——

—_—T\

=
—
=

G

-

—<

(8._(3). [

~{Print sorted network]————

zc—y =

—

>)

=<
-<<

~{ Decompose with the delayed rulel-

~Go to INPUT, 2 on fig. 2.4

(Zl._(3)._(7)
=t

ki
N
r
Y .
XT_/— Goto 1 on Fig. 2.3
N
STOP — = Stop the program]
N
Error

Figure 2.5 Flow Chart for Program Control

-54-

ENTER THE NODE NUMBERS AND ASSOCIATED DATA, ONE NODE TO A
LINE. IF IT IS NECESSARY TO USE TWO LINES FOR THE INGREDIENTS,
ENTER A COMMA AT THE BEGINNING OF THE SECOND LINE. ENTER
'"END' TO SIGNIFY THE END OF THE DATA.

(INTEGER———(INTEGER }——— Accept as an ingredient —

N N

B
(LA%E:)——X—————{Accept as the 1abe11—-——————»—
N

STRING Y Accept as the descriptionf—*—

m
=
o
m_
T [
LI—J
—
=
m
=
Y

Y
N Y
(cormn)
N
(EE%E)—QL——*—-Store data on disc fi]e}
N
Y
END Y Store data on disc.,file and
N return to the main program
ERROR

Figure 3.1 Flow Chart for Data Input

-55-

ENTER A PROGRAM
| COMMAND

wn
' -
/ Use Tabels in output
(DEPENDENCE Y | d |
¥

N ENTER THE ROOT NODE NUMBER
| -- OR THE WORK COMPLETE

Prepare and print

the network

i
(SRT)———{ ENTER THE VALUE FOR
FIRST PRIORITY SORTING

(FLOAT or LEVEL)

¥
ENTER THE NODE FOR

FIRST PRIORITY SORTING
(SECOND)

(one time)

(LARGE or SMALL)-

—

[

(op1FY) ——{ o to INPUT (Fig. 3.1)
Y

Y
N
E

(wR1TE)}——={Print table of data}
N

(NEXi}—l——-a—{Begin a new problem |
N

STOP }— Stop the program |

Figure 3.2 Flow Chart for Operational Commands

-56-

a) Hypothetical Network

GLOBAL INGREDIENCE OF COMPLETE NETWORK
EXTREME LEVEL FROM OUTPUT

0 1 2 3
1
N 2
Dttt ci et 5
.......... 3
......... 4
e ereeees 6
e -5
.......... 7
.......... 8
................... -6*

b) Printed Representation

Figure 3.3 Network Representation

-57-~

HEADING 1
HEADING 2
HEADING 3

HEADING 4 o

HEADING 5 Q

HEADING 6
HEADING 7

HEADING 8 e

a) Hypothetical Outline b) Trees

c) Table of Parents

Heading No. Parent Heading No.

1

2 1

3 1

. _

5 4

6 5

7 5

8 4

Figure 4.1 Argument Tree Structure

RUN OUTLINE
#RUNN ING 3447

ENTER P FOR OQUTPUT ON THE ON-SITE PRINTER,
OTHERWISE THE OUTPUT WILL BE ON THE REMOTE TERMINAL REM

D3O YOU WANT THE PRINTOUT OF THE INPUT NO
ENTER THE DATA FILE NAME EXAMPLE

BEGIN INPUT INSTRUCTIONS. ENTER THE WORD END WHEN FINISHED.
INPUT ERROR --- RE-ENTER ON A NEW LINE<-
PROVISIONS

ENTER THE LIST OF PROVISIONS AND ASSOCIATED ARGUMENTS
ONE LINE FOR EACH PROVISION<-

1 "AD2. INTEIOR EXIT STAIRWAY" 2

2 "ACC. RISE BETWEEN LANDINGS" 12

3 "ACCEPTABLE WINDERS" 4

4 “ACCEPTABLE HANDRAILS"1 13

5 "ACCEPTABLE HANDRAIL EXTENSION" 13

6 "ACCEPTABLE GURARDS" 13

7 "ACC. HANDRAILS AND GUARDS" 13

8 "ACCEPTABLE STAIRWAY DIMENSIONS" 6

9 "ACCEPTABLE LANDING DIMENSIONS" 12
10 "ACCEPTABLE STAIRWAY EXIT DOORS"™ 2 15
11 "ACCEPTABLE FIRE DOQR" 2 15

12 “ACC. SPIRAL STAIRWAY" 3

13 "MEETS COMBUSTIBILITY REQTS." 2 9
14 "ACCEPTABLE SUPPLEMENTARY EXIT" 3
15 "ACCEPTABLE TONSTRUCTION" 2 5

16 "ADEQUATE DESI&N L0oADS" 7

17 “ADEQUATE ENCLOSURES" 2 14

1§ "ACC. TREAD AND RISER DIMENSIONS" 6
ARGUMENTS

ENTER THE LIST OF ARGUMENTS AND THEIR PARENTS
ONE LINE FOR EACH ARGUMENT<-
"TYPES OF INTERIOR STAIRWAYS " 0
“REQUIRED EXIT" 1
"SUPPLEMENTARY EXIT" 1
"SUPPLEMENTARY EXIT" 1
"REQUIRED EXIT" 1

"OTHER" |

"DESIGN REQUIREMENTS" 0
"DIMENSIONS " 5

"STRENGTH 75

"MATERIALS" 5

“COMBUSTIBLE" 8

10 "NONCOMBULSTIBLE" 8

11 "APPURTENANCES"™ 0

12 "LANDING PLATFORMS" 11

13 "ENCLOSURES"™ 11

14 "ENCLOSURES" 1!

13 "HANDRAILS AND GURARDS" 11
15 "DOORS™ 11

ORDER 1 5 11

VR I UTEEDLOND NN —

