P
hilscher

COMPETENCE IN
COMMUNICATION

Operating System Manual
rcX - Realtime Communication System for netX

Configuration of rcX
V2.0/2.1

Hilscher Gesellschaft fir Systemautomation mbH

www.hilscher.com
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public

Introduction 2/94

Table of Contents

1 [oL oo LU X 4T oY o FO PR PR 4
S Y Y o Yo 10 | 1 = T Yo 014 1= o | SRR 4
1.2 LISt Of REVISIONS ..ottt ettt e e e e e e et e e e e e e e e e e e nneeeeeeeeeannnnnneeaaeens 4
LR T Yo = 1 L] (= S PRSP OP PRI 5

LI R B O o)/ 4 o | o ST P PP OPPPPTP 5
1.3.2 IMPOANT NOTES ...ttt et et e st e e e bt e st e e e e naneee s 5
1.3.3 EXCIUSION Of Li@bilityccoeeeeieiieee e e e e e e e et eaaa s 6
L T A (o To] PSRRI 6

2 (O00Y a1 o [U T 1T I o SRR 7
21 A Single Source Code-File (Config.c) for the Configurationcccocceiiiiiiiiii e 7
2.2 List of configurable Resources and Peripherals ... 7
2.3 The Behavior after a System ReSet.......cooiiiiiiiiii e 8
2.4 The AppliCatioN-ENtry COUE e e e e e e e e e e e e e e e e e nneeeeeaaeeeannes 10
2.5 The Location of the main() Function to Enter the Kerneloccoiiii e, 11

3 System Configuration Data STFUCTUIEooi ittt e e e e e e e e ebe e e eeaaeeeanes 13
3.1 Configure Drivers using RX_DRIVER_PERIPHERAL_CONFIG_T.....cccccceviiiireiiiiee e 15

3.1.1 The RX_DRIVER_PERIPHERAL_CONFIG_T Structure Referencecccccovvieeiiiiiiiiiciccnen. 15
3.2 Loading Middleware Modules using tMIiddIEWAIEcccoiiiiiiiiiiiie e 17
3.2.1 The RX_MIDDLEWARE_CONFIG_T Structure Reference.........c.cccceeiviiiiiiiiiiiiececeec e 17

4 Defining the AP PliCAtiON-TASKS.....cooi et e e s 18
4.1 The RX_STATIC_TASK T Structure REfErencCeccuvvviiiiii i 18

5 Configuring the Hardware Platform and the RESOUICEScc.uviiiiiiiiiiiiiieiie e 22
5.1 The Peripheral Configuration Table in Generalcooviiiiiiiiiiiiiee e 22
5.2 Default Resource Configuration............coociiiiiiiiiei it e e e e e e e s e aeeeaaaeeeanns 23
5.3 Defining the Hardware in Peripheral ObjectS..........ccocuiiiiiiiii i 24

5.3.1 The RX_PERIPHERAL_HEADER T Peripheral Object Header Structure............ccccccceveeeiiiinnneen... 25
5.4 Configuring the Trace Memory POOIooiiiiiiiiiiieeee et e e 27
5.4.1 The RX_TRACE_SET_T Trace Memory Object Structure Reference.........c...ccecevvveviieiieccinennenn. 28
5.5 Configuring the Hardware INterrupPLS...........eeeiii i a e e 29
5.5.1 The RX_INTERRUPT_SET_T Interrupt Object Structure Reference...........ccccccooeeeeniiiininnevenn. 29
5.6 Configuring Hardware Timers and COUNTEIScccuuiiiiiiie e e e e 33
5.6.1 The RX_HWTIMER_SET_T Hardware Timer/Counter Object Structure Reference 34
5.7 Configuring the UARTSocoiiiiiiieeiiie ettt e e e e e e e e e e e e e e et ae e e e e e e e e eesnssreeneeaenanes 36
5.7.1 The RX_UART_SET_T UART Object Structure Referenceccccceeveeeieiiieiieeeceee e 37
5.8 Configuring the SRAM BUSuuiiiiiiii ittt e e e et e e e e e e e e et re e e e e e e s e ssasnraaneeaeeeanes 41
5.8.1 The RX_SRAMBUS_SET_T SRAM Bus Configuration Structure Reference............cccccoecevrennneen. 42
5.9 Configuring Parallel FLASH ...t e e e e e e e e eeeeaeeeanes 44
5.9.1 The RX_PARALLELFLASH_SET_T Parallel FLASH Object Structure Reference...........c............. 45
5.10 Configuring Serial Peripheral Interface (SPI).......c..ooiiiiiiiiie e 48
5.10.1 The RX_SPISLAVE_SET_T SPI Object Structure Reference.............cccceeeiiieiieneiieeeesee e 49
5.11 Configuring Serial FLASHooiiiie ettt e et e e ee e snnae e e s nneee s 51
5.11.1 The RX_SERIALFLASH_SET_T Serial Flash Object Structure Reference..........cccccoeveeierennnneen. 52
5.12 Configuring the Ethernet PHY TranSCeIVEISc..uviiiiiiiiiie et 56
5.12.1 The RX_PHY_SET_T Ethernet PHY Transceiver Object Structure Reference............cccccccceeennneee. 57
5.13 Configuring the General-Purpose 1/OS (GPIOS)ocuuiiiiiiiiiiecieee et 59
5.13.1 The RX_GPIO_SET_T General Purpose I/O Object Structure Referencecccoccvviiviiiinnnenn. 60
5.14 Configuring the Programmable [/OS (PIOS)ccuuiiiiiiiiieiiiie et 63
5.14.1 The RX_PIO_SET_T Programmable I/O Object Structure Referencecccccevvviiiiinieiiinenn. 63
5.15 Configuring the HIF Programmable Input/Output PiNS........c..coviiiiiiriiiiiieeiiee e 66
5.15.1 The RX_HIFPIO_SET_T Host Interface PIO Object Structure Reference...........cccccovvviiniiiiinnnenn. 66
5.16 Configuring the General 1/OS (IOS)uuiiiiiiiie ittt e e s e e e eneeeas 68
5.16.1 The RX_IO_SET_T General /0O Object Structure Reference..........cccocvveiiiiiiiiiiiec i, 68
5.17 Configuring the Extended Fieldbus Controllers (XC)cocueiriiiiiiieiiiiee e 69
5.17.1 The RX_XC_SET_T Extended Controller Object Structure Referenceccccceeeviiiiniieicinenn. 70
5.18 Configuring the Media VOIUMESc.uiiiiii e 72
5.18.1 The RX_VOLUME_SET_T Volume Object Structure Reference.............cccoccviiiniiiiiiiieiiiee, 72
5.19 Configuring the HOst INterfaceocueiiiiiii e 75
5.19.1 The RX_HIF_SET_T Host Interface Object Structure Reference............cccccoieiiiiiiiiiiiiiiiee. 76
5.20 Configuring the FIFO Channelsc..ooiiiiiiiiii et 81

rcX - Realtime Communication System for netX | Configuration of rcX
DOCO0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Introduction 3/94

5.20.1 The RX_FIFOCHANNEL_SET_T Host Interface Object Structure Referencecccccoeceveinnnenn. 81

5.21 ConfiguriNg the LEDScoiiiiiiiie ettt et et e e s sttt e e e st e e e e snae e e e snnaeeesnnneeeenneeens 83
5.21.1 The RX_LED_SET_T LED Object Structure Reference............cccoeveeeiiiiiiiii e 83

5.22 Configuring the Ethernet INterfaces ... 88
5.22.1 The RX_EDD_SET_T Ethernet Object Structure Reference............cccooveeiiiiiiiniiiece, 88

5.22.2 Parameters in RX_EDD_PARAMETERS _T.....ooiiiiiiiiiiie ettt 90
5.22.3 USiNg MUILIPIE INTEITACESeiiiiiiie it s 91

5.22.4 Examples of Ethernet Object TEMPIAtESvviiiiiiieieee e 91

6 N] 0 1= o o 13 PP 93
L0t B I o 1= o) (= TSRO 93
L 0 O o] = Lo £ SO 94

rcX - Realtime Communication System for netX | Configuration of rcX
DOCO0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Introduction

4/94

1

Introduction

1.1 About this Document

This manual describes configuration of rcX within the “Config.c” file.

1.2 List of Revisions

Rev | Date Name | Chapter |Revision

8 2013-06-20 | SP 5.21.1 Example for LED on HifPIO configuration updated.
3 rcX V2.1 specific kernel initialization (Scheduler, Cache) added.
5.16 rcX V2.1 specific general I/O driver added.

rcX V2.1 specific 1/0O driver support included.

Table 1: List of Revisions

rcX - Realtime Communication System for netX | Configuration of rcX
DOCO0506010S08EN | Revision 8 | English | 2013-06 | Released | Public

© Hilscher, 2005-2013

Introduction 5/94

1.3 Legal Notes

1.3.1 Copyright

© Hilscher, 2005-2013, Hilscher Gesellschaft fiir Systemautomation mbH
All rights reserved.

The images, photographs and texts in the accompanying material (user manual, accompanying
texts, documentation, etc.) are protected by German and international copyright law as well as
international trade and protection provisions. You are not authorized to duplicate these in whole or
in part using technical or mechanical methods (printing, photocopying or other methods), to
manipulate or transfer using electronic systems without prior written consent. You are not permitted
to make changes to copyright notices, markings, trademarks or ownership declarations. The
included diagrams do not take the patent situation into account. The company names and product
descriptions included in this document may be trademarks or brands of the respective owners and
may be trademarked or patented. Any form of further use requires the explicit consent of the
respective rights owner.

1.3.2 Important Notes

The user manual, accompanying texts and the documentation were created for the use of the
products by qualified experts, however, errors cannot be ruled out. For this reason, no guarantee
can be made and neither juristic responsibility for erroneous information nor any liability can be
assumed. Descriptions, accompanying texts and documentation included in the user manual do
not present a guarantee nor any information about proper use as stipulated in the contract or a
warranted feature. It cannot be ruled out that the user manual, the accompanying texts and the
documentation do not correspond exactly to the described features, standards or other data of the
delivered product. No warranty or guarantee regarding the correctness or accuracy of the
information is assumed.

We reserve the right to change our products and their specification as well as related user
manuals, accompanying texts and documentation at all times and without advance notice, without
obligation to report the change. Changes will be included in future manuals and do not constitute
any obligations. There is no entitlement to revisions of delivered documents. The manual delivered
with the product applies.

Hilscher Gesellschaft fur Systemautomation mbH is not liable under any circumstances for direct,
indirect, incidental or follow-on damage or loss of earnings resulting from the use of the information
contained in this publication.

rcX - Realtime Communication System for netX | Configuration of rcX
DOCO0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Introduction 6/94

1.3.3 Exclusion of Liability

The software was produced and tested with utmost care by Hilscher Gesellschaft fur
Systemautomation mbH and is made available as is. No warranty can be assumed for the
performance and flawlessness of the software for all usage conditions and cases and for the
results produced when utilized by the user. Liability for any damages that may result from the use
of the hardware or software or related documents, is limited to cases of intent or grossly negligent
violation of significant contractual obligations. Indemnity claims for the violation of significant
contractual obligations are limited to damages that are foreseeable and typical for this type of
contract.

It is strictly prohibited to use the software in the following areas:
for military purposes or in weapon systems;
for the design, construction, maintenance or operation of nuclear facilities;
in air traffic control systems, air traffic or air traffic communication systems;
in life support systems;

in systems in which failures in the software could lead to personal injury or injuries leading to
death.

We inform you that the software was not developed for use in dangerous environments requiring
fail-proof control mechanisms. Use of the software in such an environment occurs at your own risk.
No liability is assumed for damages or losses due to unauthorized use.

1.3.4 Export

The delivered product (including the technical data) is subject to export or import laws as well as
the associated regulations of different counters, in particular those of Germany and the USA. The
software may not be exported to countries where this is prohibited by the United States Export
Administration Act and its additional provisions. You are obligated to comply with the regulations at
your personal responsibility. We wish to inform you that you may require permission from state
authorities to export, re-export or import the product.

rcX - Realtime Communication System for netX | Configuration of rcX
DOCO0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring rcX 7/94

2 Configuring rcX

21 A Single Source Code-File (Config.c) for the
Configuration

The goal of the “Config.c” file is to have the configuration of the kernel and drivers in a central
location.

Additionally, this is meant to remove the burden of recompiling either the kernel or driver modules
on compatible hardware platforms and increase the flexibility of the already compiled libraries.

The content of the “Config.c” file is defined by a header file called “rX_Config.h”. Within this file,
you find all relevant structures and definitions, described in the following chapters of this manual.

However, the name of the “Config.c” file is not specifically defined and can be changed to suit your
needs.

2.2 List of configurable Resources and Peripherals

The following resources and peripherals are configurable within the “Config.c” file:
Application tasks, stack, entry and leave function.
Hardware interrupts, trigger mode, priority and reentrancy.
Timer, re-load value and operational mode.
UART, baud-rate and character settings.
Host interface, sizes and memory locations.
Parallel FLASH, device ID, type and sectors.
Serial FLASH, sizes and instruction commands.
SPI (Serial Peripheral Interface), port number, baud-rate and slave chip select.
SRAM bus, wait-states and chip-selects.
PHY (Ethernet Transceivers), port location and port number for the MDIO bus.
Hardware Watchdog, port location and ret-rigger period.
GPIO (General Purpose I/O Pins), port addresses and direction.
xC (Extended Controller), address of the microcode to load
Trace pool, sizes and memory locations.
Firmware name and version string.

Furthermore, it is possible to extend the "Config.c" file using your own definitions and
configuration tables.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring rcX 8/94

2.3 The Behavior after a System Reset

Once the CPU is performing a reset — no matter what type of reset it is - the address of the initial
code, to be started, is retrieved from a well-defined memory location.

For the netX-CPU, this is the standard ARM®-Processor reset vector located at the memory
address 0x00000000. The CPU transfers the control to that code location automatically after the
value of the entry point has been retrieved. If the physical memory at this position consists of a
traditional non-volatile storage device, like a parallel FLASH or an EEPROM, the entry code is
changeable and the rest of the memory delivers the application code implicitly.

The reset solution within the netX differs from the traditional method. Unlike most ARM-based
CPUs, the internal SRAM memory banks are starting from address 0x00000004. Since RAM is
volatile and the data in it does not survive a power-on reset, booting in the traditional way would
not be possible.

Therefore, in the netX, the ARM® entry point value at address 0x00000000 is hard-coded and not
changeable. This forces the CPU to always jump to an address within the permanent ROM
memory, starting at address 0x200000. By jumping to this hard-coded memory location, the first
stage boot loader code is started.

The first stage loader (ROM loader) is checking the different boot media e.g. parallel or serial
FLASH whether it can find an application-code to be loaded. Detection of a bootable image is
based on a 64 byte header (BOOTBLOCK), which informs the loader about the load address and
the entry point of the application-code. The code will be copied to the defined memory location and
a jump to the specified entry point is executed.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring rcX

9/94

Definition of the 64 Byte Boot Header

Data Type Name Description
UINT32 ulMagCookie 0xF8BEAFO00 or OxF8BEAF08 or OXF8BEAF16
UINT32 unCitrl - Parallel/serial FLASH mode, timing parameters
- or I2C/SPI mode device speed settings
- or reserved in DPM / PCI mode
UINT32 ulApplEntrypoint Application entry point
UINT32 ulApplChecksum Application checksum
UINT32 ulApplSize Application file size in DWORDs
UINT32 ulApplStartAddr Application start address
UINT32 ulSignature Signature = "NETX"
UINT32 unCtrl0 - SDRam general control value
- Expansion bus register value (EXPBus Bootmode)
UINT32 unCtrl1 - SDRam timing control register value
- IORegmode0 register value (EXPBus Bootmode)
UINT32 unCtri2 - IORegmode1 register value (EXPBus Bootmode)
- or unused/reserved
UINT32 unCtrl3 - IfConfig1 register value (EXPBus Bootmode)
- or unused/reserved
UINT32 unCtrl4 - IfConfig2 register value (EXPBus Bootmode)
- or unused/reserved
UINT32 ulMiscAsicCtrl ASIC CTRL register value
UINT32 ulSerial Serial number
UINT32 ulSrcType Source type
UINT32 ulBootChecksum Boot block checksum

Table 2: Definition of the 64 Byte Boot Header

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public

© Hilscher, 2005-2013

Configuring rcX 10/94
2.4 The Application-Entry Code

The code, which is located at the application entry point, is typically written in plain assembler
language and contains the development tool specific coding for assembler files. Within the rcX,
there are specific versions of the entry code for the different CPU types and development tools. For
the netX CPU, the entry assembler code file is named “Init.s” and looks like:

--- Save the bootblock ------- - - —— -

start: LDR r2, =ulBootOption

STR r1, [r2]

LDR R1, =tBootblock

LDR R2, =tBootblock + 64
LoopBoot: CMP R1, R2

LDRLO R3, [RO], #4
STRLO R3, [R1], #4

BLO LoopBoot
—--- Initialize the different stack types ------—--——-
LDR r0, =top_of _stacks
MSR CPSR_c, #Mode FIQ|I_Bit]F _Bit
SUB sp, r0, #0ffset FIQ_Stack
MSR CPSR_c, #Mode IRQ|I_Bit]F_Bit
SUB sp, r0, #0ffset IRQ_Stack
MSR CPSR_c, #Mode SVC|I_Bit]F_Bit
SUB sp, r0, #0ffset SVC_Stack
MSR CPSR_c, #Mode_ SYS|I_Bit]F_Bit
SUB sp, r0, #0ffset SYS_Stack
SUB rl, rO, #Offset_Topof Stack
—--- Fill the Stack with a pattern - -—————————————————
LDR r2, =0xDEADBEEF
LoopSt: CMP rl, rO
STRLO r2, [ri], #4
BLO LoopSt
—--- Clear _bss section (Zero iInit) - —————————————————
MOV RO, #0
LDR R1, = bss_start _
LDR R2, = bss end__
LoopZlI : CMP R1, R2
STRLO RO, [R1], #4
BLO LoopZl
—--- Jump to the main function --—————————————————————
LDR rO, =main
BX ro

The low-level initialization code is used to initialize the basic environment that comes along with
the used GNU Compiler development tools. This includes the initialization of the zero-initialized
global variables and the CPU specific initialization of the stack(s). Finally, this code includes the
jump to the user-supplied main() function.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring rcX 11/94

2.5 The Location of the main() Function to Enter the Kernel

The "Config.c" file contains the main() function. At this point you can control what happens next
with your code. Typically, the main() function simply calls the rX_SysEnterKernelExt() function in
order to start the operating system (OS).

However, it is allowed to process user specific code prior to enter the kernel. This could be
necessary if some specific hardware settings must be executed before the actual jump to the
kernel is performed.

The pre-compiled rX_SysEnterKernelExt() function normally includes all necessary hardware
settings.

Example of the Standard main() Function:

RX_ENTER_KERNEL_PARAM_T
CONST RX_ENTERKERNEL_PARAM_T trXEnterKernelParam=
{
/* CPU clock rate */
NETX_FREQUENCY_100MHZ,
/* Timer interrupt task priority */
{TSK_PRIO_DEF RX_TIMER, 350},
/* Pointer to static Task-List */
{atrXStaticTasks, MAX _CNT(atrXStaticTasks)},
/* Pointer to rx kernel modules list */
{0, 0},
/* Pointer to the Peripherals-List */
{atrXCfg, MAX_CNT(atrxCfg)},
/* Pointer to the Post Peripherals-List / LoadDrivers included into */
{atrXDrvCfgPost, MAX_CNT(atrXDrvCfgPost)},
/* Pointer to optional Jump Table */
{NULL, O},
/* Callback for special initialization */
NULL,
/* Pointer to the Middleware List */
{atMidCfgTbl, MAX_CNT(atMidCfgTbl)},
/* Scheduler component (if another scheduler is desired) */
0,
/* Cache enable flags */
{TRUE, TRUE},
/* Disable Idle measurement */
{TRUE},
/* Early Callback */
NULL,
/* MMU Translation Table address */
{0x10000}

};
INT main (void)
volatile RX_FATAL erXFat; /* Fatal Error value */

/* Initialize and boot the Kernel, with all Peripherals listed in the parameter
* block

*/

erXFat = rX_SysEnterKernelExt(&trXEnterKernelParam);

/* Loop forever here, to keep the "erXFat" variable debug able */

while(1==1);

/* Prevent the compiler warning because of non-void returning main-function */
return(0);

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring rcX 12/94

The kernel initialization process is started by calling rX_SysEnterKernelExt(). The function will
check the configuration consistency.

In comparison to other embedded Operating Systems, the rcX may return from that function
whether it has detected a so-called fatal error or not.

In case of an error, the main() function remains in an endless while() loop stopping the code
execution right after rX_SysEnterKernelExt(). This allows the checking of the return code in the
variable erXFat by using a debugger.

The definitions of the fatal error codes can be found in the “rX_Fatal.h” header file.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

System Configuration Data Structure

13/94

3 System Configuration Data Structure

This structure provides all the necessary information to initialize the rcX system during the call to

rX_SysEnterKernelExt().

typedef struct RX_ENTERKERNEL_PARAM_Ttag

UINT32
struct

RX_TASK_PRIORITY
UINT
} tTimerTaskConfig;
struct

CONST RX_STATIC_TASK T FAR*
UINT

} tStaticTasks;

struct

CONST RX_KERNEL_MODULES T FAR*
UINT

} tKernelModules;

struct

CONST RX_PERIPHERAL_CONFIG_T FAR*

UINT
} tPeripherals;
struct

CONST RX_DRIVER_PERIPHERAL_CONFIG_T FAR*

UINT
} tDriverPeripherals;
struct

void FAR* FAR*
UINT
} tJumpTable;
void (FAR*
struct

CONST RX_MIDDLEWARE_CONFIG_T FAR*

UINT
} tMiddleware;
RX_SCHEDULER_FUNCTIONS T FAR*
struct

BOOLEAN
BOOLEAN
} tCacheConfig;
struct

BOOLEAN
} tMeasureldlePerformance;

void (FAR*
struct

UINT32
3 tMMU;
3} RX_ENTERKERNEL_PARAM_T;

ulCpuClkRate;

eTimerlrqTaskPriority;
uTimerStackSize;

patStatTsk;
uNumOfTsk;

patEntries;
uNumOFfEntries;

patPer;
uNumOfPer;

patDrvPer;
uNumOfDrvPer;

ppvJdumpTable;
uSizeOfJumpTable;

pfnCal IBack) (void);

ptMidCfgTable;
uNumOfMidCfg;

ptScheduler;

fEnablelnstructionCache;

TEnableDataCache;

fDisable;

pfnEarlyCallback) (void);

ulPhysAddr;

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public

© Hilscher, 2005-2013

System Configuration Data Structure 14/94

Structure Elements

Element Description
ulCpuClkRate Definition of the system clock frequency given in [HZ]
(cycles per second)
tTimerTaskConfig Timer Task Configuration.
eTimerlrqTaskPriority - defines the Timer task priority (like for any other task).
uTimerStackSize - defines the number of stack elements and has a fixed value of 350.
tStaticTasks Static Task Table

tKernelModules

Table of Additional Kernel Modules.
Used for already-compiled libraries.

tPeripherals

Kernel Peripheral Table.
Containing the hardware timer and the interrupt peripheral tables.

tDriverPeripherals

Driver Peripheral Table.
Used for all other drivers (except the two provided by tPeripherals).

tJumpTable

OS Function Patch Jump Table.
The table can be used to override system functions.
(Initialized to 0 if not used).

pfnCallback

User Initialization Callback Function.
This function is called by the rcX kernel just before the specified static tasks are created.

Can be used for additional user system initialization functions like format the FAT file system
etc.

tMiddleware

Structure of the RX_MIDDLEWARE_CONFIG_T table.
This table is used to initialize the rcX system services.

ptScheduler

rcX V2.0 — Not implemented (must be NULL).
rcX V2.1 — Must be set to either g_tMLQueueScheduler or g_tBitmapScheduler

tCacheConfig

rcX V2.0 — Not implemented (cache initialization is internally handled by the rcX)
rcX V2.1 — Must be setup for netX chips which have a cache

e

tMeasureldlePerformanc

Not implemented

pfnEarlyCallback

OS Specific Startup Callback Function.

The function is called after the kernel module initialization and can be used for system
specific pre-initialization functions of OS modules, while system drivers are not active.

tMmu

Memory Management Unit (MMU) Configuration Structure.

ulPhysAddr - defines the physical start address of the MMU translation table.
On ARM926EJ-S, this address must be 16kByte aligned.

rcX V2.1 : Use physical address of 0 to disable MMU

rcX - Realtime Communication System for netX | Configuration of rcX

DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public

© Hilscher, 2005-2013

System Configuration Data Structure 15/94

3.1 Configure Drivers using
RX_DRIVER_PERIPHERAL_CONFIG_T

n general, a driver in rcX requires to be installed, before it is usable by the rcX system or any user
task. Therefore, each installable driver must provide an initialization function.

This function is called by the rcX initialization during system startup.

Driver configuration is based on the RX_DRIVER_PERIPHERAL_CONFIG_T structure.

The configuration file defines a global data array (atrXDrvCfgPost[]) where the configuration is
stored. Each element in the structure describes one specific driver.

The rcx initialization function uses the RX _ENTERKERNEL _PARAM T structure to locate
configuration data of the different system components.

Loadable drivers are referenced by tDriverPeripherals element, defining the start address of the
driver configuration table and the number of elements included in the table.

3.1.1 The RX_DRIVER_PERIPHERAL_CONFIG_T Structure Reference

typedef struct RX_DRIVER_PERIPHERAL_CONFIG_Ttag

RX_FATAL (* pfnDrvinit) (CONST void* pvCfg,UINT uNum);
RX_PERIPHERAL_TYPE eTyp;
CONST void FAR* pvPer;
UINT uNum;
} RX_DRIVER_PERIPHERAL_CONFIG_T;

Structure Elements

Element Description

pfnDrvInit Pointer to the driver initialization function
(called during initialization process).

eTyp Driver Type.
Defines the type of peripheral driver is responsible for
(e.g. RX_PERIPHERAL_TYPE_GPIO defines a GPIO driver).

pvPer Pointer to the driver configuration data.
uNum Number of elements passed in pvPer
Note: A List of available drivers can be found in the rcX Driver manual

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

System Configuration Data Structure 16/94

Example:

1. Empty Drivers List
STATIC CONST RX_DRIVER_PERIPHERAL_CONFIG_T atrXDrvCfgPost[]

{NULL, 0, NULL, O}
¥

2. Full featured Drivers List
STATIC CONST RX_DRIVER_PERIPHERAL_CONFIG_T atrXDrvCfgPost[]

{
{DrvVollInit, RX_PERIPHERAL_TYPE_ VOLUME, atrxvol, MAX_CNT(atrxVol)},
{DrvXclnit, RX_PERIPHERAL_TYPE_XC, atrxxc, MAX_CNT(atrxxc)},
{DrvGpiolnit, RX_PERIPHERAL_TYPE_GPIO, atrxGpio, MAX CNT(atrXGpio)},
{DrvHifInit, RX_PERIPHERAL_TYPE_HOST, atrXHif, MAX_CNT(atrXHif)},
{DrvPiolnit, RX_PERIPHERAL_TYPE_PIO, atrxPio, MAX_CNT(atrXPio)},
{DrvPFIsInit, RX_PERIPHERAL_ TYPE_PARFLASH, atrXPFlsh, MAX_CNT(atrxPFlIsh)},
{DrvSpilnit, RX_PERIPHERAL_TYPE_SPI, atrxSpi, MAX_CNT(atrXSpi)},

{DrvSFIsInit, RX_PERIPHERAL TYPE_SERFLASH, atrXSFlsh, MAX_CNT(atrXSFlsh)},

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

System Configuration Data Structure 17/94

3.2 Loading Middleware Modules using tMiddleware
Middleware modules are OS system functions like database support, file system and so on and
must be also defined and loaded like system drivers.

The tMiddleware is used to define all additional modules which should be loaded during the startup
phase of the OS.

Each module is defined by a RX_MIDDLEWARE_CONFIG_T element where the elements are
stored in the atrXMidCfgPost[] array.

tMiddleware holds a pointer to the first element of the middleware module list.

3.2.1 The RX_MIDDLEWARE_CONFIG_T Structure Reference

typedef struct RX_MIDDLEWARE_CONFIG_Ttag

RX_FATAL (* pfnMidInit) (void* pvPar,UINT uPar);
void* pvPar;
UINT uPar;

} RX_MIDDLEWARE_CONFIG_T;

Structure Elements

Element Description

pfnMidInit Pointer to the module initialization function (called during the initialization process).

pvPer Pointer to the module configuration data.

uPar Number of elements passed in pvPer

Note: A List of available middleware modules can be found in the rcX Middleware manual
Example:

1. Empty Middleware Modules List

STATIC CONST RX_MIDDLEWARE_CONFIG_T atrXMidCfgPost [] = {
{NULL,NULL,0}
¥

2. Full featured Middleware Modules List

STATIC CONST RX_MIDDLEWARE_CONFIG_T atrXMidCfgPost[] = {
{MidDatabaselnit,NULL,Q0},

{MidSysiInit,NULL,O0},

{MidFatInit,NULL,O}

};

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Defining the Application-Tasks 18/94

4 Defining the Application-Tasks

Each application task, which should be loaded be the rcX, must be defined in the
atrXStaticTasks|[] array.

A task is defined by the task name, a pointer to the task stack, the task entry function and an
optional task leave function.

A task record follows the structure reference RX_STATIC TASK T, defined in the header file
"rX_Config.h".

4.1 The RX_STATIC_TASK_ T Structure Reference

typedef struct RX_STATIC _TASK Ttag {

STRING szTskNam[16] ;
UINT32 ulPrio;

UINT32 ulTok;

UINT32 ulInst;

void* pvStck;

UINT32 ulStckSiz;

UINT32 ulThrhid;

UINT32 ulSrtMod;

void (* fnTask) (void* pvinpt);
void (* fnTskLve) (void);
UINT32 ullnp;

UINT32 aulRes[8];

} RX_STATIC_TASK_T;
Each configured task must have a different (unique) task priority “ulPrio” and token “ulTok”.
The initial priority value can be changed during runtime.

However, if it is changed during runtime, it is still not allowed to have the same priority value active
in more than one task at the same time, which is a restriction of the rcX scheduler.

The token (ulTok) is a unique and non-changeable value used to identify the task within the
system.

The same task name can be used multiple times (szTskNam[]). But than the instance number has
to differ for each instantiated task.

Generally, the instance number ullnst starts with value 0 and is incremented for each
additional created task instance.

During runtime, a task is able to determine its own instance number.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Defining the Application-Tasks 19/94

Structure Elements

Element Description

szTskNam[16] Task name as a NUL terminated ASCII string with a maximum length of 16 Bytes (including the
terminating NUL character).

ulPrio Task Priority (changeable during runtime).
Valid values:

TSK_PRIO_1 to TSK_PRIO_55, defined in "rX_Priorities.h".
TSK_PRIO_1 = highest priority
ulTok Task Token.

Unique task identification number. Invalid or double defined values will result in an
unrecoverable kernel fault.

Valid values:
TSK_TOK 1 to TSK_TOK_ 55, defined in "rX_Tokens.h"

ullnst Task Instance Number.

Used to distinguish between multiple instances of the same task.

Starts with the value 0 and must be incremented with each new

instance.

pvStck Stack Pointer.

Set to NULL forces the rcX to allocate memory for the stack.

If the pointer is defined, it must be set to end address of the stack (lowest valid stack address).
The rcX will generate an own, stack pointer, using the stack size and the given stack end
address.

ulStckSiz Size of the Task Stack

The size must be given in multiples of CPU specific stack elements which is 4 Bytes on the
netX.

rcX needs the stack size to calculate the top of the stack.
The specified element number should never be less than 128.

uThrHId Not implemented

ulSrtMod Task Start Mode.
RX_TASK_AUTO_START - task will be created and started by the operating system.

RX_TASK_AUTO_STORP - task will be created in suspended state and must be activated by a
call to rX_SysResumeTask().

fnTsk Pointer to the Task Entry Function.
Called by the rcX to started the task.
fnTskLve Task Leave Function.

This function is called whenever a task will shutdown (e.g. at system reset or task deletion).
(Set to NULL. if not used)

ullnp User Data Pointer

Passed to the task entry function.

aulRes[8] Reserved.
This area is for future extensions.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Defining the Application-Tasks 20/94

Examples for Application Task Object Templates

1. A Single Task

/* Task Prototype and Definitions */
#define TSK1_STACK_SIZE 256 /* Stack Size in multiples of UINTs */
STATIC UINT auTskStackTestl[TSK1_STACK_SIZE]; /* Taskl-Stack */

void FAR fnTskTestl(void FAR*); /* Task Main Function */
void FAR fnTskLeaveTestl(void); /* Task Leave Function */

/* Configuration Table of Application Tasks */
STATIC CONST RX_STATIC_TASK_T atrXStaticTasks[] =

{
"TESTTSK1", /* Set ldentification */
TSK_PRIO_0, TSK_TOK_1, /* Set Priority to highest,and unique Token ID */
0, /* Set Instance to 0 */
&auTskStackTestl1[0], /* Pointer to Stack */
TSK1_STACK_SIZE, /* Size of Task Stack */
0, /* Threshold to maximum possible value */
RX_TASK_AUTO_START, /* Start task automatically */
fnTskTestl, /* Task function to schedule */
fnTskLeaveTestl, /* Function called whenever Task is deleted */
0x00000001, /* Startup Parameter */
{0,0,0,0,0,0,0,0} /* Reserved Region */

ks
};

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Defining the Application-Tasks

21/94

2. A Single Task, Configured to be Started Twice

/* Task Prototypes and Definitions */
#define TSK1_STACK_SIZE 256

#define TSK2_STACK_SIZE 256
void FAR fnTskTest(void FAR*);
void FAR fnTsklLeaveTest(void);

STATIC CONST RX_STATIC_TASK T atrXStaticTasks[] =

/* Stack Size in multiples of UINTs */
STATIC UINT auTskStackTestl[TSK1_STACK_SIZE]; /* Taskl-Stack */
/* Stack Size in multiples of UINTs */
STATIC UINT auTskStackTest2[TSK2_STACK_SIZE]; /* Task2-Stack */

/* The same Main Function for both */
/* The same Leave Function for both*/

{

}

}
{

}

“TESTTSK™,
TSK_PRIO_1, TSK_TOK 1,
0

/* Set ldentification */
/* Set Priority to highestand unique Token ID */
/* Set Instance to 0 */

/* Threshold to maximum possible value */

/* Function called whenever Task is deleted */

&auTskStackTestl1[0], /* Pointer to Stack */
TSK1_STACK_SIZE, /* Size of Task Stack */

0,

RX_TASK_AUTO_START, /* Start task automatically */
fnTskTest, /* Task function to schedule */
fnTskLeaveTest,

0x00000001, /* Startup Parameter */

{0,0,0,0,0,0,0,0}

"TESTTSK",
TSK_PRIO_2, TSK_TOK_2,
1

/* Reserved Region */

/* Set ldentification */
/* Set Priority to next highest and Token ID */
/* Set Instance to 1 */

/* Threshold to maximum possible value */

/* Function called whenever Task is deleted */

&auTskStackTest2[0], /* Pointer to Stack */
TSK2_STACK_SIZE, /* Size of Task Stack */

0,

RX_TASK_AUTO_START, /* Start task automatically */
fnTskTest, /* Task function to schedule */
fnTskLeaveTest,

0x00000001, /* Startup Parameter */

{0,0,0,0,0,0,0,0}

/* Reserved Region */

rcX - Realtime Communication System for netX | Configuration of rcX

DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public

© Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 22/94

5 Configuring the Hardware Platform and the
Resources

5.1 The Peripheral Configuration Table in General

The real-time communication-system for netX utilizes predefined configuration tables for the target
platform peripherals like Timer, Interrupt sources, GPIOs (general purpose 1/Os), PIOs (peripheral
I/0s), UART, Ethernet PHY, SPI, FLASH and the watchdog.

For each type of peripheral the "Config.c" file includes a separate configuration table.

Hardware timer and interrupt peripheral are configured using the atrXCfgPre[] table. All other
peripheral are configured in the table named atrXDrvCfgPost][].

Both tables are used by the rX_SysEnterKernelExt() function.

It is permitted that a configuration table consist multiple instances, if more than one peripheral of
the same type is available (e.g. if a system contains 4 UARTs, the UART configuration
table will have 4 elements).

There is no limitation on how many resources may be defined in one table.

However, the rcX kernel and the associated drivers can only handle as many resources as the real
hardware platform offers.

If the compiler requires at least one element in an array, the user has to place a particular End-Of-
List entry into the table. In any other case, the element is optional and can be used to signal a stop
of the table parsing.

This allows to stop the parsing process before the real table end and skips the elements which are
defined behind the End-Of-List entry.

“ENDOFLIST” is the pre-defined ASCII string for the End-Of-List entry.
Example:
1. Basic Peripheral Configuration

STATIC CONST FAR RX_PERIPHERAL_CONFIG_T atrXCfgPre[] =

{RX_PERIPHERAL_TYPE_TIMER,atrXHwTim,MAX_CNT(atrXHwTim)},
{RX_PERIPHERAL_TYPE_INTERRUPT,atrXInt,MAX_CNT(atrXIint)},

};

2. Empty Peripheral Configuration
STATIC CONST FAR RX_EXAMPLE_T atrXPeripheralCfg[] =

{{""ENDOFLIST"}}

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 23/94

5.2 Default Resource Configuration

rcX needs at least two peripherals to be run-able.

1. Hardware Timer for the OS-System-Timer
STATIC CONST FAR RX_HWTIMER_SET_T atrXHwTim[] =

{
{
{"SYSTIMER" ,RX_PERIPHERAL_TYPE_TIMER,Q}, */
0, /* use GP10_counter0 */
1000, /* 1000 microseconds = 1lmsec */
TRUE, /* Continuous Mode */
TRUE, /* Interrupt enabled */
FALSE, /* No external Clock */
RX_HWTIMER_TRIGGER_NONE, /* No Trigger */
0, /* No 1/0 reference */
0 /* No Prescaler */
b
};

2. Hardware Interrupt of the OS-Timer
STATIC CONST FAR RX_INTERRUPT_SET T atrXInt[] =

{
{

{""SYSTIMER" ,RX_PERIPHERAL_TYPE_INTERRUPT,0}, /* System Timer interrupt */
SRT _vic_irg_status_timer0, /* Use external TimerO Interrupt */
29, /* Priority 29 */
RX_INTERRUPT_MODE_SYSTEM, /* Allow interrupt to be a thread */
RX_INTERRUPT_EOI_AUTO, /> EOl by RX */
RX_INTERRUPT_TRIGGER_RISING_EDGE, /* Edge triggered */
RX_INTERRUPT_PRIORITY_STANDARD, /> Normal Priority */

RX_INTERRUPT_REENTRANCY DISABLED, /* Interrupt itself is not reentrant */
};}
Both, the timer object and the interrupt object must be defined with the name “SYSTIMER” and
instance number 0. rcX uses the name to identify both, the peripheral record to get the
configuration of the OS-Timer and the hardware interrupt configuration. If one of the configurations
is missing, the OS-Timer will not work.

This will not directly influence the task scheduler but all timer based OS functions, like
rX_SysSleepTask(), are not usable in this case.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 24/94

5.3 Defining the Hardware in Peripheral Objects

Each peripheral table, in the "Config.c" file, has a specific structure and specifies at least the
name of the peripheral, its type and the instance number. The identification of a particular
peripheral is done by its name and instance number.

All peripheral drivers are providing a Drv_Xxldentify() function. A user application will use this
function to examine the available objects, created by a driver, if it searches for a specific peripheral
object. Searching is done by passing the object name and instance number and if the object is
available, the function will return a handle to it.

This handle is necessary for later requests to the peripheral.

Drivers and their functions are described in the “Drivers Function Reference Manual".

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 25/94

5.3.1

The RX_PERIPHERAL HEADER_T Peripheral Object Header
Structure

Each entry in a peripheral table consists of a preceding structure which provides the name, type
and instance number of the peripheral.

The preceding structure is defined as follows:
typedef struct RX_PERIPHERAL HEADER Ttag

STRING

sz1ldn[16];

RX_PERIPHERAL_TYPE eTyp;

UINT

ulnst;

3 RX_PERIPHERAL_HEADER T;

Structure Elements

Element

Description

szldn

Object identification string as a NUL terminated string with a maximum of 16 bytes (including the
NUL character)

eTyp

Peripheral Type.

Only the appropriate types are allowed and must correspond to the configured peripheral.
Following types are defined:
RX_PERIPHERAL_TYPE_TIMER - Hardware Timer
RX_PERIPHERAL_TYPE_INTERRUPT - Hardware Interrupt
RX_PERIPHERAL_TYPE_PIO - Programmable 1/0
RX_PERIPHERAL_TYPE_GPIO - General Purpose 1/O
RX_PERIPHERAL_TYPE_WATCHDOG - Hardware Watchdog
RX_PERIPHERAL_TYPE_LED - LED
RX_PERIPHERAL_TYPE_UART - UART
RX_PERIPHERAL_TYPE_USB - USB
RX_PERIPHERAL_TYPE_FIFOCHANNEL - FIFO Channel
RX_PERIPHERAL_TYPE_HOST - HOST Interface
RX_PERIPHERAL_TYPE_PARFLASH - Parallel FLASH
RX_PERIPHERAL_TYPE_SERFLASH - Serial FLASH
RX_PERIPHERAL_TYPE_VOLUME - Volume Media
RX_PERIPHERAL_TYPE_RAMDISK - RAM Disk
RX_PERIPHERAL_TYPE_XC - Extension Controller
RX_PERIPHERAL_TYPE_PHY - Ethernet Phy
RX_PERIPHERAL_TYPE_EDD - Ethernet Device
RX_PERIPHERAL_TYPE_TRACE - Diagnosis Trace

ulnst

Instance Number.

Used if a peripheral exist several times (e.g. UART) and necessary to distinguish between them.
The instance number must be different for each one using the same name.

0 = first instance

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 26/94

Example:
Interrupt:

{""SYSTIMER" ,RX_PERIPHERAL_TYPE_INTERRUPT,0}, /* System Timer interrupt */

}

Timer:

5 RA_| - - o 5 y Timer #
“"MYTIMER" ,RX_PERIPHERAL_TYPE_TIMER,Q}, /* My Ti 0*/

{"MYTIMER" ,RX_PERIPHERAL_TYPE_TIMER,1}, /* My Timer #1*/

}

UART:

{"URT_NVR" ,RX_PERIPHERAL_TYPE_UART,0}, /* 3964R serial Port #0 */

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 27/94

5.4 Configuring the Trace Memory Pool
The rcX kernel includes a trace buffer management. At least one trace buffer has to be
defined, in order to record the reported traces of an application task.

The size of the trace buffer defines the number entries which can be stored. Each trace entry has a
size of 48 bytes. Dividing the total buffer size through the entry size will deliver the amount of
elements which can be stored without getting a buffer overrun.

Trace entries are stored into a FIFO (first in - first out) handled buffer. Once the buffer is
completely filled, no further entries are possible and new trace data will never overwrite the already
stored entries.

Each traced element that is read by an application unloads the buffer by one entry.

For each trace record, you may specify an enhanced application specific parameter field of any
size. The memory, which is needed to store those extended parameter fields, is not taken from the
trace buffer memory. It will be allocated from the dynamic memory pool. If the dynamic memory
has reached a definable limit, further trace entries are recorded without the specified extended
parameter field.

Configuration of the trace memory takes place in the atrXTrc[] table.
Each entry configures one trace memory buffer, accessible from an application task via
kernel functions.

The kernel will create the trace memory objects during the rcX initialization process in
rX_SysEnterKernelExt().

Location where to locate the trace memory
Size of the trace memory
Minimum limit of dynamic memory

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 28/94

54.1 The RX TRACE SET. T Trace Memory Object Structure
Reference

Each entry in the Trace Memory Configuration Table is defined as follows:
typedef struct RX_TRACE_SET_ Ttag

RX_PERIPHERAL_HEADER_T tCfgHd;

UINT8* pbSrt;
UINT32 ulSiz;
UINT32 ulLmt;

} RX_TRACE_SET_T;

Structure Elements

Element Description
tCfgHd Peripheral header information structure
pbSrt Start Address.

Start address of a memory area that will be added to the global trace memory pool.
It will be used in conjunction with the functions rX_FltLoggFault() and rX_FltGetOldestFault() in
order to trace a record or to read a record.

ulSiz Size.
Size of the memory area in bytes (must be a multiple of 48 Bytes per entry).

ulLmt Allocation Limit
The dynamic memory allocation limit defines the amount of memory to be left free.
Used if extended parameter fields are defined for the trace entries.

Examples of Trace Memory Object Templates

1. Definition of a Single Trace Memory Pool

- using a global memory buffer

/* Trace Memory Pool defined as an array of bytes */
#define RX_TRACE_MEMORY_SIZE 1024
UINT8 abTrcMem[RX_TRACE_MEMORY_SIZE];

STATIC CONST FAR RX_TRACE_SET T atrXTrc[] =

{
{""TRACEBUFFER" ,RX_PERIPHERAL_TYPE_TRACE, O},
(UINT8 FAR*)abTrcMem, sizeof(abTrcMem),
sizeof(RX_STATIC_MEMORY_SIZE)/2 /* half dynamic memory shall be left */
}
}:

2. Definition of Multiple Trace Memory Pools

- using discrete address pointers
STATIC CONST FAR RX_TRACE_SET_T atrXTrc[] =
{

{""TRC_SDRAM"*,RX_PERIPHERAL_TYPE_TRACE, 0},
(UINT8 FAR*)0x80000000,0x100000,/* Configure the SDRAM pool */
0x100000

3

{"TRC_SRAM" ,RX_PERIPHERAL_TYPE_TRACE, O},
(UINT8 FAR*)0OXC8000000,0x100000, /* Configure the SRAM pool */
0x100000
}
¥

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 29/94

5.5 Configuring the Hardware Interrupts

A real-time system is living on events reported by hardware interrupts.

Using interrupts has the advantage that a task can wait on a special event without
consuming CPU processing cycles.

This allows other processes to run until the event occurs. To realize an ideal and fast real-time
system reaction, all processes should forcibly wait on events, consuming a minimum of the CPU’s
processing cycles.

Interrupt configuration for the rcX takes place in atrXInt[] table, located in "Config.c" file.

Each table entry configures one hardware interrupt. The corresponding driver will create the
hardware interrupt objects during the rcX initialization.

5.5.1 The RX_ INTERRUPT _SET T Interrupt Object Structure
Reference

Each entry in the hardware Interrupt configuration table is defined as follows:
typedef struct RX_INTERRUPT_SET_ Ttag

RX_PERIPHERAL_HEADER_T tCfgHd;

UINT ulntNum;
UINT uPrio;
RX_INTERRUPT_MODE eMod;
RX_INTERRUPT_EOI eEoi ;
RX_INTERRUPT_TRIGGER eTrig;

RX_INTERRUPT_PRIORITY ePrio;
RX_INTERRUPT_REENTRANCY eRntr;

RX_TASK_PRIORITY eTaskModePriority;
RX_TASK_TOKEN eTaskToken;
UINT uTaskStackSize;

3 RX_INTERRUPT_SET_T;

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 30/94

Structure Elements

Element

Description

tCfgHd

Peripheral header information structure

ulntNum

Interrupt Number.

Defines the physical interrupt number within the target interrupt

controller.

The interrupt controller reference manual of the target platform should inform about the relation
between interrupt numbers and real interrupt sources.

uPrio

Interrupt Priority.

Defines the interrupt priority. This can be either vectored or non-vectored, depending of the
interrupt number.

0 - 15 = non-vectored interrupt
16 - 31 = vectored interrupt
31 = highest priority

eMod

Interrupt Mode.

Defines how the application interrupt service routine is treated when it is called by the interrupt
handler.

One of the 3 modes are possible:

RX_INTERRUPT_MODE_INTERRUPT

- The application interrupt service routine (ISR) is not interruptible and interrupts are globally
disabled if it is called.

- Not all rcX kernel functions are allowed within the ISR.

- End of Interrupt (EQI) is issued by the driver, after returning from the ISR (ISR should NOT
issue the EOI)

- eEoi idefinition is NOT used.

RX_INTERRUPT_MODE_SYSTEM

- The application interrupt service routine (ISR) is called and

interrupts are globally disabled.

- Non-blocking rcX kernel functions are allowed.

- If interrupt nesting is desired, the ISR has to handle the enable and disable interrupt.
- Protection of shared data against concurrent access may be

necessary.

- EOI handling is defined by eEoi

RX_INTERRUPT_MODE_TASK

- The application interrupt service routine (ISR) will be handled in a task, automatically created
by the rcX.

- Interrupt source is disabled while the ISR is active.

- The ISR is interruptible by any task with a higher priority

- ISR priority is defined by ePrio

- Any rcX function can be used.

- EOl is handled by the rcX driver

eEoi

EOI (End of Interrupt) Handling.

Only used when eMod = RX_INTERRUPT_MODE_SYSTEM.

Possible settings:

RX_INTERRUPT_EOI_AUTO

The end of interrupt (EOI) signal to the interrupt controller is

automatically issued by the rcX interrupt driver, after returning from the application ISR.
RX_INTERRUPT_EOI_SELF

- The end of interrupt (EOI) signal must be handled by the

application ISR using the function Drv_IntEndOfinterrupt().

- Interrupts are globally disabled and enabled when leaving the ISR.

- Interrupts can be enabled by the ISR if necessary, but must than be disabled before leaving it.

eTrig

Trigger Type of the Interrupt Source.

Possible settings:

RX_INTERRUPT_TRIGGER_RISING_EDGE - The interrupt is rising edge triggered.
RX_INTERRUPT_TRIGGER_FALLING_EDGE - The interrupt is falling edge triggered.
RX_INTERRUPT_TRIGGER_LEVEL_NULL - The interrupt is level triggered, active low.
RX_INTERRUPT_TRIGGER_LEVEL_ONE - The interrupt is level triggered, active high.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 31/94

Element

Description

ePrio

Interrupt Priority.
ePrio can be used to define the basic priority of the interrupt.
Possible settings:

RX_INTERRUPT_PRIORITY_STANDARD - Interrupt are handled by the interrupt controller
using the standard priority according to the specified priority uPrio.

RX_INTERRUPT_PRIORITY_HIGH - Not implemented.

eRntr

Not implemented on rcX V2.

eTaskModePriority

ISR Task Priority.

Only used if eMod = RX_INTERRUPT_MODE_TASK is defined
Possible settings:

TSK_PRIO_1 to TSK_PRIO_55, (defined in "rX_Priorities.h").
TSK_PRIO_1 = highest priority

eTaskToken

ISR Task Token.

Only used if eMod = RX_INTERRUPT_MODE_TASK is defined
Possible settings:

TSK_TOK_1 to TSK_TOK_55, (defined in "rX_Tokens.h").

uTaskStackSize

ISR Task Stack Size.
Only used if eMod = RX_INTERRUPT_MODE_TASK is defined

The size must be given in multiples of CPU specific stack elements which is 4 Bytes on the
netX.

rcX needs the stack size to calculate the top of the stack.
The specified element number should never be less than 128.

Examples of Hardware Interrupt Object Templates

1. Defining a Single Interrupt - using RCX_INTERRUPT_MODE_TASK
STATIC CONST FAR RX_INTERRUPT_SET_T atrXInt[] =

{
{
{""MYTIMER" ,RX_PERIPHERAL_TYPE_INTERRUPT,O},
19, /* Use Timer 2 Interrupt =
Physical Interrupt No.19 */
3, /* Priority 3 */
RX_INTERRUPT MODE_TASK, /* Allow interrupt to be treated as task */
RX_INTERRUPT_EOI_AUTO, /* EOlI by ISR and IRQs enabled */
RX_INTERRUPT_TRIGGER_RISING_EDGE, /* Rising edge triggered */
RX_INTERRUPT_PRIORITY_STANDARD, /* Normal Priority in the system */
RX_INTERRUPT_REENTRANCY_ENABLED, /* Interrupt itself is reentrant */
TSK_PRIO_5,
TSK_TOK_5,
1024
) B
3

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 32/94

2. Single Interrupt - using RX_INTERRUPT_MODE_SYSTEM
STATIC CONST FAR RX_INTERRUPT_SET_T atrXInt[] =

Use Timer 2 Interrupt =
Physical Interrupt No.19 */
Priority 3 */
Allow interrupt to be treated as task */
EOI by ISR and IRQs enabled */
Rising edge triggered */
Normal Priority in the system */
Interrupt itself iIs reentrant */

{
{
{"SYSTIMER" ,RX_PERIPHERAL_TYPE_INTERRUPT,0},
19, /*
3, /*
RX_INTERRUPT_MODE_SYSTEM, /*
RX_INTERRUPT_EOI_AUTO, /*
RX_INTERRUPT_TRIGGER_RISING_EDGE, /*
RX_INTERRUPT_PRIORITY_STANDARD, /*
RX_INTERRUPT_REENTRANCY_ENABLED, /*
T,
b

3.) Defining Multiple Interrupts

STATIC CONST FAR RX_INTERRUPT_SET_T atrXInt[] =

Use external UARTO Interrupt =
Physical Interrupt No.1 */

Priority 17 */

Allow interrupt not to be nested */

EOI automatically by RX */

Rising edge triggered */

Normal Priority */

Interrupt itself Is not reentrant */

Use Timer 2 Interrupt =
Physical Interrupt No.19 */
Priority 3 */
Allow interrupt to be treated as task */
EOI by ISR and IRQs enabled */
Rising edge triggered */
Normal Priority in the system */

{

{""VERBOSE" ,RX_PERIPHERAL_TYPE_INTERRUPT,0},
1, /*
17, /*
RX_INTERRUPT_MODE_ INTERRUPT, /*
RX_INTERRUPT_EOI_AUTO, /*
RX_INTERRUPT_TRIGGER_RISING_EDGE, /*
RX_INTERRUPT_PRIORITY_STANDARD, /*
RX_INTERRUPT_REENTRANCY_ DISABLED, /*

3

{
{"SYSTIMER" ,RX_PERIPHERAL_TYPE_INTERRUPT,0},
19, /*
3, /*
RX_INTERRUPT_MODE_TASK, /*
RX_INTERRUPT_EOI_AUTO, /*
RX_INTERRUPT_TRIGGER_RISING_EDGE, /*
RX_INTERRUPT_PRIORITY_STANDARD, /*
RX_INTERRUPT_REENTRANCY_DISABLED,
TSK_PRIO_20,
TSK_TOK_20,
1024

T,

b

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 33/94

5.6 Configuring Hardware Timers and Counters

Hardware timers allow the handling of cyclic functions and also providing an interrupt which must
be configured. The features of the hardware timers depend on the underlying hardware platform.
NetX timers are providing a common feature set including reload-capabilities.

Configuration of the hardware timer takes place the atrXTim[] table, located in
the "Config.c" file.

Each table entry configures one hardware timer and the corresponding hardware driver will
create a timer object for each defined timer.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources

34/94

5.6.1 The RX HWTIMER _SET T Hardware Timer/Counter Object

Structure Reference

Each entry in the Hardware Timer Configuration Table is defined as follows:

typedef struct RX_HWTIMER_SET_Ttag

RX_PERIPHERAL_HEADER_T tCfgHd;

UINT uTimNum;
UINT uMax ;
BOOLEAN fCont;
BOOLEAN fint;
BOOLEAN TEXt;
RX_HWTIMER_TRIGGER eTrig;
UINT uExtloRef;
UINT uPscl ;
3} RX_HWTIMER_SET_T;
Structure Elements
Element Description
tCfgHd Peripheral header information structure
uTimNum Physical Timer/Counter number.
Possible values:
0 - 4 = number of the GPIO timer
uMax Timer / Counter Value.
One-Shot / Reload Timer:
fExt = FALSE (use internal clock source)
uMax defines the time in microseconds until the timer is reloaded
(in cyclic mode) or stopped (in one-shot mode).
One-Shot / Reload Timer:
fExt = TRUE (external source trigger mode).
uMax defines the absolute count number until counter is reloaded
(in cyclic mode) or stopped (in one-shot mode).
fCont Continue Flag.
This flag decides if the timer / counter is handled as one-shot or
cyclic timer / counter.
TRUE = set the timer / counter into cyclic mode.
FALSE = set the timer / counter into one-shot mode.
fint Enable Interrupt,
This flag configures if the timer / counter generates an interrupt
whenever the value, given in uMakx; is reached
TRUE = enable interrupt
FALSE = disable interrupt
fExt External Clock Source.
fExt defines if an external clock source is used.
TRUE = external clock source used
FALSE = internal clock source used
eTrig Trigger Type.
Possible Settinge:
RX_HWTIMER_TRIGGER_NONE - The counter is not configured in external trigger mode.
RX_HWTIMER_TRIGGER_RISING_EDGE - The timer / counter is rising edge triggered.
RX_HWTIMER_TRIGGER_FALLING_EDGE - The timer / counter is falling edge triggered.
RX_HWTIMER_TRIGGER_LEVEL_NULL - The timer / counter is low level triggered.
RX_HWTIMER_TRIGGER_LEVEL_ONE - The timer / counter is high level triggered.
uExtloRef External Clock Source.
This value defines the PIO / GPIO number used as the clock source.
uExtloRef = PIO / GPIO input pin number.

rcX - Realtime Communication System for netX | Configuration of rcX

DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public

© Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 35/94

Element Description

uPscl Timer unit prescaler value.
Not supported on netX

Examples of Hardware Interrupt Object Templates

1.) A Single Hardware Timer

STATIC CONST FAR RX_HWTIMER_SET T atrXHwTim[] =

{
{
{"'SYSTIMER" ,RX_PERIPHERAL_TYPE_TIMER, O},
0, /* use GPIO_counterQ */
1000, /* 1000 microseconds = 1lmsec */
TRUE, /* Continuous Mode */
TRUE, /* Interrupt enabled */
FALSE, /* No external clock as input trigger, use internal clock */
RX_HWTIMER_TRIGGER_NONE, /* No external Trigger */
0, /* No 1/0 reference */
0 /* No Prescaler */
s
}

2.) Multiple Hardware Timers

STATIC CONST FAR RX_HWTIMER_SET T atrXHwTim[] =
{

{"'MYCOUNTER" ,RX_PERIPHERAL_TYPE_TIMER, O},

1, /* use counter 1 */

100, /* 100 clocks */

TRUE, /* Continuous Mode, trigger again and again */

TRUE, /* Interrupt enabled */

TRUE /* Use external Trigger */

RX_HWTIMER_RISING_EDGE, /* Trigger at each rising edge impulse */
5, /* External 1/0 input-pin reference No.5 */

0 /* Prescaler disable */

3
{

{"'DAYTICK" ,RX_PERIPHERAL_TYPE_TIMER,Q},
o,
86400000, /* Clock Every day = 24*60*60*1000 microseconds */
TRUE, /* Continuous Mode */
TRUE, /* Interrupt enabled */
FALSE, /* No external Clock */
RX_HWTIMER_TRIGGER_NONE, /* No Trigger */
0, /* No 1/0 reference */
128 /* Prescaler enabled to support low-resolution timer */
3
3

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 36/94

5.7 Configuring the UARTS

The netX offers up to three “UART” units. These units provide the physical layer of the RS-232
interface. In addition to the basic functions, the units also providing interrupt handling as well as a
character FIFOs.

UARTSs are configurable via the atrXUrt[] in the "Config.c" file. Each table entry configures one
UART. The UART driver will create an own UART object for each entry, during the rcX initialization
sequence.
The UART configuration provides all necessary information for the UART driver to handle the
UARTs and contains at least the physical port number, the baud-rate and transmission
properties.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources

37/94

5.7.1 The RX_UART_SET_T UART Object Structure Reference

Each entry in the UART configuration table is defined as follows:
typedef struct RX_UART_SET_Ttag

RX_PERIPHERAL_HEADER T tCfgHd;

UINT uUrtNum;
RX_UART_BAUDRATE eBdRte;
RX_UART_PARITY ePrty;
RX_UART_STOPBIT eStp;
RX_UART_DATABIT eDat;

UINT uRxFifolLvl;
UINT uTxFifoLvl;
RX_UART_RTS eRts;
RX_UART_RTS_POLARITY eRtsPol ;
UINT uRtsForrun;
UINT uRtsTrail;
RX_UART_CTS eCts;

RX_UART_CTS_POLARITY eCtsPol;
} RX_UART _SET T;

Structure Elements

Element Description
tCfgHd Peripheral header Information structure
uUrtNum Physical UART Number.

Possible values:
uUrtNum = 0..2, defines the physical UART number.

eBdRte UART Baudrate.

Possible settings:
RX_UART_BAUDRATE_300 =3
300 Baud
RX_UART_BAUDRATE_600 =6
600 Baud
RX_UART_BAUDRATE_1200 =12
1,2 kBaud
RX_UART_BAUDRATE_2400 =24
2,4 kBaud
RX_UART_BAUDRATE 4800 =48
4,8 kBaud
RX_UART_BAUDRATE_9600 = 96
9,6 kBaud
RX_UART_BAUDRATE_19200
19,2 kBaud
RX_UART_BAUDRATE_38400
38,4 kBaud

192

384

RX_UART_BAUDRATE_57600 576
57,6 kBaud
RX_UART_BAUDRATE_115200 = 1152

115,2 kBaud

caculated by the following formular:
eBdRate = baudrate / 100

It is also possible to configure other baud-rate than the given ones. The new value can be

ePrty Parity Setting.

Possible settings:

RX_UART_PARITY_NONE - No parity checking
RX_UART_PARITY_ODD - Odd parity
RX_UART_PARITY_EVEN - Even parity

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public

© Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 38/94

Element

Description

eStp

Stop-Bit Setting.

Possible settings:
RX_UART_STOPBIT_1 - 1 stop-bit
RX_UART_STOPBIT_2 - 2 stop-bits

eDat

Data Width.

Possible settings:
RX_UART_DATABIT_5 - 5 data Bits
RX_UART_DATABIT_6 - 6 data Bits
RX_UART_DATABIT_7 - 7 data Bits
RX_UART_DATABIT_8 - 8 data Bits
RX_UART_DATABIT_9 - 9 data Bits

URXFifLvl

Receive FIFO Configuration.

Enables the 16 byte receive FIFO and configures at which amount of characters in the FIFO the
receive buffer full signal is issued.

Possible values:
0 = receive FIFO disabled
1-16 = enabled the 16 Byte receive FIFO and set the receive buffer signaling to the given value.

uTxFifLvl

Transmit FIFO Configuration.

Enables the 16 byte transmit FIFO and also defines the amount of characters under which the
FIFO fill level has to fall before the transmit buffer empty signal is issued.

0 = transmit FIFO disabled

1-16 = enabled the 16 Byte transmit FIFO and sets the amount of character under which the fill
level has to fall before issuing the transmit buffer empty signal.

eRts

RTS Control.
Possible values:
RX_UART_RTS_NONE - RTS not support

RX_UART_RTS_AUTO_INBITS - RTS signal is automatically asserted by the driver and values
uRtsForrun and uRtsTrail are given in number of bits.

RX_UART_RTS_AUTO_INCLOCKS - RTS signal is automatically asserted by the driver and
values uRtsForrun and uRtsTrail are given in system clock cycles.

RX_UART_RTS_SELF - RTS signal is driven by the application itself.

eRtsPol

RTS Signal Polarity.

Possible values:

RX_UART_RTS_DEFAULT - RTS default setting
RX_UART_RTS_ACTIVE_HIGH - RTS signal is active high
RX_UART_RTS_ACTIVE_LOW - RTS signal is active low

uRtsForrun

RTS Forrun.

eRts defines the RTS Signal forerun before the transmit character is sent.
The value can either be configured in multiple of bits

eRts = RX_UART_RTS_AUTO_INBITS

or in system clock cycles

eRts = RX_UART_RTS_AUTO_INCLOCKS.

uRtsTrail

RTS Trail.

In the case that the RTS control is configured to RX_UART_RTS_AUTO _..., this value defines
the RTS signal trail, that is adjusted and kept after the transmission of a character.

The value can either be configured in multiple of bits,
eRts = RX_UART_RTS_AUTO_INBITS

or in system clock cycles

eRts = RX_UART_RTS_AUTO_INCLOCKS.

eCts

CTS Control

Configures the behavior and control of the CTS input signal.
Following values may be configured:
RX_UART_CTS_NONE - No CTS control.

RX_UART_CTS_AUTO - CTS signal is automatically monitored by the Driver when a
character is transmitted.

RX_UART_CTS_SELF - CTS signal is monitored by the application itself.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources

39/94

Element

Description

eCtsPol

CTS Polarity.

Configures the polarity of the CTS input signal.

Following values my be configured:
RX_UART_CTS_DEFAULT - CTS default setting
RX_UART_CTS_ACTIVE_HIGH - CTS signal is active high
RX_UART_CTS_ACTIVE_LOW - CTS signal is active low

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public

© Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 40/94

Examples of UART Object Templates

1. A Single UART

STATIC CONST FAR RX_UART_SET T atrXUrt[] =

{

{
{"'NVR*" ,RX_PERIPHERAL_TYPE_UART, 0},

0, /7* Use UART 0 */
RX_UART_BAUDRATE_ 9600, /* Baudrate 9.6Kbaud */
RX_UART_PARITY_EVEN, /* Even Parity */
RX_UART_STOPBIT_1, /* 1 Stop bit */
RX_UART_DATABIT_8, /* 8 Data bits */

0, /* No RX-FIFO */

0, /7* No TX-FIFO */

RX_UART_RTS NONE, /* No RTS in use */
RX_UART_RTS_DEFAULT, /* No RTS in use */
0, /7* No RTS forerun */

0, /* No RTS trail */

RX_UART_CTS_NONE, /* No CTS in use */
RX_UART_CTS_ DEFAULT /* No CTS in use */

}
}

2. Multiple UARTSs

STATIC CONST FAR RX_UART_SET T atrXUrt[] =
{

{""VERBOSE" ,RX_PERIPHERAL_TYPE_UART,0}, /* Verbose Port */
0, /7* Use UART 0 */

RX_UART_BAUDRATE_38400, /* Baudrate 38,4Kbaud */
RX_UART_PARITY_NONE, /* None Parity */
RX_UART_STOPBIT_1, /* 1 Stop bit */

RX_UART _DATABIT 7, /* 7 Data bits */

0, /7* No RX-FIFO */

0, /* No TX-FIFO */

RX_UART_RTS _NONE, /* No RTS in use */
RX_UART_RTS DEFAULT, /* No RTS in use */

0, /7* No RTS forerun */

0, /* No RTS trail */

RX_UART_CTS _NONE, /* No CTS in use */
RX_UART_CTS_DEFAULT /* No CTS in use */

3
{

{"'MYUART1” ,RX_PERIPHERAL_TYPE_ UART,0}, /* 3964R Port */
3, /* Use UART 3 */
10000, /* Baudrate 1Mbaud */
RX_UART_PARITY_EVEN, /* Even Parity */
RX_UART_STOPBIT_1, /* 1 Stop bit */
RX_UART_DATABIT_8, /* 8 Data bits */
3, /* 3 Element deep RX-FIFO */
3, /* 3 Element deep TX-FIFO */
RX_UART_RTS NONE, /* No RTS in use */
RX_UART_RTS_ DEFAULT, /* No RTS in use */
0, /7* No RTS forerun */
0, /* No RTS trail */
RX_UART_CTS_AUTO, /* CTS automatically */
RX_UART_CTS_ ACTIVE_LOW /* CTS active low */
}
ks

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 41/94

5.8 Configuring the SRAM Bus

The netX offers an SRAM Bus which can be used to connect external static RAM,
parallel FLASH devices or similar devices with a parallel interface and fix timing parameters.

The bus interface consists of four different, configurable, chip-select lines, read/write, address and
data-lines and is located on a fixed address inside the netX.

It does not support devices which need a data refresh cycle, to keep the data valid, or ready/busy
signals.

The SRAM bus configuration takes place in the atrXSRAMbus|] table, loacted in the
"Config.c" file.

Each table entry configures a particular SRAM bus area defined by a chip select number and
contains at least the bus width and the wait-states settings for it.

Initialization of the SRAM takes place in the rcX initialization sequence.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources

42/94

5.8.1 The RX_SRAMBUS _SET_ T SRAM Bus Configuration Structure

Reference

Each entry in the SRAM Bus Configuration Table is defined as follows:
typedef struct RX_SRAMBUS_SET_Ttag

UINT uChipSelect;
RX_SRAM_DATAWIDTH_TYPE eDataWidth;

UINT uWaitStates;

UINT uPreAccessWaitStates;
UINT uPostAccessWaitStates;

} RX_SRAMBUS_SET T;

Structure Elements

Element Description

uChipSelect SRAM Bus Chip Select Number.

uChipSelect defines the used chip select number
Possible values:

0..3 = number of available chip select signals

eDataWidth Data Width.

Possible settings:

RX_SRAMBUS_DATAWIDTH_8BIT - 8Bit Data-Width
RX_SRAMBUS_DATAWIDTH_16BIT - 16Bit Data-Width
RX_SRAMBUS_DATAWIDTH_32BIT - 32Bit Data-Width

uWaitStates Wait States.

Access time in number of host clock cycles
Possible values:

0..63 = number of cycles

uPreAccessWaitStates Pre Access Wait States.

cycles.
Possible values:
0..3 = number of cycles

Setup time (time between chip select and OE/WE signal) in number of host clock

uPostAccessWaitStates Post Access Wait States.

cycles.
Possible values:
0..3 = number of cycles

Additional wait states after access in number of host clock

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public

© Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources

43/94

Examples of SRAM Bus Configuration

1. 32 Bit Bus Data Width
STATIC CONST FAR RX_SRAMBUS_SET T atrXSRAMbus[] =

{
{
0, /* SRAM bus chip select number */
RX_SRAMBUS_DATAWIDTH_32BIT, /* Data width 32 Bit */
3, /* Wait state cycles */
3, /* Setup time */
3, /* Post access time */
T,
¥;

2. 16 Bit Bus Data Width
STATIC CONST FAR RX_SRAM_SET T atrXSRAMbus[] =

{
{
1, /* SRAM bus chip select number */
RX_SRAMBUS_DATAWIDTH_16BIT, /* Data width 16 Bit */
10, /* Wait states cycles*/
o, /* Setup time */
0, /> Post access time */
T,
};

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public

© Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 44/94

5.9 Configuring Parallel FLASH

A parallel FLASH component is needed if any type of information should be stored to a non-volatile
media.

Information could be firmware, configuration and user files and data. Parallel FLASH memory also
allows the direct code executed, which is a simple and effective way to save dynamic RAM.
Because of the slower access time of FLASH memory (aprox. 70 ns), direct code execution should
only be used for non-time-critical applications.

Because of the programming behavior of FLASH components, which do not allow any other
accesses to them while programming is in progress, a small program, running in memory is always
needed to re-program the FLASH.

The parallel FLASH configuration is done by the atrXPFIsh[] table, located in "Config.c".

Necessary information are the FLASH capacity, the sector sizes and the FLASH memory data bus
width.

Each table entry configures one parallel FLASH chip and the FLASH driver will create a parallel
FLASH object for it. This is done during the rcX initialization sequence and activated by the
rX_SysEnterKernelExt() function.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 45/94

59.1 The RX PARALLELFLASH SET T Parallel FLASH Object
Structure Reference

Each entry in the Parallel FLASH configuration table is defined as follows:
#define RX_PARALLELFLASH_MAX_SECTORENTRIES 32

typedef struct RX_TRANSLATIONLAYER_CONFIG_Ttag

UINT32 ulSrtOffs;
UINT32 ulSiz;
UINT32 ulBIkSiz;
3} RX_TRANSLATIONLAYER CONFIG_T;

typedef struct RX_PARALLELFLASH SECTORCONFIG Ttag {
UINT uNumOfSec;
UINT32 ulSiz;
RX_PARALLELFLASH PROTECT eProt;

} RX_PARALLELFLASH SECTORCONFIG_T;

typedef struct RX_PARALLELFLASH_ IDENTITY_Ttag {
UINT uVenCod; /* Vendor specific ID-Code */
UINT uDevCod; /* Device specific ID-Code */
3} RX_PARALLELFLASH_IDENTITY_T;

typedef struct RX_PARALLELFLASH_SET Ttag {
RX_PERIPHERAL_HEADER_T tCfgHd;

RX_PARALLELFLASH WIDTH eWidth;
RX_PARALLELFLASH_IDENTITY_T tldentity;
RX_TRANSLATIONLAYER_CONFIG_T tTrnsCfg;

UINT32 ulBaseAddr;

RX_RESULT(* pfnFlashlnitialize)
(RX_HANDLE) ;

UINT uNumSecEnt;

RX_PARALLELFLASH_SECTORCONFIG_T
atSecCFgTbl [RX_PARALLELFLASH_MAX_SECTORENTRIES];
} RX_PARALLELFLASH_SET T;

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 46/94

Structure Elements

Element Description
tCfgHd Peripheral Header Information structure
eWidth Data Bus Width.
This value configures the FLASH data bus width.
Possible settings:
RX_PARALLELFLASH_8BIT - 8 Bit Data Width
RX_PARALLELFLASH_16BIT - 16 Bit Data Width
RX_PARALLELFLASH_32BIT - 32 Bit Data Width
RX_PARALLELFLASH_1616BIT - Two 16 Bit FLASH devices paired to form a 32 Bit FLASH
device
tidentity FLASH Identification.
tldentity consist of two values
uVenCod = Vendor code
uDevCod = Device code
Both values can be obtained either from the FLASH data sheet or FLASH manufacturer.
If one of the values does not match to the value found in the physical device, the driver will
reject the creation of the FLASH object.
tTrnsCfg Translation Layer Configuration.
Not supported
ulBaseAddr Base Address

This value configures the physical start address of the FLASH.

pfnFlashinitialize

FLASH Access Functions
Function to initialize the parallel FLASH access functions

uNumSecEnt

Number of Sector Entries.
Number of entries configured in atSecCfgTbl[...]

atSecCfgThl[...]

FLASH section configuration.
uNumOfSec = Number of sectors

ulSiz = Size in bytes of a single sector
eProt = Protection status of the sectors

The maximum number of default entries in the table is defined as
RX_PARALLELFLASH_MAX_SECTORENTRIES (32) and can be changed by the user.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources

47/94

Examples of Parallel Flash Object Templates

1. Intel Strata Flash
STATIC CONST FAR RX_PARALLELFLASH SET T atrXPFIsh[] =

{
{
{"'SYSFLASH" ,RX_PERIPHERAL_TYPE_PARFLASH, 0},
RX_PARALLELFLASH_1616BIT, /* 32 Bit access, 16 Bit paired */
{0x0089,0x0018%}, /* Vendor Code, Device Code */
{0,0,0}, /* Translation Layer not used */
0xC0O000000UL, /* Base Address of FLASH where it is
located in the memory map */
1, /* Number of Sectors Entries in the
following FLASH sector table */
{ /* Sector Entries */
{128,0x40000UL ,RX_PARALLELFLASH_NO_PROTECTION}, /* 128 * 0x40000 */
}
s
};
2. Atmel Flash
STATIC CONST FAR RX_PARALLELFLASH SET T atrXPFIsh[] =
{
{
{"'SYSFLASH" ,RX_PERIPHERAL_TYPE_PARFLASH, 0},
RX_PARALLELFLASH_ 16BIT, /* 16 Bit width */
{0x0004 ,0x2249%}, /* Vendor Code, Device Code */
{0,0,0}, ccoi i /* Translation Layer not used */
0x10000000UL, /* Base Address of FLASH where it is
located in the memory map */
4, /* Number of Sectors Entries in the
following FLASH sector table */
{ /* Sector Entries */
{ 1,0x04000UL,RX_PARALLELFLASH NO_PROTECTION}, /* 1 * 0x04000 */
{ 2,0x02000UL ,RX_PARALLELFLASH NO_PROTECTION}, /* 2 * 0x02000 */
{ 1,0x08000UL,RX_PARALLELFLASH NO_PROTECTION}, /* 1 * 0x08000 */
{31,0x10000UL ,RX_PARALLELFLASH NO_PROTECTION}, /* 31 * 0x10000 */
s
ks
};

rcX - Realtime Communication System for netX | Configuration of rcX

DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 48/94

5.10 Configuring Serial Peripheral Interface (SPI)
The Serial Peripheral Interface (SPI) is a serial bus standard established by Motorola and
supported in silicon products from various manufacturers.

SPI specifies four signals, a clock, master data output, slave data input and a slave select signal
and supports multiple devices.

SPI devices are configured by using the atrXSpi[] table.

Each table entry configures one SPI port and consists of, at least, the SPI port number, the Slave
Chip Select, the SPI mode and the SPI clock speed.

The SPI driver will create an own SPI object, for each entry, during the rcX initialization
sequence.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources

49/94

5.10.1 The RX _SPISLAVE_SET T SPI Object Structure Reference

Each entry in the Serial Peripheral Interface configuration table is defined as follows:

typedef struct RX_SPISLAVE_SET_Ttag

RX_PERIPHERAL_HEADER T tCfgHd;

UINT uPortldx;
UINT uSlaveldx;
RX_SPI1_MODE eMode;
RX_SPI_CLOCK eSpeed;
UINT uBurstBIk;
UINT uBurstDly;

3} RX_SPISLAVE_SET T;

Structure Elements

Element Description
tCfgHd Peripheral header information structure.
uPortldx SPI Port Number.

Possible values:
1 = number of available SPI ports

uSlaveldx SPI Chip Select

Configuration of the chip select signal.
Possible values:

0..2 = Slave index

eMode SPI Mode.

Possible settings:

RX_SPI_MODEDQO - Latched at rising edge, clock phase normal
RX_SPI_MODE1 - Latched at rising edge, clock phase inverted
RX_SPI_MODE?2 - Latched at falling edge, clock phase normal
RX_SPI_MODES3 - Latched at falling edge, clock phase inverted

eSpeed SPI Clock Signal.

Attention: This value should not exceed the capability of the
connected device.

Possible settings:

RX_SPI_SPEED_0_05MHz - SPI clock frequency is 50Khz
RX_SPI_SPEED_0_1MHz - SPI clock frequency is 100Khz
RX_SPI_SPEED_0_2MHz - SPI clock frequency is 200Khz
RX_SPI_SPEED_0_5MHz - SPI clock frequency is 500Khz
RX_SPI_SPEED_1_0MHz - SPI clock frequency is 1Mhz
RX_SPI_SPEED_1_25MHz - SPI clock frequency is 1.25Mhz
RX_SPI_SPEED_2_0MHz - SPI clock frequency is 2Mhz
RX_SPI_SPEED_2_5MHz - SPI clock frequency is 2.5Mhz
RX_SPI_SPEED_3_3MHz - SPI clock frequency is 3.3Mhz
RX_SPI_SPEED_5_OMHz - SPI clock frequency is 5Mhz
RX_SPI_SPEED_10_0MHz - SPI clock frequency is 10Mhz
RX_SPI_SPEED_12_5MHz - SPI clock frequency is 12.5Mhz
RX_SPI_SPEED_16_6MHz - SPI clock frequency is 16.6Mhz
RX_SPI_SPEED_25_0MHz - SPI clock frequency is 25Mhz
RX_SPI_SPEED_50_0MHz - SPI clock frequency is 50Mhz

uBurstBIk Burst Block Size

or delay time.

The final number of bytes is calculated by the formula:
size = 2uBurstBIk'

The burst mode is disabled by setting this value to 0.

Maximum number of bytes allowed to be sent to the slave device consecutively without any idle

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public

© Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 50/94

Element Description

uBurstDly Burst Delay.
Delay in SPI clocks between two consecutive burst blocks.

Examples of Serial Peripheral Interface Object Templates

1. Simple SPI Port
STATIC CONST FAR RX_SPISLAVE_SET_T atrXSpi[] =

{
{
{"'SYSSPI"" ,RX_PERIPHERAL_TYPE_SPI1,0},
o, /* Bus port 0 */
0, /* Slave select 0 */
RX_SPI_MODE3, /* SPI shall operate in mode 3 */
RX_SPI_SPEED_1 OMHz, /* Speed is 1 MHz */
o, /* No Burst block support */
0, /* No delay between bursts */
}
};

2. High Speed SPI Port
STATIC CONST FAR RX_SPISLAVE_SET T atrXSpi[] =

{
{
{'SYSSPI"" ,RX_PERIPHERAL_TYPE_SPI1,0},
1, /* Bus port 1 */
2, /* Slave select 2 */
RX_SPI_MODE3, /* SPI1 shall operate in mode 3 */
RX_SPI_SPEED 50 OMHz, /* Speed is 50 MHz */
2, /* 4 byte Burst block support */
100, /* 100 Ticks delay between two consecutive burst blocks
*/
}
};

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 51/94

5.11 Configuring Serial FLASH

A serial FLASH component is required if any type of information shall be stored to a non-volatile
media. This covers data like firmware as well as configuration data or data of a flash disk. A big
disadvantage of a serial flash is that code execution cannot take place from it directly. It can be
used just to store a firmware, but it has first to be copied to RAM before it can be executed.

Configuration of serial FLASH takes place in the atrXSFIsh[] table. Each entry configures one
serial flash that will be later accessible from the application task level. The driver will create a serial
flash object during the rcX initialization sequence - activated by the function
rX_SysEnterKernelExt() - for each entry found in the table.

The elements of each table entry provide the flash driver with all necessary information about the
serial flash to be configured. The user configures the flash’s capacity, the sector sizes, flash
commands. However, the user has to take into account that not all values that can be specified
within a table entry may apply to the selected target platform.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources

52/94

5.11.1 The RX_SERIALFLASH_SET T Serial Flash Object Structure
Reference

Each entry in the serial FLASH configuration table is defined as follows:

#define RX_SERIALFLASH_INITSIZE 3
#define RX_SERIALFLASH_IDSIZE 9

typedef struct RX_TRANSLATIONLAYER CONFIG_Ttag {

UINT32 ulSrtOffs;

UINT32 ulSiz;

UINT32 ulBIkSiz;
3} RX_TRANSLATIONLAYER CONFIG_T;

typedef struct RX_SERIALFLASH_ATTRIBUTES_Ttag {

UINT32
RX_SP1_CLOCK
UINT
UINT
UINTS
UINTS
UINTS
UINTS
UINTS
UINTS
UINTS
UINTS
UINTS
UINTS
UINTS
UINTS
UINTS
UINTS
UINTS
UINTS
UINTS

ulSize;

eSpeed;

uPageSize;
uSectorPages;
bReadOpcode;
bReadOpcodeDCBytes;
bWriteEnableOpcode;
bEraseOpcode;
bPageProgOpcode;
bMemoryPageOpcode;
bReadStatusOpcode;
bStatusReadyMask;
bStatusReadyValue;
bInitCmdO_length;

ablnitCmdO[RX_SERIALFLASH_INITSIZE];

bInitCmd1l_length;

ablnitCmd1[RX_SERIALFLASH_INITSIZE];

bldLength;

abldSend[RX_SERIALFLASH_IDSIZE];
abldMask[RX_SERIALFLASH_IDSIZE];
abldMagic[RX_SERIALFLASH_IDSIZE];

3 RX_SERIALFLASH_ATTRIBUTES T;

typedef struct RX_SERIALFLASH_SET Ttag {

RX_PERIPHERAL_HEADER_T tCFgHd;
RX_PERIPHERAL_HEADER_T tCFgSpi ;
BOOLEAN fAuto;

RX_TRANSLATIONLAYER_CONFIG_T tTrnsCfg;
RX_SERIALFLASH_ATTRIBUTES T tFIsAttr;
3} RX_SERIALFLASH_SET T;

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public

© Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 53/94

Structure Elements

Element

Description

tCfgHd

Peripheral Header Information structure

tCfgSpi

SPI Port Configuration.
tCfgSpi defines the SPI port the serial FLASH is connected to and is used by the serial FLASH
driver for data access.

fAuto

FLASH Auto-Detection.
FALSE = Configuration block tFIsAttr is used.

TRUE = Auto detection is enabled, the driver ignores the settings in tFIsAttr and searches the
device in the pre-installed configuration templates list.

Following flash devices can be automatically detected:
Atmel AT25F512 / AT25F512A
Atmel AT45DB011B

Atmel AT45DB021B

Atmel AT45DB041B

Atmel AT45DB081B

Atmel AT45DB161B

NexFlash NX25P10

NexFlash NX25P20

NexFlash NX25P40

SST SST25LF20A / SST25VF020
SST SST25LF40A / SST25VF040
SST SST25LF80A

SST SST25VF010 / SST25VF010A
SST SST25VF512 / SST25VF512A
PMC PM25LV512

PMC PM25LV010

Saifun SA25F005

Saifun SA25F010 / ST M25P10
Saifun SA25F020 / ST M25P20
Saifun SA25F040

ST M45PE40

ST M45PES8O

tTrnsCfg

Translation Layer Configuration.
unused / set to 0

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources

54/94

Element Description

tFIsAttr FLASH Attributes.

ulSize - Total size of the FLASH memory

eSpeed - Maximum supported clock speed

uPageSize - Size of one page in bytes

uSectorPages - Size of one sector in pages
bReadOpcode - Opcode “Continuous array read”
bReadOpcodeDCBytes - “Don’t care” bytes after read
bWriteEnableOpcode - Opcode “Write Enable”, 0 = not supp.
bEraseOpcode - Opcode “Erase Page”
bPageProgOpcode - Opcode “Program Page”
bMemoryPageOpcode - Opcode “Main-Memory to Buffer”
bReadStatusOpcode - Opcode “Read status”
bStatusReadyMask - Bitmask indicating device “busy”
bStatusReadyValue - XOR mask for device “busy”
bInitCmdO0_length - Length of 1’st initialization command
ablnitCmd0J...] - 1st initialization command string
bInitCmd1_length - Length of 2'nd initialization command
ablnitCmd1[...] - 2nd initialization command string
bldLength - Length for IdSend, IdMask, IdMagic]...]
abldSend[...] - Request ID string command
abldMask(...] - And-Mask response string for ID send
abldMagic]...] - Magic sequence for this device

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public

© Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources

55/94

Examples of Serial Flash Object Templates

1. Automatic detection

STATIC CONST FAR RX_SERIALFLASH_SET_T atrXSFIsh[] =

{

¥

2. Manually-Configured Flash

}

TRUE,
{0,0,0},
{0}

{"'SYSFLASH" ,RX_PERIPHERAL_TYPE_SERFLASH, 0},
{""SYSSPI" ,RX_PERIPHERAL_TYPE_SPI1,0},/*Select SPI the device is connected to*/
/* Auto detection enabled */

/* Translation layer unused */

/* Auto detection activated */

STATIC CONST FAR RX_SERIALFLASH_SET_T atrXSFIsh[] =

{

{

FALSE,

{0,0,0},
{ 540672,
RX_SP1_SPEED_12_5MHz,

264,
8,
Oxe8,
4,
0x00,
0x50,
0x82,
0x53,
0oxd7,
Oxbc,
0x9c,
0

.
o,
{3,
2,
{0xd7, 0x00},

{0x00, 0x3c},
{0x00, Ox1c}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

{"'SYSFLASH" ,RX_PERIPHERAL_TYPE_SERFLASH, 0},
/* Atmel AT45DB041B configuration */
{""SYSSPI" ,RX_PERIPHERAL_TYPE_SPI1,0},/* Select SP1 the device is connected to */
no auto detection */

Translation Layer unused */

size */
minClock */
pageSize */
sectorSize */
readOpcode */

readOpcodeDCBytes */
writeEnableOpcode */
eraseOpcode */
pageProgOpcode */
MemoryPageOpcode */
readStatusOpcode */
statusReadyMask */
statusReadyValue */
initCmdO_length */

initCmd0 */

initCmdl_length */

initCmdl */
id_length */
id_send */
id_mask */
id_magic */

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public

© Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 56/94

5.12 Configuring the Ethernet PHY Transceivers

The Ethernet transceiver (PHY) is the physical part of an Ethernet interface.

A PHY needs to be configured and initialized in order to work. This done by a corresponding PHY
driver.

The Ethernet PHY transceiver configuration takes place in the atrXPhy[] table, located in the
"Config.c".

Each table entry configures one PHY device and the PHY driver will create a PHY object, during
the rcX initialization sequence, for each of the entries.

A PHY configuration entry contains, at least, the port number, the OUI value and a manufacturer
identification, including a set of registers with their initialization values.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources

57/94

5.12.1 The RX PHY_SET T Ethernet PHY Transceiver
Structure Reference

Each entry in the Ethernet PHY Transceiver Configuration Table is defined as follows:
#define RX_PHY_MAX_REGISTERS 32

typedef struct RX_PHY_CONFIGURATION_Ttag
UINT uReg;

UINT uVlu;
} RX_PHY_CONFIGURATION_T;

typedef struct RX PHY_SET Ttag {
RX_PERIPHERAL_HEADER_T tCfgHd;

UINT uPhyPrt;

UINT32 uloul ;

UINT32 ulManPart;

UINT32 ulManRev;

UINT uNumReg ;
RX_PHY_CONFIGURATION_T atReg[RX_PHY_MAX REGISTERS];
BOOLEAN fPowerDown;

3} RX_PHY_SET T;

Structure Elements

Object

Element Description
tCfgHd Peripheral Header Information structure.
uPhyPrt PHY Port Address.

connection and addressing of up to 32 devices.
Possible values:
0..31 = Physical PHY address

PHYs are connected via a MDIO (Management Data Input/Output) bus and this one allows the

uloUlI Organizationally Unique Identifier

devices.
Not unused, set to 0.

This value is specified by the IEEE specification and unique for each manufacturer of PHY

ulManPart Manufacturer Specific Part Number.
The PHY driver compares it with the physical value within the connected PHY.
Not unused, set to 0.

ulManRev Manufacturer Revision Number.
Not unused, set to 0.

uNumReg Number of PHY Configuration Registers.
uNumReg defines the number of configuration entries in the atReg table.

atReg PHY Register Initialization Table.

initialization value.

uReg = PHY register address

uVlu = Register value

Note: A description of the registers can be found in the PHYs user manual.

Each entry in this structure-array consists of 2 elements, specifying the PHY register and the

fPowerDown PHY startup mode.
FALSE = PHY is active
TRUE = PHY is started in "Power Down mode"

rcX - Realtime Communication System for netX | Configuration of rcX

DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 58/94

Examples of Ethernet Transceiver Object Templates

STATIC CONST FAR RX_PHY SET T atrXPhy[] =

{

{
'PHY'*, RX_PERIPHERAL_TYPE_PHY, O},

/* PHY"s Port number MDIO */

/* OUl for Identification */

/* Manufacturer Code */

/* Device Revision */

, /* Number of Registers to Write to */
{{0x19,0x0000}}, /* Register25/Value pair to configure */
{{0x05,0xC000}}, /* Register5/Value pair to configure */
{{0x08,0x0220}}, /* Register8/Value pair to configure */

P OOORM

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 59/94

5.13 Configuring the General-Purpose 1/0s (GPIOs)

General-Purpose Inputs / Outputs are user configurable 1/0 pins. A netX based platform offers up
to 16 GPIOs also supporting additional functions like:

Level / Edge triggered capture

Level / Edge triggered external clock pin
PWM (Pulse Width Modulation)

Level / Edge triggered interrupt

Configuration of the GPIO pins takes place in the atrXGpio[] table, located in the "Config.c".

Each table entry configures one GPIO pin. The corresponding GPIO driver creates a GPIO object
for each entry, during the rcX initialization sequence

The GPIO configuration contains, at least, the signal number, the data direction, an event counter
and the trigger source definition.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 60/94

5.13.1 The RX_GPIO_SET_T General Purpose I/O Object Structure
Reference

Each entry in the General Purpose 1/0O Configuration Table is defined as follows:
typedef struct RX_GPIO_SET_Ttag

RX_PERIPHERAL_HEADER_T tCfgHd;

UINT uGpioNum;
RX_GPI10_TYPE eTyp;
RX_GP10_POLARITY ePol ;
RX_GP10_MODE eMod;
RX_GP10_COUNTER eCntRef;
BOOLEAN flrqg;
UINT uThrHIdCptr;
} RX_GPIO_SET T;
Structure Elements
Element Description
tCfgHd Peripheral Header Information structure
uGpioNum Physical GPIO Port Number.
eTyp GPIO Type.
Possible settings:
RX_GPIO_TYPE_INPUT - Define the GPIO as an input
RX_GPIO_TYPE_OUTPUT - Defines the GPIO as an output
RX_GPIO_TYPE_EXTO_MODE - Set GPIO to extended configuration mode 0 (UART)
RX_GPIO_TYPE_EXT1_MODE - Set GPIO to extended configuration mode 1 (reserved)
ePol GPIO Default Pin Polarity.
Possible settings:
RX_GPIO_POLARITY_NORMAL = 0 (high active)
RX_GPIO_POLARITY_INVERTED = 1 (low active)
eMod Enhanced GPIO Mode.

Input Mode:

RX_GPIO_INPUTMODE_STANDARD - GPIO is a standard input
RX_GPIO_INPUTMODE_CAPTURED_CONTINUED - Captures the selected reference counter
to the corresponding threshold register at every rising / falling edge (defined by ePol) on the
GPIO pin.

RX_GPIO_INPUTMODE_CAPTURED_ONCE - Captures the selected reference counter once
to the corresponding threshold register at a rising / falling edge (defined by ePol) on the GPIO
pin.

RX_GPIO_INPUTMODE_CAPTURED_LEVEL - Captures the selected reference counter to the
corresponding threshold register as long as the GPIO pin has the level defined by ePol. The pin
is sampled using the 10 clock frequency.

Output Mode:

RX_GPIO_OUTPUTMODE_STANDARD_0 - GPIO operates as a standard output. Default
output value = 0.

RX_GPIO_OUTPUTMODE_STANDARD_1 - GPIO operates as standard output. Default output
value = 1.

RX_GPIO_OUTPUTMODE_LINE - Set the GPIO pin into line mode, so it can be driven via the
GPIO line register.

RX_GPIO_OUTPUTMODE_PWM - Set the GPIO into pulse width modulation mode.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources

61/94

Element

Description

eCntRef

Mhz)

Capture Reference Counter.

Possible settings:

RX_GPIO_COUNTER_0

RX_GPIO_COUNTER _1

RX_GPIO_COUNTER_2

RX_GPIO_COUNTER_3

RX_GPIO_COUNTER 4

RX_GPIO_COUNTER_SYSTEMTIME - Use the system timer as the reference counter (100

RX_GPIO_COUNTER_NONE - No counter referenced

flrq

Enable Interrupts on Capture Events.
TRUE = Interrupt generation enabled
FALSE = Interrupt generation disabled

uThrHIdCptr

Threshold Configuration.
Defines the PWM threshold value.
Only used in PWM (Pulse Width Modulation) mode.

Examples of General Purpose I/O Object Templates

1.

Simple Output

STATIC CONST FAR RX_GPIO_SET_T atrXGpio[] =

{

¥

2.

{

8,
RX_GP10_TYPE_OUTPUT,

{'GP100OUT" ,RX_PERIPHERAL_TYPE_GP10,0},

RX_GP10_POLARITY_NORMAL,
RX_GP10_OUTPUTMODE_STANDARD_O,

RX_GP10_COUNTER_NONE,
FALSE,
0,

ks

Simple Input

/*
/*
/*
/*
/*
/*
/*

STATIC CONST FAR RX_GPIO_SET_T atrXGpio[]

{

{

{""GPI0IN" ,RX_PERIPHERAL_TYPE_GP10,0},

12,
RX_GP10_TYPE_INPUT,

RX_GP10_POLARITY_NORMAL,
RX_GP10_INPUTMODE_STANDARD,

RX_GP10_COUNTER_NONE,
FALSE,
0,

/*
/*
/*
/*
/*
/*
/*

GP10 Number */

GP10 Type */

GP10 Polarity */

GPIO Mode */

Counter Reference */
Enables/Disables IRQ /
Threshold (PWM only) */

GPI10 Number */

GP10 Type */

GP10 Polarity */

GPIO Mode */

Counter Reference */
Enables/Disables IRQ */
Threshold (PWM only) */

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public

© Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 62/94

3. Capture Input with Interrupt
STATIC CONST FAR RX_GPIO_SET_T atrXGpio[] =

{
{
{""GPIOPULSE" ,RX_PERIPHERAL_TYPE_GPI10,0},
14, /* GP10 Number */
RX_GP10_TYPE_INPUT, /> GPIO Type */
RX_GP10_POLARITY_NORMAL, /* GPIO Polarity */
RX_GP10_INPUTMODE_CAPTURED_LEVEL, /* GP10O Mode */
RX_GPI0_COUNTER_2, /* Counter Reference */
TRUE, /* Enables/Disables IRQ */
o, /* Threshold (PWM only) */
}
}:

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 63/94

5.14 Configuring the Programmable 1/0Os (PIOs)

A PIO pin is a simple Programmable Input / Output pin, controlled by a direction and data register.

PI1O pin configuration is done byte the atrXPio[] table, located in the "Config.c" file. Each table
entry configures one PlO. The corresponding PIO driver creates a PIO object for each entry, during
the rcX initialization sequence.

A PIO pin is defined by a configuration register, data registers and values to enable or disable the
pin.

5.14.1 The RX PIO SET T Programmable 1/0O Object Structure
Reference

Each entry in the Programmable I/O configuration table is defined as follows:
typedef struct RX_PI0_REGISTER_ONLY_ Ttag

RX_P10_VALUE_TYPE eTyp;
UINT uReg;
3 RX_PIO_REGISTER ONLY_T;

typedef struct RX P10 _REGISTER_VALUE_ Ttag

RX_PI10_VALUE_TYPE eTyp;
UINT uReg;
UINT uVlu;
} RX_PIO_REGISTER_VALUE_T;

typedef struct RX PIO_SET Ttag

{
RX_PERIPHERAL_HEADER T tCfgHd;

RX_P10_REGISTER_VALUE_T tMod;

RX_P10_REGISTER_VALUE_T tDir;

RX_PI0_REGISTER ONLY T tSet;

RX_P10_REGISTER_ONLY_T tClr;

RX_P10_REGISTER_ONLY T tlnp;
3} RX_PIO_SET_T;

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 64/94

Structure Elements

Element

Description

tCfgHd

Peripheral Header Information structure

tMod

PIO Pin Configuration.

Note: PIO pins on the same register set can also be grouped.

uVlu = PIO pin mask value

It is used as a bit mask to select one or more PIO pins. How the mask is written to the PIO pin register
and if a pin will be an input or output

depends on the eTyp configuration.

Writing a 1 to a bit position into the PIO configuration register (defined by uReg) will switch the
corresponding PIO pin into an output.

Writing a 0 to a bit position into the PIO configuration register (defined by uReg) will switch the
corresponding PIO pin into an input.

The resulting configuration value, written to the PIO configuration register (defined by uReg) will be
always a combination of uVul and eTyp. This is done to be able also use groups of PIO pins with the
same

functions.

eTyp = Defines the handling of uViu

RX_PIO_VALUE_TYPE_ABSOLUTE

uVlu is written to the PIO configuration register.

Attention: This will influence the configuration of all P1O pins (see description of uVlu).
RX_PIO_VALUE_TYPE_ACTIVE_HIGH

Working with a group of output PIO pins defined by uVIu.

uVlu will be logical OR combined with the "PIO configuration register".

This is done to selectively enable the output pin driver for the given PIO pin mask given in uVlu.
RX_PIO_VALUE_TYPE_ACTIVE_LOW

Working with a group of input PIO pins defined by uVlu.

uVlu will be logical AND combined with the "PIO configuration register". This is done to selectively
disable the output pin driver for the given PIO pin mask given in uVlu.

uReg = Physical PIO configuration register address

This is always NETX_PIO_OUT_EN

tDir

Pin Direction.
Not unused, set to 0.

tSet

Set One or a Group of PIO Pins.
PIO pins are set via the PIO driver functions Drv_PioSetOutputs().
This function will get the pins which should be set via a function parameter.
eTyp. can be used to invert the handling in the set function.
eTyp
RX_PIO_VALUE_TYPE_ACTIVE_HIGH
Set the PIO pins, passed as a parameter to the function Drv_PioSetOutputs(). While tMod.uVlu is used
to select the correct pins.
RX_PIO_VALUE_TYPE_ACTIVE_LOW
Clears the PIO pins, passed as a parameter to the function Drv_PioSetOutputs(). While tMod.uVlu is
used to select the correct pins.
uReg = Physical PIO data output register

This is always NETX_PIO_OUT

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 65/94

Element

Description

tCIr

Clear One or a Group of PIO Pins
PIO pins are cleared via the PIO driver functions Drv_PioClearOutputs().
This function will get the pins which should be cleard via a function parameter.
eTyp. can be used to invert the handling in the clear function.
eTyp
RX_PIO_VALUE_TYPE_ACTIVE_HIGH

Clears the PIO pins, passed as a parameter to the function Drv_PioClearOutputs().While tMod.uVlu is
used to select the correct pins.

RX_PIO_VALUE_TYPE_ACTIVE_LOW
Set the PIO pins, passed as a parameter to the function Drv_PioClearOutputs().While tMod.uVlu is
used to select the correct pins.

uReg = Physical PIO data output register
This is always NETX_PIO_OUT

tinp

Read One or a Group of PIO Pins.

PIO pins are read via the PIO driver functions Drv_PioGetlnputs().
eTyp. can be used to invert the read result.

eTyp

RX_PIO_VALUE_TYPE_ACTIVE_HIGH
Read the PIO pins defined by tMod.uVlu.

RX_PIO_VALUE_TYPE_ACTIVE_LOW
Read the PIO pins defined by tMod.uVIu and inverts the result.

uReg = Physical PIO data input register
This is always NETX_PIO_IN

Examples of Programmable 1/0O Object Templates

1. 8 bit Output
STATIC CONST FAR RX_PIO_SET_T atrXPio[] =

{
{'SYSP10" ,RX_PERIPHERAL_TYPE_P10,0},
{RX_P10_VALUE_TYPE_ACTIVE_HIGH,NETX_P10_OUT_EN,O0x0000000FF},/* 8P10 as output */
{RX_P10_VALUE_TYPE_NONE,NULL ,0x00000000}, /* tDir unused */
{RX_P10_VALUE_TYPE_ACTIVE_LOW,NETX_P10_OUT}, /* tSet function */
{RX_P10_VALUE_TYPE_ACTIVE_LOW,NETX_P10_OUT}, /* tClr function */
{RX_P10_VALUE_TYPE_NONE,NULL}, /* tinp function */

¥,
¥

2. Mixed 8 bit Inputs and 8 bit Outputs
STATIC CONST FAR RX_PIO_SET_T atrXPio[] =

{
{'SYSOUT"",RX_PERIPHERAL_TYPE_P10,0},
{RX_P10_VALUE_TYPE_ACTIVE_HIGH,NETX_P10_OUT_EN,OxO000000FF},/* 8P10 as output*/
{RX_P10_VALUE_TYPE_NONE,NULL ,0x00000000%}, /* tDir unused */
{RX_P10_VALUE_TYPE_ACTIVE_LOW,NETX_P10_OUT}, /* tSet function */
{RX_P10_VALUE_TYPE_ACTIVE_LOW, NETX_P10_OUT }, /* tClIr function */
{RX_P10_VALUE_TYPE_NONE,NULL}, /* tinp function */
3.
{
{'SYSIN"",RX_PERIPHERAL_TYPE_PI10,0},
{RX_P10_VALUE_TYPE_ACTIVE_LOW,NETX_P10_OUT_EN,OXO0000FF00}, /* 8P10 as input */
{RX_P10_VALUE_TYPE_NONE,NULL ,0x00000000}, /* tDir unused */
{RX_P10_VALUE_TYPE_NONE,NULL}, /* tSet function */
{RX_P10_VALUE_TYPE_NONE,NULL}, /* tClr function */
{RX_P10_VALUE_TYPE_ABSOLUTE,NETX_P10_IN}, /* tinp function */
3.
¥

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 66/94

5.15 Configuring the HIF Programmable Input/Output pins
The HIF PIO driver allows accessing the host interface pins of the netX in PIO mode. The netX
offers up to 52 HIF PIO pins.

This driver can not be used in conjunction with the HIF driver, because the HIF driver needs the
PIO pins for its own handling.

The host interface PIOs are configured by the atrXHifPio[] table, located in the "Config.c" file. The
driver creates a HIF PIO object for each table entry, during the rcX initialization
sequence.

5.15.1 The RX _HIFPIO_SET T Host Interface PIO Object Structure
Reference

Each entry in the Host Interface PIO Configuration Table is defined as follows:
typedef struct RX_HIFPIO_SET Ttag

RX_PERIPHERAL_HEADER T tCfgHd;

UINT32 ulModeO;
UINT32 ulModel;
UINT32 ulDrvEnO
UINT32 ulDrveEnl
UINT32 ulConfO0;
UINT32 ulConfl;

3 RX_HIFPI0_SET_T;

Structure Elements

Element Description

tCfgHd Peripheral Header Information structure.

ulMode0 10 Mode 0 Register.
This value configures the DPMAS_10_MODEDQO register holding the configuration of the HIF-PIO
pins 32 to 63.
Bit 31..0

0 = Pin is set to standard PIO mode.

1 = Pin is set to HIF mode

Example:

If all all HIF-PIOs (32 to 63) will be used in PIO mode, this value must be set to 0x00000000

A description of the DPMAS_IO_MODEDQO register can be found in the “netX Program Reference
Guide”.

ulMode1 10 Mode 1 Register.

This value configures the DPMAS_IO_MODE1 register holding the configuration of the HIF-PIO
pins 64 to 84.

Bit 20..0

0 = Pin is set to standard PIO mode.

1 =Pin is set to HIF mode

Bit 29..21 are unused

Bit 31,30

0,0= Latched on power on reset

0,1 = Inputs are sampled with 1/0 clock (100 MHz)

1,0 = Latch if PIO 77 is low

1,1 = Latch if PIO 77 is high

Example:

Using the HIF-PIOs 64 to 84 in PIO mode, sampled with 100MHz. This value must be set to
0x40000000.

A description of the DPMAS_IO_MODE1 register can be found in the “netX Program Reference
Guide”.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 67/94

Element

Description

ulDrvEnO

Bus Driver Enable 0 Configuration

This value configures the DPMAS_10_DRV_ENO register,
responsible for HIF-PIO pins 32 to 63.

Bit 31..0

0 = Pin is defined as an input
1 = Pin is defined as an output

Example:
0x00000000 = HIF-PIO pins 32 to 63 defined as inputs

A description of the DPMAS_10_DRV_ENQO register can be found in the “netX Program
Reference Guide”.

ulDrvEn1

Bus Driver Enable 1 Configuration

This value configures the DPMAS_I0O_DRV_ENT1 register, responsible for HIF-PIO pins 64 to
84.

Bit 20..0

0 = Pin is defined as an input
1 = Pin is defined as an output

Bit 31..21 (unused / reserved)
Example:
0x00000000 = HIF-PIO pins 64 to 84 defined as inputs

A description of the DPMAS_IO_DRV_EN1 register can be found in the “netX Program
Reference Guide”.

ulConf0

10 Configuration 0 Value

This value configures the DPMAS_IO_CONFO register and
configures the HIF-PIOs into standard 1/0O mode.

Bit 27..0 (reserved)

Bit 30..28

1,0,0 = I/O mode

Bit 31 (reserved)

Example:

Using the HIF-PIOs as standard 1/O pins, this value must be set to
0x40000000.

A description of the DPMAS_IO_CONFO register can be found in the “netX Program Reference
Guide”.

ulConf1

10 Configuration 1 Value

This value configures the DPMAS_10_CONF1 register.

Bit 31..0 (reserved for the host interface handling)

Example:

Using the HIF-PIOs as standard I/O pins, this value must be set to
0x00000000.

A description of the DPMAS_|O_CONF1 register can be found in the “netX Program Reference
Guide”.

Examples of HIF PIO Object Templates

1. Simple input/output interface
STATIC CONST FAR RX_HIFPIO_SET_T atrXHif[] =

{
{

{""HOSTI0" ,RX_PERIPHERAL_TYPE_HIFPI10,0},

0x00000000,
0x40000000,
0x00000000,
OX0000FFFF,
0x40000000,
0x00000000,

}
¥

/* Configure HIF-PIO 32 to 63 to be standard 1/0 */

/* Configure HIF-PIO 64 to 84 to be standard 1/0 */

/* Configure HIF-PI0 32 to 63 Output-Driver to be inputs */
/* Configure HIF-PIO 64 to 84 Output-Driver to be outputs */
/* Configure the 1/0 Mode */

/* Configure Arm specific configuration, no relevance */

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 68/94

5.16 Configuring the General 1/0s (10s)

Note: This service is only available in rcX V2.1 (since V2.1.5.0) and is used a replacement for
Drv_Gpio, Drv_Pio and Drv_HifPio.

The 10 driver allows accessing the various input/output pins of the netX and thus can be used as a
replacement for the GPIO, PIO and HIFPIO driver.

This driver should not be used in conjunction with the GPIO, PIO or HIFPIO driver, because they
do share the same hardware components and the driver behaviour would be unpredictable.

The general I0s are configured by the atrXIOJ[] table, located in the "Config.c" file. The driver
creates a |0 class object for each table entry, during the rcX initialization sequence.

5.16.1 The RX IO _SET T General I/O Object Structure Reference

Each entry in the General 1/0O Configuration Table is defined as follows:
typedef struct RX_I0_SET Ttag

RX_PERIPHERAL_HEADER T tCfgHd;

RX_RESULT (*fnlnit)(RX_HANDLE hClass);
3 RX_10_SET_T;

Structure Elements

Element Description

tCfgHd Peripheral Header Information structure

Note: IO Class is identified via the name and instance number given here! In contrast to
the old 10 drivers (Drv_Gpio, Drv_Pio, Drv_HifPio) the name addresses a whole I/O Class
instead of a single pin instance!

fnlnit 10 class initialization function:

Gpiolnit = Initializes the GPIO class layer
Piolnit = Initializes the PIO class layer
HifPiolnit = Initializes the HIFPIO class layer
MMIOInit = Initializes the MMIO PIO class layer

Examples of General 1/0 Driver Configuration

/ R o o o S S S S S S S S S S e S S S S S S S S S S S e e S S S

* Configuration of the 10 classes

S S S S S S S S S e S S S S S S S S T S S /
STATIC FAR RX_I0_SET_T atrXlo[] =
{
{"GP10", RX_PERIPHERAL_TYPE_ 10, O},
Gpiolnit,
3>
{
{"P10", RX_PERIPHERAL_TYPE_10, 0},
Piolnit,
3>
{
{"HIFP10", RX_PERIPHERAL_TYPE_10, O},
HifPiolnit,
3>
{
{"MMIOPI0O*, RX_PERIPHERAL_TYPE_10, O},
MMIOPiIoINit,
T
};

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 69/94

5.17 Configuring the Extended Fieldbus Controllers (xC)

The netX internal extended controllers (xC) are comparable to math or graphics coprocessors and
working fully independent from the main CPU.

They are specifically designed to handle high speed serial protocols up to 100Mbit traffic rates. The
extended controller CPUs are programmed by a separate microcode and need to be loaded in
order to operate.

An xC unit contains two separate controller units:
Extended Protocol Execution Controller (xPEC)
Extended Media Access Controller (xMAC)

xRPU
xTPU

The Extended Media Access Controller (xMAC) is designed to handle the bit-stream on the media
and re-arranges them into byte streams. This main task is divided into a receive unit (xRPU) and a
transmit unit (xTPU).

The Extended Protocol Execution Controller (xPEC) is specifically designed to interpret the byte-
stream according to the protocol to be handled. At the end, it will exchange the information with the
main CPU.

Configuration of the xMACs takes place in the atrXXc|[] table.

Each entry configures one xXMAC which will be later accessible from an application task via driver
functions. The xC driver creates an own xC object - during the rcX initialization in
rX_SysEnterKernelExt() - for each entry in the table.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 70/94

5171 The RX_XC SET T Extended Controller Object Structure

Reference

Each entry in the Extended Controller Configuration Table is defined as follows:
typedef struct RX_XC_SET Ttag

RX_PERIPHERAL_HEADER_T tCfgHd;

RX_XC_TYPE eXcTyp;

UINT uXcld;

UINT32 FAR* pulXcCode;

3 RX_XC_SET T;

Structure Elements

Element

Description

tCfgHd

Peripheral Header Information structure.

eXcTyp

Controller Type.

Possible settings:

RX_XC_TYPE_XPEC - Extended Protocol Controller
RX_XC_TYPE_XMACRPU - Extended Receive Media Controller
RX_XC_TYPE_XMACTPU - Extended Transmit Media Controller

uXcld

Controller ID.
Possible values:
0..3 =xC ID, depending on the netX chip version (netX 500)

pulXcCode

Pointer to the Controller Program Code.

pulXcCode defines the start address of the microcode which should be loaded to the specified
controller.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 71/94

Examples of Extended Controller Object Templates

1. Single xPEC Configuration
STATIC CONST FAR RX_XC_SET_T atrXXC[] =

{
{
{""XPEC" ,RX_PERIPHERAL_TYPE_XC,O0},
RX_XC_TYPE_XPEC, /* Type of XC unit is xPEC */
2,
XC_CODE_PB_SLAVE_XPEC2 /* Profibus Slave microcode XPEC start address */
}
}:

2. Complete xC Configuration
STATIC CONST FAR RX_XC_SET_T atrXXC[] =

{
{
{""XPEC" ,RX_PERIPHERAL_TYPE_XC, 2},
RX_XC_TYPE_XPEC, /* Type of XC unit is xPEC */
2,
XC_CODE_PB_SLAVE_XPEC2 /* Profibus Slave microcode XPEC start address */
3,
{
{""XMAC" ,RX_PERIPHERAL_TYPE_XC, 2},
RX_XC_TYPE_XMACRPU, /* Type of XC unit is xMAC */
2
XC_CODE_PB_SLAVE RPU2 /* Profibus Slave microcode XRPU start address */
3
{
{"XMAC" ,RX_PERIPHERAL_TYPE_XC,2},
RX_XC_TYPE_XMACTPU, /* Type of XC unit is xMAC */
2
XC_CODE_PB_SLAVE_TPU2 /* Profibus Slave microcode XTPU startaddress */
3.
}:

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 72/94

5.18 Configuring the Media Volumes

In order to use a file system in the rcX, a volume is required that reflects the logical reference to a
physical storage media.

As an abstraction layer exists between the tasks and the physical storage media, the volume
access function operates media independent.

This makes the access to such media transparent and an application task does not need to know
which physical media type is used.

The volume configuration consists of the physical storage media and will be configured in the
atrXVol[] table, located in the "Config.c" file.

Each table entry configures one Volume. The volume driver automatically creates a virtual volume
object, during the rcX initialization sequence, for each entry.

5.18.1 The RX_VOLUME_SET_T Volume Object Structure Reference

Each entry in the Volume Configuration Table is defined as follows:
typedef struct RX_PHYSICALDRIVE_HEADER Ttag

STRING sz1ldn[16];
RX_PERIPHERAL_TYPE eTyp;

UINT ulnst;
BOOLEAN fPrtn;

} RX_PHYSICALDRIVE_HEADER_T;

typedef struct RX_VOLUME_SET Ttag

RX_PERIPHERAL_HEADER_T tCfgHd;

UINT32 ulCapcty;

UINT32 ulPrtnAdr;

UINT32 ulVolld;

UINT uBytPerSec;

UINT uMaxPrc;

RX_RESULT (* fnMount) (RX_HANDLE hVol);

RX_PHYSICALDRIVE_HEADER_T tPhyDrv;
3 RX_VOLUME_SET_T;

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 73/94

Structure Elements

Element Description
tCfgHd Peripheral Header Information structure.
ulCapcty Volume Capacity.
ulCapcty = Total volume size in bytes.
The value should not be larger than the real size of the selected physical storage media.
Note: Calculation of the volume size should always be done by using the page size/sector size
and the number of possible pages / possible sectors.
capacity = page size x number of pages (for memory devices)
or
capacity = sector size x number of sectors (for drive devices)
E.g. a serial FLASH device with 8192 sector and with 528 Bytes per sector will have capacity of
4.325.376 Bytes.
ulPrtnAdr Partition Start Offset.
ulPrtnAdr = Start offset of the logical Volume, within the physical storage media.
If the partition start offset is not 0, than only the remaining size
defines the volume capacity size.
volume size = physical storage size - partition start offset
Attention: The offset must be given in bytes but must be a multiple of the specified bytes per
sector (see uBytPerSec). This is depending on the underlying, physical device driver.
Typical Sector Sizes:
RAM disk driver = 512 Bytes
Serial FLASH disk driver = 528 Byte
ulVolld Volume ID.
ulVolld = 32 bit unique volume identifier (number).
Used by the file system for identification and inserted into the volume
information block.
Valid value = 0..0xFFFFFFFF
uBytPerSec Bytes per Sector.
uBytPerSec = The volume sector size in bytes.
Used during the physical read and write access and by a file system to format the volume.
Typical Sector Sizes:
RAM disk driver = 512 Bytes
Serial FLASH disk driver = 528 Byte
uMaxPrc Maximum Number of Concurrent Waiting Processes
Not used, set to 0.
fnMount Mount Function Pointer.

Function pointer to volume mounting function.

Following functions can be specified:
Drv_FldMountRamdisk() — Mounting function FLASH disk disk
Drv_RdkMountRamdisk() — Mounting function for a RAM disk
Drv_RrdMountRamdisk() — Mounting a resident RAM disk
Drv_UsbMountUsb() - Mounting function for an USB device

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 74/94

Element

Description

tPhyDrv

Physical Drive Configuration.
This structure specifies the physical media used as a storage device for the volume.
szldn[16] = Volume name. Zero terminated ASCI| of 16 Bytes including termination character.

eType = Volume type definition
..RX_PERIPHERAL_TYPE_SERFLASH
..RX_PERIPHERAL_TYPE_PARFLASH
..RX_PERIPHERAL_TYPE_RAMDISK

ulnst = Instance number
Used to distinguish between volumes of the same name.

fPrtn defines the handling of the partition
FALSE = "Super Floppy"
TRUE = Partition table

Note: szldn and ulnst are passed down to the physical device driver to select the corresponding
physical media.

While the physical media configuration is done by the corresponding device configuration (e.g.
parallel / serial FLASH etc.).

Examples of Volume Object Templates

1. A RAM-Disk Volume
STATIC CONST FAR RX_VOLUME_SET T atrXVol[] =

{"SYSVOLUME" ,RX_PERIPHERAL_TYPE_VOLUME,O}, /* Set Volume’s object header */

Drv_deMc’)untRamd isk,

/* Set the total capacity of a 1.44Disk */

/* Starting at byte 0 indicates the first sector */
/* Serial Number of Volume */

/* Bytes per Sector */

/* 4 Tasks may access to it simultaneously */

{"RAMDISK" ,RX_PERIPHERAL_TYPE_RAMDISK,O,FALSE} /* Physical device to mount */

{
512*2880,
0,
12345,
512,

4
s
}

2. A Serial Flash Volume
STATIC CONST FAR RX_VOLUME_SET T atrXVol[] = {

{""MYVOLUME" ,RX_PERIPHERAL_TYPE_VOLUME, O}, /* Set Volume’s object header */

528*8192,
0,
54321,
528,

0

/* Set the total capacity (FLASH device) */
/* Start at the beginning of the media */
/* Serial Number, user definable */

/* Bytes per Sector */

/* unused */

Drv_FIdMoun1’:FIash,
{""SERFLASH" ,RX_PERIPHERAL_TYPE_SERFLASH,0,FALSE} /* Physical device to mount */

}
}

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 75/94

5.19 Configuring the Host Interface

The host interface allows another CPU to access the data inside a netX system as a host.
Therefore a host interface driver is provided, which maintains a certain set of functionalities
providing a well-defined interface usable by the host CPU.

The typical functionality of the host interface driver includes:
Mailboxes (Transmit/Receive)
I/O Data Exchange (In/Out)
Diagnostic Data
Change-Of-State commands and indications

In addition, the host interface driver also setup the hardware to allow the host to access the dual-
port memory including the configuration of the bus-width and bus type used for the connection.

To configure the host interface, the table atrXHif[] in the Config.c file has to be used. Each entry
configures one HIF that will later be accessible from application task level via driver functions.

The driver automatically creates a host interface object during the rcX initialization sequence.

Each table entry defines an own HIF and supplies the driver with all necessary information about
the interface. The configurable values consist of the HIF's physical configuration as well as the
layout of the different dual port memory areas to be activated.

Activation of the HIF driver takes place in the rX_SysEnterKernelExt() function.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources

76/94

5.19.1 The RX HIF_SET T Host Interface Object Structure Reference

Each entry in the Host Interface Configuration Table is defined as follows:

#define RX_HIF_MAX_SUPPORTED_CHANNELS 8
#define RX_HIF_MAX_SUPPORTED_BLOCKS 16

typedef struct RX _HIF_AREA BLOCK Ttag

STRING
UINT
RX_HIF_BLOCK_TYPE

szldn[16];
ulnst;
eTyp;

RX_HIF_TRANSMISSION_TYPE eTrnsTyp;

UINT32
UINT32
RX_HIF_BLOCK_DIRECTION
UINT
RX_HIF_BLOCK_MODE
RX_TASK_PRIORITY
RX_TASK_TOKEN

} RX_HIF_AREA BLOCK_T;

ulOffs;

ulSiz;

eDir;
uTrnsBitDmaChnl ;
eMod;
eTaskPriority;
eTaskToken;

typedef struct RX_HIF_AREA_Ttag

{
STRING

UINT
RX_HIF_AREA_LAYOUT
RX_HIF_AREA_HDSHK_MODE
UINT

UINT

szIldn[16];
uldx;
eLayOut;
eHdshkMod;
uSiz;
uNumBlocks;

RX_HIF_CHANNEL_BLOCK_T* patBIks;

3} RX_HIF_CHANNEL_T;

typedef struct RX_HIF_SET Ttag

RX_PERIPHERAL_HEADER_T

RX_HIF_MODE_TYPE
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
BOOLEAN
BOOLEAN
UINT32
RX_HIF_CHANNEL_T*
UINT32
UINT32
3} RX_HIF_SET_T;

tCfgHd;

eHifMod;
ulModeO;
ulModel;
ulDrveEnO
ulDrvEnl
ulConf0;
ulConfl;
ul 10MemTotSiz;

FfAlwaysUseHandshakeBlock;

TKeepHifRegisters;
uNumOfChannels;
patChannelBIk;
ulPhysMemoryBase;
ulPhysMemorySize;

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public

© Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 77/94

Structure Elements

Element

Description

tCfgHd

Peripheral Header Information structure (RX_PERIPHERAL_HEADER _T)

eHifMod

Basic Host Interface Operation Mode.

Following values are pre-defined:

RX_HIF_MODE_HIGH_IMPEDANCE - Bus drivers not enabled, bus is floating
RX_HIF_MODE_DPM_UPS8BIT - Dual-Port Memory (DPM) mode - 8 Bit data bus interface
RX_HIF_MODE_DPM_UP16BIT - Dual-Port Memory (DPM) mode - 16 Bit data bus interface
RX_HIF_MODE_IO - Peripheral Input/Output (PIO) mode

ulModeO

10 Mode 0 Register.

This value configures the DPMAS_10_MODEDQO register holding the configuration of the HIF-PIO
pins 32 to 63.

Bit 31..0

0 = Pin is set to standard PIO mode.

1 = Pin is set to HIF mode

Example:

If all HIF-P1Os (32 to 63) will be used in HIF mode, this value must be set to OXFFFFFFFF

A description of the DPMAS_1O_MODEDQO register can be found in the “netX Program Reference
Guide”.

ulMode1

10 Mode 1 Register.

This value configures the DPMAS_IO_MODE1 register holding the configuration of the HIF-P1O
pins 64 to 84.

Bit 20..0
0 = Pin is set to standard PIO mode.
1 = Pin is set to HIF mode

A description of the DPMAS_IO_MODE(1 register can be found in the “netX Program Reference
Guide”.

ulDrvEnO

Bus Driver Enable 0 Configuration

This value configures the DPMAS_IO_DRV_ENO register,
responsible for HIF-PIO pins 32 to 63.

Set to O for HIF mode

A description of the DPMAS_10_DRV_ENQO register can be found in the “netX Program
Reference Guide”.

ulDrvEn1

Bus Driver Enable 1 Configuration

This value configures the DPMAS_IO_DRV_EN1 register, responsible for HIF-PIO pins 64 to
84.

Set to 0 for HIF mode

A description of the DPMAS_IO_DRV_EN1 register can be found in the “netX Program
Reference Guide”.

ulConf0

10 Configuration 0 Value

This value configures the DPMAS_IO_CONFO register with the
external access and timing parameters

Example:
0x2024C912 = 8 Bit DPM mode

A description of the DPMAS_10_CONFO register can be found in the “netX Program Reference
Guide”.

ulConf1

10 Configuration 1 Value

This value configures the DPMAS_IO_CONF1 register with extended access parameters.
Example:

0x01000000 = Extended configuration, set busy/ready delay

A description of the DPMAS_10_CONF1 register can be found in the “netX Program Reference
Guide”.

ullOMemTotSiz

Total Memory Size.
ullOMemTotSiz = Size of the Dual-Port memory in bytes

Attention: The size depends on the ulMode0O and ulMode1 registers, configuring the usable
address lines.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 78/94

Element Description
fAlwaysUseHandsha | Handshake Block Configuration
keBlock TRUE = Handshake cells are always located in a separate
handshake channel (handshake block)
FALSE = In PCI mode the handshake cells are located in a separate handshake channel, while
in DPM mode the handshake cells are
locatable anywhere else in the DPM.
fKeepHifRegisters Keep the HIF Register Initialization
FALSE = The HIF driver initializes the registers ulModeO, ulMode1, ulDrvEnO, ulDrvEn1,
ulConf0 and ulConf1 using the given settings.
TRUE = The HIF driver does not initialize the registers
ulModeO0, ulMode1, ulDrvEnO, ulDrvEn1, ulConf0 and ulConf1.
Note: TRUE is used if the registers are already set by another
software part (e.g. bootloader etc.).
uNumOfChannel Number of Communication Channels
uNumOfChannel defines the number of data channels (communication channel and user
channels) in the table patChannelBIk.
Possible settings:
0..RX_HIF_MAX_SUPPORTED_CHANNELS (8)
patChannelBlk Channel Configuration Table.

Pointer to the configuration table holding the channel configuration.

ulPhysMemoryBase

Physical Memory Base Address.
The memory can be located anywhere else in the netX memory space.

ulPhysMemorySize

Physical Memory Size.
The memory size is expected in bytes.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 79/94

Examples of HIF Object Templates

1. Simple Input/Output Interface
STATIC CONST FAR RX_HIF_SET_T atrXHif[] =

{
{
{""HOSTI0" ,RX_PERIPHERAL_TYPE_HOST, 0},
RX_HIF_MODE_I0, /* Set the HIF to work in 1/0 mode */
0x00000000, /* Configure HIF-PIO 32 to 63 to be standard 1/0 */
0x40000000, /* Configure HIF-PIO 64 to 84 to be standard 1/0 */
0x00000000, /* Configure HIF-PI0O 32 to 63 Output-Driver to be inputs */
Ox0000FFFF, /* Configure HIF-PIO 64 to 84 Output-Driver to be outputs */
0x40000000, /* Configure the 1/0 Mode */
0x00000000, /* Configure Arm specific configuration, no relevance */
0, /> No size */
TRUE, /* Always use handshake block */
FALSE, /* Change HIF registers */
o, /* No Area to be configured */
3
};

2. Dual-Port Memory Interface 8 Bit
STATIC CONST FAR RX_HIF_SET_T atrXHif[] =

{{""HOSTDPM8BIT" ,RX_PERIPHERAL_TYPE_HOST, 0},
RX_HIF_MODE_DPM_UP8BIT, /* Set the HIF to work in 8 Bit Dualport-Memory mode */
O0x333FE000, /* Configure specific HIF-PI10 HIF */
OxO000E7E67, /* Configure specific HIF-PIO to be HIF */
0x00000000, /* Configure HIF-PIO 32 to 63 Output-Driver, no relevance */
0x00000000, /* Configure HIF-PIO 64 to 84 Output-Driver, no relevance */
0x2024C912, /* Configure the 8 Bit DPM Mode */
0x00800000, /* Configure Arm specific configuration */

0x2000, /> Total size */
TRUE, /* Always use handshake block */
FALSE, /* Change HIF registers, no bootloader before */
0, /* Number of Area blocks 0 to maximum 7 */
NULL,
0x18000, /* The HIF driver shall use the SRAM3 bank */
32768
b
};

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 80/94

3. Dual-Port Memory Interface 16 Bit
STATIC CONST FAR RX_HIF_SET_T atrXHif[] =

{{""HOSTDPM16BIT" ,RX_PERIPHERAL_TYPE HOST,O0},
RX_HIF_MODE_DPM_UP16BIT, /* Set the HIF to work in 16 Bit Dualport-Memory */
Ox333FEEEF, /* Configure specific HIF-P10 HIF */
OXx000E7E67, /* Configure specific HIF-PIO to be HIF */
0x00000000, /* Configure HIF-PIO 32 to 63 Output-Driver, no relevance */
0x00000000, /* Configure HIF-PIO 64 to 84 Output-Driver, no relevance */
0x3004C901, /* Configure the 16 Bit DPM Mode */
0x00800000, /* Configure Arm specific configuration */

0x2000, /> Total size */
TRUE, /* Always use handshake block */
FALSE, /* Change HIF registers, no bootloader before */
0, /* Number of Area blocks O to maximum 7 */
NULL,
0x18000, /* The HIF driver shall use the SRAM3 bank */
32768
b
¥;

4. ISA Bus Dual-Port Memory Interface 8 Bit

STATIC CONST FAR RX_HIF_SET_T atrXHif[] = {
{

{""HOSTISA8BIT64K" ,RX_PERIPHERAL_TYPE_ HOST, 0},
RX_HIF_MODE_DPM_UP8BIT, /* Set the HIF to work in 8 Bit Dualport-Memory mode */
OxFFF7E108, /* Configure specific HIF-PI10 HIF */
Ox001FFFFF, /* Configure specific HIF-PIO to be HIF */
0x00000000, /* Configure HIF-PIO 32 to 63 Output-Driver, no relevance */
0x00000000, /* Configure HIF-PIO 64 to 84 Output-Driver, no relevance */
0x2024CDC2, /* Configure the 8 Bit DPM Mode */
Ox0080FF00, /* Configure Arm specific configuration */

0x10000, /* Total size of the whole Dualport Memory */
TRUE, /* Always use handshake block */
FALSE, /* Change HIF registers, no bootloader before */
0, /* Number of Area Blocks 0 to maximum 7 defined below */
NULL,
0x10000, /* The HIF driver shall use the SRAM2/SRAM3 bank */
65536
ks
};

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 81/94

5.20 Configuring the FIFO Channels
The netX offers a hardware FIFO unit, which allows the interact between the ARM CPU and the
Extended Controller CPUs (xCs).

The FIFO unit consists of 32 configurable FIFO channel with a buffer of 2048 elements, where
each channel can be freely associated with a specific xPEC.

In a real system, each of the four xPECs in a netX 500 will get 8 of the FIFO channels
associated with it and also the same amount of FIFO RAM.

FIFO channels are configurable by the atrXFif[] table, located in the "Config.c" file. Each table
entry configures one FIFO channel. The FIFO driver automatically creates a FIFO channel object
for each entry, during the rcX initialization sequence.

5.20.1 The RX_FIFOCHANNEL_ SET T Host Interface Object Structure
Reference

Each entry in the FIFO Channel Configuration Table is defined as follows:
typedef struct RX_FIFOCHANNEL_SET_Ttag

RX_PERIPHERAL_HEADER_T tCfgHd;

RX_FIFOCHANNEL eFifChn;

UINT uFifo0Dep;
UINT uFifolDep;
UINT uFifo2Dep;
UINT uFifo3Dep;
UINT uFifo4Dep;
UINT uFifo5Dep;
UINT uFifo6Dep;
UINT uFifo7Dep;

3 RX_FIFOCHANNEL_SET_T;

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources

82/94

Structure Elements

Element Description
tCfgHd Peripheral Header Information structure (RX_PERIPHERAL_HEADER _T).
eFifChn FIFO Unit Channel Number

Each unit consists of 8 FIFO channels

Following values are defined:
RX_FIFOUNIT_CHANNELO
RX_FIFOUNIT_CHANNEL1
RX_FIFOUNIT_CHANNEL2
RX_FIFOUNIT_CHANNEL3

Attention: The sum of the 8 FIFO depths / entry configurations must be always 512

uFifoODep FIFO 0 Depth

Specifies the number of entries for FIFO 0.
uFifo1Dep FIFO 1 Depth

Specifies the number of entries for FIFO 1.
uFifo2Dep FIFO 2 depth

Specifies the number of entries for FIFO 2.
uFifo3Dep FIFO 3 Depth

Specifies the number of entries for FIFO 3.
uFifo4Dep FIFO 4 Depth

Specifies the number of entries for FIFO 4.
uFifoSDep FIFO 5 Depth

Specifies the number of entries for FIFO 5.
uFifo6Dep FIFO 6 Depth

Specifies the number of entries for FIFO 6.
uFifo7Dep FIFO 7 Depth

Specifies the number of entries for FIFO 7.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public

© Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 83/94

5.21 Configuring the LEDs
The LED driver provides abstracted access to LEDs which have been connected to certain
hardware units e.g. P1O, GPIO or HIF-PIO pins.

Standard netX hardware usually offers two system LEDs (READY / RUN). Additionally, the user is
able to define own LEDs.

System LEDs are handled internally, because they have a pre-defined functionality, while user
LEDs are not and therefore, the configuration of the LEDs is different.

Note: System LEDs are configured in a different way than user LEDs. Both ways are using
the same structures with different meaning.

LEDs are configured by the atrXLed]] table, located in the "Config.c" file.
Each of the table entry configures one LED. The LED driver automatically creates a LED
object during the rcX initialization sequence.

Note: With release of rcX V2.1.5.0 the LED driver comes with support for the general 1/O
driver (Drv_10) which replaces Drv_Gpio, Drv_Pio and Drv_HifPio.

5.21.1 The RX_LED_SET T LED Object Structure Reference

Each entry in the LED Configuration Table is defined as follows:
typedef struct RX_LED REGISTER_Ttag

RX_LED_VALUE_TYPE uTyp;
UINT uReg;
UINT uVlu;
} RX_LED_REGISTER_T;
typedef struct RX_LED_ SET Ttag
RX_PERIPHERAL_HEADER_T tCfgHd;

RX_PERIPHERAL_HEADER_T tCfglLedReg;

RX_LED_REGISTER_ T tMod;

RX_LED REGISTER_ T tDir;
RX_LED_REGISTER_ T tEnbl ;

RX_LED REGISTER_ T tDis;

RX_RESULT(* fnSetupLedOperations)

(RX_LED_FUNCTIONS_SET_T* ptSet);
} RX_LED_SET_T;

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources

84/94

System LED Configuration

Element

Description

tCfgHd

Peripheral Header Information structure (RX_PERIPHERAL_HEADER _T).

tCfgLedReg

LED Object Configuration
The structure defines the system LED.

tCfgLedReg is based on the RX_PERIPHERAL_HEADER_T
structure (see the corresponding description).

eTyp = always RX_PERIPHERAL_TYPE_LED

szldn = User definable name, zero terminated ASCII string of 16 characters, including the

terminating 0 character (can be "/0").
ulnst = User definable instance number (can be 0).

tMod

LED Mode
Not used, set to 0.

tDir

LED Direction
Not used, set to 0.

tEnbl

LED Enable Structure.
uReg

1=RUN LED

2 = READY LED
uViu = Not used, set to 0.

tDis

LED Disable Structure
uReg

1=RUN LED

2 = READY LED
uViu = Not used, set to 0.

fnSetupLedOperatio
ns

System LED Function Pointer.
Function pointer to LED handling functions.
fnSetupLedOperations = Always NULL

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public

© Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 85/94

User LED Configuration

Element Description
tCfgHd Peripheral Header Information structure (RX_PERIPHERAL_HEADER _T).
tCfgLedReg LED Object Configuration
The structure defines the associated PIO / GPIO / HIF PIO / 10 object, the LED is connected to.
tCfgLedReg is based on the RX_PERIPHERAL_HEADER_T
structure (see the corresponding description).
eTyp
RX_PERIPHERAL_TYPE_GPIO
RX_PERIPHERAL_TYPE_PIO
RX_PERIPHERAL_TYPE_HIFPIO
RX_PERIPHERAL_TYPE_IO (since rcX V2.1.5.0)
szldn = Name of the user LED as zero terminated ASCII string of 16 characters, including the
terminating O character. Used to identify the LED object (name of the PIO or HIF-PIO pin the
LED is connected to e.g. "SYSPIO" or "HOSTIO").
ulnst = Instance number of the of the used PIO pin (0..n)
tMod LED mode
Not used, set to 0.
tDir LED direction
rcX vV2.0.x.x:
Not used, set to 0.
Since rcX V2.1.5.0:
RX_LED_HIGH_ACTIVE = LED is active on high voltage level
RX_LED_LOW_ACTIVE = LED is active on low voltage level
tEnbl LED Enable Structure.
uReg
LED connected to PIO / GPIO = unused, setto 0
LED connected to HIF-PIO (32 to 63) = setto 0
LED connected to HIF-PIO (64 to 84) = set to 1
uViu
LED connected to GPIO = unused, set to 0
LED connected to PIO / HIF-PIO = Bit mask defining the
corresponding hardware pin.
tDis LED Disable Structure
uReg
LED connected to PIO / GPIO = unused, set to 0
LED connected to HIF-PIO (32 to 63) = set to 0
LED connected to HIF-PIO (64 to 84) = set to 1
uViu
LED connected to GPIO = unused, setto 0
LED connected to PIO / HIF-PIO = Bit mask defining the
corresponding hardware pin.
fnSetupLedOperatio | LED Function Pointer.
ns

Function pointer to LED handling functions.

fnSetupLedOperations defines the list LED functions,
Drv_PioSetupLedOperations()
Drv_GpioSetupLedOperations()
Drv_HifPioSetupLedOperations()
Drv_lOSetupLedOperations() -- since rcX V2.1.5.0

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 86/94

1. Example Configuration of the READY / RUN LED:

Note: This example configures the READY / RUN LED, where the LEDs are combined in a due
LED.

/* RDY LED */

{
{"RDY", RX_PERIPHERAL_TYPE_LED, O},
{"", RX_PERIPHERAL_TYPE_LED, O},
{0},
{0},
{0, 2, 0x2},
{0, 2, 0x2},

b

/* RUN LED */

{"RUN", RX_PERIPHERAL TYPE LED, O},
{"", RX_PERIPHERAL_TYPE_LED, O},
{0}.

{03},

{0, 1, Ox1},

{0, 1, Ox1},
}.

2. Example of User defined LEDs:

/* LED on PIO */
{
{*APP_ERROR™" ,RX_PERIPHERAL_TYPE_LED, O},
{""SYSP10"", RX_PERIPHERAL_TYPE_P10, 0},
{0},
{RX_LED_HIGH_ACTIVE},
{0, 0, 0x80}%},
{0, 0, 0x80},
Drv_PioSetupLedOperations

}

/* LED on HIF PIO (P1032) */

{""HW_ERROR",RX_PERIPHERAL_TYPE_LED, 0},
{""HOSTI10", RX_PERIPHERAL TYPE_HIFPI10, 0},
{0},
{RX_LED_HIGH_ACTIVE},
{RX_LED_VALUE_TYPE _OR, 0, Ox1},
{RX_LED_VALUE_TYPE_AND, 0, ~Ox1},
Drv_HifPioSetupLedOperations

) B

/* LED on HIF PIO (PIO64) */
{"STACKREADY",RX PERIPHERAL TYPE LED, 0},
%"?OSTIO", RX PERIPHERAL TYPE HIFPIO, 0},
0,
{RX LED HIGH ACTIVE},
{RX LED VALUE TYPE OR, 1, 0x1},
{RX LED VALUE TYPE AND, 1, ~0x1},
Drv HifPioSetupLedOperations

2

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 87/94

/* LED on GPIO */
{"CONFIGURED", RX PERIPHERAL TYPE LED, 0},
{"GPIO11", RX PERIPHERAL TYPE GPIO, 0},

{o},
RX LED HIGH ACTIVE},
{o, o, 0},
{o, 0, 0},
Drv GpioSetupLedOperations

on via river silnce rc .1l.o.
/* LED GPIO via IO Dri (s1 X V2.1.5.0) */
{"IO LED", RX PERIPHERAL TYPE LED, 0},
{"GPIO", RX PERIPHERAL TYPE IO, 0}, /* LED on GPIO pin number 0 */

{o},
RX LED HIGH ACTIVE},
{o, o, 0},
{o, 0, 0},
Drv IOSetupLedOperations

}

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 88/94

5.22 Configuring the Ethernet Interfaces

Ethernet interfaces allow exchanging information with other systems on a network. The netX
Ethernet ports support 10/100 Mbps. The rcX EDD (Ethernet Device Driver) allows to use all one
or more of the four available xC ports as an Ethernet interface.

Ethernet interfaces are configured in the atrXEdd[] table. Each entry configures one Ethernet
interface accessible from the application task level via driver functions. The driver will create an
Ethernet interface object for each entry, during the rcX initialization sequence.

5.22.1 The RX_EDD_SET_T Ethernet Object Structure Reference

Each entry in the Ethernet Configuration Table is defined as follows:

extern HAL EDD OPERATIONS T trXEddHalNetX;
extern HAL_EDD_OPERATIONS_T trXEddHalSwitch2PortNetX;

typedef struct RX_EDD_PARAMETERS_ Ttag

RX_EDD_PARAMETER_TYPE eParamType;

void* pvParam;

UINT32 ul Instance;
} RX_EDD_PARAMETERS_ T;

typedef struct RX_EDD_SET Ttag

{
RX_PERIPHERAL_HEADER T tCfgHd;

UINT UEddNum;
STRING szNIC[255];
RX_EDD_MODE eEddMode;
BOOLEAN fRsrcControl ;
RX_EDD_PARAMETERS_T* patParams;

HAL_EDD_OPERATIONS T* ptHalOps;
} RX_EDD_SET T;:

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 89/94

Structure Elements

Element

Description

tCfgHd

Peripheral header information structure.

uEddNum

Physical Ethernet Port Number
uEddNum = 0..3, for the standard Ethernet MAC
If the an internal Ethernet switch functionality is used (2 Port Switch) uEddNum = 0..1.

szNIC

Name of the Network Interface Card (NIC)
Not used, set to "/0".

eEddMode

EDD Operation Mode
Always RX_EDD_MODE_INTERRUPT under rcX V2.x.
RX_EDD_MODE_DEFAULT can also be used but has the same meaning.

fRsrcControl

Resource Usage Control.

Resource usage control can be used by an application to limit the number of resources,
assigned to the application at a time.

FALSE = disables the resource usage contol
TRUE = enables the resource usage contol

If the resource usage control is enable, the following EDD function can be used.
Drv_Eddloctl(..DRV_EDD_REQUEST_BUFFERS_REQ..)

patParams

Additional HAL Parameters.

patParams is a pointer to an array, providing additional HAL parameters. The parameters are
depending on the used HAL (e.g. Standard Ethernet MAC or 2 Port switch).

The array is terminated by a END_OF_LIST entry, so no additional entry number must be
configured.

The parameters are shown below (RX_EDD_PARAMETERS_T).

ptHalOps

HAL Operation Function List.

ptHalOps is a pointer to the HAL function list. This list depends on the used HAL and must be
set according to the it.

Possible settings are:
trXEddHalNetX for the standard Ethernet MAC HAL
trXEddHalSwitch2PortNetX for the 2 Port switch HAL

The function list is always a part of the HAL and predefined by it.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 90/94

5.22.2 Parameters in RX_EDD_PARAMETERS T

The RX_EDD_PARAMETERS_T array defines a dynamic list of parameters used by particular
Ethernet HALs. These parameters include entries for referencing certain objects that have to be
defined.

Every entry consists of a parameter type, a pointer and a value. These fields allow to specify object
identifiers (hame and instance), table references or simply a value.

The following parameters have been defined:

RX_EDD_PARAM_IP_ADDR
This field specifies an IP address to be used for the ARP/ IP-UDP
functionality of the Ethernet driver

RX_EDD_PARAM_XPEC_NAME
This field specifies an object name reference for the xPEC object to be
used by the Ethernet HAL.

RX_EDD_PARAM_XMAC_RPU_NAME
This field specifies an object name reference for the xMAC RPU object to
be used by the Ethernet HAL.

RX_EDD_PARAM_XMAC_TPU_NAME
This field specifies an object name reference for the xMAC TPU object to
be used by the Ethernet HAL.

RX_EDD_PARAM_INTERRUPT_NAME
This field specifies an object name reference for the hardware interrupt to
be used by the Ethernet HAL.

RX_EDD_PARAM_PHY_ NAME
This field specifies an object name reference for the PHY object to be used
by the Ethernet HAL.

RX_EDD_PARAM_FIFO_NAME
This field specifies an object name reference for the FIFO channel object to
be used by the Ethernet HAL.

RX_EDD_PARAM_AGING_TIME
This field provides the aging time of the MAC Hash entries for devices with
switching functionality.

rcX - Realtime Communication System for netX | Configuration of rcX
DOC0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 91/94

5.22.3 Using Multiple Interfaces

If a driver uses more than one xC interface at the same time (e.g. 2 port Ethernet switch), the
additional interface can be configured, by using an additional set of definitions.

These definitions are extended by an index number defining the additional xC interface.
Additional interface parameter definitions, where x is a number between 1 and 3:
RX_EDD_PARAM_XPECx_NAME

RX_EDD_PARAM_XMACx_RPU_NAME

RX_EDD_PARAM_XMACx_TPU_NAME

RX_EDD_PARAM_INTERRUPTx_NAME

RX_EDD_PARAM_PHYx_NAME

RX_EDD_PARAM_FIFOx_NAME

5.22.4 Examples of Ethernet Object Templates

1. A Single Port Ethernet Device
STATIC RX_EDD_PARAMETERS_T atEddParams[]=

{RX_EDD_PARAM_XPEC_NAME, “XPEC”, 0},
{RX_EDD_PARAM_XMAC_RPU_NAME, “XMACRPU’, O},
{RX_EDD_PARAM_XMAC_TPU_NAME, “XMACTPU, 0},
{RX_EDD_PARAM_FIFO_NAME, “FIFO_CHNO”, 0},
{RX_EDD_PARAM_PHY_NAME, “PHY”, 0},

{RX_EDD_PARAM_END_OF LIST}

ks
STATIC CONST FAR RX_EDD_SET T atrXEdd[] =
{
{
{"ETHERNET" ,RX_PERIPHERAL_TYPE_EDD, 0}, /* Set Ethernet object header */
0, /* Select port 0 as Ethernet device */
5511, /* */
RX_EDD_MODE_DEFAULT, /* Mode of Ethernet */
FALSE, /* no resource control required */
&atEddParams, /* additional parameters for HAL */
&trXEddHalNetX /* reference to HAL */
}
};

rcX - Realtime Communication System for netX | Configuration of rcX
DOCO0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Configuring the Hardware Platform and the Resources 92/94

2. Two Ethernet Devices
STATIC RX_EDD_PARAMETERS_T atEddOParams[]=

{RX_EDD_PARAM_XPEC_NAME, “XPEC”, 0},
{RX_EDD_PARAM_XMAC_RPU_NAME, “XMACRPU”, 0},
{RX_EDD_PARAM_XMAC_TPU_NAME, “XMACTPU”, O},
{RX_EDD_PARAM_FIFO_NAME, “FIFO_CHNO”, 0},
{RX_EDD_PARAM_PHY_NAME, “PHY”, O},
{RX_EDD_PARAM_END_OF LIST}

¥

STATIC RX_EDD_PARAMETERS T atEddlParams[]=

{RX_EDD_PARAM_XPEC_NAME, “XPEC”, 1},
{RX_EDD_PARAM_XMAC_RPU_NAME, *“XMACRPU”, 1},
{RX_EDD_PARAM_XMAC_TPU_NAME, *“XMACTPU”, 1},
{RX_EDD_PARAM_FIFO_NAME, “FIFO_CHNO”, 1},
{RX_EDD_PARAM_PHY_NAME, “PHY”, 1},
{RX_EDD_PARAM_END_OF_LIST}

};
STATIC CONST FAR RX_EDD_SET T atrXEdd[] =
{
{
{""ETHERNET" ,RX_PERIPHERAL_TYPE_EDD, 0}, /* Set Volume’s object header */
o, /* Select port 0 as Ethernet device */
s J* */
RX_EDD_MODE_DEFAULT, /* Mode of Ethernet */
FALSE, /* no resource control required */
&atEddOParams, /* additional parameters for HAL */
&trXEddHalNetX /* reference to HAL */
3
{
{"ETHERNET" ,RX_PERIPHERAL_TYPE_EDD, 1}, /* Set Volume’s object header */
1, /* Select port 1 as Ethernet device */
u”, /> */
RX_EDD_MODE_DEFAULT, /* Mode of Ethernet */
FALSE, /* no resource control required */
&atEdd1Params, /* additional parameters for HAL */
&trXEddHalNetX /* reference to HAL */
ks
};

rcX - Realtime Communication System for netX | Configuration of rcX
DOCO0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Appendix 93/94

6 Appendix
6.1 List of Tables

TabIE 1: LiSt Of REVISIONSttt e ettt e ettt e e ettt e e s s et e e e smbe e e e ettt e e saneeeeeanbeeeeannseeesnneeeeanneeeeannee 4
Table 2: Definition of the 64 Byte BOOt HEAUETccoooiiiiiiiiii e e e e e e e e e e eeeaaeas 9

rcX - Realtime Communication System for netX | Configuration of rcX
DOCO0506010S08EN | Revision 8 | English | 2013-06 | Released | Public © Hilscher, 2005-2013

Appendix

94/94

6.2 Contacts

Headquarters

Germany

Hilscher Gesellschaft fur
Systemautomation mbH
Rheinstrasse 15

65795 Hattersheim

Phone: +49 (0) 6190 9907-0
Fax: +49 (0) 6190 9907-50
E-Mail: info@hilscher.com

Support
Phone: +49 (0) 6190 9907-99
E-Mail: de.support@hilscher.com

Subsidiaries

China

Hilscher Systemautomation (Shanghai) Co. Ltd.

200010 Shanghai
Phone: +86 (0) 21-6355-5161
E-Mail: info@hilscher.cn

Support
Phone: +86 (0) 21-6355-5161
E-Mail: cn.support@hilscher.com

France

Hilscher France S.a.r.l.

69500 Bron

Phone: +33 (0) 4 72 37 98 40
E-Mail: info@hilscher.fr
Support

Phone: +33 (0) 4 72 37 98 40
E-Mail: fr.support@hilscher.com

India

Hilscher India Pvt. Ltd.
New Delhi - 110 065
Phone: +91 11 43055431

E-Mail: info@hilscher.in

Italy

Hilscher ltalia S.r.l.

20090 Vimodrone (M)

Phone: +39 02 25007068
E-Mail: info@hilscher.it
Support

Phone: +39 02 25007068
E-Mail: it.support@hilscher.com

Japan

Hilscher Japan KK

Tokyo, 160-0022

Phone: +81 (0) 3-5362-0521
E-Mail: info@hilscher.jp
Support

Phone: +81 (0) 3-5362-0521
E-Mail: jp.support@bhilscher.com

Korea

Hilscher Korea Inc.

Suwon, Gyeonggi, 443-734
Phone: +82 (0) 31-695-5515
E-Mail: info@hilscher.kr

Switzerland

Hilscher Swiss GmbH

4500 Solothurn

Phone: +41 (0) 32 623 6633
E-Mail: info@hilscher.ch

Support
Phone: +49 (0) 6190 9907-99
E-Mail: ch.support@hilscher.com

USA

Hilscher North America, Inc.
Lisle, IL 60532

Phone: +1 630-505-5301
E-Mail: info@hilscher.us

Support
Phone: +1 630-505-5301
E-Mail: us.support@hilscher.com

rcX - Realtime Communication System for netX | Configuration of rcX
DOCO0506010S08EN | Revision 8 | English | 2013-06 | Released | Public

© Hilscher, 2005-2013

mailto:info@hilscher.com�
mailto:de.support@hilscher.com�
mailto:info@hilscher.cn�
mailto:cn.support@hilscher.com�
mailto:info@hilscher.fr�
mailto:fr.support@hilscher.com�
mailto:info@hilscher.in�
mailto:info@hilscher.it�
mailto:it.support@hilscher.com�
mailto:info@hilscher.jp�
mailto:jp.support@hilscher.com�
mailto:info@hilscher.kr�
mailto:info@hilscher.ch�
mailto:ch.support@hilscher.com�
mailto:info@hilscher.us�
mailto:us.support@hilscher.com�

	1 Introduction
	1.1 About this Document
	1.2 List of Revisions
	1.3 Legal Notes
	1.3.1 Copyright
	1.3.2 Important Notes
	1.3.3 Exclusion of Liability
	1.3.4 Export

	2 Configuring rcX
	2.1 A Single Source Code-File (Config.c) for the Configuration
	2.2 List of configurable Resources and Peripherals
	2.3 The Behavior after a System Reset
	2.4 The Application-Entry Code
	2.5 The Location of the main() Function to Enter the Kernel

	3 System Configuration Data Structure
	3.1 Configure Drivers using RX_DRIVER_PERIPHERAL_CONFIG_T
	3.1.1 The RX_DRIVER_PERIPHERAL_CONFIG_T Structure Reference

	3.2 Loading Middleware Modules using tMiddleware

	4 Defining the Application-Tasks
	4.1 The RX_STATIC_TASK_T Structure Reference

	5 Configuring the Hardware Platform and the Resources
	5.1 The Peripheral Configuration Table in General
	5.2 Default Resource Configuration
	5.3 Defining the Hardware in Peripheral Objects
	5.3.1 The RX_PERIPHERAL_HEADER_T Peripheral Object Header Structure

	5.4 Configuring the Trace Memory Pool
	5.4.1 The RX_TRACE_SET_T Trace Memory Object Structure Reference

	5.5 Configuring the Hardware Interrupts
	5.5.1 The RX_INTERRUPT_SET_T Interrupt Object Structure Reference

	5.6 Configuring Hardware Timers and Counters
	5.6.1 The RX_HWTIMER_SET_T Hardware Timer/Counter Object Structure Reference

	5.7 Configuring the UARTs
	5.7.1 The RX_UART_SET_T UART Object Structure Reference

	5.8 Configuring the SRAM Bus
	5.8.1 The RX_SRAMBUS_SET_T SRAM Bus Configuration Structure Reference

	5.9 Configuring Parallel FLASH
	5.9.1 The RX_PARALLELFLASH_SET_T Parallel FLASH Object Structure Reference

	5.10 Configuring Serial Peripheral Interface (SPI)
	5.10.1 The RX_SPISLAVE_SET_T SPI Object Structure Reference

	5.11 Configuring Serial FLASH
	5.11.1 The RX_SERIALFLASH_SET_T Serial Flash Object Structure Reference

	5.12 Configuring the Ethernet PHY Transceivers
	5.12.1 The RX_PHY_SET_T Ethernet PHY Transceiver Object Structure Reference

	5.13 Configuring the General-Purpose I/Os (GPIOs)
	5.13.1 The RX_GPIO_SET_T General Purpose I/O Object Structure Reference

	5.14 Configuring the Programmable I/Os (PIOs)
	5.14.1 The RX_PIO_SET_T Programmable I/O Object Structure Reference

	5.15 Configuring the HIF Programmable Input/Output pins
	5.15.1 The RX_HIFPIO_SET_T Host Interface PIO Object Structure Reference

	5.16 Configuring the General I/Os (IOs)
	5.16.1 The RX_IO_SET_T General I/O Object Structure Reference

	5.17 Configuring the Extended Fieldbus Controllers (xC)
	5.17.1 The RX_XC_SET_T Extended Controller Object Structure Reference

	5.18 Configuring the Media Volumes
	5.18.1 The RX_VOLUME_SET_T Volume Object Structure Reference

	5.19 Configuring the Host Interface
	5.19.1 The RX_HIF_SET_T Host Interface Object Structure Reference

	5.20 Configuring the FIFO Channels
	5.20.1 The RX_FIFOCHANNEL_SET_T Host Interface Object Structure Reference

	5.21 Configuring the LEDs
	5.21.1 The RX_LED_SET_T LED Object Structure Reference

	5.22 Configuring the Ethernet Interfaces
	5.22.1 The RX_EDD_SET_T Ethernet Object Structure Reference
	5.22.2 Parameters in RX_EDD_PARAMETERS_T
	5.22.3 Using Multiple Interfaces
	5.22.4 Examples of Ethernet Object Templates

	6 Appendix
	6.1 List of Tables
	6.2 Contacts

