
Informatik 12
Cauerstr. 11
91058 Erlangen

Reconfigurable Computing
Lab 4

Problem 1 (Softcore Processors and Hardware Acceleration)

Overview: A softcore processor is a hardware description language (HDL) model of a specific pro-
cessor (CPU) that can be customized for a given application and synthesized for an ASIC or FPGA
target. In many applications, soft-core processors provide several advantages over custom designed
processors such as reduced cost, flexibility, platform independence and greater immunity to obso-
lescence. Embedded systems are hardware and software components working together to perform a
specific function [2]. Usually, they contain embedded processors that are often in the form of soft-
core processors that execute software codes and in heterogeneous multiprocessor system-on-chip
(MPSoC) scenario, a dedicated hardware accelerator is often used to speedup applications.

In this exercise, we demonstrate the advantages of controlling a hardware accelerator using a soft-
core processor by simulating a typical RISC processor (LEON3) system on a Xilinx Zynq device.
The DDR3 memory attached to the Cortex-A9 processor system (PS) is used as LEON3 memory,
and accessed through a custom AHB/AXI bridge (ahb2axi.vhd) and using a LEON3 processor, we
will create and attach a hardware module to accelerate an edge detection algorithm.

Before starting, an example of a 2-D convolution (edge detection) is specified in Eq. (1). Here, the
convolved output pixel at location (m,n) for a given window size of wh×wv is computed as follows:

y(m,n) =
bwh/2c

∑
i=b−wh/2c

bwv/2c

∑
j=b−wv/2c

h(i, j) · x(m− i,n− j) (1)

where x represents the input pixel stream and h represents the convolution window (laplace) which
the coefficients are defined as bellow:  0 −1 0

−1 4 −1
0 −1 0


Your tasks in this laboratory are described, as follows:

Work Description: For implementing a Sparc LEON3 core, we use the GRLIB IP Library. The
GRLIB is an integrated set of reusable IP cores, designed for system-on-chip (SOC) development.
The IP cores are centered around a common on-chip bus, and use a coherent method for simulation
and synthesis. The library is vendor independent, with support for different CAD tools and target
technologies. A plug&play method is used to configure and connect the IP cores without the need to
modify any global resources.

The GRLIB is designed to be a bus-based system, i.e. it is assumed that most of the IP cores will be
connected through an on-chip bus. The AMBA-2.0 AHB/APB bus is used as the common on-chip
bus. Figure 1 shows an example of a LEON3 system designed with GRLIB [1].

All the next folders mentioned in this tutorial are accessed from this location: /scratch-local/rc/lab04/
LeonCore/grlib-gpl-1.3.7-b4144/designs/leon3-digilent-xc7z020.

1



Processor

AMBA AHB

Timers IrqCtrl

AMBA APB

8/32-bits memory bus

USBLEON3
Serial

Dbg Link

AHB

Controller

Memory

Controller

AHB/APB

Bridge

I/O portUART

32-bit I/O port

JTAG

Dbg Link

RS232 JTAG

RS232

Spacewire

Link

LVDS

PCI

PCI

WDOG

Ethernet

MAC

PHY

PS/2VGA

Video PS/2 IF

LEON3 Template Design

DAC

CAN 2.0

Link

CAN

SRAM SDRAMPROM I/O

USB PHY

Figure 1: An example of a LEON3 system designed with GRLIB IP library.

1. Software

Let’s compile a simple Hello World example.

• Goto folder software

• Compile the program hello_world.c using a sparc compiler:
sparc-leon-elf-gcc -Wall -o hello_world.exe hello_world.c

• Copy the binary file into the RAM:
sparc-leon-elf-objcopy -O srec --gap-fill 0 hello_world.exe ../ram.srec

2. Simulation

Here, we will test the software simulating the design with Modelsim.

• In the folder /leon3-digilent-xc7z020 load the Modelsim:
module load modelsim/10.2c_x86_64-pc-linux

• Remove all temporary files: make distclean

• Compile the design: make vsim

• Start Modelsim: vsim testbench.mpf or make vsim-launch

• Start the simulation executig the script do start_sim at the prompt of the simulator.
Note, if you change any HDL file you need to recompile the design again

• Run the simulation: run -all

3. Counter

Now, using the Advance Peripheral Bus (APB), let’s create and connect a counter module that
will be used to measure the performance of both software and hardware computation. Note
that this module will be accessible via software.

• Access the folder vhdl. Here, you will see the file counter.vhd. Complete the file and
add it in the simulation

• In the file leon3mp.vhd set the constant values CFG_COUNTER and COUNTER_INDEX to 1
and 4, respectively

• Write a software to read the counter values. For that, you can simply complete the pro-
gram counter.c located in the folder software. Then, compile the program and load it
into the RAM

2



• Compile the design

• Before starting the simulation. Open the script start_sim and uncomment the lines to
show the waveforms of the counter

• Repeat the simulation. The expected output is presented in Figure 2

4. Hardware Accelerator

Similar to step 3, we will connect the hardware accelerator for the edge detection using APB.

Figure 2: Integration of Counter and Hardware Accelerator Modules on LEON3 using APB

Figure 3: Counter and Hardware Accelerator Modules on LEON3

3



• In the folder vhdl are the files top_for_edge_detection.vhd and edge_detection.vhd.
Complete these files and add them in the simulation

• In the file leon3mp.vhd set the constant values CFG_COUNTER and COUNTER_EDGE_DETECTION
to 1 and 5, respectively

• Complete the program edge_detection.c located in the folder software. In this same
file you also have to complete the instructions for starting the hardware accelerator.

• In order to achieve a better performance, compile the software using the optimization flag
-O2 that is used for optimizing the software execution

• Compile the design

• Before starting a simulation. Open the script start_sim and uncomment the lines to
show the waveforms of the hardware accelerator

• In this step, the counter as well as the hardware accelerator are integrated in the system
as depicted in Figure 2

• Repeat the simulation. The expected output is presented in Figure 3

• At the prompt of the simulator, the number of cycles needed to execute both software and
hardware is shown. Thus, answer how faster is the hardware accelerator in comparison
with the software execution?

References

[1] Aeroflex Gaisler. GRLIB IP Library User’s Manual, 2014.

[2] J. Tong, I. Anderson, and M. Khalid. Soft-core processors for embedded systems. In Microelec-
tronics, 2006. ICM ’06. International Conference on, pages 170–173, Dec 2006.

4


