

SEED-DIM3517 Hardware User Manual

Documents Version and serial number

SEED-DIM3517 hardware user's manual

Documents History

Version	History	Author	Updated date
REV A	Initial	田晓林	2010-7-30

Software Edition

Version	History	Author	Updated date
SEED-DIM3517	Initial		2010-10-22

SEED-DIM3517

Hardware Users' Manual

Version: A 2011.77

http://www.seeddsp.com

IMPORTANT NOTICE

SEED Electronic Technology Ltd reserves the right to make changes to its products or to discontinue any product or service without notice. Customers are advised to obtain the latest version of relevant information to verify that the data being relied on is current before placing orders.

Preface Read This First

Introduction

This manual is the users' guide for the SEED-DIM3517 hardware which based on AM3517 embedded multi-media system solutions. It described the hardware feature, principle and usage of SEED-DIM3517 in detail.

Warranty

The warranty period for all hardware and software products manufactured by SEED International is one year after shipment. SEED International guarantees free of charge repair or replacement for the manufacturer caused damaged products during warranty period. Software updates will be sent free of charge to the customer during warranty period.

Trademarks

SEED is trademark of SEED International.

TI is trademark of Texas Instruments.

If You Need Assistance ...

Web: http://www.seeddsp.com/eng

Beijing Headquarter

Address:	Unit 1201, Pan-Pacific Plaza, No. 12A,
	South Street Zhongguancun, Haidian District, Beijing, P.R.China
Zip:	100081
Tel:	+86-010-62109765
Fax:	+86-010-62109678
E-mail:	info@seeddsp.com

To help us Improve Our Documentation ...

If you would like to make suggestions or report errors in documentation, please email us. Be sure to include the following information that is on the title page: the full title of the book, the publication data, and the literature number. Email: tech-support@seeddsp.com

Contents

Read This First

Warranty

Trademarks

If You Need Assistance ...

To help us Improve Our Documentation ...

Chapter 1

- 1.1 Feature
- 1.2 Function Introduction

Chapter 2

Board components

- 2.1 AM3517 Processor
 - 2.1.1 AM3517
 - 2.1.2 External Memory
- 2.2 SEED-DIM3517 Perpheral and Interface module
- 2.3 Power Module

Chapter 3

Physical description

- 3.1 PCB layout
- 3.2 Connector
 - 3.2.1 J4 emulation interface
 - 3.2.2 J3 DIMM connector interface

Appendix

Appendix A: Board Size Appendix B reference material:

Chapter 1

Function Introduction

This article mainly introduce the feature and system block diagram of SEED-DIM3517

1.1 Feature

SEED-DIM3517 is an evaluation module based on AM3517 from Texas Instruments.

AM3517 is a high-performance ARM Cortex-A8 microprocessor with speeds up to 600 MHz. The device offers 3D graphics acceleration while also supporting numerous peripherals, including DDR2, CAN, EMAC, and USB OTG PHY that are well suited for industrial applications.

SEED-DIM3517 adopts DIMM design of "card Plug-in", suitable for various of industrial applications.

On-board resources: AM3517, NAND FLASH, DDR2, Power, EMAC PHY, JTAG...etc.

DIMM Interface: 1.8V DIMM contactor.

Peripherals: USB, VPFE, network port, 2D/3D graphics acceleration, HDQ\1-Wire, UART, I2C, SPI, MMC\SD\SDIO, McBSP, HECC, DSS, GPIO...etc.

Figure 1. SEED-DIM3517 Front View

Figure 2. SEED-DIM3517 Back

SEED-DIM3517 Hardware Resources:

- □ Processor: AM3517
- □ NAND FLASH: K9F4G08U0A 4Gb
- DDR2: K4T1G164QE-HCE7 1Gb X 2
- □ Ethernet port : PHY
- □ On-board RTC
- DIMM Connector interface (refer <u>table 1</u>)
- D Power

1.2 Function Introduction

System Block Diagram:

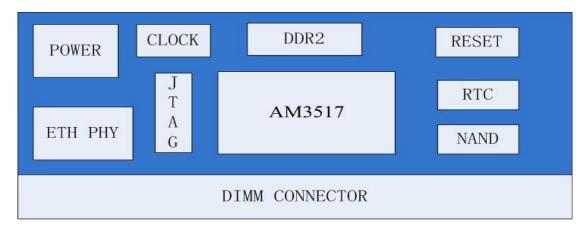


Figure 1: SEED-DIM3517 Block Diagram

Chapter 2

Board components

This article mainly introduces the feature of the components on SEED-DIM3517 board. The hardware includes Professor, Interface and power.

2.1 AM3517 Processor

2.1.1 AM3517

AM3517/05 is a high-performance ARM Cortex-A8 microprocessor. The device offers 3D graphics acceleration while also supporting numerous peripherals, including DDR2, CAN, EMAC, and USB OTG PHY that are well suited for industrial applications.

The CPU of SEED-DIM3517 is AM3517, it is a high-performance ARM Cortex-A8 microprocessor with speeds up to 600 MHz, with package of 491-pin BGA (17x17, 0.65mm pitch) for Non_invasive Debug [ZCN suffix]. AM3517 integrates various of peripherals, such as High-End CAN Controller and 10/100 Mbit Ethernet MAC (EMAC) etc, making it be of a help for designers to reduce the system development cost.

The abundant interfaces facilitates the designers to do network and Serial Communication, suitable for Home and Industrial automation, Single Board Computers, and, it is available for graphic and high-end calculator functions when the power less than 1W.

The processor 3.3V I/O reduce the system cost by canceling the requirement of level translator.

AM3517 is the combiner of AM3505 with the PowerVR SGX Graphic engine, that enables the device to offer 3D graphics acceleration while also supporting numerous peripherals, including DDR2, CAN. The processing speed of graphic engine can reach 10Mpolygon per second, and support OpenGL ES 2.0. Image rotation, image enlarges or shrinks, even all in mouser actions can be implemented on the hardware, without consuming the basic frequency of ARM core

2.1.2 External Memory

SEED-DIM3517 external memory: 4Gb NAND FLASH and 1Gb X 2 DDR2.

NAND FLASH connects GPMC_NCS0, DDR2 connects SDRC_NCS0.

2.2 SEED-DIM3517 Peripheral and Interface module

SEED-DIM3517 CPU board resources: RTC, JTAG, Ethernet PHY and standard DIMM connector.

All the peripherals connections are expanded through DIMM connector. The detailed DIMM connector defined as following.

Pin	Signal	Fun	ction	Signal	Pin	
1	+5V			+5V	2	
3	+5V	POV	VER	+5V	4	
5	+5V			+5V	6	
7	GND			GND	8	
9	GND	GI	ND	GND	10	
11	GND			GND	12	
13	VBAT	POV	VER	VBAT	14	
15	NC	DECE	C&NMI	\RST	16	
17	NC	KESE .	&IN MI	GND	18	
19	GND	Gl	ND	GND	20	
21	USB0_DP			RX+	22	
23	USB0_DM			RX-	24	
25	GND			GND	26	
27	USB1_DP			TX+	28	
29	USB1_DM	USB	EMAC	TX-	30	
31	GND			GND	32	
33	USB0_ID			LEDL-	34	
35	USB0_DRVBUS			LEDR-	36	
37	USB0_VBUS			GND	38	
39	GND	Gl	ND	GND	40	
NC						
41	CCDC_PCLK	VIDEO I	N&HECC	MMC1_D4	42	

SEED-DIM3517 硬件用户手册

43	MMC1_D5		CAN_TXD	44
45	CAN_RXD		NC	46
47	CCDC_D0		CCDC_D1	48
49	CCDC_D2		CCDC_D3	50
51	CCDC_D4		CCDC_D5	52
53	CCDC_D6		CCDC_D7	54
55	NC		NC	56
57	NC		NC	58
59	NC		CCDC_FIELD	60
61	CCDC_HD		CCDC_VD	62
63	UART3_TXD		UART1_TXD	64
65	UART3_RXD	UART1&UART3	UART1_RXD	66
67	I2C1_SDA	I2C1	I2C1_SCL	68
69	MCSPI1_CLK		MCSPI1_SOMI	70
71	MCSPI1_CS1	SPI1	MCSPI1_SIMO	72
73	GPIO_174		GPIO_176	74
75	GND	GND	GND	76
77	GPMC_CS0		NC	78
79	GPMC_CS1		NC	80
81	GPMC_CS2		UART2_TX	82
83	GPMC_CS4	EMAF&SD_0	UART2_RX	84
85	UART2_CTS		NC	86
87	UART2_RTS		NC	88
89	NC		GPIO_3	90
91	GPIO_6		GPIO_56	92
93	GPIO_128		GPIO_186	94
95	MMC2_D7		MMC2_D6	96
97	MMC2_D5		MMC2_D4	98
99	MMC2_D3		MMC2_D2	100
101	MMC2_D1		MMC2_D0	102
103	MMC2_CMD		MMC2_CLK	104
105	MMC1_D3		MMC1_D2	106
107	MMC1_D1		MMC1_D0	108
109	MMC1_CMD		MMC1_CLK	110
111	NC		NC	112
113	NC		NC	114
115	NC	-	NC	116
117	NC	-	NC	118
119	TV_OUT1	\neg	32K_CLKOUT	120
121	SYS_BOOT5	-	SYS_BOOT2	120
121	SYS_BOOT3	-	SYS_BOOT0	122
125	GPI0_177	-	GPI0_170	124
125	0110_177		0110_1/0	120

127	GPIO_182		\VOUT_RST	128
129	GPIO_178		NC	130
131	GPIO_179		NC	132
133	GND		NC	134
135	MCBSP3_CLKX		MCBSP4_CLKX	136
137	MCBSP3_FSX		MCBSP4_FSX	138
139	MCBSP3_DX	MCBSP3~4	MCBSP4_DX	140
141	MCBSP3_DR		MCBSP4_DR	142
143	GND	GND	GND	144
145	NC		NC	146
147	MCBSP2_DX		NC	148
149	GND		GND	150
151	NC		NC	152
153	NC	MCBSP2	NC	154
155	MCBSP2_FSX	MCD3P2	GND	156
157	NC		NC	158
159	MCBSP2_CLKX		NC	160
161	NC		NC	162
163	MCBSP2_DR		NC	164
165	GND	GND	GND	166
167	NC		NC	168
169	NC	DSS	NC	170
171	GND		GND	172
173	DSS_PCLK		DSS_VSYNC	174
175	DSS_HSYNC		DSS_ACBIAS	176
177	DSS_D15		DSS_D14	178
179	DSS_D13		DSS_D12	180
181	DSS_D11		DSS_D10	182
183	DSS_D9		DSS_D8	184
185	DSS_D7		DSS_D6	186
187	DSS_D5		DSS_D4	188
189	DSS_D3		DSS_D2	190
191	DSS_D1		DSS_D0	192
193	DSS_D17		DSS_D16	194
195	DSS_D19		DSS_D18	196
197	DSS_D21		DSS_D20	198
199	DSS_D23		DSS_D22	200
管脚	信号	功能	信号	管脚

Table 1. DIMM connector definition

2.3 Power Module

The power on SEED-DIM3517 is TPS65023. It provides the board +1.2V, +3.3V, +1.8V and RTC power.

- □ From DIM pin input power: +5V
- □ Onboard Power: +3.3V, +1.8V, +3.3VA, +1.2VRTC, DDR_VREF, VBAT, +EMAC_1.8VA, +EMAC_1.8VPLL

Main functions of these power:

- □ +3.3V: Work voltage for NAND, ENTHNET_PHY and IO voltage of AM3517.
- □ +1.8V: IO voltage of AM3517 and the work voltage of DDR2
- □ +1.2VRTC: RTC voltage for AM3517
- DDR_VREF: +0.9V Reference voltage of DDR2
- □ VBAT: +3.3V, spare work voltage.
- □ +EMAC_1.8VA: work voltage of ENTHNET_PHY
- □ +EMAC_1.8VPLL: work voltage of ENTHNET_PHY

Chapter 3

Physical description

3.1 PCB layout

SEED-DIM3517 front view

Figure 1. SEED-DIM3517 front view

SEED-DIM3517 rear view:

Figure 2.SEED-DIM3517 rear view

3.2 Connector

Name	Туре	pin	location	function
J1	button	5	top layer	system reset
J4	Connector	14	top layer	AM3517 JTAG
J3	Connector	200	top layer	DIMM connector interface

Table 1. Connector

3.2.1 J4 emulation interface

JTAG emulator interface image:

Figure 3. JTAG emulation interface

J4 pin definition for JTAG emulation interface:

Signal	Pin	Pin	Signal
TMS	1	2	TRST
TDI	3	4	GND
+3.3V	5	6	NC
TDO	7	8	GND
RSVD	9	10	GND
ТСК	11	12	GND
EMU0	13	14	NC

Table 2. JTAG pin definitions

3.2.2 J3 DIMM connector interface

USB interface definition :

SEED-DIM3517 Hardware Users' Manual

Signal	Pin	Pin	Signal
USB0_DP	21	33	USB0_ID
USB0_DM	23	35	USB0_DRVBUS
GND	25	37	USB0_VBUS
USB1_DM	29	27	USB1_DP
GND	31	39	GND

Table. USB pin definitions

Description: USB

USB (Universal Serial Bus) is an industry standard which defines the cables, connectors and protocols used for connection, communication and power supply between computers and electronic devices. USB was designed to standardize the connection of computer peripherals such as mice, keyboards, digital cameras, printers, portable media players, disk drives and network adapters to personal computers, both to communicate and to supply electric power.

Up to now, there are three technology generations for USB:

- Generation 1: USB 1.0/1.1: Released in January 1996. Specified data rates of 12 Mbit/s
- *Generation 2:* USB 2.0, Released in April 2000, Added higher maximum bandwidth of 480 Mbit/s (60 MB/s) (now called "Hi-Speed"), compatible with USB 1.0/1.1 interface
- •*Generation 3:* USB 3.0, USB 3.0 has transmission speeds of up to 5 Gbit/s, which is 10 times faster than USB2.0 (480 Mbit/s). USB 3.0 significantly reduces the time required for data transmission, reduces power consumption, and is downward compatible with USB 2.0. The USB 3.0 Promoter Group announced on 17 November 2008 that the specification of version 3.0 had been completed and had made the transition to the USB Implementers Forum (USB-IF), the managing body of USB specifications. This move effectively opened the specification to hardware developers for implementation in future products.

USB On-The-Go, often abbreviated USB OTG, is a specification that allows for USB devices which would normally act as slaves, (e. g. digital audio players or mobile phones) to switch roles and become the host themselves.

Description: USB0 connect USB OTG, this interface PHY is provided by AM3517. USB1 signal act as USB HOST interface, it offers PGY through chip USB3320QFN32.

Signal	Pin	Pin	Signal
RX+	22	32	GND
RX-	24	34	LEDL-
GND	26	36	LEDR-
TX+	28	38	GND

EMAC Interface definitions:

Chapter 3 physical description

TX-	30	40	GND

Table 1. EMAC pin definitions

Descriptions: network use RMII

Details:

- RMII: Reduced Media Independent Interface, it is one of the standard Ethernet interfaces, less I/O transportation than MII.
- RMII uses two lines to transmit data, MII uses 4 lines to transmit data.
- MII/RMII is a kind of interface, for 10M link speed, the MII is 2.5M, RMII is 5M; for 100M link speed, MII is 25M, RMII is 50M.
- MII/RMII is used to transmit Ethernet package, the interface of MII/RMII is 4/2bit, codec will be available on UTP and optical fiber after serial-parallel conversation in the PHY of Ethernet, frame format: IEEE 802.3(10M)/IEEE 802.3u(100M)/IEEE 802.1q(VLAN).
- The frame format of Ethernet: Preamble+ Start of frame delimiter+ MAC destination+ MAC source+ Ethertype or length+data+ padding(optional)+32bitCRC

If there exists vlan, you need to add vlan tag with 2 byte after "Ethertype or length", in which, 12bit means vlan id, 4bit meant the priority of the data

Signal	管脚号	管脚号	信号
GND	172	171	GND
DSS_D14	178	177	DSS_D15
DSS_D12	180	179	DSS_D13
DSS_D10	182	181	DSS_D11
DSS_D8	184	183	DSS_D9
DSS_D6	186	185	DSS_D7
DSS_D4	188	187	DSS_D5
DSS_D2	190	189	DSS_D3
DSS_D0	192	191	DSS_D1
DSS_D16	194	193	DSS_D17
DSS_D18	196	195	DSS_D19
DSS_D20	198	197	DSS_D21
DSS_D22	200	199	DSS_D23
DSS_VSYNC	174	173	DSS_PCLK
DSS_ACBIAS	176	175	DSS_HSYNC

DSS interface definitions:

Table 1. DSS PIN definitions

Note: Support LCD and TV display

UART interface definitions:

Signal	Pin	Pin	Signal
UART1_TXD	64	63	UART3_TXD

SEED-DIM3517 Hardware Users' Manual

UART1_RXD	66	65	UART3_RXD
UART2_TX	82	85	UART2_CTS
UART2_RX	84	87	UART2_RTS

Table 1. UARTpin definitions

Descriptions: UART (Universal Asynchronous Receiver/Transmitter), this BUS support bi-directional communication, realize Duplex Transmissions and data receiving. In the embedded design, UART is used to communicate with PC, including Monitoring debugger and other components, such as EEPROM.

Note: The Initialization serial is UART3 in this core.

Signal	Pin	Pin	Signal
MCBSP4_CLKX	136	135	MCBSP3_CLKX
MCBSP4_FSX	138	137	MCBSP3_FSX
MCBSP4_DX	140	139	MCBSP3_DX
MCBSP4_DR	142	141	MCBSP3_DR
MCBSP2_DR	163	147	MCBSP2_DX
MCBSP2_CLKX	159	155	MCBSP2_FSX

MCBSP interface definitions:

Table 2. MCBSP Pin Definitions

Description: McBSP is Multichannel Buffered Serial Port of Digital Signal Processors, produced by Texas Instruments. McBSP expands the function of the standard serial interface, so, it has the same basic function with standard serial interface. It can communicate with other serial devices such as DSP, encoder...

Note: MCBSP doesn't support A-LAW and U-LAW

MCBSP2 can used as Audio data, Audio buffer and sidetone MCBSP3 can be used as Bluetooth speech data and sidestone MCBSP4 can be used as DBB speech data

VIDEO IN interface definition:

Signal	Pin	Pin	Signal
CCDC_PCLK	41	61	CCDC_HD
CCDC_D1	48	47	CCDC_D0
CCDC_D3	50	49	CCDC_D2
CCDC_D5	52	51	CCDC_D4
CCDC_D7	54	53	CCDC_D6
CCDC_VD	62	60	CCDC_FIELD

Table 1. VIDEO IN pin definition

Note: This interface is used to connect the camera

□ MMC\SD interface definition:

Chapter 3 physical description

Signal	Pin	Pin	Signal
MMC2_D6	96	95	MMC2_D7
MMC2_D4	98	97	MMC2_D5
MMC2_D2	100	99	MMC2_D3
MMC2_D0	102	101	MMC2_D1
MMC2_CLK	104	103	MMC2_CMD
MMC1_D2	106	105	MMC1_D3
MMC1_D0	108	107	MMC1_D1
MMC1_CLK	110	109	MMC1_CMD

Table 2. MMC\SD PIN Definition

Description: **SD card** (**Secure Digital Memory Card**) is a non-volatile memory card format developed by the SD Card Association for use in portable devices. The SD technology is used by more than 400 brands across dozens of product categories and more than 8,000 models, and is considered the de-facto industry standard.

MultiMediaCard (MMC) is a flash memory memory card standard. Unveiled in 1997 by Siemens AG and SanDisk, it is based on Toshiba's NAND-based flash memory, and is therefore much smaller than earlier systems based on Intel NOR-based memory such as CompactFlash. MMC is about the size of a postage stamp: 24 mm × 32 mm × 1.4 mm. MMC originally used a 1-bit serial interface, but newer versions of the specification allow transfers of 4 or 8 bits at a time. It has been more or less superseded by SD (Secure Digital) card, but still sees significant use because MMCs can be used in most devices that support SD cards.

A SDIO (Secure Digital Input Output) card is a combination of an SD card and an I/O device. This kind of combination is increasingly found in portable electronics devices. Hosts that support SDIO (typically PDAs like the Palm Treo, but occasionally laptops or mobile phones) can use small hosts designed for the SD form factor, like GPS receivers, Wi-Fi or Bluetooth adapters, modems, Ethernet adapters, barcode readers, IrDA adapters, FM radio tuners, TV tuners,

RFID readers, digital cameras, or other mass storage media such as hard drives. Note: This core initializes SD as MMC\SD1.

□ I2C interface definition :

Signal	Pin	Pin	Signal
I2C1_SCL	68	67	I2C1_SDA

Table 3. I2C pin definition

Description: **I2C(Inter—Integrated Circuit)** Inter-Integrated Circuit; generically referred to as "two-wire interface") is a multi-master serial single-ended computer bus invented by Philips that is used to attach low-speed peripherals to a motherboard, embedded system, or cellphone or other electronics. Since the mid 1990s several competitors (e.g. Siemens AG (later Infineon Technologies AG), NEC, Texas Instruments, STMicroelectronics (formerly SGS-Thomson), Motorola (later Freescale), Intersil, etc.) brought I²C products on the market, which are fully compatible with the NXP (formerly Philips' semiconductor division) I²C-system. As of October 10, 2006, no licensing fees are required to implement the I²C protocol. However, fees are still required to obtain I²C slave addresses allocated by NXP. SMBus, defined by Intel in 1995, is a subset of I²C that defines the protocols more strictly. One purpose of SMBus is to promote robustness and interoperability. Accordingly, modern I²C systems incorporate policies and rules from SMBus, sometimes supporting both I²C and SMBus with minimal re-configuration required.

I²C uses only two bidirectional open-drain lines, Serial Data Line (SDA) and Serial Clock (SCL), pulled up with resistors. Typical voltages used are +5 V or +3.3 V although systems with other voltages are permitted.

Signal	Pin	Pin	Signal
MCSPI1_SOMI	70	69	MCSPI1_CLK
MCSPI1_SIMO	72	71	MCSPI1_CS1
GPIO_176	74	73	GPIO_174

□ SPI Interface Definition:

Table 4. SPI pin definition

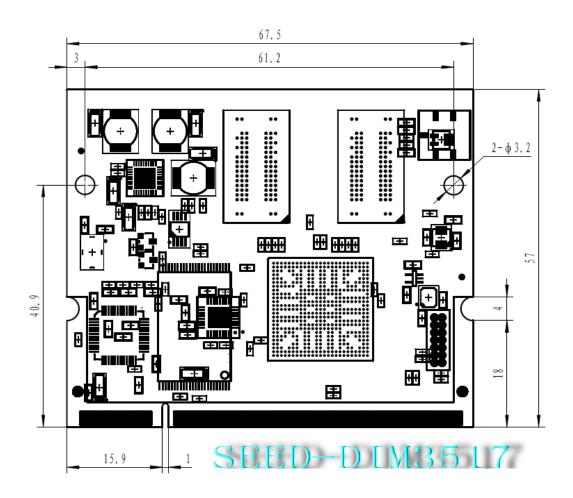
Description: SPI: The Serial Peripheral Interface Bus or SPI (pronounced li ke "S.P.I." or "spy") bus is a synchronous serial data link standard named by Motorola that operates in full duplex mode. Devices communicate in master/sla ve mode where the master device initiates the data frame. Multiple slave devic es are allowed with individual slave select (chip select) lines. Sometimes SPI is called a "four-wire" serial bus, contrasting with three-, two-, and one-wire seri al buses.

The SPI bus specifies four logic signals:

- SCLK: Serial Clock (output from master);
- MOSI; SIMO: Master Output, Slave Input (output from master);
- MISO; SOMI: Master Input, Slave Output (output from slave);
- SS: Slave Select (active low, output from master).

Alternative naming conventions are also widely used:

- SCK; CLK: Serial Clock (output from master)
- SDI; DI, DIN, SI: Serial Data In; Data In, Serial In
- SDO; DO, DOUT, SO: Serial Data Out; Data Out, Serial Out
- nCS, CS, CSB, CSN, nSS, STE: Chip Select, Slave Transmit Enable (active low, output from master)


The SDI/SDO (DI/DO, SI/SO) convention requires that SDO on the master be connected to SDI on the slave, and vice-versa. Chip select polarity is rarely active high, although some notations (such as SS or CS instead of nSS or nCS) suggest otherwise.

Note: GPIO_176 and MCSPI1_CS2 multiplexing; GPIO_174 and MCSPI1_CS0 multiplexing.

Appendix

Appendix A: Board Size

DIM3517 board size:

Appendix B reference material:

TI website

http://focus.ti.com/docs/prod/folders/print/am3517.html

Thanks

This document is provided by the Research and Development department, we appreciate your comments and suggestions during your reading.

This document will be updated on the website of SEED International Ltd, please check it at regular time. <u>www.seeddsp.com/eng</u>