
 
 
 
 
 
 
 
 
 
 
 

 
GRID superscalar User’s Manual 

Version 1.5.0 
 

CEPBA-IBM Research Institute 
 

March 24, 2004 





 

1 

1 INTRODUCTION ....................................................................................... 5 

2 DEVELOPING YOUR PROGRAM WITH GRID SUPERSCALAR ... 7 

2.1 QUICKSTART ...........................................................................................7 
2.2 IDENTIFYING FUNCTIONS THAT WILL BE RUN ON THE GRID ...................7 
2.3 DEFINING THE IDL FILE..........................................................................8 
2.4 GENERATING STUBS AND SKELETONS .....................................................9 

2.4.1 C/C++ Binding ............................................................................10 
2.4.2 Perl Binding .................................................................................11 

2.5 WRITING THE MASTER ..........................................................................12 
2.5.1 Special primitives.........................................................................12 

2.6 WRITING THE WORKERS .......................................................................14 
2.6.1 Special primitives.........................................................................15 

2.7 HINTS TO ACHIEVE A GOOD PERFORMANCE...........................................16 
2.8 KNOWN RESTRICTIONS..........................................................................16 
2.9 THE GSBUILD TOOL...............................................................................17 

3 RUNNING THE DEVELOPED PROGRAM......................................... 19 

3.1 QUICKSTART .........................................................................................19 
3.2 COPYING AND COMPILING YOUR CODE..................................................19 
3.3 DEFINING ENVIRONMENT VARIABLES ...................................................22 
3.4 HOW BROKER.CFG WORKS ....................................................................24 
3.5 HOW DISKMAPS.CFG WORKS .................................................................25 
3.6 HOW ESTIMATIONS.CFG WORKS ............................................................26 
3.7 AM I READY TO RUN?............................................................................27 
3.8 RECOVERING FROM A CHECKPOINT FILE ...............................................27 

4 DEBUGGING YOUR GRID SUPERSCALAR PROGRAM................ 29 

4.1 MONITORING YOUR EXECUTION ............................................................29 
4.2 MASTER DEBUG INFORMATION .............................................................30 
4.3 WORKER LOG FILES ...............................................................................31 
4.4 CLEANING TEMPORARY FILES ...............................................................32 

5 FREQUENTLY ASKED QUESTIONS (FAQ) ...................................... 33 

5.1 GLOBUS ................................................................................................33 
5.1.1 What is Globus? Why do I need it? Can you give me some useful 

commands?     ......................................................................................................33 
5.1.2 I have several log files In my workers’ home directory. They are 

named gram_job_mgr_<number>.log ................................................................33 
5.2 GRID SUPERSCALAR TOOLS .................................................................33 

5.2.1 When I use gsstubgen I get this output: “Warning: renaming file 
'app-stubs.c' to 'app-stubs.c~'. Warning: renaming file 'app-worker.c' to 'app-
worker.c~'. Warning: renaming file 'app.h' to 'app.h~'.”. What is this for? .......33 

5.3 THE MASTER .........................................................................................33 
5.3.1 When I set GS_DEBUG to 10 or 20, the output of my main 

program seems to appear in really weird places. What is happening? ...............33 
5.3.2 When I redirect all output given from the master to a file, 

sometimes at the end some information is missing. Why? ...................................34 



 

2 

5.3.3 I get a message like this when trying to run the master:  “ERROR 
activating Globus modules. Check that you have started your user proxy with 
grid-proxy-info”...................................................................................................34 

5.3.4 The master ends with this message (or similar): “./app: error 
while loading shared libraries: libGS-master.so.0: cannot open shared object 
file: No such file or directory”.............................................................................34 

5.3.5 When I set GS_SHORTCUTS to 1 I get this message “ERROR: 
Check environment variables values”. Why? ......................................................34 

5.3.6 I get this message: “ERROR: Check environment variables 
values”. But I have all variables defined and GS_SHORTCUTS is set to 0 .......34 

5.3.7 When working with GS_SOCKETS set to 1 I get a segmentation 
fault at the master. More precisely, this happens when a previous execution ends 
(prematurely or not) and I try to launch the master immediately........................34 

5.3.8 I get this message: “******** ERROR AT TASK 0 !!! ********* 
******** MACHINE khafre.cepba.upc.es  ********* the job manager could 
not stage in a file..................................................................................................35 

5.3.9 I get this message: “ERROR: Submitting a job to hostname. 
Globus error: the connection to the server failed (check host and port)” ..........35 

5.3.10 When the master is going to end I get this message: “ERROR: 
REMOTE DELETION OF FILES IN MACHINE hostname HAS FAILED. Globus 
error: (error from system). Checkpoint file erased for safety reasons”. What 
happened?       .....................................................................................................35 

5.3.11 I get an error like this when trying to run the master: “License 
Manager Error: Your license expired on 23/02/2004 Please contact Rosa M. 
Badia (rosab@ac.upc.es).” What is all this stuff about licenses? I haven’t 
acquired any    .....................................................................................................36 

5.4 THE WORKERS ......................................................................................36 
5.4.1 The first task executing returns an error of this kind “******** 

ERROR AT TASK 0 !!! *********”. When I see log files at the worker side I 
find this at the ErrTask0.log: “../app-worker: error while loading shared 
libraries: libGS-worker.so.0: cannot open shared object file: No such file or 
directory”        .....................................................................................................36 

5.4.2 I get this message when I try to execute a remote task: “******** 
ERROR AT TASK 0 !!! ********* ******** MACHINE hostname  ********* 
the executable file permissions do not allow execution”.....................................36 

5.4.3 The firs task ends with an error, but now when I look into the 
worker I find in ErrTask0.log: “workerGS.sh: ../app-worker: No such file or 
directory”        .....................................................................................................36 

5.4.4 Once more my first task fails but my log files are empty. That’s 
crazy!               .....................................................................................................36 

5.4.5 I always get errors when trying to run a task into a worker. Is it 
Globus fault? Is it GRID superscalar fault? Is it my fault?.................................37 

5.4.6 I receive this message at the master: “ERROR: Submitting a job 
to hostname. Globus error: the cache file could not be opened in order to 
relocate the user proxy” ......................................................................................37 

5.4.7 I receive this message at the master: “ERROR: Submitting a job 
to hostname. Globus error: the job manager failed to create the temporary 
stdout filename”...................................................................................................37 

5.4.8 I get this message: “ERROR: Submitting a job to hostname. 
Globus error: data transfer to the server failed” ................................................37 



 

3 

5.4.9 After having a quota problem in a worker, I see some temporary 
files remaining. How can I manage to erase them correctly? .............................37 

5.5 OTHER QUESTIONS ................................................................................37 
5.5.1 I love GRID superscalar! It has saved me lots of work hours!....37 
5.5.2 I hate your run-time. It’s giving me lots of problems. .................38 

 
 
 
 
 



 

4 



 

5 

 

1 Introduction 
The aim of GRID superscalar is to reduce the development complexity of Grid 

applications to the minimum, in such a way that writing an application for a 
computationa l Grid may be as easy as writing a sequential application. Our 
assumption is that Grid applications would be in a lot of cases composed of tasks, 
most of them repetitive. The granularity of these tasks will be of the level of 
simulations or programs, and the data objects will be files. GRID superscalar allows 
application developers to write their application in a sequential fashion. The 
requirements to run that sequential application in a computational Grid are the 
specification of the interface of the tasks that should be run in the Grid, and, at some 
points, calls to the GRID superscalar interface functions and link with the run-time 
library. The rest of the code already written for your application doesn’t have to 
change, because GRID superscalar has bindings to several programming languages. 

Our tool provides an underlying run-time that is able to detect the inherent 
parallelism of the sequential application and performs concurrent task submission. In 
addition to a data-dependence analysis based on those input/output task parameters 
that are files, techniques such as file renaming and file locality are applied to increase 
the application performance. Current GRID superscalar prototype is based on Globus 
Toolkit 2.x. 

GRID superscalar is a new programming paradigm for GRID enabling 
applications, composed of an interface and a run-time. With GRID superscalar a 
sequential application, composed of tasks of a certain granularity, is automatically 
converted into a parallel application where the tasks are executed in different servers 
of a computational GRID. 

The behavior of the application when run with GRID superscalar is the 
following: for each task candidate to be run in the GRID, the GRID superscalar run-
time inserts a node in a task graph. Then, the GRID superscalar run-time system seeks 
for data dependences between the different tasks of the graph. These data 
dependences are defined by the input/output of the tasks that are files. If a task does 
not have any dependence with previous tasks that have not been finished or which are 
still running (i.e., the task is not waiting for any data that has not been already 
generated), it can be submitted for execution to the GRID. If that occurs, the GRID 
superscalar run-time requests a GRID server to the broker and if a server is provided, 
it submits the task. Those tasks that do not have any data dependence between them 
can be run on parallel on the grid. This process is automatically controlled by the 
GRID superscalar run-time, without any additional effort for the user. 

Figure 1-1 shows an overview of the behavior that we have described above.  
The reason for only considering data dependences defined by parameter files is 

because we assume that the tasks of the applications which will take advantage of 
GRID superscalar will be simulations, finite element solvers, biology applications... In 
all such cases, the main parameters of these tasks are passed through files. In any 
case, we do not discard that future versions of the GRID superscalar will take into 
account all data dependencies. 



 

6 

GRID superscalar applications will be composed of a client binary, run on client 
host, and one server binary for each server host available in the computational GRID. 
However, this structure will be hidden to the application programmer when executing 
the program. 

Figure 1-1 

initialization();
for (i=0; i<N; i++){

T1 (“file1.txt”, “file2.txt”);
T2 (“file4.txt”, “file5.txt”);
T3 (“file2.txt”, “file5.txt”, “file6.txt”);
T4 (“file7.txt”, “file8.txt”);
T5 (“file6.txt”, “file8.txt”, “file9.txt”);

}

Application code

T10 T20

T30
T40

T50

T11 T21

T31
T41

T51

T12

…

T10 T20

T30
T40

T50

T11 T21

T31
T41

T51

T12

…

GridGrid



 

7 

2 Developing your program with GRID superscalar 
To develop an application in the GRID superscalar paradigm, a programmer 

must go through the following three stages: 
 
 1. Task definition: identify those subroutines/programs in the application that 

are going to be executed in the computational Grid. 
 2. Task parameters definition: identify which parameters are input/output files 

and which are input/output generic scalars. 
 3. Write the sequential program (main program and task code). 
 
In the current prototype, stages 1 and 2 (task definition and task parameters 

definition) are performed by writing an interface definition file (IDL file). This 
interface definition file is based in the CORBA IDL language, which allows an 
elegant and easy way to write and understand syntax. We selected that language 
simply because it was the one that best fitted our needs, although GRID superscalar 
does not have any relation with CORBA. We are going to see all this in more detail 
into this chapter 2. 

2.1 Quickstart 
This section is intended to be as a reference of the steps that you have to follow 

when developing your program with GRID superscalar. 
 

• Define an IDL file named <myapplication>.idl that contains the headers 
of the functions that are going to be run on the Grid. Write as parameters 
all files and scalars involved in the computation, trying to avoid out and 
inout scalars. 

• Generate stubs and skeletons with gsstubgen <idl_file> in C/C++ case 
and gsstubgen -s -p <idl_file> in Perl case. 

• Write / change your master code to call this new defined functions. Use 
GS_On() at the beginning, GS_Off(0) when the program ends correctly, 
GS_Off(-1) when you detect an error in the master and the file 
management primitives when working with files in the master (don’t 
expect that the files have their original names). Avoid using GS_Barrier. 

• Create a file at the workers named <myapplication>-functions.[c | pm] 
that contains the body of the functions defined in the IDL file. Use 
passed parameters instead of the expected names of the files. Call 
external binaries with GS_System and leave a possible error code at 
gs_result. 

 
In next sections you will get more detailed info rmation about each step. 

However, you can go to section 3.1 to see a quick guide about how to run your 
program. 

2.2 Identifying functions that will be run on the GRID 
In application programming, there are some options available in structuring the 

code. One really useful way is to program functions, instead of programming 



 

8 

everything in a big main function. This helps in two ways: it makes your code easier 
to understand, and allows you to repeat the same functionality in other stages of your 
application. 

This basic programming technique will be the key to gridify your application. 
Your code may have some computation that you may want to be performed on the 
grid. This computation can be already in a function, called from the main program. If 
this is not the case, we recommend you to put your code into a local function, in order 
to ease even more the use of GRID superscalar. 

Another important step is to define the header of the function properly. You 
have to put in this header the files needed (input files, output files, or input/output 
files) and scalar parameters needed (input or output) (i.e. you could need a scalar 
value to start a simulation). If you need to return a file, or a scalar, write it in the 
header parameters as an output parameter. This way you can return more than one 
value or file. Current prototype doesn’t allow the functions to have a return value, so 
you have to return this value in the header. 

This whole process will be seen really clear in our matrix multiplication 
example. One typical operation done between matrixes is the multiplication. When the 
matrixes grow in size, it grows also the complexity of the algorithm. Then we search a 
way to speed up this computation trying to parallelize our code. A first step is to 
divide matrixes in blocks, so we get several advantages from a version without doing 
this division. We don’t need a full row or column to do some calculation, because we 
can operate between blocks. Another advantage is that you don’t need to have all 
matrixes in memory, because we just need the blocks that are going to be operated. 
This is known as an out-of-core implementation. 

This example is included in the GRID superscalar distribution, so you can 
follow this explanation while looking at the source code. We see that in our main code 
(matmul.cc) there are three local functions: PutBlock, GetBlock and matmul. The file 
named block.cc contains the definition of a block, and some useful operations. We 
want to put the matrix multiplication running on the Grid, so we must pay attention to 
matmul function. We see that the definition is right, because it has an input block 
named f1, another input block named f2, and an input/output block named f3. 

 
void matmul(char *f1, char *f2, char *f3) 
 
Each block is stored into a different file. We can suppose a less favorable 

situation, like this one: 
 
double matmul(char *f1, char *f2, char *f3) 
 
Imagine that you have a returning double, which has the mean value between all 

the elements of the block. We recommend you to add this double to the header, and 
remove it from the return value, so next steps will be even easier. 

2.3 Defining the IDL file 
The IDL file describes the headers of the functions that will be executed on the 

GRID. If you have this functions already defined with a function structure in your 
main code, this step will be really simple. You just have to write your function 
headers in our IDL form into a file called <myapplication>.idl (we will assume from 
now that is named app.idl). In order to learn how the syntax works, we present a 
generic example: 



 

9 

 
interface MYAPPL { 
  void myfunction1(in File file1, in scalar_type scalar1, out 
File file2); 
  void myfunction2(in File file1, in File file2, out scalar_type 
scalar1); 
  void myfunction3(inout scalar_type scalar1, inout File file1); 
}; 
 
As you can see there is one requirement needed in this interface: all functions 

must begin with void. If you have to return a parameter, you have to specify it as an 
output parameter. Files are a special type of parameters, since they define the tasks' 
data dependences. For that reason, a special type File has been defined. This type is 
also needed to differ a file from a string that could be needed in your function as an 
input (i.e. when passing modifiers to a simulator call, -v –f ...). Let’s detail what 
combinations are possible for each parameter: 

 
in File, out File, inout File, in scalar_type, out scalar_type, inout 
scalar_type 
 
The scalar_type can be one of these: char, wchar, string, wstring, short, int, long, 

float, double and boolean. 
Another important thing to have in consideration is that we do not recommend 

the use of output scalar parameters, because they will have a little influence in the 
parallelism extracted from your code (it can be reduced). This only happens with 
output, or inout scalar parameters, not with input scalars. So, if you don’t really need a 
scalar value to go on with your algorithm (i.e. when you need this value to take a 
decision), don’t put it as an out scalar_type. 

We can see all this now in the matrix example. We are going to create a file 
named matmul.idl. This file is going to have this content: 

 
interface MATMUL { 
        void matmul(in File f1, in File f2, inout File f3); 
}; 
 
So we have two input files, and an input/output file (where the multiplication is 

going to be stored). Remember that we don’t have to add GetBlock and PutBlock 
functions to this IDL file, because they are just functions to support our 
implementation (they don’t have any computation). 

If you don’t have your code structured in functions, this and next steps will be 
not so easy, but won’t be difficult at all. You have to think what parts of your code are 
needed to be run on the GRID, and write a line in your IDL file for each of these 
parts. There is also mandatory to see what files and parameters will be needed as 
inputs of this part of the code, and what files and parameters are considered as results 
or outputs. You just have to write it following the syntax described above. 

2.4 Generating stubs and skeletons 
From the interface definition that we have done in the previous step, some code 

is automatically generated by gsstubgen, a tool provided with the GRID superscalar 
distribution. This automatically generated code is mainly two files: the function stubs 
and the skeleton for the code that will be run on the servers. If you are not familiar 
with this two terms (stubs and skeleton) we can say as a summary that stubs are 
wrappers on the client (or master) side, and skeletons are wrappers on the server (or 



 

10 

worker) side. Some specifications are needed in order to communicate a client and a 
server, and this wrappers are the key point to do it (they can code or decode 
parameters, pass some information between them, ...). 

From the user’s point of view, he just has to call in C/C++ case: 
 
gsstubgen app.idl  
 
Or in Perl case: 
 
gsstubgen –s –p app.idl 
 
You can also execute gsstubgen without any parameters to see a list of possible 

modifiers to choose an option. At current version of GRID superscalar we have 
bindings for C/C++ and Perl. We are going to see in more detail what happens in each 
case. These bindings have in common that the name chosen for the IDL file will 
determine the name of the generated files. 

2.4.1 C/C++ Binding 
For C and C++, the files generated by gsstubgen are: app-stubs.c, app-worker.c 

and app.h. 
We can see now how will be this files in our matrix example. Figure 2-1 shows 

the stubs file that will be generated for the IDL file (defined in previous section 2.3) 
when the C/C++ interface is used. For each function in the IDL file, a wrapper 
function is defined. In the wrapper function, the parameters of the function that are 
strings and filenames are encoded using base64 format. Then, the Execute function is 
called. The Execute function is the main primitive of the GRID superscalar interface. 
It’s the entrance point to the run-time. 

 
#include <stdio.h> 
#include <stdlib.h> 
#include <limits.h> 
#include <string.h> 
#include <gs_base64.h> 
#include <GS_master.h> 
#include "matmul.h" 
 
int gs_result; 
 
void matmul(file f1, file f2, file f3) 
{ 
   /* Marshalling/Demarshalling buffers */ 
 
   /* Allocate buffers */ 
 
   /* Parameter marshalling */ 
 
   Execute(matmulOp, 3, 0, 1, 0, f1, f2, f3, f3); 
 
   /* Deallocate buffers */ 
 
} 

Figure 2-1 

 
The other file automatically generated by gsstubgen is shown in Figure 2-2. 

This is the main program of the code executed in the servers. Inside this program, 



 

11 

calls to the original user functions are performed. Before calling the user functions, 
the parameters are decoded. 

 
#include <stdio.h> 
#include <stdlib.h> 
#include <limits.h> 
#include <string.h> 
#include <gs_base64.h> 
#include <GS_worker.h> 
#include "matmul.h" 
 
 
int main(int argc, char **argv) 
{ 
   enum operationCode opCod = (enum operationCode)atoi(argv[2]); 
 
   IniWorker(argc, argv); 
 
   switch(opCod) 
   { 
      case matmulOp: 
         { 
 
 
 
            matmul(argv[3], argv[4], argv[6]); 
 
 
 
         } 
         break; 
   } 
 
   EndWorker(gs_result, argc, argv); 
   return 0; 
} 

Figure 2-2 

2.4.2 Perl Binding 
Also three files are generated for the Perl binding: app-stubs.c, app-worker.pl 

and app.i. You must call gsstubgen with flags –s –p in order to generate these files. 
File app-stubs.c is exactly the same file as the generated for the C/C++ case (see 
Figure 2-1). File app-worker.pl is the main program of the code executed in the 
servers (similar to app-worker.c for the C/C++ case (Figure 2-2) but in Perl). 

    The file app.i is an interface file that will be used by SWIG. SWIG is a 
software development tool that connects programs written in C and C++ with a 
variety of high- level programming languages, primarily common scripting languages 
such as Perl, Python, Tcl/Tk and Ruby. Basically, the app.i file it is a translation from 
the IDL syntax to the interface syntax required by SWIG of the application functions 
interface.  

    From file app.i, SWIG generates two files: app-wrap.c and app.pm. File app-
wrap.c is linked with file app-stubs.c and with the GRID superscalar library and a 
dynamic library is generated (app.so). File app.pm indicates the Perl interpret to 
dynamically load the library (app.so) when the application functions specified by the 
IDL file are called from the client program. These all files are required at the master 
side. 



 

12 

2.5 Writing the Master 
The main program that the user writes for a GRID superscalar application is 

basically identical to the one that would be written for a sequential version of the 
application. Maybe you will have to modify a little your functions (that is, the header), 
because you have to call now the functions described in your IDL file. If your 
program was not written in functions, you will have to extract the code you have 
identified to be run into the GRID from your main program, and call the primitives 
that you have described in your IDL (each primitive corresponds to a part of your 
code). This is like putting the code from a part of your program into a function, but 
the functions won’t be written here. You can save the code into another file or leave it 
here by now (outside the main source of your program). 

Other differences would be that at some points of the code, some primitives of 
the GRID superscalar must be called. For example, GS_On() and GS_Off() are called 
at the beginning and at the end of the application respectively (even if this end is 
caused by a premature exit). As these functions are defined in the GS_master.h file 
(given with the GRID superscalar distribution), it is necessary to include this file. 
Also you have to include app.h file (generated with gsstubgen), because it contains the 
headers of your new GRID superscalar functions (defined in app.idl).  

In Perl case you must include the GSMaster module and the app module 
(remember that the syntax is: “use GSMaster;”). The On and Off functions are called 
as GSMaster::on(), and GSMaster::off(). And now your local functions are in an 
external module, so you must call them beginning with app::your_function() (with all 
parameters, of course). 

Another change would be necessary on those parts of the main program where 
files are read or written. Since the files are the objects that define the data 
dependences, the run-time needs to be aware of any operation performed on a file. 
Let’s see all those primitives. We have detailed Perl syntax in parentheses. Remember 
to put the name of the module before the call (GSMaster::). 

2.5.1 Special primitives 
• GS_On() (on()): Tells the GRID superscalar run-time that the program 

is beginning. The best place of putting this is at the beginning of your 
main code, but you can put it later, always considering that you cannot 
call any GRID superscalar primitive or function if you have not called 
first GS_On. 

• GS_Off(code) (off(code)): This call will wait for all remote tasks to end, 
and will tell to the GRID superscalar run-time to stop. In order to 
indicate an error situation (i.e. when your program has to end 
prematurely because you detect an error) you have to set code to -1. Take 
into account that this GS_Off(-1) will exit your main program. You can 
put this also at the end of your code with GS_Off(0) (indicating that 
there has been no error). GS_Off(0) won’t exit your main program, but 
remember that you won’t be able to call any GRID superscalar primitive 
or function from this point and till the end of your program. 

• GS_Barrier() (barrier()): In some special cases you may need this 
advanced feature. Sometimes you might need all the submitted tasks to 
finish, in order to take a decision and start working again. GS_Barrier() 
allows you to do that kind of synchronization, as GS_Off does, but it 
allows you to call more GRID superscalar functions later. Don’t use this 



 

13 

function unless you don’t have any other cho ice, because it can severely 
slow the parallelization of your code. 

• GS_Open(filename, mode) and GS_FOpen(filename, mode): As 
explained in previous section 2.5, GRID superscalar needs to have full 
control over the files. These primitives will allow you to work with files 
while keeping GRID superscalar in control. They both return a descriptor 
that MUST be used in order to work with these files (i.e. to call 
read/write functions). These descriptors correspond to the ones returned 
by your C library (when using open and fopen), so you won’t have to 
change following C library calls that work with these file descriptors. 
Modes currently supported are: R (reading), W (writing) and A (append). 
Perl case is special, because several functions are defined: 
open_r(*file_handle, file_name), open_w(*file_handle, file_name), 
open_a(*file_handle, file_name). 
 

Because some file renaming techniques are used to avoid data-dependencies 
in your code (and so achieve more parallelism), you have to use this file 
descriptor returned in order to work with the file. There is no guarantee that 
the files will be available with the expected name. 

 
• GS_Close(file_des) and GS_FClose(file_des): You have to call this 

primitives to close the file you opened before. The previous file 
descriptor explained as the return of the GS_Open and GS_FOpen 
primitives must be used here as a parameter. You cannot forget this step, 
or your GRID superscalar execution will never end. Working with Perl 
you have to call close(*file_handle). 

 
You just have to replace your calls for opening and closing files by GRID 

superscalar primitives to do this. There is no need to change your read/write calls. 
Another important point is that you can’t rename a file in your main code, 

because this can disturb GRID superscalar run-time. If this renaming is unavoidable, 
you can copy that file giving to the new copy the name you desire, but always using 
the GRID superscalar file primitives. 

The current set of specific GRID superscalar primitives is relatively small, and 
we do not discard the possibility that more primitives could be included in future 
versions. However, what is more probable is that these functions will be hidden to the 
programmer by writing wrapper functions that will replace the system functions. 

In the matrix multiply example, our master will be: 
 
#include <time.h> 
#include <stdio.h> 
#include <errno.h> 
#include "GS_master.h" 
#include "matmul.h" 
 
int main(int argc, char **argv) 
{ 
        long int t = time(NULL); 
        char f1[15], f2[15], f3[15], file[15]; 
        FILE *fp; 
 
        GS_On(); 
...... 
        for(int i = 0; i < MSIZE; i++) 



 

14 

                for(int j = 0; j < MSIZE; j++) 
                        for(int k = 0; k < MSIZE; k++) 
                        { 
                                sprintf(f1, "A.%d.%d", i, k); 
                                sprintf(f2, "B.%d.%d", k, j); 
                                sprintf(f3, "C.%d.%d", i, j); 
 
                                //f3 = f3 + (f1 * f2) 
                                matmul(f1, f2, f3); 
                        } 
 
        GS_Off(0); 
 
        printf("Total time:\n"); 
        t = time(NULL) - t; 
        printf("%d Hours, %d Minutes, %d Seconds\n", t/3600, 
(t%3600)/60, (t%3600)%60); 
 
        return 0; 
 
In this particular case, we just have to add GS_On() and GS_Off(), because 

matmul is defined exactly with the same parameters that in our sequential version. We 
have decided to remove all the local functions that we don’t need, and leave them in 
another file. 

2.6 Writing the Workers 
Additionally, the user provides the code of the functions that have been selected 

to run on the GRID. The code of those functions does not differ from the code of the 
functions for a sequential application. The only current requirement is that they should 
be provided in a separate file from the main program. This file must be called app-
functions.[c | pm] (remember that app is the name we gave to the IDL file). Moreover, 
there are some basic rules to build it: you have to include GS_worker.h file (given 
with GRID superscalar distribution) and app.h (generated by gsstubgen). This file will 
have as many functions as defined in your IDL file, so you have to copy the code of 
your functions here, or, if your code was not structured in functions, the parts of the 
code according to the ones defined in the IDL file. You can find (and copy) generated 
headers for your functions at app.h file. In Perl case you have to write your app-
functions.pm file also copying your functions, and you should look at the IDL file and 
shift the parameters into variables in the same order. Remember to “use GSWorker” 
module.  

Again you must remember that renaming techniques could have been applied to 
files, so you cannot refer to a file with the name you think it has. You have to use the 
input/output parameters defined in the function header. By the way, you are allowed 
to create a temporary file, with the name you prefer (but ALWAYS referring to 
current working directory), and do whatever is required. So you can’t create 
temporary files with absolute or relative paths. All temporary files will be destroyed at 
the end of the task. 

As an example, Figure 2-3 shows the code for the matrix multiply function. 
 
#include <time.h> 
#include <stdio.h> 
#include <errno.h> 
#include "block.cc" 
#include "GS_worker.h" 
#include "matmul.h" 
 
#define BSIZE 2 //Blocks size in elements 



 

15 

 
block<double> * GetBlock(char *file, int rows, int cols) 
{…} 
 
void PutBlock(block<double> *A, char *file) 
{…} 
 
void matmul(char *f1, char *f2, char *f3) 
{ 
        block<double> *A; 
        block<double> *B; 
        block<double> *C; 
 
        A = GetBlock(f1, BSIZE, BSIZE); 
        B = GetBlock(f2, BSIZE, BSIZE); 
        C = GetBlock(f3, BSIZE, BSIZE); 
 
        A->mul(A, B, C); 
 
        PutBlock(C, f3); //A and B are sources 
        delete A; 
        delete B; 
        delete C; 
} 

Figure 2-3 

We can see that our matmul-functions.c file needs to include the definition of 
the block (block.cc), and define the size of the block. Also PutBlock and GetBlock 
functions are required to get the blocks from disk to memory, and then proceed with 
the multiplication. These functions could have been also defined in a separated file 
and then included in matmul-functions.c. 

There are some special variables and primitives that must be called when 
creating the worker code. We will give more details in the following subsection. 

2.6.1 Special primitives 
 

• GS_System(command_line): When you need to call an external 
executable file (i.e. a simulator), you have to use GS_System, passing as 
a parameter the command line to be executed. You can suppose that your 
current working directory is the one that you have defined for that 
machine in broker.cfg file (its working directory) (see section 3.4 “How 
broker.cfg works”), so you can use an absolute path or a relative path to 
call that program. 

• gs_result: This is not a primitive. This is a special variable that can be 
used to pass an error code to the master, so the master can stop the 
execution. If you don’t use it, gs_result defaults to 0 (that means no error 
is detected in the task). If you detect an error, you can put an error code 
in this variable. This code must be higher than 0, because 0 is used to say 
that everything is ok, and negative values are reserved for the GRID 
superscalar run-time. You can even build your own error code mapping 
to detect what is happening in the worker by giving each number a 
meaning. 

 
And now we have all the programming work done, so we are ready for running 

our application. 



 

16 

2.7 Hints to achieve a good performance 
When programming your application, you can take into account several 

indications in order to achieve a better performance than if you don’t. This is not a 
mandatory thing to do, because you can have already your code programmed and you 
don’t want to severely modify the sources. So you can run your application without 
knowing anything about this section, but we recommend you to follow reading 
because maybe with some little changes you can really increase the performance of 
your application. 

The first restriction we find when trying to run some tasks in parallel is when a 
true data-dependence is found. This happens when a task wants to read a file (input 
File) that is generated at a previous task (output File). If the input file is not really 
necessary (i.e. it could be some debug information, not needed data) we recommend 
that you do not include this file as an input file in the task definition at the IDL file. 

You could also think about other data-dependencies, when a task needs to write 
in the same file that a previous one, and when a task needs to write into a file that has 
first to be read by another task. You don’t have to worry about these dependencies, 
because GRID superscalar will eliminate them. 

The next indication is about out scalars. In section 2.3, we have described that 
you can define a parameter as an output scalar, but we also point that when you define 
this kind of parameter, the performance could be worst than if you don’t. That is 
because you can be using this parameter immediately after calling to this IDL defined 
function. Then, the GRID superscalar runtime doesn’t have any other possibility than 
to wait for this task to complete, so this output scalar will be available. This wait can 
be hidden if GRID superscalar has enough tasks available to be run in parallel, and 
when the task with the output scalar is early scheduled for execution. If we don’t meet 
this conditions, performance will diminish. 

Another thing to avoid when trying to get a better performance is the call to 
GS_Barrier. We have presented it as an advanced feature in section 2.5.1 because in 
most of cases you will never use this call. In other cases, you may need it. When you 
call to GS_Barrier you tell the GRID superscalar run-time to continue to run previous 
generated tasks, but wait for all of them to finish. This waiting means that no new 
tasks are going to be generated from this point (main code is not going to continue) 
till all previous tasks are done. This synchronism point makes you to loose potential 
parallelism. So we recommend that you don’t use this call unless there is no other 
option. 

The last thing you can cons ider is to turn GS_SOCKETS to 1 in order to allow 
communications by sockets. In current prototype this is only allowed when working 
with the C/C++ bindings (in Perl is not supported). GRID superscalar works with files 
to achieve communication between the master and the workers. But, when all 
involved machines have external connectivity, you can set this communication to be 
done by sockets. This way of sending messages is faster, because no information is 
written to disk, and it is sent directly to the destination. We recommend that you take 
benefit from this advanced feature if your machines accomplish the requirements. 

2.8 Known restrictions 
You have to remember always that GRID superscalar run-time considers files as 

the main operands of each function (they define the data-dependencies and they have 
the main information required to execute a task, and to store results). In order to 
achieve better performance when executing your application, GRID superscalar uses 



 

17 

renaming techniques in your files. This way more parallelism can be extracted from 
your algorithm. But, that feature has several implications regarding file names when 
programming with GRID superscalar. Here is the list of restrictions. 

 
• You have to use GRID superscalar special primitives to open and close 

files (section 2.5.1) in the master. And you must use the file descriptors 
returned by this functions to work with the files. You can never suppose 
that a file has its original name. 

• You cannot rename files at the master side in your program. If this 
renaming is unavoidable, you have to copy the file to a new one with the 
new name (but remember to use GRID superscalar special primitives to 
handle files while doing this copy). 

• You cannot remove files that are used as input or output parameters in 
your IDL defined functions before calling to GS_Off, because you 
cannot do it in a safe way. 

• In the worker side, you cannot call an external application in your 
functions code by calling “system” (provided by the C library). You 
must use GS_System (section 2.6.1). But you can use a relative or 
absolute path when calling to this external application. 

• Inside worker functions it is not allowed to refer to a file by its original 
name when this file is passed as a parameter from the function. You 
must use the parameters defined in the function. However, you can 
create a temporary file in current working directory, and refer to it by its 
name. 

• You cannot define the same working directory between a master and a 
worker at broker.cfg (section 3.4). 

• It is not available to define output files that belong to a shared disk. This 
feature is provided to share source files (section 3.5). 

• Perl binding doesn’t allow you to set GS_SOCKETS to 1. 
 
You can see that not all this restrictions are because of the file renaming done 

by GRID superscalar. But you must consider them all. 

2.9 The gsbuild tool 
Since version 1.5.0, GRID superscalar distribution contains a tool named 

gsbuild, that automates the steps needed to obtain, from the sources, the files you need 
in order to run you developed application. If you execute it without parameters, the 
help will appear: 

 
Usage: gsbuild <action> <component> <appname> 
 
  Available actions: 
    copy         Setup a compilation environment for the component for 
customization. 
    build        Build the selected component. 
    clean        Remove generated binaries. 
 
  Available components: 
    master       Build or copy the master part. 
    worker       Build or copy the worker part. 
    all          Build or copy the master and workers parts. 
 



 

18 

  <appname> corresponds to the name of the application used for source 
files and IDL files. 
 
The files needed to run this tool are: <appname>.c, <appname>.idl and 

<appname>-functions.c. You also need to have previously installed in your system the 
tools automake, autoconf and the library named libxml2 version 2.6.x. 

There are some things to take into account before using the gsbuild tool. You 
just can choose the build option when your code is done in C (not C++). If your main 
code is done in C++ and named <appname>.cc (or other) you will have to use the 
copy option, that will create an environment to configure your compilation options. 

When this configuration environment is ready, you just have to call configure: 
 
./configure --with-gs-prefix=$GS_HOME 
 
Here $GS_HOME means the path were you have installed GRID superscalar. 

You can see other available options using the --help modifier, but the typical option is 
the one used in the given example. 



 

19 

3 Running the developed program 
In order to run our developed application, we have to prepare the binary files in 

every machine that will be used for running our program, other configuration files and 
environment variables. This constraint applies in current version of GRID superscalar. 
Nevertheless, we are already working in a deployment environment, which will 
automate all this steps. Anyway, it’s always good to know how the internals work, so 
we encourage you to follow reading. 

This section will explain how to copy and compile your code, how to define 
environment variables, how to make your configuration files, and finally some basic 
Globus commands needed to run your program. We will suppose from now that you 
have an installation of GRID superscalar under $GS_HOME directory. 

3.1 Quickstart 
These are the main steps that you have to follow when running you GRID 

superscalar enabled application. 
 

• Install Globus 2.2 or 2.4 (not 2.0 or 3.x) and GRID superscalar libraries. 
• Copy in the corresponding machines the files that each of them needs. In 

C/C++ case you need app.h, app-stubs.c and app.c at the master, and 
app.h, app-worker.c and app-functions.c at the workers. When working 
with Perl involved files are app.pl, app.so and app.pm at the master, and 
app-worker.pl, app-functions.pm at the workers (section 3.2). Compile 
when needed. 

• Consider modifying environment variables to change their default 
values. You can set the run-time to write debug information, leave logs 
at workers, pass messages with sockets instead of files, define which 
port uses your gsiftp servers, length of your parameters, length of paths 
and URL’s, length of messages and length of the RSL string that 
describes each job. If you change a value, do the same at the worker side 
if this variable applies also at the worker side. Also define 
LD_LIBRARY_PATH when needed (section 3.3). 

• Define broker.cfg that describes the machines involved in the 
computation (section 3.4), diskmaps.cfg that specifies shared disks and 
working directories (section 3.5), and finally estimations.cfg with the 
expected duration time for each function in each machine (section 3.6). 

• Start your Globus proxy with grid-proxy- init (if it wasn’t already 
started). 

• Check that no file named .tasks.chk exists if you want to start the 
computation from the beginning. 

 
The final step is running your application by simply executing the binary that 

contains your main code. 

3.2 Copying and compiling your code 
It’s essential to know that some files are going to be at the master side, and some 

files are going to be at the worker side. But first of all we can talk about installation 



 

20 

requirements. Current version of GRID superscalar uses Globus Toolkit 2.2 or 2.4 
(2.0 is not compatible). You need at least a client installation in the master machine, 
and a server installation in each machine that is going to be a worker. You also need 
to have the gsiftp service running in every machine involved in the computation 
(included in Globus Toolkit distribution), so transfer of files between machines can be 
done. From GRID superscalar you will need the GS-master library at master machine, 
and the GS-worker library at worker machines. You will need also the gsstubgen tool 
at the master side, and the library includes (GS-master.h at the master, GS-worker.h at 
the workers, and gs_base64.h at every machine). All these files are included in the 
GRID superscalar distribution. 

The GRID superscalar also includes a tool called moved- libtool.sh. This tool 
repairs the library files if you decide to move them to a new directory. You have to 
use it like this: 

 
moved-libtool.sh new_path_for_the_libraries $GS_HOME/lib/*.la 
 
Regarding developed files location, where each file must be placed will be 

clearer with a graphical description. There are differences between C/C++ binding 
and Perl binding. 

As Figure 3-1 shows, at the master we need app.c (that contains the main 
application), app.h (with previously defined function headers) and app-stubs.c 
(generated with gsstubgen). In the case of Perl (Figure 3-2) we need app.pl (with the 
main application), app.so (dynamic library generated to call GRID superscalar run-
time) and app.pm (the Perl module that will be called from app.pl). 

 

app.idl

app-worker.capp.c app-functions.c

server

gsstubgen

app.h

client

app-stubs.c

app.idl

app-worker.capp.c app-functions.c

serverserver

gsstubgen

app.h

clientclient

app-stubs.c

 
Figure 3-1 

 
In the worker side we need app.h, app-worker.c (generated automatically) and 

app-functions.c (where we wrote all our functions). Looking at Perl again, we see that 
we need app-worker.pl (the generated skeleton) and app-functions.pm (with the 
functionality). In both versions we need an additional file called workerGS.sh that 
will define all environment variables at the worker side. We will talk about this in the 
next section. 



 

21 

app.idl

gsstubgen

app.i

app-worker.pl
swig

app_wrapper.c

app.pm

app-stubs.c

app.so
client

app.pl

C compiler

app-functions.pm

server

app.idl

gsstubgen

app.i

app-worker.pl
swig

app_wrapper.c

app.pm

app-stubs.c

app.so
client

app.pl

C compiler

app-functions.pm

server

 
Figure 3-2 

Final step in C/C++ binding is to compile all parts. You can take our example as 
the base to make your own Makefile: 

 
CC=gcc 
CFLAGS=-g -Wall –I$(GS_HOME)/include 
CXX=g++ 
CXXFLAGS=-g -Wall –I$(GS_HOME)/include 
 
all: matmul 
 
matmul-stubs.c matmul.h: matmul.idl 
        gsstubgen matmul.idl 
 
matmul.o: matmul.cc matmul.h 
 
matmul: matmul.o matmul-stubs.o 
        g++ -Wall -g matmul.o matmul-stubs.o –L$(GS_HOME)/lib -o matmul 
-lGS-master 
 
clean: 
        rm -f matmul *.o core* *~ 
 
As this master Makefile rules describe, our matmul.o must be linked with 

matmul-stubs object and the GS-master library. Remember that your app.c code must 
include GS_master.h (given with GRID superscalar distribution) and app.h in order to 
compile correctly.  

At the worker we could have this Makefile: 
 
CC=g++ 
CFLAGS=-g -Wall -I$(GS_HOME)/include 
 
all: matmul-worker 

 
matmul-worker: matmul-worker.o matmul-functions.o 
        g++ -Wall matmul-worker.o matmul-functions.o -o matmul-worker  
-L$(GS_HOME)/lib -lGS-worker 
 
clean: 



 

22 

        rm -f core *.o matmul-worker 
 
Note that we are compiling with C++ because the block type included in 

matmul-functions.c is defined in C++. Here we have to link matmul-worker with 
matmul-functions object and with GS-worker library. The resulting executable will be 
named matmul-worker.  

Remember that each part must be compiled in the machine where it is going to 
be run (in the C/C++ case), so we can avoid architecture incompatibilities and GRID 
superscalar library location differences. 

3.3 Defining environment variables 
Some environment variables are required to get your program running. These 

environment variables allow you to change some behavior of the GRID superscalar 
run-time without having to recompile neither your program nor the GRID superscalar 
library. You don’t have to define them if you don’t want, because they have a default 
value, but we recommend you to check if the  default value satisfies your 
requirements. This part is concerning the master (or client): 

• GS_DEBUG: You can set this variable to receive more or less debug 
information. When it’s 20, the master will write at its standard output 
lots of useful information in order to determine potential problems. 
When set to 10, you will receive less information than before, but 
enough to follow the execution of your tasks. If you set this variable to 0 
it means that we don’t want debug information. Default value is 0. 

• GS_LOGS: Set to 1 tells the master to leave execution logs of all tasks 
executed in all server machines. These logs will be named 
OutTaskXX.log and ErrTaskXX.log, according to the standard output 
and standard error messages given at that task (where XX is the number 
of the task). Each time you call to a function defined in the IDL file, a 
new task number is generated. This way you can know to which call 
corresponds the log file. If set to 0, this logs won’t be left at workers. 
Default value is 0. 

• GS_SOCKETS: Currently GRID superscalar allows two ways of 
master and worker communication in the C/C++ binding: sockets or 
files. The former means that the worker machine has external 
connectivity and can talk to the master with a direct connection. The 
latter means that the worker doesn’t have direct external connectivity 
(i.e. a node of a cluster) and has to communicate with the master through 
files. To choose socket communication we have to set this variable to 1. 
Otherwise, if we want to use file communication we must set it to 0. 
Default value is 0. Note that in Perl version you cannot set it to 1. This is 
also explained in section 2.7. 

• GS_MIN_PORT: This variable only applies when working with 
GS_SOCKETS set to 1. Some machines have constraints in 
connectivity, regarding to opened ports. For this reason you have to tell 
to GRID superscalar an available range of ports to be used to open a 
reply port when working with the sockets version. Default value is 
20340. 

• GS_MAX_PORT: The upper threshold. It is considered only when 
GS_SOCKETS is set to 1. 



 

23 

• GS_SHORTCUTS: Allow or not (1 or 0) shortcut mechanism between 
workers. This mechanism allows you to resolve faster more data-
dependencies between tasks. Currently this feature is not supported so 
you won’t be able to change its value to 1. 

• GS_FTPORT: This integer tells us where the gsiftp port is located for 
transferring files. If you don’t know which port is the gsiftp using, you 
can ask your system administrator. Default port is 2811. 

• GS_NAMELENGTH: Maximum length of the names of the files 
involved in the computation. This means the files used when calling 
your new GRID superscalar functions defined with our IDL. Default 
value is 255. 

• GS_GENLENGTH: Maximum length of scalar variables involved in 
the computation (i.e. maximum digits of a number). This value doesn’t 
determine the precision when representing the scalar in the computer 
arquitecture. Default value is 255. 

• GS_MAXPATH: Maximum length of a given path in your application. 
Must be 10 or more characters. Default value is 255. 

• GS_MAXURL: Maximum URL size from your program (i.e. machine 
name plus invoked service and port). You can approximate this value by 
adding 40 characters to the maximum length of a machine name in your 
system. Default value is 255. 

• GS_MAXMSGSIZE: Size of the messages that will be sent between 
the master and the worker. This could grow if you use lots of output 
files, or output scalars. Default value is 1000 (it’s the lower limit). 

• GS_MAXRSL: This variable is related to Globus. In order to run a 
Globus job a string that describes it must be constructed. This is done 
with a language called Resource Specification Language. In addition, 
you can receive a message from the master recommending you to raise 
this value, or telling that the value is not big enough. Default value is 
5000 (the lower limit is set to 1000). 

• GS_ENVIRONMENT: This variable is considered an advanced 
feature. Some extra environment variables could be needed to be passed 
when executing your jobs with Globus (i.e. when your jobs are parallel). 
These variables can be passed with this parameter. Your 
GS_ENVIRONMENT string can be as long as pointed by 
GS_MAXPATH. Each variable must be in parentheses: (VARIABLE1 
value1)(VARIABLE2 value2) … Take into account that the content of 
GS_ENVIRONMENT will be sent to each worker machine. 

 
Note that you can use “setenv” or “export” as the command to define an 

environment variable. This can change depending on the shell your system has.  
Your main program is going to load the GRID superscalar shared library, so you 

have to put its path into an environment variable called LD_LIBRARY_PATH. You 
have to avoid erasing other previous defined library paths when defining the new one 
(check it with “env” command). An example follows: 

 
setenv LD_LIBRARY_PATH $GS_HOME/lib:$LD_LIBRARY_PATH 
 



 

24 

Don’t do this if the variable doesn’t exist previously. This step is not needed 
when GRID superscalar libraries are installed in a standard location. You may ask 
your system administrator about this. 

At the worker side there is a file named workerGS.sh. If there is not, you must 
create one. This file MUST have execute permission, because the master will invoke 
it. It’s content must be similar to this: 

 
#!/bin/sh 
 
export GS_MIN_PORT=20341 
export GS_MAX_PORT=20459 
export LD_LIBRARY_PATH=$GS_HOME/lib 
../app-worker "$@" 
 
Take into account now that we used “export” to define the environment 

variables, because we are now using a shell that supports this command. This file will 
set the environment variables in the worker side. You can suppose that no previous 
environment variables are defined, and set them here if needed (i.e. when running an 
external simulator). GS_MIN_PORT and GS_MAX_PORT are only required when 
working with GS_SOCKETS set to 1, and when we want to modify the default 
values. Also LD_LIBRARY_PATH must be set (if needed) considering the local 
machine, not the master. If you are familiar with scripting languages, you could think 
that you can add an exec before last line, so the new process will replace the current 
one. Don’t do this because if someone kills your worker, you won’t get any 
information about that. 

3.4 How broker.cfg works 
This will be the description of the first configuration file needed by your 

program developed with GRID superscalar. In this file we have to tell what machines 
will be our workers, what machine will be the master, and some characteristics of this 
machines. To understand the syntax, we can see a generic example: 

 
Machine LimitOfJobs Queue WorkingDirectory (Master doesn't have 
LimitOfJobs or Queue) 
 
worker1 limit1 queue1 path1 
worker2 limit2 queue2 path2 
master path 
 
The first line acts as a help to define all your machines. Then you have to 

specify the name of the worker, the limit of jobs that can be running in that machine at 
the same time (1 is the minimum value), the queue that has to be used when 
submitting to that machine (none if you don’t have to use a queue system), and the 
working directory for this machine (this means that you can find there the 
workerGS.sh file, and the app-worker file). 

Concerning the master you just have to write the master hostname (that’s 
because the operating system doesn’t have always the right information) and the path 
where the master executable file is. 

We can see an example of our matrix multiplication case: 
 
Machine LimitOfJobs Queue WorkingDirectory (Master doesn't have 
LimitOfJobs or Queue) 
 
khafre.cepba.upc.es 4 none /home/at/khafre/MatMul 



 

25 

kadesh.cepba.upc.es 16 short /home/at/kadesh/MatMul 
kadesh8.cepba.upc.es 8 mbench /home/at/kadesh8/MatMul 
kandake.cepba.upc.es /home/at/kandake/MatMul 
 
In this example kandake is going to be the master, and khafre, kadesh and 

kadesh8 are going to be the workers. We can submit 4, 16 and 8 jobs to each machine 
at the same time and kadesh jobs will go to a queue named short, and kadesh8 jobs 
will go to a queue named mbench. Each machine has also defined its working 
directory. 

3.5 How diskmaps.cfg works 
In current working systems, it’s usual to have disks shared between various 

machines. With this configuration file we can tell the master when a shared disk 
exists, so there is no need of transferring the file between these machines, because 
both can reach the file. 

Let’s have a look at a generic example to understand the syntax: 
 
Machine NameOfSharedDisk PathnameInTheMachine 
 
worker1 disk0 path1 
worker2 disk0 path2 
master disk0 path3 
 
worker1 disklocal1 path4 
worker2 disklocal2 path5 
master disklocal3 path6 
 
This file is divided in two parts. The first part describes the shared disks 

between machines. You can name the disk as you want, but remember to use the same 
name for the same physical disk. You can read the information like this: “worker1 can 
see disk0 using path1”, “worker2 can see disk0 using path2”, and so on. This means 
that worker1 and worker2 can access to disk0, but it has a different path in each 
machine (it can be mounted in a different way). The important thing is that when we 
pass as a parameter of a function a file beginning with path3, the GRID superscalar 
run-time will detect that is placed in disk0, and will avoid the transfer when possible. 
This is also useful when we have mirrors of a database in several machines. If we are 
going to use this database as inputs, we can tell also where are this copies located in 
the server machines, and in the client machine. 

The second part specifies the name of the disk where the working directory is 
placed (the working directory is defined in broker.cfg). Usually each machine will 
have its own disk name and the same path given into broker.cfg file. But sometimes 
you can be interested in some workers sharing a working directory (i.e. into a cluster). 
So some workers can have the same disk name, to warn GRID superscalar about this 
sharing. 

An example will clarify things: 
 
Machine NameOfSharedDisk PathnameInTheMachine 
 
kandake.cepba.upc.es Disk0 /scratch/at/kandake/mat_files/ 
khafre.cepba.upc.es Disk0 /scratch/at/khafre/mat_files/ 
kadesh.cepba.upc.es Disk0 /scratch/at/kadesh/mat_files/ 
kadesh8.cepba.upc.es Disk0 /scratch/at/kadesh8/mat_files/ 
 
kandake.cepba.upc.es DiskLocal0 /home/at/kandake/MatMul 
khafre.cepba.upc.es DiskLocal1 /home/at/khafre/MatMul 



 

26 

kadesh.cepba.upc.es DiskLocal2 /home/at/kadesh/MatMul 
kadesh8.cepba.upc.es DiskLocal2 /home/at/kadesh8/MatMul 
 
With this configuration all machines have access to matrix files stored into 

/scratch/at/kandake/mat_files/ (from the master point of view). Workers have to 
access this matrix files using another path. So these files won’t be transferred between 
machines. In this real case, Disk0 is not the same physical disk in all these machines, 
but a replica. The working directories of each machine are also defined, but we can 
see that kadesh and kadesh8 use the same working directory (they belong to a cluster). 
This means that files will be just transferred one time to that zone, and both machines 
will be able to use them. Note that this diskmaps.cfg doesn’t match with the one 
provided in GRID superscalar distribution into the matrix multiplication example. 
That cfg file doesn’t have any shared disks. 

3.6 How estimations.cfg works 
With the objective of doing a better scheduling when giving tasks to the 

workers, a file with the estimations of the execution of the functions must be 
provided. This can be done by running an isolated execution of the function on the 
required machine, or with a simulator. Also the bandwidth of each machine (specified 
in bytes per second) must be given. This will help the runtime in deciding where is the 
best place to execute our task (depending on transfers of files needed and computation 
power of that worker). The syntax can be extracted from this generic example: 

 
NumberOfOperations (new line) BandwidthBytesPerSecond 
OpId0SimulatedTime OpId1SimulatedTime ... (and MasterBandwidth) 
 
N 
worker1_linkspeed time_op1 time_op2 ... time_opN 
worker2_linkspeed time_op1 time_op2 ... time_opN 
master_linkspeed 
 
N has to be the number of operations defined at app.idl. Then the workers have 

its own link speed in bytes per second, and for each operation defined at appl.idl file, 
a measure of the time (in seconds) that the operation is supposed to last in that 
machine. The end of the file contains the master link speed also specified in bytes per 
second. 

Let’s see all this in a real case. We are going to suppose a different example 
from matmul, to add a little more size to the file. 

 
NumberOfOperations (new line) BandwidthBytesPerSecond 
OpId0SimulatedTime OpId1SimulatedTime ... (and MasterBandwidth) 
 
4 
1310720 0.1 3.7 0.2 0.001 
1310720 0.2 5.8 0.3 0.001 
1310720 0.17 5.6 0.25 0.001 
1310720 
 
This file will be for an IDL with 4 defined functions. When executed in the first 

worker defined at broker.cfg, first operation is expected to last 0.1 seconds. Second 
operation 3.7, and so on. We can see that the first worker is the fastest, and the second 
is the slowest one. The more accurate these values are, the better our scheduling 
policy will apply (avoiding file transfers). 

We can also see our configuration file in our matrix multiplication example: 



 

27 

 
NumberOfOperations (new line) BandwidthBytesPerSecond 
OpId0SimulatedTime OpId1SimulatedTime ... (and BandwidthSpeed) 
 
1 
1310720 0.001 
1310720 0.002 
1310720 0.0017 
1310720 
 
So, just one operation, that is really fast executed in server machines. 

3.7 Am I ready to run? 
 
Not yet. Before you run something that uses Globus (and GRID superscalar 

does) you have to start a user proxy. This proxy will authenticate the current user in 
all the machines that are going to be the workers, so you don’t have to type your 
password every time you access to a machine. The command is: 

 
grid-proxy-init 
 
There is a useful flag (-valid) that allows you to make it last more than 12 hours. 

You can see this and more flags with -help. You can also use grid-proxy- info, to see if 
your proxy is already running, or grid-proxy-destroy, to stop your proxy. 

If you don’t have this command in the path, you better ask your system 
administrator about how to initialize your Globus environment. 

Another important thing to consider is at the worker side. You can copy all the 
code in the worker side in whatever machines that are going to be workers from our 
execution. But you must remember to change in workerGS.sh the line that points to 
the LD_LIBRARY_PATH (it must contain the right path, regarding that machine). 
And also remember to change GRID superscalar library location from Makefile (if 
needed). 

Yes! You are now ready! If you want to be really sure about this, you can do 
again some checks. Be sure to have all files mentioned in previous sections in the 
master side and in the worker machines. Remember to have the same values for 
environment variables at both sides, to have all code compiled and ready to run in all 
machines, and to define correctly all the cfg files at the master side. Check also that 
your workerGS.sh files have execute permission. 

You can check also if have all GRID superscalar environment variables defined 
at the master side. Take a look at LD_LIBRARY_PATH and confirm that the GS-
master library path is defined there (if needed). And just run your main code: 

 
./app 

3.8 Recovering from a checkpoint file 
GRID superscalar has a feature that automatically checkpoints your tasks. This 

means that previously executed tasks won’t have to be repeated when we detect an 
error in a task. When restarting from a checkpoint file, GRID superscalar will warn 
you with this message at the master: 

 
FOUND CHECKPOINT FILE 
 



 

28 

This file is named “.tasks.chk” and is in you master’s working directory. 
Sometimes you won’t desire that GRID superscalar restarts from this checkpoint. If 
this is the case, you can simply delete this file from your file system and GRID 
superscalar will start execution from the beginning. 

Do not try to build your own checkpoint file, because it can be really dangerous. 
This file is not the only one that stores information in order to recover your previous 
executed tasks. 



 

29 

4 Debugging your GRID superscalar program 

4.1 Monitoring your execution 
GRID superscalar run-time doesn’t have by now a specific monitoring system. 

This means that if you want to see how your jobs are going you have to use standard 
operating system methods of monitoring processes. These commonly are: ps and top. 

This section is not intended to be an operating systems tutorial, but we can give 
you some hints and examples of what you can, and cannot see. 

So, when you run your master program, you can see several threads belonging 
to it (in particular you can see 3 for example in Linux, see Figure 4-1). This is normal, 
because the master creates a thread to listen to messages, and this thread needs a 
thread master in Linux. So don’t be worried if the name of your master process 
appears more than once. 

 
  PID USER     PRI  NI  SIZE  RSS SHARE STAT %CPU %MEM   TIME COMMAND 
25273 username  19  10  3012 3012  2384 S N  94.8  2.3   0:00 in.ftpd 
25272 username  19  10  3012 3012  2384 S N  88.7  2.3   0:01 in.ftpd 
25266 username   9   0  6172 6172  2656 S     0.0  4.8   0:00 matmul 
25267 username   9   0  6172 6172  2656 S     0.0  4.8   0:00 matmul 
25268 username   9   0  6172 6172  2656 S     0.0  4.8   0:00 matmul 

Figure 4-1 

At the master side you can also see a process called in.ftpd and owned by root 
consuming CPU (Figure 4-1). This means that a file is being transferred, so the gsiftp 
service is being used. 

If you want to see what processes are running in a worker you don’t have any 
other way (by now) than to log into that machine and see it for yourself. You can see 
several processes that can tell you what is happening in that machine (all owned by 
your username). The most common is globus-jobmanager, started by globus-job-
manager-script.pl (so you can see sometimes both, Figure 4-2). This process (globus-
jobmanager) will handle the execution of your remote job (copy files, start the binary, 
...). When files are being copied to that machine you can see the corresponding 
globus-url-copy process running (Figure 4-2). And when the worker binary is running, 
you can see a workerGS.sh and a ../matmul-worker processes (Figure 4-3). When the 
worker binary ends, you can see still the remaining globus-jobmanager. The most 
typical case is to have as many globus-jobmanager processes as the limit of jobs 
defined in that machine in broker.cfg file. If there is a queue system in that machine, 
some more processes can be there (depending on your queue system), but the basic 
ones described before will also appear. 

 
username  7312 22.0  0.1  5356 3956 ?        S    12:06   0:00 
/usr/bin/perl /aplic/GLOBUS/2.2/libexec/globus-job-manager-script.pl 
username  7235  2.7  0.1  5208 3244 ?        S    12:06   0:00 globus-
job-manager -conf /aplic/GLOBUS/2.2/etc/globus-job-manager.con 
username  7319  0.0  0.0  5216 2376 ?        S    12:06   0:00 
/aplic/GLOBUS/2.2/bin/globus-url-copy gsiftp://kandake.cepba.upc.es:2 

Figure 4-2 

And when the transfers end: 
username  8035  1.0  0.0  2152 1016 ?        S    12:06   0:00 /bin/sh 
/home/at/khafre/MatMul/workerGS.sh 0 0 A.0.0 B.0.0 C.0.0 C.0.0 



 

30 

username  8036  1.0  0.0  1804  580 ?        S    12:06   0:00 
../matmul-worker 0 0 A.0.0 B.0.0 C.0.0 C.0.0 

Figure 4-3 

Another hint of how many jobs are being executed in a worker machine at the 
same time is in the file system. You can see several sub-directories named 
“gram_scratch_<random_name>”. Each of this directory is created to let the user 
work with it’s own temporary files. So the directory where the worker is really being 
executed is the weirdly named one. 

You can see also other files in master and worker named .RENXX (where XX is 
an integer number). Do not mess with these files, because they are the result of 
applying renaming techniques to your main code. They will be correctly removed 
during the execution and at the end of the main master program. 

If your master seems stopped and no process owned by your username is in any 
of the worker machines, you may have a problem because the execution won’t go on. 
In order to solve this situation, you have to see all information first, as the master 
debug information. 

4.2 Master debug information 
In previous section 3.3 (Defining environment variables) we have seen that we 

can set GS_DEBUG to 10 or 20 so the master is going to give us more information on 
how the execution is going. It is useful to redirect all this standard output to a file, so 
you can examine it with more patience. 

The most important information you have to consider is the one that is given 
about the queues that are defined inside the GRID superscalar run-time. You can see 
prints about running, waiting, pending and ready tasks. Waiting means that they are 
stopped waiting for a file to be transferred, but this transfer has been started from 
another task. Pending means that the task still has data-dependencies to be resolved 
and ready means that it can be submitted at any time. 

You can see also the decision that GRID superscalar takes when choosing which 
is going to be the next running task. When the sentence “ESTIMATION BEGINS” 
appears, this means that the run-time is deciding where to run the job. There is an 
estimation of transfer files and execution time for each task in the ready queue against 
each worker. Estimation comes like this: 

 
ESTIMATION: 0.200000 Task: 14 Machine: 0 Size: 0.000000 
ESTIMATION: 0.203664 Task: 14 Machine: 1 Size: 4802.000000 
ESTIMATION: 0.203664 Task: 14 Machine: 2 Size: 4802.000000 
 
You can see here that the task 14 is going to last 0.2 seconds in worker 0, and 

more than 0.20 in worker 1 and worker 2. That is because the files needed are not in 
these two workers, in contrast with worker 0, that already has the files (as pointed by 
the Size value, that means how many file bytes do we have to transfer to that 
machine). So worker 0 will be chosen as shown in sentence: 

 
<------------------ MARKED MACHINE: 0 ------------------> 
<---------------- SUBMITTED : 1 ----------------> 
 
This also tells us how many jobs are submitted to that worker at the same time. 
If you are familiar with Globus RSL language and its callbacks mechanism, you 

can find this also as printed information. If you are not familiar, the information is 



 

31 

really self-explaining. Remember that all this parameters refer to the worker where the 
job is going to be run.  

There is also another important thing to remember about returning values of 
tasks. You can see at some point this debug information: 

 
TASK 11 JUST EXTRACTED!!! 
(and some lines later) 
ERROR Code: 0 
 
In this case the returning va lue of the task is 0, so everything is ok. But if 

something different from 0 is returned, a worker has detected an error, so the master is 
going to stop its execution. An error code different from 0 will be shown in the master 
even when you have GS_DEBUG set to 0. As described in section 2.6 “Writing the 
Workers”, you can detect errors by setting gs_result to a value different from 0. So 
here we will know at the master when a worker fails. If you receive a negative error 
code this means that there is an operating system problem (your code can have an 
invalid memory reference, someone could have killed your process, ...). Probably you 
want to see what happens into the worker, and look at the worker log files. 

4.3 Worker log files 
As shown in section 3.3, we can tell GRID superscalar run-time to leave 

standard output and standard error information in the worker that has executed a task. 
This information can be really useful when trying to determine why our program 
doesn’t run. You can print information from inside your app-functions.[c | pm] file to 
standard output and standard error that can give you a hint of what is happening there. 
Each call to an IDL function from your master main program generates a new task, so 
a new number to name it is also generated. First task will be named task 0, next will 
be 1, and so on. This will help you to determine which IDL call has generated a log 
file. Some default information is printed from the run-time at OutTaskXX.log: 

 
Task: 0. SCode: 0 
Getting stats of: TMP.0.cfg 
We are sending this: 1 0 78.194940442219376564 3121 0 
MasterName is: kandake.cepba.upc.es. ReplyPort is: 20342 
 
This log is for Task 0 (so it must be named OutTask0.log). The SCode refers to 

the shortcut mechanism, but we don’t have to worry about that, as explained when 
defining GS_SHORTCUTS environment variable. When the worker gets stats of a 
file, this means that this file is an output of this task. Beyond the “We are sending 
this” sentence we have a message that is going to be sent to the master. First integer 
refers again to shortcut stuff, so we don’t worry, next we have the task number, all its 
output scalars, all the size of output files, and the last integer refers to the value of 
gs_result. This can be 0, positive or negative. A 0 value would mean that there is no 
error, a positive value would mean an error detected by the programmer, and a 
negative value would mean that a signal has been received. Several signals can be 
received, so this could tell you that your program has an invalid memory reference 
(typically a –11 error code), been terminated (almost always a –15 error code), 
aborted ( –6 ) , ... Signal number 9 (kill) cannot be reprogrammed, so you will never 
receive a –9 error code (You will have to look at the worker logs to see if a worker 
has been killed). Not all signal numbers are standard, so, if you are not familiar with 
this operating system features, you can ask your system administrator about this. 



 

32 

4.4 Cleaning temporary files 
There are several hidden files that you can find in your master and in your 

workers when running your application developed with GRID superscalar. These 
files, that are needed to implement techniques as renaming (to improve parallelism, 
and so performance of your application) or checkpointing (to avoid repeating 
computation that has been already done), are automatically erased during the 
execution of your program and when the application finishes. For some strange 
reasons, the application cannot finish correctly (i.e. when the master crashes) and 
some of these files can remain in their locations. There is no real need to deal with 
these files, because they will be overwritten if you execute again your application. 
However, we can see what are their names and which is their purpose, so, if you find 
yourself in trouble, you can decide if you want to delete them or not. 

• .RENXX: These files are used for renaming techniques. They are 
different versions of a file during the original file lifetime. They can 
appear at the master and at the workers. 

• .GS_fileXX: Some extra information must be saved when checkpointing 
local tasks in your main program. This information is stored in those 
files. They are created at the master side. 

• .tasks.chk: This file is only in the master. It allows you to restart from a 
task your execution, without having to repeat previously done 
computations. If you delete it, the master will restart all the 
computations from the beginning. 

• OutTaskXX.log / ErrTaskXX.log: Standard output and  standard error 
from the task with number XX at the worker side. They won’t be 
generated when GS_LOGS is set to 0. 

• destGen.XX: They appear at the master and at the workers. This name 
identifies the files that are messages from a task between the master and 
the workers. When GS_SOCKETS is set to 1, these files don’t have to 
appear. If the master is stopped, you can delete them without any danger. 

 
Some files transferred as sources to tasks can remain in the working directory of 

the workers. You can also delete them with no danger if everything is stopped. 
However, remember that if you are planning to execute your program again, you don’t 
have to worry, because these files will also be overwritten. 

In addition, you can add to your Makefile some basic rules to erase all this files. 
So we have at the master side: 

 
delete:  
  rm –f .REN* .GS_file* .tasks.chk destGen.* 
 
And now the worker side: 
 
delete: 
  rm –f .REN* destGen.* 
 
So you can “make delete” anytime you want to clean all those files. You will 

seldom need to do this, but it could be useful if you find a bug in your master code, or 
even in GRID superscalar (although we hope you don’t!). 



 

33 

5 Frequently Asked Questions (FAQ) 
Here there are some typical questions that may arise when working with GRID 

superscalar. We recommend you to look in the table of contents of this manual to find 
faster what you are looking for. 

 

5.1 Globus 

5.1.1 What is Globus? Why do I need it? Can you give me some useful 
commands? 

 
Globus provides services for running your jobs remotely, transferring files, and 

more. It is needed to access other machines outside your administration domain. 
There are some useful commands that you can test: grid-proxy- info (to see the status 
of your proxy), grid-proxy- init (to start your proxy), grid-proxy-destroy (to end your 
proxy), globus-job-run (to run remote jobs), globus-url-copy (to copy files between 
machines). 

 

5.1.2 I have several log files In my workers’ home directory. They are named 
gram_job_mgr_<number>.log 

 
Usually, when a Globus job fails it leaves information in a log called 

gram_job_mgr_<number>.log. If you don’t need the information inside, you can erase 
them safely. Depending on your Globus installation they can appear always, when 
errors rise, or never. You can contact your system administrator to know tha t. 

 

5.2 GRID superscalar tools 

5.2.1 When I use gsstubgen I get this output: “Warning: renaming file 'app-
stubs.c' to 'app-stubs.c~'. Warning: renaming file 'app-worker.c' to 'app-
worker.c~'. Warning: renaming file 'app.h' to 'app.h~'.”. What is this for? 

 
In this case gsstubgen has done backups for your old generated files from your 

IDL definition. This backups end with the ‘~’ character. You can remove them by 
hand. Next time, if you don’t want to generate backups, use –n flag. 

 

5.3 The master 

5.3.1 When I set GS_DEBUG to 10 or 20, the output of my main program 
seems to appear in really weird places. What is happening? 

 
If you print something to the standard output the system has a buffer to print 

more information from one call. So it’s normal that sometimes appears in weird 
places.  

 



 

34 

5.3.2 When I redirect all output given from the master to a file, sometimes at 
the end some information is missing. Why? 

 
Again buffering of the operating system is cheating you. You can also see that 

the order of some prints also change when printing by screen or when printing to the 
file. But that’s normal. You can repeat the execution and see how it ends printing by 
screen. 

 

5.3.3 I get a message like this when trying to run the master:  “ERROR 
activating Globus modules. Check that you have started your user proxy with 
grid-proxy-info” 

 
You forgot to start your Globus proxy or its lifetime has expired. Try the Globus 

command grid-proxy- info to see if you have started it. If you have not, remember to 
use grid-proxy- init. If it has expired, you can run grid-proxy-destroy and grid-proxy-
init again. 

 

5.3.4 The master ends with this message (or similar): “./app: error while 
loading shared libraries: libGS-master.so.0: cannot open shared object file: No 
such file or directory” 

 
You have to add to your environment variable LD_LIBRARY_PATH your 

GRID superscalar library location. 
 

5.3.5 When I set GS_SHORTCUTS to 1 I get this message “ERROR: Check 
environment variables values”. Why? 

 
That is because you haven’t read this manual! We said that you won’t be able to 

turn this to 1, because file forwarding mechanism is no more supported. We don’t 
discard to recover this feature in the future, so that’s the reason because this variable 
still remains. 

 

5.3.6 I get this message: “ERROR: Check environment variables values”. But 
I have all variables defined and GS_SHORTCUTS is set to 0 

 
Your environment variables are wrong or too small. You cannot set 

GS_SOCKETS to a value different from 0 or 1, for example. We have set some lower 
limits in order to run your master correctly. See chapter 3.3 “Defining environment 
variables”. 

5.3.7 When working with GS_SOCKETS set to 1 I get a segmentation fault at 
the master. More precisely, this happens when a previous execution ends 
(prematurely or not) and I try to launch the master immediately 

 



 

35 

The problem is that some previous jobmanagers stay running at worker 
machines, because socket verision of the run-time doesn’t wait for them to finish (to 
be faster than file version). Before executing again be sure that no globus process 
remains in the workers, or simply wait 30 seconds (the higher time the running 
jobmanagers will stay when the worker ends). 

 

5.3.8 I get this message: “******** ERROR AT TASK 0 !!! ********* 
******** MACHINE khafre.cepba.upc.es  ********* the job manager could not 
stage in a file 

 
The cause can be that your gsiftp service is not reachable or is not started in 

your master. Be sure to have an opened port for it. You can telnet to that port (default 
is 2811). 

 
localhost> telnet localhost 2811 
Trying 127.0.0.1... 
Connected to localhost. 
Escape character is '^]'. 
220 localhost GridFTP Server 1.5 GSSAPI type Globus/GSI wu-2.6.2 
(gcc32dbg, 1032298778-28) ready. 
 
If you don’t get this output (or a similar one), contact your system administrator 

and tell him that the gsiftp service is not working. 
 

5.3.9 I get this message: “ERROR: Submitting a job to hostname. Globus 
error: the connection to the server failed (check host and port)” 

 
One of your workers cannot run Globus jobs because the service called 

“gatekeeper” is not started or its port is closed by a firewall. You can do this to check 
it: 

 
localhost> telnet hostname 2119 
Trying 147.83.42.31... 
Connected to hostname. 
Escape character is '^]'. 
 
Where hostname is the worker that we suspect is failing. The connection has to 

remain till you write ‘quit’. If you get a “Connection refused” message, tell your 
system administrator that Globus is not working properly because the gatekeeper is 
not started or is unreachable. 

 

5.3.10 When the master is going to end I get this message: “ERROR: 
REMOTE DELETION OF FILES IN MACHINE hostname HAS FAILED. 
Globus error: (error from system). Checkpoint file erased for safety reasons”. 
What happened? 

 
When the master ends it recovers all result files and erases temporary files in all 

the workers involved in the computation. If this final process fails, the master reaches 
a non consistent state. In this situation it cannot recover from the checkpoint file. You 



 

36 

can get your results by hand, and erase temporary files, or start your execution again 
from the beginning. The main reason that makes this error appear is when you don’t 
have enough quota in the master to receive the result files, but check the “Globus 
error” sentence to know this more precisely. 

 

5.3.11 I get an error like this when trying to run the master: “License Manager 
Error: Your license expired on 23/02/2004 Please contact Rosa M. Badia 
(rosab@ac.upc.es).” What is all this stuff about licenses? I haven’t acquired any 

 
We use to generate GRID superscalar distributions with expiration date, so you 

can take benefit from our new versions of GRID superscalar with new features and 
fixed bugs. It is not good that you remain with the same old (and possibly not bug-
free) version forever. 

5.4 The Workers 

5.4.1 The first task executing returns an error of this kind “******** ERROR 
AT TASK 0 !!! *********”. When I see log files at the worker side I find this at 
the ErrTask0.log: “../app-worker: error while loading shared libraries: libGS-
worker.so.0: cannot open shared object file: No such file or directory” 

 
You, probably with good intentions, deleted at workerGS.sh a line that defines 

the LD_LIBRARY_PATH environment variable to load the GS-worker library. You 
cannot remove it if your GRID superscalar library is not installed into a standard 
location. Just put it back. 

 

5.4.2 I get this message when I try to execute a remote task: “******** 
ERROR AT TASK 0 !!! ********* ******** MACHINE hostname  ********* 
the executable file permissions do not allow execution” 

 
You must check that the workerGS.sh file in the worker named hostname has 

execute permission. To change permissions you can run “chmod ugo+x 
workerGS.sh”. 

 

5.4.3 The firs task ends with an error, but now when I look into the worker I 
find in ErrTask0.log: “workerGS.sh: ../app-worker: No such file or directory” 

 
You have not compiled the worker in this machine. 

5.4.4 Once more my first task fails but my log files are empty. That’s crazy! 
 
Be sure that your paths for finding the worker executable are correctly defined 

in broker.cfg, and that nobody has deleted last line from workerGS.sh. It has to 
contain this: “../app-worker "$@"” 

 



 

37 

5.4.5 I always get errors when trying to run a task into a worker. Is it Globus 
fault? Is it GRID superscalar fault? Is it my fault? 

 
The first thing you can do when the remote executions fail is to run a single test 

to check that Globus can run jobs. You can do: 
 
globus-job-run worker1 /bin/date 
 
And see if this returns the current date and time. If this fails, you can contact 

your system administrator and tell him that you cannot use Globus for running your 
jobs. 

 

5.4.6 I receive this message at the master: “ERROR: Submitting a job to 
hostname. Globus error: the cache file could not be opened in order to relocate 
the user proxy” 
 

Check if you have available disk space in that worker machine. This error can 
leave some .gram_scratch_<random_name> subdirectories in the involved worker. 

 

5.4.7 I receive this message at the master: “ERROR: Submitting a job to 
hostname. Globus error: the job manager failed to create the temporary stdout 
filename” 

 
This can be also a problem with quota in hostname. 

5.4.8 I get this message: “ERROR: Submitting a job to hostname. Globus 
error: data transfer to the server failed” 

 
The reason could be that you don’t have enough quota on the worker machine to 

transfer your input files. Check this with the “quota” command. 
 

5.4.9 After having a quota problem in a worker, I see some temporary files 
remaining. How can I manage to erase them correctly? 

 
You can erase all subdirectories that are named 

.gram_scratch_<random_name>. Some input files can remain also (their names will 
be familiar for you). The rest of temporary files are described in section 4.4. 

 

5.5 Other questions 

5.5.1 I love GRID superscalar! It has saved me lots of work hours! 
 
We will appreciate comments and suggestions about our tool. You can reach the 

authors at grid-superscalar@ac.upc.es. 
 



 

38 

5.5.2 I hate your run-time. It’s giving me lots of problems. 
 
Don’t give up. If you really think you are in a situation that you cannot solve, 

we can try to see what could be happening in your particular case. Contact us at GRID 
superscalar mailing list (grid-superscalar@ac.upc.es). 


