

FLDC458001-01 REV:B August 29, 2012
Nanomotion Ltd. POB 623, Yokneam 20692, Israel

Tel: 972-73-2498000 Fax: 972-73-2498099
Web Site: www.nanomotion.com
E-mail: nano@nanomotion.com

FlexDC™

Software User Manual

FlexDC Software User Manual

FLDC458001-01 REV:B August 29, 2012
Nanomotion Ltd. POB 623, Yokneam 20692, Israel

Tel: 972-73-2498000 Fax: 972-73-2498099
Web Site: www.nanomotion.com
E-mail: nano@nanomotion.com

Copyright
This document contains proprietary information of Nanomotion Ltd., and may not be
reproduced in any form without prior written consent from Nanomotion Ltd.
No part of this document may be reproduced, translated, stored in a retrieval system or
transmitted in any form and by any means, electronic, mechanical, photographic,
photocopying, recording, or otherwise, without the written permission of Nanomotion Ltd.
Information provided in this document is subject to change without notice and does not
represent a commient on the part of Nanomotion Ltd.
Copyright 2008-2012, Yokneam, Israel. All rights reserved.
All products and company names are trademarks or registered trademarks of their
respective holders.

Limited Warranty

Nanomotion (hereinafter NM) warrants the product (other than software) manufactured by it
to be free from defects in material and workmanship for a period of time of one year (except
those parts normally considered as consumable/expendable components such as motor
conditioning brushes). The warranty commences thirty (30) days from the date of shipment.

NM warrants those parts replaced under warranty for a period equal to the
remaining warranty coverage of the original part.
NM’s sole and exclusive obligation under this warranty provision shall be to repair, or at its
sole option exchange defective products or the relevant part or component, but only if : (i)
the Purchaser reports the defect to NM in writing and provides a description of the defective
product and complete information about the manner of its discovery within ten (10) days of
its discovery; (ii) NM has the opportunity to investigate the reported defect and determines
that the defect arises from faulty material, parts or workmanship; and (iii) the Purchaser
returns the affected product to a location designated by NM. These provisions constitute the
exclusive remedy of the Purchaser for product defects or any other claim of liability in
connection with the purchase or use of NM products.

This warranty policy applies only to NM products purchased directly from NM or from an
authorized NM distributor or representative.

This warranty shall not apply to (i) products repaired or altered by anyone other than those
authorized by NM; (ii) products subjected to negligence, accidents or damage by
circumstances beyond NM control; (iii) product subjected to improper operation or
maintenance (i.e. operation not in accordance with NM Installation Manuals and/or
instructions) or for use other than the original purpose for which the product was designed to
be used.

The warranty stands only when the motors are used with the NM drivers/ amplifiers.

NM shall not in any event have obligations or liabilities to the Purchaser or any other party
for loss of profits, loss of use or incidental, increased cost of operation or delays in
operation, special or consequential damages, whether based on contract, tort (including
negligence), strict liability, or any other theory or form of action, even if NM has been
advised of the possibility thereof, arising out of or in connection with the manufacture, sale,
delivery, use, repair or performance of the NM products. Without limiting the generality of

Nanomotion Ltd. 3

the preceding sentence, NM shall not be liable to the Purchaser for personal injury or
property damages.

Patent Information
Nanomotion products are covered under one or more of the following
registered or applied for patents.
5,453,653; 5,616,980; 5,714,833; 111597; 5,640,063; 6,247,338; 6,244,076;
6,747,391; 6,661,153; 69838991.3; 6,384,515; 7,119,477; 7,075,211;
69932359.5;1186063; 7,211,929; 69941195.5; 1577961; 4813708;
6,879,085; 6,979,936; 7,439,652; 7061158 ;1800356; 1800356; 1800356;
2007-533057 (pending); 2011-093431 (pending); 7,876,509; 10-2007-
7009928 (pending); 200780019448.6 ; 7713361.9 (pending); 12/294,926
(pending); GB2008000004178 (pending); GB2009000003796 (pending);
12/398,216 (pending); GB2446428; 12/517,261 (pending); 08702695.1
(pending); 10-2009-7017629 (pending); 12/524,164 (pending); 12/581,194
(pending)

Nanomotion Ltd. 4

Revision History
Revision Release

date
Details

00/A Nov. 2008 New release

01/A Jan. 2009 Conjoin all SW documentation into “FlexDC SW User Manual”.
Add “FlexDC Installation and Operation Sequence” schema.

01/B Jul 2009 The Bytes tables edited for consistency.

NA Aug. 2012 Administrative change – added patent information section in front
matter.

FlexDC Software User Manual Table of Contents

FLDC458001-01 REV:B August 29, 2012
Nanomotion Ltd. POB 623, Yokneam 20692, Israel

Tel: 972-73-2498000 Fax: 972-73-2498099
Web Site: www.nanomotion.com
E-mail: nano@nanomotion.com

Table of Contents
PART I – PREFACE .. 22

1 Preface ... 23

1.1 Overview .. 23

1.2 FlexDC Software User Manual Structure .. 23

1.3 FlexDC Installation and Operation Sequence ... 26

PART II – FLEXDC SOFTWARE AND COMMANDS REFERENCE 27

2 Commands Syntax and Protocols .. 28

2.1 Introduction .. 28

2.2 Supported Communication Protocols ... 28

2.2.1 Simultaneous Communication Channels Operation Support 29

2.3 FlexDC Communication Language Definitions .. 29

2.3.1 General ... 29

2.3.2 Language Notations .. 30

2.3.3 Keywords Attributes and Restrictions .. 31

2.4 Axes and Groups Identifiers ... 33

2.4.1 FlexDC Axes Attributes ... 33

2.5 RS232 Communication ... 34

2.5.1 Hardware Interfaces .. 34

2.5.2 Connecting and Defining the RS232 ... 34

2.5.3 Language Syntax – Host to FlexDC .. 34

2.5.4 Language Syntax – FlexDC to Host .. 36

2.6 Ethernet/LAN Communication .. 38

2.6.1 FlexDC Network Topologies .. 38

2.6.2 Connecting and Defining the Ethernet/LAN 40

2.6.3 TCP/IP Protocol (Ethernet / LAN) .. 43

2.6.4 Using DCOM Software Library for Ethernet Communication 45

FlexDC Software User Manual Table of Contents

Nanomotion Ltd. 6

2.7 CAN Communication .. 46

2.7.1 General ... 46

2.7.2 Language Syntax - Host to FlexDC ... 47

2.7.3 Special Commands ... 54

2.7.4 Language Syntax– FlexDC to Host ... 55

2.7.5 CAN - Enhanced Download Buffer Mode (EDB) 57

3 Motion Modes .. 61

3.1 Point to Point – PTP (MM=0, SM=0) ... 62

3.1.1 Starting a PTP Motion ... 63

3.1.2 Monitoring Motions .. 63

3.1.3 Stopping a Motion ... 65

3.1.4 On The Fly Parameters Change .. 65

3.2 Repetitive Point to Point – Rep PTP (MM=0, SM=1) 66

3.3 Jogging – JOG (MM=1, SM=0) ... 67

3.3.1 Description .. 67

3.3.2 Starting a Jog Motion .. 67

3.3.3 Monitoring a Motion ... 67

3.3.4 Stopping a Motion ... 67

3.3.5 On The Fly Parameters Change .. 68

3.4 Gearing Motion Modes ... 68

3.4.1 Position Based Gearing (MM=2) ... 68

3.5 Joystick Motion Modes ... 72

3.5.1 Velocity Based Joystick Motion Mode ... 72

3.5.2 Position Based Joystick Motion Mode ... 72

3.6 Position Step Motion (MM=8, SM=0 or SM=1) .. 73

3.6.1 Description .. 73

3.6.2 Starting a Step Motion ... 74

3.6.3 Monitoring and Stopping a Step Motion ... 74

3.7 Profile Smoothing in the FlexDC ... 74

FlexDC Software User Manual Table of Contents

Nanomotion Ltd. 7

4 The Control Filter ... 79

4.1 General .. 79

4.2 Linear PIV Filter Equations ... 79

4.2.1 PIV Filter Mode ... 79

4.2.2 Position Error Calculation .. 82

4.3 High (2nd) Order Filters .. 83

4.4 Output Command (DAC Out) .. 84

4.5 Encoder Gain ... 84

4.6 Non-Linear Elements .. 84

4.7 Filter Gain Scheduling .. 85

4.8 AB1A Driver Special Algorithms ... 86

4.8.1 Dead Zone Algorithm .. 86

4.8.2 Feed-Forward Algorithm .. 86

4.8.3 Offset Algorithm .. 87

4.8.4 UHR Algorithm .. 87

4.9 AB5 Driver Brake Mode .. 88

4.10 Acceleration and Velocity Feed-Forward .. 88

4.11 Open Loop Operation ... 89

4.12 Summary of all Control Filter Related Parameters 90

5 Faults Protections and Limits ... 91

5.1 Driver Faults and Abort Input .. 92

5.2 Software Generated Faults ... 93

5.2.1 High Position Error .. 93

5.2.2 Encoder Signal Error Protections .. 94

5.2.3 Motor Stuck Protection .. 94

5.3 Software Protections – (Non Fault Conditions) ... 95

5.4 Special Handling of Software Limits ... 96

6 Advanced Features ... 97

6.1 Data Recording .. 97

FlexDC Software User Manual Table of Contents

Nanomotion Ltd. 8

6.1.1 Operating Data Recording in the FlexDC .. 98

6.1.2 Data Recording Keywords ... 98

6.1.3 Data Recording Support in Nanomotion Shell Application 102

6.2 Position Compare Events ... 103

6.2.1 Mode 0: Fixed GAP (Incremental), Distance < 16 Bit 104

6.2.2 Mode 2: 32 Bit Arbitrary Tables ... 105

6.2.3 Compare Function Parameters, Activation and Error Codes 106

6.2.4 Configuring Digital Outputs for the Compare Function 111

6.2.5 Position Compare Events Examples ... 112

6.3 Position Capture Events ... 114

6.3.1 Capture Modes ... 114

6.3.2 Operating the Position Capture and Relevant Keywords 115

6.3.3 The Capture Events Counter – “XN” ... 115

6.3.4 The Capture Location – “XC” .. 115

6.3.5 Selection of Capture Source Pulse – “YOM” 116

6.3.6 Configuring Fast Digital Inputs for the Capture Function 118

6.3.7 Position Capture Events Examples ... 118

6.4 Auxiliary Analog Input Interfaces .. 121

6.5 Dynamic Error Mapping Correction ... 123

7 Keywords Reference ... 124

7.1 Keywords Attribute Reference .. 124

7.2 Command Keywords List .. 126

7.3 Parameters Keywords List .. 127

7.3.1 Parameters Keywords List .. 127

7.4 Keywords List – Functional Groups .. 130

7.4.1 Keywords Group Description ... 130

7.4.2 Keywords Groups.. 131

7.5 Keywords List ... 136

7.6 AB – Abort Motion Command ... 138

FlexDC Software User Manual Table of Contents

Nanomotion Ltd. 9

7.7 AC – Acceleration ... 139

7.8 AD – Analog Input Dead Band .. 140

7.9 AF – Analog Input Gain Factor ... 141

7.10 AG – Analog Input Gain .. 142

7.11 AI – Analog Input .. 143

7.12 AP – Absolute Position ... 144

7.13 AR – General Purpose Array .. 145

7.14 AS – Analog Input Offset .. 146

7.15 BG – Begins a New Motion Command.. 147

7.16 BR – Begin Recording Command ... 149

7.17 CA – Special Control Parameters Array .. 150

7.18 CB – CAN Baud Rate ... 152

7.19 CG – Axis Configuration ... 153

7.20 DA – Data Recording Array .. 155

7.21 DB – Download Buffer .. 156

7.22 DC – Deceleration .. 156

7.23 DF – Download Firmware ... 157

7.24 DL – Limit Deceleration .. 158

7.25 DO – Analog DAC Offset .. 159

7.26 DP – Desired Position ... 160

7.27 EC – Communication Error Code .. 161

7.28 EM – End of Motion Reason ... 162

7.29 ER – Max Position Error Limit ... 163

7.30 FF – Feed-Forward Gains... 164

7.31 HL – High Software Limit .. 165

7.32 IA – Indirect Array ... 166

7.33 IL – Input Logic ... 167

7.34 IP – Input Port ... 168

7.35 IS – Integral Saturation Limit ... 171

FlexDC Software User Manual Table of Contents

Nanomotion Ltd. 10

7.36 KD – Control Filter Diff Term Gain .. 172

7.37 KI – Control Filter Integral Term Gain ... 173

7.38 KP – Control Filter Proportional Term Gain ... 174

7.39 KR – Kill Repetitive Motions Command .. 175

7.40 LD / SV – Load and Save Commands .. 176

7.41 LL – Low Software Limit ... 177

7.42 ME – Master Encoder ... 178

7.43 MF – Motor Fault Reason ... 179

7.44 MM – Motion Mode ... 181

7.45 MO – Motor ON (Enable / Disable the Servo Loop) 183

7.46 MS – Motion Status .. 184

7.47 NC – No Control (Set Open Loop Mode) .. 186

7.48 OC – Output Clear Bit Command .. 188

7.49 OL – Output Logic .. 189

7.50 OM – I/O Modes Hardware Configuration ... 190

7.51 OP – Output Port .. 195

7.52 OS – Output Set Bit Command ... 196

7.53 PA – Parameters Array ... 197

7.54 PE – Position Error ... 198

7.55 PG – Position Compare Parameters Array ... 199

7.56 PQ – Compare Function Activate / Disable Command 200

7.57 PO – PIV Output ... 202

7.58 PS – Position (Encoder Position) .. 203

7.59 RA – CAN Receiving Address .. 204

7.60 RG – Data Recording GAP ... 205

7.61 RG[2] – Data Recording Upload Delays .. 206

7.62 RL – Data Recording Length .. 207

7.63 RP – Relative Position .. 208

7.64 RR – Data Recording Status ... 209

FlexDC Software User Manual Table of Contents

Nanomotion Ltd. 11

7.65 RS – Reset Controller Command .. 210

7.66 RV – Data Recording, Recorded Variables ... 211

7.67 SM – Special Motion Mode Attribute Parameter 213

7.68 SP – Speed .. 215

7.69 ST – Stop Motion Command ... 216

7.70 SR – Status Register .. 218

7.71 SV – Save Command ... 220

7.72 TA – CAN Transmitting Address ... 221

7.73 TC – Torque Command .. 222

7.74 TD – Timer Down ... 224

7.75 TL – Torque Limit (Analog Command Saturation) 226

7.76 TR – Target Radius .. 228

7.77 TT – Target Time .. 229

7.78 VA / VD / VS – Vector Motion Parameters .. 230

7.79 VR – Get Version Command .. 233

7.80 WT – Wait Period ... 235

7.81 WW – Profiler Smooth Factor ... 237

7.82 XC – Last Capture Position Latch ... 238

7.83 XN – Capture Events Counter .. 239

7.84 ZI – CAN Array ... 240

8 Communication and Program Error Codes ... 242

PART III – FLEXDC MACRO LANGUAGE ... 248

9 Introduction ... 249

10 FlexDC Macro Engine .. 250

10.1 General FlexDC Macro Program Structure ... 250

10.2 External Communication vs. Macro Execution Priority 251

10.3 Macro Handling Keywords .. 251

10.4 Low-Level Expressions Handling and the Numbers Stack 253

10.5 Variables and Indirect Addressing .. 256

FlexDC Software User Manual Table of Contents

Nanomotion Ltd. 12

10.5.1 Variables ... 256

10.5.2 Indirect Addressing ... 258

10.6 Labels and Subroutines Names .. 259

10.6.1 Restrictions on Labels Definition ... 260

10.6.2 Ending a Label Definition is the ‘:’ Sign 260

10.7 Macro Flow Control .. 261

10.8 Wait and Internal State Inquiry Functions ... 264

10.9 Timer Functions .. 267

11 FlexDC Low-Level Macro Program ... 269

11.1 Macro and Motions ... 269

11.2 Macro Syntax Check and Run-Time-Error .. 269

11.3 Macro Size and Number of Labels .. 270

11.4 Macro Download Format .. 270

12 Integrated Development Environment ... 271

12.1 General .. 271

12.2 Writing and Editing FlexDC Macro Files ... 272

12.3 Shell Support for Downloading Macro Files to the FlexDC Hardware 273

12.3.1 Download a New Macro .. 273

12.3.2 Download a New .DAT File ... 274

12.4 Srcedit Macro Debugger Environment Features 276

12.4.1 General ... 276

12.4.2 Srcedit Macro Debugger Window .. 277

12.4.3 Srcedit File Menu .. 282

13 The IDE Pre-Compiler Support ... 286

13.1 General .. 286

13.2 Non Executable Code: Comments, Blanks, etc. 288

13.3 Directive Commands .. 289

13.3.1 The ‘target’ Definition Directive ... 289

13.3.2 The ‘define’ Directive .. 290

FlexDC Software User Manual Table of Contents

Nanomotion Ltd. 13

13.3.3 The ‘description’ Directive .. 291

13.3.4 The ‘include’ Directive .. 293

13.4 Advanced Expressions Parsing .. 293

13.4.1 General ... 293

13.4.2 Mathematical expressions ... 294

13.4.3 If Blocks .. 298

13.4.4 While Loops .. 300

13.4.5 For Loops .. 301

14 Script Example... 303

14.1 Script Structure ... 303

14.2 Script Content ... 304

15 FlexDC Script Keywords Commands Reference ... 308

15.1 Task Based Reference ... 308

15.2 Task Description ... 308

15.3 Task Based Command List ... 309

15.3.1 Macro Handling Keywords .. 309

15.3.2 Operator Keywords ... 310

15.3.3 Flow Control Keywords ... 311

15.3.4 Wait and Internal State Inquiry Functions 311

15.3.5 Timer Function Keywords .. 311

15.3.6 Remote Access over the CAN commands 312

15.3.7 Pre-compiler Directive Commands and Keywords 313

15.4 Macro Programming Keywords Reference ... 313

15.4.1 CS – Call Subroutine ... 315

15.4.2 CF,CT – Call Subroutine If False or True 316

15.4.3 JP – Jump ... 317

15.4.4 JF, JT – Jump If False or True... 318

15.4.5 JZ – Jump Zero ... 319

15.4.6 QB – Macro Breakpoint Array .. 320

FlexDC Software User Manual Table of Contents

Nanomotion Ltd. 14

15.4.7 QC – Macro Run-Time-Error ... 321

15.4.8 QD – Download Macro Buffer .. 322

15.4.9 QE – Execute Macro ... 323

15.4.10 QF – Macro Running Status .. 324

15.4.11 QG – Get Internal State Value ... 325

15.4.12 QH – Halt Macro .. 326

15.4.13 QI – Initialize Macro ... 327

15.4.14 QK – Kill Macro and Motions ... 328

15.4.15 QN – Display Macro Stack .. 329

15.4.16 QP – Macro Program Pointer .. 330

15.4.17 QQ – Macro Program Stack .. 331

15.4.18 QR – Macro Initialization Status .. 332

15.4.19 QT –Trace Macro Execution (Single Line) 333

15.4.20 QU – Upload Macro Buffer .. 334

15.4.21 QV – Uploads Descriptive Data ... 335

15.4.22 QW – Wait till Condition ... 336

15.4.23 QZ – Clears Macro Numbers Stack ... 337

15.4.24 RT – Return from Subroutine ... 338

15.4.25 TD – Timer Down .. 339

15.4.26 ZA – Remote Assign Value (CAN Networking) 340

15.4.27 ZC – Remote Command (CAN Networking) 341

15.4.28 ZI – Remote Parameters Array (CAN Networking) 342

15.4.29 ZM – Remote Message (CAN Networking) 343

15.4.30 ZR – Remote Report Value (CAN Networking) 344

15.4.31 ZS – Remote Command Status (CAN Networking) 345

PART IV – NANOMOTION SHELL APPLICATION ... 346

16 Introduction ... 347

16.1 General .. 347

17 Software Installation ... 348

FlexDC Software User Manual Table of Contents

Nanomotion Ltd. 15

17.1 Hardware Drivers' Installation ... 348

17.2 Software Installation ... 348

17.2.1 Nanomotion Shell Application ... 349

17.2.2 SCServer DCOM... 349

17.2.3 SrcEdit Software ... 349

18 The Nanomotion Shell Application GUI ... 350

18.1 General .. 350

18.2 Main Screen ... 350

18.2.1 Axes Status Area .. 351

18.2.2 Macro Status Area .. 352

18.2.3 Version Control Area ... 353

18.2.4 Fast Menu Button .. 353

18.3 Folders ... 354

18.3.1 Motions Folder Group ... 355

18.3.2 Configurations Folder Group ... 362

18.3.3 I/O’s Folder Group .. 366

18.3.4 Special Function Folder Group .. 371

18.3.5 Miscellaneous Folder Group ... 374

18.3.6 Custom Commands: 1 – 3 Folder Group 378

18.3.7 Manuals Folder Group .. 380

18.4 Menus .. 381

18.4.1 File Menu .. 381

18.4.2 Communication Menu ... 385

18.4.3 Macro Menu .. 389

18.4.4 Commands Menu .. 391

18.4.5 Data Recording Menu ... 392

18.4.6 Tools Menu ... 393

19 "Srcedit" – the Macro File Editor Application .. 396

19.1 General .. 396

FlexDC Software User Manual Table of Contents

Nanomotion Ltd. 16

19.2 Main Screen ... 397

19.3 Workspace ... 398

19.4 Macro Editing ... 400

19.5 Macro Downloading .. 401

19.6 Macro Debugging ... 402

19.7 Menus .. 405

19.7.1 File Menu .. 405

19.7.2 Edit Menu .. 408

19.7.3 Options Menu .. 410

19.7.4 View Menu .. 412

19.7.5 Macro Menu .. 413

19.7.6 Communication Menu ... 416

19.7.7 Window Menu ... 416

19.8 Toolbars ... 417

19.8.1 Edit Toolbar ... 417

19.8.2 Debug Toolbar .. 418

19.9 Appendix B – Macro File Editor Application Keyboard Shortcuts 419

PART V – SCSERVER COM/DCOM INTERFACE LIBRARY .. 420

20 Introduction ... 421

20.1 Interface Specifications .. 422

20.2 The SCServerScope Application .. 424

20.3 Keys Used by the Application ... 425

20.4 Product Notations Revisions ... 425

21 Getting Started... 426

21.1 Setting up the Object, Baud and Card Type ... 426

21.2 Using the Object from VB ... 426

21.3 VB Code Example .. 428

21.4 Using the Object from Visual C ... 430

22 Object Parameters and Methods Syntax .. 431

FlexDC Software User Manual Table of Contents

Nanomotion Ltd. 17

22.1 Object Parameters.. 431

22.2 Object Methods .. 436

23 Object Definitions .. 442

23.1 Communication Protocols ... 442

23.2 FlexDC Type Supported ... 442

PART VI – COMMUNICATION LIBRARY (COMMDLL.DLL) .. 443

24 Introduction ... 444

24.1 General .. 444

24.2 The RS232 Communication DLL .. 444

25 The Communication Library - COMDLL.DLL ... 446

25.1 Instructions ... 446

25.2 DLL API Functions.. 447

25.2.1 CreateComDev ... 447

25.2.2 DestroyComDev .. 447

25.2.3 SetupComDevInfo ... 448

25.2.4 OpenComDev ... 449

25.2.5 CloseComDev ... 449

25.2.6 IsConnected .. 450

25.2.7 CopyComInfo .. 451

25.2.8 SendComString ... 452

25.2.9 ReadString .. 453

25.2.10 ReadComBuf .. 454

25.2.11 ReadSizeComBuf .. 455

26 Communication Error Codes .. 456

27 Code Example .. 457

PART VII – GLOSSARY ... 459

28 Glossary ... 460

FlexDC Software User Manual Lists

FLDC458001-01 REV:B August 29, 2012
Nanomotion Ltd. POB 623, Yokneam 20692, Israel

Tel: 972-73-2498000 Fax: 972-73-2498099
Web Site: www.nanomotion.com
E-mail: nano@nanomotion.com

List of Figures
Figure 1: Communication Channels Handling within the Firmware Main Idle Loop 28
Figure 2: Milti-Computer / Controller Network ... 39
Figure 3: Single Computer / Controller Network .. 39
Figure 4: RS232 and LAN Connections .. 40
Figure 5: Nanomotion Shell Application – Configurations Menu .. 41
Figure 6: Communication Settings Dialog Box .. 42
Figure 7: Typical motion profile with full smoothing ... 76
Figure 8: Typical Motion Profile with no Smoothing ... 77
Figure 9: Velocity PI Controller .. 79
Figure 10: The FlexDC PIV Filter .. 80
Figure 11: Analog Input Scaling Block Diagram .. 121
Figure 12: Macros and Macro Source Buffer ... 250
Figure 13: Nanomotion Shell Application Main Screen .. 271
Figure 14: "Srcedit" – the FlexDC Macro File Editor ... 272
Figure 15: FlexDC Shell File Locations Setup Dialog .. 275
Figure 16: Srcedit Macro Debugger Window ... 278
Figure 17: Srcedit Macro Debugger Window Toolbar .. 280
Figure 18: Reporting Descriptive Directive Information .. 292
Figure 19: Mathematical Parsing Example .. 296
Figure 20: FlexDC Main Screen .. 350
Figure 21: Axes Status Area ... 351
Figure 22: Macro Status Area ... 352
Figure 23: Version Control Area .. 353
Figure 24: Fast Menu Button ... 353
Figure 25: The Menu Button .. 354
Figure 26: Motion Folder Group .. 355
Figure 27: Point-To-Point Folder ... 356
Figure 28: Jogging Folder ... 358
Figure 29: Gear Folder .. 359
Figure 30: Joystick Folder ... 361
Figure 31: Configurations Folder Group .. 362
Figure 32: CAN Folder .. 363
Figure 33: Protection Folder .. 364
Figure 34: Configuration Folder ... 365

FlexDC Software User Manual Lists

Nanomotion Ltd. 19

Figure 35: I/O’s Folder Group ... 366
Figure 36: I/O Logic Folder ... 367
Figure 37: Analog In Folder ... 368
Figure 38: Analog Out Folder .. 369
Figure 39: I/O Modes 0 Folder .. 370
Figure 40: Special Function Folder Group ... 371
Figure 41: Event Capture Folder ... 372
Figure 42: Event Generator Folder .. 373
Figure 43: Miscellaneous Folder ... 374
Figure 44: Data Recording Folder ... 374
Figure 45: Super Custom Folder ... 377
Figure 46: Custom Commands Folder Group .. 379
Figure 47: Edit Custom Command Dialog Box .. 380
Figure 48: The Nanomotion Shell Application Main Menu ... 381
Figure 49: Edit All Custom Commands Dialog... 382
Figure 50: File Location Setup Dialog Box .. 383
Figure 51: Communication Settings Dialog Box .. 385
Figure 52: Terminal Folder .. 388
Figure 53: Array Editing Dialog ... 393
Figure 54: Watch Dialog .. 395
Figure 55: Macro File Editor Application Main Screen ... 397
Figure 56: Workspace Area... 398
Figure 57: Macro Editing ... 400
Figure 58: Macro Debugging ... 402
Figure 59: Debugging Area Example .. 404
Figure 60: Source Code Edit File Location Dialog ... 407
Figure 61: Find Dialog Box .. 409
Figure 62: Replace Dialog Box .. 409
Figure 63: Editor Options Dialog Box .. 410
Figure 64: Colors Dialog ... 411
Figure 65: Edit Toolbar .. 417
Figure 66: Debug Toolbar ... 418
Figure 67: DCOM Communication Registry Setup .. 426
Figure 68: References Dialog Box... 427

FlexDC Software User Manual Lists

Nanomotion Ltd. 20

List of Tables

Table 1: CAN Bus Pre-Fix Byte Format ... 47
Table 2: Pre-Fix Axes identifiers ... 47
Table 3: Normal Clause CAN Bus Message Format.. 49
Table 4: Non-Normal Array Clause CAN Bus Message Format .. 51
Table 5: EDB Buffers .. 58
Table 6: Control Filter Parameters .. 90
Table 7: Internal Controller Variables for Data Recording ... 101
Table 8: “PG” Array - Compare Function Parameters Description 107
Table 9: Error Codes Generated by the "PQ" Compare Function 110
Table 10: A 32-bit Array Word ... 112
Table 11: FlexDC Keywords Attributes and Restrictions ... 125
Table 12: Commands Keywords List ... 126
Table 13: Parameters Keywords List ... 130
Table 14: Motion and Profiler Related Keywords ... 131
Table 15: Control Filter and Real time Servo Loop Related Keywords 132
Table 16: Data Recording Related Keywords .. 132
Table 17: Special Encoder Interface Related Keywords .. 133
Table 18: I/O Functions Related Keywords ... 134
Table 19: Communication and Configuration Keywords .. 135
Table 20: Protection Keywords ... 135
Table 21: General Purpose Related Keywords.. 135
Table 22: End Of Motion Reason (EM) Codes. ... 162
Table 23: Motor Fault Cause Reasons - (MF) Codes in FlexDC. 179
Table 24: Extended Motor Fault Cause Reasons - (MF) Codes in FlexDC 180
Table 25: “MS” Motion Status Parameter Bits Description .. 184
Table 26: "OM" - I/O Mode Configuration Functionality Definitions 190
Table 27: IO_MODE_0 Bits Order ... 190
Table 28: FlexDC "XOM" - IO_MODE_0 Bits Configuration Description 191
Table 29: IO_MODE_1 Bits Order ... 191
Table 30: FlexDC "YOM" - IO_MODE_1 Bits Configuration Description 192
Table 31: FlexDC to Host - CAN VR Version Report Message Format 233
Table 32: “ZI” array .. 240
Table 33: Communication and Program Error Codes .. 247
Table 34: FlexDC Macro Program Handling Keywords ... 252
Table 35: Macro Program Operators ... 256

FlexDC Software User Manual Lists

Nanomotion Ltd. 21

Table 36: Macro Program Flow Control Keywords .. 261
Table 37: Macro Program Wait and State Inquiry Keywords ... 265
Table 38: Macro Program, Internal Wait Conditions .. 266
Table 39: Macro Program Timer Keywords ... 268
Table 40: Srcedit Macro Debugger Window Toolbar and Menu Functions 281
Table 41: FlexDC Program Handling Keywords .. 309
Table 42: Macro Program Operators ... 310
Table 43: Macro Program Flow Control Keywords .. 311
Table 44: Macro Program Wait And State Inquiry Keywords ... 311
Table 45: Macro Program Timer Keywords ... 311
Table 46: Macro Program Remote CAN Access Commands .. 312
Table 47: Pre-compiler directive commands and Keywords .. 313
Table 48: Macro File Editor Application Keyboard Shortcuts ... 419
Table 49: Interface Commands ... 435
Table 50: Interface Commands Methods ... 441

FlexDC Software User Manual Part I– Preface

Nanomotion Ltd. 22

Part I – Preface

FlexDC Software User Manual Part I– Preface

Nanomotion Ltd. 23

1 Preface
1.1 Overview

FlexDC Motion Controller — Nanomotion’s dual-axis controller driver. The FlexDC is offered

in either single or dual axis configurations. It is a stand alone system, which operates with a

standard power supply of 100-240 VAC, 50-60 Hz (for FlexDC technical data, refer to "FlexDC

User Manual").

This "FlexDC Software User Manual" is divided into six parts. Every part contains detailed

information of the subject it is discussing. The user can easily navigate through the manual

using the embedded links in every chapter.

1.2 FlexDC Software User Manual Structure

 Part I– Preface.

Chapter 1 – Preface.

 Part II– FlexDC Software and Commands Reference. This part focuses on the

FlexDC communication syntax, protocols, including response to commands

clauses and errors.

Chapter 2 – Commands Syntax and Protocols. This chapter provides full

information over the supported software features of the product, and gives a user

technical reference for each keyword supported by a communication protocol.

Chapter 3 – Motion Modes. This chapter describes the various motion modes that

are supported by the FlexDC.

Chapter 4 – The Control Filter. This chapter describes the Linear Filters equations

and Non-linear Algorithms.

Chapter 5 – Faults Protections and Limits. This chapter provides detailed

description of faults, protections and the controller's response in each case.

FlexDC Software User Manual Part I– Preface

Nanomotion Ltd. 24

Document Structure (continued)

Chapter 6 – Advanced Features. This chapter describes the FlexDC advanced

features such as "Data Recording", "Advanced Encoder Interfaces" and others.

Chapter 7 – Keywords Reference. This chapter describes the keywords

supported by the flexDC firmware.

Chapter 8 – Communication and Program Error Codes. This chapter lists all

possible communication and program Error Codes (EC) supported by the FlexDC

firmware.

 Part III– FlexDC Macro Language. This part describes the FlexDC macro-

programming language and environment.

Chapter 9 – Introduction.

Chapter 10 – FlexDC Macro Engine.

Chapter 11 – FlexDC Low-Level Macro Program

Chapter 12 –Integrated Development Environment. This chapter covers all the

details of the Nanomotion Shell Application, related to macro programming

support for the development, downloading, and debugging of FlexDC macros.

Chapter 13 – The IDE Pre-Compiler Support. This chapter discusses the built-in

Integrated Development Environment pre-compiler module, the main purpose of

which to extend the basic features of the low-level language syntax to high level

syntax.

Chapter 14 – Script Example.

Chapter 15 – FlexDC Script Keywords Commands Reference. This chapter lists

macro related commands supported by the FlexDC.

FlexDC Software User Manual Part I– Preface

Nanomotion Ltd. 25

Document Structure (continued)

 Part IV – Nanomotion Shell Application

Chapter 16 – Introduction

Chapter 17 – Software Installation

Chapter 18 – The Nanomotion Shell Application GUI

Chapter 19 – "Srcedit" – the Macro File Editor Application

 Part V– SCServer COM/DCOM Interface Library. This part describes the COM

software interface module for the Nanomotion FlexDC servo controller.

Chapter 20 – Introduction

Chapter 21 – Getting Started

Chapter 22 – Object Parameters and Methods Syntax

Chapter 23 – Object Definitions

 Part VI– Communication Library (Commdll.dll). The "Comdll.dll" library enables

the user and interface to COM ports, using the RS232 communication.

Chapter 24 – Introduction

Chapter 25 – The Communication Library - COMDLL.DLL

Chapter 26 – Communication Error Codes

Chapter 27 – Code Example

 Part VII – Glossary

FlexDC Software User Manual Part I– Preface

Nanomotion Ltd. 26

1.3 FlexDC Installation and Operation Sequence

Related Documentation Action

Controller installation

Connecting the system

Software installation

Communication
OK?

Check communication
settings and
connection

Tuning the controller

Operating the controller:
direct mode /

programming mode

FlexDC User Manual (Quick
Start chapter).

Not OK

OK

FlexDC Software User
Manual

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 27

Part II – FlexDC
Software and

Commands Reference

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 28

2 Commands Syntax and Protocols
2.1 Introduction

This chapter focuses on the FlexDC communication syntax, including response to commands

clauses and errors.

2.2 Supported Communication Protocols

The FlexDC currently supports two basic communication protocols and channels:

• ASCII based RS232

• Binary CAN bus.

Using separate hardware interface layers, the RS232 and CAN bus communication links (and

their protocols) are completely independent from one another, and can be used

simultaneously (excluding few special cases as described in section 2.2.1 below).

Figure 1: Communication Channels Handling within the Firmware Main Idle Loop

Firmware
Main Idle Loop

Process Binary
CAN Messages

Process ASCII RS232
Messages

Process Internal Scripts
Programs

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 29

As shown in Figure 1, the servo controller firmware main loop is continuously monitoring both

communication channels, handling incoming messages separate from one another. This is

possible in the FlexDC firmware and syntax architecture as almost all keywords and

commands are executed immediately without blocking any other processes. The complete

“bits and bytes” comprehensive description of each one of the protocols is fully covered,

further in this user manual.

2.2.1 Simultaneous Communication Channels Operation
Support

As discussed above, both communications protocols can operate simultaneously

without any interference. This is possible in the FlexDC architecture as almost all

keywords and commands are executed immediately without blocking any other

processes.

However, there are certain cases where a special operation in one channel can block

the other. These cases are:

• When downloading new firmware in RS232 (supported ONLY in RS232), all other

channels are immediately disabled.

• When downloading a new user program in one of the channels, the other channel is

blocked for the same operation. Other communication with the second channel is

fully functional.

• When uploading large arrays in one channel, other channels are blocked until the

upload operation is completed.

2.3 FlexDC Communication Language Definitions

2.3.1 General

In the following sub-sections, the FlexDC basic communication language is defined.

It should be noted that the same “Language Syntax Rules” apply, regardless of the

command source, which can be one of the following: RS232 communication, CAN Bus

communication, possible future supported communication links, and the internal script

program engine.

When a new command is received from either one of the channels described above,

its source is recorded for later reference, and the command itself is passed to an

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 30

internal software module “The Command Interpreter”, which checks its syntax, and if a

valid command is detected, executes the command.

2.3.2 Language Notations

The communication keywords are divided into two groups of keywords:

• Parameters Keywords.

• Command Keywords.

The execution time of a parameter keyword is minimal and usually negligible (few

micro-seconds at most). The execution time of a command may be longer (for

example: save parameters, or upload list data). Find the definitions of each keyword

type group below.

2.3.2.1 Parameters Keywords

Parameters can always report their value (generally reflecting the value of an

internal software or hardware register) and in most cases can be assigned

with a value. There are some read only parameters that cannot be assigned

with a new value. For example, the “AI” (Analog Input value) is a read only

parameter.

There are some parameters that when assigned with a new value, can also

modify the values of other parameters. For example, when modifying the “PS”

(Current Encoder Position Value) of an axis, the “DP” (The current position

command reference or Desired Position) is also modified to the same value

to avoid positioning errors.

2.3.2.2 Command Keywords

Command keywords always initiate a process (start a motion, save

parameters, begin internal script program execution, etc.). Commands do not

report a specific register values, and in general, do not assign any specific

register values, though they can internally modify the values of more then one

register. For example, the “BR” (Begin Recording) command modifies the

value of the “RR” (Recording Status) register. The “LD” (Load from Flash

Memory) command modifies values of almost ALL registers.

Commands can receive a parameter (actually an argument) which affects the

command process. For example, the command to execute a program (“QE”)

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 31

can receive a label string argument, indicating the name of the subroutine to

execute (e.g. “XQE,#HOME”). Command’s parameter can be a string (see

above), or a number. The command’s parameter is separated from the

command itself using a comma “,” character.

2.3.3 Keywords Attributes and Restrictions

Each keyword has attributes defining it, and restrictions that must be satisfied in order

to accept the command clause. The Command Interpreter module checks the

restrictions before actually executing the command or making a parameter

assignment. For parameters, the restrictions relate only to assignment, since reporting

is always valid.

Restrictions, for both parameters and commands, may include one or more of the

following list:

• None: No restriction is applicable.

• Motor should be ON (0x00000001): The requested command or parameter

assignment needs an enabled motor. For example, the “BG” (begin motion)

command must have its related motor enabled in order to be executed successfully.

• Motor should be OFF (0x00000002): The requested command or parameter

assignment needs a disabled motor. For example, the “CG” (axis configuration)

parameter can be assigned with a new value ONLY if its related motor is disabled.

The assignment can not be executed if the motor is enabled.

• Motion should be ON (0x00000004): The requested command or parameter

assignment can be executed only if a motion is currently being executed.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 32

• Motion should be OFF (0x00000008): The requested command or parameter

assignment can be executed only if there is no current motion. For example, the

Motion Mode (“MM”) parameter can not be changed during motion.

• Parameter is Read only (0x00000010): A Read-Only parameter can only be

inquired for its value. The user can not assign values for Read-Only parameters.

For example, “DP” (the current reference Desired Position value) is a read only

parameter, and can not be directly assigned a new value by the user.

• Keyword Source MUST be an internal program (0x00100000): The keyword can

only be used from an internal script program. For example, the “RT” (return from

subroutine) command can only be called from with in a program subroutine.

• Keyword Source MUST be external Communication (0x00200000): The

keyword can only be used from an external communication link. For example, the

“QD” (download a new program) command can only be called from an external

communication link.

• Keyword Source MUST be RS232 Communication (0x00400000): The keyword

can only be called from an RS232 link. For example downloading new Firmware is

supported ONLY in RS232 mode.

• Keyword Source MUST have all internal programs halted (0x10000000): The

keyword can only be executed when all internal user programs are halted. For

example, the “LD” command (Load from Flash Memory), can be called only in that

case.

Parameter values always have a minimum and maximum value for assignment

clauses. Most parameters are saved to Flash Memory. Few are initialized to default

non-active values at power ON, reset, or Load from Flash memory events.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 33

2.4 Axes and Groups Identifiers

The FlexDC supports Group Definitions for Axes Identifiers. The FlexDC language syntax

requires an axis identifier before any keyword:

• ‘X’, ‘Y’ : FlexDC Axis Prefixes (for physical axes). When a specific axis identifier is

given, the command interpreter interprets the clause and acts upon the specific axis

only.

• ‘B’ for both ‘X’ and ‘Y’ axes. The FlexDC command interpreter supports a notation of

the one Axes Group Identifier. The user can perform an action on more then one axis

simultaneously, for example, reporting the position of all axes at once: the Axes Group

“B”. This group defines X-axis and Y-axis as sub-groups. For example, issuing the

following assignment “BPS=0” sets the position of both axes (X and Y) to “0”.

2.4.1 FlexDC Axes Attributes

In addition to the restrictions and attributes described above, each keyword in the

servo controller has also an “Axes Relation Attribute Field”.

The “Axes Relation Attribute Field” defines whether the keyword is axis related or not,

and also defines to which of the axes the keyword can be related and to which not.

Below is a list that describes the possible “Axes Relation Attributes” supported by the

controller:

Keyword Axes Attributes Axes Supported by the Keyword

None Irrelevant to the axis. The keyword is NOT axis
related.

CPA_KW_IS_AXIS_RELATED Keyword is supported on axes X and Y (both axes)

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 34

2.5 RS232 Communication

This section defines the RS232 communication protocol and syntax, including response to

commands clauses and errors. This section presents the general Language Syntax of the

FlexDC controller’s software as well. Note that the RS232 ASCII protocol, the CAN bus

protocol is logically similar.

2.5.1 Hardware Interfaces

The FlexDC supports the following RS232 hardware Interface:

• RS232, 3 wires, no hardware handshaking.

• 8 bits, 1 start bit, 1 stop bits, no parity.

• Baud-rates of: 38,400 Baud; 115,200 Baud.

2.5.2 Connecting and Defining the RS232

Connect the FlexDC and define the RS232 connection, according to the detailed

instructions, given in the "Quick Start" Chapter, in the "FlexDC User Manual".

2.5.3 Language Syntax – Host to FlexDC

2.5.3.1 Keywords

Each keyword consists of two upper case letters. Some of the parameters are

defined as arrays. These parameters are always referred with their two letters

keyword and with an index number within a square brackets, e.g. AR[2].

2.5.3.2 Clause Termination

Each command clause is terminated with a terminator character, which may

be one of the following:

♦ “CR>” : Carriage Return,

♦ “;” : semicolon.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 35

2.5.3.3 Axis Identification in Clause

Each command clause is preceded with an Axis Identification Letter, to

identify the axis to which the command clause is addressed, see

paragraph 2.4, Part II.

2.5.3.4 Axis Related Keywords and Clause Axis Identifiers

Some of the command clauses are not axis related (e.g.: "SV" for saving

parameters to the Flash Memory or the "AR" for the Data Array), in these

cases the axis identification letter is ignored, although it still MUST be

included. Calling a keyword with no axis identifier pre-fix is an error.

2.5.3.5 Clause Handling

A command clause is handled only after the termination character has been

received. Command clause characters are received (buffer) but are not

handled until the current command handling is completed.

Each command clause includes only a single keyword, which may be a

command or a parameter.

In the case of a command keyword, the command clause includes only the

command keyword (preceded with the axis identification letter). In the case

of a parameter keyword, the command clause may be a report or a set

parameter clause.

A report parameter value command clause includes only the parameter

keyword (with index in square brackets for arrays).

A set parameter value command clause includes the parameter keyword

(with index in square brackets for arrays), “=” and the value. Parameter

values can be in decimal form, long integers and in text format (ASCII

printable characters).

Notes:

 Blanks, tabs and new-line characters are received, echoed but ignored.

 Back-spaces are handled.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 36

Examples:

XSP <CR> Report parameter clauses
YSP ;
XAR[5]<CR>
YSP= 10000; Set parameter clauses
BAC = 1000000 <CR>
BAR[3]=345 ;
XBG <CR> Commands
BST ;

2.5.4 Language Syntax – FlexDC to Host

In case of a report parameter clause, the reported value is sent back to the

host (decimal, long integer, text format).

Each character (including blanks, tabs, new-line and terminators) are echoed

as is, unless otherwise selected by the user "EO" command (Echo ON/OFF).

In case of a report parameter clause, the reported value is sent back to the

host (decimal, long integer, text format in RS232, and binary format in CAN

bus).

2.5.4.1 Clause Prompts

After handling each command clause, a prompt is sent back to the host

computer. The prompt is “>” in the case of a successful command clause

execution or “?>” in the case of any error in the execution of the command

clause (command was not executed).

In the latter case, a dedicated parameter "EC" (Error Code) stores the code

of the last communication error. In cases when the last error was generated

in a user script program, another dedicated parameter stores the last

program Error Code. "QC" (Program Error Code). For a complete description

of all currently supported error codes, refer to chapter 15, Part II, in this user

manual.

Notes:

 An empty command clause is a legal “do nothing” command (can serve as a “ping”

command).

 The prompt is sent only after the clause execution is completed.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 37

Examples:

 The italics strings are the FlexDC responses to the Host computer.

 The blanks are only for the clarity of the example and the send/get timing.

 Setting “SP” (Speed of X axis) to 10,000:

X S P = 1 0 0 0 0 ;
 X S P = 1 0 0 0 0 ; >

 Echo (only if EO=1) Response (always sent)

 Setting “AC” (Acceleration of X and Y by default) to 10,000:

B A C = 1 0 0 0 0 0 0 CR
 B A C = 1 0 0 0 0 0 0 CR >

 Echo (only if EO=1) Response (always sent)

 Reporting the value of the SP (for X and Y by default):

B S P ;
 B S P ; 10000 , 20000 >

 Echo (only if EO=1) Response (always sent)

 Reporting the value of the SP (assuming A is configured to all axes):

A S P CR
 A S P CR 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 >

 Echo (only if EO=1) Response (always sent)

 Executing a Begin Motion Command for X and Y by default:

B B G CR
 B B G CR >

 Echo (only if EO=1) Response (always sent)

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 38

 Trying to assign an out of range value to YAC (error prompt is sent, and EC is updated

accordingly):

Y A C = - 1 0 0 0 CR
 Y A C = - 1 0 0 0 CR ? >

 Echo (only if EO=1) Response (always sent)

 Executing a Script function named “HOME_X” in Program #1 (X):

X Q E , # HOME_X CR
 X Q E , # HOME_X CR >

 Echo (only if EO=1) Response (always sent)

2.6 Ethernet/LAN Communication

This chapter describes how to connect the FlexDC to a PC via Ethernet and establish the

communication.

2.6.1 FlexDC Network Topologies

In order to obtain best communication performance with the controller, it is

recommended to connect the controller to a dedicated scheduled network, apart from

a global organization network. Supporting numerous Ethernet cards is standard

nowadays, and can be easily configured. This network may consist of a single

computer and a controller (Single Computer/Controller network); or of numerous

computers with numerous controllers, all connected via a hub / switch (Multi

computer/controller network).

In Figure 2, the FlexDC controllers are part of a separate network, and are connected

to a switch using standard, non-crossed Ethernet cable (CAT 5E). Smart switches

have the ability to detect crossed cables, and act correctly.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 39

Figure 2: Milti-Computer / Controller Network

In Figure 3 the FlexDC controller is directly connected to the PC. In this case, the

Ethernet cable, must be a crossed cable (CAT 5E).

Figure 3: Single Computer / Controller Network

In either way, the IP addresses of the PC and the controllers must be statically

defined, as there is no DHCP server that dynamically defines these addresses (see

section 2.6.2, Part II).

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 40

2.6.2 Connecting and Defining the Ethernet/LAN

2.6.2.1 Connecting the LAN

Connect the RS232 and the LAN cables between the controller and the PC

(refer to the instructions given in the "Quick Start" chapter in the "FlexDC

User Manual" for the RS232 connection and Nanomotion Shell Application

installation), refer to Figure 4.

Figure 4: RS232 and LAN Connections

2.6.2.2 Setting Controller’s IP Address

The FlexDC controller’s IP address must be set by the user as part of

controller’s connection configuration setup. The controller cannot obtain an

address automatically as a dynamic address; therefore the user must set the

static IP address.

To set the controller’s IP address, follow the next steps:

1. Open the Nanomotion Shell Application (refer to the "Quick Start" chapter

in the "FlexDC User Manual", for Nanomotion Shell Application installation

instructions).

2. On the Nanomotion Shell Application initial main screen select the LAN

communication in the connection combo-box, see Figure 5.

RS232 Cable

Ethernet Cable

LEDs are lit

FlexDC
Rear Panel

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 41

Figure 5: Nanomotion Shell Application – Configurations Menu

3. After the communication is established, click the "Configurations" menu on

the left pane of the main screen.

4. Type the IP address in the "IP Base" window, see Figure 5.

5. Press the button, and then choose to download the

data to the controller.

6. Press the (Save) button on the main screen toolbar to save the

parameters to the Flash Memory.

7. Press the (Reset) button on the main screen toolbar to reset the

controller.

8. Turn OFF and then turn ON the controller again, so the controller

connects to the set IP address.

9. In order to validate the, previously set, on the "Configurations" menu (on

the left pane), click the “CAN” icon.

"Configurations"
menu

Connection
comb-box

Defining the IP

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 42

10. The user can define additional specific options for the LAN connection: on

the "Communication" menu click "Setup Communication Menu" (similar to

RS232 connection, described in the "Quick Start" chapter in the "FlexDC

User Manual").

♦ In the "Communication Settings" dialog box (see Figure 6) choose the

"Controller Name".

♦ Type the IP address (set by the network administrator) in the "IP" window

(see Figure 6).

♦ Define one of the following communication ports in "Ports" window: 4000,

4001, 4002, (see Figure 6).

Figure 6: Communication Settings Dialog Box

11. Check the communication via the Nanomotion Shell Application

connection combo-box.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 43

2.6.3 TCP/IP Protocol (Ethernet / LAN)

In general, the raw data within the TCP/IP protocol is similar to the FlexDC RS232

protocol.

The user should comply with the following guidelines:

• All messages from the host to the controller end with <CR>. After the <CR>, a 1

byte message numerator appears.

• Blanks, tabs, back-spaces and new-line characters should not be sent.

• In case of a report parameter clause, the reported value is sent back to the host in

decimal, long integer, text format.

• As opposed to the RS232 protocol, in the Ethernet protocol has no echo option.

The clause received by the controller is sent back to the host.

• After handling a command or assignment clause, a prompt is sent back to the host

computer. The prompt is “>” in the case of a successful command clause execution

or “?>” in the case of any error in the execution of the command clause (command

is not executed). In this case, a dedicated parameter "EC" (Error Code) stores the

code of the last communication error.

• All messages include an ACK or NACK. (>, ?> or value>). After the ‘>’ sign, the

identical numerator that was sent by the host, is sent back by the controller.

• Standard Ethernet protocol supports chaining numerous clauses with the ‘;’

character (semicolon). In this case, only one numerator be sent, after the CR. The

controller's response reflects the order of the clauses sent, in a single message,

divided by ‘;’. In a case where an axis grouping was sent as part of the clause, the

replies to these clauses are be separated by the ‘,’ character (comma). A CR must

appear. Chaining message length should be limited to 15 messages.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 44

Examples:

Italics strings are the controller’s responses to the host computer.

The blanks are only for the clarity of the example and the send/get timing.

X S P CR 8bitASCIINumerator

10000 > 8bitASCIINumerator

 Response (always sent)

X S P =90000 CR 8bitASCIINumerator

> 8bitASCIINumerator

 Response (always sent)

X A C = 200 CR 8bitASCIINumerator

? > 8bitASCIINumerator

 Response (always sent)
X S P =90000;YSP;XAC=200;BRP CR 8bitASCIINumerator
 >;50000>;?>;2000,3000>8bitASCIINumerator

 Response (always sent)

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 45

2.6.4 Using DCOM Software Library for Ethernet
Communication

The FlexDC is provided with a free DCOM (Distributed Component Object Model)

software library, enabling easy and immediate interface with the customer’s application

program, supporting Visual C++, Visual Basic, LabView and others.

The COM (Component Object Model) server interface supports Ethernet options.

Refer to Part V for the COM / DCOM Interface Library for further information.

The only difference in setting the communication type is in the OpenDeviceEx function.

Once this function is called, (when the connection is defined), all access to the

controller is over the Ethernet link, and is transparent to the user/programmer. The

user needs no prior knowledge in TCP/IP in order to communicate with the controller.

The following is an example for calling OpenDeviceEx function:

OpenDeviceEx(

DeviceID // Device id

eCrsControllerType_SC_NT_2M // controller type (FlexDC)

eCrsCommunicationType_ETHERNET // Ethernet communication

0 // Reserved

LanPort // Flex supports one of the three
ports(any or all): 4000/4001/4002

0 // Reserved

IPAddress // See below for format

0 // Reserved

0 // Reserved

0 // Reserved

0 // Reserved

0 // Reserved

The TCP/IP Port can be one of the following: 4000,4001,4002.

The TCP/IP address format is according to the following:

Lets assume we have the following IP address:

IPAddress | Byte-1 | Byte-2 | Byte-3 | Byte-4 |

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 46

The conversion is performed as follows:

IPAddress = (Byte-1 << 24) + (Byte-2 << 16) + (Byte-3 << 8) + (Byte-1)

In addition to the standard RS232 and CAN Bus communication library interfaces, the

FlexDC also recognizes the Microsoft standard DCOM Server Interface, which

provides easier access to professional or novice programmers to communicate with

the controller. Only high-level keywords knowledge is needed.

2.7 CAN Communication

2.7.1 General

One of the main objectives of the CAN bus interface in the FlexDC is to allow for an

additional communication interface which is much faster than the RS232 and is easy to

implement and access.

CAN communication uses binary language syntax. In general, there are many

common features shared by the RS232 and CAN bus command syntax. However,

there are some important differences.

The exceptions are as follows:

• Most command clauses (all non-special commands) are limited to 8 characters, i.e.

limited to one CAN bus message. Note that not all messages include the full 8

bytes message length.

• Special commands may include more than one full CAN message. See

section 2.7.3, Part II, for more details.

• Since command clauses may be longer than 8 characters, a different (binary)

format is to be used to encapsulate the RS232 command clause into 8 characters

(except for the special commands, as noted before).

• Each response to a command clause is also limited to 8 characters (unless

otherwise noted).

• CAN communication ignores the echo mode and does not send an echo. Prompt is

still sent as usual (except for the special modes).

• Since the CAN hardware controller also indicates the message size, no termination

is used in the communication protocol.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 47

2.7.2 Language Syntax - Host to FlexDC

Normally, CAN communication message has basic 8 bytes structure, (messages

shorter than 8 bytes are also valid).

The first byte in each message is a fixed structure Pre-Fix Byte. The next section

describes the Pre-Fix Byte Structure.

2.7.2.1 The CAN Bus Message Pre-Fix Definition

Each clause sent from the Host to the controller must include a first byte (Pre-

Fix) which describes the clause attributes. This pre-fix byte must include the

following information:

2.7.2.1.1 CAN Bus Message Pre-Fix Definition

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved Special
Command

Commands
Parameter

Normal
command

(not an
array

command)

Command
has data

Axis ID Axis ID

Table 1: CAN Bus Pre-Fix Byte Format

◘ Bits 1, 0

Much like the RS232 communication interface, the CAN bus pre-fix

byte includes a binary bit field (2 bits) that indicates the axis

identifier. Please note that logically, the same axes identifiers as in

RS232 are used as listed in Table 2:

Bit #1 Bit #0 Axis Identifier Mask
(Hex 4 Bits)

0 0 PING Message 0x0

0 1 X 0x1

1 0 Y 0x2

1 1 B 0x3

Table 2: Pre-Fix Axes identifiers

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 48

◘ Bit 2

This bit indicates whether the clause will include data or not. (‘1’ if

clause will include data, ‘0’ if not). The data may be either

Assignment data or Commands Parameter data.

◘ Bit 3

This bit indicates if a parameter clause is a normal parameter (i.e.

not an array parameter, which means that there is no index

required). If this bit is set to ‘1’, then this is a normal command (not

an array). If the bit is ‘0’ then the parameter is an array parameter,

i.e. an array code and index is expected. See section 2.7.2.3 for

"Non-Normal clauses – (Array Clauses)", Part II.

◘ Bit 4

This bit indicates whether the data element in a message is a

‘Command’s Parameter’ or a ‘Parameter Assignment’.

When the bit is ‘0’, then a normal parameter assignment (i.e. with the

‘=’ sign is requested, like RS232 XPS=1234 parameter assignment

for example). This bit should be ‘0’ for all standard parameter

assignments.

When the bit is ‘1’, then the data in the message is referred to as a

‘Command’s Parameter’ (given with a ‘,’), when a command is

expected to receive a parameter. For example, the command ‘XQE’

(execute a program) may be issued with no parameter at all, and

then the program will start running from the current program pointer.

If the user wants to start executing the program from a given label

(or pointer), the label (or pointer) should be given as a ‘Command’s

Parameter’. In RS232 the syntax will be: XQE,#LABEL1 (or

XQE,1234 for a pointer). In CAN, the ‘Command’s Parameter’ bit

should be set to indicate this case.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 49

◘ Bit 5

This bit indicates that a ‘Special Command’ is issued. Currently only

a label (#) command is supported as a special command. When this

bit is set to ‘1’ the controller reacts according to the special case for

each command. See section 2.7.3 for "Special Commands", Part II.

2.7.2.2 Normal Clauses

Assuming the Normal bit (bit3) is ‘1’, the following command structure is

expected, see Table 3:

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Pre-fix KeyW. KeyW. Data(3)
(optional)

Data(2)
(optional)

Data(1)
(optional)

Data(0)
(optional)

Table 3: Normal Clause CAN Bus Message Format

2.7.2.2.1 Normal Clauses Bytes Description

Note:

 Back-spaces, blanks, tabs and new-line characters are not valid under CAN.

◘ Byte 1

A pre-fix, as described above, including clause attributes (AxisID,

data). See section 2.7.2.1 above.

◘ Bytes 2-3

Two bytes representing clause ASCII Keyword (same as RS232

communication keywords). All the controller keywords as described

in chapter 7, Part II, are valid here, except those representing Arrays

(not normal clauses).

◘ Bytes 4-7 (optional)

These 4 bytes are optional, and includes a binary data element

(signed long representation). Note that this parameter is optional,

and is regarded by the controller only if the Pre-Fix Data bit (bit 2) is

‘1’, i.e. clause includes data.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 50

◘ Byte 8:

Not used. Must be empty for future compatibility.

2.7.2.2.2 Normal Clauses Examples

The report X SP clause will be represented in RS232 by:

XSP <CR> RS232 Set parameter clauses

and in CAN by:

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Pre-fix KeyW. KeyW. Data(3)
(optional)

Data(2)
(optional)

Data(1)
(optional)

Data(0)
(optional)

0x09 ‘S’ ‘P’

Message length is 3 bytes.

The set Y AC 10000 clause will be represented in RS232 by:

YAC= 10000 <CR> RS232 Set parameter clauses

and in CAN by:

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Pre-fix KeyW. KeyW. Data(3)
(optional)

Data(2)
(optional)

Data(1)
(optional)

Data(0)
(optional)

0x0e ‘A’ ‘C’ 0x00 0x00 0x27 0x10

Message length is 7 bytes.

2.7.2.2.3 Ping Request

A Ping command is supported under CAN to allow the RS232 <CR>

like command.

A message with length 1 byte that includes only the Normal bit set to

‘1’ will be responded with an OK prompt.

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Pre-fix

0x08

This may be used if the controller is responding to communication

messages at all.

Message length is 1 byte.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 51

2.7.2.3 Non-Normal clauses – (Array Clauses)

Assuming the Normal bit (bit3) is ‘0’, the following command structure is

expected, see Table 4:

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Pre-fix Array
Code

Array
Index-1

Array
Index-0

Data(3)
(optional)

Data(2)
(optional)

Data(1)
(optional)

Data(0)
(optional)

Table 4: Non-Normal Array Clause CAN Bus Message Format

2.7.2.3.1 Non-Normal Clauses (Array Clauses) Bytes
Description

Notes:

 Blanks, tabs and new-line characters are not valid under CAN.

 Back-spaces are not valid under CAN.

◘ Byte 1

A pre-fix, as described above, including clause attributes (X/Y/B,

data ?).

◘ Byte 2

A byte represents the Array Code. Each array (in addition to its

name) has a code. The code must be included in this byte (in binary

format).

◘ Bytes 3-4

Two bytes representing a binary array index, in unsigned short

format (replacing the RS232 ASCII [Array Index]). The valid range

for the array index is the same as in RS232 communication, and

described in chapter 7, Part II.

◘ Bytes 5-8 (optional)

These 4 bytes are optional, and includes a binary data element

(signed long representation). Note that this parameter is optional,

and is regarded by the controller only if the Pre-Fix Data bit (bit 2) is

‘1’, i.e. clause includes data.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 52

2.7.2.3.2 Non-Normal Clauses (Array Clauses)
Examples

The report X AR[5] clause is represented in RS232 by:

XAR[5]<CR> RS232 Report Array member clauses

and in CAN by:

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Pre-fix Array
Code

Array
Index-1

Array
Index-0

Data(3)
(optional)

Data(2)
(optional)

Data(1)
(optional)

Data(0)
(optional)

0x01 0x00 0x00 0x05

Message length is 4 bytes.

The set B AR[1000] = 722 clause will be represented in RS232 by:

BAR[1000]=722<CR> RS232 Set Array member clauses

and in CAN by:

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Pre-fix Array
Code

Array
Index-1

Array
Index-0

Data(3)
(optional)

Data(2)
(optional)

Data(1)
(optional)

Data(0)
(optional)

0x07 0x00 0x03 0xe8 0x00 0x00 0x02 0xd2

Message length is 8 bytes.

The report X PA[1] clause will be represented in RS232 by:

XPA[1]<CR> RS232 Report Array member clauses

And in CAN by:

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Pre-fix Array
Code

Array
Index-1

Array
Index-0

Data(3)
(optional)

Data(2)
(optional)

Data(1)
(optional)

Data(0)
(optional)

0x01 0x05 0x00 0x01

Message length is 4 bytes.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 53

2.7.2.4 CAN Bus Array codes Description

FlexDC supports the following array codes:

Array Array code

AR 0

Not used 1

IA 2

TD 3

Not used 4

PA 5

ZI 6

Not used 7

Not used 8

CA 9

DA 10

PG 11

Not used 12

Not used 13

Not used 14

FF 15

KD 16

KI 17

KP 18

RG 19

Not used 20

Not used 21

Not used 22

RV 23

AI 24

FR 25

Refer to chapter 7, Part II, for more information regarding the arrays.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 54

2.7.3 Special Commands

Currently the only special command case supported is the Label (#) case. The label is

required to execute a program from a specified location.

For example, the command ‘XQE’ (execute a program) may be issued with no

parameter at all, and the program starts running from the current program pointer. If

the user wants to start executing the program from a given label, the label should be

given as a ‘Command’s Parameter’, and the command should be signaled as a special

command.

Since the FlexDC supports up to 6 label characters by CAN, (otherwise it supports up

to 12 characters), and the command itself includes 2 characters, a special format is

defined.

In such cases, the command is split into 2 messages. The first message includes the

label data only (with the pre-fix byte of course), and then the command itself (with no

data) is sent. The ‘Special Command’ bit is used in these cases to indicate that the

command is split into 2 messages.

For example, the following RS232 syntax: ZQE,#LABEL1 (meaning start executing the

Z program from label #LABEL1) is issued in CAN as 2 consecutive messages:

The first message is as follows:

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Pre-fix Special
Code

Label
(byte 1)

Label
(byte 1)

Label
(byte 1)

Label
(byte 1)

Label
(byte 1)

Label
(byte 1)

0x20 0x01 ‘L’ ‘A’ ‘B’ ‘E’ ‘L’ ‘ ‘

Message length should always be 8 bytes (labels are left justified padded with blanks

to the right). Currently, the only special code supported is 0x01 (to indicate the label ‘#’

sign). The prefix includes the ‘Special Command’ bit only as ‘1’.

See the next message:

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Pre-fix KeyW. KeyW. Data1 Data2 Data3 Data4

0x7d ‘Q’ ‘E’ 0 0 0 0

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 55

Message length should be 7 bytes in this case. The prefix includes the ‘Z’ bit (refer

above to axis prefixes), the ‘NORMAL’ bit (0x08), the ‘COMMANDS PARAMETER’ bit

(0x10) and the ‘SPECIAL COMMAND’ bit (0x20). The data bit should be set, and data

should be zero. The actual data is taken from the previous command. Note that

although in this case both the ‘COMMANDS PARAMETER’ bit (0x10) and the

‘SPECIAL COMMAND’ bit (0x20) are set, in general this is dependent on the

command used.

2.7.4 Language Syntax– FlexDC to Host

Clauses sent from the controller to the host may have one of the following structures:

2.7.4.1 Prompt OK

An OK response to a command or a set parameter (normal prompt as in

RS232):

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

‘>’

Message length is 1 byte only.

2.7.4.2 Prompt Not OK

An error response to a command or a set parameter (normal prompt as in

RS232):

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

‘?’ ‘>’

Message length is 2 bytes. In order to retrieve the error code, an EC

command can be issued to the controller.

2.7.4.3 Prompt Including a Single Axis Report Response

If a report command was issued for X or Y, the controller is responding with

the requested data, followed by the prompt (similar to RS232):

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Data(3) Data(2) Data(1) Data(0)

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 56

Message length is 4 bytes. Data is represented binary, signed long format.

Note that no ‘>’ is returned in this case.

2.7.4.4 Prompt Including a Report Response for Two Axes

If a report command was issued for both axes (BAC, AAC) for example), the

controller responds with the requested data, with no prompt.

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Data(3)
Axis1

Data(2)
Axis1

Data(1)
Axis1

Data(0)
Axis1

Data(3)
Axsi2

Data(2)
Axis2

Data(1)
Axis2

Data(0)
Axis2

Message length is 8 bytes. Data is represented in binary, signed long format.

Note:

 The CAN report can return a response to a maximum of two axes.

2.7.4.5 Controller Initiated CAN Messages

FlexDC’s macro program is able to send initiated messages from the

controller to a host.

The command to initiate CAN messages from the controller script program to

a host PC is “ZM”. For more information regarding the “ZM” command refer to

chapter 7, Part II.

The controller can send the following formats:

♦ One report variable – the format of the data in the CAN message is

identical to section 2.7.4.3 above.

♦ Two report variables – the format of the data in the CAN message is

identical to section 2.7.4.4 above.

A string, up to a length of 8 bytes – the host can identify the length of the

CAN message sent. The message bytes are in the order of the string sent

from the controller.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 57

2.7.5 CAN - Enhanced Download Buffer Mode (EDB)

This mode enables a host computer to download large quantities of CAN data to the

AR array.

In this mode, the controller continuously listens to a dedicated CAN address, and

monitors all messages received in it. According to a set of parameters, the controller

then stores the incoming data in the relevant buffers, and auto-increments the store

location for both buffers separately.

The new message format (received by the controller) is:

CAN Byte # 0 1 2 3 4 5 6 7

Data Format D1-LSB --- --- D1-MSB D2-LSB --- --- D2-MSB

Data Long Data #1 Long Data #2

While using this mode, keep with the following guidelines:

• If the received message length is less than 4, the message is ignored.

• If the received message length is equal to 4, only Long Data #1 is assumed valid,

and only a single buffer is updated (Buffer #1).

• If the received message length is less than 8, the message is ignored.

• If the received message length is equal to 8, both Long Data #1 and Long Data #2

are assumed to be valid, and both buffers (#1 and #2) are updated correspondingly.

2.7.5.1 Message Format

Message Bytes order is in little endian format. This is NOT compliant with the

Download Buffer Message format which is inverted (MSB first).

2.7.5.2 EDB Data Validity Check

No validity check to the data value itself is performed. In any case a buffer is

updated with new data; its storing location is defined in a special new

dedicated parameter, and is auto-incremented automatically.

2.7.5.3 EDB Buffers

The Buffer is a valid FlexDC array member (AR[], for example), but the EDB

mode is not limited to AR only. In the EDB mode the user can select to

download to any valid FlexDC array element as explained below.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 58

Furthermore, the user can select to download Data Long #1 to one array, and

Data Long #2 to another array.

The following FlexDC parameters in Table 5 are used for the implementation

of the “Enhanced Download Buffer Mode” (EDB):

XZI[4] Buffer #1 Array Code
This parameter defines the code for the requested Array to be updated by the parameter
“Long Data #1” in the incoming EDB message. Not supported in current FlexDC
firmware.

YZI[4] Buffer #1 Axis Code
This parameter defines the axis to be updated in axis related arrays. 1 is X, 2 is Y, etc. If
a non-axis related array is assigned, this parameter MUST BE “1”. Note that the
controller does not validate this parameter according to the Array type code. See
section 2.7.2.4.

ZZI[4] Buffer #1 Current Index
This parameter is used as the current index to which the new data is stored (in the
selected Array and Axis). The controller ONLY checks that the current index location is
valid for the specific selected array (not for a specific axis!). If the store index is valid, the
index is being auto-incremented (after the store) with the Auto-Increment parameter
value (see below).

WZI[4] Buffer #1 Increment Value
This parameter is used as the Auto Increment value in case a valid store is executed.
This number value is not validated.

EZI[4] Buffer #2 Array Code
This parameter defines the code for the requested Array to be updated by the parameter
“Long Data #2” in the incoming EDB message. Refer above to Array codes. Not
supported in current FlexDC firmware.

FZI[4] Buffer #2 Axis Code
Same as for Buffer #1, to be applied to Buffer #2.

GZI[4] Buffer #2 Current Index
Same as for Buffer #1, to be applied to Buffer #2.

HZI[4] Buffer #2 Increment Value
Same as for Buffer #1, to be applied to Buffer #2.

Table 5: EDB Buffers

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 59

2.7.5.4 EDB Mode Limitations

♦ The EDB mode is supported in CAN bus only and not supported in

RS232.

♦ Unlike the standard DB (Download Buffer) FlexDC command, where the

controller enters a special communication mode, the EDB mode works

continuously and in parallel to normal RS232 and CAN messages (if the

EDB is enabled, of course). This means that when data is downloaded

through the EDB message, the user can communicate with the controller

normally (with exceptions like download macro, upload data recording

buffers, etc.).

♦ When a prompt is requested, the user should always wait for the reply

before sending any other data to the controller (like any other normal

clause).

♦ In the EDB mode, the controller only validates that the array code and the

current store index (for each buffer) are legal. The controller neither

checks that the axis number matches the array type, nor validates the

data range. It is the user's responsibility to guarantee the correct initial

configuration.

2.7.5.5 EDB Mode Example

In order to use the EDB mode, the host software should initialize the following

parameters. This assumes that the user downloads to the buffer #2, i.e. the

Axis1 data is downloaded to AR[301÷600], and the Axis2 data is loaded to

AR[1301÷1600].

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 60

2.7.5.6 Command Sequence

YZI[4] = 1 // Enable EDB the Mode.

YZI[4] = 256 // Enable EDB Prompt Mode.

YZI[5] = 5 // Set The EDB Rx CAN Address.

XZI[6] = 0 // Set first data array to AR[] Array

XZI[7] = 1 // Axis is 1 for Non Axis Related Array.

XZI[8] = 301 // For Start Index AR[301]

XZI[9] = 1 // Inc. Index #1 by “1” each message.

YZI[6] = 0 // Set second data array to AR[] Array

YZI[7] = 1 // Axis is 1 for Non Axis Related Array.

YZI[8] = 1301 // For Start Index AR[1]

YZI[9] = 1 // Inc. index #2 by “1” each message.

Once the above definitions are given, the host should start downloading the

EDB messages in the format described above (8 bytes per message, where

the lower 4 bytes are the data to the main scan axis buffer, and the upper 4

bytes are for the orthogonal axis). For each new slice, the host needs to

modify only the Current Index (next Start Point).

During operation, the user can inquire the value of the “EDB Mode Error
Status Report” to check for EDB message errors.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 61

3 Motion Modes
This chapter describes the various motion modes supported by the FlexDC. Motion mode

defines a type of motion. The exact motion, for each Motion Mode, is defined by a set of

related parameters, such as speed (SP), acceleration (AC) and many other parameters.

While most of these parameters can be modified on-the-fly during active motion (practically

affecting the motion profile), the motion mode itself can not be modified during active motion.

The motion mode for the FlexDC is defined by a combination of two parameters: MM (Motion

Mode) and SM (Special Motion Mode).

Most standard motion modes are defined by the value of MM, with SM=0. Some special

motion modes use both MM (to define the basic motion mode) and SM (to define a special

variation of it).

The following sections describe each motion mode.

Notes:

 The communication clauses given in the following sections for how to start/stop and

monitor each motion mode are just examples. A specific application can use any desired

value for the related parameters (such as acceleration and speed).

 The values of most parameters do not need to be sent again before each motion. The

FlexDC uses the current value of each parameter when a new motion is commanded.

 Sometimes we use a semicolon ‘;’ mark between commands. This is simply to save space.

The user can use the ‘;’ in all commands, or use none.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 62

3.1 Point to Point – PTP (MM=0, SM=0)

In this mode the controller calculates a standard smoothed trapezoidal profile from the current

position to a user specified target position, using a user specified acceleration and speed.

The profile is called trapezoidal since the velocity command has a trapezoidal (or triangular for

short distances) shape. The user can select to smooth the profile in order “round” the sharp

trapezoidal (or triangular) corners. If smoothing is used, then the actual jerks are limited (no

zero time acceleration change). Without smoothing, the jerks are infinite (acceleration is

changed at “0” time).

The target position can be specified relatively to the current desired position, using the RP

(Relative Position) parameter. It can be also specified as an absolute position, using the AP

(Absolute Position) parameter.

It is important to note that PTP motion is always executed toward the value of the AP

parameter. However, sending an RP=<value> clause is internally interpreted as:

AP=DP+<value>,

where DP is the current desired position (normally equal to the current actual position).

As a result, the AP is indeed modified when a new value is assigned to RP, and any following

PTP motion toward AP actually moves to the desired relative position.

The only disadvantage of this method is that, for repeated relative motions, RP should be sent

again before each motion.

The FlexDC supports separate AC (Acceleration) and DC (Deceleration) values in all profile

based motion types. Furthermore, a new DL (Deceleration on Limit) parameter is supported in

order to define a special Deceleration values when Limits are hit (works both for software and

hardware limits).

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 63

3.1.1 Starting a PTP Motion

Communication Clauses Description

MO=1 Enabling the servo loop, motor ON

MM=0;SM=0 Setting PTP motion mode

AC=500000 Assigning a value for the acceleration, [counts/sec2]

DC=500000 Assigning a value for the deceleration, [counts/sec2]

DL=1000000 Assigning a value for the Limit DC, [counts/sec2]

WW=0 Defines no smoothing.

SP=50000 Assigning a value for the speed, [counts/sec]

AP=100000 Assigning an absolute target position, [counts]

RP=30000 or, assigning a relative value for the target position

BG Begin the motion

3.1.2 Monitoring Motions

During and after active motion, the motion status can be continuously monitored using

the following parameters. Note, that these parameters reflect the internal controller

status regardless of the motion mode, and are relevant in all motion modes described

below in this chapter.

The user can of course choose to record any of these variables (and many others)

using the internal Data Recording capability.

Communication Clauses Description

PS Reports the current actual motor position, [counts].

VL Reports the current actual motor speed, [counts/sec].

DP Reports the current desired position, [counts].

PE Reports the current Position Error (DP-PS), [counts]

MO Reports the current motor status. Should be normally "1" for
motor ON. "0" (OFF) only in case of fault during the motion.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 64

Communication Clauses Description

MF A code describing why the motor was lastly disabled:
MF=0: Motor was not disabled.
MF=1: Driver’s fault (Fault Input).
MF=2: Abort input (emergency stop).
MF=3: High Position Error (|PE| > ER).
MF=4: Motor Stuck Condition.
MF=65: Encoder Quad Error.
MF=129: Encoder Dis-Connected Error.

MS A bitwise code describing the current motion status:
Bit 0: In motion.
Bit 1: In stop.
Bit 2: In acceleration.
Bit 3: In deceleration.
Bit 4: Waiting for input to start motion.
Bit 5: In PTP stop (decelerating to target).
Bit 6: Waiting for end of WT period.

SR A bitwise code describing some controller statuses. Currently
only Bit #5 (zero based) is reported. Other bits may be used in
the future and should not be assumed to have any pre-defined
value.
Bit 5: In target1.

EM A code describing the cause for last end-of-motion:
EM=0: Motion is still active.
EM=1: Normal end-of-motion.
EM=2: Forward limit switch (FLS).
EM=3: Reverse limit switch (RLS).
EM=4: High software limit (PS > HL).
EM=5: Low software limit (PS < LL).
EM=6: Motor was disabled (check MF).
EM=7: User command (ST or AB).
EM=8: Motor OFF by user (MO=0).

1 This bit indicates that the motion profile has been finished and that the absolute position error (|PE|) is smaller
than the target radius (TR) for at least target time (TT) consecutive samples (each 61 [µs]).

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 65

3.1.3 Stopping a Motion

A PTP motion is automatically finished when the desired position (the motion profile,

not the actual motor position) reaches the desired target position. At this time the

Motion Status (MS) is read as 0 and the controller is ready for a new motion or a new

motion mode.

The EM (End Motion) parameter is set to 1, indicating normal end-of-motion.

A PTP motion can be also stopped by the following communication clauses:

Communication Clauses Description

AB Aborts the motion immediately (DP remains as its last value).

ST Stops the motion with deceleration to zero speed.

MO=0 Disables the motor, effectively stopping any motion.

Of course, any software or hardware fault, limitation, or protection also immediately

aborts or stops the motion (depending on the fault or limitation type). The last motion

end reason can be monitored with the EM parameter.

3.1.4 On The Fly Parameters Change

The following parameters can be modified on-the-fly during active PTP motion:

Communication Clauses Description

SP Starts an acceleration or deceleration toward the new SP
value.

AC,DC,DL Defined new Accelerations and Decelerations for the current
motion.

RP Changes motion (including direction) to move toward the
new AP (AP=DP+RP) value. RP can be modified even
during deceleration to the previous target position and can
be modified to any value, independent of the current position.

AP Changes motion (including direction) to move toward the
new AP. AP can be modified even during deceleration to the
previous target position and can be modified to any value,
independent of the current position.

Note that AP (or RP) change during motion may cause the motor to change its motion

direction. This happens if a new AP value is given to a point that was already passed

by the system.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 66

3.2 Repetitive Point to Point – Rep PTP (MM=0, SM=1)

This mode is very similar to the standard PTP motion mode, as described above.

However, repetitive motion mode supports motions back and forth between two positions.

Each motion is a standard PTP motion (uses SP, AC, DC etc. as described above) but the

controller automatically generates the sequence of motions without the need to re-sending the

BG command.

This mode is excellent for tuning the PIV filter. The motor is commanded to perform infinite

motions back and forth, while the PIV parameters are modified on-the-fly to examine their

effect on the motion performance (optionally using the Data Recording feature).

Two additional keywords are used for the Repetitive PTP mode:

• WT: Wait Time parameter, in samples: With the FlexDC, each sample is 122[µs]. WT

defines the wait time between consecutive motions. Upon BG, the controller generates

a motion toward AP, waits WT samples and then generates motion toward the original

position, where it waits again WT samples, and so on.

• KR: Kill Repetitive command. Unlike a standard PTP motion, a Repetitive PTP motion

is not finished unless stopped by the user or any fault or limitation. While AB and ST

acts just as for a standard PTP motion, KR stops the repetitive sequence, completing

the current PTP motion and only then stopping. A Repetitive PTP motion is started just

as a standard PTP motion but with SM=1, instead of SM=0. This means that the basic

motion mode is still a PTP motion (MM=0) but it has a special modification, identified by

SM=1.

Notes:

 Each motion segment within a repetitive motion is treated as a standard PTP motion. The

only difference is reflected in the SR parameter, bit 4 (In Repetitive PTP motion). In

addition, when a motion segment is finished and the motion is “paused” for WT samples, a

dedicated bit in MS identifies this status (bit 6).

 Modifying AP on-the-fly modifies the target position of the current segment but does not

affect the second target position (the “back” motion).

 In the FlexDC the repetitive motion is also supported under STEP mode (MM=8).

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 67

3.3 Jogging – JOG (MM=1, SM=0)

3.3.1 Description

In this mode the controller calculates a standard acceleration profile, using the user

specified acceleration (AC) toward the user specified speed (SP).

This speed is kept constant until the motion is stopped by a user command.

In case of an ST (Stop) command, the controller calculates a deceleration profile,

using the user specified deceleration (DC).

The motion’s direction is set according to the sign of the SP (Speed) parameter.

3.3.2 Starting a Jog Motion

Communication Clauses Description

MO=1 Enabling the servo loop, motor ON

MM=1;SM=0 Setting Jogging motion mode

AC=500000 Assigning a value for the acceleration, [counts/sec2]

DC=200000 Assigning a value for the deceleration, [counts/sec2]
Used when stopped or when changing SP on the fly.

DL=1000000 Assigning a value for the Limit DC, [counts/sec2]

WW=0 Defines no smoothing.

SP=50000 Assigning a value for the speed, [counts/sec]

BG Begin the motion

3.3.3 Monitoring a Motion

See section 3.1.2 above, Part II.

3.3.4 Stopping a Motion

A jogging motion is, theoretically, an infinite motion. It stops only as a result of a user

command or due to some fault, limitation or protection.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 68

A jogging motion can be stopped by one of the following communication clauses:

Communication Clauses Description

AB Aborts the motion immediately (DP remains as its last
value).

ST Stops the motion with deceleration (using DC) to zero
speed.

MO=0 Disables the motor, effectively stopping any motion.

Any software or hardware fault, limitation, or protection also immediately aborts or

stops the motion (depending on the fault or limitation type).

3.3.5 On The Fly Parameters Change

The following parameters can be modified on-the-fly during an active jogging motion:

Communication Clauses Description

SP Starts an acceleration or deceleration toward the new SP
value. The New SP value can have a different sign from the
previous SP value.

AC, DC Affects any following motion toward a new SP value.

3.4 Gearing Motion Modes

3.4.1 Position Based Gearing (MM=2)

3.4.1.1 Description

Gearing (or electronic gearing) motion is refer to a motion mode where an

axis follows another axis position with a pre-defined (fixed) ratio. The FlexDC

supports position gearing motion mode for X and Y axes only.

The position gearing is implemented based on a master DP follow method. In

this method, the follower axis is slaved to a (user selected) Master Axis

Desired Position (i.e. master’s DP, not its actual encoder position PS). This

method allows for very accurate multiple axes vector motions, with one axis

being used as a master, while the other axis can be slaved to it’s reference

position (i.e. to the master’s theoretical profiler output).

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 69

Note:

 The master axis can be set to motor ON or OFF (i.e. MO=0). In the latter case, the

master’s DP=PS, so using a disabled axis as a master axis provides true encoder position

tracking.

The following dedicated parameters are used for Position Based Gearing

Motion:

♦ “ME” – Master Encoder or Axis. This parameter defines which axis is the

master axis for a given slave gear motion. The “ME” parameter can select

between the following encoder inputs: ME=0 for X Axis Encoder, ME=1 for

Y Axis Encoder.

♦ “FR”: Following Ratio. This parameter defines the slave’s following ratio in

relation to the master’s axis (“ME”) reference position (“DP”). “FR” can be

any number in the range of: [-2,147,000,000 ÷ 2,147,000,000]. As noted

above, “FR” is an integer number scaled to 8.24 format. i.e.,

“FR=16,777,216” means a following ratio =1.0.

Note:

 The “FR” parameter is using a 32 bit, 8.24 format scaling resolution, to allow ratios of up

to: × ±128, and : × ± 1/16,777,216.

The slave axis reference position is relative to the master’s and slave’s initial

position when the slave axis was initially commanded to actually begin the

Gearing Motion.

Gearing motion is initialized like any other motion. This means that first the

motion parameters and mode should be set, and then a valid “BG” (Begin

Command) should be given. Upon issuing a “BG” command to an axis in

MM=2, first the master and slave initial positions are locked, and then the

axis enters a motion state where its reference is calculated according to the

following equation:

() PSlaveInitDFRDPMasterInitMasterDPSlaveDP +
⋅−

=
21677716 ,,

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 70

Notes:

 For an axis in gearing motion mode (the slave), all other motion profiler parameters (i.e.

“SP”, “AC”, etc.) are ignored.

 Users should avoid altering a master axis “DP” (by a issuing a “PS=” command to the

master axis) while it is connected to a slave axis that is in motion, to avoid position Step

Commands to the slave and possible a high error faults.

 Although “FR” can be change during motion, doing so results in a slave step command,

which may cause a high error fault.

 When an axis is commanded to begin a motion in MM=2, it immediately enters the motion

with the reference as defined above. No acceleration profile is generated for cases where

the master axis is already in motion.

 Like jogging, gearing motion is also theoretically an infinite motion. It stops only as a result

of a user command or due to some fault, limitations or protections.

 If a gearing motion is stopped (by a user “ST” command), or by other faults such as

hardware or software limits, the slave axis starts to decelerate using the relevant

deceleration parameters: “DC” for normal stop commands (“ST”) and “DL” for limit stop

conditions. In this case of course, the axis is “losing” the master’s tracking.

 In Gear Motions “WW” (the smoothing parameter) must be “0”, since the slave is directly

following the master DP according to the equation described above. A “WW” value other

than “0” does not affect normal tracking, but causes a position step command when a stop

command is given.

 Like in all other motions, an “AB” (abort motion) command results in immediate stop of

motion without any deceleration profile.

 Due to an implementation limitation, only when X is following Y, one sample time delay

(122 micro-sec in FlexDC) is present in the generated slave axis (X) reference profile,

related to the master profile (Y).

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 71

3.4.1.2 Starting a Position Based Gearing Motion

Communication Clauses Description

YMO=1 Enabling Y Axis servo loop, motor ON

YMM=2;YSM=0 Set Y axis to Position Based Gear Mode

YME=0 Set Y Master Axis As X (Y follows X)

YFR=1,048,576 Set Following Ratio to 1/16.

YBG Start Y Motion (following the X axis)

In this example, the Y axis is commanded to follow the X axis's reference

position, with a ratio of 1/16. Note that typically, when an axis is intended to

operate in gear mode, the following axis is first being enabled and enters

motion (BG), and only afterwards the master axis is commanded to move.

Starting a gearing motion (BG with MM=2), where the master axis is already

in motion results in a velocity command step to the following axis.

3.4.1.3 Monitoring a Position Based Gearing Motion

See section 3.1.2 above, Part II.

3.4.1.4 Stopping a Position Based Gearing Motion

As noted above, gear motion is, theoretically, an infinite motion. It stops only

as a result of a user command or due to some fault, limitation or protection.

A gear motion can be stopped by the following communication clauses:

Communication Clauses Description

AB Aborts the motion immediately (DP remains as its last value).

ST Stops the motion with deceleration (using DC) to zero speed.
Note that immediately after issuing the “ST” command, the
slave axis stops following the master, and starts an
autonomous stop profile motion towards zero speed.

MO=0 Disables the motor, effectively stopping any motion.

Any software or hardware fault, limitation, or protection also immediately

aborts or stops the motion (depending on the fault or limitation type).

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 72

Note:

 In gear motion, any fault condition acting on the master axis, does not directly affects the

following (slave) axis. This means that the following axis remains linked to the master DP,

regardless of the master’s motion status or motor status. For example, if a master axis is

disabled due to a high error condition, its motor does not turn OFF, but the following axis

still is in motion condition, and keeps following the disabled axis encoder, even after it is

stopped.

3.4.1.5 On-The-Fly Parameters Change

An axis during gear motion is not affected by any of the normal profiler motion

parameters (e.g. SP, AC, etc.).

Although the following ration (“FR”) can be modified during motion, it is not

recommended to do so, as it results in a position and possibly also velocity

reference steps.

3.5 Joystick Motion Modes

3.5.1 Velocity Based Joystick Motion Mode

3.5.1.1 Description

This mode is very similar to the jogging mode. However, instead of jogging in

the user specified SP value, the jogging speed is taken from the analog input

(assuming it is connected to a Joystick or any other source of analog

voltage).

The analog input parameter AI is used instead of SP. All other parameters

(AC, DC etc.) are used exactly as for jogging mode.

3.5.2 Position Based Joystick Motion Mode

3.5.2.1 Description

This mode is very similar to the standard PTP mode. However, instead of

using the user specified Absolute Position (AP) parameter as the target

position, this mode uses the Analog Input (AI) parameter as its target

position.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 73

Since a standard PTP mode supports on-the-fly modification of the AP

parameter, this mode automatically supports the changes of the AI during the

motion, practically tracking them with the user specified acceleration (AC)

and speed (SP) parameters,

These parameters needs to be high enough to enable good tracking on the

joystick motions (variations of the AI parameter) but low enough to avoid

“high-frequencies” motions.

It is important to note that when this mode is activated using the required MM

and SM values, the AP parameter is continuously and internally assigned

with the AI value.

3.6 Position Step Motion (MM=8, SM=0 or SM=1)

3.6.1 Description

In this mode the Desired Position (DP) is assigned with the Absolute Position (AP)

immediately after the Begin (BG) command. The profiler does not generate any motion

profile and the AC, DC and SP values are ignored. The theoretical motion time in this

mode is “0” by definition (True Step command).

This mode is useful for the measurement of the closed loop step response and

bandwidth. It is generally not used in practical applications since it generates infinite

acceleration and jerk. MM=8 can be combined with SM=1 to generate repetitive step

motions.

Note that you can also use the Relative Position (RP) parameter. Assigning a value to

RP modifies the value of AP properly.

The value of the step should be smaller than ER to avoid High Error fault. In addition,

high step values can cause oscillations due to the non-linearity’s (especially saturation)

which are an inherent part of the control loop.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 74

3.6.2 Starting a Step Motion

Communication Clauses Description

MO=1 Enabling the servo loop, motor ON

MM=8;SM=1 Setting Position Step motion mode (Repetitive Mode)

AP=100 Assigning an absolute target position, [counts]

RP=30 or, assigning a relative value for the target position

BG Begin the motion

Note that the FlexDC also supports repetitive Step Motions. Similarly, this can be done

by setting SM=1 instead of SM=0 in the above sequence. WT is used as the delay

time between each two consecutive motions.

3.6.3 Monitoring and Stopping a Step Motion

Note that the step motion mode is very short (one sample time). As a result, it is

practically impossible to monitor the state of this motion.

In addition, a step motion does not affect the EM parameter, which remains at the

same value as it was before the BG command.

Since the step motion is very short, it is not practical to stop it after a BG command.

If a repetitive step motion is commanded, the user should use the KR (Kill Repetitive)

command, much like a normal PTP Rep motion.

3.7 Profile Smoothing in the FlexDC

The FlexDC supports an advanced, symmetric S-curve like profile smoothing algorithm. The

smoothing is controlled by the "WW" parameter.

The "WW" can be set to 0 to avoid any profile smoothing. In that case the generated position

velocity profile is pure trapezoidal (or triangular).

If the "WW" is set to 12, the smoothing is set to its maximal value. In that case the generated

profile has full smoothing, and the velocity trajectory is not a pure trapezoidal.

The "WW" parameter is used by the controller as a power of 2 coefficient for the smoothing

time value. For example, WW=6 means that smoothing is done over a period of time of 2^6

sample time = 1000*2^6/2^13 ~ 8msec.

Setting WW=12 to its maximal smoothing value of 2^12, results in a 0.5 sec.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 75

The following figures show two simple profiles generated in similar motion parameters, with

different smoothing values.

For both motions, the following general parameters are used:

AC=DC=1,000,000

SP=100,000

AP=100,000

In one case no smoothing is used (WW=0), and in the other full smoothing is defined

(WW=12).

Figure 7 below shows the motion profile with full smoothing implemented in the profile. Note

the smooth velocity profile (the upper window in red).

There are no “sharp” corners in the generated velocity profile (like in Figure 8 for instance).

The resulted acceleration profile (not shown in the graph) is continuous and does not have

any sudden “step” changes.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 76

Figure 7: Typical motion profile with full smoothing

WW=12

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 77

Figure 8: Typical Motion Profile with no Smoothing

WW=0

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 78

Note that profile-smoothing implementation does not imply any numerical limitations, and does

not include any “minimal motion time” limit, which may be implied by the use of the smoothing

itself.

The user should be aware that theoretically, a smoothed profile takes longer time to complete

than a similar trapezoidal profile with no smoothing.

The actual time difference between the non-smoothed theoretical trapezoidal profile to the

smoothed one depends on all motion profile parameters (SP, AC, DC and the motion distance

of course).

In any case, the maximal time difference does not exceed the overall smoothed period (2^WW

sample times).

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 79

4 The Control Filter
4.1 General

The FlexDC Filter is based on Position over Velocity Loop PIV Filter (see Figure 10).

In the following sections the Linear Filters equations and Non-linear Algorithms are described

in details.

4.2 Linear PIV Filter Equations

4.2.1 PIV Filter Mode

In closed loop operation in PIV mode, the control loop structure can be considered as

divided into two separated loops: an external position loop cascaded over an internal

velocity loop.

The velocity loop linear PI filter in PIV mode is shown in Figure 9.

Figure 9: Velocity PI Controller

KD

Loop Gain

11 −− z

KI

1

+

+

Velocity

Error

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 80

Figure 10: The FlexDC PIV Filter

PO

Motion
Profile

Generator
KP

DP
+

-

PE

PS

Velocity
PI Filter

+
+

-

2nd
Order
Filter

+
+

Command
Saturation

±TL 16 Bit
DACS

(Dac_Gain)

Driver
AB1/AB5

MMoottoorr

Position
Loop Gain

Auxiliary
Analog
Command

±10 V, 16 bit,
Analog Voltage

Command
Interfaces

FF[1]

Open Loop
Command (TC) Open Loop Operation

Mode Switch (NC)

+

(1-Z-1) FF[2]

Velocity Feed Forward

Encoder
Gain

(Enc_Gain)
(1-Z-1)

Encoder Position – PS (Counts)

Encoder Velocity –
(Counts / Second)

Acceleration Feed Forward

+

ø

Dead
Zone

Algorithm*

PE
Motion Phase

* The Dead Zone Algorithm is
enabled only with AB1 Driver.

Encoder Counts

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 81

The linear filter equations in the PIV Filter Mode are:

),(

)(
)(

'
'

'

rFilterSecondOrdeUTLSatPO

VEKIVEU

KDVEVE
PSPSVCVE

DPDPKPPEVC
PSDPPE

kk

k

i
k

k
k

kk

KKkk

KKkk

KKk

×=

×+=

×=

×−−=
×−+×=

−=

∑
=

−

−

0

1

1

65536

65536
65536

where:

 DP, PS and PE are the desired position, actual position and Position Error (similar to PID

mode).

 KP is the position loop gain.

 KI is the velocity loop Integral term gain.

 KD is the velocity loop overall gain multiplier.

 VC is the velocity loop reference command. Note that VC includes an inherent (not

controlled by the user) velocity command Feed-Forward element, represented in the

second equation above by: DPk-DPk-1.

 VE is the internal velocity loop error. The velocity loop feedback is currently used as a

simple numeric derivative of the position reading, represented in the third equation above

by: PSk-PSk-1. Both VC and VE are internal software variables and can not be accessed

from the communication.

 U is the Velocity PI filter output.

 TL is the output command saturation value.

 The 2nd order filter block is filter high order low-pass filter.

 PO is the final control loop output. This value is converted to the analog output command

for the external driver using the 16 bit DAC in the system.

The filter equations in this case can also be written in a Z transform transfer function

equation as follows:

() 







−

+×××−+×= −
−

)(
)(1

1

165536
1655361

z
KIKDzKPPEU

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 82

Note that the final closed loop transfer function (2 zeros and an integral), has different

parameter scaling, and an isolated parameters form. This can be considered as a

more convenient filter form, as one can note that the filter has 2 zeros, separately

effected by KP and KI, an integral, and total loop gain KD (actually the velocity loop

gain).

Another benefit in that form is that one can operate the closed loop system with KP=0

(no position feedback) to tune the velocity loop performances only, and then use the

KP gain to control the position loop gain (and resulted bandwidth).

4.2.2 Position Error Calculation

The Position Error variable PE is a read only parameter, updated by the real time

control loop, and computed by:

KKk PSDPPE −=

where, as noted above: DP, PS and PE are the desired position, actual position and

Position Error, all in encoder count units.

The Position Error is always “0” by definition whenever the servo is OFF (MO=0), since

the servo controller automatically updates the current desired position “DP” to be equal

to the actual position “PS”.

During all Servo ON modes (MO=1), in both open and closed loop cases, the real time

control loop checks the current Position Error value (“PE”) and compares it to the

maximum allowed Position Error (ER). Whenever PE > ER the real-time loop

automatically disables the motor and indicates the error reason as High Error fault.

In the FlexDC, the maximum ER value can be as high as 8,000,000 counts.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 83

4.3 High (2nd) Order Filters

The FlexDC includes a digital 2nd order filter. The filter can be enabled or disabled using a

special dedicated new parameter: CA[13].

• When CA[13]=0 the 2nd order filter is disabled in all modes.

• When CA[13]=1 the 2nd order filter is enabled in all modes.

The 2nd order filter equations are:

22110

2211

0

1

−−

−−

×+×+×=

×−×−
×

=

KKKk

KK

K
k

YbYbUaY
or

YbYb
aU

Y

where:

U and Y are the filter input and output signals, and

a0, b1, b2 are the filter constants.

The filter parameters are user defined, and are set in by a special set of dedicated new

parameters: CA[7], CA[8], and CA[9] with the following scaling:

CA[7] = a0 x 65536 x 16384.

CA[8] = b1 x 65536.

CA[9] = b2 x 65536.

With the Nanomotion Shell Application, the user can easily and automatically set filter

variables. The Shell provides a utility that converts standard Frequency and Damping values

to the controller filter form parameters scaling. The Shell is using a standard Z transform for

the conversion.

Note:

 The 2nd order filter is present in both closed and open loops. The user can test the

operation of the filter in open loop, and record the step response of the filter. This can be

done (when the 2nd order filter is enabled) by switching to open loop mode (NC=1), issue a

torque command (TC=XX), and record the driver command signal.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 84

4.4 Output Command (DAC Out)

The FlexDC has a 16 bit DAC Output.

• +10V is represented by +32,767 and

• –10V is represented by –32,767.

4.5 Encoder Gain

The controller counts quadrature encoder pulses. This implies a feedback gain. For example,

a typical linear system with an encoder of 0.1µm resolution, mounted on the linear stage, the

encoder’s gain is as follows:

Enc_Gain = 107 counts/m

4.6 Non-Linear Elements

The actual control filter structure includes the following non-linearities:

• The filter command output is saturated to the value of the “TL” (Torque Limit)

parameter. The output command saturation is active at all times in all modes. The

software range limit for “TL” is 0 ÷ 32,767 in DAC [LSB] units or from 0 to 10 V to the

Driver command. It is recommended to set TL to 32767 full drive command.

• When working in closed loop operation only, the filter Integral term output is also

saturated to the value the IS (Integral Saturation) parameter. The software range limit

for “IS” is 1 ÷ 32767 in DAC [LSB] units. It is recommended to set the Integrator limit IS

to 16500 (approximately half of the full drive command).

• To the value of “PO” (the final filter signal output, after the 2nd order filter calculations)

an offset value defined by “DO” (DAC Offset) is added in order to compensate analog

output voltage offset. Although the software range limit for “DO” is ±32,767 in DAC

[LSB] units, it is usually not required to use values more then few hundreds. Note that

by using high values of “DO”, a non-symmetrical analog output range can be resulted.

The final DAC command is always protected from roll over beyond 16 bit value. It is

recommended to set DO to "0".

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 85

• The encoder has a finite digital resolution, which also implies a non-linear quantization

effect.

• Non-Linear Gain Scheduling – see the next section for more information.

4.7 Filter Gain Scheduling

The FlexDC software has a built in control filter gain-scheduling logic. The gain-scheduling

logic may be used in order to improve the settling performances of a system (mainly to reduce

settling times).

This is done, simply, by changing the filter's constants (KP, KI, KD) for a short period of time

after a motion is completed. The user can define the period (after previous end of motion

condition) in which the gain-scheduling is effective.

The following parameters can be used by the user in order to operate the gain-scheduling

feature:

• KP[2] is the parameter replacing KP (= KP[1]) when gain-scheduling is active.

• KI[2] is the parameter replacing KI (= KI[1]) when gain-scheduling is active.

• KD[2] is the parameter replacing KD (= KD[1]) when gain-scheduling is active.

• CA[4] is the gain-scheduling period, in servo sample time.

The gain-scheduling is active (i.e. KP[2], KI[2], KD[2] are used) after a motion is fully

completed (Motion Status bits are not in motion), for a period of CA[4] sample times. If before

that a new motion has begun, the gain-scheduling is immediately disabled.

To disable the gain-scheduling, the user can simply set KP[2]=KP, KI[2]=KI, KD[2]=KD, and/or

set the period CA[4]=0. Both disable the feature.

The user should avoid using too high parameter settings to avoid the system losing stability

when the gain scheduling is active. It is also not recommended to use this feature when very

high position errors are reached during final motion acceleration phase.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 86

4.8 AB1A Driver Special Algorithms

4.8.1 Dead Zone Algorithm

This algorithm improves the settling time, taking full advantage of the intrinsic motor

friction. The algorithm sends zero command to the driver when the position

approaches the target within the Dead Zone Min CA[36] in encoder counts unit. When

the Position Error increases above the Dead Zone Max CA[37], the controller starts

“servoing” again. Typically, in a system with encoder resolution of 0.1µm Dead Zone

Min is between 1 to 2 counts and Dead Zone Max is between 4 to 10 counts.

Note:

 This mode is active only when not in motion. This mode can be enabled or disabled by bit

1 in CA[33] (0 based).

4.8.2 Feed-Forward Algorithm

This algorithm "zeros" the Feed-Forward Velocity value if the absolute distance

between the current position (PS) and the final destination (AP) is smaller or equal to

the value of CA[38]. The value depends on the total moving mass and encoder

resolution. Typically, this value equals to 20-50µm. This algorithm is active in single

Point-To-Point motions mode only (i.e. MM=0, SM=0).

Note:

 This mode can be enabled or disabled by bit 0 in CA[33] (0 based).

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 87

4.8.3 Offset Algorithm

The offset algorithm improves the start motion time by reducing the motor dead band.

If desired velocity is positive - CA[34] value is added to driver command.

If desired velocity is negative - CA[35] value is added to driver command.

Note:

 The offset is added before the 2nd order filter and FF.

 This mode works in repetitive motion.

 This mode can be enabled and disabled by bit 2 in CA[33] (0 based).

 It is user's responsibility to verify that the range of the offset is correct (0-3200 max).

4.8.4 UHR Algorithm

The UHR algorithm takes the Velocity Filter output and creates a PWM command.

The cycle of the UHR, can be defined in CA[39]:

(CA[39]=8) defines 100% PWM.

Notes:

 If the CA[39] value is bigger than 8, command to driver is normal PIV output.

 If the CA[39] value is smaller than '0', command to driver is always '0'.

 The UHR algorithm does not affect driver offset for analog output.

 The UHR algorithm works in both open and closed loops. (CA[39]=0) defines 0 PWM.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 88

4.9 AB5 Driver Brake Mode

The FlexDC Motion Controller has the Brake Mode when working with AB5 driver. In Brake

ON Mode the driver disconnects the power supply to the motor; however servo is still active.

As the motor is turned OFF, it consumes no power and the EOP can be extended. Refer to

the "AB5/AB51 Driver User Manual" for detailed information.

Note:

 The combination of Brake ON while the driver is Enabled poses a conflict and the user

must consider the transient upon returning to the Brake OFF Mode.

4.10 Acceleration and Velocity Feed-Forward

The FlexDC supports reference command Feed-Forward features.

• Command Acceleration Feed-Forward (Acc-FF) is supported in closed loop modes.

The Acceleration Feed-Forward gain is controlled by the FF[2] parameter. FF[2]=0

means no acceleration Feed-Forward is used. The Acceleration Feed-Forward Gain

(FF[2]) is working on the profile acceleration in counts/sec2 / 219 units. It is

recommended to set FF[2]=0.

• Command Velocity Feed-Forward (Vel-FF) is currently supported in closed loop control

mode only. The Velocity Feed-Forward gain is controlled by the FF parameter (FF[1]).

In most of the cases FF[1] should be set to "0".

In both cases, the resulted Feed-Forward value is added to the filter command output, in DAC

[LSB] units.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 89

4.11 Open Loop Operation

The FlexDC supports a dedicated open loop operation mode. In this mode the user can

directly set the value of PO, without the closed loop control filter, and regardless of the system

position readings or the position or velocity errors.

Note that although under open-loop mode, the High Position Error protection mechanism of

the controller is still active (see chapter 5, Part II). TL always saturates the command, even

when operating in open loop mode. If the maximum "ER"=8000000 is not enough to operate

the open loop, it is recommended to disconnect the encoder plug from the FlexDC.

The method to activate this mode is to use the NC parameter to disable the closed loop

operation (set NC=1, in motor OFF, and then set motor ON) and to use the TC (Torque

Command) parameter to set the desired PO value.

Because the offset DO is always added to the PO, the actual PO value equals to:

PO = TC + DO.

As the 2nd order filter is applied also under the open loop mode, it is possible to record the

step response of the filter. Use open loop operation and record the Driver Command signal

(see section 4.3, Part II).

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 90

4.12 Summary of all Control Filter Related Parameters

Table 6 summarizes all servo loop related parameters of the FlexDC supported.

Keyword Description

MO Motor ON – Enables (MO=1) / Disables (MO=0) the servo loop.

NC No Control – Enables (NC=1) / Disables (NC=0) open loop mode.

TC Torque Command in open loop mode.

TL Torque Limit – Limits the D2A command – All modes.

IS Integral Term Saturation of PIV control filter.

PO The final control filter output command value.

DO The control filter offset calibration parameter.

CG[Bit3] Configuration Bit controlling set to “0” (PIV mode).

KP,KP[1] Proportional position gain.

KI,KI[1] Integral gain, in velocity loop.

KD,KD[1] Derivative gain, in velocity loop.

KP[2] KP Gain when gain-scheduling is active.

KI[2] KI Gain when gain-scheduling is active.

KD[2] KD Gain when gain-scheduling is active.

CA[4] Gain-scheduling period.

CA[7] 2nd order filter A0 gain.

CA[8] 2nd order filter B1 gain.

CA[9] 2nd order filter B2 gain.

CA[13] 2nd order filter Enable (if “1”) Disable (if “0”) flag.

FF,FF[1] Velocity Feed-Forward Gain.

FF[2] Acceleration Feed-Forward Gain.

Table 6: Control Filter Parameters

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 91

5 Faults Protections and Limits
The FlexDC includes various protection mechanisms and status report parameters, which

ensure safe operation and easy troubleshooting.

The protective mechanisms are divided into two groups: protections and limitations.

• Protection refers to the detection of a fault condition and the response to this condition

(generally disabling the servo).

• Limitation refers to an algorithm which continuously monitors and limits (saturates) a

value, keeping it from reaching a fault condition.

• Fault represents a list of conditions which are detected and responded to with a proper

protection function.

Some of the protections are implemented directly by the hardware, ensuring safe, fast and

immediate response, while some are implemented by software, providing user control of the

protection behavior.

All detected faults result in immediate “Servo OFF” condition. Analog signal commands are

reset to “0” voltage, and the drivers are immediately disabled.

The FlexDC controller detects the following faults:

• Driver Fault (via the Fault Input) – refer to the "Fault Output" and "TP (Termal Protection)"

sections in the "AB5/AB51 Driver" User Manual.

• High Position Error.

• Encoder Signal Error – two types of encoder error detection.

• Motor Stuck Condition.

The FlexDC includes the following protections:

• Verification of correct firmware and FPGA versions after power on.

• Forward Limit Switch – stops any on going motion in the relevant direction.

• Reverse Limit Switch – stops any on going motion in the relevant direction.

• High Position Software Limit – stops any on going motion in the relevant direction.

• Low Position Software Limit – stops any on going motion in the relevant direction.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 92

The FlexDC includes the following limitations:

• The peak driver command is limited, usually to limit the max Force/Velocity command to

the motor. Driver command limitation has two different parameters, TL (which is the

ultimate command saturation limit), and IS which can (separately from TL) limit the Integral

value. This is needed in some cases to improve dynamic responses. It should be noted

that the value of TL overrules the value of IS (see chapter 4, Part II, for details).

The following sections provide a more detailed description of the faults, protections and the

controller response in each case.

5.1 Driver Faults and Abort Input

Driver Fault is a condition indicating that something is wrong with the motor power/driver

connected to the controller. The Driver Fault is an actual hardware signal line that the driver

outputs. This signal is continuously monitored by the controller real time servo loop, at the

main control sample rate of 8 kHz. If the real time software detects that this line is active, the

servo loop axis related to the relevant faulted driver is immediately disabled.

There is a separate, independent Driver Fault Input line for each one of the controller axes.

When an axis is disabled by a Driver Fault, the controller automatically switches to the Servo

OFF (MO=0) condition in that axis. In this condition the controller’s driver inhibit output is

activated, and the analog command is immediately switched to “0” value.

The user can switch the actual logic of the Driver Fault line separately for each axis. This

enables to support any type of Driver Fault electrical and logic interface (active high or active

low). See the CG (axis configuration word) command for more information in chapter 7, Part II.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 93

The following parameters reflect the Driver Faults and Abort conditions:

Controller State Description

MO is set to “0” The motor ON parameter is reset to “0”.

EM is set to “6” Last Motion End Reason is “6”- Motor Fault.

MF is set to “1” for DRV
MF is set to “2” for ABORT

Motor Fault Reason is Driver Fault Input.
Motor Fault Reason is Abort Input.

IP[24] is “1” for XDrv Flt
IP[25] is “1” for YDrv Flt

The relevant bit in IP (the Input Port Word) is set active
(high). Bit 24 for X Driver Fault, Bit 25 for Y.

IP[28] is “1” for ABORT Bit #28 is set high is the Abort input is Active (no current
through the Abort lines).

5.2 Software Generated Faults

The FlexDC real time servo loop software can generate the following faults:

• High position loop error.

• Encoder Signal Error.

• Motor Stuck Condition.

Each one of the above axis related fault conditions generates similar result to a Driver Fault

condition. The specific axis is immediately disabled, and the relevant software status bits are

updated.

5.2.1 High Position Error

This error occurs when the servo loop position error is too high.

The Position Error “PE” is continuously compared to the maximal allowed error value

“ER”. Whenever “PE > ER” the axis is disabled.

The High Position Error protection is active at all times when a servo axis is enabled

(i.e. when MO=1). This means that the Position Error is also monitored when the axis

is in open loop modes. The max allowed positioning error is 8,000,000 encoder counts.

High Position Error fault is reported by “MF=3”.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 94

5.2.2 Encoder Signal Error Protections

The FleXDC hardware supports two types of encoder signals error conditions:

• Encoder A Quad B Error: This error is detected when the controller encoder

hardware interface detects that both “A” and “B” encoder lines are changed

simultaneously. In normal A quad B encoder operation this is an invalid condition.

The encoder signal lines are sampled by the hardware at a very high rate, and If in

a single sample event both “A” and “B” changes their state, the error is asserted.

• Encoder Disconnected Line Error: This error is detected when the controller

encoder hardware interface detects that one of the following: “A”, “!A”, “B”, “!B”

signals are not connected. The condition is detected by sampling all signals, and

evaluating the following state: “(A== !A) | (B == !B)”. If the state is true for more then

4 consecutive servo samples, the error is stated.

The second error condition (disconnected line), requires a full differential encoder

interface to be used. The protection cannot be used in single ended line encoders.

Note that only the “A+/A-” and “B+/B-” lines are sampled for errors. There is no

implementation for Index disconnected line detection. The user can enable or disable

the encoder error detection by a dedicated bit in the axis configuration word “CG".

Encoder Error faults (when enabled), are reported by special code in the “MF” keyword

(the Motor Fault Cause).

5.2.3 Motor Stuck Protection

The purpose of the Motor Stuck Protection is to protect the motor from continuous high

command operation.

When the command reaches the TL value and the Velocity of the motor is "0", after 1

second, the controller automatically disables the axis.

This protection operated only in closed loop.

Motor Stuck Fault is reported by “MF=4”.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 95

5.3 Software Protections – (Non Fault Conditions)

The following software protections are managed by the controller without generating a fault

condition. This means that the servo axis stays enabled, even though the protection may be

active.

• FPGA Version: During the controller boot process, the firmware reads the FPGA

version, and verifies that the current version matches the firmware version. An error is

indicated if the version does not match. The error is indicated by the CPU LED, blinking

eight times, during the boot process. If the FPGA version error occurs, please contact

Nanomotion experts for further instructions.

• CAN Hardware Initialization Failure: During the controller boot process, the firmware

initializes the CAN hardware. In case that there is a problem in the CAN hardware

initialization process, an error is indicated by the CPU LED, blinking 16 times, during

the boot process. The controller then continues the boot process and can still

communicate in RS232. If this error occurs, please contact Nanomotion experts for

further instructions.

• Hardware and Software Motion Limits: The controller software continuously checks

both the hardware and software limits. Whenever a limit is detected, any ongoing

motion is stopped. Hardware limits are actual hardware signal lines. Software limits are

low (and high) position values, beyond (and above) which the error is asserted. An FLS

(Forward Hardware Limit) or High Software Limit stops positive motions only (towards

increasing position value). An RLS (Reverse Hardware Limit) or Low Software Limit

stops negative motions only (towards decreasing position value). During Limit Stop

Condition, the controller uses the "DL" (Deceleration on Limit) value for the

deceleration profile.

• Torque Limit: The torque limit protection is continuously monitoring the driver

command value, and limits the maximal command. As noted above, the Driver

command limitation has two different parameters, TL (which is the ultimate command

saturation limit), and IS which can (separately from TL) limit the Integral value. This is

needed in some cases to improve dynamic responses. It should be noted that the value

of TL overrules the value of IS (see chapter 4, Part II, for further details about the

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 96

control filter structure). The TL saturation limit is operational is all enabled motor states

(both open and closed loop modes).

5.4 Special Handling of Software Limits

In the FlexDC, when a Begin Motion command (BG) is issued in PTP mode (MM=0), beyond a

software limit, the BG command fails with a new Error Code type: “EC=53”,

“SW_LIMIT_ERROR”.

The new Error Code is generated during the BG command, and only in PTP motion mode.

When a “SW_LIMIT_ERROR” is generated, the command does not start.

This behavior is different from previous implementations that checked for S/W limits only

during motion.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 97

6 Advanced Features
This chapter describes the following FlexDC advanced controller features:

• Data Recording.

• Advanced Encoder Interfaces - Compare Events.

• Advanced Encoder Interfaces - Capture Events.

• Auxiliary Analog Interfaces.

• Dynamic Error Mapping Correction.

6.1 Data Recording

Data recording is a very powerful feature of the FlexDC that allows the user to record internal

controller variables, store them in local temporary arrays, and upload them to a host computer

using either one of the controller’s communication channels. The user can of course access

the recorded buffers from within a script program if required.

Data recording significantly improves the control filter adjusent process (control parameters

tuning), application debugging and monitoring, and troubleshooting.

The FlexDC has an outstanding Data Recording capabilities, including the following:

• Simultaneous recording of up to 8 internal controller variables.

• Up to a total of 15,000 data recording points! The user can select to record 8 vectors

1,875 sample points each, 1 vector 15,000 sample points, or any other combination.

• Selection of more then 40 internal variables for each recorded vector.

• More then 50 spare variables to select from, for future firmware usage, are already

supported in the existing Data Recording interface.

• Fast sampling rate of up to 122 µSec per sample point (for all selected vectors). The

FlexDC supports Data Recording at the servo-sampling rate of 8,192 Hz. The user can

choose to collect data samples at a slower rate using the Recording Gap parameter

(see below).

Optional advanced triggering options. This option is not supported by the standard firmware

version of the controller. Please consult Nanomotion experts for more information.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 98

In the next sections the operation of Data Recording in the FlexDC firmware is explained.

6.1.1 Operating Data Recording in the FlexDC

The FlexDC firmware code supports Data Recording using the following Keywords:

• Begin / Stop Data Recording command.

• Data Recording Configuration Parameters:

♦ Select Recorded variables parameter.

♦ Select Recording Length parameter.

♦ Select Recording GAP parameter.

• Report Recording Status parameter.

• Data Recording Array.

Instead of using these parameters and commands directly the user can control the

Data Recording features of the FlexDC through the Nanomotion Shell Application

(GUI). With a few mouse clicks, the user can select the recorded variables, initiate

recording process, and view the resulted graphs in the advanced Data Viewer

application. Read further in this manual for more information about the Nanomotion

Shell Application support for Data Recording.

However, from time to time the user may choose to directly use Data Recording low-

level keywords (bypassing the GUI). This may be useful for example to initiate a data

recording process from within a script program, in order to synchronize the Data

Recording process with a machine sequence. The next sections fully describe the

FlexDC firmware Data-Recording interfaces.

6.1.2 Data Recording Keywords

This section describes the Data Recording keywords of the FlexDC.

6.1.2.1 Begin / Stop Data Recording Command – BR

Using this Command, the user can start or stop the data recording process.

The command only sets internal flags that start the real time recording

process. The command does not check the validity of recorded vectors

whatsoever; except for non-current on-going recording process. The

command syntax is as follows:

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 99

XBR,<Optional Parameter>

where:

♦ X is an axis identifier. Since “BR” is a global function (not related to any

axis), calling it with any axis identifier starts (or stops, according to the

parameter) the recording process.

♦ Parameter <Optional>: The “BR” command can receive an optional

parameter. When called without any parameter, i.e. “XBR”, the command

starts the recording process.

♦ Parameter=1, “XBR,1”: Start a new recording process. This is identical to

“XBR”.

♦ Parameter=0, “XBR,0”: Stops the current ongoing recording process. “RR”

is reset to “0” immediately.

When a new recording starts, “RR” (Recording Status) is automatically set to

the value of “RL”, the total required number of sample points. As the

recording process continues, on each sample point the value of “RR” is

decremented by “1”. When recording is complete, “RR” is “0”. Only then it is

possible to upload the recorded data.

The “BR” (or “BR,1”) Begin Recording command checks only that “RR” is

zero before enabling a new recording process. If “BR” is issued during an

active recording (while “RR>0”) the command is rejected, and a

“STILL_RECORDING” Error Code #16 is generated.

Note that the controller does not check if previous buffers were uploaded or

not. Issuing a new Begin Recording command always overrides old data.

“BR,0” does not check any conditions, and always stops the data recording

process.

6.1.2.2 Select Recording GAP Parameter – RG

See the “RG” keyword reference in chapter 7, Part II, for more information

about upload data recording data delays in CAN bus operation.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 100

6.1.2.3 RG Parameter

The recording GAP “RG” defines an integer number gap (in 122 µSec servo

sample intervals) between each two consecutive recording sample points.

“RG” is used to allow data sampling at a slower rate then the servo sample

rate.

When “RG=1” the data sampling rate equals the servo sample rate of 8,192

points/sec. When “RG=2” recorded data is sampled every second servo

sample, i.e. at a rate of 4,096 points/sec. “RG=8” results in data sample rate

of 1,024 points/sec, and so on.

6.1.2.4 RG[2] – Recording Upload Delay

When uploading large data buffers in CAN bus, the FlexDC can generate

high loads on the CAN bus network. Depending on the PC load and type of

CAN board, on high buffers upload, some CAN messages can be lost. In

order to avoid this problem, the FlexDC can add delays between CAN

messages during data recording upload. The Delay is set by RG[2], and is

given in servo sample time multipliers.

RG[2]=0 means no delay. RG[2]=1 means 1 sample time delay (this is 61

micro-sec on the 4M and 122 micro-sec on the 2M) and so on.

Usually, a delay of 3-5 samples is sufficient for most cases.

6.1.2.5 Select Recording Length Parameter – RL

“RL” defines the number of data points per sampled vector. This number

defines the final size of each recorded vector. “RL” value can be up to 15,000

if only one vector is selected to be recorded, or up to 1,875 if all vectors (up

to 8) are selected for recording. For example, when “RG=8”, and “RL=1,875”,

each vector will be ~2 seconds long.

Note that the Nanomotion Shell Application automatically appends a time

vector to any recording file.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 101

6.1.2.6 Report Recording Status Parameter – RR

“RR” is a read only parameter, indicating the recording status. When a new

recording starts, the value of “RR” is internally set to the value of “RL”. It is

being automatically decremented by “1” at each sample point (every “RG”

servo sample times). When “RR=0” recording is complete.

6.1.2.7 Select Recorded Variables Parameter – RV

The FlexDC supports simultaneous data vectors to be recorded at the same

time. The user can of course select to record less then this vector. FlexDC

supports 8 simultaneous data vectors to be recorded at the same time.

The definition of each recorded vector contents (the link to an internal

controller variable) is done using the “RV” parameter. Currently, the following

internal controller variables (see Table 7) can be selected for data recording

for each one of the recorded vectors:

Recorded Variable
Description

Axis
Related

Variable
Keyword

None (empty vector) --- ---

Encoder Position Yes PS

Encoder Velocity Yes VL

Position Error Yes PE

Desired Position Yes DP

Controller Output Yes PO

Status Register Yes SR

Motion Status Yes MS

Analog Input Yes AI

Motor Fault Yes MF

Input Port No IP

Output Port No OP

Reserved --- ---

Table 7: Internal Controller Variables for Data Recording

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 102

Notes:

 By selecting a NULL variable value (RV=0) for a specific vector, this vector is disabled (not

recorded).

 It is required that enabled Recorded Vectors is orderly arranged. This means that after the

first NULL RV, all following axes RV’s should be “0”.

 Most of the variables are axis-related variables. This means for example, that the user can

select to record for each recorded vector the value of XPS, YPS, etc.

 See the “RV” parameter keyword reference in chapter 7, Part II, for specific details about

all possible “RV” values.

6.1.2.8 DA and AR Arrays in FlexDC

FleXDC has a data-recording array “DA” in size of 16,000 points, but the

recording length is limited to 15,000 points only. The general-purpose array

“AR” size is 1,000 points, and overlaps the DA array in its first 1,000 points.

This means that DA[1÷1000] == AR[1÷1000].

To avoid over-running the AR array when data recording is initiated, the data

recording starts from DA[16,000] and ends at DA[1001] (depending on the

RL).

This implementation allows special applications to define large AR arrays (by

accessing “DA” at locations higher then 1,000).

In all normal applications, when using “AR” in its defined limits (i.e. [1÷1000]),

no overlap occurs, even when the full data recording buffers are used.

6.1.3 Data Recording Support in Nanomotion Shell
Application

The user can select the recorded variables, configure recording length, initiate

recording process, and view the resulted graphs in our advanced Data Viewer

application. Refer to " Part IV– Nanomotion Shell Application" for more information

about the support for Data Recording.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 103

6.2 Position Compare Events

Position compare events is a hardware-supported feature of the FlexDC encoder interface

that provides the ability to generate accurate hardware pulses based on comparing the actual

encoder position with pre-defined values. When a compare condition is satisfied, a hardware

pulse is automatically generated by the FlexDC, and is directed to one of the digital outputs of

the FlexDC.

The compare feature is implemented by the FlexDC encoder hardware interface, so the actual

delay between the exact compare time to the generated pulse is very short (few cycles of the

internal 66 MHz encoder interface module clock, in the current hardware version). This feature

is useful in applications like printing and scanning, where external hardware should be

synchronized with actual encoder location.

The FlexDC supports simultaneous compare events on both of its two encoders, independent

from one another. The user can configure the hardware to redirect a generated event pulse to

any one of the controller digital outputs. This way a user working with a dual axes system (X/Y

stage for example), requiring to generate compare event pulses based on the X and Y

encoders alternatively, can use only one digital output, and control the source of the pulse to

be an X or Y encoder Compare Event by using a simple software configuration.

Note that the current hardware version of the FlexDC supports two of its eight digital outputs

as Fast Outputs. The standard FlexDC digital outputs interface is isolated and buffered. While

this is good for normal outputs, when fast synchronization pulses are required, a faster

interface is needed. Thus, the FlexDC supports the first four digital outputs as Fast Outputs.

Outputs configured as Fast Outputs are non-isolated, and are driven by a TTL buffer. The

Fast Outputs use the same pins as do the normal outputs of the controller (DOut5 and DOut6).

As a standard, the FlexDC generates a single hardware pulse for each compare event. The

user can control the pulse width with a few software configurable options. However, the

controller can optionally support any special output pulse sequence. For this option it is

suggested to contact Nanomotion technical support.

In general, the FlexDC supports two modes of Compare Events Generation:

• Mode 0: Fixed GAP (incremental), Distance < 16 Bit.

• Mode 2: 32 bit Arbitrary GAP location tables.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 104

In order to operate the Position Compare feature, there are a few dedicated parameters and a

command that controls its operation.

In the following sections the operation of each one of the supported Compare Function modes

is explained.

Note:

 Mode 1: Fixed GAP (incremental), Distance > 16 Bit. FlexDC current firmware version

does not support Mode 1.

 Mode 3: 32 bit Arbitrary GAP location tables using the FPGA RAM. FlexDC current

firmware version does not support Mode 3.

6.2.1 Mode 0: Fixed GAP (Incremental), Distance < 16 Bit

In this mode, the FlexDC is programmed with the desired start point - PStart, desired

end point - PEnd, and desired incremental GAP - Distance. The first pulse is always

generated at the exact Start Position - PStart. The hardware then automatically

increments (or decrements, see explanation below) the next compare point by the

Distance value, and so on, until the PEnd is reached.

The first pulse is thus generated at: Position = PStart, the second is generated at:

Position = PStart + Distance, the next one will be at: Position = PStart + Distance * 2,

etc. In general, the Nth pulse is generated at position: Position = PStart + Distance * N,

where N=0 is the start point – PStart.

In this mode the compare pulses are fully generated by the hardware, so there is no

limit to the max pulses frequency. Distances as low as one encoder count, at any

encoder speed, are supported.

The value of Distance (the incremental GAP) is limited to 16 bit, i.e. +/- 32,767

(excluding 0). The sign of Distance controls direction of operation. Positive Distance

value defines increasing encoder counter motion. Negative Distance value defines

decreasing encoder counter motion (see notes below).

The compare pulse in this mode is automatically disabled by the real time controller

firmware when the end point condition is met. This is when: Position > PEnd for

Distance > 0, and when: Position < PEnd for Distance < 0.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 105

Notes:

 Although in this mode the hardware is responsible for the exact compare triggering, it is

the controller real time software (firmware) that manages the end point monitoring (i.e.

disabling the compare pulse output when PEnd is passed). As a result, although the actual

pulse frequency is not limited, if the resulting pulse frequency is higher then the servo

sampling rate (currently 8,192 Hz), additional pulses might be generated beyond location

PEnd. In any case, all pulses are disabled no later then 122 µSec after PEnd is passed.

 As noted, the value of Distance is limited to +/- 32,767, excluding 0. Although the

parameter itself is not range protected, the compare function enable command validates

all parameters, and issues a dedicated Error Code if any of the parameters is out of range.

 The Compare function works correctly ONLY if the sign of Distance corresponds to the

direction of motion, and to PStart and PEnd definitions. This means, that for Distance > 0

the user MUST specify PEnd > PStart, and the motion direction MUST be positive (i.e.

from lower encoder count, to higher encoder count). For Distance < 0 the user MUST

specify PEnd < PStart, and the motion direction MUST be negative (i.e. from higher

encoder count, to lower encoder count).

 If the above conditions are not met, the compare pulses are generated in unexpected

positions.

6.2.2 Mode 2: 32 Bit Arbitrary Tables

Mode 2 allows the user to define an array of 32 bit position locations, to specify

arbitrary compare locations. In Mode 2 the user fills in the desired compare locations

to the general-purpose array “AR”.

In the FlexDC up to 1,000 compare points may be defined (currently limited by the size

of the “AR” array).

The user then defines the IStart and IEnd indexes (index entries on the “AR” array),

from which the compare locations are taken. The Distance parameter needs to be

defined as +1 for positive motions, and –1 for negative motions.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 106

Notes:

 In this mode the controller real time firmware code is responsible for table points location

increment. This implies a practical limitation on the position distance (in encoder count

units) between each two consecutive table points, depending on the actual motion speed.

The limitation requires that the resulting max arbitrary location compare pulse frequency is

smaller then 8,192 Hz (in the current product firmware version).

 In any case (regardless of the motion direction), IEnd should be greater than IStart. The

exact conditions tested before the mode is enabled are:

0 < IStart < IEnd <= 10,000

 Similarly to Mode 0, here the positions in the “AR” array MUST be defined in a strict

ascending or strict descending order, and comply with the Distance (actually direction)

definition, and the actual motion direction. If these conditions are not met, the compare

pulses are generated in unpredicted unexpected positions.

 The “AR” array (used for location table definitions) is a non-axis related array. The size of

the “AR” Array is [1 x 1,000].

 Although all axes can operate simultaneously and independent from one another, when

working in Mode 2, all axes share the same “AR” array. The user should use separate

“AR” areas for each axis if more than one is needed to be operated in this mode.

6.2.3 Compare Function Parameters, Activation and Error
Codes

The FlexDC uses a special array “PG” (abbreviation stands for “Pixel Generation

Parameters”) to control the Compare function operation, and a new activation

command “PQ”. This section describes the option defined by each parameter, and the

command syntax.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 107

6.2.3.1 The “PG” Array

The “PG” array elements control the operation of the compare function. “PG”

is an axis related array, sized [2 x 8]. Each axis has 8 parameters controlling

the compare operation as described in Table 8:

Array
Element

Function Description

PG[i][1] Operation
Mode

This parameter controls the compare function mode of operation:
1. PG[i][1]=0 : Defines Compare Mode 0.
2. PG[i][1]=2 : Defines Compare Mode 2.

PG[i][2] Distance and
direction

For Mode 0 this parameter defines the auto-increment distance.
The parameter should be limited to +/-32,767, excluding 0.
For Mode 2 this parameter should be +1 for positive motions
(incrementing position motions), and –1 for negative motions
(decrementing position motions).

PG[i][3] Start Point For Mode 0 this parameter defines the Start Position (PStart) in
encoder counts for the compare function. The first compare pulse
is always be at exactly that point.
For Modes 2 this parameter defines the Start Index (IStart) in the
“AR” compare position table, corresponding to the first compare
point. The first compare point is at the encoder location defined by
“AR[Istart]”.

PG[i][4] End Point For Mode 0 this parameter defines the End Position (PEnd) in
encoder counts for the compare function. Beyond this location the
compare function is automatically disabled.
For Mode 2 this parameter defines the End Index (IEnd) in the
“AR” compare position table, corresponding to the last compare
point. The last compare point is at the encoder location defined by
“AR[IEnd]”.

PG[i][5] Pulse Width This parameter defines the pulse width (ignoring PG[i][6]):
1. PG[i][5]=0 : Pulse Width = 1 clock of 15 nano/sec.
2. PG[i][5]=1 : Pulse Width = 1.92 µSec.
3. PG[i][5]=2 : Pulse Width = 3.84 µSec.
4. …….
5. PG[i][5]= 255: Pulse Width = 489.6 µSec (Max Value)

PG[i][7] Pulse
Polarity

This parameter defines the compare pulse polarity mode.
1. PG[i][7]=0 : Defines Normal (Positive) Pulse.
2. PG[i][7]=1 : Defines Inverted (Negative) Pulse.

PG[i][8] Not used Should not be assigned to any value for future compatibility.

Table 8: “PG” Array - Compare Function Parameters Description

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 108

Notes:

 In Table 8, (i) represents the selected axis.

 In Incremental Mode 0, since the hardware automatically increments the compare match

register, the actual compare condition is valid for only 2 basic hardware clock cycles (66

MHz).

 In the FlexDC, the “PG[i][6]” parameter (Pulse Width Mode) is not used. In turn, the pulse

width parameter “PG[i][5]” is used to set the required pulse width, in multiplications of 1.92

µSec intervals. This implementation provides a more flexible user interface for defining the

compare pulse width.

 The max allowed value for “PG[i][5]” is 255. This results in a Pulse Width of 489.6 µSec.

In the arbitrary table supported Mode 2, the controller real time software is

responsible for updating the compare match registers. As a result, the

compare pulse width may be longer then requested. The start point of the

pulse is however always matches the exact compare point without any delay.

6.2.3.2 The “PQ” Command

The “PQ” command is an axis-related command, enabling or disabling the

Compare function for a specific axis. The command requires a parameter

indicating the requested operation. The command syntax is as follows:

XPQ,Parameter

where:

♦ X is an axis identifier.

♦ For the current FlexDC version the compare function is supported for both

axes – X and Y.

♦ Parameter=0: Indicates immediate disable of compare for the specified

axis. No conditions are checked expect a valid axis identifier.

♦ Parameter=1: Indicates start compare function for the specified axis. The

command validates correct parameter (“PG”) for the specific requested

mode.

In a situation where one of the command’s parameters is out of range, the

command returns an error prompt: “?>” or generates a script “Run Time

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 109

Error” (if called from within a script macro program). The relevant Error Code

flags (“EC” or “QC”) is updated to reflect the error cause.

Notes:

 The user should be aware that not all conditions for correct operation of the Compare

Function could be validated during command initialization. For example, the minimal

distance between each two consecutive points in the “AR” table (in Mode 2) cannot be

tested as the limitation depends on the actual motion speed. It is the user’s responsibility

to specify correct parameters values for each operation mode. Refer to the specific mode

description section defining operation limitations in each mode.

 The error codes generated by the “PQ” command are presented below.

6.2.3.3 Dedicated Error Codes related to the Compare
Function Operation

As explained in the previous section, in case that the “PQ” command fails to

validate one of its parameters, the command returns an error prompt: “?>” or

generates a script “Run Time Error” (if called from within a script macro

program).

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 110

The relevant Error Code flags (“EC” or “QC”) are presented in Table 9:

Val EC/QC Code Name Error Description

34 EC_PARAM_OUT_OF_RANGE The “PQ” command’s parameter is allowed to be “0” for
disable or “1” for enable. Issuing a “PQ” command with a
parameter out of that range will issue this error code.

38 EC_PARAM_EXPECTED The “PQ” command must receive a parameter. If “PQ” is
issued without a parameter this Error Code is returned.

60 MODE_PARAM_NOT_VALID This error is issued by “PQ,1” if the requested Compare Mode
defined by PG[i][1] is out of its range. In the current firmware
version only Modes 0 and 2 are supported.

61 PULSE_MODE_PARAM_NOT_VALID This error is issued by “PQ,1” if the Pulse Width Mode
Parameter defined by PG[i][6] is out of its range. The allowed
range for the Pulse Width Mode Parameter is: “0” or “1”.

62 PULSE_WIDTH_PARAM_NOT_VALID This error is issued by “PQ,1” if the Pulse Width Parameter
defined by PG[i][5] is out of its range. The allowed range for
the Pulse Width Parameter is: “0” to “3”.

63 PULSE_POL_PARAM_NOT_VALID This error is issued by “PQ,1” if the Pulse Polarity Parameter
defined by PG[i][7] is out of its range. The allowed range for
the Pulse Polarity Parameter is: “0” or “1”.

64 PD_PARAM_NOT_VALID This error is issued by “PQ,1” if the Distance Parameter
defined by PG[i][2] is out of its range. Out of range values for
Distance are:
0 in all modes.
Out of +/-32,767 range in Mode 0.
Not equal +1 or –1 in Mode 2.

65 PS_PE_PARAM_NOT_VALID This error is issued by “PQ,1” if the Start Point or End Point
Parameters defined by PG[i][3] and PG[i][4] are not valid.
These parameters are validated only in Mode 2 (see specific
operation mode description for more details about limitations
on PStart and PEnd.

Table 9: Error Codes Generated by the "PQ" Compare Function

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 111

6.2.4 Configuring Digital Outputs for the Compare Function

The FlexDC has general-purpose digital output pins. There are six un-committed

general-purpose digital outputs in the FlexDC, which are called Dout6_Fast. When not

assigned as position compare event outputs, digital output pins can be controlled by

the “OP” (Output Port) parameter. Each hardware digital output pin reflects the state of

the corresponding bit in the output word parameter “OP” (see the “OP” parameter

keyword reference in chapter 7, Part II, for more details).

When configured as Position Compare Event output, the actual hardware digital output

pins in are controlled by the compare function. If the compare function is enabled

without any output pin being assigned to it, no pulses are generated (the pin reflects

the relevant bit value of “OP”).

When an output pin is assigned to a position compare event function, its state is

controlled by the compare logic hardware, and is not affected by the digital output word

“OP”. In the FlexDC, only Dout5_Fast and Dout6_Fast can be assigned as compare

outputs.

It should be noted that when an output is assigned to a compare event, only its

physical logic level is affected. The value of “OP” is not changed, and does not reflect

in this case the actual hardware pin state.

The next two sections define how to assign digital outputs to the compare function and

how to support fast (TTL) electrical interface.

6.2.4.1 Assignment of a Digital Output to a Position Compare
Event

The FlexDC Hardware supports assignment for any of its 8 actual (physical)

digital output pins as standard outputs, or as a position compare function

output.

The digital outputs are configured using the IO_MODE_0 select word

(currently assigned using the “XOM” parameter (see the “OM” keyword

reference in chapter 7, Part II, for further information).

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 112

This is a 32-bit array word, defined as follows:

♦ IO_MODE_0 – XOM Keyword

IO_MODE_0 : Bits 31÷0

31÷4 3 2 1 0

Not used OM

Table 10: A 32-bit Array Word

As noted above, in the FlexDC, only Dout5_Fast and Dout6_Fast can be

assigned as compare outputs. Digital output can be assigned as follows,

using a 3-bit configuration field OM, as shown in Table 10, and the bit

description below:

♦ Bits (1:0) – Defines the Dout5_Fast Output source:

00 – Standard Output, controlled by “OP”

01 – Output from compare channel X

10 – Output from compare channel Y

11 – Currently unused, for future purposes

♦ Bits (3:2) – Defines the Dout6_Fast Output source:

00 – Standard Output, controlled by “OP”

01 – Output from compare channel X

10 – Output from compare channel Y

11 - Currently unused, for future purposes

6.2.5 Position Compare Events Examples

The following example demonstrates initialization of X axis compare, to generate

pulses at a fixed gap (Mode 0), starting from location 10,000 counts to location

100,000 counts, every 40 encoder counts. The pulse is directed to Output #1. Motion

from location 0 to location 150,000 counts at Speed=100,000 is then executed. The

resulted pulse frequency is 100,000 counts/sec / 40 counts/pulse=2,500 pulse/sec.

When motion is completed, the function is programmed to generate pulses in the

opposite direction (when moving back to location 0). Only the necessary parameters

are re-configured.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 113

‘ Disable any active compare for X Axis

‘ -------------------------------------

XPQ,0

‘

‘ Configure Digital Output #1 to be assigned as an X Axis

‘ Compare Output (All other outputs are standard Outputs)

‘ ---

XOM=1 ‘ (DOut1 is X Compare)

‘

‘ Initialize X axis Motion Parameters and reset position

‘ --

XAC=1000000;XDC=1000000;XDL=1000000

XSP=100000;XPS=0;XMO=1;XAP=150000

‘

‘ Initialize the X Compare Function

XPG1=0 ‘ Set Mode 0

XPG2=40 ‘ Set Compare Distance

XPG3=10000 ‘ Set Compare Start Position

XPG4=100000 ‘ Set Compare End Position

XPG5=2 ‘ Set Pulse Width (=3.9 µSec)
XPG7=0 ‘ Set Pulse Polarity to Normal (Positive)

XPQ,1 ‘ Activate X Compare Function

‘

‘ Start X motion, and wait for end of motion

--

XBG

@while (XMS != 0) ‘ Wait for End Of Motion

@endwhile

‘

‘ Initialize the Compare in the opposite direction

--

XPQ,0 ‘ Disable X Compare

XPG2=-40 ‘ Set Compare Distance Negative Direction!

XPG3=100000 ‘ Set Compare Start Position

XPG4=10000 ‘ Set Compare End Position

XPQ,1 ‘ Activate X Compare Function

‘

‘ Start Backward X motion towards 0 position

--

XAP=0;XBG

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 114

6.3 Position Capture Events

Position Capture (Latching) events are a hardware-supported feature of the FlexDC encoder

interface that provides the ability to latch the exact encoder position register based on an

external or internal hardware pulse.

The FlexDC hardware Capture mechanism support two type of trigger pulse sources:

• Capture Position Based on an Encoder Index Pulse, and

• Capture Position Based on a Digital Input Pulse.

FlexDC hardware fully supports the encoder hardware interface. The Nanomotion Shell

Application can capture positions (based on either Index or Inputs), at any encoder speed.

There is no limitation on the motion velocity.

This feature is useful for finding the exact (1 count resolution) homing location when operated

on the encoder index, and to synchronously latch multiple axes system locations when

operated on digital inputs.

The FlexDC supports simultaneous capture on both of its two axes.

The user can configure the Compare Pulse Source for each encoder independently from other

channels.

6.3.1 Capture Modes

When operated on the Index pulse, the Capture uses the internal Index signal to latch

the position. In this mode each axis can capture the position based on its own Index

pulse. When based on digital inputs, the user can select any one of the 10 digital input

lines to be the Capture pulse source for any axis, without any limitation. The same

digital input line can be used to synchronously Capture the location of both axes at

once.

Although each one of the controller’s digital inputs can be used as a Capture input, in

the current hardware version only two digital inputs (DInp9, DInp10) are supported as

fast TTL inputs. As normal inputs are optically isolated, using standard inputs for

Capture introduces a delay of a few microseconds. Fast inputs are TTL based,

eliminating any delays.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 115

6.3.2 Operating the Position Capture and Relevant Keywords

The Capture function is independent from any other operation mode of the controller.

The function of Position Capture is simple. The user only needs to set the Capture

source signal configuration word, and the controller automatically captures positions

whenever the Capture source pulse is detected. There is no special activation

command for the Capture function, nor any special error codes related to it. The

following dedicated Keywords are used to configure and work with the Capture

function:

• XN: Capture Index counter.

• XC: Last Capture Position.

• YOM: Configure the Capture Signal source for all axes.

In the following sections the usage of these keywords is explained.

6.3.3 The Capture Events Counter – “XN”

Each time the hardware Captures (Latches) a new location, the total number of

Capture events (“XN”) is incremented by “1”. The user can reset this variable to “0”,

and monitor its value to wait for a Capture event within a script program. This can be

used for example to signal events to a host computer whenever a Capture event is

sensed.

 “XN” is an axis related parameter keyword. Each axis holds its own Capture index

counter.

6.3.4 The Capture Location – “XC”

The last Captured location is stored by the controller firmware in the “XC” parameter

for each axis independently (i.e.: XXC, YXC). The user should note that when “PS” is

updated, the value of “XC” is meaningless.

The Capture feature implementation does not support hardware or software buffers.

Whenever a Capture is detected, the last value of “XC” is overridden and lost.

As indicated above, “XC” is an axis related parameter keyword. Each axis holds its

own Captured Position Location value.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 116

6.3.5 Selection of Capture Source Pulse – “YOM”

The user can configure the Capture pulse source by modifying the IO_MODE_1

register. This is (in the current firmware version) done using the “YOM” parameter (see

the “OM” keyword reference in chapter 7, Part II, for further information). This is a 32-

bit array word, defined as follows:

6.3.5.1 IO_MODE_1 – YOM Keyword

IO_MODE_1 : Bits 15 ÷ 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - Pol Y Axis – Capture
Source Select

- - - Pol X Axis – Capture
Source Select

The order of Bits in Each Byte is identical for all axes. The Bit order in each

Byte is described below:

♦ Bits [0 – 3]: selects the X Axis – Capture Source:

“0000” X Event source is Din1. (0)

“0001” X Event source is Din2. (1)

“0010” X Event source is Din3. (2)

“0011” X Event source is Din4. (3)

“0100” X Event source is Din5. (4)

“0101” X Event source is Din6. (5)

“0110” X Event source is Din7. (6)

“0111” X Event source is Din8. (7)

“1000” X Event source is Din9_Fast. (8)

“1001” X Event source is Din10_Fast. (9)

“1010” X Event source is Index X. (10)

“1011” X Event source is Index Y. (11)

♦ Bit 4 selects the polarity of the X axis capture event:

Bit 4 = 0 Select Normal (Positive) Pulse Polarity.

Bit 4 = 1 Select Inverted (Negative) Pulse Polarity.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 117

♦ Bit [7 – 5] – Reserved. Should be “0” for future compatibility.

♦ Bits [11 – 8] selects the Y Axis – Capture Source:

“0000” Y Event source is DIN1. (0)

“0001” Y Event source is Din2. (1)

“0010” Y Event source is Din3. (2)

“0011” Y Event source is Din4. (3)

“0100” Y Event source is Din5. (4)

“0101” Y Event source is Din6. (5)

“0110” Y Event source is Din7. (6)

“0111” Y Event source is Din8. (7)

“1000” Y Event source is Din9_Fast. (8)

“1001” Y Event source is Din10_Fast. (9)

“1010” Y Event source is Index Y. (10)

“1011” Y Event source is Index X. (11)

♦ Bit 12 selects the polarity of the Y axis capture event:

Bit 12 = 0 , Select Normal (Positive) Pulse Polarity.

Bit 12 = 1 , Select Inverted (Negative) Pulse Polarity.

♦ Bits 31 – 13 : Reserved. Should be “0” for future compatibility.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 118

6.3.6 Configuring Fast Digital Inputs for the Capture Function

The FlexDC has two dedicated fast inputs (Din9_Fast and Din10_Fast). There is no

special configuration required for Fast Digital Inputs in the FlexDC.

6.3.7 Position Capture Events Examples

6.3.7.1 Capture and CompareExample

The following example demonstrates usage of the Capture and Compare

functions. The X axis is programmed to generate Compare pulses on fixed

GAP. The pulses are directed to Fast Digital Output #5. It is assumed that

Dout5_Fast is physically connected to Din9_Fast. Axes X and Y are then

programmed to Capture their locations on each Compare pulse. The

Captured X position should be identical to the desired Compare position. The

Captures Y position reflects the Y axis location when X was commanded to

generate the Compare pulse. The captured positions are then sent through

the CAN bus to a host computer. The Compare GAP is programmed to 200

encoder counts, while motion is at 100,000 counts/sec. The resulted

Compare frequency is 500 Hz.

This application can be used when an X/Y scan is made, and in order to

know the exact planar location of the system on each compare pulse.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 119

‘ Disable any active co

mpare for X Axis

‘ -------------------------------------

XPQ,0

‘

‘ Configure IO_MODE_0: DOut#5 assigned as X Compare

‘ Configure IO_MODE_1: X Y use DInp#1 as their Capture Source.

‘ ---

XOM=1 ‘ Set IO_MODE_0

YOM=2056 ‘ Set IO_MODE_1 (X/Y Use DInp#9 for Capture)

‘

‘ Initialize X/Y axis Motion Parameters and reset position

‘ --

BAC=1000000;BDC=1000000;BDL=1000000

BSP=100000;BPS=0;BMO=1;BAP=150000

‘

‘ Initialize the X Compare Function

XPG1=0 ‘ Set Mode 0

XPG2=200 ‘ Set Compare Distance

XPG3=10000 ‘ Set Compare Start Position

XPG4=100000 ‘ Set Compare End Position

XPG5=2 ‘ Set Pulse Width (=3.9 µSec)
XPG7=0 ‘ Set Pulse Polarity to Normal (Positive)

XPQ,1 ‘ Activate X Compare Function

‘

‘ Start X/Y motion, and enter a Loop to wait for the Compare

‘ Pulses. Pulses are counted and after 100 the loop ends.

--

BXN=0;XICA=0

XZI1=3 ‘ Remote MSG sent to CAN Address = 3

BBG

#XCAPI1:

 @while (XXN == XICA) ‘ Wait for Next Event

 @endwhile

 @ XICA=XXN

 @ XICA=XICA+1 ‘ Increment counter

 BXC};XZM,2 ‘ Send Last Event

 @if (XICA > 100) ‘ Check End Condition

 XJP,#XCAPIEND

 @endif

 XJP,#XCAPI1

#XCAPIEND:

 XZM,"END"

XQH ‘ Program Done.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 120

Note that since X and Y Capture occurs simultaneously only the XXN is

checked to detect the next event.

6.3.7.2 Latching the Index Location of an Axis

The next example demonstrates simple usage of the Capture mechanism to

latch the Index location of the X axis. This can be combined in a simple

Homing process to perform exact Index based homing process. This can be

done at any motion speed. It is recommended to check that only One Index

was found (usually in Rotary Motors), to avoid full motor revolution homing

index error.

‘ Initialize X axis Motion Parameters and reset position

‘ --

XAC=100000;XDC=100000;XDL=100000

XSP=10000;XPS=0;XMO=1;XAP=10000

‘

‘ Configure IO_MODE_1: Use X Axis Compare on Index

‘ --

YOM=10 ‘ Set IO_MODE_1 – X Compare on Index

‘

‘ Start X motion, and enter a Loop to wait for the Index

‘ Pulse

--

XXN=0

XBG

@while (!XXN) ‘ Wait for Next Index

@endwhile

‘ Index is found. Stop the motion. The Index location

‘ is stored in XXC. Stop the program.

‘ --

XST

XQH

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 121

6.4 Auxiliary Analog Input Interfaces

The FlexDC has two general-purpose analog inputs.

Analog inputs are nominally ±10v and are converted using 12 bits A2D’s in the FlexDC.

The analog input values, as can be reported by the “AI” parameter (XAI / YAI in the FlexDC).

"AI" is the value of the analog input after deducting the Offset parameter "AS", see Figure 11.

Figure 11: Analog Input Scaling Block Diagram

Note:

 The analog inputs are sampled at ~ 1kHz (each input is sampled every 8 Servo cycles).

For a complete description of the Analog Inputs Hardware circuits, refer to the "FlexDC

User Manual".

The analog input value is calculated and reported by the software variable “AI” according to

the following equation:

[]AFAGASDHWGainAAinpFloorAI −××−×= 2)2(

A2D

Σ

AG × 2-AF

AI

Ainp [v]

AS

H/W A2D

Gain=2047/10

Hardware Software

+

-

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 122

Notes:

 Floor(x) truncates any non-integer value to an integer value towards minus infinity.

 Ainp × A2DHWGain is in the range of: -10v analog input result in nominal A2D reading of

“0”, 0v analog input result in nominal A2D reading of “2047” and a +10v analog input result

in nominal A2D reading of “4095”.

 AS, The Analog Offset parameter is in the range of: [0 ÷ 4095].

 Note that “AS” is decremented from the actual (positive) A2D reading value, so for

example, in order to nominally achieved a symmetric AI reading, the value of “AS” should

be +2047 and not –2047.

 The current implementation of “AI” computation formula dose not uses a dead-band

function (although the dead-band parameter “AD” is supported, but has no effect).

 AG and AF parameters (the Analog Gain and Gain Offset) can be used to achieve any

effective gain in the range of : ±219 (±524,288) to ±1/65,536.

 AG range is: ±219 (±524,288).

 AF range is: [0 ÷ 16], i.e. Gain Factor can be : [1/1 ÷ 1/65,536].

 The AG and AF parameters can be used to achieve very high or very low gains, or can

combined together to achieve accurate floating point gains. For example, to achieve an

overall gain of 4.125, use AG=33, and AF=3.

Using the AG and AF parameters, the user can define any desired range for the AI value. For

example, if: XAS=2047;XAG=100;XAF=2 and the analog input varies in the range of ±10 [v],

Then:

XAI = ±10 * (2047/10) × (100 × 2-2) = ±51,175

This is required for the Joystick motion modes. For example, the AI parameter is used as a

speed reference for the Velocity Based Joystick Mode. Using “AG” and “AF”, the AI value can

be scaled to any desired velocity range.

 “AS” can be used to compensate joystick or analog input circuits offsets. Note that nominally,

“AS” should be 2047 to achieve “AI=0” for nominal 0v analog input value.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 123

“AD” (the analog dead-band) is required for the Velocity Based Joystick Mode. Standard

joysticks do not always return to the same zero value when they are released. This may cause

a small velocity “drift” motion. “AD” can be used to define a range, at which the analog input is

read as zero, avoiding any undesired motion.

In case a simple analog input reading is required, set parameters as follows: AD=0, AS=2047,

AG=1 and AF=0. This provides a standard reading of ±2047 for an input of approximately

±10 [v].

6.5 Dynamic Error Mapping Correction

Dynamic Error Mapping Correction is required for the correction of non-linear mechanical

position errors, caused for example by lead or ball screw. The correction is performed by

interpolating desecrate positions user defined correction table, and altering the actual encoder

position readings. Each axis can be corrected independently.

The correction table itself is defined in equally spaced intervals, between two maximum and

minimum values of actual encoder readings. Beyond these values, the correction is fixed at

the extreme table value point.

As a part of the real-time process, the true encoder position reading is corrected by a value

that is taken from the correction table. When current position does not match an exact table

point, linear interpolation is performed between two consecutive table points. Outside of table

range, the last error correction value is used.

This option is not yet fully supported by standard firmware revisions. Please consult

Nanomotion experts for more information.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 124

7 Keywords Reference
This chapter describes the keywords supported by the FlexDC firmware. As discussed, the

controller language defines two groups of keywords:

• Parameters Keywords.

• Command Keywords.

As noted there, each parameter owns a set of internal attribute flags defining the behavior of

the Interpreter Module in response to each keyword received, such as if the Keyword is Axis

Related or not, is the Keyword is a parameter or command, etc.

7.1 Keywords Attribute Reference

The following table describes the FlexDC Keywords Attributes List.

Note that some of the attributes are internal only, while some other are currently not used.

All internal and not used attributes are given for reference purpose only, and are designated in

GRAY font. Attribute values are also used internally (by the controller Firmware), and are

given for reference purpose only.

In the table below the abbreviation “KW” stands for “Keyword”. Where “Need” is used, this

means that in order for the clause to be executed correctly, the condition defined there should

be met. For example, the command “BG” (begins a new motion) needs of course its relevant

motor to be “ON” (i.e. Enabled).

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 125

Attribute Definition Attribute
Value

Attribute Description

CPA_MOTOR_ON 0x00000001 Needs Motor ON

CPA_MOTOR_OFF 0x00000002 Needs Motor OFF

CPA_MOTION_ON 0x00000003 Needs Motion ON

CPA_MOTION_OFF 0x00000004 Needs Motion OFF

CPA_PARAM_IS_READ_ONLY 0x00000010 Parameter is Read Only

CPA_PARAM_IS_ARRAY 0x00000020 Parameter is Array

CPA_PARAM_SAVED_TO_FLASH 0x00000030 Parameter is saved to Flash Memory

CPA_PARAM_INIT_NEEDED 0x00000040 Parameter needs initialization (Internal).

CPA_PARAM_LEN_BIT_0 0x00000100 Not used

CPA_PARAM_LEN_BIT_1 0x00000200 Not used

CPA_PARAM_SPECIAL_REPORT 0x00000300 Parameter Has Special Report Function

CPA_PARAM_SPECIAL_ASSIGN 0x00000400 Parameter Has Special Assign Function

CPA_COMMAND_ALLOWS_PARAM 0x00001000 Commands Allows a Number Parameter

CPA_COMMAND_ALLOWS_STRING_PARAM 0x00002000 Commands Allows a string Parameter

CPA_COMMAND_SPARE_1 0x00003000 Not used

CPA_COMMAND_SPARE_2 0x00004000 Not used

CPA_KW_IS_COMMAND 0x00010000 Keyword is a Command Keyword

CPA_KW_IS_AXIS_RELATED 0x00020000 Keyword is Axis Related

CPA_KW_IS_VIRT_AXIS_RELATED 0x00030000 Keyword is Virtual Axis Related

CPA_KW_SPARE_1 0x00040000 Not used

CPA_KW_SOURCE_MUST_BE_MACRO 0x00100000 KW Source Must be from MACRO Only

CPA_KW_SOURCE_MUST_BE_COM 0x00200000 KW Source Must be from Comm. only

CPA_KW_SOURCE_MUST_BE_RS232 0x00300000 KW Source Must be from RS232 only

CPA_KW_SOURCE_MUST_BE_CAN_MAIN 0x00400000 KW Source Must be from Main CAN Ch.

CPA_KW_SOURCE_MUST_BE_CAN_AUX 0x01000000 KW Source Must be from Aux CAN Ch.

CPA_KW_SOURCE_MUST_BE_USB 0x02000000 KW Source Must be from USB Channel

CPA_KW_SOURCE_MUST_BE_LAN 0x03000000 KW Source Must be from LAN Channel

CPA_KW_SPARE_2 0x04000000 Not used

CPA_KW_ALL_MACRO_HALTED 0x10000000 KW Must have all programs halted

CPA_SPARE_2 0x20000000 Not used

CPA_SPARE_3 0x30000000 Not used

CPA_SPARE_4 0x40000000 Not used

Table 11: FlexDC Keywords Attributes and Restrictions

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 126

Each command and parameter can have one or more attributes from the table above. In

addition, each parameter has a default value (when not loaded from Flash Memory or when

Flash Memory value is not valid, as well as Minimum and Maximum limit values.

7.2 Command Keywords List

Table 12 describes alphabetical list of the FlexDC Commands Keywords.

Command
Keyword

Axis
Related

Description Restrictions

AB Yes Immediately Abort any motion None

BG Yes Begins a new Motion Motor ON

BR No Start data recording process Not Currently Recording

KR Yes Kill (stop) repetitive PTP motions None

LD No Load all parameters from Flash Memory All Macro Programs
Stooped

OC No Clear an output Bit (set bit Low) None

OS No Set an output Bit (set bit High) None

PQ Yes Activate / Disables Compare Mode None

QK Yes Kill all motions and Programs

RS No S/W Reset Controller Communication Only,
All Motors are disabled,
and programs are
stopped

ST Yes Stop any motion None

SV No Save all parameters from Flash Memory All programs are
stopped

UD No Upload Recording Data None

VR No Get Firmware and FPGA Versions None

ZA Prg.
Related

Remote Assign CAN message From Program Only

ZC Prg.
Related

Remote CAN Command From Program Only

ZR Prg.
Related

Remote Report Can Message From Program Only

ZM Prg.
Related

Remote Send CAN Message
(String/Number)

None

Table 12: Commands Keywords List

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 127

Note:

 Table 12 DOES NOT include any script programming related commands. Refer to " Part

III– FlexDC Macro Language" for further reference on Script Program related functions.

7.3 Parameters Keywords List

Table 13 describes alphabetical list of all the FlexDC parameters.

Notes:

 Table 13 DOES NOT include any script programming related parameters. Refer to " Part

III– FlexDC Macro Language" for further reference on script programming related

functions.

 All parameters are represented in signed long (32bit) format. Some parameters may be

restricted to a positive only value.

 Grayed parameters are not operational in the current released firmware version.

7.3.1 Parameters Keywords List

Key
Word

Axis
Related

Description Restrictions Saved
to
Flash

Read
Only

Reset
Val

Array
Size

Assignment
Range

AC Yes Acceleration Value [counts/s2] None Yes No --- --- 512÷ 120,000,000

AD Yes Analog Input Dead Band None Yes No 10 --- 0 ÷ 2,047

AF Yes Analog Input Gain Factor None Yes No 0 --- 0 ÷ 16

AG Yes Analog Input Gain None Yes No --- --- -524,288÷ 524,288

AI Yes Analog Input Value None Yes Yes --- --- ± 2,147,000,000

AP Yes Next Absolute Position Target None No No 0 --- ± 2,147,000,000

AR No General Purpose Array None Yes No --- 1x1,000 ± 2,147,000,000

AS Yes Analog Input Offset. None Yes No 2047 --- 0 ÷ 4,095

CA Yes Special Control Parameters
Array

None Yes No --- 2x16 See note 2

CB No CAN Baud Rate Settings None Yes No 1 --- 1 ÷ 20

2 The “CA” array controls advanced features of the controller real time servo loop. Although not restricted by the

interpreter module (allows range is ±2,147,000,000), the specific limitations of each element in the array should be
checked in the “A1” command reference and in chapter 4, Part II.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 128

Key
Word

Axis
Related

Description Restrictions Saved
to
Flash

Read
Only

Reset
Val

Array
Size

Assignment
Range

CG Yes Axis Configuration Motor OFF Yes No --- --- 0 ÷ 127

DA No Data Recording Array None No No --- 1x15,000 ± 2,147,000,000

DC Yes Deceleration Value [counts/s2] None Yes No --- --- 512÷ 120,000,000

DL Yes Limit Deceleration [counts/s2] None Yes No --- --- 512÷ 120,000,000

DO Yes DAC Analog Offset None Yes No 0 --- ± 32,767

DP Yes Desired Position --- No Yes 0 --- ± 2,147,000,000

EC No Last Communication Error
Code

None No Yes 0 --- 0 ÷ 100

EM Yes Last End Of Motion Reason. None No Yes 0 --- 0 ÷ 8

ER Yes Max Position Error Limit None Yes No --- --- 1 ÷ 8,000,000

FF Yes Acc and Vel Feed-Forward
Gain

None Yes No 0 2 x 2 0 ÷ 65,536

HL Yes High Software Limit for
Motions

None Yes No --- ± 2,147,000,000

IA No Indirect Access Index Array None Yes No 1 x 50 ± 2,147,000,000

IL No Set Input Port Bit Logic None Yes No --- --- 0 ÷ 16,777,215

IP No Get Input Port None No Yes --- --- N/A

IS Yes Integral Saturation Limit None Yes No --- --- 1 ÷ 32,767

KD Yes PIV Differential Gain None Yes No 2 x 2 0 ÷ 2,147,000,000

KI Yes PIV Integral Gain None Yes No 2 x 2 0 ÷ 2,147,000,000

KP Yes PIV Proportional Gain None Yes No 2 x 2 0 ÷ 2,147,000,000

LL Yes Low Software Limit for Motions None Yes No --- ± 2,147,000,000

ME Yes Master Encoder Axis Definition None Yes No 0 ÷ 3

MF Yes Motor Fault Reason None No Yes 0 ÷ 255

MM Yes Motion mode Motion OFF Yes No --- --- 0 ÷ 8

MO Yes Motor ON (Enable/Disable) None No No 0 --- 0 ÷ 1

MS Yes Motion Status None No Yes 0 ÷ 8

NC Yes No Control (Enable open loop) Motor OFF No No 0 --- 0 ÷ 3

OL No Set Output Port Bit Logic None Yes No --- --- 0 ÷ 255

OM Yes I/O Hardware Configuration 3 None Yes No --- - 2,147,483,648 ÷
+2,147,483,647

OP No Set/Get Output Port None No No --- --- 0 ÷ 255

3 The “OM” parameters are bit filled commands. Refer to the “OM” command reference for more information.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 129

Key
Word

Axis
Related

Description Restrictions Saved
to
Flash

Read
Only

Reset
Val

Array
Size

Assignment
Range

PA Yes General Purpose Parameter
Array

None Yes No 2 x 100 ± 2,147,000,000

PE Yes Position Error --- No Yes 0 --- ± 8,000,000

PG Yes Compare Function Parameters None Yes No 0 2 x 8 See note 4

PO Yes Control Drive Command None No Yes --- ± 32,767

PS Yes Encoder Position Value None No No 0 --- ± 2,147,000,000

RA No Receiving CAN Address None Yes No --- --- 0 ÷ 2047

RG No Recording Gap 5 None Yes No --- 1 x 2 1 ÷ 16,384

RL No Recording Length 6 None Yes No --- --- 1 ÷ 100,000

RP Yes Next Relative Position Target None No No 0 --- ± 2,147,000,000

RR No Recording Status None No Yes 0 --- 0 ÷ 100,000

RV Yes Recorded Variables None Yes No --- --- 0 ÷ 211

SM Yes Special motion mode No Motion Yes No --- --- 0 ÷ 8

SP Yes Speed (For Profiler Motions) None Yes No --- --- ± 30,000,000

SR Yes Status Register None No Yes 0 ÷ 8,388,607

TA No Transmitting CAN Address None Yes No --- --- 0 ÷ 2047

TC Yes Torque (open loop) Command None No No 0 --- ± 32,767

TD Yes 32 Bit Timer Down Parameter None No No 0 ÷ 100,000,000

TL Yes Torque Limit None Yes No --- --- 0 ÷ 32,767

TR Yes Target Radius None Yes No 0 ÷ 32,767

TT Yes Target Time None Yes No 0 ÷ 32,767

VA No Vector Acceleration None Yes 0 ÷ 100,000,000

VD No Vector Deceleration None Yes 0 ÷ 100,000,000

VL Yes Actual Velocity None No Yes ± 30,000,000

VS Yes Vector Speed None Yes No ± 30,000,000

4 The “PG” array element’s range is restricted by the “PQ” command depending on the compare function

operation mode. Refer to the relevant command’s references (“PG”, “PQ”) and the “Advanced Features” section
about the compare feature in this user manual.

5 The Recording Gap parameter (“RG”) is now a [1 x 2] array. “RG” or “RG[1]” is the recording Gap. “RG[2]”
defines a delay for upload Recording data buffers in CAN bus mode only. Please see the “RG” command
reference for more information.

6 The “RL” Recording buffer Length defines the number of max recorded data points per vector. It can be 15,000
points for one vector, or 1,750 for 8 vectors (and anything in-between). See the “RL” command reference and
the section “Data Recording” in this User Manual for more information.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 130

Key
Word

Axis
Related

Description Restrictions Saved
to
Flash

Read
Only

Reset
Val

Array
Size

Assignment
Range

WT Yes Wait time for Repetitive PTP None Yes No --- --- 0 ÷ 800,000,000

WW Yes Smoothing Factor None Yes No 0 ÷ 12

XC Yes Last Capture (Latch) Pos
Value

None No Yes ± 2,147,000,000

XN Yes Number of Capture Events None No No 0 – Only

Table 13: Parameters Keywords List

7.4 Keywords List – Functional Groups

The following section describes the FlexDC Keywords list ordered in functional groups.

7.4.1 Keywords Group Description

The following Keyword Groups are distinguished:

• Motion and Profiler Related Keywords.

• Control Filter and Real time Servo Loop Keywords.

• Data Recording Related Keywords.

• Special Features Interface Function Keywords.

• I/O Function Keywords.

• Script Programming Keywords.

• Configuration and Protection Keywords.

• General Keywords.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 131

7.4.2 Keywords Groups

The following list describes all the FlexDC keywords (excluding Script Programming

Keywords) divided to the logical groups indicated above.

7.4.2.1 Motion and Profiler Related Keywords

Keyword Description

AB Abort Command – Immediately stops any motion.

AC Acceleration value in [counts / sec2] for all Profiler based motions.

AP Next Absolute Position for PTP Motions.

BG Begins a new Motion Command.

DC Deceleration value in [counts / sec2] for all Profiler based motions.

DL Limit Deceleration value in [counts / sec2] for all Profiler based motions.

EM Last End of Motion Reason.

FR Gearing Mode Following Ratio

KR Kill (stop) repetitive PTP motions

ME Master Encoder Definition for Gearing Motion Mode.

MM Defined the next Motion Mode, e.g.: PTP, JOG, etc.

MS Motion Status Definition

RP Next Relative Position for PTP Motions.

SM Defines Special motion modes (Repetitive, etc).

SP Defines Cruise Speed in [counts / sec] for all Profiler based motions.

ST Stop Motion Command

WT Defines delay (in units of 1/16384 sec) for repetitive PTP motions.

WW Profile Smooth Factor parameter

VA Vector Acceleration (for XY Vector Motions)

VD Vector Deceleration (for XY Vector Motions)

VL Vector Limit Deceleration (for XY Vector Motions)

VS Vector Speed (for XY Vector Motions)

Table 14: Motion and Profiler Related Keywords

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 132

7.4.2.2 Control Filter and Real Time Servo Loop Keywords

Keyword Description

CA Special Control Parameters Array.

DP Desired Position. Holds the actual Position Reference.

ER Max allowed Position Error.

FF Acceleration and Velocity Feed-Forward Gains

KD Control Filter Diff Term Gain

KI Control Filter Integral Term Gain

KP Control Filter Proportional Term Gain

PE Actual servo loop Position Error.

PO The Control Drive Command

PS Position. Holds the actual encoder position value.

IS Integral Term Saturation of PIV control filter.

SR Status Register

MO Motor ON – Enables (MO=1) / Disables (MO=0) the servo loop.

NC No Control – Enables (NC=1) / Disables (NC=0) open loop mode.

TC Torque Command in open loop mode.

TL Torque Limit – Limits the D2A command – All modes.

TR Target Radius

TT Target Time

Table 15: Control Filter and Real time Servo Loop Related Keywords

7.4.2.3 Data Recording Related Keywords

Keyword Description

BR Begin Data Recording.

DA Data Recording Array – size 1 x 100,000.

RG Set Recording GAP (in units of 1/16384 sec).

RL Set Recording length (buffer length).

RR Report Recording Status.

RV Set the recorder variables.

Table 16: Data Recording Related Keywords

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 133

7.4.2.4 Special Features Interface Function Keywords

Keyword Description

AR General purpose Array – size 1 x 10,000. This array is also used for 32 bit
locations table definitions in Mode 2 of the Position Compare Events Function.

OM Set I/O Modes Hardware Configuration. This keyword is used to configure the
Compare and Capture functions. See also I/O functions Group.

PG Compare Function Parameters Array – size 10 x 8. This array defines the
parameters for the Position Compare Events Function operation.

PQ Enable / Disable Position Compare Events Function Command for a specific
axis.

XC Capture Location. The “XC” parameter holds the last captured position of an
axis.

XN Capture Events Counter. This parameter is automatically incremented by the
firmware on each Capture Event.

Table 17: Special Encoder Interface Related Keywords

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 134

7.4.2.5 Analog and Digital I/O Function Keywords

Keyword Description

AD Analog Dead Band

AF Analog Input Gain Factor

AG Analog Input Gain

AI Analog Input

AS Analog Input Offset

AO Auxiliary Analog Outputs Command

DO Analog Output DAC Offset

IL Input Logic Bit Array.

IP Input Port.

OC Output Clear Bit.

OL Output Logic Bit Array.

OM Set I/O Modes Hardware Configuration. This keyword is used to configure the
Compare and Capture functions. See also Table 17: Special Encoder Interface
Related Keywords.

OP Output Port.

OS Output Set Bit.

Table 18: I/O Functions Related Keywords

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 135

7.4.2.6 Communication and Configuration Keywords

Keyword Description

CB CAN Bus – Baud Rate.

RA CAN Bus – Receiving CAN Address.

TA CAN Bus – Transmitting CAN Address.

CG Specific Axis Configuration.

EC Last Communication Error Code.

QC Last Program Error Code.

Table 19: Communication and Configuration Keywords

7.4.2.7 Protection Keywords

Keyword Description

IS Integral Term Saturation of control filter (see chapter 4, Part II)

TL Torque Limit – Limits the D2A command – All modes.

LL Low Software Limit

HL High Software Limit

MF Motor Fault Reason Report

Table 20: Protection Keywords

7.4.2.8 General Keywords

Keyword Description

AR General purpose Array – size 1 x 10,000.

DA Data recording Array – size 1 x 100,000.

IA Indirect Access – General Purpose Array.

PA General Purpose Parameters Array

LD/SV Load from and Save to Flash Memory (Parameters and Script Program)

RS Software Reset Controller Command

VR Get Firmware Version Command

Table 21: General Purpose Related Keywords

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 136

7.4.2.9 Programming Keywords

The FlexDC servo controllers have a powerful script engine that allows

running up to two (FlexDC) programs simultaneously, at very fast rates.

Combined with our Integrated Script Development and Debugging

Environment (IDE), the FlexDC motion controller's internal programming

engine provides endless capabilities for user application development,

starting from simple homing routines, up to full machine sequences

management. Refer to " Part III– FlexDC Macro Language".

7.5 Keywords List

The following section presents the FlexDC Keywords list (excluding Script Programming

Keywords) in alphabetical order, including detailed definitions of each command and

examples.

The description of each keyword includes:

• Purpose: The operation or task of the keyword.

• Attributes: See below.

• Syntax: Valid clause syntax.

• Example: Simple example of the keyword usage.

• See also: Related commands.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 137

The following list describes all the valid keyword Attributes:

• Type: Command / Parameter.

• Axis related7: Yes / No.

• Array8: Yes (dimension) / No.

• Assignment9: Yes / No (i.e. Read Only).

• Command Allows Parameter10: Yes (Number / String / Both) / No.

• Scope: Communication / Program / Both

• Restrictions: See below.

• Save to Flash: Yes / No.

• Default Value: Yes (value) / No.

• Range: Min ÷ Max.

The following list describes all the valid keyword Restrictions:

• None.

• Keyword Needs No Motion.

• Keyword Needs Motion.

• Keyword Needs Motor OFF.

• Keyword Needs Motor ON.

7 Axis or related (keyword’s preceding character X or Y affects the keyword behavior).
8 Applicable for parameters only.
9 Applicable for parameters only.
10 Applicable for commands only.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 138

7.6 AB – Abort Motion Command

Purpose:
The “AB” Abort command aborts any motion immediately, without any profile. The motion is
stopped abruptly in the next servo interrupt following the Abort command.
The “AB” command should be used in emergency cases only. Normally, the “ST” or “KR”
commands should be used to stop any type of motion. Note that if an Abort command is
issued when a motor is moving at high speed, the servo loop may be disabled due to high
error.

Attributes: Type: Command.
 Axis related: Yes.
 Array: ---.
 Assignment: ---.
 Command Allows Parameter: No.
 Scope: All.
 Restrictions: None.
 Save to Flash: ---.
 Default Value: ---.
 Range: ---.

Syntax:
XAB; ‘ Aborts X Motion
AAB ‘ Abort motion of All axes.

Examples:
The following code example shows starting a normal motion in X axis from Position “0” to
Position “100,000”, and then aborting the motion.

XMO=1;XPS=0 ‘ Enables the motor and Set Position = “0”.
XMM=0;XSM=0 ‘ Set Normal Point To Point Motion Mode.
XAP=100000 ‘ Set Next PTP absolute location to “100,000” counts.
XAC=90000;XDC=90000 ‘ Set AC=DC=90,000
XSP=25000 ‘ Set Speed to “25,000”.
XBG ‘ Start a Motion
XAB ‘ Immediately aborts the X motion.

See also:
BG, ST, KR, ER

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 139

7.7 AC – Acceleration

Purpose:
To outline the normal Acceleration value to cruise velocity in all motion modes (that use the
internal Profiler). This value is used to set the motion profile acceleration value in PTP, JOG,
Motion modes, etc. The Acceleration value is defined in units of: [counts/sec2].

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 100,000.
 Range: 512 ÷ 120,000,000.

Syntax:
XAC=1000000; ‘ Set X Axis AC=1,000,000.
AAC=240000 ‘ Set AC=250,000 all axes.

Examples:
The following code example shows starting a normal motion in X axis from Position “0” to
Position “100,000”, using Speed and Acceleration values.

XMO=1;XPS=0 ‘ Enables the motor and Set Position = “0”.
XMM=0;XSM=0 ‘ Set Normal Point To Point Motion Mode.
XAP=100000 ‘ Set Next PTP absolute location to “100,000” counts.
XAC=250000 ‘ Set Acceleration to “250,000”.
XDC=500000 ‘ Set Acceleration to “500,000”.
XSP=25000 ‘ Set Speed to “25,000”.
XBG ‘ Start a Motion

See also:
DC, DL, SP, BG

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 140

7.8 AD – Analog Input Dead Band

Purpose:
Set the Analog Input Dead Band range.
See the “AI” (Analog Input) command reference for complete information about Analog Input
interfaces support.

Note:
Current firmware revision does not support dead band in the analog input interface. Although
the “AD” parameter is fully supported by the communication interface, it has no other effect.
Analog Input value always assumes “AD=0”.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 10.
 Range: 0 ÷ 2,407.

Syntax:
XAD=10; ‘ Set X Axis AD=10 (10 LSB of the Analog Input).
AAD=0 ‘ Set AD=0 to all axes (No Dead Band).

Examples:
See Syntax above.

See also:
AF, AG, AI, AS

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 141

7.9 AF – Analog Input Gain Factor

Purpose:
Set the Analog Input Gain Factor Multiplier.
See the “AI” (Analog Input) command reference for complete information about Analog Input
interfaces support.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 0.
 Range: 0 ÷ 16.

Syntax:
XAF=2; ‘ Set X Axis AF=2 (Gain factor is ¼).
AAF=0 ‘ Set AF=0 to all axes (Gain Factor 1:1).

Examples:
See Syntax above.

See also:
AD, AG, AI, AS

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 142

7.10 AG – Analog Input Gain

Purpose:
Set the Analog Input Gain.
See the “AI” (Analog Input) command reference for complete information about Analog Input
interfaces support.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 0.
 Range: -524,288 ÷ 524,288.

Syntax:
XAG=10; ‘ Set X Axis AG=10.
AAF=1 ‘ Set AG=1 to all axes.

Examples:
See syntax above.

See also:
AD, AF, AI, AS

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 143

7.11 AI – Analog Input

Purpose:
Report the analog input value. The analog input value is calculated and reported by the
software variable “AI” according to the following equation:

“AS” The Analog Offset parameter is in the range of: [0 ÷ 4095]. Nominal value of AS=2047
results in a nominal “AI” reading of “0”. Using the “AG” and “AF” parameters for scaling, the
user can define any practical desired range for the AI reading value.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: No.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: ---.
 Default Value: ---.
 Range: ---.

Syntax:
AAI

[]AFAGASDHWGainAAinpFloorAI −××−×= 22)(

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 144

7.12 AP – Absolute Position

Purpose:
Defines the Next Motion Absolute Position (in counts) target.
The absolute position value is used by the controller as the next target position in both the
PTP and Repetitive PTP motion modes. Upon a “BG” (begin motion) command, the controller
generates a profile from the current desired (“DP”) position to the current “AP”. Note that in
relative motion, the “RP” command simply changes the value of the “AP”.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows parameter: ---
 Scope: All.
 Restrictions: None.
 Save to Flash: No.
 Default Value: 0.
 Range: -2,147,000,000÷2,147,000,000.

Syntax:
XAP=100000; ‘ Set X Axis Absolute Position to “100,000”.
AAP=0 ‘ Set AP=0 in all axes.

Examples:
The following example shows resetting the X axis position to “0’, and then initiate a normal
motion in X axis from Position “0” to Absolute Position “100,000”.
XMO=1 ‘ Enables the X Motor
XPS=0 ‘ Set X axis encoder Position = “0”.
XMM=0;XSM=0 ‘ Set Normal Point To Point Motion Mode.
XAP=100000 ‘ Set Next PTP absolute location to “100,000” counts.
XAC=250000 ‘ Set Acceleration to “250,000”.
XDC=500000 ‘ Set Acceleration to “500,000”.
XSP=25000 ‘ Set Speed to “25,000”.
XBG ‘ Start a Motion

See also:
DP, RP, PS, BG

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 145

7.13 AR – General Purpose Array

Purpose:
 “AR” is a user general-purpose array. The “AR” array is a non-axis related array, with a size
of 1,000 elements. Each element in the array is a LONG format number, which can be
assigned, with any value at any time.
Currently, “AR” is also used internally by the Compare mechanism, to define user 32 bit tables
for the compare mode. For further information see section 6.2.2.
The index range of the “AR” array is: 1 ÷ 1,000. Since “AR” is non-axis related, accessing
XAR, YAR, BAR, etc. actually access the same array element.

Refer to the “DA” array for further information regarding the “AR” parameter.

Attributes: Type: Parameter.
 Axis related: No.
 Array: Yes, size = [1][1,000].
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 0.
 Range: - 2,147,000,000 ÷ 2,147,000,000.

Syntax:
XAR[1]=0; ‘ Set AR[1] “0”.
AAR[300]=1000 ‘ Set AR[300]=1,000.

See also: Compare Functions.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 146

7.14 AS – Analog Input Offset

Purpose:
Set the Analog Input Offset.
See the “AI” (Analog Input) command reference for complete information about Analog Input
interfaces support.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 2,047.
 Range: 0 ÷ 4,095.

Syntax:
XAS=0; ‘ Set X Axis AS=0 (no offset).
AAS=2047 ‘ Set AG=2047 to all axes.

Examples:
See Syntax above.

See also:
AD, AF, AG, AI

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 147

7.15 BG – Begins a New Motion Command

Purpose:
The “BG” command begins a new motion, according to the current motion mode. The “BG”
command allows receiving an argument (parameters). The parameter may be omitted to start
a normal single axis motion, or (currently in this version), be used (“-1”) to initiate a common
“X/Y” vector motion.
In the FlexDC, if the motion mode is Point-To-Point (MM=0), and the motion is in to one of the
software limits, the “BG” shall return an error, and the “EC” (if command performed via
communication) or “QC” (if command performed via macro) shall be set to ErrorCode ,
EC=53.

Attributes: Type: Command.
 Axis related: Yes.
 Array: ---.
 Assignment: ---.
 Command Allows Parameter: Yes, Number (-1).
 Scope: All.
 Restrictions: Needs Motor ON and No Motion.
 Save to Flash: ---.
 Default Value: ---.
 Range: ---.

Syntax:
XBG; ‘ Start X Motion
BBG ‘ Start motion in X and Y (non-synchronized).
BBG,-1 ‘ Start vector X/Y motion..
ABG ‘ Start Motion in all axes.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 148

Examples:
The following code example shows starting a normal motion in X axis from Position “0” to
Position “100,000”, and waiting for end of motion.
The example can be written as a script program file. The main routine name is “#MOVX”, and
can be executed and tested.

‘
‘ Routine to Move to Position 100,000 and wait for end of motion.
‘ ---
#MOVX

XMO=1;XPS=0 ‘ Enables the motor and Set Position = “0”.
XMM=0;XSM=0 ‘ Set Normal Point To Point Motion Mode.
XAP=100000 ‘ Set Next PTP absolute location to “100,000” counts.
XAC=90000;XDC=90000 ‘ Set AC=DC=90,000
XSP=25000 ‘ Set Speed to “25,000”.
XBG ‘ Start a Motion
‘
‘ Wait for End Of Motion
‘ -----------------------------
@while (XMS != 0) ‘ Wait for MS (Motion Status) top be “0”.
@endwhile
‘
XQH ‘ Stop program execution.

See also:
ST, KR, AB, MM, MS, and VA, VD, VL, VS about Vector Motions.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 149

7.16 BR – Begin Recording Command

Purpose:
The “BR” command begins a new data recording sequence. The “BR” command assumes that
the recorded variables and parameters are configured.
The “BR” command allows receiving an argument (parameter). “XBR” and “XBR,1” both start
a new recording sequence. “XBR,0” terminates the current data recording process.
The “BR” (or “BR,1”) command checks whether the last recording session was terminated,
and issues a “STILL_RECORDING” Error Code #16 if not (i.e. if RR>0). Data Recording can
be started only when previous recording session was terminated. Note that the controller does
not check if previous buffers were uploaded or not. Issuing a Begin Recording command
always overrides old data.

Attributes: Type: Command.
 Axis related: No.
 Array: ---.
 Assignment: ---.
 Command Allows Parameter: Yes, Number (0, or 1).
 Scope: All.
 Restrictions: BR or BR,1 - Needs recording OFF.
 Save to Flash: ---.
 Default Value: ---.
 Range: ---.

Syntax:
XBR ‘ Start Data recording.
XBR,1 ‘ Start Data recording.
XBR,0 ‘ Stop Data recording.

See also:
RG, DA, RL, RR, RV

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 150

7.17 CA – Special Control Parameters Array

Purpose:
“CA” is a special control parameters array, allowing the user to further configure the servo
loop features. “CA” is an axis related array, valid for axes X,Y. The size of the “CA” array is
[2]x[16]. Each parameter in the CA Array controls a certain feature as explained below (‘i’
indicates an axis identifier for X and Y).

Array
Element

Function Description

CA[i][1 ÷3] Not used Should be “0” for future compatibility

CA[i][4] This parameters defines the 2nd PIV filter duration. To disable the
2nd PIV set: CA[i][4]=0.
The duration is defined in servo-samples units. I.e.:
Value of 1 is 1/16384 of a second.
Value of 164 is 10 mili-sec.
The recommended value range for the 2nd PIV filter duration is: 0
<= CA[i][4] <= 16384. Negative values should be avoided.

CA[i][5,6] Not used Should be “0” for future compatibility

CA[i][7 ÷9] 2nd order filter
parameters

These 3 parameters control the servo-loop 2nd order filter
operation: Filter Gain, Filter Bandwidth and Q factor (or damping
ξ).

CA[i][10 ÷12] Not used Should be “0” for future compatibility

CA[i][13] 2nd order filter
Enable bit

This parameter Disables (if “0”) or Enables (if !=0) the servo-loop
2nd order filter operation.
For future compatibility, the value of CA[i][13] should only be set
“0” for Disable, and “1” for Enable.

CA[i][14 ÷16] Not used Should be “0” for future compatibility

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 151

Note About CA Parameters Range:
The “CA” array is not range checked by the communication interface. This means that any
valid number in the 32 bit range (± 2,147,000,000) can be set to any of the “CA” parameters.
This however should be carefully avoided Users MUST comply to the parameters range
setting as defined in the table above for each specific parameter!

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: CA [2]x[16]
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 0.
 Range: See note above

Syntax:
XCA[13]=1; ‘ Enable 2nd order filter for X Axis”.
ACA[4]=0 ‘ Set CA[4]=0 for all axes (Disable 2nd PIV).

Examples:
The following commands enable 2nd order filter operation for the X Axis with the following
parameters: f=100 Hz, ξ=0.7

XCA[7]=1537305 ; XCA[8]=127552 ; XCA[9]= -62110 ‘ Set Filter Parameters
XCA[13]=1 ‘ Enable X 2nd order filter

See also:
KP, KI, KD

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 152

7.18 CB – CAN Baud Rate

Purpose:
To set the CAN baud-rate. The CAN baud rate must be saved to the Flash Memory, and the
controller must be reseated in order to change the CAN baud rate. See the notes about
Initialization of CAN bus parameters in the RA and TA command references.

Currently the following baud rates are supported:

CB = 1 : Can Baud = 1 Mbps.
CB = 2 : CAN Baud = 500 kBps
CB = 4 : CAN Baud = 250 kBps
CB = 8 : CAN Baud = 125 kBps
CB = 10 : CAN Baud = 100 kBps
CB = 20 : CAN Baud = 50 kBps

Attributes: Type: Parameter.
 Axis related: No.
 Array : No.
 Assignment: Yes.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 1.
 Range: 1 ÷ 20.

Syntax:
XCB=1 ‘ Set CAN Baud rate to 1 Mbps.
XCB ‘ Report value of CB.

See also:
RA, TA

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 153

7.19 CG – Axis Configuration

CG – Axis Configuration for the Controller
Purpose:
“CG” is an axis-related parameter, defining specific axis configuration. “CG” Currently
supports 16 configuration bits (Bit #0 to bit #15) as described in the following table:

CG Bit
(Zero Based)

Function Description

0 Invert Main
Servo Driver
Command

This bit controls the MAIN Servo Driver command polarity (main servo
driver analog or PWM command output: TC).
When set to “0” the default polarity is invert, i.e. TC=+32767 results in
an analog command voltage of –10v.
When set to “1” the default polarity is non-invert, i.e. TC=+32767
results in an analog command voltage of +10v.

1 Invert Main
Encoder

This bit controls the encoder polarity. Users can set or clear this bit to
change the encoder reading direction.
When set to “0” the default polarity is non-invert.
When set to “1” the default polarity is invert.

2 Reserved

Should be left 0.

3 PIV

Must be set ONLY to "0" for PIV Control (Factory default).

4 Reserved

Should be left 0.

5 Enable
Encoder

Error
Detection

This bit Disables (when set to “0”) or Enables (when set to “1”) the
Hardware Encoder Error detection feature. Note that when enabled,
the controller forces Driver Fault condition when encoder error is
detected.
This option must be used with encoders having (electrical) differential
interface only. When single ended encoders are used, this bit must be
disabled.

6 Reserved Should be left "0".

7 Use Auxiliary
Encoder

Feedback

Must be set ONLY to "0" for Single Loop (Factory default).

8 Invert
Auxiliary
Encoder

This bit controls the Auxiliary encoder polarity. Users can set or clear
this bit to change the Auxiliary encoder reading direction.
When set to “0”, do not invert aux encoder.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 154

CG Bit
(Zero Based)

Function Description

Feedback When set to “1”, invert aux encoder.

9 Not in use N/A

10 Analog
Command
Resolution

Bit1

Currently Not used. Should be left 0.

11 Reserved Should be left 0.

12 ÷ 15 Driver Type 12, 13, 14 – Set to "1" (Factory default).

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: Needs Motor OFF.
 Save to Flash: Yes.
 Default Value: 0.
 Range: 0 ÷ 65535.
Syntax:
XCG=0 ‘ Set X Axis CG=0.
YCG ‘ Report value of CG for Y axis.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 155

7.20 DA – Data Recording Array

Purpose:
“DA” is used to store data recording buffers. The “DA” array is automatically updated by the
recorded data when the controller is in a data recording process.
When not used for data recording, the “DA” array can be used for any general purpose.
The DA and the AR arrays both share the same memory space. AR is limited to 1,000 from
the communication only, but can be further used in order to access parameters with indexes
larger than 1,000, via DA.
The actual size of DA is 16,000, but recordings are limited to 15,000. The data recordings are
performed from the end of the DA vector, while ECAM11, PixGen use the standard “AR”
parameter, from the beginning.

Attributes: Type: Parameter.
 Axis related: No.
 Array: Yes, size = [1][16,000] –
 Recordings limited to 15,000.
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 0.
 Range: - 2,147,000,000 ÷ 2,147,000,000.

Syntax:
XDA[1]=0; ‘ Set DA[1] “0”.
XDA[1000] ‘ Report value of DA[1,000].
YAR[300]=1000 ‘ Set DA[300]=1,000.

See also:
Data Recording (RG, RL, RV, RR, BR)

11 ECAM Mode is not supported in the current FlexDC version.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 156

7.21 DB – Download Buffer

The “DB” command provides an efficient fast download of large array buffers in CAN Bus
Only.
Both the “DB” and “EDB” modes support auto-increment of the array index, meaning that the
user only provides initial start index and then only sends the data.

7.22 DC – Deceleration

Purpose:
The normal Deceleration value from cruise velocity (towards Zero speed) in all motion modes
that use the internal Profiler. This value is used to set the motion profile deceleration value in
PTP, JOG, etc. The Deceleration value is defined in units of: [counts / sec2] with resolution of
256 counts/sec2.

The FlexDC support different deceleration values for normal deceleration and Limits (H/W or
S/W) deceleration. See the “DL” parameter.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 100,000.
 Range: 512 ÷ 120,000,000.

Syntax:
XDC=1000000; ‘ Set X Axis DC=1,000,000.
YDC=1000000; ‘ Set Y Axis DC=1,000,000.
XDC ‘ Report value of DC for X axis.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 157

Examples:

The following code example shows starting a motion in X axis from Position “0” to Position
“100,000”, using Speed Acceleration and Deceleration values.

XMO=1;XPS=0 ‘ Enables the motor and Set Position = “0”.
XMM=0;XSM=0 ‘ Set Normal Point To Point Motion Mode.
XAP=100000 ‘ Set Next PTP absolute location to “100,000” counts.
XAC=250000 ‘ Set Acceleration to “250,000”.
XDC=500000 ‘ Set Acceleration to “500,000”.
XSP=25000 ‘ Set Speed to “25,000”.
XBG ‘ Start a Motion

7.23 DF – Download Firmware

Purpose:
To download any new firmware versions to the controller. New Firmware should be
downloaded to the controller using the Shell utility application only.

WARNING! Under any circumstances, do NOT use the DF command directly from
a terminal interface!

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 158

7.24 DL – Limit Deceleration

Purpose:
The Limit Deceleration value used by the profiler whenever one of the limits is detected (H/W
or S/W) to stop from any speed to “0” speed. This value is used to set the motion profile Limit
Deceleration value in PTP, JOG etc. The Limit Deceleration value is defined in units of:
[counts / sec2] with resolution of 256 counts/sec2.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 100,000.
 Range: 512 ÷ 120,000,000.

Syntax:
ADL=2000000 ‘ Set DL=2,000,000 in all axes.
XDL ‘ Report value of DL for X axis.

Examples:
The following code example shows starting a motion in X axis from Position “0” to Position
“100,000”. DL is set to 2,000,000 [counts / sec2] (x 10 of AC and DC), so when the HL (High
S/W Limit) is detected (at 50,000 counts), the servo controller stops the motion with
deceleration of 2,000,000 [counts / sec2].

XMO=1;XPS=0 ‘ Enables the motor and Set Position = “0”.
XMM=0;XSM=0 ‘ Set Normal Point To Point Motion Mode.
XAP=100000 ‘ Set Next PTP absolute location to “100,000” counts.
XAC=200000;XDC=200000 ‘ Set AC=DC= “200,000”.
XDL=2000000 ‘ Set Limit Deceleration to “2,00,000”.
XHL=50000 ‘ Set X High S/W Limit to “50,000” counts.
XSP=25000 ‘ Set Speed to “25,000”.
XBG ‘ Start a Motion

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 159

7.25 DO – Analog DAC Offset

Purpose:
“DO” (Driver Command Offset) sets the Driver outputs command offset values. The Controller has two
analog driver command outputs, one for X and one for Y.
The “DO” parameter sets the offset for the Driver command signals.
There is no special offset parameter for the analog outputs when used as general-purpose
outputs (and not ad driver commands).
”DO” should be used only with the AB5 driver to calibrate the zero motion by using the “DO”
command. “DO” is applied in LSB units. The range of the “DO” command is ±32,767 (±10
Volts). Normally the DO command is in the range of ±1600 (±0.5 Volts).
The value of “DO” is saved to the flash memory, and is restored on each power up. Note that
“DO” has an effect whenever the system is powered on, regardless to the motor ON (“MO”)
and No Control (“NC”) states. As a result, the offset calibration can be performed even when
the controller is in Servo OFF state (MO=0).
 “DO” is an axis-related parameter, and controls the offset of the various analog outputs as
follows:

• “XDO” - Set the Analog Offset of the Main X Analog Command Channel.

• “YDO” - Set the Analog Offset of the Main Y Analog Command Channel.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 0.
 Range: -32,767 ÷ 32,767.

Syntax:
XDO=100; ‘ Set X DAC DO=100 (Offset = 30.5 mv).
XDO=-100; ‘ Set X DAC DO=-100 (Offset = -30.5 mv).
XDO ‘ Report value of AS for X axis.
BDO=0 ‘ Set DO=0 to both axes (no analog output offset).

See also: TC, AO.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 160

7.26 DP – Desired Position

Purpose:
“DP” holds the actual instantaneous Desired Position or Reference Position Command of the
servo control loop.
When an axis is not in motion, “DP” is constant and equals the local position reference point.
When an axis is in motion, “DP” holds the real time servo loop control reference position. In
standard Profiler based motions (e.g. Point to point, Jog, etc.), “DP” actually holds the Profiler
position output value. Upon completing a standard Point to Point motion, “DP” holds the last
value of “AP” used for that motion. In other motion modes, “DP” can be updated by other
references (Analog input in Joystick mode, tables in ECAM mode, other axes in master slave
modes, etc.).
When an axis servo loop is disables (MO=0), “DP” is continuously updated by the servo loop
real time process to the value of “PS” (current encoder reading), so the Position Error (“PE”) is
“0” by definition.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: No.
 Command Allows parameter: ---.
 Scope: ---.
 Restrictions: ---.
 Save to Flash: ---.
 Default Value: 0.
 Range: - 2,147,000,000 ÷ 2,147,000,000.

Syntax:
XDP ‘ Report value of X axis DP.
ADP ‘ Report value of DP to all axes.

See also:
AP, PS, PE.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 161

7.27 EC – Communication Error Code

Purpose:
“EC” holds the last communication error code. The value of “EC” is reset to “0” when the
controller boots up. When a communication error occurs (in one of the communication
channels), the value of “EC” is updated accordingly by the Commands Interpreter to reflect the
specific error cause.
The user can clear the value of EC to”0” at any time to clear the last Error Code register.
It should be noted that “EC” only holds errors generated by the Commands Interpreter if the
source of the clause is communication. Errors generated by programs are reported by the
“QC” parameter, and are “Program Task” specific.

Attributes: Type: Parameter.
 Axis related: No.
 Array: No.
 Assignment: Yes (0 only).
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: No.
 Default Value: 0.
 Range: 0 ÷ 100.

Syntax:
XEC=0 ‘ Reset value of EC.
XEC ‘ Report value EC.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 162

7.28 EM – End of Motion Reason

Purpose:
 “EM” is a read only parameter, reporting the last end of motion reason. “EM” is automatically
updated by the real time controller firmware. The following End of Motion reasons are
currently reported:

EM
Value

EM Code Description

0 EM_IN_MOTION In motion, or After Boot up.

1 EM_NORMAL Last Motion ended Normally.

2 EM_FLS Last Motion ended due to Hardware FLS.

3 EM_RLS Last Motion ended due to Hardware RLS.

4 EM_HL Last Motion ended due to Software HL

5 EM_LL Last Motion ended due to Software LL

6 EM_MF Last Motion ended due to Motor Fault (check MF).

7 EM_USER_STOP Last Motion ended due to User Stop (ST or AB).

8 EM_MOTOR_OFF Last Motion ended due to Motor OFF (MO=0).

9 EM_BAD_PROFILE_PARAM Last Motion ended due to Bad ECAM Parameters.

Table 22: End Of Motion Reason (EM) Codes.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: No.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: No.
 Default Value: 0.
 Range: 0 ÷ 9.
Syntax:
XEM ‘ Report value EM for X axis.
AEM ‘ Report value EM for all axes.

See also: MF.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 163

7.29 ER – Max Position Error Limit

Purpose:
The “ER” parameter defines the Max allowed Positioning Error while the servo loop is enabled
(MO=1).
The Positioning Error (“PE”) is defined as the current desired position minus the actual
position: PE=DP-PS. The servo controller real time loop monitors the value of “PE” and
compares it to the Max allowed error “ER”. When ABS(PE) > ER, the servo controller
automatically disables the servo loop (switch automatically to MO=0 state).
The max allowed error “ER” is also monitored when the controller is in open loop mode (when
NC=1 and MO=1), to avoid the motor from running over the end of travels. When the motor is
disabled (MO=0) DP=PS, so the Position Error is “0” by definition.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: No.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 2000.
 Range: 1 ÷ 8,000,000.

Syntax:
XER=8000000; ‘ Set X Axis ER to 8,000,000.
AER=2000 ‘ Set ER=2000 for all axes.

See also:
PS, DP, PE.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 164

7.30 FF – Feed-Forward Gains

Purpose:
“FF” controls the Velocity and Acceleration Feed-Forward Gains.
The Velocity Feed-Forward gain is controlled by the FF parameter (FF[1]). The controller has
an inherent Feed-Forward velocity, therefore normally the FF[1]=0. The Velocity Feed-
Forward Gain (FF) is working on the profile velocity in counts/sec/8000 units. This feature is
used only in a special mode of UHR with an AB1A Driver, and at a very low speed, less than
100µm/sec.
Command Acceleration Feed-Forward (Acc-FF) is controlled by the FF[2] parameter. The
Acceleration Feed-Forward Gain (FF[2]) is working on the profile acceleration in counts/sec2 /
219 units.

In both cases, the resulted Feed-Forward value is added to the filter command output, in DAC

[LSB] units.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: Yes, size = [2][2].
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 0.
 Range: 0 ÷ 65,536.

Syntax:
XFF[2]=200; ‘ Set X Axis Acceleration FF to 200.
AFF=0 ‘ Set Velocity FF=0 for all axes.

Examples:
If motor’s speed is 100 counts/sec (UHR Mode) and the user desires to add to the drive output
the DC command of 0.5 V, then:
VFF=0.5*3276*8000/100=130400
XFF[1]=130400

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 165

7.31 HL – High Software Limit

Purpose:
“HL” is the Software High Position Limit. This value is monitored during all motions by the
controller. Whenever the actual encoder position “PS” is higher then the “HL” value and the
velocity “VL” is positive (moving towards higher positions), motion is stopped immediately
using the stop deceleration parameter “DL”.
“DL” should be normally set to a higher value then “DC”, as during normal operation
conditions “HL” is for emergency cases stop only.
The value of “HL” is validated by the controller during motion start “BG” commands only. i.e. a
motion beyond the software limits (to an AP > HL) cannot be initiated, in motion mode Point-
To-Point (MM=0). A special communication Error Code (EC=53) is generated by the BG
command in that case (BG command returns ?>).

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 2,147,000,000.
 Range: ± 2,147,000,000.

Syntax:
XHL=100000000 ‘ Set X Software HL to 100,000,000
AHL=2147000000 ‘ Set Software HL to 2,147,000,000 for all axes.

See also:
DL, HL, PS, EC=53

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 166

7.32 IA – Indirect Array

Purpose:
“IA” is a user general-purpose Index Array. Although “IA” can be used for any general purpose
during program development, it was intentionally defined to allow Indirect Index Addressing
from within a script program.
The “IA” array is a non-axis related array, with a size of 100. Each element in the array is a
LONG format number, which can be assigned to any value at any time. The index range of the
“IA” array is: 1 ÷ 100. Since “IA” is non-axis related, accessing XAR, YAR, AAR, etc. actually
access the same array element.
As noted, “IA” is a user general-purpose array, and is not used anywhere by the controller’s
firmware code, unless the user has included a reference to it within a script program.

Attributes: Type: Parameter.
 Axis related: No.
 Array: Yes, size = [1][53].

 Assignment: Yes.
 Command Allows parameter: ---.

 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.

 Default Value: 0.
 Range: - 2,147,000,000 ÷ 2,147,000,000.

Syntax:
XIA[1]=0; ‘ Set IA[1] “0”.
BIA[10] ‘ Report value of IA[10] for X and Y
AIA[53]=1000 ‘ Set IA[53]=1,000.

Examples:
See below.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 167

7.33 IL – Input Logic

Purpose:
The “IL” Input Logic parameter controls the logic of all digital inputs. Bits [0 : 23] of “IL”
corresponds (and inverts) the relevant bits in “IP”. See the “IP” parameter reference for exact
definitions of all “IP” and “IL” bits. By default IL=0. Each bit in “IL” that is assigned to “1” inverts
the logic of the corresponding “IP” bit (bits [0 : 23] Only).

Notes:

• The ABORT input logic CANNOT be inverted. Being a SAFETY input, the
ABORT logic must be configured such that when disconnected by the
hardware, the ABORT is active, i.e. all axes are disabled.

• The Driver Fault Bits IP[24:25] can be inverted using CG[bit #6].

These are the “IL” parameter attributes:

Attributes: Type: Parameter.
 Axis related: No.
 Array: No.
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 0.
 Range: 0 ÷ 16,777,215 (0x00ff,ffff).

Syntax:
XIL ‘ Report IL value (non-axis related).
AIL ‘ Report IL value (non-axis related).
XIL=15 ‘ Inverts the logic of DIN1, DIN2, DIN3, DIN4.

See also:
CG, IP.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 168

7.34 IP – Input Port

Purpose:
To read the digital Input Port bits of the FlexDC. The “IP” parameter is continuously updated
by the real time servo loop to reflect the value of all digital input bits of the controller.
“IP” reports both the uncommitted digital inputs (Digital Inputs #1 ÷ #10), as well as all the
committed digital inputs, i.e. limit switches, Driver Faults, and Abort input.
The FlexDC supports the following digital inputs (uncommitted and committed), according to
the order as listed:

IP Bit# (0 Based)
and

Hex Value

H/W Signal
Name / Functionality

IP Bit# (0 Based)
and Hex Value

H/W Signal
Name / Functionality

0 , 0x0000,0001 Digital Input #1 – Din1 16 , 0x0001,0000 X Axis – RLS

1 , 0x0000,0002 Digital Input #2 – Din2 17 , 0x0002,0000 X Axis – FLS

2 , 0x0000,0004 Digital Input #3 – Din3 18 , 0x0004,0000 Y Axis – RLS

3 , 0x0000,0008 Digital Input #4 – Din4 19 , 0x0008,0000 Y Axis – FLS

4 , 0x0000,0010 Digital Input #5 – Din5 20 , 0x0010,0000 X Index

5 , 0x0000,0020 Digital Input #6 – Din6 21 , 0x0020,0000 Y Index

6 , 0x0000,0040 Digital Input #7 – Din7 22 , 0x0040,0000 X Aux Encoder Index

7 , 0x0000,0080 Digital Input #8 – Din8 23 , 0x0080,0000 Y Aux Encoder Index

8 , 0x0000,0100 Digital Input #9 –
Din9_Fast

24 , 0x0100,0000 X Axis – Driver Fault – Result
– After Driver Fault Source
logic (CG Mux)

9 , 0x0000,0200 Digital Input #10 –
Din10_Fast

25 , 0x0200,0000 Y Axis – Driver Fault – Result
– After Driver Fault Source
logic (CG Mux)

10 , 0x0000,0400 X Axis External Fault
Input

26 , 0x0400,0000 0

11 , 0x0000,0800 Y Axis External Fault
Input

27 , 0x0800,0000 0

12 , 0x0000,1000 X Axis Internal Fault
Input

28 , 0x1000,0000 ABORT Input

13 , 0x0000,2000 Y Axis Internal Fault
Input

29 , 0x1000,0000 Not used.

14 , 0x0000,4000 X Index 30 , 0x2000,0000 Not used.

15 , 0x0000,8000 Y Index 31 , 0x4000,0000 Not used.

Notes:

• Bits #0 ÷ #9 of IP are the uncommitted Digital Inputs.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 169

• Bits #16 ÷ #19 of IP are the RLS and FLS Limit Switch flags of axes X and
Y

• RLS and FLS stand for the Reverse (Back) Limit Switch flag inputs, and the
Forward (Front) Limit Switch flag inputs.

• The Driver Fault may be from 2 different sources:
• Internal Driver Fault Source – Used in Nanomotion Ltd Dedicated Drivers
• External Driver Fault Source – Used in 3rd party driver manufacturers.
• The Driver Fault source is set using CG[13].
• Bits #24 ÷ #25 of IP are the Driver Fault Inputs of axes X and Y. The

polarity of these bits can be inverted using CG[6]. These bits are the result
of the Driver Fault – Internal or external.

• The actual status of the internal or external Driver Fault may be found in
Bits #12 ÷ #15.

• Bit #28 is the General Abort Input. When Abort is ON, all axes are disabled!
• The polarity of the ABORT bit cannot be inverted.
• Bits #29 ÷ #31 are currently not used.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 170

These are the “IP” parameter attributes:

Attributes: Type: Parameter.
 Axis related: No.
 Array: No.
 Assignment: No.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: No.
 Default Value: 0.
 Range: 0 ÷ 536,870,911 (0x1fff,fff).
Syntax:
XIP ‘ Report IP value (non-axis related).
YIP ‘ Report IP value (non-axis related).
AIP ‘ Report IP value (non-axis related).

See also:
IL, OP, Refer to " Part III– FlexDC Macro Language".

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 171

7.35 IS – Integral Saturation Limit

Purpose:
The “IS” parameter limits the output value of the Integral Term only when working in closed
loop mode in PIV control scheme. “IS” limits ONLY the integral term saturation, and not the
actual final control output, which is limited by the “TL” parameter. The purpose of “IS” is to
allow different saturation limits to the Integral and control output. This is needed in some
cases to avoid overshoots.
The range of “IS” is: 1 ÷ 32,767. IS=1 practically disables Integral term in the control filter.
IS=32,767 is full range (100 % integral saturation).

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 32,763.
 Range: 1 ÷ 32,767.

Syntax:
XIS=16384; ‘ Set X Axis IS=16,384 (50% of Max Range).
AIS=32767 ‘ Set IS=32,767 in all axes (100 % limit).

Examples:
The following code example shows starting a normal motion in X axis from Position “0” to
Position “10,000”, but with the PID Integral term saturated to 25 %.
XMO=1;XPS=0 ‘ Enables the motor and Set Position = “0”.
XMM=0;XSM=0 ‘ Set Normal Point To Point Motion Mode.
XAP=10000 ‘ Set Next PTP absolute location to “100,000” counts.
XAC=90000;XDC=90000 ‘ Set AC=DC=90,000.
XSP=25000 ‘ Set Speed to “25,000”.
XIS=8192 ‘ Limit IS to 25 % (± 2.5 Volts)
XBG ‘ Start a Motion

See also: TL, Control Filter Implementation

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 172

7.36 KD – Control Filter Diff Term Gain

Purpose:
The “KD” parameter is used to set the control filter algorithm position loop Differential term
gain in PID control mode, and Velocity loop overall gain in PIV control mode.
The “KD” parameter is an array parameter, with the size of [4]x[2], i.e. for each axis (X, Y),
KD[1] and KD[2] are available. The first element “KD[1]” or “KD” (see note below) set the
normal filter gains, while the second element “KD[2]” set the gain for the “Gain-Scheduling”
algorithm.
Note: The FlexDC command interpreter supports (for backward compatibility) access to any
array parameter first element, as a non-array element. This means that for example, “XKD” is
identical to “XKD[1]”.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: Yes, size = [4][2].
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 32,767.
 Range: 0 ÷ 2,147,000,000.

Syntax:
XKD=16384 ‘ Set X Axis KD=16,384
XKD[1]=16384 ‘ Same as XKD=16384, Set X Axis KD=16,384
XKD[2]=30000 ‘ Set X Axis KD[2]=30000 (for Gain Scheduling)
AKD=100000 ‘ Set KD=100,000 for all axes

See also:
CG, KP, KI

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 173

7.37 KI – Control Filter Integral Term Gain

Purpose:
The “KI” parameter is used to set the control filter algorithm position loop integral term gain in
PID control mode, and the Velocity PI loop integral term gain in PIV control mode.
The “KI” parameter is an array parameter, with the size of [4]x[2], i.e. for each axis (X, Y), KI[1]
and KI[2] are available. The first element “KI[1]” or “KI” (see note below) set the normal filter
gains, while the second element “KI[2]” set the gain for the “Gain-Scheduling” algorithm.
Note: The FlexDC command interpreter supports (for backward compatibility) access to any
array parameter first element, as a non-array element. This means that for example, “XKI” is
identical to “XKI[1]”.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: Yes, size = [4][2].
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 32,767.
 Range: 0 ÷ 2,147,000,000.

Syntax:
XKI=16384 ‘ Set X Axis KI=16,384
XKI[1]=16384 ‘ Same as XKI=16384, Set X Axis KI=16,384
XKI[2]=30000 ‘ Set X Axis KI[2]=30000 (for Gain Scheduling)
AKI=100000 ‘ Set KI=100,000 for all axes

See also:
CG, KP, KD

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 174

7.38 KP – Control Filter Proportional Term Gain

Purpose:
The “KP” parameter is used to set the control filter algorithm position loop proportional term
gain in PID control mode, and the position loop overall gain in PIV control mode.
The “KP” parameter is an array parameter, with the size of [4]x[2], i.e. for each axis (X, Y),
KP[1] and KP[2] are available. The first element “KP[1]” or “KP” (see note below) set the
normal filter gains, while the second element “KP[2]” set the gain for the “Gain-Scheduling”
algorithm.

Note: The FlexDC command interpreter supports (for backward compatibility) access to any
array parameter first element, as a non-array element. This means that for example, “XKP” is
identical to “XKP[1]”.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: Yes, size = [4][2].
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 32,767.
 Range: 0 ÷ 2,147,000,000.

Syntax:
XKP=16384 ‘ Set X Axis KP=16,384
XKP[1]=16384 ‘ Same as XKP=16384, Set X Axis KP=16,384
XKP[2]=30000 ‘ Set X Axis KP[2]=30000 (for Gain Scheduling)
AKP=100000 ‘ Set KP=100,000 for all axes

See also:
CG, KI, KD

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 175

7.39 KR – Kill Repetitive Motions Command

Purpose:
The “KR” Kill Repetitive command terminates repetitive Point To Point motion cycles. Unlike
the “ST” command, the motion is not stopped immediately, but stops after the current motion
has ended.

Attributes: Type: Command.
 Axis related: Yes.
 Array: ---.
 Assignment: ---.
 Command Allows Parameter: No.
 Scope: All.
 Restrictions: None.
 Save to Flash: ---.
 Default Value: ---.
 Range : ---.

Syntax:
XKR; ‘ Stop X Repetitive Motion
AKR ‘ Stop Repetitive Motion of All axes.

Examples:
The Next example shows starting a Repetitive motion in X axis from Position “0” to Position
“100,000” using “WT” Wait delay between the motions. KR is then issued to kill the repetitive
motion.
XMO=1;XPS=0 ‘ Enables the motor and Set Position = “0”.
XMM=0;XSM=1 ‘ Set Repetitive Point To Point Motion Mode.
XAP=100000 ‘ Set Next PTP absolute location to “100,000” counts.
XAC=250000 ‘ Set Acceleration to “250,000”.
XDC=500000 ‘ Set Acceleration to “500,000”.
XSP=25000 ‘ Set Speed to “25,000”.
XWT=16384 ‘ Set 1 second delay between motions.
XBG ‘ Starts a Motion
XKR ‘ Terminatea the repetitive motion.

See also:
BG, AB, ST, SM, MM, WT

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 176

7.40 LD / SV – Load and Save Commands

Purpose:
“LD” and “SV” are the Load from Flash Memory and Save to Flash Memory commands. The
“LD” and “SV” commands are used to load and save the controller parameters and script
programs to and from the board Flash Memory.
The “LD” and “SV” commands can only be issued while all motors are in disable mode (in
MO=0). SV should be issued only when the system is not in motion.

The “SV” command can receive the following parameters:
ASV ‘ Save All Parameters and Script Program to Flash Memory
ASV,1 ‘ Save Only the Controller Parameters to the Flash Memory
ASV,2 ‘ Save Only the Script Program to the Flash Memory

The “LD” and “SV” commands have the following attributes:

Attributes: Type: Command.
 Axis related: No.
 Array: ---.
 Assignment: ---.
 Command Allows Parameter: Yes (see SV command above).
 Scope: All.
 Restrictions: All motors must be OFF.
 Save to Flash: ---.
 Default Value: ---.
 Range: ---.

Syntax:
XSV ‘ Save all Parameters and Script Program to Flash Memory
XSV,1 ‘ Save Only Parameters to Flash Memory
XSV,2 ‘ Save Only the Script Program to Flash Memory
BLD ‘ Load Parameters and Script Program from Flash Memory

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 177

7.41 LL – Low Software Limit

Purpose:
“LL” is the Software Low Position Limit parameter. This value is monitored during all motions
by the controller. Whenever the actual encoder position “PS” is smaller then the “LL” value
and the velocity “VL” is negative (moving towards lower positions), motion is stopped
immediately using the stop deceleration parameter “DL”.
“DL” should be normally set to a higher value then “DC”, as during normal operation
conditions “LL” is for emergency cases stop only.
The value of “LL” is validated by the controller during motion start “BG” commands only. i.e. a
motion beyond the software limits (to an AP < LL) cannot be initiated, in motion mode Point-
To-Point (MM=0). A special communication Error Code (EC=53) is generated by the BG
command in that case (BG command returns ?>).

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 2,147,000,000.
 Range: ± 2,147,000,000.

Syntax:
XLL=100000000 ‘ Set X Software LL to 100,000,000
ALL=2147000000 ‘ Set Software LL to 2,147,000,000 for all axes.

See also:
DL, HL, PS, EC=53

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 178

7.42 ME – Master Encoder

Purpose:
 “ME” is the Master Encoder Definition for Gearing and ECAM motion modes.
Gearing and ECAM are motion modes where an axis follows another axis position with a pre-
defined (fixed) ratio (in Gearing) or using user defined position tables (in ECAM). The “ME”
parameter defines the master axis for that purpose.
Note: The master axis can be in motor ON or OFF (i.e. MO=1, or MO=0) states. In the later
case, the Master’s DP=PS, so using a disabled axis as a master axis, provides true encoder
position tracking.
“ME” defines which axis is the Master axis for a given slave motion. The “ME” parameter can
be any valid physical axis, as described below:

• The “ME” parameter can select between the following encoder inputs:
ME=0 for X Axis Encoder.
ME=1 for Y Axis Encoder.
ME=2 for X Auxiliary Encoder Input.
ME=3 for Y Auxiliary Encoder Input.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 0.
 Range: 0 ÷3.

Syntax:
XMM=1; ‘ Set X Master Encoder as Y
YMM ‘ Report Master Encoder of Y Axis
AMM=0 ‘ Set All MM=0

See also:
FR, MM

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 179

7.43 MF – Motor Fault Reason

Purpose:
“MF” is a read only parameter reporting the last Motor Fault Reason. “MF” is automatically
updated by the real time controller firmware.
As actual motor faults always causes an MO=0 condition (Motor Disable), the purpose of the
“MF” parameter is to latch the cause of the last fault, from the time that the motor is disabled,
usually the immediate fault cause disappears.
On the FlexDC, the Motor Fault Reason parameter holds encoded information about the
actual fault cause as follows:

• Lower 16 bits of “MF” hold Motor Fault Reason as generated and set by the
real time firmware.

• Upper 16 bits of “MF” holds the extended Motor Fault Reason, as latched
by the hardware.

The lower 16 bits of “MF” represent a general fault cause number as defined in the following
table:

Lower 16 Bits of MF:

MF
Value

MF Code Description

0 MF_NO_FAULT None – Normal Operation.

1 MF_DRV_FLT Fault caused buy a Driver Error for a specific axis (DRV_FLT
H/W line was asserted).

2 MF_ABORT_INPUT Fault caused buy the general Abort Input (ABORT H/W line
was asserted).

3 MF_HIGH_ERR Fault caused for a specific axis, when its Position Error “PE” is
exceeding the allowed maximum Position Error for that axis
(when : Abs(PE) > ER).

4 MF_MOTOR_STUCK Fault caused for a specific axis when a Motor Stuck Condition
is detected. Motor Stuck Condition is a condition when the
servo command is saturated (reaching “TL”) for more then 0.5
seconds, and no motion is detected.

Table 23: Motor Fault Cause Reasons - (MF) Codes in FlexDC.

The Upper 16 bits of “MF” represent extended fault source options, and they are set ONLY
when the lower 16 bits of MF equals to “1” (i.e. the motor fault type is Driver Fault). The
additional fault source information is defined in the following table:

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 180

Upper 16 Bits of MF (Valid Only When Low16Bits(MF)==1):
MF Bit#

(0 Based)
Fault Source MF Bit#

(0 Based)
Fault Source

(16+) 0 Internal Type Driver Fault (16+) 8 Not used (set to 0)

(16+) 1 External Type Driver Fault (16+) 9 Not used (set to 0)

(16+) 2 Under Voltage Fault (PD-AT-2M) (16+) 10 Not used (set to 0)

(16+) 3 Over Voltage Fault (PD-AT-2M) (16+) 11 Not used (set to 0)

(16+) 4 Encoder A quad B Error (16+) 12 Not used (set to 0)

(16+) 5 Not used (set to 0) (16+) 13 Not used (set to 0)

(16+) 6 Not used (set to 0) (16+) 14 Not used (set to 0)

(16+) 7 Encoder Disconnect Line Error (16+) 15 Not used (set to 0)

Table 24: Extended Motor Fault Cause Reasons - (MF) Codes in FlexDC

Note: The extended (upper 16 bits) of “MF” codes are OR’ed with the “MF_DRV_FLT” when
asserted.
These are the “MF” parameter attributes:

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: No.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: No.
 Default Value: 0.
 Range: See above.

Syntax:
XMF ‘ Report Motor Fault for X axis.
AMF ‘ Report value of MF for all axes.

See also:
EM

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 181

7.44 MM – Motion Mode

Purpose:
To set the controller Motion mode for the next Motion. Currently, the following motion modes
are supported:

MM=0 – Point to Point.
MM=1 – Jogging.
MM=2 – Position Based Gearing.
MM=5 – Position Based ECAM.
MM=8 – Step Command (no profiler).

The MM command is restricted to a No Motion condition. Trying to change the MM value while
motion is in progress generates an “EC_NEEDS_MOTION_OFF” error # 50.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: Needs Motion OFF.
 Save to Flash: Yes.
 Default Value: 0.
 Range: 0 ÷ 8.

Syntax:
XMM=1; ‘ Set X Axis MM=1.
AMM=0 ‘ Set MM= 0 in all axes.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 182

Examples:
The example shows starting a Normal (Non-Repetitive) motion in X axis from Position “0” to
Position “100,000”.

XMO=1;XPS=0 ‘ Enables the motor and Set Position = “0”.
XMM=0;XSM=0 ‘ Set Normal Point To Point Motion Mode.
XAP=100000 ‘ Set Next PTP absolute location to “100,000” counts.
XAC=250000 ‘ Set Acceleration to “250,000”.
XDC=500000 ‘ Set Acceleration to “500,000”.
XSP=25000 ‘ Set Speed to “25,000”.
XBG ‘ Start a Motion

The following code example shows starting a Jog motion in the Y axis using SP=-50,000
counts/sec (Negative Motion).

YMO=1;YPS=0 ‘ Enables the motor and Set Position = “0”.
YMM=1;YSM=0 ‘ Set Normal JOG Motion Mode.
YAC=250000 ‘ Set Acceleration to “250,000”.
YDC=500000 ‘ Set Acceleration to “500,000”.
YSP=-50000 ‘ Set Speed to “-50,000”.
YBG ‘ Start a Motion

The next example shows a STEP motion in X axis from Position “0” to Position “100”. Note
that in STEP motions there is no profile, so AC/SP/DC may not be set. When the BG
command is issued, the reference position of the relevant axis is set immediately to the value
of AP. Note that MM=8 can be combined with SM=1 to generate repetitive STEP motions.

XMO=1;XPS=0 ‘ Enables the motor and Set Position = “0”.
XMM=8;XSM=0 ‘ Set Normal STEP Motion Mode.
XBG ‘ Start a Motion

See also:
SM, BG, WT, MO

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 183

7.45 MO – Motor ON (Enable / Disable the Servo Loop)

Purpose:
Set motor ON or OFF. MO=0 turns the relevant motor OFF (disabling the motor driver), and
MO=1 sets the motor ON (enabling the driver). Note that when MO=1 command is issued, the
DP (desired Position) is set to PS (actual position).
The FlexDC supports special hardware configurations for 1 or 2 axes mode. When, in a single
axis configuration, an MO=1 assignment is given to the non-supported axis, a special Error
Code is issued (EC=54, AXIS_NOT_SUPPORTED).

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: No.
 Default Value: 0.
 Range: 0 ÷ 1.

Syntax:
XMO=1; ‘ Enable X motor (set XMO to 1).
AMO=0 ‘ Set MO=0 in all axes (Disable All Axes)

Examples:
The following code example shows starting a Jog motion in the Y axis using SP=-50,000
counts/sec (Negative Motion). MO must be set to “1” to start the motion.

YMO=1 ‘ Enables the motor and Set Position = “0”.
YPS=0 ‘ Set Position = “0”.
YMM=1;YSM=0 ‘ Set Normal JOG Motion Mode.
YAC=250000 ‘ Set Acceleration to “250,000”.
YDC=500000 ‘ Set Acceleration to “500,000”.
YSP=-50000 ‘ Set Speed to “-50,000”.
YBG ‘ Start a Motion

See also: NC, BG, MM, SM, PS

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 184

7.46 MS – Motion Status

Purpose:
The “MS” Motion Status parameter holds information on the current motion status of specific
axes. This is a read only, axis related parameter.
When an axis is not in motion, its “MS” parameter is “0” by definition, i.e. all bits are cleared
(whether a motion did not start at all, or ended due to any reason).
The “MS” parameter is a bit field array. Each bit represents a certain motion status. More then
one bit can be high i.e. logically “1” during a motion sequence.
 “MS” is most commonly used to monitor the end of motion condition. Another way to monitor
end of motion is to use the extended WAIT commands (“QW”). Refer to “ Part III– FlexDC
Macro Language” for more information.
The following table describes the current supported “MS” bits:

MS
BIT

MS Code MS Hex Value Description

0 MS_IN_MOTION 0x00000001 Whenever this bit in “1”, the axis is in Motion.

1 MS_IN_STOP 0x00000002 This bit “1”, when the axis is stopping due to user
command or any other non-normal stop condition,
such as Limit, etc.

2 MS_IN_ACC 0x00000004 This bit indicates that the axis is accelerating.

3 MS_IN_DEC 0x00000008 This bit indicates that the axis is decelerating.

4 Reserved 0x00000010 Not used In This Version.

5 Reserved 0x00000020 Not used In This Version.

6 MS_IN_WAIT_REP 0x00000040 This bit indicates that the axis is waiting for the
Wait Time to elapse in Repetitive PTP motions.

31-7 Reserved 0x00000080 Not used In this version.

Table 25: “MS” Motion Status Parameter Bits Description

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 185

The “MS” parameter has the following attributes:

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: No.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: No.
 Default Value: 0.
 Range: 0 ÷ N.A.
Syntax:
XMS ‘ Report value MS for X axis.
AMS ‘ Report value MS for all axes.

Examples:
The following simple example demonstrates a repetitive motion in the X axis, not using the
internal Repetitive PTP mode, but rather by a simple script that polls the “MS” to check end of
motion and to initiate a backward motion and so on.
XMO=1;XPS=0 ‘ Enables the motor and Set Position = “0”.
XMM=0;XSM=0 ‘ Set Normal Point To Point Motion Mode.
XAC=250000 ‘ Set Acceleration to “250,000”.
XDC=500000 ‘ Set Acceleration to “500,000”.
XSP=25000 ‘ Set Speed to “25,000”.

#X_START ‘ Label for REP PTP Motion

XAP=100000 ‘ Set Next PTP absolute location to “100,000”
XBG ‘ Start a Motion

@while (XMS != 0) ‘ Wait for End Of Motion in X (XMS=0)
@endwhile

XAP=0 ‘ Set Next PTP absolute location to “0”
XBG ‘ Start a Motion

@while (XMS != 0) ‘ Wait for End Of Motion in X (XMS=0)
@endwhile

XJP, #X_START
See also: BG, EM, MM, SM, TR, TT.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 186

7.47 NC – No Control (Set Open Loop Mode)

Purpose:
The “NC” parameter keyword set the controller to open-loop mode. In this mode the user can
command a direct analog output command to the controller Analog Command (Acmd) output,
bypassing the PIV controller filter. Refer to the “TC” command for further information.

The value of “NC” is not saved to the Flash Memory, and each time the controller boots up,
the value of “NC” is set to “0” by default (normal closed loop operation). In order to switch to
open loop mode, the user should switch the motor OFF (set MO=0 for the relevant axis), then
set the value of “NC” to “1” (NC=1), and then switch the motor ON again. After MO=1 with
NC=1, by default the analog output value commend is “0” to avoid motor motion (TC is set
automatically to zero when MO=1). In this state, the user can control the actual analog output
value by using the “TC” (Torque Command parameter keyword).

It should be noted that in open loop mode the actual analog command is still limited by the
“TL” (Torque Limit) parameter. In addition, the control 2nd order filter may be used to monitor
its operation and actual effect on the analog output value. The operation of the filter can be
disabled by an appropriate flag (see 2nd order filter definitions in chapter 4, Part II). The user
can choose to record the actual Driver Command (“PO”) value. In case the 2nd order filter is
enabled, the actual value recorded is the step response of the filter. If no 2nd order filter is
used, the actual value recorded is equal to the value commanded by “TC”. In any case the
value is saturated by “TL”.

In order to switch back again to closed loop operation the motor should be disabled (MO=0),
and only then “NC” may be set back to “0”.

The “NC” command is restricted to motor OFF condition. Trying to modify “NC” while motor is
enabled (MO=1) generates an “EC_NEEDS_MOTOR_OFF” error # 48.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 187

The “NC” parameter has the following attributes:

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: Needs Motor OFF.
 Save to Flash: No.
 Default Value: 0.
 Range: 0 ÷ 3.

Syntax:
XNC=0; ‘ Disable open loop (default)
ANC=1 ‘ Set NC=1 (open loop) for all axes.

Examples:
The following code example enables open loop mode on Y axis, and set the Y axis analog
command output to +5 volts and –10 volts:

YMO=0 ‘ Must Disables the motor before changing the NC.
YNC=1 ‘ Set NC=1 to indicate open loop for that axis.
YMO=1 ‘ Set MO=1 for Y Again.
YTL=32763 ‘ Set Command saturation to ± 10 Volts.
YTC=16384 ‘ Set command value to +50% (+5 Volts).

YTC=-32763 ‘ Set command value to -100% (-10 Volts).

YMO=0 ‘ Disables the motor before changing the NC.
YNC=0 ‘ Restore closed loop mode.

See also:
TC, TL, 2nd order filter definitions, Data Recording

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 188

7.48 OC – Output Clear Bit Command

Purpose:
The “OC” command Clears (Set to “0”) a specific Bit in the digital Output Port word.
Unlike the “OP” parameter that only allows simultaneous access to all the output bits, the “OC”
command allows bit wise clear operations on the digital output word.

This is required for example when only a certain bit needs to be cleared, without the other bits
changed. Using the “OC” Output Clear Bit command saves the user from first reading the
value of “OP”, clearing one of its bits using a logical “&” operator, and then re-assign “OP”
(read-modify-write). When accessing the output port bits from two separate script tasks, this is
necessary, otherwise the value of “OP” can be wrong.

The “OC” Output Clear Bit command must receive a parameter, indicating the specific bit to
mask (currently: 1 ÷ 8). Calling the command without a parameter generates an
“EC_PARAM_EXPECTED” (EC=38) error. Calling the command with an out of range
parameter, generates an “EC_PARAM_OUT_OF_RANGE” (EC=34) error.
Attributes: Type: Command.
 Axis related: No.
 Array: No.
 Assignment: ---.
 Command Allows parameter: Must have, Bit # (1 ÷ 8).
 Scope: All.
 Restrictions: None.
 Save to Flash: ---.
 Default Value: ---.
 Command Parameter Range: 1 ÷ 8.
Syntax:
XOC,1 ‘ Clears the first bit (LSB, Bit 0) in OP to “0”.
XOC,8 ‘ Clears the last bit (MSB, Bit 7) in OP to “0”.

Examples:
XOP=255 ‘ Set ALL digital outputs to High (“1”) logic.
XOC,1 ‘ Clears the first bit (LSB, Bit 0) in OP to “0” (OP=254)

XOP=255 ‘ Set ALL digital outputs to High (“1”) logic.
XOC,8 ‘ Clears the last bit (MSB, Bit 7) in OP to “0” (OP=127)

See also: OL, OP, OS.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 189

7.49 OL – Output Logic

Purpose:

Sets (and gets) the FlexDC Output Port Logic control word. Using the “OL” Output Logic
parameter, the user can control the actual H/W logic level of each bit in the controller Output
Port Word.

Each bit in “OL” corresponds to the same bit in “OP”, and to a specific H/W digital output. The
bit order of “OL” is the same as “OP”, i.e.:

• Bit 0 of OL – Controls the logic of digital output port #1.
• Bit 1 of OL – Controls the logic of digital output port #2.
• …
• Bit 7 of OP – Controls the logic of digital output port #8.

“OL” is non-axis related, so axis-preceding character has no effect. “OL” is usually set to a
pre-defined value after the initial application setup, and then “OP”, “OS” or “OC” should be
used to control the outputs.

Attributes: Type: Parameter.
 Axis related: No.
 Array: No.
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 0.
 Range: 0 ÷ 255.

Syntax:
XOL=0; ‘ Set non-inverted logic to all digital Outputs.
AOL ‘ Report value of OL, the output port word.
XOL=128 ‘ Invert the logic of output port #8.
XOL=255 ‘ Invert the logic of all output ports.

See also: OC, OP, OS

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 190

7.50 OM – I/O Modes Hardware Configuration

Although “OM” is an axes related parameter (and it is implemented as such), in the FlexDC
firmware there is no actual relation between the XOM, YOM, etc. to actual axes. The distinct
axes identifiers are used in this case only to access more then one optional hardware
registers of the FlexDC. Writing to “OM” immediately changes the corresponding internal
hardware register values.
In the current firmware version, there are only 2 functional registers related to the “OM”
parameter. These are in Table 26:

“OM”
Axis #

Hardware
Register

Functionality

XOM IO_MODE_0 Controls Digital Outputs Assignment (as normal or Compare
Output functions).

YOM IO_MODE_1 Controls Encoder Capture I/O signal Source and logic.

Table 26: "OM" - I/O Mode Configuration Functionality Definitions

IO_MODE_0 – “XOM”:

Table 27 describes the IO_MODE_0 bits order and Table 28 describes the specific
description:

IO_MODE_0 : Bit # 31 ÷ 0
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Reserved
Out

6
Src

Out
5

Src

Table 27: IO_MODE_0 Bits Order

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 191

Bits Name IO_MODE_0 Bits Description

1 .. 0 DOut5 Src Defines the Dout5_Fast (fast output) source:
00 – As normal Output.
01 – From compare X
10 – From compare Y

3 .. 2 DOut6 Src Defines the Dout6_Fast (fast output) source:
00 – As normal Output.
01 – From compare X
10 – From compare Y

31 .. 4 Reserved These bits are currently not used, and should be left “0” for future
compatibility.

Table 28: FlexDC "XOM" - IO_MODE_0 Bits Configuration Description

IO_MODE_1 – “YOM”:

Table 29 describes the IO_MODE_1 bits order and Table 30 describes specific description:

IO_MODE_0 : Bit # 31 ÷ 0
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Reserved

Y
P
O
L

Y Axis -
Capture
Event

Source
Def

Reser
ved

X
P
O
L

X Axis -
Capture
Event

Source
Def

Table 29: IO_MODE_1 Bits Order

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 192

Bits Name IO_MODE_0 Bits Description

7 .. 0 X Axis Evt Bits [3–0] of IO_MODE_1 controls the Capture Event Source for the
X Axis. The following bit order definitions applies:
“0000” X Event source is Din1.
“0001” X Event source is Din2.
“0010” X Event source is Din3.
“0011” X Event source is Din4.
“0100” X Event source is Din5.
“0101” X Event source is Din6.
“0110” X Event source is Din7.
“0111” X Event source is Din8.
“1000” X Event source is Din9_Fast.
“1001” X Event source is Din10_Fast.
“1010” X Event source is Index X.
“1011” X Event source is Index Y.

 X Pol Select Input polarity for Axis X. “0” set Normal pulse polarity, “1” set
Inverted pulse polarity.

7 .. 5 Reserved These bits are currently not used, and should be left “0” for future
compatibility

11 .. 8 Y Axis Evt Bits [11–8] of IO_MODE_1 controls the Capture Event Source for the
Y Axis. The following bit order definitions applies:
“0000” Y Event source is Din1.
“0001” Y Event source is Din2.
“0010” Y Event source is Din3.
“0011” Y Event source is Din4.
“0100” Y Event source is Din5.
“0101” Y Event source is Din6.
“0110” Y Event source is Din7.
“0111” Y Event source is Din8.
“1000” Y Event source is Din9_Fast.
“1001” Y Event source is Din10_Fast.
“1010” Y Event source is Index Y.
“1011” Y Event source is Index X.

12 Y Pol Select Input polarity for Axis Y. “0” set Normal pulse polarity, “1” set
Inverted pulse polarity.

31..13 Reserved These bits are currently not used, and should be left “0” for future
compatibility

Table 30: FlexDC "YOM" - IO_MODE_1 Bits Configuration Description

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 193

The “OM” parameter has the following attributes:

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 0.
 Range: -2,124,000,000 ÷ +2,124,000,000.

Syntax:

XOM=0 ‘ Reset IO_MODE_0 register.
XOM ‘ Report Value of IO_MODE_0.
XOM=0 ‘ Reset IO_MODE_1 register.
XOM ‘ Report Value of IO_MODE_1.

Examples:
The following assignment set all digital outputs as standard normal outputs, controlled by the
“OP” parameter.

XOM=0
The following assignment set Digital Output #5 (DOut5) to be assigned to X Axis Compare,
Digital Output #6 (DOut6) to be assigned to Y Axis Compare. In this MODE accessing the bits
5 and 6 of “OP” (by modifying “OP” value or with the “OC” and “OS” Output Clear and Set Bit
commands) only modifies the value of “OP”, but does not affect the actual hardware output
pins.

XOM=9
The following assignment set only Digital Output #5 (DOut5) to be assigned to X Axis
Compare. All other digital outputs as standard normal outputs, controlled by the “OP”
parameter.

XOM=1
The following assignment set only Digital Output #5 (DOut1) to be assigned to Y Axis
Compare. All other digital outputs as standard normal outputs, controlled by the “OP”
parameter.

XOM=2

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 194

The following assignment defines the X Axis Capture Source to be the X Encoder Index Input.
YOM=10

The following example demonstrates simultaneous independent usage of X and Y axes, axes
Compare and Capture functions.

• The X axis is configured to generate Compare pulses on DOut5, and
assuming that DOut5 is connected by external wiring to Din9, the X Capture
function is programmed to latch the Compare locations.

• The Y axis is configured to generate Compare pulses on DOut6, and
assuming that DOut6 is connected by external wiring to Din10, the Y
Capture function is programmed to latch the Compare locations.

‘ Set X Compare to DOut5 and Y Compare to DOut6.
‘ The resulted value is: 5.
‘ --

‘
XOM=9 ‘ Set IO_MODE_0
YOM=2312 ‘ Set IO_MODE_1:X Capture on Din9, Y Capture on Din10.

See also:
OP, IP, Compare Function, Capture Function, refer to the "Technical Data" chapter in the
"FlexDC User Manual" regarding the Fast Digital Outputs and Inputs.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 195

7.51 OP – Output Port

Purpose:
Sets (and gets) the FlexDC Motion Controller's uncommitted digital Output Port bits.
The FlexDC servo controller supports 6 general-purpose digital outputs (refer to the
"Technical Data" chapter in the “FlexDC User Manual” for more information about hardware
interfaces of digital I/O).
The “OP” parameter holds the Output Port word (bit array). Each bit in “OP” controls a single
digital output bit port (as shown below). The user can of course read the value of “OP” in order
to get the current Output Port word status.

• Bit 0 of OP – Controls digital output port #1.
• Bit 1 of OP – Controls digital output port #2.
• Bit 7 of OP – Controls digital output port #8.

 “OP” controls simultaneous access to all the Output Port word bits at one assignment. In
order to access one bit at a time (Set or Clear a specific bit), the FlexDC firmware includes 2
additional commands: “OS” – That Set (to “1” logic) a specific output bit, and “OC” – That
clears (to “0” logic) a specific output bit. See “OS” and “OC” references. The user can also
control the actual H/W logic level of each output bit using the “OL” – Output Logic parameter.
“OP” is non-axis related, so axis-preceding character has no effect.
Attributes: Type: Parameter.
 Axis related: No.
 Array: No.
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: No.
 Default Value: 0.
 Range: 0 ÷ 255.
Syntax:
XOP=0; ‘ Set the Output Port to “0” (all bits cleared).
AOP ‘ Report value of OP, the output port word.
XOP=255 ‘ Set ALL digital outputs to High (“1”) logic.

See also:
OC, OL, OS, XOM.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 196

7.52 OS – Output Set Bit Command

Purpose:
The “OS” command sets (Set to “1”) a specific Bit in the digital Output Port word.
Unlike the “OP” parameter that only allows simultaneous access to all the output bits, the “OS”
command allows bit wise set operations on the digital output word.
This is required for example when only a certain bit is need to be set, without changing the
other bits. Using the “OS” Output Set Bit command saves the user from first reading the value
of “OP”, setting one of its bits using a logical “|” operator, and then re-assign “OP” (read-
modify-write). When accessing the output port bits from two separate script tasks, this is
necessary, otherwise the value of “OP” can be wrong.
The “OS” Output Set Bit command must receive a parameter, indicating the specific bit to set
(currently: 1 ÷ 8). Calling the command without a parameter generates an
“EC_PARAM_EXPECTED” (EC=38) error. Calling the command with an out of range
parameter, generates an “EC_PARAM_OUT_OF_RANGE” (EC=34) error.
Attributes: Type: Command.
 Axis related: No.
 Array: No.
 Assignment: ---.
 Command Allows parameter: Must have, Bit # (1 ÷ 8).
 Scope: All.
 Restrictions: None.
 Save to Flash: ---.
 Default Value: ---.
 Command Parameter Range: 1 ÷ 8.

Syntax:
XOS,1 ‘ Sets the first bit (LSB, Bit 0) in OP to “1”.
XOS,8 ‘ Sets the last bit (MSB, Bit 7) in OP to “1”.

Examples:
XOP=0 ‘ Clears ALL digital outputs to Low (“0”).
XOS,1 ‘ Set the first bit (LSB, Bit 0) in OP to “1” (OP=1)

XOP=0 ‘ Clears ALL digital outputs to Low (“0”).
XOS,8 ‘ Sets the last bit (MSB, Bit 7) in OP to “1” (OP=128)

See also:
OC, OL, OP

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 197

7.53 PA – Parameters Array

Purpose:
 “PA” is a user general-purpose parameters array. “PA” can be used during script program
development for any purpose.

The “PA” array is an axis related array, with a size of 2x100 elements. Each element in the
array is a LONG format number, which can be assigned with any value at any time. The index
range of the “PA” array is: 1 ÷ 100.

As noted “PA” is a user general-purpose array, and is not used anywhere by the controller’s
firmware code, unless the user has included a reference to it within a script program.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: Yes, size = [2][200].
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 0.
 Range: - 2,147,000,000 ÷ 2,147,000,000.

Syntax:
XPA[1]=0; ‘ Set XPA[1] “0”.
YPA[10] ‘ Report value of YPA[10]
BPA[100]=1000 ‘ Set both axes : PA[100]=1,000.

Examples:
See below.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 198

7.54 PE – Position Error

Purpose:
“PE” is a read only parameter, holding the actual servo loop positioning error.

The Positioning Error (“PE”) is defined as the current desired position minus the actual
position:

PE=DP-PS.
Whenever the servo loop is enabled (MO=1) in both open and closed loop modes, the real
time software computes and updates the value “PE”. When the motor is disabled (MO=0)
DP=PS, so the Position Error is “0” by definition.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: No.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: No.
 Default Value: 0.
 Range: - 8,000,000 ÷ 8,000,000.

Syntax:
XPE ‘ Report X axis Positioning Error PE.
APE ‘ Report Positioning Error PE for all axes.

See also:
ER, PS, DP.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 199

7.55 PG – Position Compare Parameters Array

Purpose:
The “PG” array elements control the operation of the Position Compare Function. “PG” is an
axis related array, sized [2 x 8]. Each axis has 8 parameters controlling the compare function
operation as described below. The FlexDC product supports the Compare Function on both
axes X and Y.

The “PG” array parameter has the following attributes:

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: Yes, size = [2][8].
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 0.
 Range: - 2,147,000,000 ÷ 2,147,000,000.
See Compare Function description for full limitations description.

Syntax:

XPG[1]=0 ‘ Set X Axis PG[1] to “0” (set X axis Mode 0).
YPG[2]=100 ‘ Set Y Axis PG[2] to “100” (set Y axis Compare Distance=100).
XPG[7]=0 ‘ Set X Axis PG[7] to “0” (set W axis Compare Pulse Polarity).

See also:
PQ

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 200

7.56 PQ – Compare Function Activate / Disable Command

Purpose:
The “PQ” command is an axis-related command, enabling or disabling the Compare Function
for a specific axis. The command requires a parameter indicating the requested operation.
The command syntax is as follows:

 XPQ,Parameter

where:

• X is an axis identifier.
For the current FlexDC version the compare function is supported both axes X
and Y.

• Parameter=0: Indicates immediate disable of compare for the specified axis. No
conditions are checked expect a valid axis identifier.

• Parameter=1: Indicates start compare function for the specified axis. The
command validates correct parameter (“PG”) for the specific requested mode.

In any case that one of the command’s parameters is out of range, the command returns an
error prompt: “?>” or generates a script “Run Time Error” (if called from within a script macro
program). The relevant Error Code flags (“EC” or “QC”) is updated to reflect the error cause.

Notes:

• The user should be aware that not all conditions for the correct operation of the
Compare Function can be validated during command initialization. For example,
the minimal distance between each two consecutive points in the “AR” table (in
Modes 2 and 3) cannot be tested as the limitation depends on the actual motion
speed.

• It is the user’s responsibility to specify correct parameters values for each of the
supported Compare Modes.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 201

The “PQ” command has the following attributes:

Attributes: Type: Command.
 Axis related: Yes.
 Array: ---.
 Assignment: ---.
 Command Allows Parameter: Must Have, Number (0, or 1).
 Scope: All.
 Restrictions: See above.
 Save to Flash: ---.
 Default Value: ---.
 Range: ---.

Syntax:
The command syntax is as follows (see also syntax definitions above):

XPQ,1 ‘ Enable Compare Function for X Axis.
YPQ,1 ‘ Enable Compare Function for Y Axis.

See also:
PG

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 202

7.57 PO – PIV Output

Purpose:
 “PO” is a read only parameter reflecting the actual servo driver command value.

In closed loop operation, “PO” is the actual servo control output. In open loop operation, “PO”
equals the “TC” command.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: No.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: ---.
 Save to Flash: ---.
 Default Value: ---.
 Range: - 32,767÷ 32,767.

Syntax:
XPO ‘ Report PO value for X Axis
APO ‘ Report PO value for all Axes

See also:
TC, and Control Loop Description

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 203

7.58 PS – Position (Encoder Position)

Purpose:
This command reports the actual controller position (Encoder Value). The user can also be set
as desired value to the current position (define the current position as ##). Note that setting
the position value is valid only when not in motion. Setting the “PS” immediately sets the “DP”
(desired position) to the same value.
The “PS” command is restricted to No Motion condition. Trying to change “PS” value while
motion is in progress generates an “EC_NEEDS_MOTION_OFF” error # 50.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: Needs Motion OFF.
 Save to Flash: No.
 Default Value: 0.
 Range: - 2,147,000,000 ÷ 2,147,000,000.

Syntax:
XPS=0; ‘ Set X Axis Position (encoder) to “0”
APS=0 ‘ Set PS=0 in all axes (Reset All Axes)

Examples:
The following example shows resetting the X axis position to “0’, and then initiate a normal
motion in X axis from Position “0” to Position “100,000”.
XMO=1 ‘ Enables the X Motor
XPS=0 ‘ Set X axis encoder Position = “0”.
XMM=0;XSM=0 ‘ Set Normal Point To Point Motion Mode.
XAP=100000 ‘ Set Next PTP absolute location to “100,000” counts.
XAC=250000 ‘ Set Acceleration to “250,000”.
XDC=500000 ‘ Set Acceleration to “500,000”.
XSP=25000 ‘ Set Speed to “25,000”.
XBG ‘ Start a Motion

See also:
DP, MM, ER

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 204

7.59 RA – CAN Receiving Address

Purpose:
To set the CAN Receiving Address. The CAN Receiving address is the CAN address which
the controller monitors for incoming CAN messages. Responses are sent to the CAN address
defined by the “TA” parameter.
The CAN Receiving Address must be saved to the flash memory, and the controller must be
reseated in order to change the CAN settings.
Changing RA/TA immediately re-initializes the CAN hardware to take the requested effect.
Care should be taken, as changing RA/TA while working in CAN bus stops the communication
with the PC. The parameters must still be saved to the Flash Memory (as in previous
revisions) in order to be valid after boot.
A new Error Code “EC_HW_INIT_ERROR=97” was added to indicate a CAN hardware
initialization error.
The FlexDC, in addition and independent to the standard RA and TA CAN addresses, listens
and transmits on additional addresses. See the “ZI” keyword for more information
Attributes: Type: Parameter.
 Axis related: No.
 Array: No.
 Assignment: Yes.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 1.
 Range: 0 ÷ 2047.

Syntax:
XRA=1 ‘ Set CAN RA=1.
XRA ‘ Report value of RA.

See also:
CB, TA, ZI

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 205

7.60 RG – Data Recording GAP

Purpose:
The “RG” Recording Gap parameter controls the number of servo cycles interval (Gap)
between each two consecutive recorded data points.

The FlexDC data recording capabilities allows for collecting data at the servo loop rate, i.e.
8,192 per second. However, since currently the recording buffers are limited to 1,875 data
points to each vector (up to 8 vectors simultaneously), at 8,192 points per second this would
have limited the recording time to less then 1 second. In order to allow longer recordings “RG”
is defined. For example, if RG=8, i.e. a data point is collected to the recording buffer each 8
servo cycles (i.e. at a rate of ~ 1msec per point), recording of up to 10 seconds is possible,
and so on.

Attributes: Type: Parameter.
 Axis related: No.
 Array: Yes, Size [2].
 Assignment: Yes.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 1.
 Range: 1 ÷ 16,384.

Syntax:
XRG=1 ‘ Set Recording Gap to “1”.
XRG ‘ Report value of RG.

See also:
BR, DA, RL, RR, RV

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 206

7.61 RG[2] – Data Recording Upload Delays

Purpose:
The “RG[2]” Recording Upload Delay parameter controls the number of servo cycles delay
between each two consecutive CAN messages during Upload Recording Data in CAN bus
operation mode.

When uploading large data buffers in CAN bus, the FlexDC can generate high loads on the
CAN bus network. Depending on the PC load and type of CAN board, on high buffers upload,
some CAN messages can be lost. In order to avoid this problem, the FlexDC can add delays
between CAN messages during data recording upload. The Delay is set by RG[2], and is
given in servo sample time multipliers.

RG[2]=0 means no delay. RG[2]=1 means 1 sample time delay (this is 61 micro-sec on the
4M and 122 micro-sec on the 2M) and so on.

Usually, a delay of 3-5 samples is sufficient for most cases.

For complete description of the RG keyword attributes and examples see the RG keyword
command reference above.

Attributes: See “RG” keyword above.

Syntax: See “RG” keyword above.

Examples: See “RG” keyword above.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 207

7.62 RL – Data Recording Length

Purpose:
The “RL” Recording Length parameter controls the number of data points to be collected to
the recording buffers during data recording process, and as a result the overall recording time.

The “RL” parameter defines the number of points per vector. If RL=1000, this means that for
each selected vector to be recorded, 1,000 data points are collected. The total number of
points collected in the recording process is: RL x Number of Recorded Variables. Currently,
the FlexDC supports up to 8 recorded vectors of up to 1,875 points each, to a total of 15,000
data points overall.

The overall data recording time is: (RL x RG) / 8,192 in [sec] units.

Attributes: Type: Parameter.
 Axis related: No.
 Array: No.
 Assignment: Yes.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 1.
 Range: 1 ÷ 15,000.

Syntax:
XRL=1000 ‘ Set Recording Length to “1,000”.
XRL ‘ Report value of RL.

See also:
BR, DA, RG, RR, RV

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 208

7.63 RP – Relative Position

Purpose:
The RP parameter defines the next motion Relative Position (in counts) target.
The relative position is used for Relative Point to point motions. When issuing an RP=##
command the value of the next absolute position is computed as follows: AP=DP+RP. Upon a
BG (begin motion) command, the controller generates a profile from the current desired (“DP”)
position to the current “AP”. Refer to the “AP” command for more information.
Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: No.
 Default Value: 0.
 Range: - 2,147,000,000 ÷ 2,147,000,000.

Syntax:
XRP=100000; ‘ Set X Axis Relative Position to “100,000”.
ARP=100 ‘ Set RP=100 in all axes.

Examples:
The following example shows performing a +100 counts step, followed by a –100 counts step:
XMO=1 ‘ Enables the X motor
XPS=0 ‘ Set X axis encoder Position = “0”.
XMM=0;XSM=0 ‘ Set Normal Point To Point Motion Mode.
XAC=90000;XDC=90000 ‘ Set AC=DC=90,000.
XSP=25000 ‘ Set Speed to “25,000”.
XRP=100 ‘ Define a +100 counts step.
XBG ‘ Start a Motion

XRP=-100 ‘ Define a -100 counts step.
XBG ‘ Start a Motion

See also: DP, AP, PS, BG

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 209

7.64 RR – Data Recording Status

Purpose:
“RR” is a read only parameter, indicating the recording process status.

When a new recording begins (after “BR” command is issued) “RR” is internally set to the
value of “RL”. During the data recording process, “RR” is automatically decremented by “1” for
each data point collected (to all buffers). This practically happens every “RG” servo cycles.
When “RR” equals “0”, data recording has terminated, and the recorded data can be
uploaded.

When RR > 0, data recording upload is denied.

Attributes: Type: Parameter.
 Axis related: No.
 Array: No.
 Assignment: No.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: No.
 Default Value: ---.
 Range: 1 ÷ 10,000.

Syntax:
XRR ‘ Report value of RR.

See also:
BR, DA, RG, RL, RV

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 210

7.65 RS – Reset Controller Command

Purpose:
The “RS” command can be used to reset the controller software.
 “RS” causes the FlexDC micro-processor to enter a software reset state, and completely re-
initializes the controller software.
After Reset, all the controller parameters and script program resume their boot up values. The
AUTOEX starts running like in power on condition.

The “RS” command has the following attributes:

Attributes: Type: Command.
 Axis related: No.
 Array: ---.
 Assignment: ---.
 Command Allows Parameter: No.
 Scope: All.
 Restrictions: All motors must be OFF, no program running.
 Save to Flash: ---.
 Default Value: ---.
 Range: ---.

Syntax:
XRS ‘ Resets the FlexDC.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 211

7.66 RV – Data Recording, Recorded Variables

Purpose:

The “PA” array is an axis related array, with a size of 2x100 elements. Each element in the

array is a LONG format number, which can be assigned with any value at any time. The index

range of the “PA” array is: 1 ÷ 100.

The “RV” keyword – Recorded variables, in the FlexDC is a non-axis related array, with the

size of 1x8 elements. Using the “RV” array, the user may select the data member to be

recorded for each one of the 8 data recording vectors. XRV[1] controls Vector #1, XRV[2]

controls Vector #2, and so on.

The user can select one of 51 internal data members for each vector. In general the user can

select one of 20 axis specific (currently 11 available and 9 reserved) data elements for each

axis, and 10 global registers. In the following list all options for “RV” are defined. In the table

below (i) indicates the requested axis in zero based form. X axis is defined by i=0, Y axis is

defined by i=1.

RV Value Data Member to be recorded for Axis (i) Keyword

0 None (empty) ---

I x 20 + 1 Position (i) PS

I x 20 + 2 Velocity (i) VL

I x 20 + 3 Position Error (i) PE

I x 20 + 4 Desired Position (i) DP

I x 20 + 5 PID Output (i) PO

I x 20 + 6 Status Register (i) SR

I x 20 + 7 Motion Status (i) MS

I x 20 + 8 Analog Input (i) AI

I x 20 + 9 Motor Fault (i) MF

I x 20 + 10 Auxiliary Position (i) XP

I x 20 + 11 Auxiliary Velocity (i) XV

I x 20 + (12 ÷ 20) Axis Related Reserved ---

41 Input Port IP

42 Output Port OP

43 ÷51 Reserved ---

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 212

The “RV” command has the following attributes:

Attributes: Type: Parameter.
 Axis related: No.
 Array: Yes, size = [1][8].
 Assignment: Yes.
 Command Allows Parameter:---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 0.
 Range: 0 ÷ 211.

Syntax:
XRV[1]=0 ‘ Set X axis RV to 0 (no recording).
XRV[1] ‘ Report value of RV[1].

See also:
BR, DA, RG, RL, RR

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 213

7.67 SM – Special Motion Mode Attribute Parameter

Purpose:

Defines an enhancement to the standard Point to Point Motion Mode (MM=0).

The following Special Modes are supported:

SM=0: No Special Mode.

SM=1, Repetitive Motion: Repetitive Point to Point. When the controller is in MM=0 (PTP)

and SM=1, the motion is repetitive. This means that the axis is commanded to perform a PTP

motion to the specified absolute position and then, after the motion is completed and a user

specified delay (WT) is expired, a new motion is automatically initiated to the starting position

(AP is updated to this value). When the latter motion is completed, and the WT delay is

finished, the cycle starts again. This back-and-forth motion is repeated until stopped by one of

the following clauses: AB (abort), ST (stop), KR (Kill repetitive), and MO=0.

The SM command is restricted to No Motion condition. Trying to change SM value while

motion is in progress generates an “EC_NEEDS_MOTION_OFF” error # 50.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: Needs Motion OFF.
 Save to Flash: Yes.
 Default Value: 0.
 Range: 0 ÷ 8.

Syntax:
XSM=1; ‘ Set X Axis SM=1.
ASM=0 ‘ Set SM=0 in all axes.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 214

Examples:

The following code example shows starting a Normal (Non-Repetitive) motion in X axis from
Position “0” to Position “100,000”.

XMO=1;XPS=0 ‘ Enables the motor and Set Position = “0”.
XMM=0;XSM=0 ‘ Set Normal Point To Point Motion Mode.
XAP=100000 ‘ Set Next PTP absolute location to “100,000” counts.
XAC=250000 ‘ Set Acceleration to “250,000”.
XDC=500000 ‘ Set Acceleration to “500,000”.
XSP=25000 ‘ Set Speed to “25,000”.
XBG ‘ Start a Motion

The Next example shows starting a Repetitive motion in X axis from Position “0” to Position
“100,000” (same motion parameters as above), using “WT” Wait delay between the motions.

XMO=1;XPS=0 ‘ Enables the motor and Set Position = “0”.
XMM=0;XSM=1 ‘ Set Repetitive Point To Point Motion Mode.
XAP=100000 ‘ Set Next PTP absolute location to “100,000” counts.
XAC=250000 ‘ Set Acceleration to “250,000”.
XDC=500000 ‘ Set Acceleration to “500,000”.
XSP=25000 ‘ Set Speed to “25,000”.
XWT=16384 ‘ Set 1 second delay between motions.
XBG ‘ Start a Motion

See also:
MM, WT, AB, ST, KR, MO

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 215

7.68 SP – Speed

Purpose:
Sets the Speed of the profile in PTP motions, and the Jogging speed in Jogging motions. The
Speed value is defined in units of: [counts / sec]. The value of SP can be negative, to define a
negative JOG motion. However, in PTP motion mode, the SP sign is ignored, and actual
speed direction is set by position profile requirements.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 100,000.
 Range: -30,000,000 ÷ 30,000,000.

Syntax:
XSP=100000; ‘ Set X Axis SP=100,000.
ASP=20000 ‘ Set SP=200,000 in all axes.

Examples:
The following code example shows starting a Jog motion in the Y axis using SP=-50,000
counts/sec (Negative Motion).

YMO=1;YPS=0 ‘ Enables the motor and Set Position = “0”.
YMM=1;YSM=0 ‘ Set Normal JOG Motion Mode.
YAC=250000 ‘ Set Acceleration to “250,000”.
YDC=500000 ‘ Set Acceleration to “500,000”.
YSP=-50000 ‘ Set Speed to “-50,000”.
YBG ‘ Start a Motion

See also: C, DL, SP, MM, BG

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 216

7.69 ST – Stop Motion Command

Purpose:

The “ST” Stop command stops any motion using the “DC” (deceleration value). Unlike the

Abort (“AB”) command, the stop command stops the motion by generating a deceleration

profile to “0” speed until a complete motion stop.

 “ST” may be used whenever a motion needs to be stopped in controlled manner. For

example, when a motion to search some input flag is performed, when the input is detected,

the “ST” command may be used to stop the motion (see example below).

Attributes: Type: Command.
 Axis related: Yes.
 Array: ---.
 Assignment: ---.
 Command Allows Parameter: No.
 Scope: All.
 Restrictions: None.
 Save to Flash: ---.
 Default Value: ---.
 Range: ---.

Syntax:
XST; ‘ Stop X Motion
AST ‘ Stop motion of All axes.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 217

Examples:
The following example starts a motion, and then enters a loop to check for Input #1 to become
low (“0”). When condition is met, the motion is stooped.
The following example can be written as a script program file. The main routine name is
“#FINDI1”, and can be executed and tested.
‘
‘ Routine to find Input #1
‘ ----------------------------
#FINDI1
‘
XMO=1;XPS=0 ‘ Enables the motor and Set Position = “0”.
XMM=0;XSM=0 ‘ Set Normal Point To Point Motion Mode.
XAP=100000 ‘ Set Relative motion of “100,000” counts.
XAC=90000;XDC=90000 ‘ Set AC=DC=90,000
XSP=25000 ‘ Set Speed to “25,000”.
XBG ‘ Start a Motion
‘
‘ Now enter a loop to check for input #1 to become low.
‘ ---
@while (AIP & 1) ‘ Wait for Input “1” to be Low.
@endwhile
‘
‘ Input is found, so stop the motion.
‘ --
XST
‘
‘ Wait for End Of Motion
‘ -----------------------------
@while (XMS != 0) ‘ Wait for MS (Motion Status) top be “0”.
@endwhile
‘
XQH ‘ Stop the program

See also:
BG, AB, KR, MS, IP

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 218

7.70 SR – Status Register

Purpose:

The “SR” Status Register is a read only parameter holding information on the current axis

status.

Currently, “SR” should only be used to inquire the “In Target” bit condition of the axis.

The “In Target” status is indicated in bit #6 (“1” based, i.e. 0x20 Hex) of “SR”. For a complete

description of In Target Status bit operation see the “TR” and “TT” parameters.

The “SR” parameter has the following attributes:

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: No.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: No.
 Default Value: 0.
 Range: 0 ÷ N.A.

Syntax:
XSR ‘ Report value SR for X axis.
ASR ‘ Report value SR for all axes.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 219

Examples:
The following simple example demonstrates how initialize a PTP motion in X axis, then to wait
for end of motion (monitoring “MS”) and “In Target” condition (monitoring “SR”).
XMO=1;XPS=0 ‘ Enables the motor and Set Position = “0”.
XMM=0;XSM=0 ‘ Set Normal Point To Point Motion Mode.
XAC=250000 ‘ Set Acceleration to “250,000”.
XDC=500000 ‘ Set Acceleration to “500,000”.
XSP=25000 ‘ Set Speed to “25,000”.
XAP=100000 ‘ Set Next PTP absolute location to “100,000”
TR=10;TT=160 ‘ Set Target Radius and Target Time
XBG ‘ Start a Motion

@while (XMS != 0) ‘ Wait for End Of Motion in X (XMS=0)
@endwhile

@while (XSR != 32) ‘ Wait for In Target in X (XSR=32)
@endwhile

Another way to wait for “In Target” condition is to use the special “QW” command like in the
following example:

$define WaitForEndOfMotionX() "XQW,100000"
$define WaitForXInTR() "XQW,101060"

XMO=1;XPS=0 ‘ Enables the motor and Set Position = “0”.
XMM=0;XSM=0 ‘ Set Normal Point To Point Motion Mode.
XAC=250000 ‘ Set Acceleration to “250,000”.
XDC=500000 ‘ Set Acceleration to “500,000”.
XSP=25000 ‘ Set Speed to “25,000”.
XAP=100000 ‘ Set Next PTP absolute location to “100,000”
TR=10;TT=160 ‘ Set Target Radius and Target Time
XBG ‘ Start a Motion

WaitForEndOfMotionX() ‘ Waits for End of Motion in X Axis
WaitForXInTR() ‘ Waits for In Target in X Axis

See also:
MS, BG, TR, TT, QW

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 220

7.71 SV – Save Command

Purpose:

See “LD” Load Command.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 221

7.72 TA – CAN Transmitting Address

Purpose:

This parameter sets the CAN Transmitting Address. The CAN transmitting address is the CAN

address to which the controller responds to in any case a CAN message is received (the

receiving address is defined in the “RA” parameter).

The CAN Transmitting Address must be saved to the flash memory, and the controller must

be reset in order to change the CAN settings.

Changing RA/TA immediately re-initializes the CAN hardware to take the requested effect.

Care should be taken, as changing RA/TA while working in CAN bus stops the communication

with the PC. The parameters must still be saved to the Flash Memory (as in previous

revisions) in order to be valid after boot.

A new error codes “EC_HW_INIT_ERROR=97” was added to indicate a CAN hardware

initialization error.

In the FlexDC, in addition and independent to the standard RA and TA CAN addresses,

listens and transmits on additional addresses. See the “ZI” keyword for more information.

Attributes: Type: Parameter.
 Axis related: No.
 Array: No.
 Assignment: Yes.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 2.
 Range: 0 ÷ 2047.

Syntax:
XTA=2 ‘ Set CAN TA=2.
XTA ‘ Report value of TA.

See also:
CB, RA, ZI.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 222

7.73 TC – Torque Command

Purpose:

The “TC” parameter keyword is used to set the Servo Analog Command value to a user

specified value, when operating in open loop mode (when NC=1, and MO=1). In Open loop

mode, the value of “TC” is directly forwarded to the controller Analog Command (Acmd)
output, bypassing the PIV controller filter. Refer to the “NC” command for further information

on how to enter open loop mode.

The value of “TC” is not saved to the Flash Memory. After MO=1 with NC=1, by default the

analog output value commend is “0” to avoid motor motion (“TC” is set automatically to zero

when MO=1).

It should be noted that in Open Loop mode the actual analog command is still limited by the

“TL” (Torque Limit) parameter. Also, the control 2nd order filter may be used to monitor its

operation and actual effect on the analog output value. The operation of the filter can of

course be disabled by an appropriate flag (see 2nd order filter definitions in chapter 4, Part II).

The user can choose to record the actual Driver Command (“PO”) value. In cases where the

2nd order filter is enabled, the actual value recorded is the step response of the filter. If no 2nd

order filter is used, the actual value recorded is equal to the value commanded by “TC”. In any

case the value is saturated by “TL”.

The value range of the “TC” parameter is 16 bit, reflecting the controller extended analog

command resolution. This means that setting TC=32767 commands an analog command of

+10 volts, while setting TC=-32767, commands an analog command

of -10 volts. TC=0 of course sets analog command to 0 volts.

Note that the sign of the analog output can be inverted using the dedicated “CG” bits. The

Analog offset can be set using the “DO” command.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 223

The “TC” parameter has the following attributes:

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: No.
 Default Value: 0.
 Range: -32,767 ÷ 32,767.

Syntax:
XTC=16384; ‘ Reset value of X axis TC to “16384”.
ATC=0 ‘ Set TC=0 for all axes (set analog Cmd =0).

Examples:
The following code example enables Open Loop mode on Y axis, and set the Y axis analog
command output to +5 volts, and –10 volts:

YMO=0 ‘ Disables the motor before changing the NC.
YNC=1 ‘ Set NC=1 to indicate Open Loop for that axis.
YMO=1 ‘ Set MO=1 for Y Again.
YTL=32763 ‘ Set Command saturation to ± 10 Volts.
YTC=16384 ‘ Set command value to +50% (+5 Volts).

YTC=-32763 ‘ Set command value to -100% (-10 Volts).

YMO=0 ‘ Disables the motor before changing the NC.
YNC=0 ‘ Restore closed loop mode.

See also:
CG, NC, TL, 2nd order filter definitions, and Data Recording

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 224

7.74 TD – Timer Down

Purpose:

The “TD” parameter is an internal timer counting down towards “0”. The timer can be set to

any value from 0 to 100,000,000. Upon reaching a count of 0 the timer stops.

“TD” should be used by user programs to generate delays or count times. The “TD” parameter

is always reset to “0” after boot.

 “TD” is an axis related parameter. There are 2 different internal timers that can be accessed

by the user: XTD and YTD. There is no actual relation between XTD to the X axis. Each timer

can be used by any program.

The “TD” timers count in the servo sample rate, i.e. 8,192 counts per second.

The “TD” parameter has the following attributes:

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: No.
 Default Value: 0.
 Range: 0 ÷ 100,000,000.

Syntax:
XTD=8192; ‘ Set 1 Second Delay for X Timer.
XTD ‘ Report the value of XTD.
BTD=8192 ‘ Set 1 Second Delay for both timers.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 225

Examples:
The following code example sets the X Timer to 1 second delay and then waits for the timer to
reach zero count. This is a simple way to implement a 1 second delay function.

XTD=8192 ‘ Set X Timer to 1 Second
@while (XTD > 0) ‘ Waits for XTD to become zero
@endwhile

Another way to generate a 1 second delay is to use “TD” as above but then wait for “TD” to
reach a zero value using the “QW” command:

$define TimerX "XTD"
$define WaitTimerX() "XQW,107000"

TimerX=16384 ‘ Set XTD=8192
WaitTimerX() ‘ Waits for XTD to become zero

See also:
Refer to “ Part III– FlexDC Macro Language”.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 226

7.75 TL – Torque Limit (Analog Command Saturation)

Purpose:

The “TL” parameter limits the value of the analog output command to the servo amplifier. In

applications where a current loop driver is used (most cases), the “TL” limit actually limits the

motor current.

“TL” saturates the analog output command in both closed loop (NC=0) and open loop

(NC=1,2,3) operation modes. See section 4, Part II, for the The Control Filter further

information.

The range of “TL” is: 0 ÷ 32,767. TL=0 disables the analog command output to “0” volts.

TL=32,767 is full range (100 % command), i.e.: ± 10 Volts.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 32,763.
 Range: 0 ÷ 32,767.

Syntax:
XTL=16384; ‘ Set X Axis TL=16,384 (50% of Max Range).
ATL=32767 ‘ Set TL=32,767 in all axes (100 % limit).

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 227

Examples:
The following code example enables open loop mode on Y axis, but limits the Max analog
command to ± 5 Volts.

YMO=0 ‘ Must Disables the motor before changing the NC.
YNC=1 ‘ Set NC=1 to indicate open loop for that axis.
YMO=1 ‘ Set MO=1 for Y Again.
YTL=16384 ‘ Set Command saturation to ± 5 Volts.
YTC=16384 ‘ Set command value to +50% (+5 Volts).
YTC=-32767 ‘ Set command value to -100% (-10 Volts), but TL actually limits the
 actual outout value to –5 Volts.

See also:
NC, TC, IS

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 228

7.76 TR – Target Radius

Purpose:

The “TR” parameter defines the Target Radius in Encoder counts for the In Target detection

logic. “TR” is used in conjunction with “TT” the Target Time and the Status register “SR”

parameters.

During operation, while an axis is enabled (MO=1) and not in motion (MS=0), the real time

control loop continuously checks the Position Error “PE”, and when ABS(PE) <= TR, for at

least “TT” (Target Time) sample times, a dedicated bit in “SR” is set to high (logic “1’).

The In Target logic is usually used to let a host application (or a script program) to monitor the

end of motion condition and wait for the axis to reach the desired target position within a

specific defined error.

The “TR” parameter has the following attributes.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 2.
 Range: 0 ÷ 32,767.

Syntax:
XTR=10 ‘ Set X Target Radius to 10 counts.
ATR=20 ‘ Set All Axes Target Radius to 20 counts.

Examples:
See the “SR – Status Register” Command reference.

See also:
SR, TT

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 229

7.77 TT – Target Time

Purpose:

The “TT” parameter defines the Target Time in servo sample units for the In Target detection

logic. “TT” is used in conjunction with “TR” the Target Radius and the Status register “SR”

parameters.

During operation, while an axis is enabled (MO=1) and not in motion (MS=0), the real time

control loop continuously checks the Position Error “PE”, and when ABS(PE) <= TR, for at

least “TT” (Target Time) sample times, a dedicated bit in “SR” is set to high (logic “1’).

The In Target logic is usually used to let a host application (or a script program) to monitor the

end of motion condition and wait for the axis to reach the desired target position within a

specific defined error.

The “TT” parameter has the following attributes.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 2.
 Range: 0 ÷ 32,767.

Syntax:
XTT=160 ‘ Set X Target Time to 160 samples (20 msec in the FlexDC).
ATT=656 ‘ Set All Axes Target Time to 60 samples.

Examples:
See the “SR – Status Register” Command reference.

See also: SR, TR

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 230

7.78 VA / VD / VS – Vector Motion Parameters

Purpose:

The “VA” - Vector Acceleration, “VD” - Vector Deceleration, and “VS” - Vector Speed, are

used for special X/Y Vector motions.

Vector motions are supported by the FlexDC for the execution of synchronized X and Y

motions. The Vector motion syntax is fully compatible with the FlexDC syntax.

Vector motion is initialized in the FlexDC by issuing a BBG,-1 command (BBG command with

a parameter equals to –1).

When a BBG,-1 command is executed, the controller first computes the Vector Distance and

Vector Angle, based on the X and Y motion distance components.

The vector distance is not directly defined along the vector but instead it is defined as its X, Y

components. The desired motion distances for the X and the Y axes are defined normally

using AP (or RP). The desired distance along the X axis is (XAP-XDP) and (YAP-YDP) for the

Y axis. The DP value represents the desired current position (before the motion) while AP is

the desired target position. The Vector Distance and Angle are computed as follows:

Vector Distance = SQRT { (XAP-XDP)2+ (YAP-YDP) 2 }

Vector Angle = ATAN { (YAP-YDP) / (XAP-XDP) }

Once the Vector Angle is determined, it is used to compute the accelerations, decelerations

and speeds projection on both X and Y axes, as follows:

XAC = AVA * SIN (Vector Angle)

XDC = AVD * SIN (Vector Angle)

XDL = AVL * SIN (Vector Angle)

XSP = ASP * SIN (Vector Angle)

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 231

YAC = AVA * COS (Vector Angle)

YDC = AVD * COS (Vector Angle)

YDL = AVL * COS (Vector Angle)

YSP = ASP * COS (Vector Angle)

In the next phase (of the BBG,-1) command, both the X and Y axes are commanded for

synchronized motion, based on the AC/DC/DL/SP parameters computed above. The actual

axis specific AC/DC/DL/SP are being overwritten by the BBG,-1.

Note that in this case, the BBG,-1 command must be use BBG. XBG,-1 or YBG,-1 starts a

motion in X or Y only, with unexpected motion parameters, and should be avoided. The

BBG,-1 function calculates new values to the above parameters independently of the Motion

Mode and the Special Mode parameters. As a result, a vector motion is created for all motion

modes which use the above parameters, including: Jogging, Point-To-Point, Repetitive Point-

To-Point etc.

Motion modes which do not use the above parameters (such as ECAM) is not affected by the

-1 parameter (BG,-1). However, the above parameters in any case are recalculated and

overwritten.

The user can still modify all parameters which supports on-the-fly modifications (such as SP).

However, it affects each axis independently and causes a motion that may not be consistent

with the originally desired vector. VA, VD, VL and VS can still be modified on the fly, but will

not affect since these parameters are used only for the pre-calculation within the BBG,-1

command function.

Note that in the current implementation, the controller does not "remember" that it is in vector

(common) motion. The BBG,-1 performs a pre-calculation which prepares the SP, AC DC and

DL parameters of both axes for a synchronized motion along the vector and initiate a motion

for both axes. From this point the two axes performs normal independent motion according to

their MM and SM parameters.

While this is a very simple and predictable behavior, it has a disadvantage that the axes are

not truly linked together. For example, a fault in one axis will not affect the other.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 232

Attributes and Syntax:
Except from being non-axis related parameters, the “VA” - Vector Acceleration, “VD” - Vector

Deceleration and “VS” - Vector Speed, are analogues to the axis specific parameters “AC” /

“DC” and “SP”, and has similar attributes.

Examples:
The following example starts a common XY vector motion:

BMO=1;BMM=0;BSM=0
BVS=100000;BVA=1000000;BVD=1000000
XAP=50000;YAP=600000
BBG,-1

Se also:
AC, DC, DL, SP, MM

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 233

7.79 VR – Get Version Command

Purpose:

The “VR” command retrieves the controller Firmware and FPGA versions. The standard

Version Command response report (in RS232 communication protocol) has the following

syntax:

”FlexDC Motion Controller 2,101,2,5,16”. The following interpretation is applicable:

FlexDC Motion Controller 2: Indicates the new FlexDC product code.

101: Indicates that Firmware Version 1.01 is installed.

2: Indicates that this is a 2 axis version.

5: Indicates the FPGA version (5).

16: Indicates the Macro Buffer size in kBytes (16 kBytes).

Note: Firmware version must comply with FPGA versions. Downloading firmware versions

without prior authorization from Nanomotion Ltd. is not allowed, and might result in a

malfunctioning (un-expected results) board.

In CAN bus communication, the standard VR report has the following syntax (see Table 31):

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Type
Number

FW Ver
Hi

FW Ver
Low

Num
Axes

FPGA
Version

Reserved Macro
Size Hi

Macro
Size Low

=52 =0 =101 =2 =5 0 =0 =16

Table 31: FlexDC to Host - CAN VR Version Report Message Format

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 234

The VR (Version Report) command also supports receiving a parameter as part of the

command syntax. Calling “VR” without any parameter is fully compatible to previous revisions

version report format (indicated above). However, the controller now also supports the

following additional version reports:

 “BVR,1” : Reports Boot and Single or Dual Axes Controller Version.

“BVR,2” : Reports Firmware (Major and Minor) Versions, with its release Date

 and Time.

“BVR,3” : Reports the FPGA Version.

In current firmware version, special VR requests are supported on the FlexDC in RS232 only.

The “VR” command has the following attributes:

Attributes: Type: Command.
 Axis related: No.
 Array: ---.
 Assignment: ---.
 Command Allows Parameter: Yes (see above).
 Scope: All.
 Restrictions: None.
 Save to Flash: ---.
 Default Value: ---.
 Range: ---.

Syntax:
XVR ‘ Standard Version Report
XVR,2 ‘ Reports Firmware (Major and Minor) Versions, with its release
 Date and Time (RS232 only)
Examples:
See Syntax Above.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 235

7.80 WT – Wait Period

Purpose:

This parameter sets the Wait time for Repetitive Point to Point. When the controller is in MM=0

(PTP) and SM=1, the motion is repetitive. This means that the axis is commanded to perform

a PTP motion to the specified absolute position and then, after the motion is completed and a

user specified delay (WT) is completed, a new motion is automatically initiated to the starting

position (AP is updated to this value). This back-and-forth motion is repeated until stopped by

one of the following clauses: AB (abort), ST (stop), KR (Kill repetitive), and MO=0.

The WT parameter defines the delay time in number of servo samples (each is approximately

122 [us] or 1/8,192 of a sec) between the back-and-forth motions.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 0.
 Range: 0 ÷ 800,000,000.

Syntax:
XWT=0; ‘ Set X Axis WT=0.
AWT=16384 ‘ Set WT= 16384 in all axes.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 236

Examples:
The example shows starting a Repetitive motion in X axis from Position “0” to Position

“100,000” using 1 sec “WT” Wait between the motions.

XMO=1;XPS=0 ‘ Enables the motor and Set Position = “0”.
XMM=0;XSM=1 ‘ Set Repetitive Point To Point Motion Mode.
XAP=100000 ‘ Set Next PTP absolute location to “100,000” counts.
XAC=100000;XDC=100000 ‘ Set Acceleration to “250,000”.
XSP=25000 ‘ Set Speed to “25,000”.
XWT=16384 ‘ Set 2 second delay between motions.
XBG ‘ Start a Motion

See also:
AC, DL, SP, MM, BG

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 237

7.81 WW – Profiler Smooth Factor

The FlexDC supports an advanced, symmetric S-curve like profile smoothing algorithm. The

smoothing is controlled by the “WW” parameter.

 “WW” can be set to 0 to avoid any profile smoothing. In that case the generated position

velocity profile is pure trapezoidal (or triangular). If “WW” is set to 12, the smoothing is set to

its maximal value. In this case the generated profile has full smoothing, and the velocity

trajectory is not purely trapezoidal.

The “WW” parameter is used by the controller as a power of 2 coefficient for the smoothing

time value. For example, WW=6 means that smoothing is done over a period of time of 2^6

sample time, i.e. 8 msec. The resulted profile generates its full acceleration value in the 2^6

sample time.

Setting WW=12 to its Maximal smoothing value of 2^12, results in a 0.5 sec acceleration

smooth period.

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: Not In Motion.
 Save to Flash: Yes.
 Default Value: 0.
 Range: 0 ÷ 12.

Syntax:
XWW=0; ‘ Set XWW=0 (No Smoothing for X Axis)
AWW=8 ‘ Set WW= 8 for all axes.

See also:
MM

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 238

7.82 XC – Last Capture Position Latch

Purpose:

The “XC” parameter is used in conjunction with the Capture function to report the last

captured position of an axis.

The last Captured location is stored by the controller firmware in the “XC” parameter for each

axis independently (i.e.: XXC, YXC axes respectively). The user should note that when “PS” is

updated, the value of “XC” becomes meaningless. The Capture feature implementation does

not support hardware or software buffers. Whenever a Capture is detected, the last value of

“XC” is overwritten and lost. As indicated above, “XC” is an axis related parameter keyword.

Each axis holds its own Captured Position Location value.

“XC” has the following attributes:

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: No.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: No.
 Default Value: 0.
 Range: - 2,147,000,000 ÷ 2,147,000,000.

Syntax:
XXC ‘ Reports the Last Captured position of X axis.
YXC ‘ Reports the Last Captured position of Y axis.
BXC} ‘Pushes the last X and Y Captured positions to the Stack top.

See also:
XN

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 239

7.83 XN – Capture Events Counter

Purpose:

The “XN” parameter is used in conjunction with the Capture function to report the number of

Capture Events.

Each time the hardware Captures (Latches) a new position, the total number of Capture

events (“XN”) is incremented accordingly. The user can reset this variable to “0”, and monitor

its value to wait for a Capture event within a script program. This can be used for example to

signal events to a host computer whenever a Capture event is sensed.

“XN” is an axis related parameter keyword. Each axis holds its own Capture index counter.

 “XN” has the following attributes:

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: No.
 Assignment: Yes.
 Command Allows Parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: No.
 Default Value: 0.
 Range: 0.

Syntax:
XXN ‘ Reports the X axis Capture Events Number.
YXN=0 ‘ Reset Y axis Capture Event counter.

See also:
XC

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 240

7.84 ZI – CAN Array

Purpose:

 “ZI” holds various CAN related parameters. These parameters are used in numerous cases:

1. CAN remote unit addresses.
2. EDB modes.
3. Additional transmit and receive addresses.

For CAN remote unit addresses, “ZI” is usually used in script programs in order to define the

remote unit’s addresses.

The “ZI” array is an axis related array, with size of 2x12 elements. Each element in the array is

a LONG format number, which can be assigned, with any value at any time. The index range

of the “ZI” array is: 1 ÷ 12 (see Table 32).

 X Y

1 Remote Transmit Address (The remote
message is sent from the FlexDC on this
address) for macro ‘X’.

Remote Transmit Address (The remote
message is sent from the FlexDC on this
address) for macro ‘Y’.

2 Remote Receive Address (The remote
message is received in the FlexDC on
this address) for macro ‘X’.

Remote Receive Address (The remote
message is received in the FlexDC on
this address) for macro ‘Y’.

3 Additional CAN TA Address

4 Additional CAN RA Address EDB Configuration

5 EDB Error Status EDB Receiving CAN Address

6 Buffer1 Array Code Buffer2 Array Code

7 Buffer1 Axis Code Buffer2 Axis Code

8 Buffer1 Current Index Buffer2 Current Index

9 Buffer1 Increment Value Buffer2 Increment Value

10

11

12

Table 32: “ZI” array

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 241

The ZI keyword has the following attributes:

Attributes: Type: Parameter.
 Axis related: Yes.
 Array: Yes, size = [2][12].
 Assignment: Yes.
 Command Allows parameter: ---.
 Scope: All.
 Restrictions: None.
 Save to Flash: Yes.
 Default Value: 0.
 Range: - 100,000 ÷100,000.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 242

8 Communication and Program Error Codes
The following table lists ALL possible communication and program Error Codes (EC)
supported by the FlexDC firmware. The error codes listed below are applicable to both
communication errors as well as program execution error codes.

The errors in Table 33 are applicable in both single and double axes versions of the FlexDC,
unless specified otherwise.

For program related error codes, refer to " Part III– FlexDC Macro Language" for more
information.

EC
Val

EC Code Name Error Description

0 COM_OK No Error in history. This value is received also by
resetting the EC variable.

1 BAD_KEYWORD_AXIS This error is issued in the following cases:
Bad axis prefix was used for the command /
parameter.
Keyword does not support one of the axes in the
group prefix used. e.g.Group 1 is set to 1023, and the
AAC clause is sent.

2 SYNTAX_ERROR This error is issued once a wrong syntax for current
clause was sent to the controller. It may be one of the
following:
Unrecognized operator.
Unrecognized Keyword.
Macro label not according to syntax defined.
General clause not according to the defined syntax.

3 BAD_ARRAY_INDEX This error is issued if a clause includes an array
variable, and the index of the array variable is not in
the correct range for the specific array. Note, ALL
start array indexes are 1 AND NOT 0.

4 NOT_IN_SCOPE Not used.

5 BAD_NUMBER_RANGE This Error Code is issued if an assignment clause is
not In the range for the specific variable.

6 READ_ONLY This Error Code is issued if an assignment clause
was issued on a Read Only keyword.

7 NOT_AN_ARRAY This Error Code is issued if a clause consists of array
referral on a keyword that is NOT an array. This is
detected in the following matter:

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 243

EC
Val

EC Code Name Error Description

An Open Parenthesis appears in the clause, after the
Keyword. (Or at all…).
Digits appear immediately after the keyword in a
clause.

8 AN_ARRAY Not used

9 RECEIVE_BUF_FULL This Error Code is issued if the string sent by RS232
exceeds the maximum of 128 characters.

10 TOO_LONG_MESSAGE Not used.

11 FAIL_ERASE_FLASH Not used.

12 FAIL_WRITE_FLASH Not used.

13 TOO_LARGE_NUMBER This Error Code is issued if the clause being
interpreted includes an assign command with more
than 12 digits.

14 WRONG_MOTION_PARAM This Error Code is issued if during a motion the
controller detects wrong motion parameters. This can
happen for example if during ECAM motion, bad
ECAM data or wrong motion of the master axis is
detected. Note: the ECAM motion mode is not
supported in the current FlexDC firmware.

15 WRONG_RECORD_PARAM This Error Code is issued if the number of recording
points exceeds the size of the DA array.

16 STILL_RECORDING This Error Code is issued when the user sends a
Begin Recording Command (“BG”, or “BG,1”) while
Data Recording is still in process, i.e. RR > 0. Data
Recording can be started only when previous
recording session was terminated. Note that the
controller does not check if previous buffers were
uploaded or not. Issuing a Begin Recording command
always overrides old data.

17 NO_RECORDING_DATA Not used.

18 CAN_BAD_ARRAY_CODE Not used.

19 CAN_BAD_LENGTH Not used.

20 STACK_FULL This Error Code is issued once a macro source
clause included a push command once the stack was
full. The Push command can be to one of the
following stacks:
Number Stack – As a result of a number push
command. The number stack size is 15.
Program Stack – As a result of a ‘Call’ command. The
Program’s Stack size is 15.

21 STACK_EMPTY This Error Code is issued once a macro source
clause included a pop command once the stack was
empty. The pop command can be to one of the

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 244

EC
Val

EC Code Name Error Description

following stacks:
Number Stack – As a result of a number pop
command.
Program Stack – As a result of a ‘Return’ command.

22 NOT_ENOUGH_ARG Not used.

23 DIVIDE_BY_ZERO This Error Code is issued once a macro source
clause included a division operator to a denominator
with the value of zero.

24 BAD_CONSTANT Not used.

25 NO_VALID_MACRO This Error Code is issued once the ‘QI’ keyword is
issued without any macro in the system.

26 CAN_NOT_FIND_LABEL This Error Code is issued once the QE,#LABEL
clause is sent with an un-existing label. This means
the user issued an execute command to a specific
macro routine, but the specific routine does not exist.

27 BAD_NUMERIC_FIELD Not used.

28 CLAUSE_TOO_LONG This Error Code is issued once a clause exceeds the
length of 255.

29 MACRO_END This Error Code is issued once a macro One Step or
an macro Execute command were issued and the
macro reached the end.

30 MACRO_POINTER This Error Code is issued once the macro pointer is
not in the limits of the macro code or one of the
following functions lack a pointer as a parameter:
Jump.
Call.

31 TARGET_ADDRESS Not used.

32 TOO_LONG_LABEL This Error Code is issued if a label parameter
exceeds the limit of 12. It can happen in one of the
following functions:
1. Jump.
2. Call.
3. Execute.

33 PARAM_NOT_ALLOWED This Error Code is issued if a parameter in a
dedicated clause, exceeds the limits for this
parameter.

34 PARAM_OUT_OF_RANGE This Error Code is issued when a command is given
a parameter out of range, or when trying to assign a
parameter with a value out of its range. Please check
the relevant command or parameter keyword
reference for more information about the allowed
range for the specific parameter.

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 245

EC
Val

EC Code Name Error Description

35 STATE_NUMBER_RANGE Not used.

36 CAN_BAD_SPECIAL This Error Code is issued when a CAN message size,
in the special download array feature, differs from 1, 4
or 8.

37 CAN_REMOTE_TIMEOUT The FlexDC has the ability to send, via macro, CAN
strings to remote units. If the remote unit does not
reply within a given timeout (1 second), this error is
issued.

38 PARAM_EXPECTED This error is issued when a command requiring a
parameter is issued with out one. Please check the
relevant command keyword reference for more
information about the command’s parameter.

39 BAD_PARAM_TYPE Not used.

40 BAD_PARAM_LENGTH Not used.

41 CAN_NOT_ACTIVE Not used.

42 BAD_ARGUMENT Not used.

43 CAPTURE_DISABLED Not used.

44 BAD_PARAM_SYNTAX This error is issued when the wrong parameter is
attached to a clause.

45 ARRAY_PARAM Not used.

46 DOWNLOAD_OVERFLOW This error is issued in the following cases:
The macro buffer, during the download macro,
exceeds the maximum macro size.
An index overflow occurred in the special CAN
download buffer sequence.

47 NEEDS_MOTOR_ON This error is issued if the condition for the specific
clause is having the motor ON, while the clause was
issued when motor is OFF.

48 NEEDS_MOTOR_OFF This error is issued if the condition for the specific
clause is having the motor OFF, while motor is ON.

49 NEEDS_MOTION_ON This error is issued if the condition for the specific
clause is having the motion ON, while motion is OFF.

50 NEEDS_MOTION_OFF This error is issued if the condition for the specific
clause is having the motion OFF, while motion is ON.

51 MACRO_NOT_INITIALIZED This error is issued if a macro related clause is
initiated, before the macro was initialized.

52 NEEDS_COMMUNICATION This error is issued if a clause was not sent via
communication whilst the clause was defined to be of
KW_SOURCE_MUST_BE_COM.

53 SW_LIMIT_ERROR A Point-To-Point motion was initiated into one of the

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 246

EC
Val

EC Code Name Error Description

software limits.

54 AXIS_NOT_SUPPORTED The Assignment to MO=1 failed, as the current
hardware does not support the axis set.

55 UNSUPPORTED_MODE The method called is no longer supported in the
current firmware version.

56 EC_UNSUPPORTED_DRIVER Set when a CG for Un-Supported Driver type is
configured in CG in FlexDC.

60 PG_ERR_MODE_PARAM_NOT_VALID This error is issued by “PQ,1” (Enable Compare
Function) if the requested Compare Mode defined by
PG[i][1] is out of its range. In the current firmware
version only Modes 0 and 2 are supported for
Compare Function).

61 PG_ERR_PULSE_MODE_PARAM_NOT_VALID This error is issued by “PQ,1” (Enable Compare
Function) if the Pulse Width Mode Parameter defined
by PG[i][6] is out of its range. The allowed range for
the Pulse Width Mode Parameter is: “0” or “1”

62 PG_ERR_PULSE_WIDTH_PARAM_NOT_VALID This error is issued by “PQ,1” (Enable Compare
Function) if the Pulse Width Parameter defined by
PG[i][5] is out of its range. The allowed range for the
Pulse Width Parameter is: “0” to “3”.

63 PG_ERR_PULSE_POL_PARAM_NOT_VALID This error is issued by “PQ,1” (Enable Compare
Function) if the Pulse Polarity Parameter defined by
PG[i][7] is out of its range. The allowed range for the
Pulse Polarity Parameter is: “0” or “1”.

64 PG_ERR_PD_PARAM_NOT_VALID This error is issued by “PQ,1” (Enable Compare
Function) if the Distance Parameter defined by
PG[i][2] is out of its range. Out of range values for
Distance are:
0 in all modes.
Out of +/-32,767 range in Mode 0.
Not equal +1 or –1 in Modes 2 and 3.

65 PG_ERR_PS_PE_PARAM_NOT_VALID This error is issued by “PQ,1” (Enable Compare
Function) if the Start Point or End Point Parameters
defined by PG[i][3] and PG[i][4] are not valid. These
parameters are validated only in Modes 2 and 3 (see
specific operation mode description for more details
about limitations on PStart and PEnd).

70 QW_AXIS_OUT_OF_RANGE This error is issued if the Axis, which is derived from
the parameter to the QW command, is out of range.

71 QW_CODE_OUT_OF_RANGE This error is issued if the Code, which is derived from
the parameter to the QW command, is out of range.

72 QW_BIT_OUT_OF_RANGE This error is issued if the Bit, which is derived from

FlexDC Software User Manual Part II– FlexDC Software and Commands Reference

Nanomotion Ltd. 247

EC
Val

EC Code Name Error Description

the parameter to the QW command, is out of range.

73 QW_LOGIC_OUT_OF_RANGE This error is issued if the Logic, which is derived from
the parameter to the QW command, is out of range.

74 QW_INTERNAL This error is issued if an internal error, due to the QW
command occurred.

97 HW_INIT_ERROR An error occurred trying to re-initialize the CAN bus
via re-setting the RA or TA variables

98 FLASH_ERASE This Error Code is issued if an error occurred during
the Saving to Flash Procedure. The error is related to
erasing the Flash Memory.

99 FLASH_VOLTAGE This Error Code is issued if an error occurred during
the Saving to Flash Procedure. The error is related to
the flash voltage.

100 FLASH_ACK_TIMEOUT This Error Code is issued if an error occurred during
the Saving to Flash Procedure. The error is related to
acknowledge time out from the flash hardware.

101 FLASH_SUSPEND This Error Code is issued if an error occurred during
the Saving to Flash Procedure. The error is related to
flash suspend.

102 FLASH_WRITE This Error Code is issued if an error occurred during
the Saving to Flash Procedure. The error is related to
flash write.

Table 33: Communication and Program Error Codes

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 248

Part III – FlexDC Macro
Language

Script Programming Language and the
Integrated Development Environment

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 249

9 Introduction
 Part III describes the FlexDC macro-programming language and environment.

In order to benefit from the best performance possible from the FlexDC controller hardware

platforms, the macro environment is designed with a simple fast-execution engine, and a

powerful programming development and debugging environment. The embedded FlexDC and

its firmware are responsible for the real time macro execution, while the PC based

Nanomotion Shell Application provides the environment for editing, pre-compiling, compiling,

downloading and debugging macro programs.

To support this structure, the macro programs’ logic combines a reduced set of low level

commands supported by the macro execution engine, and a wider, more enhanced set, of

programming commands that are supported by the Integrated Development Environment.

While the low-level macro execution engine (embedded FlexDC firmware) supports only the

necessary numbers stack, stack operations and basic flow control commands, the higher level

Nanomotion Shell Application environment supports advanced conditions (If, While, etc.) and

advanced expression calculations. Translation from the high to low level language is fully

automatic, and is under operated by the Nanomotion Shell Pre-compiler module (integrated

into the Nanomotion Shell Application program).

The only reasonable limitation that this programming structure imposes is that for the

development of a macro program you should have a Windows based PC platform available.

This is if course required only for the development and debugging stage. Once the program

was downloaded to the embedded hardware and saved to its Flash Memory, the controller

program is fully autonomous and supports stand alone operation.

The benefits from this structure include a wider language base, faster real-time execution and

a powerful Debugging Environment as well as other benefits that are outlined in Part III.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 250

10 FlexDC Macro Engine
10.1 General FlexDC Macro Program Structure

The FlexDC controller supports two macro programs: X and Y macros. Both macro programs

share the same macro source code (or buffer), as described in Figure 12:

Figure 12: Macros and Macro Source Buffer

Careful writing of the macro (for example different routines) enables independent macro

programs. However, some routines can be shared if required.

In addition, both macro programs share the same variables and have the same access to all

the controller’s commands and parameters. It is thus not necessary that the X macro will

handle X motions while the Y macro will handle the Y motions. A quite more logical approach

is that one of the programs (lets says X) will handle all motions and one will handle all I/Os

logic (as a PLC).

Macro
Buffer

 (Up to 16KB

Single
Buffer)

Routines
Auto-routines

X Macro Pointer

Y Macro Pointer

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 251

The macro programs are executed in parallel (no priority logic): one clause from the X macro

and then one clause from the Y macro.

The two macro programs are completely independent. The user can execute the macros in

parallel, or stop each one at any time. Independent automatic routines are also assigned to

each macro program.

10.2 External Communication vs. Macro Execution Priority

Communication clauses have higher priorities over the program execution. Program clause is

executed only if there is no communication (RS232 or CAN) clause waiting. It is thus clear that

the communication load influences the macro execution speed.

10.3 Macro Handling Keywords

In order to support execution and handling of macro programs within the FlexDC, a set of

keywords was dedicated in order to support macro programming, see Table 34.

Note on commands syntax: like all other commands of the FlexDC, the keywords should be
preceded with “X” or “Y” to identify the respective macro.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 252

Keyword Description

QB[] A macro related array of 20 breakpoints pointers (-1 to disable a pointer and
following pointers). Should not be used.

QC Reports the last macro runtime error (if there was any).

QD Downloads a macro

QE Execute macro from the current macro pointer (QP)

QH Halt macro execution

QI Initialize macro and its internal variables

QK Kill macro execution (also stops all motions of both axes)

QL Loads the macro from the Flash Memory. Automatically after power ON or reset.
This command is currently not implemented. Using the LD (for loading
parameters) also loads the macro.

QN Displays the macro stack

QP Holds the current macro pointer

QQ Uploads the program stack (queue of return addresses)

QR Reports the macro status

QS Saves the macro to the Flash Memory.

QT Execute single macro clause (trace) from the current macro pointer (QP)

QU Uploads a macro

QV Uploads all macro descriptive data

QZ Clears all the numbers stack

Table 34: FlexDC Macro Program Handling Keywords

Although most of the keywords described above are generally used from an external

communication line, some commands can also be included from within a macro code. For

example, the QE and QH (XQE/XQH or YQE/YQH) keywords may be used from an X or Y

macro routines to start and stop the execution of the second macro program.

For further information refer to chapter 15, Part III, (see sections 15.3 and 15.4).

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 253

10.4 Low-Level Expressions Handling and the Numbers
Stack

Almost any macro application involves expressions. Expressions are used to perform

calculations. The standard FlexDC language syntax supports only parameters report and

assignment, such as:

XSP=10000

XAR[34]=5

More complex expressions are not supported by the low-level FlexDC macro language, for

example:

XSP=XAR[34]

XSP=XAR[34]+10000

XSP=XAR[34]*XAR[567]+20000*XAR[899]

In order to support variety of expiration types, as well as relation expressions that are

necessary for conditional program flow, each macro - X and Y has its own numbers stack.

Dedicated keywords are added to support pushing and popping to/from the stack and

mathematical, as well as relational operator keywords are added.

These numbers stacks (to distinguish from the internal program stack that is used to store

return pointers for CS commands) are currently accessible also from the RS232

communication line, mainly for debugging. This way, the macro can perform any expression

(without complexity limitations and without operators preceding limitations). Dedicated macro

keywords, such as the JT (Jump if True), CT (Call subroutine if True) automatically uses the

last stack element as their input arguments. This structure is similar in concept to any µ-

controller assembly language syntax.

Below are some examples demonstrating this simple concept.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 254

Example #1:

 A possible standard expression such as:

‘JP#ABCD,XPS>10000’,

which means: Jump to label #ABCD if X position is greater than 10000 will be written

in macro syntax as follows:

 ‘XPS};10000};>;JT#ABCD’,

which means: push XPS, push 10000, pop the last two elements and push 1 if

greater, 0 if smaller. Pop from stack and jump if 1. The stack remains empty at the

end of this process, as it should be.

Example #2:

 Another simple examples is the following assignment:

 ‘XSP=XAR[34]+10000’,

which is implemented in the macro syntax as follows:

 ‘XAR34};10000};+;XSP{’,

which means: push XAR[34], push 10000, sum stack top two elements (pop twice

and push summation result to the stack top automatically), then pop the result to

XSP.

Also here the stack remains empty at the end of this process.

Example #3:

 A more complex expression such as:

 ‘XSP=XAR[34]*XAR[567]+20000*XAR[899]’,

 Is implemented in FlexDC macro syntax as follows:

‘XAR34};XAR567};*;XAR899};20000};*;+;XSP{’,

Which means: push XAR[34], push XAR[567], multiply stack top two elements (pops

twice and push multiplication result to the stack top automatically), push XAR[899],

push 20000, multiply stack top two elements again (pops twice and push

multiplication result to the stack top automatically), sum the stack top two elements

(pop twice and push the summation result, and finally pop the result to XSP.

Also here the stack remains empty at the end of this process.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 255

Again, as noted above, the main advantage of this parsing syntax is that expression

complexity is practically unlimited, and does not required complex run-time parsing

mechanisms to be implemented by the µ-controller macro engine.

Nevertheless, for those users who are not used to programming in this way, the PC based

pre-compiler supports standard expression parsing (translating normal expressions to the low-

level syntax). For full description of the pre-compiler support, refer to chapter 13, Part III.

Additional keywords are added to support expressions and the numbers stack, see Table 35.

These keywords are usually used from within a macro program, but are also supported from

the communication, mainly for debugging purposes.

Keyword Description

QN Displays the macro stack

QZ Clears all the numbers stack

} Push (without argument, duplicates last stack element)

{ Pop (without argument – remove last stack element)

+ Add

- Subtract

* Multiply

/ Divide

|| ABS

+- Negate

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

~ Bitwise NOT

! Logical NOT (result is always 0 or 1)

>0 Is positive

<0 Is negative

=0 Is zero

!0 Is not zero

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 256

Keyword Description

> Is greater

< Is smaller

== Is equal

!= Is not equal

>= Is greater equal

<= Is smaller equal

Table 35: Macro Program Operators

For further information refer to chapter 15, Part III (see sections 15.3 and 15.4).

10.5 Variables and Indirect Addressing

10.5.1 Variables

Almost any macro application needs variables to hold temporary values, to perform

calculations, and to transfer parameters to its subroutines and between the host

application (if exists) and the macro.

Since the low-level programming syntax does not support dynamic variables allocation

(or free naming), several types of arrays are supported by the FlexDC language, and

can be freely used from within a macro program as temporary variables (registers).

Another common requirement is to perform indirect addressing to an array of

variables. This is to enable based-indexing to a set of parameters. In order to support

this feature, a special array keyword is defined. This is the IAi array (see description

below).

For ease of use, each array described below may be accessed through both the

communication lines and internally, from within a macro, with or without the square

index brackets [].

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 257

Square brackets must be used when using indirect addressing, as an exception, i.e.

AR[XIA6] (see further explanation below).

The following arrays are currently defined:

Array
Name

Axis
Related

Size in
FlexDC

Notes

AR[i] No 1 * 16000
elements,
(i.e. AR1
through
AR16000)

This is a general purpose array. And may be used
freely from within a macro program.
This array is also used for Compare Mode and
For Data Recording. The data recording is performed
from index 16000 backwards. Therefore, once
performing data recording and using the AR array,
the user MUST act carefully.

PA[i] Yes 2 x 100
elements.
(i.e., XPA1
through
XPA200,
and YPA1
through
YPA200).

This is a general purpose array (Parameters Array),
intentionally defined for temporary usage of macro
variables.
No other internal controller function uses this array
under any circumstances.

IA[i] No 1 x 50
elements.
(i.e., XIA1
through
XIA50).

This is a general purpose index array (Index Array),
intentionally defined for temporary usage of macro
variables, and indirect addressing (see explanation
below).
No other internal controller function uses this array
under any circumstances.

Note:

 When working with non-axis related arrays (i.e. AR[i] and IA[i]), using either X, Y or group

prefixes, as a preceding character, yields access to the same internal register (this is true

of course for all non-axis related commands supported by the FlexDC syntax). The

selection of which preceding character to use is user free. With the multi dimensional PA[i]

array, one example may be to use XPA for storing X motion parameters and YPA to store

Y motion parameters etc. This decision is again completely left for the macro programmer

to decide.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 258

10.5.2 Indirect Addressing

All arrays, described above, support indirect addressing. Indirect addressing is

required to enable based-indexing to a set of parameters.

For example, a single homing routine that should serve more then one axis (with each

axis having different motion parameters) may use indirect addressing accessing the

global parameters array. The calling task should store the start index of the relevant

axis parameters in an IA array element, and the homing routine accesses the

parameters array using the IA index. Using this method a lot of conditions and program

space may be saved. Another example is management of stack pointer for recording

of user specified data.

Indirect addressing is supported by using the IA array as an index array.

Example:

 Assignment of constant value to AR[56] can be written simply by:

‘XAR56=1234’, or using indirect addressing by:

‘XIA4=56’

‘XAR[XIA4]=1234’

First IA4 is assigned with the address ‘56’, and then XIA4 is used as an indirect index

to AR.

Notes:

 When IA is used as an indirect address, the square brackets [] must be used. There is no

need in this case for preceding characters (X or Y) within the square brackets, before the

IA.

 Only the IA array may be used for indirect addressing, but all other arrays support the use

of IA as an indirect address (including IA itself).

 The IAi array elements may also be used within any normal expression, and are not only

limited to indirect addressing.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 259

10.6 Labels and Subroutines Names

Labels are required for two main tasks: (1) To define subroutine names (starting location), and

(2) To define locations to jump to (for program flow control).

Labels are defined in the FlexDC programming language as follows: "#LABEL".

 The "#" sign must precede any definition of label. The "#" must be the first character in a line.

 Followed by the "#" sign is the label definition. Labels may include ASCII printable characters

with no blanks. Maximal label size is 12 characters. (see restrictions on labels definitions

below).

Ending a label definition is the ":" sign.

Note:

 To speed up real time execution of the macro program, the pre-compiler module translates

label definitions to internal pointer locations. This eliminates the need to interpret the

labels at run-time execution. Nevertheless, this process is completely transparent to the

user. The user uses the actual ASCII labels, as defined in the macro source code for

external and internal routine calls, as well as for the various jump functions. For further

information about label and pointer definitions see section 12.4, Part III.

Example:

 If user's homing routine is defined with the following label:

#HOME_X:

the following communication command will start execution of this subroutine:

XQE,#HOME_X

From within a macro procedure, the same homing function will be called using the

"Call Subroutine" function (see further description on section 10.7, Part III, regarding

macro flow control):

XCS,#HOME_X

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 260

10.6.1 Restrictions on Labels Definition

 The "#" sign must be the first character in a label definition line.

Maximal label size is limited to 12 characters (not including the proceeding "#" and the

terminating":"). Labels that are called by the PC (or any other host) are restricted to a

length of maximum 6 characters.

 Labels may include ASCII printable, alphanumeric characters only. Labels are case

sensitive. The underscore "_" character may be used within a label definition, but can

not start a label definition. No blanks are allowed within a label definition.

10.6.2 Ending a Label Definition is the ‘:’ Sign

 In order to implement high-level program flow statements such as "if" and "while", the

pre-compiler module automatically generates internal program labels. The following

labels are saved keywords and should not be used by the user: ‘SI_<CONST>:’,

‘EI_<CONST>:’, ‘WH_<CONST>:’, ‘EW_<CONST>:’, ‘UF_<CONST>:’,

‘CF_<CONST>:’, ‘EF_<CONST>:’, where CONST stands for a constant label index

number (1,2 ..).

Labels that are defined with an additional ‘#’ prefix, i.e. ##WAIT_INPUT:, are not

downloaded to the controller, and can not be called by the PC (or any other host). The

additional "#", is calculated as an additional character, in the maximum label length

count.

Examples for valid label definitions:

#MAIN:

#HOME_X:

#L_1:

#L__p1:

#L__p2:

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 261

Examples for non valid label definitions:

#MAIN ‘ No terminating ‘:’.

#_LS: ‘ Label can not start with ‘_’.

#HOMING_X_AXIS: ‘ Label too long.

#SI_1: ‘ Saved keyword.

10.7 Macro Flow Control

Any programming language should support program flow control commands, to allow

controlling the program flow during run-time. Flow control commands implement functions

such as calling a subroutine (Call Sub), jumping to a certain location in the program (Jump to

a specific label or to a pointer location), conditional jumps, etc.

The table below describes flow control commands supported by the FlexDC low level macro

engine. For further information see chapter 15, Part III.

Keyword Description

CS Call subroutine at a new macro pointer

CT Call subroutine if last stack element is TRUE (not zero)

CF Call subroutine if last stack element is FASLE (zero)

JP Jump to a new macro pointer

JT Jump if last stack element is TRUE (not zero)

JF Jump is last stack element is FALSE (zero)

JZ Jump to a new macro pointer and clear subroutines stack
(to restart the macro with subroutines stack clear)

RT Return from a subroutine

Table 36: Macro Program Flow Control Keywords

Note that the low-level macro engines support a limited number of flow control commands,

namely Calls, Jumps and Return. Conditional calls and or jumps are limited to

True/False/Zero conditions only. The condition is always checked on the stack top element

(naturally, conditional commands that use the stack pop once upon execution).

More advanced conditional expressions are supported by the pre-compiler environment. Refer

to sections 13.4.3 and 13.4.5 (Part III) for further information.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 262

Program flow control commands may only be executed from within a macro code (i.e. these

commands are not supported from communication terminal).

Example:

 The following low-level macro code segment demonstrates a subroutine that waits for end

of motion condition in the X motor of the controller. The subroutine returns if the X motor is

not in motion. While in motion the subroutine is in an infinite loop.

Calling for this subroutine from another code segment is also shown.

 ‘ ***

‘ ** Called Subroutine: WEM__X - Wait for end of motion on X motor.

‘

#WEM__X:

‘

‘ Wait for No motion in X motor:

‘ 1) Push X motion status (XMS parameter).

‘ 2) Push constant ‘1’ (motion status bit 1 means motion ON or OFF).

‘ 3) Execute ‘&’ operator to extract bit #1 and store the bit on the stack top.

‘ 4) Execute a JumpTrue command, to the label ‘WEM_X’. i.e., if XMS

‘ != 0 (condition satisfied), the program will jump back to the

‘ sub start location. The program will continue when the jump condition

‘ is false (i.e. XMS = 0, meaning the motor is not in motion).

’ ---

XMS};0};!=;XJT,#WEM__X

‘

‘ End condition met, so return to calling subroutine.

‘ --

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 263

XRT

‘

 ‘ ***

‘ ** Calling Subroutine: MOVE_X – Start motion on X motor and wait

‘ ** for end of motion, by calling the WEM_X subroutine.

‘

#MOVE_X:

‘

‘ Initiate motion on X motor:

‘ ---------------------------------

XMM=0;XSM=0;XSP=20000;XAC=100000;XMO=1;XBG

‘

‘ Wait for end of motion on X motor using the Call Subroutine function.

‘ Note that the ‘CS’ command takes a label as a parameter. The parameter

‘ is separated by a single comma. Note that when a label is used as a

‘ parameter no ‘:’ is used (the’:’ is used only for label definition).

‘ --

XCS, #WEM__X

‘

‘ End condition met, so return to calling subroutine.

‘ --

XRT

‘

‘ ***

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 264

Important Note:

 All program flow control commands described in this section are naturally executed from

within a macro code (X and Y macros). It is clear that when a JP command (for example)

is executed from an X macro, the jump is relevant for the X macro pointer only, while when

the same command executed from within a Y macro will affect only the Y macro pointer,

and so on, for all macros. This logic is of course valid for all the above mentioned flow

control commands (JP, JT, JF, JZ, CS, CT, CF and RT).

Due to this, the preceding ‘X’ character before the command itself (e.g.‘XRT’ shown

on the example above), has no actual meaning, and the same result will be also if

the ‘Y’ or other legal axis prefix characters where used (including group prefixes).

The preceding axis indicating character (‘X’ or ‘Y’) is still needed for the internal

interpreter logic, but have no other functional meaning.

 As a rule, try to stick to these strict and clear logic definitions when selecting the preceding

character. For example, if a function is related to only the X macro, use ‘X’ as a preceding

character. If a function is related to only the Y macro, use ‘Y’ as a preceding character.

10.8 Wait and Internal State Inquiry Functions

In normal programming sequences, it is often required to wait for some events or special

conditions to happen. There are three ways of programming a wait sequence in the low-level

macro.

• Using simple (standard) commands to inquire about the required state, pushing it to the

stack, and then perform some conditional statement (or high level ‘if’ blocks).

• Using a special state inquiry command QG (automatically inquire the relevant state

according to the commands parameter, including extraction of relevant bits from a byte

word or long data, and pushing it to the stack), and then perform some conditional

statements (or high level ‘if’ blocks).

• Using a special wait function, QW, that automatically enters to an internal wait condition,

until the desired condition is satisfied.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 265

The tradeoff between each method is implementation simplicity, against flow control. For

example, the QW command is very simple and short in writing, but does not include time out

test (i.e. there is no way to exit from the command before the condition is met). Another case

is if more then one condition is required to be tested or waited for. In this case a simple loop

should be used.

Both the QW and QG commands share the same parameters (internal state conditions). Table

37 describes the Wait and State inquiry commands supported by the FlexDC low level macro

engine.

Keyword Description

QW Waits till a specified internal state will be set (or cleared).

QG Gets the value of a specified internal state (variable). The desired state is
provided as a parameter or as a stack argument.

Table 37: Macro Program Wait and State Inquiry Keywords

It should be noted that all the state variables are actually bits of existing keywords (such as

“Output Bit 1” which is OP(0)).

The QG command returns the state value as FALSE (0) or TRUE (1).

The QW command holds the macro execution until the state is satisfied.

The following table presents the currently available list of internal states (variables). The

Keyword column are the keywords supported by the QW or QG commands. The State

Mnemonics Code column is the code for each state value, when using the ‘$define’ directive,

supported by the pre-compiler environment (see chapter 13, Part III). The condition that is

referred can be either the extraction of one of the bits, or to the value of the actual parameter.

The condition can, of course, be the not condition, see Table 38.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 266

Keyword State Mnemonic Code

MS 0

SR 1

IP 2

OP 3

MO 4

MF 5

QR 6

TD 7

EM 8

EC 9

QC 10

Table 38: Macro Program, Internal Wait Conditions

The parameter sent to the QW or QG command, is actually a formula made of the following:

Parameter = (Axis * 100000) + (Code * 1000) + (Bit * 10) + Logic

Axis:

12. (X,Y – respectively).

Code: 010. See Table 38 for relevant code.

Bit: 032. Bits 1 until 32 are the respective bits of the keyword. If ‘0’ was chosen as bit, it

states we are waiting for the keyword to either ‘==0’ or ‘!=0’, according to the Logic.

Logic: 01. Wait for active high, or active low. (or != 0, ==0 when bit = 0).

Example:

 If it is required to wait until output 3 is active high, send the following:

XQW,103030

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 267

Explanation:

Axis = 1 - therefore we are dealing with axis 1

Code = 3, therefore we are dealing with 'OP'

Bit = 3, therefore we are waiting for bit 3 on 'OP' to turn active high

Example:

 If it is required to wait until the 3rd output went active low, send XQW,103031.

The state mnemonics can be used instead of the state number only from within a macro (not

in communication clauses). They are converted by the pre-compiler to the related standard

constant (numbers) before downloaded to the controller.

Mnemonics are not allowed as a communication clause. The FlexDC will fail to interpret them

since it only gets standard constants as state numbers. Refer to chapter 13 for defined

constants.

Note:

 For non-axis related keywords (i.e.OP) the axis sent is irrelevant (can be anything

between 1-10), but on the other hand MUST be sent.

Examples:

 The following commands wait for digital input #1 to be ON (TRUE) and OFF (FALSE) in

the FlexDC:

XQW,102010 ‘ Wait for input #1 ON.

XQW,102011 ‘ Wait for input #1 OFF

10.9 Timer Functions

The FlexDC has independent timers, each being updated (decremented) by one, on every

hardware sample time. The sample time of the FlexDC is approx 122[µs].

These axis related timers (one per axis 32 bit, positive only) are updated once the dedicated

TimerDown (iTD) keyword is called. The axis-related TimerDown (iTD) parameter will Wrap, if

the iTD is bigger than 72 hours.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 268

Note:

 The timers are not updated by the real time kernel of the FlexDC, but by the call to the

enquiry of iTD. They do not require a macro to be running. However, the values of timers

may be changed to any valid value (32 bits) from both communication and macro

programs.

Table 39 describes the timer functions supported by the FlexDC.

Keyword Description

Tdi Timer down axis related variable. Consists of 32 bits, positive only (i.e. 0 ÷ +
2147000000).

Table 39: Macro Program Timer Keywords

Example:

 The following commands is a simple example for implementing a 8192 sample time delay

(1 second), using XTD, and the TimerZero state condition:

XTD=8192 ‘Set time for 1 sec

XQW,107000 ‘Wait for timer to be 0

First, the XTD is initialized to 8192, then the QW function is called, waiting for timer #1 to be

zero.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 269

11 FlexDC Low-Level Macro Program
11.1 Macro and Motions

In the FlexDC the macro execution and the axis motions are completely independent.

If a motion fails for some reason (usually, the motor is disabled in this case) it does not directly

affect the macro execution.

Note that if after the motor was disabled a begin motion command is issued, the macro will

stop and report a run-time-error, because a BG command is not valid when motor is disabled.

But again, this is not necessarily because of the motor failure.

However, since this linkage is sometimes required, the FlexDC supports a dedicated feature:

a dedicated keyword (QK) that halts the macro execution and all motions of ALL axes. Upon

receiving a BQK command, the controller immediately stops all motions and macro programs.

11.2 Macro Syntax Check and Run-Time-Error

The FlexDC does not perform any macro syntax check when the macro is downloaded or

before it is executed. Only a limited syntax check (compilation) is performed by the

Nanomotion Shell Application before the macro is downloaded.

However, during macro execution (at run-time), each executed clause is checked as part of its

interpreting process. In case of an interpretation error, the controller performs the following:

• Assigns the Error Code to QC. This keyword (axis related) identifies the last macro run-

time-error code (the same as the EC codes).

• Stops the macro execution (as with the QH keyword), with the macro pointer (QP)

pointing to the clause with the run-time-error. This feature is very important for

debugging a macro program.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 270

11.3 Macro Size and Number of Labels

The FlexDC macro is saved on the hardware Flash Memory as a linear buffer. This macro

buffer is 16KB long. There is no direct limitation on the number of labels that are supported by

the FlexDC macro program. The only limitation is the total number of macro bytes. Note that

each label definition consumes 19 bytes from the macro buffer.

11.4 Macro Download Format

The format of the macro download protocol is propriety of Nanomotion Ltd., and can be

supplied upon request.

However, the High-Level SCServerInterface DCOM communication interface supports

functions for downloading High Level macro programs (compilation + download) and for the

downloading of Low Level macro programs (download only). Refer to " Part V– SCServer

COM/DCOM Interface Library" for further information.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 271

12 Integrated Development Environment
12.1 General

With the Nanomotion Shell Application the user can simply access all the controller

commands, and perform all the operations that the FlexDC supports. Refer to the "Quick

Start" chapter in the "FlexDC User Manual" for a brief description of the Nanomotion Shell

Application program or refer to " Part IV– Nanomotion Shell Application" for a detailed

information.

 Part IV thoroughly covers all the details of the Nanomotion Shell Application (see Figure 13),

related to macro programming support for the development, downloading, and debugging of

FlexDC macros.

Figure 13: Nanomotion Shell Application Main Screen

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 272

12.2 Writing and Editing FlexDC Macro Files

The Nanomotion Shell Application supports an integrated "Srcedit" – the Macro File Editor

Application for writing and editing and debugging FlexDC macro programs (see Figure 14).

This Macro File Editor Application is installed together with the Nanomotion Shell Application.

Figure 14: "Srcedit" – the FlexDC Macro File Editor

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 273

12.3 Shell Support for Downloading Macro Files to the
FlexDC Hardware

The Nanomotion Shell Application supports a user-friendly interface to allow downloading new

macro files to the FlexDC hardware.

12.3.1 Download a New Macro

For downloading a new macro to the FlexDC hardware, perform the following steps:

1. Verify that the FlexDC is connected to a communication line, and the
communication link is active, refer to Figure 13 (also, refer to the "FlexDC User
Manual" for "Quick Start" instructions).

2. On "Macro" menu (on the Nanomotion Shell Application main screen) click
"Download Macro".

3. An "Open File" dialog box appears, letting the user to select a desired macro file
(default macro files extension is ".SCM").

4. Select the desired macro file and press open. The Nanomotion Shell Application
automatically opens the selected file, pre-compiles the program, downloads the
macro buffer to the FlexDC hardware memory, and initializes the FlexDC program.

5. A "Download completed successfully" message appears, if the macro download
prosess is successful. The program (macro) is now ready for running. Note that
after loading a new program, the AUTOEXEC is not started automatically, but only
after power up.

6. In order to save the downloaded program to the FlexDC Flash Memory, use the
XSV command via the Nanomotion Shell Application terminal window). A program
that is not saved to the Flash Memory will be lost after power up.

7. If it is required to start an automatic execution of the macro program, switch the
FlexDC power OFF and ON again to restart its real-time software. Note that you
can still run any valid subroutine name by using the debugger or by issuing an
XQE,#<LABEL> command via the terminal window. After downloading a program,
issuing an XQE command (with no parameters) starts program execution from the
first macro line.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 274

12.3.2 Download a New .DAT File

A ".DAT" file is the file generated by the pre-compiler. To download a new ".DAT" file,

perform the following steps:

1. Verify that the FlexDC is connected to a communication line, and the
communication link is active, refer to Figure 13 (also, refer to the "FlexDC User
Manual" for "Quick Start" instructions).

2. On "Macro" menu click "Download DAT Macro".
3. An "Open File" dialog box appears, letting the user to select a desired macro file

(default macro files extension is ".DAT").
4. Select the desired macro file and press open. The Nanomotion Shell Application

automatically opens the selected file, pre-compiles the program, downloads the
macro buffer to the FlexDC hardware memory, and initializes the FlexDC program.

5. A "Download completed successfully" message appears, if the macro download
process is successful. The program (macro) is now ready for running. Note that
after loading a new program, the AUTOEXEC is not started automatically, but only
after power up.

6. In order to save the downloaded program to the FlexDC Flash Memory, use the
XSV command via the Nanomotion Shell Application terminal window). A program
that is not saved to the Flash Memory will be lost after power up.

7. If it is required to start automatic execution of the macro program, switch the power
OFF and ON again to restart its real-time software. Note that you can still run any
valid subroutine name by using the debugger or by issuing an XQE,#<LABEL>
command from the terminal window. After down loading a program, issuing an
XQE command (with no parameters) starts program execution from the first macro
line.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 275

Notes:

 The pre-compiler searches for several types of errors in the downloaded program. If an

error is found, an error message is issued, and a window is opened describing the error

reason and source (including line number that caused the error). An error file is also

generated describing the errors found during the pre-compile process. The error file name

will have the same name as the program name, with an ‘.ERR’ extension (see full

description of pre-compiler process later on in this chapter).

 The Nanomotion Shell Application supports pre-compiling of macro program files even

without communication to a target FlexDC hardware. This may be useful to allow writing

and initial syntax testing when the hardware is not available. On Macro menu (on the

Nanomotion Shell Application main screen), click "Pre-compile Macro". The Nanomotion

Shell Application actually performs the normal "Download Macro" procedure, only without

downloading the macro buffer to the hardware.

 The user can select a default directory in which the Macro Download dialog box opens. On

"File" menu, click "File Locations" to define the default file locations. The default file name

is saved with the Nanomotion Shell Application setup. Figure 15 shows the "File

Locations" definition dialog box. Use the browse […] buttons to open a Windows browser

tree dialog box.

Figure 15: FlexDC Shell File Locations Setup Dialog

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 276

12.4 Srcedit Macro Debugger Environment Features

12.4.1 General

The Srcedit is a powerful debugging environment, and the FlexDC macro programs

are part of this environment. The Srcedit uses the low-level debug features of the

FlexDC, while providing an advanced GUI support. Basically, the debugging

environment allows the user the following options:

• Opens a macro source file for debugging, with an advanced, color syntax,

highlighted source view (both high level and low-level commands are shown in a

clear manner).

• Starts and stops program execution, for all axis macros. Fast, single selection

combo-box switching, between the macro debugging. Note that all the features

described in this list are available for each macro separately.

• Restarts (resets) a loaded program.

• Brakes program execution at any point.

• Traces program execution line by line.

• Animates program execution (auto-trace).

• Uses up to 20 breakpoints (20 for each macro).

• Removes all breakpoints.

• Sets a program pointer to a specific location (line number or label).

• Shows the next executable line ("go to" current pointer location).

• Shows run-time-errors.

• Full access to all controller parameters (read and write) while debugger is active

(with the watch frame).

• All the above options can be accessed in several ways: using the debugger window

menu, or using the debugger window toolbar, or using the mouse right-click option

to open a pop-up menu, or using dedicated accelerator keys.

• It is possible to debug one macro while other macros are running, or to debug more

than one macro simultaneously, to test synchronization issues.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 277

Note:

 Debugging, pre-compiling and down-loading macros with the Srcedit Macro Debugger

Environment are available ONLY while the Nanomotion Shell Application is open and

communicating with the controller.

12.4.2 Srcedit Macro Debugger Window

To debug a macro program, run the Srcedit application and follow the next steps:

12. On "File" menu (on the Srcedit main screen, click "Open".

13. An "Open File" dialog box appears.

14. Select macro file to debug (file extension "SCM"). There are two options to

debug the opened program:

• If the program is currently in the controller, on "Macro" menu (on the Srcedit main

screen), click "Debug Macro".

• If the program is currently not in the controller, first download the macro. On

"Macro" menu, click "Save and Download Current Macro", and then click "Debug

Current Macro".

In either case, the Srcedit application checks, with the help of the Nanomotion Shell

Application, whether the opened macro file matches the current FlexDC program. An

error message appears if the files are mismatched. If the test is OK, the main

debugger window opens.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 278

Figure 16 shows the Srcedit application debugger window (sample code source view is

for demonstration purposes only):

Figure 16: Srcedit Macro Debugger Window

The debugger window has some fields that allow the activation of all the debugger

features, and allow user interface. In the following sections, each field is shortly

described.

Debugger
Toolbar

Workspace area

Source View

Program Pointer
Location Mark

Watch Area

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 279

12.4.2.1 Debugger Window – Source View Area

The Source View Area is a read only view that shows the macro source code

file, combined with the actual low-level code generated automatically by the

pre-compiler.

Original source code lines are shown in dark black color, accept for special

keywords that are colored in blue (if, else etc.), labels that are colored in red,

and comments that are colored in light green.

Preceding each original source line is the original source code line number,

e.g. ‘0041’.

Each original source line is processed by the pre-compiler, and converted to

an executable line (note that in some cases, the executable line is identical to

a source line). Executable lines are always colored in light gray, to be

distinguished from original source code lines.

12.4.2.2 Debugger Window – Source Icons Area

The Source Icons Area is a gray narrow column, located on the left of the

Source View window, which is used to mark program pointer locations and

breakpoints.

The yellow arrow indicates the current program pointer location. It is always

pointing to executable lines (not original source code lines). Note that the

pointer location icon is visible only when the relevant macro programs are not

running.

The red dot is used to mark breakpoints. Breakpoints are always located next

to executable lines (not original source code lines). If the user wants to set a

breakpoint on a non-executable line, the Srcedit issues a warning message,

and may locate the breakpoint on the next valid executable line if requested.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 280

12.4.2.3 Debugger Window – Toolbar Menu and Pop-Up Menu

The debugger window toolbar menu and pop-up menu (by right-clicking)

include 12 different options to operate all the debugger features.

In this section a description of each item is given. Note that the description is

identical for all three interfaces mentioned above.

Figure 17 shows the debugger window toolbar:

Figure 17: Srcedit Macro Debugger Window Toolbar

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 281

Table 40 describes each toolbar icon (from left to right) as appear in the

toolbar image, and the relevant related menu:

Description Related Menu and accelerators

1 Stop debugging, and reset macro program
(affecting macros). It is equivalent to the
following sequence of commands: XQK;XQI;

Reset Program - [Ctrl+R]

2 Break macro execution (on selected macro
only). It is equivalent to the XQH, YQH
etc…commands.

Breaks macro program execution.
[Ctrl+B]

3 Runs the selected macro line by line (single
clause at a time). It is equivalent to the XQTetc...

Trace one step - [F10]

4 Animates the macro program execution.
Animation rate is ~ 10 clauses/second. It is
equivalent to the XQT etc… commands, 10/sec.

Animate macro execution - [Ctrl+A]

5 Runs the program from the current pointer
location. It is equivalent to the XQE, YQE…
commands (with no parameter).

Go from current pointer location.
[F5]

6 Toggles a breakpoint ON/OFF. Location is
selected by the mouse location. The nearest
valid executable line is affected. Note that
breakpoints are valid for normal run, and also for
animate run. Note also that when running
normal, when reaching a breakpoint, the
program pointer will point to the next executable
line after the breakpoint. When animating, the
program pointer will point on the breakpoint line
(before it was executed).

Insert/Remove breakpoint.
[F9]

7 Remove all breakpoints from the controller and
from the debugger window.

Remove all breakpoints.

8 Locate the program pointer at the next valid
program, clause. Location is selected by the
mouse location.

Set next statement - [Ctrl+N]

9 Shows the current pointer location (located at
XQP YQP,…accordingly).

Show next statement - [Ctrl+V]

10 Opens a dialog shortly describing possible
reasons for the last macro run-time-error.

Show run-time-error [Ctrl+Q]

11 Update Watch Window. Macro/Update watch list

12 Axis Combo box – selection for the current
macro you wish to debug.

N/A

Table 40: Srcedit Macro Debugger Window Toolbar and Menu Functions

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 282

12.4.3 Srcedit File Menu

This section is intended to help the user, start editing/creating a new macro (script),

and how to work with workspace fetchers.

12.4.3.1 Creating New Macro

All macros must be located in the same folder. To create a new macro, follow

the next steps:

1. On the "File" menu click "New". A new "Untitled" file is created, with

no extension.

2. On the "File" menu click "Save As", type a file name, select file's

location and save the file under the ".SCM" extension.

3. In the created script file add the macro target: $target "SC" (see

section 13.3.1, Part III).

4. Add the $include <sc2m_at_global_defs.scm> (see

section 13.3.4, Part III).

5. Add the "#AUTOEX" label at the beginning of the script file. Note: At

power on, the program begins to run from the first line, regardless of

whether this label is added or not, until it reaches the XQH

command – which halts the program:

♦ If the user is interested in running the whole script, the XQH command

must be placed at the end of the script.

♦ If the user is not interested in running the whole script, the XQH command

must be placed right after the "#AUTOEX".

6. Write the body of the script file.

7. Place label after the XQH command, in order to resume running the

script, if needed. For example, #HOME_X.

8. Save the script. See script example in chapter 14, Part III.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 283

12.4.3.2 Working with Workspaces

The purpose of workspace is to help you manage macros that include more

than one file.

For example: If your macro includes two files for definitions and one file of

actual code, the best way to manage such a macro is with a workspace.

12.4.3.3 Creating New Workspace

To create a new workspace, on "File" menu click "Workspace", click "New

Workspace". This option enables the user to choose or create a new file for

the workspace; the file is to be saved with the ".CWS" extension.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 284

12.4.3.4 Open/Close/Save Existing Workspace

♦ To open an existing workspace: on "File" menu click "Workspace", click

"Open" in the "Open Workspace File" dialog box, and choose the

workspace to open.

♦ To save the current opened workspace: on "File" menu click "Workspace",

click "Save".

♦ To save the current opened workspace: on "File" menu click "Workspace",

click "Save As" and choose the new name to save the workspace to, with

the ".CWS" extension.

♦ To close the current workspace (without saving): on "File" menu click

"Workspace", click "Close". This prompts the user to save the workspace

in the following manner: choosing "Yes" saves the workspace, otherwise

the changes made in the workspace are discarded.

12.4.3.5 Add/Remove Files to/from Workspace

Removing a file from workspace:

♦ Select a file in the workspace area. "File" menu click "Workspace", click

"Remove File", this removes the file from the workspace.

♦ Select a file in the workspace area to remove, right click the mouse, select

"Remove File" from the menu.

Adding a file to workspace can be done in two ways:

♦ Drag the file into the workspace area, this will add the file to the current

workspace. OR

♦ On "File" menu click "Workspace", click "Add File" and select the file from

the dialog box.

Note:

 The changes made in the workspace are saved only after the user saves the workspace.

Closing the workspace without saving discards the changes.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 285

12.4.3.6 Open File in Workspace

♦ Double click the file from the workspace area to open the file for editing.

12.4.3.7 Compiling Workspace

♦ To compile a workspace the main macro file MUST be open and active

(on top of all other open files).

♦ If a workspace contains more than one macro, then select the macro to

compile and opens it. The macro window MUST be open and active (on

top of all other open files).

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 286

13 The IDE Pre-Compiler Support
13.1 General

The Nanomotion Shell Application includes a built-in Integrated Development Environment

(IDE) pre-compiler module. The main purpose of the pre-compiler is to extend the basic

features of the low-level language syntax (mainly parsing capabilities), to a more easy to use,

high level syntax.

The Nanomotion Shell pre-compiler supports the following features:

• Strip comments, blanks, tabs, and any other non-executable code.

• Target hardware type definition.

• Using the ‘define’ directive.

• Using the ‘include’ directive.

• Using the ‘description’ directive.

• Advanced parsing of mathematical expressions.

• If blocks.

• While loops.

• For loops

The Nanomotion Shell Application automatically activates the pre-compiler, each time a new

macro file is being downloaded.

The source file is first scanned to replace all "define"s and combine all the "include" files, then

it is stripped from all the comments, spaces tabs and other non-executable code, then the

mathematical expressions and special "if", "while" and "for" statements are being processed.

Finally, all the labels are searched and replaced by absolute program pointers.

During the pre-compile process, the following files are being generated automatically by the

Nanomotion Shell Application (all having the same name and path as the original source file,

but with different extensions):

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 287

• Extension: ‘.stp’, an intermediate file used by the pre-compiler.

• Extension: ‘.dat’, the final buffer actually being downloaded to the controller (this file

contains low-level commands only – this file can also be downloaded to controller, see

section 13.3, Part III.

• Extension: ‘.dbg’, the debugger symbols file. This file contains all the original code

(including all defined symbols and included files), and all low-level commands. The file

is organized such that each (executable) source line is followed by its translated

executable low-level code. The Srcedit Macro Debugger uses this file for the debugging

process.

• Extension: ‘.err’, an error file describing errors that were found during the pre-compile

process (if there were any).

Since a file being downloaded to the controller is always pre-compiled (no comments, spaces

etc.) the actual data buffer, though being ASCII based, is difficult to understand and track. For

this reason, in order to debug a FlexDC program, the user should have the original source

macro code, and its related ‘.dbg’ file (being automatically generated by the Nanomotion Shell

Application).

In any case, the user can upload the actual macro buffer from the controller by clicking

"Upload Macro" on the "Macro" menu (on the Nanomotion Shell Application). Note that the

buffer header includes all the descriptive commands (see below) and also the file name and

the date of last version download. This may be used for version control of macro code.

In the following sections, all the above features are thoroughly described. Examples are given

on each subject to cover all relevant aspects. The parsing logic (to the low-level syntax) is

also described.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 288

13.2 Non Executable Code: Comments, Blanks, etc.

When writing a program source code, in order to achieve a clear readable and maintainable

code, it is typically accepted (and sometimes even required) to use comments, spaces, empty

lines tabs etc. After a while, the macro buffer tends to fill up with comments and non-

executable code, which are eventually reduce the final performance of the program. To solve

this problem, the pre-compiler, strips from the source non-executable code sections.

The following non-executable codes are removed:

• Comments: are defined by the Nanomotion Shell environment as any text that appears

in a line following the " ‘ " character sign. A comment

" ‘ " may appear anywhere in a code file. This includes full lines of comments, or

executable code line, followed by the comment sign (on the same line) to describe a

specific statement. An example for comment lines is given below:

' A full comment line, followed by another one, and an empty line.

' --

 XZI1=10 ' This is a comment within an executable line

 XZI2=11 ' This is also a comment within an executable line

• Empty Lines: are lines with no text. Empty lines are completely removed by the pre-

compiler before downloaded to the FlexDC macro buffer.

• Blanks and Tabs: in normal executable statements, the pre-compiler removes blanks

and tabs only before the start and after the end of a statement line. Blanks and tabs

within a normal executable statements are not removed. In advanced mathematical

expressions (lines starting with ‘@’, blanks and tabs are removed also from within the

statement itself (see section 13.4, Part III, for further information about advanced

expressions parsing).

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 289

13.3 Directive Commands

Pre-compiler directives, such as $define and $include, are typically used to make source

programs easy to change and easy to compile in different execution environments. Directives

in the source file tell the pre-compiler to perform specific actions. For example, the pre-

compiler can replace tokens in the text and insert the contents of other files into the source file.

Pre-compiler lines are recognized and carried out before any other action is taken.

The "$" sign, defines a directive command. It must be the first nonwhite-space character on

the line containing the directive. No white-space characters should appear between the $ sign

and the first letter of the directive. Directives include arguments. The comment delimiter "

‘ "must precede any text that follows a directive command (except for arguments or values

that are part of the directive).

Note that some directive commands may appear anywhere in a source file, while some are

valid only at the beginning of a file.

The $target directive must appear only at the beginning of a source file. The $define,
$description and $include directives may appear anywhere in a source file. Like ‘C’

programming, the $define directive command applies only to code appearing after its

definition (this is also true for defines within include files).

As a thumb rule, use all $define directive statements at the beginning of any source file. Use

separate include files for define statements, and for sub-routines implementation.

Below are described the directive commands supported by the Nanomotion Shell pre-compiler.

13.3.1 The ‘target’ Definition Directive

The $target directive defines the current firmware type and version of the hardware to

which the macro is being downloaded to. It is used to define features supported by the

current version, internal controller macro buffer size, and possibly other parameters.

The syntax for the directive is:

$target “<product-type>,<product-version>,<buffer_offset>,<buffer_size>”

All the characters between the “” are the actual target definition. Comment may be

placed on the same line, after the target definition, preceded by the comment (‘) sign

character. For example, the following target directive defines a FlexDC product

firmware version 1.41, macro buffer offset 0, and macro buffer size 250000 bytes.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 290

$target "SC-2M,141,0,250000"

Note that a $target directive must be defined in order to pre-compile and download a

macro. Not defining this directive is an error. The $target definition directive should

appear before the first executable code line in a source file. This also implies to include

files. If an include file contains actual executable code, it must appear after the $target
definition. Include files that contain only $define directives may appear before the

$target definition.

13.3.2 The ‘define’ Directive

The $define directive may be used to give a meaningful name to a constant in a

program.

The syntax for the directive is:

$define identifier “token-string”

The $define directive substitutes token-string for all subsequent occurrences of the

identifier in the source file, except for cases where the identifier itself appears as a

token in another define statement. In this case the identifier appears as it is. The token

string must appear within “ ”. Note that the “ character may appear as a part of the

token string itself (more then once), to allow string parameter definitions.

The $define directive must appear before using the identifier. Note that if an identifier

is used before its definition, the pre-compiler will not detect it as an error. In this case

the actual identifier string itself is used and not the token-string.

One or more white-space characters must separate token-string from identifier. Any

characters appearing between the left “defining the token-string and the identifier are

ignored. Note that every character appearing within the token-string (between the “ ”)

are used, including white spaces, characters, etc.

The following example illustrates the usage of the $define directive.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 291

Example:

 Consider the following simple start jog motion sequence. Speed is set to 20,000, motion

mode set to 1 (Jog in FlexDC), motor is enabled and commanded to begin the motion:

XSP=20000 ‘ Set Speed

XMM=1;XMO=1;XBG ‘ Set Motion Mode, Enable motor, Begin Motion

 This sequence can be also implemented by using the following definitions:

$define XFastHomeSpeed "20000" ' Define Fast Home Speed constant

$define XMMJog "1" ' Defines Jogging Motion Mode

$define XBeginMotion "XMO=1;XBG" ' Define XBeginMotion Command

 The pre-compiler translates the following commands:

XSP=XfastHomeSpeed ‘ Set Speed

XMM=XMMJog ‘ Set Motion Mode

XBeginMotion ‘ Enable motor and start motion

 to exactly the same sequence of commands as appears above.

13.3.3 The ‘description’ Directive

The $description directive may be used to include comment lines within a macro file,

that are downloaded to the controller buffer and saved with the program on the target

hardware memory (unlike normal comments, that are stripped during the pre-compile

process, and are not downloaded to the macro buffer).

The syntax for the directive is:

$description “descriptive string”

All the $description directive statements in a source file are searched for by the pre-

compiler. The descriptive strings are then placed in a special place, in the beginning of

the macro buffer. The descriptive string must appear within “ ”. Note that the “ may be

a part of the string.

The $description directive may appear anywhere in a source file. Nevertheless,

during download, all descriptive strings are located at the head of the macro buffer.

Each $description statement is presented as a single line in the macro buffer.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 292

Descriptive strings are contained in an uploaded macro buffer (on the "Macro" menu,

click the "Up Load Macro"). The user may also inquire all directive strings with the BQV

command via the terminal.

Note:

 Since descriptive strings are downloaded to the controller macro buffer, they consume

macro buffer space (unlike normal comments). Use them carefully.

The following example illustrates the usage of the $description directive.

Example:

 The use of $description directive statements to define program version control. The

following code fragment demonstrates a simple program header that includes descriptive

statements, and hardware target definitions.

'

$description " Test SC_3M Controller, Rev.01"

'

$target "SC-2M,140,0, 250000"

'

' Program Code

….

Issuing an XQV command in this case, yields the following controller response, see

Figure 18:

Figure 18: Reporting Descriptive Directive Information

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 293

This response includes the following information: The command echo (XQV),

followed by the file name used to download the program (TESTBENCH.scm in this

case), followed by all descriptive strings (each statement in a single line).

13.3.4 The ‘include’ Directive

The $include directive tells the pre-compiler to treat the contents of a specified file as

if those contents had appeared in the source program at the point where the directive

appears. You can organize constant definitions and subroutine implementations into

include files and then use $include directives to add these definitions to any source

file. e.g. using global parameter definitions, and for example, homing routines.

The syntax for the directive is:

$include <path-spec> or $include "path-spec"

The path-spec is a filename optionally preceded by a directory specification. The

filename must name an existing file. The $include directive instructs the pre-compiler

to replace the directive by the entire contents of the specified include file. It may

appear anywhere in a source file. Note that the include file contents is places at the

point where the directive appears. Nested include statements (include statement within

an included file) are not allowed.

13.4 Advanced Expressions Parsing

13.4.1 General

As described earlier, the FlexDC is designed with a simple fast real time execution

engine, supported by a powerful programming development and debugging

environment, the FlexDC.

An important part of the development environment is the pre-compiler described by

this chapter. In addition to the directive commands supported by the pre-compiler,

another powerful feature is its ability to support advanced expressions parsing (not

allowed in the low-level FlexDC language syntax).

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 294

The pre-compiler currently supports the following expressions parsing:

• Mathematical expressions.

• If blocks.

• While loops.

• For loops.

Any advanced syntax line should be preceded by the "@" sign. The "@" character

must be the first nonwhite-space character on the line containing the expression. No

white-space characters should appear between the "@" sign and the first letter of the

high level command (if, while, for, etc.). Note that an advanced expression statement

can not contain ";" (except the "for" loops).

These features are described in the following sections.

13.4.2 Mathematical expressions

Mathematical expressions are statements that include one or more mathematical

operators (see list of supported operators below), combined with operands (constants

and parameters), to construct a mathematical sentence.

Any mathematical expression statement line should start with the "@" character

symbol. The syntax for the mathematical expression is:

@ variable = expression

The variable may be any valid FlexDC argument name allowed to be assigned with a

value (i.e. parameters and arrays).

Expressions may include operators, constants, parameters (standard and arrays) and

commands as operands. When an expression contains an FlexDC command that

receives a parameter (separated from the command name by the comma "," char), the

command usually pushes the result to the stack by itself.

The following operators are currently supported within expressions:

• Valid binary operators: +,–,*,/,&,|,^,>,<,==,!=,>=,<=

• Valid unary operators: -,||,~,!

• Brackets: ()

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 295

Note:

 Unary operators can be used only on single operands and not on expressions (e.g., not

before brackets).

 The parser handles mathematical priority as follows:

• First mathematical priority is given to unary operators.

• Second mathematical priority is given to * , / , and & over the other binary operators.

• For other priority use brackets.

Example #1:

 Initializing array members XPA1 ÷ XPA3 and compute a value for XPA4. The value of

XPA4 is divided by 2 and stored in XSP. The value of XSP is then multiplied by 10 and

stored in XAC.

XPA1=2000; XPA2=1000; XPA3=4 ‘ Initialization

@XPA4=XPA3*(XPA1*2+XPA2) ‘ Compute value of XPA4

@XSP=XPA4/2 ‘ Store for XSP

@XAC=XSP*10 ‘ Store for XAC

Note that rules of FlexDC operator parameters range implies. In the above code for

example, the " * " operator supports multiplication of 16 bit by 16 bit numbers, and the

"/" operator supports division of 32 bit by 16 bit numbers (see section 10.4, Part III, for

further information).

The actual low-level code generated by the FlexDC compiler environment is shown in

Figure 19, for reference. The debugger window shows both the original code lines (in

black color), including the comment lines, followed (for each source line) by the low-

level compiler implementation.

Note how blank spaces are stripped when evaluating the mathematical expressions.

The user can step line by line (on the low-level code lines) with the debugger, and on

each step inquire the stack value (using the BQN – report stack command), for

debugging the code.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 296

Figure 19: Mathematical Parsing Example

Example #2:

 Another simple example below shows a combination of the $define directive with a

mathematical expression to create a user defined variable (‘bInput3’) holding the Boolean

value of digital input port #3.

$define bInput3 "XPA10"

@bInput3 = XIP & 4

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 297

The global Parameters Array (PA[10]) is used to define a user variable (‘bInput3’). It

is then used as the left side argument in a math statement. The math expression

takes the value of XIP (a word bit array containing all digital input ports), extracts bit

#3, using the bit-wise & operator with argument ‘4’, and then store the result in

bInput3 (actually XPA10). bInput3 can later be used in any other math, simple or

conditional expressions.

13.4.2.1 Using the ANS keyword

The pre-compiler supports a special keyword, the ANS. This keyword

instructs the compiler to use the last value found on the stack top. Note that

the ANS keyword may appear only at the begging of the right hand side of

math expressions. It is useful in cases where a previous statement lest the

stack with some result, and to save the pop and push instructions.

The following example demonstrates the usage of this keyword, for the

previous example:

Example:

$define bInput3 "XPA10"

XIP}

@bInput3 = ANS & 4

As before, the global Parameters Array (PA[10]) is used to define a user variable

(‘bInput3’). XIP is then pushed to the stack top. The math expression recognizes the

ANS keyword, indicating that the stack already contains a parameter, so it just

extracts from it bit #3, using the bit-wise & operator with argument ‘4’, and then store

the result in bInput3 (actually XPA10).

13.4.2.2 Using FlexDC Commands as Operands

A right hand side of a mathematical expression may include a FlexDC

command that receives parameters. The following example demonstrates the

usage of this syntax. We are using again the previous example, to get a

variable holding the Boolean value of digital input #3.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 298

Example:

$define bInput3 "XPA10"

@bInput3 = XQG,30

The XQG command (inquiring internal state value) is used here to get the value of

digital input #3 (parameter value 30 is INPUT_3). The value is pushed to the stack

top by the command itself. Is then assigned to bInput3 (actually XPA10).

13.4.3 If Blocks

If blocks are used for conditional code execution. As with math statement expressions,

the if, else and endif statements should start with the "@" character symbol.

The syntax for the if block statement is:

@if (expression)

 Statement1…

@else [Optional]

Statement2…

@endif

The if keyword executes statement1 if the expression is true (nonzero). If else is

present and the expression is false (zero), it executes statement2. After executing

statement1 or statement2, control passes to the next statement.

Nested if blocks are supported. It is possible to include while and for loops within an if
statement, given that they do not cross the boundaries of the if block (and each

other’s).

Statements may be any valid, normal or math expressions. Valid operators within the if
statement itself (the conditions) are:

• Valid math operators: +,–,*,/,&,|,^,~,||,!

• Valid logical operators: >,<,==,!=,>=,<=

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 299

Example #1:

 This example shows a simple usage of an if block to compute an ABS value of a

parameter:

XPA1=-100 ‘ Assign a temporary negative value to XPA1

@if (XPA1 < 0) ‘ Simple (< 0) If expression

@XPA1=-XPA1 ‘ Statement 1

@endif ‘ End if.

The result of this code block will be a positive value of 100 XPA1 (initialization of

XPA1=-100 is for the example purpose only).

Example #2:

 This example shows a simple implementation of a saturation function. The saturation

value is given by a parameter:

XPA1=-100 ‘ Assign a temporary negative value to XPA1

XPA10=45 ‘ Saturation value

‘

‘ Check negative saturation

‘ -------------------------------

@if (XPA1 < -XPA10) ‘ Simple (<) If expression

@XPA1=-XPA10 ‘ Statement 1

@endif ‘ End if.

 ‘ Check positive saturation

‘ -------------------------------

@if (XPA1 > XPA10) ‘ Simple (>) If expression

@XPA1=XPA10 ‘ Statement 1

@endif ‘ End if.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 300

13.4.4 While Loops

While loops are used to execute repeated block of statements, until some condition

expires. As with math statement expressions, the while, continue, break and

endwhile statements should start with the "@" character symbol.

The syntax for the while block statement is:

Example:

@while (expression)

Statements…

 @continue [Optional]

 @break [Optional]

@endwhile

The while keyword executes statements repeatedly until the expression becomes 0.

The endwhile keyword must end any while block. Nested while loops are supported.

It is possible to include if statements and for loops within a while statement, given that

they do not cross the boundaries of the while block (and each other’s). Several

continue and break commands are allowed within a while loop. Continue and break

commands are valid only within while and for loops. Statements may be any valid,

normal or math expressions. Valid operators within the while statement itself (the

conditions) are:

• Valid math operators: +,–,*,/,&,|,^,~,||,!

• Valid logical operators: >,<,==,!=,>=,<=

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 301

Example #1

 Showing a simple infinite loop using a while statement, counting seconds:

@while (1) ‘ Infinite loop

 XTD=8192; XQW,107000 ‘1 Second Delay

 @XPA1=XPA1+1

@endwhile

Example #2:

 Showing a simple while loop with internal termination test using an if and break

statements.

XPA1=0

 @while (1) ‘ Infinite loop

 XTD=8192; XQW,107000 ‘ 1 Second Delay

 @XPA1=XPA1+1 ‘ Increment seconds counter

 @if (XPA1 > 20) ; Test for expired time (20 seconds)

 @break

 @endif

@endwhile

13.4.5 For Loops

For loops are used to execute repeated block of statements, until some condition

expires. As with math statement expressions, the for, continue, break and endfor
statements should start with the ‘@’ character symbol.

The syntax for the for block statement is:

@for(init-expr; cond-expr; loop-expr)

 Statements…

 @continue [Optional]

 @break [Optional]

@endfor

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 302

First, the initialization (init-expr) is evaluated. Then, while the conditional expression

(cond-expr) evaluates to a nonzero value, statements are executed and the loop

expression (loop-expr) is evaluated. When cond-expr becomes 0, control passes to the

statement following the for loop.

The endfor keyword must end any for block. Nested for loops are supported. The

(init-expr) and (cond-expr) expressions must include assignments (i.e. =, see example

#1 below). Currently all three expressions (init-expr, cond-expr and loop-expr) are

necessary. This means that the ‘C’ syntax: for (; cond-expr ;) is not supported.

It is possible to include if statements and while loops within a for statement, given that

they do not cross the boundaries of the for block (and each other’s). Several continue

and break commands are allowed within for loops. The continue and break

commands are valid only within while and for loops.

Statements may be any valid, normal or math expressions. Valid operators within the

for statement itself (the conditions) are:

• Valid math operators within assignment expressions:

+,–,*,/,&,|,^,~,||,!,>,<,==,!=,>=,<=

• Valid math operators within conditional expressions:

+,–,*,/,&,|,^,~,||,!

• Valid logic operators within conditional expressions:

>,<,==,!=,>=,<=

See the following examples for using for loops.

Example #1:

 A simple for loop, counting time with a delay function.

@for (XPA1=100 ; XPA1 < 120 ; XPA1=XPA1+1) ' Infinite loop

 XTD=16384; BQW,107000 ' 1 Second Delay

@endfor

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 303

14 Script Example
14.1 Script Structure

The following script consists of "Homing" and "Full Travel Repetitive Running" for X and Y

Axes. The script incluides two files:

• The main macro file (presented here).

• Application specific definition file – definitions for array variables that hold the relevant

values of all the motion parameters (PIV, Speeds etc…). This macro presumes the

relevant motion data is downloaded by a host PC. The macro sends a message via the

RS232 (or CAN, or LAN) to the host PC, regarding how the home procedure ended.

Notes:

 Sc2m_at_Global_Defs.scm – the Include File must be placed in the same folder with main

macro file. It stores definitions of all relevant values of all the motion parameters.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 304

14.2 Script Content

*** '
 *********** 'Generic Sample Script for FlexDC ***********
 *********** ' **********
*** '
 '
 'By: Avi Elnekave, Nanomotion
'
 'Rev. 01: 03/03/2008 - Creation
'
*** '

*** '**********************
 '
 'Define Target Hardware

 '------------------------------
$target "SC"
'
 'Include Files

 '-------------
$include <sc2m_at_global_defs.scm< 'Global Include
'
 'Project definitions

 '-------------------
$description "This is A Sample Script For two axes Homing and Conditioning"
$description "Encoder 0.1uM"
'

 'Start Public Routine Definitions
*** '
'
 **'AUTOEX 'Function Called at power on.

 **'Find Home and auto travel from hard Limits
#AUTOEX:
 @XPA[2]=0 'Zero home X state
 @YPA[2]=0 'Zero home Y state
 'Set Servo Parameters
XCA[7]=222749440 '2nd order filter parameters damping for 700 Hz ξ=0.6
XCA[8]=86352 '2nd order filter parameters damping for 700 Hz ξ=0.6
XCA[9]=-34411 '2nd order filter parameters damping for 700 Hz ξ=0.6
XCA[13]=1 'Enable 2nd order filter
XKP=2000
XKI=2500
XKD=30
YCA[7]=222749440 '2nd order filter parameters damping for 700 Hz ξ=0.6
YCA[8]=86352 '2nd order filter parameters damping for 700 Hz ξ=0.6
YCA[9]=-34411 '2nd order filter parameters damping for 700 Hz ξ=0.6
YCA[13]=1 'Enable 2nd order filter
YKP=2000
YKI=2500
YKD=30
XMO=0;YMO=0 'Set servo OFF for X and Y axes
 'These parameters work for Nanomotion HR motors and AB1A drivers

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 305

 **''Homing subroutine for X Axis
#HOME_X:
'defined velocity [counts/sec];acceleration[counts/sec^2[
'decleration [counts/sec^2 ;[
 XSP=-50000;XAC=10000000;XDC=10000000;
 ' Close the servo loop motor on

 XMO=1
 ' Turn to velocity mode by motion mode MM and special mode SM

 XMM=1;XSM=0
 ' Start jog

 XBG
 ' wait untill dac output>= 15000 (~5 volts (

 @while (abs(XPO) < 15000 (
 @endwhile
 ' In this position we are at the left hard stop,turn off the motor

 XMO=0
 ' wait 100msec

 TimerX=800
 WaitTimerX ()
 ' defined hard stop position -0.5mm(-5000 counts(

 XPS=-5000
 ' Turn motor on wait 10msec and move positive to the right hard limit.

 XMO=1
 TimerX=80
 WaitTimerX()
 XSP=50000
 XBG
 ' wait untill dac output>= 15000 (~5 volts(

 @while (abs(XPO) < 15000 (
 @endwhile
 XMO=0
 ' In this position we are at the right hard stop,turn off the motor

 TimerX=800
 WaitTimerX ()
 ' defined right hard stop + 0.5 mm from the max travel YPA[1{

 @XPA[1]=XPS-5000
 'turn the motor on and switch to PTP mode
 XMO=1
 TimerX=80
 WaitTimerX()
 XMM=0
 'move to home position (0) at velocity of 50mm/sec
 XSP=500000
 XAP=0
 XBG
 WaitForEndOfMotionX ()
 XMO=0
 @if (XPA[2]==1 (
 XJP,#MFT_X

 @ endif
 'stop program
 YQH
 XQH
'

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 306

 **'Homing subroutine for Y Axis
#HOME_Y :
'defined velocity [counts/sec];acceleration[counts/sec^2[
'decleration [counts/sec^2 ;[
 YSP=-50000;YAC=10000000;YDC=10000000;
 ' Close the servo loop motor on

 YMO=1
 ' Turn to velocity mode by motion mode MM and special mode SM

 YMM=1;YSM=0
 ' Start jog

 YBG
 ' wait untill dac output>= 15000 (~5 volts (

 @while (abs(YPO) < 15000 (
 @endwhile
 ' In this position we are at the left hard stop,turn off the motor

 YMO=0
 ' wait 100msec

 TimerY=800
 WaitTimerY ()
 ' defined hard stop position -0.5mm(-5000 counts(

 YPS=-5000
 ' Turn motor on wait 10msec and move positive to the right hard limit.

 YMO=1
 TimerY=80
 WaitTimerY()
 YSP=50000
 YBG
 ' wait untill dac output>= 15000 (~5 volts(

 @while (abs(YPO) < 15000 (
 @endwhile
 YMO=0
 ' In this position we are at the right hard stop,turn off the motor

 TimerY=800
 WaitTimerY ()
 ' defined right hard stop + 0.5 mm from the max travel YPA[1{

 @YPA[1]=YPS-5000
 'turn the motor on and switch to PTP mode
 YMO=1
 TimerY=80
 WaitTimerY()
 YMM=0
 'move to home position (0) at velocity of 50mm/sec
 YSP=500000
 YAP=0
 YBG
 WaitForEndOfMotionY()
 YMO=0
 @if (YPA[2]==1 (
 YJP,#MFT_Y

 @ endif
 'stop program
 YQH
 XQH
'

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 307

 **'Move X axis full travel back and forth
#MFT_X:
XMO=1
 'set absolute position to full travel YPA[1{

 @ XAP=XPA[1 [
 'start motion
 XBG
 WaitForEndOfMotionX ()
 ' wait 1 sec

 TimerX=8000
 WaitTimerX ()
 'set absolute position to zero
 XAP=0
 'start motion
 XBG
 WaitForEndOfMotionX ()
 TimerX=8000
 WaitTimerX ()
 'start from begining
 XJP,#MFT_X
 XQH
'
'Move Y axis full travel back and forth
#MFT_Y :
'
YMO=1
 'set absolute position to full travel YPA[1{

 @ YAP=YPA[1 [
 'start motion
 YBG
 WaitForEndOfMotionY ()
 ' wait 1 sec

 TimerY=8000
 WaitTimerY ()
 'set absolute position to zero
 YAP=0
 'start motion
 YBG
 WaitForEndOfMotionY ()
 TimerY=8000
 WaitTimerY ()
 'start from begining
 XJP,#MFT_Y
 YQH
 'Halt all
#HALT:
 XMO=0
 YMO=0
 YQH
 XQH

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 308

15 FlexDC Script Keywords Commands
Reference

This chapter presents a complete list of macro related commands supported by the FlexDC,
according to tasks, in alphabetical order, including detailed explanations and examples.

15.1 Task Based Reference

This section lists the commands according to their relation to several basic tasks. The list

provides a short description of each command.

15.2 Task Description

The commands are grouped to in the following tasks.

• Macro handling keywords.

• Operators.

• Flow control.

• Wait and state inquiry functions.

• Timer functions.

• Automatic routine control functions.

• Remote access over the CAN commands.

• Pre-compiler directive commands and keywords.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 309

15.3 Task Based Command List

Table 41 and Table 42 list all the FlexDC commands according to their task. A given

command may appear under more then one task.

15.3.1 Macro Handling Keywords

Keyword Description

QB[] An array of 20 breakpoints pointers (-1 to disable a pointer and following
pointers)

QC Reports the last macro runtime error (if there was any)

QD Downloads a macro

QE Execute macro from the current macro pointer (QP)

QH Halt macro execution

QI Initialize macro and its internal variables

QK Kill macro execution (also stops all motions of both axes)

QL Loads the macro from the Flash Memory. Automatically after power ON or reset.
This command is currently not implemented. Using the LD (for loading
parameters) also loads the macro.

QN Displays the macro stack

QP Holds the current macro pointer

QQ Uploads the program stack (queue of return addresses)

QR Reports the macro status

QS Saves the macro to the Flash Memory.

QT Execute single macro clause (trace) from the current macro pointer (QP)

QU Uploads a macro

QV Uploads all macro descriptive data and its checksum

QZ Clears all the numbers stack

Table 41: FlexDC Program Handling Keywords

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 310

15.3.2 Operator Keywords

Keyword Description

QN Displays the macro stack

QZ Clears all the numbers stack

} Push (without argument, duplicates last stack element)

{ Pop (without argument – remove last stack element)

+ Add

- Subtract

* Multiply

/ Divide

|| ABS

+- Negate

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

~ Bitwise NOT

! Logical NOT (result is always 0 or 1)

>0 Is positive

<0 Is negative

=0 Is zero

!0 Is not zero

> Is greater

< Is smaller

== Is equal

!= Is not equal

>= Is greater equal

<= Is smaller equal

Table 42: Macro Program Operators

Note that push and the pop operators must be attached to a parameter name.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 311

15.3.3 Flow Control Keywords

Keyword Description

CS Call subroutine at a new macro pointer

CT Call subroutine if last stack element is TRUE (not zero)

CF Call subroutine if last stack element is FALSE (zero)

JP Jump to a new macro pointer

JT Jump if last stack element is TRUE (not zero)

JF Jump is last stack element is FALSE (zero)

JZ Jump to a new macro pointer and clear subroutines stack
(to restart the macro with subroutines stack clear)

RT Return from a subroutine

Table 43: Macro Program Flow Control Keywords

15.3.4 Wait and Internal State Inquiry Functions

Keyword Description

QW Waits till a specified internal state will be set (or cleared).

QG Gets the value of a specified internal state (variable). The desired state is
provided as a parameter or as a stack argument.

Table 44: Macro Program Wait And State Inquiry Keywords

15.3.5 Timer Function Keywords

Keyword Description

iTd Timers down axis related variable. Consists of 32 bits, positive only.
Each element is calculated once the iTD is called.

Table 45: Macro Program Timer Keywords

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 312

15.3.6 Remote Access over the CAN commands

Table 46 describes the keywords that allow remote CAN access from within an FlexDC

macro program:

Keyword Description

ZA Remote Assign parameter. Sends an assignment clause to a remote unit.
The parameter to be assigned is the command's parameter. The value to
assign is taken from the numeric stack (one item removed).

ZC Remote Command. Sends a command clause to the remote unit. The
command to send is the ZC command’s parameter. The command does not
affect the numeric stack.

ZI[I] An array parameter. ZI[1] holds the ID address to which the remote
communication addresses (the receive CAN ID address of the remote unit).
ZI[2] holds the ID address to which the remote unit will answer (the CAN ID
address at which the answer is expected).
This array parameter is macro related: XZI[1] is used in macro X, YZI[1] is
used in macro Y...

ZM Sends a string message (limited to 8 characters) to a pre-defined remote,
CAN ID address, defined by ZI[1] (ZI[2] is ignored). The message to send is
the command’s (string) parameter if ‘ “ ‘ was found , or 1 or 2 (as parameter)
for 1 or 2 (respectively) numbers OFF the numbers stack.

ZR Remote Report parameter. Sends a report clause to a remote unit. The
parameter to be reported is the command's parameter. The reported value is
pushed to the numeric stack (one item is added to this stack).

ZS A parameter that holds the status of the last remote unit's response. Can be
only reset to zero.

Table 46: Macro Program Remote CAN Access Commands

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 313

15.3.7 Pre-compiler Directive Commands and Keywords

Table 47 describes the directives and keywords supported by the pre-compiler:

Keyword Description

‘ Comment Line.

Label definition, Subroutine name.

$define Global constants define directive.

$description Macro descriptive comment strings definitions.

$include Include macro files.

$target Defines the target hardware to download to.

@for Defines a "for" loop block statement.

@if Defines an "if…, else" conditional statement.

@while Defines a "while" loop block statement.

Table 47: Pre-compiler directive commands and Keywords

15.4 Macro Programming Keywords Reference

This section presents all the controller keywords related to macro programming in alphabetical

order, including detailed definitions of each command and examples.

The description of each keyword includes:

• Purpose: The operation or task of the keyword.

• Attributes: See below.

• Syntax: Valid clause syntax.

• Typical applic.: Typical use of keyword.

• Example: Simple example of the keyword usage.

• See also: Related commands.

The following list describes all the valid keyword Attributes:

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 314

• Type: Command / Parameter.

• Axis related12: Yes / No.

• Array * : Yes (dimension) / No.

• Assignment *: Yes / No (read only).

• Receive parameter *: Yes / No.

• Parameter type *: Number / String

• Scope: Communication / Program / Both

• Restrictions: See below.

• Save to Flash: Yes / No.

• Default Value: Yes (value) / No.

• Range: Min ÷ Max.

The following list describes all the valid keyword Restrictions:

• None.

• No motion.

• Motor is OFF.

• Motor is ON.

• Macro not running (X, Y, …, V).

• ALL Macro’s not running.

12 Axis or Macro related (Keyword's preceding character X,Y, B affects the keyword behavior).
* Applicable for commands only

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 315

15.4.1 CS – Call Subroutine

Purpose:
Calls (jumps) to a specified subroutine (given by program pointer or label). After returning from
the subroutine (by the RT command), execution continues at the next macro clause.

Attributes: Type: Command.

 Axis related: No.
 Array: ---.

 Assignment: ---.
 Receive parameter: Yes.
 Parameter type: Number or Label.

 Scope: Program.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.

Syntax:
CS,<Label>; CS,<Constant>

Keyword is not axis related, thus XCS, YCS and BCS are equivalent.

Examples:

#MAIN:
XCS,#SUB_1 ‘ Calls the SUB_1 Subroutine

#SUB_1:
XMO=1
XRT

See also:
RT, CF, CT, #

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 316

15.4.2 CF,CT – Call Subroutine If False or True

Purpose:
Call (jump) to a specified subroutine (given by program pointer or label) according to the stack
top condition. After returning from the subroutine (by the RT command), execution will
continue at the next macro clause. The CF (Call False) command will execute the requested
call if the stack top element is false (zero – ‘0’). The CT (Call True) command will execute the
requested call if the stack top element is true (non-zero).

Attributes: Type: Command.

 Axis related: No.
 Array: ---.

 Assignment: ---.
 Receive parameter: Yes.
 Parameter type: Number or Label.

 Scope: Program.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.
Syntax:
CF,<Label>; CF,<Constant>
CT,<Label>; CT,<Constant>
Keyword is not axis related, thus XCF, YCF, etc…are equivalent.

Examples:
#MAIN:
XPA1} ‘ Pushes the value of XPA1 to the stack top
XCT,#SUB_1 ‘Calls the SUB_1 Subroutine if XPA1 != 0
YCF,#SUB_2 ‘Calls the SUB_2 Subroutine if XPA1 == 0
#SUB_1:
XMO=1
BRT
#SUB_2:
YMO=1
BRT

See also: RT, CS, #

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 317

15.4.3 JP – Jump

Purpose:
Jump to a specified label or pointer location.

Attributes: Type: Command.

 Axis related: No.
 Array: ---.

 Assignment: ---.
 Receive parameter: Yes.
 Parameter type: Number or Label.

 Scope: Program.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.

Syntax:
JP,<Label>; JP,<Constant>

Keyword is not axis related, thus XJP, YJP etc…are equivalent.

Examples:

#MAIN:
XJP,#A_1 ‘Jumps the A_1 label.

#A_1:
XSP=12345

See also:
JF, JT, JZ

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 318

15.4.4 JF, JT – Jump If False or True

Purpose:
Jump to a specified label or pointer location, according to the stack top condition.
The JF (Jump False) command will execute the requested jump if the stack top element is
false (zero – ‘0’). The JT (Jump True) command will execute the requested jump if the stack
top element is true (non-zero).

Attributes: Type: Command.

 Axis related: No.
 Array: ---.

 Assignment: ---.
 Receive parameter: Yes.
 Parameter type: Number or Label.

 Scope: Program.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.

Syntax:
JF,<Label>; JF,<Constant>
JT,<Label>; JT,<Constant>

Keyword is not axis related, thus XJF, YJF, etc…are equivalent.

Examples:
#MAIN:
XPA1} ‘ Pushes the value of XPA1 to the stack top
XJT,#LABEL1 ‘Calls the LABEL1 Subroutine if XPA1 != 0
YJF,#LABEL2 ‘Calls the LABEL2 Subroutine if XPA1 == 0
#LABEL1:
XPA2=1
#LABEL2:
XPA2=2

See also:
JP, JZ

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 319

15.4.5 JZ – Jump Zero

Purpose:
Jump to a specified label or pointer location, and clears subroutines stack (to restart the
macro with subroutines stack clear).

Attributes: Type: Command.

 Axis related: No.
 Array: ---.

 Assignment: ---.
 Receive parameter: Yes.
 Parameter type: Number or Label.

 Scope: Program.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.

Syntax:
JZ,<Label>; JZ,<Constant>

Keyword is not axis related, thus XJZ, YJZ and BJZ are equivalent.

Examples:
#MAIN:
XPA1=0

XJZ,#MAIN ‘Jumps the MAIN label, clears the subroutines stack.

See also:
JP, JF, JT

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 320

15.4.6 QB – Macro Breakpoint Array

Purpose:
Defines a breakpoint location (pointer) when executing a macro program. Up to 20
breakpoints are supported simultaneously, for ALL macro programs (20 for X , 20 for Y,).
Setting a QB element to -1 avoid the check of all the following elements.
QB must be set to the pointer of the first byte of a clause. Otherwise it does not halt the
related macro program.

Attributes: Type: Parameter.

 Axis related: Yes.
 Array: Yes size: 2x20.

 Assignment: Yes.
 Receive parameter: ---.
 Parameter type: ---.

 Scope: Both.
 Restrictions: None.
 Save to Flash: Yes.

 Default Value: 0.
 Range: -1 ÷ Max Macro Pointer.

Syntax:
QB[i]; QBi;
QB[i]= <Number>; QBi= <Number>;

The array index [i] range is (1 ÷ 20).

Examples:
For internal usage ONLY !

See also:
QT, QE

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 321

15.4.7 QC – Macro Run-Time-Error

Purpose:
Reports the last macro run-time-error code.

Attributes: Type: Parameter.

 Axis related: Yes.
 Array: No.

 Assignment: No (read only).
 Receive parameter: ---.
 Parameter type: ---.

 Scope: Both.
 Restrictions: None.
 Save to Flash: No.

 Default Value: 0.
 Range: ---.

Syntax:
QC

Examples:
XQC; YQC;…

See also:
EC

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 322

15.4.8 QD – Download Macro Buffer

Purpose:
Downloads the macro program to the internal FlexDC macro buffer. This command is
currently active by using the Nanomotion Shell application DCOM communication interface
only.

Attributes: Type: Command.

 Axis related: No.
 Array: ---.

 Assignment: ---.
 Receive parameter: Yes.
 Parameter type: String.

 Scope: Communication.
 Restrictions: No Macro’s are running.
 Save to Flash: No.

 Default Value: ---.
 Range: ---.

See also:
QU, QV

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 323

15.4.9 QE – Execute Macro

Purpose:
Executes a user program from a specified location (program label, or pointer), or from the
current location if no parameter is given.

Attributes: Type: Command.

 Axis related: Yes.
 Array: --.

 Assignment: --.
 Receive parameter: No.
 Parameter type: ---.

 Scope: Both.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: --.
 Range: --.
Syntax:
The QE command can be executed with no parameters, or with a single (Label or constant)
parameter:

Syntax Description

QE Starts or continues program execution from current pointer location.

QE,<Const> Start program execution from a given pointer location.

QE,<Label> Start program execution from a given label.

Examples:
If no parameters are used, the command simply starts (or continues) execution of the relevant
macro from the current macro pointer (XQP, YQP,…).
XQE; YQE; …

If a parameter (label or constant) is used, the macro will start (or continue) execution from the
specified label or pointer. e.g.
XQE,#XHOME

See also:
QP, QT, QH

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 324

15.4.10 QF – Macro Running Status

Purpose:
Reports the macro running status. This is an array report only command.
Currently the following array indexes are reported:

1. Macro Running Index– Mask of running macro’s
2. Internally Used.
3. RTE Index of macro has a RTE – Mask of macro’s that encountered a Run-Time-

Error.
4. Internally Used.
5. Internally Used.

Refer to the QR, for the macro initialization statuses.

Attributes: Type: Parameter.

 Axis related: No.
 Array: Yes.

 Assignment: No (read only).
 Receive parameter: ---.
 Parameter type: ---.

 Scope: Both.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.

Syntax:
XQF1, YQF2, …etc…

Examples:
XQF1 ‘ Reports the Macro Running Status Register of all axes.
XQF3 ‘ Reports the Macro RTE Status Register of all axes.

See also:
QI,QR

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 325

15.4.11 QG – Get Internal State Value

Purpose:
Gets the value of a specified internal state (variable). The desired state is provided as a
parameter or as a stack argument. For a list of supported internal states refer to section 10.8.
The QG command returns the state value to the macro number stack as FALSE (0) or TRUE
(1) Refer to section 10.8, Part III, for inversing the logic of the returned value.

Attributes: Type: Command.

 Axis related: No.
 Array: ---.

 Assignment: ---.
 Receive parameter: Yes.
 Parameter type: Number.

 Scope: Both.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.

Syntax:
QG,<Constant>

Keyword is not axis related, thus XQG and YQG are equivalent.

Examples:
XQG,100000 ‘ Reports on the stack if the X axis is in motion.
XQG,200000 ‘ Reports on the stack if the Y axis is in motion.
XQG,200001 ‘ Reports on the stack if the Y axis is not in motion.

See also:
QW

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 326

15.4.12 QH – Halt Macro

Purpose:
Halts program execution of the relevant macro program.

Attributes: Type: Command.

 Axis related: Yes.
 Array: --.

 Assignment: --.
 Receive parameter: No.
 Parameter type: ---.

 Scope: Both.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: --.
 Range: --.

Syntax:
QH

Examples:
XQH ‘Halts execution of the X program.
YQH ‘Halts execution of the Y program.

See also:
QP, QT, QE

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 327

15.4.13 QI – Initialize Macro

Purpose:
Initialize and the reset macro program status and flags. Note that after initialization the macro
is not running. The QI command is called automatically by the DCOM communication
interface application each time a new macro program is downloaded to the controller.

Attributes: Type: Command.

 Axis related: No.
 Array: ---.

 Assignment: ---.
 Receive parameter: No.
 Parameter type: ---.

 Scope: Communication.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.

Syntax:
QI

Keyword is not axis related, thus XQI, YQI are equivalent.

Examples:
XQI ‘ Resets Macro programs

See also:
QE, QH, QD, QL

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 328

15.4.14 QK – Kill Macro and Motions

Purpose:
Halts program execution of the relevant macro program, and stops any motion in ALL motors.
The command is equivalent to the two commands: QH; XST; YST ; etc… (refer to " Part II–
FlexDC Software and Commands Reference" for further information regarding the ST
command).

Attributes: Type: Command.

 Axis related: Yes.
 Array: ---.

 Assignment: ---.
 Receive parameter: No.
 Parameter type: ---.

 Scope: Both.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.

Syntax:
QK

Examples:
XQK ‘Halts execution of the X program, and stops ALL motions.
YQK ‘Halts execution of the Y program, and stops ALL motions.

See also:
QH

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 329

15.4.15 QN – Display Macro Stack

Purpose:
Reports the macro program numbers stack. The QN keyword may be used to debug macro
execution. The user can inquire the numbers stack form the Nanomotion Shell Application
terminal window. Note that currently it is possible to access the X macro stack (push and pop)
from the terminal.

Attributes: Type: Command.

 Axis related: Yes.
 Array: ---.

 Assignment: ---.
 Receive parameter: No.
 Parameter type: ---.

 Scope: Communication.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.

Syntax:
QN

Examples:
XQN ‘ Reports the X macro program numbers stack.
YQN ‘ Reports the Y macro program numbers stack.

See also:
QQ, QZ

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 330

15.4.16 QP – Macro Program Pointer

Purpose:
The Macro program pointer may be used to check the current program location, or to be
assigned with a value (for indirect calls).

Attributes: Type: Parameter.

 Axis related: Yes.
 Array: No.

 Assignment: Yes.
 Receive parameter: ---.
 Parameter type: ---.

 Scope: Both.
 Restrictions: None.
 Save to Flash: No.

 Default Value: 0.
 Range: 0 ÷ Max Macro Pointer.

Syntax:
QP
QP=<Number>

Examples:
XQP; ‘ Reports QP of X
XQP=1000; YQP=2000; ‘ Sets QP of X, Y respectively.

See also:
QE

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 331

15.4.17 QQ – Macro Program Stack

Purpose:
Reports the macro program subroutine’s stack. The QQ keyword may be used to debug
macro execution. The QQ command returns the subroutines call stack, in absolute macro
pointers.

Attributes: Type: Command.

 Axis related: Yes.
 Array: ---.

 Assignment: ---.
 Receive parameter: No.
 Parameter type: ---.

 Scope: Communication.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.

Syntax:
QQ

Examples:
XQQ ‘ Reports the X macro program subroutines stack.
YQQ ‘ Reports the Y macro program subroutines stack.

See also:
QW

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 332

15.4.18 QR – Macro Initialization Status

Purpose:
Reports the macro initialization status. This is a bit array report only command.
Currently the following status bits are reported:

0x00000000 No Script is present.
0x00000001 Flag if downloaded macro encountered overflow
0x00000002 Internally Used
0x00000004 Flag if macro download finished
0x00000008 Flag if macro was downloaded successfully
0x00000010 Flag if macro was initialized successfully
0x00000020 Internally Used
0x00000040 Internally Used
0x00000080 Internally Used
0x00000100 Internally Used

Refer to the QF, for the macro running statuses.

Attributes: Type: Parameter.

 Axis related: No.
 Array: No.

 Assignment: Zero ONLY !
 Receive parameter: ---.
 Parameter type: ---.

 Scope: Both.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.

Syntax:
QR
Keyword is not axis related, thus XQR, YQR and BQR are equivalent.

Examples:
XQR ‘ Reports the Macro Status Register.
XQR=0 ‘ Clears Macro Initialized Flag.
See also: QI,QF

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 333

15.4.19 QT –Trace Macro Execution (Single Line)

Purpose:
Executes the relevant macro one clause at a time. This command is usually used in
debugging mode. It is used by the Nanomotion Shell Application and debugging editor during
macro programs debugging sessions.

Attributes: Type: Command.

 Axis related: Yes.
 Array: ---.

 Assignment: ---.
 Receive parameter: No.
 Parameter type: ---.

 Scope: Both.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.

Syntax:
QT

Examples:
XQT ‘ Traces (executes) one clause from the X macro program.
YQT ‘ Traces (executes) one clause from the Y macro program.

See also:
QE, QP

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 334

15.4.20 QU – Upload Macro Buffer

Purpose:
Uploads the macro program from the internal controller macro buffer, to the active
communication link. This command is currently used by Using Nanomotion Shell application.

It may be used by the user from a stand-alone simple terminal only (will not work from the
Nanomotion Shell Application terminal window).

Attributes: Type: Command.

 Axis related: No.
 Array: ---.

 Assignment: ---.
 Receive parameter: No.
 Parameter type: ---.

 Scope: Communication.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.

Syntax:
QU

Keyword is not axis related, thus XQU, YQU and BQU are equivalent.

Examples:
XQU ‘ Starts Macro Buffer upload.

See also:
QD, QL

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 335

15.4.21 QV – Uploads Descriptive Data

Purpose:
Uploads all macro descriptive data to the active communication line. The macro descriptive
data includes the following information:

• Macro file name used to download the last program (downloaded file name and
extension only, no full path).

• Last download date: format is DDMMYY.
• Descriptive comments (declared by the $description pre-compiler directive, each

descriptive declaration in a separate line).

Attributes: Type: Command.

 Axis related: No.
 Array: ---.

 Assignment: ---.
 Receive parameter: No.
 Parameter type: ---.

 Scope: Communication.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.

Syntax:
QV

Keyword is not axis related, thus XQV, YQV and BQV are equivalent.

Examples:
BQV ‘ Uploads the descriptive information.

See also:
$description directive.

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 336

15.4.22 QW – Wait till Condition

Purpose:
Waits for a specified internal state (variable). The desired state is provided as a parameter.
For a list of supported internal states refer to section 10.8, Part III.
The QW command holds the macro execution until the state is satisfied.

Attributes: Type: Command.

 Axis related: No.
 Array: ---.

 Assignment: ---.
 Receive parameter: Yes.
 Parameter type: Number.

 Scope: Program.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.

Syntax:
QW,<Constant>

Keyword is not axis related, thus XQW, YQW and BQW are equivalent.

Examples:
XQW,100000 ‘ Waits for the X axis to be in motion.
XQW,200000 ‘ Waits for the Y axis to be in motion.
XQW,200001 ‘ Waits for the Y axis to be not in motion.

See also:
QG

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 337

15.4.23 QZ – Clears Macro Numbers Stack

Purpose:
Clears the numbers stack. This command should be used when a new program starts running
to avoid stack errors, in case previous functions did not leave the stack clear.

Attributes: Type: Command.

 Axis related: Yes.
 Array: ---.

 Assignment: ---.
 Receive parameter: No.
 Parameter type: ---.

 Scope: Both.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.

Syntax:
QZ

Examples:
XQZ ‘ Clears the X macro program numbers stack.
YQZ ‘ Clears the Y macro program numbers stack.

See also:
QN

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 338

15.4.24 RT – Return from Subroutine

Purpose:
Returns from a subroutine call. Note that if the subroutine was not called using one of the Call
Sub functions (CS, CF, CT) a stack error will occur.

Attributes: Type: Command.

 Axis related: No.
 Array: ---.

 Assignment: ---.
 Receive parameter: No.
 Parameter type: ---.

 Scope: Program.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.

Syntax:
RT
Keyword is not axis related, thus XRT, YRT and BRT are equivalent.

Examples:
#MAIN:
XCS,#SUB_1 ‘Calls the SUB_1 Subroutine
XPA1=1 ‘ Return point of subroutine

#SUB_1:
XMO=1
XRT ‘ Return from function

See also:
CS, CT, CF. QE

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 339

15.4.25 TD – Timer Down

Purpose:
The TD – Timer Down is a 32 bits timers (Axis related – one for each axis - positive only 0-
2147000000) updated once this keyword is called. It is calculated according to the hardware
interrupt entrance counter. When the timer reaches a value of ‘0’ they stop.

Note: The values of the timer may be changed to any valid value from both communication
and macro program.

Attributes: Type: Parameter.

 Axis related: Yes.
 Array: No

 Assignment: Yes.
 Receive parameter: ---.
 Parameter type: ---.

 Scope: Both.
 Restrictions: None.
 Save to Flash: No.

 Default Value: 0.
 Range: 0 ÷ 2147000000.

Syntax:
iTD; iTD;
iTD=<Number>

Examples:
The following commands is a simple example for implementing a 1 second delay using XTD,
and the Timer (TD) state condition:

XTD=8192; XQW,107000

Firstly, XTD is initialized, then the QW function is called, waiting for timer #1 to be zero.

See also:
QW, QG

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 340

15.4.26 ZA – Remote Assign Value (CAN Networking)

Purpose:

A Remote Assign parameter which sends an assignment clause to a remote unit. The
parameter to be assigned is the command's parameter. The value to assign is taken from the
numeric stack (one item removed).

Attributes: Type: Command.

 Axis related: No.
 Array: ---.

 Assignment: ---.
 Receive parameter: Yes.
 Parameter type: String.

 Scope: Program.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.

Syntax:
ZA,<String Parameter>

Keyword is not axis related, thus XZA, YZA and BZA are equivalent.

Examples:
XZI1=100 ‘ Remote Receive Address (RA=100)
XZI2=101 ‘ Remote Transmit Address (TA=101)
1};XZA,"XMO" ‘ Remote Motor ON (MO=1)

See also:
ZC, ZI, ZM, ZR, ZS

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 341

15.4.27 ZC – Remote Command (CAN Networking)

Purpose:
A Remote Command which sends a command clause to the remote unit. The command to
send is the ZC command’s parameter. The command does not affect the numeric stack.

Attributes: Type: Command.

 Axis related: No.
 Array: ---.

 Assignment: ---.
 Receive parameter: Yes.
 Parameter type: String.

 Scope: Program.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.

Syntax:
ZC,<String Parameter>

Keyword is not axis related, thus XZC, YZC and BZC are equivalent.

Examples:
XZI1=100 ‘ Remote Receive Address (RA=100)
XZI2=101 ‘ Remote Transmit Address (TA=101)
XZC,"XBG" ‘ Remote Begin Motion (BG)

See also:
ZA, ZI, ZM, ZR, ZS

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 342

15.4.28 ZI – Remote Parameters Array (CAN Networking)

Purpose:
An axis related array parameter. The iZI[1] array holds the address of the remote device to
send messages to. The iZI[2] array holds the address of the reply sent back to the FlexDC. i
relates to the current macro.

Attributes: Type: Parameter.

 Axis related: Yes.
 Array: Yes (2 * 12)

 Assignment: Yes.
 Receive parameter: ---.
 Parameter type: ---.

 Scope: Both.
 Restrictions: None.
 Save to Flash: Yes.

 Default Value: 0.
 Range: ----.

Syntax:
XZI[1]; YZI[1];
XZI[1]= <Number>; YZI[1]= <Number>;

Examples:
XZI1=100 ‘ Remote Receive Address (RA=100)
XZI2=101 ‘ Remote Transmit Address (TA=101)
XZC,"XBG" ‘ Remote Begin Motion (BG)

See also:
ZA, ZC, ZM, ZR, ZS

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 343

15.4.29 ZM – Remote Message (CAN Networking)

Purpose:
Sends a string message (limited to 8 characters) to a pre-defined remote, CAN ID address,
defined by ZI[1] (ZI[2] is ignored). The message to send is the command’s (string) parameter,
or 1 or 2 or 3 numbers OFF number stack (number parameter).

Attributes: Type: Command.

 Axis related: No.
 Array: ---.

 Assignment: ---.
 Receive parameter: Yes.
 Parameter type: String.

 Scope: Program.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.

Syntax:
XZM,<string>
XZM,<Number (1 or 2 or 3) >

Examples:
XZM,”COMPLETE” Sends the COMPLETE word over the CAN bus to address XZI1
XZM,1 Sends the number at the top of the X stack (1 longs. Message size is 4 bytes).
XZM,2 Sends the two numbers at the top of the X stack. (2 longs Message size is 8 bytes)
XZM,3 Sends the three numbers at the top of the X stack. 2 bytes + 3 bytes + 3 bytes.
Message size is 8 bytes. Top of stack is the 2 byte number, is set in the high bytes of the CAN
message.

See also:
ZA, ZC, ZI, ZR, ZS

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 344

15.4.30 ZR – Remote Report Value (CAN Networking)

Purpose:
A Remote Report parameter which sends a report clause to a remote unit. The parameter to
be reported is the command's parameter. The reported value is pushed to the numeric stack
(one item is added to this stack).

Attributes: Type: Command.

 Axis related: No.
 Array: ---.

 Assignment: ---.
 Receive parameter: Yes.
 Parameter type: String.

 Scope: Program.
 Restrictions: None.
 Save to Flash: ---.

 Default Value: ---.
 Range: ---.

Syntax:
ZR,<String Parameter>

Keyword is not axis related, thus XZR, YZR and BZR are equivalent.

Examples:
Remote access to a remote array element variable:

XZR, “XPA23” ‘ Report remote XPA[23] (push one number to stack)

See also:
ZA, ZC, ZI, ZM, ZS

FlexDC Software User Manual Part III– FlexDC Macro Language

Nanomotion Ltd. 345

15.4.31 ZS – Remote Command Status (CAN Networking)

Purpose:
A parameter that holds the status of the last remote unit's response. Can only be reset to
zero.

Attributes: Type: Parameter.

 Axis related: No.
 Array: No.

 Assignment: No (read only).
 Receive parameter: ---.
 Parameter type: ---.

 Scope: Both.
 Restrictions: None.
 Save to Flash: No.

 Default Value: ---.
 Range: ---.

ZS = 0 Last Message OK.
ZS = 1 Still Waiting for reply from remote unit.
ZS = 2 Remote Timeout or ‘?’ returned from remote unit.
ZS = 3 Parameter syntax error.

 Syntax:
ZS

Keyword is not axis related, thus XZS, YZS and BZS are equivalent.

See also:
ZA, ZC, ZI, ZM, ZR

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 346

Part IV – Nanomotion
Shell Application

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 347

16 Introduction
16.1 General

 Part IV covers the following FlexDC software applications: Nanomotion Shell Application and

the Srcedit – the Macro File Editor Application.

These applications are applied for:

• Axis/axes online status reporting.

• User-friendly interface for controller’s parameters.

• Easy axis/axes motion, for all motion modes.

• New firmware download.

• Macro download, upload and status reporting.

• Full IDE for macro editing and debugging.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 348

17 Software Installation
The software installation consists of two stages:
• Hardware drivers' installation.

• Software installations.

17.1 Hardware Drivers' Installation

The FlexDC currently supports the following communication protocols:

• RS232 serial Communication Protocol

• CAN

• LAN

Each of these communication protocols needs a specific communication link.

The Nanomotion Shell Application program supports the following CAN cards:

• Kvaser CAN Cards.

• ESD CAN Cards.

These drivers installation are necessary (refer to the driver installation manuals supplied with

the driver).

17.2 Software Installation

This section describes the installation of the FlexDC software and other utility programs.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 349

17.2.1 Nanomotion Shell Application

Nanomotion Shell Application program is the GUI (Graphical Software Interface) for

the FlexDC motion controller. This interface uses all controller keywords and enables

easy access to the controller keywords and functionalities.

The FlexDC is supported by dedicated software, which requires a PC operating

system with one of the following: Windows 98 / Windows 2000 / Windows XP. The

software installation is user-friendly, using a dedicated Setup Utility provided on the

product CD. The standard setup installation installs the FlexDC user manuals together

with the Nanomotion Shell Application for user’s convenience.

17.2.2 SCServer DCOM

The SCServer DCOM is a Hi-Level communication interface. This Hi-Level

communication interface is used by the Nanomotion Shell Application, and is

necessary for its operation. The "SCServerScope" is installed together with the

Nanomotion Shell Application. Refer to Part V for further information.

17.2.3 SrcEdit Software

The SrcEdit is a powerful debugging environment and IDE for the FlexDC controller.

The macro programs are integral part of the FlexDC. The debugging environment uses

the low-level debug features of the FlexDC, while providing an advanced GUI support.

The SrcEdit is installed together with the Nanomotion Shell Application installation.

Read further in Part IV for SrcEdit functionalities.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 350

18 The Nanomotion Shell Application GUI
18.1 General

This chapter gives a detailed description of the Nanomotion Shell Application, its main screen

(see Figure 20), available folders, dialogs and menus.

18.2 Main Screen

Figure 20: FlexDC Main Screen

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 351

The Main Screen Components:

• Selected Connection – enables the selection of defined connections.

• Version Control – current servo controller version.

• Status View – status of the main two axes and macro status per each axis.

• Folder View – current folder, selected by user.

• Outlook Bar – enables the selection of folders and custom commands.

• DCOM version – current DCOM server version the software used.

18.2.1 Axes Status Area

Axes status area gives a full status report on each axis (see Figure 21).

Figure 21: Axes Status Area

The Servo button – sets the servo ON or OFF. The status on the button states the

current status of the controller. For instance, a green button with the “Servo On” text

means that the controller axis servo status is currently on.

Note:

 The status area view is updated at a rate of every 500 ms.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 352

The Axis Status Area shows:

• Position – current position.

• Velocity – current velocity.

• Error – position Error.

• Servo – Servo ON or Servo OFF.

• Last Motion End – last motion ending reason.

• RLS – reverse limit switch ON/OFF.

• FLS – forward limit switch ON/OFF.

• SLL – software low limit ON/OFF.

• SHL – software high limit ON/OFF.

• Driver Fault – driver Fault ON/OFF.

• In Motion –in motion ON/OFF.

• Motion Status – the current motion status description text.

• Motor Fault – text of motor fault, if one occurred.

18.2.2 Macro Status Area

The macro status area gives a status view of the currently running macro (see Figure

22).

Figure 22: Macro Status Area

The Macro Status Area reports the following:

• Initialized – If macro is initialized or not.

• Running – Status of each of the macros:

♦ Green LED – macro is currently running.

♦ Red LED – macro stop running due to an error.

♦ Gray LED – macro currently is not running.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 353

18.2.3 Version Control Area

The Version Control Area shows the current version of the servo controller and its

communication parameters (see Figure 23).

Figure 23: Version Control Area

The version format is as follows:

• Servo controller type: SC-AT-2M (FlexDC).

• Firmware version.

• Communication name.

• Communication port.

• Communication baud rate.

• Servo controller location of connection. At a local computer or at a network

computer.

18.2.4 Fast Menu Button

Figure 24: Fast Menu Button

The fast menu button (see Figure 24) shows a menu that includes:

• Show Terminal Window – changes the folder view to terminal view.

• Update Status Window – stops/resumes the main view automatic update.

• Watch Dialog – shows the watch dialog (see section 18.4.6.2, Part IV).

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 354

18.3 Folders

This section gives a detailed description of all the supported folders. The folders can be

selected through the Outlook Bar, on the left side of the screen (see Figure 20).

All the folders include a Menu Button, see Figure 25:

Figure 25: The Menu Button

The Menu Button has two options:

• Download Parameters – pressing the left side of the Menu Button downloads all folder

parameters to the FlexDC.

• Open folder’s menu – pressing the right side of the Menu Button opens folder's specific

menu. Most of the folders have a simple menu which enables:

• Download Data To Controller – downloads folder’s parameters to the FlexDC.

• Upload Data From Controller – uploads folder’s parameters from the FlexDC.

• Set Default Values – sets folder’s default values. This option does not download the

data to the controller.

Notes:

 Folders with Menu Button that include different options are fully described in this section.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 355

18.3.1 Motions Folder Group

Motions folder group includes folders for easy motion configuration and execution, see

Figure 26:

Figure 26: Motion Folder Group

Each folder enables the following:

• Download, Upload and set default values to parameters.

• Start of an axis motion in the specified motion mode.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 356

The Motions folder group includes the following folders13;

• Point To Point motion folder – see section 18.3.1.1 (Part IV).

• Jogging motion folder – see section 18.3.1.2 (Part IV).

• Gear motion folder – see section 18.3.1.3 (Part IV).

• Joystick motion folder – see section 18.3.1.4 (Part IV).

• ECAM motion folder – current FlexDC firmware does not support this mode.

18.3.1.1 Point To Point Folder

Point-To-Point folder covers the Point-to-Point motion mode (MM=0), see

Figure 27.

Figure 27: Point-To-Point Folder

13 Each folder represents a different controller motion mode.

Paramneters

Start motion Motion type

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 357

Point-To-Point folder parameters:

♦ AC – Acceleration.

♦ DC – Deceleration.

♦ SP – Speed.

♦ AP – Absolute position (desired absolute position).

♦ RP – Relative position (desired relative position).

♦ WT – Wait Period.

♦ DL – Limit Deceleration.

♦ Absolute – Absolute or Relative motion.

♦ Repetitive – Repetitive Motion Mode (SM=1).

The Begin Motion button downloads the axis parameters and starts the

selected motion, presuming the relevant axis servo is ON.

Parameters can be updated while axis is in motion, to do so just change the

relevant parameters and download them by pressing the Menu Button.

The following presents two examples:

The first one for starts an absolute motion and the other, starts an absolute

repetitive motion.

1) Start absolute motion example:

1. Set the desired Acceleration parameter (AC).
2. Set the desired Deceleration parameter (DC).
3. Set the desired Speed (SP).
4. Set the desired Absolute position (AP).
5. Set the desired Wait Time (WT).
6. Set the desired Limit deceleration (DL).
7. Check the Absolute check box.
8. Uncheck the Repetitive check box.
9. Check that the axes servo is ON.
10. Press the Start Axis Button.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 358

2) Start absolute motion that repeats itself example:

1. Set the desired Acceleration parameter (AC).
2. Set the desired Deceleration parameter (DC).
3. Set the desired Speed (SP).
4. Set the desired Absolute position (AP).
5. Set the desired Wait Period (WT).
6. Set the desired Limit deceleration (DL).
7. Check the Absolute check box.
8. Check the Repetitive check box.
9. Check that the Axes Servo is ON.
10. Press the Start Axis Button.

The same steps are performed for relative motions, with the following

modifications:

♦ Clear the "Absolute" check box.

♦ Set the desired Relative position (RP).

18.3.1.2 Jogging Folder

Jogging Folder covers the Jog Motion Mode, see Figure 28.

Figure 28: Jogging Folder

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 359

Jogging Folder parameters:

♦ AC – Acceleration.

♦ DC – Deceleration.

♦ SP – Speed.

♦ DL – Limit Deceleration.

Note:

 The FlexDC supports normal jog mode only.

The Begin Motion button downloads the axis parameters and starts the

selected motion, presuming the relevant axis servo is ON.

The parameters can be updated while axis is in motion, to do so just change

the relevant parameters and download them by pressing the Menu Button.

The following example starts a new jog motion:

1. Set the desired Acceleration parameter (AC).
2. Set the desired Deceleration parameter (DC).
3. Set the desired Speed (SP).
4. Set the desired Limit deceleration (DL).
5. Set jogging mode to Normal Jog mode.
6. Check that the axes servo is ON.
7. Press the Start Axis Button.

18.3.1.3 Gear Folder

Gear Folder covers the Gearing Motion Mode, see Figure 29.

Figure 29: Gear Folder

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 360

Gear Folder parameters:

♦ AC – Acceleration.

♦ DC – Deceleration.

♦ FR – Master / Slave encoder ratio.

Gearing Mode:

♦ Position Gearing.

♦ Jogging Gearing.

The Begin Motion button downloads the axis parameters and starts the

selected motion, presuming the relevant axis servo is ON.

Parameters can be updated while axis is in motion, to do so just change the

relevant parameters and download them by pressing the Menu Button.

Next is an example for setting axis for gearing mode.

Start gear mode example:

1. Set the desired Acceleration parameter (AC).
2. Set the desired Deceleration parameter (DC).
3. Set the desired master slave encoder ratio (FR).
4. Set gearing mode to position mode.
5. Check that the axes servo is ON.
6. Press the Start Axis button.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 361

18.3.1.4 Joystick Folder

Joystick Folder covers the Joystick Motion Mode, see Figure 30.

Figure 30: Joystick Folder

Joystick Folder parameters:

♦ AC – Acceleration.

♦ DC – Deceleration.

♦ AI – Analog Input (read only).

♦ AS – Analog offset.

♦ AG – Analog gain.

The Begin Motion button downloads the axis parameters and starts the

joystick mode, presuming the relevant axis servo is ON.

Parameters can be updated while axis is in motion, to do so just change the

relevant parameters and download them by pressing the Menu button.

Setting axis in joystick mode example:

1. Set the desired Acceleration parameter (AC).
2. Set the desired Deceleration parameter (DC).
3. Set Analog input offset (AS).
4. Set Analog input gain (AG).
5. Check that the axes servo is ON.
6. Press the Start Axis Button.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 362

18.3.2 Configurations Folder Group

Figure 31: Configurations Folder Group

The Configurations folder group (see Figure 31) includes folders for configuring servo

controller parameters.

Each folder enables the following:

• Download parameters to controller.

• Upload parameters from controller.

• Set parameters default values.

Configurations folder group includes the following folders:

• CAN folder – see section 18.3.2.1 (Part IV).

• Protection folder – see section 18.3.2.2 (Part IV).

• Configuration X, Y – see section 18.3.2.3 (Part IV).

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 363

18.3.2.1 CAN Folder

Figure 32: CAN Folder

CAN folder (see Figure 32) supports the following parameters:

♦ CAN baud rate.

♦ Rx address.

♦ Tx address.

♦ ZI arrays.

Changing the controller’s CAN address:

1. Select the desired baud rate.
2. Enter the desired Rx address.
3. Enter the desired Tx address.
4. Enter ZI’s values (optional).
5. Download the data to controller.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 364

18.3.2.2 Protection Folder

The Protection folder (see Figure 33) includes the protection parameters,

which are automatically loaded by the Nanomotion Shell Application.

Figure 33: Protection Folder

Protection folder supports the following parameters:

♦ ER – Max position Error Limit.

♦ LL – the software Low Limit.

♦ HL – the software High Limit.

♦ TL – Torque Limit.

♦ IS – Integral Saturation limit.

Changing a protection parameter:

1. Change one or more of the protection parameters.
2. Download the data to controller.
3. Now the parameters are in the controller.
4. Save parameters to Flash Memory (SV).

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 365

18.3.2.3 Configuration X/Y Folders

Figure 34: Configuration Folder

Configuration folder (see Figure 34) includes the following options, supported

by the current FlexDC firmware:

♦ Invert motor command direction: main DAC and PWM output.

♦ Inverse main encoder direction.

♦ Analog command resolution 16 bit.

♦ Encoder type: A Quad B; Analog Sin/Cos.

♦ Driver Type: External Invert Driver Fault Logic.

Changing the configuration parameter:

1. Verify the status of the axis servo is OFF.
2. Change one or more of the configuration options.
3. Download the data to controller.
4. Save parameters to Flash Memory (SV).

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 366

18.3.3 I/O’s Folder Group

I/O’s folder group (see Figure 35) includes folders for configuring I/O’s parameters and

online status reporting.

Figure 35: I/O’s Folder Group

Each of the I/O’s folders enable:

• Download parameters to controller.

• Upload parameters from controller.

• Set parameters default values.

The I/O’s folder group includes the following folders:

• I/O Logic folder – see section 18.3.3.1 (Part IV).

• Analog In folder – see section 18.3.3.2 (Part IV).

• Analog Output – see section 18.3.3.3 (Part IV).

• I/O Modes 0 – see section 18.3.3.4 (Part IV).

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 367

18.3.3.1 I/O Logic Folder

I/O Logic folder (see Figure 36) covers the logic and status of all the inputs

and outputs in the controller.

Figure 36: I/O Logic Folder

The I/O Logic folder is divided into three sections:

(1) Input Status & Logic – this section has two functionalities:

♦ Inputs – Shows the current status of the input. Green LED for ON, Red

LED for OFF. The status is updated automatically. There is no need for

uploading the parameters in order to see the updated inputs.

♦ Logic – Show/Set the current input logic. Setting input logic is done

automatically once the user toggles the desired check box. The status of

the input logic requires upload operation.

(2) Limits & Logic – this section handles the limits inputs status and logic

according to the axis connections. The behavior of this section is the same as

‘Input Status and Logic’ section.

(3) Output Status & Logic - this section has two functionalities:

♦ Output – Show/Set the current output status. Setting output state is done

automatically once the user toggles the desired check box. The status of

outputs requires upload operation.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 368

♦ Logic - Show/Set the current output logic. Setting output logic is done

automatically once the user toggles the desired check box. The status of

outputs logic requires upload operation.

18.3.3.2 Analog Input Folder

Analog Input folder (see Figure 37) covers the Analog input parameters.

Figure 37: Analog In Folder

Analog Input folder supports the following parameters:

♦ XAI - YAI[1-4] – Analog input values (read only).

♦ AS – Analog offset (only for X, Y channels).

♦ AG - Analog gain (only for X, Y channels).

♦ AF – Analog input gain factor (only for X, Y channels).

♦ AD – Analog input dead band (only for X, Y channels).

The analog input value is automatically updated. The last two parameters are

updated by pressing the Menu Button.

To change the analog input parameters:

1. Change one or more of the analog input parameters.
2. Download the data to controller.
3. Save parameters to Flash Memory (SV).

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 369

Note:

 XAI – YAI [1-4] are read only parameters and as such it is not included in the download

parameter option.

18.3.3.3 Analog Out Folder

Analog Out folder (see Figure 38) covers the Analog output parameters.

Figure 38: Analog Out Folder

Analog Out folder is divided into two sections:

(1) Analog Output parameters:

♦ XAO – X-axis analog output value.

♦ YAO – Y-axis analog output value.

(2) Open Loop parameters:

♦ XNC – X-axis enable/disable open loop.

♦ YNC – Y-axis enable/disable open loop.

♦ XTC – X-axis Torque (open loop) command.

♦ YTC – Y-axis Torque (open loop) command.

All folders parameters are downloaded/uploaded via the Menu Button only

(see section 18.3, Part IV).

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 370

18.3.3.4 I/O Modes 0 Folder

I/O Modes 0 folder (see Figure 39) covers the control digital outputs (as

normal or compare output function), and fast digital inputs parameters.

Figure 39: I/O Modes 0 Folder

I/O Modes 0 folder include the following options:

♦ Configure Digital Outputs enables two options:

◘ Output Type - Normal or Compare mode.

◘ Compare source to use, can be X or Y.

♦ Command value in controller – Shows the XOM command value currently

in controller.

All folders parameters are downloaded/uploaded via the Menu Button only

(see section 18.3, Part IV).

Compare
source

Output type

Command value in
controller

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 371

18.3.4 Special Function Folder Group

Special Function folder group (see Figure 40) includes folders for configuring special

controller functions parameters and online status reporting.

Figure 40: Special Function Folder Group

Each of the Special Function folders enables (except to read only folders like Event

Capture folder):

• Download parameters to controller.

• Upload parameters from controller.

• Set parameters default values.

Special Function folder group includes the following folders:

• Event Capture folder – see section 18.3.4.1 (Part IV).

• Event Generator X, Y, folders – see section 18.3.4.2 (Part IV).

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 372

18.3.4.1 Event Capture Folder

Event Capture folder (see Figure 41) covers the event capture controller

variables status.

Figure 41: Event Capture Folder

The Event Capture folder enables three options for each axis:

♦ Capture Event Counter (XN) – Reports the number of capture events from

the last capture events counter reset.

♦ Last Capture Position Latch (XC) – Reports the last capture location

(position).

♦ Reset button – Clears the capture event counter for the axis (sends

“XN=0” to controller).

In addition, the folders enable the upload of all folders parameters from

controller via the "Update All Values" button.

Capture Event
Counter

Last capture
position latch

Update All
Values

Reset axis capture
event counter

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 373

18.3.4.2 Event Generator Folders

Event Generator folder (see Figure 42) covers the compare function

parameters for axes X, Y.

Figure 42: Event Generator Folder

Each Event Generator folder enables the following parameters

editing/updating:

♦ Set the compare mode (PG[1]).

♦ Set the distance and direction according to the compare mode (PG[2]).

♦ Set the start position (PG[3]).

♦ Set the compare end point or index (PG[4]).

♦ Select the pulse width (PG[5]) – is selected, the user defined option

defines a pulse with a width of 1.92us x Value.

♦ Select the pulse polarity (PG[7]).

In addition to the above the folder enables the following operations:

♦ Start button – Start current events generating (PQ,1).

♦ Stop button –Stop current events generating (PQ,0).

All folders parameters are manually downloaded/uploaded via the Menu

Button only (see section 18.3, Part IV).

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 374

18.3.5 Miscellaneous Folder Group

Figure 43: Miscellaneous Folder

Miscellaneous folder group (see Figure 43) includes the following folders:

• Data Recording – see section 18.3.5.1 (Part IV).

• Super Custom – see section 18.3.5.2 (Part IV).

18.3.5.1 Data Recording Folder

Figure 44: Data Recording Folder

Data Recording folders (see Figure 44) enables the control of all the recording

parameters and gives an online status of current recording progress.

The folders parameters:

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 375

• Recording Length (RL) – number of points to record.

• Recording Gap (RG) – number of ISR between each recording point.

• Add Velocity to Graph – select this check box if it is required to add a software

computed velocity to graph.

• Upload Data Gap – the gap between CAN messages when uploading recorded

data.

• Kill Repetitive After Upload Data - select this check box if it is required to stop

repetitive motion after the recorded data had been uploaded.

• Recording Variables (RV) – this UI section enables the selection of the variable to

be recorded on relevant RV vector. Each vector can record every one of the two

axes and every axis has the following possible recording data:

♦ None.

♦ Position.

♦ Velocity.

♦ Position Error.

♦ Desired Position.

♦ Driver Command.

♦ Status Register.

♦ Motion Status.

♦ Analog Input.

♦ Motor Fault.

♦ Motor Status.

♦ Motor's Current.

♦ Filter Data Log.

♦ Digital Inputs.

♦ Digital Outputs.

♦ Actual Digital Out.

♦ Heatsink Temp.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 376

The RV vectors must have sequential order this dictates the UI behavior. The UI will

enable RV variable only if the RV before that has a value other than ‘None’. If a RV

variable value will be selected with ‘None’ value, all the RV that follows him will be

reset to ‘None’ value and disabled.

The folder buttons:

• Start Recording – downloads all the recording parameters and starts the recording

process.

• Stop Recording – stops the (current) ongoing recording.

• Upload Recording Data – uploads the recording data that is currently in the

controller. This option enables the user to upload the recording data when required

by the user.

After a recording is started the recording status is updated automatically in the

‘Recording Status (RR)’ variable.

A step-by-step example of recording 1000 points of X-axis position and X-axis

Velocity:

1. Set Recording Length (RL) variable to 1000.
2. Set Recording Gap (RG) variable to 1.
3. Check the add velocity to graph, we add this option so we can

compare between the actual velocity to the theoretical one.
4. Set Upload Data Gap to 1.
5. Set XRV/RV[1] combo boxes to ‘X’ and ‘Position’.
6. Set YRV/RV[2] combo boxes to ‘X’ and ‘Velocity’.
7. Push the Start Recording button.
8. The Recording Variable (RR) is automatically updated with the current

recording status.
9. Once the recording is finished the shell will upload the recorded data

automatically.
10. The SDV viewer will show the recorded data.

For more recording options see section 18.4.5, Part IV.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 377

18.3.5.2 Super Custom Folder

Super Custom folder (see Figure 45) is a user-defined folder. The user can

define the commands to be upload/download from/to controller and the give

each command a user name.

Figure 45: Super Custom Folder

Each user-defined variable has three values:

♦ User Text – a user can type any text.

♦ Command – the command to send to the controller. This command is one

of the servo controller commands (refer to " Part II– FlexDC Software and

Commands Reference").

♦ Value – the command value which can be the uploaded value from

controller, or the downloaded value to the controller.

User Text Controller Command

Value

Folders Menu
Button

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 378

The Menu Button options:

♦ Download Data To Controller – downloads the commands and their values

to controller.

♦ Upload Data From Controller – uploads the commands value from

controller.

♦ Save Commands To File – saves all folders data to file.

♦ Load Commands From file – loads the folders data from file.

The folders data can be saved/loaded from/to file. This option enables the

user to change between user-defined folders, for example have a user-

defined folder for each of its customers

18.3.6 Custom Commands: 1 – 3 Folder Group

Custom commands (see Figure 46) are controller commands the user can send by a

button click without the necessity of writing the command in the Terminal folder (see

section 18.4.2.4, Part IV).

Custom commands are sent to the Terminal folder and therefore the reply is present at

the Terminal folder.

The commands are automatically saved/loaded when the Nanomotion Shell

Application is closed/opened and can be saved/loaded from file, for more information

refer to 18.4.1, Part IV.

Custom command format can include more than one command separated by a ";"
(semicolon).

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 379

Figure 46: Custom Commands Folder Group

Some examples for custom commands:

• XPS – Report X axis position.

• XPS;YPS – Report X and Y axis position.

• XPS=0;XVL=1000;XAC=1000;XDC=1000;XAP=10000;XSM=0;XMM=0;XMO=1;XB

G – Set X axis parameters and begin motion.

• XQE,#HOME – Run X axis macro labeled HOME.

There are two options to edit a custom command: (one custom command at a time).

Select the custom command to edit from the Outlook Bar, left mouse click on the

custom command icon, and select the "Edit Custom" from the menu. The "Edit Custom

Command" dialog box appears; see section 18.4.1.2, Part IV.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 380

Figure 47: Edit Custom Command Dialog Box

The “Edit Custom Command” dialog box (see Figure 47) enables:

• Edit the command to be send via the “Controller Command/s” edit box.

• Edit the user text for the command. This text is shown at the Outlook Bar.

• Apply changes by pressing the OK button.

• Discard changes by pressing the Cancel button.

• All custom commands. To edit all commands in one dialog see

section 18.4.1.2, Part IV.

18.3.7 Manuals Folder Group

The Manuals folder includes user manuals related to the FlexDC servo controller: the

"FlexDC User Manual" and the "FlexDC Sofware User Manual" The manuals are

updated from time to time and can be downloaded from the Nanomotion official web-

site: www.nanomotion.com

Command
Name

Controller
Command/s

http://www.nanomotion.com/

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 381

18.4 Menus

This section gives a detailed description of all the menus (see Figure 48) the Nanomotion

Shell Application currently supports.

Figure 48: The Nanomotion Shell Application Main Menu

18.4.1 File Menu

18.4.1.1 Load/Save Custom Commands

These menu items save/load custom commands to/from file.

To load custom commands from file follow the steps:

♦ On the "File" menu click the "Load Custom Commands".

♦ Choose the file to load from the "Load Custom Commands From" dialog

box, the file must have ".scc" extension.

♦ Press the "Open" button to open the selected file.

Saving custom commands to file:

1. On the "File" menu click "Save Custom Commands".
2. Choose a file in the "Save Custom Commands To" dialog box, the file must

have the ".scc" extension.
3. Press the "Save" button to save the selected file.

18.4.1.2 Edit Custom Commands

This menu item shows a dialog for editing all the custom commands at one

dialog.

The "Edit Custom Command" (see Figure 49) dialog has two columns:

♦ Command Name – text that appears at the Outlook Bar.

♦ Command – custom command (refer to section 18.3.6) to be send. Each

row in the dialog refers to one custom command.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 382

The dialog buttons:

♦ "Last 15" button – browses the previous 15 custom commands.

♦ "Next 15" button – browses the next 15 custom commands.

♦ "OK" button – closes the dialog box and applies changes.

♦ "Cancel" button – closes the dialog box and discards changes.

Figure 49: Edit All Custom Commands Dialog

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 383

18.4.1.3 File Location

The "File Location" menu shows the “File Location Setup” dialog box (see

Figure 50).

Figure 50: File Location Setup Dialog Box

This dialog box enables editing the file locations of:

♦ Download Macro – the location to open macro to be downloaded.

♦ Download Version – the location to open firmware version to be

downloaded.

♦ Import Properties – the location and name of the recording properties file.

Every time the user chooses a macro or firmware version to download, the

Nanomotion Shell Application opens the file browser at the location specified

in this dialog.

History
Select Current

Selected

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 384

The dialog components:

♦ Browse buttons - enable browsing the desired location.

♦ History Select – enables to select a location previously selected, from a

combo box.

♦ Current Selected – shows the currently configured location.

♦ "OK" button – closes the dialog box and applies changes.

♦ "Cancel" button – closes the dialog box and discards changes.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 385

18.4.2 Communication Menu

18.4.2.1 Setup Communication

Figure 51: Communication Settings Dialog Box

Communication
setting name

DCOM location

Protocol

RS232 parameters

 CAN parameters

Controller type

Computer browse

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 386

The "Setup Communication" menu (see Figure 51) enables the

communication type definition for using the controller.

 The Setup Communication dialog box components:

♦ Controller Name – user defined communication setting name. This name

is unique to each type of communication.

♦ Controller Type –the supported controller is SC-AT-2M (FlexDC).

♦ DCOM Location – the location of DCOM server. The location defines the

computer, the controller is connected to. The location can be:

◘ Local – on the current computer.

◘ Computer – a computer name on the local area network (use the

"Browse" button under the "COM Options" for a list of all

computers on the local area network).

◘ IP Address – a computer IP address.

♦ Controller Communication Protocol – communication protocol can be

RS232 or CAN.

♦ RS232 Communication – parameters for the RS232 communication, the

parameters list:

◘ RS232 Port – COM port the controller is connected to.

◘ RS232 Baud Rate – RS232 Connection speed (the current

FlexDC firmware supports 38400 bps).

♦ CAN Communication Parameters – parameters for the CAN

communication, the parameters list:

◘ PC Tx CAN Add (0-2047) – PC CAN transmit address.

◘ PC Rx CAN Add (0-2047) – PC CAN receive address.

◘ Baud Rate – CAN communication speed, this combo-box is read

only, the DCOM server defines the speed (refer to " Part V–

SCServer COM/DCOM Interface Library").

◘ Channel – the CAN channel, currently supported:

► Kvaser cards – up to four channels, depending on the CAN

hardware card installed.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 387

► ESD cards – only one channel supported.

♦ Dialog box buttons:

◘ "Delete" – deletes the current selected communication definition.

This option also deletes all the views that are defined with this

communication.

◘ "Update" – updates the communication definition.

◘ "Add" – adds the current setup to the communication list, error

messages are given for missing information and an identical

communication name.

◘ "Exit" – closes the dialog box.

18.4.2.2 Update Status Window

On "Communication" menu, click the "Update Status Window" menu item.

This menu item stops or resumes the Nanomotion Shell Application main

screen update. Clicking this menu item, updates the main screen twice a

second. Using this menu item, the user can send commands via the Terminal

folder (see section 18.4.2.4, Part IV).

18.4.2.3 Connect/Disconnect Last Selected

♦ The "Connect Last Selected" menu item connects to controller with the

last successful connection.

♦ The "Disconnect Last Selected" menu item disconnects current

connection.

The last successful connection is saved/load when the Nanomotion Shell

Application is closed/opened, so this menu item is available even after the

shell is closed or open.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 388

18.4.2.4 Show Terminal Window

The "Show Terminal Window" menu item changes the current selected folder

to the Terminal Folder (see Figure 52.

Figure 52: Terminal Folder

The Terminal window's purpose is to send commands to the controller and to

show the controller's responses (Custom commands are also sent via the

Terminal window).

Terminal folder components:

♦ "Echo" check box – enables/disables echo of the command/s sent to the

controller. For example - the sent to the controller command "XPS" has

the answer "XPS=10000" when the "Echo" is enabled and "1000" if the

"Echo" is disabled.

♦ "Clear" button – clears the edit area from text and the history commands

(see next component).

Edit area
Show echo

Clear

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 389

♦ Edit Area – area in which the user writes the commands and reads

controller's answers. This area has the following edit features:

◘ Edit commands with all alphabetic chars.

◘ Enter for sending the command/s to controller.

◘ Backspace key to delete and edit the command.

◘ Up/Down arrow keys to browse through previous commands

sent.

♦ Terminal command format can include more than one command

separated by ‘;’ (semicolon).

18.4.2.5 Show Previous Folder

Show Previous Folder menu item switch between the current folder and the

previous folder.

18.4.3 Macro Menu

18.4.3.1 Pre-compile Macro

The "Pre-Compile" menu item compiles a given macro without downloading it

to the controller.

Pre-compile a macro step-by-step:

1. On "Macro" menu click the "Pre-Compile" menu item.
2. Choose the macro file to compile from the "Pre-Comple Macro File"

dialog box. Note: the macro files have the ".scm" extension.
3. A process progress dialog box shows the pre-compilation status.
4. When the pre-compilation is finished a message box appears with the

compilation result.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 390

18.4.3.2 Download Macro

The "Download Macro" menu item pre-compiles and downloads a given

macro file.

Download macro step-by-step:

1. On the "Macro" menu click the "Download Macro" menu item.
2. Choose the macro file to compile and download. Note, the macro files

have the ".scm" extension.
3. A process progress dialog box shows the download status.
4. When the download is finished a message box appears with the

download result.
5. Save parameters to Flash Memory, if needed.

18.4.3.3 Download .DAT File

The "Download DAT File" menu item downloads a compiled macro file. The

.DAT file is the pre-compile file generated for download.

Download .DAT file step-by-step:

1. On the "Macro" menu click the "Download DAT File" menu item.
2. Choose the .DAT file to download. Note, that the .DAT files have the

".dat" extension.
3. A process progress dialog box shows the download status.
4. When the download is finished a message box appears with the

download result.
5. Save parameters to Flash Memory, if needed.

18.4.3.4 Upload Macro

The "Upload Macro" menu item uploads macro from controller. The file

created by this process is a .DAT file, the same .DAT file created by the

macro pre-compile process, and can be downloaded by "Download DAT File"

menu item, see section 18.4.3.3, Part IV.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 391

Upload Macro step-by-step:

1. On the "Macro" menu click "Upload Macro" menu item.
2. Choose the DAT file to save the macro to. Note, the file should have

the ".dat" extension.
3. A process progress dialog box shows the upload is in progress status.
4. When the upload is finished a message box appears with the upload

results.

18.4.3.5 Erase Macro

The "Erase Macro" menu item erases the macro from controller. Save

parameters to Flash Memory, if needed.

18.4.4 Commands Menu

18.4.4.1 Save

The "Save" command saves controller’s parameters to the Flash Memory

(SV).

18.4.4.2 Load

The "Load" command loads controller’s parameters from the Flash Memory

(LD).

18.4.4.3 Reset Controller

The "Reset Controller" command resets the controller (RS).

18.4.4.4 EC

The EC command shows the communication error code text (EC).

18.4.4.5 Show RTE

The "Show RTE" command shows all axis macro runtime error (QC).

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 392

18.4.4.6 Kill All

The "Kill All" command kills all running programs.

18.4.4.7 Kill Repetitive

The "Kill Repetitive" command kills all axis repetitive motions.

18.4.5 Data Recording Menu

18.4.5.1 Import Properties

The "Import Properties" menu item imports the SD viewer application

properties for recorded data.

18.4.5.2 Clear Properties

The "Clear Properties" menu item clears properties imported by "Import

Properties" menu item.

18.4.5.3 Show Last Recording

The "Show Last Recording" menu item opens the SD viewer with the last

recorded data. This menu item does not upload the recorded data.

18.4.5.4 Open Graph Application

The "Open Graph Application" opens the SD viewer.

18.4.5.5 Start Recording with Begin Motion

The "Start Recording with Begin Motion" starts the recording when one of the

axes receives the Begin Motion command. Select the "Start Recording with

Begin Motion" to start recording with BG command. Deselect this menu item

and the BG command does not start the data recording.

The recording parameters must be downloaded to controller before the begin

motion occurs.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 393

18.4.5.6 Stop Current Recording Process

The "Stop Current Recording Process" menu item stops the current ongoing

recording process.

This menu item does not upload the recorded data.

18.4.5.7 Start Recording

The "Start Recording" sends a start recording command to the controller.

18.4.6 Tools Menu

This menu includes Tools for easy array editing and watch dialog to view online

changes in the controller.

18.4.6.1 Array Editing

Figure 53: Array Editing Dialog

Edit area

Array axis

Array type

Array menu

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 394

The "Array Editing" menu item enables editing controller's arrays (see Figure

53).

To edit an array:

1. Choose the array type to edit from the "Array Type" combo-box.
2. If the array is axis related the dialog enables the selection of the

desired axis from the "Array Axis" combo-box.
3. Modify the array directly in the "Edit Area" dialog box or use one of the

options in the Array Menu (see menu items below).
4. At any stage values can be modified via the "Edit Area" dialog box.

The Array Menu dialog box includes:

♦ Load Array From File – loads an array values from file. The range is

defined on the dialog start and range edit box.

♦ Save Array To File – loads an array values to file. The range is defined on

the dialog start and range edit box. Only values that are not empty are

saved.

♦ Upload Array From Controller – uploads an array values from controller.

The range is defined on the dialog start and range edit box.

♦ Download Array to Controller – downloads an array values to controller.

The range is defined on the dialog start and range edit box.

The user can use sequence of array operations, this way the user can build

an array from the controller values and file values, for example:

A certain file has AR values from index 1 to 100, and another file with AR

values from index 200-210. The user can upload AR values twice: once for

index 1-100 and once again for index 200-300. Then, use the menu item

"Download Array to controller" to download the values to the controller.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 395

18.4.6.2 Watch Dialog

Figure 54: Watch Dialog

The Watch Dialog menu shows a floating dialog box that shows commands'

status.

The Watch Dialog box (see Figure 54) has two parts:

♦ At the left side are the user's commands (any command that can be read

from the controller, except upload macro and recorded data commands).

♦ At the right side are the commands' values which are retrieved from

controller; commands values are updated at the same time the main

screen is updated.

Edit a command step-by-step:

1. Select the cell to edit, at the grids left side.
2. Enter the desired command, for example XPS.
3. When finished editing the cell press enter.

To edit another command repeat the above process.

Commands Status

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 396

19 "Srcedit" – the Macro File Editor Application
19.1 General

"Srcedit" is the Macro File Editor Application. Its purpose is to enable the user to edit and

debug controller’s macros.

The editor has two working modes:

• Edit mode – in this mode, the Macro File Editor Application works as a text editor with

macro command syntax coloring (for more details see section 19.4, Part IV).

• Debug mode – in this mode, the Macro File Editor Application works as a code

debugger that enables running the macro, stopping it, step-by-step running,

breakpoints etc… (for more details see section 19.6, Part IV).

For macro syntax refer to " Part III– FlexDC Macro Language".

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 397

19.2 Main Screen

Figure 55: Macro File Editor Application Main Screen

This section gives a short description of the Macro File Editor Application main screen (see

Figure 55) components.

Macro File Editor Application Main screen components:

• Edit Tool-Bar – for editing options, enabled only in edit mode.

• Debug Tool-Bar – for debugging options, enabled only in debug mode.

• Workspace Area – shows the current files included in the workspace (see

section 19.3, Part IV).

Edit Tool-Bar

Debug Tool-Bar

 Workspace Area

Edit/View Area

Line/Col position

Build/Watch
Area

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 398

• Edit/View Area – this area enables:

• Editing macro file in edit mode (see section 19.4, Part IV).

• Show debugging status and options in debug mode (see section 19.6, Part IV).

• Build/Watch Area – shows the results of macro compiling and used as a Watch View in

debug mode.

19.3 Workspace

Workspace purpose is to help the user manage macros that include more than one file. For

example, a macro file can include two files: one is a definitions file and one is of the actual

code. The best way to manage this macro file is working with workspace, see Figure 56.

Figure 56: Workspace Area

Workspace
name

Workspace
files

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 399

Workspace operations:

• Creating a new workspace – on the "File" menu click "Workspace", click "New

Workspace", select or create a new workspace file. A new workspace name will appear

at the workspace area.

• Open/Close/Save workspace – on the "File" menu click "Workspace", click "Save" (or

"Save As") to save a workspace; or click "Open" to open a workspace; or click "Close"

to close a workspace.

• Adding files – there are two ways to add a file to workspace:

• Drag-and-drop a file into the workspace.

• On the "File" menu click "Workspace", click "Add File" and select a file from the

dialog box.

• Deleting files – there are two ways to delete a file from workspace:

• Select a file in the workspace, left mouse click and select "Remove File".

• Select a file in the workspace. On the "File" menu click "Workspace", click "Remove

File".

• Compiling/Debugging workspace – to compile a workspace the main macro file should

be opened and on top of all other opened files. Compiling is performed on the top most

opened file (for more information on macro compiling and downloading, see

section 19.7.5, Part IV).

• Open file in Edit/View Area – There are two ways to open file in workspace:

• Double click on the file in the workspace area.

• On the "File" menu click "Workspace", press "Open" and select a file.

Note:

 Workspace changes are saved only after saving the workspace, closing the workspace

without saving discards the changes

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 400

19.4 Macro Editing

Figure 57: Macro Editing

Edit mode enables to edit macro files.

In this mode the editor gives a powerful text editor with syntax coloring, see Figure 57.

Workspace Area

Output Area

Edit Area

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 401

The Macro File Edit components in Edit Mode:

• Workspace Area – see section 19.3, Part IV.

• Edit Area – this area includes the opened files for editing. Files with ".scm" extension

are syntax-colored, other files are in black and white colors.

• Output area – includes macro compilation errors and results.

Syntax coloring is divided into word groups:

• Default text.

• Numbers.

• Symbols.

• Strings.

• Comments.

• Directive Commands (such as $define, $target).

• Labels (such as #AUTOEX, #HOME_X).

• High Level Word (such as if, else, for, while).

For more information on colors settings see 19.7.3.2, Part IV.

19.5 Macro Downloading

By downloading macro to the controller, the user can find two types of errors:

• Syntax errors – errors in syntax such as "for" loops (paring errors).

• Program flow errors – errors detected by the debugging process.

Downloading Macro step-by-step:

1. Open the macro file in the Edit Area. If working with workspace select
the main macro file.

2. Verify that the relevant controller shell is opened and communicating
with the controller.

3. On the "Macro" menu click "Download Macro".
4. The result of the download appears in a message: if the download

succeeds than an OK message appears; otherwise, the errors are
listed in the Output Area.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 402

If the macro has errors, they appear in the Output area. The syntax of the download errors is:

<file name> (<line number>), <Error description> :

• File name – the file which contains errors. Note: a macro can include more than one file.

• Line number – the line number points out on the error location.

• Error Description – a short description of the error.

19.6 Macro Debugging

Figure 58: Macro Debugging

Workspace
Area

Code
Debugging
Area

Watch
Area

Bookmark

Breakpoint

Execution
location

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 403

The macro Debug Mode enables debugging a macro that currently resides in the controller

(see Figure 58).

To switch the Macro File Editor Application to the macro Debug Mode, follow the next

instructions:

• If the macro is not in controller, first download the macro with "Download Macro" menu

item or "Save and Download Current Macro" menu item (see sections 19.7.5.1

and 19.7.5.2, Part IV).

• If the macro is already in the controller, on the "Macro" menu click on one of the

following:

• If macro is not opened in the editor, click "Debug Macro" (see section 19.7.5.3, Part

IV).

• If macro is opened in the editor, click "Debug Current Macro" (see

section 19.7.5.4, Part IV).

After the Macro File Editor Application is in debug mode, the editor shows the following

components, see Figure 59:

• Code Debugging Area – shows the current debugging status: macro commands, their

lines and low-level commands' translation.

• Line Number – editor macro line number.

• Controller Memory Address – controller's commands memory address.

• User Macro Command – pre-compiled macro command, as appears in the macros

".scm" file.

• Macro Command Interpretation – interpretation of the macro command in low-level

controller commands.

As seen in Figure 59, the debugging area shows the user macro command and the

corresponding low-level commands. The debugger runs on the low-level commands and in

each line resides one controller command.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 404

Figure 59: Debugging Area Example

• Debug Toolbar – the debug toolbar is enabled for all the debug toolbar options see

section 19.8.2, Part IV.

• Watch Area – this area shows watch variables and their values. This area enables:

• Adding Variables to the Watch Area:

♦ Add directly to the Watch Area by editing the variable.

♦ Select a variable from the Code Debug Area, left-click on "Add to Watch

Menu".

• Remove watch variable by selecting the variable from the variable list and press

"Delete" button.

• To edit a watch variable, double click the variable. To apply changes press "Enter".

• Updating the watch variable list (see section 19.7.5.17, Part IV). A Variable value

that changed from the last update is colored with Red, if the value did not change

its color is black.

• Source Icons Area – this area shows breakpoints, bookmarks and the current

execution point.

• Bookmarks – blue cubes in the Source Icons area.

• Breakpoints – red circles in the Source Icons area.

• Execution Location – yellow arrow in the Source Icons area marks the current

execution location.

Line Number

Controller
Memory
Address

User Macro
Command

Macro
Command
Interpretation

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 405

19.7 Menus

19.7.1 File Menu

The "File Menu" section covers all File Menu items.

19.7.1.1 New

The "New" menu item creates a new empty macro file.

19.7.1.2 Open

The "Open" menu item opens a macro file to edit.

19.7.1.3 Close

The "Close" menu item closes the top most opened macro file.

19.7.1.4 Workspace

The "Workspace" menu item shows the workspace options.

19.7.1.4.1 New Workspace

The "New Workspace" menu item creates an empty new workspace.

By choosing this menu item the user can select or enter a workspace

name, under which the workspace file is saved.

19.7.1.4.2 Open

The "Open" menu item opens a workspace from a file. By choosing

this menu item the user can select or enter the workspace file.

19.7.1.4.3 Save

The "Save" menu item saves the opened workspace.

19.7.1.4.4 Save As

The "Save As" menu item saves the opened workspace to a user

defined name.

19.7.1.4.5 Close

The "Close" menu item closes the opened workspace.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 406

19.7.1.4.6 Add File

The "Add File" menu item adds file to a workspace. By choosing this

menu item the user can select a file to be added.

19.7.1.4.7 Remove File

The "Remove File" menu item removes the highlighted file from

workspace.

19.7.1.5 Save

The "Save" menu item saves the top most opened file.

19.7.1.6 Save As

The "Save As" menu item saves the top most opened file to a different name.

19.7.1.7 Save All

The "Save All" menu item saves all files opened in the Edit Area.

19.7.1.8 Print

The "Print" menu item prints the top most opened file.

19.7.1.9 Print Preview

The "Print Preview" menu item previews the file to print before printing.

19.7.1.10 Print Setup

Print Setup enables the selection of printer and its menu items before

printing.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 407

19.7.1.11 File Locations

The "File Location" menu item prompts the File Location dialog box (see

Figure 60).

Figure 60: Source Code Edit File Location Dialog

This dialog box enables editing the open files directory location. This directory

is the directory to open in the file browser.

Every time the user chooses "Open", "Save" or "Download Macro", the editor

opens the file browser at the location specified in this dialog box.

The dialog components are as follows:

♦ Browse button - enabling browsing to the desired location.

♦ History Select – enables to select a location previously selected, from a

combo box.

♦ Current Selected – shows the currently configured location.

♦ OK button – closes the dialog and applies changes.

♦ Cancel button – closes the dialog and discards changes.

History
Select

Current
Selected

Browse

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 408

19.7.1.12 Recent Files

The "Recent Files" menu item shows a list of recently opened files. The user

can choose a recently opened file to open from the list.

19.7.1.13 Recent Workspace

The "Recent Workspace" menu item shows a list of recently opened

workspaces. The user can choose a recently opened workspace to open from

the list.

19.7.1.14 Exit

The "Exit" menu item closes the Macro File Editor Application.

19.7.2 Edit Menu

The "Edit Menu" section covers all Edit Menu items.

19.7.2.1 Undo

The "Undo" menu item enables the user to undo the last operation.

19.7.2.2 Redo

The "Redo" menu item enables the user to redo the last "undo" operation.

19.7.2.3 Cut

The "Cut" menu item cuts (remove + copy) the highlighted text.

19.7.2.4 Copy

The "Copy" menu item copies the highlighted text.

19.7.2.5 Paste

The "Paste" menu item pastes the text retrieved by the "Cut" or the "Copy"

command.

19.7.2.6 Select All

The "Select All" menu item selects all the text in the top most opened file.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 409

19.7.2.7 Find

The "Find" menu item searches for a string in the top most open file.

Selecting this menu item shows the "Find" dialog box, see Figure 61.

Figure 61: Find Dialog Box

19.7.2.8 Replace

The "Replace" menu item replaces the given text with another given text.

Selecting this menu item shows the "Replace" dialog box, see Figure 62.

Figure 62: Replace Dialog Box

19.7.2.9 Go To

The "Go To" menu item jumps to a given line number by the user.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 410

19.7.3 Options Menu

The "Options Menu" section covers all Options Menu items.

19.7.3.1 Editor

The "Editor" menu item enables the user to change the editor options. This

menu item shows the "Editor Options" dialog box, see Figure 63.

Figure 63: Editor Options Dialog Box

Editor Options dialog box enables:

♦ Spaces for Tabs – changes tab chars with space bar chars.

♦ Auto Indent – enables/disables automatic indentation.

♦ Print Line Number – enables/disables printing line number.

♦ Tab Size – number of space bar chars per tab char.

♦ The "Margin" menu item is not supported in the current FlexDC software.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 411

19.7.3.2 Colors

By choosing the "Colors" menu item the user can change the editor text

colors. This menu item shows the "Colors" dialog box, see Figure 64.

Figure 64: Colors Dialog

Colors dialog components:

♦ Text Item – selects the text type to be changed.

♦ Foreground Color – text foreground color.

♦ Background Color – text background color.

♦ Text Font Style – Normal, Bold or Italic.

Number text color and font setting step-by-step:

1. Select the "Text Item" to edit.
2. Select the text foreground.
3. Select the text background. "Default" is the page color.
4. Select the text font style.
5. To apply changes for this document press "Apply" and than press

"OK".

Text Item

Foreground
Color

Background
Color

Text Font
Style

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 412

19.7.4 View Menu

The "View Menu" section covers all View Menu items.

19.7.4.1 Main Toolbar

The "Main Toolbar" menu item shows / hides the main toolbar.

19.7.4.2 Debug Toolbar

The "Debug Toolbar" menu item shows / hides the debug toolbar.

19.7.4.3 Status Bar

The "Status Bar" menu item shows / hides the Status Bar, at the bottom of

the editor screen.

19.7.4.4 Output

The "Output" menu item shows / hides the Output area (see Figure 57).

19.7.4.5 Watch

The "Watch" menu item shows / hides the Watch area, only in debug mode

(see Figure 58).

19.7.4.6 Work Space

The "Work Space" menu item shows / hides the Work Space area (see

Figure 57).

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 413

19.7.5 Macro Menu

The "Macro Menu" section covers all Macro Menu items.

19.7.5.1 Download Macro

The "Download Macro" menu item enables to download macro file to the

controller. This menu item is available only when one the Nanomotion Shell

Application is open and connected to controller.

19.7.5.2 Save and Download Macro

The "Save and Download Macro" menu item saves the current edited macro

and downloads it. This menu item is available only when one the Nanomotion

Shell Application is open and connected to controller.

19.7.5.3 Debug Macro

The "Debug Macro" menu item enables to debug a given macro file.

This menu item is available only when one the Nanomotion Shell Application

is open and connected to controller. The given macro file must be the same

as the macro that resides in the controller.

19.7.5.4 Debug Current Macro

The "Debug Macro" menu item enables to debug the current edited macro.

This menu item is available only when one the Nanomotion Shell Application

is open and connected to controller. The edited macro must be the same as

the macro that resides in the controller.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 414

19.7.5.5 Debug Macro X

The "Debug Macro X" menu item switches the debugging to macro X (Note:

there are 2 possible macros in the controller X, Y).

19.7.5.6 Debug Macro Y

The "Debug Macro Y" menu item switch the debugging to macro Y. (Note:

there are 2 possible macros in the controller X, Y).

19.7.5.7 Reset Program

The "Reset Program" menu item resets the current selected macro execution

point.

19.7.5.8 Break Macro Program Execution

The "Break Macro Program Execution" menu item halts current selected

macro running. This menu item is enabled only when a macro is running.

19.7.5.9 Trace One Step

The "Trace One Step" menu item executes one command in the current

selected macro.

19.7.5.10 Animate Macro Execution

The "Animate Macro Execution" menu item animates the current selected

macro execution by running the macro step after step with a delay between

the steps. The animation appears on the screen followed by a current

executed line yellow arrow.

19.7.5.11 Go from Current Pointer Location

The "Go from Current Pointer Location" menu item runs a current selected

macro from a current location.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 415

19.7.5.12 Insert/Remove Breakpoint

The "Insert/Remove Breakpoint" menu item adds or removes breakpoints.

To add breakpoints follow the next steps:

1. Move the cursor to the desired line.

2. Press F9 button or select this menu item.

To remove breakpoints follow the next steps:

1. Move the cursor to the breakpoint line.

2. Press F9 button or select this menu item.

19.7.5.13 Remove All Breakpoints

The "Remove All Breakpoints" menu item removes all break points from a

current selected macro.

19.7.5.14 Set Next Statement

The "Set Next Statement" menu item sets the next line to be executed.

To Set Next Statement execution line follow the next steps:

1. Move the cursor to the desired line.

2. Select this menu item.

19.7.5.15 Show Next Statement

The "Show Next Statement" menu item scrolls the edit area to the next line to

be executed. Use this menu item to find the current macro position.

19.7.5.16 Show Run Time Error

The "Show Run Time Error" menu item shows the current selected macro

Run Time Error (QC).

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 416

19.7.5.17 Update Watch List

The "Update Watch List" menu item updates the Watch Area variables.

19.7.6 Communication Menu

The 'Communication Menu" section covers all Communication Menu items.

19.7.6.1 Enable Shell Com

The "Enable Shell Com" menu item is used to reestablish connection with

Nanomotion Shell Application, if a connection was lost.

19.7.7 Window Menu

The "Window Menu" section covers all Window Menu items.

19.7.7.1 New Window

The "New Window" menu item opens the top most opened file again in a new

window.

19.7.7.2 Cascade

The "Cascade" menu item cascades all the opened files in the Edit Area.

19.7.7.3 Tile

The "Tile" menu item tiles all the opened files in the Edit Area.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 417

19.8 Toolbars

The Toolbars" section gives a description of the application’s toolbars.

19.8.1 Edit Toolbar

Figure 65: Edit Toolbar

The "Edit Toolbar" (see Figure 65) enables the following menu items:

• this toolbar section is dedicated for file manipulation such as "New",

"Save", "Open" and "Print" (see section 19.7, Part IV).

• this toolbar section is dedicated for editing the text, such as

"Cut", "Copy", "Past", "Undo" and "Redo" (see section 19.7, Part IV).

• this toolbar section is dedicated for text searching in the current opened

file (see section 19.7, Part IV).

• this toolbar section is dedicated for bookmarks. It enables to "Add",

"Go to Next", "Go to Previous" and "Remove all Bookmarks".

• this toolbar button shows/hides the Output Area.

• this toolbar button is for showing the "About" dialog box.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 418

19.8.2 Debug Toolbar

Figure 66: Debug Toolbar

Debug Toolbar (see Figure 66) enables the following menu items:

• this toolbar button is for halting the debugging and resetting the current macro

(see section 19.7.5.7, Part IV).

• this toolbar button is for breaking the current, selected macro execution (see

section 19.7.5.8, Part IV).

• this toolbar section is dedicated for tracing one step (see section 19.7.5.9)

and macro animation (see section 19.7.5.10, Part IV).

• this toolbar button is for running the current, selected macro (see

section 19.7.5.11, Part IV).

• this toolbar section is dedicated for breakpoints. It enables adding,

removing (see section 19.7.5.12) and removing all break points (see

section 19.7.5.13, Part IV).

• this toolbar section is dedicated for setting and showing the next macro

statement (see section 19.7.5.14).

• this toolbar button is for showing the current, selected macro Run Time Error

(see section 19.7.5.16, Part IV).

• this toolbar button refreshes the Watch List and updates the Watch Area (see

section 19.7.5.17, Part IV).

• this toolbar combo-box is for switching between macros. The combo-box

selection changes according to the Nanomotion Shell Application and editor, by

communicating with FlexDC. The combo-box includes 2 possible macros.

FlexDC Software User Manual Part IV– Nanomotion Shell Application

Nanomotion Ltd. 419

19.9 Appendix B – Macro File Editor Application Keyboard
Shortcuts

Key Purpose

Ctrl+D Download macro

F7 Save and download current macro

Alt+G Debug macro

Ctrl+F7 Debug current macro

Ctrl+R Reset program

Ctrl+B Break macro execution

F10 Trace one step

Ctrl+E Animate macro execution

F5 Run program from current pointer location

F9 Insert/Remove breakpoint

Ctrl+T Show next statement

Ctrl+Q Show Run Time Error

Ctrl+N New file

Ctrl+O Open file

Ctrl+S Save file

Ctrl+P Print file

Table 48: Macro File Editor Application Keyboard Shortcuts

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 420

Part V – SCServer
COM/DCOM Interface

Library

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 421

20 Introduction
 Part V describes the COM software interface module for the Nanomotion FlexDC servo

controller. The purpose of this module is to provide a simple generic server interface for the

FlexDC servo controller.

The defined upper level implementation method for the required interface is a Microsoft ©

COM-DCOM based server module.

The underlying communication interfaces with the actual FlexDC hardware and firmware are

based on the following existing hardware communication links:

• RS232: based on the standard supported host PC serial communication links.

• CAN Bus: based on a KVASER CAN board.

Note:

 Future versions of the DCOM server interface may support additional links (such as USB

for example, etc).

The server supports simultaneous low-level interfaces, thus supporting, for example, three

controllers: one working with CAN Bus, another one with RS232 COM1, and an additional one

with RS232 COM2.

Important note:

 The interface is designed and implemented as a single threaded interface. This means

that at any given time only one controller can be accessed. This of course does not limit

the number of processes that can access the server interface. All access requests are

queued and handled one at a time by the server (standard single thread Server interface

with SINGLETON interface).

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 422

20.1 Interface Specifications

This section shortly describes the specifications of the interface.

• The DCOM server provides interfaces to all of the FlexDC controller parameters. Each

FlexDC controller variable is defined in the DCOM server as a server object parameter

or method.

• It is possible to communicate with any controller via RS232 or via CAN. This, of course,

is limited to the number of CAN ports (0-2047), and COM ports (computer dependant).

Note that each controller requires at least two (unique) addresses, one for transmit and

one for receive. Note that actual number of nodes supported (number of devices) may

be limited by the hardware to a much lower value. Please consult Nanomotion experts

for further information regarding this issue.

• The DCOM server may run without any hardware (cable, card or servo controller, etc.).

This may be done for all hardware connections and/or for individual ones as well. Note

that in the case of this debug mode, (refer to the OpenDevice/Ex methods) all calls to

the DCOM server will result with "0" as the reply.

• Once an error occurs, the COM Object throws an error. This error can be caught with

the try-catch pair in VC or with the On Error in VB. The user can then read the

LastError parameter thus returning the relevant error code, e.g. Timeout, WriteError,

CanAddrError, ReadError etc, or, alternatively read the description returned by the

com_error object. These codes are defined values.

• The following DCOM method was defined in order to allow multiple devices interfaces

(through all supported underlying communication links, currently RS232 and CAN):

OpenDevice(short sDevID,
 short sControllerType,
 short sCOMMType,
 short sAddrRx,
 short sAddrTx,
 long lSerialBaud,
 short sSerialPort,
 short sDebugMode)

Whereas…

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 423

♦ sDevID - Device ID number to be used by all sub-sequent

methods/parameters interfacing this device. Note that this number is a

global ID number that should be used by all processes accessing the

device interface.

♦ sControllerType – currently, either MCD or SC family controllers.

♦ sCOMMType – currently CAN bus or serial.

♦ sAddRx,sAddTx – CAN receive and transmit addresses.

♦ lSerialBaud – RS232 serial baud rate.

♦ lSerialport – RS232 serial port.

♦ DbgMode – flag whether this device works in debug mode or not.

• The function fails if the DevID is already open (on a different configuration than stated)

or if serial COM port is busy etc.

• Once this method was called with identical configuration as another client (ID and

communication configuration), the COM object increments an internal variable stating

the number of clients connected to this DevID. This internal variable is decremented

once the CloseDevice method is called. One the variable = 0, the device is really freed.

• In order to enquire whether a configuration is connected, use the IsConnected()

parameter, which returns the DevID of the connected configuration. (or –1 if not

connected).

• In order to enquire the connection configuration of a DevID, call the GetDevStatus

method which returns the full connection configuration. (As opposed to the

IsConnected parameter which returns a DevID).

• The DevID is used to interface all DCOM methods (Return errors if was not opened, i.e.

SC.Speed(Dev1,Axis1,5000) where Dev1 is not defined). A method to inquire existing

DevID properties will also be defined.

• In addition, a CloseDevice() function was of course implemented to allow closing a

previously opened connection. This is to allow multiple connections of the same device,

which may be required for example for debugging sessions.

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 424

20.2 The SCServerScope Application

The DCOM interface uses Registry variables to define the type of CAN board used and also

for the CAN baud rate.

A simple dedicated Windows application and code is provided to access the following global

Registry Database parameters (see Figure 67):

• CAN Card Type.

• CAN Baud rate.

• CAN Buffer Size.

• RS232 Buffer Size.

These variables are an integral part of the COM interface.

The application is known as SCServerScope Application (or the SCServerScope.exe). This

application includes in its file menu, under “COM Registry”, the "Registry Setter" dialog box.

This dialog box enables the user, as mentioned to set and read the current CAN card type,

baud rate, buffer size and RS232 buffer size we are using.

The Registry path is as follows:

HKEY_LOCAL_MACHINE\SOFTWARE\CRS\SCServer

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 425

20.3 Keys Used by the Application

CANCardBaud – 0 stating 1000 Baud.

 1 stating 500 Baud.

 2 stating 250 Baud.

 3 stating 125 Baud.

 4 stating 100 Baud.

 5 stating 50 Baud.

CANCardType - 0 stating the PIC – ISA card.

 1 stating the Kvaser – PCI card.

 2 stating the ESD – PCI card.

 3 stating the CRS – ISA card.

CANBufferSize - Supports 1k - 16k buffer size.

RS232BufferLength – Supports 65k – 1M buffer sizes.

20.4 Product Notations Revisions

The DCOM server object modules are identified under the following notations:

Object Name: SCServerExe, Revision 2.31

Object Interface Name: ISCServerExeInterface.

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 426

21 Getting Started
21.1 Setting up the Object, Baud and Card Type

1. The DCOM Server setup files are intalled together with the Nanomotion Shell
Application installation. After the installation process is complete the DCOM server is
ready to use. The DCOM module uses the Windows Registry database for some initial
settings as defined below:

Figure 67: DCOM Communication Registry Setup

2. Double click the "SCServerScope" on your desktop.
3. On the "File" menu, click "COM Registry", in the SCServerScope – Nanomotion Ltd.

dialog box, to set the registry variables, see Figure 67.

21.2 Using the Object from VB

1. Open VB and open a new project (Standard exe project.)
2. Open the references dialog box, see Figure 68. (Menu – Project References).

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 427

Figure 68: References Dialog Box

3. Select the SCServerExe option.
4. From the declarations area define a interface to the object e.g. Dim SC As New

SCServerExeInterface.
5. All parameters and methods may be accessed by using the defined interface parameter.

(In the example above, use SC as the parameter name.)

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 428

21.3 VB Code Example

 ‘ Declarations:

Dim SC As New SCServerExeInterface

Const RS232_COMM = 21

Const CAN_COMM = 20

Const X_AXIS = 88

Const Y_AXIS = 89

‘ Form Load

Private Sub Form_Load()

Dim ddd As Long

Dim str As String

Dim aa As Integer

Dim bb As Integer

Dim cc As Integer

Dim dd As Integer

Dim ee As Integer

Dim ff As Integer

Dim gg As Integer

Dim hh As Integer

Dim ll As Long

On Error GoTo MyError:

SC.GetDeviceStatus 0, aa, bb, cc, dd, ee, ll, gg, hh

If aa <> 1 Then

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 429

 ‘ Open CAN Device

SC.OpenDevice 0, 50, CAN_COMM, 600, 500, 0, 1, 0

End If

 ‘ Read SC Version

str = SC.FirmwareVersion(0, X_AXIS)

Exit Sub

MyError:

str = Err.Description

MsgBox str, vbOKOnly, "Error"

End Sub

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 430

21.4 Using the Object from Visual C

1. Import the SCServerExe type library into the project by writing the following line:
#import "SCServerExe.tlb" no_namespace

2. Declare a variable of type ISCServerExeInterface , e.g.:
ISCServerExeInterface *piSC

3. Open the COM Object using the regular COM methods.
4. VC code Example:

#import "SCServerExe.tlb" no_namespace

ISCServerExeInterface *piSC = NULL;

try
 {

HRESULT hr = CoCreateInstance (__uuidof (SCServerExeInterface)
,NULL,CLSCTX_ALL,_uuidof(ISCServerExeInterface),reinterpret_cast <void**>
(&piSC))

piSC->OpenDevice(0, CRS_SC_2M, CAN_COMMUNICATION ,600, 500, 0, 1,
0) ;

 lVal = piSC->GetPosition(0,'X') ;
 }
 catch(_com_error e)
 {
 char str[150] ;

 _bstr_t desc = e.Description();
 if (desc.length() > 0)
 {
 sprintf(str,"Description: %s\n", (LPTSTR)desc);
 MessageBox(str," COM-Error",MB_OK) ;
 }
 }
 CoUninitialize();
 if (piSC)
 {
 piSC->Release() ;

}

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 431

22 Object Parameters and Methods Syntax
22.1 Object Parameters

In Table 49, a short description of all the existing interface commands implemented as object

parameters is given, along with the following additional information: Keyword is axis related or

not, and parameter if is read only.

Accessing the FlexDC parameters have the identical syntax, with the exception of a few

parameters (are documented in the FlexDC COM interface keyword):

Param(short sDEVID,short sAxis) – whereas the sDEVID is the opened device, and the sAxis

is the letter of the required axis.

FlexDC COM Interface Keyword FlexDC Parameter Description

Key
word

Axis
Relate

Read
Only

AbsolutePosition AP Yes No Absolute position

Acceleration AC Yes No Acceleration

AnalogInput AI No Yes Analog Input

AnalogInputDeadBand AD Yes No Analog Dead-Zone

AnalogInputGain AG Yes No Analog Gain

AnalogInputGainFactor AF Yes No AnalogInputGainFactor

AnalogInputOffset AS Yes No Analog Offset

AnalogInputsFilterCoefficient XF Yes Yes Analog Inputs Filter Coefficient

AnalogOutput AO Yes No Analog Output

AnalogOutputsScale OS Yes No The scaling of the Analog Output

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 432

FlexDC COM Interface Keyword FlexDC Parameter Description

Key
word

Axis
Relate

Read
Only

ArrayElement(short sDEVID
short sAxis,short
sArrayType,short sIndex)

Description:
sArrayType – AR=0 ,CV=1,
IA=2,TD=3,QB=4,PA=5,ZI=6,XI=7,
QF=8,CA=9,DA=10,PG=11,GP14=
12,FA=13,FV=14,FF=15,KD=16,KI
=17,KP=18,RG=19,ZE=20,ET=21
sIndex = Index in array.

AR
CV
IA
TD
QB
PA
ZI
XI
QF
CA
DA
PG
GP
FA
FV
FF
KD
KI
KP
RG
ZE
ET

Yes No Assigns and reads array element
variables. e.g. PA,AR etc.

CANReceiveAddress RA No No The SC CAN Rx Address

CANTransmitAddress TA No No The SC CAN Tx Address

CANBaudRate CB No No CAN Baud Rate.

CommErrorCode EC No No Communication Error Code

Configuration CG Yes No Configuration

ContinuousCurrentLimit CL Yes No Torque Limit

CurrentFilterFactor CF Yes No The Current Filter Factor

CompareDistance CD Yes No Compare Distance

14 This command is obsolete in current FlexDC firmware.

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 433

FlexDC COM Interface Keyword FlexDC Parameter Description

Key
word

Axis
Relate

Read
Only

CompareMode CM Yes No Compare Mode

DACCommand TC Yes No DACCommand

DACLimit TL Yes No DAC Limit

DACOffset DO Yes No DAC Offset

Deceleration DC Yes No Deceleration

DesiredPosition DP Yes Yes Report current Servo Position
command

ECAMEndIndex EE Yes No The last index in ECAM mode

ECAMGapSize EG Yes No The gap size in ECAM mode

ECAMInterpolationMode EI Yes No The interpolation mode in ECAM
mode

ECAMStartIndex ES Yes No The first index in ECAM mode

ECAMWrapIndex EW Yes No The wrap index in ECAM mode

EndMotionReason EM Yes Yes The last motion Reason for defined
Axis

FirmwareVersion VR No Yes SC Firmware Version

FollowerGearingRatio FR Yes No Follower Gearing ratio

HighLimit HL Yes No Position High limit

InputsLogic IL No No Digital input logic

InputsPort IP No Yes Digital Input Port

LowLimit LL Yes No Position Low limit

MaximumError ER Yes No Error limit

MotionMode MM Yes No Motion Mode

MotionStatus MS Yes Yes Report Motion status

MotorCurrent IM Yes Yes The Current motor current

MotorFault MF Yes Yes The Last Motor Fault

MotorOn MO Yes NO Motor On.

NoControl NC Yes No No Control

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 434

FlexDC COM Interface Keyword FlexDC Parameter Description

Key
word

Axis
Relate

Read
Only

ObjectVersion

Description:
The get_ ObjectVersion returns
short* pVal. To version #. (refer
idl file)

N/A No Yes The SCServerExe COM Object’s
version.

OutputsLogic OL No No Digital out logic

OutputsMode OM Yes No Special Outputs Mode

OutputsPort OP No Yes Digital Output Port

OutputBit OS
OC

No No Set/Get OutputBit

PeakCurrentLimit PL Yes No Peak Current Limit

PeakCurrentDuration PD Yes No Peak Current Duration

PIDDifferentialTerm KD Yes No Digital Filter Zero

PIDGain GA Yes No Digital filter Gain

PIDGainTerm KP Yes No Digital filter Gain

PIDIntegralTerm KI Yes No Digital filter Integration constant

PIDOutput PO Yes Yes PID Output

PIDFeedForwared FF Yes No PID Feed Forwared

Position PS Yes No Current Position

PositionError PE Yes Yes Position Error

ProfileSmoothing WW Yes No Profile Smoothing

Program Status QR Yes Yes Current Program Status

ProgramPointer QP Yes No Current Program Pointer

ProgramRTE QC Yes Yes Last Program RTE

RecordingGap RG No No Time Interval

RecordingLength RL No No Recording Array Upper limit

RecordingStatus RR No Yes Recording Function Enable

RecordingVariables RV Yes No Data collection mask

RecordingTriggerValue TV Yes No Recording Trigger Value

RecordingTriggerSource TS Yes No Recording Trigger Source

RecordingTriggerPosition TP Yes No Recording Trigger Position

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 435

FlexDC COM Interface Keyword FlexDC Parameter Description

Key
word

Axis
Relate

Read
Only

RelativePosition RP Yes No Relative Position

SearchSpeed SS Yes No Search Speed

SpecialMode SM Yes No Special Mode e.g. repetitive motion

Speed SP Yes No Linear velocity

StatusRegister SR Yes Yes Status Register

TargetRadius TR Yes No Target Radius

TargetRadiusTime TT Yes No Target Radius period

Velocity VL Yes Yes Actual Velocity

WaitPeriod WT Yes No Wait Time

LastError -- No Yes Internal COM parameter returning the
last error in the system

UserMode UM No No MCD only

Table 49: Interface Commands

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 436

22.2 Object Methods

In Table 50, a short description is given to all existing interface commands methods.

Method (Keyword) Function Parameters FlexDC
Keyword

Function Description

Abort short sDEVID – Opened Device ID
short sAxis – Defined Axis for
operation.

AB Abort Motion on defined
axis

Begin short sDEVID– Opened Device ID
short sAxis– Defined Axis for operation.

BG Begin Motion on defined
axis

CloseDevice short sDEVID– Opened Device ID N/A Closes an open device

GetDeviceStatus/Ex short sDevID– Opened Device ID
short *iDevOpen – Flag if deice is open
or not.
short *iControllerType – Controller type
the object is connected to
short *iCOMMType – Communication
type the object is connected to
short *iAddrRx - The object’s CAN Rx
Address.
short *iAddrTx - The object’s CAN Tx
Address.
long *lSerialBaud - The Objects serial
baud rate.
short *iSerialPort - The Objects port.
short *iDebugMode - Flag if in debug
mode or not.
In GetDeviceStatusEx only:
short *sChannelNumber – CAN channel
number.
long lSper – Currently not in use.

N/A Gets the status of a
communication device.
Check whether it is
open, defined controller /
Communication Protocol
/ Baud / Port / Addresses
etc…

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 437

Method (Keyword) Function Parameters FlexDC
Keyword

Function Description

GetFirstConnectedDe
viceId

int *pHandle - Enumeration handle.
long *pVal – Next connected device id in
the system

N/A Used to enumerate the
device id connected in
the system. This function
returns the next device id
connected in the system.
Call this function only
after calling
GetFirstConnectedDevic
eId.

GetNextConnectedDe
viceId

int *pHandle - Enumeration handle.
long *pVal – First connected device id in
the system

IsConnected/Ex short sControllerType- Controller type
the object is connected to.
short sCOMMType- Communication
type the object is connected to
short sAddrRx- CAN Rx Address
short sAddrTx - CAN Tx Address
long lSerialBaud – Serial Baud Rate
short sSerialPort – Serial Port
In IsConnectedEx only:
long lChannelNumber – CAN channel
number long lSper – Currently not in
use.

N/A Returns the DevID of a
connected configuration.
If the configuration is not
connected, -1 will be
returned.

KillRepetative short sDEVID– Opened Device ID
short sAxis– Defined Axis for operation.

KR Kills the repetitive motion

LoadFlashParameter
s

short sDEVID– Opened Device ID
short sAxis– Defined Axis for operation.

LV Loads parameters from
SC flash

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 438

Method (Keyword) Function Parameters FlexDC
Keyword

Function Description

OpenDevice/Ex short sDevID– Opened Device ID
short sControllerType – see
section 23.2, Part V, for controller type
values.
short sCOMMType– see
section 23.1, Part V, for communication
type values.
short sAddrRx – CAN Rx Address
short sAddrTx– CAN Tx Address
long lSerialBaud – Serial baud rate
short SerialPort – Serial port (1-10)
short DebugMode – Debug mode flag.
In this case all parameters will return 0.
In OpenDeviceEx only:
long lChannelNumber – CAN channel
number
long lSper – Currently not used.

N/A Attempts to open a
communication device
on defined controller /
Communication Protocol
/ Baud / Port / Addresses
etc…

ProgramDownload short sDEVID– Opened Device ID
BSTR bstrFileName- Macro file name
(full path).
int iTargetFWVersion – Firmware
version number.
int iTargeacroBufferOffset – Target
macro buffer offset.
int iTargeacroBufferSize – Target macro
buffer size.
int *iWarning – Number of warnings.

N/A Download macro file
(.scm) to controller.

ProgramClearNumb
erStack

short sDEVID– Opened Device ID
short sAxis– Defined Axis for operation.

QZ Clears the program’s
number stack

ProgramDescriptio
nData

short sDEVID– Opened Device ID
short sAxis– Defined Axis for operation
BSTR *bstrString- The returned program
Description data.

QU Returns a BSTR of the
current description data
in the SC program to
bstrString. Note that
bstrString is allocated by
the server and must be
released by client.

ProgramExecute short sDEVID– Opened Device ID
short sAxis– Defined Axis for operation.

QE Executes the program

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 439

Method (Keyword) Function Parameters FlexDC
Keyword

Function Description

ProgramHalt short sDEVID– Opened Device ID
short sAxis– Defined Axis for operation.

QH Halts the running of the
program

ProgramInitialize short sDEVID– Opened Device ID
short sAxis– Defined Axis for operation.

QI Initializes the program

ProgramKill short sDEVID– Opened Device ID
short sAxis– Defined Axis for operation.

QK Kills the running of the
program

ProgramLoad short sDEVID– Opened Device ID
short sAxis– Defined Axis for operation.

QL Loads the program from
the SC Flash

ProgramNumberStack short sDEVID– Opened Device ID
short sAxis– Defined Axis for operation
BSTR *bstrString- The returned program
number Stack.

QN Returns a BSTR of the
current number stack in
the SC to bstrString.
Note that bstrString is
allocated by the server
and must be released by
client.

ProgramStack short sDEVID– Opened Device ID
short sAxis– Defined Axis for operation
BSTR *bstrStack- The returned program
stack String.

QQ Returns a BSTR of the
programs call stack to
bstrStack. Note that
bstrStack is allocated by
the server and must be
released by client.

ProgramTrace short sDEVID– Opened Device ID
short sAxis– Defined Axis for operation.

QT Traces a single line of
the program

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 440

Method (Keyword) Function Parameters FlexDC
Keyword

Function Description

ProgramUpload short sDEVID– Opened Device ID
short sAxis– Defined Axis for operation
BSTR *bstrString- The returned program
Upload.

QU Returns a BSTR of the
current loaded program
in the SC to bstrString.
Note that bstrString is
allocated by the server
and must be released by
client.

RecordingUpload short sDEVID– Opened Device ID
short sAxis– Defined Axis for operation
BSTR *bstrString- The returned
Uploaded recording.

UD Returns a BSTR of the
current uploaded
recording data from the
SC to bstrString. Note
that bstrString is
allocated by the server
and must be released by
client.

RecordingUploadEx short sDEVID– Opened Device ID
short sAxis– Defined Axis for operation
long lTimeout – Max Time to wait till all
data is in buffer.
long lBufferLen – Recorded data buffer
length.
long lSper1 – First index of data to
receive.
long lSper2 – Last index of data to
receive.
VARIANT *variant – If communication is
RS232 a BSTR string, else a long array.

UD Returns a part or all the
recording data buffer, the
amount of data to be
returned is specified in
lSper2-lSper1 vars.

RecordingBegin short sDEVID– Opened Device ID
short sAxis– Defined Axis for operation.

BR Begin Recording.

ResetController short sDEVID– Opened Device ID
short sAxis– Defined Axis for operation.

RS Resets the controller

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 441

Method (Keyword) Function Parameters FlexDC
Keyword

Function Description

SaveFlashParameters short sDEVID– Opened Device ID
short sAxis– Defined Axis for operation.

SV Saves savable
parameters to SC flash

SendStringToController short sDEVID– Opened Device ID
BSTR stOutString- String to send to
controller.
BSTR *stInString- String returned from
controller

N/A Sends a string to the
controller as is. Note that
stInString is allocated by
the server and must be
released by client.

Stop short sDEVID– Opened Device ID
short sAxis– Defined Axis for operation.

ST Stops Motion on defined
axis

SendString short sDEVID– Opened Device ID
BSTR stOutString-String to send to
opened Device.
BSTR *stInString – String returned from
opened Device.

N/A Sends and gets a string
to/from an opened
device. The string is sent
as-is and is returned as-
is.

ShutDcomServer N/A N/A Close the DCOM
brutally.

Table 50: Interface Commands Methods

FlexDC Software User Manual Part V– SCServer COM/DCOM Interface Library

Nanomotion Ltd. 442

23 Object Definitions
This chapter defines the definitions that are needed for the various object parameters /

methods. The definitions are divided into the following sections: Communication Protocols and

Servo Controllers supported by the COM object codes.

23.1 Communication Protocols

Definition in ‘h’ file Value Parameter / Function used in

CAN_COMMUNICATION 20 OpenDevice
OpenDeviceEx

RS232_COMMUNICATION 21 OpenDevice
OpenDeviceEx

23.2 FlexDC Type Supported

Definition in ‘h’ file Value Parameter / Function used in

CRS_SC_2M_AT 54 OpenDevice
OpenDeviceEx

FlexDC Software User Manual Part VI– Communication Library (Commdll.dll)

Nanomotion Ltd. 443

Part VI –
Communication Library

(Commdll.dll)

FlexDC Software User Manual Part VI– Communication Library (Commdll.dll)

Nanomotion Ltd. 444

24 Introduction
24.1 General

The "Comdll.dll" library enables the user and interface to COM ports, using the RS232

communication.

The functions included in this DLL interface have been customized to be used with

Nanomotion products, and might not necessarily suite for other interface.

The FlexDC CD includes the following files in order to install the "Comdll.dll" library:

• Comdll.dll – the communication .dll file.

• Comdll.lib – the comdll.dll library file interface.

• Cdevapi.h – the software header file to include in the project.

This DLL is for Win32 based operating systems ONLY.

 Part VI provides a description of all functions, exported by the "Comdll.dll" library module.

24.2 The RS232 Communication DLL

The Windows RS232 Communication Interface library is written in Microsoft Visual C++

version 6, and is designed to work in 32bit Windows Operating systems. In order to use the

DLL interface, the LIB and header files should be included in the project. It is recommended to

use the Microsoft Visual C++ development platform (Microsoft Developer Studio) versions 6 or

further.

FlexDC Software User Manual Part VI– Communication Library (Commdll.dll)

Nanomotion Ltd. 445

Notes:

 This DLL supports only the RS232 protocol. CAN interfaces libraries depend on the actual

CAN hardware used on the PC, thus no standard DLL is supplied. Nanomotion supports

users to interface the FlexDC servo controller, using their own CAN hardware, upon

request.

 Functions described in Part VI are for reference only. The functions may be subjected to

changes by Nanomotion Ltd.

FlexDC Software User Manual Part VI– Communication Library (Commdll.dll)

Nanomotion Ltd. 446

25 The Communication Library - COMDLL.DLL
25.1 Instructions

The RS232 communication library is built as a Windows DLL (Dynamic Linked Library). The

main library module file name is "Comdll.dll". In order to run applications that use this library,

the user must implement the following steps:

1. Copy the "Comdll.dll" file to application directory, or to the Windows system directory.
2. The functions exported by the library, which provide an API (application program

interface) to the FlexDC servo controller, are declared in the DLL include file,
"Cdevapi.h". Therefore, the user must include this file in each source code file (refer to
" Part III– FlexDC Macro Language") that tries to access DLL functions, using the
following deceleration in the header of your implementation file:
#include "cdevapi.h"

3. In order to link the project with the DLL at run time, the user must include the DLL library
file "Comdev.lib" in the project. This library file informs the linker (during the link
process) that the functions declared by the "Cdevapi.h" file are imported from the DLL
at runtime (see the Terminal Demo Application project workspace).

The following section describes the DLL API functions.

FlexDC Software User Manual Part VI– Communication Library (Commdll.dll)

Nanomotion Ltd. 447

25.2 DLL API Functions

25.2.1 CreateComDev

Function Name:

__declspec(dllexport) PVOID CreateComDev();

Purpose: This function creates a communication device module, and
allocates memory inside the DLL for the communication
process. The user must call this function from the application
before calling any other function in the DLL.

Return Value: A pointer to an internal Communication device object.
Check that this pointer is not NULL.
Use this pointer in all subsequent calls to DLL functions.

25.2.2 DestroyComDev

Function Name:

__declspec(dllexport) BOOL DestroyComDev(PVOID pComDev)

Purpose: This function destroys the communication module created
by the call to CreateComDev(), and frees all memory. The
user must call this function before closing an application.

Input Arguments: pComDev - pointer to Comm device, returned by
CreateComDev().

Return Value: TRUE if the function succeeds, FALSE otherwise.

FlexDC Software User Manual Part VI– Communication Library (Commdll.dll)

Nanomotion Ltd. 448

25.2.3 SetupComDevInfo

Function Name:
__declspec(dllexport) int SetupComDevInfo
(PVOID pComDev, BYTE nPort, WORD wBaudRate ,BYTE bByteSize , BYTE
bParity , BYTE bStopBits)

Purpose: This function initializes the communication port device. Call
this function before trying to open the port.

Input Arguments: pComDev- Pointer to Communication device, returned by
CreateComDev() function.
nPort - Port Number: 1,2,3 or 4.
wBaudRate - Baud Rate: CBR_300 , _4800, _9600_19200.
bByteSize - Byte Size: Must be 8 bits.
Bparity - Parity: Must Be NOPARITY
bStopBits - Stop Bits: Must Be ONESTOPBIT

Return Value: 0 if OK, otherwise – an error occurred. Use the
ShowCommErr() function with the return value to show an
error message.

FlexDC Software User Manual Part VI– Communication Library (Commdll.dll)

Nanomotion Ltd. 449

25.2.4 OpenComDev

Function Name:
__declspec (dllexport) BOOL OpenComDev (PVOID pComDev,
 HWND hWnd,
 DWORD dwInQueue,
 DWORD dwOutQueue)

Purpose: This function opens the selected communication device.

Input Arguments: pComDev - Pointer to Communication device,
 returned by CreateComDev() function.
hWnd - HANDLE of window to receive
 notifications, if this parameter is
 NULL, no notification is sent.
dwInQueue - Received buffer maximum size.
dwOutQueue - Sent buffer maximum size.

Return Value: TRUE if the function succeeds, otherwise – FALSE.
If the selected port is already open or used by another device, the
function fails.

25.2.5 CloseComDev

Function Name:
__declspec(dllexport) BOOL CloseComDev (PVOID pComDev)

Purpose: This function closes an opens communication device.

Input Arguments: pComDev - pointer to Comm device, returned by
 CreateComDev()

Return Value: TRUE if the function succeeds, FALSE otherwise.

FlexDC Software User Manual Part VI– Communication Library (Commdll.dll)

Nanomotion Ltd. 450

25.2.6 IsConnected

Function Name:
__declspec(dllexport) BOOL IsConnected(PVOID pComDev)

Purpose: Checks if port is already connected. Call this function to check
if port is already connected.

Input Arguments: pComDev - pointer to Comm device, returned by
 CreateComDev()

Return Value: TRUE if the port is open. FALSE if port is closed.

Note:

 The user cannot use this function to check if a port is already used by another device.

Using this function the user can check if a previous call to OpenComDev() is successful.

FlexDC Software User Manual Part VI– Communication Library (Commdll.dll)

Nanomotion Ltd. 451

25.2.7 CopyComInfo

Function Name:
__declspec(dllexport) BOOL CopyComInfo (PVOID pComDev,
 COMDEVINFO *cinfo,
 BOOL retrive)

Purpose: Checks if port is already connected. Call this function to check
if port is already connected. Copy COM info data structure
from or to the dll COM info data structure, according to the
retrieve flag. If the retrieve flag is TRUE, copies data from the
dll to the given structure, otherwise copy data to the dll COM
info structure.

Input Arguments: pComDev - pointer to Comm device, returned by
 CreateComDev()
cinfo - pointer to COMDEVINFO structure.
retrive - flag indicate if to set or retrieve
 COMDEVINFO.

Return Value: TRUE if the operation is OK.

FlexDC Software User Manual Part VI– Communication Library (Commdll.dll)

Nanomotion Ltd. 452

25.2.8 SendComString

Function Name:
__declspec(dllexport) int SendComString (PVOID pComDev,
 LPSTR pInpBuf ,
 DWORD nMaxLenInpBuf ,
 DWORD &nBytsRead ,
 LPSTR pOutBuf ,
 DWORD nOutBufDataLen,
 DWORD &nBytsSent ,
 DWORD nTimeOut,
 BOOL fWaitCursor ,
 BOOL WaitResoponse
 DWORD *pCommDelayTime)

Purpose: Send a string and optionally wait for a response from the client.

Input
Arguments:

pComDev - pointer to Comm device, returned by
 CreateComDev()
pInpBuf - Pointer to Buffer Receiving RS232 Data
nMaxLenInpBuf- Max Size of Receiving Buffer
nBytsRead - Number of Bytes actually received from
 the communication port.
pOutBuf - Pointer to Write Data Buffer
nOutBufDataLen- Number of Data Bytes in pOutBuf
nBytsSent - Actual number of bytes sent (must be
 equal to nOutBufDataLen)
nTimeOut - Time out in miliseconds for wait.
fWaitCursor - Use Hourglass cursor while waiting.
WaitResoponse- Flag whether to wait for response from
 controller.
pCommDelayTime- Communication response delay time.

Return Value: 0 if function succeeds. If the function fails, an error code is returned.

FlexDC Software User Manual Part VI– Communication Library (Commdll.dll)

Nanomotion Ltd. 453

25.2.9 ReadString

Function Name:
__declspec(dllexport) int ReadString (PVOID pComDev,
 LPSTR pInpBuf ,
 DWORD nMaxLenInpBuf ,
 DWORD &nBytsRead)

Purpose: Read string from the COM port.
Input Arguments: pComDev - pointer to Comm device, returned by

 CreateComDev()
pInpBuf - Pointer to Buffer Receiving RS232 Data
nMaxLenInpBuf- Max Size of Receiving Buffer
nBytsRead - Number of Bytes actually received from
 the communication port.

Return Value: 0 if function succeeds. If the function fails, an error

FlexDC Software User Manual Part VI– Communication Library (Commdll.dll)

Nanomotion Ltd. 454

25.2.10 ReadComBuf

Function Name:
__declspec(dllexport) int ReadComBuf (PVOID pComDev,
 BOOL bBlock,
 LPSTR pInpBuf ,
 DWORD nMaxLenInpBuf ,
 DWORD &nBytsRead)

Purpose: Reads a string from the COM port with option for blocking the incoming
read thread.

Input
Arguments:

pComDev - Pointer to Comm device, returned by CreateComDev()
bBlock - Block the read thread.
pInpBuf - Pointer to Buffer Receiving RS232 DatanMaxLenInpBuf-
 Max Size of Receiving Buffer
nBytsRead - Number of Bytes actually received from the communication
 port.

Return Value: 0 if function succeeds. If the function fails, an error code is returned.

FlexDC Software User Manual Part VI– Communication Library (Commdll.dll)

Nanomotion Ltd. 455

25.2.11 ReadSizeComBuf

Function Name:

__declspec(dllexport) int ReadSizeComBuf (PVOID pComDev,
 LPSTR pInpBuf ,
 DWORD nMaxLenInpBuf ,
 long lReadNumberOfBytes,
 DWORD dwTimeOut,
 DWORD &nBytsRead)

Purpose: Reads a number of bytes from the port within a given timeout.
Input Arguments: pComDev - Pointer to Comm device, returned by

CreateComDev()pInpBuf- Pointer to Buffer Receiving RS232
 Data
nMaxLenInpBuf - Max Size of Receiving Buffer
lReadNumberOfBytes- Expected number of bytes to read
 from port.
dwTimeOut - Time out In miliseconds for wait.
nBytsRead - Number of Bytes actually received
 from the communication port.

Return Value: 0 if function succeeds. If the function fails, an error code is
returned.

FlexDC Software User Manual Part VI– Communication Library (Commdll.dll)

Nanomotion Ltd. 456

26 Communication Error Codes
The following error codes are reported by the DLL:

COM_OK = 0 No Error

COM_TIMEOUT Time-out while waiting for response

COM_COM_ERR Communication Error

COM_READ_ERR Communication Device Read Error

COM_WRITE_ERR Communication Device Write Error

COM_BUFFER_TOO_BIG Input/output Buffs to big (255 Max)

COM_BUFFS_NOT_VALID Input or Output buffers are NULL.

COM_PDEVNOT_VALID Pointer to communication device is NULL.

COM_DEVNOT_VALID Never returned value.

COM_PARAM_ERR Error in Communication parameters.

COM_BAD_ECHO Bad Echo received from controller.

COM_CANT_PURGE_COM Communication purging device error.

COM_NOTIMPLEMENTED Function Not Implemented.

FlexDC Software User Manual Part VI– Communication Library (Commdll.dll)

Nanomotion Ltd. 457

27 Code Example
The following example opens the device, sends and receives a string to and from a client, and

closes the device:

//
// create the com device and check if error.
//
void *pComDev = CreateComDev() ;
if(pComDev == NULL)
{
 return Error ;
}

//
// set device parameters.
//
COMDEVINFO comInfo ;
comInfo.idComDev = NULL ;
comInfo.bPort = 1 ;
comInfo.fConnected = FALSE ;
comInfo.fXonXoff = FALSE ;
comInfo.bByteSize = 8 ;
comInfo.bFlowCtrl = 0 ;
comInfo.bParity = NOPARITY ;
comInfo.bStopBit = ONESTOPBIT ;
comInfo.wBaudRate = CBR_38400 ;
comInfo.fReConnect = FALSE ;
comInfo.cEvtChar = ‘>’ ;
comInfo.iSpecialVersion = 0 ;

//
// Set Com Info Data and Check if OK
//
if(!CopyComInfo(&comInfo,FALSE))
{
 return Error;
}

FlexDC Software User Manual Part VI– Communication Library (Commdll.dll)

Nanomotion Ltd. 458

//
// open the device.
//
DWORD dwInQueue = 250 ;
DWORD dwOutQueue = 250 ;
If(!OpenComDev(pComDev,NULL, dwInQueue, dwOutQueue))
{

return Error ;
}

//
// check if connected.
//
If(!IsConnected(pComDev))
{
 return Error ;
}

//
// send and get data from device.
//
char pOutBuf[16] = “XSP=1000\r” ;
char pInpBuf[255] ;
DWORD dwNBytesRead = 0 ;
DWORD dwnOutBufDataLen = 9 ;
DWORD dwnBytesSent = 0 ;
int iRc = 0 ;

iRc = SendComString(pComDev ,
 pInpBuf, 255, dwNBytesRead ,
 pOutBuf, dwnOutBufDataLen, dwnBytesSent,
 500 , // wait for .5 sec
 FALSE ,
 TRUE) ; // do wait for answer.
//
// Check Error Code
//
If(iRC != COM_OK)
{
 return Error ;
}

//
// now the answer is in pInpBuf. destroy com device (clean up).
//
DestroyComDev(pComDev) ;
pComDev = NULL ;

FlexDC Software User Manual Part VII– Glossary

Nanomotion Ltd. 459

Part VII – Glossary

FlexDC Software User Manual Part VII– Glossary

Nanomotion Ltd. 460

28 Glossary
The following definitions are used provided only for this user manual.

• Abort Input: a dedicated digital input typically connected to the machine’s emergency

button. When the FlexDC detects an active state at this input it immediately disables both

motors. In addition to the standard firmware support for the Abort signal as noted above,

the FlexDC also supports the Abort signal. It is monitored by the Hardware to disable all

drivers in case Abort is sensed.

• Clause: a single, complete, independent communication statement that can be interpreted

and evaluated. Each clause consists of keywords and operators and is terminated by a

terminator (to identify end of clause).

• Clause – Assignment: a communication statement sent by a host and instructs the

FlexDC to assign a value to a specified parameter. A typical assignment clause consists

of: Keyword “=” value terminator.

• Clause – Command: a communication statement sent by a host and instructs the FlexDC

to perform a specified command (process). A command clause consists of: Keyword

terminator.

• Clause – Report: a communication statement sent by a host and instructs the FlexDC to

report the value of a specified parameter. A typical report clause consists of: Keyword

terminator.

• Clause – Terminator: character that identifies end of communication clause. It can be

<CR> or “;” in the communication from a host to an FlexDC or “>” in the opposite direction

(all for the RS232 line).

• Command Interpreter: the Commands Interpreter is an internal software module of the

FlexDC firmware, responsible for interpreting Clauses sent to the controller. The

Command Interpreter handles all commands passed to the FlexDC.

• Communication Protocol: the low-level hardware and software definition of a

communication channel. In RS232, for example, it includes the baud-rate, handshake

options, parity, etc.

• Communication Syntax, Language Syntax: the rules that define the correct sequence of

characters that may create a valid communication clause.

FlexDC Software User Manual Part VII– Glossary

Nanomotion Ltd. 461

• Digital Control Filter: an algorithm that is periodically executed (8192 times per second).

The algorithm compares the desired motor position and its actual position to calculate a

command to the motor to minimize the difference between these values. The FlexDC

Digital Control Filter algorithm supports both standard position based PIV, as well as

Position Over Velocity loop structure. The FlexDC supports additional advanced features.

Refer to chapter 4, Part II, for further information.

• Echo: in RS232 mode, the FlexDC automatically echoes (send a copy back) each

character that it receives during normal communication. The returned character can be

used by the host to verify proper communication. In the binary CAN bus communication

protocol, ECHO is not supported. Only OK/ERR prompt is used.

• Error Codes: in case that the FlexDC encounters an error when interpreting a received

clause it ignores this clause and responds with “?” before the returned terminator (“>”).

The FlexDC also stores a code for the interpretation error at a parameter named “EC” –

which can be later reported to analyze the error source. A separate parameter “QC” holds

the error codes of any program running in the controller (Scripts or Macro).

• Fault Input: a dedicated digital input whose source is typically the motor’s driver. It is used

to inform the FlexDC about a driver’s malfunction – for which the FlexDC needs to inhibit

the driver and to abort all motion activities.

• Firmware Version Downloading: the FlexDC executes an internal firmware (BIOS) to

perform all its tasks. From time to time new firmware versions are released (corrections of

problems, new features, etc.). New firmware versions are supplied by Nanomotion (or

available on our web site). The FlexDC, together with the Nanomotion Shell Apllication,

enables the downloading of a new version via the RS232 (ONLY) line. The advantages of

this process (over older EPROM replacement method) are clear.

FlexDC Software User Manual Part VII– Glossary

Nanomotion Ltd. 462

• Flash Memory (Flash): the FlexDC includes a 2M[bits] Flash Memory for its firmware,

parameters and user program. The Flash Memory is, in principal, similar to an EEPROM

memory. It enables the downloading of a new firmware version.

• Host: a computer, terminal, PLC or any other device which may send communication

clauses to the FlexDC, via one of its communication links.

• Identifiers – Axes: the FlexDC Commands Syntax always requires an axis identifier

before the keyword itself. If a Keyword attribute is non-axis related, any axis identifier is

legal, and has the same result. The Command Interpreter ignores the axis identifiers of

non-axis-related keywords.

• Identifiers – Group Axes: the FlexDC Commands Syntax supports the concept of Axes

Group identifier definition. An Axes Group allows the user to define an arbitrary sub-set of

controller axes to be acted upon15. Like in normal axes identifiers, the Command

Interpreter ignores the Group Identifier of non-axis-related keywords. The FlexDC supports

the ‘B’ – Both group identifier only.

• Inhibit Output: a dedicated digital output of the FlexDC (one for each axis) which is used

to enable/disable an external motor’s driver. The inhibit output reflects the state of the MO

parameter.

• Incremental Encoder: a standard position sensor used as a position feedback in

conjunction with motors and servo systems. A special FlexDC hardware circuit uses the

encoder’s signals to continuously sense the motor/load position (and speed) and to

accordingly control the motor motion.

• Keyword: a token, consisting of two characters, which identifies a unique FlexDC

command or parameter.

• Keyword Attributes: each Keyword of the FlexDC has one or more attributes. The

Keyword attributes tell the command Interpreter how to be treated. For example, a

Keyword can be an axis related Keyword (related to an axis) or Global Keyword.

15 The current FlexDC firmware does not support configurable Axis Groups.

FlexDC Software User Manual Part VII– Glossary

Nanomotion Ltd. 463

• Limit – Hardware RLS, FLS: most (although not all) motion systems have mechanical

end-of-travel stops (especially with linear load motion). In order to prevent the load from

hitting these stops, an electronic device/switch is located before each stop (Reversed and

Forward) to detect this situation. These switches are connected to the FlexDC RLS and

FLS digital inputs (Reverse Limit Switch and Forward Limit Switch). When the FlexDC

detects an active state at one of these inputs it stops any motion toward the related

direction.

• Limits – Software HL, LL: similarly to the hardware limits (RLS and FLS above), the

FlexDC supports software limitation for motion range. HL (High Limit) and LL (Low Limit)

defines a position range in which the FlexDC operates normally. Whenever the motor’s

position exceeds this range, the FlexDC stops any motion to the related direction.

• Motion – Modes: motion Mode defines the method in which the FlexDC calculates the

desired position command as a function of time. The FlexDC supports various motion

modes. The basic modes are listed below:

• Point To Point (PTP).

• Jogging.

• Gearing.

• Step.

• Repetitive Step and PTP.

• Motion – Profiling: motion Profiling is the actual algorithm that calculates new reference

points to the servo loop according to the selected Motion Mode.

• Motion - On-The-Fly Changing: a characteristic of the FlexDC that enables the

modification of most of its parameters even when they are active. For example, the PIV

parameters can be modified while the motor is in servo loop (motor is ON). A unique

characteristic of the FlexDC is that all (except profile smoothing) of its motion parameters

(such as: speed, acceleration, deceleration, distance, etc.) can be modified on-the-fly

under almost any conditions.

FlexDC Software User Manual Part VII– Glossary

Nanomotion Ltd. 464

• Position Capture Events: Capture Position feature is the ability of the encoder interface

hardware to capture (latch) the exact encoder location when a pre-defined Input or

encoder Index is detected. The Capture hardware can latch encoder position when

counting at ANY encoder speed. The Capture mechanism can be programmed to latch

encoder positions based on a user defined digital input, or encoder index pulse.

• Position Compare Events: the Compare Position feature is the ability of the encoder

interface hardware to compare the actual encoder hardware counter value to a pre-defined

user register value, and to generate a H/W pulse when there is a condition match. The

basic compare mechanism can work at ANY encoder speed. Compare mechanism can be

operated as a fixed GAP auto increment condition, or variable GAP tables.

• Scripts or Macro Programming: the FlexDC supports up to 2 simultaneous internal

programs (also referred to as “Scripts” or “Macro” programs). Internal programs are used

for tasks like Homing an axis, or other user defined low level servo tasks. The FlexDC is

provided with an advanced SDE (“Software Development Environment”), including very

powerful debugger and editor utilities, making Scripts programming and debugging an

easy task.

• Windows Shell Program, Nanomotion Shell Application: Nanomotion provides an

enhanced Windows 9x (or NT/2000/XP) Nanomotion Shell Application program for easy

and fast interface with the FlexDC. Using the Nanomotion Shell Application, starting-up or

verifying a new idea/concept is just few mouse clicks away.

	1 Preface
	1.1 Overview
	1.2 FlexDC Software User Manual Structure
	1.3 FlexDC Installation and Operation Sequence

	2 Commands Syntax and Protocols
	2.1 Introduction
	2.2 Supported Communication Protocols
	2.2.1 Simultaneous Communication Channels Operation Support

	2.3 FlexDC Communication Language Definitions
	2.3.1 General
	2.3.2 Language Notations
	2.3.2.1 Parameters Keywords
	2.3.2.2 Command Keywords

	2.3.3 Keywords Attributes and Restrictions

	2.4 Axes and Groups Identifiers
	2.4.1 FlexDC Axes Attributes

	2.5 RS232 Communication
	2.5.1 Hardware Interfaces
	2.5.2 Connecting and Defining the RS232
	2.5.3 Language Syntax – Host to FlexDC
	2.5.3.1 Keywords
	2.5.3.2 Clause Termination
	2.5.3.3 Axis Identification in Clause
	2.5.3.4 Axis Related Keywords and Clause Axis Identifiers
	2.5.3.5 Clause Handling

	2.5.4 Language Syntax – FlexDC to Host
	2.5.4.1 Clause Prompts

	2.6 Ethernet/LAN Communication
	2.6.1 FlexDC Network Topologies
	2.6.2 Connecting and Defining the Ethernet/LAN
	2.6.2.1 Connecting the LAN
	2.6.2.2 Setting Controller’s IP Address

	2.6.3 TCP/IP Protocol (Ethernet / LAN)
	2.6.4 Using DCOM Software Library for Ethernet Communication

	2.7 CAN Communication
	2.7.1 General
	2.7.2 Language Syntax - Host to FlexDC
	2.7.2.1 The CAN Bus Message Pre-Fix Definition
	2.7.2.1.1 CAN Bus Message Pre-Fix Definition

	2.7.2.2 Normal Clauses
	2.7.2.2.1 Normal Clauses Bytes Description
	2.7.2.2.2 Normal Clauses Examples
	2.7.2.2.3 Ping Request

	2.7.2.3 Non-Normal clauses – (Array Clauses)
	2.7.2.3.1 Non-Normal Clauses (Array Clauses) Bytes Description
	2.7.2.3.2 Non-Normal Clauses (Array Clauses) Examples

	2.7.2.4 CAN Bus Array codes Description

	2.7.3 Special Commands
	2.7.4 Language Syntax– FlexDC to Host
	2.7.4.1 Prompt OK
	2.7.4.2 Prompt Not OK
	2.7.4.3 Prompt Including a Single Axis Report Response
	2.7.4.4 Prompt Including a Report Response for Two Axes
	2.7.4.5 Controller Initiated CAN Messages

	2.7.5 CAN - Enhanced Download Buffer Mode (EDB)
	2.7.5.1 Message Format
	2.7.5.2 EDB Data Validity Check
	2.7.5.3 EDB Buffers
	2.7.5.4 EDB Mode Limitations
	2.7.5.5 EDB Mode Example
	2.7.5.6 Command Sequence

	3 Motion Modes
	3.1 Point to Point – PTP (MM=0, SM=0)
	3.1.1 Starting a PTP Motion
	3.1.2 Monitoring Motions
	3.1.3 Stopping a Motion
	3.1.4 On The Fly Parameters Change

	3.2 Repetitive Point to Point – Rep PTP (MM=0, SM=1)
	3.3 Jogging – JOG (MM=1, SM=0)
	3.3.1 Description
	3.3.2 Starting a Jog Motion
	3.3.3 Monitoring a Motion
	3.3.4 Stopping a Motion
	3.3.5 On The Fly Parameters Change

	3.4 Gearing Motion Modes
	3.4.1 Position Based Gearing (MM=2)
	3.4.1.1 Description
	3.4.1.2 Starting a Position Based Gearing Motion
	3.4.1.3 Monitoring a Position Based Gearing Motion
	3.4.1.4 Stopping a Position Based Gearing Motion
	3.4.1.5 On-The-Fly Parameters Change

	3.5 Joystick Motion Modes
	3.5.1 Velocity Based Joystick Motion Mode
	3.5.1.1 Description

	3.5.2 Position Based Joystick Motion Mode
	3.5.2.1 Description

	3.6 Position Step Motion (MM=8, SM=0 or SM=1)
	3.6.1 Description
	3.6.2 Starting a Step Motion
	3.6.3 Monitoring and Stopping a Step Motion

	3.7 Profile Smoothing in the FlexDC

	4 The Control Filter
	4.1 General
	4.2 Linear PIV Filter Equations
	4.2.1 PIV Filter Mode
	4.2.2 Position Error Calculation

	4.3 High (2nd) Order Filters
	4.4 Output Command (DAC Out)
	4.5 Encoder Gain
	4.6 Non-Linear Elements
	4.7 Filter Gain Scheduling
	4.8 AB1A Driver Special Algorithms
	4.8.1 Dead Zone Algorithm
	4.8.2 Feed-Forward Algorithm
	4.8.3 Offset Algorithm
	4.8.4 UHR Algorithm

	4.9 AB5 Driver Brake Mode
	4.10 Acceleration and Velocity Feed-Forward
	4.11 Open Loop Operation
	4.12 Summary of all Control Filter Related Parameters

	5 Faults Protections and Limits
	5.1 Driver Faults and Abort Input
	5.2 Software Generated Faults
	5.2.1 High Position Error
	5.2.2 Encoder Signal Error Protections
	5.2.3 Motor Stuck Protection

	5.3 Software Protections – (Non Fault Conditions)
	5.4 Special Handling of Software Limits

	6 Advanced Features
	6.1 Data Recording
	6.1.1 Operating Data Recording in the FlexDC
	6.1.2 Data Recording Keywords
	6.1.2.1 Begin / Stop Data Recording Command – BR
	6.1.2.2 Select Recording GAP Parameter – RG
	6.1.2.3 RG Parameter
	6.1.2.4 RG[2] – Recording Upload Delay
	6.1.2.5 Select Recording Length Parameter – RL
	6.1.2.6 Report Recording Status Parameter – RR
	6.1.2.7 Select Recorded Variables Parameter – RV
	6.1.2.8 DA and AR Arrays in FlexDC

	6.1.3 Data Recording Support in Nanomotion Shell Application

	6.2 Position Compare Events
	6.2.1 Mode 0: Fixed GAP (Incremental), Distance < 16 Bit
	6.2.2 Mode 2: 32 Bit Arbitrary Tables
	6.2.3 Compare Function Parameters, Activation and Error Codes
	6.2.3.1 The “PG” Array
	6.2.3.2 The “PQ” Command
	6.2.3.3 Dedicated Error Codes related to the Compare Function Operation

	6.2.4 Configuring Digital Outputs for the Compare Function
	6.2.4.1 Assignment of a Digital Output to a Position Compare Event

	6.2.5 Position Compare Events Examples

	6.3 Position Capture Events
	6.3.1 Capture Modes
	6.3.2 Operating the Position Capture and Relevant Keywords
	6.3.3 The Capture Events Counter – “XN”
	6.3.4 The Capture Location – “XC”
	6.3.5 Selection of Capture Source Pulse – “YOM”
	6.3.5.1 IO_MODE_1 – YOM Keyword

	6.3.6 Configuring Fast Digital Inputs for the Capture Function
	6.3.7 Position Capture Events Examples
	6.3.7.1 Capture and CompareExample
	6.3.7.2 Latching the Index Location of an Axis

	6.4 Auxiliary Analog Input Interfaces
	6.5 Dynamic Error Mapping Correction

	7 Keywords Reference
	7.1 Keywords Attribute Reference
	7.2 Command Keywords List
	7.3 Parameters Keywords List
	7.3.1 Parameters Keywords List

	7.4 Keywords List – Functional Groups
	7.4.1 Keywords Group Description
	7.4.2 Keywords Groups
	7.4.2.1 Motion and Profiler Related Keywords
	7.4.2.2 Control Filter and Real Time Servo Loop Keywords
	7.4.2.3 Data Recording Related Keywords
	7.4.2.4 Special Features Interface Function Keywords
	7.4.2.5 Analog and Digital I/O Function Keywords
	7.4.2.6 Communication and Configuration Keywords
	7.4.2.7 Protection Keywords
	7.4.2.8 General Keywords
	7.4.2.9 Programming Keywords

	7.5 Keywords List
	7.6 AB – Abort Motion Command
	7.7 AC – Acceleration
	7.8 AD – Analog Input Dead Band
	7.9 AF – Analog Input Gain Factor
	7.10 AG – Analog Input Gain
	7.11 AI – Analog Input
	7.12 AP – Absolute Position
	7.13 AR – General Purpose Array
	7.14 AS – Analog Input Offset
	7.15 BG – Begins a New Motion Command
	7.16 BR – Begin Recording Command
	7.17 CA – Special Control Parameters Array
	7.18 CB – CAN Baud Rate
	7.19 CG – Axis Configuration
	7.20 DA – Data Recording Array
	7.21 DB – Download Buffer
	7.22 DC – Deceleration
	7.23 DF – Download Firmware
	7.24 DL – Limit Deceleration
	7.25 DO – Analog DAC Offset
	7.26 DP – Desired Position
	7.27 EC – Communication Error Code
	7.28 EM – End of Motion Reason
	7.29 ER – Max Position Error Limit
	7.30 FF – Feed-Forward Gains
	7.31 HL – High Software Limit
	7.32 IA – Indirect Array
	7.33 IL – Input Logic
	7.34 IP – Input Port
	7.35 IS – Integral Saturation Limit
	7.36 KD – Control Filter Diff Term Gain
	7.37 KI – Control Filter Integral Term Gain
	7.38 KP – Control Filter Proportional Term Gain
	7.39 KR – Kill Repetitive Motions Command
	7.40 LD / SV – Load and Save Commands
	7.41 LL – Low Software Limit
	7.42 ME – Master Encoder
	7.43 MF – Motor Fault Reason
	7.44 MM – Motion Mode
	7.45 MO – Motor ON (Enable / Disable the Servo Loop)
	7.46 MS – Motion Status
	7.47 NC – No Control (Set Open Loop Mode)
	7.48 OC – Output Clear Bit Command
	7.49 OL – Output Logic
	7.50 OM – I/O Modes Hardware Configuration
	7.51 OP – Output Port
	7.52 OS – Output Set Bit Command
	7.53 PA – Parameters Array
	7.54 PE – Position Error
	7.55 PG – Position Compare Parameters Array
	7.56 PQ – Compare Function Activate / Disable Command
	7.57 PO – PIV Output
	7.58 PS – Position (Encoder Position)
	7.59 RA – CAN Receiving Address
	7.60 RG – Data Recording GAP
	7.61 RG[2] – Data Recording Upload Delays
	7.62 RL – Data Recording Length
	7.63 RP – Relative Position
	7.64 RR – Data Recording Status
	7.65 RS – Reset Controller Command
	7.66 RV – Data Recording, Recorded Variables
	7.67 SM – Special Motion Mode Attribute Parameter
	7.68 SP – Speed
	7.69 ST – Stop Motion Command
	7.70 SR – Status Register
	7.71 SV – Save Command
	7.72 TA – CAN Transmitting Address
	7.73 TC – Torque Command
	7.74 TD – Timer Down
	7.75 TL – Torque Limit (Analog Command Saturation)
	7.76 TR – Target Radius
	7.77 TT – Target Time
	7.78 VA / VD / VS – Vector Motion Parameters
	7.79 VR – Get Version Command
	7.80 WT – Wait Period
	7.81 WW – Profiler Smooth Factor
	7.82 XC – Last Capture Position Latch
	7.83 XN – Capture Events Counter
	7.84 ZI – CAN Array

	8 Communication and Program Error Codes
	9 Introduction
	10 FlexDC Macro Engine
	10.1 General FlexDC Macro Program Structure
	10.2 External Communication vs. Macro Execution Priority
	10.3 Macro Handling Keywords
	10.4 Low-Level Expressions Handling and the Numbers Stack
	10.5 Variables and Indirect Addressing
	10.5.1 Variables
	10.5.2 Indirect Addressing

	10.6 Labels and Subroutines Names
	10.6.1 Restrictions on Labels Definition
	10.6.2 Ending a Label Definition is the ‘:’ Sign

	10.7 Macro Flow Control
	10.8 Wait and Internal State Inquiry Functions
	10.9 Timer Functions

	11 FlexDC Low-Level Macro Program
	11.1 Macro and Motions
	11.2 Macro Syntax Check and Run-Time-Error
	11.3 Macro Size and Number of Labels
	11.4 Macro Download Format

	12 Integrated Development Environment
	12.1 General
	12.2 Writing and Editing FlexDC Macro Files
	12.3 Shell Support for Downloading Macro Files to the FlexDC Hardware
	12.3.1 Download a New Macro
	12.3.2 Download a New .DAT File

	12.4 Srcedit Macro Debugger Environment Features
	12.4.1 General
	12.4.2 Srcedit Macro Debugger Window
	12.4.2.1 Debugger Window – Source View Area
	12.4.2.2 Debugger Window – Source Icons Area
	12.4.2.3 Debugger Window – Toolbar Menu and Pop-Up Menu

	12.4.3 Srcedit File Menu
	12.4.3.1 Creating New Macro
	12.4.3.2 Working with Workspaces
	12.4.3.3 Creating New Workspace
	12.4.3.4 Open/Close/Save Existing Workspace
	12.4.3.5 Add/Remove Files to/from Workspace
	12.4.3.6 Open File in Workspace
	12.4.3.7 Compiling Workspace

	13 The IDE Pre-Compiler Support
	13.1 General
	13.2 Non Executable Code: Comments, Blanks, etc.
	13.3 Directive Commands
	13.3.1 The ‘target’ Definition Directive
	13.3.2 The ‘define’ Directive
	13.3.3 The ‘description’ Directive
	13.3.4 The ‘include’ Directive

	13.4 Advanced Expressions Parsing
	13.4.1 General
	13.4.2 Mathematical expressions
	13.4.2.1 Using the ANS keyword
	13.4.2.2 Using FlexDC Commands as Operands

	13.4.3 If Blocks
	13.4.4 While Loops
	13.4.5 For Loops

	14 Script Example
	14.1 Script Structure
	14.2 Script Content

	15 FlexDC Script Keywords Commands Reference
	15.1 Task Based Reference
	15.2 Task Description
	15.3 Task Based Command List
	15.3.1 Macro Handling Keywords
	15.3.2 Operator Keywords
	15.3.3 Flow Control Keywords
	15.3.4 Wait and Internal State Inquiry Functions
	15.3.5 Timer Function Keywords
	15.3.6 Remote Access over the CAN commands
	15.3.7 Pre-compiler Directive Commands and Keywords

	15.4 Macro Programming Keywords Reference
	15.4.1 CS – Call Subroutine
	15.4.2 CF,CT – Call Subroutine If False or True
	15.4.3 JP – Jump
	15.4.4 JF, JT – Jump If False or True
	15.4.5 JZ – Jump Zero
	15.4.6 QB – Macro Breakpoint Array
	15.4.7 QC – Macro Run-Time-Error
	15.4.8 QD – Download Macro Buffer
	15.4.9 QE – Execute Macro
	15.4.10 QF – Macro Running Status
	15.4.11 QG – Get Internal State Value
	15.4.12 QH – Halt Macro
	15.4.13 QI – Initialize Macro
	15.4.14 QK – Kill Macro and Motions
	15.4.15 QN – Display Macro Stack
	15.4.16 QP – Macro Program Pointer
	15.4.17 QQ – Macro Program Stack
	15.4.18 QR – Macro Initialization Status
	15.4.19 QT –Trace Macro Execution (Single Line)
	15.4.20 QU – Upload Macro Buffer
	15.4.21 QV – Uploads Descriptive Data
	15.4.22 QW – Wait till Condition
	15.4.23 QZ – Clears Macro Numbers Stack
	15.4.24 RT – Return from Subroutine
	15.4.25 TD – Timer Down
	15.4.26 ZA – Remote Assign Value (CAN Networking)
	15.4.27 ZC – Remote Command (CAN Networking)
	15.4.28 ZI – Remote Parameters Array (CAN Networking)
	15.4.29 ZM – Remote Message (CAN Networking)
	15.4.30 ZR – Remote Report Value (CAN Networking)
	15.4.31 ZS – Remote Command Status (CAN Networking)

	16 Introduction
	16.1 General

	17 Software Installation
	17.1 Hardware Drivers' Installation
	17.2 Software Installation
	17.2.1 Nanomotion Shell Application
	17.2.2 SCServer DCOM
	17.2.3 SrcEdit Software

	18 The Nanomotion Shell Application GUI
	18.1 General
	18.2 Main Screen
	18.2.1 Axes Status Area
	18.2.2 Macro Status Area
	18.2.3 Version Control Area
	18.2.4 Fast Menu Button

	18.3 Folders
	18.3.1 Motions Folder Group
	18.3.1.1 Point To Point Folder
	18.3.1.2 Jogging Folder
	18.3.1.3 Gear Folder
	18.3.1.4 Joystick Folder

	18.3.2 Configurations Folder Group
	18.3.2.1 CAN Folder
	18.3.2.2 Protection Folder
	18.3.2.3 Configuration X/Y Folders

	18.3.3 I/O’s Folder Group
	18.3.3.1 I/O Logic Folder
	18.3.3.2 Analog Input Folder
	18.3.3.3 Analog Out Folder
	18.3.3.4 I/O Modes 0 Folder

	18.3.4 Special Function Folder Group
	18.3.4.1 Event Capture Folder
	18.3.4.2 Event Generator Folders

	18.3.5 Miscellaneous Folder Group
	18.3.5.1 Data Recording Folder
	18.3.5.2 Super Custom Folder

	18.3.6 Custom Commands: 1 – 3 Folder Group
	18.3.7 Manuals Folder Group

	18.4 Menus
	18.4.1 File Menu
	18.4.1.1 Load/Save Custom Commands
	18.4.1.2 Edit Custom Commands
	18.4.1.3 File Location

	18.4.2 Communication Menu
	18.4.2.1 Setup Communication
	18.4.2.2 Update Status Window
	18.4.2.3 Connect/Disconnect Last Selected
	18.4.2.4 Show Terminal Window
	18.4.2.5 Show Previous Folder

	18.4.3 Macro Menu
	18.4.3.1 Pre-compile Macro
	18.4.3.2 Download Macro
	18.4.3.3 Download .DAT File
	18.4.3.4 Upload Macro
	18.4.3.5 Erase Macro

	18.4.4 Commands Menu
	18.4.4.1 Save
	18.4.4.2 Load
	18.4.4.3 Reset Controller
	18.4.4.4 EC
	18.4.4.5 Show RTE
	18.4.4.6 Kill All
	18.4.4.7 Kill Repetitive

	18.4.5 Data Recording Menu
	18.4.5.1 Import Properties
	18.4.5.2 Clear Properties
	18.4.5.3 Show Last Recording
	18.4.5.4 Open Graph Application
	18.4.5.5 Start Recording with Begin Motion
	18.4.5.6 Stop Current Recording Process
	18.4.5.7 Start Recording

	18.4.6 Tools Menu
	18.4.6.1 Array Editing
	18.4.6.2 Watch Dialog

	19 "Srcedit" – the Macro File Editor Application
	19.1 General
	19.2 Main Screen
	19.3 Workspace
	19.4 Macro Editing
	19.5 Macro Downloading
	19.6 Macro Debugging
	19.7 Menus
	19.7.1 File Menu
	19.7.1.1 New
	19.7.1.2 Open
	19.7.1.3 Close
	19.7.1.4 Workspace
	19.7.1.4.1 New Workspace
	19.7.1.4.2 Open
	19.7.1.4.3 Save
	19.7.1.4.4 Save As
	19.7.1.4.5 Close
	19.7.1.4.6 Add File
	19.7.1.4.7 Remove File

	19.7.1.5 Save
	19.7.1.6 Save As
	19.7.1.7 Save All
	19.7.1.8 Print
	19.7.1.9 Print Preview
	19.7.1.10 Print Setup
	19.7.1.11 File Locations
	19.7.1.12 Recent Files
	19.7.1.13 Recent Workspace
	19.7.1.14 Exit

	19.7.2 Edit Menu
	19.7.2.1 Undo
	19.7.2.2 Redo
	19.7.2.3 Cut
	19.7.2.4 Copy
	19.7.2.5 Paste
	19.7.2.6 Select All
	19.7.2.7 Find
	19.7.2.8 Replace
	19.7.2.9 Go To

	19.7.3 Options Menu
	19.7.3.1 Editor
	19.7.3.2 Colors

	19.7.4 View Menu
	19.7.4.1 Main Toolbar
	19.7.4.2 Debug Toolbar
	19.7.4.3 Status Bar
	19.7.4.4 Output
	19.7.4.5 Watch
	19.7.4.6 Work Space

	19.7.5 Macro Menu
	19.7.5.1 Download Macro
	19.7.5.2 Save and Download Macro
	19.7.5.3 Debug Macro
	19.7.5.4 Debug Current Macro
	19.7.5.5 Debug Macro X
	19.7.5.6 Debug Macro Y
	19.7.5.7 Reset Program
	19.7.5.8 Break Macro Program Execution
	19.7.5.9 Trace One Step
	19.7.5.10 Animate Macro Execution
	19.7.5.11 Go from Current Pointer Location
	19.7.5.12 Insert/Remove Breakpoint
	19.7.5.13 Remove All Breakpoints
	19.7.5.14 Set Next Statement
	19.7.5.15 Show Next Statement
	19.7.5.16 Show Run Time Error
	19.7.5.17 Update Watch List

	19.7.6 Communication Menu
	19.7.6.1 Enable Shell Com

	19.7.7 Window Menu
	19.7.7.1 New Window
	19.7.7.2 Cascade
	19.7.7.3 Tile

	19.8 Toolbars
	19.8.1 Edit Toolbar
	19.8.2 Debug Toolbar

	19.9 Appendix B – Macro File Editor Application Keyboard Shortcuts

	20 Introduction
	20.1 Interface Specifications
	20.2 The SCServerScope Application
	20.3 Keys Used by the Application
	20.4 Product Notations Revisions

	21 Getting Started
	21.1 Setting up the Object, Baud and Card Type
	21.2 Using the Object from VB
	21.3 VB Code Example
	21.4 Using the Object from Visual C

	22 Object Parameters and Methods Syntax
	22.1 Object Parameters
	22.2 Object Methods

	23 Object Definitions
	23.1 Communication Protocols
	23.2 FlexDC Type Supported

	24 Introduction
	24.1 General
	24.2 The RS232 Communication DLL

	25 The Communication Library - COMDLL.DLL
	25.1 Instructions
	25.2 DLL API Functions
	25.2.1 CreateComDev
	25.2.2 DestroyComDev
	25.2.3 SetupComDevInfo
	25.2.4 OpenComDev
	25.2.5 CloseComDev
	25.2.6 IsConnected
	25.2.7 CopyComInfo
	25.2.8 SendComString
	25.2.9 ReadString
	25.2.10 ReadComBuf
	25.2.11 ReadSizeComBuf

	26 Communication Error Codes
	27 Code Example
	28 Glossary

