emlLoad

Software Version 3.14m

Manual revision O

\) E—
/SEGGER

A product of SEGGER Microcontroller GmbH & Co. KG

2/118 User manual for emLoad , version 3.14

Disclaimer

Specifications written in this manual are believed to be accurate, but are not
guaranteed to be entirely free of error. Specifications in this manual may be
changed for functional or performance improvements without notice. Please
make sure your manual is the latest edition. While the information herein is
assumed to be accurate, SEGGER MICROCONTROLLER GmbH & Co. KG
(the manufacturer) assumes no responsibility for any errors or omissions and
makes and you receive no warranties. The manufacturer specifically disclaims
any implied warranty of fitness for a particular purpose.

Copyright notice

The latest version of this manual is available as PDF file in the download area
of our website at www.segger.com. You are welcome to copy and distribute the
file as well as the printed version. You may not extract portions of this manual
or modify the PDF file in any way without the prior written permission of the
manufacturer. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a
license.

2014 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective
companies.

Brand and product names are trademarks or registered trademarks of their re-
spective holders.

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 3/118

Contact / registration

Please register the software via email. This way we can make sure you will re-
ceive updates or notifications of updates as soon as they become available.
For registration please provide the following information:

Company name and address

Your name

Your job title

Your Email address and telephone number
Name and version of the product you purchased

Please send this information to: register@segger.com

Contact address

SEGGER Microcontroller GmbH & Co. KG
In den Weiden 11

D-40721 Hilden

Germany

Email: support@segger.com

Internet: www.segger.com

Version of software, manual

This manual describes the software emLoad version 3.14l.

Print date: 11.09.2014

Manual | Date By | Explanation

3.14mR0 | 140911 | OO | - Port added: RX, IAR compiler

3.14IR0 |140512 | OO |- RX210 devices added to RX, HEW4 compiler
3.14kR0 | 140417 | OO |- Port added: CM3, ST STM32F40x, IAR compiler
3.14jR0 131014 | OO | - Port added: M32C, Renesas NC308 compiler
3.14iR0 | 130926 | OO |- Port added: CM3, Freescale Kinetis K10, KEIL MDK ARM
- Port added: CM3, ST STM32F20x, KEIL MDK ARM
3.14hR0 | 130801 | OO |- RX63x devices added to RX, HEW4 compiler
3.14R4 1130222 | OO0 |- Port added: CM3, STM32F10x, IAR Compiler
3.14R3 121218 | OO | - Port added: CM3, STM32L15x, IAR Compiler
3.14R2 120604 | OO |- Port added: RX, HEW4 Compiler

3.14R1 111027 | OO |- Port added: CM3, Luminary, IAR Compiler

3.14R0 110530 | OO |- Fixed prototypes for FLASHO_*/FLASH1_* routines.
- Port added: R8C IAR Compiler

3.12R12 |101102 | OO |- Port added: R32C, HEW4 Compiler

- 1M Devices added to R32C port

3.12R11 [101015 | OO |- Port added : ATMEL SAMT7L, IAR Compiler
3.12R10 [100920 | OO |- Port added : CM3, LPC17xx, IAR Compiler

3.12R9 100503 | OO |- Port added : R32C, IAR Compiler

3.12R8 100421 | OO |- AT91SAM7SE devices added to AT91SAM7 port
3.12R7 1100415 | OO |- Port added : M16C/65, IAR Compiler

3.12R6 | 070928 | JE |- Support for block A added to M32C ports

3.12R5 070928 | JE |- M3087 CPUs added to Renesas M32C ports
3.12R4 | 070301 |JE |- ‘Mitsubishi’ replaced with ‘Renesas’

- Renesas M16C port adapted to new IAR workbench
3.12R3 061019 | JE |- Port added : ATMEL Atmega644, IAR-compiler
3.12R2 1060823 | JE |- New port for ARM AT91SAMY7 added.

3.12R1 060623 | JE |- New port for ARM LH754XX added.

3.12R0 060515 | JE |- Support for external flash area added.

3.10R11 |060113 |JE |- New port for M32C and Renesas NC308 compiler added.

© 2014 SEGGER Microcontroller GmbH & Co. KG

4/118 User manual for emLoad , version 3.14

3.10R10 |[051024 | JE |- New port for ARM LPC2XXX added.

3.10R9 050906 | JE |- New devices added to M32C port.

3.10R8 050705 | JE |- Command line options reworked.

3.10R7 |050511 |JE [- New port for Mitsubishi M32C added.

3.10R6 |050420 | JE |- Detailed explanation added for how to use external flash devices.
3.10R5 050411 | JE |- M16C port: Mentioned, that FixVect.xxx may need to be modified
3.10R4 050224 | JE |- New devices added to M16C port

3.10R3 050211 | JE |- New devices added to M16C port

3.10R2 040729 | JE |- Explanation of FLASH RELOCATECODE improved

3.10R1 040527 | JE |- Macros added to configuration chapters

- Available ports added

- Updater revised

3.10R0 | 040525 | JE |- Port added : ATMEL ATmega128, IAR-compiler

3.00R8 040415 |JE |- Port added: Mitsubishi M16C, TASKING-compiler

3.00R7 040406 | JE |- Interrupt processing explained

- Complete revise

3.00R6 | 040330 |JE |- Adapted to new version of PC program

3.00R5 040312 |JE |- FLASHConf.h added

3.00R4 | 040128 | JE |- Routines of USER.c added to chapter « How to port »

- ENABLE_TRANSMITTER and DISABLE_TRANSMITTER added
- Flash routines changed

3.00R3 | 030805 | JE |- Port added: Mitsubishi M16C, NC30-compiler

3.00R2 030521 |JE |- Port added: ARM AT91, IAR-compiler

3.00R1 030411 | JE |- Port added: Mitsubishi M16C, IAR-compiler

3.00R0 | 030306 | JE |- Initial release

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 5/118

Contents
1S3 = 1= PRSPPI 2
(67070} g 1o | a1 8 g Lo] (Lo = TP P P PO PP PP PPPPPPPPPPPN 2
L= T 1= 0 4 F= T € TP 2
(O70]] r= o3 QYA (=To | 111 2= 1 1 o] o DO TP PP P PP PP PP PPPPPPPPP 3
Version of software, ManuUalccoooi i ——————— 3
(701 (=T 01 PP 5
1. ADOUL thiS DOCUMENT ... e e e e e e e e e e e e e e e e e e eeaeeenaeenes 10
P R = 0 g o)1 T 10
1.2. Typographic Conventions for SYNtax............couuuiiiiiii i 10
R T €011 o PP P P PP PP PPPPPPPPPPP 10
2.INtrodUCtioN tO @MILOAA....................oeeeeeeeeeeeeeeeeeeee s aannsssansnnnnnnnnns 11
21.Whatis emLoadoooo oo 11
2.2. Function of the SOftWare...........oooeeieiii e 11
2.3. Availability and FLASH deVICES..........coouiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 11
2.4, CoNfIQUIAtIONo e e e e e e e aeaaan——— 11
3. PC-program: HEXLOGQoooooeeeeiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeaaaaaaaansaananannennnnnnnnnes 12
.. INStAllAtioNo 12
3.2.8tarting HEXLOAQccooeeeeeeeeeeeee 12
R T |V =Y o TU) (=0 U URPRPPPRR 13
K 0 Bt O 1 1= 01V = o T R 13
3.3.2. EQIE IMIBNU ...t a e 13
3.3.3. VIEBW MENU ... e e e e a e e e e e e e e e e e e e e as 14
BRI S = 1o = 1V = o 1 PR 14
B IR TR T O o) 1T o =0 1Y =T o T U 15
3.4. Command liN€ OPLIONSouuuiieiiiii et e et e e e e eees 16
3.4.1. Table of COMMANASccooiiiii e 16
R B b e= 11 4] o] (= SRR 16
3.5. Using the emLoad software...............ooooooiiiiiiiii 17
4. PC-program: UPGALErooeeiiiiiiiiiiieeee ettt 21
4.1. How to exchange the firmwareooooiiiiiiiiiiiiiiiiiieeeee e 21
4.2. HOW the UPQAIEr WOTKSooiiiiiiiiiiie et 21
4.3.USINGIhE UPGALOrcooeoeiiiiiiiei et 23
5. Understanding the BT Lot e e et e e e e e e e e eaees 25
S0 I o LYo = o T 25
I Y/ =T 0 0T Y 0 = T o PSSP 26
TR T | (=T o U o SRR 26
5.3.1. Different types of interrupt processingccoovvveiiiiiiiiiiiiiieeee e, 26
B4, RSB ... e e 27
B5.4.1. FIXEA VECIOK ..ottt e e e et e e e e e e e e s 27
R S o b =Y = To [0 YT 27
B. CONfIQUIAtION ...t e aaaaaaeaaaana 28
6.1. Configuring BTLCON . N. ..o 28
6.1.1. ApPlicatiON NAMEoueiiiee e e 28
6.1.2. HUGE POINTET ... e e e e e e 28
6.1.3. Use of functions for reading and writing 32 bit valuescccoceovviriiinnnnnnn. 29
6.1.4. Wait time after reset ... 29
6.1.5. Write DIOCK SIZE......ccoieeeieii et 29
6.1.6. Transmitter enable / disable ... 29
6.1.7. FEed WatChdOgo e 29
6.1.8. Userflash area ... 30

© 2014 SEGGER Microcontroller GmbH & Co. KG

6/118 User manual for emLoad , version 3.14

6.1.9. Number of data bytes ... 30
6.1.10. PASSWOI..... e it e e e e e e e e e e e e e e e e e ee e e e e eeeeennnes 31

6.2. Configuring FLASH_CONfIg.huuiiiiiiiiiiii s 31
6.2.1. BasiC data tyPeS ...coeeeeiie e e 31
6.2.2. HUGE POINET ... 31
6.2.3. Relocate flash routinesS..........ooouuiiiii i 32

7. Generic program modules Of the BTLuuuiiiiiiiiiiiiiii e 33
G T [0V (o TN o To] o PP 34
8.1. CPU related routines, CPU.C ... oo e e e 34
o Tt O B O U 1 { ST 34
8.1.2. CPU_GetNamMeE() ..cceeee e 34

& T G T O U o1 TSSO 34
8.1.4. CPU _POII() oo 34
8.1.5. CPU_StartApplication()ccoeeieeieicee e 35

8.2. UART related routines, UART .C....uiiniieii et e e e e eanees 37
o B U Y o I = (SO 37
8.2.2. UART _INIE() coeeeeeeeee e 37
8.2.3. UART _POI() ittt e e e e e e e e e e e e e e s 38
S L U 7N o I 1= o Lo o I T 38

8.3. FLASH related routines, FLASH.C.......oooriiiiii e 39
8.3.1. FLASH_EraseSecCtor().......ccouuiiiiiiiiee e 39
8.3.2. FLASH_GetNUMSECIOrS()...ccieeeeeiieiiiiie ettt 39
SR R I o] o AT 41 (=Y o [39

8.4. User routines, USER.C........oooiiiiiii e 40
8.4. 1. USER _INIt() ceeeeeee e 40
o U] o G (1 { () O 40
8.4.3. USER _POI() ccceeeeeeeeeeeeeee e 40

8.5. Using external flash roUtiNeScoooiiiiiiiiiii e 41
8.5.1. Supported hardwWare..............ooo oo 41
8.5.2. CoNfigUuratioNccoiiiee e —————— 42
8.5.3. FIash SeCtoringccoooiiiiiiiii 43
8.5.4. Additional OPLIONScoueiie e 43

Lo B T (=T 4 U o PO 45
8.6.1. Different types of interrupt processing...........oouueeiiiiiiiiiiicicc e, 45

S BNV =1 o] [0T o € RSP 47
9.1. RENESAS MTBC ...t et e e e e e e et e e e e e e e e e eenaa e e eaeas 48
9.1.1. SUPPOMEd CPUS: ... 48

S B 2 |V 1= o T YA 4 =T o T 48
9.1.3. CPU specific configuration file.............o 50
9.1.4. CPU specific configuration parameters:ccccoeeeiiiiiiiiiiiceie e, 50
9.1.5. FLASH specific configuration file.............cc 50
9.1.6. FLASH specific configuration parameters:cccooooiviiiiiiiiiiieeeee, 50

S I O Y o] o o1 =T 51
9.1.8. Renesas NC30-COMPIIETcoouuiiiiiiie e 52
9.1.9. TASKING-COMPIUIET ... et e e e e e e e e 53

9.2. RENESAS MTBCBSeeiiiiiieeeeeee e e e e e e e e et e e e e e e e e e e e saaaaaeeeas 54
9.2.1. SUPPOrEd CPUS: ... 54

S B Y 1= o o T oV 1 1 = T o LTSRN 54
9.2.3. CPU specific configuration file............. 55
9.2.4. CPU specific configuration parameters:ccceeeeiiiiiiiiiicicie e, 55
9.2.5. FLASH specific configuration file............o 55
9.2.6. FLASH specific configuration parameters:cccooooiviiiiiiiiiieeeeeeee, 55

S I A Y o o] g o1 =T 56

9.3. RENESAS MB2C ...ttt e e e e e e e e e e e e e e e e e e 57

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 7/118

9.3.1. SUPPOEd CPUS: ... e e s 57
S G T2 |V [T o g To] oV o 4 =T o L 57
9.3.3. CPU specific configuration file ... 59
9.3.4. CPU specific configuration parameters:...............cceiiiiiiiiiiiiiiciie e, 59
9.3.5. FLASH specific configuration file ... 59
9.3.6. FLASH specific configuration parameters:............ccoooeeiiiiiiiiiciie e, 59
S IR T Y o] o] o1 = S 60
9.3.8. Renesas NC308-COMPIIET......ccoouuuiieiiiiie e 61
9.4. RENESAS RB2C ... ettt e e et e e ettt e e e e e e e e e e eeann e e e e e e eeaeeees 62
9.4.1. SUPPOEA CPUS: ... e 62
9.4.2. MEMOTY IM@P ¢ttt e e e e e 62
9.4.3. CPU specific configuration file ..., 63
9.4.4. CPU specific configuration parameters:.............oouiiiiiii i, 63
9.4.5. FLASH specific configuration file ..o 63
9.4.6. FLASH specific configuration parameters:............ccooiviiiiiiiiiiii e 63
9.4.7. JAR-COMPIIET ... et e e e e e eaas 64
9.4.8. RENESAS-COMPIIET ... 65
0.5, RENESAS RX ..ttt e e et ettt bbb e e e e eeanaaa 66
9.5.1. SUPPOrEd CPUS: ... e e 66
8 IR T2 |V [T o o To] oV o 4 =T o U 66
9.5.3. CPU specific configuration file ... 67
9.5.4. CPU specific configuration parameters:...........ccccceiieiiiiiiiiiiiciee e, 67
9.5.5. FLASH specific configuration file ... 67
9.5.6. FLASH specific configuration parameters:............ccoooeeiiiiiiiiiiiie e, 67
9.5.7. RENESAS-COMPIIET ... e 68
9.5.8. JAR-COMPIIET ... e e eeaas 69
9.6. RENESAS RBC ... e e ettt e e e e e e e e e e e e e e e eeeeneees 71
9.6.1. SUPPOEA CPUS: ... 71
9.6.2. MEMOIY M@ ..ttt e e e 71
9.6.3. CPU specific configuration file ..., 72
9.6.4. CPU specific configuration parameters:.............oouiiiiiii i, 72
9.6.5. FLASH specific configuration file ... 72
9.6.6. FLASH specific configuration parameters:............ccoooviiiiiiiiiii e 72
9.6.7. JAR-COMPIIET ... e e eeaa 73
9.7. ARM ATOTMA0B00o e e e e e e e e e e e 74
LS T IR STU o] o o] (= To [@1 o U 1= SRR 74
O.7.2. MEMOTY IM@P ..ttt e a e 74
9.7.3. CPU specific configuration file ..., 75
9.7.4. CPU specific configuration parameters:.............ooiiiiiiiiiiiicii e 76
9.7.5. JAR-COMPIIET ... e e e e e e e e e eaas 77
9.8. ARM AT O TS AMYT ... 78
9.8.1. SUPPOEA CPU S ...t 78
9.8.2. MEMOIY M@P ..ttt e 78
9.8.3. CPU specific configuration file ..., 79
9.8.4. CPU specific configuration parameters:.............oouiiiiiii i 79
9.8.5. FLASH specific configuration file ..o 79
9.8.6. FLASH specific configuration parameters:............ccoooiiiiiiiiiiii e 79
O9.8.7. IJAR-COMPIIET ... e eeaan 80
9.9. ARM ATOTSAMYTL ... 81
9.9.1. SUPPOEA CPUS: ...t 81
9.9.2. MEMOTY M@P ..ttt 81
9.9.3. CPU specific configuration file ..., 82
9.9.4. CPU specific configuration parameters:.............oouiiiiiiieiiiiiiiii e 82
9.9.5. FLASH specific configuration file ... 82

© 2014 SEGGER Microcontroller GmbH & Co. KG

8/118

User manual for emLoad , version 3.14

9.10.

9.11.

9.12.

9.13.

9.14.

9.15.

9.16.

9.9.6. FLASH specific configuration parameters:cccooooiiiiiiiiiiiii e, 82
9.9.7. JAR-COMPIIETo e e e e e e eanans 83
F o Y I A7 O 84
9.10.1. SUPPOEA CPU S ...ui et e e e 84
9.10.2. MEMIOIY M@ . eeees 84
9.10.3. CPU specific configuration file..............cccoveiiiiiiiic e, 85
9.10.4. CPU specific configuration parameters:ccoooiiiiiiiiiiiiiiiiee e, 85
9.10.5. FLASH specific configuration file..............ooovriiiiiiii e, 85
9.10.6. FLASH specific configuration parameters:cccoooooiiiiiiiiiniee e, 85
9.10.7. JAR-COMPIIETttt e e e et e e e e et e e eeeaes 86
F o Y I 072 0 O G 87
LS B I I IS 10 T o] oo T 1 (= To I @ = U LS RPN 87
S I BV Y/ [T 4o To] Y o 1 = T o R PPPPPPPPP 87
9.11.3. CPU specific configuration file...............ccovriiiiiiiiii e, 88
9.11.4. CPU specific configuration parameters:ccoooieiiiiiiiiiiiiiiee e, 88
9.11.5. FLASH specific configuration file..............oooomiiiiiii e, 88
9.11.6. FLASH specific configuration parameters:ccooooiiiiiiiiiinieeeieen 88
9.11.7. KEIl-COMPIIETot e e e e e e eees 89
ATMEL ATMEGAT28 ... 90
9.12.1. SUPPOEA CPU S ...ttt e e e 90
S D Y/ 1= 4oL Y 1 1 = T o PP PPPPPPPPP 90
9.12.3. CPU specific configuration file..............cccovriiiiiiiii e, 90
9.12.4. CPU specific configuration parameters:cccoooiiiiiiiiiiiiiiiee e, 91
9.12.5. JAR-COMPIIET ... ettt e e e e e e e eeeens 92
ATMEL ATMEQABA4S ... eaeaeaes 93
9.13.1. SUPPOEA CPU S ..oei et e e eees 93
S B 2 Y/ 1= 4o To] Y 1 1 = T o PP PPPPPPPPPN 93
9.13.3. CPU specific configuration file..............cccoeviiiiiiii e, 93
9.13.4. CPU specific configuration parameters:ccoooiiiiiiiiiiiiiiiiee e, 94
9.13.5. JAR-COMPIIET ... ettt et e e e e e e e e e eeaes 95
COorteX-M3 LUMINAIY ...ceiiiiiiiiiiiiiie s 96
LS B 7 S IS 10 T o] oo 1 (= To I @4 = U =3 PR 96
S V1= 4oL Y 1 1 = T o PP PPPPPPPPP 96
9.14.3. CPU specific configuration file..............cccovriiiiiiii e, 97
9.14.4. CPU specific configuration parameters:cccoooiiiiiiiiiiiiiiiiee e 97
9.14.5. FLASH specific configuration file..............ooooviiiiiii e, 97
9.14.6. FLASH specific configuration parameters:ccoooooiiiiiiiiiiii e, 97
9.14.7 . JAR-COMPIIETttt et e e e e e e e e e eeeans 98
(0700 (o) Y I I O o G 99
9.15.1. SUPPOEA CPU S ...ui et e e e 99
9.15.2. IMEMIOIY M@ .ot e e e e e e e e 99
9.15.3. CPU specific configuration file..............ccoovrmiiiiiii e, 100
9.15.4. CPU specific configuration parameters:ccooeeiiiiiiiiiiiiiieeeeeeeeeeen 100
9.15.5. FLASH specific configuration file.............ooooviiiiiiiii e, 100
9.15.6. FLASH specific configuration parameters:ccooooviiiiiiiiiieeeeeen, 100
9.15.7. JAR-COMPIIETottt e e e 101
COorteX-M3 STMB2F 10X, ..eeeeeeeeeeeiieieeeeieieeeeeeeeeeeeeeeeeeeeeeaeaeeasessessesssessssnssnnsnnssnsnnnnnnnnes 102
LS B S T IS 10 o] oo 1 (=To I @4 = U 3 PO 102
9.16.2. MEMIOTY MNP e e e 102
9.16.3. CPU specific configuration file..............ccooemiiiiiiii e, 103
9.16.4. CPU specific configuration parameters:cccoooeiiiiiiiiiiiiiieeeeeeeeee, 103
9.16.5. FLASH specific configuration file.............cooovmiiiiiiic e, 103
9.16.6. FLASH specific configuration parameters:ccooooriiiiiiiiieeieeen, 103
9.16.7. JAR-COMPIIET et e e 105

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 9/118

9.17. CorteX-M3 STMB 2L 15X i e 106
9.17.1. SUPPOEA CPUS: ...t 106

S B V2 =T 4 T Y 1 0= T o J 106
9.17.3. CPU specific configuration file ..., 107
9.17.4. CPU specific configuration parameters:.............ooouiiiiiiiiiiiiiiiiieee e 107
9.17.5. FLASH specific configuration fileccoovirriiiii e 107
9.17.6. FLASH specific configuration parameters:.............ccoooiiiiiiiiiiiiiieeeeeeeeeee 107
9.17.7. JAR-COMPIUIET ...t e e e e e 108
9.18. Cortex-M3 STMB2F 20Xcceeeeeee e 109
9.18.1. SUPPOEA CPUS: ...oeeeiieeee et 109
9.18.2. MEMOIY IME@P ..ttt 109
9.18.3. CPU specific configuration file ..., 110
9.18.4. CPU specific configuration parameters:.............ooouiiiiiiiiiiiiiiiiieeee e 110
9.18.5. FLASH specific configuration file ..., 110
9.18.6. FLASH specific configuration parameters:.............ccoooiiiiiiiiiiiiiiieeeeeeeeee 110
9.18.7. KEIL MDK ARM-COMPIIETcceeeieeeeeieeeeeeee et 111
9.19. Cortex-M3 STMB2F 40Xccceeeeeeeeeeeeeeee e 112
9.19.1. SUPPOIEA CPUS: ...oeiiiieeee et 112
9.19.2. MEMOIY M@ ..ttt 112
9.19.3. CPU specific configuration file ..., 113
9.19.4. CPU specific configuration parameters:..............ooiiiiiiiiiiiiiiiiiiiee e 113
9.19.5. FLASH specific configuration file ... 113
9.19.6. FLASH specific configuration parameters:.............ccoooiiiiiiiiiiiiiiieeeeeeeeee 113
9.19.7. JAR-COMPIUIET ... et e e e eeaaaans 114
9.20. Cortex-M3 Freescale Kinetis K10 oo 115
9.20.1. SUPPOEA CPUS: ...oeeiiiiee et e 115
9.20.2. MEMOIY M@ ..ttttttttiitiiittttteteeteee e 115
9.20.3. CPU specific configuration file ..., 116
9.20.4. CPU specific configuration parameters:.............oouuiiiiiiiiiiieiiiiicieee e 116
9.20.5. FLASH specific configuration file ... 116
9.20.6. FLASH specific configuration parameters:.............ccooiiiiiiiiiiiiiiiiiieeeeeeeeeee 117
9.20.7. KEIL MDK ARM-COMPIIETuuiiiiiiiiiiiiiiiiiiiiiiiii e 117

10 TR 1 o = 118

© 2014 SEGGER Microcontroller GmbH & Co. KG

10/118 User manual for emLoad , version 3.14

1. About this document

This guide describes how to install and use the emLoad software for embed-
ded applications.

emlLoad consists of two parts: The bootstrap loader (BTL) and the HEXLoad
software for the PC.
Parts of the source code for the target hardware are listed and explained, es-

pecially those which may be adapted to the target processor and the actually
used FLASH memory.

1.1. Assumptions
This guide assumes that you already have a solid knowledge of the following:

e The software-tools used to build your application (assembler, linker, "C"-
compiler)

e The C-language

e The target processor

If you feel your knowledge of C is not good enough, we recommend The C Pro-

gramming Language by Kernighan and Richie, which describes the standard in
C-programming and in newer editions also covers ANSI C.

1.2. Typographic Conventions for Syntax
This manual uses the following typographic conventions for syntax:
Regular size Arial for normal text

Regul ar size courier for text that you enter at the com
mand- pronpt and for what you see on your display

Regul ar size courier for systemfunctions nentioned in the
t ext

Reduced size courier in a franme for
program exanpl es

Boldface Arial for very important sections

Italic text for keywords

1.3. Glossary
The following table shows the abbreviations used in this manual:
Abbreviation Meaning
BTL Boots trap loader
UART Universal asynchronous receiver transmitter
SFR Special function register

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 11/118

2. Introduction to emLoad

2.1. What is emLoad

emlLoad is a software which allows program updates and verification in em-
bedded applications via serial interface. The software consists of a Windows
program and a program for the target application (BTL).

The only things required are an embedded application with a FLASH-type
memory for program storage, a communications interface (type RS-232) and
the software for application and PC: emLoad.

2.2. Function of the software

After RESET the BTL is started instead of the application program. The BTL
waits for a configurable time (default .5 sec.) for a data frame from the PC. If
the communication with the PC times out, the BTL checks if a valid application
is in the flash memory. If this is so, it is started.

The only difference for the application program when running with bootloader is
that it is located in different areas of the flash memory and that it is not started
right after RESET; but with a certain delay. The application program is other-
wise not affected by the BTL and has all resources available. It can use the en-
tire RAM of the target system and can use interrupts without limitation.

2.3. Availability and FLASH devices

The software is written completely in ANSI-"C" and can therefore be used on
most microcontrollers. The only things needed to port the BTL for a particular
application are: a "C"-module for access to the peripherals of the microcontrol-
ler and a "C"-module containing the programming algorithm for the FLASH-
memory chip(s). For latest information about supported devices, please visit our
web site. Ports for other microcontrollers can be made in short time.

2.4. Configuration

The target program can be configured to meet the requirements of the applica-
tion by modifying a configuration file BTLCONF. H. Adjustable are baudrate, ap-
plication name, system frequency of the CPU, interface selection, reset delay
and the optional password.

Further customizations - i.e. special initialization of the hardware - can be
achieved by modifying the source code. Using emLoad with an external FLASH
chip is no problem, even automatic recognition of the used FLASH chip is pos-
sible through reading of device- and manufacturer ID.

© 2014 SEGGER Microcontroller GmbH & Co. KG

12/118 User manual for emLoad , version 3.14

3. PC-program: HEXLoad

The PC-Program is very easy to use. Any hex file can be loaded and trans-
ferred to the BTL for a program update. HEXLoad is a 32 bit Windows applica-
tion and can be started from the Explorer or from the command line. The follow-
ing is a "screen shot" of the PC-program with loaded hex file programming a

target chip:

/A Hexload ¥3.00 I[=] B3

File Edit Wiew Target Options indow Help

A project | =] B3| 2. Target =] E3

Hexfile: M16C_BTL.muot Range: C0000 - FBFEF

COM Paort: 1 CRC: —

Baudrate: 57600 Application: BTLM16C Dec 5 2002 09:05:36
CPU: M16C
BTL ¥ersion BTL V2.34

HE:I-: Current data - [C: Work\GSCDemo4all Output',M16C_EW23'BTL \Exe'\™M16C_BTL.mot]

Addess: [0:00000 [k2w

Address (B [1 [2[3[a4[5[6 2?2 [8[2[A[B[C[D[EJF]JASCII |ﬂ
CABAA |CA 8@ EC B8 18 8@ 17 @8 E? @@ FF FF FF FF 8@ 8@
CAB1A |FF FF A8 B8 B0 B8 B0 B8 BA A1 BC A8 BA @A 54 65 Te

cag2a |73 74 BAA B8 54 6F 7?5 63 6B 4D 61 6E 8@ 4D 61 62 st..TouchMan.Mai
CAB3A |6E 54 61 73 6B B8 86 A7 BC @@ Bl A? BC 84 C2 A2 nTask...........

CAB48 |AC B8 A B8 64 B CB BA 22 @1 88 A1 E3 @1 37 82d...>..... 9.
CAB5A |8A B2 D4 B2 18 @3 53 @3 87 A3 B2 83 D4 83 EC 83 L
CABGA |FE B3 94 B4 80 6@ 22 @@ 51 A8 77 A0 A 88 C5 88 PQiy.....
CAa7A |EA 6@ 6D 61 2E A1 4E A1 6C 81 8% 81 A3 81 BD 81 N.l.......

CAA2A |D5 01 EB 01 00 02 OC 00 14 00 B3 60 B2 60 A2 @O
CAA9@ |GC DA En OB OC OO OO OO OO OO 86 GO GC B B A
CAARA |0@ DA 40 OB OB 50 OO OO 64 OB B0 69 B B 6A 48 .. B._P..d..i..j0@
CAAEA |G@ 6A 98 08 6A A4 BB 6A A BB 6A AR 48 6A AR 98 .J..j-.J--3-Bj..
CAACA |6A AA A4 6A A 55 69 AY B0 64 6A 40 50 6R 40 40 j..j.Ui..djePje@
CAADA |1A 98 0@ 1n 90 00 B6 N4 B0 B6 A4 B8 B1 58 FF 88 P..
CAAEA |0@ DA DA O OO O FF FF FF 08 B3 6@ 61 6@ DE @88
CAAFA |GC 0@ E8 2n OC B8 F5 2n OC B8 F8 2n BC 88 FB 2R ... %___%_ __%__.
CA1lAA |BGC 0@ 02 4E OC 08 7D 4D OC 08 F6 52 OGC 6@ B3 53 .._.N..>M.._.R...S

8 c

5

CA1iAd |BC BA 18 53 BC 8@ 2D 6B BC BA AC 63 AC AA 4F 63 ...

CA128 AC A oA (B BAC BAA DB 62 AC BB 15 53 AC BA Fo 62 . _jh...h_..5... h

FA130 A" GA FR A2 AC_ AR CR A? Ar AR AA OA AR AQ AR GO h h Jid
HEx 00 _[O]x]
Mumber of bytes: 52066 =]

Range of file: CO000 - FEFEF
Connected with target
CRC of loaded file; 1173

& 2

|Ready i

3.1. Installation

There is no special installation necessary. Just copy the HEXLoad. EXE file into
any sub-directory you like. No special DLLs or runtime libraries are needed.

Attention: | HEXLoad is a 32 bit application and works under Windows NT,
2000 and XP!

3.2. Starting HEXLoad

Start HEXLoad like you are used to start any Windows application.

Attention: | Make sure you only start one instance of HEXLoad.

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 13/118

3.3. Menu items

HEXLoad is easy to use because design of the menu items is similar to many
Windows applications. Following the different items are explained in detail.

3.3.1. File Menu

Open: Open any hex file saved on disk [Fle Edit ¥iew Target Optior
or network Qpen... Chrl+0
Save: Save changed file Save Chr+S
Save As: Save changed file under different Save As...
i name . . . Cpen Project, .,
Open Project: Open a project file saved on disk Sevie P
or network Save Project As,.,
Save Project: Save project file '| ,
Save Project As: Save project file under different =~ RerentEles
Recent Projects 3
name
Recent files: List of most recently used hex Exit Alt+F4
files
Recent Projects: List of most recently used projects
Exit: Exits HEXLoad software
3.3.2. Edit Menu
Relocate: Relocate target program Edit Yiew Target
Relocate
Enter offset | Delete rangs

Offset (hex) |20000) ar. |

Enter the new desired offset to relocate the program.
Attention: | Use this option with care! A relocated program may not work at its

new offset!
Delete range: Deletes the given range from the loaded data
Enter range |

Start Address ||:nnuu ak. |
End Address ||:1nnd Cancel |

Enter the range of data to delete.

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14

3.3.3. View Menu

Hex dump:

Project:

Target:

Log:

3.3.4. Target Menu

Check Blank:

Get Checksum:

Verify loaded PG:

Verify all bytes:

VerifyChecksum:

Clear:
Program:

Make Valid:
Auto:

Start Program:
Read back:

Wiew Target o

He:x dump
Project
Target
Log

Opens a dump window with the possibility of
editing the data.

Opens the project window containing the
connection parameters and the name of the
loaded hex file.

Opens the target window. It shows whether
HEXLoad is connected to a target or not.
Opens the log window. HEXLoad l|ogs all operations to this
window.

Checks if the user area of FLASH
chip is blank

Calculate Checksum of target
user area

Verifies if every byte of the loaded

|Iarget Options Window Help

Check. blank.

Get checksum F3
Verify loaded pragram F4
Verify all bytes

program is identical in the target el sl =
user area Clear Fe
Verifies all bytes of the target user Progranm F7
area if is identical with the loaded Make valid Fa

fuka Fa

program

Verifying checksum of loaded hex
file and target user area

Erase user area of FLASH
Program the loaded file into the user area of the FLASH.
This works only if the FLASH is blank

Validate application program. The application program will
be executed automatically only if it has been declared valid
clear, program, verify CRC, make valid if CRC is O.K.
Start application program, leave BTL

Read data from FLASH memory after the following dialog:

Skart program

Read back

Enter range |

] I
Cancel |

Start Address |cunnn

End Address |FBFEF|

Enter start and end address and press ok to read any area
of the target

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 15/118

3.3.5. Options Menu

Project: Opens a tab control with two pages to Options Window Help
change the project properties. Project... ALT-F7

Communication page:
options ——————_——————__EH|

Cormmmurication | Passwaord I

Baudrate RYEOD

Port [com3 =]

k. I Cancel e[

Change baudrate and ComPort to the required values.

Password page:
optins @

Commurication Easswurdl

Pazaword I’“‘“’1

k. I Cancel e[

If a password is required by setting in the Conf i g. Hfile
you have to enter it here to get access to FLASH applica-
tion memory area.

© 2014 SEGGER Microcontroller GmbH & Co. KG

16/118 User manual for emLoad , version 3.14

3.4. Command line options

3.4.1. Table of commands

auto Clear, program, verify and make valid.

baudr at e<BAUDRATE> Set baudrate.

checkbl ank Checks if target memory is blank.

cl ear Clear target.

conxPORT> Set COM-port.

exi t[, <TI MEQUT>] Finish application after job. Waits TIMEOUT
ms for a connection, O for endless.

makeval i d Makes the target valid.

passwor d<PASSWORD> Set password.

program Write current data into Target.

r eadback<STARTADR- ENDADR> | Reads a range of bytes from target.

r el ocat e<VALUE> Relocates loaded data.

saveas<Fl LENAMVE>. <EXT> Save data file (Use *.mot or *.hex as EXT).

verify Evaluates if target checksum is the same as
from the current data.

? Shows all available commands.

e All commands are identical with the commands in the menu bar.

e All commands are processed from left to right.

e |[fusing - exi t Hexload will stop execution if any error occurs. The return
code in this case is = 0.

3.4.2. Examples

|Hex| oad. exe flasher2_v160. not -passwordAW -auto —exit I

In this example Hexload first reads the file flasher2_v160.mot, sets the pass-
word to "AW", execute the commands clear, program, verify and makevalid and
finish execution.

‘Hexl oad. exe -readbackFC0000- FC1000 -saveasC: \ TEMP\ RANGE. I\/DT|
—exit

Reads the area 0xFC0O000-0xFC1000, saves it as c:\temp\range.mot and finish
execution after job is done.

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 17/118

3.5. Using the emLoad software

Program updates via serial communication port is possible by using the Win-
dows program HexLoad.exe.

To update an application program the following steps have to be executed

Connect
COM cable
Start
PC Program
Set
ComPort and
Baudrate
Load
application
program
Start BTL
Manual AUTO
Erase
application
memory
Programming Automatic
execution of:
‘ Erase
Program
verity Verify CRC
Program or Validate
CRC
Validate
Start

© 2014 SEGGER Microcontroller GmbH & Co. KG

18/118 User manual for emLoad , version 3.14

Serial communication

Connect the communication cable to your hardware and a COM port of your
PC.

Starting HEXLoad

Start HEXLoad like you are used to start any Windows application.

Com port and baudrate

Check the settings for communication port and Options Window Help
Baudrate by Menu Opti ons - Contruni cati on. Project... ALT-F7

pons @K

Comrmunication I Paszword I

Baudrate A7ROD
Pert [com3 |

k. I Caricel | a1

Select the necessary Baudtate and ComPort, click OK to accept.
If Communication is OK, in the target window of HEXLoad you should see de-

tailed information about Range, Application, CPU and the BTL software version
like shown in the following screen shot:

,ﬂ Target !EI
Range: cooon - FBFEF

CHC: —

Application: BTLM16C Dec 5 2002 09:05:36
CPU: M16C

BTL Yersion BTL ¥2.34

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 19/118

Load application program

Any Intel-hex or Motorola-hex file can be opened. Just use the Fil e - Open
command or shortcut Ct r | +O and select the necessary file like you are used
to.

Starting the BTL

The BTL will be started and activated after each RESET. It will remain active
until the application program is started. During this time it is able to communi-
cate and to execute received commands. As soon as the application software is
started it is no longer possible to communicate with the BTL. The BTL can be
restarted anytime by the application software.

The application software will be started by the following conditions:

e Memory contains a valid program and no communication with HEXLoad.
(Communication time-out period usually 0.5 sec.)

e immediately after a START command

Erasing the memory

After receiving the ERASE MEMORY command the BTL sends an acknowl-
edge and erases the complete FLASH memory excepting the boot-block con-
taining the BTL. Erasing the memory can take up to a few seconds depending
an the size of the memory. A message about success or not is send back via
the serial interface.

By erasing the memory the application program is marked as invalid and the
BTL remains active.

Programming

Programming of the FLASH memory is done by transmitting Hex file in data
packages via serial communication. Each line is started with the PROGRAM
command. If the hex line was received without errors the allocation of all data
inside the application memory is checked and immediately programmed. A
message about success or not is send back via the serial interface.
Programming a complete Hex file is simply done by the Menu: Target -
Pr ogr amor by pushing <F7>.

© 2014 SEGGER Microcontroller GmbH & Co. KG

20/118

User manual for emLoad , version 3.14

Verify program update

To verify the program update you have two options: Verifying the complete pro-
gram or verifying the checksum.

Verification of the application program byte by byte:

It is possible to verify the content of the program memory. The result will be
transmitted via serial interface.

Sending of hex files and evaluation of the BTL messages is managed by the
HEXLoad program. Use the Menu funktion Target - Verify <F4>.

Verifying checksum:

HEXLoad calculates the checksum of the available program memory of the
FLASH Memory block by addition byte wise. The result is send as a 16bit Word.
Just use the Menu function Tar get - Get Checksum(<F3>).

Validating the program

To start a new program automatically after RESET it has to be validated. Either
by automatic mode or manually by the HEXLoad Menu command Tar get -
MakeVal i d (<F8>). Otherwise the BTL will wait for next commands via the se-
rial interface and not automatically start the application program. The topmost
16 bytes of the user memory area are reserved (4 bytes used) for this purpose.

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 21/118

4. PC-program: Updater

An easy way to update a target via serial communication port with a new appli-
cation is the use of the Updatertool:
Firmware Updater ¥1.00 |

I1pdater tool

Firrmare: -

\
’>/ secGer| ot = d

Connection to target establizhed

The Updater is an add-on and not part of the emLoad software. It has been
designed to give the end user the possibility of an easy firmware update without
using the HEXLoad program. It is shipped as source code, which is required to
modify and to recompile the tool.

4.1. How to exchange the firmware

The firmware to be used by the Updater is embedded in the EXE file of the
tool. To exchange the firmware, the Updater has to be recompiled. The follow-
ing steps show how to add new firmware:

e Compile and link the application program to be used and generate a Mo-
torola ‘S’ record file.

e Use the tool Bi n2C. exe shipped with the Updater to convert the Mo-
torola ‘S’ record file to a ‘C’ file.

e Rename the ‘C'file to Firmnare.c and replace the file Firm
war e\ Fi r mnar e. ¢ of the Updater with the new one.

e Open the Updaterworkspace.

e Open the include file Mai n. h and adapt the configuration settings to
your needs. The BAUDRATE macro defines the baudrate used to com-
municate with the target. The FI RMAMRE macro defines the text shown in
the application window right of ‘Firmware’.

#defi ne BAUDRATE 57600
#define FI RMMRE "-* |
e Rebuild the project. The ‘ready to use’ Updater with the new firmware
can be found under Qut put \ Updat er\ Rel ease\ Updat er . exe.

4.2. How the Updater works

After the Updater is started it shows the dialog shown above which gives the
user the possibility to set up the COM port of the PC. After the Updater tool
gets contact with the target it shows a notification message in the application
window. Now the user should only press the ‘Start’ button or the <ENTER> key

© 2014 SEGGER Microcontroller GmbH & Co. KG

22/118 User manual for emLoad , version 3.14

to update the target. The tool now clears the flash, programs the new file into
the flash, makes a CRC check and makes the target application valid.

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 23/118

4.3. Using the Updater

The following steps show how to use the Updater.
e Connect the target UART with the desired COM port of the PC.
o Start the Updater. and select the desired COM port.

Firmware Updater ¥1.00 |

Idpdater tool

Firrmare: -

\
apSEGGER [

| Start I

e Connect the target to the power supply.

Firmware Updater ¥1.00 |

I1pdater tool

Firrmare: -

\
EbSEGGER oMem e =]

Connection to target establizhed

© 2014 SEGGER Microcontroller GmbH & Co. KG

24/118 User manual for emLoad , version 3.14

e Press the ‘Start’ button or the <ENTER> key.

Firmware Updater ¥1.00 |

|lpdater kool

Firmweare: -

\
/seceer| o T d

Get CRC
50

I

Cancel i

)

Firmware Updater ¥1.00 |

Ilpdater tool

Firrmare; -

\
/ SEGGER

’ COM port: |E'3'M1 vI

T arget updated successzfully

e Now further targets can be updated.

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 25/118

5. Understanding the BTL

After RESET, the BTL is started. It then tries to detect a communication request
from the PC via UART. If the PC has been detected, the BTL keeps running
and the user can use HEXLoad to program, read back and erase the flash. If
there is no communication request or the user closes HEXLoad, the BTL
checks if there is a valid application program in the flash. If a valid application
program is present, the BTL starts it using the reset vector of the application
program.

5.1. Flowchart

The diagram below shows the flowchart of the BTL software:

‘ Start)

v

Initialize CPU/UART

CPU_Init()
UART_Init()

.

d
il

Poll the UART
UART_Poll()

PC request no

detected?

Timeout expired?

Reset timeout

v

Handle PC request

L

alid application
detected?

Restore SFR's

CPU_Exit()
UART_Exit()

v

tart application by usin
the reset vector
CPU_StartApplication()

© 2014 SEGGER Microcontroller GmbH & Co. KG

26/118 User manual for emLoad , version 3.14

5.2. Memory map

The diagram below shows a typical memory map used with the BTL:

Reset vector

Fixed vector
table of BTL

BTL BTL bank(s)

Code of BTL

16 bytes BTL data area
Reset vector

Fixed vector
table of user
application

Application

User bank(s)

application

Code of user application

The upper 16 bytes of the user area are reserved by the BTL data area. This
area typically contains the validation code which is used to tell the BTL that a
valid application program is in the flash memory.

5.3. Interrupts

The BTL itself does not use interrupts.
Interrupts can be used in the application program without limitation.
In order to achieve this, different strategies have to be used for different CPUs.

5.3.1. Different types of interrupt processing

There are basically 3 different types of interrupt processing:
1. Interrupt vectors with fixed base address
2. Interrupt vectors with variable base address
3. Vector less interrupt processing
The following describes how to manage these systems in emLoad.

5.3.1.1. Fixed vectors

The memory area of the vector table typically contains the reset vector. The
vector table should be part of the BTL which should include code to forward the
interrupts to the addresses defined in the vector table of the application pro-
gram. This design of interrupt handling is a older CPU design used for example
by NEC KO , NEC K4 or 6502 CPUs. The PC is loaded with the contents of a
fixed address:

PC = (Addr)

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 27/118

5.3.1.2. Variable vectors

Systems using this modern type of interrupt handling works well with the a BTL.
Typically the startup code of the application program sets the base address of
the vector table. The BTL needs no code to forward interrupts. This type of in-
terrupt handling is used for example by Renesas M16C and M32C.

The PC is loaded with the contents of the base address + an offset:

PC = (Base Addr + Off)

5.3.1.3. Fixed address

The third concept of interrupt handling is setting the PC register to a specific
value. If an interrupt occurs the code at a fixed address depending on the inter-
rupt number is executed. Sample systems using this type of interrupt handling
are ARM and NEC V850.

The PC is loaded with a fixed address:

PC = Addr

Code in RAM

If using a system like an ARM CPU the application program is often executed
from RAM. In this case the BTL needs no code for interrupt forwarding. The
startup code of the application program first copies the application into the de-
sired RAM area and then executes it from RAM.

Code in ROM

5.4. Reset

If using a system like a NEC V850 the application program is typically executed
from ROM. In this case the BTL should forward the interrupts by including a
jump to the interrupt code of the application program.

There are basically 2 ways of behavior after RESET: using a reset vector con-
taining the address to be loaded into the PC (Fixed vector) or starting the exe-
cution at a fixed address.

To make sure the BTL is started after RESET, the BTL has to reside in the
same bank as the reset vector or the start address of the CPU. The application
program has to be linked so that the reset vector / start address has been
moved down by the size of the BTL bank + 16 bytes.

5.4.1. Fixed vector

This method loads after RESET the contents of the PC register from a fixed
address, the reset vector and starts execution from the address pointed by it. In
this case the application program should include its start address located at the
reset vector address of the application program. The BTL uses this address to
start the application program. Samples for starting a CPU by this way are Re-
nesas M16C or M32C.

5.4.2. Fixed address

This kind of CPUs starts execution after RESET at a fixed address. In this case
the application program should include code at the start address plus the size
of the BTL bank to jump to the entry point of the application program. Examples
for this type of RESET processing are NEC V850 or ARM.

© 2014 SEGGER Microcontroller GmbH & Co. KG

28/118 User manual for emLoad , version 3.14

6. Configuration

This chapter explains the configuration options of emLoad. The folder Confi g
contains 2 configuration files:

e The file BTLConf . h contains general configuration options.

e FLASHConf . h configures the flash driver.

6.1. Configuring BTLConf.h

The following table gives an overview of the configuration macros of emLoad:

Macro Description
APPNANME Application name displayed by HexLoad.
BTL_HUGE Defines the keyword for using huge pointers.
BTL_RW U32NO Activates the use of functions for reading and writ-

ing 32 bit values from/to BTL data.packets. Default
value is 1 (use functions).

BTL_WAI TO_NMS Time to wait for a communication request.

BTL_WRI TE_BLOCK_SI ZE| Number of bytes for accessing the flash.

DI SABLE_TRANSM TTER | Disables the transmitter after sending data.
ENABLE_TRANSM TTER | Enables the transmitter before sending data.

FEEDWATCHDOG Triggers a watchdog.

FLASH _USER_LEN Defines the length of the user area including the
reserved bytes.

FLASH _USER_START Defines the beginning of the flash user area.

FLASH_USER_RESBYTES | Defines the number of bytes used by the BTL in
the application area. The default value is 16 bytes.
PASSWORD Password used to communicate with target.

The configuration file BTLConf.h is included by BTL.h, the main include file of
emLoad. The following items have to be defined in this file:

6.1.1. Application name

Description
The application name is displayed by HEXLoad in the target section.

Example

#defi ne APPNAME "BTLML6C " _ DATE " " TI VE

6.1.2. Huge pointer

Description

The macro BTL_HUGE is used by the BTL to define flash memory pointers. If
the used memory model of the compiler has short pointers (16 bit) per default
and the flash memory is located above OxFFFF the definition of this macro is
needed. The used keyword should also make sure, that the element pointed at
is not limited to one 64 Kbyte page.

Example

|#defi ne BTL_HUGE _ far I

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 29/118

6.1.3. Use of functions for reading and writing 32 bit values

Description

The BTL needs to read/write 32 bit values from/to communication data packets.
If the target works in little endian mode and non aligned addresses for 32 bit
values are allowed, the use of the functions is not required. In this case the use
of the functions can be disabled. This reduces the size of the BTL.

Example

#define BTL_RWU32NO O /* Disable the use of the functions */ I

6.1.4. Wait time after reset

Description

The BTL waits for the defined time for a data frame from the PC. If it does not
receive a data frame from the PC within this time, the BTL starts the application
by accessing the RESET vector of the application.

Example

#define BTL_WAI TO_MB 500 I

6.1.5. Write block size

Description

Some flash devices can not be programmed byte by byte but block by block.
This macro specifies the number of bytes for accessing the flash.

Example

#define BTL_WRI TE_BLOCK_SI ZE 16 I

6.1.6. Transmitter enable / disable

Description

If the receive and the send lines (Rx/Tx) use the same data line, it may be nec-
essary to enable the transmitter before sending data and to disable it when
transmission is completed. For this purpose the macros
ENABLE_TRANSMITTER() and DISABLE_TRANSMITTER() can be defined.
The macro ENABLE_TRANSMITTER() is executed before sending a data
packet to the PC. After sending the entire data packet the macro
DISABLE_TRANSMITTER() is executed. If these macros are used, ensure that
the function UART_Send1() does not return until the complete byte has been
sent.

Example

#def i ne ENABLE_TRANSM TTER() P10D
#defi ne DI SABLE_TRANSM TTER() P10

(1<<6); P10 &= ~(1<<6)
(1<<6)

6.1.7. Feed watchdog

Description

© 2014 SEGGER Microcontroller GmbH & Co. KG

30/118 User manual for emLoad , version 3.14

This macro can be used to trigger a watchdog. It should not contain a function
call, because the macro also will be executed from some parts of the BTL relo-
cated to RAM.

Example

|#defi ne FEEDWATCHDOG P6 | = 0x80 I

6.1.8. User flash area

Description

The user flash area defines the area to be managed by emLoad. If the used
CPU has internal flash, emLoad also supports an additional external user flash
area. You have to define 2 macros to specify a user flash area:
e FLASH USER START
Defines the beginning of the user area.
e FLASH USER LEN
Defines the length of the user area including the reserved bytes.
A second area can be defined as follows:
e FLASH USER1_START
Defines the beginning of the external user area.
e FLASH USER1_LEN
Defines the length of the external user area.

Example

Your flash area reaches from 0x40000 to Ox7FFFF and contains the following
sectors:

0x40000 — Ox4FFFF
0x50000 — Ox5FFFF
0x60000 — Ox6FFFF
0x70000 — Ox77FFF
0x78000 — Ox7FFFF

The reset vector of your CPU is located in OX7FFFC — Ox7FFFF. So the BTL
has to reside in the upper sector and the user flash area reaches from 0x40000
— OxX77FFF. Your BTLConf.h should include the following entries:

#defi ne FLASH USER START 0x40000
#define FLASH USER LEN 0x38000

Add. information

Some ports of emLoad contain default values of the user flash area depending
on the used CPU. In this cases the definition of the flash user area is not re-
quired, if the whole flash should be available for emLoad.

6.1.9. Number of data bytes

Description

To mark the application program as ‘valid’ the BTL writes a validation sequence
at the end of the application area. This macro defines the number of data bytes
reserved for the BTL.

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 31/118

Example

#def i ne FLASH_USER_RESBYTES 256 I

6.1.10. Password

Description

If you need to protect your target with a password you can define it in
BTLConf.h as an text replacement macro. When using HEXLoad the user has
to specify this password under “Options/Password”. The password would be
evaluated by emLoad. If the password does not match emLoad would not
communicate with HEXLoad .

Example

#defi ne PASSWORD "abc" I
6.2. Configuring FLASH_Config.h

The following table gives an overview of the configuration macros of emLoad:

Macro Description
FLASH_U8 Definition of a 8 bit unsigned value.
FLASH_U16 Definition of a 16 bit unsigned value.
FLASH_U32 Definition of a 32 bit unsigned value.
FLASH_HUGE Used to define pointers to the flash memory.

FLASH_RELOCATECODE | Defines if the flash module should copy the routines
for writing and erasing into RAM. Default is 1, which
means the routines will be copied into RAM.

The configuration file FLASH_Config.h is included by the flash memory mod-
ules of emLoad. The following items have to be defined in this file:

6.2.1. Basic data types

Description

The following data types needs to be defined: FLASH U32, FLASH U16 and
FLASH U8. The macro FLASH HUCE is used within the flash modules to define
pointers to the flash memory. For details please refer to the chapter “Configur-
ing BTLConf.h”.

Example

#define FLASH U32 U32
#define FLASH Ul6 U16
#defi ne FLASH U3 us

6.2.2. Huge pointer

Description

The macro FLASH HUGE is used within the flash modules to define pointers to
the flash memory. It has the same function as the macro BTL_HUGE. For details
please refer to the chapter “Configuring BTLConf.h”.

© 2014 SEGGER Microcontroller GmbH & Co. KG

32/118 User manual for emLoad , version 3.14

Example

|#defi ne FLASH HUGE BTL_HUGE I

6.2.3. Relocate flash routines

Description

This macro defines whether the code for writing and erasing the flash is copied
into RAM or not. If the BTL executes code in the same flash module as the sec-
tors to be modified, the code needs to be relocated. This is required, because
executing code in a flash module is not possible while it is in rewriting mode.
If relocation is enabled, the BTL uses a buffer for code relocation.
Before writing to the flash or erasing a sector, the flash module relocates (cop-
ies) the right routine to the buffer and starts execution at the buffer, typically by
a subroutine call.
This can be problematic for different reasons. Some of these reasons are:
e CPU has separate data and instruction caches (e.g. ARM9, MIPS).
e Compiler generates code with absolute jumps.
e Thumb/ARM mode switches on ARM CPUs (When code executes in
thumb mode and "interwork" is used).
e Compiler generates code which does not fit in buffer area.
e Compiler generates code which references PC-relative data located far
away from the routine.
e Interrupts occur during execution of the relocated code, while flash mod-
ule is not ready (code required for ISR may not be accessible).
Each port of the BTL has been tested with its configuration as it has been
shipped. If the relocation does not work in a different environment, please
check the following: Look at the assembly output and make sure that
e the relocated code does not contain absolute jumps.
e the buffer is big enough.
e there is no other problem which prevents the relocated routine from exe-
cuting properly.
o if the CPU has separate data and instruction caches, the instruction
cache is disabled.

Example

|#defi ne FLASH RELOCATECCDE 1 I

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 33/118

7. Generic program modules of the BTL

The BTL has been designed to be easily portable to other CPU cores and Flash
devices. It has therefore been divided into different modules:

BTL core: mai nBTL. C
The module actually containing the BTL:

Application specific portion: User . C

This module is responsible to supply application specific behavior like a special
init. Per default, the routines contained herein have no functionality.

Handling the communication: CRCCCI TT. C

The module contains code to calculate the 16-bit CRC checksum.

Managing multiple flash areas: Fl ashiap. C

This module is required if more than one flash area needs to be handled (inter-
nal and external flash).

© 2014 SEGGER Microcontroller GmbH & Co. KG

34/118 User manual for emLoad , version 3.14

8. How to port

The only thing you have to do is to adapt the CPU and the UART-module lo-
cated in the PORT-folder. When starting the BTL the right processor mode has
to be configured, a timer has to be started and the UART communication has to
be enabled. The following chapter explains the routines called by the BTL.

8.1. CPU related routines, CPU.c

8.1.1. CPU_Exit()

Description

This routine has to set all special function registers modified in the CPU module
(in CPU_Init(), CPU_Poll() or CPU_StartApplication()) back to their initial state
after reset. This is necessary, because the application program expects all sfrs
to be in the state documented as “after RESET”.

Prototype
void CPU Exit(void);

8.1.2. CPU_GetName()

Description

This routine has to return a pointer to the CPU-name. It would be shown by
HEXLoad in the target description.

Prototype
const char * CPU_Get Nane(void);

Example

char* CPU_Get Narme(void) {
return "ML6C';

}

8.1.3. CPU_Init()

Description

This routine has to make sure the right processor mode has been selected, the
clock mode has to be configured properly and a timer has been started. The
timer would be used by CPU_Poll to notice if a millisecond has been passed.

Prototype
void CPU I nit(void);

8.1.4. CPU_Poll()

Description

This routine is called regularly from the main loop of the BTL. It is used as time
base for the BTL and has to notice if a millisecond has been elapsed. The time

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 35/118

is used to determine when the communication to the PC is timed out and the
application has to be started. There are two options:

e Precise timing using a hardware timer.

e Simple timing using a counter.

Prototype
int CPU Poll (void);

Return value
1 if a millisecond has been elapsed, otherwise 0.

Example
The following sample uses a hardware timer:

int CPU Poll (void) {
if (TBOIC & (1<<3)) { /* Check if interupt request flag has been set */

TBOI C &= ~(1<<3); /* Clear interupt request flag */
return 1; /* A nms has el apsed */

}

return O; /* No new nms has el apsed */

}

The following sample uses a counter:

static int _Cnt;

int CPU Poll (void) {
if (++_Cnt == 50) {

_Cnt = 0;
return 1; /* A nms has el apsed */
}
return O; /* No new nms has el apsed */

}

8.1.5. CPU_StartApplication()

Description

This routine would be called to start the application program program. It is
called under 2 circumstances:

e |f the timeout time (BTL_WAITO_MS, configured in BTLConf.h), has ex-
pired, no communication request from the PC has been detected and a
valid application program has been programmed into the target.

e If the user chooses “Start Program” from the target menu from HEX-
Load.

In dependence of the way of starting the CPU (using a reset vector or starting
at a fixed address) the function should

e either jump to the address pointed by the reset vector of the application
program (if using a reset vector)

e orjump to a fixed address, typically the start address plus the size of the
BTL bank (if using a fixed address)

Prototype
void CPU Start Application(void);

Example

© 2014 SEGGER Microcontroller GmbH & Co. KG

36/118 User manual for emLoad , version 3.14

The following sample implementation uses a reset vector. It jumps to the ad-
dress pointed by the reset vector of the application program:

typedef void (voi dRoutine)(void);

void CPU _StartApplication(void) {
(**(voi dRout i ne**) (FLASH_USER_START +
FLASH USER LEN — 16 - 4))():; /* use RESET vector */

The following sample implementation uses a fixed address. It jumps to the start

address plus the size of the BTL bank:
typedef void (voi dRoutine)(void);

void CPU _StartApplication(void) {
(*(voi dRout i ne*) (FLASH_USER _START)) () ;

}

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 37/118

8.2. UART related routines, UART.c

8.2.1. UART_Exit()

Description

This routine has to set all special function registers modified in the UART mod-
ule (in UART _Init(), UART_Poll() or UART_Send1()) back to their initial state af-
ter reset. This is necessary, because the application program expects all sfrs to
be in the state documented as “after RESET”. Before doing so, this routine
needs to make sure that all bytes which should have been transmitted (by call-
ing UART_Send1) have already been sent. Do not deinitialize the UART before
the last byte has been transmitted!

Prototype
voi d UART_Exit(void);

Example
void UART_Exit(void) {
while (I(UCL & (1<<1))); /* Wit until TB enpty */
while (I(UCO & (1<<3))); /* Wit until Tx finished */

UMR = 0x00; /* lock Sio, error reset */
uc1 = 0x00; /* Lock Rx and Tx */
SRIC = 0x00; /* Disable interrupt */

8.2.2. UART _Init()

Description

This routine has to enable the UART communication. It should be useful if the
configuration macros of BTLConf.h would be used to configure the communica-

tion:
e BAUDRATE - Baud rate to communicate
e UARTSEL - Used to select the UART
e UPCLOCK - CPU frequency
Communication parameters:
e 8 data bits
e Odd parity
e 1 stop bit
Prototype
void UART I nit(void);
Example
void UART Init(void) {
UVR = 0x00; /* Lock Sio, error reset */
uco = 0x10; /* RTS/ CTS di sabl ed, clock divisor 1 */
UBRG = BAUDDI VIDE; /* Calcul ated Baudrate */
uc1 = 0x00; /* Lock Rx and Tx */
UVR = 0x05 /* 8 Data */
+(0<<5b) /[* 0: 0dd parity */
+(1<<6) [* 1. parity enable */
+(0<<7); /* 0: no sleep */
UCON = 0x00; [* transmit-interrupt on buffer enpty */
uc1 = 0x05; /* enable reception and transnition */
}

© 2014 SEGGER Microcontroller GmbH & Co. KG

38/118 User manual for emLoad , version 3.14

8.2.3. UART_Poll()

Description
This routine has to return if a character has been received.
Prototype
i nt UART_Pol | (unsi gned char * p);
Parameter Description
P Pointer to an unsigned character to store the received character.

Return value

1 if a character has been received, otherwise 0. If 1 the received character has
to be stored to *p.

Example

int UART_Pol | (uchar * p) {
ui nt Si ol nput;
if (I(SRIC & (1<<3))) { /* Return if nothing to do */
return O;

}
SRIC & ~(1<<3); /* Clear interupt request flag */
/* Get new character */
Si ol nput = URB;
if (Siolnput & 0xf000) {
/* Error handling */
char unr = UWR

UVMR = 0xO; /* Reset */

UCl &= ~(1<<2); /* Disable Rx */

UVR = unt;

UCl | = (1<<2); /* Enable Rx */
} else {

/* Store received character to *p */
*p = Siolnput;
return 1;

}

return O;

}

8.2.4. UART Send1()

Description

This routine has to send 1 character. Before sending the character is has to
make sure the output buffer has been transmitted.

If the macros ENABLE_TRANSM TTER() and DI SABLE _TRANSM TTER() are
used, ensure that this function does not return until the complete byte has been
sent.

Prototype
voi d UART_Sendl(unsi gned char c);

Parameter Description
C Character to be send.

Example

voi d UART_Sendl(uchar c) {
while (1 (UCL & (1<<1))); /* Wait until Transmitter Buffer enpty */
UTB = c; /* Transnmit data byte */

}

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 39/118

8.3. FLASH related routines, FLASH.c

If you need to manage CPU internal flash memory you have to include the
empty flash driver FLASH.c to your project and to adapt the routines to your
flash.

8.3.1. FLASH_EraseSector()

Description
This routine has to erase all sectors of the CPU internal flash.

Prototype
i nt FLASH Er aseSector (unsigned int Sectorlndex);

Parameter Description
Sect or | ndex | Zero based index of sector to be erased.

Return value
0 if sector has been erased successfully, otherwise 1.

8.3.2. FLASH_GetNumSectors()

Description
Returns the number of physical flash sectors.

Prototype
i nt FLASH Get Nuntect ors(void);

Return value
Number of physical flash sectors.

8.3.3. FLASH_WriteAdr()

Description
This routine has to write the given array into the flash.

Prototype

int FLASH WiteAdr(void * pDest,
const void * pSrc,
FLASH U32 Len);

Parameter Description
pDest Pointer to the destination address
pSrc Source pointer.

Len Number of bytes to be written.

Return value

0 if all bytes have been written successfully, otherwise a pointer to the address
on which the problem has been occurred.

© 2014 SEGGER Microcontroller GmbH & Co. KG

40/118 User manual for emLoad , version 3.14

8.4. User routines, USER.c

The routines located in this module have no functionality by default. They can
be used for additional initialization or other purposes.

8.4.1. USER_Init()

Description

This routine is called after CPU_Init(). A typical use of this function could be
additional hardware initialization.

Prototype
void USER I nit(void);

8.4.2. USER_Exit()

Description

This routine is called before the application program will be started. This routine
can be used to restore the reset values to the registers used in USER_Init().

Prototype
voi d USER Exit (void);

8.4.3. USER_Poll()

Description
This routine is called after CPU_Poll().

Prototype
voi d USER Pol | (voi d);

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14

41/118

8.5. Using external flash routines

emLoad includes a NOR flash chip driver for any erase sector oriented flash
chip. It can handle most of the standard 29x or 28x flash chips.

8.5.1. Supported hardware

The NOR flash driver can be used with the popular NOR-flash devices. Cur-
rently the following devices are supported:

Manufacturer

Device

AMD

Am29F002B/T

Am29F004B/T

Am29F008B/T

Am29LV002B/T

Am29LV004B/T

Am29LV008B/T

Am29LV040B

Am29F200B/T

Am29F400B/T

Am29F800B/T

Am29F800B/T

Am29LV200B/T

Am29LV400B/T

Am29LV800B/T

Am29DL16xB/T

Am29DL32xB/T

Fujitsu

MBM29F800TA/TB

Hyundai

HY29F800B/T

Intel

28F128J3xxx

28F320C3xxx

Macronix

MX29F004B/T

Sharp

LH28F320xxx

STMicroelectronics

M29F800AT/AB

Any

Any AMD compatible flash device

Any

Any INTEL compatible flash device

Most other NOR flash devices are compatible with one of the supported de-
vices. Thus the driver can be used with these devices or need a little modifica-
tion, which can be easily done. Please get in touch with us, when you experi-
ence having problem modifying the flash access routines.

© 2014 SEGGER Microcontroller GmbH & Co. KG

42/118 User manual for emLoad , version 3.14

8.5.2. Configuration

To configure the NOR flash driver, please set the following macros according
your hardware in the “FLASH_Config.h” (found in the ‘Config’ directory)

To use NOR flash driver, please define one of the following macros:

Manufacturer Device Macro
Am29DL16xB FLASH 29DL16xB
Am29DL16xT FLASH 29DL16xT
Am29DL32xB FLASH 29DL32xB
Am29DL32xT FLASH 29DL32xT
Am29F002B FLASH 29F002B
Am29F002T FLASH 29F002T
Am29F004B FLASH 29F004B
Am29F004T FLASH 29F004T
Am29F008B FLASH 29F008B
Am29F008T FLASH 29F008T
Am29F200B FLASH 29LV200B
Am29F200T FLASH 29LV200T
Am29F400B FLASH 29L.v400B
Am29F400T FLASH 29LV400T
Am29F800B FLASH 29LVvV800B
Am29F800B FLASH 29F800B
Am29F800T FLASH 29LV800T

AMD Am29F800T FLASH 29F800T
Am29LV002B FLASH 29LV002B
Am29LV002T FLASH 29LV002T
Am29LV004B FLASH 29LV004B
Am29LV004T FLASH 29LV004T
Am29LV008B FLASH 29LV008B
Am29LV008T FLASH 29LV008T
Am29LV040B FLASH 29LV040B
Am29LV200B FLASH 29LV200B
Am29LV200T FLASH 29LV200T
Am29LV400B FLASH 29LV400B
Am29LV400T FLASH 29LVv400T
Am29LV800B FLASH 291LV800B
Am29LV800T FLASH 29LV800T
Am29DL16xB FLASH 29DL16xB
Am29DL16xT FLASH 29DL16xT
Am29DL32xB FLASH 29DL32xB

Fujitsu MBM29F800TB FLASH 29F800B
MBM29F800TA FLASH 29F800T

Hyundai HY29F800B FLASH 29F800B
HY29F800T FLASH 29F800T
28F320J3xxx FLASH 28F320J3
28F640J3xxx FLASH 28F640J3
28F128J3xxx FLASH 28F128J3

Intel 28F256J3xxx FLASH 28F256J3
28F320C3xxx/B FLASH 28F320B
28F320C3xxx/B FLASH 28F320T

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 43/118

Manufacturer Device Macro
Macronix MX29F004B FLASH 29F004B
MX29F004T FLASH 29F004T
Sharp LH28F320BJE FLASH 28F320B
LH28F320TJE FLASH 28F320T
M29F800AB FLASH 29F800B
STMicroelectronics | M29F800AT FLASH 29F800T
Any Any AMD compatible |FLASH_29XX(Note 1)
Any Any Intel compatible |FLASH 28XX (Note1)
(Note 1)

For these “generic” defines, the flash sectoring needs to be defined. For details
please refer to the chapter Flash sectoring

If you intend to use 2 flash chips (both 16bit wide), that combined define a 32bit
flash module, please use the following macro to enable both the correct sector-
ing of the flash module and correct programming algorithm.

Macro Explanation
FLASH 32BI T Set to 1 enables the “32bit mode” algorithm

8.5.3. Flash sectoring

If a flash chip is selected, the flash driver knows the sectoring of the chip. Only
if a “generic” define for the chip selection is used, the sectoring needs to be de-
fined. This is done by defining the Sector addresses for all relevant sectors of
the chip e.g. as follows (in case of a 256 Kbyte device with 4 sectors):

#defi ne FLASH_SAO (0x000000) /* 16K Boot block */

#defi ne FLASH SA1 (0x004000) /* 8K Paraneter block */
#defi ne FLASH _SA2 (0x006000) /* 8K Paraneter block */
#defi ne FLASH _SA3 (0x008000) /* 240 Main nenmory bl ock */
#defi ne FLASH_SA4 (0x040000) /* End */

8.5.4. Additional options

The following table shows the additional configuration options available for the
NOR flash driver:

Macro Explanation
FLASH 8BI' T Selects the 8 bit mode. Set to 1 if the driver should
work in 8 bit mode. The default value depends on
the selected flash. Note that not each flash sup-
ports both modes.
FLASH 16BI' T Selects the 16 bit mode. Set to 1 if the driver should
work in 16 bit mode. The default value depends on
the selected flash. Note that not each flash sup-
ports both modes.
FLASH 32BI T Set to 1 enables the “32bit mode” algorithm.
FLASH_BASEADR This defines the base address of the flash chip. It is
important for setting up erase and write commands
to the device.
FLASH _RELOCATECODE | (Note 1)

© 2014 SEGGER Microcontroller GmbH & Co. KG

44/118

User manual for emLoad , version 3.14

(Note 1)

FLASH RELOCATECODE defines whether the code for writing and erasing the
flash is copied into RAM or not. If emLoad executes code in the same flash
module as the sectors to be modified, the code needs to be relocated. This is
required, because executing code in a flash module is not possible while it is in
rewriting mode.

If relocation is enabled, emLoad uses a buffer for code relocation.
Before writing to the flash or erasing a sector, the flash module relocates (cop-
ies) the right routine to the buffer and starts execution at the buffer, typically by
a subroutine call. This can be problematic for different reasons. Some of these
reasons are:
CPU has separate data and instruction caches (e.g. ARM9, MIPS).
Compiler generates code with absolute jumps.
Thumb/ARM mode switches on ARM CPUs (When code executes in thumb
mode and "interwork" is used).
Compiler generates code which does not fit in buffer area.
Compiler generates code which references PC-relative data located far away
from the routine.
Interrupts occur during execution of the relocated code, while flash module is
not ready (code required for ISR may not be accessible).
If the relocation does not work in a different environment, please check the
following:
e Look at the assembly output and make sure that the relocated code does
not contain absolute jumps. The buffer is big enough.
e Check if there is no other problem which prevents the relocated routine
from executing properly.
e Check if the CPU has separate data and instruction caches, the instruc-
tion cache is disabled.

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 45/118

8.6. Interrupts

As described in a prior chapter the BTL sometimes should forward interrupts to
the application program. This part of the BTL should be written in assembler
and could not be included in the generic part of the software.

8.6.1. Different types of interrupt processing

There are basically 3 different types of interrupt processing:
1. Interrupt vectors with fixed base address
2. Interrupt vectors with variable base address
3. Vector less interrupt processing
The following describes how to manage these systems in emLoad.

8.6.1.1. Fixed vectors

The interrupt handler is located in the BTL. This interrupt handler has to jump to
the interrupt handler of the application program. This is basically an indirect
jump, using the vector of the application program. If the CPU has such an indi-
rect jump, things are easy; the interrupt processing in the BTL consists of a sin-
gle jump indirect instruction for each interrupt vector.

If the CPU does not have such an instruction, things are more complicated. In
this case, a series of instructions is required, basically doing the following:
Reserve space on the stack for return address

e Save registers
e Read vector and write into reserved space on stack
e Restore registers
e Return
Example

The following sample shows how to forward the interrupts of the fixed vector ta-
ble of a Renesas M16C CPU:

EE R O Sk S I S S O S kS kO

*

* Functi on macro

*

EE R O O Sk S O O Rk S S I
I SR_HANDLER MACRO | sr, Adr

PUBLI C I sr

Isr:

PUSH. W #0 ; push 2 dummy bytes

PUSH. B #0 ; push 1 dunmy byte

PUSHM A0, RO ; push used regs

STC SP, A0 ; get SP

LDE.W (Adr - 04010H + 0, RO ; load new PGl and PCmto RO

MOV. W RO, 4[A0] ; modify PO and PCm on stack

LDE.B (Adr - 04010H) + 2, ROL ; load new PCh to ROL

MOV. B ROL, 6[A0] ; modify PO and PCm on stack

POPM A0, RO ; pop used regs

RTS ; use rts for junp

ENDM

EE R R I Sk S I o S I S O

*

* CODE

*

EE R R I Sk S I o S I S O

RSEG CODE

I SR_ HANDLER __undefined_i nstruction_handl er, 0fffdch

I SR_ HANDLER __overfl ow_handl er , Of ffeOh

© 2014 SEGGER Microcontroller GmbH & Co. KG

46/118 User manual for emLoad , version 3.14

| SR_ HANDLER __ break_i nstruction_handl er , Of ffedh
| SR_HANDLER __address_mat ch_handl er , Of ffe8h
| SR_HANDLER __si ngl e_st ep_handl er , Offfech
| SR_HANDLER _ wat chdog_ti ner_handl er , Of fffOh
| SR_HANDLER __DBC_handl er , Offffah
| SR_ HANDLER __NM _handl er , Offff8h
END

8.6.1.2. Variable vectors

Systems using this modern type of interrupt handling works well with the a BTL.
Typically the startup code of the application program sets the base address of
the vector table. The BTL needs no code to forward interrupts. This type of in-
terrupt handling is used for example by Renesas M16C and M32C.

8.6.1.3. Fixed address
CPUs of this type load the PC with a fixed value.

Code in RAM

No interrupt handling is required, since the application writes its own interrupt
handler into the RAM. (Typical for ARMs with remapping).

Code in ROM

The interrupt handler is located in the BTL. This interrupt handler has to jump to
the interrupt handler of the application program. This is basically a direct jump,
to the interrupt handler of the application program. Typically the CPU has such
a direct jump and things are easy:; the interrupt processing in the BTL consists
of a single jump instruction for each interrupt vector.

Example

The following sample shows how to forward the interrupts of a NEC V850 sys-
tem:

org 10h
jr 2010h

org 20h
jr 2020h

org 30h
jr 2030h

org 40h
jr 2040h

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 47/118

9. Available ports

The table below lists all currently available ports.

Port

Supported CPU’s

Generic

Should be adapted to a desired target

78K4_IAR

NEC 78K4

ARM_AT91SAM7

(please take a look to the subchapter ARM
AT91SAM7)

ARM_AT91SAM7L

(please take a look to the subchapter ARM

AT91SAM7L)
ARM_AT91M40800_IAR Arm AT91M40800
ARM_AT91M55800_IAR Arm AT91M55800

CM3_LM3

(please take a look to the subchapter Cortex-M3
Luminary)

CM3_LPC17xx

(please take a look to the subchapter Cortex-M3
LPC17xx)

M16C20_IAR

Renesas M30201F6

M16C60_IAR

(please take a look to the subchapter M16C)

M16C60_NC30

(please take a look to the subchapter M16C)

M16C60_TASKING

(please take a look to the subchapter M16C)

M16C65_IAR

(please take a look to the subchapter M16C65)

M16C80_IAR

Renesas M30800FCFP, M30800FCGP,
M30803FGFP, M30803FGGP

M16C80_NC308

Renesas M30800FCFP, M30800FCGP,
M30803FGFP, M30803FGGP

M32C IAR (please take a look to the subchapter M32C)
M32C NC308 (please take a look to the subchapter M32C)
R32C _HEW4 (please take a look to the subchapter R32C)
RX HEW4 (please take a look to the subchapter RX)
R8C IAR (please take a look to the subchapter R8C)

MIPS_VR4181A_GHSM2K

VR4181A

V850SA1_GHSM2K

NEC yPD70F3017A

V850SA2_IAR

NEC uPD70F3201, uPD70F3201Y

V850SF1_GHSM2K

NEC yPD70F3079Y

The following subchapters describe some of the emLoad ports currently avail-
able in detail. If the CPU of the target system you are interested in is not listed
here, please contact us. May we can provide you with some sample code even

if the CPU is not listed here.

© 2014 SEGGER Microcontroller GmbH & Co. KG

48/118

User manual for emLoad , version 3.14

9.1. Renesas M16C

9.1.1. Supported CPU’s:

M30280F6HP,
M30280F8THP,
M30280FAVHP,
M30281F8HP,
M30281FATHP,
M30290F8VHP
M30290FCHP
M30291F8THP
M30291FAVHP
M30622F8PFP,
M30624FGPFP,
M30626FHPGP,
M30627FJPGP,
M30620FCMGP,
M30620FGLGP,
M30624FGGP,
M30624FGLGP,
M306NOFGTFP,
M30620FCNFP,
M30624FGNFP,
M306N4FCVFP,
M306N4FGVFP,

9.1.2. Memory map
The diagram below shows the memory map of the M16C/62 memory.

M30280F6THP,
M30280F8VHP,
M30281F6HP,
M30281F8THP,
M30281FAVHP,
M30290FAHP
M30290FCTHP
M30291F8VHP
M30291FCHP
M30622F8PGP,
M30624FGPGP,
M30627FHPGP,
M30620FCAFP,
M30620FGFP,
M30624FGAFP,
M30624FGMFP,
M30625FGGP,
M306NAFGTFP,
M30620FCNGP,
M30624FGNGP,
M306N5SFCTFP,
M30262F6GP,

M30280F6VHP,
M30280FAHP,
M30281F6THP,
M30281F8VHP,
M30290F8HP
M30290FATHP
M30290FCVHP
M30291FAHP
M30291FCTHP
M30620FCPFP,
M30625FGPGP,
M30626FJPFP,
M30620FCAGP,
M30620FGGP,
M30624FGAGP,
M30624FGMGP,
M30625FGLGP,
M3062GF8NFP,
M30624FCNFP,
M30624FGNHP,
M306N5SFCVFP,
M30262F8GP

M30280F8HP,
M30280FATHP,
M30281F6VHP,
M30281FAHP,
M30290F8THP
M30290FAVHP
M30291F8HP
M30291FATHP
M30291FCVHP
M30620FCPGP,
M30626FHPFP,
M30626FJPGP,
M30620FCMFP,
M30620FGLFP,
M30624FGFP,
M30624FGLFP,
M306NBFCTFP,
M3062GF8NGP,
M30624FCNGP,
M306N4FCTFP,
M306N4FGTFP,

FFFFF
Reset
BTL Bank(s) NMI
DBC
(Note 1) X1
BTL data area Watchdog timer
(Note 1) X2
Fixed vector table Single step
(Note 1) X3
User area Address match
(Note 2) X4
BRK instruction
Overflow
Undefined instruction
Special page
vector table
00000

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 49/118

Note 1: The addresses X1-X3 depend on the target CPU. The BTL needs 8K
of ROM and is located at OxFEOOO-OxFFFFF. If using a target with a 16K sector
at the end of the flash, the address X1 is OxFCO0O0O. If using a target with a 8K
sector or 2 4K sectors at the end, the address X1 is OxFEOQO.
The address X2 can be calculated as follows: X2 = X1 — 0x10.
The address X3 can be calculated as follows: X3 = X1 — 0x34.

Note 2: The beginning of the user area depends on the target. The address X4
is typically the first address of the flash area, for example OxFCO00O for a target
with 256K of flash memory.

The BTL resides in the top bank of CPUs internal FLASH. Unfortunately this
bank is 8 or 16kb in size (the BTL uses only approx. 5kb), but you loose the en-
tire bank(s) for your application program. Since the RESET vector is located in
this bank, the BTL is automatically started after RESET.

The RESET vector of the application program is moved down in memory by
0x4010 or 0x2010 bytes depending on your target CPU. The application pro-
gram can be compiled and linked the same way as without BTL; you only have
to change the memory locations in the XCL-file as shown below.

© 2014 SEGGER Microcontroller GmbH & Co. KG

50/118 User manual for emLoad , version 3.14

9.1.3. CPU specific configuration file

The BTL is configured by the BTLCONF. Hfile.

This file is self explaining and may look like the following:
/* CPU and UART specific defines */

#defi ne UPCLOCK 20000000 /* [Hz] >/

#defi ne UARTSEL 1 /* select uart */

#defi ne BAUDRATE 57600L /* baudrate */

/* Common defines */

#def i ne APPNANVE "BTLML6C " __DATE__ " " __TIME__

#defi ne PASSWORD .

#defi ne BTL_WAI TO_MS 500 /* wait time after reset */
/* before app. is started [ns] */

9.1.4. CPU specific configuration parameters:
Par anet er Meaning

UPCLOCK Microprocessor clock frequency [Hz]. Sample:
10000000 for 10MHz
16000000 for 16 MHz

UARTSEL Selects the UART used for communication.
Should be:
0: UARTO
1: UART 1

BAUDRATE Baudrate used for serial communication

(1200 ... 115200)

9.1.5. FLASH specific configuration file

The flash area is configured by the FLASH Confi g. h file.

This file is self explaining and may look like the following:

#i f ndef FLASH_CONFI G_H
#def i ne FLASH_CONFI G_H

/* Use BTL.h for the basic type definition */
#i ncl ude "BTL. h"

/* FLASH specific data types */
#define FLASH U32 U32

#define FLASH Ul6 Ul6

#defi ne FLASH U8 us

#defi ne FLASH HUGE huge

/* Define CPU type */
#defi ne MB0262F8GP

/* Include the file FLASH Select.h after the CPU type definition */
#i ncl ude "FLASH Sel ect. h"

#endif /* Avoid multiple inclusion */
__|

9.1.6. FLASH specific configuration parameters:

Par anet er Meaning

M30262F8GP Definition of the used CPU type. One of the CPU'’s
listed under “Supported CPU’s” has to be defined.
Depending on the used CPU the BTL uses target
depending default values for the user flash area.
Furthermore it tells the BTL what kind of flash
memory (HND or DINOR) is used.

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14

51/118

9.1.7. IAR-compiler

9.1.7.1. Used tools

Tool Version
Comopiler 3.10A
Linker 4.59|
Assembler 3.10A
Workbench 4.3°

9.1.7.2. Compiling and linking

The project file should be opened by double click from the Windows Explorer.
Now you can modify BTLCONF. Hand rebuild the BTL. The actual BTL will be in

the EXE-subfolder.

Link file: User.xcl

The M16C port for IAR contains a linker command file for the application pro-
gram, USER.xcl. This linker command file should be used as a starting point.
The file below shows a link file according to the memory map above for a target
with 256K of flash memory. It may be changed if using an other target.

9.1.7.3. Additional program modules
File
Cl ean. bat
ML6C | AR V310A. dep
ML6C | AR V310A. ewd
ML6C | AR V310A. ewp
ML6C | AR V310A. eww
PORT\ BTL. xcl
PORT\ CPUML6C. h
PORT\ FI XVECT. s34
PORT\ FLASH_Sel ect . h
PORT\ USER. xcl

Explanation

Removes the compiler output

Project file

Project file

Project file

Workspace file

Linker command file for the BTL

Special function register definitions for M16C
Pass on fixed vectors, may need to be modified
Defines defaults for flash user area and flash type
Linker command file for the application program

© 2014 SEGGER Microcontroller GmbH & Co. KG

52/118 User manual for emLoad , version 3.14

9.1.8. Renesas NC30-compiler

9.1.8.1. Used tools

Tool Version
Compiler 4.00r2
Linker 3.20.00
Assembler 4.00r2

9.1.8.2. Compiling and linking

The project should be rebuild using the batch file M.bat in the main folder. Be-
fore the project could be compiled the file PREP.bat should be adapted to the
customers tool path by modifying the following line:

|SET TOOLPATH=C: \ TOOL\ C\ RENESAS\ NC30WA400 I

The tool path should not include the \BIN path. After executing M.bat the EXE-
subfolder should contain the executable file for the target hardware.

User startup files

The NC30 port for Renesas contains custom startup files for the application
program, NCRTO_USER.A30 and SECT30_USER.INC. This files should be
used as a starting point. The ROM start address and the fixed vector table ad-
dress must may be modified.

9.1.8.3. Additional program modules

File Explanation

Cl ean. bat Removes the compiler output

M bat Batch file to build the target executable

Prep. bat Batch file to set the tool path (should be modified)
PORT\ CPUML6C. h Special function register definitions for M16C
PORT\ FI XVECT. a30 Pass on fixed vectors, may need to be modified
PORT\ NCRTO. a30 Startup code for the BTL

PORT\ NCRTO_USER. a30 Startup code for the application program

PORT\ SECT30. i nc Section definitions for the BTL

PORT\ SECT30_USER. i nc Section definitions for the application program

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 53/118

9.1.9. TASKING-compiler

9.1.9.1. Used tools

Tool Version
Compiler/Assembler 2.3r1
Linker 2.3r1
Workbench EDE

9.1.9.2. Compiling and linking
The project should be opened by double clicking the workspace file em
Load_ML6C_TASKI NG. psp or by opening it with the TASKING workbench. Af-
ter modifying the files BTLConf . h and FLASH_Confi g. h the project can be
rebuild. After rebuilding the project the executable code of the BTL is located in
the project folder under eml oad_ml6¢_t aski ng. hex.

User project file

The NC30 port for TASKING contains a sample project/workspace
User ML6C _TASKI NG psp which can be used as a starting point for an appli-
cation program. The project and the memory definition file of the user project
must may be changed.

9.1.9.3. Additional program modules

File Explanation

Cl ean. bat Removes the compiler output
emLoad_ML6C_TASKI NG _V23r1.pjt BTL project file for TASKING EDE
emLoad_ML6C_TASKI NG_V23r 1. psp BTL workspace file for TASKING EDE

User _ML6C_TASKI NG pj t Application project file for TASKING
EDE

User _ML6C_TASKI NG psp Application workspace file for TASKING
EDE

PORT\ bt | mlL6cC. i Memory definition file for BTL

PORT\ CPUML6C. h Special function register definitions for
M16C

PORT\ FI XVECT. asm Pass on fixed vectors, may need to be
modified

PORT\ FLASH_Sel ect . h Defines flash type & area by the de-

_ fined CPU

PORT\ user . i Memory definition file for application

PORT\ user _cstart.src Startup code for application

PORT\ user _mai n. c Main routine for application

© 2014 SEGGER Microcontroller GmbH & Co. KG

54/118

User manual for emLoad , version 3.14

9.2. Renesas M16C65

9.2.1. Supported CPU’s:

R5F36506NFA, R5F36506NFB, R5F36506DFA, R5F36506DFB,

R5F3651ENFC, RS5F3650ENFA, R5F3650ENFB, R5F3651EDFC,
R5F3650EDFA, RS5F3650EDFB, R5F3651KNFC, R5F3650KNFA,

R5F3650KNFB, RS5F3651KDFC, R5F3650KDFA, R5F3650KDFB,

R5F3651MNFC, RS5F3650MNFA, R5F3650MNFB, R5F3651MDFC,
R5F3650MDFA, R5F3650MDFB, RS5F3651NNFC, R5F3650NNFA,
R5F3650NNFB, RS5F3651NDFC, R5F3650NDFA, R5F3650NDFB,
R5F3651RNFC, R5F3650RNFA, R5F3650RNFB, R5F3651RDFC,
R5F3650RDFA, R5F3650RDFB

9.2.2. Memory map
The diagram below shows the memory map of the M16C/65 memory.

FFFFF
Reset
BTLBank { NMI
DBC
FO000 |
BTL dataarea i Watchdogtimer
EFFFO
Fixedvectortable Singlestep
EFFCC
Userarea | Addressmatch
(Note1) X1 \".
| BRKinstruction
‘I"‘. Overflow
"'\, Undefinedinstruction
Specialpage
] vectortable
00000

Note 1: The beginning of the user area depends on the target. The address X1
is typically the first address of the flash area, for example OxFCO00O for a target
with 256K of flash memory.

The BTL resides in the top bank of CPUs internal FLASH. Unfortunately this
bank is 64kb in size (the BTL uses only approx. 5kb), but you loose the entire
bank for your application program. Since the RESET vector is located in this
bank, the BTL is automatically started after RESET.

The RESET vector of the application program is moved down in memory by
0x10010 bytes. The application program can be compiled and linked the same
way as without BTL; you only have to change the memory locations in the XCL-
file as shown above.

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 55/118

9.2.3. CPU specific configuration file

The BTL is configured by the BTLCONF. Hfile.

This file is self explaining and may look like the following:
/* CPU and UART specific defines */

#def i ne UPCLOCK 8000000 I* [Hz] */

#defi ne UARTSEL 0 /* select uart */

#def i ne BAUDRATE 38400L /* baudrate */

/* Common defines */

#defi ne APPNAMVE "BTLML6CB5 " __DATE__ " " _ TIME__

#tdef i ne PASSWORD "

#define BTL_WAI TO_MS 500 /* wait tinme after reset */
/* before app. is started [ns] */

9.2.4. CPU specific configuration parameters:

Par anet er Meaning

UPCLOCK Microprocessor clock frequency [Hz]. Sample:
10000000 for 10MHz

16000000 for 16 MHz

UARTSEL Selects the UART used for communication.
Should be:

0: UART O

1: UART 1

BAUDRATE Baudrate used for serial communication
(1200 ... 115200)

9.2.5. FLASH specific configuration file

The flash area is configured by the FLASH Confi g. h file.

This file is self explaining and may look like the following:

f ndef FLASH CONFIG H
#defi ne FLASH CONFI G H

/* Use BTL.h for the basic type definition */
#i ncl ude "BTL. h"

/* FLASH specific data types */
#define FLASH U32 U32

#define FLASH Ul6 U16

#defi ne FLASH U3 us

#defi ne FLASH HUGE huge

/* Define CPU type */
#defi ne R5F3650TD

/* Include the file FLASH Select.h after the CPU type definition */
#i ncl ude "FLASH Sel ect. h"

#endif /* Avoid multiple inclusion */
l___|

9.2.6. FLASH specific configuration parameters:

Par anet er Meaning

R5F3650TD Definition of the used CPU type. A list of CPU de-
fines can be found in the upper section of the file
‘FLASH_Select.h”. Depending on the used CPU
the BTL uses target depending default values for
the user flash area. Furthermore it tells the BTL
what kind of flash memory is used.

© 2014 SEGGER Microcontroller GmbH & Co. KG

56/118 User manual for emLoad , version 3.14

9.2.7. IAR-compiler

9.2.7.1. Used tools

Tool Version
Compiler 3.30D

Linker 4.61G
Assembler 3.30A
Workbench 5.2.9.580.8668

9.2.7.2. Compiling and linking

The project file should be opened by double click from the Windows Explorer.
Now you can modify BTLCONF. H and rebuild the BTL. The actual BTL will be in
the EXE-subfolder.

Link file: USER.xcl

The M16C/65 port for IAR contains a linker command file for the application
program, USER.xcl. This linker command file should be used as a starting
point. The file shipped with the M16C/65 port has been configured to match a
memory map for a target with 786K of flash memory. It may be changed if using
an other target.

9.2.7.3. Additional program modules

File Explanation

C ean. bat Removes the compiler output
ML6CE5_1 AR_V330D. ewd Project file

MLECE5_I AR_V330D. ewp Project file
ML6CE5_I AR_V330D. eww Workspace file

PORT\ BTL_ROML. xcl Linker command file for the BTL

PORT\ CPUML6C65. h Special function register definitions for M16C65
PORT\ FI XVECT. s34 Pass on fixed vectors, may need to be modified
PORT\ FLASH_Sel ect. h Defines defaults for flash user area and flash type
PORT\ USER. xcl Linker command file for the application program

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 57/118

9.3. Renesas M32C

9.3.1. Supported CPU'’s:

M30835FJGP, M30833FJGP, M30833FJFP, M30853FHFP,
M30853FHGP, M30853FHTGP, M30853FJFP, M30853FJGP,
M30853FJTGP, M30853FWFP, M30853FWGP, M30853FWTGP,
M30855FHGP, M30855FHTGP, M30855FJGP, M30855FJTGP,
M30855FWGP, M30855FWTGP, M3087BFLGP, M30879FLGP,
M30879FLFP, M3087BFLAGP, M30879FLAGP, M30879FLAFP
M3087BFKGP, M30879FKGP, M3087BFKAGP, M30879FKAGP
M30878FJGP, M30876FJGP, M30878FJAGP, M30876FJAGP
M30875FHGP, M30873FHGP, M30875FHAGP, M30873FHAGP

9.3.2. Memory map
The diagram below shows the memory map of the M32C memory.

FFFFFF
Reset
BTL Bank NMI
DBC
(Note 1) X1
BTL data area Watchdog timer
(Note 1) X2
Fixed vector table Single step
(Note 1) X3
User area | Address match
(Note 2) X4 i
BRK instruction
Overflow
Undefined instruction
Special page
vector table
000000

Note 1: The addresses X1-X3 depend on the target CPU. The BTL needs 4K
of ROM and is located at OxFFF000-OxFFFFFF. If using a target with a 16K
sector at the end of the flash, the address X1 is OxFFCO0O0O0. If using a target
with a 4K sector at the end, the address X1 is OxFFF00O. For out of the box
compatibility a model for a target of 16K is shipped.

The address X2 can be calculated as follows: X2 = X1 — 0x10.

The address X3 can be calculated as follows: X3 = X1 — 0x34.

Some devices have a separate block A located at 0xFO00-OxFFFF. This block
can also be used with emLoad .

Note 2: The beginning of the user area depends on the target. The address X4
is typically the first address of the flash area, for example 0xF80000 for a target
with 512K of flash memory or OxFO000O0 for a target with 1TMB of flash memory.

© 2014 SEGGER Microcontroller GmbH & Co. KG

58/118 User manual for emLoad , version 3.14

The BTL resides in the top bank of CPUs internal FLASH. Since the RESET
vector is located in this bank, the BTL is automatically started after RESET.

The RESET vector of the application program is moved down in memory by
0x4010 or 0x1010 bytes depending on your target CPU. The application pro-
gram can be compiled and linked the same way as without BTL; you only have
to change the memory locations for the linker.

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 59/118

9.3.3. CPU specific configuration file

The BTL is configured by the BTLCONF. Hfile.
This file is self explaining and may look like the following:

/* CPU and UART specific defines */

#def i ne UPCLOCK 24000000 /1 [Hz]

#defi ne UARTSEL 0 /1 select uart

#def i ne BAUDRATE 115200 /1 baudrate

/* Common defines */

#defi ne APPNAMVE "BTLMB2C " __DATE__ " " __TIME__

#tdef i ne PASSWORD .

#define BTL_WAI TO_MS 500 /1 dwell tine after reset
#defi ne BTL_HUGE __far

9.3.4. CPU specific configuration parameters:

Par anet er Meaning
UPCLOCK Microprocessor clock frequency [Hz].
UARTSEL Selects the UART used for communication.
Should be:
0: UART O
1: UART 1
4: UART 4
BAUDRATE Baudrate used for serial communication

9.3.5. FLASH specific configuration file

The flash area is configured by the FLASH Confi g. h file.

This file is self explaining and may look like the following:

/* Use BTL.h for the basic type definition */
#i ncl ude "BTL. h"

/* FLASH specific data types */
#define FLASH U32 U32

#define FLASH U16 Ul6

#define FLASH U8 U8

#defi ne FLASH_HUGE BTL_HUGE

/* Define CPU type */
#defi ne MB0O879FLGP

/* Include FLASH Sel ect.h after defining CPU type */

#i ncl ude "FLASH Sel ect. h"
|

9.3.6. FLASH specific configuration parameters:

Par anet er Meaning

FLASH M32C_USE_BLOCK_A | Enables support for block A. The default value
is 0. Set to 1 to be able to program block A.
MBO879FLGP Definition of the used CPU type. One of the
CPU’s listed under “Supported CPU’s” has to
be defined.

© 2014 SEGGER Microcontroller GmbH & Co. KG

60/118 User manual for emLoad , version 3.14

9.3.7. IAR-compiler

9.3.7.1. Used tools

Tool Version
Compiler 3.10a
Linker 4.59]
Assembler 3.10a
Workbench 4.0

9.3.7.2. Compiling and linking

The project file should be opened by double click from the Windows Explorer.
Now you can modify BTLConf . Hand FLASH Confi g. H and rebuild the BTL.
The actual BTL will be in the EXE-subfolder.

Link file: User.xcl

The M32C port for IAR contains a linker command file for the application pro-
gram, USER.xcl. This linker command file should be used as a starting point. It
may be changed if using an other target.

9.3.7.3. Additional program modules

File Explanation

C ean. bat Removes the compiler output
M32C_I AR_V310A. dep IAR project settings

MB2C_| AR V310A. ewd IAR project settings

MB2C_| AR_V310A. ewp IAR project file

M32C_| AR_V310A. eww IAR workspace file

FLASH\ FLASH_M32C. ¢ Flash routines for the internal flash of M32C CPUs

PORT\ BTL. xcl Linker file for the BTL
PORT\ cpunB2c. h Special function register definitions for M32C
PORT\ USER. xcl Linker file for application program

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14

61/118

9.3.8. Renesas NC308-compiler

9.3.8.1. Used tools

Tool Version
Compiler 5.41r1
Linker 4.04.02
Assembler 4.03r1
Workbench -

9.3.8.2. Compiling and linking

The configuration files BTLConf . Hand FLASH_Conf i g. H needs to be config-
ured to your hardware. PREP. BAT needs to be modified to set the right path
for the compiler. M BAT will call PREP. BAT to enhance the PATH-variable and
sets the environment variables used by NC308. Please adapt the following line

of PREP. BAT:

SET TOOLPATH=C: \ Tool \ C\ HEW\ Tool s\ Renesas\ nc308wa\ v541r 01 I

Now you can modify BTLConf . Hand FLASH Confi g. H and rebuild the BTL
by executing M BAT. The executable file BTLM32C. MOT will be stored in the

EXE-folder.

9.3.8.3. Additional program modules
File
Cl ean. bat
M bat
Prep. bat
FLASH\ FLASH M32C. ¢
PORT\ cpunB2c. h
PORT\ fi xvect. a30
PORT\ FLASH Sel ect . h
PORT\ ncrt 0. a30
PORT\ ncrt O_user. a30
PORT\ sect 308. i nc
PORT\ sect 308 _user.inc

Explanation

Removes the compiler output

Batch file for rebuilding the BTL

Batch file called by M bat for setting the toolpath
Flash routines for the internal flash of M32C CPUs
Special function register definitions for M32C
Pass on fixed vectors

Defines defaults for flash user area and flash type
Startup code BTL

Startup code USER application, can be modified
Sector definitions BTL

Sector definitions USER application, can be modi-
fied

© 2014 SEGGER Microcontroller GmbH & Co. KG

62/118

User manual for emLoad , version 3.14

9.4. Renesas R32C

9.4.1. Supported CPU’s:

R5F6411E, R5F64110,
R5F64111, R5F641x5,
R5F641x7, R5F64514,
R5F64515, R5F6451N,

9.4.2. Memory map

R5F64114, R5F6411F,
R5F64112, R5F641x6,
R5F6451M, R5F641x8,
R5F641x9

The diagram below shows the memory map of the R32C memory.

FFFFFFFF
Reset
BTLBank { NMI
Reserved
FFFF8000 {
BTL dataarea i Watchdogtimer
FFFF7FFO
Fixedvectortable Reserved
FFFF7FCC
Userarea i Reserved
(Note1) X1 I'.I
BRKinstruction
Overflow
Undefinedinstruction
00000000

Note 1: The beginning of the user area depends on the target. The address X1
is typically the first address of the flash area, for example OxFFFEOOO for a tar-

get with 128K of flash memory.

The BTL resides in the top bank of CPUs internal FLASH. Unfortunately this
bank is 32kb in size (the BTL uses only approx. 5kb), but you loose the entire
bank for your application program. Since the RESET vector is located in this
bank, the BTL is automatically started after RESET.

The RESET vector of the application program is moved down in memory by
0x8010 bytes. The application program can be compiled and linked the same
way as without BTL; you only have to change the memory locations as shown

above.

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 63/118

9.4.3. CPU specific configuration file

The BTL is configured by the BTLCONF. Hfile.

This file is self explaining and may look like the following:
/* CPU and UART specific defines */

#def i ne UPCLOCK 64000000 /* [Hz] */
#defi ne UARTSEL 0 /* select uart */
#defi ne BAUDRATE 115200L /* baudrate */

/* Data needs to be programmed in bl ocks of 8 bytes */
#define BTL_WRI TE_BLOCK_SI ZE 8

/* Common defines */

#defi ne APPNAMVE "BTLR32C " __DATE__ " " __TIME__
#tdef i ne PASSWORD "
#define BTL_WAI TO_Ms 500 /* wait tinme after reset */

/* before app. is started [ns] */
l___|

9.4.4. CPU specific configuration parameters:

Par anet er Meaning

UPCLOCK Microprocessor clock frequency [Hz]. Sample:
10000000 for 10MHz

16000000 for 16 MHz

UARTSEL Selects the UART used for communication.
Should be:

0: UART O

1: UART 1

BAUDRATE Baudrate used for serial communication
(1200 ... 115200)

9.4.5. FLASH specific configuration file

The flash area is configured by the FLASH Confi g. h file.

This file is self explaining and may look like the following:

f ndef FLASH CONFIG H
#defi ne FLASH CONFI G H

/* Use BTL.h for the basic type definition */
#i ncl ude "BTL. h"

/* FLASH specific data types */
#define FLASH U32 U32

#define FLASH Ul6 U16

#defi ne FLASH U3 us

#defi ne FLASH HUGE huge

/* Define CPU type */
#defi ne R5F6411E

/* Include the file FLASH Select.h after the CPU type definition */
#i ncl ude "FLASH Sel ect. h"

#endif /* Avoid multiple inclusion */
l___|

9.4.6. FLASH specific configuration parameters:

Par anet er Meaning

R5F6411E Definition of the used CPU type. A list of CPU de-
fines can be found in the upper section of the file
‘FLASH_Select.nh”. Depending on the used CPU
the BTL uses target depending default values for
the user flash area. Furthermore it tells the BTL
what kind of flash memory is used.

© 2014 SEGGER Microcontroller GmbH & Co. KG

64/118 User manual for emLoad , version 3.14

9.4.7. IAR-compiler

9.4.7.1. Used tools

Tool Version
Compiler 1.30E
Linker 4.61J
Assembler 1.30A
Workbench 5.4.0.832

9.4.7.2. Compiling and linking

The project file should be opened by double click from the Windows Explorer.
Now you can modify BTLCONF. H and rebuild the BTL. The actual BTL will be in
the EXE-subfolder.

9.4.7.3. Additional program modules

File Explanation

C ean. bat Removes the compiler output

R32C_| AR ewd Project file

R32C | AR ewp Project file

R32C | AR V*. eww Workspace file

PORT\ BTL. xcl Linker command file for the BTL

PORT\ CPU_R32C. h Special function register definitions for R32C
PORT\ FI XVECT. asm Pass on fixed vectors, may need to be modified

PORT\ FLASH_Sel ect . h Defines defaults for flash user area and flash type

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14

65/118

9.4.8. RENESAS-compiler

9.4.8.1. Used tools

Tool Version
Compiler 1.01.00
Linker 1.00.02
Assembler 1.01.00
Workbench 4.07.00

9.4.8.2. Compiling and linking

The project file should be opened by double click from the Windows Explorer.
Now you can modify BTLCONF. Hand rebuild the BTL. The actual BTL will be in

the EXE-subfolder.

9.4.8.3. Additional program modules
File
BTL_RSK R32C111.*
RSK_R32C111\ *
R32C_| AR V*. eww
RSK_R32C111\ PORT\ sec
t 100.1i nc
RSK_R32C111\ PORT\ CPU
_R32C. h
PORT\ FLASH Sel ect . h

Explanation

Workspace files

Project files

Workspace file

Linker sections file for the BTL and pass on fixed
vectors, may need to be modified

Special function register definitions for R32C

Defines defaults for flash user area and flash type

© 2014 SEGGER Microcontroller GmbH & Co. KG

66/118 User manual for emLoad , version 3.14

9.5. Renesas RX

9.5.1. Supported CPU’s:

R5F562x6, R5F562x7, R5F562x8, R5F563x6,
R5F563x7, R5F563x8, R5F563XA, R5F563xB,
R5F563xD, R5F563xE, R5F563xM, R5F563xN,
R5F563xP, R5F52103, R5F52104, R5F52105,
R5F52106, R5F52107, R5F52108, R5F5210A,
R5F5210B

9.5.2. Memory map

The diagram below shows the memory map of the RX memory.

FFFFFFFF
Reset
BTLBank { NMI
FFFFEOQO /
BTL dataarea i
FFFFDFFO
Fixedvectortable
FFFFDFQ0
Userarea
(Note1) X1 I'.I
00000000

Note 1: The beginning of the user area depends on the target. The address X1

is typically the first address of the flash area, for example OxFFFC0000 for a
target with 256K of flash memory.

The BTL resides in the two top banks of CPUs internal FLASH that consists of
two 4kByte blocks. Since the RESET vector is located in this banks, the BTL is
automatically started after RESET.

The RESET vector of the application program is moved down in memory by
0x2010 bytes. The application program can be compiled and linked the same

way as without BTL; you only have to change the memory locations as shown
above.

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 67/118

9.5.3. CPU specific configuration file

The BTL is configured by the BTLCONF. Hfile.

This file is self explaining and may look like the following:
/* CPU and UART specific defines */

#def i ne UPCLOCK 96000000 /* [Hz] */
#defi ne UARTSEL 2 /* select uart */
#defi ne BAUDRATE 115200L /* baudrate */

/* Data needs to be programmed in bl ocks of 256 bytes */
#define BTL_WRI TE_BLOCK_SI ZE 256uL

/* Common defines */

#defi ne APPNAMVE "BTLRX " __DATE__ " " __TIME__

#tdef i ne PASSWORD "

#define BTL_WAI TO_Ms 500 /* wait tinme after reset */
/* before app. is started [ns] */

9.5.4. CPU specific configuration parameters:

Par anet er Meaning

UPCLOCK Microprocessor clock frequency [Hz]. Sample:
96000000 for 96MHz

UARTSEL Selects the UART used for communication.
Should be:
2: UART 2

BAUDRATE Baudrate used for serial communication
(9600 ... 115200)

9.5.5. FLASH specific configuration file

The flash area is configured by the FLASH Confi g. h file.

This file is self explaining and may look like the following:

f ndef FLASH CONFIG H
#defi ne FLASH CONFI G H

/* Use BTL.h for the basic type definition */
#i ncl ude "BTL. h"

/* FLASH specific data types */
#define FLASH U32 U32

#define FLASH Ul6 U16

#defi ne FLASH U3 us

#defi ne FLASH HUGE BTL_HUGE

/* Define CPU type */
#defi ne R5F562x8

/* Include the file FLASH Select.h after the CPU type definition */
#i ncl ude "FLASH Sel ect. h"

#endif /* Avoid multiple inclusion */
l___|

9.5.6. FLASH specific configuration parameters:

Par anet er Meaning

R5F562x8 Definition of the used CPU type. A list of CPU de-
fines can be found in the upper section of the file
“‘FLASH_Select.h”. Depending on the used CPU
the BTL uses target depending default values for
the user flash area. Furthermore it tells the BTL
what kind of flash memory is used.

© 2014 SEGGER Microcontroller GmbH & Co. KG

68/118 User manual for emLoad , version 3.14

9.5.7. RENESAS-compiler

9.5.7.1. Used tools

Tool Version
Compiler 1.02.01
Linker 1.02.00
Assembler 1.02.00
Workbench 4.09.00.007

9.5.7.2. Compiling and linking

The project file should be opened by double click from the Windows Explorer.
Now you can modify BTLCONF. H and rebuild the BTL. The actual BTL will be in
the EXE-subfolder of the configuration.

9.5.7.3. Additional program modules

File Explanation

BTL_YRDK_RX62N. * Workspace files

BTL_YRDK_RX62MN\ * Project files

BTL_YRDK_RX62N. hws Workspace file

BTL_YRDK_RX62N Special function register definitions for RX

\ PORT\ CPU_RX. h

BTL_YRDK_RX62N Defines defaults for flash user area and flash type

\ PORT\ FLASH Sel ect . h

© 2014 SEGGER Microcontroller GmbH & Co. KG

9.5.8. IAR-compiler

9.5.8.1. Used tools

Tool Version
Comopiler 2.40.1.50509
Linker 2.40.1.50509
Assembler 2.40.1.50509
Workbench 6.4.0.2310

9.5.8.2. Compiling and linking

The project file should be opened by double click from the Windows Explorer.
Now you can modify BTLCONF. Hand rebuild the BTL. The actual BTL will be in
the EXE-subfolder of the configuration.

9.5.8.3. Additional program modules

File Explanation

BTL_YRDK_RX62N. * Project files

BTL_YRDK_RX62N_V*. eww Workspace file

PORT\ CPU_RX. h Special function register definitions for RX

PORT\ FLASH_Sel ect . h Defines defaults for flash user area and flash type

70/118 User manual for emLoad , version 3.14

© 2014 SEGGER Microcontroller GmbH & Co. KG

71/118

User manual for emLoad , version 3.14

9.6. Renesas R8C

9.6.1. Supported CPU'’s:
R5F212x7, R5F212x8, R5F212xA, R5F212xC
9.6.2. Memory map
The diagram below shows the memory map of the R8C memory.
FFFFF
(Note1) X1 i Reset
(Note 1) I.’I
Userarea i Reserved
14000 Addressbreak
OFFFF {
BTLBank Watchdogtimer
0000 ;"I Singlestep
BTL dataarea H
OBFEF Addressmatch
Fixedvectortable
OBFCC , BRKinstruction
Userarea0 Overflow
04000 \| Undefinedinstruction

00000
Note 1: This user area does only exist for targets with 96kByte or more flash.

The end of this user area depends on the target. The address X1 is typically the
last address of the flash blocks after the flash block containing the BTL, for ex-

ample 0x23FFF for a target with 128kByte of flash memory.

The BTL resides in the bank of CPUs internal FLASH that contains the reset

vector located at OXOFFFF. Unfortunately this bank is 32kByte in size (the BTL
uses only approx. 5kb), but you loose the entire bank for your application pro-

gram. Since the RESET vector is located in this bank, the BTL is automatically
started after RESET.

The RESET vector of the application program is moved down in memory by
0x4010 bytes. The application program can be compiled and linked the same
way as without BTL; you only have to change the memory locations in the XCL-

file as shown above.

© 2014 SEGGER Microcontroller GmbH & Co. KG

72/118 User manual for emLoad , version 3.14

9.6.3. CPU specific configuration file

The BTL is configured by the BTLCONF. Hfile.

This file is self explaining and may look like the following:
/* CPU and UART specific defines */

#defi ne UPCLOCK 20000000 /* [Hz] >/

#defi ne UARTSEL 2 /* select uart */

#defi ne BAUDRATE 115200L /* baudrate */

/* Common defines */

#def i ne APPNANVE "BTLR8C " __DATE__ " " _TIME__

#defi ne PASSWORD .

#defi ne BTL_WAI TO_MS 500 /* wait time after reset */
/* before app. is started [ns] */

#defi ne BTL_HUCE __far

#defi ne BTL_RW U32NO 0

9.6.4. CPU specific configuration parameters:
Par anet er Meaning

UPCLOCK Microprocessor clock frequency [Hz]. Sample:
10000000 for 10MHz

16000000 for 16 MHz

UARTSEL Selects the UART used for communication.
Should be:

0: UARTO

1: UART 1

2: UART 2

BAUDRATE Baudrate used for serial communication
(1200 ... 115200)

9.6.5. FLASH specific configuration file

The flash area is configured by the FLASH Confi g. h file.

This file is self explaining and may look like the following:

#i f ndef FLASH_CONFI G H
#defi ne FLASH CONFI G H

/* Use BTL.h for the basic type definition */
#i ncl ude "BTL. h"

/* FLASH specific data types */
#define FLASH U32 U32

#define FLASH Ul16 U16

#defi ne FLASH U8 us

#defi ne FLASH HUGE huge

/* Define CPU type */
#defi ne R5F212xA

/* Include the file FLASH Select.h after the CPU type definition */
#i ncl ude "FLASH_ Sel ect . h"

#endif /* Avoid multiple inclusion */
|

9.6.6. FLASH specific configuration parameters:

Par amet er Meaning

R5F212XxA Definition of the used CPU type. A list of CPU de-
fines can be found in the upper section of the file
“FLASH_Select.h”. Depending on the used CPU
the BTL uses target depending default values for
the user flash area. Furthermore it tells the BTL
what kind of flash memory is used.

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14

73/118

9.6.7. IAR-compiler

9.6.7.1. Used tools

Tool Version
Compiler 3.30D

Linker 461G
Assembler 3.30A
Workbench 5.2.9.580.8668

9.6.7.2. Compiling and linking

The project file should be opened by double click from the Windows Explorer.
Now you can modify BTLCONF. Hand rebuild the BTL. The actual BTL will be in

the EXE-subfolder.

9.6.7.3. Additional program modules
File
C ean. bat
R8C_| AR ewd
R8C_| AR ewp
R8C | AR V*. eww
PORT\ BTL. xcl
PORT\ CPU_R8C. h
PORT\ Fi xVect . s34
PORT\ FLASH_Sel ect . h

Explanation

Removes the compiler output

Project file

Project file

Workspace file

Linker command file for the BTL

Special function register definitions for R32C
Pass on fixed vectors, may need to be modified
Defines defaults for flash user area and flash type

© 2014 SEGGER Microcontroller GmbH & Co. KG

74/118

User manual for emLoad , version 3.14

9.7. ARM AT91M40800

9.7.1. Supported CPU’s:
AT91M40800

9.7.2. Memory map

RAM RELEASE KILL
BTL BTL BTL
FFFFFFFF FFFFFFFF FFFFFFFF
04004000 01080000 01080000
BTL Flash area BTL
(ext. ROM) (ext. ROM)
(eXt' RAM) 01004000 01004000
04000000 BTL Flash area
(ext. ROM) (ext. ROM)
01080000 01000000 01000000
Flash area
(ext. ROM)
01000000
00002000 00002000 00002000
int. RAM int. RAM int. RAM
00000000 00000000 00000000

The project contains 3 targets:

RAM_BTL

This target is used to run the BTL in RAM using a wiggler. Use the RAM_BTL to
program the RELEASE_BTL into the external flash.

RELEASE BTL
The release target.

KILL BTL

This target can be used to program a new release version of the BTL into the
external flash without using a wiggler.

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14

75/118

9.7.3. CPU specific configuration file

The BTL is configured by the BTLCONF. Hfile.
This file is self explaining and may look like the following:

#i f ndef BTLCONF_H
#defi ne BTLCONF_H

/* common defines for BTL */
#defi ne PASSWORD
#define BTL_WAI TO_Ms

#defi ne UPCLOCK

#def i ne UARTSEL

#def i ne BAUDRATE

/* Type of external flash */
#defi ne FLASH 29LVv400B

#if def i ned(RAM _BTL)

#defi ne APPNANVE
#defi ne FLASH BASEADR
#defi ne FLASH USER START
#defi ne FLASH USER LEN
#el i f defi ned(RELEASE BTL)
#defi ne APPNANVE
#defi ne FLASH BASEADR
#defi ne FLASH USER START
#defi ne FLASH USER LEN
#elif defined(KlI LL_BTL)
#defi ne APPNANVE
#defi ne FLASH BASEADR
#defi ne FLASH USER START
#defi ne FLASH USER LEN
#el se
#error
#endi f

No BTL sel ect ed!

#endif // defined BTLCONF_H

/1 Avoid multiple inclusion

500 /1 wait time after reset
/1 before app. is started [ns]

/* cpu and target board specific defines */

7372800

1 /] select uart
115200 /1 baudrate

1

"RAM BTL ARM AT91"

0x01000000

0x01000000 // sStart of application program
0x00080000 // Length of user area

"BTL ARM AT91"

0x01000000

0x01004000 // Start of application program
0x0007C000 // Length of user area

"KI LLER BTL ARM AT91"

0x01000000

0x01000000 // sStart of application program
0x00004000 // Length of user area

© 2014 SEGGER Microcontroller GmbH & Co. KG

76/118 User manual for emLoad , version 3.14

9.7.4. CPU specific configuration parameters:

Par anet er Meaning
UPCLOCK Microprocessor clock frequency [Hz].
UARTSEL Selects the UART used for communication.
Should be:
0: UART O
1: UART 1
BAUDRATE Baudrate used for serial communication
(1200 ... 115200)
FLASH 29LVv400B Activate the FLASH routines

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14

77/118

9.7.5. IAR-compiler

9.7.5.1. Used tools

Tool Version
Compiler 3.30a
Linker 4 .55d
Assembler 3.30a
Workbench 3.4a

9.7.5.2. Compiling and linking

The project file should be opened by double click from the Windows Explorer.
Select the target which should be build. Now you can modify BTLCONF. H and
rebuild the BTL. The actual BTL will be in one of the EXE-subfolders.

9.7.5.3. Additional program modules
File
Cl ean. bat
ARM AT91 | AR V330A. pew
PORT\ at 91_cstartup. s79
PORT\ Fi xVect . asm
PORT\ JTAG AT91. nac
PORT\ JTAG AT91. xcl
PORT\ KI LL_AT91. xcl
PORT\ LowiLevel I nit.c
PORT\ RELEASE _AT91. xcl

Explanation

Removes the compiler output

Project file for IAR IDE

Modified startup containing the remapping
Pass on fixed vectors

Macro for RAM_BTL using IAR IDE with JTAG
Linker file for RAM_BTL

Linker file for KILL_BTL

Contains __low_level_init

Linker file for RELEASE_BTL

© 2014 SEGGER Microcontroller GmbH & Co. KG

78/118 User manual for emLoad , version 3.14

9.8. ARM AT91SAM7

9.8.1. Supported CPU’s:

AT91SAM7A3 AT91SAM7SE32 AT91SAM7SE256 AT91SAM7SES512
AT91SAM7S128 AT91SAM7S128A AT91SAM7S256 AT91SAM7S256A
AT91SAM7S32 AT91SAM7S321 AT91SAM7S64 AT91SAM7X128
AT91SAM7X256

9.8.2. Memory map

(Address
depends on
BTL data area used CPU)
Code of user application
. Application
Application sector(s)
Exception
vectors of
application
Reset vector
0x00001000
Code of BTL
BTL BTL sector(s)
Exception
vectors of
BTL
Reset vector
0x00000000

The BTL resides in the bottom sector(s) of CPUs internal FLASH. Since the
RESET vector is located in this bank, the BTL is automatically started after
RESET.

The application program is moved up in memory by 0x1000 bytes. The applica-
tion program can be compiled and linked the same way as without BTL; you
only have to change the memory location.

The BTL data area resides at the top of the application sectors.

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 79/118

9.8.3. CPU specific configuration file

The BTL is configured by the BTLCONF. Hfile.
This file is self explaining and may look like the following:

/* CPU and UART specific defines */

#defi ne UPCLOCK 47923200L [* [Hz] */
#def i ne UARTSEL 0 /* select uart */
#def i ne BAUDRATE 115200L /* baudrate */

/* Data needs to be programred in bl ocks of 256 bytes */
#defi ne BTL_WRI TE_BLOCK_SI ZE 256

/* Flash user area definition */

#defi ne FLASH USER START 0x101000 [* Start adress of flash user area */

#defi ne FLASH USER LEN 0x03F000 /* Length of flash user area */

/* common defines */

#def i ne APPNAME "BTL AT91SAM7 " _ DATE " " _ TIME _

#def i ne PASSWORD "

#defi ne BTL_WAI TO_MS 500 /* Wit time after reset */
/* Before app. is started [ns] */

9.8.4. CPU specific configuration parameters:

Par anet er Meaning
UPCLOCK Microprocessor clock frequency [Hz].
UARTSEL UART Selection. Should be:
0: UART 0, 1: UART 1, 2: UART 2 (only SAM7A3)
BAUDRATE Baudrate used for serial communication

9.8.5. FLASH specific configuration file

The flash area is configured by the FLASH Conf i g. h file.
This file is self explaining and may look like the following:

/* Use BTL.h for the basic type definition */
#i ncl ude "BTL. h"

/* FLASH specific data types */
#defi ne FLASH U32 U32
#defi ne FLASH Ul16 Ul6
#define FLASH U8 U8

/* FLASH sel ection */

#defi ne FLASH AT91SAM/ 1
|

9.8.6. FLASH specific configuration parameters:

Par anet er Meaning
FLASH AT91SAM7 Use the AT91SAM?7 flash module.

© 2014 SEGGER Microcontroller GmbH & Co. KG

80/118 User manual for emLoad , version 3.14

9.8.7. IAR-compiler

9.8.7.1. Used tools

Tool Version
Compiler 4.31a
Linker 4. 59w
Assembler 4.31a
Workbench 4.6B

9.8.7.2. Compiling and linking

The project file should be opened by double click from the Windows Explorer.
Select the target which should be build. Now you can modify BTLCONF. H and
rebuild the BTL. The actual BTL will be in one of the EXE-subfolders.

9.8.7.3. Additional program modules

File Explanation

Cl ean. bat Removes the compiler output
BTL_AT91SAM/_VA431A. dep Project for IAR IDE

BTL _AT91SAM/_V431A. ewd

BTL_AT91SAM/_VA431A. ewp

BTL_AT91SAM/_VA31A. eww

AT91SAM/ S256_FLASH. xcl Linker file for release configuration
AT91SAM/ S256_RAM xcl Linker file for debug configuration
AT91SAM/_Cstartup.s79 Startup code

SAM/_FLASH. mac Macro file used to debug the FLASH build
SAM/_RAM nac Macro file used to debug the RAM build

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 81/118

9.9. ARM AT91SAM7L

9.9.1. Supported CPU'’s:
AT91SAM7L64 AT91SAM7L128

9.9.2. Memory map

(Address
depends on
BTL data area Used CRU)
Code of user application
o Application
Application sector(s)
Exception
vectorsof
application
Resetvector 0x00002000
Code of BTL
BTL BTLsector(s)
Exception
vectors of BTL
Resetvector 0x00000000

The BTL resides in the bottom sector(s) of CPUs internal FLASH. Since the
RESET vector is located in this bank, the BTL is automatically started after
RESET.

The application program is moved up in memory by 0x2000 bytes. The applica-
tion program can be compiled and linked the same way as without BTL; you
only have to change the memory location.

The BTL data area resides at the top of the application sectors.

© 2014 SEGGER Microcontroller GmbH & Co. KG

82/118 User manual for emLoad , version 3.14

9.9.3. CPU specific configuration file

The BTL is configured by the BTLCONF. Hfile.
This file is self explaining and may look like the following:

/* CPU and UART specific defines */

#def i ne UPCLOCK 29982720L /* [Hz] */
#defi ne UARTSEL 2 /* select uart */
#def i ne BAUDRATE 230400L /* baudrate */

/* Data needs to be progranmed in bl ocks of 256 bytes */
#define BTL_WRI TE_BLOCK_SI ZE 256

/* Flash user area definition */

#defi ne FLASH USER_START 0x102000 /* Start adress of flash user area */

#defi ne FLASH USER_LEN 0x01EO000 /* Length of flash user area */

/* comon defines */

#defi ne APPNAME "BTL AT91SAM/L " _ DATE _ " " _ TIME _

#defi ne PASSWORD "

#defi ne BTL_WAI TO_MS 500 /* Wait time after reset */
/* Before app. is started [ns] */

9.9.4. CPU specific configuration parameters:

Par anet er Meaning
UPCLOCK Microprocessor clock frequency [Hz].
UARTSEL UART Selection. Should be:

0: UART 0, 1: UART 1, 2: DBGU
BAUDRATE Baudrate used for serial communication

9.9.5. FLASH specific configuration file

The flash area is configured by the FLASH _Confi g. h file.
This file is self explaining and may look like the following:

/* Use BTL.h for the basic type definition */
#i ncl ude "BTL. h"

/* FLASH specific data types */
#defi ne FLASH U32 U32
#defi ne FLASH U16 U16
#define FLASH U8 U8

/* FLASH sel ection */

#define FLASH AT91SAM/L 1
|

9.9.6. FLASH specific configuration parameters:

Par anet er Meaning
FLASH AT91SAM7L Use the AT91SAMT7L flash module.

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 83/118

9.9.7. IAR-compiler

9.9.7.1. Used tools

Tool Version
Compiler 5.20.3.51064
Linker 5.20.3.51064
Assembler 5.20.3.51064
Workbench 5.3.0.622

9.9.7.2. Compiling and linking

The project file should be opened by double click from the Windows Explorer.
Select the target which should be build. Now you can modify BTLCONF. H and
rebuild the BTL. The actual BTL will be in one of the EXE-subfolders.

9.9.7.3. Additional program modules

File Explanation
C ean. bat Removes the compiler output
BTL_AT91SAM/L_V5. ewd Project for IAR IDE

BTL_AT91SAM/L_V5. ewp “

BTL_AT91SAM/L_V520. eww

AT91SAM7L128_FLASH. i cf Linker file for flash configuration
AT91SAM/_Startup.s Startup code

SAM/L_FLASH. mac Macro file used to debug the FLASH build

© 2014 SEGGER Microcontroller GmbH & Co. KG

84/118 User manual for emLoad , version 3.14

9.10. ARM LH754XX

9.10.1. Supported CPU'’s:
LH75400 LH75401 LH75410 LH75401

9.10.2. Memory map

(Address
depends on
BTL data area used CPU)
Code of user application
. Application
Application sp:ctor(s)
Exception
vectors of
application
Reset vector
0x00002000
Code of BTL
BTL BTL sector(s)
Exception
vectors of
BTL
Reset vector
0x00000000

The BTL resides in the bottom sector(s) of CPUs internal FLASH. Since the
RESET vector is located in this bank, the BTL is automatically started after
RESET.

The application program is moved up in memory by 0x2000 bytes. The applica-
tion program can be compiled and linked the same way as without BTL; you
only have to change the memory location.

The BTL data area resides at the top of the application sectors.

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 85/118

9.10.3. CPU specific configuration file

The BTL is configured by the BTLCONF. Hfile.
This file is self explaining and may look like the following:

/* CPU specific definitions */
#defi ne BTL_RW U32NO 1
#define BTL_WRI TE_16BI T_ALI GNED 1

/* Application, harware specific definitions */
#def i ne UPCLOCK 14175000

#defi ne UART 0

#def i ne BAUDRATE 115200L

/* FLASH specific definitions */
#i f defi ned(TARGET_JTAG RELEASE)

#defi ne FLASH USER _START 0x40002000
#elif defined (TARGET_RELEASE)

#defi ne FLASH USER _START 0x00002000
#endi f

#define FLASH USER LEN

/* common defines */
#def i ne APPNANE
#defi ne PASSWORD

0x003FEO00

"LH754XX " _ DATE _

#defi ne BTL_WAI TO_MS 500 /* Dwell tine after reset */

/* Before app. is started [ns] */
|

9.10.4. CPU specific configuration parameters:

Par anet er Meaning
UPCLOCK Microprocessor clock frequency [Hz].
UARTSEL UART Selection. Should be:
0: UART 0, 1: UART 1
BAUDRATE Baudrate used for serial communication

9.10.5. FLASH specific configuration file

The flash area is configured by the FLASH Conf i g. h file.
This file is self explaining and may look like the following:

/* Use BTL.h for the basic type definition */
#i ncl ude "BTL. h"

/* FLASH specific data types */
#defi ne FLASH U32 U32
#defi ne FLASH Ul16 Ul6
#define FLASH U8 U8

/* FLASH specific definitions */
#i f defi ned(TARGET_JTAG RELEASE)

#defi ne FLASH_BASEADR 0x40000000
#elif defined (TARGET_RELEASE)

#defi ne FLASH_BASEADR 0x00000000
#endi f

/* External area: Flash driver selection */
#define FLASH 29XX 1

/* External area: Sector definition */
#define FLASH SA0O 0x002000

9.10.6. FLASH specific configuration parameters:

Par anet er Meaning
FLASH 29XX Definition of the used kind of Flash.

© 2014 SEGGER Microcontroller GmbH & Co. KG

86/118

User manual for emLoad , version 3.14

9.10.7. IAR-compiler

9.10.7.1. Used tools

Tool Version
Compiler 4.30a
Linker 4.59n
Assembler 4.30a
Workbench 4.5

9.10.7.2. Compiling and linking

The project file should be opened by double click from the Windows Explorer.
Select the target which should be build. Now you can modify BTLCONF. H and
rebuild the BTL. The actual BTL will be in one of the EXE-subfolders.

9.10.7.3. Additional program modules
File
Cl ean. bat
BTL _LH754XX V420. dep
BTL_LH754XX_V420. ewd
BTL _LH754XX V420. ewp
BTL_LH754XX_V420. eww
BTL_Rel ease LH754XX. xcl
JTAG Rel ease_LH754XX. xcl
USER Rel ease LH754XX. xcl

Explanation
Removes the compiler output
Project for IAR IDE

“wn
“y

“wn

Linker file for release configuration
Linker file for JTAG configuration
Linker file for application

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 87/118

9.11. ARM LPC2XXX

9.11.1. Supported CPU'’s:

LPC2104 LPC2105 LPC2106 LPC2114
LPC2119 LPC2124 LPC2129 LPC2131
LPC2132 LPC2134 LPC2136 LPC2138
LPC2194 LPC2212 LPC2214 LPC2292
LPC2294
9.11.2. Memory map
(Address
depends on
BTL data area used CPU)
Code of user application
Application Aspepéit‘;ar:gn

Exception

vectors of

application

Reset vector 0x00002000
Code of BTL
BTL BTL sector(s)
Exception
vectors of
BTL
Reset vector 0x00000000

The BTL resides in the bottom sector(s) of CPUs internal FLASH. Since the
RESET vector is located in this bank, the BTL is automatically started after
RESET.

The application program is moved up in memory by 0x2000 bytes. The applica-
tion program can be compiled and linked the same way as without BTL; you
only have to change the memory location.

The BTL data area resides at the top of the application sectors.

© 2014 SEGGER Microcontroller GmbH & Co. KG

88/118 User manual for emLoad , version 3.14

9.11.3. CPU specific configuration file

The BTL is configured by the BTLCONF. Hfile.
This file is self explaining and may look like the following:

/* CPU specific definitions */
#def i ne BTL_USE_PARA(Par a) Para = Para /* Avoid warnings */
#define BTL_WRI TE_BLOCK_SI ZE 512

/* Application, harware specific definitions */

#defi ne UPCLOCK 14745600L

#def i ne UART 1

#def i ne BAUDRATE 115200L

#defi ne APPNAME "BTL LPC2138 " _ DATE _

/* comon defines */

#defi ne BTL_WAI TO_MS 500 /* Dwell tine after reset */
/* Before app. is started [ns] */

9.11.4. CPU specific configuration parameters:

Par anet er Meaning
UPCLOCK Microprocessor clock frequency [Hz].
UARTSEL Selects the UART used for communication.
Should be:
0: UART 0O
1: UART 1
BAUDRATE Baudrate used for serial communication

9.11.5. FLASH specific configuration file

The flash area is configured by the FLASH _Confi g. h file.
This file is self explaining and may look like the following:

/* Use BTL.h for the basic type definition */
#i ncl ude "BTL. h"

/* FLASH specific data types */

#defi ne FLASH U32 U32

#defi ne FLASH U16 U16

#define FLASH U8 U8

#defi ne FLASH USE PARA(Para) Para = Para /* Avoid warnings */

/* Define CPU type */
#define FLASH LPC 2138 1

/* Include the file FLASH Select.h after the CPU type definition */

#i ncl ude "FLASH_ Sel ect . h"
|

9.11.6. FLASH specific configuration parameters:

Par anet er Meaning

FLASH_LPC_2138 Definition of the used CPU type. One of the CPU’s
listed under “Supported CPU’s” has to be defined.

If for example a LPC2138 should be used, the fol-
lowing line needs to be included:

#define FLASH_LPC_2138 1

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14

89/118

9.11.7. Keil-compiler

9.11.7.1. Used tools

Tool Version
Compiler 2.23a

Linker 2.23a
Assembler 2.22
Workbench pVision3 V3.12f

9.11.7.2. Compiling and linking

BTL

The project file ARM LPC21XX_BTL. W2 should be opened by double click
from the Windows Explorer. Now you can modify BTLConf.H and
FLASH Confi g. Hand rebuild the BTL. The actual BTL will be in the subfolder

Qut put \ BTL\ Obj .

Sample application

The emLoad shipment contains a sample project similar to the ‘Blinky’ sample
shipped with the Keil compiler. The project file ARM_LPC21XX_APP. Uv2 should
be opened by double click from the Windows Explorer. After rebuilding it the
output file ARM_LPC2XXX_APP. hex will be in the subfolder Qut put \ APP\ Qbj .

9.11.7.3. Additional program modules
File
C ean. bat
ARM _LPC21XX_APP. Opt
ARM LPC21XX_APP. W2
ARM LPC21XX_BTL. Opt
ARM LPC21XX_BTL. W2
FLASH\ FLASH_LPC2xxX. €

PORT\ FLASH Sel ect. h
PORT\ Mai nAPP. c

PORT\ St ar t upAPP. S
PORT\ St art upBTL. S

Explanation

Removes the compiler output

Project settings of sample application

Project settings of sample application

Project settings of BTL

Project settings of BTL

Flash routines for the internal flash of LPC2XXX
CPUs

Defines defaults for flash user area depending of
defined CPU

Sample application

Startup code sample application

Startup code BTL

© 2014 SEGGER Microcontroller GmbH & Co. KG

90/118 User manual for emLoad , version 3.14

9.12. ATMEL ATmega128

9.12.1. Supported CPU'’s:
ATmega128

9.12.2. Memory map

0x20000
Code of BTL

BTL BTL area

Vector table
of BTL

Reset vector
256 bytes BTL data area

0x1F000
B —— L 0x1EF00

Code of user application

Application

User bank(s)

application

Vector table
of user
application

Reset vector

0x00000

9.12.3. CPU specific configuration file

The BTL is configured by the BTLCONF. Hfile.

This file is self explaining and may look like the following:

#i fndef BTLCONF_H // Avoid multiple inclusion
#defi ne BTLCONF_H

/* Common defines for BTL */
#defi ne PASSWORD .
#def i ne APPNAME "emLoad ATMEGA"
#defi ne BTL_WAI TO_MS 500 /1 Wit tinme after reset
#defi ne BTL_RW U32NO 0
#defi ne BTL_WR TE_BLOCK_SI ZE 256
#defi ne BTL_HUCE __hugefl ash
/1 Before app. is started [ns]
/* CPU and target board specific defines */

#defi ne UPCLOCK 7372800 /1 GCszillator frequency

#def i ne UARTSEL 0 /] Select uart

#def i ne BAUDRATE 115200 /] Baudrate

/* Type of external flash */

#defi ne FLASH ATMEGA 1

#defi ne FLASH USER_START 0x00000 /1 Start of application program
#defi ne FLASH USER_LEN 0x1F000 /'l Length of user area

#def i ne FLASH USER RESBYTES 256
|

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 91/118

9.12.4. CPU specific configuration parameters:

Par anmet er Meaning
UPCLOCK Microprocessor clock frequency [Hz].
UARTSEL Selects the UART used for communication.
Should be:
0: UART O
1: UART 1
BAUDRATE Baudrate used for serial communication
(1200 ... 115200)
FLASH_ATMEGA Activate the ATmega128 flash routines

© 2014 SEGGER Microcontroller GmbH & Co. KG

92/118

User manual for emLoad , version 3.14

9.12.5. IAR-compiler

9.12.5.1. Used tools

Tool Version
Compiler 3.10b
Linker 4.56f
Assembler 3.10b
Workbench 3.0b

9.12.5.2. Compiling and linking

The BTL can be rebuild using the batch file M.bat in the main folder or by using

the project file.

The project file should be opened by double click from the Windows Explorer or
by opening it with the IAR workbench. It contains 2 targets: the debug and the
release target. To build the target executable the release target should be se-

lected. Now you can modify BTLCONF. Hand rebuild the BTL.

Before the project could be compiled by the batch file M.bat it should be

adapted to the customers tool path by modifying the following line:

|SI:_|' TOOLPATH=C: \ Tool \ C\' | AR\ AVR_V310B I

The actual BTL will be in the subfolder Qut put \ Rel ease\ Exe.

Fuses

Please note that the BTL does not work if the ATmega128 runs in ATmega103
compatibility mode. Further the fuses should enable the use of the reset vector

of the BTL. The following table shows the settings required for the BTL:

Fuse byte Bit Value
Extended Fuse Byte |M103C 1
Fuse High Byte BOOTSZ1 0
BOOTSZ0 1
BOOTRST 0
9.12.5.3. Additional program modules
File Explanation
C ean. bat Removes the compiler output
M bat Batch file to build the target executable
AVR_| AR eww Workspace file for IAR IDE
AVR_| AR ewp Project file for IAR IDE

FLASH\ FLASH _ATMEGA. ¢

FLASH\ FLASH ATMEGA HELP. s90

PORT\ BTL. xcl

Flash routines for ATmega128
Assembler helper routines
Linker file for BTL

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 93/118

9.13. ATMEL ATmega644

9.13.1. Supported CPU'’s:
ATmega644

9.13.2. Memory map

0x10000
Code of BTL

BTL BTL area

Vector table
of BTL

Reset vector
256 bytes BTL data area

0X0F000
o — L OX0EF00

Code of user application

Application

User bank(s)

application

Vector table
of user
application

Reset vector

0x00000

9.13.3. CPU specific configuration file

The BTL is configured by the BTLCONF. Hfile.
This file is self explaining and may look like the following:

/* Common defines for BTL */
#def i ne PASSWORD "
#def i ne APPNAME "emLoad ATMEGA"
#defi ne BTL_RW U32NO 0
#defi ne BTL_WRI TE_BLOCK_SI ZE 256
#defi ne BTL_HUGE __flash
#def i ne FEEDWATCHDOZ) asn("VDR")
#defi ne BTL_WAI TO_MS 500 /1 Wit time after reset
/1 Before app. is started [ns]

/* CPU and target board specific defines */

#def i ne UPCLOCK 6140000 /1 Gszillator frequency

#def i ne BAUDRATE 38400 /1 Baudrate

/* Type of external flash */

#defi ne FLASH_ATMEGA 1

#defi ne FLASH USER_START 0x00000 /1 Start of application program
#defi ne FLASH USER LEN 0x0F000 /1 Length of user area

#define FLASH USER RESBYTES 256
|

© 2014 SEGGER Microcontroller GmbH & Co. KG

94/118 User manual for emLoad , version 3.14

9.13.4. CPU specific configuration parameters:

Par amet er Meaning

UPCLOCK Microprocessor clock frequency [Hz].

BAUDRATE Baudrate used for serial communication
(1200 ... 115200)

FLASH_ATMEGA Activate the Atmega644 flash routines

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14

95/118

9.13.5. IAR-compiler

9.13.5.1. Used tools

Tool Version
Compiler 4.20A
Linker 4.59Z7
Assembler 4.20A
Workbench 4.7

9.13.5.2. Compiling and linking

The project file should be opened by double click from the Windows Explorer or
by opening it with the IAR workbench. It contains 2 targets: the debug and the
release target. To build the target executable the release target should be se-
lected. Now you can modify BTLCONF. Hand rebuild the BTL.

The actual BTL will be in the subfolder Qut put \ Rel ease\ Exe.

Fuses

Please note that the BTL does not work if the Atmega644 runs in ATmega103
compatibility mode. Further the fuses should enable the use of the reset vector
of the BTL. The following table shows the settings required for the BTL:

Fuse byte Bit Value
Fuse High Byte BOOTSZ1 0
BOOTSZ0 1
BOOTRST 0
9.13.5.3. Additional program modules
File Explanation
Cl ean. bat Removes the compiler output

AVR | AR V420A. eww
AVR | AR _V420A. ewp
FLASH\ FLASH ATMEGA. ¢

FLASH\ FLASH_ATMEGA HELP. s90

PORT\ ATnega644. h
PORT\ BTL. xcl

Workspace file for IAR IDE
Project file for IAR IDE

Flash routines for Atmega644
Assembler helper routines
SFR definitions for Atmega644
Linker file for BTL

© 2014 SEGGER Microcontroller GmbH & Co. KG

96/118 User manual for emLoad , version 3.14

9.14. Cortex-M3 Luminary

9.14.1. Supported CPU'’s:
All Cortex-M3 based Luminary CPUs.

9.14.2. Memory map

(Address
depends on
BTL data area used CPU)
Code of user application
. Application
Application sp:ctor(s)
Exception
vectors of
application
Reset vector
0x00001000
Code of BTL
BTL BTL sector(s)
Exception
vectors of
BTL
Reset vector
0x00000000

The BTL resides in the bottom sector(s) of CPUs internal FLASH. Since the
RESET vector is located in this bank, the BTL is automatically started after
RESET.

The application program is moved up in memory by 0x1000 bytes. The applica-
tion program can be compiled and linked the same way as without BTL; you
only have to change the memory location.

The BTL data area resides at the top of the application sectors.

© 2014 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 97/118

9.14.3. CPU specific configuration file

The BTL is configured by the BTLCONF. Hfile.
This file is self explaining and may look like the following:

/* CPU and UART specific defines */

#defi ne UPCLOCK 8000000L [* [Hz] */
#def i ne UARTSEL 0 /* select uart */
#def i ne BAUDRATE 230400L /* baudrate */

/* Data needs to be programmed in bl ocks of 1024 bytes */
define BTL_WRI TE_BLOCK_SI ZE 1024

/* common defines */

#def i ne APPNAME "BTL Luminary LMB " _ DATE " " _ TIME _
#def i ne PASSWORD "
#defi ne BTL_WAI TO_MS 500 /* Wit time after reset */

/* Before app. is started [ns] */
|

9.14.4. CPU specific configuration parameters:

Par anet er Meaning
UPCLOCK Microprocessor clock frequency [Hz].
UARTSEL UART Selection. Should be:
0: UART O
BAUDRATE Baudrate used for serial communication

9.14.5. FLASH specific configuration file

The flash area is configured by the FLASH Confi g. h file.
This file is self explaining and may look like the following:

/* Use BTL.h for the basic type definition */
#i ncl ude "BTL. h"

/* FLASH specific data types */
#defi ne FLASH U32 U32
#defi ne FLASH Ul16 Ul6
#define FLASH U8 U8

/* Define CPU type */
#define LM3

/* FLASH sel ection */
#define LM3_16K 1

/* Include the file FLASH Select.h after the CPU type definition */

#i ncl ude "FLASH Sel ect. h"
|

9.14.6. FLASH specific configuration parameters:

Par anet er Meaning
LM3 Use the Luminary LM3 flash module.
LM3_16K Select the flash sector information for Luminary

CPUs with 16K flash.

Available flash configurations are:
LM3_16K

LM3_21K

LM3_64K

LM3_96K

LM3_128K

LM3 256K

© 2014 SEGGER Microcontroller GmbH & Co. KG

98/118 User manual for emLoad , version 3.14

9.14.7. IAR-compiler

9.14.7.1. Used tools

Tool Version
Compiler 5.41.2.51793
Linker 5.41.2.51793
Assembler 5.41.2.51793
Workbench 5.6.2.1418

9.14.7.2. Compiling and linking

The project file should be opened by double click from the Windows Explorer.
Select the target which should be build. Now you can modify BTLCONF. H and
rebuild the BTL. The actual BTL will be in one of the EXE-subfolders.

9.14.7.3. Additional program modules

File Explanation

Cl ean. bat Removes the compiler output

BTL_LM3. ewd Project for IAR IDE

BTL_LMB. ewp

BTL_LMB_V541B. eww

FLASH. i cf Linker file for debug and release configuration
CPU_ASM | AR V5. s Firmware start code

© 2014 SEGGER Microcontroller GmbH & Co. KG

9.15. Cortex-M3 LPC17xx

9.15.1. Supported CPU'’s:

LPC1751 LPC1752 LPC1754 LPC1756
LPC1758 LPC1764 LPC1765 LPC1766
LPC1768

9.15.2. Memory map

(Address
depends on
BTL data area used CPU)
Code of user application
o Application
Application Spepct or(s)
Exception
vectors of
application
Reset vector
0x00001000
Code of BTL
BTL BTL sector(s)
Exception
vectors of
BTL
Reset vector
0x00000000

The BTL resides in the bottom sector(s) of CPUs internal FLASH. Since the
RESET vector is located in this bank, the BTL is automatically started after
RESET.

The application program is moved up in memory by 0x1000 bytes. The applica-
tion program can be compiled and linked the same way as without BTL; you
only have to change the memory location.

The BTL data area resides at the top of the application sectors.

100/118 User manual for emLoad , version 3.14

9.15.3. CPU specific configuration file

The BTL is configured by the BTLCONF. Hfile.
This file is self explaining and may look like the following:

/* CPU and UART specific defines */

#def i ne UPCLOCK 72000000L /* [Hz] */
#defi ne UARTSEL 0 /* select uart */
#def i ne BAUDRATE 230400L /* baudrate */

/* Data needs to be progranmed in bl ocks of 256 bytes */
#define BTL_WRI TE_BLOCK_SI ZE 256

/* conmmon defines */

#defi ne APPNAME "BTL LPCl7xx " _ _DATE _ " " _ TIME _

#defi ne PASSWORD "

#defi ne BTL_WAI TO_MS 500 /* Wait time after reset */
/* Before app. is started [ns] */

9.15.4. CPU specific configuration parameters:

Par anet er Meaning
UPCLOCK Microprocessor clock frequency [Hz].
UARTSEL UART Selection. Should be:
0: UART O
BAUDRATE Baudrate used for serial communication

9.15.5. FLASH specific configuration file

The flash area is configured by the FLASH _Confi g. h file.
This file is self explaining and may look like the following:

/* Use BTL.h for the basic type definition */
#i ncl ude "BTL. h"

/* FLASH specific data types */
#defi ne FLASH U32 U32
#defi ne FLASH U16 U16
#define FLASH U8 U8

/* Define CPU type */
#defi ne LPC17X1

/* FLASH sel ection */

#define FLASH LPC17XX 1
|

9.15.6. FLASH specific configuration parameters:

Par anet er Meaning

FLASH LPC17XX Use the LPC17xx flash module.
LPC17X1 Select the flash sector information for LPC17x1
CPUs.

Available flash configurations are:
LPC17X1

LPC17X2

LPC17X4

LPC17X5

LPC17X6

LPC17X8

© 2011 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14

101/118

9.15.7. IAR-compiler

9.15.7.1. Used tools

Tool Version
Compiler 5.41.2.51793
Linker 5.41.2.51793
Assembler 5.41.2.51793
Workbench 5.6.2.1418

9.15.7.2. Compiling and linking

The project file should be opened by double click from the Windows Explorer.
Select the target which should be build. Now you can modify BTLCONF. H and
rebuild the BTL. The actual BTL will be in one of the EXE-subfolders.

9.15.7.3. Additional program modules
File
Cl ean. bat
BTL_LPC17xx. ewd
BTL_LPC17xx. ewp
BTL_LPC17xx_V541B. eww
FLASH. i cf
CPU_ASM | AR V5. s
FLASH. mac

Explanation
Removes the compiler output
Project for IAR IDE

“wn

Linker file for debug and release configuration
Firmware start code
Macro file used to debug the FLASH build

© 2011 SEGGER Microcontroller GmbH & Co. KG

9.16. Cortex-M3 STM32F10x

9.16.1. Supported CPU'’s:

STM32F 10xx4 STM32F 10xx6 STM32F 10xx8 STM32F 10xxB
STM32F10xxC STM32F10xxD STM32F10xxE

9.16.2. Memory map

(Address
depends on
BTL data area used CPU)
Code of user application
. Application
Application sector(s)
Exception
vectors of
application
Reset vector
0x00001000
Code of BTL
BTL BTL sector(s)
Exception
vectors of
BTL
Reset vector
0x00000000

The BTL resides in the bottom sector(s) of CPUs internal FLASH. Since the
RESET vector is located in this bank, the BTL is automatically started after
RESET.

The application program is moved up in memory by 0x1000 bytes. The applica-
tion program can be compiled and linked the same way as without BTL; you
only have to change the memory location.

The BTL data area resides at the top of the application sectors.

User manual for emLoad , version 3.14 103/118

9.16.3. CPU specific configuration file

The BTL is configured by the BTLCONF. Hfile.
This file is self explaining and may look like the following:

/* CPU and UART specific defines */

#defi ne UPCLOCK 72000000L // [Hz]

#defi ne UARTSEL 0 /1 Sel ect UART, STMB210E- EVAL:
/1 0: UART1, 1: UART2

#defi ne UART2_NOT_REMAPPED 1 /1 On STM3210E- EVAL UART2 is not
/1 remapped

#def i ne BAUDRATE 230400L /! Baudrate

/1

/1 Data needs to be progranmed in a nultiple of 16 bytes.

/1 Greater block size neans | ess overhead by unl ock/| ock operations.
I

#define BTL_WRI TE_BLOCK_SI ZE 256

I

/1 Common defi nes

I

#def i ne APPNAME "BTL STMB2F10x " _ DATE " " _ TIME _

#def i ne PASSWORD "

#define BTL_WAI TO_MS 500 /* Wit time after reset */

/* Before app. is started [ns] */
|

9.16.4. CPU specific configuration parameters:

Par anet er Meaning
UPCLOCK Microprocessor clock frequency [Hz].
UARTSEL UART Selection. Should be:

0: UART 1 on STM3210E-EVAL eval board.

1: UART 2 on STM3210E-EVAL eval board
UART2_NOT_REMAPPED | Port pins do not need to be remapped to alternate
function for UART.

BAUDRATE Baudrate used for serial communication

9.16.5. FLASH specific configuration file

The flash area is configured by the FLASH Confi g. h file.
This file is self explaining and may look like the following:

/* Use BTL.h for the basic type definition */
#i ncl ude "BTL. h"

/* FLASH specific data types */
#define FLASH U32 U32
#define FLASH Ul6 Ul6
#define FLASH U8 U3

/* Define CPU type */
#defi ne STMB2F10XXE

/* FLASH sel ection */

#defi ne FLASH STM32F10X 1
-

9.16.6. FLASH specific configuration parameters:

Par anet er Meaning
FLASH STM32F10X Use the STM32F10x flash module.

© 2011 SEGGER Microcontroller GmbH & Co. KG

104/118

User manual for emLoad , version 3.14

STM32F10XXE

Select the flash sector information for
STM32F10xxE CPUs.

Available flash configurations are:

STM32F10XX4

STM32F10XX6

STM32F10XX8

STM32F10XXB

STM32F10XXC

STM32F10XXD

STM32F10XXE

© 2011 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14

105/118

9.16.7. IAR-compiler

9.16.7.1. Used tools

Tool Version
Compiler 5.50.5.51995
Linker 5.50.5.51995
Assembler 5.50.5.51995
Workbench 5.8.0.1623

9.16.7.2. Compiling and linking

The project file should be opened by double click from the Windows Explorer.
Select the target which should be build. Now you can modify BTLCONF. H and
rebuild the BTL. The actual BTL will be in one of the EXE-subfolders.

9.16.7.3. Additional program modules
File
Cl ean. bat
BTL_STM32F10x. ewd
BTL _STM32F10x. ewp
BTL_STM32F10x_V5505. eww
FLASH. i cf
USER. i cf
CPU ASM | AR V5. s

Explanation
Removes the compiler output
Project for IAR IDE

“wn

Linker file for debug and release configuration
Linker sample file for the user firmware.
Firmware start code

© 2011 SEGGER Microcontroller GmbH & Co. KG

9.17. Cortex-M3 STM32L15x

9.17.1. Supported CPU'’s:

STM32L15xx6 STM32L15xx8 STM32L15xxB STM32L15xxC
STM32L15xxD

9.17.2. Memory map

(Address
depends on
BTL data area used CPU)
Code of user application
. Application
Application sector(s)
Exception
vectors of
application
Reset vector
0x00001000
Code of BTL
BTL BTL sector(s)
Exception
vectors of
BTL
Reset vector
0x00000000

The BTL resides in the bottom sector(s) of CPUs internal FLASH. Since the
RESET vector is located in this bank, the BTL is automatically started after
RESET.

The application program is moved up in memory by 0x1000 bytes. The applica-
tion program can be compiled and linked the same way as without BTL; you
only have to change the memory location.

The BTL data area resides at the top of the application sectors.

User manual for emLoad , version 3.14 107/118

9.17.3. CPU specific configuration file

The BTL is configured by the BTLCONF. Hfile.
This file is self explaining and may look like the following:

/* CPU and UART specific defines */

#defi ne UPCLOCK 32000000L [* [Hz] */
#def i ne UARTSEL 2 /* select uart */
#def i ne BAUDRATE 230400L /* baudrate */

/* Data needs to be programred in bl ocks of 256 bytes */
#defi ne BTL_WRI TE_BLOCK_SI ZE 256

/* common defines */

#def i ne APPNAME "BTL STMB2L15x " _ DATE " " _ TIME _
#def i ne PASSWORD "
#defi ne BTL_WAI TO_MS 500 /* Wit time after reset */

/* Before app. is started [ns] */
|

9.17.4. CPU specific configuration parameters:

Par anet er Meaning
UPCLOCK Microprocessor clock frequency [Hz].
UARTSEL UART Selection. Should be:

2: UART 2 on STM32L152-EVAL eval board
BAUDRATE Baudrate used for serial communication

9.17.5. FLASH specific configuration file

The flash area is configured by the FLASH Confi g. h file.
This file is self explaining and may look like the following:

/* Use BTL.h for the basic type definition */
#i ncl ude "BTL. h"

/* FLASH specific data types */
#defi ne FLASH U32 U32
#defi ne FLASH Ul16 Ul6
#define FLASH U8 U8

/* Define CPU type */
#defi ne STM32L15XXB

/* FLASH sel ection */

#defi ne FLASH STMB2L15X 1
|

9.17.6. FLASH specific configuration parameters:

Par anet er Meaning
FLASH STM32L15X Use the STM32L15x flash module.
STM32L15XXB Select the flash sector information for

STM32L15xxB CPUs.

Available flash configurations are:
STM32L15XX6

STM32L15XX8

STM32L15XXB

STM32L15XXC

STM32L15XXD

© 2011 SEGGER Microcontroller GmbH & Co. KG

108/118 User manual for emLoad , version 3.14

9.17.7. IAR-compiler

9.17.7.1. Used tools

Tool Version
Compiler 5.50.5.51995
Linker 5.50.5.51995
Assembler 5.50.5.51995
Workbench 5.8.0.1623

9.17.7.2. Compiling and linking

The project file should be opened by double click from the Windows Explorer.
Select the target which should be build. Now you can modify BTLCONF. H and
rebuild the BTL. The actual BTL will be in one of the EXE-subfolders.

9.17.7.3. Additional program modules

File Explanation
Cl ean. bat Removes the compiler output
BTL_STM32L15x. ewd Project for IAR IDE

BTL_STMB2L15x. ewp
BTL_STMB2L15x_V5505. eww

FLASH. i cf Linker file for debug and release configuration
USER. i cf Linker sample file for the user firmware.
CPU ASM | AR V5. s Firmware start code

© 2011 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 109/118

9.18. Cortex-M3 STM32F20x

9.18.1. Supported CPU'’s:

STM32F20xxB STM32F20xxC STM32F20xxE STM32F20xxF
STM32F20xxG

9.18.2. Memory map

(Address
depends on
BTL data area used CFU)
Code of user application
o Application
Application sector(s)
Exception
vectorsof
application
Resetvector 0x08004000
Code of BTL
BTL BTLsector(s)
Exception
vectors of BTL
Resetvector 0x08000000

The BTL resides in the bottom sector(s) of CPUs internal FLASH. Since the
RESET vector is located in this bank, the BTL is automatically started after
RESET.

The application program is moved up in memory by 0x4000 bytes. The applica-
tion program can be compiled and linked the same way as without BTL; you
only have to change the memory location.

The BTL data area resides at the top of the application sectors.

© 2011 SEGGER Microcontroller GmbH & Co. KG

110/118 User manual for emLoad , version 3.14

9.18.3. CPU specific configuration file

The BTL is configured by the BTLCONF. Hfile.
This file is self explaining and may look like the following:

/* CPU and UART specific defines */

#def i ne UPCLOCK 120000000L // [Hz]

#def i ne UARTSEL 0 /1 Sel ect UART, STMB220G EVAL:
/1 0: UART3

#def i ne BAUDRATE 230400L /1 Baudrate

11

/1 Data needs to be progranmed in a multiple of 16 bytes.

I/l Greater block size neans | ess overhead by unl ock/| ock operations.
11

#define BTL_WRI TE_BLOCK_SI ZE 256

/1
/1 Conmmon defi nes
/1

#defi ne APPNAME "BTL STMB2F20x " _ DATE _ " " _ TIME _

#defi ne PASSWORD "

#defi ne BTL_WAI TO_MS 500 /* WAt time after reset */
/* Before app. is started [ns] */

9.18.4. CPU specific configuration parameters:

Par anet er Meaning
UPCLOCK Microprocessor clock frequency [Hz].
UARTSEL UART Selection. Should be:

0: UART3 on STM3220G-EVAL eval board.
BAUDRATE Baudrate used for serial communication

9.18.5. FLASH specific configuration file

The flash area is configured by the FLASH _Confi g. h file.
This file is self explaining and may look like the following:

/* Use BTL.h for the basic type definition */
#i ncl ude "BTL. h"

/* FLASH specific data types */
#defi ne FLASH U32 U32
#defi ne FLASH U16 U16
#define FLASH U8 U8

/* Define CPU type */
#defi ne STMB2F20XXG

/* FLASH sel ection */

#define FLASH STM32F20X 1
|

9.18.6. FLASH specific configuration parameters:

Par anet er Meaning
FLASH STM32F20X Use the STM32F20x flash module.
STM32F20XXG Select the flash sector information for

STM32F20xxG CPUs.

Available flash configurations are:
STM32F20XXB

STM32F20XXC

STM32F20XXE

STM32F20XXF

STM32F20XXG

© 2011 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14

111/118

9.18.7. KEIL MDK ARM-compiler

9.18.7.1. Used tools

Tool Version
Compiler 5.03.0.69
Linker 5.03.0.69
Assembler 5.03.0.69
uVision 4.71.2.0

9.18.7.2. Compiling and linking

The project file should be opened by double click from the Windows Explorer.
Select the target which should be build. Now you can modify BTLCONF. H and

rebuild the BTL.

9.18.7.3. Additional program modules
File
Cl ean. bat
BTL_STM32F20x. *
FLASH. sct
USER. sct

Explanation

Removes the compiler output

Project for KEIL MDK ARM

Linker file for debug and release configuration
Linker sample file for the user firmware.

© 2011 SEGGER Microcontroller GmbH & Co. KG

112/118 User manual for emLoad , version 3.14

9.19. Cortex-M3 STM32F40x

9.19.1. Supported CPU'’s:
STM32F40xxE STM32F40xxG

9.19.2. Memory map

(Address
depends on
BTL data area used CPU)
Code of user application
. . Application
Application sector(s)
Exception
vectorsof
application
Resetvector
0x08004000
Code of BTL
BTL BTLsector(s)
Exception
vectors of BTL
Resetvector 0x08000000

The BTL resides in the bottom sector(s) of CPUs internal FLASH. Since the
RESET vector is located in this bank, the BTL is automatically started after
RESET.

The application program is moved up in memory by 0x4000 bytes. The applica-
tion program can be compiled and linked the same way as without BTL; you
only have to change the memory location.

The BTL data area resides at the top of the application sectors.

© 2011 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14 113/118

9.19.3. CPU specific configuration file

The BTL is configured by the BTLCONF. Hfile.
This file is self explaining and may look like the following:

/* CPU and UART specific defines */

#defi ne UPCLOCK 168000000L // [Hz]

#defi ne UARTSEL 0 /1 Sel ect UART, STMB240G EVAL:
/1 0: UART3

#def i ne BAUDRATE 230400L // Baudrate

I

/1 Data needs to be progranmed in a nultiple of 16 bytes.

/1 Greater block size neans | ess overhead by unl ock/| ock operations.
I

#define BTL_WRI TE_BLOCK_SI ZE 256

/1
/1 Conmon defines
/1

#def i ne APPNAME "BTL STMB2F40x " _ DATE " " _ TIME _

#def i ne PASSWORD "

#defi ne BTL_WAI TO_MS 500 /* Wit time after reset */
/* Before app. is started [ns] */

9.19.4. CPU specific configuration parameters:

Par anet er Meaning
UPCLOCK Microprocessor clock frequency [Hz].
UARTSEL UART Selection. Should be:

0: UART3 on STM3240G-EVAL eval board.
BAUDRATE Baudrate used for serial communication

9.19.5. FLASH specific configuration file

The flash area is configured by the FLASH Conf i g. h file.
This file is self explaining and may look like the following:

/* Use BTL.h for the basic type definition */
#i ncl ude " BTL. h"

/* FLASH specific data types */
#defi ne FLASH U32 U32
#defi ne FLASH Ul16 Ul6
#define FLASH U8 U8

/* Define CPU type */
#def i ne STMB2F40XXG

/* FLASH sel ection */

#defi ne FLASH STM32F20X 1
|

9.19.6. FLASH specific configuration parameters:

Par anmet er Meaning

FLASH_STM32F20X Use the STM32F20x flash module (same for
STM32F40x).

STM32F40XXG Select the flash sector information for

STM32F40xxG CPUs.

Available flash configurations are:
STM32F40XXE

STM32F40XXG

© 2011 SEGGER Microcontroller GmbH & Co. KG

114/118 User manual for emLoad , version 3.14

9.19.7. IAR-compiler

9.19.7.1. Used tools

Tool Version
Compiler 6.30.6.53336
Linker 6.30.6.53336
Assembler 6.30.6.53336
Workbench 6.30.6.3387

9.19.7.2. Compiling and linking

The project file should be opened by double click from the Windows Explorer.
Select the target which should be build. Now you can modify BTLCONF. H and
rebuild the BTL. The actual BTL will be in one of the EXE-subfolders.

9.19.7.3. Additional program modules

File Explanation
Cl ean. bat Removes the compiler output
BTL_STMB2F40x. ewd Project for IAR IDE

BTL_STM32F40x. ewp
BTL_STM32F40x_V6306. eww «
FLASH. i cf Linker file for debug and release configuration

USER. i cf Linker sample file for the user firmware.
BTL_CPU_CMB_I AR V6_ASM s Firmware start code

© 2011 SEGGER Microcontroller GmbH & Co. KG

9.20. Cortex-M3 Freescale Kinetis K10

9.20.1. Supported CPU'’s:

K10X32X5 K10X64X5 K10X64X7 K10X128X5
K10X128X7 K10X256X7 K10X512X10 K10X512X12
K10X1M0X12

9.20.2. Memory map

(Address
depends on
BTL data area Used CRU)
Code of user application
o Application
Application sector(s)
Exception
vectorsof
application
Resetvector 0x00001800
Code of BTL
BTL BTLsector(s)
Exception
vectors of BTL
Resetvector 0x00000000

The BTL resides in the bottom sector(s) of CPUs internal FLASH. Since the
RESET vector is located in this bank, the BTL is automatically started after
RESET.

The application program is moved up in memory by 0x1800 bytes. The applica-
tion program can be compiled and linked the same way as without BTL; you
only have to change the memory location.

The BTL data area resides at the top of the application sectors.

116/118 User manual for emLoad , version 3.14

9.20.3. CPU specific configuration file

The BTL is configured by the BTLCONF. Hfile.
This file is self explaining and may look like the following:

/* CPU and UART specific defines */

#def i ne UPCLOCK 41943040L Il [Hz]

#defi ne UARTSEL 1 /1 Select UART: 1: UART1
#def i ne BAUDRATE 230400L /1 Baudrate

/1

/1 Data needs to be progranmed in a multiple of 16 bytes.

/Il Greater block size neans | ess overhead by unl ock/| ock operations.
11

#define BTL_WRI TE_BLOCK_SI ZE 64

11

/1 Conmmon defi nes

11

#defi ne APPNAME "BTL Kinetis Kxx " __ DATE _ " " _ TIME _
#defi ne PASSWORD "

#defi ne BTL_WAI TO_MS 500 /* Wait time after reset */

/* Before app. is started [ns] */
|

9.20.4. CPU specific configuration parameters:

Par anet er Meaning
UPCLOCK Microprocessor clock frequency [Hz].
UARTSEL UART Selection. Should be:
1: UART1.
BAUDRATE Baudrate used for serial communication

9.20.5. FLASH specific configuration file

The flash area is configured by the FLASH _Confi g. h file.
This file is self explaining and may look like the following:

/* Use BTL.h for the basic type definition */
#i ncl ude "BTL. h"

/* FLASH specific data types */
#defi ne FLASH U32 U32
#defi ne FLASH U16 U16
#define FLASH U8 U8

/* Define CPU type */
#defi ne K10X128X5

/* FLASH sel ection */

#define FLASH KI NETI S_KXX 1
|

© 2011 SEGGER Microcontroller GmbH & Co. KG

User manual for emLoad , version 3.14

117/118

9.20.6. FLASH specific configuration parameters:

Par anet er Meaning
FLASH KINETIS KXX [Use the Freescale Kinetis Kxx flash module.
K10X128X5 Select the flash sector information for Kinetis

Freescale K10 CPUs.
Available flash configurations are:
K10X32X5
K10X64X5
K10X64 X7
K10X128X5
K10X128X7
K10X256X7
K10X512X10
K10X512X12
K10X1MO0X12

9.20.7. KEIL MDK ARM-compiler

9.20.7.1. Used tools

Tool Version
Compiler 5.03.0.69
Linker 5.03.0.69
Assembler 5.03.0.69
uVision 4.71.2.0

9.20.7.2. Compiling and linking

The project file should be opened by double click from the Windows Explorer.
Select the target which should be build. Now you can modify BTLCONF. H and

rebuild the BTL.

9.20.7.3. Additional program modules
File
Cl ean. bat
BTL_Ki netis_Kxx.*
FLASH. sct
USER. sct

Explanation

Removes the compiler output

Project for KEIL MDK ARM

Linker file for debug and release configuration
Linker sample file for the user firmware.

© 2011 SEGGER Microcontroller GmbH & Co. KG

118/118

User manual for emLoad , version 3.14

FLASH_EraseSector............. 39
FLASH_GetNumSectors....... 39
FLASH_USER_LEN........ 29, 30

FLASH_USER_RESBYTES .30
FLASH_USER_START...29, 30

10. Index

A

APPNAME..........co 28
ARM AT91M40800................ 74
ARM LPC2XXX ..o 87
ATMEL ATmega128 90
B

BAUDRATE...50, 55, 59, 63, 67,
72,76,79, 82, 85, 88, 91, 94,
97, 100, 103, 107, 110, 113,
116

FLASH_WriteAdr 39
H
HEXLoad........cccocoiiiieee 12
1

IAR-compiler .51, 56, 60, 61, 64,
65, 68, 69, 73, 77, 80, 83, 86,
92, 95, 98, 101, 105, 108,
111, 114, 117

BTL_HUGEccceevire 28
BTL_RW_U32NO 29
BTL_WAIT_MS........cccoee 29
BTL_WRITE_BLOCK_SIZE..29
BTLConfh oo 28
C

COMPort....coeeieeiiieeeeiieeee 18
Command line options 16
Configuration..........ccccccceens 28
Configuring......coocoeveiiiieennns 25
CPU.C..ceeeieiieeeiee e, 34
CPU_EXit....ccoveeeviieeeiiieeee 34
CPU_GetName.............c...... 34
CPU_INit...ccocieeeiiiieeecieeee 34
CPU_PoOIl.....veiiiiiiiieee 34
CPU_StartApplication 35
CPUTYPE........ceenee. 63, 67,72
E

Edit Menuccccooeiii 13
Erasing memory................... 19
External flashc..ccccec. 41
F

FEEDWATCHDOG................ 29
File Menucccceeeiiiiinneen, 13
FLASH.C....covvveivieceieee 39
FLASH_29LV400B................ 76
FLASH_ATMEGA 91, 94
FLASH_Conf.h.....c.cocceeenne 31

PC-program........cc.ccceeeuvvneenn. 12
Porting......ccooeeeiniiiiiiieie 34
Programming 19
R

Renesas R32C.......... 62, 66, 71
S

SECT30_USER.INC 52
Start BTL ... 19
T

Target Menu..........cccceeenineen. 14
TASKING-compiler 53
U

UART.C.ooeriiieeiiiie e 37
UART_EXit c.oeveeiiiieeeeiieeee 37
UART_Init..ooeiiiiieiiieee 37
UART_Poll ...cocoviiieeiiieeene 38
UART_Send1.....ccccovcviveennne 38

UARTSELS0, 55, 59, 63, 67, 72,
76,79, 82, 85, 88, 91, 97,
100, 103, 107, 110, 113, 116

UPCLOCKS50, 55, 59, 63, 67, 72,
76, 79, 82, 85, 88, 91, 94, 97,
100, 103, 107, 110, 113, 116

Updatercccooeeveeeiiiee, 21
USER.CC ..coviiieiiieeeeee e 40
USER.xcl.....ccccceeee. 51, 56, 60
USER_EXit ...coeviiiieiiiiieeee 40
USER Init ... 40

User_M16C_TASKING.pjt53
User_M16C_TASKING.psp ..53

Installation of HEXLoad......... 12
Interruptscoooeeeeieeeieeeeee, 45
K

KEIL-compiler.......ccccccccceee.... 89
M

Memory mapccceeeveeeeen. 26
Menu items...........ccccc 13
Mitsubishi M16C................... 48
Mitsubishi M16C65................ 54
Mitsubishi M32C.................... 57
Modules........ccccceeeen.. 28, 31,33
N

NC30-compiler............cc........ 52
NCRTO_USER.A30............... 52
(0]

Options Menu.........cccceeeeennes 15
OVErVIEWcoovvveveeevevevevereians 11
P

PASSWORD......c...ccccvvveennee 31

USER Pollcccvvveieeiie 40
Vv

Validatecoooveevvvivieeeeennnn. 20
Verify oo 20
AVZ=1 651 (o] o I 3
View Menu........ccooevevvneeeeennnnn. 14

© 2011 SEGGER Microcontroller GmbH & Co. KG

	Disclaimer
	Copyright notice
	Trademarks
	Contact / registration
	Version of software, manual
	Contents
	About this document
	Assumptions
	Typographic Conventions for Syntax
	Glossary

	Introduction to emLoad
	What is emLoad
	Function of the software
	Availability and FLASH devices
	Configuration

	PC-program: HEXLoad
	Installation
	Starting HEXLoad
	Menu items
	File Menu
	Edit Menu
	View Menu
	Target Menu
	Options Menu

	Command line options
	Table of commands
	Examples

	Using the emLoad software

	PC-program: Updater
	How to exchange the firmware
	How the Updater works
	Using the Updater

	Understanding the BTL
	Flowchart
	Memory map
	Interrupts
	Different types of interrupt processing

	Reset
	Fixed vector
	Fixed address

	Configuration
	Configuring BTLConf.h
	Application name
	Huge pointer
	Use of functions for reading and writing 32 bit values
	Wait time after reset
	Write block size
	Transmitter enable / disable
	Feed watchdog
	User flash area
	Number of data bytes
	Password

	Configuring FLASH_Config.h
	Basic data types
	Huge pointer
	Relocate flash routines

	Generic program modules of the BTL
	How to port
	CPU related routines, CPU.c
	CPU_Exit()
	CPU_GetName()
	CPU_Init()
	CPU_Poll()
	CPU_StartApplication()

	UART related routines, UART.c
	UART_Exit()
	UART_Init()
	UART_Poll()
	UART_Send1()

	FLASH related routines, FLASH.c
	FLASH_EraseSector()
	FLASH_GetNumSectors()
	FLASH_WriteAdr()

	User routines, USER.c
	USER_Init()
	USER_Exit()
	USER_Poll()

	Using external flash routines
	Supported hardware
	Configuration
	Flash sectoring
	Additional options

	Interrupts
	Different types of interrupt processing

	Available ports
	Renesas M16C
	Supported CPU’s:
	Memory map
	CPU specific configuration file
	CPU specific configuration parameters:
	FLASH specific configuration file
	FLASH specific configuration parameters:
	IAR-compiler
	Renesas NC30-compiler
	TASKING-compiler

	Renesas M16C65
	Supported CPU’s:
	Memory map
	CPU specific configuration file
	CPU specific configuration parameters:
	FLASH specific configuration file
	FLASH specific configuration parameters:
	IAR-compiler

	Renesas M32C
	Supported CPU’s:
	Memory map
	CPU specific configuration file
	CPU specific configuration parameters:
	FLASH specific configuration file
	FLASH specific configuration parameters:
	IAR-compiler
	Renesas NC308-compiler

	Renesas R32C
	Supported CPU’s:
	Memory map
	CPU specific configuration file
	CPU specific configuration parameters:
	FLASH specific configuration file
	FLASH specific configuration parameters:
	IAR-compiler
	RENESAS-compiler

	Renesas RX
	Supported CPU’s:
	Memory map
	CPU specific configuration file
	CPU specific configuration parameters:
	FLASH specific configuration file
	FLASH specific configuration parameters:
	RENESAS-compiler
	IAR-compiler

	Renesas R8C
	Supported CPU’s:
	Memory map
	CPU specific configuration file
	CPU specific configuration parameters:
	FLASH specific configuration file
	FLASH specific configuration parameters:
	IAR-compiler

	ARM AT91M40800
	Supported CPU’s:
	Memory map
	CPU specific configuration file
	CPU specific configuration parameters:
	IAR-compiler

	ARM AT91SAM7
	Supported CPU’s:
	Memory map
	CPU specific configuration file
	CPU specific configuration parameters:
	FLASH specific configuration file
	FLASH specific configuration parameters:
	IAR-compiler

	ARM AT91SAM7L
	Supported CPU’s:
	Memory map
	CPU specific configuration file
	CPU specific configuration parameters:
	FLASH specific configuration file
	FLASH specific configuration parameters:
	IAR-compiler

	ARM LH754XX
	Supported CPU’s:
	Memory map
	CPU specific configuration file
	CPU specific configuration parameters:
	FLASH specific configuration file
	FLASH specific configuration parameters:
	IAR-compiler

	ARM LPC2XXX
	Supported CPU’s:
	Memory map
	CPU specific configuration file
	CPU specific configuration parameters:
	FLASH specific configuration file
	FLASH specific configuration parameters:
	Keil-compiler

	ATMEL ATmega128
	Supported CPU’s:
	Memory map
	CPU specific configuration file
	CPU specific configuration parameters:
	IAR-compiler

	ATMEL ATmega644
	Supported CPU’s:
	Memory map
	CPU specific configuration file
	CPU specific configuration parameters:
	IAR-compiler

	Cortex-M3 Luminary
	Supported CPU’s:
	Memory map
	CPU specific configuration file
	CPU specific configuration parameters:
	FLASH specific configuration file
	FLASH specific configuration parameters:
	IAR-compiler

	Cortex-M3 LPC17xx
	Supported CPU’s:
	Memory map
	CPU specific configuration file
	CPU specific configuration parameters:
	FLASH specific configuration file
	FLASH specific configuration parameters:
	IAR-compiler

	Cortex-M3 STM32F10x
	Supported CPU’s:
	Memory map
	CPU specific configuration file
	CPU specific configuration parameters:
	FLASH specific configuration file
	FLASH specific configuration parameters:
	IAR-compiler

	Cortex-M3 STM32L15x
	Supported CPU’s:
	Memory map
	CPU specific configuration file
	CPU specific configuration parameters:
	FLASH specific configuration file
	FLASH specific configuration parameters:
	IAR-compiler

	Cortex-M3 STM32F20x
	Supported CPU’s:
	Memory map
	CPU specific configuration file
	CPU specific configuration parameters:
	FLASH specific configuration file
	FLASH specific configuration parameters:
	KEIL MDK ARM-compiler

	Cortex-M3 STM32F40x
	Supported CPU’s:
	Memory map
	CPU specific configuration file
	CPU specific configuration parameters:
	FLASH specific configuration file
	FLASH specific configuration parameters:
	IAR-compiler

	Cortex-M3 Freescale Kinetis K10
	Supported CPU’s:
	Memory map
	CPU specific configuration file
	CPU specific configuration parameters:
	FLASH specific configuration file
	FLASH specific configuration parameters:
	KEIL MDK ARM-compiler

	Index

