
appor t  
de  r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
70

75
--

FR
+E

N
G

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Integrating Java Support for Routing Protocols in
NS2

Ulrich Herberg

N° 7075

October 2009





Centre de recherche INRIA Paris – Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Integrating Java Support for Routing Protocols
in NS2

Ulrich Herberg

Thème : COM – Systèmes communicants
Équipe-Projet Hipercom

Rapport de recherche n° 7075 — October 2009 — 32 pages

Abstract: This document presents a modification of the existing tool AgentJ
which allows for running a Java routing protocol within the network simulator
NS2.

Key-words: Java, routing protocol, AgentJ, NS2, simulation, tool



Integrating Java Support for Routing Protocols
in NS2

Résumé : Ce document présente une modification de l’outil AgentJ qui per-
met d’exécuter des protocols de routage en Java dans le simulateur des réseaux
NS2.

Mots-clés : Java, protocol de routage, AgentJ, NS2, simulation, tool



Integrating Java Support for Routing Protocols in NS2 3

1 Introduction

When designing a new routing protocol, an important step in its development
is often to implement and experiment with it in a network simulator such as
NS2 [1]. While network simulators have their limits, especially in terms of
the fidelity of the lower layers and – for wireless network interfaces – in the
fidelity of the propagation model used for representing the behavior of physical
radio waves, their use is often allowing to understand high-level and algorithmic
properties of a given routing protocol. In particular in the area of Mobile Ad-
Hoc Networks (MANETs), simulations are easier to perform than building a
large test network of nodes, simulate mobility, and guarantee reproducibility
of predefined scenarios. Using NS2 as network simulator requires the routing
protocol to be implemented in C++. However, there is a tool called AgentJ
which allows for running Java applications within NS2.

In particular, AgentJ enables to run unmodified and preexisting Java appli-
cations that work on top of an operating system such as Linux or Mac OS also
on NS2. AgentJ rewrites all calls related to socket operations, I/O and thread
handling, such that the Java application “as-is” interoperates with NS2.

AgentJ was originally developed only for application layer agents, and not
for routing agents. In this document, the necessary changes to the AgentJ
architecture are described that enable to use Java routing protocols within NS2,
as well as detailed instructions on how to instantiate and run in NS2 a new
routing protocol implemented in Java.

1.1 Availability

The modifications to AgentJ, that are described in this document, have been
integrated into the core distribution of AgentJ. It is therefore available at:

http://downloads.pf.itd.nrl.navy.mil/agentj/nightly_snapshots/agentj-svnsnap.tgz

Remark: At the time this document has been written, only the “nightly snap-
shot” reflects a recent distribution of AgentJ. The “release version” is four years
old.

1.2 Notation

Throughout the document, there are two different notations of “AgentJ”: AgentJ
and Agentj (in Courier font). The first notation (with capital “J”) is used to
describe the whole tool. The latter is used for some of the C++ files that are
contained in the AgentJ project.

1.3 Outline

This document is composed of two parts:
Part I details how to instantiate a Java routing protocol in AgentJ. It begins

with an overview of AgentJ in section 2. Section 3 contains a step-by-step in-
struction for integrating a Java routing protocol in NS2 using AgentJ. Section 4
presents some advanced use cases.

Part II details the modified architecture of AgentJ that allows for running
routing protocols in NS2. Section 5 overviews routing in NS2. In section 6,

RR n° 7075



4 U. Herberg

the changes of the AgentJ codebase and architecture are detailed. Section 7
concludes the document.

Note:

• A reader, who only wants to know how to run an existing Java routing
protocol implementation in NS2, should read part I.

• A reader, who is also interested in the background and the architecture of
routing functionalities in AgentJ, should continue and also read part II.

INRIA



Integrating Java Support for Routing Protocols in NS2 5

Part I

Running a Java Routing Protocol
in NS2 using AgentJ
This part of the document describes how to use a Java routing protocol im-
plementation with NS2 by using AgentJ. It details all necessary steps for inte-
grating the implementation, plus some optional, more advanced features. The
background and the architecture of routing functionalities in AgentJ are detailed
in part II.

2 AgentJ Overview

AgentJ [5] is a tool primarily developed by Ian Taylor for the Naval Research
Laboratory (NRL). The AgentJ tool serves the purpose of running Java applica-
tions as application agents on the discrete event simulator NS2 [1]. NS2, with-
out AgentJ, otherwise only supports C++ implementations. AgentJ marshals
the Java commands to C++, and rewrites Java application system calls (e.g.
for network packets, I/O, and time events) to use the equivalent system calls
of NS2. Thread handling is rewritten completely, as NS2 is a single-threaded
event-driven simulator, while Java applications often are multithreaded. For a
detailed description of the rewriting mechanism of AgentJ, refer to [4]. All this
means that an existing Java application does not need to be changed at all for
running on NS2, adhering to the Java slogan “Write once, run anywhere”.

AgentJ uses the Java Native Interface (JNI) [3] in order to connect the Java
code to the C++ code of NS2. That allows NS2 to access of all Java classes,
objects and methods. A callback system between the C++ (and OTcl) side of
NS2 and Java is set up by AgentJ for interaction between NS2 and the Java
implementation.

Agentj
object

Ns2
node

Helper Class
(entry point) Java program

Timer calls + 
Control packets

OTcl / C++ Java

Figure 1: Architecture of an AgentJ agent attached to an NS2 node

RR n° 7075



6 U. Herberg

Figure 1 depicts the basic architecture of a Java application running on
a single NS2 node over AgentJ. The parts on the left side are implemented
in C++ and OTcl. This includes the NS2 node and the AgentJ C++ agent
that is attached to that node. For launching the Java application and sending
commands to it from NS2, it needs a single entry point (similar to a main()
method). Thus, a helper class has to be provided by the user, which serves as
this entry point (refer to sections 3 and 6 for more details) and which is the
only additional component that the user needs to implement to “glue” the Java
implementation to NS2.

INRIA



Integrating Java Support for Routing Protocols in NS2 7

3 Basic Integration

This section describes the integration of a routing protocol written in Java into
NS2 using the AgentJ library as extended as described in this document. It
assumes that AgentJ is properly installed, as described in the AgentJ manual [4].

Note that for C++ implementations, each new protocol implementation re-
quires NS2 modifications, and a subsequent recompilation of NS2. However,
once AgentJ has been installed, no recompilation of NS2 is necessary any more,
even when a new routing protocol implementation in Java is created and added.
In the following step-by-step instruction, a demonstrative example routing pro-
tocol called MyRoutingProtocol is used to show the interaction between the
protocol implementation, AgentJ, and NS2.

3.1 Addition of a Helper Class as Single Point of Entry
for NS2

As the single point of entry for NS2 to the routing protocol implementation, a
new helper class in Java needs to be created. This helper class – as depicted
on the right side of figure 2 – serves the same purpose as the main method of
Java applications: to allow NS2 / AgentJ to “execute” the routing protocol
implementation. In addition, the helper class provides an interface with two
methods, called by NS2 for the purpose of routing. All other calls, such as for
sending and receiving control packets or setting timers, are directly hooked into
NS2 (by virtue of bytecode rewriting) and do not need any changes in the Java
routing protocol implementation or in the helper class.

Agentj
object

Ns2
node

Helper Class
(entry point)

extends 
AgentJAgent

implements 
AgentJRouter

Java routing 
protocol 

implementation

getNextHop()

getRoutingPort()

Timer calls + 
Control packets

AgentJRouter
object

OTcl / C++ Java

Figure 2: The helper class on the right side serves as single point of entry from
NS2 to the Java routing protocol implementation.

The Java helper class (in the following example called MyRoutingAgent)
needs to extend from agentj.AgentJAgent, and also has to implement the
agentj.AgentJRouter interface. An example class definition looks as the fol-
lowing:

RR n° 7075



8 U. Herberg

public class MyRoutingAgent extends AgentJAgent implements AgentJRouter

By implementing the AgentJRouter interface, the three methods getRoutingPort(),
getNextHop(int), and command(String, String[]), must also be provided by
MyRoutingAgent:

• public int getRoutingPort()

This method should return the UDP port number that the Java routing
agent is running on. This can be any arbitrary number between 0 and
65535. NS2 will send control traffic packets to that port, and the Java
routing protocol should receive control traffic from that port.

• public int getNextHop(int destination)

This method will be called from NS2 whenever a unicast data packet
arrives at the node. The Java method should return the next hop for the
given destination (as NS2 node ID) or -1 if no such destination has been
found in the routing table. If the Java routing protocol implementation
uses real IP Addresses (i.e. “java.net.InetAddress”) and not only NS2 node
IDs1, this method must perform a mapping between these two address
types.

An exemplary mapping (limited to node IDs smaller than 256) would be:
InetAddress.getByName("0.0.0." + destination)

In a future version of AgentJ, the mapping could be done within the
AgentJ code.

• public boolean command(String command, String[] args)

The method command(...) evaluates the given command and its argu-
ments. The minimal prerequisite of this function is that it allows to start
the routing protocol (i.e. serves as the single point of entry). In the before-
mentioned example, calling the command startRouting would start the
Java routing protocol. Optionally, any other command can be added in
the command() method, such as for outputting the routing table as in the
following example:

public boolean command(String command, String[] args) {
if (command.equals("startRouting")) {

// a method needs to be added here to start the routing protocol
return true;

} else if (command.equals("print_rtable")) {
// code needs to be added here to output routing table
return true;

return false;
}

1In NS2, every node has a unique identifier, the NS2 node ID. Per default, this ID is an
unsigned integer (including 0).

INRIA



Integrating Java Support for Routing Protocols in NS2 9

3.2 Installation of the Java Classes

In order to run the Java routing protocol, AgentJ has to find the corresponding
class files. The location of the Java classes of the routing protocol must be
added to an environmental variable called AGENTJ_CLASSPATH. In Linux, this is
done by running:

export AGENTJ_CLASSPATH=.:/path/to/classfiles

where /path/to/classfiles needs to be replaced by the location of the
Java classes. This line should be added to the $HOME/.bashrc file (if using the
bourne shell) in order to execute it every time the user logs on.

3.3 Scenario Tcl Script

The scenario Tcl file that is called by NS2 must tell AgentJ which Java routing
protocol to use. A complete example Tcl script can be found in appendix A.
Note in particular the following lines, specific to using a routing protocol with
AgentJ, that represent a minimum set of parameters that have to be defined in
the Tcl script:

1. Define the routing agent:

set opt(rp) AgentJ ;# Routing Protocol
...
$ns_ node-config \

-adhocRouting $opt(rp) \
...

The routing agent is set to “AgentJ” whatever Java routing protocol is
used. This avoids adding a new routing protocol in NS2.34/tcl/lib/ns-lib.tcl
for every new Java routing protocol implementation.

2. Attach the Java agent to a node

set node [ $ns_ node ] ;# create a new node

# The following line must be changed to reflect
# the name of the Java class.
[$node set ragent_] attach-agentj my.personal.MyRoutingAgent

# The following lines needs only be changed for advanced settings
# (refer to section 4).
[$node set ragent_] agentj setRouterAgent Agent/AgentJRouter
$ns_ at 0.0 "[$node set ragent_] agentj startRouting"

The parameter my.personal.MyRoutingAgent must be changed to the
complete name of the Java class name of the helper class that has been
added (as described in section 3.1).

RR n° 7075



10 U. Herberg

3.4 Change Addressing Scheme

The $AGENTJ/conf/agentj.properties file has to be modified as follows:

#If you want to change to IPv4 or IPv6 addressing,
#you have to add a line:

#java.net.preferIPv4Stack=true #or
#java.net.preferIPv6Stack=true

If the Java routing protocol uses only multicast addressing and no unicast
addresses, nothing needs to be changed. In particular, in order to run the
AgentJ examples in $AGENTJ/examples/udp, the file should not be modified.
However, in order to use unicast addresses in the routing protocol, the line
that corresponds to the preferred address family (IPv4 or IPv6) needs to be
uncommented.

Note that these modifications are to the config files, read at execution time,
and so do not require recompilation of AgentJ nor NS2 nor the routing protocol
implementation.

3.5 Running the NS2 Simulation

The NS2 simulation can be started by launching the Tcl file

ns my-sample-script.tcl

The most common error at this point is, that a java.lang.ClassNotFoundException
is thrown. In that case, make sure that the location of the Java classes of the
routing protocol have been correctly included in the AGENTJ_CLASSPATH envi-
ronmental variable, as described in section 3.2.

INRIA



Integrating Java Support for Routing Protocols in NS2 11

4 Advanced Features

Section 3 described the basic and necessary steps to interface a Java routing
protocol in AgentJ. This section presents some more advanced features of using
Java routing protocols in AgentJ.

Section 4.1 explains the steps to include more detailed tracing of control
packets. Using this modification allows to output details about the payload of
a control packet in NS2 trace files.

Section 4.2 details how to change the specific behavior of the routing pro-
tocol when a data packet arrives at an NS2 node. The default behavior of
looking up unicast addresses for the destination of a data packet can be modi-
fied. For example, for a reactive routing protocol, a route discovery phase could
be initiated.

4.1 Tracing of Routing Control Packets

Every control packet that is sent from the Java routing agent will appear in the
NS2 trace file2, just as any control packet sent by a native C++ implementation
of a routing protocol. Per default, all control traffic packets sent by the Java
agent are marked as AGENTJ packets. The following NS2 trace file line represent
a typical exemplary output (note that the line-breaks in the following trace
entry do not occur in the NS2 trace file).

s -t 0.004000000 -Hs 39 -Hd -2 -Ni 39 -Nx 1216.36 -Ny 594.63 -Nz 0.00
-Ne -1.0 -Nl RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 39.9999 -Id -1.50000
-It AGENTJ -Il 25 -If 0 -Ii 0 -Iv 254

Essentially, the line means that a packet has been sent (first letter ’s’) from
RTR layer (-Nl RTR) at time 0.004 seconds after simulations start (-t 0.004).
The packet originates from the node with the ID 39 (-Hs 39), is destined to port
50000 using the broadcast address (-Id -1.50000), and is of type AGENTJ
(-It AGENTJ). For a detailed description of the trace file format, refer to the
NS2 manual [2].

Sometimes, it is desirable to display information from the payload of such
a packet. This section describes how to add more detailed packet traces. Note
that this advanced modification requires a recompilation of NS2.

Step 1:
If desired, the displayed name of a control packet in the trace file can be

changed from the default value AGENTJ to any other name. The file NS2.34/common/packet.h
has to be changed as described in the following:

name_[PT_DSR]= "DSR";
name_[PT_AODV]= "AODV";

// change "AGENTJ" to the desired name
name_[PT_AGENTJ] = "AGENTJ";

Step 2:
2Refer to the NS2 manual [2] for more details about tracing.

RR n° 7075



12 U. Herberg

For adding a detailed trace of the control traffic packet, the file NS2.34/trace/cmu-trace.cc
has to be modified:

void CMUTrace::format(Packet* p, const char *why)
{

hdr_cmn *ch = HDR_CMN(p);
int offset = 0;
...

switch(ch->ptype()) {
case PT_AODV:

format_aodv(p, offset);
break;

case PT_TORA:
format_tora(p, offset);
break;

Specifically, a call to a format method has to be added:

case PT_AGENTJ:
format_myrouting(p, offset);
break;

Next, a method format_myrouting(Packet*, int) has to be included in
cmu-trace.cc that formats the output string in the trace file for the control
packet. This method will be similar to the other format methods such as
format_aodv or format_tora. For more information about writing a CMU
trace format method, refer to the NS2 manual [2].

In principle, it would also be possible to write a callback handler to the Java
routing protocol implementation, which returns a string that will be output to
the trace file. This is not part of the current version of AgentJ, but could be
added at a later point of time.

NS2 has to be recompiled after these modifications (i.e. configure and
make).

The following NS2 trace file line represent a typical exemplary output after
the before-mentioned modifications:

s -t 0.004000000 -Hs 39 -Hd -2 -Ni 39 -Nx 1216.36 -Ny 594.63 -Nz 0.00
-Ne -1.0 -Nl RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 39.9999 -Id -1.50000
-It AGENTJ -Il 25 -If 0 -Ii 0 -Iv 254 -P olsrv2 -Pn 1 -Ps 7996 [-Pt
HELLO -Po 1 -Ph 1 -Pms 41054]

All parameters in that line that have a prefix “-P”, are created by the for-
mating function that has been defined by the user.

4.2 Changing the Behavior of the Router when Data Pack-
ets arrive

AgentJ provides a certain default behavior whenever a packet arrives at the
routing layer. If it is an incoming packet from the MAC layer, AgentJ will
check whether it is a control packet or a data packet. Control packets will be
forwarded to the listening socket in the Java routing protocol. This socket is the

INRIA



Integrating Java Support for Routing Protocols in NS2 13

one that is bound to the port number given by the method getRoutingPort()
in the helper class. Data packets are delivered to the application layer of the
NS2 node. Outgoing packets will be separated into unicast and broadcast traffic.
For unicast packets, AgentJ calls getNextHop() of the Java routing protocol to
get a valid next hop for the given destination. Section 5 and 6.1 give more
details on this.

This particular behavior is implemented in the method receivePacket()
of the C++ file $AGENTJ/core/src/main/c/agentj/AgentJRouter.cpp. This
class can be subclassed to change the above-mentioned default behavior for
incoming and outgoing packets.

The necessary steps to subclass the AgentJRouter class are presented in the
following. In this example, the subclass will be called MyRouter.

Step 1:
The new files MyRouter.h and MyRouter.cpp have to be created in the

directory
$AGENTJ/core/src/main/c/agentj. These files should at least contain the
following fields and methods (a complete example of these files can be found in
appendix B):

• MyRouter.h:

#ifndef _MYROUTER
#define _MYROUTER
#include "AgentJRouter.h"

class MyRouter : public AgentJRouter {
public:

MyRouter() : AgentJRouter(){}
~MyRouter(){}

void receivePacket(Packet *p,Handler *handle);
bool ProcessCommands(int argc, const char* const* argv);

};

#endif // _MYROUTER

• MyRouter.cpp:

#include "MyRouter.h"

static class MyRouterInstantiator : public TclClass {
public:

MyRouterInstantiator() :
TclClass("Agent/AgentJRouter/MyRouter") {}

TclObject *create(int argc, const char*const* argv) {
return (new MyRouter());

}
} my_router;

RR n° 7075



14 U. Herberg

void MyRouter::receivePacket(Packet *p,Handler *handle) {
// treat an incoming packet

}

Step 2:
The new class has to be added to the Makefile.in of NS2. The rule can be

added to the OBJ_AGENTJ_CPP makefile variable:

OBJ_AGENTJ_CPP = $(AGENTJ_UTILS)/LinkedList.o \
[...]

$(JAVM)/TimerWrapper.o $(JAVM)/JAVMTimer.o \
$(AGENTJ_C_SRC)/MyRouter.o

NS2 has to be recompiled after these modifications (i.e. configure and
make).

Step 3: In the scenario Tcl file, AgentJ has to be told to use the subclass
instead of the default AgentJRouter. At the point in the Tcl file where the
nodes are created and the Java agent will be attached, the following line must
be changed from:

[$node_($i) set ragent_] agentj \
setRouterAgent Agent/AgentJRouter

to:

[$node_($i) set ragent_] agentj \
setRouterAgent Agent/AgentJRouter/MyRouter

4.3 Limitations of AgentJ with Routing Functionalities

At the time this document is written, AgentJ only supports routing protocols
which send control traffic over UDP. TCP protocols (such as BGP) are not
currently supported. In addition, it is currently not possible to run a simulation
with nodes using IPv4 and IPv6 addresses at the same time. All nodes have to
use the same address family.

INRIA



Integrating Java Support for Routing Protocols in NS2 15

Part II

Routing Architecture of AgentJ
This part presents the background and architecture of routing functionalities
in AgentJ. This part does not describe how to use a Java routing protocol
implementation with NS2 by using AgentJ. This was described in part I.

5 Overview of Routing in NS2

This section presents a brief overview of the routing functionality in NS2. Fig-
ure 3 depicts the architecture of routing on an NS2 node and the flow of outgoing
and incoming packets. In NS2, each mobile node has attached several layers such
as the routing layer (RTR), the link layer (LL), the interface queue (IfQ), the
MAC layer (MAC), and a network interface (NetIf).

When a packet is ready to be sent (as illustrated in figure 3(a)), it arrives
at what is called Packet Entry in the figure. From there it is handed to the
RTR layer which, in turn, has to consider whether it can forward the packet. If
the RTR layer finds a valid nexthop for the packet, it hands it down to the LL
layer, from where the packet will progress further down the stack towards the
channel. Otherwise, it drops the packet. For a more detailed insight into what
happens at these layers, refer to the NS2 manual [2].

Figure 3(b) depicts the process for an incoming packet from the channel.
The packet is handed to the MAC layer, then to the LL layer, which hands
it to the Packet Entry. The demultiplexer has to decide whether this node is
the destination of the packet. If yes, then the packet has to be handed to the
application agent(s). Otherwise, the packet is to be forwarded along the path
to the destination and therefore is to be handed down to the RTR layer. From
there, the packet will proceed as depicted in figure 3(a) and described previously.

RR n° 7075



16 U. Herberg

(a) Outgoing packet

(b) Incoming packet

Figure 3: Layer architecture of a mobile node in NS2 for outgoing and incoming
packets

INRIA



Integrating Java Support for Routing Protocols in NS2 17

6 Architectural Modifications of AgentJ for Sup-
port of Routing Protocols

This section details what architectural changes have been made to in order to
support running a Java routing protocol within NS2.

6.1 Overview

Figure 4 depicts the general architecture of the modified version of AgentJ. On
the lefthand side, the NS2 and AgentJ internal objects (Agentj and AgentJRouter)
are depicted. These are implemented in C++ and use some OTcl code. Sec-
tion 6.2 details the changes to the C++ objects.

On the righthand side, the Java helper class that connects the Java routing
protocol with AgentJ is displayed. This helper class is a subclass of AgentJAgent
and implements the Java interface AgentJRouter. Section 6.3 details the changes
to the Java objects.

In the original AgentJ code, the Agentj C++ agent was attached as an
application agent to the NS2 node. In contrast, in the modified version of AgentJ
with routing functionalities, the Agentj C++ agent can now also be attached
to an NS2 node as a routing agent (i.e. it represents the RTR layer). The
AgentJRouter C++ class treats packets that arrive at the RTR layer according
to the procedure illustrated in figure 5.

Agentj
object

Ns2
node

Helper Class
(entry point)

extends 
AgentJAgent

implements 
AgentJRouter

Java routing 
protocol 

implementation

getNextHop()

getRoutingPort()

Timer calls + 
Control packets

AgentJRouter
object

Refer to section 6.2

OTcl / C++ Java

Refer to section 6.3

Figure 4: Modified architecture with an AgentJRouter interface

Whenever an outgoing data or control packet arrives at the RTR layer (i.e.
the Agentj object), it is forwarded to the AgentJRouter object (as illustrated
in figure 5(a)). Then it has to be determined whether the packet is unicast
or broadcast. If the packet is a broadcast packet, the destination is set to the
IP_BROADCAST address and handed to the LL layer. If the packet is a unicast
packet, the getNextHop() method on the Java routing protocol is invoked to
determine the next hop address for the destination of the packet. If no next hop

RR n° 7075



18 U. Herberg

if found, the packet is dropped by NS2. This is reflected in the NS2 tracefile as
usual (DROP). Otherwise, the destination is set to the returned next hop, and
the packet is handed to the LL layer.

(a) Outgoing packet

(b) Incoming packet

Figure 5: Decisions to take on the RTR layer

Incoming packets are received by the Agentj object, and then handed off to
the AgentJRouter object (as illustrated in figure 5(b)). If the packet is a control
packet, it will be handed to a socket on the Java routing protocol. Otherwise,
the packet will be treated by the demultiplexer as described in section 5.

Note that this represents the default behavior of AgentJRouter for incom-
ing and outgoing packets, and may be overridden by the user (as described in
section 4.2).

In the following subsections, the detailed description of the different new
objects from figure 4 is presented.

6.2 C++ Agentj and AgentJRouter Class

In the C++ part of AgentJ, a new class called AgentJRouter has been added,
and a reference is kept from the Agentj class. The reason for extracting the
routing handling into a new class, rather than just adding the functionality to
the Agentj class, is to separate routing tasks from agents that are only used as

INRIA



Integrating Java Support for Routing Protocols in NS2 19

application agents. In addition, it allows the user to subclass the AgentJRouter
in order to modify its behavior.

6.2.1 Modifications of the Agentj C++ Class

The Agentj C++ class is the main class of the AgentJ package, which serves
as the NS2 agent that can be attached to a node. In order to add the routing
functionalities, that class has been changed as described in this section and
so to allow AgentJ to be used as both application agent protocol and routing
protocol agent. Every C++ object in NS2 that can be accessed by Tcl, provides
a method called command(). This method presents a general command interface,
which allows to send any user-defined commands from NS2 to the routing agent.
It receives a string array of commands and executes them. The following Tcl
commands have been added in the command() function of the Agentj C++
class:

• setNativeAgentRouter

This Tcl command creates a new instance of the given C++ class name
which must be AgentJRouter or a subclass thereof. The command then
adds a reference to the AgentJRouter object.

• setNativeRouterPort

This call will be forwarded to the AgentJRouter object to set the UDP
port number it is listening to for control traffic. Incoming packets that
have a destination port equal to the port number stored in AgentJRouter,
will be treated as control traffic and forwarded to the Java routing pro-
tocol. Other packets are treated as data packets and forwarded to the
demultiplexer of the NS2 node.

• router

All arguments of this command will be forwarded to the AgentJRouter
and executed as commands on that object.

• drop-target

This sets the drop target of Agentj but also of AgentJRouter. This is
necessary in order to trace dropped packets in the trace file.

• log-target

This sets the log target of Agentj but also of AgentJRouter. This is
necessary in order to trace any events such as sent or received packets in
the trace file.

In addition to the changes in the command() function of Agentj, a new
function recv() was added. recv() represents the Packet Entry as depicted
in figure 3. Any packet that arrives on the RTR layer will be delivered to the
recv() method. As the Agentj object is inserted as a routing agent in NS2,
but the forwarding decision is taken in the AgentJRouter object, this function
just forwards the packet to the AgentJRouter object.

RR n° 7075



20 U. Herberg

6.2.2 AgentJRouter Class

AgentJRouter is responsible for deciding how to process an incoming control
or data packet as described in section 6.1. Specifically, it will acquire the next
hop for data packets by calling the appropriate function on the Java routing
protocol. The class has the following main methods:

• receivePacket(Packet *p,Handler *handle);

Whenever the Agentj class receives an incoming packet at recv(), it
will call receivePacket() on the AgentJRouter. This method will treat
packets as explained in section 6.1.

• nsaddr_t getNextHop(nsaddr_t destination);

This is called from receivePacket() for getting the address of the next
hop from the Java routing agent. This method will simply invoke the
getNextHop(int) method on the Java side and return the result.

• virtual void forward(Packet *p, nsaddr_t nexthop);

After having received the nexthop for a data packet, the packet must be
forwarded to that node.

6.3 Changes in the Java AgentJRouter and AgentJAgent

A new Java interface called AgentJRouter has been added, and the AgentJAgent
Java class has been modified to accept some more Tcl commands.

6.3.1 AgentJRouter Interface

This interface is to be implemented by the Java routing protocol and mandates
that two methods be provided:

• int getNextHop(int destination);

Called from the native side whenever a (unicast) data packet arrives at
the AgentJRouter class, the Java routing protocol should return a valid
nexthop for the given destination, or -1 if no valid route is found.

• int getRoutingPort();

Returns the UDP port number the routing agent is running on (between
0 and 65535). AgentJRouter will decide whether a packet is a data or
control packet based on the port returned by this method.

6.3.2 New Tcl Command in AgentJAgent

There is one new Tcl command that the AgentJAgent supports:

• setRouterAgent

This command needs one argument which is the name of the C++ class
that will be the AgentJRouter (e.g. Agent/AgentJRouter).

INRIA



Integrating Java Support for Routing Protocols in NS2 21

6.4 Modifications of NS2

A new routing protocol called “AgentJ“ has been added to the list of routing
protocols in NS2.34/tcl/lib/ns-lib.tcl in NS2. The following code, added
to ns-lib.tcl, will be called whenever a new node is created:

Simulator instproc create-agentj-agent { node } {
set ragent [new Agent/Agentj]
$self attach-agent $node $ragent
$self at 0.0 "$ragent startup"
$node set ragent_ $ragent
return $ragent

}

A new Agentj object is instantiated and attached to the node. This agent
is told to initialize itself and then attached as a routing agent of the node:

RR n° 7075



22 U. Herberg

7 Summary

This document describes how to run Java routing protocols within the network
simulator NS2. The preexisting tool AgentJ allows for using Java agents on an
NS2 node, but was not capable of instantiating routing agents. A modification
of AgentJ is presented in this document that enables the usage of Java routing
protocols in NS2 without modification of the implemented Java routing pro-
tocol, adhering to the Java slogan “write once, run everywhere”. In addition,
once AgentJ has been installed, NS2 does not need to be recompiled when a
new Java routing protocol implementation is added. All parameters that need
to be changed can be set in configuration files or in environmental variables,
read at execution time. AgentJ with the proposed routing extension, keeps full
compatibility with NS2, meaning that it allows for output of all events in the
usual NS2 trace files. Consequently, all evaluation tools used for parsing NS2
trace files can be used without modification.

The routing functionalities have been included in the current distribution of
AgentJ that is available for download at:

http://downloads.pf.itd.nrl.navy.mil/agentj/nightly_snapshots/agentj-svnsnap.tgz

Acknowledgments

Ian Taylor was very helpful when developing the routing extension to AgentJ. He
spent a lot of time and effort on AgentJ, a tool which the author uses intensively
for his current research.

INRIA



Integrating Java Support for Routing Protocols in NS2 23

References

[1] K. Fall and K. Varadhan. The network simulator – NS-2.
http://www.isi.edu/nsnam/ns.

[2] K. Fall and K. Varadhan. The ns manual (formerly ns notes and documen-
tation).

[3] S.Liang. Java Native Interface: Programmer’s Guide and Specification.
Prentice Hall PTR, 1999.

[4] I. Taylor. AgentJ: Java network simulations ins NS-2. An installation and
user manual.

[5] I. Taylor, B. Adamson, I. Downard, and J. Macker. AgentJ: Enabling Java
Ns-2 simulations for large scale distributed multimedia applications, 2006.

RR n° 7075



24 U. Herberg

A Sample Tcl File

set opt(chan) Channel/WirelessChannel ;# channel type
set opt(prop) Propagation/TwoRayGround ;# radio-propagation model
set opt(netif) Phy/WirelessPhy ;# network interface type
set opt(mac) Mac/802_11 ;# MAC type
set opt(ifq) Queue/DropTail/PriQueue ;# interface queue type
set opt(ll) LL ;# link layer type
set opt(ant) Antenna/OmniAntenna ;# antenna model

set opt(x) 1000 ;# X dimension of the topography
set opt(y) 1000 ;# Y dimension of the topography

set opt(ifqlen) 50 ;# max packet in ifq
set opt(nn) 5 ;# number of nodes
set opt(lm) true ;# log movement
set opt(stop) 30 ;# simulation time
set opt(rp) AgentJ ;# Routing Protocol

LL set mindelay_ 50us
LL set delay_ 25us
LL set bandwidth_ 0 ;# not used
Agent/Null set sport_ 0
Agent/Null set dport_ 0
Queue/DropTail/PriQueue set Prefer_Routing_Protocols 1

# unity gain, omni-directional antennas
# set up the antennas to be centered in the node
# and 1.5 meters above itAntenna/OmniAntenna set X_ 0
Antenna/OmniAntenna set Y_ 0
Antenna/OmniAntenna set Z_ 1.5
Antenna/OmniAntenna set Gt_ 1.0
Antenna/OmniAntenna set Gr_ 1.0

Mac/802_11 set CWMin_ 15
Mac/802_11 set CWMax_ 1023
Mac/802_11 set ShortRetryLimit_ 7
Mac/802_11 set LongRetryLimit_ 4
Mac/802_11 set RTSThreshold_ 2000
Mac/802_11 set SlotTime_ 0.000020 ;# 20us
Mac/802_11 set SIFS_ 0.000010 ;# 10us
Mac/802_11 set PreambleLength_ 144 ;# 144 bit
Mac/802_11 set PLCPHeaderLength_ 48 ;# 48 bits
Mac/802_11 set PLCPDataRate_ 1.0e6 ;# 1Mbps
Mac/802_11 set dataRate_ 11.0e6 ;# 11Mbps
Mac/802_11 set basicRate_ 1.0e6 ;# 1Mbps
Phy/WirelessPhy set CPThresh_ 10.0
Phy/WirelessPhy set CSThresh_ 1.559e-11
Phy/WirelessPhy set RXThresh_ 3.652e-10 ;# = 250 m
Phy/WirelessPhy set Rb_ 2*1e6

INRIA



Integrating Java Support for Routing Protocols in NS2 25

Phy/WirelessPhy set Pt_ 0.2818
Phy/WirelessPhy set freq_ 2.4e+9
Phy/WirelessPhy set L_ 1.0
proc getopt {argc argv} {
global opt
lappend optlist cp nn seed stop tr x y

for {set i 0} {$i < $argc} {incr i} {
set arg [lindex $argv $i]
if {[string range $arg 0 0] != "-"} continue

set name [string range $arg 1 end]
set opt($name) [lindex $argv [expr $i+1]]

}
}

proc create-god { nodes } {
global ns_ god_ tracefd

set god_ [new God]
$god_ num_nodes $nodes

}

# ===============================================================
getopt $argc $argv

#
# Initialize Global Variables
#
set ns_ [new Simulator]
set chan [new $opt(chan)]
set prop [new $opt(prop)]
set topo [new Topography]

set nf [open MyNamFile-$opt(nn).nam w
set f [open MyTraceFile-$opt(nn).tr w]

$ns_ namtrace-all-wireless $nf $opt(x) $opt(y)
$ns_ trace-all $f
$ns_ use-newtrace

$topo load_flatgrid $opt(x) $opt(y)
$prop topography $topo

#
# Create God
#
create-god $opt(nn)

RR n° 7075



26 U. Herberg

#
# Create the specified number of nodes $opt(nn) and "attach" them
# the channel.
$ns_ node-config \

-adhocRouting $opt(rp) \
-llType $opt(ll) \
-macType $opt(mac) \
-ifqType $opt(ifq) \
-ifqLen $opt(ifqlen) \
-antType $opt(ant) \
-propInstance $prop \
-phyType $opt(netif) \
-channel $chan \
-topoInstance $topo \
-wiredRouting OFF \
-agentTrace ON \
-routerTrace ON \
-macTrace ON \
-movementTrace $opt(lm)

# now create nodes
for {set i 0} {$i < $opt(nn)} {incr i} {

set node_($i) [ $ns_ node ]
[$node_($i) set ragent_] attach-agentj my.personal.MyRoutingAgent
[$node_($i) set ragent_] agentj setRouterAgent Agent/AgentJRouter

$ns_ at 0.0 "[$node_($i) set ragent_] agentj startRouting"

$ns_ at 0.0 "$node_($i) log-movement"
$node_($i) random-motion 0
$ns_ initial_node_pos $node_($i) 20

}

$ns_ at $opt(stop).00000001 "puts \"NS EXITING...\" ; $ns_ halt; "

# Node Initial Positions
$node_(0) set X_ 242.955469762
$node_(0) set Y_ 987.493442159
$node_(0) set Z_ 0.000000000
$node_(1) set X_ 225.147406876
$node_(1) set Y_ 274.091839102
$node_(1) set Z_ 0.000000000
$node_(2) set X_ 170.330849182
$node_(2) set Y_ 525.001140426
$node_(2) set Z_ 0.000000000
$node_(3) set X_ 573.262627815
$node_(3) set Y_ 626.589897443
$node_(3) set Z_ 0.000000000

INRIA



Integrating Java Support for Routing Protocols in NS2 27

$node_(4) set X_ 969.778307544
$node_(4) set Y_ 310.299546663
$node_(4) set Z_ 0.000000000

# Node Movements
$ns_ at 0.0 "$node_(0) setdest 243.402233718 887.494440154 3.371378059"
$ns_ at 29.6 "$node_(0) setdest 202.222490121 796.366899217 3.442128171"
$ns_ at 0.0 "$node_(1) setdest 261.037139025 180.754134361 4.413709080"
$ns_ at 23.4 "$node_(1) setdest 248.041392110 279.906091286 4.413709080"
$ns_ at 0.0 "$node_(2) setdest 251.526166181 466.628882483 7.977160606"
$ns_ at 13.7 "$node_(2) setdest 151.528816489 467.356930946 7.977160606"
$ns_ at 0.0 "$node_(3) setdest 525.639788716 538.657734976 7.366205977"
$ns_ at 13.5 "$node_(3) setdest 427.546365593 558.091734566 4.646736198"
$ns_ at 0.0 "$node_(4) setdest 999.999900000 311.899405137 2.131682882"
$ns_ at 14.1 "$node_(4) setdest 930.361317453 315.585892139 2.131682882"
puts "Starting Simulation..."
flush stdout
$ns_ run

RR n° 7075



28 U. Herberg

B MyRouter Samples

B.1 MyRouter.h

#ifndef _MYROUTER
#define _MYROUTER

/*
* MyRouter.h
* AgentJ
*
* Created by Ulrich Herberg on 27/11/2008.
* Copyright (c) 2008. All rights reserved.
*
*/

#include "AgentJRouter.h"

class MyRouter : public AgentJRouter {
public:

MyRouter();
~MyRouter();

virtual void receivePacket(Packet *p,Handler *handle);
virtual bool ProcessCommands(int argc, const char* const* argv);

void notifyRoutingProtocol(bool success, nsaddr_t address);

}; // end class

#endif // _MYROUTER

B.2 MyRouter.cpp

/*
* MyRouter.cpp
* AgentJ
*
* Created by Ulrich on 27/10/2008.
* Copyright (c) 2008. All rights reserved.
*
*/

#include "MyRouter.h"

static class MyRouterInstantiator : public TclClass {
public:
MyRouterInstantiator() : TclClass("Agent/AgentJRouter/MyRouter") {}
TclObject *create(int argc, const char*const* argv) {

INRIA



Integrating Java Support for Routing Protocols in NS2 29

return (new MyRouter());
}
} protean_olsrv2_router;

MyRouter::MyRouter() : AgentJRouter() {
PLOG(PL_INFO, "MyRouter starting up\n");
}

MyRouter::~MyRouter() {
}

bool MyRouter::ProcessCommands(int argc, const char* const* argv){
if (!strcmp(argv[0], "reset")){
// do nothing for the moment
return true;

}
return false;

}

void MyRouter::receivePacket(Packet *p,Handler *handle) {
PLOG(PL_TRACE, "entering MyRouter::receivePacket\n");
struct hdr_cmn *ch = HDR_CMN(p);
struct hdr_ip *ih = HDR_IP(p);
nsaddr_t saddr = ih->src_.addr_;
nsaddr_t daddr = ih->daddr();

PLOG(PL_TRACE,"%f : MyRouter::receivePacket at %d : Packet received from %d \
to %d (port %d), forwards %d\n", Scheduler::instance().clock(), agentjref_->addr(),
saddr, ih->daddr(), ih->dport(), ch->num_forwards());

if(ih->dport() == routingProtocolPort_)
ch->ptype_ = PT_AGENTJ; // set the packet type

if(ih->dport() == routingProtocolPort_ && saddr != agentjref_->addr()
&& (ch->num_forwards() == 1)) { // send on up to Agent

ih->ttl_ -= 1;
PLOG(PL_TRACE, "%f : MyRouter::receivePacket is a control packet\n",

Scheduler::instance().clock());
Tcl& tcl = Tcl::instance();
tcl.evalf("%s %s %d", agentjref_->getTclNodeName(), "agent", routingProtocolPort_);
const char* tclResult = tcl.result();
Agent* theAgent = (Agent*)TclObject::lookup(tclResult);
if(theAgent){

theAgent->recv(p,0);
} else {

Packet::free(p);
PLOG(PL_TRACE, "MyRouter::receivePacket theAgent is NULL!\n");

}

RR n° 7075



30 U. Herberg

return;
}

else { // send packet back out interface
PLOG(PL_TRACE, "MyRouter is sending packet back out interface\n");
/* check ttl */
if (--ih->ttl_ == 0){
PLOG(PL_TRACE, "MyRouter is dropping packet because of ttl\n");
drop(p, DROP_RTR_TTL);
return;

}
//check to see if its a udp packet or a broadcast packet
if(daddr==(nsaddr_t)IP_BROADCAST &&

ih->dport()!=-1 && ch->num_forwards() == 0){//it’s broadcast
PLOG(PL_TRACE, "%f : Sending broadcast packet\n", Scheduler::instance().clock());
Scheduler::instance().schedule(target_, p, 0.);
return;

}

else { //it has single destination find and send on way
if(ch->num_forwards_==0) {
ih->saddr() = agentjref_->addr();

}
PLOG(PL_TRACE, "%f : MyRouter getting nexthop for %d\n",

Scheduler::instance().clock(), ih->daddr());
nsaddr_t nextHop=getNextHop(ih->daddr());
if(nextHop!=INVALID && //make sure we don’t send it back up

(nextHop!=ch->prev_hop_ || ch->num_forwards_==0)){
PLOG(PL_TRACE, "%f : MyRouter trying to forward it to %d\n",

Scheduler::instance().clock(), nextHop);
forward(p,nextHop);
return;

}
if(nextHop==INVALID){

PLOG(PL_TRACE, "%f : MyRouter dropping packet because nextHop is INVALID\n",
Scheduler::instance().clock());

} else if(nextHop==ch->prev_hop_) {
PLOG(PL_TRACE,
"MyRouter dropping packet because nextHop == last hop which is %d\n",

ih->daddr());
} else {
PLOG(PL_TRACE, "MyRouter dropping packet because ch->num_forwards!= 0\n");

}

drop(p,DROP_RTR_NO_ROUTE);

} //end else of isbroadcast
}

}

INRIA



Integrating Java Support for Routing Protocols in NS2 31

RR n° 7075



32 U. Herberg

Contents

1 Introduction 3
1.1 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I Running a Java Routing Protocol in NS2 using AgentJ
5

2 AgentJ Overview 5

3 Basic Integration 7
3.1 Addition of a Helper Class as Single Point of Entry for NS2 . . . 7
3.2 Installation of the Java Classes . . . . . . . . . . . . . . . . . . . 9
3.3 Scenario Tcl Script . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Change Addressing Scheme . . . . . . . . . . . . . . . . . . . . . 10
3.5 Running the NS2 Simulation . . . . . . . . . . . . . . . . . . . . 10

4 Advanced Features 11
4.1 Tracing of Routing Control Packets . . . . . . . . . . . . . . . . . 11
4.2 Changing the Behavior of the Router when Data Packets arrive . 12
4.3 Limitations of AgentJ with Routing Functionalities . . . . . . . . 14

II Routing Architecture of AgentJ 15

5 Overview of Routing in NS2 15

6 Architectural Modifications of AgentJ for Support of Routing
Protocols 17
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 C++ Agentj and AgentJRouter Class . . . . . . . . . . . . . . . 18

6.2.1 Modifications of the Agentj C++ Class . . . . . . . . . . 19
6.2.2 AgentJRouter Class . . . . . . . . . . . . . . . . . . . . . 20

6.3 Changes in the Java AgentJRouter and AgentJAgent . . . . . . . 20
6.3.1 AgentJRouter Interface . . . . . . . . . . . . . . . . . . . 20
6.3.2 New Tcl Command in AgentJAgent . . . . . . . . . . . . 20

6.4 Modifications of NS2 . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 Summary 22

A Sample Tcl File 24

B MyRouter Samples 28
B.1 MyRouter.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
B.2 MyRouter.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

INRIA



Centre de recherche INRIA Paris – Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399


	Introduction
	Availability
	Notation
	Outline

	I Running a Java Routing Protocol in NS2 using AgentJ
	AgentJ Overview
	Basic Integration
	Addition of a Helper Class as Single Point of Entry for NS2
	Installation of the Java Classes
	Scenario Tcl Script
	Change Addressing Scheme
	Running the NS2 Simulation

	Advanced Features
	Tracing of Routing Control Packets
	Changing the Behavior of the Router when Data Packets arrive
	Limitations of AgentJ with Routing Functionalities


	II Routing Architecture of AgentJ
	Overview of Routing in NS2
	Architectural Modifications of AgentJ for Support of Routing Protocols
	Overview
	C++ Agentj and AgentJRouter Class
	Modifications of the Agentj C++ Class
	AgentJRouter Class

	Changes in the Java AgentJRouter and AgentJAgent
	AgentJRouter Interface
	New Tcl Command in AgentJAgent

	Modifications of NS2

	Summary
	Sample Tcl File
	MyRouter Samples
	MyRouter.h
	MyRouter.cpp



