
www.fairchildsemi.com

© 2013 Fairchild Semiconductor Corporation www.fairchildsemi.com
Rev. 1.0.1 • 1/9/14

AN-8205
AMC Library Hall Interface

Summary

The FCM8531 is an application-specific parallel-core

processor for motor control that consists of an Advanced

Motor Controller (AMC) processor and a MCS®51-

compatible MCU processor. The AMC is the core processor

specifically designed for motor control. It integrates a

configurable processing core and peripheral circuits to

perform sensorless Field-Oriented Control (FOC) motor

control. System control, user interface, communication

interface, and input/output interface can be programmed

through the embedded MCS®51 for motor applications.

The advantage of FCM8531‟s parallel-core processors is

that the two processors can work independently and

complement each other. The AMC is dedicated for motor

control applications, such as motor control algorithms,

PWM control, current sensing, real-time over-current

protection, and motor angle calculation. The embedded

MCU provides motor control commands to the AMC to

control motors through a communication interface. This

approach reduces software burdens and simplifies control

system programs because complex motor control algorithms

are executed in the AMC. Fairchild provides the Motor

Control Development System (MCDS) Integrated

Development Environment (IDE) and MCDS Programming

Kit for users to develop software, execute In System

Programming (ISP), and perform online debugging.

A typical FCM8531 development environment

configuration is shown in Figure 1. The application board

can be a FCM8531 evaluation board or a user-defined

circuit board (referred to as a “target board”). The

FCM8531 evaluation board can be used with the MCDS

IDE and MCDS Programming Kit offered by Fairchild to

help develop products for motor applications.

The MCDS IDE can be operated under the Microsoft®

Windows operating system, including functions of project

management, AMC library selection, register setting, and

compiler / linker / debugger link to help develop software.

By using the AMC library provided by Fairchild, users can

more quickly and easily develop a sensorless motor drive

and shorten development time of motor applications. This

document is a user guide of the AMC library. For details of

the MCDS IDE and MCDS Programming Kit, refer to

Fairchild’s website at:

http://www.fairchildsemi.com/applications/motorcontrol/bld

c-pmsm-controller.html

AMC Introduction

The AMC is the core processor consists of several motor

control modules, such as configurable processing core,

PWM engine, and angle predictor. Depending on the

application, the processing core can be configured with the

suitable AMC library to perform different motor control

algorithms, such as FOC or sensorless.

FCM8531 can drive the motor with Hall sensor or sensorless

libraries. The Hall-interface library is an AMC library for

driving the motor with a Hall sensor. This document mainly

describes usage of the Hall-Interface Library and includes

control theory, configuration, files, and a firmware example.

For more detailed information on the AMC library for

sensorless control, please refer to the following website:

http://www.fairchildsemi.com/applications/motorcontrol/bld

c-pmsm-controller.html

Figure 1. Typical Development Environment

http://www.fairchildsemi.com/applications/motorcontrol/bldc-pmsm-controller.html
http://www.fairchildsemi.com/applications/motorcontrol/bldc-pmsm-controller.html
http://www.fairchildsemi.com/applications/motorcontrol/bldc-pmsm-controller.html
http://www.fairchildsemi.com/applications/motorcontrol/bldc-pmsm-controller.html
mdaniels
New Logo

AN-8205 APPLICATION NOTE

© 2013 Fairchild Semiconductor Corporation www.fairchildsemi.com
Rev. 1.0.1 • 1/9/14 2

Hall Interface

The Hall interface library is selected via a Project Setting

window of the MCDS IDE, as shown in Figure 2.

Figure 2. MCDS IDE: Project Setting

Control Theory

The angle predictor (see Figure 3) is the main processor of

the Hall interface library; it includes Hall signal filter,

Phase-Lock-Loop (PLL), leading angle shifter, and angle

encoder. The Hall signal filter is used to handle the Hall

signals and filter out noise on the input signals. The PLL

detects the Hall signal changes in every 60-degree of

electrical angle to predict the rotor position. The angle

encoder sums the PLL results and leading angle shifter

setting into one angle, then the PWM engine outputs PWM

signals according to the angle of the angle encoder. For

more information about each block, refer to AN-8202 —

FCM8531 User Manual - Hardware Description.

The PWM Control Mode can be classified into two modes:

Sine-Wave Mode and Square-Wave Mode. The Sine-Wave

Mode is the default. When the motor is started in Sine-Wave

Mode, the Square-Wave PWM output is used to initially

drive the motor. Until the phase of the motor is locked by

the PLL, the Sine-Wave PWM output is automatically

switched to drive the motor.

Configurable

Processing

Core

Hall Signal

Filter
PLL

Angle

Encoder

Angle Predictor

PWM

EngineHA/

HB/

HC

Angle

Leading Angle

Shifter

Figure 3. Angle Predictor

Configuration

Before the FCM8531 is used to drive the motor with the

Hall sensor, the AMC needs to be configured to the Hall

interface. Some parameters, such as angle predictor setting,

PWM, Hall signal protection, and Hall Mode must be set in

the MCDS IDE.

The operation of the MCDS IDE can refer to the document:

AN-8207— User Guide for MCDS IDE of FCM8531.

PWM

The PWM parameters shown in Figure 4 include output

waveforms, SAW type, PWM frequency, dead-time, etc.

Waveform:

There are two optional waveforms: sinusoidal wave and

square wave.

SAW Type:

There are three optional types: up-down type (default), up

type, and down type.

PWM Frequency:

The PWM frequency can be adjusted through the SPRD

parameter, which is recommended at 15 kHz to 20 kHz to

obtain larger SAW resolution and keep out of audio range.

Pre-scale and post-scale are both selected to “div 1”.

Dead Time:

Dead time needs to be adjusted depending on the power

specification. The setting value shown in Figure 4 is

suitable for demonstration.

Figure 4. PWM Settings

Hall Signal

The options of the Hall signal filter can be set in the Hall

dialog shown in Figure 5.

Hall Signal Interrupt Enable (EX10):

When the Hall signal changes, the Hall signal interrupt

enable (EX10) can be selected to generate the interrupt

request to the MCU. There are three interrupt trigger types:

rise edge trigger, fall edge trigger, and rise/fall edge trigger.

Hall Invert:

If the polarity of the Hall signal is different from the

definition in FCM8531, the Hall A/B/C input invert can be

enabled to invert the Hall signal to ensure that the angle

predictor is correct.

http://www.fairchildsemi.com/an/AN/AN-8202.pdf
http://www.fairchildsemi.com/an/AN/AN-8202.pdf
http://www.fairchildsemi.com/an/AN/AN-8207.pdf

AN-8205 APPLICATION NOTE

© 2013 Fairchild Semiconductor Corporation www.fairchildsemi.com
Rev. 1.0.1 • 1/9/14 3

Hall Signal Banking Time & Debounce Time:

The Hall signal blanking and debounce times are used to

prevent PLL malfunction from noise involved in the Hall

signal. The minimum values of the two times are the defaults.

Figure 5. Hall Signal Settings

Protection

The protect options are set to determine whether an interrupt

request is generated to notify the MCU when a Hall signal

error or time-out occurs.

Hall Error Event Enable:

When HA, HB, and HC signals are all HIGH-level (111) or

all LOW-level (000), the Hall signal error is judged and the

PWM output is immediately shut off. If this option is

selected, the interrupt request (EX8) is generated to notify

the MCU once a Hall signal error occurs.

Hall Signal Time-Out:

Hall Period Register (HPER), a 20-bit timer in the angle

predictor, is used to calculate the time interval of Hall signal

changes. A very long interval usually represents that the

motor is in very low speed or has stopped. If this option is

selected, the time of HPER is monitored. If a time-out occurs,

the HPER is larger than 1FFFFh, 3FFFFh, or 7FFFFh; an

interrupt request (EX8) is generated to the MCU.

Figure 6. Protect Settings

Hall Signal Input

The two optional Hall signal input pins, listed in Table 1.

Table 1. Hall Signal Input

 Configure 1 (40h) Configure 2 (80h)

HA P14 P24

HB P15 P25

HC P16 P26

The subroutine btInitial_AMCToHallSignal() defines the

AMC as Hall interface drive and the Hall signal input

selection is set in it. Before the subroutine is called by the

main program, the contents of the _bHall_Type need to be

set and the default is HALL_PINCFG0. An example of the

subroutine is listed below.

 :
 :
 Initial_Procedure();
 //User program start here.(02)
 _bHall_Type= HALL_PINCFG0; //HA=P14, HB= P15, HC=P16
 // _bHall_Type= HALL_PINCFG1; //HA= P24, HB= P25, HC= P26

 //User program end here.(02)
 EA = 1;
 btInit_AMCStatus = btInitial_AMCToHallSignal(); // Initial AMC
 :
 :

The processing flow of the subroutine btInitial_AMCToHallSignal() is executed through subroutine bWriteCmdToAMC()

to send the Hall Mode to the AMC:

 bWriteCmdToAMC(CMD_HALL_PIN, 0, _bHall_Type);

AN-8205 APPLICATION NOTE

© 2013 Fairchild Semiconductor Corporation www.fairchildsemi.com
Rev. 1.0.1 • 1/9/14 4

Communication

Communication Interface

Communications between MCU and AMC are carried

through mailbox registers. AMC receives the control

commands and data from MCU via MTX0(B0h) -

MTX3(B3) and controls the motor accordingly; and MCU

reads data transmitted from AMC via MRX0(B4h) -

MRX3(B7h), as shown in Figure 7.

MTX0

MTX1

MTX2

MTX3
AMC Interrupt

(INT 11)
MRX0

MRX1

MRX2

MRX3

MCU SFR

AMC Core

Figure 7. Communication Interface

Mailbox Registers Definition

This section describes each register used in communication.

Data Transmission of MCU (MTX0 - MTX3)

MTX0:

b0 (Trigger Bit):

The transmitted commands and data to the AMC are stored

in the related registers; bit transition at b0 from 1 to 0 can

start the transmission.

b1–b7 (Command):

Storing the commands transmitted to the AMC.

MTX1:

b0–b7 (Data Hi Byte):

Storing the high byte of data transmitted to AMC.

MTX2:

b0–b7 (Data Lo Byte):

Storing the low byte of data transmitted to AMC.

MTX3:

b0 (ForwardFreeRun):

Determine motor forward wind startup: 1 = forward, 0 = not

forward.

b1 (ReverseFreeRun):

Determine motor reverse wind startup: 1 = reverse, 0 = not

reverse.

b2–b7 (Reserved):

Set to zero.

Data Read of MCU (MRX0 - MRX3)

MRX0:

b0: Reserved

b1 (AMC_Cmd):

AMC_Cmd=1: the AMC is busy in processing a command

and is not able to receive a new command.

AMC_Cmd=0: the AMC is able to receive a new command.

b2 (AMC_Cal):

AMC_Cal=1: the AMC is busy and is not able to receive a

new command.

AMC_Cal=0: the AMC is not busy and is able to receive a

new command.

b3 (AMC_Fault):

AMC_Fault=1: the AMC runs abnormally. MCU can do a

retry or a stop when an AMC_Fault occurs.

AMC_Fault=0: the AMC runs normally.

b4 (STR_Rdy):

STR_Rdy=1: the AMC has completed the startup procedure.

MCU is allowed to do general motor control subsequently.

STR_Rdy=0: the AMC has not completed the startup

procedure.

b5 (Al_Rdy):

Al_Rdy=1: the AMC has completed the alignment

procedure; subsequent ramp-up control can start.

Al_Rdy=0: the AMC has not completed the alignment

procedure.

b6 (RST_Rdy):

RST_Rdy=1: the AMC has completed the reset action;

MCU can start to transmit and read data.

RST_Rdy=0: the AMC has not completed the reset action.

b7: (SAFETY_Warning):

SAFETY_Warning=1: the AMC has occurred fault to

UL60730 rules.

SAFETY_Warning=0: the AMC has not occurred fault to

UL60730 rules.

MRX1:

b0–b7 (Data Hi Byte):

Store high byte of data transmitted from AMC.

MRX2:

b0–b7 (Data Lo Byte) :

Store low byte of data transmitted from AMC.

AN-8205 APPLICATION NOTE

© 2013 Fairchild Semiconductor Corporation www.fairchildsemi.com
Rev. 1.0.1 • 1/9/14 5

Table 2. Mailbox Registers Definitions

Byte Name
(Address)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

MTX0 (B0h) Command Trigger

MTX1 (B1h) Data High Byte

MTX2 (B2h) Data Low Byte

MTX3 (B3h) Reserved Forward

MRX0 (B4h) Reserved RST_Rdy Al_Rdy STR_Rdy AMC_Fault AMC_Cal AMC_Cmd Reserved

MRX1 (B5h) Data High Byte

MRX2 (B6h) Data Low Byte

MRX3 (B7h) Reserved

Communication Protocol

Correct communication protocols and flows between the

MCU and AMC must be properly executed to avoid

transmission errors. The correct steps of the communication

protocols and flows are described and shown below.

MCU Writes Commands to AMC

Step 1. Check if AMC is busy.

If yes, step 1 is repeatedly executed until TimeOut occurs.

If no, execute step 2.

Step 2. Store commands and data in the corresponding

registers, then transit b0 of MXT0 from 1 to 0 to start

transmission.

Step 3. Wait for 20 μs.

Step 4. Check if the AMC has finished processing

commands, namely:

AMC_Cmd=1.

If yes, step 4 is repeatedly executed until TimeOut occurs.

If no, transmission completes.

Start

AMC_Cmd or AMC_Cal = 1?

MTX0 = Command | 0x01

MTX1 = Data Hi Byte

MTX2 = Data Lo Byte

MTX0 = Command & 0xFE

Delay 20µs

AMC_Cmd = 1?

AMC_Completed

TimeOut ? AMC_Busy_Timeout

TimeOut ? AMC_WriteCmd_Err

Yes Yes

Yes Yes

No

No

No

No

Figure 8. Write Command Protocol

Built-In Functions

For convenience, the command-transmit function is

generated when a new project is created in the MCDS IDE

software. The function is used to transmit data from MCU

to AMC to shorten coding time. The functions are described

below.

bWriteCmdToAMC(U8 Command, U8 Data_High_Byte, U8

Data_Low_Byte)

In which,

Command: the commands corresponding to the transmitted

data.

Data_High_Byte: high byte of the transmitted data.

Data_Low_Byte: low byte of the transmitted data.

Example:

To set the PWM duty to 0x50, it should be written as:

bWriteCmdToAMC(CMD_DUTY, 0x0, 0x50)

After executing; if the function return value is 0, data is

successfully transmitted.

AN-8205 APPLICATION NOTE

© 2013 Fairchild Semiconductor Corporation www.fairchildsemi.com
Rev. 1.0.1 • 1/9/14 6

Command Index

Command and associated parameters are shown in Table 3.

Table 3. Commands and Parameters

Command Index Parameter

CMD_RUN 0x10
1: RUN

0: FREE

CMD_DUTY 0x12 Duty (0~ 511)

CMD_ANGLE_SHIFT 0x14 Angle shift value (0~ 127)

CMD_HALL_PIN 0x80

Hall-Interface pin configuration:

0x40: HA/HB/HC= P14/P15/P16

0x80: HA/HB/HC= P24/P25/P26

Hall-Interface Files

After using MCDS IDE to generate a new project and generate code, the MCDS IDE automatically generates two files for

Hall interface. Table 4 shows file names and functions of those files.

Table 4. Hall-Interface Files

File Name Descriptions Editable

AMC_HallInterface.c

AMC_HallInterface.c provides common functions, such as WriteCmdToAMC(),
ReadDataFromAMC(), Initial_AMCToSpeedIntegral(), and so on. Users cannot
modify the file. Once the Generate Code function of the MCDS IDE is used, the file is
overwritten.

No

AMC_HallInterface.h
AMC_HallInterface.h provides definitions of all commands and definitions of the
indexes when reading data. Users cannot modify the file. Once the Generate Code
function of the MCDS IDE is used, the file is overwritten.

No

AMC_HallInterface.c

For convenience, AMC_HallInterface.c includes several common functions, described in Table 5.

Table 5. AMC_Hallsignal.c Common Functions

Function Name Descriptions

AMC_Reset() Resetting the AMC

btInitial_AMCToHallInterface()

Initial AMC and set AMC to Hall-Interface Mode
Result:
 0: Pass
 1: AMC initial fail

bWriteCmdToAMC(Command, Data(H), Data(L))

Transmitting data to the AMC.

Result:
 00: Pass
 02: Transmission error

Delay10 µs(value) Waiting for the AMC in 10 μs delay

Delay1 ms(value) Waiting for the AMC in 1 ms delay

The contents of AMC_HallInterface.c are listed as follows:

Line 13: Set Hall interface as Mode 0 (Default; HA= P14, HB= P15, HC= P16)

Line 18 ~ 22: Subroutine for reset AMC

Line 27 ~ 49: Subroutine for initial AMC and check the AMC status

AN-8205 APPLICATION NOTE

© 2013 Fairchild Semiconductor Corporation www.fairchildsemi.com
Rev. 1.0.1 • 1/9/14 7

Line 55 ~ 68: Subroutine for send HALL MODE & TRANS COMPLETE to AMC

Line 72 ~ 99: Subroutine for send one command to AMC and check AMC status

Line 104 ~ 110: Subroutine for delay 10 µs

Line 112 ~ 118: Subroutine for delay 1 ms

1 /*--
2 * Copyright 2012 Fairchild Semiconductor
3 * http://www.fairchildsemi.com
4 *--
5 */
6 #include "compiler-define.h"
7 #include "FCM8531.h"
8 #include "MSFR-define.h"
9 #include "Program.h"
10 #include "MCS51.h"
11 #include "AMC_HallInterface.h"
12
13 U8 _bHall_Type= HALL_MODE0;
14
15 //--
16 // AMC Reset Function
17 //--
18 void Reset_AMC()
19 {
20 WRITE_MSFR(MSFR_MCNTL, 0x40);
21 WRITE_MSFR(MSFR_MCNTL, 0x00);
22 }
23
24 //--
25 // Initail AMC Procedure
26 //--
27 SEG_BIT btInitial_AMCToHallInterface()
28 {
29 SEG_BIT btError_code;
30 U16 wWaitTime;
31
32 Reset_AMC(); // Reset AMC
33
34 Delay1ms(100);
35
36 btError_code = 1;
37 for(wWaitTime = 0; wWaitTime < 3000; wWaitTime++)
38 if((MRX0 & AMC_RESET_READY) == 0x40)
39 {
40 btError_code = 0;
41 break;
42 }
43 if(btError_code) // Check Time-Out
44 return(btError_code);
45
46 btError_code = btTransmit_ParameterToAMC();
47 Delay1ms(1000);
48 return btError_code;
49 }
50
51
52 //--
53 // Deliver Parameter for Hall interface used
54 //--
55 SEG_BIT btTransmit_ParameterToAMC()
56 {

AN-8205 APPLICATION NOTE

© 2013 Fairchild Semiconductor Corporation www.fairchildsemi.com
Rev. 1.0.1 • 1/9/14 8

57 U8 bWriteCMD_Status;
58
59 bWriteCMD_Status = bWriteCmdToAMC(CMD_HALL_PIN, 0, _bHall_Type);
60 if(bWriteCMD_Status)
61 return 1;
62
63 bWriteCMD_Status = bWriteCmdToAMC(CMD_TRANS_COMPLETE, 0, 0);
64 if(bWriteCMD_Status)
65 return 1;
66
67 return 0;
68 }
69 //--
70 // MPU write CMD to AMC
71 //--
72 U8 bWriteCmdToAMC(U8 bCommand, U8 bData_HB, U8 bData_LB)
73 {
74 U16 wWaitTime;
75 SEG_BIT btAMCStandby_Flag;
76
77 btAMCStandby_Flag = 0;
78 for(wWaitTime = 0; wWaitTime < 600; wWaitTime++)
79 if((MRX0 & (AMC_PROCESSING_CMD | AMC_CALCULATING)) == 0x0)
80 {
81 btAMCStandby_Flag = 1;
82 break;
83 }
84 if(!btAMCStandby_Flag) // Check Time-Out
85 return(AMC_BUSY_TIMEOUT);
86
87 MTX0 = bCommand | MCU_MAILBOX_INTR_STOP;
88 MTX1 = bData_HB;
89 MTX2 = bData_LB;
90 MTX0 = bCommand & MCU_MAILBOX_INTR_START;
91
92 Delay10us(2);
93
94 for(wWaitTime = 0; wWaitTime < 600; wWaitTime++)
95 if((MRX0 & AMC_PROCESSING_CMD) == 0)
96 return(AMC_COMPLETED);
97
98 return(AMC_WRITE_CMD_ERROR);
99 }
100
101 //--
102 // Delay time routine
103 //--
104 void Delay10us(U16 Counter) //Delay 10us
105 {
106 U16 i, k;
107
108 for(i = 0; i < Counter; i++)
109 for(k = 0; k < 16; k++);
110 }
111
112 void Delay1ms(U16 Counter) //Delay 1ms
113 {
114 U16 i;
115
116 for(i = 0; i < Counter; i++)
117 Delay10us(110);
118 }

AN-8205 APPLICATION NOTE

© 2013 Fairchild Semiconductor Corporation www.fairchildsemi.com
Rev. 1.0.1 • 1/9/14 9

AMC_HallInterface.h

AMC_HallInterface.h includes commands, parameters, and indexes of AMC data.

The contents of AMC_HallInterface.h are listed below.

In which,

Line 18 ~ 22: indicates status of MailBox;

Line 22 ~ 46: indicates commands of AMC;

Line 59 ~ 68: indicates status of AMC;

1 #ifndef _AMC_HallInterface_h_
2 #define _AMC_HallInterface_h_
3
4 //for IEC-60730
5 #define LOCK_ROTOR_DELAY_TIME 10 // Resolution: 1 sec/step, 1 means 1s
6 #define OVER_CURRENT_MUTE_TIME 10 // Resolution: 0.5 sec/step, 1 means 0.5s
7
8 // MCU mail box status
9 #define MCU_MAILBOX_INTR_STOP 0x01
10 #define MCU_MAILBOX_INTR_START 0xFE
11
12 // MRX0 bit description
13 #define AMC_PROCESSING_CMD 0x02
14 #define AMC_CALCULATING 0x04
15 #define AMC_FAULT 0x08
16 #define AMC_STARTUP_READY 0x10
17 #define AMC_LOCK_MOT_READY 0x20
18 #define AMC_RESET_READY 0x40
19 #define SAFETY_WARNING 0x80
20
21 // MCU CMD list//
22 // Write data CMD
23 #define CMD_AMC_CONTROL 0x10
24 #define CMD_DUTY 0x12
25 #define CMD_ANGLE_SHIFT 0x14
26 #define CMD_ALIGNMENT_TIME 0x16
27 #define CMD_ALIGNMENT_WAIT_TIME 0x18
28 #define CMD_ALIGNMENT_DUTY 0x1A
29 #define CMD_ALIGNMENT_ANGLE 0x1C
30 #define CMD_RAMPUP_START_DUTY 0x1E
31 #define CMD_RAMPUP_END_DUTY 0x20
32 #define CMD_RAMPUP_ACC_TIME 0x22
33 #define CMD_FORWARD_RUN_SPEED 0x24
34 #define CMD_KP 0x26
35 #define CMD_KI 0x28
36 #define CMD_DIGITAL_FILTER 0x2A
37 #define CMD_LOSS_STEP 0x2C
38 #define CMD_RESOLUTION 0x2E
39 #define CMD_MINIMUM_SPEED 0x30
40 #define CMD_RAMPUP_ID_ERR 0x32
41 #define CMD_LOCK_ROTOR_DELAY_TIME 0x34
42 #define CMD_OC_MUTE_TIME 0x36
43 #define CMD_SHUNT_OFFSET 0x38
44 #define CMD_HALL_PIN 0x80
45 #define CMD_ENABLE_WATCHDOG 0xFA // Watchdog enable command
46 #define CMD_TRANS_COMPLETE 0xFE
47 //Read data CMD
48 #define CMD_MCU_READ_AMC_DATA 0xFC
49
50 // MCU Read Data Index
51 #define AMC_DATA_CORE_ID 0x00
52 #define AMC_DATA_CORE_VERSION 0x01
53 #define AMC_DATA_THETA 0x02

AN-8205 APPLICATION NOTE

© 2013 Fairchild Semiconductor Corporation www.fairchildsemi.com
Rev. 1.0.1 • 1/9/14 10

54 #define AMC_DATA_KP 0x03
55 #define AMC_DATA_KI 0x04
56 #define AMC_DATA_ID_ERR 0x05
57 #define AMC_DATA_FW_SPEED 0x06
58
59 // AMC status code
60 #define AMC_COMPLETED 0x00
61 #define AMC_BUSY_TIMEOUT 0x01
62 #define AMC_WRITE_CMD_ERROR 0x02
63 #define AMC_RUNCMD_TIMEOUT 0x03
64
65 #define AMC_ERRCODE_PASS 0x80
66 #define AMC_ERRCODE_BUSY_TOUT 0x81
67 #define AMC_ERRCODE_CMD_ERROR 0x82
68 #define AMC_ERRCODE_RUNCMD_TOUT 0x83
69
70 // Motor Contril define
71 #define MOTOR_FREE 0x00
72 #define MOTOR_RUN 0x01
73 #define MOTOR_CW 0x02
74 #define USER_DEFINE_SVM_TABLE 0x20
75
76 #define CW 0x01
77 #define CCW 0x00
78
79 #define HALL_PINCFG1 0x80 // HA= P24, HB= P25, HC= P26
80 #define HALL_PINCFG0 0x40 // HA= P14, HB= P15, HC= P16
81
82 //--
83 // Export Function
84 //--
85 extern U8 _bHall_Type;
86 extern SEG_BIT btTransmit_ParameterToAMC();
87
88 extern SEG_CODE U8 AS_Table[];
89
90 extern SEG_BIT btInitial_AMCToHallInterface();
91 extern U8 bWriteCmdToAMC(U8 bCommand, U8 bData_HB, U8 bData_LB);
92 extern void Delay10us(unsigned int Counter);
93 extern void Delay1ms(unsigned int Counter);
94
95 #endif

AN-8205 APPLICATION NOTE

© 2013 Fairchild Semiconductor Corporation www.fairchildsemi.com
Rev. 1.0.1 • 1/9/14 11

Using Hall Interface

Using the Hall interface library to control the motor with

Hall sensor is explained in detail according to the attached

example program Sample_Hall_Interface in MCDS IDE.

Function

The main functions in the example program are:

 Hall sensor input

 Duty control by VR (0 ~ 4 V)

 Sinusoidal wave current drive

 FO (three pulses per revolution, see Figure 9)

 Direction control

 Current protection (cycle-by-cycle limit)

 Short-circuit protection

HA

HB

HC

FO

Figure 9. FO Output

Table 6. Pin Assignments

Pin Type Function Description

P14 Input HA Input

Input range = 0~ 5 V P15 Input HB Input

P16 Input HC Input

P10 Output FO FO output, three pulses per revolution

P25 Input Direction Control
0: CW
1: CCW

P26 Output Status LED
Off: System ready
On: OCP protection
Flash: AMC initial fail

ADC0 Input Speed Control
Input Range = 0~4 V
< 0.156 V: Motor stop
> 0.156 V: Motor start

AOUT Output Angle Output 0~4 V

AN-8205 APPLICATION NOTE

© 2013 Fairchild Semiconductor Corporation www.fairchildsemi.com
Rev. 1.0.1 • 1/9/14 12

Hardware Circuit

Besides the settings in the configuration section; the used I/O pins, timers, and interrupts in the example program also need to

be set. These are described below.

Figure 10. Circuit Diagram

IO Settings

Please refer to Figure 10 and Table 6. Because designed for

output signal, P10 is set as „Output direct drive‟ and the pin

name is FO. Because designed for direction control signal

input, P25 is set as „Open drain‟ and pin name is DIR.

Because designed for LED control signal output, P26 is set

as „Open drain‟ and pin name is nLED.

Figure 11. I/O Configuration Settings

Timer Settings

The TIMER0 is used in the example program to be a base of

acceleration/deceleration slope, which is set to 26.2 ms.

Figure 12. Timer0 Settings

AN-8205 APPLICATION NOTE

© 2013 Fairchild Semiconductor Corporation www.fairchildsemi.com
Rev. 1.0.1 • 1/9/14 13

Interrupt Settings

The Hall Interrupt function in the example program is used

to generate the FO signal and the Hall Interrupt function

(INT10) has to be enabled and the trigger type is set to

Rise/Fall edge trigger.

Figure 13. Hall Configuration Settings

ADC Settings

The ADC0 (VSP) in the example program is used for speed

control input and the ADC interrupt (INT9) has to be

enabled and the sampling type is set to SAW top. After the

ADC conversion is completed, the ADC interrupt (INT9) is

generated to read the ADC0 (VSP) for controlling speed.

ADC Tigger

SAW

PWM

DUTY

Figure 14. ADC Configuration

Firmware Example

The initial subroutine of the main program is provided to set

initial values of PWM frequency, protection points, interrupt

parameters, and so on. Startup parameters of the AMC are

reset and communication between the AMC and MCU is

tested by the initial subroutine. The initial subroutine is only

executed in the beginning of the main program and then

infinite loops are executed.

The ADC samples each PWM cycle and generates interrupt

requests after conversion is completed. In the interrupt

service routine, the ADC0 value is stored to the

_wTarget_Duty. The main program judges whether the

_wTarget_Duty is greater than the

MOTOR_RAMPUP_DUTY. If greater, the PWM is

turned on to run the motor. The motor rotation direction is

determined according to the DIR switch setting and the

RUN bit of the MCNTL (MSFR 00h) is set. If

_wTarget_Duty is less than or equal to the

MOTOR_RAMPUP_DUTY; the MCTRL, duty, and AS

are cleared and the motor maintains Free state and the

ADC0 value is continually detected.

The timeout value set by the TIMER0 is about 26.2 ms.

When a time-out is generated in the main program, the

count value is added by one. If the count value is greater

than or equal to the SPEED_LOOP_RATE, the duty and

AS are updated.

The complete source codes are located on the IDE

installation disc under the following directory:

\Fairchildsemi\MCDS\Examples\keilC\Sample_Hall_Interface.

(for Keil C)

\Fairchildsemi\MCDS\Examples\SDCC\Sample_Hall_Interface.

(for SDCC)

Main.c

Main.c is related to the system processing control. The

program explanation is listed below:

Line 4: set system clock as 30 MHz;

Line 7 ~12: define constants; in which:

MAX_SPEED: the maximum value of ADC0;

MIN_SPEED: the minimum value of ADC0;

SPEED_LOOP_RATE: the time of updating duty, unit

in 26.2 ms;

MOTOR_RAMPUP_DUTY: the motor starts to revolve

when VSP is greater than the value;

AS_GAIN: Angle shift value= duty/AS_GAIN +

AS_OFFSET (Sine-wave PWM only);

AS_OFFSET: Angle shift offset value;

Line 14 ~ 40: Define variables

Line 43 ~ 46: initialize the MCU;

Line 48 ~ 50: initialize variables;

AN-8205 APPLICATION NOTE

© 2013 Fairchild Semiconductor Corporation www.fairchildsemi.com
Rev. 1.0.1 • 1/9/14 14

Line 52 ~ 61: enable Interrupt and initialize AMC. if

AMC initialization or transmission is fail,

the AMC is initialized again and toggle

the LED; otherwise turn off the LED;

Line 64: send free command to AMC.

Line 68 ~ 79: judge whether the _bTarget_Duty is

greater than the

MOTOR_RAMPUP_DUTY and

btShortciircuit_Protect is cleared, if

„Yes‟, RUN bit and CW/CCW bit of the

MSFR are set according to DIR status and

send run command to AMC;

Line 81: judge whether the duty and AS need to be

updated;

Line 83 ~ 94: increase or decrease the bCurrent_Duty,

if the bCurrent_Duty is greater than the

MAX_SPEED or less than the

MIN_SPEED, the bCurrent_Duty is not

changes;

Line 95 ~ 97: update the duty and AS to AMC, and then

the PWM output is changed;

Line 98 ~ 99: clear bSpeed_Count;

Line 102 ~ 109: if the _bTarget_Duty is less than the

MOTOR_RAMPUP_DUTY or

btShortcircuit_Protect is active, the

PWM output is turned off and then clear

duty and AS.

Line 110 ~ 121: if btShortcircuit_Protect is active, turn on

LED. If not, clear variables.

The program codes are listed as follows. In which, the thin

characters are the program codes generated by the MCDS

code generator.

1 //--
2 // Initial Const
3 //--
4 #define INITIAL_SLEEP 0x04
5
6 //User program start here.(09)
7 #define MAX_SPEED 500
8 #define MIN_SPEED 0
9 #define SPEED_LOOP_RATE 2 //1 step = 26.21 ms
10 #define MOTOR_RAMPUP_DUTY 10
11 #define AS_GAIN 128 //AS = DUTY/AS_GAIN + AS_OFFSET
12 #define AS_OFFSET 0
13
14 U8 bSpeed_Count=0;
15 UU16 _wCurrent_Duty;
16
17 #ifndef SDCC
18 extern SEG_BIT _btShortCircuit_Protect;
19 extern U8 _bShortCircuit_Cnt, _bADCCounterForSC;
20 extern U8 _bADCCounterForSC_Temp;
21 extern UU16 _wTarget_Duty;
22 #endif
23
24 //User program end here.(09)
25
26 //--
27 // Main Routine
28 //--
29 #if defined SDCC
30 SEG_BIT __at (0x30) btInit_AMCStatus;
31 #else
32 SEG_BIT btInit_AMCStatus;
33 #endif
34 void main(void)
35 {
36 //User variable start here.(0A)
37 #if defined SDCC
38 SEG_BIT __at (0x31) btTrans_Status;
39 #else
40 SEG_BIT btTrans_Status;
41 #endif
42 //User variable end here.(0A)

AN-8205 APPLICATION NOTE

© 2013 Fairchild Semiconductor Corporation www.fairchildsemi.com
Rev. 1.0.1 • 1/9/14 15

43 CKCON = 0;
44 WRITE_MSFR(MSFR_SLEEP, INITIAL_SLEEP);
45
46 Initial_Procedure();
47 //User program start here.(02)
48 _bHall_Type= HALL_PINCFG0; //HA=P14, HB= P15, HC=P16
49 _wTarget_Duty.U16 =0;
50 _wCurrent_Duty.U16 =0;
51 //User program end here.(02)
52 EA = 1;
53 btInit_AMCStatus = btInitial_AMCToHallInterface();
54
55 //User program start here.(03)
56 if(btInit_AMCStatus)
57 {
58 btInit_AMCStatus = btInitial_AMCToHallInterface();
59 nLED ^= 1;
60 }
61 nLED = 1;
62
63 //User program end here.(03)
64 bWriteCmdToAMC(CMD_AMC_CONTROL, 0, 0);
65 for(;;)
66 {
67 //User program start here.(04)
68 if((_wTarget_Duty.U16>MOTOR_RAMPUP_DUTY) && (!_btShortCircuit_Protect))
69 {
70 if(DIR)
71 {
72 WRITE_MSFR(MSFR_MCNTL, MOTOR_RUN | MOTOR_CW);
73 }
74 else
75 {
76 WRITE_MSFR(MSFR_MCNTL, MOTOR_RUN);
77 }
78
79 bWriteCmdToAMC(CMD_AMC_CONTROL, 0, 1);
80
81 if (bSpeed_Count >= SPEED_LOOP_RATE)
82 {
83 if(_wCurrent_Duty.U16 < _wTarget_Duty.U16)
84 {
85 // If current duty less than target, current duty + 1
86 if(_wCurrent_Duty.U16 < MAX_SPEED)
87 _wCurrent_Duty.U16++;
88 }
89 else // If current duty more than target, current duty - 1
90 if(_wCurrent_Duty.U16 > _wTarget_Duty.U16)
91 {
92 if(_wCurrent_Duty.U16 > MIN_SPEED)
93 _wCurrent_Duty.U16--;
94 }
95 btTrans_Status = bWriteCmdToAMC(CMD_ANGLE_SHIFT, 0,
 _wCurrent_Duty.U16/AS_GAIN);
96 if(!btTrans_Status)
97 btTrans_Status = bWriteCmdToAMC(CMD_DUTY,
 _wCurrent_Duty.U8[0], _wCurrent_Duty.U8[1]);
98 if(!btTrans_Status)
99 bSpeed_Count = 0;
100 }
101 }
102 else
103 {
104 _wCurrent_Duty.U16 = 0;

AN-8205 APPLICATION NOTE

© 2013 Fairchild Semiconductor Corporation www.fairchildsemi.com
Rev. 1.0.1 • 1/9/14 16

105 WRITE_MSFR(MSFR_MCNTL, MOTOR_FREE);
106
107 bWriteCmdToAMC(CMD_AMC_CONTROL, 0, 0);
108 btTrans_Status = bWriteCmdToAMC(CMD_ANGLE_SHIFT, 0, 0);
109 btTrans_Status = bWriteCmdToAMC(CMD_DUTY, 0, 0);
110 if(_btShortCircuit_Protect)
111 {
112 nLED = 0; //Fault LED on, release the flag after reset device
113 }
114 else //clear protect flag
115 {
116 _bADCCounterForSC = 0;
117 _bShortCircuit_Cnt = 0;
118 _bADCCounterForSC_Temp = 0;
119 _btShortCircuit_Protect = 0;
120 nLED = 1; //Fault LED off
121 }
122 }
123 //User program end here.(04)
124 }

MCS51.c

MCS51.c is related to initial I/O port setting for the MCU

and interrupt request processing. The program explanation

is listed below:

Line 6 ~ 23: interrupt service routine of TIMER0 timeout;

Line 19: increase bSpeed_Count.

The program codes are listed as follows. In which, the thin

characters are the program codes generated by the MCDS

code generator.

1 //--
2 // Interrupt Service Routine
3 //--
4 // Timer0 ISR
5 INTERRUPT(ISR_T0, VECTOR_ET0)
6 {
7 U8 bBackupADR;
8 UU16 V;
9 //User variable start here.(39)
10
11 //User variable end here.(39)
12
13 bBackupADR = MSFRADR;
14 //Initial Timer0
15 V.U16 = INITIAL_T0_INTERVAL;
16 TH0 = V.U8[MSB];
17 TL0 = V.U8[LSB];
18 //User program start here.(13)
19 bSpeed_Count++;
20
21 //User program end here.(13)
22 MSFRADR = bBackupADR;
23 }

AN-8205 APPLICATION NOTE

© 2013 Fairchild Semiconductor Corporation www.fairchildsemi.com
Rev. 1.0.1 • 1/9/14 17

MotorCtrl.c

MotorCtrl.c is related to initial register setting for the MSFR

and interrupt request processing generated from motor

control. The program explanation is listed below:

Line 5 ~ 17: interrupt service routine of Hall signal

trigger;

Line 13: toggle the FO pin;

Line 20 ~ 48: interrupt service routine of ADC trigger;

Line 30 ~ 32: store ADC0 value (9-bit) into

_wTarget_Duty;

Line 34 ~ 35: output theta to AOUT pin;

Line 40 ~ 52: OCP analysis routine;

Line 58 ~ 87: Fault interrupt service routine;

The program codes are listed as follows. In which, the thin

characters are the program codes generated by the MCDS

code generator.

1 //--
2 // Interrupt Service Routine
3 //--
4 // Hall ISR
5 INTERRUPT(ISR_Hall, VECTOR_EX10)
6 { // Ex10
7 U8 bBackupADR;
8 //User variable start here.(22)
9
10 //User variable end here.(22)
11 bBackupADR = MSFRADR;
12 //User program start here.(16)
13 FO ^= 1;
14
15 //User program end here.(16)
16 MSFRADR = bBackupADR;
17 }
18
19 // ADC ISR
20 INTERRUPT(ISR_ADC, VECTOR_EX9)
21 { //EX9
22 U8 bBackupADR;
23 U8 bV;
24 //User variable start here.(23)
25 U8 bAngle;
26
27 //User variable end here.(23)
28 bBackupADR = MSFRADR;
29 //User program start here.(1A)
30 READ_MSFR(MSFR_ADC0H, _wTarget_Duty.U8[0]);
31 READ_MSFR(MSFR_ADC0L, _wTarget_Duty.U8[1]);
32 _wTarget_Duty.U16 >>= 7;
33 _bADCCounterForSC++;
34 READ_MSFR(MSFR_ECL, bAngle);
35 WRITE_MSFR(MSFR_DAC3, bAngle);
36
37 //User program end here.(1A)
38
39 READ_MSFR(MSFR_OCSTA, bV);
40 if (bV)
41 {
42 if (bV & 0x08) // OCAH
43 Evt_OCHA();
44 if (bV & 0x10) // OCBH
45 Evt_OCHB();
46 if (bV & 0x20) // OCCH
47 Evt_OCHC();
48 }
49
50 //User program start here.(17)

AN-8205 APPLICATION NOTE

© 2013 Fairchild Semiconductor Corporation www.fairchildsemi.com
Rev. 1.0.1 • 1/9/14 18

51 else
52 nLED = 1;
53
54 //User program end here.(17)
55 MSFRADR = bBackupADR;
56 }
57
58 // Fault ISR
59 INTERRUPT(ISR_Fault, VECTOR_EX8)
60 { //Ex8
61 U8 bBackupADR;
62 U8 bV;
63 //User variable start here.(24)
64
65 //User variable end here.(24)
66
67 bBackupADR = MSFRADR;
68 READ_MSFR(MSFR_MSTAT, bV);
69 if (bV & 0x7F)
70 {
71 //User program start here.(1B)
72
73 //User program end here.(1B)
74 if (bV & 0x20) // Short A
75 Evt_ShortA();
76 if (bV & 0x10) // Short B
77 Evt_ShortB();
78 if (bV & 0x08) // Short C
79 Evt_ShortC();
80 if (bV & 0x04) // Hall Error
81 Evt_HERR();
82 //User program start here.(18)
83
84 //User program end here.(18)
85 }
86 MSFRADR = bBackupADR;
87 }

Related Resources

FCM8531 − MCU Embedded and Configurable 3-Phase PMSM / BLDC Motor Controller

AN-8202 − FCM8531 User Manual - Hardware Description

AN-8207 − User Guide for MCDS IDE of FCM8531

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS
HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE
APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS
PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:

1. Life support devices or systems are devices or systems

which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to
result in significant injury to the user.

2. A critical component is any component of a life support
device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or
system, or to affect its safety or effectiveness.

http://www.fairchildsemi.com/ds/FC/FCM8531.pdf
http://www.fairchildsemi.com/an/AN/AN-8202.pdf
http://www.fairchildsemi.com/an/AN/AN-8207.pdf

