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9.1 Introduction 
In this chapter we shall consider some essential steps in the computer implementation 
of the CBS algorithm on structured or  unstructured finite element grids. Only linear 
triangular elements will be used and the notes given here are intended for a two- 
dimensional version of the program. The sample program listing and user manual 
along with several solved problems are available to down load from the publisher's 
web site http://www.bh.com/companions/fem free of charge. 

The program discussed can be used to solve the following different categories of 
fluid mechanics problems: 

1. Compressible viscous and inviscid flow problems 
2. Incompressible viscous and inviscid flows 
3. Incompressible flows with heat transfer 
4. Porous media flows 
5. Shallow-water problems. 

With further simple modifications, many other problems such as turbulent flows, 
solidification, mass transfer, free surfaces, etc. can be solved. The procedures 
presented here are largely based on the computer implementation discussed in 
Chapter 20, Volume 1 of this book. Many programming aspects will not be discussed 
here in detail and the reader is referred back to Chapter 20, Volume 1. Here it is 
assumed that the reader is familiar with FORTRAN'. '  and finite element procedures 
discussed in this volume as well as in Volume 1 .3 

We call the present program CBSflow since it is based on the CBS algorithm discussed 
in Chapter 3 of this volume. We prefer to keep the compressible and incompressible flow 
codes separate to avoid any confusion. However an  experienced programmer can 
incorporate both parts into a single code without much memory loss. Each program list- 
ing is accompanied by some model problems which helps the reader to validate the 
codes. In addition to the model inputs to programs, a complete user manual is available 
to users explaining every part of the program in detail. Any error reported by readers 
will be corrected and the program will be continuously updated by the authors. 
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The modules are constructed essentially as in Chapter 20, Volume 1 starting with 
(1) the data input module with preprocessing and continuing with (2) the solution 
module and (3) the output module. However, unlike the generalized program of 
Chapter 20, Volume 1, the program CBSflow only contains the listing for solving 
transient Navier-Stokes (or Euler-Stokes) equations iteratively. Here there are 
many possibilities such as fully explicit forms, semi-implicit forms, quasi-implicit 
forms and fully implicit forms as discussed in Chapter 3 of this volume. We concen- 
trate mainly on the first two forms which require small memory and simple solution 
procedures compared to other forms. 

In both the compressible and incompressible flow codes, only non-dimensional 
equations are used. The reader is referred to the appropriate chapters of this 
volume (Chapters 3 ,  4 and 5 )  for different non-dimensional parameters. 

In Sec. 9.2 we shall describe the essential features of data input to the program. 
Here either structured or unstructured meshes can be used to divide the problem 
domain into finite elements. Section 9.3 explains how the steps of the CBS algorithm 
are implemented. In that section, we briefly remark on the options available for shock 
capturing, various methods of time stepping and different procedures for equation 
solving. In Sec. 9.4, the output generated by the program and postprocessing 
procedures are considered. In the last section (Sec. 9.5) we shall consider the 
possibility of further extension of CBSflow to other problems such as mass transfer, 
turbulent flow, etc. 

9.2 The data input module 
This part of the program is the starting point of the calculation where the input data 
for the solution module are prepared. Here an appropriate input file is opened and the 
data are read from it. Unlike in Chapter 20, Volume 1, we have no mesh generator 
coupled with CBSflow. However an advancing front unstructured mesh generator 
and some structured mesh generators are provided separately. By suitable coupling, 
the reader can implement various adaptive procedures as discussed in Chapters 4 and 
5. Either structured or unstructured mesh data can be given as input to the program. 
The general program structure and many more details can be found in Chapter 20, 
Volume 1. 

9.2.1 Mesh data - nodal coordinates and connectivity 

Once the nodal coordinates and connectivity of a finite element mesh are available 
from a mesh generator, they are allotted to appropriate arrays (for a detailed descrip- 
tion on the mesh, numbering etc., see Chapter 20, Volume I) .  Essentially the same 
arrays as described in Chapter 20, Volume 1 are used here. The coordinates are 
allotted to X ( i , j )  with i defining the appropriate Cartesian coordinates xl( i  = I )  
and x 2 ( i  = 2) and j defining the global node number. Similarly the connectivity is 
allotted to an array I X ( k , / ) .  Here k is the local node number and 1 is the global 
element number. It should be noted that the material code normally used in heat 
conduction and stress analysis is not necessary. 
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Table 9.1 Non-dimensional parameters 

Non-dimensional number Symbol Flow types 

Conductivity ratio 
Darcy number 
Mach number 
Prandtl number 

Porosity 
Rayleigh number 
Reynolds number 

Viscosity ratio 

k" 
Da 
M 
Pr 

E 
Ra 
Re 

v 

Porous media flows 
Porous media flows 
Compressible flows 
Compressible, incompressible, thermal and 
porous media flows 
Porous media flows 
Natural convective flows 
Compressible, incompressible, thermal and 
porous media flows 
Porous media flows 

If the structured meshes and banded solution are preferred by the user, a flag 
activated by the user calculates the half-bandwidth of the mesh and supplies it to 
the solution module. Alternatively, a diagonally preconditioned conjugate gradient 
solver can be used with an appropriate flag. These solvers are necessary only when 
the semi-implicit form of solution is used. 

9.2.2 Boundary data 

In general, the procedure discussed in Chapter 20, Volume 1 uses the boundary nodes 
to prescribe boundary conditions. However, in CBSflow we mostly use the edges to 
store the information on boundary conditions. Some situations require boundary 
nodes (e.g. pressure specified in a single node) and in such cases corresponding 
node numbers are supplied to the solution module. 

9.2.3 Other necessary data and flags 

In addition to the mesh data and boundary information, the user needs to input a few 
more parameters used in flow calculations. For example, compressible flow 
computations need the values of non-dimensional parameters such as the Mach 
number, Reynolds number, Prandtl number, etc. Here the reader may consult the 
non-dimensional equations and parameters discussed in Sec. 3.1,  Chapter 3, and in 
Chapter 5, of this volume. The necessary parameters for different problems are 
listed in Table 9.1 for completeness. 

Several flags for boundary conditions, shock capture, etc. need to be given as 
inputs. For a complete list of such flags, the reader is referred to the user manual 
and program listing at the publisher's web page. 

9.2.4 Preliminarv subroutines and checks 

A few preliminary subroutines are called before the start of the time iteration loop. 
Establishing the surface normals, element area calculation (for direct integration), 
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SUBROUTINE GETNRW(MXPOI,MBC,NPOIN,NBS,ISIDE,IFLAG, 
!€ COSX,COSY,ALEN,IWPOIN,WNOR,NWALL) 

IMPLICIT NONE 

INTEGER I,IB,IB2,IN,IW,J,JJ,MBC,MXPOI,NBS,NN,NPOIN,NWALL 

REAL*8 ACH,ANOR,ANXl,ANYl 
REAL*8 ALEN(MBC) ,COSX(MBC) ,COSY (MBC) WNOR(2,MBC) 

DO I = 1,NPOIN 
IFLAG (I) = 0 

END DO ! I 
DO I = 1, NBS 
DO J = 1,3 
IWPOIN(J,I) = 0 

END DO ! J 
END DO ! I 

NWALL = 0 

DO IN = 1,2 
DO I = 1, NBS ! boundary s i d e s  

C 

c flags on the wall p o i n t s  

IF(ISIDE(4,I).EQ.2)THEN ! flag 2 f o r  s o l i d  walls. 
NN = ISIDE(IN,I) 
JJ = IFLAG(") 
IF(JJ.EQ.0)THEN 
NWALL = NWALL + 1 
IWPOIN(1,NWALL) = NN 
IWPOIN(2,NWALL) = I 
IFLAG(") = NWALL 

IWPOIN(3,JJ) = I 
ELSE 

ENDIF 
ENDIF 

END DO ! I 
END DO ! IN 

C 

DO IW = 1, NWALL 
IB = IWPOIN(2,IW) 
IB2 = IWPOIN(3,IW) 
ANXl = ALEN(IB)*COSX(IB) 
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ANYl = ALEN(IB)*COSY(IB) 
ACH = O.ODO0 
IF(IB2.NE.O)THEN 
ANXl = ANXl + ALEN(IB2)*COSX(IB2) 
ANYl = ANYl + ALEN(IB2)*COSY(IB2) 
ACH = COSX(IB)*COSX(IB2) + COSY(IB)*COSY(IB2) 

ENDIF 
ANOR = DSQRT(ANXl*ANXl + ANYl*ANYl) 
ANX 1 = ANXl/ANOR 
ANY 1 = ANYl/ANOR 
WNOR(1,IW) = ANXl 
WNOR(2,IW) = ANYl 
IF(ACH.LT.-0.2) THEN 

WNOR(1,IW) = O.ODO0 
WNOR(2,IW) = O.ODO0 
WRITE(*,*)IWPOIN(l,IW),’ is trailing edge’ ! e.g. aerofoil 

ENDIF 
END DO ! IW 
END 

Fig. 9.1 Subroutine calculating surface normals on the walls 

mass matrix calculation and lumping and some allocation subroutines are necessary 
before starting the time loop. The routine for establishing the surface normals is 
shown in Fig. 9.1. On sharp, narrow corners as at  the trailing edge of an aerofoil, 
the boundary contributions are made zero by assigning a zero value for the surface 
normal as shown. 

9.3 Solution module 
Figure 9.2 shows the general flow diagram of CBSflow. As seen, the data from the 
input module are passed to the time loop and here several subprograms are used to 
solve the steps of the CBS algorithm. It should be noted that the semi-implicit 
form is used here only for incompressible flows and at the second step we only 
calculate pressure, as the density variation is here assumed negligible. 

9.3.1 Time loop 

The time iteration is carried out over the steps of the CBS algorithm and over many 
other subroutines such as the local time step and shock capture calculations. As men- 
tioned in the flow chart, the energy can be calculated after the velocity correction. 
However, for a fully explicit form of solution, the energy equation can be solved in 
step 1 along with the intermediate momentum variable. Further details on different 
steps are given in Sec. 9.3.4 and the reader can refer to the theory discussed in Chapter 
3 of this volume for a comprehensive review of the CBS algorithm. 
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Fig. 9.2 Flow diagram for CBSflow. 
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9.3.2 Time step --- 
In general, three different ways of establishing the time steps are possible. In problems 
where only the steady state is of importance, so-called ‘local time stepping’ is used 
(see Sec. 3.3.4, Chapter 3). Here a local time step at each and every nodal points is 
calculated and used in the computation. 

When we seek accurate transient solution of any problem, the so-called ‘minimum 
step’ value is used. Here the minimum of all local time step values is calculated and 
used in the computation. 

Another and less frequently used option is that of giving a ‘fixed’ user-prescribed 
time step value. Selection of such a quantity needs considerable experience from 
solving several flow problems. 

The times loop starts with a subroutine where the above-mentioned time step 
options are available. In general the local time steps are calculated at every iteration 
for the initial few time steps and then they are calculated only after a certain number 
of iterations as prescribed by the user. If the last option of the user-specified fixed time 
step is used, the local time steps are not calculated. Figure 9.3 shows the subroutine 
used for calculating the local time steps for inviscid compressible flows with linear 
triangular elements. 

As indicated in Sec. 4.3.3, Chapter 4, two different time steps are often useful in 
getting better stabilization  procedure^.^ Such internal (DELTI) and external (DELTP) 
time stepping options are available in the routine of Fig. 9.3. 

9.3.3 Shock capture 

The CBS algorithm introduces naturally some terms to stabilize the oscillations 
generated by the convective acceleration. However, for compressible high-speed 
flows, these terms are not sufficient to suppress the oscillations in the vicinity of 
shocks and some additional artificial viscosity terms need to be added (see Sec. 6.5, 
Chapter 6). We have given two different forms of artificial viscosities based on the 
second derivative of pressure in the program. Another possibility is to use anisotropic 
shock capturing based on the residual of individual equations solved. However we 
have not used the second alternative in the program as the second derivative based 
procedures give quite satisfactory results for all high-speed flow problems. 

In the first method implemented, we need to calculate a pressure switch (see Eq. 
(6.16), Chapter 6) from the nodal pressure values. Figure 9.4 gives a typical example 
of triangular elements inside and on the boundaries. For inside nodes (Fig. 9.4(a)) we 
calculate the nodal switch as 

and for the boundary node (Fig. 9.4(b)) we calculate 
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SUBROUTINE TIMSTP(MXPOI,MXELE,NELEM,NPOIN,IALOT, IX, SFACT, 
& DTFIX,UNKNO,DELTP,DELTI,SONIC,PRES,GAMMA, 
& GEOME, X, NMAX,MAXCON,MODEL, NODEL) 

c calculates the critical local time steps at nodes. 
c calculates internal and external time steps. 

IMPLICIT NONE 

IMPLICIT MPOI 
PARAMETER(MPOI=9000) 

INTEGER 
INTEGER 

INTEGER 

REAL*8 
REAL*8 

REAL*8 
REAL*8 
REAL*8 

I,IALOT,IE,IP,IPl,IP2,IP3,MODEL,M~~~E,MX~~~ 
NELEM,NODEL,NPOIN 

IX(MODEL,MXELE) ,MAXCON(20 ,MIXPOI) ,NMAX(MXPOI) 

ALEN,ANX,ANY,CMAX, DTFIX, DTP, GAMMA, SFACT,TSTI 
TSTP,U,Ul,U2,U3,V,Vl,V2,V3,VNl,VN2,VN3,VELN,VSUM 

REAL*8 PRS(MPO1) ,RHO(MPOI) ,VMAG(MPOI) ,VNORM(MPOI) ! local arrays 

IF(IALOT.EQ.-1)THEN 
CALL TIMFIL(MXPOI,DELTP,NPOIN,DTFIX) 
CALL TIMFIL(MXPOI,DELTI,NPOIN,DTFIX) 
RETURN 

ENDIF 

c smoothing the variables 

DO I = 1, NPOIN 
C 

VNORM(1) = O.OOD+OO 
RHO(1) = O.OOD+OO 
PRS(1) = O.OOD+OO 
U = UNKN0(2,I)/UNKNO(l,I) 
V = UNKN0(3,I)/UNKNO(l,I) 
VMAG(1) = DSQRT(U**2+V**2) 
DO IP = l,NMAX(I) 
IP1 = MAXCON(IP,I) 
VNORM(1) = VNORM(1) + VMAG(IP1) 
PRS(1) = PRS(1) + PRES(IP1) 
RHO(I) = RHO(I) + UNKNO(~,IP~) 

END DO ! IP 

Fig. 9.3 Subroutine for time step calculation. 
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VNORM(1) = VNORM(I)/FLOAT(NMAX(I)) 
PRS(1) = PRS(I)/FLOAT(NMAX(I)) 
RHO(1) = RHO(I)/FLOAT(NMAX(I)) 
SONIC(1) = DSQRT(GAMMA*PRS(I)/RHO(I)) 

END DO ! I 
DO IP = 1,NPOIN 
DELTP(1P) = 1.0d06 
SONIC(1P) = DSQRT(GAMMA*PRES(IP)/UNKNO(l,IP)) ! speed of sound 

END DO ! IP 
C 

c loop for calculation of local time steps 
C 

DO IE = 1, NELEM 
IP1 = IX(1,IE) 
IP2 = IX(2,IE) ! connectivity 
IP3 = IX(3,IE) 
u1 = UNKN0(2,IPl)/UNKNO(l,IPl) ! ul velocity 
v1 = UNKN0(3,IPl)/UNKNO(l,IPl) ! u2 velocity 
u2 = UNKN0(2,IP2)/UNKNO(l,IP2) 
v2 = UNKN0(3,IP2)/UNKNO(l,IP2) 
u3 = UNKN0(2,IP3)/UNKNO(l,IP3) 
v3 = UNKN0(3,IP3)/UNKNO(l,IP3) 
VN 1 = DSQRT(U1**2 + U1**2) 
VN2 = DSQRT(U2**2 + U2**2) 
VN3 = DSQRT(U3**2 + U3**2) 
VELN = MAX(VN1, VN2, VN3) 
CMAX = MAX(SONIC(IPl), SONIC(IP2), SONIC(IP3)) 
VSUM = VELN + CMAX 

C 

ANX = GEOME(1,IE) ! shape function derivatives 
ANY = GEOME(4, IE) 
ALEN = l.O/DSQRT(ANX**2 + ANY**2) ! element length at node 1 
TSTP = ALEN/VSUM 
TSTI = ALEN/VELN 
DELTP(IP1) = MIN(DELTP(IPl), TSTP) ! external time step 
DELTI(IP1) = MIN(DELTI(IPl), TSTI) ! internal time step 

ANX = GEOME(2, IE) 
ANY = GEOME(5, IE) 
ALEN = 1.O/DSQRT(ANX**2 + ANY**2) 
TSTP = ALEN/VSUM 
TSTI = ALEN/VELN 
DELTP(IP2) = MIN(DELTP(IP2), TSTP) 
DELTI(IP1) = MIN(DELTI(IPl), TSTI) 

C 

Fig. 9.3 Continued. 
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C 

ANX = GEOME(3,IE) 
ANY = GEOME(6, IE) 
ALEN = l.O/DSQRT(ANX**2 + ANY**2) 
TSTP = ALEN/VSUM 
TSTI = ALEN/VELN 
DELTP(IP3) = MIN(DELTP(IP3), TSTP) 
DELTI(IP1) = MIN(DELTI(IPl), TSTI) 

END DO ! IE 

DO IP = 1, NPOIN 
DELTP(1P) = SFACT*DELTP(IP) ! SFACT - s a f e t y  f a c t o r  

END DO ! IP 
IF(IALOT.EQ.0) THEN 
DTP = 1.0d+06 
DO IP = 1,NPOIN 

DTP = MIN(DTP, DELTP(1P)) 

CALL TIMFIL(MXPOI,DELTP,NPOIN,DTP) 
END DO ! IP 

ENDIF 
END 

Fig. 9.3 Continued. 

The nodal quantities calculated in a manner explained above are averaged over 
elements and used in the relations of Eq. (6.17), Chapter 6. Figure 9.5 shows the 
calculation of the nodal pressure switches for linear triangular elements. 

In the next option available in the code, the second derivative of pressure is 
calculated from the smoothed nodal pressure gradients (see Sec. 4.5.1, Chapter 4) 
by averaging. Other approximations to the second derivative of pressure are described 

Fig. 9.4 Typical element patches (a) interior node (b) boundary node. 
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in Sec. 4.5.1, Chapter 4. The user can employ those methods to approximate the 
second derivative of pressure if desired. 

9.3.4 CBS algorithm. Steps 

Various steps involved in the CBS algorithm are described in detail in Chapter 3. 
There are three essential steps in the CBS algorithm (Fig. 9.2). First, an intermediate 
momentum variable is calculated and in the second step the density/pressure field is 
determined. The third step involves the introduction of density/pressure fields to 
obtain the correct momentum variables. In problems where the energy and other 
variables are coupled, calculation of energy is necessary in addition to the above 
three steps. In fully explicit form, however, the energy equation can be solved in 
the first step itself along with the intermediate momentum calculations. 

In the subroutine s tep1  we calculate the temperature-dependent viscosity at the 
beginning according to Sutherland’s relation (see Chapter 6). The averaged viscosity 
values over each element are used in the diffusion terms of the momentum equation 
and dissipation terms of the energy equation. The diffusion, convective and stabiliza- 
tion terms are integrated over elements and assembled appropriately to the RHS 
vector. The integration is carried out either directly or numerically. Finally the 
RHS vector is divided by the lumped mass matrices and the values of intermediate 
momentum variables are established. 

In step two, in explicit form, the density/pressure values are calculated by the 
Eq. (3.53) (or Eq. (3.54)). The subroutine s tep2 is used for this purpose. Here the 
option of using different values of 01 and 02 is available. In explicit form 02 is 
identically equal to zero and O1 varies between 0.5 and 1.0. For compressible flow 
computations, the semi-implicit form with 4 greater than zero has little advantage 
over the fully explicit form. For this reason we have not given the semi-implicit 
form for compressible flow problems in the program. 

For incompressible flow problems, in general the semi-implicit form is used. In this 
&, as before, varies between 0.5 and 1 and e2 is also in the same range. Now it is 
essential to solve the pressure equation in s tep2 of the algorithm. Here in general 
we use a conjugate gradient solver as the coefficient matrix is not necessarily banded. 

The third step is the one where the intermediate momentum variables are corrected 
to get the real values of the intermediate momentum. In all three steps, mass matrices 
are lumped if the fully explicit form of the algorithm is used. As mentioned in earlier 
chapters, this is the best way to accelerate the steady-state solution along with local 
time stepping. However, in problems where transient solutions are of importance, 
either a mass matrix correction as given in Sec. 2.6.3, Chapter 2 or simultaneous 
solution using a consistent mass matrix is necessary. 

9.3.5 Boundary conditions 

As explained before, the boundary edges are stored along with the elements to which 
they belong. Also in the same array i s i d e ( i ,  j >  the flags necessary to inform the 
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SUBROUTINE SWITCH(MXPO1, MXELE, MBC, NPOIN, NELEM, NBS, PRES, 
& CSHOCK,PSWTH,IX,DELUN,ISIDE,MODEL,ITYPE) 

C 

c this subroutine calculates the pressure switch at each node 
c maximum value 1 and minimum value 0 
C 

IMPLICIT NONE 

INTEGER IB,IELEM,IP,IP1,IP2,IP3,ITYPE,MBC,MODEL 
INTEGER MXELE,MXPOI,NBS, NELEM, NPOIN 

INTEGER ISIDE(4 ,MBC) , IX(MODEL,MXELE) 

REAL*8 CSHOCK, PADD, P11, P22, P33,PSl,PS2,PS3 
REAL*8 XPS , XPD 

REAL*8 DELUN (MXPOI) ,PRES (MXPOI) , PSWTH(MXP0.I) 
C 

DO IELEM = 1,NELEM 
IP1 = IX(1,IELEM) 
IP2 = IX(2,IELEM) 
IP3 = IX(3,IELEM) 
PS1 = PRES(IP1) 
PS2 = PRES(IP2) 
PS3 = PRES(IP3) 
PADD = PSl+PS2+PS3 
P11 = (3.0dOO*PSl - PADD) 
P22 = (3.0dOO*PS2 - PADD) 
P33 = (3.0dOO*PS3 - PADD) 
PSWTH(IP1) = PSWTH(IP1) + P11 
PSWTH(IP2) = PSWTH(IP2) + P22 
PSWTH(IP3) = PSWTH(IP3) + P33 
DELUN(IP1) = DELUN(IP1) + DABS(PS1 - PS2) + DABS(PS1 - PS3) 
DELUN(IP2) = DELUN(IP2) + DABS(PS1 - PS2) + DABS(PS2 - PS3) 
DELUN(IP3) = DELW(IP3) + DABS(PS3 - PS2) + DABS(PS1 - PS3) 

END DO ! IELEM 
DO IB = 1,NBS 
IP 1 = ISIDE(1, IB) 
IP2 = ISIDE(2,IB) 
PS1 = PRES(IP1) 
PS2 = PRES(IP2) 
XPS = PS1 + PS2 
XPD = PS1 - PS2 
PSWTH(IP1) = PSWTH(IP1) + XPD 
PSWTH(IP2) = PSWTH(IP2) - XPD 
DELUN(IP1) = DELUN(IP1) + DABS(XPD) 
DELUN(IP2) = DELUN(IP2) + DABS(XPD) 
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END DO ! IB 
DO IP = 1,NPOIN 

IF(DELUN(IP).LT.O.l*PRES(IP))DELUN(IP) = PRES(1P) 
END DO ! IP 
DO IP = 1,NPOIN 
PSWTH(1P) = CSHOCK*DABS(PSWTH(IP))/DELUN(IP) 

END DO ! IP 
END 

Fig. 9.5 Calculation of nodal pressure switches for shock capturing 

solution module which type of boundary conditions are stored. In this array i = 1,2 
correspond to the node numbers of any boundary side of an element, i = 3 indicates 
the element to which the particular edge belongs and i = 4  is the flag which 
indicates the type of boundary condition (a complete list is given in the user manual 
available at the publisher’s web page). Herej  is the boundary edge number. A typical 
routine for prescribing the symmetry conditions is shown in Fig. 9.6. 

9.3.6 Solution of simultaneous equations - semi-implicit form 

The simultaneous equations need to be solved for the semi-implicit form of the CBS 
algorithm. Two types of solvers are provided. The first one is a banded solver which is 
effective when structured meshes are used. For this the half-bandwidth is necessary in 
order to proceed further. The second solver is a diagonal preconditioned conjugate 
gradient solver. The latter can be used to solve both structured and unstructured 
meshes. The details of procedures for solving simultaneous equations can be found 
in Chapter 20 of Volume 1. 

9.3.7 Different forms of energy equation 

In compressible flow computations only the fully conservative form of all equations 
ensures correct position of shocks. Thus in the compressible flow code, the energy 
equation is solved in its conservative form with the variable being the energy. 
However for incompressible flow computations, the energy equation can be written 
in terms of the temperature variable and the dissipation terms can be neglected. In 
general for compressible flows, Eq. (3.61) is used, and Eq. (4.6) is used for incom- 
pressible flow problems. 

9.3.8 Thermal and porous media flows 

As mentioned earlier the heat transfer and porous medium flows are also included 
in the incompressible flow code. Using the heat transfer part of the code, the user 
can solve forced, natural and mixed convection problems. Appropriate flags and 
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SUBROUTINE SYMMET(MXPO1, MBC, NPOIN, NBS, UNKNO,ISIDE,RHOINF, 
tL UINF,VINF, COSX,COSY) 

C 

c symmetric boundary conditions forced. one component of velocity 
c forced to zero 
C 

IMPLICIT NONE 

INTEGER I,IP,J,MBC,MXPOI,NBS,NPOIN 

INTEGER ISIDE (4, MBC) 

REAL*8 ANX,ANY,RHOINF,UINF,US,VINF 

REAL*8 COSX(MBC), COSY(MBC), UNKNO(4,MXPOI) 

DO I = 1, NBS 
C 

IF(ISIDE(4,I).EQ.4)THEN ! symmetry flag 4 
ANX = COSX(1) 
ANY = COSY(1) 
DO J = 1,2 

IP = ISIDE(J,I) 
us = -UNKN0(2,IP)*ANY + UNKNO(S,IP)*ANX 
UNKNO(2,IP) = - US*ANY 
UNKNO(3,IP) = US*ANX 

END DO ! J 
ENDIF 

END DO ! I 
END 

Fig. 9.6 Subroutine to impose symmetry conditions. 

non-dimensional parameters need to be given as input. For the detailed discussion on 
these flows, the reader is referred to Chapter 5 of this volume. 

--”----- _̂ ---> - . ~ - ~ ~ ~ ~ ~ ~  9.3.9 Convergence 

The residuals (difference between the current and previous time step values of 
parameters) of all equations are checked at  every few user-prescribed number of itera- 
tions. If the required convergence (steady state) is achieved, the program stops 
automatically. The aimed residual value is prescribed by the user. The program 
calculates the maximum residual of each variable over the domain. The user can 
use them to fix the required accuracy. We give the routine used for this purpose in 
Fig. 9.7. 
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C 

SUBROUTINE RESID(MXPOI,NPOIN,ITIME,UNKNO,UNPRE,PRES,PRESN,IFLOW~ 
C 

c purpose : calculations of residuals. 
C 

IMPLICIT NONE 

C 

INTEGER I,ICONl,ICON2,ICON3,ICON4,IFLOW,ITIME,MXPOI,NPOIN 

REAL*8 EMAXl,EMAX2,EMAX3,EMAX4,ERRl,ERR2,ERR3,ERR4,ERl 
REAL*8 ER2,ER3,ER4 

REAL*8 
REAL*8 UNPRE(4,MXPOI) 

EMAXl = 0.000d00 
EMAX2 = 0.000d00 
EMAX3 = 0.000d00 
EMAX4 = 0.000d00 

PRES (MXPOI) ,PRESN(MXPOI) ,UNKNO (4,MXPOI) 

DO I = 1,NPOIN 
ERR1 = UNKNO(1,I) - UNPRE(1,I) ! density or pressure 
ERR2 = UNKNO(2,I) - UNPRE(2,I) ! u l  velocity or mass f lux  
ERR3 = UNKNO(3,I) - UNPRE(3,I) ! u2 velocity or mass f lux  
ERR4 = UNKNO(4,I) - UNPRE(4,I) ! energy or temperature 
ER1 = DABS(ERR1) 
ER2 = DABS(ERR2) 
ER3 = DABS(ERR3) 
ER4 = DABS(ERR4) 
IF (ERl.GT.EMAX1) THEN 
EMAXl = ER1 
ICON1 = I 

ENDIF 
IF (ER2.GT.EMAX2) THEN 
EMAX2 = ER2 
ICON2 = I 

ENDIF 
IF (ER3.GT.EMAX3) THEN 
EMAX3 = ER3 
ICON3 = I 

ENDIF 
IF (ER4.GT.EMAX4) THEN 
EMAX4 = ER4 
ICON4 = I 

ENDIF 
END DO ! I 
END 

Fig. 9.7 Subroutine to check convergence rate. 
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9.4 Output module 
If the imposed convergence criteria are satisfied then the output is written into a 
separate file. The user can modify the output according to the requirements of post- 
processor employed. Here we recommend the education software developed by 
CIMNE (GiD) for post and preprocessing of data.5 The facilities in GiD include 
two- and three-dimensional mesh generation and visualization. 

9.4.1 Stream function calculation 

The stream function value is calculated from the following equation: 

@.J, a2+ au av 
ax: ax; 8x2 ax, 
-+-=--- (9.3) 

This equation is derived from the definition of stream function in terms of the velocity 
components. We again use the finite element method to solve the above equation. 

9.5 Possible extensions to CBSflow 
As mentioned earlier, there are several possibilities for extending this code. A simple 
subroutine similar to the temperature equation can be incorporated to solve mass 
transport. Here another variable ‘concentration’ needs to be solved.6 

Another subject which can be incorporated and studied is that of a ‘free surface’ 
given in Chapter 5 of this volume. Here another equation needs to be solved for 
the surface waves.’ 

The phase change problems need appropriate changes in the energy equation.8-’2 
The liquid, solid and mushy regions can be accounted for in the equations by simple 
modifications. The latent heat also needs to be included in phase change problems. 

The turbulent flow requires solution of another set or sets of equations similar to 
the momentum or energy equations as explained in Chapter 5. For the 6-E model 
the reader is referred to reference 13. 

The program CBSflow is an educational code which can be modified to suit the 
needs of the user. For instance, the modification of this program to incorporate a 
‘command language’ could make the code very efficient and compact. 
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