
EE201L
Divider design

Objective: To introduce to students
-- RTL coding style for state machine and datapath coding
-- Testbench example
-- Simple TOP design making use of I/O resources on Nexys-2 board
-- UCF file example
-- Introduce Epp protocol
-- Exploit the I/O resources in Adept 2.0 I/O Expansion

References (for the TAs, not for students):

1. Nexys-2 board reference manual (Nexys2_rm.pdf) and schematic

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Data/Products/NEXYS2/Nexys2_rm.pdf
http://www.digilentinc.com/Data/Products/NEXYS2/Nexys2_sch.pdf

2. Epp protocol
First 4 pages of the Digilent Parallel Interface Model Reference Manual
http://www.digilentinc.com/Data/Products/ADEPT/DpimRef%20programmers%20manual.pdf
Also see http://www.beyondlogic.org/epp/epp.htm

Files provided:
A zip file is provided containing source files for four sample designs in four folders. Please read the notes
at the top of each file to get to know important aspects of the design to note.

1. ee201_divider_simple
2. ee201_divider_with_debounce
3. ee201_divider_with_single-step
4. ee201_divider_with_VIO_multi_step

A short description of each of the above 4 designs follows.

3. ee201_divider_simple:
Points to note:
The datapath elements shall be inferred by the syn-
thesis tool. So we do not code OFL explicitly. See the
diagram on the next page.

The datapath and the control unit can be combined in
one case statement under clock as shown in
divider_combined_cu_dpu.v. Notice the lines on the
side which avoid unnecessary recirculating muxes.
We have also provided another file:
divider_separate_cu_dpu.v.

Extract from divider_combined_cu_dpu.v

SSD0SSD1SSD2SSD3

BTN0BTN1
BTN2BTN3SW0SW7

LD0LD7
EE201L_divider_sp2011.fm 3/1/11 1 / 9 (C) 2011 Gandhi Puvvada

http://www.digilentinc.com/Data/Products/NEXYS2/Nexys2_rm.pdf
http://www.digilentinc.com/Data/Products/NEXYS2/Nexys2_sch.pdf
http://www.digilentinc.com/Data/Products/NEXYS2/Nexys2_sch.pdf
http://www.beyondlogic.org/epp/epp.htm
http://www.digilentinc.com/Data/Products/ADEPT/DpimRef%20programmers%20manual.pdf

Questions for the ee201_divider_simple design:

A. What happens if you divide by zero? Is the behavior of the quotient digit display on SSD1 different if
you attempt to divide 3 by 0 vs. if you attempt to divide F by 0. How about 0 divided by 0?
B. If you improve the divider design to move from compute state to done state if X is equal or less than Y
(instead of the current X less than Y), will the above behavior change? Does your answer to Q#1 above
change?
C. Why does the behavior of the next design (ee201_divider_with_debounce) appear to be quite different
from this design? Is it just appearance only or is it really different?

I0
I1 S

Y

I0
I1 S

Y X
_
R
e
g

Y
_
R
e
g

NSL
SM

OFL

DPU

CU

I0
I1 S

Y

I0
I1 S

Y X
_
R
e
g

Y
_
R
e
g

NSL
SM

OFL

DPU

CU

Traditional division
 between DPU and CU
OFL (combinational logic)
 is in the CU.

Division between DPU and
 CU for HDL coding
OFL (combinational logic)
 is moved to DPU. It is
 NOT coded explicitly.
The OFL is implicit in the
 DPU’s RTL in the CASE
 statement.

Current_State

Current_State

R
ES

ET

ST
A

RT
A

C
K

D
IV

D
N

D

D
IV

IS
O

R

Q
U

O
TI

EN
T

R
EM

IN
D

ER

DIVIDEND DIVISOR

B
TN

#0

Q
i (

IN
IT

IA
L)

Q
c

(C
O

M
PU

TE
)

Q
d

(D
O

N
E_

S)

D
O

N
E

Go through the files and download
the provided bit file and test.

ee201_divider_simple

B
TN

#1

B
TN

#2

B
TN

#3
EE201L_divider_sp2011.fm 3/1/11 2 / 9 (C) 2011 Gandhi Puvvada

4. ee201_divider_with_debounce:

First a debouncer design (ee201_debounce_DPB_SCEN_CCEN_MCEN.v) is presented to debounce a
given push button and produce 4 outputs: DPB, SCEN, CCEN, MCEN.
Output coding (for the states in the state machine) is used for glitch free outputs.

ISE => Help => Software Manuals => Click on
Design Synthesis in the diagram (copy shown on
the side) => XST User guide => Search for FSM
Encoding

As shown here, we used verilog attributes to
enforce our output coding. Through these attributes,
we are informing the tool-vendor (Xilinx here) that
we want the tool to honor and retain our user encod-
ing.

It is possible to set FSM Encoding option under
ISE => Synthesis XST => Properties => HDL
options => FSM Encoding Algorithm = User.
But this will apply to the entire design!

TB1 and TB0
are the tie-breakers
to break aliasing in
output codes.

Verilog attributes are placed in parentheses
 between asterisks. Another example:
EE201L_divider_sp2011.fm 3/1/11 3 / 9 (C) 2011 Gandhi Puvvada

Read the code (ee201_debounce_DPB_SCEN_CCEN_MCEN.v) and complete the state diagram on the
next page. Simulate it using ee201_debounce_DPB_SCEN_CCEN_MCEN_tb.v for 9 us.

Notice that, the testbench
has instantiated the UUT
with N_dc of 4 in the
generic map

Questions on the debouncer:

1. Briefly explain why the N_dc parameter was changed to 4 during simulation (from the actual value of 24
for synthesis and implementation). Use words such as “inefficient”, “wasteful”, “readability of waveform”,
etc.

2. When you simulate, zoom into the area of above waveform extract and arrive at your answer for the
above question in the waveform extract (why do we see 8 more pulses on MCEN after already seeing two
pulses.

3. We took time to design output-coded state machine with no OFL at all, there by avoiding any glitches in
the SCEN, MCEN, etc. Are glitches really harmful in our design or we have just shown a way to produce
glitch-free outputs?

4. Did we use the DPB (Debounced Push-Button) pulse or SCEN (Single-Clock enable) pulse to act as the
Start signal and the Acknowledge signal? Could we have used anyone of them?

8 pulses? Shouldn’t they be six?#1 #2 #3?

R
ES

ET

ST
A

RT
/A

C
K

D
IV

D
N

D

D
IV

IS
O

R

Q
U

O
TI

EN
T

R
EM

IN
D

ER

DIVIDEND DIVISOR

B
TN

#0

Q
i (

IN
IT

IA
L)

Q
c

(C
O

M
PU

TE
)

Q
d

(D
O

N
E_

S)

D
O

N
E

Go through the files and download
the provided bit file and test.

ee201_divider_with_debounce

B
TN

#1

B
TN

#2

B
TN

#3

Note that, unlike in the earlier design,
(ee201_divider_simple), we run
the core divider in this design at the
full speed of 50Mhz.
EE201L_divider_sp2011.fm 3/1/11 4 / 9 (C) 2011 Gandhi Puvvada

INI WQ SCEN_St

WHMCEN_StCCEN_St

WFCR

RESET

PB

PB

PB

PB T=0.084

PB T=0.084

PB

PB T=0.168

PB T=0.168

PB

1

PB T=0.084
PB T=0.084

count(22) = I(22) = 1 means T = 0.084 sec
count(23) = I(23) = 1 means T = 0.168 sec

I <= 0; I <= 0;

I <= I + 1;

I <= I + 1;

I <= I + 1;I <= 0;

I <= 0;1

CCR

Debouncing State Machine

I <= I + 1;

MCEN_Cont

MC <= 0; MC <= MC + 1;

MC <= 0;

Names of the students submitting:
1.

2.

MC <= MC + 1;

Complete the missing state transition conditions and also any RTL in the state MCEN_Cont

MC means MCEN_count (count of MCEN pulses)

MCEN_Continuous state
(Here MCEN behaves like CCEN. See the
output coding table on page 3.)
EE201L_divider_sp2011.fm 3/1/11 5 / 9 (C) 2011 Gandhi Puvvada

5. ee201_divider_with_single_step

Here, in the compute state, we single-step the division operation using the SCEN produced out of Btn2

Notice the following aspects of the design.

A. The divider and the divider instantiation have a new port pin called SCEN for the top-level design to
generate and pass SCEN pulses (Single-Clock-wide clock enable pulses) (more accurately data-enable
pulses as the clock itself is not inhibited).

B. Single-Step Control can easily be exercised on selected states such as the compute state in the divider as
shown below. The “if (SCEN)” clause before “begin” ensures that
 (i) all state transformations from the COMPUTE state and
 (ii) all data transformations with-in the compute state,
are under the control of SCEN. We do not have to rewrite the state diagram as shown below.

R
ES

ET

A
C

K

D
IV

D
N

D

D
IV

IS
O

R

Q
U

O
TI

EN
T

R
EM

IN
D

ER

DIVIDEND DIVISOR

B
TN

#0

Q
i (

IN
IT

IA
L)

Q
c

(C
O

M
PU

TE
)

Q
d

(D
O

N
E_

S)

D
O

N
E

Go through the files and download
the provided bit file and test.

ee201_divider_with_single_step

B
TN

#1

B
TN

#2

B
TN

#3

Note that, unlike in the first design,
(ee201_divider_simple), we run
the core divider in this design at the
full speed of 50Mhz.

ST
A

RT

SI
N

G
L

E
_S

T
E

P

COMPUTE

if X >= Y
 X <= X - Y;
 Q <= Q + 1;

X < Y

X >= Y

COMPUTE

if (X >= Y) . SCEN
 X <= X - Y;
 Q <= Q + 1;

SCEN + (X >= Y)

SCEN . (X< Y)

Original

Difficult way

Easy
 W

ay
EE201L_divider_sp2011.fm 3/1/11 6 / 9 (C) 2011 Gandhi Puvvada

Questions on ee201_divider_with_single_step:

A. Is it possible to use SCEN to control one state (or a few states), MCEN to control another state (or a sep-
arate bunch of states) and further CCEN to control yet another state?

B. If we are simulating an external event such as a sensor embedded under a road for traffic-light control,
we can produce a Btn1_SCEN pulse (SCEN pulse produced by pressing Btn1), can you single-step such a
system using another button (say Btn2) to produce Btn2_SCEN? Do you see any problem (operational or
logical or ...)?

Can we choose to place all three states of the divider design under
single-stepping control and simultaneously combine Start and Ack
under one button (say Btn0)?
Is this just not possible or it works if we produce a Btn0_ SCEN and
use it as START as well as ACK, or ...?

6. ee201_divider_with_VIO_multi_step and the Epp Interface

Here we are interfacing to the virtual I/O in Adept 2.0. The file, IOExpansion.vhd, provided by Digilent,
implements the Epp slave-side address and data registers in FPGA. We translated the same to Verilog. The
file is called IOExpansion.v. Note that now, the UCF file needs to have pins associated with Epp to talk to
the Cypress USB interface chip. Please refer to the Adept User’s manual on your PC (Start => All Pro-
grams => Digilent => Adept => Adept User’s manual.

R
ES

ET

ST
A

RT
/A

C
K

ST
A

RT
/

Go through the files and download
the provided bit file and test.

ee201_divider_with_VIO_multi_step

DIVIDEND DIVISOR QUOTIENT REMAINDER

when btn1 is pressedwhen btn1 is not pressed

D
IS

PL
AY

SE
LE

C
T

DISPLAY
SELECT

Q
i Q
c

Q
d

D
O

N
E

R
ES

ET

The switches on the board
are not used here.
8-bit dividend and 8-bit
divisor are set using the
16 switches on Adept IOExpansion.

Multiplexing the two displays on the
four 7-seg displays using Btn1.

M
ul

ti-
St

ep

M
ul

ti-
St

ep

 A

C
K

EE201L_divider_sp2011.fm 3/1/11 7 / 9 (C) 2011 Gandhi Puvvada

).

Your PC running Adept 2.0 (or higher) is the Epp master, which drives the three control lines:
EppAstb: Epp Address Strobe (active low, ending edge is posedge),
EppDstb: Epp Data Strobe (active low, ending edge is posedge),
EppWr: Epp Write Control (active low, low means intent to write, high means intent to read).
The EppDB is the Epp 8-bit data bus. During an active address or data strobe, Epp master drives data
if write is true (EppWr = 0) else slave drives data if read is true (EppWr = 1).
Active-low WAIT (= active-high GOT) acts like a hand-shake signal between the two parties.
Address Read Cycle is not implemented in Adept Virtual I/O protocol.

Instead of viewing this as a low active wait, it may be easier to view it as a high-active GOT signal.
Notice that the Epp protocol implements the full (4-way) handshake.

Extract of
IOExpansion.v

Epp Address Register is written
at the end of the Epp Address Strobe
because Epp Write control line is
low indicating intent to write.

UCF file
has pins for
Epp
EE201L_divider_sp2011.fm 3/1/11 8 / 9 (C) 2011 Gandhi Puvvada

7. Task to be performed

Download the .zip file provided to you into your C:\xilinx_projects\ directory and extract files to form
C:\xilinx_projects\ee201_divider_verilog directory with 4 sub-folders:

1. ee201_divider_simple 2. ee201_divider_with_debounce 3. ee201_divider_with_single-step
4. ee201_divider_with_VIO_multi_step

All the four folders have verilog source files, .ucf source file, a .bit file of the completed design.
After reading the code, you can download the .bit file to the Nexys-2 500K board and operate the divider.
The bit files provided to you have a “TAs_” prefix so that you do not overwrite when you compile the sam-
ple designs to get practice in forming a xilinx project and implementing the same.

When you are done, you will submit a report to your TA your answers to questions posted under first three
designs. No questions are posted for the last design.

8. Celebrate your success!!! Don’t forget this step!

In this example 58H is the dividend and 04H is the divisor.
The quotient is 16H and the remainder is 00H.

Dividend, Divisor

Dividend, Divisor, Quotient, Remainder

Done

R
ep

lic
a

of
 N

ex
ys

-2
 B

ut
to

ns

Can be used to set Divisor Can be used to set Dividend

R
ep

lic
a

of
 N

ex
ys

-2
 L

E
D

s

Btn 0Btn 1Btn 2

Light Bar when not lit

Btn 0Btn 1
Btn 2

ee201_divider_with_VIO_multi_step
EE201L_divider_sp2011.fm 3/1/11 9 / 9 (C) 2011 Gandhi Puvvada

	EE201L

