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Abstract 
We here describe the MetaNetwork protocol to reconstruct metabolic networks using 
metabolite abundance data from segregating populations. MetaNetwork maps metabolite 
quantitative trait loci (mQTLs) underlying variation in metabolite abundance in individuals 
of a segregating population using a two-part model to account for the often observed spike 
in the distribution of metabolite abundance data. MetaNetwork predicts and visualizes 
potential associations between metabolites using correlations of mQTL profiles, rather than 
of abundance profiles. Simulation and permutation procedures are used to assess statistical 
significance. Analysis of about 20 metabolite mass peaks from a mass spectrometer takes a 
few minutes on a desktop computer. Analysis of 2,000 mass peaks will take up to 4 days. In 
addition, MetaNetwork is able to integrate high-throughput data from subsequent 
metabolomics, transcriptomics and proteomics experiments in conjunction with traditional 
phenotypic data. This way MetaNetwork will contribute to a better integration of such data 
into systems biology. 
Availability | download the MetaNetwork package and manual at 
http://gbic.biol.rug.nl/supplementary/2007/MetaNetwork.  

 

About Chapter 7 
This chapter reports the fourth of four 
case-studies. The purpose of this case was 
to refine the ‘generative strategy’ (Chapter 
2) for processing, in contrast to data 
management in Chapters 4-6: to enable 
processing steps to be chained together in 
alternative combinations. This required 
focus on ‘modular reusable assets’ (see 
Chapter 2) that have common input and 
output types such that they can ‘talk’ to 
each other (and to the Chapter 5 case), as 
well as ‘standardized’ naming and behavior 
to ease use and integration. 
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7.1 Introduction 
The genetic diversity of primary and secondary metabolites is incredibly high, notably in 
plants (Wink, 1988); however, our understanding of such metabolism and its regulation is 
still limited (Baxter and Webb, 2006). In a recent paper (Keurentjes, et al., 2006), we have 
made the first attempt to unravel the genetic architecture of METABOLISM in a model plant 
using “genetical metabolomics.” This is a derivative of the strategy of GENETICAL 

GENOMICS (Jansen and Nap, 2001) that has been applied in recent years to the genetic study 
of GENE EXPRESSION data in a wide range of organisms (Brem, et al., 2002; Bystrykh, et 
al., 2005; Chesler, et al., 2005; Cheung, et al., 2005; DeCook, et al., 2006; Hubner, et al., 
2005; Keurentjes, et al., 2007; Morley, et al., 2004; Schadt, et al., 2003; Yvert, et al., 2003). 
For TRANSCRIPTOME data, this strategy works as follows: determine gene expression 
(preferably genome-wide) in genetically different individuals, treat the transcript 
abundances of each gene over all individuals as a quantitative trait, use molecular markers 
to fingerprint the individuals, use QUANTITATIVE TRAIT LOCUS (QTL) mapping to identify 
regulators (expression quantitative trait loci (eQTL)) and (re)-construct regulatory 
networks. For such network reconstruction, correlations of either transcript abundances 
 (Bing and Hoeschele, 2005; Keurentjes, et al., 2007; Lan, et al., 2006) or eQTL 
profiles (Keurentjes, et al., 2007; Zhu, et al., 2004) are applied. Keurentjes et al. (2006) 

developed and applied a similar strategy to metabolite abundance data. 

Specifics of MetaNetwork 
Similar to the approach used in gene expression studies, the genetic determinants of 
variation for metabolite abundance (mQTL) can be mapped. However, algorithms used for 
the analysis of transcript abundance have to be accommodated to the specifics of metabolite 
abundance. In the work of Keurentjes et al. (2006), one-third of the mass peaks segregating 
were not present in the parental lines, presumably caused by new allelic combinations. 
Likewise, many segregating mass peaks were not present in an appreciable proportion of 
the segregants, causing clear spikes at zero in the corresponding metabolite abundance 
distributions. Standard parametric approaches for QTL mapping (e.g., t-test (Morley, et al., 
2004), ANOVA (Bystrykh, et al., 2005; Chesler, et al., 2005; Hubner, et al., 2005), 
maximum likelihood (Schadt, et al., 2003)) make use of the assumption that the residual 
variation follows a normal distribution and departure from this assumption due to a spike 
can inflate errors of type I and II (Broman, 2003). Standard non parametric approaches for 
QTL mapping (Wilcoxon–Mann–Whitney test (Brem, et al., 2002; Yvert, et al., 2003)) can 
solve this problem, but they are less useful in consideration of multiple QTL 
models (Broman, 2003). A more suitable approach is to perform QTL analysis on the 
binary trait defined by whether an individual has a non-zero abundance, and on the 
quantitative trait for those individuals who have non-zero abundance. To combine these two 
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analyses, METANETWORK implements a two-part parametric model (Broman, 2003) form 
QTL mapping and outputs QTL profiles (-10log P significance values plotted at marker 
positions along the genome). 

Network reconstruction approaches based on the correlation of transcript 
abundance (Bing and Hoeschele, 2005; Lan, et al., 2006) may also be suitable for 
metabolite abundance. However, whereas transcripts are translated into molecules of 
another type (proteins), metabolites are transformed by enzymes into molecules of the same 
type (other metabolites). Therefore, if one metabolite is the precursor of another metabolite, 
an mQTL involved in the transformation will exert reversed effects for the precursor and its 
successor. Counterbalancing of positive and negative effects of multiple mQTLs may make 
it difficult to infer associations between metabolites from abundance correlations. 
Metabolites in the same pathway will show similar peaks in their QTL profiles, so that a 
correlation analysis based on QTL profiles may overcome this problem. MetaNetwork 
subsequently uses such correlations to determine associations between metabolites and to 
re-construct metabolic networks. 

Challenges in MetaNetwork 
Within the context of the genetical genomics experimental space, MetaNetwork encounters 
numerous challenges due to the size and the scope of the data set and the complexity of 
metabolic networks. Testing multiplicity is obviously a general challenge in QTL 
mapping (Sabatti, et al., 2003). The genome-wide mapping of each of many (correlated) 
mass peaks can result in a large number of false positives and/or false negatives. 
MetaNetwork uses Storey’s method (Storey and Tibshirani, 2003) to control false discovery 
rate (FDR). Candidate gene multiplicity is another challenge: an mQTL may still harbor 
hundreds of candidate genes (Broman, 2005). Incorrect connections between metabolites 
affected by different enzymes may be predicted if the genes for those enzymes appear to 
colocalize on the genome. To predict or to prioritize candidates among many potential 
genes in a mQTL region requires additional strategies such as fine mapping and/or follow-
up laboratory experiments. Appropriate information can also be derived from the use of 
assumedly independent (in silico) information in databases with metabolic pathway 
information, such as KEGG (Kanehisa and Goto, 2000), MetaCyc (Zhang, et al., 2005) or 
AraCyc (Mueller, et al., 2003), or data on eQTL studies, enzyme activity assays, or 
phenotypic data on the same segregants. Mass peak multiplicity, that is, metabolites 
represented by multiple mass peaks, is another challenge (Dijkstra, et al., 2007). For 
example, a metabolite with mass m can have one or more charges and peaks can appear at 
masses m, m/2, m/3 and so on. Or different isotopes of this metabolite have different 
numbers of neutrons and peaks appearing at m+1, m+2, m+3 and so on. Unfortunately, 
error-free assignment of different mass peaks to a single metabolite is still difficult with 
today’s mass spectrometry methods (Tikunov, et al., 2005). However, MetaNetwork can 
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provide important independent information to improve on this: it can predict possibly 
related peaks based on highly correlated mQTL profiles (r > 0.95). 

Applications of MetaNetwork 
To date, our MetaNetwork applications have been based on untargeted metabolite 
abundance data collected from recombinant inbred lines (RILs) of Arabidopsis thaliana 
plants using LIQUID CHROMATOGRAPHY and MASS SPECTROMETRY 
technology (Keurentjes, et al., 2006). It measures a large range of different metabolites 
mainly involved in secondary metabolism, including phenylpropanoids, flavonoids and 
glucosinolates (Vos, 2007). Many of these metabolites show a spike in their abundance 
distribution and MetaNetwork was specifically developed to handle such data. However, 
the MetaNetwork protocol can equally well handle abundance datawithout 
spikes.Moreover, it can handle data obtained from other mass spectrometry techniques, 
such as gas chromatography–mass spectrometry (Lisec, et al., 2006) that can detect polar 
primary metabolites. 

In addition to mass spectrometry technologies for targeted or untargeted measuring 
amounts of metabolites (Keurentjes, et al., 2006; Kliebenstein, et al., 2001), other high-
throughput technologies for measuring amounts of other molecular entities, such as 
microRNAs, proteins and their posttranslational modifications, are rapidly being 
developed (Hoheisel, 2006). The methodology described here is directly applicable to these 
and other quantitative types of data and helps biologists to understand how biological 
systems function. 

Implementation of MetaNetwork 
MetaNetwork is implemented in  R, an open source software environment for statistical 
computing and graphics (Ihaka and Gentleman, 1996). MetaNetwork is executed via a 
command line. However, users with little experience of command-line-driven applications 
and/or computer programming can easily runMetaNetwork using default parameter 
settings. An advanced user of R can change parameter settings or modify the underlying 
protocol, for example, by replacing the module for calculation of correlations by one for 
calculation of mutual information (Butte and Kohane, 2000), or the module for QTL 
analysis on RILs by one for QTL analysis on other types of segregating or natural 
populations. Future MetaNetwork releases will offer more options, for example, multiple 
QTL analysis  (Jansen, 1993; Jansen, 2003) in the two-part model, combined analysis of 
metabolite abundance data with other types of biomolecular data (Keurentjes, et al., 2007) 

and direct access of the R-tools to a metabolite abundance database. A seamless software 
infrastructure that supports MetaNetwork data management and analysis workflows is 
under development using code generation techniques (Swertz and Jansen, 2007). For more 
implementation details, please consult the METANETWORK SUPPLEMENTARY MANUAL 
online. 
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Algorithm of MetaNetwork 
The flowchart of the MetaNetwork protocol is shown in Figure 1. Given the scope of this 
manuscript, we will limit ourselves to the definition of the two main steps in the procedure: 
QTL mapping of metabolite abundances; and reconstruction of metabolic networks from 
correlations of QTL profiles. It should be noted that MetaNetwork does not offer data pre-

Figure 1 | MetaNetwork flowchart. The shaded squares represent computational steps where 
names of R-functions are indicated between parentheses and the superscript numbers refer to
steps in Box 1. The ellipses represent significance thresholds and cylinders represent biological
results where the result names as R objects are indicated between accolades. The solid line
represents the step that is by default “on” in MetaNetwork and the dashed line represents the step 
that is by default “off” in MetaNetwork.  
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traits, genotypes

AMap QTLs
(qtlMapTwoPart)

QTL profiles
{qtlProfiles}

QTL threshold
{qtlThres}

BSimulation/FDR
(qtlThreshold/qtlFDR)

QTL summary
{qtlSumm}
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CQTL summary
(qtlSummary) Significant QTLs

DZero-order
correlation

Peak multiplicity
{peakMultiplicity}

HPeak multiplicity
(findPeakultiplicity)

Correlation matrix
{corrZeroOrder}

FPermutation
(qtlCorrThreshold)

E2nd-order correlation
(qtlCorrSecondOrder)

Correlation matrix
{corrSecondOrder}

Correlation threshold
{corrThres}

GCreate network
(createCytoFiles)

Network files
[network.sif,

network.eda]
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processing, for example, alignment of mass peaks has to be performed by external 
applications such as METALIGN (Vos, 2007). 

MetaNetwork detects the genetic determinants underlying variation in metabolite 
abundance with the help of a two-part QTL analysis. Part one tests whether the 
presence/absence ofmetabolites has a genetic basis: whether different genotype classes at a 
given marker differ in their numbers of non-zero observations. Part two tests whether 
quantitative variation in non-zero abundances has a genetic basis: whether the non-zero 
observations for each of these genotype classes at a given marker differ in mean abundance. 
The “P-VALUE” of the QTL is computed as the product of the two “P-values” in the two 
parts. With binary data only (no quantitative data) or quantitative data only (no spike), the 
“P-value” of the missing part is set to one. These “P-values” are not yet corrected for 
multiple testing at many markers and also not for testing multiple metabolites. 
MetaNetwork can run simulation and FDR procedures (Storey and Tibshirani, 2003) to set 
an empirical threshold for the “P-values” at desired multiple-testing significance levels. 
MetaNetwork will output all relevant information such as the estimated effect of each 
mQTL, its support interval on the genome and the proportion of variance explained by it 
(see Box 1). 

MetaNetwork explores the associations between metabolites by comparing theirQTL 
profiles based on correlations. A permutation procedure sets an empirical threshold for the 
correlation at a desired significance level. MetaNetwork generates files with network 
connections that can be visualized using CYTOSCAPE, an open source software suite for 
visualization of biomolecular interactions (Shannon, et al., 2003) (see Box 1). 

7.2 Materials 
EQUIPMENT 
• Computer operating systems: Windows XP, GNU Linux or Mac OS X  
• R (http://www.r-project.org): software environment for statistical computing and 

graphics. The R application (current version 2.4.1) and installation manual can be 
found at http://www.r-project.org. In this paper, we assume an application under 
Windows XP 

• Required R-packages: “qvalue” for FDR control. R packages can be easily installed via 
Packages | install package(s). The user can choose a mirror site close to his location 
and then select the package “qvalue” for installation. Please go to http://www.r-
project.org for help if necessary 

• MetaNetwork package, user manual and example data files can be downloaded from 
http://gbic.biol.rug.nl/supplementary/2007/MetaNetwork  and saved locally. Install 
MetaNetwork package via Packages | install package(s) from local zip files: browse the 
zip file of MetNetwork package 
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• Cytoscape: open source software for visualizing biomolecular interaction networks. 
Cytoscape (current version 2.3.2) can be downloaded from http://www.cytoscape.org. 
Cytoscape requires Java version 1.4.2, which can be downloaded from 
http://java.sun.com/j2se/1.4.2/index.jsp 

7.3 Procedure 

Preparing and starting 
1| Prepare input files. Three kinds of information are required in QTL analysis: the genetic 
linkage map of molecular markers (markers, see Table 1); the genotypes of each individual 
at each marker position (genotypes, see Table 2); and the trait values (metabolite 
abundances) of each individual (traits, see Table 3). Optionally, the user can provide mass 
weight information for the mass peaks, to allow for a combined analysis of mass data and 
QTL profiles (peaks, see Table 4). The files should be formatted as COMMA SEPARATED 

VALUES (CSV), for example, as “markers.csv,” “genotypes.csv,” “traits.csv” and 
“peaks.csv,” respectively. Files can be formatted by using Microsoft’s Excel via File | Save 
as, and choosing the file type “CSV (comma delimited) (*.csv)” from the pull-down menu 
of “Save as type.” 
 
2| Load the MetaNetwork package by starting the R application and typing the command  

> library(MetaNetwork) 
This loads the functions of MetaNetwork and the required qvalue package. 

 
3| Change the working directory (optional). The default directory of R is most likely to be 
“C:/Program Files/R/R-2.4.1,” where R is installed. Users can change it to the directory 
where the files from Step 1 are saved, for example, change to “C:/MetaAnalysis” using the 
command 

> setwd("C:/MetaAnalysis") 

Loading data 
The order of Steps 4–7 does not matter. 
4| Load the marker data. Load marker data (see Table 1 for format) from a file into an R 
object using the function “loadData,” for example, load file “markers.csv” into R object 
“markerData” using the command 

> markerData <- loadData("markers.csv") 
If the user did not set the working directory in Step 3, he should give the full path of the 
file. The same holds for Steps 5–7. 

> markerData <- loadData("C:/MetaAnalysis/markers.csv") 
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5| Load the genotype data (see Table 2 for format) using the command 
> genotypeData <- loadData("genotypes.csv") 

 
6| Load the trait data (see Table 3 for format) using the command 

> traitData <- loadData("traits.csv") 
 
7| Optionally, load the peak data (see Table 4 for format). Load peak data to allow for a 
combined analysis of peak masses and QTL profiles using the command 

> peakData <- loadData("peaks.csv") 

Running the analysis 
8| Run MetaNetwork. Run the “MetaNetwork” function on data from previous steps and 
with default settings using the command 

>MetaNetwork(markers=markerData, genotypes=genotypeData, traits=traitData, 
spike=4) 

Table 1 | Example table of marker data 

 Chr cM   
PVV4 1 0.0   
AXR-1 1 6.4   
HH.335C-Col 1 10.8   
… … …   

Data should be formatted as comma separated 
values (“*.csv”). A “markers” file consists of a table 
with marker positions, where rows represent 
markers and columns represent their positions: 
column 1 represents the chromosome number and 
column 2 the genetic map position in centi-Morgan 
(cM). 
 
Table 2 | Example table of genotype data 

 RIL1 RIL3 RIL4 … 
PVV4 1 1 2 … 
AXR-1 1 1 2 … 
HH.335C-Col 1 1 1 … 

… …  … … 
A “genotypes” file consists of a table of 
genotype data, where rows represent the 
markers and columns represent individuals. For 
recombinant inbred lines, the genotype values 
are “1” or “2” for two homozygous genotypes, 
respectively. The marker names should be 
consistent with marker map (Table 1) and 
missing values should be represented as “NA” 

Table 3 | Example table of trait data. 

 RIL1 RIL3 RIL4 … 
LCavg.1537 NA 942 2402 … 
LCavg.1594 NA 4 10 … 
LCvag.1610 NA 55 62 … 
… … … … … 

A “traits” file consists of a table of phenotype trait 
values, for example, metabolite mass peak 
intensities, where rows represent metabolite mass 
peaks and the columns represent individuals. The 
names of individuals should be consistent with 
those in the genotypes file (Table 2) and missing 
values should be represented as “NA”. 
 
Table 4 | Example table of peak data 

 Mass (dalton) 
LCavg.1537 345 
LCavg.1594 306 
LCvag.1610 461 
…  

A “peaks” file consists of a table which (column 
2) provides mass/charge values for each trait 
(column 1). The trait names should be 
consistent with those in the traits file (Table 3). 
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The arguments “markers,” “genotypes” and “traits” take values from the R objects 
“markerData,” “genotypeData” and “traitData” loaded in Steps 4–6. Absence of a mass 
peak in a considerable number of individuals leads to signal intensities equal to or less than 
the detection limit and therefore causes a spike in the trait distribution at zero. The 
argument “spike” has to be specified to separate presence/absence (binary) from available 
trait abundance (quantitative) in the trait data, for example, here using a threshold of four 
times the local noise3. The order of arguments does not matter (see Table 5). The above 
command will run analysis steps A–E and G by default (see Box 1). These steps can be 
individually excluded from, or optional steps F and H can be included in, the analysis using 
the commands outlined in Box 1. During MetaNetwork analysis (see Box 1), a summary of 
the process (e.g., the progress of the procedure, generated R objects and output files and the 

Figure 2 | The view of the R console for the MetaNetwork application. The procedures, R object 
names and file names for saving results and processing times are shown. 

> library(MetaNetwork)
Loading required package: qvalue

Step A: QTL mapping....
         result in R object 'qtlProfiles'
         result in ./MetaNetwork/qtlProfiles.csv
         process time 27.87 sec

Step B: Simulation test ( n = 1000 ) for QTL significance (-log10P) threshold ...
alpha-0.05: QTL threshold = 4.087587
fdr = 0.05 : QTL threshold = 1.105846
choose most stringent QTL threshold in R object 'qtlThres':
logp = 4.09; FDR = 0.0002231022
process time 19.37 min

Step C: QTL summary....
         result in R object: 'qtlSumm'
         result in ./MetaNetwork/qtlSumm.csv
         process time 1.84 sec

Step D: Zero-order correlation ....
         result in R object: 'corrZeroOrder'
         result in ./MetaNetwork/corrZeroOrder.csv
         process time 4.09 sec

Step E: 2nd-order correlation ....
         result in R object: 'corrSecondOrder'
         result in ./MetaNetwork/corrSecondOrder.csv
         process time 6.17 sec

Step F: Permutation test for 2nd-order correlation significance threshold...skipped
         using user-provided correlation threshold: 0

Step G: Create Cytoscape network files...
         SIF file is: ./MetaNetwork/network.sif
         EDA file is: ./MetaNetwork/network.eda

Step H: Detection of peak multiplicity...skipped

> qtlPlot(markerData, qtlProfiles, qtlThres)

> setwd(”C:/MetaAnalysis”)
> genotypeData <- loadData(”genotypes.csv”)
> traitData    <- loadData(”traits.cvs”)
> markerData   <- loadData(”markers.csv”)
> MetaNetwork(markers=markerData, genotypes=genotypeData, traits=traitData, spike = 4)

2

3
4
5
6
8

9
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computing time) will be displayed in the R Console (see Figure 2) and saved in the file 
“output.txt” for future reference. 

 
CRITICAL STEP R objects exist only during the working period of the R Console. To 
serve later MetaNetwork analyses, R objects can be saved during closure of the R console. 

Visualization 
9| QTL profiles visualization. The QTL likelihood along the genome (-10logP calculated at 
each marker position) can be visualized in R with function “qtlPlot” using the command 

>qtlPlot(markers=markerData, qtlProfiles=qtlProfiles, qtlThres=qtlThres) 
where argument “markers” takes values from object “markerData” generated in Step 4; 
argument “qtlProfiles” is the QTL test statistic and takes the values in the object 
“qtlProfiles” generated in Step 8A (see Box 1) of MetaNetwork; argument “qtlThres” is the 
threshold for significant QTLs and takes the value from object “qtlThres” generated in Step 
8B of MetaNetwork. 

 
10| Network visualization using Cytoscape. Launch Cytoscape and choose “File | Import | 
Network (multiple file types)” to load network file (“network.sif”) and “File | Import | Edge 
Attributes” to load edge attributes file (“network.eda”) generated in Step 8G (see Box 1). 
Different layout and visualization styles can be applied to view the network, for example, 
applying the threshold “corrThres” from Step 8F (see Box 1) as a filter to only show 
significant edges. For details, please see the Cytoscape manual (http://www.cytoscape.org). 

 
TIMING  
FIGURE 2 shows the timing of the analysis of 24 metabolites from 162 RILs in 
Arabidopsis at 117 markers3, using a Windows XP PC with an AMD Athlon 64 CPU 
(2.20 GHz) and 1 GB of RAM. The computation time increases with the number of traits 
and markers: linearly for QTL mapping (Steps 8A and C), and quadratically for correlation 
(Steps 8D and E) and peak multiplicity finding (Step 8H). The computation time of QTL 
threshold simulation (Step 8B) and correlation threshold permutation (Step 8F) increases 
linearly with the number of simulations/permutations. The timing for optional steps 8F and 
H are not shown: 10,000 permutations take 5,270 min (use of a computer cluster is 
suggested); peak multiplicity finding takes a few seconds. The total computation time for a 
default MetaNetwork analysis of 2,000 mass peaks is up to 4 days. 

 
OPTIONS  
The arguments of MetaNetwork are described in Table 5. 

 
TROUBLESHOOTING 
The most important sources of error and possible solutions are given in Table 6. 



 

 

Box 1 | Processes of MetaNetwork analysis (step 8) 

 
MetaNetwork will firstly check the order of the markers in “markers” and “genotypes” and 
the order of the individuals in “genotypes” and “traits”. MetaNetwork will re-order the 
values if necessary and gives an error message about possible inconsistencies between 
the data. After this data check, MetaNetwork will start its multiple analysis steps. See also 
Figure 1 and Figure 2. 
 
(A) mQTL mapping using a two-part model. MetaNetwork calls the function 
‘‘qtlMapTwoPart’’ and computes log-transformed ‘‘P–values’’ (-10log P) for mQTL 
likelihood. The -10log P values are positive since 0 < P <1. However, the function 
‘‘qtlMapTwoPart’’ assigns a positive or negative sign to indicate the direction of the mQTL 
effect; a positive sign indicates that individuals with genotype “2” at the mQTL have more 
non-zero and/or higher non-zero abundance observations than those with genotype “1”; a 
negative sign indicates that the reverse has been observed. The results are saved in R 
object “qtlProfiles” and file “qtlProfiles.csv”. MetaNetwork skips Step A when argument 
“qtlProfiles” is set, for example, to use QTL profiles previously computed and stored in R 
object “qtlResult”, using the command 

 
> MetaNetwork(markers=markerData, genotypes=genotypeData,    
  traits=traitData, spike=4, qtlProfiles=qtlResult) 

 
(B) Computation of thresholds for significant mQTLs. MetaNetwork calls the functions 
“qtlThreshold” and “qtlFDR” to generate an empirical threshold for significant mQTL. The 
function “qtlThreshold” computes “P-values” in 1,000 simulations and derives a genome-
wide threshold at a = 0.05 level. The function “qtlFDR” computes a multiple-testing 
threshold at q = 0.05 level (Storey and Tibshirani, 2003) as control for the multiple testing 
among all etabolite mass peaks in “traits”. The more stringent threshold from the two tests 
is saved in R object “qtlThres” and is used in later steps. Step B will be skipped when 
argument “qtlThres” is set, for example, to use thresholds previously computed and stored 
in the R object “qtlThres”, using he command 

 
> MetaNetwork(markers=markerData, genotypes=genotypeData, 
traits=traitData, spike=4, qtlThres=qtlThres) 

 
(C) mQTL summary analysis. MetaNetwork calls the function “qtlSummary” to 
summarize mQTLs, containing information for their map positions, likelihood, additive 
effects, 1.5-drop off support intervals and the percentages of explained variation. The 
results are saved in R object “qtlSumm” and file “qtlSumm.csv”. Step C will be skipped 
when argument “qtlSumm” is set, for example, to use summary information previously 
computed and stored in the R object “qtlSumm”, using the command  

 
> MetaNetwork(markers=markerData, genotypes=genotypeData, 
traits=traitData, spike=4, qtlSumm=qtlSumm) 

 
(D) Zero-order correlation between metabolites. MetaNetwork calls the function 
“qtlCorrZeroOrder” to compute pairwise zero-order correlation coefficients among 
metabolites. Argument “corrMethod” provides two options: when set to “qtl” (default), the 
correlation between QTL profiles is calculated; when set to “abundance,” the Spearman 
correlation between metabolite abundances is calculated. The results are saved in R 
object “corrZeroOrder” and file ‘‘corrZeroOrder.csv.’’ Step D will be skipped when 
argument “corrZeroOrder” is set, for example, to use correlations previously computed and 
stored in the R object ‘‘corrZeroOrder,’’ using the command 
 

> MetaNetwork(markers=markerData, genotypes=genotypeData, 
traits=traitData, spike=4, corrZeroOrder=corrZeroOrder) 

 



 

 

Box 1 | Continued 

(E) Second-order partial correlation analysis. MetaNetwork calls the function 
“qtlCorrSecondOrder” to compute pairwise second-order partial correlation. Partial 
correlation between two metabolites is the correlation corrected for covariance and can 
remove spurious correlation due to common anteceding causes or intervening variables. 
Therefore, it is a technique for discovering meaningful associations (de la Fuente, et al., 
2004). The results are saved in R object “corrSecondOrder” and file 
“corrSecondOrder.csv”. Step E is skipped when argument “corrSecondOrder” is set, for 
example, to use correlations previously computed and stored in the R object 
“corrSecondOrder”, using the command 
 

> MetaNetwork(markers=markerData, genotypes=genotypeData, 
traits=traitData, spike=4, corrSecondOrder=corrSecondOrder) 

 
(F) Computation of the significance threshold for partial correlation coefficients. To 
include optional step F, the argument “corrThres” must be set to NULL using the command 
 

> MetaNetwork(markers=markerData, genotypes=genotypeData, 
traits=traitData, spike=4, corrThres=NULL) 
 

MetaNetwork then calls the function “corrThreshold” to generate an empirical significance 
threshold for partial correlation coefficients different from zero. The function 
“corrThreshold” derives the threshold at Bonferroni-corrected significance level of a = 0.05 
from 10,000 permutations. This step is computer-expensive (see TIMING) and is therefore 
skipped by default. The results are saved in the R object “corrThres”. 
 
(G) Generation of network files for visualization. MetaNetwork calls the function 
“createCytoFiles” to output a network file (“network.sif”) and an edge-attribute file 
(“network.eda”) for significant correlations. These two files can be loaded into Cytoscape 
for graph visualization. Users who do not want to visualize the networks in Cytoscape can 
skip Step G by setting argument “cytoFiles” to FALSE, using the command 
 

> MetaNetwork(markers=markerData, genotypes=genotypeData, traits=
 traitData, spike=4, cytoFiles=FALSE) 
 
(H) Peak multiplicity prediction. To include optional Step H, the argument “peaks” must 
be set to include peak data loaded in Step 7 using the command 
 

> MetaNetwork(markers=markerData, genotypes=genotypeData, 
traits=traitData, spike=4, peaks=peakData) 
 

MetaNetwork then calls function “findPeakMultiplicity” to relate multiple mass peaks for the 
same metabolite, outputting information about related peaks, their correlation coefficients, 
masses, mass differences, mass ratios and predicted relationships. If two mass peaks are 
highly correlated (r=0.95) and their mass difference is 1 or 2, or their mass ratio is 2, 3 or 
1/2, 1/3, they are predicted to be multiple peaks of the same metabolite (isotopes, multiple 
charges). The results are saved in the R object “peakMultiplicity” and file 
“peakMultiplicity.csv”. This step can be included if the peak data have not yet been 
cleaned for peak multiplicity. 
 
For description of each argument, see also Table 5. A detailed description of each 
function can be found in METANETWORK SUPPLEMENTARY MANUAL and R-help. For 
example, users can get information about the function “MetaNetwork” or about argument 
“qtlProfiles” using the commands > ?MetaNetwork or > ?qtlProfiles 
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Table 5 | The description and possible values of the MetaNetwork arguments and their 
relationship with subfunctions 

Arguments Description Possible value(s) Subfunctionc 

markersa Map position 
of all marker 
loci 
 

A matrix of marker positions. 
The rows represent markers and 
the columns represent the 
chromosome number (column 1) 
and centi-Morgan (cM) the 
position on the chromosome 
(column 2). The values should 
be numeric and the markers 
should be ordered sequentially 

qtlSummaryC 
qtlCorrZeroOrderD 
qtlCorrTresholdF 

genotypesa Genotype 
information 

A matrix of marker genotypes for 
each marker and each 
individual. The rows represent 
markers that should have the 
same order as in ‘‘markers’’ and 
the columns represent 
individuals. The values should 
be numeric: values “1” and “2” 
for the two homozygous 
genotypes, respectively, and 
“NA” for the missing value 

qtlMapTwoPartA 
qtlThresholdB 
qtlSummaryC 
qtlCorrThresholdF 

traitsa Metabolite 
abundance 

A matrix of phenotypes for each 
trait and each individual. The 
rows represent traits and the 
columns represent individuals 
that should have the same order 
as in “genotypes”. The values 
should be numeric and “NA” is 
for the missing value 

qtlMapTwoPartA 
qtlThresholdB 
qtlSummaryC 
qtlCorrThresholdF 

spikea Value for  
“null” 
phenotype 

A numeric cutoff value: any trait 
observation below this cutoff 
value is considered ‘‘noise’’ and 
the metabolite is considered 
absent 

qtlMapTwoPartA 
qtlThresholdB 
qtlSummaryC 
qtlCorrThresholdF 

peaksa Mass weight A one column matrix of mass 
weight for each mass peak. The 
rows represent mass peaks with 
trait names as row names. The 
values should be numeric and 
“NA” is for the missing value 

findPeakMultiplicityH 

qtlProfilesb QTL A matrix of log-transformed ‘‘P- qtlMapTwoPartA,d 
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mapping 
result 

values’’ ( -10log P) for linkage 
between markers and traits. The 
rows represent the markers and 
the columns represent the traits. 
By default, +/- sign is added to 
indicate the sign of the mQTL 
effect: positive if the mQTL has 
higher metabolite abundance for 
individuals with genotype “2” 
than for those with genotype “1”; 
values are negative if the 
reverse is true 

qtlFDRB 
qtlCorrZeroOrderD 
qtlSupportInterval 

qtlThresb QTL 
threshold 

The threshold used to assess 
whether marker-based ‘‘P-
values’’ (-10log P) are significant 
at a genome-wide level 

qtlThresholdB,d 
qtlFDRB,d 
qtlSummaryC 
qtlCorrZeroOrderD 
qtlCorrThresholdF 

qtlSummb Summary of 
QTL 

Data frame with the following 
headers: traitName: name of 
trait; QTLchr: the chromosome 
number where an mQTL locates; 
QTLmk: the name of the marker; 
QTLleft: the cM position of the 
left border of an mQTL; TLpeak: 
the cM of the marker; QTLright: 
the cM position of the right 
border of an mQTL; -log P: the -
10log P value of an mQTL; 
VarP1: the percentage of 
qualitative variance explained by 
an mQTL; VarP2: the 
percentage of quantitative 
variance explained by an mQTL; 
additive: the half difference of 
metabolite abundance between 
genotypes “1” and “2” 

QTLsummaryC,d 

corrZeroOrderb Correlation 
value 

The matrix of pairwise 
correlation coefficients on mQTL 
profiles between metabolites 

qtlCorrZeroOrderD,d 
qtlCorrSecondOrderE 

corrSecondOrderb Partial 
correlation 
value 

The matrix of pairwise second-
order partial correlation 
coefficients on mQTL profiles 
between metabolites 

qtlCorrSecondOrderE,d 
createCytoFilesG 

corrThresb Threshold The threshold used to find partial 
correlations that are significantly 

qtlCorrThresholdF,d 
createCytoFilesG 



chapter 7 

 110

different from zero 

corrMethod Correlation 
method 
options 

If corrMethod=”qtl” (default), it 
calculates the correlation 
between metabolites based on 
QTL profiles . If 
corrMethod=”abundance”, it 
calculates the Spearman 
correlation between metabolites 
based on metabolite abundance 
profiles. 

 

cytoFiles  Logical values “TRUE” or 
“FALSE” for writing network files 
(“network.sif” and “network.eda”) 
for visualization in Cytoscape 

createCytoFilesG 

outputdir Output 
directory 

The path where output files will 
be saved. The default is to set a 
new directory MetaNetwork 
under the current working 
directory 

 

aInput from users. bIntermediate argument that can be generated during the MetaNetwork process (can also 
be called output) or specified by users. cThe subfunction in which the arguments are required. dThe 
subfunction will be called to generate values for intermediate arguments if users do not define their values. 
A–HThe corresponding steps in MetaNetwork (Box 1). 

Table 6 | Troubleshooting table 

Problem Possible reason Solution 

Error: marker names 
do not match in 
marker and genotype 
files. Or individual 
names do not match 
in genotypes and 
traits files 

The marker names in 
markers and 
genotypes files and 
the individual names 
in genotypes and 
traits file are not 
identical 

MetaNetwork will first check the order of 
markers and individuals in “markers”, 
“genotypes” and “traits”. This error occurs if 
their names are not consistent among the 
three files. Check the names of markers and 
individuals in those files 

Error: Cannot find 
objects or incorrect 
values 

Argument missing or 
not appropriate for 
analysis 

Occurs when user-defined values are not 
appropriate for analysis 

Warning: A directory 
already exists 

The specified output 
directory already 
exists 

When you want to save results in a specified 
directory, the program will try to create this 
directory. If the directory exists, you will get 
this warning. The result can still be saved in 
this directory, so you can ignore this warning. 
To avoid it, use a new directory name 
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7.4 Anticipated results 
MetaNetwork was used for the genetic study of ~2,000 mass peaks in 162 RILs of 
Arabidopsis generated from a cross between the distant accessions Landsberg erecta (Ler) 
and Cape Verde Islands (Cvi) (Keurentjes, et al., 2006). These individuals have been 
genotyped at 117 markers which are nearly evenly distributed along the genome. The 
network correlations as predicted by the MetaNetwork protocol were verified against 
previous knowledge (Kliebenstein, et al., 2001; Kliebenstein, et al., 2001; Kliebenstein, et 
al., 2001; Kroymann, et al., 2001) for 18 aliphatic glucosinolates and six glycosylated 
flavonols, all products of secondary metabolism. We use this small data set as an example 
of the type of results that can be anticipated. All data are shipped with the package and can 
be loaded in R using 

> data(markers) 
> data(genotypes) 
> data(traits) 

Alternatively, users can load data and test MetaNetwork simply by command line 
> example(MetaNetwork) 

Mapping genetic determinants 
The QTL likelihood along the genome as stored in “qtlProfiles” is visualized with the 
function “qtlPlot,” loaded by > data(qtlProfiles) and visualized by > qtlPlot(markers, 
qtlProfiles, 4.11). At the empirical -10log P threshold 4.11 (α=0.05, FDR=0.0003), the 
glucosinolate mQTLs map to two major loci, which were confirmed by a previous targeted 
study (Kliebenstein, et al., 2001): gene AOP at 9.0 cM of chromosome 4 is responsible for 
glucosinolate side-chain modification (Kliebenstein, et al., 2001), and gene MAM at 35 cM 
of chromosome 5 is responsible for chain elongation (Kroymann, et al., 2001). The 
observation that all glucosinolates have a QTL at MAM but only some of them have a QTL 
at AOP suggests that AOP acts downstream of MAM (Figure 3a). The mQTL at MAM 
exerts the same sign of effect for all glucosinolates that are in the same branch of the 
network, whereas the mQTL at AOP exerts reversed effects on precursors and their 
successors. Six flavonols showed strong mQTLs at 88.6 cM of chromosome 1, where a not 
previously known glycosyl transferase or regulator was suggested3 (Figure 3b). 

The mQTLs can underlie binary variation of presence/absence of the metabolite, 
quantitative variation of metabolite abundance or both types of variation in the segregants 
(Figure 3c). For the detected 52 mQTLs, 22 mQTLs only underlie quantitative variation; 
seven mQTLs predominantly underlie binary variation and the rest underlies both types of 
variation. For example, two flavonols showed mQTLs 88.6 cM of chromosome 1 that 
underlie only quantitative variation, whereas the four other flavonols showed mQTLs at 
that position that underlie both binary and quantitative variation. Further interpretation of  
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Figure 3 | The visualization of metabolic QTL profiles and networks.  (a) The mQTL profiles 
for ten aliphatic glucosinolates before AOP catalysis (upper part) and eight after AOP catalysis
(lower part). The mQTL at 303.3 cM on chromosome 4 is at the AOP locus. The mQTL at 409.4
cM on chromosome 5 is at the MAM locus. A positive (negative) sign indicates that individuals
carrying the Cvi allele have higher (lower) abundance than individuals carrying the Ler allele. The
different colors represent different carbon chain lengths (black 3C; red 4C; green 5C; blue 6C; 
light blue 7C). (b) The mQTL profiles for six glycosylated flavonols. The mQTL at 88.6 cM on
chromosome 1 is a putative glycosyl transferase, catalyzing the production of
flavonoldihexosides. The different colors represent different aglycone classifications (black: 
quercetin; red: kaempferol; green: isorhamnetin), different line types represent different
glycosylation patterns (solid line: dihexoside; dashed line: hexoside). (c) The detected mQTLs
explain a percentage of the total variation observed between the RILs: the percentage of variance
explained for the binary presence/absence of metabolite is on the x axis; the percentage of
variance for the non-zero quantitative metabolite abundance is on the y axis. The green dots
represent MAM mQTLs for glucosinolates; the red dots represent AOP mQTLs for glucosinolates;
the blue triangles represent mQTLs for flavonols. (d) Visualization of the metabolic network using
Cytoscape. The nodes represent different metabolites and the edges represent significant 
correlations. Glucosinolates are presented in a different color based on their carbon chain
length—gray (3C), red (4C), green (5C) and blue (6C)—and flavonols are presented in pink. 
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these mQTLs can be obtained from the QTL summary “qtlSumm,” loaded by > 
data(qtlSumm). 

A combined analysis of mass data and QTL profiles predicted that a single 
glucosinolate can have up to six mass peaks (1.2 on average, 6 glucosinolates had 3–6 mass 
peaks); a single flavonol can have up to four mass peaks. 

Metabolic network (re)-construction 
MetaNetwork computes the zero-order correlation “corrZeroOrder” and second-order 
partial correlation “corrSecondOrder” between pairs of metabolites, loaded by 
>data(corrSecondCorr) and >data(corrZeroOrder), respectively. Thirty-one second order 
correlations were significant at a Bonferroni-corrected a=0.05 level (“corrThres”=0.14 from 
20,000 simulations). These significant correlations are plotted using Cytoscape (Figure 
3d). We can observe that glucosinolates and flavonols are separated into two networks 
because they have different mQTLs. 

The similarities between the reconstructed and known glucosinolate pathway validate 
the approach, and the dissimilarities may suggest (but do not prove) possible previously 
unknown steps in the formation of glucosinolates. In the constructed network for 
glucosinolates (left in Figure 3d), edges for the known transformation between the 
methylthio group and the methylsulfinyl group were always observed. But novel edges 
between metabolites were also observed, for example, the edge linking 2-propenyl to 4-
methylthiobutyl (but the biochemical linkage may be indirect, that is, due to coregulation 
by the same mQTL). The reverse additive effect of the AOP locus for 4-hydroxybutyl, 2-
propenyl and 4-benzoyloxybutyl formation shows that regulation can be completely 
different for different growth stages (Keurentjes, et al., 2006).Except one flavonol, all 
pairwise partial correlations among the other five flavonols remain significant (right in 
Figure 3d). Colocation of mQTLs of these sixflavonols suggests that the biochemical 
linkages are indirect, that is, variation in their abundance is attributable to a single locus 
affecting glycosylation of the basic flavonoid backbone (Keurentjes, et al., 2006). These 
results show how the combined genetic and metabolomic approach allows the 
(re)construction of metabolic pathways. It can provide an independent line of evidence to 
create new knowledge or to validate or modify current knowledge. Even an untargeted 
approach can therefore facilitate the annotation of metabolites and show that they play a 
role in existing or new pathways (Keurentjes, et al., 2006). Although MetaNetwork can 
identify meaningful associations between metabolites, it can obviously not prove causality 
(i.e., that there are true biochemical linkages between highly correlated metabolites). Any 
output should therefore be treated as an independent source of information solely for the 
use of hypothesis formation and be used as guidelines for future experimental confirmation.  

Although MetaNetwork is developed for and has been applied to metabolite data, its 
theoretical basis readily extends to other high-throughput quantitative measurements such 
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as gene and protein expression. We expect that MetaNetwork will prove increasingly useful 
in elucidating systems genetics. 
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