Santa Clara University
DEPARTMENT of COMPUTER ENGINEERING

Date: June 9, 2004

WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY
SUPERVISION BY

Carleton Cheng and Peter Salas

ENTITLED

RACE IV: Remote Accessible Control Environment

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

BACHELOR OF SCIENCE IN COMPUTER ENGINEERING

Dr. Neil Quinn Dr. Christopher Kitts
THESISADVISOR THESISADVISOR

Dr. Dan Lewis
DEPARTMENTCHAIR

RACE IV: Remote Accessible Control Environment

by

Carleton Cheng and Peter Salas

SENIOR DESIGN PROJECT REPORT

Submitted in partial fulfillment of the requirements
for the degree of
Bachelor of Science in Computer Engineering
School of Engineering
Santa Clara University

Santa Clara, California

June 9, 2004

Abstract

In space, there are hundreds of satellites orbiting the Earth. To talk to these
satellites, communication ground stations need to be built in order to relay commands and
data between the satellites and the human operators on the ground. Many large
institutions, such as NASA, the European Space Agency, and the U.S. Air Force, have
staff at full-scale remote communication stations. Furthermore, these stations are often
distributed around the Earth in order to increase the amount of time that communications
may take place given line-of-sight transmission constraints. Clearly, thereis aneed for
“unmanned” ground stations that are controlled using human-in-the-loop remote
operation coupled with some automation.

Santa Clara University is creating a series of communication ground stations
under the framework of the Remote Accessible Communications Environment (RACE)
system, which provides the software and tools to allow remote control of these stations.
Many of these satellite-capable amateur radio communications stations are used typically
by university satellite builders. Thisyear’steam re-designed the current ground station
control system to handle better streaming information as well as to improve the remote
control of the ground station. We accomplished successfully the following goals. a more
versatile system to handle various interfaces, such as MATLAB and LabView; amore
efficient method for remote control of the ground station; an improved latency of the
system; and a successful installation and performance commanding the ground station
from a remote location. The resulting system will advance the usage of this control
network—which will assist distributed research and education for institutions,
researchers, and students throughout the world.

Acknowledgements

To Dr. Neil Quinn and Dr. Chris Kittsfor their help with the overall vision, planning, and
design of the RACE project. We thank you for your invaluable guidance and assistance
with our project.

A portion of this work was supported by the National Science Foundation under Grant
No. EIA0079815 and EIA0082041; any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science Foundation.

— TABLE OF CONTENTS —

ADSIFACT ...,
AcKNOWIedgementS ..o

Chapter 1 —Introductioncouiiiiiiiiii i
L1IRACE —Whal iSRACE? ...t
L2 HIStOrY vt e e e e e e e e e e e

LB ProblemMS ..o i 3

LAPrOJECt GOal ... o e e e e e e e
L5 ContriDULIONS ... e e e e e e e
Chapter 2 - Overall System Integrationccooeveiiiiiieeenn,
2.1 SYStEM OVEIVIEW ...t ettt e e e e

P == 1 TS (o ([

2.3 Design Process and ChoICESocvvvviiiieiie i
Chapter 3—Hardwareoocoiiiii i
3.1 Current Hardware and Components Overview
3.2 Current Hardware DeSIgNc.vvviveiie e cie e e ieeaen
3.3 LabJack and Satellite Trackingcocooviiiiiiiiiiiinaan
Chapter 4-Softwarecoooooiiiii e
4.1 Information Flow between Client and Serverccovvviiinienne. 17
4.2 ClasS SITUCIUIEttt e e e e e e e e e e
4.3 Satellite Tracking Software (Predict)ccooviiiinnn.n.
4.4 RBNB DataTurbinecooviiiiiiii e e e
A5 TIANSCORIVESN ettt e e e e e e e e e e e e
4.6 Serial POWEr SHP ..vveie et e
4.7 Antenna Control SOFtWaIeoeeieiiiie e e
4.8 Packet Modem (TNC)oovi i e e e
Chapter 5-User Managementcooooiiiii i

5.1 How to Install the System (Client Side)...............ccoevnene.

.......... 10
........... 10
.......... 14
.......... 16

17

18

......... 18
.......... 19
......... 20
......... 21

22

......... 22

24

......... 24

5.2 How to Install the System (Server Side)........c.ocovviiiiiiii e,
5.3 Computer Specification and Configuration (Client Side)
5.4 Computer Specification and Configuration (Client Side)
5.5 How to Use the System (Client Side)cccoevveiiiiiiii i,
5.6 How to Use the System (Server SIde)oevvvviii i
5.7 USEr EXPEITENCE ...ttt ettt e e e e e e e e e

Chapter 6 — Experimentation and Testingccoeeeiiiinieenn,

B.1TestiNg RESUITS ...
6.2 RACE INstallatioN MELFIC ..o e e e

Chapter 7—Societal 1SSUESoccviiii i

TLEINICA ..
4 ol 01 1 o
75 Heathand Safetyooovviiiii i
7.6 ManufaCturabilityccoinii
7.7 SUStAIN@DIITY ..o e
7.8 Environmental ImpPactccoiniii i
TOUSADIILY Lot
710 Lifelong l€arningovvie e

80 T 0 410 7= S-S T o

Chapter 8 —CoNCIUSIONooiiiiiii e,

G S 1072
T2 B | (U S 6 £

B.3 FUtUre ContribULIONS ..o e e,

8.3 LESSONSLEANE ...

Appendix .

0 SectionAl:
Section A2:

o

Client Side Class Structure

Server Side Class StruCtUre ... vve v

o

o

Appendix C
Section C1:
Section C2:
Section C3:

o

o

o

Section B1:
Section B2:

Client Input (Client-Side)cccoeiiiiiiiiineenn.n.
DataTurbine (Client & Server Side)
Serial Power Strip Echo(Client-Side)
Serial Power Strip Interpreter (Client-Side)
Serial Power Strip Server(Server-Side)

o

o
o
o
o

Appendix E
Section E1:
Section E2:
Section E3:
Section E4:
Section E5:

o

O O O o o

Appendix F

o

Section D1:
Section D2:
Section D3:
Section D4:
Section D5:

Section EG6:

Section F1;

Predict Interpreter (Client-Side)
Predict Echo (Client-Side)cooovviiiii i
Predict Server (Server-Side)coviiiiiiiiiinnnn.
Predict (Server-Side)
Predict Interpreter (Server-Side)cooovvennnnne.

Antenna Interpreter (Client-Side)
Antenna Echo (Client-Side)c.ccoviiiiiinnnnn.
Antenna Server (Server-Side) ...
Antenna (Server-Side)
Antenna Interpreter (Server-Side)ccovevnne
AntennaAutoTracker (Server-Side)c.ooenees

Terminal Node Controller (Server-Side)

o

0]
0]
o

Section G1
Section G2
Section G3
Section G4

: Transceiver (Client & Server Side)coeveeenne.
: Transceiver Interpreter (Client-Side)

: Transceiver Echo (Client-Side)

. Transceiver Server (Server-Side)

O O O o o

Appendix |

O O O o o o o

Section H1: Server Side Directory Structurec.cocevvvnennee.

Section H2: Individual Batch Files ...
Section H3: MainBatCh File ...
Section H4: Installation INStructionsco.vveveviiiieie e,
Section H5: Using RACE Server Program ...

Section |11: Client Side Directory Structureccocoevveannnen.
Section 12: Individual Batch Filescoovviiiiiiiii i,

Section 13: MainBatch File

Section 14: Picture of RACE Client Program

Section 15: Installation INSIFUCLIONS ceevee v e

Section 16: Using RACE Client Program

Section 1 7: Matlab Configuration and User Manud

SECHION JL: USE CaSE ... ettt et e e et e e e e e ee e
Section J2: Use Case DesCriptionSc.vvvvveiveiieie e e veann

o

o

123
122
122
123
124
125
127
127
127
128
129
130
131
134
136
136
137

Vi

— LIST OF FIGURES —

Figures
Figure 1.1: Ground-track of Sapphire (NO-45) with the Santa Clara ground

station identified ..o
Figure 2.1: RACE ground system architecturecooooeviviiiiieinnnnn.
FIQUre 3.1: ICOM 910 ...vivieiie ittt e e e e e
Figure 3.2: KantroniCS 9612+c.oivieiie e e i e e eae e aeens
Figure 3.3: BayteCh RPC2 ... e e e e
Figure 3.4: ICOM CI-V Level CONVEErocovviiiiiiiie e e
Figure 3.5: ICOM PS-125 POWEN SOUICEvieieine e e e aeiaieieaaeeens
Figure 3.6: Yaesu G-5500 Antenna Controllercoooviiiiiiiiiiiiiine e,
Figure 3.7: LabJack U-12 and LabJack PiggyBackcccovvviiiiiiiinnnn,
Figure 3.8: RACE Hardware Block Diagramcccoovviiiiiiiiii i
Figure 3.9 LabJack UL2 ... e e

Figure 4.1: Information Flow Diagram Between Client and Server

SIAE PrOgramS ... e e et e e e e e e
Figure 4.2: Ground Station System Arcitecture with DataTurbine
Figure 4.3: MATLAB INterfaceo
Figure 5.1: Hardware Configuration Diagramc.covveiiiiieiiinnnennnn.
Figure 6.1: Installation of RACE at NASA AMES Research Lab
Figure A-1: Client Side OM Diagram Structurec.coovevie e i i ieniennne.
Figure A-2: Server Side OM Diagram Structurecooooeve i iiiiiieienne.
Figure [-1: RACE Client Programcoeieii i e e e e eae e een s
Figure J-1: Use Case Diagramovvueire e e e e e e e et eaeaenens

17
19
23
26
30
40
40
130
137

Vil

— LIST OF TABLES—

Tables
Table 1.1: University Missions Planning on Using RACE system 2
Table 6.1: Response Times of RACE Systemcoovii i 29

viii

Chapter 1 - Introduction

11 RACE-What isRACE?

In space, there are hundreds of satellites orbiting the earth in order to provide us with
benefits such as navigation signal's, weather information, and phone/internet
communications. These satellites are controlled by operators on the ground in order to
manage the provision of these services and to remotely maintain the health of the
spacecraft. To do this, commands and data must be relayed between the satellites and the
human operators through the use of ground communication stations. These
communication stations are often distributed around the Earth in order to increase the
amount of time that communications may take place given line-of-sight transmission
constraints. During communication sessions, human operators use these stations by
logging remotely into them from one or more centralized operations facilities. For
example, NASA', the European Space Agency?, and the U.S. military all have a network
of geographically distributed communication ground stations through which they
communicate with large numbers of operational satellites.

Many universities build low-cost satellites and use ham radio communication
stationsin order to conduct command and data operations. Through the RACE? program,
Santa Clara University (SCU) is developing a geographically distributed network of
communication stations in order to operate many of the satellites built by SCU and its
academic partners. Current RACE ground stations are in development and/or partially
operational at SCU, in Hawaii, in Texasand in St. Louis. Asdepictedin Figure 1.1, it
can be seen how this geographic distribution of communication stations dramatically
increases the number of times each day that operators may communicate with university

spacecraft in low Earth orbit.

1 For more information about NASA, please see the following link: www.nasa.gov
2 For more information about the ESA, please see the following link: www.esa.int
3 RACE stands for Remote Accessible Control Environment

Viewing Range of
Ground Station

Figure 1.1: Ground-track of Sapphire (NO-45) with the Santa Clara ground station identified.

During this past academic year, the SCU RACE station has been used regularly to
operate the Sapphire microsatellite. Table 1 summarizes the university missions planning

on using the RACE system within the next 3 years.

Satellite Name University Mission Status
Photography,
Sapphire Stanford communications, component Operational on-orhit
test, autonomy test
Emerald SCU, Stanford, MIT 2-satellite formation flying In development
technology demonstrations
. 2-satellite formation flying
FASTRAC U.T. Austin, SCU technology demonstrations In development
Washington Univ. in Sty. Vision-based sensing and
Akoya Louis, SCU satellite inspection In development
. . In development,
Genesat NASA Amcei| I?)tor;:nford, SCU, ,(:\Xstrécr)ibrlr?;c:tgy genetics launch scheduled
y P Nov 2005
Some in orbit,
CubeSats Various Developers Various experiments several launched
yearly
FADSat scU Har.dware and automation Operational in the
testing lab

Table 1.1; University Missions Planning On Using RACE system

Over the past few years, RACE has evolved from a simple remote
communications project into a web-controlled satellite communications environment. In

its fourth year, we developed a better ground station system architecture.

1.2 History

Phase | of RACE began in 2000-2001 by the RACE | team—comprised of three electrical
engineers. Their goal was to develop a Remote Accessible Communications
Environment. The RACE | team successfully accomplished this by using a computer
interface and HAM radio signals to communicate with a robotic device located in a
remote location.

Phase Il of RACE was headed by the RACE Il team in 2001-2002—comprised of
four computer engineers and two mechanical engineers. Building upon the
accomplishments of the previous year, the RACE |l team was able to expand the project
into a system capable of communicating with satellites. In addition to this, team 11
developed a web-based satellite reservation system and built another control station
located in Pearl City, Hawaii.

Phase I11 of RACE was lead by the RACE I11 team in 2002-2003—comprised of
two computer engineers. This team added a web-based scheduler to the existing system,
making it more of aweb-controlled environment. This scheduler allows usersto reserve
atime-slot to communicate with a particular satellite. Team |11 also added an operator

control feature to alow administrative rights to operators who manage the system.

1.3 Problems

For the past two years, the senior design teams demonstrated successfully that the web-
based interface works. However, the interface needed considerable work to make it truly
“operational.” Thismay be due to the fact that the online interface did not support
streaming real-time information— which isvital for a system such asthis. If auser
wished to update the information in real-time, they must manually refresh the browser
window. Timeis extremely important because as the satellite orbits around the earth, it is
only visible for a maximum of 15 minutes, and may not be in view again for another

several hourslater. Information, such asif thereis still a connection between the ground
station and the satellite and the strength of this connection, isvital to the user.

The web interface also had many limitations. However, its biggest limitation was
that users could not use their own program to send and receive data. The user was
restricted to the web-based interface and typed commands in manually.

Another problem resided in the software architecture at the ground station
computer. To control the ground station, the information was sent directly to the
software, which handled that particular set of information. If this software wereto
change, the interface may need to be atered to accommodate for the software differences.
Additionally, the satellite tracking software, Nova, posed problems. Because of Nova's
properties, the user must either be physically at the ground station or use aremote

desktop application, such as WinVNC, to command the satellite tracking software.

1.4 Project Goal

The main goal of thisyear’s project was to administer a complete overhaul of the
previous software architecture. Restructuring the system included: devising a better
interface that supports streaming technology; making the ground station more versatile to
support various interfaces and programs (i.e. MATLAB); replacing the satellite tracking
software with one that could be controlled remotely; and building an overall system that
is more efficient than the previous tracking software, Nova. All of these changesto the
ground station were made without altering the system hardware because much of it was

still intact and in excellent condition.

15 Contributions

Removing the current interface and replacing it with a more robust one, was the most
likely approach. We incorporated streaming technology into the system to satisfy the
need for areal-timeinterface. Furthermore, we introduced new technology without
affecting or changing much of the existing infrastructure. Much time and research went
into RACE' s previous state and did not need to be changed dramatically.

Another feature we added to the ground station is the ability for a user to use his
or her program to transfer data to and from a satellite. Incorporating streaming
technology into the RACE ground station will enable users to “plug-into” the appropriate
channel and stream data from their own choice of application on their computer. The
user will not be limited to the confinements of a specific predefined interface.

Most of the work was done on the ground control station. We added another layer
to the current software architecture to allow for better maintainability and upgradeability.
By adding this additional layer of communication, we eliminated the problem of
maintaining the interface, because of the various software used at the ground station.
Therefore, if the software were to change, minimal amount of work will have to be done
only to the additional layer itself.

Finally, we replaced the previous satellite-tracking software, Nova, with another
one called Predict. Because Predict did not work with the satellite tracking hardware, we
needed to replace the SASI Satellite tracker with LabJack, which is described in Chapter
4 of thisthesis. All of these changes to the RACE system proved to make the ground

station more remote accessible and more efficient.

Chapter 2 - Overall System Integration

21 System Overview

The RACE system allows the user to command a specified ground communication station
located in aremote location. The goal of this system isto handle human-in-the-loop
remote operation coupled with some automation of these ground stations. This schema
helps to increase the amount of time that communi cations may take place given line-of-
sight transmission constraints because many of these stations are often distributed around
the Earth. The general system architecture isillustrated in Figure 2.1.

Website/Database

User Management and

Station Scheduling

Schedule Data

Ground Station

Registration/
Reservation Software/Hardware -
Antenna

i; | g) Satellite or

Uge;ﬁ ’ h—- et
Operation al ; \
Directives/Data -

¥ .. a -
Fsbrotic

Device

Hawaii Station

Figure 2.1: RACE ground system architecture*

Specifically, the user would be able to log in to the RACE system, and remotely
command each satellite or robotic device to configure the system to their desired
specifications. For example, if they wished to do so, users may send commands to set the
appropriate frequency, in order to make contact with their satellite. The RACE system

accomplishes contact with these satellites and robotic devices through the use of HAM

4 Figure 2.1 was taken from the RACE 2002 Senior Thesis on pg. 5 of the following link:
http://www.cse.scu.edu/send.cgi?srprojects/2003/COEN-2003-PROJECT-25.pdf

radio signals. In order to increase the efficiency and usability of the system, thisyear’s
RACE team administered a complete overhaul of the previous software architecture.
Consequently, LabView was replaced by RBNB Data Turbine, which is described in
Chapter 5, section 4.2 of thisthesis. We chose RBNB Data Turbine because of its ability
to handle streaming technology, its ability to support various programs, and its efficiency
to handle data and networking between ground stations. The Java programming language
was chosen as the primary language because RBNB Data Turbine is a Java-based
application. Thus, using Javamade it easier to integrate our component control software
with RBNB Data Turbine.

To make the system truly remote accessible, we integrated LabJack and the
Predict satellite tracking software into the system. To address the issue of the satellite
tracking software aforementioned in Chapter 1, section 1.3, Predict was chosen because
of Predict’s ability to be controlled remotely. LabJack was needed because the SASI
Satellite Tracking Hardware, used previously, was not compatible with Predict.

All of these components—RBNB Data Turbine, LabJack, our software and the
previously established hardware—provides the user with a more remote accessible
ground station to communicate with their satellite or robotic device. A typical user of
RACE will first register with the RACE Reservation System” via the RACE website and
the user’ sweb browser. Upon administrative approval of their registration, the user can
schedule an appointment to use one of the individual ground stations. Once they have
scheduled a time to use the system, the user will return to the RACE control software or
software of their choice. At this point the user may begin controlling the system by
sending commands through the current command line interface to any of the hardware or
to the satellite tracking software. After configuring the system to their specifications, the
user can then use the RACE software or their own software to communicate with the
selected satellites.

5 The RACE Reservation System has not yet been integrated into our current system.

2.2 Team Structure

The team consisted of two computer engineers. The project was split up into different
modul es based upon the various equipment and technologies used. Because of the
limited time frame for this project, atimeline of tasks was set-up to specify deadlines for
completing each module. Each engineer picked atask from this timeline and worked
until they were finished with their module. When it was complete, each engineer picked
another task, and the timeline was modified. Communication throughout the project was
easy because only two people were involved on the project. There was no specific group
leader assigned because each took responsibility for their parts.

In lieu of thistimeline, there were also weekly meetings with Dr. Neil Quinn and
Dr. Christopher Kitts. These meetings proved to be important to address any problems
we encountered and to insure that we met the necessary deadlines. These meetings
helped clarify many issues concerning our project’s design and implementation.
Additionally, before beginning the project, we did not have any background in satellite
communication. Drs. Quinn and Kitts helped us by providing insight into the different
aspects of satellite technology, including the equipment used and how they are involved

in satellite communication.

2.3 Design Process and Choices

The design process began in September of 2003. Thisyear’s RACE team met with
project advisors Dr. Quinn and Dr. Kitts to discuss the concept the RACE project as well
asto brief us on the history of RACE and the progress made by the previous teams.
Additionally, we began laying out the basic requirements and goals of this project. Many
ideas and designs were discussed until we decided on those aforementioned in chapter
one. Once these requirements were laid out, we made some initial design specifications,
concerning the overall system architecture, the programming languages and software to
use, and any equipment needed.

After aformal design review in January, afew of theseinitial design
specifications were altered and much of the implementation began. Over the course of
the project, we found that some parts of the design needed to be altered dlightly to

accommodate unforeseen problems with the equipment and software. Additionally,
constant testing the software and hardware was necessary to ensure that the system
worked well and with little error. However, much of the testing came after each part of

the overall software architecture of the ground station system was compl ete.

Chapter 3—Hardware

3.1 Current Hardware and Components Overview

Much of the equipment prior to this project was still intact and in excellent condition.
Therefore, much of the current hardware did not need to be changed. However, because
of the issues dealing with the remote control of NOV A, anew piece of hardware, called
LabJack (described below) was added as a data-acquisition device to handle the antenna
controller.

All electronic equipment is controlled through serial connections with the ground
station computer. Using the new RACE software, every major device can be controlled,

using the current command line interface.

Ground Station Computer

Dell Optiplex GX110
Windows 2000 Professional
Pentium Il — 128 MB RAM
4 Serial Ports, 1 Parallel Port

|COM 910 Dual Band Transceiver

The transcelver receives data from the packet creator, convertsit to radio waves, and
sendsit out the antenna. It also receives radio waves and sends them to the packet creator
for decoding. However, it must be set to the appropriate frequency before a connection

can be achieved.

Figure3.1: ICOM 910

10

Kantronics 9612 Packet Creator (M odem)

A packet modem is needed to decode/encode satellite data transmissions. It also can

receive commands from the user, using the software written by Daniel Shuet®.

Figure 3.2: Kantronics 9612+

Baytech RPC2 Serial Port Controlled Power Strip’

This power strip is used to remotely power on or off the various devices.

Figure 3.3: Baytech RPC2

6 For more information on the code see Appendix F: Section F1
7 The User Manual for this device can be found at the following link:
http://www.baytech.net/downloads/manuals/U140E125-04_rpc.pdf

11

ICOM CI-V Level Converter®

This deviceis used to communicate to the transceiver viathe computer’s serial port.

Figure3.4: ICOM CI-V Level Converter
ICOM PS-125 Power Source

A specia power source is needed to power the transceiver.

Figure 3.5: ICOM PS-125 Power Source

8 The notation CI-V is a standard naming convention given by ICOM America Inc.

12

Y aesu G-5500 Antenna Controller

This component is the interface between the computer and the antenna rotator.

Figure 3.6: Yaesu G-5500 Antenna Controller

LabJack U12 and LabJack PiggyBack®

Both of these pieces of equipment work in conjunction with Predict in order to control
the antenna controller, which moves the antennato the correct azimuth and elevation.

Figure 3.7: LabJack U-12 and LabJack PiggyBack

9 For more information on LabJack and LabJack PiggyBack, refer to:
http://www.labjack.com/ and http://www.nlsa.com/labjack/labjack_piggyback.html

13

3.2 Current Hardware Design

Before initial design and implementation of this year’s RACE system, we found that most
of the hardware specified by the RACE |1 Senior Thesis™ had still been intact. However,
there were afew missing components and some areas of design that were not addressed.
We needed to restructure the hardware block diagram not only to address these issues,

but also to accommodate our own design. A new version of the hardware block diagram
can be found in Figure 3.8.

10 For more information on the RACE 2002 Senior Thesis hardware block diagram, please refer to Figure
4-8, pg. 33 at the following link: http://www.cse.scu.edu/send.cgi?srprojects/2003/COEN-2003-

PROJECT-25.pdf

14

Usar Cormpubar

W

| Exrowst

User Application

RACE Workstation & Antenna

Monitor

Compubar

P

LabJack

LUs8 Yaesu Rotator
Ratator Conbiallar 35550

k'

Dynarmic Data Serlal Power Strip serial | i
Sarvar Ehvitra Sarial Power Slig Peowar Regulatar
garial
THE!Madam . 2« Packet Modem &
UpLink
Antenna

. sarial

Transcaiver Control ™, CI-5 Lewvel -

Software - Canvarber Ll

\ DownLink

Figure 3.8: RACE Hardware Block Diagram
15

3.3 LabJack and Satellite Tracking

LabJack is adata-acquisition device, which is used to connect the PC to the antenna
controller. In conjunction with the Satellite Tracking software, LabJack is used to direct

the antenna toward the specified satellite in space.

Figure 3.9 LabJack U12

LabJack was chosen to replace the SASI Satellite Tracker™. LabJack and Predict—
which is discussed in section 4.4— work together to provide a Satellite Tracking
environment similar to Nova. The problem with the Nova software was that other
software could not control it. Novadid not provide any means of controlling it remotely
except using remote desktop software (i.e. WinVNC). Clearly, thisis asecurity risk to
the ground station, and therefore NOV A had to be replaced.

11 Please see RACE 2002-2003 Senior Thesis, pg. 31 for further information and specifications SASI
Satellite Tracker.

16

Chapter 4 - Software

4.1 I nfor mation Flow between Client and Server

Figure 4.1 isthe information flow diagram between the Client and Server Side programs.
It depicts how:

1) A client writesto aserver

2) The ground station receives the message

3) The ground station writes the information to the devices

4) The ground station receives messages from the device

5) The ground station writes information out to receiveChannel

receive .@

sround Station App.
send \receive

6) And the Client receives aresponse.

i_lient Side Program

receive

recelyel hannel

Figure 4.1: Information Flow Diagram Between Client and Server Side Programs

Most of our classes (except the TNC) follow this general information flow. Refer

to thisfigure for the classes listed below.

17

4.2 Class Structure

Most of the classes follow a specific structure (Refer to Appendix A). All client side and
ground station applications (server side) contain a DataTurbine class. Thisis needed to
establish a connection with the DataT urbine server so that there is a communication link
between the client and server side applications. Since each side will be accepting inputs,
either from DataTurbine or from the user directly, both client and server side will have an
interpreter that will validate commands and perform the appropriate operation.

Some of the programs may need to talk to a device connected to the serial port.
Therefore, some of the classes will also need the Java Comm Port API*? to be able to

write and receive information from the Serial Port.

4.3 Satelite Tracking Softwar e (Predict)

Predict™ is the equivalent of the Nova program. The difference between them and also

the primary reason why Predict was chosen is that Predict has a command-line based

interface unlike Nova. This enables us, to call on predict from a Java program through a

DOS-command prompt window and store the information from the window to a buffer.
Predict is a powerful program that serves our three important goals in a satellite
tracking software:

Remote updating of Keplerian elements used for calculating the position of a
satellite
Requesting the current position of a particular satellite

Requesting the next pass over the ground station of a particular satellite.

Predict has numerous functionalities that can be performed from the dos-command

prompt, however, only three main functions are supported right now.

Predict —update predict.tlecccoovrvvvveceeeenee. Updates Keplerian Elements
Predict poss <Satellite>ccoevivinienniennn. Requests position of <Satellite>
Predict —pass <Satellite>c.ccocevvienniennnnnn Requests next pass of <Satellite>

12 The Java Com Port API can be found at http://java.sun.com/products/javacomm/
13 Predict can be found and downloaded here: http://www.gsl.net/kd2bd/predict.html

18

44 Ring Buffered Network Bus (RBNB) DataTurbine'

RBNB (Ring Buffered Network Bus) DataTurbine is the heart of our system. It allowsa
user to talk to the devices through this one application. Previously, LabView served this
purpose of integrating the ground station components into one application, but the
problem with it was that it was not designed for real-time control of the ground station.
The web-based interface was simply a mapped image of the LabView interface,
therefore, in order for auser to get current information about the ground station and its
devices, the user would have to refresh the browser.

RBNB is basically a dynamic data server that provides the framework for
client/server applications. It serves as the foundation for data communication for
multiple devices. Itisalso ajavabased program, thus we chose to implement most of
our code in javato make the installation process simple and smooth.

DataTurbine talks to devices through a series of channelmaps. A channelmap is
exactly what the name implies; a channel that both the client and server subscribe to and
talk to each other onit. In our senior design, we have nine channel maps defined:

sendTransceiver & recieveTransceiver

sendPredict & receivePredict

sendPower & receivePower

sendAntenna & receiveAntenna

RXrawTNCString

Internet/Interface | Ground Station Computer | @

DataTurbine

N

Figure4.2: Ground Station System Architecturewith DataTurbine

!

14 More information on RBNB Data Turbine can be found at: http://rbnb.creare.com/

19

These channelmaps are used to forward information to and from the specific
devices. The send channels are specificaly used to send commands and information to
the device, while the receive channels are information that is returned from the devices.
It was designed this way so that both the sending and receiving of data can occur
independently of the other. Creating two channels also ensures that there is no clash of
information (sending at the same time from both client and server). Lastly, creating two
channels enables the client side program to block and wait for information, rather than
polling.

Also note that the RXrawTNCString was designed with only one channel map.
This was because there was an issue configuring Matlab with two channels. However,
we have successfully coordinated the sending and receiving of information on the server
side, so there will be no information lost (See Appendix F-1 for source code).

45 Transcever®

The transceiver is the device that sets the frequencies the packet modem will use to send
and receive data. There are two frequency modes: uplink and downlink. The modem
sends information out to the satellite through on the uplink frequency, and receives
information from the satellite on the downlink frequency. Additionaly, The CI-V level
converter is also used—in conjunction with the transceiver—in order to interface with the
computer. The CI-V level converter allows the programmer to be able to send and
receive the necessary commands to control the transceiver.

When programming the transceiver one must understand the command format--

which looks somewhat like this (which is used to set a frequency):

FE FE 60 00 00 00 00154501 FD

Looking carefully, one will notice that:
1. Preamble (FIXED) : FE FE is the preamble which begins the command
2. Transceiver's default address. 60 (which can be changed on the transceiver

hardware)

15 For the complete user manual, refer to http://www.icomamerica.com/support/manuals/ic-910h.pdf

20

3. Controller’s default address: 00 (which can be changed on the transceiver
hardware)

4. Command number: 00 (specified by the command table'®)

5. Sub command number: 00 (specified by the command table)

BCD code data for frequency of memory number entry

a. On closer inspection, on will notice that the frequency isreversed. Inthis
case, the frequency was set to 145.150.0. Therefore, the BCD code data
for frequency isformatted 00 154501

7. End of message code (FIXED): FD isthe value passed to the transceiver to
tell it that the command is finished being sent.

8. NOTE: All commands are sent in hex format. In Java, on must use the
function par sel nt with base 16 in order to obtain the proper hex format sent
through the seria port.

In general, programming the transceiver was a very difficult task because Java did not
support the extended ASCI| set*’.

46 Serial Power Strip

The Baytech RPC2 Serial Power Strip isaspecia power strip that can be controlled
through the seria port. It wasinstalled during the RACE 2001-2002 (RACE Il) senior
design. We connected RBNB DataTurbine to this device so that we can send commands
to this device to turn on/off specific equipment. The devices that are connected to the
Serial Power Strip are

Antenna Controller

Packet Modem (TNC)

Transceiver

CI-V Leve Converter'®

The code for the DataTurbine to Serial Power Strip can be found in Appendix C.

16 For more information for programming the transceiver and CI-V level converter, refer to:
http://www.plicht.de/ekki/civ/civtoc.html

17 The extended ASCII table and information can be found at:
http://www.zegelin.com/computers_files/ref/ACSIl.htm

18 CI-V Level Converter is needed to send commands from the PC to the Transceiver. Please reference
RACE Il Thesis: http://www.cse.scu.edu/send.cqi?srprojects/2002/COEN-2002-PROJECT-10.pdf

21

4.7 Antenna Control Software

Labjack’® is a data acquisition device that is used in conjunction with Predict to provide
an environment similar to Nova; we can predict when and where a satellite will come into
view, and auto-track its position when it isin view. With the help of an Electrical
Engineering graduate student, Dan Schuet, we successfully created a C executable file®
called the AntennaAutoTracker for the sole purpose of controlling the YAESU-G 5500
antenna controller and integrated this program with DataTurbine to enable the
transferring of information from server to client side.

Similarly to the Predict software, we can control the AntennaAutoTracker
program through the DOS-command prompt and save any returned information to a
buffer. We then write this buffer out to the receiveAntenna channel of DataTurbine, so

that the user can view the information.

4.8 Packet Modem (TNC)

The Packet Modem (Also known asthe TNC, Terminal Node Controller) isthe hardware
that is used to “talk” to aremote device. For the purpose of our project, it isused to
communicate with Satellites. Because of this, the software had to be designed so that we
can communicate with both the actual device at the ground station, and the remote device
(i.e. aSatellite). It was decided that Dan Schuet, a graduate electrical engineering
student, should handle the TNC communication, because of his knowledge of satellite
communication. He designed it with only one channel to send and receive information
that comes through the terminal node controller.

One of the RACE team’ s objectives was to allow multiple applications to
interface with the system. One popular application that many universities use in their
research is Matlab®, thus it was important to make sure this application was supported.

Due to lack of time, we were unsuccessful in designing Matlab to communicate with the

19 | abjack and be found and purchased here: http://www.labjack.com/

20 See Appendix E-6 for the source code

21 The antenna was installed by the RACE Il team:
http://www.cse.scu.edu/send.cqi?srprojects/2002/COEN-2002-PROJECT-10.pdf
22 Matlab can be found at http://www.mathworks.com/

22

ground station with two channels. However, we have observed that Matlab handles well

and there is no data loss with a single channel.

o [

Fle Edit Debug Desktop Window Help

D | & M@ o o | & 7| [owane =L m

Workspace 2 X | Brigures - Figure 1 A % ||%]Editor - DAMATLAB\Development E.. A X

wE@REe - " Insdag|k @ Fd2x D@ kE O 7O

Ta Il\wra;sad] 3 Elactrods Charge (5C) G| BEE|-[+]=]=] >

SRR e 7| e G

FA Channell <1000x1 dou... Bl 7 Tieer cstine e sewnle xe

[H Channel2 <1000x1 uint@> AR oinzepitrien

EH Channel3 <1000x1 uintS> - R

: plotit,v):

FA ChannelTime <1000x1 dou... 23

o <4-D vief» ‘ 24 | %% Add high frequency

EDataSen <1x7550 dow... o o 25 % Next add a second hicher

: , i

[Array Editor - L a x Fle Edt View Insort Tooks Desitop Windaw Help %

- = *0= =

| g o 0n DeEah *RaOHdE 0H =0

1 2 > -
Figue2 x |[Figuret

T D570 D752 ﬂ Jl iglre || Figure | i Emission Tests

3| -0031874) 0011195 I = 181 —o— Test2 v T 7 W

4| 0029369 0.080619 P2 b CImnns . tRiR ——— QuadraticFi 16,

5 007763 011591 i | | TR

5 010844 014963 =» surf (surfacemap); sh o

7] 011947 015923 >> £=B(t) sin(2*pi*fitt) 712 |

8| 011075] 014492 L o5

o 0 NEARa0 n1nmnf Bit) sin(z*pi*fi*t) '3 | SRR

,iLI 2 >

Commend History | Cument Director 4| » | 4| 10

4\ stant |]
L e o R
" \ , , \
10 12 14 16 18 20

Airfuel Ratio

Figure4.3: MATLAB Interface
Refer to Appendix F for the TNC source code.

23

Chapter 5 - User Management

51 Howtolnstall the System (Client Side)

The software is pre-packaged in a zip file that contains afew batch files that will execute
the necessary Java classes to control the ground station (Refer to Appendix | for
information on the client side architecture and batch file scripts). There are afew
configurations that a user will have to do prior invoking these classfiles. For complete
instructions on installing and using the RACE Client Side System, please refer to
Appendix I-4 and |-5.

Also, the user will have to install Matlab in order to send and receive information
on the Packet Modem (TNC). Currently, the install process only contains direction for
configuring Matlab to communicate with the Packet Modem (TNC). Future upgrades
will hopefully alow other interfaces to interact with the Packet Modem (TNC). For
complete instructions on configuring Matlab for the TNC, please refer to Appendix I-6.

5.2 Howtolnstall the System (Server Side)

The server side software is prepackaged and designed to work with the following devices
and hardware:

Labjack data-acquisition and control device

ICOM CI-V Level Converter connected to the ICOM 910 Dual Band Transceiver

Kantronics 9612 Packet Modem (TNC)

Baytech RPC2 Serial Power Strip

These devices must be installed and configured properly before the server side
packaged software isinstalled and run. See below, 6.3.4 Computer Specification and
Configuration (Server Sde), for instructions on installing and configuring devices.

Once the hardware are installed to the right ports (see above) and configured
properly, the prepackaged RACE server software can be installed and run. For complete

instructions on installing and using the server software, please reference Appendix H.

24

5.3 Computer Specification and Configuration (Client Side)

The RACE client side system has been tested under the following computer
specifications:

Windows XP, 2000

Internet Connection: 56K Modem (at least)

256 MB & 512 MB RAM

Pentium 11, 111, 1V Processor

Matlab needs to be installed on the client side machine in order to operate the
TNC remotely. Because this program takes up alot of memory, it is recommended that
the computer have 512+ MB of RAM. Future upgrades of the client side software will
eliminate this dependency.

Java Runtime Environment needs to be installed on the computer to be able to
execute the Java programs. This can be downloaded for free from the java.sun.com

website. It isrecommended to install the VM 1.4.x onto the computer.

54 Computer Specification and Configuration (Server Side)

The computer must have these initial specificationsto install the devices to the computer:

Windows OS
Pentium |1 processor (at least)
0 Recommend Pentium I11 with 800+ MHz Processor
64 MB RAM (recommend 256+ MB or more)
3 Seria Ports
1 USB Port

Also, the software is designed to look for the device on a specific port:

25

Internetintertace) || Ground) Station Computer
= |50 Paort
DataTurbine _.__..Serial Fort 23 (COM3)

&.ﬁ—*ﬁera Fort 2 (COMZ)

—" Serial Port 1 (COM1)

Figureb5.1: Hardware Configuration Diagram

Again, the prepackaged RACE server software is designed to work with the following
devices®;
Labjack data-acquisition and control device
ICOM CI-V Level Converter connected to the ICOM 910 Dual Band Transceiver
Kantronics 9612 Packet Modem (TNC)
Baytech RPC2 Serial Power Strip
For more detailed instructions on how to install and configure the RACE server

computer, see Appendix H.

55 HowtoUsethe System (Client Side)

Consideration was taken about the user experience with the RACE program.
Understanding that thereis currently only a small community who are interested in
communicating with satellites, and many of them prefer a command-prompt interface, we
opted to make our interface a DOS-command prompt. A user has a better feel for how
the RACE system works without any fancy buttons to distract or take away from the
experience.

There are 5 command-prompt windows and Matlab that need to be opened to
operate al functionalities of the RACE System:

26

Power Strip Echo Outputs information from the Power Strip

Transceiver Echo Outputs information from the Transcelver

Predict Echo Outputs information from the Satellite Tracking Software
AntennaEcho Outputs information from AntennaAutoTracker®* program
Client Input Accepts and Sends commands from the user to the Server
Matlab Interface Needed for control/access to Packet Modem (TNC)

To aid in invoking the 5 command-prompt windows, we made one master batch file that
will start up al the command-prompt windows. For detailed instructions on using the

RACE client program, see Appendix I.

56 How toUsethe System (Server Side)

The system was designed to be very easy to install and run. Assuming that all
components of the system were installed and configured correctly, an administrator in
charge of maintaining the server would only need to invoke the main batch file located in
the root folder of the packaged RACE server program. Detailed instructions on the

operation and error handling are located in Appendix H.

5.7 User Experience

Unfortunately, we were unable to gather very much user experience data. We had gone
over our deadline, and the complete system was not finished until mid May. Thisdid not
leave very much time for contacting potential users and asking them about their
experience. However, professor Chris Kitts of the Santa Clara Engineering Department,
and an undergraduate student, Dan Schuet, have tested the RACE system and their
responses are positive.

According to Dr. Kitts, the performance of the RACE systemisabig
improvement over the previous system. The response times, he says, athough relatively
slow are negligible at this point and can probably be fixed by upgrading the ground
station computer to afaster computer. Heisalso very pleased that the interface is mainly

23 Many of the device specifications can be found on the RACE Il Senior Thesis:
http://www.cse.scu.edu/send.cqi?srprojects/2002/COEN-2002-PROJECT-10.pdf
24 See Appendix E-6

27

DOS command-based. Overall, Dr. Kittsis very pleased with the improvements made on
the system, and he will be using the system in the near future.

Dan Schuet is aso pleased with the overall system. However, his only problem
with the current Client Side program is that the TNC currently depends on Matlab.
Although, heis very familiar with the Matlab program, he does not have a copy of it at
home, therefore reducing his access. He hopes that future upgrades of the system will

reduce this dependency, yet not eliminate the ability to use Matlab.

28

Chapter 6 — Experimentation and Testing

6.1 Testing Results

Unfortunately, this year’s senior design team did not finish the complete system until late
Spring 2004 quarter. Thisdid not leave very much time for conducting a thorough
system performance test nor gather user experience results.

We do have our day-to-day experience and generalized system response times.
Below is atable with the average round-trip-times that we hand calcul ated for several
typical ground station communication and control. These times reflect the
responsiveness of the system from theinitial sending of acommand till aresponseis seen

on the client side.

Device Average RTT (seconds)
Packet Modem (TNC) 2.637
Serial Power Strip 2.578
Predict 1.856
Antenna 1.575
Transceiver 3.635

Table 6.1: Response Times of RACE System

NOTE: Thesetimes do not reflect the response time of sending and receiving a
response from a Satellite. Thistime is dependent on strength of the link
connection between the ground station and the satellite, and the natural

propagation speed of radio waves through space.

We have a so noted the overall system integrity. Within a one month test period
of logging remotely into the ground station controls, there have had no system failures.
In other words, we have not had to reboot the RACE server software. However, because
the ground station runs on a Windows OS, it is recommended that the ground station

29

computer be formatted and rebooted every so often to maintain overall system
performance.

The tests results gathered here are inconclusive, and we recommend further
testing. Thereisastrong possibility that the system will be installed at the Hawali
Ground Station and other interested institutions. Hopefully, during the course of the

summer, conclusive test results and figures will be collected.

6.2 RACE Installation Metric

Figure6.1: Installation of RACE at NASA AMES Research Lab
We have a so successfully installed the RACE system at the NASA Ames

Laboratory in Moffet Field, CA. It was alarge success because this was the first clean

install of all the components of RACE. Approximate total time for the setup is about an

hour. However, since we are familiar with the setup process, it may take more time.

30

Chapter 7 — Societal |ssues

7.1 Ethical

RACE provides ameans for underdevel oped areas cheap access to satellite technology.
RACE is one solution in reducing the “ Digital Divide,” by providing technology that
previously was only available to the fortunate. Because it incorporates the internet,
which serves as the framework for this network of groundstations, all educational

communities can benefit from this project.

7.2 Social

Many social benefits result from the implementation of RACE. By giving students and
faculty access to a satellite network such as RACE we are extending to them avery
unique opportunity. Being the only non-government system of its kind, students are able
to gain valuable experience in the field before becoming fully immersed in the industry.
This unique project allows a greater number of people to influence this growing

technology and help to improve it.

7.3 Political

Space technology, including ground control networks, is atechnology that is regulated by
the United States government. Although the impact has not been seen specifically by our
group, the project development as a whole has been greatly affected. Originaly,
international ground stations were to be installed to enhance the capabilities of the RACE
system and the amount of time that a satelliteisin view of the network. These plans have

been suspended due to lack of political approval.

31

7.4 Economic

RACE as a system allows for cost-effective and cheap operation of university satellites.
Our contribution to this effort has significant economic ramifications in conducting
student research, furthering hands-on education of satellites, and international student

cooperation.

7.5 Health and Safety

RACE has no direct relation to health or safety in general. There are obvious safety
precautions that should be followed when operating any equipment, including the
equipment contained within the RACE system. Other than basic safety the RACE system
does not have an effect on the health and safety of society as awhole or on individuals
not associated with the use of the system. RACE could be used for research purposes, but
the scope of the project does not focus on the various research topics that can be explored

with the system.

7.6 Manufacturability

RACE is partialy built. We have erected two stations, one at Santa Clara University in
Santa Clara, California and the other in Pearl City, Hawaii. There are also two other
schools, University of St. Louis and University of Austin, Texas, who areinterested in
the RACE program. These colleges have a partial system set up and are awaiting the
software. If aschool isinterested, we aso support the construction of a ground station on
their site. Though the construction of each station is costly, there is much funding
available for projects of thistype. This project offers a great deal to the education

community as awhole and provides exclusive opportunities for all partiesinvolved.

7.7 Sustainability

RACE isnow four years old and still initsinfancy. Thereis much more work to be
completed to obtain the full benefits of the RACE system. This project is sustainable for

32

many years to come as satellite networks become even more relied upon by our society.
RACE alows for students to gain hands-on experience in an industry that istightly
watched by the government. RA CE has been built to accommodate future growth. WE
have implemented each part as a component to the whole which can be easily modified
without reconstructing the entire system. Thisis an important aspect to the project as
future years will want to focus on perfecting specific aspects of the RACE system

without wanting to learn specifics about other components.

7.8 Environmental Impact

The RACE project as awhole has alarge environmental impact, not in the classical sense
of the earth, but on space. RACE is anetwork of satellites and ground stations. Each
satellite that is put into orbit takes up some of the orbital space. As satellites go out of
commission or break, they become space garbage, continually orbiting earth until
eventually they burn up in the earth’ s atmosphere. Considerations must be made when a
new satellite goes up to ensure that the satellite offers value to the university community.
The second aspect of RACE that impacts the environment is the ground stations. Ground
stations must be maintained. By building ground stations around the world, we must be
surethat if the project were to end the ground stations be taken down or sold to be taken

care of by another institution.

79 Usability

The entire focus of RACE IV isto implement aworking and efficient communication
link between the user and the ground station. RACE now has a much improved working
user interface for ground station control and communication. In addition, the underlying
technology used allows future design teams to implement a different interface on top of
the system without much change to the existing code now. Thisyear’s design has
successfully implemented a true real-time system enabling a user to log into the system
and efficiently establish alink to their satellite.

33

7.10 Lifelong Learning

Neither of the group members had any knowledge of satellite functionality before starting
this project. A learning curve was present for much of the first and second quarter. Not
only did we have to learn about the individual components and their capabilities, we also
had to learn about integration of the components with each other. Working on the RACE
project has helped us to do independent thinking by problem solving on our feet at afast
pace. This project has taught us how to effectively and efficiently work within ateam and
how to accomplish a decent amount of work within a specified time. Problem solving,
teamwork, and time management are not skills that can be obtained in the classic
classroom setting. Through this project we have learned skills that will help us
throughout our lives. We have learned how to teach our selves through research, allowing

us to continue our learning processin the future.

7.11 Compassion

RACE does not not directly seek to relieve the suffering of others. Itsmain purposeis
develop the framework for a network of groundstation for remote access control of
robotic devices. However, sincethisisonly aframework, there are many applications
that can be applied to the project. Someone could essentially use our framework to
provide a means of cheap communication to remote locations that need emergency help.
RACE could be used for search and rescue operations to control rebotic devicesin areas

that are highly dangerous for humans.

34

Chapter 8 — Conclusion

81 Summary

Thisyear’ s team enhanced the capabilities of the RACE system by administering a
complete overhaul of the existing ground station software architecture. We accomplished
this by removing LabView, Nova, and the SASI Satellite Tracker hardware and replacing
them with RBNB DataT urbine, Predict, and the LabJack hardware, respectively.
Additionally, because of our design, the RACE system is prepared to handle various user
applications, making the system more versatile. By completing these tasks, we were able
to improve the ground station’ s remote accessibility and efficiency.

Currently, through the RACE program, Santa Clara University is building a
geographically distributed network of communication stations in order to operate many
of the satellites built by SCU and its academic partners. Our software will be distributed
and installed at various institutions such as NASA, the University of Hawaii, the
University of Texas at Austin, and Georgia Tech. Once our software is distributed,
installed, executed, and tested, the RACE project will begin the early phases of increasing
the amount of time that communications may take place given line-of-sight transmission
constraints. Asaresult, the RACE system will serve asthefirst layer of aglobal robotic
control network that supports distributed research and education for students throughout

the world.

8.2 Future Uses

The project has many uses, and can be extended to provide a multitude of others, such as
allowing teachersto give their students the unique opportunity to experience controlling a
satellite or remote vehicle. Additionally, this project may be used to control robotic
devicesfor research in space, underwater, or other areas out of human reach. However,
the current focus of this project is the remote control satellites—which have functions
such as take pictures, collect data, and observe weather conditions of space.

One main use of the RACE system isto test experimentally new satellite
operations techniques. Clearly, testing such techniques without atruly operational

system poses much difficulty. Furthermore, systems operated by NASA ESA, and other

35

ingtitutions are extremely complicated and the risky. Making mistakes on their systemis

too great and expensive to allow any good experimentation. Thus, RACE isasmall-scale

version of these large satellite operations networks comprised of components such as

many groundstations, a central control facility, and numerous of users and satellites.

Additionally, because this project is a small-scale model of alarger operation, we can

“control” RACE to test out new operations techniques such as innovative fault diagnosis

algorithms, new scheduling techniques, and other experiments.

8.3

Future Contributions

Future contributions to the RACE project may include things such as:

A Graphical User Interface (GUI) and incorporating the RACE Reservation System:
Currently, the system supports only a command line version. If the user does not
have an application of their own, the RACE GUI will provide users with amore user-
friendly interface. Additionally, the RACE Reservation System was not integrated

into this year’s project because of time constraints.

Web-Interface: Seen as highly platform independent, a web-interface will allow users

to utilize their web browsers to communicate with their satellite.

Integrating RACE with other satellite and robotic devices: Thiswill further expand

the project into new areas of study as well as increasing the scope of the project.

Installation of More Ground Sations. Although thereis currently only one
functional station, the Santa Clara ground station, more stations being built, which
will increase the ground station coverage. Currently, educational institutions such as
the University of Texas, Austin and Georgia Tech are constructing these ground
stations. The Hawaii ground station located previoudly in Pearl City, Hawaii will

soon be moved to the University of Hawaii, Manoa.

Satellites Controlled by RACE: Currently, our focusisto test our system with the
satellites. Much work must be done to extend the system to support the satellite

missionslisted in Table 1.1 aswell as others.

36

84 L essons Learned

The RACE project was truly an important experience. Learning about satellite
communication, the equipment used in satellite communication, and the software
involved in communication was very challenging. Although there were many aspects
critical to this project, organization, problem-solving, and communication were the most
important, in order to successfully accomplish our goals.

Before beginning this project, we were very inexperienced in satellite technology.
Dr. Quinn and Dr. Kitts provided invaluable information and guidance to help us
understand the inner workings of ground station and satellite communication. Once we
had a handle on satellite technology, we sat down with the advisors to begin the design of
the project. However, before we were ready to implement our project, we needed to
obtain HAM radio licenses to be able to transmit/broadcast signals to an amateur satellite.
Thus, there was much more learning to be done.

After becoming HAM licensees, we were able to begin implementation.
Although we felt our design was solid, we still ran into some obstacles. We learned that
the design process never ends. Our design needed to be revised every time there was
either a better way to implement system or adlight flaw in the design. Additionally, we
looked to the advisors for suggestions or assistance to troubleshoot problems with the
equipment.

Finally, communications and compromise between teammates and advisors
proved to be most vital to the project. In order to accomplish our project on time and
solve problemsin aquick and timely fashion, we needed to communicate constantly with
each other and with our advisors. Additionally, because each of our styles of coding and
implementation were different, compromises were necessary to keep the project on
schedule. Communication also helped us to keep each of our implementation styles more
uniform to ensure that the code was consistent and followed the design specification.
Furthermore, the consistency of the code made maintaining the code and system much

easier to handle.

37

— APPENDIX —

APPENAIX ..ee i 38
APPENAIX A o e 40
0 Section Al: Client Side Class Structurec.cccvvvveeneen.. 40

0 Section A2: Server SideClassStructurecoooovvevveievnnnne. 40
APPENAIX B ..ot e 41
0 Section B1: Client Input (Client-Side)cooovvviiiiiiiiinnnnnn. 41

0 Section B2: DataTurbine (Client & Server Side) 44

0 Section C1: Serial Power Strip Echo(Client-Side) 50

0 Section C2: Serial Power Strip Interpreter (Client-Side) 54

0 Section C3: Serial Power Strip Server(Server-Side) 56
APPENAIX D e e 61
0 Section D1: Predict Interpreter (Client-Side)ccceeeen.. 61

0 Section D2: Predict Echo (Client-Side)ccovvvvieiiinnnn 65

0 Section D3: Predict Server (Server-Side)oovvveviiiiininnnns 67

0 Section D4: Predict (Server-Side)coocvveiiiiiiiiiiiiieeee. 70

0 Section D5: Predict Interpreter (Server-Side)oooovviinnnnnen. 73

0 Section E1: Antennalnterpreter (Client-Side) 76

0 Section E2: AntennaEcho (Client-Side)coooviiiiinnnns 79
0 Section E3: Antenna Server (Server-Side)coocvvviiiennnn. 81
0 Section E4: Antenna (Server-Side)c.ccoiiiiiiiiiiiiieen .. 83
0 Section E5: Antenna Interpreter (Server-Side)o.oooveiieninnn, 86
0 Section E6: AntennaAutoTracker (Server-Side)c.oeee. .. 89
0 Section F1: Terminal Node Controller (Server-Side) 98
APPENAIX G ot e e e e e 104
0 Section G1: Transceiver (Client & Server Side)co.e..e. 104
0 Section G2: Transceiver Interpreter (Client-Side) 109

38

0 Section G3: Transceiver Echo (Client-Side)ccccevvennnne

0 Section G4: Transceiver Server (Server-Side)ocovvvvnennnn.
APPENAIX H .o
Section H1: Server Side Directory Structurecccevvvvenene
Section H2: Individual Batch Files................oo i,
Section H3: MainBatCh Fileccoo i
Section H4: Installation INSLruCtionsvovvveveviiieiie e,
Section H5: Using RACE Server Programccceceveiiiennnnnn

O O O O O

Section |1: Client Side Directory Structureccovvvevnennns
Section 12: Individual Batch Filesc.cooviiiiiiiii i,
SectionI3: ManBatch File ...,
Section 14: Picture of RACE Client Programc.ccooevvnn.
Section I5: Installation INStructionsc.ooviiiiiiiiicienes
Section 16: Using RACE Client Programccccveeiiiniennns
Section | 7: Matlab Configuration and User Manudl

O O O O O o o

APPENAIX J e e e e e
0 SeCliON L USE C a9 o et ettt e e e e e e e

0 Section J2: Use Case DesCriptionSovvvveevvieieeieeeeene,

39

Appendix A

Section Al: Client Side Class Structure

— Output
L Fowerstrip §>
Transceiver
Interpreter > Predict DataTurbine

§> Antenna Controller

DiataTurbine

Figure A-1: Client Side OM Diagram Structure

Section A2: Server Side Class Structure

Fowerstrip
Transceiver
Fredct
Antenna Controller

?

INTERFACE ——» COMM FPort AFI

DiataTurbine

Figure A-2: Server Side OM Diagram Structure

40

Appendix B

Section B1: Client I nput (Client Side)

*

~

L I T T T R

@\t hor: Peter Sal as

 (PSal as@cu. edu)

<pP>

@ersion

Created: 4/13/2004

<pP>

Pur pose: Designed for Santa University RACE 2003-2004 Senior Design
Team

<pP>

Description: This class integrates al
*/

i mport java.io.*;

i mport java.util.?*;

i mport java.l ang. *;

i mport com rbnb. sapi . *;

public class Cientlnput

{

static String nessageString = null
public static void main(String [] args)

{
String host;
/] Variable used to specify where DT Host is
PredictCientlnterpreter predictlnterpreter
/llnterpreter for Predict
Power Stri pClientlnterpreter powerlnterpreter;
/llnterpreter for Power Strip
Transcei verInterpreter xcrlnterpreter;
/llnterpreter for Transceiver
AntennaCl i entlnterpreter antennal nterpreter
/llnterpreter for Labjack (Antenna Controller)

System out. println("RACE: Conmand | nput Screen\n");
i f(args. | ength>0)

{
host =ar gs[0] ;
//user must enter in the |IP of DT Server
Systemout. println("Connecting to " + host + "...");
}
el se
{
Systemout. println("ERROR No RBNB host defined");
return;
}

//establish a connection with all the equi pment | ocated

41

/lat the Ground Station

predictinterpreter = new PredictCientlnterpreter(host);
power I nterpreter = new PowerStripCientlnterpreter(host);
xcrinterpreter = new Transcei verlnterpreter(host);
antennal nterpreter = new AntennaCl ientlnterpreter(host);

while (true)
{ /****** Q)mmnd Input ******l
I nput St reanReader isr = new | nput StreanReader (
Systemin);
Buf f eredReader br = new BufferedReader (isr);
nmessageString = nul |
try
{

Systemout. print("Please Enter Conmand: ");
if ((nmessageString = br.readLine ()) !'= null)
{
//validate command for Predict
i f
(predictinterpreter.validateComand(nessageString)) {

predi ctlnterpreter.sendComand(nessageString, 1);
}
//validate command for Serial Power
Strip
else if
(power | nterpreter.validateCommand(nessageString)) ({

power | nt er pr et er. sendConmand(nessageStri ng, 1) ;

//validate command for Transceiver
else if
(xcrinterpreter.validateConmand(messageString)) {

xcrlnterpreter.sendComand(nessageString, 1);

}

//validate conmrand for Labjack
(Antenna Controller)
else if
(antennal nterpreter. val i dat eCommand(nessageString)) {

ant ennal nt er pr et er. sendConmand(messageStri ng, 1) ;

}

el se {
/lerror nessage if the user does not enter in a valide command for
/] devi ces
Systemout.println("\nERROR: |f you
need help, try typing in\in\n predi ct| xcr| power | antenna -hel p\n");

}
}
cat ch(Exception e){ Systemout.println("This did not
work\n"); }

}

42

43

Section B2: DataTurbine (Client & Server Side)

/

*

@\wut hor: Peter Sal as
 (PSal as@cu. edu)

<pP>

@er si on

Created: 2/16/2004

<P>

Pur pose: Designed for Santa University RACE 2003-2004 Senior Design
Team

<pP>

Description: This class integrates all the basic and advanced
functionality of Creare RBNB DataTurbine. 1t can be used to create
a Sink, Source, or Plugin connection with a DT server. It also
contai ns the four Channel Maps that are used for comunicating wth
the DT server: sending, receiving, accessing, and the Plugln
Channel Map. For nore information on DataTurbine and it's
functionality, please refer to the RBNB website:

http://rbnb. creare.com

<pP>

NOTE: </ B> Thi s versi on of DataTurbine.java does not have any
security (i.e. username and password) witten into the channels.
Basi cal l y, anyone can |log onto the channel at any tine.
*/

L I T R T R T S N . N N N S T S N

i mport java.io.*;

i mport java.util.*;

i mport java.l ang. *;

i mport com rbnb. sapi . *;

public class DataTurbine

{

/***l
/**************** Q)nstructor ****************************/

/***/

/**

* Description: initializes the variables for DataTurbine

* conmmuni cati on. <P>

* Precondition: none<P>

* Postcondition: all variables are initialized to its default val ue.
**/

publ i c Dat aTur bi ne()

{
pl ugin = new Pl ugln();
source = new Source();
sink = new Sink();
sMap = new Channel Map();
aMap = new Channel Map() ;
rMap = new Channel Map();
sNum = -1,
aNum = -1;
rNum = -1;

}

44

/***/

/************** ACCESSOI‘S & Wtators ****************/
/***/

/**
* Description: opens a plugin connection given the address of the rbnb
* server, and the nanme of the plugin the user wants to open. <P>
* Precondition: user nust provide the address of the rbnbserver host,
* and the name of the plugin that the user wants to establish. <P>
* Postcondition: function will attenpt to establish a connection. else,
* the function will print out the stack trace error
**/

public void openPl ugi nConnection(String rbnbServer, String
pl ugi nNane)

try
{
pl ugi n. OpenRBNBConnect i on(rbnbServer, pl ugi nNane) ;

}
cat ch(SAPI Exception se) { se.printStackTrace(); }

}
/**
* Description: open a source connection given the address of the rbnb
* server, and the nane of the source the user wants to open. <P>
* Precondition: user nmust provide the address of the rbnbserver host,
* and the name of the source that the user wants to establish.<P>
* Postcondition: function will attenpt to establish a connection, else,
* the function will print out the stack trace error
**/

public void openSourceConnection(String rbnbServer, String
sour ceNarne)

{
try
{ |
sour ce. OpenRBNBConnect i on(rbnbServer, sourceNane);
}
cat ch(SAPI Exception se) { se.printStackTrace(); }
}
/**
* Description: open a sink connection given the address of the rbnb
* server, and the nanme of the sink the user wants to open. <P>
* Precondition: user nust provide the address of the rbnbserver host,
* and the name of the sink that the user wants to establish. <P>
* Postcondition: function will attenpt to establish a connection, else,
* the function will print out the stack trace error
**/

public void openSi nkConnection(String rbnbServer, String
si nkNane)

{
try
{

si nk. OpenRBNBConnecti on(rbnbServer, sinkNane);

45

cat ch(SAPI Exception se) { se.printStackTrace(); }

/**

Descri ption: adds a sendChannel <P>

*

*

*

Precondi ti on:
Post condi ti on:

channel Nane is of type String<P>
attenpts to add a channel. el se,
the stack trace error.

the function wll

public void addChannel Send(String channel Nane)

sNum = shMap. Add(channel Nane) ;

}
cat ch(SAPI Exception se) { se.printStackTrace(); }

* print out
**/
{
try
{
}
/**

*

*

*

Descri ption: adds a recei veChannel <P>

Precondi ti on:
Post condi ti on:

channel Nane is of type String<P>
attenpts to add a channel. el se,
the stack trace error.

the function wll

public void addChannel Recei ve(String channel Nare)

rNum = r Map. Add(channel Nare) ;

}
cat ch(SAPI Exception se) { se.printStackTrace(); }

* print out
**/
{
try
{
}
/**

*

*

*

Descri ption: adds a accessChannel <P>

Precondi ti on:
Post condi ti on:

channel Nane is of type String<P>
attenpts to add a channel. El se,
the stack trace error.

the function wll

public void addChannel Access(Stri ng channel Nane)

aNum = aMap. Add(channel Nan®) ;

}
cat ch(SAPI Exception se) { se.printStackTrace(); }

* print out
**/
{
try
{
}
/**

*

*

*

Description: gives the index of the sendChannel <P>

Precondi ti on:
Post condi ti on:

**/

public int
{

}

retu

t he user has added a sendChannel <P>

the i ndex of the sendChannel is returned.

get | ndexSend()

rn sNum

46

/

* %

t ur ned.

d.

nel to

dded. A sin

alue is
infinite

the function

* Description: gives the index of the receiveChannel <P>
* Precondition: the user has added a recei veChannel <P>
* Postcondition: the index of the receiveChannel is re
**/
public int getlndexReceive()
{
return rNum
}
/**
* Description: gives the index of the accessChannel <P>
* Precondition: the user has added a accessChannel <P>
* Postcondition: the index of the accessChannel is returne
**/
public int getlndexAccess()
{
return aNum
}
/**
* Description: registers the recei veChannel to a plugi n<P>
* Precondition: a plugin connection nmust be opened, and a
* recei veChannel has to have been added al ready. <P>
* Postcondition: function attenpts to register receiveChan
pl ugi n.
* El se, the function prints out the stack trace error
**/
publ i c bool ean regi st er Recei veChannel ()
{
try
{ | |
pl ugi n. Regi ster (rMap);
return true;
cat ch(SAPI Exception se) { se.printStackTrace(); return
fal se;}
}
/**
* Description: sends a nessage to DataTurbi ne<P>
* Precondition: a sendChannel needs to have already been a
* connection rmust be opened. The value wait is the nunber of
* mliseconds DT should wait for a response. If the v
* negative (i.e. -1), the DT will wait for a response
* amount of tine (blocking wait).<P>
* Postcondition: function attenpts to send nessage. El se,
* prints out the stack trace error
*

*/

public void sendMessage(String nessage, int wait)

{

try
{

sMap. Put Dat aAsSt ri ng(sNum nessage) ;
si nk. Request (sMap, 0, 0, "newest ") ;
/Il paranmeters are irrel event

k

47

Channel Map cnR=si nk. Fetch(wai t);

}
cat ch(SAPI Exception se) { se.printStackTrace(); }

/**

* Description: checks to see if there is a nessage that was witten
* into the plugin. if thereis, it pulls the message out and
* returns it back to the user
* Precondition: nust open a plugin connection. The nmessage needs to be
* of type String. Also, the receiveChannel has to have been
* registered to the plugin. The value wait is the nunber of
* mliseconds DT should wait for a response. |If the value is
* negative (i.e. -1), the DT will wait for a response infinite
* amount of tine (blocking wait).
* Postcondition: the nmessage is returned to the user if there is a
* nessage. Else, the nessage "<not ready>" will be returned if
* there is no new data to be taken fromthe DT server.
**/

public String receiveMessage(int wait)

{

try

String nessage = null;

Pl ugl nChannel Map pi cnepl ugi n. Fet ch(wai t);

pi cm Put Ti ne((doubl e) System current TimeM I Iis(), 0);
/lextract message, silently ignore nontext messages

i f(pi cm Nunber O Channel s() >0)
{

i f (picm Get Type(0)==Channel Map. TYPE_STRI NG

{
nmessage = picm Get Dat aAsString(0)[0];
String response="Message Received."
picm Put M ne(0, "text/plain");
pi cm Put Dat aAsStri ng(0, response);
pl ugi n. Fl ush(picm;

}

}
pl ugi n. Fl ush(picm;
return nessage;

}
cat ch(SAPI Exception se) { se.printStackTrace(); return
"<not ready>";}

}

private Plugln plugin = null; /1 Dynam c Source

private Source source; /1 Source to wite to DT
private Sink sink; /1 Sink to process requests to DT

private Channel Map sMap, aMap, rMap

/1 Channel Maps for sending, receiving, and accessing
private Pl uglnChannel Map pi cm

/1 An extended version of a Channel Map for a Plugln
private int sNum aNum rNum

48

/1

I ndex val ues of the Channel Maps

49

Appendix C

Section C1: Serial Power Strip Interpreter (Client-Side)

/**

* @\t hor: Peter Sal as

* (PSal as@cu. edu) </ A>

*

* <P>

* @ersion

* Created: 2/20/2004

* <P>

* Purpose: Designed for Santa University RACE 2003- 2004 Seni or Design
* Team

* <P>

* Description: This class is used for validating user inputs, and

* interpreting

* inputs to the actual commands that the Ground Station accepts for
* renpte access. Specifically, this class validates commands for the
* Power Strip. To establish a connection with the Ground Station

* | ocated at Santa C ara University Engi neering Departnment. For nore
* informati on on DataTurbine and its functionality, please refer to
* the RBNB website: http://rbnb.creare.com

**/

i mport java.io.*;
i mport java.util.?*;

public class PowerStripCientlinterpreter {

/***/
/******************** Q)nstructor **********************/

/***/

/**

* Description: initializes the mapped variables for the control of the
* Labj ack (Antenna Controler). This constructor also establishes a
* connection to the Ground Station using DT, so that it can send
* comands to the device. <P>
* Precondition: The I P of the DT Server nust be given to establish a
* connect i on<P>
* Postcondition: all variables are initialized to its default value. If
* a connection was made successfully to the DT Server, this
* constructor will return with no errors. |If there is an error
* connecting, then the constructor will return with an RBNB
* Dat aTur bi ne error.
**/
public PowerStripCientinterpreter(String host) {
conmandAr r ay[0] "power -on |vconvert";
conmandAr r ay[1] "power -off |vconvert";
conmandAr r ay[2] "power -on xcr";
conmandAr r ay[3] "power -off xcr";
conmandAr r ay[4] "power -on nodent;

50

conmandAr r ay[5]
conmandAr r ay[6]
conmandArr ay[7]
conmandAr r ay[8]
conmandAr r ay[9]
conmandAr r ay[10]

"power -off nodent;
"power -on antenna";
"power -off antenna";
"power -hel p";

"power -on";

"power -off";

dt . openSi nkConnecti on(host, "Power Stri pdientSi nk");
dt . addChannel Send("/sattest/sendPower Strip/text");
dt 2. openSi nkConnecti on(host, "Power Stri pCl i ent Si nk2");
dt 2. addChannel Send("/sattest/recei vePower Strip/text");

/***/
/************* ACCGSSOI‘S & MJtatOI'S ****************/

/***/

/**
* Description: This function validates a user conmand. <P>

* Precondition: The user input nust be sent of type String.<P>
* Postcondition: If the command is a valide command, this function

* return true. Else, it returns fal se
**/

public bool ean val i dat eCommand(Stri ng comand) {

return (get Conmandl ndex(conmand) != -1);

}
/**
* Description: This sends the command to the G ound Station<P>
* Precondition: The conmand fromthe user nust be sent of type
* String<P>
* Postcondition: |If the command is a valid command, then the command
* is sent and function returns true. Else, the function returns
* fal se.
*

*/
publ i c bool ean sendCommand(String conmand, int wait) {
i nt index = get Cormandl ndex(command) ;

switch (index) {
case 0: dt.sendMessage("ON 1",wait);
return true

case 1: dt.sendMessage("OFF 1",wait);
return true;

case 2: dt.sendMessage("ON 3",wait);
return true

case 3: dt.sendMessage("OFF 3", wait);
return true;

case 4: dt.sendMessage("ON 6",wait);
return true

case 5: dt.sendMessage("OFF 6", wait);
return true

51

case 6: dt.sendMessage("ON 4",wait);
return true

case 7: dt.sendMessage("OFF 4", wait);
return true;

case 8:
//sends the command to the recei vePowerStrip channel instead of
/1 sendPower Stri p channe
dt 2. sendMessage(get Hel p(),wai t);
return true;

case 9: dt.sendMessage("ON',wait);
return true;

case 10: dt.sendMessage("OFF",wait);
return true;
default: return fal se;

/**

* Description: This goes through the mapped comrands of the Power
Strip,

* and returns the index of that command. <P>
* Precondition: The user conmand nust be sent of type String.<P>
* Postcondition: If the conmand is valid, then this function returns
* the index of the command. If the command is not valid, this
* function returns -1.
**/
private int getComandl ndex(String comrand) {
for(int i=0; i<nunCommand; i++) {
i f (command.tolLower Case().startsWth(conmandArray[i]))
return i;
}
return -1;
}
/**

* Description: This is the help nenu for the Power Strip<P>
* Precondition: No precondition<P>

* Postcondition: returns the help menu.

**/

public static String getHel p() {

String helpl = "-----nommmm e \nHelp File for Power
Strip\n----------cmmmmia oo \n\n";

String hel p2 = "commands: \n -on\n\n -of fAn\n -on
[vconvert\n\n -of f Ivconvert\n\n";

String help3 =" -on xcr\n\n -of f xcr\n\n -on nodem n\n
of f modem n\n";

String help4 =" -on antenna\ n\n -of f antenna\n\n - hel p";

String help = helpl + hel p2 + hel p3 + hel p4;

return hel p;

52

/**

String<P>
Precondition: A nessage of type String nust be sent<P>
Post condi tion: the nunber of words in a nessage is returned<P>
NOTE: Words are delimnated by spaces.
*/
private static int countArgunents(String nmessage) ({
StringTokeni zer st = new StringTokeni zer (nessage) ;

E o T

return st.count Tokens();

/**

* Description: Gets the specific argunent in a nessage. <P>

* Precondition: A nessage of type String nust be sent. Also, the
speci fic argument that the user wants to extract nust be sent.

0,
if you want the 2nd word, then send the nunber 2.<P>

Post condi tion: The word that the user requested is returned. |If the

word does not exist (i.e. There is no second word/argument) then
the function returns null

ok kX k() *

*/
private static String getArgunment(String nessage, int argNum {
int count = 1;
StringTokeni zer st = new StringTokeni zer (nessage) ;

whi l e (st.hasMreTokens()) {
if (count == argNun)
return st.next Token();

count ++;
st . next Token();
}
return null
}
private int nunmComand = 11; /1 The nunber of napped conmmands

private String [] commandArray = new Stri ng[numComrmand] ;

/1 The mapped comands array
private DataTurbine dt = new DataTurbi ne();

[/ Establish connection to DT
private DataTurbine dt2 = new DataTurbine();

/| Establish connection to DT

Description: This counts the nunber of arguments in a nessage of type

53

SectionC2: Serial Power Strip Echo (Client-Side)

/**
* @\t hor: Peter Sal as
* (PSal as@cu. edu) </ A>
*
* <p>
* @ersion
* Created: 2/18/2004
* <p>
* Purpose: Designed for Santa University RACE 2003- 2004 Seni or Design
* Team
* <p>
* Description: This class is used for receiving all information com ng
* fromthe Serial Power Strip |ocated at the Gound Station. This
* class uses RBNB Data Turbine to establish a connection with the
* ground station |ocated at Santa Clara University Engi neering
* Department. For nore information on DataTurbine and it's
* functionality, please refer to the RBNB website:
* http://rbnb.creare. com
**/

i mport java.io.*;
i mport java.util.?*;
i mport java.l ang. *;

public class PowerStripdientEcho

{

public static void main(String[] args)
{
Dat aTur bi ne dt = new Dat aTur bi ne();
/| Dat aTur bi ne Cl ass used for connection
String host;
//Variable used to specify where DT Host is

Systemout.println("RACE: Power Strip Response Wndown");
i f(args. | ength>0)

{
host =ar gs[0] ;
/luser must specify where DT Host is
Systemout. println("Connecting to " + host + "...");
}
el se
{
Systemout. println("ERROR No RBNB host defined");
return;
}

/1 Establish connection with Ground Station by
setting up channel s
dt . openPl ugi nConnecti on(host, "recei vePowerStrip");

dt . addChannel Recei ve("text");
dt. regi st er Recei veChannel () ;

System out. println("Connected...");

54

while (true)

{
String nessage = dt.receiveMessage(-1);
//blocking wait for information
if (message !'= null) {
System out . printl n(message) ;
/1if there's a message, output
Systemout.println();
}
}

it

55

Section C3: Serial Power Strip Server (Server-Side)

/

EE T T T T T R R N N N R N S A . N B N N N T N N N N N N N N B T S

@\wut hor: Peter Sal as
 (PSal as@cu. edu)

@ersion
Created: 2/23/2004

Pur pose: Designed for Santa University RACE 2003-2004 Senior Design
Team

Description: This class takes request coming in through DT and
forwards the command out to the Serial Power Strip that is connected
to the Serial Port. any response conming fromthe Serial Power Strip
is forwarded back out through

RBNB Dat a Tur bi ne.

@#) TNCDT. j ava 1.12 98/ 06/ 25 SM
Copyright (c) 1998 Sun Mcrosystens, Inc. Al Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license
to use, nmodify and redistribute this software in source and binary
code form provided that i) this copyright notice and |icense appear
on all copies of the software; and ii) Licensee does not utilize the
software in a nanner which is disparaging to Sun.

This software is provided "AS IS," without a warranty of any ki nd.
ALL EXPRESS OR | MPLI ED CONDI TlI ONS, REPRESENTATI ONS AND WARRANTI ES,

| NCLUDI NG ANY | MPLI ED WARRANTY OF MERCHANTABI LI TY, FITNESS FOR A
PARTI CULAR PURPOSE OR NON- | NFRI NGEMENT, ARE HEREBY EXCLUDED. SUN AND
| TS LI CENSORS SHALL NOT BE LI ABLE FOR ANY DAMAGES SUFFERED BY

LI CENSEE AS A RESULT OF USI NG, MODI FYI NG OR DI STRI BUTI NG THE
SOFTWARE OR | TS DERI VATI VES. I N NO EVENT WLL SUN OR I TS LI CENSORS
BE LI ABLE FOR ANY LOST REVENUE, PROFI T OR DATA, OR FOR DI RECT,

| NDI RECT, SPECI AL, CONSEQUENTI AL, | NCI DENTAL OR PUNI Tl VE DANMAGES,
HOWNEVER CAUSED AND REGARDLESS OF THE THEORY OF LI ABILITY, ARISING
OQUT OF THE USE OF OR I NABI LI TY TO USE SOFTWARE, EVEN | F SUN HAS BEEN
ADVI SED OF THE PCSSI BI LI TY OF SUCH DAMAGES.

This software is not designed or intended for use in on-line contro
of aircraft, air traffic, aircraft navigation or aircraft
conmuni cations; or in the design, construction, operation or
mai nt enance of any nuclear facility. Licensee represents and
warrants that it will not use or redistribute the Software for such
pur poses.
/

i mport java.io.*;
i mport java.util.?*;
i mport javax.comm *;

public class PowerStripServer inplenments Runnabl e,
Seri al Port Event Li st ener {

static ConmPortldentifier portld;

56

static Enuneration portlList;
static String messageString = "";

static int stx = 0O;
static bool ean out put Buf fer Enpt yFl ag = fal se;

static I nputStream i nput Stream
static Qutput Stream out put St ream
static Serial Port serial Port;

Thread readThread;

static bool ean portfound
static bool ean dat aReady
static String sBuffer = "";
static int num

fal se;
fal se;

public static void main(String[] args) {
Dat aTur bi ne power Stri pDT = new Dat aTur bi ne();

String host; /lvariable to store address of host
String pluglnNane = "sendPower Strip";

/1 nanme of the plugin that will be used

/] to read information from DT.
String sendChannel = "/sattest/receivePowerStrip/text"”;

/1 the location of the channel
/!l to wite information to DT.
String comport = "COVB";
/1 the desired serial port to conmmuni cate on

Systemout.println("Wlcone to the Power Strip to Data
Tur bi ne program ");
i f(args. | ength>0){
host =ar gs[0] ;
System out. println("Connecting to

+ host + "...");

el se {
Systemout. println("ERROR No RBNB host defined");
return;

}
/1 plugin used to create a channel that you will read from when
/lclient wites to channel

power St ri pDT. openPl ugi nConnect i on(host, pl ugl nNane) ;

power St ri pDT. addChannel Recei ve("text");
power St ri pDT. r egi st er Recei veChannel () ;

/1 sink used to wite a channel

power St ri pDT. openSi nkConnecti on(host, "Power St ri pServer Si nk") ;
power St ri pDT. addChannel Send(sendChannel) ;

System out. println("Connected...");

/] Search for COMVB port
portList = ConmPortldentifier.getPortldentifiers();

whi |l e (portList.hasMoreEl enents()) {

portld = (ComPortlidentifier)
portList.nextEl ement();
if (portld.getPortType() ==
ConmPort |l dentifier. PORT_SERI AL) {
if (portld.getNanme().equal s(comport)) {
Power Stri pServer powerstrip = new
Power Stri pServer () ;
System out. println(portld.getName() + "

found!");
portfound = true;
}
}
}
if (portfound == false)
Systemout.println("Port was not found...\n\nExiting
program...");
whi | e(portfound){
i f (dat aReady) {
try {
Thr ead. sl eep(200);//ms wait to finish sending
dat a
/] Push data onto the server:
//check if there is something in buffer
if (sBuffer !'= null && sBuffer !="")
{
Systemout.println("Placing string: " +
sBuffer + " into server.");
power Stri pDT. sendMessage(sBuffer);
}
/lreset flags
dat aReady=f al se
sBuf fer="";
} catch (InterruptedException e) {}
}
//send the nessage through DT
messageString = power Stri pDT. recei veMessage() ;
if (messageString !'= null)
{
stx=1;//clear buffer
Systemout.println("Data ready to be received
fromDT!'");

System out. print ("Conmand: " + nessageString);
messageStri ng nmessageString + (char) O0OxD;
String accept "Y' + (char) OxD,

try {

58

out put Stream wite(nmessageString. getBytes());

}
publ

} catch (1 OException e) {}

Systemout.println(" sent to serial...\n");

try {
Thr ead. sl eep(200);

} catch (Exception e) {}

try{
out put Stream wite(accept.getBytes());

} catch (1 OException e) {}

try {
Thr ead. sl eep(200) ;

} catch (Exception e) {}

stx = 0O;

ic PowerStripServer() {
try {

serial Port = (Serial Port) portld.open("TNCDTApp", 2000);
} catch (PortlnUseException e) {}
try {

i nput Stream = serial Port.getlnputStream);

out put Stream = seri al Port. get Qut put Stream);

} catch (1 CException e) {}

try {

publ

publ

seri al Port. addEvent Li st ener (this);
} catch (TooManyLi stenersException e) {}
serial Port. notifyOnDat aAvai | abl e(true);
try {
serial Port. set Seri al Port Paranms(9600,
Seri al Port . DATABI TS 8,
Serial Port. STOPBI TS 1,
Seri al Port. PARI TY_NONE) ;
} catch (UnsupportedConmOper ati onException e) {}
readThread = new Thread(this);
readThread. start ();

ic void run() {
try {
Thr ead. sl eep(20000) ;
} catch (InterruptedException e) {}

ic void serial Event (Serial Port Event event) {
swi tch(event. get Event Type()) {

case Serial Port Event. Bl :

case Serial Port Event . CE:

case Serial Port Event. FE:

59

case Seri al Port Event . PE:

case Seri al Port Event. CD:

case Seri al Port Event. CTS:

case Seri al Port Event . DSR:

case Seri al Port Event. Rl :

case Seri al Port Event. QUTPUT_BUFFER EMPTY:
br eak;

case Seri al Port Event. DATA AVAI LABLE:
byte[] readBuffer = new byte[24];

try {
whil e (inputStream available() > 0) {
int numBytes = inputStream read(readBuffer);
}
i f(stx==0)({

dat aReady=t r ue;
sBuffer = sBuffer + new
String(readBuffer);

}

} catch (1 OException e) {}
br eak;

60

Appendix D

Section D1: Predict Interpreter (Client-Side)

/**
* @\t hor: Peter Sal as
* (PSal as@cu. edu) </ A>
*
* <p>
* @ersion
* Created: 2/20/2004
* <p>
* Purpose: Designed for Santa University RACE 2003- 2004 Seni or Design
* Team
* <p>
* Description: This class is used for validating user inputs, and
* interpreting inputs to the actual commands that the Ground Station
* accepts for renpte access. Specifically, this class validates
* commands for Predict, the Satellite Tracker Program To esblish a
* connection with the Ground Station |located at Santa Clara University
* Engi neering Department. For nore information on DataTurbi ne
* and it's functionality, please refer to the RBNB website:
* http://rbnb.creare.com
**/

i mport java.io.*;
i mport java.util.*;

public class PredictCientlinterpreter {

/***/
/********************* Q)nstructor **********************/

/***/

/**

* Description: initializes the mapped vari ables for the control of

* Predict (Satellite Tracker). This constructor also establishes a
* connection to the Gound Station using DT, so that it can

* send commands to the device. <P>

* Precondition: The I P of the DT Server nust be given to establish a

* connect i on<P>

* Postcondition: all variables are initialized to its default value. If
* a connection was made successfully to the DT Server, this

* constructor will return with no errors. |If there is

* an error connecting, then the constructor will return with an

* RBNB Dat aTur bi ne error.

*

*/
public Predictdientinterpreter(String host) {
conmandAr r ay[0] "predict -update"
conmandAr r ay[1] "predict -poss”;
conmandAr r ay[2] "predict -pass";
conmandAr r ay[3] "predict -help";

61

dt . openSi nkConnecti on(host, "Predi ctdientSi nk");
dt . addChannel Send("/sattest/sendPredict/text");

}

/***/

/****************** ACCGSSOTS & MJtatOfS **********/

/***/

/**

* Description: This function validates a user conmand. <P>

* Precondition: The user input nust be sent of type String.<P>

* Postcondition: If the command is a valide command, this function
* return true. Else, it returns false

**/

public bool ean val i dat eCommand(Stri ng command) {

return (get Conmandl ndex(conmand) != -1);

}
/**
* Description: This sends the command to the G ound Station<P>
* Precondition: The conmand fromthe user nust be sent of type
* String<P>
* Postcondition: |f the command is a valid command, then the commmand
* is sent and function returns true. Else, the function returns
* f al se.
*

*/
public bool ean sendCommand(String conmand, int wait) {
i nt index = get Cormandl ndex(command) ;

switch (index) {
case 0: if (countArgunents(comand) > 2) {
String nessage = get Argunent (command, 2) + " "
+ get Argunent (command, 3);
dt . sendMessage(nessage, wait);
return true

}

return false;
case 1: if (countArgunments(comand) > 2) {
String nessage = get Argunent (command, 2) + " "
+ get Argunent (conmand, 3);
dt . sendMessage(nessage, wait);
return true

}

return false;
case 2: if (countArgunents(comand) > 2) {
String nessage = get Argunent (conmmand, 2) + " "
+ get Argunent (command, 3);
dt . sendMessage(nessage, wait);
return true

}

return fal se;
case 3: dt.sendMessage("-hel p", wait);
return true

62

default: return false;

/**

* Description: This goes through the mapped conmmands of Predict, and
* returns the index of that command. <P>
* Precondition: The user conmand nmust be sent of type String.<P>
* Postcondition: If the command is valid, then this function returns
* the index of the command. If the command is not valid, this
* function returns -1.
**/
private int getComandl ndex(String command) {
for(int i=0; i<nunCommand; i++) {
i f (command.tolLower Case().startsWth(conmandArray[i]))
return i;

}

return -1;

/**
* Description: This counts the nunmber of argunents in a nessage of type
* String<P>
* Precondition: A nessage of type String nmust be sent<P>
* Postcondition: the nunber of words in a nessage is returned<P>
* NOTE: Words are delimnated by spaces.
**/
private static int count Argunents(String nmessage) ({
StringTokeni zer st = new StringTokeni zer (nessage) ;

return st.count Tokens();

/**

* Description: Gets the specific argunent in a nessage. <P>

* Precondition: A nessage of type String nust be sent. Also, the
specific argument that the user wants to extract must be sent.

0,
if you want the 2nd word, then send the nunber 2.<P>

Post condi tion: The word that the user requested is returned. |If the

word does not exist (i.e. There is no second word/argument) then
the function returns null

ok kX k() *

*/
private static String getArgument(String nessage, int argNum {
int count = 1;
StringTokeni zer st = new StringTokeni zer (nessage) ;

whi | e (st.hasMreTokens()) {
if (count == argNunm)
return st.next Token();

count ++;

st . next Token();
}
return null

63

}

private int numComand = 4; /1 The nunber of commands
private String [] commandArray = new String[numComrand] ;

/I mapped conmmand array
private DataTurbine dt = new DataTurbi ne();

// Establ i sh connection to DT

64

Section D2: Predict Echo (Client-Side)

/

L T S T S S N N R R

*

@\wut hor: Peter Sal as

 (PSal as@cu. edu) </ A>

<pP>

@ersion

Created: 2/18/2004

<P>

Pur pose: Designed for Santa University RACE 2003-2004 Senior Design
Team

<P>

Description: This class is used for receiving all information com ng
fromthe Predict Program (Satellite Tracker) |located at the G ound
Station. This class uses RBNB Data Turbine to establish a
connection with the ground station |located at Santa Clara University
Engi neering Departnent. For nore information on DataTurbine and it's
functionality, please refer to the RBNB website:

http://rbnb. creare.com
*/

i mport java.io.*;
i mport java.util.?*;
i mport java.l ang. *;

public class PredictdientEcho

{

public static void main(String[] args)
{
Dat aTur bi ne dt = new Dat aTur bi ne();
/| Dat aTur bi ne Cl ass used for connection
String host;
//Variable used to specify where DT Host is

System out. println("RACE: Predict Response W ndow\ n");
i f(args. | ength>0)

{
host =ar gs[0] ;
/luser must specify where DT Host is
Systemout. println("Connecting to " + host + "...");
}
el se
{
Systemout. println("ERROR No RBNB host defined");
return;
}

/1 Establish connection with Ground Station by setting up channel s
dt . openPl ugi nConnecti on(host, "receivePredict");

dt . addChannel Recei ve("text");
dt. regi st er Recei veChannel () ;

System out. println("Connected...");

65

while (true)

{
String nessage = dt.receiveMessage(-1);
//blocking wait for information
if (message !'= null) {
System out . printl n(nmessage);
/1if there's a message, output
Systemout.println();
}
}

it

66

Section D3: Predict Server (Server-Side)

/**
* @\t hor: Peter Sal as
* (PSal as@cu. edu) </ A>
*
* <P>
* @ersion
* Created: 5/14/2004
* <P>
* Purpose: Designed for Santa University RACE 2003- 2004 Seni or Design
* Team
* <P>
* Description: This class takes coordinates the actions and requests
* fromthe RBNB DataTurbine. Specifically, this forwards all conmands
* coming in fromDT to the PredictServerinterpreter, which interprets
* the user inputs. All, responses are then forwarded back to the user
* through DT.
**/

i mport java.io.*;
i mport java.util.?*;

public class PredictServer {
public static void main(String[] args) {
Predi ct Serverlinterpreter predictlnterpreter = new

Predi ct Serverlnterpreter();

Dat aTur bi ne predi ct DT = new Dat aTur bi ne() ;

String host; /lvariable to store address of host
String pluglnName = "sendPredict”;
/1 nanme of the plugin that will be used
/1 to read information from DT.
String sendChannel = "/sattest/receivePredict/text";

// the location of the channe
// to wite information to DT.

int count Args=0; //The nunber of argunments that cone in from DT
String dt Message; //The message from DT

String command; /1 The command portion of the dtMessage
String subCommand; /1 The subconmand portion of the dtMessage
String output; /1 The response fromthe Predict Program

String errorMsg = "ERROR I nvalid Conmmand \n--Type \"-help\" for
nore informati on on how to send conmands to Predict Software";
/1 Error Message if an invalid command fromthe user

Systemout.println("Wlcone to the Predict to Data Turbine
program ") ;

i f(args. | ength>0){
host =ar gs[0] ;
/luser must specify the I P of the DT Server
Systemout. println("Connecting to " + host + "...");

67

el se {
Systemout. println("ERROR No RBNB host defined");
return;

/| Establi shes a connection to the DT Server
pr edi ct DT. openPl ugi nConnect i on(host, pl ugl nNane) ;
predi ct DT. addChannel Recei ve("text");
predi ct DT. r egi st er Recei veChannel () ;

pr edi ct DT. openSi nkConnecti on(host, " Predi ct Server Si nk") ;
pr edi ct DT. addChannel Send(sendChannel) ;

System out. println("Connected...");

while (true) {
dt Message = predictDT.recei veMessage(-1); //Bl ocking
request for information on DT

/1 Break the nessage up into parts
count Args = Predict Server. count Argunent s(dt Message) ;
conmmand = Predi ct Server. get Argunment (dt Message, 1);
subCommand = Predi ct Server. get Argurrent (dt Message, 2);

if (predictlnterpreter.validateComand(command)) {
Systemout.println("validate Wrked\n");
// perform command and save the out put
i f (subCommand == null)

out put =
predi ctlnterpreter. perfornmCommand(conmand, "");
el se
out put =

predictlnterpreter. performCommand(conmand, subConmand) ;
//send the output through DT back to the user
predi ct DT. sendMessage(out put, 1);

}
el se { predictDT.sendMessage(error Mg, 1); }

/**
* Description: Counts the number of argunents<P>
* Precondition: The nmessage of type String nust be passes in<P>
* Postcondition: The nunber of argunents is returned
**/
private static int countArgunents(String nmessage) ({
StringTokeni zer st = new StringTokeni zer (nessage) ;

return st.count Tokens();

/**
* Description: This gets the specific argument in a nessage. <P>

* Precondition: There nust be a nessage of type String passed in, and
* al so the specific argunent that the user wants to "pull out." So

* % X %k F

if the user wants the second argunent, they would pass the nunber
"2" in.<P>
Postcondition: If there is word at the specified position, that word
is returned. |If not, then the function returns null.
*/
private static String getArgument(String nessage, int argNum {
int count = 1;
StringTokeni zer st = new StringTokeni zer (nessage) ;
whi | e (st.hasMreTokens()) {
if (count == argNunm
return st.next Token();
count ++;
st . next Token();
}
return null;
}

69

Section D4: Predict (Server-Side)

/

*

@\wut hor: Peter Sal as
 (PSal as@cu. edu) </ A>

<pP>
@ersion
Created: 3/10/2004
<P>
Pur pose: Designed for Santa University RACE 2003-2004 Senior Design
Team
<P>
Description: This class is used for comunicating with the Predict
Program Predi ct is Dos-comand based program so this programwites
out to the conmmand pronpt and stores the information com ng back
onto a buffer. This buffer is then returned back to the calling
function. Further information on the predict programthat we use,
pl ease refer to this website

(http://ww. gsl.net/kd2bd/ predict.htm)
</ A>

L T R . T S T N N N B I N N . .

*
~

i mport java.l ang. *;
i mport java.io.*;

public class Predict {

/**

* Description: This requests the current position of a particular

* satellite. This class depends on the Predict program and the two
* line keplerian elenent file (predict.tle). If the satellite

* requested is not in this list, then there will be no response. <P>
* Precondition: The satellite nust be in the predict.tle file.<P>

* Postcondition: The information about the current position of the

* satellite will be returned.

*

*/
public static String getSatellitelnfo(String satellite) {
try {
Process process = Runtine.getRuntime().exec("predict
-f " + satellite);;
process. wait For();

I nput Stream in = process. getl nput Stream();
String stringln ="";

int charln;

char tenpChar;

while((charln in.read()) '=-1) {
t enpChar (char)charln;
Character tChar = new Character(tenpChar);
stringln += tChar.toString();

}

return stringln;

70

}

catch(Exception e) { Systemout.printlin(e); return null;}

/**
* Description: This function requests an update of the predict.tle file
* from
*
* http_get http://ww. gsl.net/kd2bd/ predict.tle
* </ A>. <P>
* Precondition: The tle file that you want to update nust be given of
* type String RACE is specifically using the "predict.tle" file, so
* this rmust be the paraneter passed. <P>
* Postcondition: The function will return "Update Successful" if there
* is no error.
**/
public static bool ean updat eKeplerians(String tleFile)
{
try {
Process processl =
Runti me. get Runti me().exec("http_get
http://ww. gsl . net/kd2bd/ predict.tle " + tleFile);
processl. wait For ();

System out. println("Predict.updateKeplerians(tleFile)--
>Downl oadi ng update");
Process process2 = Runtine.getRuntinme().exec("predict
-u " +tleFile);;
process2. wait For () ;

System out. println("Predict.updateKeplerians(tleFile)-->Update
Conpl eted") ;
return true

catch(Exception e) { Systemout.printlin(e); return fal se;}

/**

* Description: This function requests the next pass of a specific

* satellite. Like the getSatellitelnfo() function, this function

* depends on the predict.tle file If the satellite is not in the

* list, then this function does not return anything. <P>

* Precondition: The satellite nmust be in the predict.tle fil e<P>

* Postcondition: Information about when and where the next pass will be
* i s returned.

*

*/
public static String getNextPass(String satellite) {
try {
Process process = Runtine.getRuntine().exec("predict
-p " + satellite);;

process. wai t For () ;

I nput Stream in = process. getl nput Stream();

String stringln ="";
int charln;

char tenpChar;

71

while((charln = in.read()) '=-1) {
tempChar = (char)charln;

Character tChar = new Character(tenmpChar);

stringln += tChar.toString();
}

return stringln;

}
cat ch(Exception e) { Systemout.println(e);

return null;}

72

Section D5: Predict I nterpreter (Server-Side)

/

*

@\wut hor: Peter Sal as
 (Peter Salas)

@escription: This class is responsible for validating conmands for
the program Predict. |If a valid conmand, then this class processes
the request and returns if the command was performed successfully.

L B R R

~

i mport java.io.*;
i mport java.util.*;

public class PredictServerinterpreter {

/***/
/****************** Q)nstructor **********************/
/***/

/**

* Description: initializes the mapped variables for the control of the
* Predi ct program

* Precondition: No Precondition<P>

* Postcondition: all variables are initialized to its default val ue.

**/

public PredictServerinterpreter() {

conmandArray[0] = "-update";

conmandArray[1] = "-poss";

conmmandArray[2] = "-pass";

conmmandArray[3] = "-hel p";
/***/
/***************** ACCGSSOI‘S & MJtatOFS **********/

/***/

/**
* Description: This function validates a user conmand. <P>

* Precondition: The user input nust be sent of type String.<P>
* Postcondition: If the command is a valide command, this function

* return true. Else, it returns false
**/

public bool ean val i dat eCommand(Stri ng command) {

return (get Conmandl ndex(conmand) != -1);

}
/**
* Description: This sends the command to the Predict progran<P>
* Precondition: The conmand fromthe user nust be sent of type
* String<P>
* Postcondition: |If the conmand is a valid command, then the comrand
* is sent and function returns the information conmng fromthe
* Program Else, the function returns null
*

*/

73

public String perfornmCommand(Stri ng command, String subComrmand) {
i nt commandl ndex = get Commandl ndex(command) ;
Systemout.println("\"" + command +"\"");

Systemout.println("\"" + subCommand +"\"");

swi tch (comandl ndex) {
case 0: if (Predict.updateKeplerians(subCommand)) {
System out. println("Update Conpl eted");
return "Update Conpleted”;
}
System out. println("Update Unsuccessful");
return "Update Unsuccessful";

case 1: Systemout.println("Getting Satellite Info");
return Predict.getSatellitelnfo(subComrand);

case 2: Systemout.println("Getting next Pass of

Satellite");
return Predict.get Next Pass(subCommand) ;
case 3: Systemout.println("Getting Hel p");
return getHel p();
default: return null;
}
}
/**

* Description: This goes through the mapped conmands of the Predict
* program and returns the index of that command. <P>
* Precondition: The user conmand nmust be sent of type String.<P>
* Postcondition: If the command is valid, then this function returns
* the index of the command. If the command is not valid, this
* function returns -1.
**/
private int getComandl ndex(String comrand) {
for(int i=0; i<nunCommand; i++) {
if (commandArray[i]. equal sl gnoreCase(conmand))
return i;

}

return -1;

/**
* Description: This outputs the hel p nenu<P>
* Precondition: No Conditions<P>
* Postcondition: The function returns a String hel p nessage.
**/
private String getHel p() {
String help = "Help File for Predict\n---------------------
\ n\ ncommands: \ n -update <.tle file containing Keplerians>\n\tNOTE:
the kep file you should update should be predict.tle\n\n - poss
<satellite>\n\tNOTE: If you are trying to talk to Sappire, enter in
\"OSCAR-45\" as the satellite\n\n -pass <satellite>\n\n - hel p";

74

return hel p;

}

private int numComand = 4;
private String [] comandArray

new St ri ng[nunComrand] ;

75

Appendix E

Section E1: Antenna Interpreter (Client-Side)

/**

* @\t hor: Peter Sal as

* (PSal as@cu. edu) </ A>

*

* <p>

* @ersion

* Created: 2/20/2004

* <p>

* Purpose: Designed for Santa University RACE 2003- 2004 Seni or Design
* Team

* <p>

* Description: This class is used for validating user inputs, and

* interpreting inputs to the actual commands that the Ground Station
* accepts for renpte access. Specifically, this class validates

* commands for Labjack (Antenna Controller). To establish a connection
* with the G ound Station located at Santa Clara University

* Engi neering Department. For nore information on DataTurbi ne

* and it's functionality, please refer to the RBNB website:

* http://rbnb.creare.com

**/

i mport java.io.*;
i mport java.util.?*;

public class AntennaCientlinterpreter {

/***/
/******************* Q)nstructor *****************/

/***/

/**

* Description: initializes the mapped variables for the control of the
* Labj ack (Antenna Controler). This constructor also establishes a
* connection to the Ground Station using DT, so that it can

* send commands to the device. <P>

* Precondition: The I P of the DT Server nust be given to establish a

* connect i on<P>

* Postcondition: all variables are initialized to its default value. If
* a connection was made successfully to the DT Server, this

* constructor will return with no errors. |If there is

* an error connecting, then the constructor will return with an

* RBNB Dat aTur bi ne error.

*

*/
public AntennaCientinterpreter(String host) {
conmandAr r ay[0] "antenna -t";
conmmandArr ay[1] "antenna -a";
conmandAr r ay[2] "antenna -s";
conmandAr r ay[3] "ant enna - hel p";

dt . openSi nkConnecti on(host, "Ant ennad i ent Si nk") ;

76

dt . addChannel Send("/ sattest/sendAntenna/text");

/**/
/*************** ACCGSSOFS & MJtatOFS ***************/

/**/

/**
* Description: This function validates a user conmand. <P>

* Precondition: The user input nust be sent of type String.<P>
* Postcondition: If the command is a valid command, this function

* return true. Else, it returns fal se
**/

public bool ean val i dat eCommand(Stri ng command) {

return (get Conmandl ndex(conmand) != -1);

}
/**
* Description: This sends the command to the G ound Station<P>
* Precondition: The conmand fromthe user nust be sent of type
* String<P>
* Postcondition: |If the command is a valid command, then the command
* is sent and function returns true. Else, the function returns
* fal se.
*

*/
public bool ean sendCommand(String conmand, int wait) {
i nt index = get Cormandl ndex(command) ;

switch (index) {
case 0: dt.sendMessage("-t",wait);
return true

case 1: dt.sendMessage("-a",wait);
return true;

case 2: dt.sendMessage("-s",wait);
return true

case 3: dt.sendMessage("-hel p",wait);
return true;

default: return false;

}

}
/**
* Description: This goes through the mapped conmmands of the Labjack
* program and returns the index of that command. <P>
* Precondition: The user conmand nmust be sent of type String.<P>
* Postcondition: If the conmand is valid, then this function returns
* the index of the command. If the command is not valid, this
* function returns -1.
*

*/
private int getComandl ndex(String comrand) {
for(int i=0; i<nunCommand; i++) {
if (commandArray[i]. equal sl gnoreCase(conmand))
return i;

77

}

return -1;

}

private int numComand = 4; /1 The nunber of napped
comands
private String [] commandArray = new String[numComrand] ;
/1 The array of commands
private DataTurbine dt = new DataTurbi ne();
/| Dat aTur bi ne cl ass used for establishing connection

78

Section E2: Antenna Echo (Client-Side)

/**
* @\t hor: Peter Sal as
* (PSal as@cu. edu) </ A>
* <P>
* @ersion
* Created: 5/12/2004
* <P>
* Purpose: Designed for Santa University RACE 2003- 2004 Seni or Design
* Team <P>
* Description: This class is used for receiving all information com ng
* fromthe Labjack, which is connected to the antenna. This class
* uses RBNB Data Turbine to establish a connection with the ground
* station located at Santa Cl ara University Engi neering Department.
* For nore information on DataTurbine and its functionality, please
* refer to the RBNB website: http://rbnb.creare.com
**/

i mport java.io.*;
i mport java.util.?*;
i mport java.lang.*;

public class Antennad ientEcho

public static void main(String[] args)
{
Dat aTur bi ne dt = new Dat aTur bi ne();
// Dat aTur bi ne C ass used for connection
String host;
//Variable used to specify where DT Host is

System out. println("RACE: Antenna Response W ndow\ n");
i f(args. | ength>0)

{
host =ar gs[0] ;
//user must specify where DT Host is
Systemout. println("Connecting to " + host + "...");
}
el se
{
Systemout.println("ERROR No RBNB host defined");
return;
}

/1 Establish connection with Ground Station by setting up channels

dt . openPl ugi nConnecti on(host, "receiveAntenna");

dt . addChannel Recei ve("text");
dt. regi st er Recei veChannel () ;

System out. println("Connected...");
while (true)
{

String nessage = dt.receiveMessage(-1);

79

//blocking wait for information

if (message !'= null) {
System out . printl n(message) ;
/1if there's a message, output
Systemout.println();

it

80

Section E3: Antenna Server (Server-Side)

/

L . S S T T R B T

*

@\wut hor: Peter Sal as

 (PSal as@cu. edu) </ A>

<pP>

@ersion

Created: 5/14/2004

<P>

Pur pose: Designed for Santa University RACE 2003-2004 Senior Design
Team

<pP>

Description: This class takes coordi nates the actions and requests
fromthe RBNB DataTurbine. Specifically, this forwards all commands
coming in fromDT to the AntennaServerinterpreter, which interprets
the user inputs. All, responses are then forwarded back to the user
t hr ough DT.
*/

i mport java.io.*;
i mport java.util.?*;

public class AntennaServer {

public static void main(String[] args) {
Ant ennaServerinterpreter antennalnterpreter = new

Ant ennaServerInterpreter();

Dat aTur bi ne ant ennaDT = new Dat aTur bi ne() ;
String host; /lvariable to store address of host
String pluglnNane = "sendAnt enna"
/1 nanme of the plugin that will be used
/1 to read information from DT.
String sendChannel = "/sattest/recei veAntennal/text";
/1 the location of the channe
/[l to wite information to DT.

String dt Message; /1 The nmessage coning in fromDT
String output; /1 The nmessage that will be witten out to DT
String errorMsg = "ERROR I nvalid Command \n--Type \"-hel p\" for

more informati on on how to send commands to Antenna Software";

Systemout.println("Wlcone to the Antenna to Data Turbi ne Server

program ") ;

i f(args. | ength>0){
host =ar gs[0] ;
// The user nmust enter in the |IP of the DT Server

Systemout. println("Connecting to " + host + "...");
}
el se {
Systemout. println("ERROR No RBNB host defined");
return;

81

// Establish a connection with the DI Server and setup Channels
ant ennaDT. openPl ugi nConnecti on(host, pl ugl nNane) ;
ant ennaDT. addChannel Recei ve("text");
ant ennaDT. r egi st er Recei veChannel () ;

ant ennaDT. openSi nkConnect i on(host, " Ant ennaSer ver Si nk") ;
ant ennaDT. addChannel Send(sendChannel) ;

System out. println("Connected...");

while (true) {
dt Message = antennaDT. recei veMessage(-1);
/1blocking call to receive data from DT

i f (antennal nterpreter.validateComand(dtMessage)) {
out put =
ant ennal nt er pr et er. per f or nConmand(dt Message) ;

ant ennaDT. sendMessage(out put, 1);
//wait only 1 milisecond for a response

}

el se { antennaDT. sendMessage(error Mg, 1); }

82

Section E4: Antenna (Server-Side)

/**
* @\t hor: Peter Sal as
* (PSal as@cu. edu) </ A>
*
* <P>
* @ersion
* Created: 5/14/2004
* <P>
* Purpose: Designed for Santa University RACE 2003- 2004 Seni or Design
* Team
* <P>
* Description: This class is used for conmmunicating with the
* Ant ennaAut oTracker programthat was witten by Graduate Student, Dan
* Schuet, of the Santa O ara University Engineering Departnent. This
* program conbi nes the Predict program and the Labjack program
* to provide control functionality of the Antenna. This program
* allows the user to ask for the current |ocation of the Antenna and
* also tell the antenna to autotrack to the SAPPH RE Satellite (The
* Stanford Satellite, a.k.a OSCAR-45, NO 45).
**/

i mport java.l ang. *;
i mport java.io.*;

public class Antenna {

/***/
/***************** ACCGSSOI‘S **********************/

/***/

/**

* Description: Sends a conmand to AntennaAutoTracker, telling it to

* autotrack a Satellite. Currently, this programis set to

* autotrack to SAPPHI RE (The Stanford Satellite), if you want it to
* track a different satellite, then you will have to change the C

* code for predict.<P>

* Precondition: The Antenna Controller rmust be connected to | abjack and
* recei vi ng power <p>

* Postcondition: This function will passes the conmmand to anot her

* program and that programw |l execute in its own thread.

* Therefore, this is a non-bl ocking message passing to turn the

* ant enna.

*

public static boolean autoTrackSatellite() {

try {
Process process =

Runti ne. get Runti me() . exec(" Ant ennaAut oTracker -t");

return true;

}

catch(Exception e) { Systemout.printlin(e); return false;}

/**

83

* Description: Sends a conmand to AntennaAut oTracker asking it where

* the antenna i s pointed now. <P>

* Precondition: The Antenna Controller rmust be connected to | abjack and
* recei vi ng power <p>

* Postcondition: The function returns the current position of the

* ant enna.

**/

public static String get AntennaPosition()

{

try {
Process process =

Runti ne. get Runti me() . exec(" Ant ennaAut oTracker -a");
process. wait For();

Input Streamin = process. getlnput Stream();
String stringln ="";

int charln;

char tenpChar;

while((charln in.read()) '=-1) {
t enpChar (char)charln;
Character tChar = new Character(tenmpChar);
stringln += tChar.toString();

}

return stringln;

}

catch(Exception e) { Systemout.printlin(e); return null;}

/**
* Description: Sends a conmand to AntennaAut oTracker asking it where
* SAPPHI RE is currently<P>
* Precondition: The Antenna Controller rmust be connected to | abjack and
* recei vi ng power <p>
* Postcondition: The function returns the current position of SAPPH RE.
**/
public static String getSatellitePosition() {
try {

Process process =
Runti ne. get Runti me() . exec(" Ant ennaAut oTr acker -s");;

process. wait For () ;

I nput Stream in = process. getl nput Stream();
String stringln ="";

int charln;

char tenpChar;

while((charln in.read()) '=-1) {
t enpChar (char)charln;
Character tChar = new Character(tenpChar);
stringln += tChar.toString();

}

return stringln;

cat ch(Exception e) { Systemout.printlin(e); return null;}

84

/**

* Description: This is the help nenu for the AntennaAutoTracker <P>
* Precondition: AntennaAutoTracker nust be within same directory as
* this class fil e<P>
* Postcondition: The help menu is returned to user.
**/
public static String getHel p() {
try {

Process process =
Runti ne. get Runti me() . exec(" Ant ennaAut oTr acker") ;;

process. wait For();

Input Streamin = process. getlnput Stream();
String stringln ="";

int charln;

char tenpChar;

while((charln in.read()) '=-1) {
t enpChar (char)charln;
Character tChar = new Character(tenmpChar);
stringln += tChar.toString();

}

return stringln;

}

catch(Exception e) { Systemout.printlin(e); return null;}

85

Section E5: Antenna I nterpreter (Server-Side)

/**
* @\t hor: Peter Sal as
* (PSal as@cu. edu) </ A>
*
* <pP>
* @ersion
* Created: 5/14/2004
* <P>
* Purpose: Designed for Santa University RACE 2003- 2004 Seni or Design
* Team
* <P>
* Description: This class is responsible for taking in user commands
*

and (1) validating the conmmand, and if valid (2) performthe
comand.
* Once the comand is perforned, then the programreturns the response

* fromthe Antenna Program

*

* NOTE: This programworks with the AntennaServer class and the

* Antenna class. The AntennaServer class is responsible for taking in
* the command fromthe user and forwardi ng the response back to the

* user. The Antenna class is responsible for sending the command to

* the AntennaControl er device/program

**/

i mport java.io.*;
i mport java.util.*;

public class AntennaServerinterpreter {

/***/
/******************** Q)nstructor **********************/
/***l

/**

* Description: initializes the mapped variables for the control of the
* Labj ack (Antenna Controler). This constructor also establishes a
* connection to the Ground Station using DT, so that it can send

* conmands to the device. <P>

* Precondition: No Precondition<P>

* Postcondition: all variables are initialized to its default value. If
* a connection was made successfully to the DT Server, this

*

*

*

*

constructor will return with no errors. |If there is an error
connecting, then the constructor will return with an RBNB
Dat aTur bi ne error.

*/

public AntennaServerlinterpreter() {

conmandArray[0] = "-t"; /lauto tracking
conmandArray[1l] = "-a"; //antenna orientation
commandArray[2] = "-s"; /lsatellite position
conmmandArray[3] = "-hel p";

ant ennaDT = new Dat aTur bi ne();
/l Establi sh connection to DT Server |ocated at Santa
Clara University Ground Station

86

/1 This should change if the DT Server noves
ant ennaDT. openSi nkConnecti on("l ocal host : 3333"
" Ant ennal nt er pret er Si nk") ;
ant ennaDT. addChannel Send("/sattest/recei veAntenna/text");

/***/
/****************** ACCESSOI‘S & Wtators **********/

/***/

/**

* Description: This function validates a user conmand. <P>

* Precondition: The user input nmust be sent of type String.<P>

* Postcondition: If the coommand is a valide command, this function
* return true. Else, it returns false

*

*/
public bool ean val i dat eCommand(String comand) {
return (get Conmandl ndex(conmand) != -1);
}
/**
* Description: This sends the conmmand to the AntennaAut oTracker
* pr ogr ankpP>
* Precondition: The conmand fromthe user nust be sent of type
* String<P>
* Postcondition: |If the command is a valid command, then the command
* is sent and function returns the information comng fromthe
* Program Else, the function returns null
**/
public String performCommand(String comand) {
i nt conmandl ndex = get Commandl ndex(comrand) ;
swi tch (comuandl ndex) ({
case 0: antennaDT. sendMessage("Auto Tracking Started...",
1);
Ant enna. aut oTrackSatel lite();
case 1: return Antenna.get AntennaPosition();
case 2: return Antenna.getSatellitePosition();
case 3: return Antenna.getHel p();
default: return null
}
}
/**
* Description: This goes through the nmapped conmands of the Labjack
* program and returns the index of that command. <P>
* Precondition: The user conmand nust be sent of type String.<P>
* Postcondition: If the command is valid, then this function returns
* the index of the conmand. |f the conmand is not valid, this
* function returns -1.
*

*/
private int getComandl ndex(String command) {

87

for(int i=0; i<nunCommand; i++) {
if (commandArray[i].equal sl gnoreCase(conmand))

return i;
}
return -1,
}
private int numComand = 4; /1 The nunber of commands

private String [] commandArray = new Stri ng[numComrmand] ;
/1 The command array
private DataTurbi ne ant ennaDT,;
// Establish a connection to DT Server

88

Section E6: AntennaAutoTracker (Server-Side)

//***

/1

/1 File Nane : ' Ant ennaAut oTr acker. c'

/1 Aut hor . Dani el Schuet - Copyright (C) 2004

/] Created : 2004- 05

/1 Version 1.0

/1 Description : Automatically controls an antenna to track a

/1 satellite in the sky. Uses a G 5500 Yaesu Rotor along with
/1 LabJack. Uses Predict software to get satellite azinuth and
/1 elevation.

/1

//***

/1 *** Needs |abjack library to build (Ijackuw lib)

#i ncl ude <wi ndows. h>
#i ncl ude <stdi 0. h>

#i ncl ude <coni 0. h>

#i ncl ude <i ostream h>
#i ncl ude <wtypes. h>
#i nclude "I jackuw h"

/1 CALI BRATI ON PARAMETERS

#defi ne EL_M N_DEG 0.0
#define EL_ M N AD 0.0 /1 anal og voltage fromrotor
#defi ne EL_MAX _DEG 180.0

#define EL_MAX_AD 247.0

#defi ne AZ M N_DEG 0.0
#define AZ MN_AD 25.0

#defi ne AZ_MAX_DEG 360.0
#defi ne AZ MAX AD 213.0

#def i ne THRESH_DEG 2.0 /1 +/- 2 degress

/1 Labjack Channel s

#defi ne EL_UP_CHANNEL
#defi ne EL_DN_CHANNEL
#defi ne AZ_POS_CHANNEL
#defi ne AZ_NEG CHANNEL

PO WN

/1 Func. Prototypes

/1! This function gives you the azimuth and el evation of satellite
usi ng Predict.

/! Returns true if satellite is currently in view, and false if it is
not .

bool SatPosition(int *output_az, int *output_el);

/1! Parse through what Predict returns and get azinuth and el evation
voi d parsePredictLine(char * buffer, int *AZ, int *EL);

89

next satellite pass.

float *EL);

errorAZ,

ons]\n");
track\n");
antenna orientation\n");
satellite position\n");

/1! Finds and returns azinmuth for
i nt getNextPassAZ(void);
/1! Reads the current antenna azinmuth and el evation
voi d readCurrent AntennaQrientation(float *AZ
/1! Antenna Mdtion Functions
voi d ant ennaMoveUp(void);
voi d ant ennaMoveDown(voi d) ;
voi d ant ennaRot at ePos(voi d);
voi d ant ennaRot at eNeg(voi d);
voi d ant ennaSTOPEL(voi d);
voi d ant ennaSTOPAZ(voi d);
voi d ant ennaSTOPALL(voi d);
void main(int nargs, char* args[])
{
i nt npAzZ,
i nt npEL=0;
int sat_currAz;
int sat_currEL;
bool again = true;
bool cont = true;
float ant_currAZ, ant_currEL, errorEL
/1 help
i f(nargs==1)
{
printf("AntennaAutoTracker [opt
printf(" -t,
printf(" -a,
printf(" - s,
exit(1);

EL);

}

el se if(nargs>1)

{

// antenna orientation
if(strcnp(args[1],"-a")==0)
{

readCurrent Ant ennaQCri entati on(&ant _currAZ, &nt _currEL);

printf (" ANTENNA\ nazi mut h=%\ nel evati on=%d\ n", i nt (ant _curr AZ+0. 5),
i nt (ant_currEL+0.5));

/1 satellite position

el se if(strcnp(args[1],"-s"

{

::O)

Sat Position(&sat_currAZ, &sat_currEL);

printf (" SAPPHI RE\ nazi nut h=%\ nel evati on=%l\ n", sat _currAZ, sat _curr

}

90

/1 start autotracking

el se if(strcnp(args[1],"-t")==0)

i f(SatPosition(&sat_currAZ, &sat_currEL))

{

printf("Satellite is currently in view.\n");
printf("Autotracking...\n");

:: Sl eep(5000);

whi | e(Sat Position(&sat _currAZ, &sat currEL) &&

I kbhit())
{

cont =t r ue;
whi l e(cont && !'kbhit())

{

&sat _currEL);

.. Sl eep(500);

Sat Posi ti on(&sat _currAZ,

readCurrent Ant ennaQCri entati on(&ant _currAZ, &nt _currEL);

float(sat_currEL);

float (sat_currAz);

Satellite El

errorEL = ant_currEL-

errorAZ = ant_currAZ-

system("cl s");
printf("Satellite Az = % \t\t

%\ n", sat_currAZ,sat _currEL);

printf("Antenna Az = % \t\t

Ant enna El = %\n",int(ant_currAZ+0.5),int(ant_currEL+0.5));

% \n",errorEL);

% \n",errorAZ);

THRESH_DEG)

THRESH_DEG)

printf("\nEl evation error =

printf("Azimnmuth error =

i f(errorEL > THRESH DEG
ant ennaMbveDown() ;

else if (errorEL < - THRESH DEG
ant ennaMoveUp() ;

i f(errorAZ > THRESH DEG
ant ennaRot at eNeg() ;

else if (errorAZ < - THRESH DEG
ant ennaRot at ePos() ;

i f(error EL<THRESH DEG && error EL>-
ant ennaSTOPEL() ;

i f(error AZ<THRESH DEG && error AZ>-

ant ennaSTOPAZ() ;

91

i f(error EL<THRESH DEG && error EL>-
THRESH_DEG && error AZ<THRESH DEG && err or AZ>- THRESH DEG)

{
ant ennaSTOPALL() ;
cont =f al se;
}
}
}
}
el se
{

printf("\nSatellite is currently NOT in
view. \n");

NnpAZ = get Next PassAZ();

printf("\nMving antenna to \n%l degrees
el evation and \n%l degrees azinmuth \nfor next pass...\n", npEL, npAZ);

.. Sl eep(5000);

/1 Motion Test code
[*printf("Mving up...\n");
ant ennaMoveUp() ;

.. Sl eep(1000);

ant ennaSTOPALL() ;

:: Sl eep(1000);

printf("Mving down...\n");
ant ennaMbveDown() ;

:: Sl eep(1000);

ant ennaSTOPALL() ;

.. Sl eep(1000);

printf("Rotating positive...\n");
ant ennaRot at ePos() ;

:: Sl eep(1000);

ant ennaSTOPALL() ;

.. Sl eep(1000);

printf("Rotating negative...\n");
ant ennaRot at eNeg() ;

. Sl eep(1000);

ant ennaSTOPALL() ;

.. Sl eep(1000); */

whi |l e(again & !'kbhit()){
:: Sl eep(100);

readCurrent Ant ennaQCri entati on(&ant _currAZ, &nt _currEL);

errorEL = ant _currEL-fl oat (npEL);
errorAZ = ant _curr AZ-fl oat (npAZ);

system("cls");

92

THRESH_DEG)

THRESH_DEG)

printf("El evation Error
printf("Azinmuth Error

i f(errorEL > THRESH DEG
ant ennaMbveDown() ;

else if (errorEL < - THRESH DEG
ant ennaMoveUp() ;

i f(errorAZ > THRESH DEG)
ant ennaRot at eNeg() ;

else if (errorAZ < - THRESH DEG
ant ennaRot at ePos() ;

i f(error EL<THRESH DEG && error EL>-
ant ennaSTOPEL() ;
i f(error AZ<THRESH DEG && error AZ>-

ant ennaSTOPAZ() ;

i f(error EL<THRESH DEG && error EL>-

THRESH_DEG && error AZ<THRESH DEG && err or AZ>- THRESH DEG

{
ant ennaSTOPALL() ;

agai n=f al se;

printf("Done.\n");

printf("AntennaAutoTracker [options]\n");

postion\n");

}

bool

{

-t, track\n");

% \n",errorEL);
% \n",errorAZ);

-a, antenna position\n");

-s, satellite

}
}
ant ennaSTOPALL() ;
}
el se
{
printf("
printf("
printf("
exit(1l);
}

Sat Position(int *output_az, int *output_el)

int err;

FILE * pFil e=NULL;

long | Size;

char * buffer;

int azinmuth, elevation;

//call predict and output results to a file

93

err=systen("predict.exe -f OSCAR-45 > output.txt"); //should

have vari abl es here

}

if (err==-1){
printf("[Error] executing predict\n");
exit(1);

}

/lelse

[lprintf("Predict successfully executed\n");
pFile = fopen ("output.txt" , "rb")

/] obtain file size.

fseek (pFile , 0, SEEK END);
| Size = ftell (pFile);

rewind (pFile);

/1 allocate nmenory to contain the whole file.
buffer = (char*) malloc (ISize);
if (buffer == NULL){
printf("[Error] nothing in file\n");
exit (1);
}

/1 copy the file into the buffer.
fread (buffer,1,1Size,pFile);

[lprintf("lSize=%\n%\n",|Size, buffer);

par sePredi ct Li ne(buffer, &azimuth, &elevation);
[lprintf("\nAZ=% deg\ nEL=% deg\n", azinmuth, elevation);
/1 term nate

fclose (pFile);

free (buffer);

*out put _az=azi nut h;

*out put _el =el evati on;

i f(azi muth>=0 && el evati on>=0)
return true;

el se
return false;

voi d parsePredictLine(char * buffer, int *AZ, int *EL)

{

char cAZ[4];

char cEL[4];

int i=0;

for(i=0;i<4;i++)

{
CEL[i]=buffer[i+32];
cAZ[i]=buffer[i+37];

}

94

* AZ=at o0i (CcAZ);
*EL=at oi (CcEL);

azi mut h,

el evation);

}
i nt getNextPassAZ(voi d)
{
int err;
FILE * pFil e=NULL;
long | Size;
char * buffer;
int azinuth, elevation
/lcall predict and output results to a file
err=systen("predict.exe -p OSCAR-45 > output.txt");
//shoul d have vari abl es here
if (err==-1){
printf("[Error] executing predict\n");
exit(1l);
}
/el se
[lprintf("Predict successfully executed\n");
pFile = fopen ("output.txt" , "rb");
/1 obtain file size.
fseek (pFile , 0, SEEK END);
| Size = ftell (pFile);
rewind (pFile);
/1 allocate nmenory to contain the whole file.
buffer = (char*) malloc (ISize);
if (buffer == NULL){
printf("[Error] nothing in file\n");
exit (1);
}
/1 copy the file into the buffer.
fread (buffer,1,1Size,pFile);
[lprintf("lSize=%\n%\n",|Size, buffer);
par sePredi ct Li ne(buffer, &azimuth, &elevation);
[lprintf("\nAZ=% deg\ nEL=% deg\n",
/1 term nate
fclose (pFile);
free (buffer);
return azi nmut h;
}

voi d readCurrent AntennaQrientation(float *AZ, fl oat

{

| ong errorcode;

*EL)

95

| ong idnume-1;

| ong denp=0;

| ong st at el O=0;

| ong nunth=4;

| ong channel s[4] ={0, 1, 2, 3};
| ong gains[4]={0,0,0,0};

| ong ov;

float voltages[4]={0,0,0,0};

errorcode = Al Sampl e
(& dnum deno, &st at el O, 0, 1, nunth, channel s, gai ns, 0, &v, vol t ages) ;

[lprintf("\nAl Sanple error = %\ n", errorcode);
[lprintf("\'nLocal ID = %\n",idnum;
[lprintf("AlO = %\n",voltages[0]); //AZ channe
[lprintf("Al1l % \n",vol tages[1]);
[lprintf("Al2 % \n",voltages[2]); //EL channe
[lprintf("Al3 % \n", vol tages[3]);

//system("cls");

*EL = float((EL_MAX DEG - EL_ MN DEG / (EL_MAX AD - EL_M N_AD)
) * float(255.0/5.0) * voltages[2];

*AZ = float((AZ_MAX_DEG - AZ_ MN DEG / (AZ_MAX_AD - AZ_M N_AD)
) * float(255.0/5.0) * voltages[0O] - float((AZ_MAX DEG - AZ M N _DEG
I (AZ_NMAX_AD - AZ MN AD)) * float(AZ_ M N_AD);

[lprintf("% %\n",*EL, *AZ);

}
voi d ant ennaMoveUp(voi d)
{
| ong idnume-1;
| ong errorcode;
errorcode = EDi gital Qut (& dnum 0, EL_UP_CHANNEL, 0, 1);
//channel 2 ON
errorcode = EDi gital Qut (& dnum 0, EL_DN CHANNEL, 0, 0) ;
/1 down channel off both shoul dnt be on at sane tine
}
voi d ant ennaMoveDown(voi d)
{
| ong idnume-1;
| ong errorcode;
errorcode = EDi gital Qut (& dnum 0, EL_DN CHANNEL, 0, 1);
[/ channel 3 ON
errorcode = EDi gital Qut (& dnum 0, EL_UP_CHANNEL, 0, 0) ;
}
voi d ant ennaRot at ePos(voi d)
{

96

| ong idnume-1;
| ong errorcode;

errorcode =
0 ON
errorcode = EDi gital Qut (& dnum 0, AZ NEG CHANNEL, 0, 0) ;
}
voi d ant ennaRot at eNeg(voi d)
{
| ong idnume-1;
| ong errorcode;
errorcode = EDi gital Qut (& dnum 0, AZ NEG CHANNEL, 0, 1) ;
1 ON
errorcode =
}
voi d ant ennaSTOPEL(voi d)
{
| ong idnume-1;
| ong errorcode;
errorcode =
errorcode =
}
voi d ant ennaSTOPAZ(voi d)
{
| ong idnume-1;
| ong errorcode;
errorcode =
errorcode =
}
voi d ant ennaSTOPALL(voi d)
{
| ong idnume-1;
| ong errorcode;
errorcode =
errorcode =
errorcode =
errorcode =
}

EDi gi t al Qut (& dnum 0, AZ_POS CHANNEL, 0, 1) ;

EDi gi t al Qut (& dnum 0, AZ POS CHANNEL, 0, 0) ;

EDi gi t al Qut (& dnum 0, EL_UP_CHANNEL, 0, 0) ;
EDi gi t al Qut (& dnum 0, EL_DN CHANNEL, 0, 0) ;

EDi gi t al Qut (& dnum 0, AZ_POS_CHANNEL, 0, 0) ;
EDi gi t al Qut (& dnum 0, AZ_NEG_CHANNEL, 0, 0) ;

EDi gital Qut (& dnum O, EL_UP_CHANNEL, 0, 0) ;
EDi gi t al Qut (& dnum 0, EL_DN CHANNEL, 0, 0);
EDi gi t al Qut (& dnum 0, AZ_ POS CHANNEL, 0, 0) ;
EDi gi t al Qut (& dnum 0, AZ_NEG CHANNEL, 0, 0) ;

/[channe

/[channe

97

Appendix F

Section F1: Terminal Node Controller (Server-Side)

/

L R T T R B N N N . N S N S N R R R T N R B T N N N N N N

@ut hor: Dani el Schuet
 (Dan Schuet)

@escription: This class was change fromits original design by
Sun M crosystenms, and it has been configured to comunicate

with a TNC/ Modem attached to COMR. It is also designed to send &
recei ve data from RBNB Dat aTur bi ne.

Any questions concerning this class, can be found online from
java.sun.com or rbnb.creare.com

@#) TNCDT. j ava 1.12 98/ 06/ 25 SM
Copyright (c) 1998 Sun Mcrosystens, Inc. Al Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license
to use, nmodify and redistribute this software in source and binary
code form provided that i) this copyright notice and |icense appear
on all copies of the software; and ii) Licensee does not utilize the
software in a manner which is disparaging to Sun.

This software is provided "AS IS," without a warranty of any ki nd.
ALL EXPRESS OR | MPLI ED CONDI TI ONS, REPRESENTATI ONS AND WARRANTI ES,

| NCLUDI NG ANY | MPLI ED WARRANTY OF MERCHANTABI LI TY, FITNESS FOR A
PARTI CULAR PURPOSE OR NON- | NFRI NGEMENT, ARE HEREBY EXCLUDED. SUN AND
| TS LI CENSORS SHALL NOT BE LI ABLE FOR ANY DAMAGES SUFFERED BY

LI CENSEE AS A RESULT OF USI NG, MODI FYI NG OR DI STRI BUTI NG THE
SOFTWARE OR | TS DERI VATI VES. I N NO EVENT WLL SUN OR I TS LI CENSORS
BE LI ABLE FOR ANY LOST REVENUE, PROFI T OR DATA, OR FOR DI RECT,

| NDI RECT, SPECI AL, CONSEQUENTI AL, | NCI DENTAL OR PUNI Tl VE DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LI ABILITY, ARISING
OQUT OF THE USE OF OR I NABI LI TY TO USE SOFTWARE, EVEN | F SUN HAS BEEN
ADVI SED OF THE PCSSI BI LI TY OF SUCH DAMAGES.

This software is not designed or intended for use in on-line contro
of aircraft, air traffic, aircraft navigation or aircraft
conmuni cations; or in the design, construction, operation or
mai nt enance of any nuclear facility. Licensee represents and
warrants that it will not use or redistribute the Software for such
pur poses.
/

i mport java.io.*;

i mport java.util.?*;

i mport javax.conm *;

i mport com rbnb. sapi . *;

public class TNCDT i nplenments Runnabl e, Serial Port EventListener {

98

static ConmPortldentifier portld;
static Enuneration portlList;
static String nessageString = "";

static int stx = 0;
static bool ean out put Buf fer EnptyFl ag = fal se;

static I nputStream inputStream
static Qutput Stream out put St ream
static Serial Port serial Port;
Thread readThr ead;

static Source source=new Source();
static Sink sink =new Si nk();
static Channel Map sMap, r Map;

static bool ean dat aReady=f al se;

static String sBuffer="";

static String nBuffer="";

public static void main(String[] args) {
String host;
int i=0, marker=0;
String star="*";

Systemout.printin("Welcone to the TNC to Data Turbine
program ") ;
i f(args. | ength>0){
host =ar gs[0] ;
Systemout. println("Connecting to " + host + "...");
}
el se {
Systemout. println("ERROR No RBNB host defined");
return;
}

try {
/1 Opens up an RBNB connection

sour ce. OpenRBNBConnect i on(host, "sat Source");
si nk. OpenRBNBConnect i on(host, "sat Si nk");

sMap = new Channel Map();
sMap. Add(" RXr awTNCstri ng");
sMap. Put Ti reAut o("t i nmeof day") ;
sour ce. Regi st er (sMap) ;
/1 Pull data fromthe server:
rMap = new Channel Map();
r Map. Add(" Mat Cnd/ TXstring");
si nk. Subscri be(r Map) ;
} catch (SAPI Exception se) { se.printStackTrace(); }

/1 stores all ports to an enuneration
portList = ConmPortldentifier.getPortldentifiers();

/1 search through enuneration of ports for COWR

99

whi | e (portList.hasMoreEl enents()) {
portld = (ComPortldentifier) portList.nextEl enent();
if (portld.getPortType() ==
ConmPort |l dentifier. PORT_SERI AL) {
if (portld.getName().equal s("COV")) {
TNCDT reader = new TNCDT();
Systemout. println(portld.getName() + "

found!");
}
}
}
Channel Map aMap;
whi | e(true)(
/1 Do a bunch of pre-checks because everything does
//not end with a carriage return
if(sBuffer.endsWth("PRESS (*) TO SET BAUD RATE"))
{
try {
outputStreamwite(star.getBytes());
} catch (1 CException e) {}
System out. printl n("Autobaud rate sequence
detected!");
sBuffer="";
mar ker =0;
}
i f(sBuffer.endsWth("ENTER YOUR CALLSI GN=> "))
{
try{
Systemout.println("Placing string: " +

"ENTER YOUR CALLSIGN=>" + " into server.");
Systemout.println(sBuffer.length());
sMap. Put Dat aAsStri ng(0, "ENTER YOUR

CALLSI GN=>");
sour ce. Fl ush(sMap) ;

} catch (SAPI Exception se) {
se.printStackTrace(); }

sBuffer="";

mar ker =0;
}
i f(sBuffer.endsWth("sapphire>"))
{

try{

Systemout.println("Placing string:
+ "sapphire>" + " into server.");

Systemout.println(sBuffer.length());

sMap. Put Dat aAsSt ri ng(0, "sapphire>");
sour ce. Fl ush(sMap) ;
} catch (SAPI Exception se) {
se.printStackTrace(); }

100

sBuf fer="";
mar ker =0;

}

//Loop to check to see if to post to data turbine
(post off return carriage found)
for(i=marker; i<sBuffer.length(); i++)

i f(sBuffer.charAt(i)=="\r")
{
nBuf f er =sBuf f er. substri ng(narker,i);
mar ker =i +1;
i =sBuffer.length();
System out. println("marker=" + marker);

if (marker<=1)
nBuf f er =" ok";

try{
Systemout.println("Placing string:
+ nBuffer + " into server.");

Systemout.println(sBuffer.length());
sMap. Put Dat aAsSt ri ng(0, new
String(nBuffer));
source. Fl ush(sMap) ;

} catch (SAPI Exception se) {
se.printStackTrace(); }

}
}
try{
/1 do a non-bl ocking check to see if there is
/1 any information on DT
aMap = sink. Fetch(1, rMap);
i f (aMap. Number O Channel s() >0)
sBuffer="";
/lclear and reset buffer so it doesn't get too big
mar ker =0;

Systemout.println("Data ready to be
recei ved fromDT!");

/lstore information fromDT to a String
messageSt ri ng=aMap. Get Dat aAsString(0)[0] +"\r";

System out . printl n("Comrand from MATLAB:
+ nmessageString);

try {

out put Stream write(messageString. getBytes());
} catch (1 OException e) {}

}
} catch (SAPI Exception se) { se.printStackTrace(); }

101

}
publ

ic TNCDT() {
try {

serial Port = (Serial Port) portld.open(" TNCDTApp",
} catch (PortlnUseException e) {}

try {
i nput Stream = serial Port.getlnputStream);

out put St ream = seri al Port. get Qut put St ream();

} catch (1 OException e) {}

try {

publ

publ

seri al Port. addEvent Li st ener(this);
} catch (TooManyLi stenersException e) {}
serial Port. notifyOnDat aAvail abl e(true);
try {
serial Port. set Seri al Port Parans(1200,
Seri al Port. DATABI TS 8,
Serial Port. STOPBI TS 1,
Seri al Port. PARI TY_NONE) ;
} catch (UnsupportedConmOper ati onException e) {}
readThread = new Thread(this);
readThread. start();

ic void run() {
try {
Thr ead. sl eep(20000);
} catch (InterruptedException e) {}

ic void serial Event (Serial Port Event event) {

swi tch(event. get Event Type()) {

case Seri al Port Event. Bl :

case Seri al Port Event . CE:

case Seri al Port Event . FE:

case Seri al Port Event . PE:

case Seri al Port Event. CD:

case Seri al Port Event. CTS:

case Seri al Port Event . DSR:

case Seri al Port Event. Rl :

case Seri al Port Event. QUTPUT_BUFFER EMPTY:
br eak;

case Seri al Port Event . DATA AVAI LABLE:
byte[] readBuffer = new byte[40];

i nt nunBytes=0, j=0;

try {
/[/pull information fromthe Comm Port
whil e (inputStream available() > 0) {
nunByt es = i nput Stream read(readBuffer);
}

/1 Construct string
byte[] fBuffer = new byte[nunBytes];
for(j=0; j<nunBytes; j++)

fBuffer[j]=readBuffer[j];

2000) ;

102

sBuf fer = sBuffer + new String(fBuffer);
} catch (1 CException e) {}
br eak;

103

Appendix G

Section G1: Transceiver (Client & Server Side)

/**

*

* The Transceiver class handles the validation, formatting, and
* accessor methods for the transceiver commnds.

* Purpose: Designed for Santa University RACE 2003- 2004 Seni or Desi gn
* Team

* @ut hor

* Carl et on Cheng

* (ClCheng@cu. edu) </ A>

* @ersion

* Created: April 12, 2004

*

*/

i mport java.io.*;

i mport java.util.?*;

i mport java.l ang. *;

i mport javax.sw ng.*;

public class Transceiver
{
//variables and constants for Tranceiver
private static final String preanble = "FE";
/1 fixed preanble
private static final String dfaltXCRAddr = "60";
/1 fixed default tranceiver address
private static final String dfaltAddr = "00";
/1 fixed default address
private static String cndNo = "00";
/1 tenporary comand nunber
private static String subCndNo = "00";
/1 tenporary sub comrand numnber
private static String dataBCDl, dat aBCD2, dat aBCD3, dat aBCD4;
/1 BCD portion of command (stored in an array)
private static final String endOrMsg = "FD';
/1 fixed end of nessage code
private static final int BASE = 16;
/1 base of nunber format for serial comunication

private int nunber O Commands;
private String command[];

/***/
/****************** Q)nstructor **********************/

/***/

/1 Default Constructor
public Transceiver()

{

104

dataBCD1L = "00";
dat aBCD2 = "00";
dat aBCD3 = "00";
dat aBCD4 = "00";

nunber Of Conmands = 3;

conmand = new String[nunber O Conmands] ;

conmand[0] "xcr -sf"; //conmmand sets frequency
conmand[1] "xcr -su"; //conmand sel ects uplink node

conmand[2] "xcr -sd"; //conmmand sel ects downli nk node
/***/
/***************** Accessors & MJtatOrS **********l

/***/

/I Accessor Met hods
public String getPreanbl e()

{ return preanbl e;

}

public String getDf al t XCRAddr ()
{ return dfal t XCRAddr;
Eublic String getDfaltAddr()

return dfaltAddr;

}
public String get CndNo()

{ return cndNo;
}
public String get SubCndNo()
{ return subCndNo;
}
public String getBCD(int val ue)
{ if (value == 1)
{ return dat aBCD1;
if (value == 2)
{ return dat aBCD2;
if (value == 3)
{ return dataBCD3;
i{f (val ue == 4)

105

return dat aBCD4;

}
return null;
}
public String get EndOf Msg()
{
return endf Msg;
}

public void setFrequency(String input)

{

StringTokeni zer cnd = new
StringTokeni zer (i nput. substring(8));
char bcdVval ue[];

bcdVal ue =
array for val ues

i nput . substring(8).toCharArray();

//creating

/I MAKE SURE YOU CHECK | F THE COWAND | S VALI D

[1if format
i f(input.substring(8).length() == 7)

Stri
Stri
Stri
Stri
Stri
Stri
Stri
Stri

//BCD format, order must be reversed

ng
ng
ng
ng
ng
ng
ng
ng

| ooks like xxx.Xxxx

tenpl = "0";

tenmp2 = ""+bcdVal ue[0] ;
tenmp3 = ""+bcdVal ue[1] ;
temp4 = ""+bcdVal ue[2] ;
temp5 = ""+bcdVal ue[4] ;
tenp6 = ""+bcdVal ue[5] ;
tenmp7 = ""+bcdVal ue[6] ;
tenp8 = "0";

dat aBCDL = tenp7 + tenp8
dat aBCD2 = tenp5 + tenpé6;
dat aBCD3 = tenmp3 + tenp4;
dat aBCD4 = templ + tenmp2;

}

[1if format
el se i f(input.substring(8).!ength()

Stri
Stri
Stri
Stri
Stri
Stri

//BCD fornmat, order nust be reversed

ng
ng
ng
ng
ng
ng

| ooks like xxx.xx

templ = "0";

temp2 = ""+bcdVal ue[0] ;
tenmp3 = ""+bcdVal ue[1] ;
tenp4 = ""+bcdVal ue[2] ;
tenmp5 = ""+bcdVal ue[4] ;
temp6 = ""+bcdVal ue[5] ;

dat aBCD2 = tenp5 + tenpé6;
dat aBCD3 = tenp3 + tenp4;
dat aBCD4 = templ + tenmp2;

}

[1if format
el se i f(input.substring(8).!ength()

| ooks |ike xxx.Xx

6)

5)

106

String tenpl = "0";
String tenp2 = ""+bcdVal ue[0] ;
String tenp3 = ""+bcdVal ue[1];
String tenp4 = ""+bcdVal ue[2];
String tenp5 = ""+bcdVal ue[4];
String tenp6 = "0";

//BCD format, order must be reversed

dat aBCD2 = temp5 + tenpé6;
dat aBCD3 = tenp3 + tenp4;
dat aBCD4 = tenmpl + tenp2;

}

/1if format | ooks |ike xxx
el se if(input.substring(8).length() == 3)

{
String tenpl = "0";
String tenp2 = ""+bcdVal ue[0] ;
String tenp3 = ""+bcdVal ue[1];
String tenp4 = ""+bcdVal ue[2];
/1 BCD format, order nmust be reversed
dat aBCD3 = tenmp3 + tenp4;
dat aBCD4 = templ + tenmp2;
}
[1if format | ooks |ike xxX.XxX.X
el se
{
String tenmpl = "0";
String tenp2 = ""+bcdVal ue[0] ;
String tenp3 = ""+bcdVal ue[1];
String tenpd4 = ""+bcdVal ue[2];
String tenp5 = ""+bcdVal ue[4];
String tenp6 = ""+bcdVal ue[5];
String tenp7 = ""+bcdVal ue[6];
String tenp8 = ""+bcdVal ue[8];
/1 BCD format, order nmust be reversed
dat aBCD1L = temp7 + tenp8§;
dat aBCD2 = temp5 + tenpé6;
dat aBCD3 = tenp3 + tenp4;
dat aBCD4 = tenmpl + tenp2;
}
}
public void setULi nk()
{
cmdNo = "07";
subCmdNo = "DO",;
}
public void setDLi nk()
{
cmdNo = "07";
subCmdNo = "D1",;
}

public void reset ToDefaul t ()

107

cmdNo = "00";
subCmdNo = "00";
dat aBCD1 = "00";
dat aBCD2 = "00"
dat aBCD3 = "00";
dat aBCD4 = "00";
}
[/function: validates the XCR Comand
e e
/1 THI'S FUNCTI ON VALI DATES THE MAI N COMVAND
/1 RETURNS: A BOOLEAN
R L T R
public bool ean val i dCommand(String i nput)
{
for(int i=0; i<nunber O Conmands; i ++)
{
if (input.toLowerCase().startsWth(command[i]))
i f(input.toLowerCase().startsWth(command[0]))
{
return this.validFrequency(input);
}
el se
return true
}
}
return false;
}
e e R
/1 THI'S FUNCTI ON VALI DATES THE FREQUENCY
/1 RETURNS: A BOOLEAN
e e R
public bool ean val i dFrequency(String input)
{

try
{

StringTokeni zer cnd = new

StringTokeni zer (i nput. substring(8));

for(int i=0; cnd. hasMoreEl enents();i++)

{
int freqval =

I nt eger. parsel nt (cnd. next Token("."), 10);

if((0 <= freqVval) || (fregqVval < 9999999))
{

}

return true;

}

}
catch(Exception e) {}
return fal se;

108

Section G2: Transceiver | nterpreter (Client-Side)

/**
*
* The Transceiverlnterpreter class handles validating a user comrand
* and sending the command to the transcei ver hardware.
* Purpose: Designed for Santa University RACE 2003- 2004 Seni or Design
* Team
* @ut hor
* Carl eton Cheng
* (ClCheng@cu. edu) </ A>
* @ersion
* Created: April 12, 2004
*
*/

i mport java.io.*;

i mport java.util.*;

i mport java.l ang. *;

i mport javax.sw ng.*;

public class Transceiverlnterpreter

{
private String host;
private static DataTurbine dt = new DataTurbine();
private static DataTurbine dt2 = new DataTurbi ne();
private int nunber O Cormands;
private String command[];

/***/

/******************* Q)nstructor **********************/

/***/

public Transceiverlnterpreter()

{
nunber & Conmands = 3;
conmand = new String[nunber O Conmands] ;
command[0] = "xcr -sf"; //conmand sets frequency
conmand[1] = "xcr -su"; //conmand sel ects uplink node
conmand[2] = "xcr -sd"; //conmmand sel ects downl i nk node
}
public Transceiverinterpreter(String host)
{

nunber Of Commands = 4;
conmand = new String[nunber O Conmands] ;

conmmand[0] = "xcr -sf"; //conmmand sets frequency
conmand[1] = "xcr -su"; //conmand sel ects uplink node
conmmand[2] = "xcr -sd"; //command sel ects downl i nk node
conmand[3] = "xcr -help"; //conmand sel ects hel p nmenu

t hi s. host = host;

dt . openSi nkConnecti on(host, " Transcei ver Si nk") ;

dt . addChannel Send("/sattest/sendTranscei ver/text");

dt 2. openSi nkConnecti on(host, " Transcei ver Si nk") ;

dt 2. addChannel Send("/sattest/recei veTransceiver/text");

109

}

/***/

/****************** ACCESSOI‘S & Wtators **********/
/***/

public bool ean val i dat eCommand(String input)
/**
{ *
This function checks whether or not a command is valid
or not.
@ar am i nput
the command in the followi ng format: XCR [-subconmand]

+functions: -sf <frequency val ue> sets the
frequency of the following form

XXX. XXX. X
XXX. XXX

*
*
*
*
*
*
*
*
*
*
*
*
* XXX
* -su sets Transcei ver to UPLI NK npde
* -sd sets Transcei ver to DOMLI NK node
* @eturn
* bool ean
*/
for(int i=0; i<nunber O Conmands; i ++)
{

if (input.tolLowerCase().startsWth(command[i]))

i f(input.toLowerCase().startsWth(command[0]))
{

}

el se

return val i dFrequency(input);

return true
}
}
return fal se;

}

private bool ean val i dFrequency(String input)

{

*

/

This function checks whether or not a frequency is valid
or not.

@ar am i nput
the entire command in the following format: XCR |-
subcomuand]

+ functions: -sf <frequency value> sets the
frequency of the following form

L I R T B R

XXX. XXX. X <x = 0-9>

110

XXX. XXX <x = 0-9>

XXX <x = 0-9>
-su sets Transcei ver to UPLI NK node
-sd sets Transcei ver to DOWNLI NK npde
@eturn
bool ean

L R T . S S

/
try
{

StringTokeni zer cnd = new

StringTokeni zer (i nput. substring(8));
for(int i=0; cnd. hasMoreEl enents();i ++)

{
int freqval =
I nt eger. parsel nt (cnd. next Token("."), 10);
if((0 <= freqgVval) || (fregVal <= 9999999))

return true
}
} .
catch(Exception e) {}
return false;

}
public void sendConmand(String cnd,int wait)
{
/**
*
* This function checks then sends the command to the
* transcei ver hardware.
* @aram i nput
* the command in the following format: XCR [-subconmand]
*
* +functions: -sf <frequency val ue> sets the
* frequency of the followi ng form
*
* XXX, XXX. X
*
* XXX. XXX
*
* XXX
* -su sets Transcei ver to UPLI NK node
* -sd sets Transcei ver to DOWNLI NK npde
* @eturn
* voi d
*/

if (cmd !'= null)

{
i f (validateCommuand(cnd) == true)

/1 Systemout.println("This is what you

just typed: " + cmd + "\n");
dt . sendMessage(cnd, wai t) ;

111

if(cnd.startsWth(comand[0]))
{

dt 2. sendMessage(" Tr anscei ver
Frequency Set.",wait);

}
if(cnd.startsWth(comand[1]))
{

dt 2. sendMessage(" Transcei ver Upli nk
Mode Set.",wait);

}
if(cnd.startsWth(comand[2]))
{

dt 2. sendMessage(" Tr anscei ver
Downl i nk Mode Set.",wait);

}
if(cnd.startsWth(comand[3]))

{
dt 2. sendMessage(get Hel p(), wait);
}
}
}
}
public static String getHel p()
{
String helpl = "-----nommmmm e \nHelp File for
Transceiver\n------------------------- \n\n";
String hel p2 = "commands: \n -sf <frequency>\tsets the
frequency to the given <frequency>\n\n";
String hel p3 = -sult\t\tsets the node to uplink\n\n";
String hel pd4 = -sd\t\t\tsets the node to downlink\n\n
- hel p";
String help = helpl + hel p2 + hel p3 + hel p4;
return hel p;
}

112

Section G3: Transceiver Echo (Client-Side)

/**

* @\t hor: Carl eton Cheng

* (ClCheng@cu. edu) </ A>

*

* <P>

* @ersion

* Created: 2/18/2004

* <P>

* Purpose: Designed for Santa University RACE 2003- 2004 Seni or Design
* Team

* <P>

* Description: This class is used for receiving all information com ng
* fromthe Transceiver |ocated at the Gound Station. This class uses
* RBNB Data Turbine to establish a connection with the ground station
* | ocated at Santa Clara University Engi neering Department. For nore

* information on DataTurbine and it's functionality, please refer to

* the RBNB website: http://rbnb.creare.com

**/

i mport java.io.*;
i mport java.util.?*;
i mport java.l ang. *;

public class TransceiverdientEcho
{
public static void main(String[] args)
{
Dat aTur bi ne dt = new Dat aTur bi ne();
// Dat aTur bi ne Cl ass used for connection
String host;
//Variable used to specify where DT Host is

System out. println("RACE: Transceiver Response W ndow n");
i f(args. | ength>0)
{

host =ar gs[0] ;
/luser must specify where DT Host is

Systemout. println("Connecting to " + host + "...");
ilse
{
System out. println("ERROR No RBNB host defined");
return;
}

/1 Establish connection with Ground Station by setting up channel s
dt . openPl ugi nConnecti on(host, "receiveTransceiver");

dt . addChannel Recei ve("text");
dt. regi st er Recei veChannel ();

System out. println("Connected...");

while (true)

113

String nessage = dt.recei veMessage(-1);
/1blocking wait for information

if (message !'= null) {
System out . printl n(nmessage);
/1if there's a message, output it

Systemout.println();

114

Section G4: Transceiver Server (Server-Side)

/

I T S T T N N N B S R . T B B B R N R B S T R R . N N S

@\t hor: Carleton Cheng
 (ClCheng@cu. edu)

@ersion
Created: 2/23/2004

Pur pose: Designed for Santa University RACE 2003-2004 Senior Design
Team

Description: This class takes request coming in through DT and
forwards the command out to the Transceiver that is connected to the
Serial Port. any response coning fromthe Transceiver is forwarded
back out through RBNB Data Tur bine.

@#) TNCDT. j ava 1.12 98/ 06/ 25 SM
Copyright (c) 1998 Sun Mcrosystens, Inc. All Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, |icense
to use, nmodify and redistribute this software in source and binary
code form provided that i) this copyright notice and |icense appear
on all copies of the software; and ii) Licensee does not utilize the
software in a nanner which is disparaging to Sun.

This software is provided "AS IS," without a warranty of any ki nd.
ALL EXPRESS OR | MPLI ED CONDI TlI ONS, REPRESENTATI ONS AND WARRANTI ES,

| NCLUDI NG ANY | MPLI ED WARRANTY OF MERCHANTABI LI TY, FITNESS FOR A
PARTI CULAR PURPOSE OR NON- | NFRI NGEMENT, ARE HEREBY EXCLUDED. SUN AND
I TS LI CENSORS SHALL NOT BE LI ABLE FOR ANY DAVAGES SUFFERED BY

LI CENSEE AS A RESULT OF USI NG, MODI FYI NG OR DI STRI BUTI NG THE
SOFTWARE OR | TS DERI VATI VES. I N NO EVENT WLL SUN OR I TS LI CENSORS
BE LI ABLE FOR ANY LOST REVENUE, PROFI T OR DATA, OR FOR DI RECT,

| NDI RECT, SPECI AL, CONSEQUENTI AL, | NCI DENTAL OR PUNI Tl VE DANMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LI ABILITY, ARISING
OUT OF THE USE OF OR I NABI LI TY TO USE SOFTWARE, EVEN | F SUN HAS BEEN
ADVI SED OF THE PCSSI BI LI TY OF SUCH DAMAGES.

This software is not designed or intended for use in on-line contro
of aircraft, air traffic, aircraft navigation or aircraft
conmuni cations; or in the design, construction, operation or
mai nt enance of any nuclear facility. Licensee represents and
warrants that it will not use or redistribute the Software for such
pur poses.
/

i mport java.io.*;
i mport java.util.*;
i mport javax.comm *;

public class TransceiverServer inplenents Runnabl e,
Seri al Port Event Li st ener {

static ConmPortldentifier portld;
static Enuneration portlList;

115

static String nessageString = ;

static int stx = 0;
static bool ean out put Buf f er Empt yFl ag = f al se;

static I nputStream i nput Stream
static QutputStream out put St ream
static Serial Port serial Port;

Thread readThr ead;

fal se;
fal se;

static bool ean portfound
static bool ean dat aReady

static String sBuffer = "";

static int num

private static final int BASE = 16;
private int nunber O Cormands;
private static String command[];

public static void main(String[] args) {
Dat aTur bi ne transcei ver DT = new Dat aTur bi ne();
String host; /lvariable to store address of host
String pluglnNane = "sendTranscei ver";
/1 name of the plugin that will be used
/1 to read information from DT.
String sendChannel = "/sattest/receiveTransceiver/text";
/1 the location of the channel
/[l to wite information to DT.
String comport = "COML";
/1 the desired serial port to conmuni cate on

Transcei ver handl eXCR = new Transcei ver();

Systemout.println("Wl cone to the Transceiver to Data
Tur bi ne program ");
i f(args. | ength>0){
host =ar gs[0] ;
Systemout. println("Connecting to " + host + "...");

el se {
Systemout. println("ERROR No RBNB host defined");
return;

}
/1 plugin used to create a channel that you will read from when
/1 client wites to channel
transcei ver DT. openPl ugi nConnect i on(host, pl ugl nNan®e) ;
transcei ver DT. addChannel Recei ve("text");
transcei ver DT. r egi st er Recei veChannel () ;
/1 sink used to wite a channel

transcei ver DT. openSi nkConnecti on(host, " Transcei ver Server Si nk") ;
transcei ver DT. addChannel Send(sendChannel) ;

System out. println("Connected...");

//Search for the COVL

116

portList = ConmPortldentifier.getPortldentifiers();

whil e (portList.hasMoreEl ements()) {
portld = (ComPortldentifier)
portList.nextEl ement();
if (portld.getPortType() ==
CommPort I dentifier. PORT_SERI AL) {
if (portld.getName().equal s(comport)) ({
Transcei ver Server transceiver = new
Transcei ver Server () ;
Systemout. println(portld.getName() + "
found!");
portfound = true;

}

if (portfound == false)

{

program...");

}

whi | e(portfound){
i f (dat aReady) {

try {
Thr ead. sl eep(200);//ms wait to finish sending

Systemout.println("Port was not found...\n\nExiting

dat a
// Push data onto the server:

/lcheck if there is something in the buffer
if (sBuffer !'= null & sBuffer !="")

{

sBuffer + " into server.");

Systemout.println("Placing string: " +

transcei ver DT. sendMessage(sBuffer, 1);

/lreset flags
dat aReady=f al se
sBuffer="";

} catch (InterruptedException e) {}
}

nessageString = transceiverDT. recei veMessage(1);

if (messageString !'= null)

{

stx=1;//cl ear buffer
Systemout.println("Data ready to be received
fromDT!'");

System out. print ("Conmand: " + nessageString +

")

117

if

(handl eXCR. val i dConmand(nessageStri ng) ==true)

seri al

{

try {

Port. get Qut put Stream();

out put Stream =

} catch (1 OException e) {}

try {

Thr ead. sl eep(1000);

xferred before closing

ASE)) ;

)

} catch (Exception e) {}

// Be sure data is

i f(messageString.toLower Case().startsWth(command[0]))

try
{

handl eXCR. set Frequency(nessageString);

out put Streamwite(lnteger.

out put Streamwite(lnteger.

out put Stream wite(lnteger.

out put Streamwite(lnteger.

out put Stream wite(lnteger.

out putStreamwite(lnteger.

out put Stream wite(lnteger.
out putStreamwite(lnteger.
out put Streamwite(lnteger.
out putStreamwite(lnteger.

out putStreamwite(lnteger.

}

par sel nt (handl eXCR.

par sel nt (handl eXCR.

par sel nt (handl eXCR.

par sel nt (handl eXCR.

par sel nt (handl eXCR.

par sel nt (handl eXCR.

par sel nt (handl eXCR.
par sel nt (handl eXCR.
par sel nt (handl eXCR.
par sel nt (handl eXCR.
par sel nt (handl eXCR.

handl eXCR.

}
catch (1 OExcepti

get Preanbl e(), BASE)

get Preanbl e(), BASE)

get Df al t XCRAddr (), B

get Df al t Addr (), BASE

get CndNo(), BASE)) ;

get SubCmdNo() , BASE)

get BCD(1) , BASE)) ;
get BCDY 2) , BASE)) ;
get BCD(3) , BASE)) ;
get BCD(4) , BASE)) ;
get EndOf Msg() , BASE)

reset ToDefaul t ();

on e) {}

i f(messageString.toLower Case().startsWth(conmand[1]))

try
{

118

ASE)) ;

)

ASE)) ;

)

out put Stream wite(lnteger.

out put Streamwite(lnteger.

out putStreamwite(lnteger.

out put Stream wite(lnteger.

out put Streamwite(lnteger.

out put Stream write(lnteger.

out putStreamwite(lnteger.

}

handl eXCR.

par sel nt (handl eXCR.

par sel nt (handl eXCR.

par sel nt (handl eXCR.

par sel nt (handl eXCR.

par sel nt (handl eXCR.

par sel nt (handl eXCR.

par sel nt (handl eXCR.

handl eXCR.

}
catch (1 OExcepti

set ULi nk();

get Preanbl e(), BASE)

get Preanbl e(), BASE)

get Df al t XCRAddr (), B

get Df al t Addr (), BASE

get CndNo(), BASE)) ;

get SubCndNo() , BASE)

get EndOf Msg() , BASE)

reset ToDefaul t ();

on e) {}

i f(messageString.toLowerCase().startsWth(conmand[2]))

out put Streamwite(lnteger.

out put Stream wite(lnteger.

out putStreamwite(lnteger.

out put Streamwite(lnteger.

out putStreamwite(lnteger.

out put Stream wite(lnteger.

out put Streamwite(lnteger.

try
{
handl eXCR.

par sel nt (handl eXCR.
par sel nt (handl eXCR.
par sel nt (handl eXCR.
par sel nt (handl eXCR.

par sel nt (handl eXCR.

par sel nt (handl eXCR.

par sel nt (handl eXCR.
handl eXCR.

}
catch (1 OExcepti

set DLi nk();

get Preanbl e(), BASE)

get Preanbl e(), BASE)

get Df al t XCRAddr (), B

get Df al t Addr (), BASE

get CndNo(), BASE)) ;

get SubCndNo() , BASE)

get EndOf Msg() , BASE)

reset ToDefaul t ();

on e) {}

119

Echo";

}
publ

}

Systemout.println(" sent to serial...\n");

try {
Thr ead. sl eep(200) ;

} catch (Exception e) {}
/1 sBuffer = "sone string value to wite to

/1 dataReady = true;
stx = 0;

ic TransceiverServer() {

nunber Of Conmands = 3;

conmmand = new String[nunber O Conmands] ;

conmand[0] = "xcr -sf"; //conmmand sets frequency
conmand[1] "xcr -su"; //conmand sel ects uplink nobde
conmand[2] "xcr -sd"; //conmmand sel ects downlink node

try {
serial Port = (Serial Port) portld.open("TNCDTApp", 2000);

} catch (PortlnUseException e) {}
try {
i nput Stream = serial Port.getlnputStream);
out put Stream = seri al Port. get Qut put Stream);
} catch (1 CException e) {}

try {

publ

publ

seri al Port. addEvent Li st ener (this);
} catch (TooManyLi st enersException e) {}
serial Port. notifyOnDat aAvai | abl e(true);
try {
serial Port. set Seri al Port Parans(9600,
Seri al Port . DATABI TS 8,
Serial Port. STOPBI TS 1,
Seri al Port. PARI TY_NONE) ;
} catch (UnsupportedConmOper ati onException e) {}
readThread = new Thread(this);
readThread. start ();

ic void run() {
try {
Thr ead. sl eep(20000) ;
} catch (InterruptedException e) {}

ic void serial Event (Serial Port Event event) {
swi tch(event. get Event Type()) {

case Seri al Port Event. Bl :

case Seri al Port Event . CE:

case Seri al Port Event . FE:

case Seri al Port Event . PE:

120

case Seri al Port Event. CD:

case Seri al Port Event. CTS:

case Seri al Port Event . DSR:

case Seri al Port Event. Rl :

case Seri al Port Event. QUTPUT_BUFFER EMPTY:
br eak;

case Seri al Port Event. DATA AVAI LABLE:
byte[] readBuffer = new byte[24];

try {
whil e (inputStream available() > 0) {
int nunBytes = inputStream read(readBuffer);
}
i f(stx==0){

dat aReady=t r ue;
sBuffer = sBuffer + new
String(readBuffer);

}

} catch (1 OException e) {}
br eak;

121

Appendix H

Section H1: Server Side Directory Structure

A series of batch files were created to make it easier to start up the Server Side Applications and Services.
The Server Side directory, when unzipped, is formated as shown below. There is a specific batch file that
loads up a specific device/service in each folder. More information about each individual batch file can
be found below in Section 2.

= 1) dtHardware
|) antenna_gnd_Predick
[) PowerStrip
[+ () REMNE
£ THC
H 3 *CR

There is a master batch file that loads up all the services and device specific batch files in the
folders. This batch file is located in the root folder of dtHardware. More information about the main
batch file can be found in Section 3.

Section H2: Individual Batch Files

<dtHardware>\Antenna_And_Predict\runAntennaServer.bat
java AntennaServer |ocal host: 3333

@ause

<dtHardware>\Antenna_And_Predict\runPredictServer.bat
rem The first two commands are necessary
rem There was an error when they were not
reminvoked before invoking the PredictServer class
predi ct —f OSCAR-45
predi ct —p OSCAR- 45
java PredictServer |ocal host: 3333

@ause

<dtHardware>\PowerStrip\runPowerServer.bat
java Power StripServer |ocal host: 3333

@ause

<dtHardware>\RBNB\runRBNB_No_Security.bat
rem This assunes you installed RBNB into

122

rem C.\Program Fi |l es
rem Al so note that this is RBNB V2.1

cd C\Program Fil es\RBNB_V2. 1\ bi n

remthis invokes the RBNB server on the | ocal host
rem and nanes the server “sattest”
java —jar rbnb.jar —a local host: 3333 —n sattest

<dtHardware>\TNC\runTNCServer.bat
java TNCDT | ocal host: 3333

@ause

<dtHardware>\XCR\runXCRServer.bat
java Transcei ver Server | ocal host: 3333

@ause

Section H3: Main Batch File

<dtHardware>\RACE_Server.bat
@cho of f

Echo Start RBNB Server

pushd RBNB
start runRBNBServer No_Security

popd
rem pause

@ause
Echo Start Applications

pushd Ant enna_And_Predi ct
start runAntennaServer
popd

rem pause

pushd Ant enna_And_Predi ct
start runPredictServer

popd
rem pause

pushd Power Strip
start runPower Server

popd
rem pause

pushd TNC

start runTNCServer
popd

rem pause

pushd XCR

123

start runXCRServer
popd
rem pause

echo Finished starting RBNB Server and Applications

124

Section H4: Installation I nstructions

I. System Requirenents
* 233 Mz Processor (reconmmend 800+ MHz)
* 128 MB RAM (recommend 256+ MB RAM)
* | nternet Connection (preferable broadband connecti on)
* installed or able to install Java Runtine Environment

NOTE: System has been tested to run under W ndows2000 and XP.

I'l. Setup

1. Go to http://rbnb.creare.com

a.
b.

click on downl oads on the side bar
downl oad "W ndows self-installing executable"
- If you don't have the Java Virtual machine installed on

your machi ne

C.

choose "W ndows (includes JVM"
after downl oad, open file and follow installation instructions

2. Go to java.sun.com

a.
b.

C.

Click on "Downl oads" on the sidebar
downl oad the | atest version of J2SE

- or at least J2SE vl1.4.2 w Java Runtine Environment (JRE)
install to desired |ocation

3. Set environnment vari abl es

a.

b.

set classpath (under "user variables") to:
<di r of DataTurbi ne>\ RBNB V2. 1\ bi n\rbnb.jar;
<di r of DataTurbi ne>\ RBNB_V2. 1\ bi n\ source. j ar;
<di r of DataTurbi ne>\ RBNB_V2. 1\ bi n\ r bnbj vi ew. j ar;
<di r of DataTurbine>\ RBNB V2. 1\ bi n\rbnbjcap.jar; . *
* (make sure "."
shown above)

is at the end of the classpath as

set Path (under "systemvariables") to:
<dir of jdk>\bin\; **

** (make sure to set this path in front of other
syst em pat hs)

4. Connect & Install devices to the appropriate port

a.

o0

Labj ack* (Antenna Controller) connected to both the Antenna
Control ler** the conmputer through any USB port.

Serial Power Strip*** connected to "COMB" (Serial Port 3).
TNC (Packet Mddem **** connected to "COW" (Serial Port 2).
Transcei ver***** connected to "COML" (Serial Port 1).

* Labj ack can found and purchased online at
http://ww. | abj ack. cont
* The Antenna Controller that is |located at the

125

Santa Clara University Gound Station is the
"YAESU G- 5500"

* kK The Serial Power Strip that is located at the
Santa Clara University Gound Station is the
"Bayt ech RPC2".
More information can be found at
http: //ww. kvns. coni bayt ech/ bayt ech_rpc2. asp

* ok The TNC that is located at Santa Cl ara
University is the "Kantronics 9612 Packet
Creator".

***** The Transceiver that is |located at Santa C ara
University is the "I COM 910 Dual Band
Transcei ver".

NOTE: For further information on the RACE Systemand it's
conponents, please refer to the RACE 2001-2002 and
RACE 2003-2004 Senior Design Reports.

5. Downl oad RACE files (zipped file)

a. Extract contents into desired folder

b. run batch file located in the Root RACE directory to start
RACE Server

<di r of RACE>\dt Har dwar e\ RACE Server . bat

See "lInstructions On Using RACE Server" for nore information
on starting, stopping, and handling errors on the RACE Server
Appl i cati ons.

NOTE: To run the batch file fromyour desktop, you can create a
shortcut to these batch files.

Section H5: Using RACE Server Program

After Unzipping the Race Server Program you should see one batch file
in the root directory, <dir of dtHardware>\ RACE Server. bat

1. Start up Tontat

2. To start the RBNB Server and Applications, double-click
RACE_Server. bat

3. This brings up two wi ndows
a. One window will start up the RBNB Server. Wit for the words
"Started at address..." shows on the screen
b. The other window will say "Start RBNB Server" and then pronpt
you to "Press any key to continue". ONLY continue once the
first wi ndow says "Started at address..."

126

NOTE: An error will occur with the Server application
prograns if you do not wait for the RBNB Server to
start.

4. Select the second wi ndow that pronpts you to press any key

5. Press any key

6. Five nore dos-comand pronpt wi ndows will pop up. Each one has a
Wel cone Screen, and say that it is "connecting..." to the RBNB
Server.

a. A Successful connection will print out "connected..."

--> This neans that you can now connect to the ground
station using the client side application.
b. An Unsuccessful connection will print out Several RBNB Errors

Error Handl i ng

If an error occurs:

1. close and shut down all dos-command wi ndows that were opened.

2. check to see all devices were installed and connected to the correct
port <See Installation Instructions for detail s>

3. Make sure RBNB was installed correctly

4. Make sure Tontat was started successfully

5. Make sure RBNB Server was started successfully

If there are any further questions, please contact:
Pet er Sal as ... psal as@-cu. edu
Carleton Cheng ... clcheng@cu. edu

127

Appendix |

Section 11: Client Side Directory Structure

A series of batch files were created to make it easier to start up the Client Side Applications. The Client
Side directory, when unzipped, is formated as shown below. There is a specific batch file that loads up a
specific device in the Class Files folder. More information about each individual batch file can be found
below in Section 2.

=l) RACE Cliznk Proqrarms
I} Class Files
) Java Files

There is a master batch file that loads up all the device specific batch files in the Class Files
folder. This batch file is located in the root folder of RACE Client Programs. More information about the
main batch file can be found in Section 3.

Section 12: Individual Batch Files

<RACE Client Programs>\Class Files\RACE_Antenna_Echo.bat
@cho off
java Antennadient Echo 129.210. 19. 118: 3333

@ause

<RACE Client Programs>\Class Files\RACE_Client_Input.bat
@cho of f
java Cientlnput 129.210.19.118: 3333

<RACE Client Programs>\Class Files\RACE_Power_Echo.bat
@cho of f
java Power StripCient Echo 129.210.19.118: 3333
@ause

<RACE Client Programs>\Class Files\RACE_Predict_Echo.bat
@cho off
java PredictdientEcho 129.210.19.118: 3333
@ause

<RACE Client Programs>\Class Files\RACE_Transceiver_Echo.bat
@cho of f
java Transcei verdient Echo 129.210.19.118: 3333

@ause

128

Section 13: Main Batch File

<RACE Client Programs>\RACE_Program.bat
@cho off

echo Invoking all dient Side Prograns

pushd O ass Files

start RACE dient | nput
popd

rem pause

pushd O ass Files
start RACE Power Echo
popd

rem pause

pushd O ass Files

start RACE Predict Echo
popd

rem pause

pushd O ass Files

start RACE _Antenna_Echo
popd

rem pause

pushd O ass Files

start RACE Transcei ver Echo
popd

rem pause

echo Fi ni shed

129

Section 14: Picture of RACE Client Program

4]

Figurel-1: RACE Client Program

130

Section 15:; Installation | nstructions

Syst em Requi renent s
* 233 MHz Processor
* | nternet Connection (preferable broadband connecti on)
* installed or able to install Java Runtime Environnent

NOTE: System has been tested to run under W ndows2000 and XP.
Al though it has yet to be tested under

Set up
1. Go to http://rbnb.creare.com
a. click on downl oads on the side bar
b. downl oad "W ndows self-installing executable"
- if you don't have the Java Virtual machine installed on
your machi ne choose "W ndows (i ncludes JVM"
c. after downl oad, open file and follow installation instructions

2. Go to java.sun.com
a. Gick on "Downl oads" on the sidebar
b. downl oad the | atest version of J2SE
- or at least J2SE vl1.4.2 w Java Runtine Environment (JRE)
c. install to desired | ocation

3. Set environment variables
a. set classpath (under "user variables") to:
<di r of DataTurbi ne>\ RBNB V2. 1\ bi n\rbnb.jar;
<di r of DataTurbi ne>\ RBNB_V2. 1\ bi n\ source.j ar;
<di r of DataTurbi ne>\ RBNB_V2. 1\ bi n\ r bnbj vi ew. j ar;
<di r of DataTurbi ne>\ RBNB_V2. 1\ bi n\rbnbj cap.jar; . *
* (make sure "."
shown above)

is at the end of the classpath as

b. set Path (under "systemvariables") to:
<dir of jdk>\bin\; **

** (make sure to set this path in front of other
syst em pat hs)

4. Downl oad RACE files
a. Extract into desired fol der
b. run batch file located in the Root RACE directory

NOTE: To run the batch file fromyour desktop, you can create a
shortcut to this batch file.

131

Section 16: Using RACE Client Program

You should see 1 batch file upon opening the folder (The root folder of
RACE). Once clicked, you will see 5 other wi ndows pop up onto your
screen. Below, you will find descriptions of each wi ndow that pops up
and how t hey work.

1) RACE Cient _Input

Description: This batch file opens up the conmand pronpt w ndow for
sendi ng conmands to the ground station | ocated
at Santa Clara University. Upon opening the
RACE Client _Input, you will see the words

"Connecting to 129.210.19.118: 3333". At this point,
the programis attenpting to establish a connection
with the Server. |If successfully connected, the words

"Pl ease Enter Comand: appear. Else, you will see
a DataTurbine Error. Here are a list of commands
avai | abl e:

NOTE: |If you get a DataTurbine Error, the systemw ||l NOT work.
Contact the systemadministrator if this happens.

Conmands: Descri ption
* predict -help Di spl ays the help nenu for controlling
Predict, which is the satellite
prediction software. It is simlar to

the NOVA software, and all commands t hat
deal with gathering information about
current possition or future pass

of a specific satellite, should be

di rected here.

* predict -update <Keplerian> Updates the Keplerian el enents

* predict -poss <Satellite> Requests the current possition of the
Satellite.

* predict -pass <Satellite> Requests when the next tinme the Satellite
will be in view

* power -help controls power of (1) Level-Converter for
Transcei ver, (2) Transceiver,
(3) TNC/ Modem (4) and the Antenna
Controller. This displays all the
conmands necessary in controlling this
devi ce.

* power -on turns on all devices

132

power -off

power -on |vconvert
power -off |vconvert
power -on xcr

power -off xcr

power -on nodem
power -off nobdem
power -on antenna
power -off antenna
xcr -help

xcr -sf <frequency>

XCr -su

xcr -sd

<l nval id Command>

antenna -help

antenna -t

antenna -a

antenna -s

turns off all devices

turns on the | evel converter. This is
necessary in sending commands to the
Transcei ver.

converter.

turns off the | eve

turns on the Transceiver.

turns off the Transcei ver.

turns on the TNC/ nbdem

turns of f the TNC/ nbdem

turns on the Antenna Controll er

turns off the Antenna Controller
Di spl ays the commands necessary in
controlling the Transceiver.

sets the frequency to the given
<frequency>. The format of the frequency
shoul d be of either of the three formats:
(1) xxx

(2) XXX.XXX

(3) XXX.XXX.X

sets to the uplink nobde. |In this node
performthe set frequency comrand
(see above) and set the uplink frequency.

you can

sets to the downlink node. |In this node,
can performthe set frequency command
(see above) and set the downlink frequency.

you

Di spl ays an error nessage directing how one
shoul d type in a command.

Di spl ays the commands necessary in controlling
t he Ant enna(l abj ack)

Turns Autotracking on. If SAPPH RE is not in
view, then it will position the antenna to the
next pass of the satellite.

G ves the current position of the antenna.

G ves the current
(satellite).

position of SAPPH RE

133

2) RACE_Power Echo

Description: Controls all information returning fromthe device.
This Echo's back anything received fromthe
Serial Power Strip.

3) RACE Predict_ Echo

Description: Controls all information returning fromthe device.
Thi s Echo's back anything received fromthe
Predict Software |ocated on the Server.

4) RACE_Transcei ver _Echo

Description: Controls all information returning fromthe device.
Thi s Echo's back anything received fromthe
Transceiver. |If the server successfully perfornms a

conmand, a success nessage i s displayed here.

5) RACE_Ant enna_Echo

Description: Controls all information returning fromthe device.
This Echo's back anything received fromthe
Labj ack device |ocated on the Server.

134

Section 17: Matlab Configuration and User Manual
Dani el Schuet, 2004

VWhat you'll need:

1. Current version of Matlab (version 6.5 tested to work). Need to
nmake sure that it has integrated java and the tinmer function

2. RBNB Data Turbine v2.1. Installation instructions follow bel ow

3. Current version of SapphireTermwitten by Daniel Schuet. These

are Matlab mfiles that allow you to hop onto the DataTurbi ne and
control the ground station packet nodem along with sone neat
added features.

4. M Map - a mapping package for Matlab [optional]. It can be found
here: http://ww2.ocgy. ubc.ca/~rich/map. htm Foll ow t he
instructions in the user guide to install (basically its just a
setting a path in Matlab).

5. Predict, Atomline, http_get bundled zip file [optional]. Adds
features of satellite tracking and predicting passes in Matlab
Extract to C\

In order to connect to the ground station through the Internet sone

software will need to be set up and installed on the client side
conputer. The RBNB (R ng Buffered Network Bus) Data Turbine is used to
gai n connectivity to the capabilities of the ground station, i.e. the

packet nodem the transceiver, and antenna auto tracking.

Downl oad and install RBNB Data Turbine v2.1. It can be found
here: http://outlet.creare.conlrbnb/downl oad. V2. 1. ht n
(get the one with JVM

Next you'll need to setup sone stuff in Matlab. Wth Version 6 and
later of Matlab, direct calls to Java are supported fromthe comrand
line node of Matlab. Thus, Matlab uses the native Java RBNB API
directly.

1. Copy C.\Program Fil es\RBNB_V2. 1\ bin\rbnb.jar into
C: \ MATLABG6p5\ j ava\j ar\t ool box\

2. Add this line:
$mat | abr oot/ javal/j ar/tool box/rbnb.jar

into C.\ MATLAB6p5\t ool box\ I ocal \ cl asspat h. t xt

3. Copy the directory C:\Program Files\RBNB_V2. 1\ Matl ab into
C. \ MATLABG6p5\t ool box\. DO NOT replace the directory already
there but renane the copied directory RBNB

4. Add C:\ MATLABG6p5\t ool box\RBNB to the Matlab path ("File..!, "Set
Path..!).

After that is all setup it's only a matter of downl oadi ng and
extracting the client software.

Sapphi re Support:
There are a couple of ways to tell if Sapphire is currently overhead.
First you can download a denpo version of Nova and run that to track

135

Sapphire. The other way is to use the satellite tracking built into
SapphireTerm This basically requires that you have the Predict,

At onili me, and http_get bundled zip file extracted to the C: \predict22
directory. This is nice because you can map out where Sapphire is
right in a Matlab figure window. Belowis an exanple of what you
shoul d see when you run sinmpleTermv3 in the extended nbode of operation-
neaning it will pop up a world nmap tracki ng Sapphire | ocation, update
kepl erian el enents on startup, and sync the time periodically. There
is also a default node of operation that doesn't have the frills just
nentioned. To access this node just type

"b=si npl eTer nv3(' 129. 210. 19. 118: 3333"') ".

b=si mpl eTer mv3("' 129. 210. 19. 118: 3333"','e")
[simpl eTerm v3. 0]
----VELCOVE TO THE GATEWAY OF REMOTE SATELLI TE COVMUNI CATI ONS- - - -
Connecting to 129.210.19.118:3333 ..
Connect ed.
Syncing tinme...
Updati ng Keps...
Done.
If all goes well when trying to connect to Sapphire (by typing "
ke6gmd") you should see the follow ng:

c

¢ keégnd

¢ ke6gnmd

cnd: *** CONNECTED to KE6QVD
Your passkey is 889916323.
cadmin

144 165 227 059 054 084 112 205 066
W\l cone to Sapphire.

? for help.

os tinme

os time

04: 22: 15 1/ 4/ 1995

After you get the passkey type ":admn" to automatically login with
adm nistrator privileges. After you are logged in start calling
Sapphi re commands.

136

Appendix J

Section J1: Use Case

RACE_Scheduler |

Create

Account

Change
User Info

Reservation

Set
Reservation

RACE_System | \

%

Access To
Interface

Equipment
Power Control

Adjust
Transceiver
Frequencies

Reboot System

Adjust Packet
Modem

Request Data

View Received
Data

View Signal
Meter

View Satellite
Information

Figure J-1: Use Case Diagram

Admin

Equipment

137

Section J1: Use Case Descriptions

The Use Case Description depicts how different usersinteract with the system.
It is described as follows:

Users: The users arethose who will use the RACE System.
ADMIN
- The administrator has full accessto the RACE system

USER
- The user isthe person registered with the system. He or she can be located anywhere
around the world.

Equipment: The equipment isthe physical equipment used in the RACE system.

EQUIPMENT:
- The equipment handles user requests (such as adjusting equipment) as well as
communication with the satellite (such as sending and receiving data).

Equipment includes:
- Server: the server will provide the link between the user and equipment. 1t will also
house the database.

- Packet Modem: the packet modem will handle the data packets that are sent to and
received by the satellite.

- CI-5 Level Converter: the converter is used to make the transceiver controllable froma
computer.

- Transceiver: thetransceiver receives data from the modem, convertsit to radio waves,
and sends through the antenna. It also receives radio waves from the antenna, which is
decoded by the packet modem.

- Antenna: the antenna is used to send signalsto and receive signals from the satellite.

- Power dtrips: the power strips are used to supply power to the equipment

- SASI Satellite Tracker: the SAS satellite tracker enables the antenna to be controlled
by calculations.

- Rotator Controller: the rotator controller is used to control the rotation of the satellite.

- Rotator: the rotator isthe physical rotation equipment on the antenna.

- Remote Reboot: the remote reboot allows the system to be rebooted from a remote
location.

138

Race System: The Race System describes how the user can use the system.

ACCESSTO SYSTEM
- User accessto the RACE System is granted only by avalid and confirmed reservation
time, which depends upon the scheduled time in the RACE Scheduler System.

ADJUST PACKET MODEM
- This allows settings on the packet modem to be changed. Through the RACE System,
the user can adjust settings of the packet modem, including powering it on or off.

ADJUST TRANCEIVER FREQUENCIES
- This allows the transceiver controls to be changed. Through the RACE System, the user
can adjust transceiver frequencies and settings.

EQUIPMENT POWER CONTROL
- This allows system components to be turned on or off. Through the RACE System, the
user can power on or off equipment such as the packet modem and transceiver.

FULL ACCESS
- Full Accessis granted to the Administrator.

REBOOT SYSTEM
- This reboots the system. Access to Rebooting the System is handled only by the
Administrator.

REQUEST DATA

- Commands can be sent to the satellite to retrieve desired data. User commands and
regquested data are sent through the RACE system and are handled by the equipment,
which are then to the satellite.

VIEW RECEIVED DATA

- Asaresult of a particular command sent to the satellite, the received datais displayed.
After it has received responses from the satellite, the equipment displays the user-
requested data.

VIEW SATELLITE INFORMATION

- This displays the current information about the satellite, such as azimuth and elevation.
After gathering information (such as position in space) from the satellite, the equipment
sends information about the satellite to the server-- which is displayed by the RACE
system.

VIEW SIGNAL METER

- This displays the current connection status and signal strength to the satellite. The
equipment sends information about the signal strength to the server-- which is displayed
by the RACE system.

EQUIPMENT POWER CONTROL

- Through the RACE System, the user can power on or off equipment such as the packet
modem and transceiver.

139

ADJUST TRANCEIVER FREQUENCIES
- Through the RACE System, the user can adjust transceiver frequencies and settings.

ADJUST PACKET MODEM
- Through the RACE System, the user adjusts settings of the packet modem, including
powering it on or off.

REQUEST DATA
- User commands and requested data are sent through the RACE System are handled by
the equipment, which sends them to the satellite.

VIEW RECEIVED DATA
- After it has received responses from the satellite, the equipment displays the user-
requested data.

VIEW SIGNAL METER
- The equipment sends information about the signal strength to the server-- which is
displayed by the RACE system.

VIEW SATELLITE INFORMATION

- After gathering information (such as position in space) from the satellite, the equipment
sends information about the satellite to the server-- which is displayed by the RACE
system.

RACE Scheduler®: The RACE scheduler handles reservations to the system. It also is used to
determine access to the RACE System

25 Implemented by the RACE 2002-2003 team. Please see RACE 2002-2003 Senior Thesis for further
information and specifications on the RACE scheduler.
http://www.cse.scu.edu/send.cgi?srprojects/2003/COEN-2003-PROJECT-25.pdf

140

