OCAPI/RT

User Manual
v0.81
(html, ps, pdf)

IMEC (Interuniversity Micro-ElectronicsCentre)
DESICS (Design Technology for Integrated Information and CommunicatiSgstems)
DBATE (Digital BroadbandTransceivers)
Kapeldreef75
B-3001Leuven
Belgium

E-mail: ocapi@imec.be

1. Introductory Pointers

1.1.Purpose

OCAPI/RT is a C++ library intended for the design of digital systems. It provides a short
path from a system design description to implementation in hardware. The library is suited
for a variety of design taskiscluding

Fixed Point Simulations

System Performance Estimation

System Profiling

Algorithm-to-Architecture Mapping

System Design according to a Dataflow Paradigm
Verification and Testbendbdevelopment

This manual is not a tutorial to digital design. Also, it is not a C++ course. It is rather a
guideline to the use of the library during sysiesign.

The manual is set up in a bottom fashion, starting with simple concepts and constructs, and
working towards more complex ones. Starting users therefore can read the manual
front-to-back. A few tutorial examples are included as well throughowsetttéons.

1.2.Publication pointers

Below, some publication references are included. They can help to grasp 'the overall
picture’ behindOCAPI/RT.

Classics in the dataflow area (which is the entry specification level of OCAPAfET)

e "Static Scheduling of Synchronous Data Flow Graphs for Digital Signal Processing", E.
Lee et al, IEEE Trans. Computers, september 1987

® "Recurrences, Iteration, and Conditionals in Statically Scheduled Block Diagram
Languages", E. Lee, VLSI Sig. Proc Il

® "Cyclo-Static Dataflow", G. Bilsen, M. Engels, R. Lauwereins, J. Peperstraete, IEEE
Trans. On Sig. Proc., februat®96

Related to OCAPI itself you mayonsult:

® "Synthesis of Variable and Multiple Rate Circuits for Telecommunications
Applications”, P. Schaumont, S. Vernalde, M. Engels, I. Bolsens, EDTC97

® "The OCAPI Design SystemIMEC
The synthesis backend of OCAPI/RT is partly based on the Catheaoak3

e "Accelerator Data-Path Synthesis for High-Throughput Signal Processing
Applications", W. Geurts, F. Catthoor, S. Vernalde, H. De Man, Kluwer Academic
Publishers

e "Synthesis of high throughput DSP ASIC Application Specific Data Paths", S.
Vernalde, P. Schaumont, DSP & Multimedia Technology, 1994

Finally, introductions to the art of digital design may be found

e '"Digital Systems, Hardware, and Firmware Algorithms", M. Ercegovac, T. Lang,
Wiley

e "Digital Systems: with algorithm implementation”, M. Davio, A. Thayse, J.P.
Deschamps

1.3.In case oftrouble

The OCAPI/RT complaint counter is@tapi@imec.beDo not hesitate to report any
suspicious behavior you encounter. Even if no bug is at play, you could have discovered at
least a weak point of thimanual.

2. Developmentflow

2.1.The flow layout

The design flow shown ifigure starts off with an untimed, floating point C++ system
description. Since data-processing intensive applications such as all-digital transceivers are
targeted, this description uses data-flow semantics. The system is described as a network of
communicatingcomponents.

At first, the design is refined, and in each component, features expressing hardware
implementation are introduced, including time (clock cycles) and bittrue rounding effects.
The use of C++ allows to express this in an elegant way. Also, all refinement is done in a
single environment, which greatly speedups the defignt.

Next, the C++ description is translated into an equivalent HDL description by code
generation. For each component, a controller description and a datapath description is
generated. This is done because we rely on separate synthesis tools for both parts, each one
optimized towards controller or else datapath synthesis tasks. Through the use of an
appropriate object modeling hierarchy the generation of datapath and controller HDL can be
done fullyautomatic.

For datapath synthesis, we rely on the Cathedral-3 datapath synthesis tools, that allow to
obtain a bitparallel hardware implementation starting from a set of signal flowgraphs.
Controller synthesis on the other hand is done by the logic synthesis of Synopsys DC. This
divide and conquer strategy towards synthesis allows each tool to be applied at the right
place.

During system simulation, the system stimuli are also translated into testbenches that allow
to verify the synthesis result of each component. After interconnecting all synthesized
components into the system netlist, the final implementation can also be verified using a
generated systetastbench.

2.2.The systemmodel

The system machine model that is used is a set of concurrent processes. Each process
translates to one component in the final systaplementation.

At the system level, processes execute using data flow simulation semantics. That is, a
process is described as an iterative behavior, where inputs are read in at the start of an
iteration, and outputs are produced at the end. Process execution can start as soon as the
required input values asvailable.

Inside of each process, two types of description are possible. The first one is an untimed
description, and can be expressed using any C++ constructs available. A firing rule is also
added to allow dataflow simulation. Untimed processes are not subject to hardware
implementation but are needed to express the overal system behavior. A typical example is a
channel model used to simulate a diditahseiver.

The second flavor of processes is timed. These processes operate synchronously to the
system clock. One iteration of such a process corresponds to one clock cycle of processing.
Such a process falls apart in two pieces: a control description and a data processing
description.

The control description is done by means of a finite state machine, while the data description
is a set of instructions. Each instruction consists of a series of signal assignments, and can
also define process in- and outputs. Upon execution, the control description is evaluated to
select one or more instructions for execution. Next, the selected instructions are executed.
Each instruction thus corresponds to one clock cycle db&iavior.

For system simulation, two schedulers are available. A dataflow scheduler is used to
simulate a system that contains only untimed blocks. This scheduler repeatedly checks
process firing rules, selecting processes for execution as their inputs are available. When the
system also contains timed blocks however, a cycle scheduler is used. The cycle scheduler
manages to interleave execution of multi-cycle descriptions, but can incorporate untimed
blocks aswell.

3. The standardprogram

GNU is one of OCAPI/RT's favorites. In consequence, the library is developed with the g++ C++
GNU compiler. The current version uses the g++ 2.8.1 compiler, and has been successfully
compiled and run under the following operating system platforms: HPUX-9 (HPRISC),

HPUX-10 (HPUX10), SunOS (SUN4), Solaris (SUN5) and Linux 2DIRUX).

In this section the layout of your 'standard’ g++ OCAPI/RT program will be explained, including
compilation and linking of thiprogram.

First of all, you should make g++ your standard compilation environment. On Linux, this is
already the case after installation. Other operating system vendors however usually have their
own proprietary C++ compiler, in order to sell you YAL (yet another license). In such cases,
install the g++ compiler on the operating system, and adapt your PATH variable such that the
shell can access the compiler. The OCAPI/RT library comes as a set of include files and a binary
lib. The include files are located under the directory catielide and the binary lib under the
directory calledib.

The 'standard program’ is the minimal contents of an OCAPI/RT program. It has the following
layout.

include "glib.h"

int main()

{

// your program goes here

}

Pretty simple indeed. The includéb.h includes everything you need to access all classes within
OCAPI/RT.

If this program is calledtandard.cxx then the following makefile will transform the source code
into an executable for you. THEOSTTYPEmacro defined in the makefile changes with the
computing platform. The release of the library residésahe/user/ocapiYou must assign
OCAPI in the makefile to thisalue.

OCAPI =/home/user/ocapi
HOSTTYPE = hppal.l-hp-hpux10.20

LIB = $(OCAPI)/lib

INCLUDE = $(OCAPI)/include

cC = g++

QFLAGS =-c-g-Wall -I${INCLUDE}
LIBS =-lm

%.0: %.CXX
$(CC) $(QFLAGS) $< -0 $@

TARGET = standard

all: $(TARGET)

define Inkglib

$(CC) $" -0 $@ $(LIBS)

endef

OBJS = standard.o

standard: ${OBJS} $(BASE)/lib_$(HOSTTYPE)_ocapi.a
${Inkqlib}

clean:
rm -f *.0 $(TARGET)

This is a makefile for GNU’snake othermakeprograms can have a slightly different syntax,
especially for the definition of tHakglib macro. It is not the shortest possible solution for a
makefile, but it is one that works on different platforms without making assumptions about
standard compilatiorules.

The compilation flag¢QFLAGS) mean the following:c selects compilation-onlyg turns on
debugging information, andVall will curse you to hell for confusing a reference with a pointer
(the warning flag, indeed). The debugging flag allows you to debug your program with gdb, the
GNU debugger.

Even if you don't like a debugger and prefer the goodpdalutf() debugginggdbcan at least be
of great help in the case your program core dumps. Start your prograngdbdmpegdb
standardat the shell prompt), typ®in to letstandardcrash again, and then type You now
see the call trace. There are a load of other reasons gallisécourse.

4. Calculations

OCAPI/RT processes hoth floating point and fixed point values. In contrast to the standard C++
data types liként anddouble ahybrid data type class is used, that simulates both fixed point and
floating pointbehavior.

4.1.The dfix class

This class is calledfix. The particular floating/fixed point behavior is selected by the class
constructor. The standard format of this construistor

dfix a; // a floating point value

dfix a(0.5); I/ a floating point value with initial value

dfix a(0.5, 10, 8); /I a fixed point value with initial value,
/I 10 bits total wordlength, 8 fractional bits

A fixed point value has a maximal precision of the mantissa precision of ddtible On
most machines, this is its.

A fixed point value can also select a representation, an overflow behavior, and a rounding
behavior. These flags are, in this order, optional parametersdfixt@nstructor. They can
have the followingralues.

® Representation flagtfix::tc for two’s complement signed representatidiix::ns for
unsigned representation.

e Overflow flag:dfix::wp for wrap-around overflongfix::st for saturation.

e Rounding flagdfix::fl for truncation (floor)dfix::rd for roundingbehavior.

Some exampleare

dfix a(0.5, 10, 8); /I the default is two’s complement, wrap-around,
I truncated quantisation
dfix a(0.5, 10, 8, dfix::tc, dfix::st, dfix::rd);
Il two’s complement, saturation, rounding
/I quantisation
dfix a(0.5, 10, 8, dfix::ns);
/I unsigned, wrap-around, truncated quantisation

When working with fixed pointifixes, it is important to keep the following rule in mind:
guantisation occurs only when a value is definedassigned This means that a large
expression with several intermediate results will never have these intermediate values
guantised. Especially when writing code for hardware implementation, this should be kept in
mind. Also intermediate results are stored in finite hardware and therefore will have some
guantisation behavior. There is howeveraastoperator that will come at helere.

4.2.The dfix operators

The operators odfix are showrbelow

. +! -1 *!/
Standard addition, subtraction (including unary minus), multiplication and division.
® += -= *:,/:

In-place versions of previous operators.
® abs

Absolute value.
o <<, >>
Left and right shifts.
0 <<= >>=
In-place left and right shifts.
® msbpos
Most-significant bit position.
Y &’ |’ /\’ ~
Bitwise and, or, exor, and not operators.
e frac() (membecall)
Fractional part
0 == I= <= >= <>
Relational operators: equal, different, smaller then or equal to, greater then or equal to,
smaller then, greater then. These returmaimstead of alfix.

All operators with exception of the bitwise operators work on the maximal fixed point
precision (53 points). The bitwise operators have a precision of 32 bits (@@} +Also,

they assume the fixed point representation contains no fractional bits. This is an anomaly of
the fixed point library. The dfix type really is a mapping from a high-level type (floating

point) in a low-level type (fixed point). A good implementation of the bitwise operators
would require the presence of a high-leme] which is not present in the fixed point library.
This high-level type rather is faked with a low-level fixed point type with zero bits fractional
precision. In addition to the arithmetic operators, several utility methods are available for the
dfix class.

dfix a, b;

/l cast a to another type
b = cast(dfix(0, 12, 10), a);

/l assign b to a, retaining the quantisation of a
a=b;

/l assign b to a, including the quantisation
a.duplicate(b);

Il return the integer part of b
int c = (int) b;

/I retrieve the value of b as a double
double d,e:
d = b.val();
e = Val(b);

/l return quantisation characteristics of a

a.TypeW(); /I returns the number of bits
a.TypeL(); /I returns the number of fractional bits
a.TypeSign(); // returns dfix::tc or dfix::ns
a.TypeOverflow(); // returns dfix::wp or dfix::st
a.TypeRound(); // returns dfix::fl or dfix::rd

/I check if two dfixes are identical in value and quantisation
identical(a,b);

/I see wether a is floating or fixed point
a.isDouble();
a.isFix();

/I write a to cout

cout << a;

/I write a to stdout, in float format,
/I on a field of 10 characters
write(cout, a, 'f’, 10);

/I now use a fixed-format
write(cout, a, 'g’, 10);

/l next assume a is a fixed point number,
// and write out an integer representation
/I (considering the decimal point at the Isb of a)

/I use a hexadecimal format
write(cout, a, 'x’, 10);

/l use a binary format
write(cout, a, 'b’, 10);

/I use a decimal format
write(cout, a, 'd’, 10);

/I read a from stdin
cin >> a;

10

5. Communication

Apart from values, OCAPI/RT is concerned with the communication of values in between blocks
of behavior. The high level method of communication in OCAPI/RT is a FIFO queue, of type
dfbfix. This queue is conceptually infinite in length. In practice it is bounded by a sysop
phonecall telling that you have wasted up all the swap space ®fstem.

5.1. The dfbfix class

A queue is declareas
dfbfix a("a");

This creates a queue with name a. The queue is intented to pass value objects of the type
dfix. There is also an alias typedfbfix, known ad-B (flow buffer). So you can alsarite

FB a('a");

2. The dfbfix operators

The basic operations on a queue allow to store and rettiievebjects. The operatiorse

dfix k;
dfix j(0.5);
dfbfix a("a");

/l insert j at the front of a
a.put(j);

I/l operator format for an insert

a<<j

/l insert j at position 5, with position O corresponding to
/I the front of a.

a.putindex(j,5);

/I read one element from the back of a
k = a.get();

/I operator format for a read
a>>j;

/I peek one element at position 1 of a
k = a.getindex(1);

/I operator format for peek
k= af[l];

/I retrieve one element from a and throw it
a.pop();

/I return the number of elements in a as an int
int n = a.getSize();

/ return the name of the queue
char *p = a.name();

11

Whenever you perform an access operation that reads past the end of a FIFO, a runtime
error resultsshowing

Queue Underflow @ get in queue a

5.3. Utility calls for dfbfix

Besides the basic operations on queues, there are some additional utiliy operations that
modify a queudehavior

/l make a queue of length 20. The default length of a queue is 16.

/I whenever this length is exceeded by a put, the storage in the queue
Il is dynamically expanded by a factor of 2.

dfbfix a("a", 20);

/I After the asType() call, the queue will have an input "quantizer"
/I that will quantize each element inserted into the queue to that of
/I the quantizer type

dfix q(0, 10, 8);

a.asType(q);

/I After an asDebug() call, the queue is associated with a file, that

/I will collect every value written into the queue. The file is opened

/I as the queue is initialized and closed when the queue object is destroyed.
a.asDebug("thisfile.dat");

/I Next makes a duplicate queue of a, called b. Every write into a will also

/I be done on b. Each queue is allowed to have at most ONE duplicate queue.
dfbfix b("b");

a.asDup(b);

/I Thus, when another duplicate is needed, you write is as
dfbfix c("c");
b.asDup(c);

During the communication affix objects, the queues keep track of some statistics on the
values that are passed through it. You can use<laperator and the member function
stattitle() to make these statistigsible.

The next program demonstrates thetsgistics
#include "glib.h"

void main()

{
dfbfix a("a");
a << dfix(2);
a << dfix(1);
a << dfix(3);

a.stattitle(cout);
cout << a;

}

When running this program, the following appearsomeen

Name put get MinVal @idx MaxVal @idx Max# @idx
a 3 0 1.0000e+00 2 3.0000e+00 3 3 3

The first line is printed by thstattitle() call as a mnemonic for the fields printed below. The
next line is the result of passing the queue to the standard output stream object. The fields
mean thdollowing:

12

® Name
The name of the queue

e put
The total number of elementsit() into the queue
e get
The total number of elemerget() from the queue
e MinVval
The lowest element put onto the queue
® @idx
The put sequential number that passed this lowest element
e MaxVal
The highest element put onto the queue
® @idx
The put sequential number that passed this highest element
o Max#
The maximal queue length that occurred
® @idx

The put sequential number that resulted ion this maximal deegth

5.4.Globals derivatives fordfbfix

There are two special derivates of dfbfix. Both are derived classes such that you can use
them wherever you would usedfbfix. Only the first will be discussed here, the other one is
related to cycle-true simulation and is discuss§@hapter 16: Fast@ommunicatior]s

Thedfbfix_nil object is like ddev/null drain. Everydfix written into this queue is thrown.
A read operation from such a queue results in a rurginoe.

There are two global variables related to queuesligt@fFB is a pointer to a list of

gueues, containing every queue object you have declared in your program. The member
function callnextFB() will return the successor of the queue in the global list. For example,
the codesnippet

dfbfix *r;

for (r = listOfFB; r; r = r->nextFB())
{

}

will walk trough all the queues present in your OCAPIfRdgram.

The other global variable €IFB , which is of the typefbfix_nil. It is intended to be used
as a globatrashcan.

13

6. The basicblock

OCAPI/RT supports the dataflow simulation paradigm. In order to define the actors to the
system, ondaseclass is used, from which all actors will inherit. In order to do untimed
simulations, you must follow a standard template to which new actor classes must conform. In
this section, the standard template will be introduced, and the writing stideltimented.

6.1.Basic block include and coddile

Each new actor in the system is defined with one header file and one source code C++ file.
We define a standard blockdd, which performs aaddition.

The include fileadd.h lookslike

#ifndef ADD_H
#define ADD_H

#include "glib.h"

class add : public base

{
public:

/[----- constructor -----
add (char *name,
FB & inl,

FB & in2,
FB& ol

/[----- untimed simulation -----
int run();

private :

FB *inl;

FB *in2;

FB *o1,;

k

#endif

This defines a classdd that inherits fronbase Thebaseobject is the one that OCAPI/RT
likes to work with, so you must inherit from it in order to obtain an OCAPI/RT Ideok.

The private members in the block are pointers to communication queues. Optionally, the
private members should also contain state, for example the tap values in a filter. The
management of state for untimed blocks is entirely the responsibility of the user; as far as
OCAPI/RT is concerned, it does not care what you use asvextadles.

The public members include a constructor and an executiorunallhe constructor must

at least contain a name, and a list of the queues that are used for communication. Optionally,
some parameters can be passed, for instance in case of parametrized blocks (filters with a
variable number of taps and thiee).

The contents of the adder block will be describealdd.cxx

#include "add.h"

/[----- constructor -----
add::add(char *name,
FB & _in1,

14

FB & _in2,
FB & _ol
) : base(hame)

{
inl = _inl.asSource(this);
in2 = _in2.asSource(this);
0l =_o1 .asSink (this);
}

/----- untimed simulation: run() -----
int add::run()

/l firing rule

if ((inl->getSize() <1) ||
(in2->getSize() < 1))

{

return O;

}

0l->put(inl->get() + in2->get());
return 1;

}

The constructor passes the name of the object toabeclass it inherits from. In addition,

it initializes private members with the other parameters. In this example, the communication
gueue pointers are initialized. This is not done through simple pointer assignment, but
through function callasSourceandasSink This is not obligatory, but allows OCAPI/RT to
analyze the connectity in between the basic blocks. Since a queue is intended for
point-to-point communication, it is an error to use a queue as input or ouput more then once.
The function call@sSourceandasSinkkeep track of which blocks source/sink which

gueues. They will return a runtime error in case a queue is sourced or sinked more then
once. The constructor can optionally also be used to perform initialization of other private
data (state foinstance).

Therun() method contains the operations to be performed when the block is invoked. The
behavior is described in an iterative way. Tiwe function must return an integer value, 1 if
the block succeeded in performing the operation, and 0 if thifaihed

This behavior consists of two parts: a firing rule and an operative part. The firing rule must
check for the availability of data on the input queues. When no sufficient data is present
(checked with thgetSize()member call), it stops execution and returns 0. When sufficient
data is present, execution can start. Execution of an untimed behavior can use the different
C++ control constructs available. In this example, the contents of the two input queues is
read, the result is added and put into the ouput queue. After execution, the value 1 is
returned to signal the behavior has completed

6.2. Predefined standard blocks: file sources andinks

The OCAPI/RT library contains three predefined standard blocks, which is a file sozjrce
a file sinksnk, and a ram storage blockm.

The file sources and sinks define operating system interfaces and allow you to bring file data
into an OCAPI/RT simulation, and to write out resulting data to a file. The examples below
show various declarations of these blocks. Data in these files is formatted as floating point
numbers separated by white space. For ouput, newlines are wgkitkapace.

15

/I define a file source block, with name a,
/I that will read data from the file "in.dat"
/l and put it into the queue k

dfbfix k("k");
src a("a", k, "in.dat");

/I an alternative definition is

dfbfix k("k");

src a("a", k);
a.setAttr(src::FILENAME, "in.dat");

// which also gives you a complex version
dfbfix k1("k1");

dfbfix k2("k2");

src a ("a", k1, k2);
a.setAttr(src::FILENAME, "in.dat");

// define a sink block b, that will put data
/l from queue o into a file "out.dat".
dfbfix o("0");

snk b("b", o, "out.dat");

/I an alternative definition is

dfbfix o("0");

snk b("b", 0);
b.setAttr(snk::FILENAME, "out.dat");

// which gives you also a complex version
dfbfix 01("ol1");

dfbfix 02("02");

snk b ("b", 01, 02);
b.setAttr(snk::FILENAME, "out.dat");

/I the snk mode has also a matlab-goodie
// which will format output data into a mtrix
/I A that can be read in directly by Matlab.
dfbfix o("0");

snk b("b", 0);
b.setAttr(snk::FILENAME, "out.m");
b.setAttr(snk::MATLABMODE, 1);

6.3. Predefined standard blocks:RAM

The ram untimed block is intended to simulate single-port storage blocks at high level. By
necessity, some interconnect assumptions had to be made on this block. On the other hand, it
is supported all the way through code generation. OCAPI/RT does not generate RAM cells.
However, it will generate appropriate connections in the resulting system netlist, onto which

a RAM cell can be connected. The declaration of a ram blockiddl@as's.

/l make a ram a, with an address bus, a data input bus, a data
/l ouput bus, a read command line, a write command line, with
// 64 locations

dfbfix address ("address");
dfbfix data_in ("data_in");
dfbfix data_out ("data_out");
dfbfix read_c ("read_c");
dfbfix write_c ("write_c");

ram a ("a",
address,

16

data_in,
data_out,
write_c,
read_c,
64);

/I clear the ram
a.clear();

/I fill the ram with the linear sequence
/I data = k1 + address * k2;
afill(k1, k2);

/l dump the contents of a to cout
a.show();

The execution semantics of the ram are as follows. For each read or write, an address, a read
command and a write command must be presented. If the read commandifix(dalsa

read will be performed, and the value stored at the location presented tadolighswill

be put ordata_out If the read command equals any other value, a dummy byte will be
presented alata_out If no read command was presented, no data will be presented on
data_out For writes, an identical story holds for reads ondiia_ininput: Whenever a

write command is presented, the data input will be consumed. When the write command
equals 1, then the data input will be stored in the location provided thadldgbss When a

read and write command are given at the same time, then the read will be performed before
the write. The ram also includes an online "purifier" that will generate a warning message
whenever data from an unwritten locatiomeéad.

17

7. Untimed simulations

Given the descriptions of one or more untimed blocks, a simulation can be done. The description
of a simulation requires the following to be included in a standardn@atia() procedure:

The instantiation of one or more basic blocks.

The instantiation of one or more communication queues that interconnect the blocks.

The setup of stimuli. Either these can be included at runtime by means of the standard file
source blocks, or else dedicated C++ code can be written that fills up a queue with stimuli.
A schedule that drives the execution methods of the baxsiks.

A schedule, in general, is the specification of the sequence in which block firing rules must be
tested (and fired if necessary) in order to run a simulation. There has been quite some research in
determining how such a schedule can be constructed automatically from the interconnection
network and knowledge of the block behavior. Up to now, an automatic mechanism for a general
network with arbitrary blocks has not been found. Therefore, OCAPI/RT relies on the designer to
construct such schedule.

7.1.Layout of untimed simulation

In this section, the template of the standard simulation program will be given, along with a
description of theschedulerclass that will drive the simulation. A configuration with the
adderblock (described in the section on basic blocks) is used esaanple.

#include "glib.h"
#include "add.h"

void main()

dfbfix i1("i1");
dfbfix i2("i2");
dfbfix 01("o1");

src SRC1("SRC1", i1, "SRC1");
src SRC2("SRC2", i2, "SRC2");
add ADD ("ADD", i1, i2, 01);

snk SNK1("SNK1", 01, "SNK1");

schedule S1("S1");
S1.next(SRC1);
S1.next(SRC2);
S1.next(ADD);
S1.next(SNK1);

while (S1.run());
i1.stattitle(cout);
cout << i1;

cout << i2;
cout << 01;

}

The simulation above instantiates three communication buffers, that interconnect four basic
blocks. The instantiation defines at the same time the interconnection network of the
simulation. Three of the untimed blocks are standard file sources and sinks, provided with
OCAPI/RT. Theaddblock is a user defineshe.

18

After the definition of the interconnection network, a schedule must be defined. A
simulation schedule is constructed ussepeduleobjects. In the example, one schedule
object is defined, and the four blocks are assigned to it by meamerf(gmembercall.

The order in whicmext() calls are done determines the order in which firing rules will be
tested. For each execution of the schedule oBjgdaherun() methods oSRC1 SRC2

ADD andSNK1are called, in that order. The execution method of a scheduler object is
calledrun(). This function returns an integer, equal to one when at least on block in the
current iteration has executed (i.e. tha() of the block has returned one). When no block
has executed, it returizgro.

The while loop in the program therefore is an execution of the simulation. Let us assume
that the directory of the simulator executable contains the two required stimulsfREq,
andSRC2 Their contents is dsllows

SRC1 SRC2 -- not present in the file
- - not present in the file

When compiling and running this program, the simuleg¢sponds:

*** INFO: Defining block SRC1
*** INFO: Defining block SRC2
*** INFO: Defining block ADD
*** INFO: Defining block SNK1
Name put get MinVal @idx MaxVal @idx Max# @idx
il 3 3 1.0000e+00 1 3.0000e+00 3 1 1
i2 3 3 4.0000e+00 1 6.0000e+00 3 1 1
ol 3 3 5.0000e+00 1 9.0000e+00 3 1 1

and in addition has created a f8&lK1, containing

SNK1 -- not present in the file
------ not present in the file
5.000000e+00

7.000000e+00

9.000000e+00

TheINFO message appearing on standard output are a side effect of creating a basic block.
The table at the end is produced by the print statements at the engafgtaan.

7.2.More on schedules

If you would examine closely which blocks are fired in which iteration, (for instance with a
debugger) then you woufihd

iteration 1
run SRC1 => il contains 1.0
run SRC2 => i2 contains 4.0
run ADD => 01l contains 5.0
run SNK1 => write out 01
schedule.run() returns 1
iteration 2
run SRC1 => il contains 2.0
run SRC2 => i2 contains 5.0
run ADD => o0l contains 7.0
run SNK1 => write out 01

19

schedule.run() returns 1
iteration 3
run SRC1 => il contains 3.0
run SRC2 => i2 contains 6.0
run ADD => 01 contains 9.0
run SNK1 => write out 01
schedule.run() returns 1
iteration 4
run SRC1 => at end-of-file, fails
run SRC2 => at end-of-file, fails
run ADD => no input tokens, fails
run SNK1 => no input tokens, fails
schedule.run() returns 0 => end simulation

There are two schedule member functidarezeOn() andtraceOff(), that will produce
similar information for you. If younsert

S.traceOn();

just before the while loop, then ysee

*** INFO: Defining block SRC1

*** INFO: Defining block SRC2

*** INFO: Defining block ADD

*** INFO: Defining block SNK1

S1[SRC1 SRC2 ADD SNK1]

S1[SRC1 SRC2 ADD SNK1]

S1[SRC1 SRC2 ADD SNK1]

S1[]

Name put get MinVal @idx MaxVal @idx Max# @idx

il 3 3 1.0000e+00 1 3.0000e+00 3 1 1
i2 3 3 4.0000e+00 1 6.0000e+00 3 1 1
ol 3 3 5.0000e+00 1 9.0000e+00 3 1 1

appearing on the screen. This trace feature is convenient during sateioludging.

In the simulation ouput, you can also notice that the maximum number of tokens in the
gueues never exceeds one. When you had entered another schedule seqexacepler

schedule S1("S1");
S1.next(ADD);
S1.next(SRC2);
S1.next(SRC1);
S1.next(SNK1);

then you would notice that the maximum number of tokens on the queues would result in
different figures. On the other hand, the resulting dataSNK1, will contain exactly the

same results. This demonstrates one important property of dataflow simulations: any
arbitrary but consistent schedule yields the same results. A 'consistent’ schedule means that
no block will be scheduled zero or an infinite number of times. Only the required amount of
storage will change from schedulestchedule.

7.3.Profiling in untimed simulations

Untimed simulations are not targeted to circuit implementation. Rather, they have an
explorative character. Besides the queue statistics, OCAPI/RT also enables you to do precise
profiling of operations. The requirement for this featurthas

20

1. You usescheduleobjects to construct the simulation
2. You describe block behavior wittfix objects

Profiling is by default enabled. To view profiling results, you send the schedule object under
consideration to the standard output stream. Imt&i@ example program given above, you
can modify thisas

#include "glib.h"
#include "add.h"

void main()

{

schedule S1("S1");

cout << S1;

}
When running the simulation, you will see the following appearingtdout:

*** INFO: Defining block SRC1
*** INFO: Defining block SRC2
*** INFO: Defining block ADD
*** INFO: Defining block SNK1
Name put get MinVal @idx MaxVal @idx Max# @idx
il 3 3 1.0000e+00 1 3.0000e+00 3 1 1
i2 3 3 4.0000e+00 1 6.0000e+00 3 1 1
ol 3 3 5.0000e+00 1 9.0000e+00 3 1 1
Schedule S1 ran 4 times:
SRC1 3
SRC2 3
ADD 3
+ 3
SNK1 3

For each schedule, it is reported how many times it was run. Inside each schedule, a firing
count of each block is given. Inside each block, an operation execution count is given. The
simpleaddblock gives the rather trivial result that there were three additions done during
the simulation.

The gain in using operation profiling is to estimate the computational requirement for each
block. For instance, if you find that you need to do 23 multiplications in a block that was
fired 5 times, then you would need at least five multipliers to guarantee the block
implementation will need only one cycledgecute.

Finally, if you want to suppress operation profiling for some blocks, then you can use the
member function cabhoOpsCnt()for each block. For instanceriting

ADD.noOpsCnt();

suppresses operation profiling in the AbIock.

21

8. The path toimplementation

The features presented in the previous sections contain everything you need to do untimed, high
level simulations. These kind of simulations are useful for initial development. For real
implementation, more detail has to be added taéseriptions.

OCAPI/RT makes few assumptions on the target architecture of your system. One is that you
target bitparallel and synchronous hardware. Synchronicity is not a basic requirement for
OCAPI/RT. The current version however constructs single-thread simulations, and also assumes
that all hardware runs at the same clock. If different clocks need to be implemented, then a
change to the clock-cycle true simulation algorithm will have to be made. Also, it is assumed that
one basic block will eventually be implemented into prexessor.

One question that comes to mind is how hardware sharing between different basic blocks can be
expressed. The answer is that you will have to construct a basic block that merges the two
behaviors of two other blocks. Some designers might feel reluctant to do this. On the other hand,
if you have to write down merged behavior, you will also have to think about the control
problems that are induced from doing this merging. OCAPI/RT will not solve this problem for
you, though it will provide you with the means to expiiess

Before code generation will translate your description to an HDL, you will have to take care of
the followingtasks:

1. You will have to specify wordlengths. The target hardware is capable of doing bitparallel,
fixed point operations, but not of doing floating point operations. One of your design tasks is
to perform the quantisation on floating point numbers. dfheclass discussed earlier
contains the mechanisms for expressing fixed point behavior.

2. You will have to construct a clock-cycle true description. In constructing this description,
you will not have to allocate actual hardware, but rather express which operations you
expect to be performed in which clock cycle. The semantical model for describing this clock
cycle true behavior consists of a finite state machine, and a set of signal flow graphs. Each
signal flow graph expresses one cycle of implemented behavior. This style of description
splits the control operations from data operations in your program. In contrast, the untimed
description you have used before has a common representation of conttataand

OCAPI/RT does not force an ordening on these tasks. For instance, you might first develop a
clock cycle true description on floating point numbers, and afterwards tackle the quantization
issues. This eases verification of your clock-cycle true circuit to the untimed high level
simulation.

The final implementation also assumes that all communication queues will be implemented as
wiring. They will contain no storage, nor they will be subject to buffer synthesis. In a dataflow
simulation, initial buffering values can however be necessary (for instance in the presence of
feedback loops). In OCAPI/RT, such a buffer must be implemented as an additional processor
that incorporates the required storage. The resulting system dataflow will become deadlocked
because of this. The cycle scheduler however, that simulates timed descriptions, is clever enough
to look for these ’initial tokens’ inside of tliescriptions.

In the next sections, the classes that allow you to express clock cycle true behavior are
introduced.

22

9. Signals and signaflowgraphs

Some initial considerations on signals are introduced first. If you are not philosophically inclined
you might want to skip a paragraph to the handseation.

9.1.Hardware versusSoftware

Software programs always use memory to store variables. In contrast, hardware programs
work with signals, which might or might not be stored into a register. This feature can be
expressed in OCAPI/RT by using theig class. Simply speaking, &igis adfix for which

you have indicated whether is needs storagebr

In implementation, a signal with storage is mapped to a net driven by a register, while an
immediate signal is mapped to a net driven byperator.

Besides the storage issue, a signal also departs from the consepp@fou use in a

program. For instance, in a function you can use local variables, which are destroyed (i.e. for
which the storage is reclaimed) after you have executed the function. In hardware however,
you control the signal-to-net mapping by means of the daptal.

Therefore you have to manage the scope of signals yourself. A syntactical effect of this is
the use of asigclass rather then justsig class. Within the OCAPI/RT library, sig

actually encapsulatessig because OCAPI needs to distinguish between C++ scope
(procedures) and hardware scope (signal flowgraphs). The signal scope is expressed by
using a signal flowgraph objedatfg. A signal flowgraph marks a boundary on hardware
behavior, and will allow subsequent synthesis tools to find out operator allocation, hardware
sharing and signal-to-net mapping Yau.

9.2.The _sig class and relatedperations

Hardware signals can expressed in three flavors. They can be plain signals, constant signals,
or registered signals. The following example shows how these three dafirszl.

// define a plain signal a, with a floating point dfix inside of it.
_sig a("a");

// define a plain signal b, with a fixed point dfix inside of it.
_sig b("b", dfix(0,10,8));

/Il define a registered signal c, with an initial value k
/I and attached to a clock ck.

dfix k(0.5);

clk ck;

_sig c("c", ck, k);

/l define a constant signal d, equal to the value k
_sig d(k);

The registered signals, and more in particular the clock object, are explained more into detail
when signal flowgraphs and finite state machines are discussed. In this section, we will
concentrate on operations that are availablsifprals.

23

Using signals and signal operations, you can construct expressions. The signal operations

are a subset of the operationsdbix. This is because there is a hardware operator
implementation behind each of thegeerations.

® + - *
Standard addition, subtraction (including unary minus), multiplication
® & |, N~
Bitwise and, or, exor, and not operators.
0 —=l=<=>=<>
Relational operators.
o << >>
Left and right shifts.
® s.cassign(sl,s2)
Conditional assignment with s1 or s2 depending on s.
® cast(T,s)
Convert the type of s to the type expressedfin T.
e |u(L,s)
Use s as in index into lookuptable L amdrieve.
® mshpos(s)
Return the position of the msbsn

Precision considerations are the same adffer That is, precision is at most the mantissa
precision of a double (53 bits). For the bitwise operations, 32 bits are assumed (easing).
lu andmsbposare not member but friend functions. In additimsbposexpects fixed-point
signals.

_sig a("a");
sig b('b");
_sig c("c");

/I some simple operations
c=a+b;
c=a-b;
c=a*b;

/I bitwise operations works only on fixed point signals
_sig e(dfix(0xff, 10, 0));

_sig d("d",dfix(0,10,0));

_sig f("f*,dfix(0,10,0));

f=d&e;

f=d]e;

f=~d;

f=d " _sig(dfix(3,10,0));

/I shifting
/I a dfix is automatically promoted to a constant _sig
f = d << dfix(3,8,0);

/I conditional assignment
f = (d < dfix(2,10,0)).cassign(e,d);

/I type conversion is done with cast
_sig 9("g",dfix(0,3,0));
g = cast(dfix(0,3,0), d);

/I a lookup table is an array of unsigned long
unsigned long j = {1, 2, 3, 4, 5};

24

/I a lookuptable with 5 elements, 3 bits wide
lookupTable j_lookup("j_lookup”, 5, dfix(0,3,0)) = j;
/l find element 2

g

= lu(j_lookup, dfix(2,3,0));

If you are interested in simulation only, then you should not worry too much about type
casting and the like. However, if you intend implementation, then some rules are at hand.
These rules are induced by the hardware synthesis tools. If you fail to obey them, then you
will get a runtime error during hardwasgnthesis.

All operators, apart from multiplication, return a signal with the same wordlength as
the input signal.

Multiplication returns a wordlength that is the sum of the input wordlengths.
Addition, subtraction, bitwise operations, comparisons and conditional assignment
require the two input operands to have the sawrelength.

Some common pitfalls that result of this restriction arddiewing.

Intermediate results will, by default, not expand wordlength. In contrast, operations on
dfix do not loose precision on intermediate results. For example, shifting an 8 bit signal
up 8 positions will return you the value of zero, on 8 bits. If you want too keep up the
precision, then you must first cast the operation to the desired output wordlength,
before doing the shift.

The multiplication operator increases the wordlength, which is not automatically
reduced when you assign the result to a signal of smaller with. If you want to reduce
wordlength, then you must do this by using a oastration.

For complex expressions, these type promotion rules look a bit tedious. They are however
used because they allow you to express behavior precisely downto the bit level. For
example, the following piece of code extracts each of the bits of a thiagnait:

_sig threebits(dfix(6,3,0));

dfix bit(0,1,0);

_sig bit2("bit2"), bitL("bit1"), bit0("bit0"):;

bit2 = cast(bit, threebits >> dfix(2));
bitl = cast(bit, threebits >> dfix(1));
bit0 = cast(bit, threebits);

These bit manipulations were not possible without the given type pronmokssn

For hardware implementation, the following operatorgaesent.

Addition and subtraction are implemented on ripple-carry adder/subtractors.
Multiplication is implemented with a booth multiplier block.

Casts are hardwired.

Shifts are either hardwired in case of constant shifts, or else a barrel shifter is used in
case of variable shifts.

Comparisons are implemented with dedicated comparators (in case of constant
comparisons), or subtractions (in case of variable comparisons).

Bitwise operators are implemented by their direct gate equivalent at the bit level.
Lookup tables are implemented as PLA blocks that are mapped using two-level or
multi-level random logic.

Conditional assignment is done using multiplexers.

25

® Mshit detection is done using a dedicatesbit-detector.

9.3.Globals and utility functions for signals

There are a number of global variables that directly relate tosibelass, as well as the
embeddedig class. As an OCAPI/RT user, thig class is presumably invisible to you.
Hackers however always like to know more ... to do more. In normal circumstances, you do
not need to use thefinctions.

The variableglbNumberOf_SigandglbNumberOfSigcontain the number ofsig andsig

that your program has defined. The variagiENumberOfRegcontains the number sig

that are of the register type. This represents the word-level register count of your design.
TheglbSigHashConflictscontain the number of hash conflicts that are present in the
internal signal data structure organization. If this number is more then, say 5% of
glbNumberOf_Sig then you might consider knocking at OCAPI/RTs complaint counter.
The simulation is not bad if you exceed this bound, only it wik-di@-w-e-r.

The variablaglbListOfSig contains a global list of signals in your system. You can go
through it by meanef
sig *run;

for (run = glbListOfSig; run; run = run->nextsig())

{
-

For each such sig, you can access a number of utility menflo@ctions.

® isregister()returns 1 when a signal is a register.

isconstant()returns 1 when a signal is a constant value.

e isterm()returns 1 when you have defined this signal yourself. These are signals which
are introduced throughsig() class constructors. OCAPI/RT however also adds signals
of its own.

o getname()eturns thehar * name you have used to define the signal.

® get _showname()eturns thehar * name of the signal that is used for code generation.
This is equal to the original name, but with a unique suffix appended to

9.4.The sfgclass

In order to construct a timed (clocked) simulation, signals and signals expressions must be
assigned to a signal flowgraph. A signal flowgraph (in the context of OCAPI/RT) is a
container that collects all behavior that must be executed during onecgldek

The sfg behaviocontains

1. A set of expressions using signals
2. A set of inputs and ouputs that relate signals to output andqnpues

Thus, a signal flowgraph object connects local behavior (the signals) to the system through
communications queues. In hardware, the indication of input and output signals also results
in ports on your resultingircuit.

26

In the philosophical paragraph at the beginning of this section, a signal flowgraph was also
indicated as a marker of hardware scope. This is also demonstrated by the following
example.

_sig a('a");
_sig b("b");
Tsig c(dfix(2)):

dibfix AC'A"):
dibfix B("B"):

/Il a signal flowgraph object is created
sfg add_two, add_three;

/I from now on, every signal expression written down will be included
/l'in the signal flowgraph add_two

add_two.starts();

a=b+c;

/I ' You must also give a name to add_two, for code generation
add_two << "add_two";

/I also, inputs and ouputs have to be indicated.

/I you use the input and ouput objects ip and op for this
add_two << ip(b, B);

add_two << op(a, A);

/I next expression will be part of add_three
add_three.starts();
a = b + dfix(3);

add_three << "add_three";
add_three << ip(b,B);
add_three << op(a,A);

/I you can also to semantical checks on signal flowgraphs
add_two.check();
add_three.check();

The semantical check warns you for the following specificaioors:

® Your signal flowgraph contains a signal which is not declared as a signal flowgraph
input and at the same time, it is not a constant or a register. In other words, your signal
flowgraph has a dangling input.

® You have written down a combinatorial loop in your signal flowgraph. Each signal
must be ultimately dependent on registered signals, constants, or signal flowgraph
inputs. If any other dependency exists, you have written down a combinatorial loop for
which hardware synthesis is rmissible.

9.5. Execution of a signalflowgraph

A signal flowgraph defines one clock cycle of behavior. The semantics of a signal
flowgraph execution are wallefined.

1. At the start of an execution, all input signals are defined with data fetched from input
queues.

2. The signal flowgraph output signals are evaluated in a demand driven way. That is, if
they are defined by an expression that has signal operands with known values, then the
ouput signal is evaluated. Otherwise, the unknown values of the operands are

27

determined first. It is easily seen that this is a recursive process. Signals with known
values are: registered signals, constant signals, and signals that have already been
calculated in the current execution.

3. The execution ends by writing the calculated output values to the outpues.

Signal flowgraph semantics are somewhat related to untimed blocks with firing rules. A
signal flowgraph needs one token to be present on each input queue. Only, the firing rule on
a signal flowgraph is not implemented. If the token is missing, then the simulation crashes.
This is a crude way of warning you that you are about to let your hardware evaluate a
nonsenseesult.

The relation with untimed block firing rules will allow to do a timed simulation which
consist partly of signal flowgraph descriptions and partly of untimed basic blocks.
[Chapter12: Timedimulationgwill treat this more intaletail.

9.6.Running a signal flowgraph byhand

A signal flowgraph is only part of a timed description. The control component (an FSM) still
needs to be introduced. There can however be situations in which you would like to run a
signal flowgraph directly. For instance, in case you have no control component, or if you
have not yet developed a control descriptioritfor

The sfg member functiomun() performs the execution of the signal flowgraph as described
above. An example is used to demonsttiaite

#include "glib.h"

void main()

{

_sig a("a");
_sig b("b")
_sig c(dfix(2));

dibfix A('A");
dibfix B("B");

sfg add_two;
add_two.starts();
a=b+c;

add_two << "add_two";
add_two << ip(b, B);
add_two << op(a, A);

add_two.check();

B << dfix(1) << dfix(2);

// running silently
add_two.eval();

cout << A.get() << "\n";

// running with debug information
add_two.eval(cout);

cout << A.get() << "\n";

add_two.eval(cout);

28

When running this simulation, the following appears orstireen.

3.000000e+00
add_two(b 2)
: a 4
= a 4
4.000000e+00
add_two(Queue Underflow @ get in queue B

The first line shows the result in the fiestal() call. When this call is given an output stream
as argument, some additional information is printed during evaluation. For each signal
flowgraph, a list of input values is printed. Intermediate signal values are printed after the
at the beginning of the line. The output values as they are entered in the ouput queues are
printed after the=>. Finally, the last line shows what happens weeal()is called when no
inputs are available on the input quéle

For signal flowgraphs with registered signals, you must also control the clock of these
signals. An example of an accumulator is givert.

#include "glib.h"

void main()

{

clk ck;

_sig a("a", ck, dfix(0));
_sig b("b");

dibfix A("A");
dibfix B("B"):

sfg accu;
accu.starts();
a=a+hb;

accu << "accu";
accu << ip(b, B);
accu << op(a, A);
accu.check();

B << dfix(1) << dfix(2) << dfix(3);
while (B.getSize())
{

accu.eval(cout);
accu.tick(ck);

}
}

The simulation is controlled in a while loop that will consume all input values in dieue
After each run, the clock attached to registered sigmatriggered. This is done indirectly
through thesfg member caltick(), that updates all registered signals that have been
assigned within the scope of tlsifg. Running this simulation results in the following screen
ouput

29

accu(b 1)

: a o/ 1

=> a o/ 1
accu(b 2)

: a 1/ 3

=> a 1/ 3
accu(b 3)

: a 3/ 6

=> a 3/ 6

The registered signalhas two values: a present value (shown lef},and a next value

(shown right of’). When the clock ticks, the next value is copied to the present value. At the
end of the simulation, registered sigaatill contain 6 as its present value. The ouput queue
A however will contain the 3, the 'present valueaafuring the lastteration.

Finally, if you want to include a signal flowgraph in an untimed simulation, you must make
shure that you implement a firing rule that guards thesé&duation.

An example that incorporates the accumulator into an untimed basic blockdidiving.
#include "glib.h"

class accu : public base
{
public:
----- constructor -----
accu (char* name,
dfbfix & i,
dfbfix & 0);
----- simulation -----
int run();
private :
dfbfix * ipq;
dfbfix * opq;
sfg _accu;
clk ck;

/[----- concstructor -----
accu::accu(char * name,
dfbfix & i,
dfbfix & o
) : base(name)
{
ipg = i.asSource(this);
opq = o.asSink(this);

_sig a("a", ck, dfix(0));
_sig b("b");

_accu.starts();
a=a+hb;

_accu << "accu";
_accu << ip(b, *ipg);
_accu << op(a, *opq);
_accu.check();

[1----- simulation: run() -----
int accu::run()

{
if (ipg->getSize() < 1)
{

30

return O;

}

_accu.eval();
_accu.tick(ck);

}

In this example, the signal flowgraphccuis included into the private members of class
_accu

9.7.Globals and utility functions for signal flowgraphs

The global variablglbNumberOfSfgcontains the number sfg objects that you have
constructed in your present OCAPI/RT program. Giverfg() object, you have also a
number of utility member functiocalls.

e® getname()eturns thehar * name of the signal flowgraph.

® merge()joins two signal flowgraphs.

® getisig(intn) returns asig* that indicates which signal corresponds to input nurnber
of the signal flowgraph. If O is returned, this input does not exist.

e getiqueue(intn) returns the queugfbfix *) assigned to input numbieof the signal
flowgraph. If 0 is returned, then this input does not exist.

® getosig(intn) returns aig* that indicates which signal corresponds to output nuinber
of the signal flowgraph. If 0 is returned, this output does not exist.

® getoqueue(innh) returns the queu@fbfix *) assigned to output numbieof the signal
flowgraph. If O is returned, then this output doesaxist.

You should keep in mind that a signal flowgraph is a data structure. The source code that
you have written helps to build this data structure. However, a signal flowgraph is not
executed by running your source code. Rather, it is interpreted by OCAPI/RT. You can print
this data structure by means of tiggostreammembercall.

For example, if yo@appended

accu.cg(cout);

to the "running-an-sfg-by-hand" example, then the following output woujtdziiced:

sfg accu
inputs {b_2}
outputs{a_1}
code {
al=alatl+b_ 2
h

31

10. Finite statemachines

With the aid of signals and signal flowgraphs, you are able to construct clock-cycle true data
processing behavior. On top of this data processing, a control sequencing component can be
added. Such a controller allows to execute signal flowgraphs conditionally. The controller is also
the anchoring point for true timed system simulation, and for hardware code generation. A signal
flowgraph embedded in an untimed block cannot be translated to a hardware processor: you have
to describe the control componexiplicitly.

10.1.The ctlfsm and stateclasses

The controller model currently embedded in OCAPI/RT is a Mealy-type finite state
machine. This type of FSM selects the transition to the next state based on the internal state
and the previous outpuglue.

In an OCAPI/RT description, you usetifsm object to create such a controller. In addition,
you make use dftateobjects to model controller states. The following example shows the
use of thesebjects.

#include "glib.h"

void main()
{
sfg dummy;
dummy << "dummy";

/I create a finite state machine
ctlfsm f;

/l give it a name
f << "theFSM";

/l create 2 states for it
state rst;
state active;

// give them a name
rst << 'rst";
active << "active";

// identify rst as the initial state of ctlfsm f
f << deflt(rst);

// identify active as a plain state of ctlfsm f
f << active;

/I create an unconditional transition from rst to active
rst << allways << active;

/I create an unconditional transition from active to active,
I/l executing the dummy sfg.
active << allways << dummy << active;

/I show what's inside f
cout << f;

32

There are two states in this fsrat andactive Both are inserted in the fsm by means of the
<< operator. In addition, thrst state is identified as the default state of the fsm, by
embedding it into thdeflt object. An fsm is allowed to have one default state. When the
fsm is simulated, then the state at the start of the first clock cycle wdt.Ha the hardware
implementation, aesetpin will be added to the processor that is used to initialize the fsm’s
state register with thistate.

Two transitions are defined. A transition is written according to the template: starting state,
conditions, actions, target state, all of this separated by<tlogerator. The condition

allwaysis a default condition that evaluates to true. It is used to model unconditional
transitions.

The last line of the example shows a simple operation you can do with an fsm. By relating it
to the output stream, the following will appear on the screen when you compile and execute
theexample.

digraph g {

rst [shape=box];
rst->active;
active->active;

}

This output represent a textual format of the state transition diagram. The format is that of
thedottytool, which produces a graphical layout of your state transition diagittyis
commercial software available from AT&T. You cannot simulatdfam object on itself.

You must do this indirectly through tisgsgerobject, which is introduced j@hapter13:
[Timedsimulation§

10.2.The cndclass

Besides the default conditi@liways you can use also boolean expressions of registered
signals. The signals need to be registered because we are describing a Mealy-type fsm. You
construct conditions through tlead object, as shown in the nextample.

#include "glib.h"

void main()

{
clk ck;
_sig a("a", ck, dfix(0));
_sig b("b", ck, dfix(0));
_sig a_input("a_input");
_sig b_input("b_input");
dfbfix A("A");
dfbfix B("B");

sfg some_operation;
/I some operations go here ...

sfg readcond;
readcond.starts();
a=a_input;

b =b_input;

readcond << "readcond";
readcond << ip(a_input,A);
readcond << ip(b_input,B);
readcond.check();

/I create a finite state machine

33

ctifsm f;
f << "theFSM";

state rst;
state active;
state wait;

rst << 'rst";
active << "active";
wait << "wait";

f << deflt(rst);

f << active;

f << wait;

rst << allways << readcond << active;

active << _cnd(a) << readcond << some_operation << wait;

wait << (_cnd(a) && _cnd(b)) << readcond << wait;
wait << ('_cnd(a) || !_cnd(b)) << readcond << active;

}

The first signal flowgrapheadcondtakes care of reading in two valueandb that are used
in transition conditions. The sfg reads the sigaasdb in through the intermediate signals
a_inputandb_input This way,a andb are explicitly assigned in the signal flowgraph, and
the semantical cheakadcond.check(Will not complain about unassignsigjnals.

The fsm below it defines three states. Besides an initialrstsedad an operative state

active a wait statevait is defined, that is entered when the input sigrialhigh. This is
expressed by thecnd(a)transition condition in the second fsm transition. You must use
_cnd()instead ottnd() because of the same reason that you mustsigé instead osig():

The underscore-type classes are empty boxes that allocate the objects that do the real work
for you. This allocation is dynamic and independent of the §&&epe.

Once the wait state is entered, it can leave it only when the s@yoaktsgo low. This is
indicated in the transition condition of the third fsm transitioi&& operator is used to
express the and condition. If the sigrealsndb remain high, then the wait state is not left.
The transition condition of the last transition expresses this. It uses the logitalnubot
logical or|| operators to expresisis.

Thereadcondsignal flowgraph is executed at all transitions. This ensures that the signals
andb are updated every cycle. If you fail to do this, then the valasaafib will not
change, potentially creatingdeadlock.

To summarize, you can use eitladiivaysor a logical expression otnd() objects to

express a transition condition. The signals use in the condition must be registers. This results
in a Mealy-type fsm description. A FAQ is why condition signals must be registers, and
whether they can be plain signals also. The answer is simple: no, they can’t. The fsm control
object is a stand-alone machine that must be able to 'boot’ every clock cycle. During one
execution cycle, it will first select the transition to take (based on conditions), and then
execute the signal flowgraphs that are attached to this transition. If 'immediate’ transition
conditions had to be expressed, then the signals should be read in before the fsm transition is
made, which is not possible: the execution of an sfg can only be done when a transition is
selected, in other words: when the condition signals are known. Besides this semantical
consideration, the registered-condition requirement will also prevent you from writing
combinatorial control loops at the systéwel.

34

10.3. Utility functions for fsm objects

A number of utility functions on thetlfsm andstateclasses are available for query
purposes. This is only minimal: The objects are intended to be manipulated by the cycle
scheduler and codgenerators.

sfg action;
ctifsm f;
state s1;
state s2;

f << deflt(s1);
f<<s2;

sl << allways << s2;
s2 << allways << action << s1;

/l run through all the state in f
statelist *r;
for (r = f.first; r; r = r->next)

{
=

/I print the nuymber of states in f,

/I print the number of transitions in f,
/I print the name of f,

/I print the number of sfg’s in f

cout << f.numstates() <<"\n";
cout << f.numtransitions() << "\n";
cout << f.getname() << "\n";
cout << f.numactions() <<"\n";

/I print the name of a state
cout << sl.gethame() << "\n";

35

11. The basic block for timedsimulations

Using signals, signal flowgraphs, finite state machines and states, you can construct a timed
description of a block. Having obtained such a description, it is convenient to merge it with the
untimed description. This way, you will have one class that allows both timed and untimed
simulation. Of course, this merging is a matter of writing style, and nothing forces you to actually
have both a timed and untimed description fbtoak.

The basic block example, that was introduced in sei@tapter 6: The baskdock will now be
extended with a timed version. As before, both an include file and a code file will be defined. The
include file,add.h lookslike

#ifndef ADD_H
#define ADD_H

#include "glib.h"

class add : public base
{
public:
----- constructor -----
add (char* name,

FB& _ini,
FB& _in2,
FB& _ol);

/----- untimed simulation -----
int run();

[]----- timed simulation -----
void define();
ctifsm & fsm() { return _fsm; };

private :
FB *inl;
FB *in2;
FB *0l;
ctifsm _fsm;
sfg _add;
state _go;
J#
#endif

The private members now also contain a control fsm object, in addition to signal flowgraph
objects and states. If you feel this is becoming too verbose, you will find help in §&kfipter
[17: Faster description usimgacro$ that defines a macro set that significantly accelerates
descriptiorentry.

In the public members, two additional member functions are declaregefihe() function,

which will setup the timed description data structure, andstng), which returns a pointer to the
fsm controller. Through this pointer, OCAPI/RT accesses everything it needs to do simulations
and codegeneration.

The contents of the adder block will be describeadd.cxx
#include "add.h"

[[----- constructor -----
add::add(char * name,

36

FB& _inl,
FB& _in2,
FB& _ol
) : base(hame)
{
inl = _inl.asSource(this);
in2 = _in2.asSource(this);
0l =_o1 .asSink (this);
define();
}

/----- untimed simulation: run() -----
int add::run()

{
=

/----- timed simulation: define() -----
void add::define()
{

_sigi1("i1™;

_sigi2("i2");

_sig ot("ot");

_add << "add";
_add.starts();

ot =il +i2;

_add << ip(i1, *inl);
_add << ip(i2, *in2);
_add << op(ot, *ol);

_fsm << "fsm",
_go <<"go";

_fsm << deflt(_go);
_go << allways << _add << _go;

}

If the timed description uses also registers, then a pointer to the global clock must also be
provided (OCAPI/RT generates single-clock, synchronous hardware). The easiest way is to
extend the constructor afldwith an additional parametelk &ck, that will also be passed to the
definefunction.

37

12. Timed simulations

By obtaining timed descriptions for you untimed basic block, you are now ready to proceed to a
timed simulation. A timed simulation differs from an untimed one in that it proceeds clock cycle
by clock cycle. Concurrent behavior between different basic blocks is simulated on a
cycle-by-cycle basis. In contrast, in an untimed simulation, this concurrency is present on an
iteration by iteratiorbasis.

12.1.The sysgerclass

Thesysgemobiject is for timed simulations the equivalent athedulerobject for untimed
simulations. In addition, it also takes care of code and testbench generation, which explains
thename.

The sysgen class is used at the system level. The &dulass, defined in the previous
section, is used as an example to construct a system which uses untimed file sources and
sinks, and a timedddclass.

#include "glib.h"
#include "add.h"

void main()

{
dfbfix i1("i1");
dfbfix i2("i2");
dfbfix 01("o1");

src SRC1("SRC1" i1, "SRC1");
src SRC2("SRC2", i2, "SRC2");
add ADD ("ADD", i1, i2, ol);

snk SNK1("SNK1", 01, "SNK1");

sysgen S1("S1");

S1 << SRC1;
S1 << SRC2;
S1 << ADD.fsm();
S1 << SNK1;

S1.setinfo(verbose);

clk ck;

int i;

for (i=0; i<3; i++)
S1.run(ck);

}
}

The simulation is set up as before with queue objects and basic blocks. $iesgerobject

is created, with name "S1". All basic blocks in the simulation are appendedsistfen

objects by means of the << operator. If a timed basic block is to be used, as for instance in
case of thedd object, then thésm() pointer must be presenteddgsgerrather then the

basic block itself. Asysgerobject knows how to run and combine both timed and untimed
objects. For the description shown above, untimed versions of the file sources ard sink
andsnk will be used, while the timed version of thed object will beused.

38

Next, three clock cycles of the system are run. This is done by meansui(tid member
function call ofsysgenThe clock objectk is, because this simulation contains no

registered signals, a dummy object. When running the simulator executable with stimuli file
contents

SRC1 SRC2 -- not present in the file
------ not present in the file

1 4
2 5
3 6

you see the following appearing on gween.

*** INFO: Defining block SRC1
*** INFO: Defining block SRC2
*** INFO: Defining block ADD
*** INFO: Defining block SNK1
fsm fsm: transition from go to go

add#0
add#1
in i1 1
in i2 4
sig ot 5
out’ ot 5
fsm fsm: transition from go to go
add#0
add#1
in i1 2
in i2 5
sig ot 7
out’ ot 7
fsm fsm: transition from go to go
add#0
add#1
in i1 3
in i2 6
sig ot 9
out’ ot 9

The debugging output produced is enabled bysé#tiefo() call on thesysgerobject. The
parametererboseenables full debugging information. For each clock cycle, each fsm
responds which transition it takes. The fsm ofatldblock is called "fsm", an as is seen it
makes transitions from the single stgéeto the obvious destination. Each signal flowgraph

during this simulation is executed in two phases (below it is indicated why). During
simulation, the value of each signapisnted.

12.2.Selecting the simulationverbosity

Thesetinfomember function call adysgerselecs the amount of debugging information that
is produced during simulation. For values available

e silentwill cause no output at all. This can significantly speed up your simulation,
especially for large systems containing several hundred of signal flowgraphs.

e tersewill only print the transitions that fsm'’s make.

verbosewill print detailed information on all signal updates.

regcontentswill print a list the values of registered signals that change during the
current simulation. This is by far the most interesting option if you are debugging at the
system level: when nothing happens, for instance when all your timed descriptions are

39

in some ’hold’ mode, then no ouput is produced. When there is a lot of activity, then
you will be able to track all registered signals tttange.

For instance, the code fragment

sysgen S("S");
S.setinfo(regcontents);

int cycle;

for (cycle=0; cycle < 100; cycle++)

{
cout << "> Cycle " << cycle << "\n";
S.run(ck);

}

can produce an output as sholpaiow.

> Cycle 18
coef_ram_ir_2 0 1
copy_step_flag 1 0
ext_ready_out 1 0
pc 15 16
step_flag 1 0
> Cycle 19
coef_ram_ir_2 1 0
coef_wr_adr 12 13
hold_pc 0 16
pc 16 17
pc_ctl_ir_1 1 0
> Cycle 20
step_clock 0 1
> Cycle 21
copy_step_flag 0 1
prev_step_clock 0 1
step_flag 0 1

12.3.Two phases ardetter

Although you will be saved from the details behind two-phase simulation, it is worthwhile
to see the motivation behirid

When you run asfg'by hand’ using theun() method of arsfg, the simulation proceeds in
one phase: read inputs, calculate, produce ouputsyidgerobject, on the other hand, uses
a two-phase simulatiomechanism.

The origin is the following. In the presence of feedback loops, your system data flow
simulation will need initial values on the communication queues in order to start the
simulation. However, the code generator assumes the communication queues will translate
to wiring. Therefore, there will never be storage in the implementation of a communication
queue to hold these intitial values. OCAPI/RT works around this by producing these initial
values at runtime. This gives rise to a two-phase simulation: in the first phase, initial values
are produced, while in the second phase, they are consumed again. This process repeats
every clockcycle.

The two-phase simulation mechanism is also able to detect combinatorial loops at the
system level. If there exists such a loop, then the first phase of the simulation will not
produce any initial value on the system interconnect. Consequently, in the second phase
there will be at least one signal flowgraph that will not be able to complete execution in the

40

current clock cycle. In that case, OCAPI/RT will stop the simulation. Also, you get a list of
all signal flowgraphs that have not completed the current clock cycle, in addition to the
gueue statistics that are attached to these digmajraphs.

41

13. Hardware codegeneration

This is it. This is why you have suffered all this C++ code typing: OCAPI/RT allows you to
translate all timed descriptions to a synthesizable hardware description. Regarding
implementation, you get the following in return for your codéfigrts:

® For each timed description, you get a datapdgfyfile, that can be entered into the
Cathedral-3 datapath synthesis environment, converted to VHDL and postprocessed by
Synopsys-dc logic synthesis.

® [or each timed description, you also get a contrdllfig file, which is synthesized through
the same environment.

® You also get a glue cell, that interconnects the resulting datapath and controller VHDL file.

® You get a system interconnect file, that integrates all glue cells in your system. For this
system interconnect file, you optionally can specify system inputs and outputs, scan chain
interconnects, and RAM interconnects. The file is VHDL.

e Finally, you also get debug information files, that summarize the behavior of and ports on
eachprocessor.

Untimed blocks, of course, are not translated to hardware. The use of the actual synthesis
environments will not be discussed in this section. It is assumed that you know what they do
and/or that you have a manual foem.

13.1.The generate()call

The member caljenerate()performs the code generation for you. In the adder example,
you just have tadd

S1.generate();

at the end of the main function. If you would compile this description, and run it, then you
would see things are not quibK:

*** INFO: Generating Systen Link Cell

*** INFO: Component generation for S1

*** INFO: C++ currently defines 5 sig, 4 _sig, 1 sfg.
*** INFO: Generating FSMD fsm

*** INFO: FSMD fsm defines 1 instructions
DSFGgen: signal i1 has no wordlength spec.
DSFGgen: signal i2 has no wordlength spec.
DSFGgen: signal ot has no wordlength spec.
DSFGgen: not all signals were quantized. Aborting.
*** INFO: Auto-cleanup of sfg

Indeed, in the adder example up to now, nothing has been entered regarding wordlengths.
During code generation, OCAPI/RT does quite some consistency checking. The general
advice in case of warnings and errors is: If you see an error or warning message, investigate
it. When you synthesize code that showed a warning or error during generation, you will
likely fail in the synthesis proce$so.

Theadddescription is now extended with wordlengths. 8 bit wordlengths are chosen. You
modify theadd class to include the followinghanges.

42

void add::define()

dfix wl(0,8,0);

_sigi1("i1", wl);
_sigi2("i2", wl);
_Sig ot("ot", wl);

}...

After recompiling and rerunning the OCAPI/RT program, you see

** INFO:
** INFO:
** INFO:
** INFO:
** INFO:
** INFO:
** INFO:

In the directory where you ran this, you will find the followiilgs:

The glue celfsm.vhdhas the following contents (only the entity declaration path@svn).

Generating Systen Link Cell

Component generation for S1

C++ currently defines 5 sig, 4 _sig, 1 sfg.
Generating FSMD fsm

FSMD fsm defines 1 instructions

C++ currently defines 31 sig, 21 _sig, 3 sfg.
Auto-cleanup of sfg

fsm_dp.dsfgghe datapath description afid
fsm_fsm.dsfgthe controller description @idd
fsm.vhd the glue cell description of add
S1.vhd the system interconnect cell
fsm.ports a list of the I/O ports ciidd

-- Cath3 Processor for FSMD design fsm

library IEEE;
use IEEE.std_logic_1164.all;
entity fsm is
port (
reset : in std_logic;
clk : in std_logic;
i1 : in std_logic_vector (7 downto 0);
i2 : in std_logic_vector (7 downto 0);
ot : out std_logic_vector (7 downto 0)
);
end fsm;

Each processor has a reset pin, a clock pin, and a number of I/O ports, depending on the
inputs and ouputs defined in the signal flowgraphs contained in this processor. All signals
are mapped tetd_logicor std_logic_vectarThe reset pin is used for synchronous reset of

the embedded finite state machine. If you need to initialize registered signals in the datapath,
then you have to describe this explicitly in a signal flowgraph, and execute this upon the

first transition out of the initiadtate.

Thefsm.portsfile, indicates which ports are read in in each transition. In the example of the
addclass, there is only one transition, which results in the followiogsfile:

Kkkkkkkkkkkkkkkkkkkkk SFG fsmgogoo

Port # 1/0 Port Q
1 1 i1 i1
2 1 i2 i2
1 O ot ol

43

13.2.System celrefinements

The system link cell incorporates all glue cells of your current timed system description.
These glue cells are connected if they read/write from the same system queue. There are
some refinements possible on gysgerobject that will also allow you to indicate system
level inputs and ouputs, scan chains, and R¥knections.

System inputs and ouputs are indicated withipad() andoutpad()member calls of
sysgenin the example, this is specifiad

sysgen S1("S1");
dfix b8(0,8,0);
Sl.inpad (i1, b8);

Sl.inpad (i2, b8);
Sl.outpad(ol, b8);

Making these connections will make ttiei2, o1 signals appear in the entity declaration of
the system celb1 The entity declaration inside of the fid..vhdthus lookdike

entity S1 is
port(
reset : in std_logic;
clk : in std_logic;
i1 : in std_logic_vector (7 downto 0);
i2 : in std_logic_vector (7 downto 0);
0l : out std_logic_vector (7 downto 0)
)i
end S1;

Scan chains can be added at the system level, too. For each scan chain you must indicate
which processors it should include. Suppose you have three basic blocks (including a timed
description and registers) with nanisOCK1, BLOCK2, BLOCKS3. You attach the blocks

to two scan chains using the followingde.

scanchain SCAN1("scanl");
scanchain SCAN2("scan2");

SCAN1.addscan(& BLOCK1.fsm());
SCAN1.addscan(& BLOCK2.fsm());
SCAN2.addscan(& BLOCK3.fsm());

Thesysgerobject identifies the required scan chain connections throudbrnthebjects that

are assigned to it. In order to have reasonable circuit test times, you should not include more
then 300 flip-flops in each scan chain. If you have a processor that contains more then 300
flip-flops, then you should use another scan chain connesttiategy.

Finally, you can generate code for the standard untimed block RAM. There are two possible
interconnection mechanisms: the first will include the untimed RAM blockgsgenas

internal components of the system link cell. The second will include the RAM blocks as
external components. This latter method requires you to construct a new 'system-system
link cell’, that includes the RAM entities and the system link cell in a larger structure.
However, it might be required in case you have to remap the standard RAM interface, or
introduce additional asynchronous timiogic.

44

An example of the two methods is shomext

ram RAM1("ram1", addrl, dil, dol, wr, rd, 128);
ram RAM2("ram2", addr2, di2, do2, wr, rd, 128);

Il types of address and data bus
dfix addrtype(0, 7, 0);
dfix dattype (0, 4, 0);

sysgen S1("S1");

/I define an external ram
Sl.extern_ram(RAM1, addrtype, dattype);

/I define an internal ram
Sl.intern_ram(RAM2, addrtype, dattype);

13.3.Pitfalls for code generation

As allways, there are a number of pitfalls when things get complex. You should watch the
following when diving into codgeneration.

OCAPI/RT tries to generate nicely formatted code, that you can investigate. To help you in
this process, also the actual signal names that you have specified are regenerated in the
VHDL and DSFG code. This implies that you have to stay away from VHDL and DSFG
keywords, or else you will get an error from either Cathedral-3 or Synopsys. An exhaustive
list is not yet made. But you can be sure that if you use names like 'port’, 'in’, out’, 'for’
and the like, that you will run into trouble. In case of doubt, append some numerical suffix
to your signal name, likip1.

The mapping of the fixed point library to hardware is, in the present release, minimal. First

of all, although registered signals allow you to specify an initial value, you cannot rely on

this for the hardware circuit. Registers, when powered on, take on a random state. Therefore,
make sure that you specify the initialization sequence of your datapath. A second fixed point
pitfall is that the hardware support for the different quantization schemes is lacking. It is
assumed that you finally will use truncated quantization on the Isb-side and wrap-around
guantization on the msb-side of all signals. The other quantization schemes require
additional hardware to be included. If you really need, for instance, saturated msb
guantization, then you will have to describe it in terms of the defaalttization.

Finally, the current set of hardware operators in Cathedral-3 is designed for signed
representations. They work with unsigned representations also as long as you do no use
relational operations (<, > and the like). In this last case, you should implement the unsigned
operation as a signed one with one ekita

45

14. Verification and testbenches

Once you have obtained a gate level implementation of your circuit, it is necessary to verify the
synthesis result. OCAPI/RT helps you with this by generating testbenches and testbench stimuli
for you while you run timed simulations and do cgéeerations.

The example of thaddclass introduced previously is picked up again, and testbench generation
capability is included to the OCAPI/RI¥escription.

14.1.Generation of testbenchrectors

The next example performs a three cycle simulation chddlass and generates a
testbench vectors fat:

#include "glib.h"
#include "add.h"

void main()

{
dfbfix i1("i1");
dfbfix i2("i2");
dfbfix 01("01");

src SRC1("SRC1" i1, "SRC1");
src SRC2("SRC2", i2, "SRC2");
add ADD ("ADD", i1, i2, ol);

snk SNK1("SNK1", 01, "SNK1");

sysgen S1("S1");

S1 << SRC1;
S1 << SRC2;
S1 << ADD.fsm();
S1 << SNK1;

ADD.fsm().tb_enable();

clk ck;
inti;
for (i=0; i<3; i++)
{
S1.run(ck);

}

ADD.fsm().tb_data();
}

Just before the timed simulation starts, you enable the generation of testbench vectors by
means of db_enable(dmember call for each fsm that requires testbemeciors.

During simulation, the values on the input and ouput ports add@rocessor are
recorded. After the simulation is done, the testbenches are generatedtbsidata()
member functiorcall.

Testbench generation leaves three data lfiggsnd:

e fsm_tb.datcontains binary vectors of all inputs of thad processor. It is intended to
be read in by the VHDL simulator as stimuli.

46

e fsm_tb.dat_hexcontains hexadecimal vectors of all inputs and ouputs @&dte
processor. It contains the output that should be produced by the VHDL simulator when
the synthesis was successful.

e fsm_tb.dat_infodocuments the contents of the stimuli files by saying which stimuli
vector corresponds to whigignal

When compiling and running this OCAPI/RT program, the following appeassreen.

*** INFO: Defining block SRC1

*** INFO: Defining block SRC2

*** INFO: Defining block ADD

*** INFO: Defining block SNK1

*** INFO: Creating stimuli monitor for testbench of FSMD fsm
*** INFO: Generating stimuli data file for testbench fsm_tb.
*** INFO: Testbench fsm_tb has 3 vectors.

Afterwards, you can take a look at each of the three gendestibenches.

-- file: fsm_tb.dat

00000001 00000100

00000010 00000101

00000011 00000110

-- file: fsm_tb.dat_hex

01 04 05

02 05 07

03 06 09

-- file: fsm_tb.dat_info

Stimuli for fsm_tb contains 3 vectors for

i1_stim read
i2_stim read

Next columns occur only in _hex.dat file and are outputs

ol_stim write

14.2.Generation of testbenchdrivers

To generate a testbench driver, simply callttheenable()member function of thaddfsm
before you initiate code generation. You will end up with a VHDLffha_tb.vhdthat
contains the followinglriver.

-- Test Bench for FSMD design fsm

library IEEE;
use |[EEE.std_logic_1164.all;

use IEEE.std_logic_textio.all;
use std.textio.all;

library clock;
use clock.clock.all;

entity fsm_tb is
end fsm_tb;

architecture rtl of fsm_tb is

signal reset : std_logic;

signal clk : std_logic;

signal i1 : std_logic_vector (7 downto 0);
signal i2 : std_logic_vector (7 downto 0);
signal ot : std_logic_vector (7 downto 0);

47

component fsm
port (
reset : in std_logic;
clk : in std_logic;
i1 : in std_logic_vector (7 downto 0);
i2 : in std_logic_vector (7 downto 0);
ot : out std_logic_vector (7 downto 0)
)

end component;

begin
crystal(clk, 50 ns);
fsm_dut : fsm

port map (
reset => reset,
clk => clk,
i1=> i1,
i2=> i2,
ot => ot);
ini: process
begin
reset <="1";
wait until clk’'event and clk ='1";
reset <='0";
wait;

end process;

input: process
file stimuli : text is in "fsm_tb.dat";
variable aline : line;
file stimulo : text is out "fsm_th.sim_out";
variable oline : line;

variable v_il: std_logic_vector (7 downto 0);
variable v_i2 : std_logic_vector (7 downto 0);
variable v_ot: std_logic_vector (7 downto 0);
variable v_il hx: std_logic_vector (7 downto 0);
variable v_i2_hx: std_logic_vector (7 downto 0);
variable v_ot_hx: std_logic_vector (7 downto 0);
begin

wait until reset'event and reset = '0’;

loop

if (not(endfile(stimuli))) then
readline(stimuli, aline);

read(aline, v_il);
read(aline, v_i2);
else

assert false
report "End of input file reached"
severity warning;
end if;
i1<=v_il;
i2<=v_i2;
wait for 50 ns;
v_ot = ot;
v_il hx:=v_il;
v_i2_hx:=v_i2;
v_ot_hx:=v_ot;
hwrite(oline, v_il_hx);
write(oline, ");
hwrite(oline, v_i2_hx);
write(oline, ");
hwrite(oline, v_ot_hx);
write(oline, ');
writeline(stimulo, oline);
wait until clk’'event and clk = '1;
end loop;
end process;
end rtl;

48

configuration tbc_rtl of fsm_tb is
for rtl
for all : fsm
use entity work.fsm(structure);
end for;
end for;
end tbc_rtl;

The testbench uses one additional libratgck, which contains therystalcomponent. This
component is a simple clock generator that drives a 50% dutyatkcle

This testbench will generate a filen_tb.sim_outAfter running the testbench in VHDL,

this file should be exactly the same asfdm_tbh.dat_hexYou can use the uniff

command to check this. The only possible differences can occur in the first few simulation
cycles, if the VHDL simulator initializes the registersXxa

Using automatic testbench generation greatly speedups the verification process. You should
consider using it whenever you are into cgdaeration.

49

15. Compiled codesimulations

For large designs, simulation speed can become prohibitive. The restricting factor of OCAPI/RT
is that the signal flowgraph data structures are interpreted at runtime. In addition, runtime
guantization (fixed point simulation) takes up quite some G&\er.

OCAPI/RT allows you to generate a dedicated C++ simulator, that runs compiled code instead of
interpreted code. Also, additional optimizations are done on the fixed point simulation. The result
is a simulator that runs one to two orders of magnitude faster then the interpreted OCAPI/RT
simulation. This speed increase adds up to the order of magnitude that interpreted OCAPI/RT
already gains over event-driven VHBImulation.

As an example, a 75Kgate design was found to run at 55 cycles per second (on a HP/9000). This
corresponds td.1 million gates per second, and motivates why C++ is the way to go for system
synthesis.

15.1.Generating a compiled codsimulator

The compiled code generator is integrated intcttsgenobject. There is one member
function,compiled() that will generate this simulator fgou.

#include "glib.h"
#include "add.h"

void main()
dfbfix i1("i1");
dfbfix i2("i2");
dfbfix 01("ol");
add ADD("ADD", i1, i2, ol);
sysgen S1("S1");
S1 << ADD.fsm();

S1.compiled();
}

In this simple example, a compiled code generator is made for a design containing only one
FSM. The generator allows to include several fsm blocks, in addition to urtiowd.

When this program is compiled and run, it leaves behind &1ilecs.cxxthat contains the
dedicated simulator. For the OCAPI/RT user, the simulator defines one procedure,
one_cycle()that simulates one cycle of thgstem.

When calling this procedure, it also produces debugging ouput similar to the
setinfo(regcontentsgall for ctlfsm objects. This procedure must be linked to a main
program that will execute ttemulation.

If an untimed block is present in the system, then it will be included in the dedicated
simulator. In order to declare it, you must provide a member funCttfsdecl(ofstreant)

that generates the required C++ declaration. As an example, the basic RAM block declares
itself asfollows:

50

-- file: ram.h

class ram : public base

{
public:

ram (char * name,
FB & _address,
FB& _data_in,
FB & _data out,

FB& _w,
FB&
int _size);

void CCSdecl(ofstream &0s);
private :

N

-- file: ram.cxx

void ram::CCSdecl(ofstream &0s)

{

0s <<" #include \"ram.h\"\n";

0s << " ram " << typeName() << "(";
0s << "\"" << typeName() << "\", ";
0s << address.name() << ", ";;

0s << data_in.name() << ", ";;

0s << data_out.name() << ", ";

0s << w.name() << ", ";

0s <<r.name() << ", ",

0S << size << ");\n";

}

This code enables the ram to reproduce the declaration by which it was originally
constructed in the interpreted OCAPI/RT program. Every untimed block that inherits from
base and that you whish to include in the compiled code simulator must use a similar
CCsSdecfunction.

15.2.Compiling and running a compiled codesimulator

The compiled code simulator is compiled and linked in the same way as a normal
OCAPI/RT program. You must however also provideain function that drives this
simulator.

The following code contains an example driver forabd compiled codeimulator.
#include "glib.h"

void one_cycle();
extern FBil;
extern FB i2;
extern FB o1l;

void main()

{
i1 << dfix(1) << dfix(2) << dfix(3);
i2 << dfix(4) << dfix(5) << dfix(6);

one_cycle();

51

one_cycle();
one_cycle();

while (01.getSize())
{

cout << ol.get() << "\n";

}
}

When run, this program will produce the same results as before. In contrast to the compiled
simulaton of your MPEG-4 image processor, you will not be able to notice any speed
increase on this smatkample.

52

16. Fastercommunications

OCAPI/RT uses queues as a means to communicate during simulation. These queues however
take up CPU power for queue management. To save this power, there is an additional queue type,
wireFB, which is used for the simulation of point-to-point wirkcmnnections.

16.1.The dfbfix_wire class

A wireFB does not move data. In contrast, it is related to a registered driver signal. At any
time, the value read of this queue is the value defined by the registered signal. Because of
this signal requirementaireFB cannot be used for untimed simulations. The following
example of an accumulator shows how you can weieekB, or the equivalerdfbfix_wire.

#include "glib.h"
void main()
clk ck;

_sig a("a",ck,dfix(0));
_sig b("b");

dfbfix_wire A("A",a);
dfbfix B("B");

sfg accu;
accu.starts();
a=a+b;

accu << "accu";
accu << ip(b, B);
accu << op(a, A);
accu.check();

B << dfix(1) << dfix(2) << dfix(3);
while (B.getSize())
{

accu.eval(cout);
accu.tick(ck);

}
}

A wireFB is identical in use as a nornteB. Only, for eactwireFB, you indicate a
registered driver signal in tle®nstructor.

16.2.Interconnect strategies

ThewireFB object is related to the interconnect strategy that you use in your system. An
interconnect strategy includes a decision on bus-switching, bus-storage, and bus-arbitration.
OCAPI/RT does not solve this problem for you: it depends on your application what the

right interconnection strategsy.

One default style of interconnection provided by OCAPI/RT is the point-to-point, register
driven bus scheme. This means that every bus carries only one signal from one processor to
another. In addition, bus storage in included in the processor that drivmssthe

53

More complex interconnect strategies, like the one used in Cathedral-2, are also possible,
but will have to be described in OCAPI explicitly. Thus, the freedom of target architecture is
not without cost. IfChapter 18: Meta Codgeneratioha solution to this specification

problem ispresented.

54

17. Faster description usingmacros

Up to now, every C++ example was given without recurring to accelerated description techniques
using macros. OCAPI/RT provides however a set of macros that saves you from a lot of extra

typing.

17.1.Macros for signals, signal flowgraphs andjueues

The following macros are used for signal and signal flowgdsfimition.

dfix typ(0,8,4);
clk ck;

/Il define a signal a with name "a"

SIG(a);

/Il define a signal a with name "a" and fixed wordlength w
SIGW(a,typ);

// define a constant signal

SIGC(a,dfix(3));

// define a constant, casted signal to use in signal expressions
W(typ, 0.26);

/Il define a clocked signal

SIGCK(a,ck,typ);

/l define a dynamically allocated signal flowgraph
/I and make it the current one

SFG(r);

/I define an input for the current sfg

IN(signal, queue);

// define an output for the current sfg
OUT(signal, queue);

/l define a queue g with name "g"

Q(9);

/l read in the queue g from file "p.dat”
READQ(g,"p.dat");

// write out the queue k to file "p.dat"
WRITEQ(K,"p.dat");

The accumulator example signal flowgraph that was introduced can be described using these
macros asollows.

#include "glib.h"
void main()
clk ck;

SIG(a, ck, dfix(0));
SIG(b);

Q(A);
Q(B);

SFG(accu);
a=a+hb;
IN(b,B);
OUT(a,A);

B << dfix(1) << dfix(2) << dfix(3);
while (B.getSize())

55

{

accu.eval(cout);
accu.tick(ck);

}
}

17.2.Macros for finite state machines

As for signals, several macros allow you to speed up entry of the fsm descriptions. These are
especially intended to clarify tlescription.

ctifsm fsm;

/I set the current fsm
FSM(fsm);

/I dynamically create a new state
STATE(s1);

/I dynamically create the default state
INITIAL(SO);

/I define an unconditional transition
SFG(action);

AT(s0) ALLWAYS DO(action) GOTO(s1);

/I define a conditional transition
SIGCK(a, ck, dfix(0));

AT(s0) ON(!_cnd(a)) DO(action) GOTO(s1);

The use of dynamic allocation for signal flowgraphs and states saves you specification effort
when writing down a timed description. The adder timed description, shown earlier, can be
described in a more compact wayfatows

------ in add.h
#ifndef ADD_H
#define ADD_H

#include "glib.h"
class add : public base
{

public

f----- constructor -----
add (char* name,

FB & _inl,

FB & _in2,

FB & _o1l);
/[----- untimed simulation -----
int run();

/----- timed simulation -----
void define();
ctifsm & fsm() { return _fsm; };
private :
FB * inl;
FB * in2;
FB * o1,
ctifsm _fsm;
I
#endif

56

----- in add.cxx
#include "add.h"

/[----- constructor -----
add::add(char * name,

FB& _inl,
FB& _in2,
FB& ol

) : base(name)
{
inl = _inl.asSource(this);
in2 = _in2.asSource(this);
0l =_o1 .asSink (this);
define();
}

/----- untimed simulation: run() -----
int add::run()

/----- timed simulation: define() -----
void add::define()
{

SIG(il);

SIG(i2);

SIG(ot);

SFG(_add);
ot =il +i2;
IN(i1, *inl);
IN(i2, *in2);
OUT(ot, *01);

FSM(_fsm);
INITIAL(go);

AT(go) ALLWAYS DO(_add) GOTO(go);

17.3.Supermacros for the standardnterconnect

The standard interconnect scheme allows an even greater improvement of specification
speed. These macros make assumptions on the signal naming of system and block
interconnect to save you from most of the declarations in a timed description. First the
macros are summarized, next an exampigvisn.

// in the class declaration .h file as private members
/I plain dfbfix connections

PRT(p);

/I dfbfix_wire connections

REG(p);

/ as the class constructor parameters
/I plain dfbfix

_PRT(p);

/I dfbfix_wire

_REG(p);

/I as inherited class constructors (after :base(name))

57

/I plain dfbfix

IS_SIG(signal_name, type);

/I dfbfix_wire
IS_REG(signal_name, clock, type);

/I in the class constructor body

/I plain dfbfix or dfbfix_wire, input signal
IS_IP(K);

/I plain dfbfix, output signal

IS_OP(k);

/I dbfix_wire, output signal

IS_RG(K);

/l in signal flowgraphs, reading an input (plain dfbfix or dfbfix_wire)
GET(p);

/l'in signal flowgraphs, writing and ouput (plain dfbfix or dfbfix_wire)
PUT(p);

As the example, we rewrite the accumulator timed description to accumulate a stream of
inputsignals

--in accu.h

#ifndef ACCU_H
#define ACCU_H
#include "glib.h"

class accu : public base

/[----- constructor -----
accu (char * name,

clk & ck,
_PRT (i),
_REG (01));

/----- timed simulation -----
define (clk &ck);
ctifsm & fsm() { return _fsm; };
private :
PRT (i1);
REG (ol);
ctifsm _fsm;
I
#endif

-- in accu.cxx
#include "accu.h"

dfix typ(0,8,0);

/[----- constructor -----
accu::accu(char * name,

clk & ck,

_PRT (1),

_REG (01)

) : base(hame),
IS_SIG(i1, typ),
IS_REG(01, ck, typ)

{
IS_IP(i1);
IS_RG(01);
define(ck);
}

58

/----- timed simulation: define() -----
void accu::define(clk &ck)
{

SFG(rst);

ol = dfix(0);

PUT(01);

SFG(go);
ol =o01+il;
GET(i1);
PUT(01);

FSM(_fsm);
INITIAL(rst);
STATE(go);

AT(rst) ALLWAYS DO(rst) GOTO(go);
AT(go) ALLWAYS DO(go) GOTO(go);

}

The macros hide a significant amount of declarations. In addition, they do internal renaming,
such that for example a stageis distinguished from a signal flowgraghb.

59

18. Meta-codegeneration

OCAPI/RT internally uses meta-code generation. With this, it is meant that there are code
generators that generate nfsm, sfg andsig objects which in turn can be translated to
synthesizableode.

Meta-code generation is a powerful method to increase the abstraction level by which a
specification can be made. This way, it is also possible to make parametrized descriptions,
eventually using conditions. VHDL is not suited to express conditional structure. You really need
some generator-method like the meta-code generation of OCAPI/RT to do this. Therefore, it is
the key method of soft-chip components, which are software programs that translate themselves
to a wide range of implementations, depending on theregairements.

The meta-code generation mechanism is also available to you as a user. To demonstrate this, a
class will be presented that generates an ASIP datdpetitler.

18.1.An ASIP datapath idiom

An ASIP datapath, when described as a timed description within OCAPI/RT, will consist of

a number of signal flowgraphs and a finite state machine. The signal flowgraphs express the
different functions to be executed by the datapath. The fsm description is a degenerated one,
that will use one transition per decoded instruction. The transition condition is expressed by
the 'instruction’ input, and selects the appropriate signal flowgrapéxiution.

Because the finite state machine has a fixed, but parametrizable structure, it is subject for
meta-code generation. You can construt¢eoderobject, that generates the fsm for you.
This will allow compact specification of the instructiset.

First, thedecoderobject (which is present in OCAPI/RT) itselfasesented

-- the include file

#define MAXINS 100
#include "glib.h"

class decoder : public base

public:

decoder(char *_name, clk &ck, dfbfix & insq);

void dec(int _numinstr);

ctifsm &fsm();

void dec(int _code, sfg &);

void dec(int _code, sfg &, sfg &);

void dec(int _code, sfg &, sfg &, sfg &);
private :

char *name;

clk *ck;

dfbfix *insq;

int inswidth;

int numinstr;

int codes[MAXINS];

ctifsm _fsm;
state active;

sfg decode;
_sigarray *ir;

cnd * deccnd(int);
void decchk(int);

60

-- the .cxx file
#include "decoder.h"

static int numbits(int w)

int bits = 0;

while (w) {
bits++;
w=w>>1;

}

return bits;

}
int bitset(int bitnum, int n)

return (n & (1 << bitnum));

}
decoder::decoder(char *_name, clk &_ck, dfbfix & insq) : base(_name)
{

name =_name;

insqg = _insg.asSource(this);

ck =& ck;

numinstr = 0;

inswidth = 0;

_fsm << _name;

/I active << strapp(name,”_go_");
active << "go";

_fsm << deflt(active);

}

void decoder::dec(int n)

/I define a decoder that decodes n instructions
/I instruction numbers are 0 to n-1

/I create also the instruction register

if ({(n>0))

{

cerr << "*** ERROR: decoder " << name << " must have at least one instruction\n";
exit(0);

inswidth = numbits(n-1);
if (n > MAXINS)
{

cerr << "*** ERROR: decoder " << name << " exceeds decoding capacity\n";
exit(0);
}

dfix bit(0,1,0,dfix::ns);

ir = new _sigarray((char *) strapp(name,”_ir"), inswidth, ck, bit);
decode.starts();

inti;

SIGW(irw, dfix(0, inswidth, 0, dfix::ns));

for (i=0; i<inswidth; i++)

{
if (i)
{
(*in)[i] = cast(bit, irw >> _sig(dfix(i,inswidth,0,dfix::ns)));
else
(*in)[i] = cast(bit, irw);
}
decode << strapp("decod", name);

decode << ip(irw, *insq);

}

void decoder::decchk(int n)

/I check if the decoder can decode this instruction
inti;

if (linswidth)

{

cerr << "*** ERROR: decoder "

61

<< name << " must first define an instruction width\n";
exit(0);

}
if (n > ((1 << inswidth)-1))

cerr << "*** ERROR: decoder "
<< name << " cannot decode code " << n << "\n";
exit(0);

for (i=0; i<numinstr; i++)
if (n == codes][i])

cerr << "*** ERROR: decoder "
<< name << " decodes code " << n << " twice\n";
exit(0);
}

codes[numinstr] = n;
numinstr++;

}
cnd *decoder::deccnd(int n)

/I create the transition condition that corresponds to
/I the instruction number n

inti;

cnd *cresult = 0;

if (bitset(0, n))

{

cresult = &_cnd((*in[0]);
}

else

{
cresult = &(!_cnd((*ir)[0]));
}

for (i = 1; i < inswidth; i++)
if (bitset(i, n))
{

cresult = &(*cresult && _cnd((*in[i));
}

else

cresult = &(*cresult && !_cnd((*in[i));
}

return cresult;

}
void decoder::dec(int n, sfg &s)

/I enter an instruction that executes one sfg
decchk(n);
active << *deccnd(n) << decode << s << active;

}

void decoder::dec(int n,
sfg & s1,
sfg & s2)

/I enter an instruction that executes two sfgs
decchk(n);
active << *deccnd(n) << decode << sl << s2 << active;

}

void decoder::dec(int n,
sfg &s1,
sfg &s2,
sfg &s3)
{
/I enter an instruction that executes three sfgs
decchk(n);
active << *deccnd(n) << decode << sl << s2 << s3 << active;

}

62

ctifsm & decoder::fsm()

{

return _fsm;

}

The main principles of generation are the following. Each instruction for the ASIP decoder

is defined as a number, in addition to one to three signal flowgraphs that need to be executed
when this instruction is decoded. Téhecoderobject keeps track of the instruction numbers
already used and warns you if you introduce a duplicate. When the instruction number is
unique, it is split up into a number of instruction bits, and a fsm transition condition is
constructed from thedasts.

18.2.The ASIP datapath atwork

The use of this object is quite simple. In a timed description were you want to use the
decoder instead of a plain fsm, you inherit from this decoder object rather then from the
baseclass. Next, instead of the fsm description, you give the instruction list and the required
signal flowgraphs texecute.

As an example, an add/subtract ASIP datapath is defined. We select addition with
instruction number 0, and subtraction with instruction number 1.The following code (that
also uses the supermacros) shows the specification. The inheritaleomteralso
establishes the connection to the instructjoaue.

-- include file
#ifndef ASIP_DP_H
#define ASIP_DP_H

class asip_dp : public decoder
{
public:
asip_dp (char* name,
clk & ck,
FB & ins,
_PRT (inl),
_PRT(in2),
_PRT(01));
private :
PRT (inl);
PRT (in2);
PRT (ol);
k

-- code file
#include "asip_dp.h"

dfix typ(0,8,0);

asip_dp::asip_dp(char * name,
clk & ck,
FB& ins,
_PRT (inl),
_PRT(in2),
_PRT(o1)
) : decoder(name, ck, ins),
IS_SIG(in1, typ),
IS_SIG(in2, typ),
IS_SIG(01, typ)
{
IS_IP(inl);

63

IS_IP(in2);
IS_OP(0l);

SFG(add);
GET(inl);
GET(in2);

ol =inl+in2;
PUT(01);

SFG(sub);
GET(inl);
GET(in2);

ol =inl-in2;
PUT(01);

dec(2); // decode two instructions
dec(0, SFGID(add));
dec(1, SFGID(sub));

64

19. Summary of classes anélinctions

Class Function Purpose
dfix dfix | dfix() floating point
dfix | dfix(double V) initialized floatingpoint
dfix |dfix(double v,int W, int L) |initialized fixed point, width W, fractio
dfix |dfix(double v, int W, int L,
int rep, int ovf, int rnd) initialized fixed point withquantization
dfix |dfix + dfix addition
dfix | dfix - dfix subtraction
dfix |dfix * dfix multiplication
dfix |dfix/ dfix division
dfix |dfix+= dfix in-placeaddition
dfix |dfix -= dfix in-placesubtraction
dfix |dfix *= dfix in-placemultiplication
dfix |dfix /= dfix in-placedivision
dfix |abs(dfix) absolutevalue
dfix |dfix<< dfix left shift
dfix | dfix >> dfix right shift
dfix |dfix <<= dfix in-place leftshift
dfix |dfix >>= dfix in-place rightshift
dfix | msbpos(dfix) Most significant bifposition
dfix |dfix & dfix Bitwise and
dfix | dfix | dfix Bitwise or
dfix | Adfix Bitwise not
dfix | dfix.frac() Fractionalpart
int |dfix== dfix Equality
int | dfix I= dfix Different
int |dfix< dfix Smallerthen
int |dfix> dfix Greaterthen
int |dfix<= dfix Smaller then or equ#b
int |dfix>= dfix Greater then or equtd
dfix | cast(dfix W, dfix V) Cast v to typaV
dfix | dfix.duplicate(dfix) Value and Type@luplication
int | (int) dfix Cast toint

65

double |dfix.Val() Return thevalue

double |Val(dfix) Return thevalue
int | dfix.TypeW() Return thewidth
int | dfix.TypeL() Return the fractionakidth
int |dfix.TypeSign() Return the representatitype
int | dfix.TypeOverflow() Return the overfloviype
int | dfix.TypeRound() Return the roundintype
int |identical(dfix, dfix) True if same value argipe
int | dfix.isDouble() True if floatingpoint
int | dfix.isFix() True if fixedpoint

Class Function Purpose

dfix ostream |ostream << dfix Write dfix value
istream |istream >> dfix Read dfixvalue
void |write(ostream, dfix, 'f, int w) | Write floating pointformat
void |write(ostream, dfix, 'g’, int w) | Write fixed format
void |write(ostream, dfix, 'x’, int w) | Write integer heXormat
void |write(ostream, dfix, 'b’, int w) | Write integer binarformat
void |write(ostream, dfix, 'd’, int w) | Write integer deciméaiormat
dfbfix dfbfix | dfbfix(char *) Create ajueue
dfbfix | dfbfix(char *, int size) Create ajueue
dfbfix |FB(char *) Create ajueue
void | dfbfix.put(dfix) Enter dfix atfront
dfix | dfbfix.get() Read a dfix fronrear
void | dfbfix.putindex(dfix, long) Poke dfix atposition
dfix | dfbfix.getindex(long) Peek dfix fromposition
dfbfix | dfbfix << dfix Enter a dfix afront
dfbfix | dfbfix >> dfix Read a dfix fronrear
dfix | dfbixfix [long] Peek dfix fromposition
void |dfbfix.clear() Empty thequeue
long | dfbfix.getSize() Return the size ielements
void | dfbfix.pop() Remove reaelement
void | dfbfix.pop(int) Remove n elements frorear
char * |dfbfix.name() Return the queueame
void | dfbfix.asType(dfix) Use aquantizer
void | dfbfix.asDup(dfbfix) Attach a mirroqueue
void |dfbfix.asDebug(char *) Create a tracBle

66

void | dfbfix.stattitle(ostream) Print statisticheader
ostream |ostream << dfbfix Print queusestatistics
dfbfix ~ * |dfbfix.asSource(base *) Define a queuesader
dfbfix * | dfbfix.asSink(base *) Define a queugvriter
base base |: public base Inherit from basdlock
int |run() (virtual) untimedsimulaton
void |CCSdecl(ostream) (virtual) compiled codeleclaratior]
void |base.noOspCnt() Disable operatioprofiling
schedule |schedule |schedule(char *) Create acheduler
void |schedule.next(base) Attach anactor
int |schedule.run() Untimedsimulation
ostream |ocstream << schedule Print profiling statistics
void |schedule.traceOn() Enable runtimeracing
void |schedule.traceOff() Disable runtimeéracing
Class Function Purpose
clk clk |clk() Create &lock
lookupTable |lookupTable |lookupTable(char *, int, dfix) |Create a lookupable
lookupTable |lookupTable = unsigned long * | Define a lookugable
_Sig _sig |_sig(char *) Create ssignal
_sig |_sig(char *, dfix) Create a quantized/initializesignal
_sig |_sig(char *, clk, dfix) Create a registeregignal
_sig |_sig(dfix) Create a constastgnal
_Sig |_sig+ _sig Addition
_Sig |_sig- _sig Subtraction
_Sig |_sig* _sig Multiplication
_Sig |_sig& _sig Bitwise and
_sig |_sig | _sig Bitwise or
_Sig |_sig " _sig Bitwise exor
_Sig _Sig Bitwise not
_Sig |_sig== _sig Equality
_sig |_sig!= _sig Difference
_Sig |_sig< _sig Smallerthen
_Sig |_sig> _sig Greaterthen
_sig |_sig<= _sig Smaller then or Equab
_Sig |_sig>= _sig Greater then or Equéd
_sig |_sig<< _sig Left shift
_Sig |_sig>> _sig Right shift
_Sig |_sig.cassign(_sig, _Sig) Conditionalassignment

67

_Sig |cast(dfix, _Sig)

Signal typeconversion

_sig |lu(lookupTable,

_sig)

Lookup

_sig |msbpos(_sig)

Most significant biposition

sig * |_sig.Rep()

Return the embeddeignal

sig sig |sig() Create a dummgignal
int |sig.isregister() True if registeredignal
int |sig.isconstant() True if constarsignal
int |sig.isconstant() True if constarsignal
char * |sig.getname() Name of thesignal
char * |sig.get_showname() Code generationame
ip ip |ip(_sig, dfbfix) Define a sfgnput
op op |op(_sig, dfbfix) Define a sfgoutput
sfg sfg |sfg() Create &fg
void |sfg.starts() Start the scope ofsfg
sfg |sfg << char * Name asfg
sfg |sfg<< ip Attach a sfgnput
sfg |sfg<< op Attach a sfgputput
void |sfg.check() Semantical check affg
void |sfg.eval() Execute arsfg
void |sfg.eval(ostream) Execute and debug aifig
Class Function Purpose
sfg void |sfg.tick(clk) Update registered signalssfy
char * |sfg.getname() Get the name of asfg
sfg | sfg.merge(sfg) Merge twosfg’s
sig * |sfg.getisig(int) Get input signal fronsfg
sig * |sfg.getosig(int) Get output signal frorsfg
dfbfix * |sfg.getiqueue(int) Get input queue frorsfg
dfbfix * | sfg.getoqueue(int) Get output queue fromsfg
void |sfg.cg(ostream) Show sfgstructure
state state |state() Create sstate
state |state << char * Name astate
state |state<< _c¢nd Define a transitiorrondition
state |state << sfg Define a transitiomction
state |state << state Define a transition targestate
char * |state.getname() Name of astate
deflt deflt |deflt(state) Define a defaulstate
ctifsm ctifsm | ctifsm() Create dsm

68

ctifsm |ctlfsm << char * Name asm
ctifsm |ctlfsm << state Include a state ifsm
ctifsm |ctlfsm << deflt Include a default state fism
ostream |ostream << ctlfsm Dump afsm
int | ctifsm.numstates() Number ofstates
int | ctifsm.numtransitions() Number oftransitions
int | ctifsm.numactions() Number of sfgactions
char * |ctlfsm.getname() Name of thdsm
void |ctifsm.tb_enable() Enable testbench vectgeneratior
void |ctifsm.tb_data() Generate testbenstectors
_cnd _cnd |_cnd(_sig) Define acondition
_cnd | _cnd & & cnd Logicaland
_cnd |_cnd || _end Logical or
_end |! _cend Logical not
scanchain |scanchain |scanchain(char *) Define ascanchain
void |scanchain.addscan(ctlfsm *) |Include ablock
sysgen sysgen |sysgen(char %) Create a cyclscheduler
sysgen |sysgen << base Include an untimedlock
sysgen |sysgen << ctlfsm Include an timedblock
void |sysgen.setinfo(int) Set verbosityevel
void |sysgen.run(clk) Simulate oneycle
void |sysgen.generate() Hardware codgeneration
void |sysgen.inpad(dfbfix, dfix) Define a systenmput
void |sysgen.outpad(dfbfix, dfix) | Define a systemutput
void |sysgen.extern_ram(ram) Define an externam
void |sysgen.intern_ram(ram) Define an internalam
void |sysgen.compiled() Generate compiled cod@mulator

69

OCAPI User Manual v0.81

Table of Contents

[OCAPI User Manual v0.81
[introductory Pointerq.
[1. IntroductoryPointer§ .
1.1.Purposk
|1 2 Publlcatlorp0|nter$
|1.3. In case afrouble .
|[Developmentflow|
[2. Developmentiow]
[2.1.The flowlayouf
[2.2.The systenmode].
[The standard program|
[3. The standargrogranj .
:

4. Calculations . .
|4.1. The dfixclass.

|4.2. The dfixoperators
[Communication| .
[5. Communicatioh .
[5.1. The dfbfixclas$.
[2. The dfbfixoperators .
[5.3. Utility calls fordfbfix| .
[5.4. Globals derivatives falfbfix|
[The basicblock]
[6. The basidlocK
|6.1. Basic block include and coﬂkel . .
|6.2. Predefined standard blocks: file sourcessamiott.
16.3. Predefined standard blocksAM|
[Untimed simulationy .
[7. Untimedsimulation .
[7.1. Layout of untlme8|mulat|or1|
[7.2. More orschedulds
[7.3. Profiling in untlme(!;lmulatlon!s
[The path toimplementation|
[8. The path tamplementatioh
[Signals and signaflowgraphs .
[9. Signals and signdbwgraphs .
[9.1. Hardware versusoftwarg .
[9.2. The sig class and relatmbratlonls
[9.3. Globals and utility functions fergnal$.
[9.4. The sfaclass$.
[9.5. Execution of a &gnﬂbwgraph
[9.6. Running a signal flowgraph and. .
[9.7. Globals and utility functions for S|grfhngraph$
|[Finite state machine$.
[10. Finite statenachinek. .
[10.1. The ctlfsm and statéassels
|10.2. The cndlas$
[10.3. Utility functions for fsm)bject$

OO, R,DRAMWMNNDNDNLE

[The basic block for timedsimulationy . .
[11. The basic block for timezimulation$.
[Timed simulationg
[12. Timedsimulation$
[12.1. The sysgeciass. .
[12.2. Selecting the S|mulat|merb03|t}' .
[12.3. Two phases abettef
|[Hardware codegeneration
[13. Hardware codgeneratioh
[13.1. The generate€all|
[13.2. System cetefinements .
[13.3. Pitfalls for codgeneratioh
[Verification and testbenchefs .
[14. Verification andestbenchgs .
[14.1. Generation of testbencéctors
[14.2. Generation of testbendhvers
[Compiled codesimulationg
[15. Compiled codsimulation$
[15.1. Generating a compiled co&dmulator
[15.2. Compiling and running a compiled ccsxmaulator
|[Faster communicationg
[16. Fastecommunications .
[16.1. The dfbfix wireclass.
[16.2. Interconneddtrateqgigs
|[Faster description usingmacrosg
[17. Faster description usimgacrog
[17.1. Macros for signals, signal flowgraphs quéuels
[17.2. Macros for finite statmachines
[17.3. Supermacros for the standmdzrconne¢t
[Meta-codegeneration.
[18. Meta-cod@eneration . .
[18.1. An ASIP datapatiliom| .
[18.2. The ASIP datapathabrk|
[Summary of classes andlunctiong .
[19. Summary of classes afushctions .

36
36
38
38
38
39
40
42
42
42
44
45
46
46
46
47
50
50
50
51
53
53
53
53
55
55
55
56
57
60
60
60
63
65
65

	1. Introductory Pointers
	1.1. Purpose
	1.2. Publication pointers
	1.3. In case of trouble

	2. Development flow
	2.1. The flow layout
	2.2. The system model

	3. The standard program
	4. Calculations
	4.1. The dfix class
	4.2. The dfix operators

	5. Communication
	5.1. The dfbfix class
	2. The dfbfix operators
	5.3. Utility calls for dfbfix
	5.4. Globals derivatives for dfbfix

	6. The basic block
	6.1. Basic block include and code file
	6.2. Predefined standard blocks: file sources and sinks
	6.3. Predefined standard blocks: RAM

	7. Untimed simulations
	7.1. Layout of untimed simulation
	7.2. More on schedules
	7.3. Profiling in untimed simulations

	8. The path to implementation
	9. Signals and signal flowgraphs
	9.1. Hardware versus Software
	9.2. The _sig class and related operations
	9.3. Globals and utility functions for signals
	9.4. The sfg class
	9.5. Execution of a signal flowgraph
	9.6. Running a signal flowgraph by hand
	9.7. Globals and utility functions for signal flowgraphs

	10. Finite state machines
	10.1. The ctlfsm and state classes
	10.2. The cnd class
	10.3. Utility functions for fsm objects

	11. The basic block for timed simulations
	12. Timed simulations
	12.1. The sysgen class
	12.2. Selecting the simulation verbosity
	12.3. Two phases are better

	13. Hardware code generation
	13.1. The generate†‡ call
	13.2. System cell refinements
	13.3. Pitfalls for code generation

	14. Verification and testbenches
	14.1. Generation of testbench vectors
	14.2. Generation of testbench drivers

	15. Compiled code simulations
	15.1. Generating a compiled code simulator
	15.2. Compiling and running a compiled code simulator

	16. Faster communications
	16.1. The dfbfix_wire class
	16.2. Interconnect strategies

	17. Faster description using macros
	17.1. Macros for signals, signal flowgraphs and queues
	17.2. Macros for finite state machines
	17.3. Supermacros for the standard interconnect

	18. Meta-code generation
	18.1. An ASIP datapath idiom
	18.2. The ASIP datapath at work

	19. Summary of classes and functions

