
Charles University, Prague, Czech Republic
Faculty of Mathematics and Physics

BACHELOR THESIS

Michal Kebrt

Word-to-LATEX convertor

Department of Software Engineering
Advisor: RNDr. Tomáš Skopal, Ph.D.

Program in Computer Science

2006

I hereby certify that I wrote the thesis myself, using only the referenced sources.
I agree with lending the thesis.

Prague, May 20, 2006 Michal Kebrt

3

4

Contents

I 9

1 Word to LATEX conversion 10
1.1 Word versus LATEX . 10
1.2 What to expect . 12
1.3 Internal and external conversion 13
1.4 Word-to-LATEX convertor . 13

1.4.1 Most important features 13
1.4.2 Support for structured documents 14
1.4.3 Documents formatting . 14
1.4.4 Miscellaneous options and features 15

2 Implementation 16
2.1 Basic overview . 16

2.1.1 Word object model . 16
2.1.2 Components . 19
2.1.3 Libraries . 20

2.2 Design and algorithms . 20
2.2.1 Retrieving and inserting marks 21
2.2.2 Text content conversion 22
2.2.3 Special characters conversion 22
2.2.4 Images conversion . 24
2.2.5 Equations conversion . 24
2.2.6 Some nice features . 25

2.3 Problems . 26
2.4 Improving performance using COM 27

3 Related projects 29
3.1 Summary . 29
3.2 Word2TEX versus Word-to-LATEX 30

4 Conclusion 34

II 36

5 User’s manual 37
5.1 Requirements and installation . 37
5.2 Uninstallation . 38
5.3 Configuration . 38

5

5.4 Command-line convertor . 38
5.5 EPS to TIF image conversion . 39
5.6 Graphic user interface . 39

5.6.1 Running the conversion . 39
5.6.2 Figures, Equations and Translations 40
5.6.3 Document preamble . 42
5.6.4 Special characters . 42
5.6.5 Styles and Font sizes . 44
5.6.6 Miscellaneous options . 45

5.7 Running Word-to-LATEX from Word 46
5.8 Conversion to XML, XHTML, MathML 46

A Sample documents 47

B Structure of configuration files 52
B.1 Conversion options . 53
B.2 Conversion mappings . 56
B.3 Special characters . 70

6

Název práce: Konvertor Word-to-LATEX
Autor: Michal Kebrt
Katedra: Katedra softwarového inženýrstv́ı
Vedoućı bakalářské práce: RNDr. Tomáš Skopal, Ph.D.
E-mail vedoućıho: tomas@skopal.net

Abstrakt: V předložené práci popisuji program Word-to-LATEX – konvertor
převáděj́ıćı dokumenty ve formátu Microsoft Word do formátu LATEX, který je
vhodný pro sazbu knih, skript, vědeckých článk̊u, atp. Program je však kon-
figurovatelný do té mı́ry, že umožňuje převádět dokumenty i do zcela odlǐsných
formát̊u (např. XML). Součást́ı práce je srovnáńı textových procesor̊u a formátu
LATEX, vyzdvižeńı jejich výhod a nevýhod. Stručně jsou popsány základy ob-
jektového modelu programu Microsoft Word, možnosti jeho použit́ı, několik jeho
problémů a omezeńı a zp̊usob jak urychlit aplikace, které jej využ́ıvaj́ı.

Kĺıčová slova: LaTeX, Word, XML, konverze

Title: Word-to-LATEX convertor
Author: Michal Kebrt
Department: Department of Software Engineering
Supervisor: RNDr. Tomáš Skopal, Ph.D.
Supervisor’s e-mail address: tomas@skopal.net

Abstract: This work is devoted to Word-to-LATEX program that converts docu-
ments written in Microsoft Word into LATEX format which is suitable for typeset-
ting books, manuscripts, scientific articles, etc. The program can be customized
so much that it enables to produce completely different output formats (e.g.
XML). In this work I also tried to compare text processors and LATEX format
and emphasise their pros and cons. The Microsoft Word object model is briefly
described, its problems and limitations are also covered. Finally, the way of im-
proving performance of applications that automate Word is suggested.

Keywords: LaTeX, Word, XML, conversion

7

Preface

Word-to-LATEX is a program that converts Microsoft Word documents into
LATEX format which is suitable for typesetting books, manuscripts and other kinds
of documents, or contributing papers to a lot of conferences.

Although the conversion to LATEX was the only goal of the project, I tried
to make the program as much customizable as possible which resulted in the
convertor that supports two output format families – LATEX and XML. Other
markup formats can be easily added through the configuration.

The program is divided into a couple of components which allowed to create
a separate command-line convertor, a graphic user interface that’s running the
command-line convertor, and also a COM object that enables to use the convertor
directly from the Word application.

The work has two main parts, the first one contains three important chap-
ters. Chapter 1 compares text processors and LATEX as two different approaches
to making documents. It also summarizes Word-to-LATEX features and the pos-
sibilities of conversion between Word documents and LATEX format. Chapter 2
describes the implementation. It covers the concept of the convertor and its com-
ponents, the most important algorithms, and the way of communication between
the convertor and the Word application. A short overview of the Word object
model, its problems and limitations is also included. Word-to-LATEX program is
compared with all existing Word to LATEX convertors in Chapter 3.

The second part is user related, it comprises of the user’s manual and appen-
dices that show sample documents converted with Word-to-LATEX and describe
the structure of configuration files.

8

Part I

9

Chapter 1

Word to LATEX conversion

1.1 Word versus LATEX

At the beginning it wouldn’t make sense to compare two particular software
products as examples of two very different approaches to making documents. At
first it’s important to realize how documents are usually created and how they
should be created correctly.

Alan Cottrel, in his flammy article [1], very strictly separates two tasks while
creating documents.

The composition of the text itself. By this I mean the actual choice
of words to express one’s ideas, and the logical structuring of the text.
It includes matters such as the division of the text into paragraphs,
sections or chapters, adding of special emphasis to certain portions of
the text, and so on.

The typesetting of the document. This refers to matters such as
the choice of the font family in which the text is to be printed, and the
way in which structural elements will be visually represented. Should
section headings be in bold face or small capitals? Should the text be
justified or not? And so on.

Apart from the fact that in these days the author and the typesetter is often
the same person, the author should always mainly concentrate on the first of
these tasks. At the beginning there shouldn’t be a reason for the typesetting to
be an important job.

These two tasks have been put together in widely used WYSIWIG1 text pro-
cessors. Microsoft Word, WordPerfect, OpenOffice.org Writer and many more
are examples of these programs. They allow to create documents, their design,
and layout interactively selecting from a great variety of commands in the pro-
gram menu. A user always sees a document in its final form because all the
document formatting is displayed on the screen (for example, a heading appears
in a bold and bigger font). At first sight this feature looks nice, but the “on the
fly typesetting” brings a couple of problems which will be summarized below.

LATEX [3], on the other hand, is a document preparation system which is used
for typesetting science and mathematical documents in a high typographic quality.

1what you see is what you get

10

The system is suitable for creating many different kinds of documents, from plain
letters to large books. LATEX is also a standard for contributing manuscripts to
a lot of (scientific) conferences.

LATEX uses TEX [2] – “typesetting system for creating beautiful books”, which
was developed by professor Donald E. Knuth. LATEX is actually only a package
of macros that make the work with TEX easier. Other sets of macros, which can
be used instead of LATEX, are AMS-TeX and AMS-LATEX.

What is the main difference between LATEX and Word? When you make
a document in LATEX, you write all the text and commands directly into a plain
text file, and you cannot see the final document until you run a program which
generates a PostScript or PDF file. Documents can be structured using a lot
of special commands (for example \section{My example section} command
makes a section). Most of modern text editors highlight LATEX commands so it’s
never difficult to write and maintain LATEX documents.

\documentclass[11pt]{article}

\begin{document}

\title{Simple \LaTeX{} Document}

\author{Michal Kebrt}

\date{3rd Apr 2006}

\maketitle

\section{Introduction}

This is a simple document created using \LaTeX.

\end{document}

Figure 1.1: Simple LATEX document

Disadvantages and limitations of text processors:

• When writing a large document like a book, text processors often become
very slow and documents hardly maintainable due to the real-time typeset-
ting which requires a great amount of memory.

• Authors usually tend to use various kinds of fonts, emphasis, indentation,
alignment of paragraphs, and so on. Of course, they do it with an inten-
tion to make documents “nicer”, but this inconsistence always causes worse
readability of documents.

• Authors often forget to concentrate on the content and logical structuring
of documents.

• Documents are usually stored in binary files which sometimes cannot be
opened without the text processor installed on your machine. There may
be also problems with exchanging files between different versions of the
same text processor.

11

Advantages of text processors:

• They are easy to learn and use for most of people. When you want the
portion of text to be in a bold font, you just select it, click on the icon, and
see the change.

• Users always see documents in their final form. But sometimes this can be
a disadvantage which was mentioned above.

• Most of text processors are capable to structure documents using predefined
or user styles. It’s a pity that WYSIWYG model makes users not use this
effective feature.

• Easy insertion of images and variety of external objects (graphs, drawings,
and so on).

LATEX advantages:

• Users can use predefined document templates (e.g. for articles and books)
with a professional look and typographic quality.

• Great facilities for writing mathematical expressions, inserting index and
citations.

• It’s not necessary to specify documents formatting and look because it de-
pends on the selected document style. Authors write only the commands
defining the logical structure of documents (e.g. sections and footnotes).

• Many add-ons (e.g. for inserting graphics or hyperlinks).

• Documents are stored in plain text files which can be opened and edited in
any text editor.

• Wide portability of TEX and LATEX system.

• LATEX is free.

LATEX disadvantages and limitations:

• It’s very difficult to make complex tables with a lot of merged rows and
columns.

• Not WYSIWYG model may be a problem for some users. But there are
programs like LyX which allow visual editing of LATEX documents.

1.2 What to expect

It’s not possible to perform “1:1 conversion” because Word and LATEX are very
different document preparation systems. The most important task is surely to
convert all the text content. It especially means to convert special and national
characters correctly (e.g. →, σ).

Conversion programs will produce the better results the better input Word
documents are structured and formatted. This is the reason why people should

12

use paragraph styles and appropriate Word functions for inserting footnotes, sec-
tions, index, etc. Once users follow these rules, conversion programs can properly
convert almost every part of a document.

1.3 Internal and external conversion

There are two possible ways how to convert Word documents to LATEX format.
A lot of information and also the terminology“internal”and“external conversion”
come from the article [4].

Internal conversion is carried out within the Word application using its object
model. It’s not significant whether you use the object model in a VBA macro or
in some external program. The most important thing is that all parts of docu-
ments and information about documents including formatting, Word application
settings, etc. is available.

Examples of programs that perform internal conversion are Word2TEX [18]
and Word-to-LATEX.

External conversion, on the other hand, is performed without the help of the
Word application and its object model. Then we can use at least two methods to
convert a Word document into LATEX – either directly access the Word document
as a binary file or save the document in a more accessible format (often RTF),
and then convert it into LATEX. External conversion has one big disadvantage
in comparison with internal conversion. It’s usually impossible to retrieve all
information about documents, especially about their logical structure.

The first method is completely independent on the Word application, so it can
be performed outside the Windows environment. Although the idea of parsing
a Word binary file is rather unimaginable, there are a few programs that use this
method: Antiword [14] and wsW2LTX [13]. rtf2latex2e [17] is an example of
a program that converts RTF documents into LATEX. .

1.4 Word-to-LATEX convertor

Word-to-LATEX performs so-called internal conversion since it uses Word object
model to retrieve all parts of documents. The lists of implemented features follow.

1.4.1 Most important features

• The conversion can be run from the command-line, through the graphic
interface, or directly from Word. The latter way of running is much faster
than the previous ones.

• The convertor is not limited only to LATEX format. The program can be
easily customized by changing a configuration file or through the graphic
interface. The configuration for XML output is an example of such a cus-
tomization. Additional XSL stylesheets can be created to have Word doc-
uments in your own format. Sample XSL stylesheet generating XHTML +
MathML + CSS documents has been tested and the output looks very nice.

13

• Equations inserted through Equation Editor, MathType and Word EQ fields
are converted. There are a couple of predefined equations output formats
(e.g. LATEX, MathML). Numbered equations are also converted. Optionally,
references to numbered equations can be automatically recognized in input
documents.

• Both raster and vector images, and even embedded objects like Excel graphs
are converted to Encapsulated PostScript (EPS) format or to bitmaps (PNG
format).

1.4.2 Support for structured documents

• Paragraphs marked as headings using the Word built-in styles are properly
converted to LATEX sections (the default mappings can be changed).

• Ordered and unordered lists (even nested), and complex tables with merged
rows and columns are converted.

• Footnotes and endnotes are properly converted. Bibliography items can be
optionally created from endnotes. They’re in fact the only way how users
can insert bibliography and citations into Word documents.

• The program converts table and figure titles, index, table of contents, mul-
ticolumn sections, hyperlinks.

• Bookmarks, references and page references to bookmarks are also converted.

1.4.3 Documents formatting

• Mappings between user styles (both paragraph and character) and LATEX
commands can be defined (e.g. style named “preformated” to verbatim

environment). A special command for each style can be optionally created
to make later changes in documents easier.

• Converts various font styles – bold, italic, small caps, subscript, superscript,
uppercased, underlined, strikethrough, and hidden. Text written in basic
fonts from sans-serif and courier families is also marked in output docu-
ments.

• LATEX font size cannot be easily set exactly the same as in Word, so there is
a point range that each LATEX command covers (e.g. 8 – 10 pt for \small).
The default ranges and commands can be, of course, changed.

• Colored text, highlighted text, and colored backgrounds of table cells can
be converted. Borders (even colored) applied to portions of text are also
taken into account.

• Paragraphs are converted even with alignments and indentations.

• Line breaks and page breaks are correctly converted.

• Page size and page margins can be converted.

14

1.4.4 Miscellaneous options and features

• Special and national characters (e.g. Greek, Russian or Hebrew) are con-
verted, even those from the Symbol font.

• Editable document preamble; macros like @WL-DOC_AUTHOR used in the
preamble are replaced with the respective information from Word docu-
ments.

• LATEX commands can be inserted into Word documents through PRIVATE

fields. Word ignores them, but they are correctly converted.

• Newline separator can be selected from the following separators – CRLF, CR,
LF. Lines in output files can be wrapped after each x characters (x is defined
in the configuration).

15

Chapter 2

Implementation

2.1 Basic overview

Word-to-LATEX performs so called internal conversion since it uses the Word ob-
ject model [7, 8] to retrieve all parts of documents. Basic information about this
model will be given in section 2.1.1.

Microsoft Visual Studio 2003 and C# language [5, 6] were chosen as a devel-
opment environment. The whole project is divided into a couple of subprojects
described in section 2.1.2. The program design, interesting algorithms, and limi-
tations of the Word object model will be depicted in section 2.2.

2.1.1 Word object model

The object model enables you to control the whole Word application and manip-
ulate the documents. Each document can be traversed in a couple of ways and
a lot of information can be retrieved using tens of various objects’ properties.

You have to add a reference to Microsoft Word Object Model Library to be
able to use the Word object model in your program. Such a program should
correctly work with all higher Word versions in future, but not with the older
versions that don’t have all the functionality you may use when developing with
a newer object model library.

As you can see in figure 2.1, Application and Document are the essential
objects that every program which automates Word needs.

The entire Word application is represented by the Application object. Al-
though the Application object makes a lot of other objects available, only a few
of them are so important that you will find them in almost every application that
uses the Word object model. Figure 2.2 shows three of these essential objects.

Only one document can be active within the Word application
(ActiveDocument). All opened documents are grouped in the Documents col-
lection. Each Document object (figure 2.3) represents a single Word document.
It comprises of a couple of collections containing footnotes, endnotes, fields, para-
graphs, styles, shapes, and so on.

The Selection object represents the currently selected area. This object
offers almost the same properties as the Document object and a couple of addi-
tional properties which are illustrated in figure 2.4. The Find property is used
very often throughout the whole Word-to-LATEX program. It provides the same

16

class WordSketch {

static void Main(string[] args) {

Word.ApplicationClass wordAppClass;

Word.Application wordApp;

Word.Document document;

object fileName = @"d:\file.doc";

object readOnly = false;

object isVisible = false;

object saveChanges = false;

object missing = System.Reflection.Missing.Value;

wordAppClass = new Word.ApplicationClass();

wordApp = wordAppClass.Application;

document = wordApp.Documents.Open(ref fileName,

ref missing, ref readOnly, ref missing, ref missing,

ref missing, ref missing, ref missing, ref missing,

ref missing, ref missing, ref isVisible, ref missing,

ref missing, ref missing);

// print the content of the first paragraph

Console.WriteLine(document.Paragraphs.Item(1).Range.Text);

wordApp.Quit(ref saveChanges, ref missing, ref missing);

}

Figure 2.1: Sketch of a program that uses Word object model

Application

Documents

ActiveDocument

Selection

Figure 2.2: Essential properties of the Word Application object

17

Document

Bookmarks

Characters

DocumentProperties

Fields

Footnotes

ListParagraphs

InlineShapes

PageSetup

Paragraphs

Sections

Shapes

Styles

Tables

Figure 2.3: Essential properties of the Word Document object

functionality as the Word Find and Replace dialog and may help you to find
the portions of text written in specified font, color or style, page breaks, tabs,
and so on. Even regular expressions can be used when searching for a particular
text.

Selection

Cells

Columns

Font

Find

Rows

Figure 2.4: Essential properties of the Word Selection object

The Range object is the last one that will mentioned because it’s also widely
used. This object has nearly the same properties as the Selection object. The
main differences between the Range and Selection objects are:

• the Range object always represents the contiguous area (it has a start and
end position in a document)

• prefer the Range to the Selection because it’s a little bit faster

18

2.1.2 Components

The whole Word-to-LATEX application is split into 7 projects which allows easy
reusing of the source code. Table 2.1 and figure 2.5 show the list of projects.

Project name / output Short description

word-to-latex
word-to-latex-lib.dll

Library containing all the conversion stuff.

word-to-latex-bin
word-to-latex.exe

Command-line convertor, uses the word-to-
latex library.

word-to-latex-
configuration-class
word-to-latex-

configuration-class.dll

Library that reads configuration files. It’s
used in both command-line and GUI pro-
grams. Details about configuration files can
be found in appendix B.

word-to-latex-glue
word-to-latex-glue.dll

Simple library containing a class that links
the Word application with the word-to-latex
and word-to-latex-gui libraries. The class can
be used as a COM object directly from a
Word VBA macro.

word-to-latex-gui
word-to-latex-gui-lib.dll

Library containing dialogs that enable easy
customization of the convertor.

word-to-latex-gui-bin
word-to-latex-gui.exe

Program that uses the previous GUI library
and runs the command-line convertor.

word-to-latex-setup
word-to-latex-setup.msi

Deployment project.

Table 2.1: List of subprojects

19

word−to−latex word−to−latex−gui

word−to−latex−bin

word−to−latex−
configuration−class

word−to−latex−gui−bin

word−to−latex−glue

Word Object Model

Figure 2.5: Projects dependencies

2.1.3 Libraries

The following libraries are used:

• Microsoft Word 10.0 Object Model Library

• .NET System.XML for processing XML configuration files and validating
them against XML Schema

• .NET System.Windows.Forms for creating the graphic user interface

• .NET System.Drawing for saving images in PNG format

2.2 Design and algorithms

Projects that worth deeper description are word-to-latex which performs all the
conversion and word-to-latex-glue that allows to run the convertor through a VBA
macro.

The WLConvertor class, demonstrated in figure 2.6, is the main entry point of
the word-to-latex library. This class receives an input document, an output file-
name and a configuration file, initializes the Word application and the MathType
library.

Afterwards, two important tasks are to be done when converting a document.
First positions of all special (non-text) elements like footnotes or styles must
be retrieved and stored as so-called marks to inner structures of the convertor.
Once this is done, the conversion of text content can begin with the document
preamble and continue with the document body. Special and national characters
are translated to appropriate commands and the marks are inserted to correct
positions. More about these two tasks will be told in next sections.

20

WLConvertor

input document output filename configuration

WordApp.Init();
MathType.Init();
WLMarks.GetAllMarks();

documentPreamble.Convert();
documentBody.Convert();

Figure 2.6: WLConvertor class

2.2.1 Retrieving and inserting marks

The concept of marks, shortly mentioned in the previous section, is actually the
same as so-called XML markup. The convertor retrieves information about a lot
of non-text elements contained in the document. Each element like a page break,
footnote or text highlight has its start and end position that can be obtained from
the Start and End properties of the corresponding Word Range object. Like
in XML some marks don’t need to have end positions. Although this markup
concept is very simple, one example in figure 2.7 will make it completely clear.

Lorem ipsum dolor
sit amer consectuer.

<bold>Lorem ipsum</bold>
dolor <linebreak /> sit amet

consectuer.

Figure 2.7: Markup concept

Each element from Word documents has its corresponding class in the word-
to-latex library. All of them are derived from the WLDocumentMark class (figure
2.8). Their instances must have start and end positions, and return commands
that will be inserted into these positions. Table 2.2 shows the list of mappings
between the document elements, Word objects and convertor classes.

Figure 2.8 shows how the marks are collected and stored. The WLMarks class
contains two queues for the start and end marks (instances of classes from table
2.2). The queue with the start marks is sorted by start positions in the ascending
order. The end marks in the second queue are sorted ascending by end positions.
Each queue has special rules applied in the situation when the start or (and) end
positions of two marks are equal. This prevents from so called “crossover” of the
marks (e.g. <i>foo</i>).

Each class like WLFootnote has a static member function that loads the marks
into these queues. When all the marks are loaded, the convertor can sequen-

21

Word object or property convertor class
footnote Footnote → WLFootnote

endnote Endnote → WLEndnote

image Shape, InlineShape → WLImage

bookmark Bookmark → WLBookmark

TOC Field; type=TOC → WLTOC

index Field; type=Index → WLIndex

index entry Field; type=IndexEntry → WLIndexEntry

hyperlink Field; type=Hyperlink → WLHyperlink

cross-reference Field; type=Ref/PageRef → WLCrossReference

equation Field; type=Formula/Embed → WLEquation

colored text Font.Color → WLColorText

colored bg. Font.Shading → WLColoredBackground

style instance Range.Style → WLStyleInstance

font style Font.Bold/Font.Italic/... → WLFontStyle

paragraph Paragraph → WLParagraph

table Table → WLTable

table cell Cell → WLTableCell

Table 2.2: Mappings between Word objects and Word-to-LATEX classes

tially pick them up from the sorted queues and insert the commands returned
by GetStartCommand() and GetEndCommand() member functions into the output
file.

2.2.2 Text content conversion

The conversion of text content follows the marks retrieval task described in the
previous section. The WLDocumentBody class (figure 2.9) works as a manager –
it traverses the document paragraph by paragraph and calls functions for the
conversion of tables, list paragraphs, and common paragraphs.

The WLParagraph class takes the paragraph text, translates special characters
and inserts marks (if any) to appropriate positions in the paragraph. Finally, the
converted paragraph can be written to the output file.

2.2.3 Special characters conversion

We must differ between two groups of special characters. The first one contains
the characters that have a special meaning in the output format (e.g. “\” in
LATEX). The second group comprises of all national characters and special symbols
(e.g. π, →). The characters from the first group must be always converted earlier
because they are often used to translate the ones from the second group.

The way how the characters will be converted completely depends on the
configuration described in section B.3. Since Word uses Unicode [11] which is
also used in configuration files, there is no problem with the conversion of most
of characters. Moreover, when the translation is not defined for some character,
it can be kept “as is” because the encoding of output files is UTF-8.

22

WLMarksWLImage.ProcessImages()

WLPageBreak.GetPageBreaks()

WLFootnote.GetFootnotes()

WLStyle.GetStyles()

WLFonts.GetFontStyles()

Queue StartMarks;
Queue EndMarks;

WLDocumentMark

long StartPosition;
long EndPosition;

String GetStartCommand();
String GetEndCommand();

Figure 2.8: WLMarks class

WLDocumentBody

foreach (Word.Paragraph par in inputDocument) {
 // new table
 if (isFirstInTable(par)) {
 Word.Table tab = par.Range.Tables.Item(1);
 WLTable table = new WLTable(tab);
 table.Convert();
 // new list
 } else if (isFirstInList(par)) {
 WLListParagraph list = new WLListParagraph(par);
 list.Convert();
 // common paragraph
 } else {
 WLParagraph wlPar = new WLParagraph(par);
 wlPar.Convert();
 }
}

Figure 2.9: WLDocumentBody class

23

Nevertheless the situation is not so clear due to the fonts like Symbol or
Wingdings that have only 0–255 (ASCII) range. Characters from these fonts
are internally stored in the part of the Unicode table which is reserved for the
application use (0xF020-0xF0FF). Currently Word-to-LATEX program has a built-
in support for the Symbol font. The program defines mappings between most of
characters from this font and Unicode. However, it’s very difficult to find these
characters in documents because Word overlaps the real Font property with the
surrounding font like Arial or Times. Find and Replace and Insert | Symbol
dialogs have to be invoked to find these symbols and detect their real codes
(0-255). Afterwards they can be converted to Unicode following the predefined
mappings.

2.2.4 Images conversion

Word-to-LATEX exports images including embedded objects in two different for-
mats – as bitmaps in PNG format or as vector images in Encapsulated PostScript
(EPS) format.

The conversion to EPS format is performed by an external PostScript printer
driver (e.g. Generic Color PS) which can be easily installed in Windows. The
conversion procedure is rather complicated – first the image is copied into the
clipboard, then pasted in a temporary Word document which is printed to an
EPS file using the PostScript printer. Once this is done, the Bounding Box
property specifying the EPS image size must be edited to match the original
image size in the Word document. This property is edited without any external
program which is quite an easy task. It means to change four numbers in the
head of each EPS file (plain ASCII text file).

Example: %%BoundingBox: 110 687 219 714

The Word object model has no capability to export images. That is why the
.NET System.Drawing library is used for saving images in PNG format. How-
ever, this procedure has one limitation, not all the images can be saved as PNG
bitmaps. The eps2tif program described in section 5.5 solves this problem.

There’s one more way of exporting images as bitmaps. When a Word doc-
ument is saved as a web page, all the images (including embedded objects etc.)
are exported as JPEG, PNG and GIF files. As this technique is very laboured,
Word-to-LATEX doesn’t use it now.

2.2.5 Equations conversion

There are three ways how to insert mathematical expressions into a Word doc-
ument. The first one are EQ fields (Insert | Field) which can be used even for
quite complicated expressions containing sums, brackets, matrices, fractions, etc.
EQ expressions are written in a source code similar to LATEX (e.g. \f(5;3) makes
a fraction). But they have a couple of limitations – for example, you cannot
create a triple integral. As there is no API for EQ fields, their source code must
be parsed to be able to convert them into another format.

Equation Editor (mostly in version 3) is a part of Microsoft Office package. It’s
a visual editor without any mode for writing expressions in a source code similar

24

to EQ fields. In spite of this fact, Equation Editor can convert EQ expressions
into its own format, but not back. The parsing of Equation Editor expressions’
binary format is the only way of converting them to LATEX. Although this format
is public [9], it’s a hard imaginable method for me.

MathType1 is a professional (and commercial) version of Equation Editor with
a couple of great improvements – support for numbered equations, automatic
recognition of variables, functions and constants, capability to export equations
in GIF, EPS, MathML, LATEX and other formats. MathType has an API for basic
work with expressions and as it can handle Equation Editor and EQ expressions
too, it’s a solution for converting all the expressions within Word documents to
LATEX.

Finally we decided to use the MathType API for the conversion of equations
although it has one big disadvantage – Word-to-LATEX users must have a legal
version of this product if they want to convert equations to LATEX. The possibility
of parsing the expressions’ binary format was eliminated from our consideration
because it would have been a very troublesome task and moreover, the format of
Equation Editor and MathType equations even differs a bit.

WordToLatex.MathType namespace contains a few functions wrapping the
MathType API. MathType uses so-called translator files, written in Translator
Definition Language (TDL) [9], to export expressions in other formats. It has a
couple of predefined translators enabling conversion to MathML, LATEX and a few
other formats.

Word-to-LATEX tries to recognize simple math expressions written in italics.
The following table shows some of the Word regular expressions that are currently
used.

Regular expression Sample matching string
[a-zA-Z] i
[0-9]+ 120
[a-zA-Z]+\(([a-zA-Z]|[0-9]+)\) sin(x)

2.2.6 Some nice features

While Word-to-LATEX is converting a document, the user is being informed about
the progress of the conversion. It is done through an object that implements
simple ILog interface. Therefore the console in the command-line convertor and
a text box in the graphic interface can be used for printing the log information.

public interface ILog {

// writes a line to the log.

void WriteLine(string line);

}

It is very easy to add new font styles that will be recognized by the conver-
tor. The function FindFontStyle(ProcessFunction f) searches for the spec-
ified font style in the input document and calls the given handler that has the
same arguments as the following delegate.

1http://www.dessci.com

25

// range - range in the document that has the given font style

// style - style (character or paragraph) of this range

private delegate void ProcessFunction(Word.Range range,

Word.Style style);

// example of usage

// set the font style and pass the ProcessFontStyleBold handler

WLConvertor.WordApp.Selection.Find.Font.Bold = -1; // true

FindFontStyle(new ProcessFunction(ProcessFontStyleBold));

Although the convertor is highly customizable and has a built-in support for
two different output format families (LATEX and XML), there are only a few places
in the source code where the convertor handles these output formats differently.
Appendix B describes the configuration in details.

2.3 Problems

The problems and limitations of the Word object model and Word itself will be
described in this section.

Sometimes funny
The Word object model sometimes behaves funny in a couple of things. Excep-
tions are ever and again thrown although there is no reason for Word to do it.
Word sometimes gives you completely bad information about the measures of
tables and pages. The most funny thing is to get a different output from a VBA
macro and identical C# code.

Citations
Word has no tool for inserting citations (e.g. “[1]”, “[Ka78]”) into documents.
Somebody uses endnotes (Insert | Reference | Footnote | Endnote) to in-
sert citations and therefore Word-to-LATEX can properly convert them to the
bibliography environment. The program may also convert the portions of text
that match the citation pattern (\[[A-Za-z0-9_-]+\]) to the commands speci-
fied in the configuration (e.g. “[1]” to \cite{bib1}).

Cross-references
Word-to-LATEX converts cross-references (inserted through Insert | Reference |
Cross-reference) only to bookmarks (inserted through Insert | Bookmark).
Other cross-references (to sections, tables, etc.) use Word internal codes (e.g.
PAGEREF _Ref133683482) and cannot be converted.

Colors
The Word object model uses two data types for representing colors. Word.WdColor
type is a standard RGB representation stored in one long number,
Word.WdColorIndex type contains a couple of internal codes. The mapping be-
tween Word.WdColorIndex and Word.WdColor had to be made to be able to
convert all the colors to RGB. Colors are written in HTML notation to output
files (e.g “FF0000” is a red color).

26

There is no fast way of searching the portions of text that have color different
from black. The document has to be traversed character by character and the
convertor checks whether the color of the current character is different from the
color of the previous one. This technique is extremely slow, so the conversion of
colored text can be disabled in the configuration.

Colored backgrounds of text are converted if they are applied to a style or
inserted using the Highlight tool. Such highlighted text can be easily found
with the Word Find object.

Titles
The Word object model doesn’t provide any information about links between
tables or figures and their titles. Therefore the convertor must check whether the
paragraph before the title contains a table or some kind of figure.

Tables
The conversion of tables is surely the most complicated part of the convertor. Its
source code has been rewritten a few times, so it’s working quite good now, but
the code is a little bit messy. The problem is both in Word and LATEX.

The Word object model has a very limited interface for tables
with merged cells. There are no functions like GetMergedColumnsCount() or
GetMergedRowsCount(). This important information has to be counted on the
basis of cells’ widths. Moreover Word sometimes gives pointless information
about various properties of tables, so its really difficult to convert them properly.
LATEX capabilities for making complex tables with a lot of merged cells are not
very nice which brings other complications into the source code.

The work with tables becomes much more complicated when there are nested
tables in the document, so they are ignored by Word-to-LATEX now.

2.4 Improving performance using COM

Word-to-LATEX is not very fast when it’s converting a large document. Since users
usually run the conversion only a few times before they find the best configuration
for the particular document, the speed is not the most important feature.

Before the performance can be improved, we must figure out what causes the
conversion procedure to be so slow. It’s so-called interprocess communication
(IPC) between the convertor process (word-to-latex.exe) and the Word appli-
cation (winword.exe) that is extremely exhausting due to the intensive utilizing
of the Word object model.

It’s good to follow the rules for writing fast Word automation programs (e.g.
prefer Range objects to the Selection object), but the speed improvement is not
very high. It would be perfect to have only one process when automating Word.
We could use VBA, but it’s not a suitable language for such a big project like
this convertor.

The idea of only one process can be easily implemented using the Component
Object Model (COM) described in [10]. It’s possible to create a simple class
connecting the Word application with the convertor library, register it as a COM
object and then use it in a Word VBA macro. There’s only one process then
(winword.exe) and the conversion is much faster.

27

The WordGlue class (figure 2.10) works as such a connector. It receives a Word
application instance and a document to convert. Afterwards the customization
dialog (MainForm) is created and the Word Application object is passed to
the WLConvertor class described in section 2.2. The user starts the conversion
procedure pushing the button in the dialog.

public class WordGlue {

private Word.Application _app;

private Word.Document _origDoc;

public void Startup(object app, object doc) {

_app = (Word.Application) app;

_origDoc = (Word.Document) doc;

}

public void Shutdown() {

_app = null;

_origDoc = null;

}

public void Convert() {

MainForm form = new MainForm(true);

WLConvertor.WordApp = _app;

form.FromWord = true;

form.ShowDialog();

}

}

Figure 2.10: WordGlue class

Once we have the connector class (WordGlue) registered as a COM object, it
can be simply used in a VBA macro which illustrates figure 2.11.

Sub WordToLatex()

Dim app As New WordGlue

app.Startup Application, ActiveDocument

app.Convert

app.Shutdown

Set app = Nothing

End Sub

Figure 2.11: Running the convertor from a VBA macro

28

Chapter 3

Related projects

3.1 Summary

There are a couple of programs that convert Word documents to LATEX. Only one
of them (Word2TEX) is so good that it will be described in details and compared
with Word-to-LATEX in section 3.2. The other convertors are listed only in a brief,
more details can be found in [12].

Word independent convertors

• wsW2LTX [13] – based on cross-platform wv 1 library that allows to access
Word binary files. The convertor has no customization options, doesn’t
convert font sizes, user styles, headings, paragraph aligning, etc.

• Antiword [14] – wide portable, converts only to plain text or PostScript.
Font styles and sizes, footnotes, lists, tables, etc. are converted. Problems
with figures sometimes occur.

Convertors that need Word installed

• GrindEQ [15] – works as a Word add-in. Cannot be customized, doesn’t
handle lists, headings, font sizes, paragraph indentation, special characters,
graphics, etc.

• A couple of very old convertors (e.g. Word TEX) can be found at CTAN
sites [16].

RTF to LATEX convertors
RTF is a document file format that can be read and exported in most of text
processors (including Microsoft Word).

• rtf2latex2e [17] – produces quite nice LATEX output. It converts font styles,
footnotes, tables, paragraph styles, Equation Editor equations and some
figures.

• Other RTF to LATEX convertors can be found at CTAN sites [16], but they
cannot usually handle the new version of RTF format.

1http://wvware.sourceforge.net/

29

3.2 Word2TEX versus Word-to-LATEX

Word2TEX [18] is the only Word to LATEX convertor that will be compared with
Word-to-LATEX. All the other convertors are either very old or don’t produce good
results. Word2TEX is a commercial convertor which requires Microsoft Word to
be installed. Here are the lists of useful features and advantages of both programs.

Word2TEX unique features and advantages:

• A couple of built-in output formats (LATEX 2.09, LATEX2ε, AMS-LATEX).
Word-to-LATEX can produce even more output formats (e.g. XML) because
its configuration is not so tied up with LATEX.

• It can put figures and tables at the end output files.

• Word2TEX users can easily define own mappings between math equations
and LATEX commands through the graphic interface. Word-to-LATEX users
must edit MathType TDL files to customize the conversion of equations.

• Commands for PDFTEX and for \maketitle can be inserted in special
dialogs. Word-to-LATEX can do the same in the preamble configuration.

• Word2TEX is independent on MathType when converting equations.

• It can extract figures in original format (e.g. WMF or BMP)

• The conversion is very fast.

Word-to-LATEX unique features and advantages:

• Users can run the conversion from the command-line, through the graphic
interface or directly from Word.

• The command-line convertor can be used for batch processing of more doc-
uments.

• The configuration is stored in plain text XML files which can be easily
edited.

• Output files have UTF-8 encoding which is suitable for easy insertion of
national characters.

• Paragraph indentation may be converted.

• Page size and page margins are properly converted.

• It converts equations inserted through EQ fields.

• Equations can be exported as images which is suitable for users who don’t
have MathType installed.

• The commands defining user styles can be created in the document pream-
ble.

30

• Each user style may be converted “as is” with no translation applied on
the text content of the style. So it’s possible to convert the style to the
verbatim environment.

• LATEX commands can be inserted into Word documents through PRIVATE

fields.

• Colored backgrounds of text and text borders are optionally converted when
they occur in a user style. Colored backgrounds of table cells may be con-
verted, too.

• Bookmarks and page references are also converted.

• The convertor can automatically recognize citations in input documents.
Still the bibliography items have to be added manually.

• The default font size of documents can be set.

The most significant difference between Word2TEX and Word-to-LATEX is the
overall conversion speed. Figure 3.1 shows the times achieved when converting two
documents using Word2TEX, Word-to-LATEX command-line program and Word-
to-LATEX COM object in a VBA script. The machine used for testing was: Athlon
2200+, 1.8 GHz, 512 MB RAM, Word XP.

97

6

903

118

9

2

1

10

100

1000

book (700 pages) article (12 pages)

T
im
e
 i
n
 s
e
c
o
n
d
s

 (
lo
g
)

Word-to-LaTeX (COM)

Word-to-LaTeX (command-line)

Word2TeX

Figure 3.1: Word-to-LATEX vs. Word2TEX speed

A couple of problems occurred when I was testing Word2TEX.

• Table of contents wasn’t converted correctly.

• Some images had wrong width specified.

• Predefined translations for a few Czech national characters were missing.

• A couple of tables and lists were converted badly.

31

The following pages contain a Word document converted with both Word-
to-LATEX and Word2TEX. Although it’s very a short document, a couple of
Word2TEX limitations are illustrated – badly converted font sizes, courier and
sans-serif fonts, no indentations, no background colors, wrong table, page refer-
ence is hard-coded (not inserted through \pageref).

Word original

Some colors and font sizes
Ied id risus. Donec enenatis viverra, velit nisl mattis urna, non luctus sapien ante et leo.

Integer pharetra congue tempus metus sem eu lorem dio vitae nibh. Donec porta

Source code
int main (int argc, char * argv[]) {
 if (0 < 1) {
 printf("Hello World");
 }
 return 0;
}

Indenting, EQ, page reference
 Aliquam egestas, quam

in imperdiet imperdiet, nulla nulla lacinia

nunc, congue tempus. EQ field: x ,
PAGEREF: colors are on page 1.

Table
Blue Center Right

ee Italics Pink
Table 1 Sample table

Converted with Word-to-LATEX

Some colors and font sizes
Ied id risus. Donec enenatis viverra, velit nisl mattis urna, non luctus sapien ante et

leo. Integer pharetra congue tempus metus sem eu lorem dio vitae nibh. Donec porta

Source code

int main (int argc, char * argv[]) {

if (0 < 1) {

printf("Hello World");

}

return 0;

}

Indenting, EQ, page reference
Aliquam egestas, quam in

imperdiet imperdiet, nulla nulla lacinia

nunc, congue tempus. EQ field:
√

x,

PAGEREF: colors are on page 1.

Table

Blue Center Right

ee Italics Pink

Table 1: Sample table

32

Converted with Word2TEX

Some colors and font sizes
Ied id risus. Donec enenatis viverra, velit nisl mattis urna, non luctus sapien ante et

leo. Integer pharetra congue tempus metus sem eu lorem dio vitae nibh. Donec porta
Source code
int main (int argc, char * argv[]) {

if (0 < 1) {
printf(”Hello World”);
}
return 0;
}

Indenting, EQ, page reference
Aliquam egestas, quam in imperdiet imperdiet, nulla nulla lacinia nunc, congue tempus.

EQ field: (), PAGEREF: colors are on page 1.

Table

Table 1: Sample table
Blue

Center Right

ee Italics Pink

33

Chapter 4

Conclusion

Word-to-LATEX convertor has almost all the features from the specification1 that
was given in April 2005. A short list of features that were not implemented or
could not be implemented due to the Word limitations follows.

• Cross-references only to bookmarks are properly converted. The other cross-
references use Word internal codes and therefore cannot be converted.

• Word has no tool for inserting citations, so there is nothing to convert.
Nevertheless the convertor may recognize hard-coded citations.

• The character set of output files cannot be changed as was promised in
the specification. UTF-8 encoding has been chosen because it covers all
national and special characters.

• Images are not exported in original format, PNG and EPS are the only
output formats.

A lot of additional improvements have been done, the most important are:

• The convertor is not tied up with LATEX, so the configuration for XML
output could be easily created. Such output files may be transformed to
other formats (e.g. XHTML + CSS).

• The convertor can be executed through the COM object. The total perfor-
mance was increased more than 10 times when this COM object was used
in a VBA macro.

• Paragraph and character user styles are translated to appropriate com-
mands.

• Colored and highlighted portions of text can be optionally converted.

• Parts of text written in basic sans-serif and typewriter fonts are properly
marked in output files.

1http://www.ms.mff.cuni.cz/˜kebrm3am/word-to-latex/spec.pdf

34

Although the convertor has a lot of features, a few other improvements could be
done in future:

• The conversion of equations without MathType installed. It means to parse
the equations’ binary format.

• Convert the spaces between paragraphs.

• XSL stylesheets for other output formats (e.g. tBook or Simplified Docbook)
could be created.

• The conversion of nested tables.

35

Part II

36

Chapter 5

User’s manual

5.1 Requirements and installation

• Microsoft Windows 2000 or XP is required.

• Microsoft .NET Framework Version 1.1 or higher is required. The instal-
lation file can be found in the setup directory.

• Microsoft Word XP (2002) or higher is required to be installed on your
system.

• If you want to export mathematical equations not only as images, but
also to LATEX or MathML formats, you will have to install Design Science
MathType1 (it’s a commercial product).

• You must have a PostScript printer driver installed on your system to be
able to export images to EPS format. You can follow instructions here2 to
add very good Generic Color PS Printer.

After you have installed all the required software, close Word (if it’s run-
ning), execute setup.exe in the setup\Word-to-LaTeX directory, and follow the
instructions. You must have administrator privileges to install the whole appli-
cation properly. Once the installation is finished, you will find a couple of files in
your Word-to-LATEX directory. Some of them are listed here:

• word-to-latex.exe – Word-to-LATEX command-line convertor

• word-to-latex-gui.exe – Word-to-LATEX graphic user interface

• config.xml, XMLconfig.xml – convertor configuration for LATEX and XML
output

• html.xsl – XSL file which transforms XML output to HTML

• manual.pdf – user’s manual

• eps2tif – directory containing a batch file for converting EPS images to
TIF format

1http://www.dessci.com/en/products/mathtype/
2http://www.princeton.edu/˜cavalab/tutorials/computers/postscriptPrinter.html

37

5.2 Uninstallation

If you want to uninstall Word-to-LATEX from your system, go to Control Panel
| Add or Remove programs and select Word-to-LATEX. Please close Word (if
it’s running) before uninstalling.

5.3 Configuration

All the program configuration is stored in an XML file with a public format which
is defined using XML Schema in the config.xsd file. Before the conversion
procedure starts, the configuration is validated against the schema, so you must
be very careful when editing the file manually.

There are two predefined configuration files in your Word-to-LATEX directory,
config.xml for conversion to LATEX and XMLConfig.xml for conversion to XML
format.

Don’t be afraid if XML is an unknown abbreviation for you. There is no
need to know anything about XML technologies because you can customize the
convertor also through the graphic interface which will be described in section
5.6.

Appendix B describes the XML structure of configuration files and possible
values in each element and attribute.

5.4 Command-line convertor

When the command-line convertor (word-to-latex.exe) is executed without any
parameters, the list of all possible options from table 5.1 will be printed.

word-to-latex.exe -i inputFile [-o outputFile] [-opt confFile]

-i input file name
-o output file name
-opt configuration file name

Table 5.1: word-to-latex.exe options

The only required option is “-i”. When the output file is omitted, the input
file name appended with “.tex” extension is taken instead. If the configuration
file is not specified, the default configuration stored in the config.xml file is used
for the conversion.

After you run the program with correct options, it prints all the file names
(input, output, configuration) and also your Microsoft Word version which can
be useful when an error occurs. Then the conversion routine is started and you
will be informed about the progress.

Please be patient when you are converting a large document, it can take a
long time to convert it. Much more faster way of running the conversion will be
described in section 5.7.

38

5.5 EPS to TIF image conversion

As not all images included in Word documents can be converted to bitmaps, I
wrote a simple batch file (eps2tif.bat in the eps2tif directory) which converts
EPS files to TIF format. It benefits from the fact that Word-to-LATEX can export
all images to EPS format.

This batch file requires Ghostscript3 program which is free for non-commercial
use. The path to the Ghostscript executable must be specified at the top of the
eps2tif.bat file.

When you want to export all images from a Word document to some bitmap
format (PNG, JPEG, and so on), just run Word-to-LATEX to have an EPS version
of each image and then execute the eps2tif.bat file with the options described
in table 5.2. Finally you can convert the output TIF files to the format you prefer
(for example Irfanview 4 does this very effectively).

eps2tif.bat inDir outDir

inDir directory from which the files with .eps extension are taken
outDir directory where the .tif files will be saved

Table 5.2: eps2tif.bat options

5.6 Graphic user interface

For most of users the graphic interface will be the most frequent way of using
Word-to-LATEX convertor. To run it, just click the icon on your Desktop or in the
Start menu, or execute the word-to-latex-gui.exe file in your Word-to-LATEX
directory.

After executing the program, the configuration dialog will appear. All the six
tabs will be described now.

5.6.1 Running the conversion

Only the Input document is required to be selected. When the Output file
is omitted, the Input document file name appended with “.tex” extension is
taken instead.

Two configuration files can be found in your Word-to-LATEX directory,
config.xml for conversion to LATEX and XMLConfig.xml for conversion to XML.

When the Configuration file is omitted, config.xml will be used instead.
But be careful, it’s recommended to customize the settings for each document
you convert. Save as . . . , Save and Load commands in the Configuration
menu can be used to load and save convertor configurations. Remember that the
current configuration must be saved before it is applied during the conversion.
You can check the option Save configuration before conversion to save the
configuration automatically after pressing the Convert button.

3http://www.cs.wisc.edu/ ghost/
4http://www.irfanview.com/

39

Figure 5.1: “Running” tab

When you press the Convert button, all the file names (input, output, con-
figuration) and also your Microsoft Word version will be written to the text box
below. This can be useful when an error occurs. Then the conversion routine
is started and you will be informed about the progress in the text box. Please
be patient when you are converting a large document, it can take a long time to
convert it. Much more faster way of running the conversion will be described in
section 5.7.

5.6.2 Figures, Equations and Translations

Figure 5.2: “Figures/Eq/Document” tab

40

Figures
Check Only figures to convert only figures and ignore the text content of the
input document. Word-to-LATEX exports images (including embedded objects
like Excel graphs) in two formats – vector Encapsulated PostScript (EPS) or
bitmap PNG. If you want to export images to EPS format, you must specify the
PostScript printer. This topic was mentioned in section 5.1.

EPS format is recommended because EPS images can be easily integrated into
LATEX documents and moreover some images included in Word documents (e.g.
Word drawings) cannot be exported as bitmaps. If this occurs, the convertor will
give you a notice and after it finishes, you can export all images to EPS format
and use eps2tif program described in section 5.5 to have a bitmap version of
each image.

Equations
If you have MathType installed on your system, you can check convert and all
equations inserted through Equation Editor, MathType and Word EQ fields will
be converted. Otherwise you have to select ignore to ignore all equations or
to images for exporting equations to images.

When the convert option is selected, the output format of converted equa-
tions depends on the translation file defined in the TDL filename box. See the
Translators subdirectory of your MathType directory for possible values. You
can edit or add new files to this directory if you want to customize the conversion
of equations.

Document settings
As the convertor performs a few special actions depending on the Output for-
mat, you must select LATEX or XML. But remember that it doesn’t change any
Translations.

The @WL-DOC_CLASS macro used in the document preamble will be replaced
with the value of the Document class option. The @WL-PAGE_SIZE macro will
be replaced with a value depending on the Page size processing option as shows
table 5.3.

Option name @WL-PAGE_SIZE will be replaced with

complete the complete definition of the page size matching
the page size of the input document

symbolic the convertor will try to translate the symbolic
page size (e.g. A4) of the input document to an
appropriate LATEX size (e.g. letterpaper)

use “Page size” the value of the Page size option

Table 5.3: Page size processing options

Translations
The translation mappings between input document elements and LATEX com-
mands are defined here. It comprises of headings, font styles, footnotes, tables,

41

alignments, colors, and so on. Each element has a Start command which is
inserted before the element itself and an End command inserted after the ele-
ment.

One example: Let “some text” appear in the document and the FONT_ITALIC

mapping is “\textit{” for the start command and “}” for the end command.
Then “\textit{Some text}” will be written to the output file.

The complete overview of translated elements with the default mappings for
LATEX and XML output can be found in section B.2.

5.6.3 Document preamble

Figure 5.3: “Preamble” tab

Document preamble, inserted at the top of output files, can be easily edited in
this dialog. Table 5.4 shows the list of macros that can be used in the preamble.

The translations of Output format special characters (e.g. “\” in LATEX
or “<” in XML) are defined in the right part of this dialog. Don’t forget to fill in
these characters in the right order because some special characters can be used
for the translation of other special characters (e.g. “\” must be at the top for
LATEX output). New characters can be added double-clicking the pink row.

5.6.4 Special characters

Special characters are divided into groups according to their Unicode [11] posi-
tions. Each character can have a translation used in regular text context and a
math translation used in math context. Currently when a character has both
translations defined, the text translation is always used. If it has only a math
translation, the character is inserted as a simple inline equation. If no translation
is defined, the character is inserted “as is” (in UTF-8 encoding).

The math translation does not influence the conversion of equations. which
is completely defined in a TDL file (see section 5.6.2 for details).

42

Macro Replaced with

@WL-DOC_CLASS the Document class option from the previous di-
alog

@WL-DOC_AUTHOR the input document’s author (retrieved from the
document’s properties)

@WL-DOC_TITLE the input document’s title (retrieved from the doc-
ument’s properties)

@WL-PAGE_SIZE see the Document settings in the previous sec-
tion

@WL-DEFAULT_FONT_SIZE the default font size; details in section 5.6.5

@WL-STYLE_COMMANDS the commands created from paragraph and charac-
ter user styles, see the Styles/Fonts tab in section
5.6.5 for details.

Table 5.4: Document preamble macros

Figure 5.4: “Characters” tab

43

Default translations can be changed double-clicking the field you want to
edit. The encoding of output files is UTF-8 which covers all national characters,
so there is no need to define translations for Latin extended characters (e.g. “á”)
or Cyrillic ones. Just make sure that you have appropriate commands in the
document preamble, for example:

\usepackage[T2A]{fontenc}

\usepackage[utf8]{inputenc}

5.6.5 Styles and Font sizes

Figure 5.5: “Styles/Fonts” tab

The translations of paragraph and character user styles can be defined in
this dialog. Press Add new . . . and fill in the name of a style, the start
command inserted before the text content of the style and the end command
inserted after the text content. When you omit the definition of some style,
appropriate commands will be created automatically on the basis of the style
properties. Word built-in styles are skipped.

You can edit the list of styles double-clicking any of the fields. Write Y
(or N) to the leave as is field if you don’t want to make any changes (character
translations, wrapping) in the text content of the style. It’s suitable for styles
that are translated to the verbatim environment.

Check Create commands in the preamble to make a special command
for each style in the document preamble. It’s recommended to enable this option
because it makes output files much more maintainable. For example, if you have
a style named“code”, \stylecode command will be created and when you decide
to change the definition of the style, you will do it only in one place.

Font sizes are split into 10 groups which are converted to the commands de-
fined in Translations (see 5.6.2 for details). Each group has a point range of
sizes that it covers – from the start size (exclusively) to the end size (inclu-
sively). You can edit the default settings double-clicking the end size field of a
group you want to change. Start sizes are counted automatically.

44

The portions of text that have the Default font size won’t be marked with
any command defining the font size. Therefore it’s very important to have a
correct value in this field to avoid a lot of unnecessary font size commands in the
output file. Check Auto detect default font size to retrieve the default size
from the Word built-in Normal style.

5.6.6 Miscellaneous options

Figure 5.6: “Misc” tab

Output
Check Wrap paragraphs and insert an integer number to wrap the paragraphs
in the output text file. The following line separators can be used in output files:
CRLF (Windows), LF (Unix), CR (Macintosh).

Paragraphs
Check Process paragraph alignments and Process paragraph indenta-
tions to take them into account. Sometimes it’s better to ignore Word alignments
and indentations because LATEX can make them automatically and better.

Colors
Check Convert colored text to convert colored portions of text using xcolor

package. But be very careful when checking this option because it takes a lot of
time to find and convert the colored text.

The same package is used when you check Convert highlighted text (marked
with the Word Highlight tool) and Convert colored table cells.

When any option is unchecked, it only means that commands defining colors
won’t be inserted into the output file. The whole text content will be, of course,
converted.

Misc
Check Convert multicolumns to convert multicolumn sections inserted through
Format | Columns. Sans-serif fonts like Arial or Verdana are converted to
appropriate commands only when Convert sans-serif fonts is checked.

45

Check the option Automatically recognize math in italicized text and
simple math expressions like i or k < 30 will be inserted as math text instead of
text in italics.

The convertor can Recognize references to numbered equations if they
match the pattern ([1-9]+) or ([1-9]+.[1-9]+) (e.g. (3.15)). A numbered
equation must be inserted on a separate line and its label must be written at the
right part of the same line. Any number of white space characters between the
equation and its label is allowed.

Paragraphs not containing any text won’t be converted when Ignore empty
paragraphs is checked.

Word-to-LATEX can Convert endnotes into bibliography items and Rec-
ognize bibliography references (citations) if they match the pattern
\[[A-Za-z0-9]+\] (e.g. [4] or [Ka76]). But if you don’t use endnotes for
bibliography items, you will still have to edit the bibliography section manually.

5.7 Running Word-to-LATEX from Word

The conversion will be at least 10 times faster if you press the button on the Word-
to-LATEX toolbar installed directly into your Word application. The convertor
interface is completely the same as the one described in the previous section.

If you have problems with running the convertor from Word, please verify
that you have Medium or Low option checked in the Word Tools | Macro |
Security menu.

Figure 5.7: Word-to-LATEX toolbar in Word

5.8 Conversion to XML, XHTML, MathML

The output of the convertor completely depends on the configuration. There is
no need to convert documents only to LATEX. The XMLConfig.xml configuration
file, stored in the Word-to-LATEX directory, is used for conversion to XML [19]
which is a nice intermediate format that can be easily transformed to whatever
format you need. You should be familiar with XML and related technologies to
understand a short overview.

The best way to insert mathematical equations into XML documents is
MathML language. Word-to-LATEX uses MathType built-in capability to export
equations to MathML format.

XML format is very strict – XML files must be so-called “well-formed”. Some-
times the convertor produces a file that is not well-formed, but it’s never difficult
to correct such a file manually.

Once we have a well-formed XML file, an XSLT style [20] can be used to
transform the file into the format we need. The html.xsl style, located in the
Word-to-LATEX directory, transforms the input file to XHTML format [21] com-
bined with CSS [22]. This style was tested with saxon XSLT processor.

46

Appendix A

Sample documents

The following pages show two documents converted with Word-to-LATEX.

47

Original Word document

1. Font styles

1.1. Styles 1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. UT SED NISI vel justo

lobortis venenatis. Sed id risus. Donec sollicitudin. Aenean nulla. Nam
blandit, sapien a venenatis viverra, velit nisl mattis urna, non luctus sapien
ante et leo. H2O, E = mc2

1.2. Styles 2

Lorem ipsum dolor sit amet1, consectetuer adipiscing elit. Ut sed nisi vel justo lobortis
venenatis. Sed id risus. Donec sollicitudin. Aenean nulla. Nam blandit, sapien a
venenatis viverra, velit nisl mattis urna, non luctus sapien ante et leo.

2. Special characters in list
• Žluťoučký kůň úpěl ďábelské ódy.

o Ψ Ω α ζ δ; i ∈ T; (a,b) ∉ A × B.

3. Paragraph indentation
Lorem ipsum dolor sit amet,
consectetuer adipiscing elit.

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Ut sed nisi vel justo lobortis.

4. Simple table
Blue Center bold Right
2-1 Italics Pink

5. Complex table
Header

a b A
c d

B

1 Lorem ipsum dolor sit amet

48

LATEX output compiled to PostScript

1 Font styles

1.1 Styles 1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut sed nisi vel justo

lobortis venenatis. Sed id risus. Donec sollicitudin. Aenean nulla. Nam
blandit, sapien a venenatis viverra, velit nisl mattis urna, non luctus sapien ante et
leo. H2O, E = mc2

1.2 Styles 2

Lorem ipsum dolor sit amet1, consectetuer adipiscing elit. Ut sed nisi vel justo

lobortis venenatis. Sed id risus. Donec sollicitudin. Aenean nulla. Nam blandit ,

sapien a venenatis viverra, velit nisl mattis urna, non luctus sapien ante et leo.

2 Special characters in list

• Žlut’oučký k̊uň úpěl d’ábelské ódy.

– Ψ Ω α ζ δ; i ∈ T; (a,b) 6∈ A × B.

3 Paragraph indentation

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit.

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Ut sed nisi vel justo lobortis.

4 Simple table

Blue Center bold Right

2-1 Italics Pink

5 Complex table

Header

A a b B
c d

1Lorem ipsum dolor sit amet

49

XML output transformed to HTML and rendered in Mozilla

Font styles

Styles 1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. UT SED NISI vel justo

lobortis venenatis. Sed id risus. Donec sollicitudin. Aenean nulla.
Nam blandit, sapien a venenatis viverra , velit nisl mattis urna, non luctus

sapien ante et leo. H2O, E = mc2

Styles 2

Lorem ipsum dolor sit amet (Lorem ipsum dolor sit amet) , consectetuer
adipiscing elit. Ut sed nisi vel justo lobortis venenatis. Sed id risus. Donec sollicitudin.
Aenean nulla. Nam blandit, sapien a venenatis viverra, velit nisl mattis urna,
non luctus sapien ante et leo.

Special characters in list

Žluťoučký kůň úpěl ďábelské ódy.

Ψ Ω α ζ δ; i
�
 T; (a,b) � A × B.

Paragraph indentation

Lorem ipsum dolor sit amet,
consectetuer adipiscing elit.

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Ut sed nisi vel justo lobortis.

Simple table

Blue Center bold Right

2-1 Italics Pink

Complex table

Header

A
a b

B
c d

50

Original Word document at the top, LATEX output compiled to
PostScript at the bottom

Bitmap image

0

10

20

30

40

I II III

Energy Water Wood

Microsoft Excel graph

Equation editor expressions

∑
=

=
),max(

1

),(),(

ji ll

k

k
j

k
iji oodooD (1)

Given a set of paths PX and a set of path contents PCX , binary relation PPC PCP XX ×⊆ is

defined. An PPCse ∈, denotes the assignment of the path keeee /// 21 …= to the path content

kssss /// 21 …= .

EQ field expression -
3

5
 . See expression (1).

Bitmap image

0

10

20

30

40

I II III

Energy Water Wood

Microsoft Excel graph

Equation editor expressions

D(oi, oj) =

max(li,lj)∑

k=1

d(ok
i , ok

j) (1)

Given a set of paths XP and a set of path contents XPC , binary relation PPC ⊆
XP ×XPC is defined. An 〈e, s〉 ∈ PPC denotes the assignment of the path e = e1/e2/ . . . /ek

to the path content s = s1/s2/ . . . /sk.

EQ field expression - 3

5
. See expression (1) .

51

Appendix B

Structure of configuration files

<?xml version="1.0" encoding="utf-8" ?>

<configuration xmlns=’http://kebrt.cz/word-to-latex’

xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’>

<variousOptions>

<option name="OUTPUT_FORMAT" value="latex" />

<option name="EQUATIONS" value="toimages" />

...

</variousOptions>

<translationTable>

<docElement name=’FONT_BOLD’

start=’\textbf{’ end=’}’ />

<docElement name=’HEADING1’ start=’\part{’ end=’}’ />

...

</translationTable>

<specialChars>

<latexChar char=’\’ convertTo=’\textbackslash ’ />

...

</specialChars>

</configuration>

Figure B.1: Fragment of the config.xml configuration file

All the configuration is stored in an XML file with the <configuration> root
element which contains three subelements:

<variousOptions> various options applied during the conversion (out-
put format, PostScript printer name, . . .)

<translationTable> table containing mappings between input docu-
ment elements (sections, paragraphs, footnotes,
and so on) and LATEX commands

<specialChars> translation mappings between special (and na-
tional) characters and LATEX commands

52

B.1 Conversion options

All the options, listed in table B.1, belong to the <variousOptions> parent ele-
ment. Each of the them is inserted into the <option> element with two attributes,
name and value.

Option name Description and possible values

ONLY_IMAGES Convert only images and ignore text content.
• yes × no

PRINTER_NAME The name of a PostScript printer which is used for
exporting images in EPS format. The printer driver
has to be installed on your system.
• e.g. Generic Color PS

IMAGE_FORMAT The output format of images.
• eps for EPS vector format; requires a PostScript
printer
• png for PNG bitmap format; not all the images can
be exported as bitmaps

TDL_FILENAME The translation file used for the conversion of equa-
tions. See the Translators subdirectory of your
MathType directory for possible values (remember
that MathType must be installed on your system to
be able to convert equations). You can edit or add
new files into this directory if you want to customize
the conversion of equations.
• e.g. LaTeX.tdl

EQUATIONS The conversion of equations, covers Equation Editor,
MathType and EQ fields equations.
• ignore – do not convert
• convert – convert using the translation file speci-
fied in the TDL_FILENAME option
• toimages – convert to images

CREATE_COMMANDS_

FOR_STYLES

The convertor will create (or not) new commands for
paragraph and characters user styles in the preamble.
Output text files are more maintainable if commands
like \code are used instead of for example \texttt.
• yes × no

DOC_CLASS The @WL-DOC_CLASS macro used in the preamble will
be replaced with the value of this option.
• e.g. article

Table B.1: Conversion options

53

Option name Description and possible values

OUTPUT_FORMAT The format of output files. Please remember that all
translations mappings described in B.2 should be set
to match this output format. The convertor performs
a few special actions depending on two possible val-
ues:
• latex

• xml

PAGE_SIZE The @WL-PAGE_SIZE macro used in the document
preamble will be replaced with the value of this op-
tion (only if the PAGE_SIZE_PROCESSING option is set
to my).
• e.g. a4paper

PAGE_SIZE_

PROCESSING

Specifies how the page size will be processed, possible
values are:
• complete – the @WL-PAGE_SIZE macro used in the
document preamble will replaced with the complete
page size definition matching the page size of the in-
put document
• symbolic – the convertor will try to translate the
symbolic page size of the input document (e.g. A4)
to an appropriate LATEX size (e.g. letterpaper)
• my – see the previous option

DEFAULT_FONT_SIZE Defines the default font size of the input document.
The portions of text having this size won’t be marked
with any font size command in the output file. Only
integer numbers are allowed.
• e.g. 12

PARAGRAPH_

ALIGNMENTS

Convert paragraph alignments.

– yes × no

PARAGRAPH_

INDENTATION

Convert paragraph indentations.

– yes × no

COLOR_TEXT Use special commands for colored text.
• yes × no

COLOR_BG Use special commands for text with colored back-
ground.
• yes × no

COLOR_TABLE Use special commands for table cells with colored
background.
• yes × no

Table B.1: Conversion options

54

Option name Description and possible values

AUTO_DETECT_

DEFAULT_FONT_SIZE

Detect the default font size of the input document
automatically or not. The font size of the Word built-
in Normal style will be taken as the default one if this
option is set to yes.
• yes × no

MULTICOLUMN Convert multicolumn sections.
• yes × no

WRAP_PARAGRAPHS A positive value causes paragraphs to be wrapped
into lines after each x characters. Any other value
forces the convertor not to wrap paragraphs.
• e.g. 80

NEW_LINE Defines the line separator, possible values are:
• crlf – Windows line separator
• cr – Macintosh line separator
• lf – Unix line separator

SANS_SERIF Use special commands for sans-serif fonts.
• yes × no

AUTO_RECOGNIZE_

MATH

Recognize math expressions written in italics (e.g. i).

• yes × no

IGNORE_EMPTY_PAR Ignore paragraphs not containing any text.
• yes × no

RECOGNIZE_

NUMBERED_EQ_REF

Recognize references to numbered equations marked
with labels like “(5)” or “(5.2)”.
• yes × no

ENDNOTES_TO_BIBLIO Convert endnotes to bibliography items.
• yes × no

RECOGNIZE_BIBLIO_

REF

Recognize in-text citations (references to bibliogra-
phy items, e.g. “[4]”).
– yes × no

FONT_SIZE[1-10] These options define ranges for each converted font
size group. The range for the i-th group is
from FONT_SIZE(i-1)+1 to FONT_SIZE(i) (inclu-
sive). The first group (FONT_SIZE1) starts with the
size 1. Only integer numbers are allowed.
• e.g. 11 for the FONT_SIZE4 option and 12 for the
FONT_SIZE5 option when the default font size is 12

Table B.1: Conversion options

55

B.2 Conversion mappings

Table B.2 shows the complete list of conversion mappings between input docu-
ment elements (sections, paragraphs, lists, and so on) and Word-to-LATEX. Each
mapping has a start command (S:) which is inserted before the element and most
of them have also an end command (E:) inserted after the element. Some ele-
ments like tabulators doesn’t have any content, others hold some kind of content
(text, equation, another element) which is inserted between the start and end
command.

Names of macros that are specific to each element begin with “#”, macros
common to all elements begin with “@”.

• @WL-NL new line
• @WL-TAB tabulator

Table B.2 also contains the default mappings for LATEX and XML output.
When E: is omitted, the end command is always ignored by the convertor, “—”
stands for the empty translation command.

FONT_BOLD bold font

S: \textbf{

E: }

S:

E:

FONT_ITALIC italic font

S: \textit{

E: }

S:

E:

FONT_SMALLCAPS small caps font

S: \textsc{

E: }

S:

E:

FONT_HIDDEN hidden font

S: @WL-NL%

E: @WL-NL

S:

E:

Table B.2: Conversion mappings

56

FONT_SUBSCRIPT subscript font

S: $_{

E: }$

S:

E:

FONT_SUPERSCRIPT superscript font

S: $^{

E: }$

S:

E:

FONT_COURIER courier font (e.g. Courier, Courier New)

S: \texttt{

E: }

S:

E:

FONT_UPPERCASE uppercase font

S: \uppercase{

E: }

S:

E:

FONT_UNDERLINE underlined font

S: \uline{

E: }

S:

E:

FONT_DOUBLE_UNDERLINE double-underlined font

S: \uuline{

E: }

S:

E:

FONT_WAVE_UNDERLINE wavy-underlined font

S: \uwave{

E: }

S:

E:

Table B.2: Conversion mappings

57

FONT_STRIKE strikethrough font

S: \sout{

E: }

S:

E:

FONT_SANS_SERIF sans-serif font (e.g. Arial, Verdana)

S: \textsf{

E: }

S:

E:

FONT_SIZE1 font size (group 1)

S: {\tiny

E: }

S: <font-size value="1">

E: </font-size>

FONT_SIZE2 font size (group 2)

S: {\scriptsize

E: }

S: <font-size value="2">

E: </font-size>

FONT_SIZE3 font size (group 3)

S: {\footnotesize

E: }

S: <font-size value="3">

E: </font-size>

FONT_SIZE4 font size (group 4)

S: {\small

E: }

S: <font-size value="4">

E: </font-size>

FONT_SIZE5 font size (group 5)

S: {\normalsize

E: }

S: <font-size value="5">

E: </font-size>

Table B.2: Conversion mappings

58

FONT_SIZE6 font size (group 6)

S: {\large

E: }

S: <font-size value="6">

E: </font-size>

FONT_SIZE7 font size (group 7)

S: {\Large

E: }

S: <font-size value="7">

E: </font-size>

FONT_SIZE8 font size (group 8)

S: {\LARGE

E: }

S: <font-size value="8">

E: </font-size>

FONT_SIZE9 font size (group 9)

S: {\huge

E: }

S: <font-size value="9">

E: </font-size>

FONT_SIZE10 font size (group 10)

S: {\Huge

E: }

S: <font-size value="10">

E: </font-size>

HEADING1 heading (level 1); headings have to be
marked with the Word built-in styles; they
can be defined up to level 9

S: \section{

E: }

S: <heading level="1">

E: </heading>

HEADING2 heading (level 2)

S: \subsection{

E: }

S: <heading level="2">

E: </heading>

Table B.2: Conversion mappings

59

HEADING3 heading (level 3)

S: \subsubsection{

E: }

S: <heading level="3">

E: </heading>

ALIGN_CENTER paragraph alignment – centered

S: \begin{center}@WL-NL

E: @WL-NL\end{center}

S: <align type="center" />

E: —

ALIGN_LEFT paragraph alignment – left

S: {\raggedright@WL-NL

E: @WL-NL}

S: <align type="left" />

E: —

ALIGN_RIGHT paragraph alignment – right

S: {\raggedleft@WL-NL

E: @WL-NL}

S: <align type="right" />

E: —

TABLE_ALIGN_CENTER table paragraph alignment – centered

• #WIDTH table cell width (in points)

S: \parbox{#WIDTHpt}{\centering

E: }

S: <align type="center" />

E: —

TABLE_ALIGN_LEFT table paragraph alignment – left

• #WIDTH table cell width (in points)

S: \parbox{#WIDTHpt}{\raggedright

E: }

S: <align type="left" />

E: —

Table B.2: Conversion mappings

60

TABLE_ALIGN_RIGHT table paragraph alignment – right

• #WIDTH table cell width (in points)

S: \parbox{#WIDTHpt}{\raggedleft

E: }

S: <align type="right" />

E: —

FOOTNOTE footnote

S: \footnote{

E: }

S: <footnote>

E: </footnote>

PAGE_BREAK page break

S: \pagebreak{}@WL-NL@WL-NL

S: <pagebreak />

EQUATION_INLINE inline equation

S: \begin{math}

E: \end{math}

S: <equation type="inline">

E: </equation>

EQUATION_NUMBERED numbered equation

• #ORIG_LABEL original equation label retrieved from the
input document

S: \begin{equation}

E: @WL-NL%#ORIG_LABEL@WL-NL\end{equation}

S: <equation type="numbered" origlabel="#ORIG_LABEL">

E: </equation>

EQUATION_LABEL equation label inserted into the
EQUATION_NUMEBERED element

• #NAME auto-generated label (auto-incrementing
counter is used)

S: \label{#NAME}

S: <label name="#NAME"/>

Table B.2: Conversion mappings

61

EQUATION_OUTLINE equation displayed on a separate line

S: \begin{displaymath}

E: \end{displaymath}

S: <equation type="outline">

E: </equation>

INDEX_ENTRY index entry (Word XE field)

S: \index{

E: }

S: <index-entry>

E: </index-entry>

INDEX index (Word INDEX field), LATEX generates
the whole index automatically

S: \printindex

S: <printindex />

IMAGE_COMMAND image

• #WIDTH image width (in points)

• #FILENAME auto-generated image filename
(e.g. img1.eps)

• #TITLE image title (if present)

S: \includegraphics[width=#WIDTHpt]{#FILENAME}@WL-NL

S: <image width="#WIDTH" src="#FILENAME" title="#TITLE" />

IMAGE_CONTAINER image container (used when the image has
a title)

S: \begin{figure}[h]@WL-NL

E: \end{figure}

S: —

E: —

IMAGE_TITLE image title inserted into the IMAGE_

CONTAINER element

• #TITLE title

S: \caption{#TITLE}

S: —

TOC table of contents (Word TOC field), LATEX
generates the table of contents automati-
cally as well as Word

S: \tableofcontents

S: <table-of-contents />

Table B.2: Conversion mappings

62

HYPERLINK hyperlink

• #HREF hyperlink target; the macro can be used
also in the end command

S: \href{#HREF}{

E: }

S: <link href="#HREF">

E: </link>

SPECIAL_COMMAND LATEX command(s) inserted into the doc-
ument through the Word PRIVATE field
whose content must begin with the case-
insensitive string latex:, such a field may
look like this: PRIVATE LaTeX: \indent

(\indent will be inserted between the start
and end command)

S: —

E: —

S: —

E: —

REFERENCE bookmark reference

• #NAME name of the bookmark that is being refer-
enced

S: \ref{#NAME}

S: <reference name="#NAME" />

MATH_REFERENCE equation reference; the Word hard-coded
reference (e.g. “(3)”) will be the content of
this element

• #NAME name of the equation that is being refer-
enced, it is generated for each numbered
equation in the document (e.g. “eq3”).

S: (\ref{#NAME})@WL-NL%

E: @WL-NL

S: <math-reference name="#NAME">

E: </math-reference>

NOTE_REFERENCE note reference; currently only endnotes are
supported

• #NAME name of the note (typically number) that
is being referenced

S: \cite{ref#NAME}

S: <note-reference name="#NAME" />

Table B.2: Conversion mappings

63

BIBLIO_REFERENCE reference to a bibliography item (“cita-
tion”); the Word hard-coded citation (e.g.
“[Ka75]”) will be the content of this ele-
ment

• #NAME name of the bibitem (e.g. “Ka75”)

S: \cite{ref#NAME}@WL-NL%

E: @WL-NL

S: <biblio-reference name="#NAME">

E: </biblio-reference>

PAGE_REFERENCE page reference

• #NAME name of the bookmark that is being refer-
enced

S: \pageref{#NAME}

BOOKMARK_LABEL bookmark

• #NAME name of the bookmark

S: \label{#NAME}

S: <bookmark name="#NAME" />

STYLE paragraph or character user style

• #NAME name of the style; all numbers in the name
are replaced with words (e.g. “1”→“One”)

S: \#NAME{

E: }

S: <style name="#NAME">

E: </style>

STYLE_DEFINITION container for a single user style definition;
commands describing the style will be in-
serted into

• #NAME name of the user style

S: \newcommand{\#NAME}[1]{

E: }

S: <style-definition name="#NAME">

E: </style-definition>

DOCUMENT_BODY document body

S: \begin{document}@WL-NL

E: \end{document}

S: <body>

E: </body></document>

Table B.2: Conversion mappings

64

LIST_ENUMERATE enumerated list

S: \begin{enumerate}@WL-NL

E: \end{enumerate}@WL-NL@WL-NL

S: @WL-NL<list type="enumerate">

E: </list>@WL-NL

LIST_ITEMIZE itemized list

S: \begin{itemize}@WL-NL

E: \end{itemize}@WL-NL@WL-NL

S: @WL-NL<list type="itemize">

E: </list>@WL-NL

LIST_ITEM list item

S: @WL-TAB\item

E: —

S: <list-item>

E: </list-item>@WL-NL

PARAGRAPH common paragraph

S: —

E: @WL-NL@WL-NL

S: @WL-NL<para>

E: </para>@WL-NL

TABLE_PARAGRAPH paragraph in a table

S: @WL-NL

E: @WL-NL

S: @WL-NL<table-para>

E: </table-para>@WL-NL

LIST_PARAGRAPH paragraph in a list

S: —

E: @WL-NL

S: <list-para>

E: </list-para>

LINE_BREAK line break

S: @WL-NL\\@WL-NL

S: <linebreak />

TAB tabulator

S: \hspace{15pt}

S: <tab />

Table B.2: Conversion mappings

65

TABLE_CELL table cell

• #WIDTH cell width

S: &

E: —

S: <table-cell width="#WIDTH">

E: </table-cell>

TABLE_ROW table row

S: —

E: \\@WL-NL

S: <table-row>

E: </table-row>

TABLE table

• #TITLE title of the table

S: @WL-NL\vspace{3pt} \noindent@WL-NL\begin{tabular}

E: \end{tabular}\\@WL-NL\vspace{2pt}@WL-NL

S: @WL-NL<table title="#TITLE">

E: </table>@WL-NL

TABLE_CONTAINER table container (used when the table has a
title)

S: @WL-NL\begin{table}[h]

E: \end{table}@WL-NL

S: —

E: —

TABLE_TITLE table title inserted into the TABLE_

CONTAINER element

• #TITLE title

S: \caption{#TITLE}

S: —

TABLE_MULTIROW table cell with merged rows

• #ROWS number of merged rows in the cell

S: \multirow{#ROWS}{*}{

E: }

S: <table-multirow-cell multi="#ROWS" />

E: —

Table B.2: Conversion mappings

66

TABLE_CELL_COLOR command for the colored background of ta-
ble cells; the #COLOR macro in the next el-
ement (TABLE_MULTI_COLUMN) will be re-
placed with this command

• #COLOR background color in HTML notation (e.g.
FF0000)

S: >{\columncolor[HTML]{#COLOR}}

S: color="#COLOR"

TABLE_MULTICOLUMN table cell with merged columns

• #COLS number of merged columns

• #LEFT_BORDER “|” if the cell has a left border

• #RIGHT_BORDER “|” if the cell has a right border

• #COLOR see the previous element

• #ALIGN cell content alignment; l (left), r (right),
c (center)

S: \multicolumn{#COLS}{#LEFT_BORDER#COLOR#ALIGN#RIGHT_BORDER}{

E: }

S: <table-cell multi="#COLS" left-border="#LEFT_BORDER"

right-border="#RIGHT_BORDER" align="#ALIGN" width="#WIDTH"

#COLOR>

E: </table-cell>

PAR_INDENT paragraph indentation

• #LEFT_INDENT left indentation (in points)

• #RIGHT_INDENT right indentation (in points)

• #FIRST_LINE_INDENT first line indentation (in points)

S: \begin{indentation}{#LEFT_INDENTpt}{#RIGHT_INDENTpt}

{#FIRST_LINE_INDENTpt}@WL-NL

E: @WL-NL\end{indentation}

S: @WL-NL<par-indent left="#LEFT_INDENT" right="#RIGHT_INDENT"

first-line="#FIRST_LINE_INDENT" />@WL-NL

E: —

MULTICOLUMN multicolumn section

• #COLS number of columns in the section

S: \begin{multicols}{#COLS}

E: \end{multicols}

S: <multicol count="#COLS">

E: </multicol>

Table B.2: Conversion mappings

67

COLOR_TEXT colored text

• #COLOR color in HTML notation (e.g. FF0000)

S: \textcolor[HTML]{#COLOR}{

E: }

S: <font-color color="#COLOR">

E: </font-color>

COLOR_BG text with colored background

• #COLOR color in HTML notation (e.g. FF0000)

S: \colorbox[HTML]{#COLOR}{

E: }

S: <font-background color="#COLOR">

E: </font-background>

ENDNOTES_SECTION container for endnotes, can be used for in-
serting the bibliography

S: \begin{thebibliography}{99}@WL-NL

E: \end{thebibliography}@WL-NL

S: <bibliography>

E: </bibliography>

ENDNOTE endnote, this translation is used in the
ENDNOTES_SECTION context, suitable for
inserting a single bibliography item

• #NUMBER number of the endnote

S: @WL-TAB\bibitem[#NUMBER]{ref#NUMBER}

E: @WL-NL

S: @WL-TAB<bib-item name="#NUMBER">

E: </bib-item>

ENDNOTE_REFERENCE endnote, this translation is used at the
endnote’s insertion point

• #NUMBER number of the endnote

• #CONTENT endnote’s text content (can be used when
translating endnotes to footnotes)

S: \cite{ref#NAME}

S: <endnote-reference name="#NUMBER" />

Table B.2: Conversion mappings

68

COLOR_BG_AND_BORDER text with colored border and background

• #BORDER_COLOR border color, in HTML notation (e.g.
FF0000)

• #COLOR text color, dtto

S: \fcolorbox[HTML]{#BORDER_COLOR}[HTML]{#COLOR}{

E: }

S: <box border-color="#BORDER_COLOR" background-color="#COLOR">

E: </box>

COLOR_BORDER colored border around text

• #BORDER_COLOR border color, in HTML notation (e.g.
FF0000)

S: \fcolorbox[HTML]{#BORDER_COLOR}[HTML]{FFFFFF}{

E: }

S: <box border-color="#BORDER_COLOR">

E: </box>

BORDER black border around text

S: \fbox{

E: }

S: <box>

E: </box>

Table B.2: Conversion mappings

69

B.3 Special characters

The configuration of special characters is enclosed in the <specialChars> ele-
ment. <latexChar> elements are used for defining characters that have a special
meaning in the output format. They must be written in a correct order because
one special character can be used for translating another special character which
is illustrated in the following example.

<latexChar char=’\’ convertTo=’\textbackslash ’ />

<latexChar char=’{’ convertTo=’\{’ />

All the other special and national characters are defined in <char> elements.
The code attribute contains the Unicode [11] number of each character. The
details about the common context translation (convertTo attribute) and the
math context translation (mathConvertTo attribute) can be found in section 5.6.4.
A short example follows.

<char code="010C" convertTo="\v{C}" mathConvertTo="\check{C}" />

<char code="010D" convertTo="\v{c}" mathConvertTo="\check{c}" />

70

Bibliography

[1] Allin Cottrell. Word Processors: Stupid and Inefficient,
http://www.ecn.wfu.edu/~cottrell/wp.html

[2] Donald E. Knuth. The TEXbook, Volume A of Computers and Typesetting,
Addison-Wesley Publishing Company (1984),
ISBN: 0-201-13448-9.

[3] Tobias Oetiker. The Not So Short Introduction to LATEX2ε,
http://people.ee.ethz.ch/~oetiker/

[4] Marion Neubauer. Conversion from WORD/WordPerfect to LATEX, MAPS
14, 1995, 120-124, http://www.ntg.nl/maps/maps14.html

[5] Jesse Liberty. Programming C#, Second Edition, O’Reilly (2002), ISBN: 0-
596-00309-9.

[6] Ben Albahari, Peter Drayton, Brad Merrill. C# Essentials, Second Edition,
O’Reilly (2001), ISBN: 0-596-00315-3.

[7] MSDN Library. Word Object Model Overview,
http://msdn2.microsoft.com/en-US/library/kw65a0we(VS.80).aspx

[8] Julianne Sharer, Arthur Einhorn. Word Object Model: The Definitive Refer-
ence, O’Reilly (2001), ISBN 1-56592-430-4.

[9] MathType Software Development Kit,
http://www.dessci.com/en/reference/sdk/

[10] Dale Rogersion. Inside COM, Microsoft Press (1997), ISBN: 1572313498.

[11] Unicode Home Page, http://www.unicode.org/

[12] Wilfried Hennings. Convertors from PC Textprocessors to LATEX,
http://www.tug.org/utilities/texconv/pctotex.html

[13] wsW2LTX convertor, http://www.winshell.de/

[14] Antiword, http://www.winfield.demon.nl/

[15] GrindEQ, http://www.grindeq.com/

[16] the Comprehensive TEX Archive Network, http://www.ctan.org/

[17] rtf2latex2e, http://sourceforge.net/projects/rtf2latex2e/

71

[18] Word2TEX, http://www.chikrii.com/

[19] Extensible Markup Language (XML), http://www.w3.org/XML/

[20] XSL Transformations (XSLT), http://www.w3.org/TR/xslt

[21] XHTML 1.0 The Extensible HyperText Markup Language,
http://www.w3.org/TR/xhtml1/

[22] Cascading Style Sheets, http://www.w3.org/Style/CSS/

72

