

BreezeMAX[™] TDD Micro Base Station

System Manual

SW Version 4.2 August 2007 P/N 214672

Document History

Topic	Description	Date Issued
First Release for Beta	New product manual	SW Version 4.2, June 2007
Managed VoIP	Added Intended for future releases that will fully support this feature.	SW Version 4.2 August 2007
Services Specifications Section 1.5.9	Updated	SW Version 4.2 August 2007
Commissioning Parameters Sections 3.1.1, 3.1.5	Updated	SW Version 4.2 August 2007
Optimal Uplink RSSI 4.5.3.1.3.2	Updated	SW Version 4.2 August 2007
Distance between antennas serving the same sector Section 2.1.2	Updated	SW Version 4.2 August 2007

Legal Rights

© Copyright 2007 Alvarion Ltd. All rights reserved.

The material contained herein is proprietary, privileged, and confidential and owned by Alvarion or its third party licensors. No disclosure thereof shall be made to third parties without the express written permission of Alvarion Ltd.

Alvarion Ltd. reserves the right to alter the equipment specifications and descriptions in this publication without prior notice. No part of this publication shall be deemed to be part of any contract or warranty unless specifically incorporated by reference into such contract or warranty.

Trade Names

Alvarion®, BreezeCOM®, WALKair®, WALKnet®, BreezeNET®, BreezeACCESS®, BreezeMANAGE™, BreezeLINK®, BreezeCONFIG™, BreezeMAX™, AlvariSTAR™, AlvariCRAFT™, BreezeLITE™, MGW™, eMGW™ and/or other products and/or services referenced here in are either registered trademarks, trademarks or service marks of Alvarion Ltd.

All other names are or may be the trademarks of their respective owners.

Statement of Conditions

The information contained in this manual is subject to change without notice. Alvarion Ltd. shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this manual or equipment supplied with it.

Warranties and Disclaimers

All Alvarion Ltd. ("Alvarion") products purchased from Alvarion or through any of Alvarion's authorized resellers are subject to the following warranty and product liability terms and conditions.

Exclusive Warranty

- (a) Alvarion warrants that the Product hardware it supplies and the tangible media on which any software is installed, under normal use and conditions, will be free from significant defects in materials and workmanship for a period of fourteen (14) months from the date of shipment of a given Product to Purchaser (the "Warranty Period"). Alvarion will, at its sole option and as Purchaser's sole remedy, repair or replace any defective Product in accordance with Alvarion' standard R&R procedure.
- (b) With respect to the Firmware, Alvarion warrants the correct functionality according to the attached documentation, for a period of fourteen (14) month from invoice date (the "Warranty Period")". During the Warranty Period, Alvarion may

release to its Customers firmware updates, which include additional performance improvements and/or bug fixes, upon availability (the "Warranty"). Bug fixes, temporary patches and/or workarounds may be supplied as Firmware updates.

Additional hardware, if required, to install or use Firmware updates must be purchased by the Customer. Alvarion will be obligated to support solely the two (2) most recent Software major releases.

ALVARION SHALL NOT BE LIABLE UNDER THIS WARRANTY IF ITS TESTING AND EXAMINATION DISCLOSE THAT THE ALLEGED DEFECT IN THE PRODUCT DOES NOT EXIST OR WAS CAUSED BY PURCHASER'S OR ANY THIRD PERSON'S MISUSE, NEGLIGENCE, IMPROPER INSTALLATION OR IMPROPER TESTING, UNAUTHORIZED ATTEMPTS TO REPAIR, OR ANY OTHER CAUSE BEYOND THE RANGE OF THE INTENDED USE, OR BY ACCIDENT, FIRE, LIGHTNING OR OTHER HAZARD.

Disclaimer

- (a) The Software is sold on an "AS IS" basis. Alvarion, its affiliates or its licensors MAKE NO WARRANTIES, WHATSOEVER, WHETHER EXPRESS OR IMPLIED, WITH RESPECT TO THE SOFTWARE AND THE ACCOMPANYING DOCUMENTATION. ALVARION SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT WITH RESPECT TO THE SOFTWARE. UNITS OF PRODUCT (INCLUDING ALL THE SOFTWARE) DELIVERED TO PURCHASER HEREUNDER ARE NOT FAULT-TOLERANT AND ARE NOT DESIGNED, MANUFACTURED OR INTENDED FOR USE OR RESALE IN APPLICATIONS WHERE THE FAILURE, MALFUNCTION OR INACCURACY OF PRODUCTS CARRIES A RISK OF DEATH OR BODILY INJURY OR SEVERE PHYSICAL OR ENVIRONMENTAL DAMAGE ("HIGH RISK ACTIVITIES"). HIGH RISK ACTIVITIES MAY INCLUDE, BUT ARE NOT LIMITED TO, USE AS PART OF ON-LINE CONTROL SYSTEMS IN HAZARDOUS ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN THE OPERATION OF NUCLEAR FACILITIES, AIRCRAFT NAVIGATION OR COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL, LIFE SUPPORT MACHINES, WEAPONS SYSTEMS OR OTHER APPLICATIONS REPRESENTING A SIMILAR DEGREE OF POTENTIAL HAZARD. ALVARION SPECIFICALLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR HIGH RISK ACTIVITIES.
- (b) PURCHASER'S SOLE REMEDY FOR BREACH OF THE EXPRESS WARRANTIES ABOVE SHALL BE REPLACEMENT OR REFUND OF THE PURCHASE PRICE AS SPECIFIED ABOVE, AT ALVARION'S OPTION. TO THE FULLEST EXTENT ALLOWED BY LAW, THE WARRANTIES AND REMEDIES SET FORTH IN THIS AGREEMENT ARE EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES OR CONDITIONS, EXPRESS OR IMPLIED, EITHER IN FACT OR BY

OPERATION OF LAW, STATUTORY OR OTHERWISE, INCLUDING BUT NOT LIMITED TO WARRANTIES, TERMS OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, SATISFACTORY QUALITY, CORRESPONDENCE WITH DESCRIPTION, NON-INFRINGEMENT, AND ACCURACY OF INFORMATION GENERATED. ALL OF WHICH ARE EXPRESSLY DISCLAIMED. ALVARION' WARRANTIES HEREIN RUN ONLY TO PURCHASER, AND ARE NOT EXTENDED TO ANY THIRD PARTIES. ALVARION NEITHER ASSUMES NOR AUTHORIZES ANY OTHER PERSON TO ASSUME FOR IT ANY OTHER LIABILITY IN CONNECTION WITH THE SALE, INSTALLATION, MAINTENANCE OR USE OF ITS PRODUCTS.

Limitation of Liability

(a) ALVARION SHALL NOT BE LIABLE TO THE PURCHASER OR TO ANY THIRD PARTY, FOR ANY LOSS OF PROFITS, LOSS OF USE, INTERRUPTION OF BUSINESS OR FOR ANY INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, WHETHER ARISING UNDER BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE AND WHETHER BASED ON THIS AGREEMENT OR OTHERWISE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

(b) TO THE EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL THE LIABILITY FOR DAMAGES HEREUNDER OF ALVARION OR ITS EMPLOYEES OR AGENTS EXCEED THE PURCHASE PRICE PAID FOR THE PRODUCT BY PURCHASER, NOR SHALL THE AGGREGATE LIABILITY FOR DAMAGES TO ALL PARTIES REGARDING ANY PRODUCT EXCEED THE PURCHASE PRICE PAID FOR THAT PRODUCT BY THAT PARTY (EXCEPT IN THE CASE OF A BREACH OF A PARTY'S CONFIDENTIALITY OBLIGATIONS).

Radio Frequency Interference Statement

The **Subscriber Unit** equipment has been tested and found to comply with the limits for a class B digital device, pursuant to ETSI EN 301 489-1 rules and Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment notwithstanding use in commercial, business and industrial environments. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications.

The **Base Station** equipment has been tested and found to comply with the limits for a class A digital device, pursuant to ETSI EN 301 489-1 rules and Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in commercial, business and industrial environments. This equipment generates, uses, and can radiate

radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at the user's own expense.

FCC Radiation Hazard Warning

Base Station - To comply with FCC RF exposure requirements in Section 1.1307 and 2.1091 of FCC Rules, the antenna used for this transmitter must be fixed-mounted on outdoor permanent structures with a separation distance of at least 2 meter from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

Indoor CPE - To comply with FCC RF exposure requirements in Section 1.1307and 2.1091 of FCC Rules, the antenna used for this transmitter must be kept at a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

Outdoor CPE - To comply with FCC RF exposure requirements in Section 1.1307 and 2.1091 of FCC Rules, the antenna be used for this transmitter must be fixed-mounted on outdoor permanent structures with a separation distance of at least 120 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

R&TTE Compliance Statement

This equipment complies with the appropriate essential requirements of Article 3 of the R&TTE Directive 1999/5/EC.

Safety Considerations - General

For the following safety considerations, "Instrument" means the BreezeMAX units' components and their cables.

Grounding

Micro Base Stations and outdoor units are required to be bonded to protective grounding using the bonding stud or screw provided with each unit.

The Micro Base Station shall be bonded to earth at final installation.

Safety Considerations - DC Powered Equipment (μBST)

Restricted Access Area: The DC powered equipment should only be installed in a Restricted Access Area.

Installation Codes: The equipment must be installed according to the latest edition of the country national electrical codes. For North America, equipment must be installed in accordance with the US National Electrical Code and the Canadian Electrical Code.

Overcurrent Protection: A readily accessible Listed branch circuit overcurrent protective device, rated 20A, must be incorporated in the building wiring.

CAUTION: This equipment is designed to permit connection between the earthed conductor of the DC supply circuit and the grounding conductor at the equipment. See installation instructions.

- The equipment must be connected directly to the DC Supply System grounding electrode conductor.
- All equipment in the immediate vicinity must be grounded in the same way, and not be grounded elsewhere.
- The DC supply system is to be local, i.e. within the same premises as the equipment.
- There shall be no disconnect device between the grounded circuit conductor of the DC source (return) and the point of connection of the grounding electrode conductor.

Lithium Battery

The battery in the Micro Base Station is not intended for replacement.

Caution

To avoid electrical shock, do not perform any servicing unless you are qualified to do so.

Line Voltage

Before connecting this instrument to the power line, make sure that the voltage of the power source matches the requirements of the instrument.

Radio

The instrument transmits radio energy during normal operation. To avoid possible harmful exposure to this energy, do not stand or work for extended periods of time in front of its antenna. The long term characteristics or the possible physiological effects of radio frequency electromagnetic fields have not been yet fully investigated.

Outdoor Units and Antennas Installation and Grounding

Ensure that outdoor units, antennas and supporting structures are properly installed to eliminate any physical hazard to either people or property. Make sure that the installation of the outdoor unit, antenna and cables is performed in accordance with all relevant national and local building and safety codes. Even where grounding is not mandatory according to applicable regulation and national codes, it is highly recommended to ensure that the outdoor unit and the antenna mast (when using external antenna) are grounded and suitable lightning protection devices are used so as to provide protection against voltage surges and static charges. In any event, Alvarion is not liable for any injury, damage or regulation violations associated with or caused by installation, grounding or lightning protection.

Disposal of Electronic and Electrical Waste

Disposal of Electronic and Electrical Waste

Pursuant to the WEEE EU Directive electronic and electrical waste must not be disposed of with unsorted waste. Please contact your local recycling authority for disposal of this product.

Important Notice

This user manual is delivered subject to the following conditions and restrictions:

- This manual contains proprietary information belonging to Alvarion Ltd. Such information is supplied solely for the purpose of assisting authorized users of the respective Alvarion products.
- No part of its contents may be used for any other purpose, disclosed to any person or firm or reproduced by any means, electronic and mechanical, without the express prior written permission of Alvarion Ltd.
- The text and graphics are for the purpose of illustration and reference only. The specifications on which they are based are subject to change without notice.
- The software described in this document is furnished under a license. The software may be used or copied only in accordance with the terms of that license.
- Information in this document is subject to change without notice.
- Corporate and individual names and data used in examples herein are fictitious unless otherwise noted.
- Alvarion Ltd. reserves the right to alter the equipment specifications and descriptions in this publication without prior notice. No part of this publication shall be deemed to be part of any contract or warranty unless specifically incorporated by reference into such contract or warranty.
- The information contained herein is merely descriptive in nature, and does not constitute an offer for the sale of the product described herein.
- Any changes or modifications of equipment, including opening of the equipment not expressly approved by Alvarion Ltd. will void equipment warranty and any repair thereafter shall be charged for. It could also void the user's authority to operate the equipment.

Some of the equipment provided by Alvarion and specified in this manual, is manufactured and warranted by third parties. All such equipment must be installed and handled in full compliance with the instructions provided by such manufacturers as attached to this manual or provided thereafter by Alvarion or the manufacturers. Non-compliance with such instructions may result in serious damage and/or bodily harm and/or void the user's authority to operate the equipment and/or revoke the warranty provided by such manufacturer.

About This Manual

This manual describes the BreezeMAX ("BreezeMAX") Micro Base Station with SW version 4.2 and details how to install, operate and manage the system components.

This manual is intended for technicians responsible for installing, setting and operating the BreezeMAX Micro Base Station system, and for system administrators responsible for managing the system.

This manual contains the following chapters and appendices:

- **Chapter 1 System description:** Describes the BreezeMAX system and its components.
- **Chapter 2 Installation:** Describes how to install the Micro Base Station system components.
- **Chapter 3 Commissioning:** Describes how to configure basic parameters and validate unit operation.
- Chapter 4 Operation and Administration: Describes how to use the Monitor application for configuring parameters, checking system status and monitoring performance.
- **Appendix A Software Upgrade:** Describes how to load new software files using TFTP, and how to switch to a new software version in BreezeMAX units.
- Appendix B Defining Service Profiles for Generic VoIP Gateways:

 Describes the principles of defining Service Profiles for 3rd party generic (non DRAP based) VoIP devices.
- **Glossary**: A listing of commonly used terms.
- Index

Contents

Chapter 1 - System Description

1.1 Intro	oducing BreezeMAX	2
1.2 The	Micro Base Station	5
1.2.1	Micro Base Station Indoor Unit	5
1.2.2	2 AU-ODU	6
1.2.3	Micro Base Station Radio Configurations	6
1.2.4	GPS	8
1.3 Netw	vorking Equipment	10
1.3.1	DUET 6004 Access Gateway	10
1.4 Mana	agement Systems	11
1.4.1	AlvariSTAR™	11
1.4.2	2 AlvariCRAFT™	12
1.4.3	BreezeMAX Service Manager	13
1.5 Spec	cifications	14
1.5.1	Radio	14
1.5.2	2 2.X GHz Antennas (Optional)	16
1.5.3	3 3.x GHz Antennas (Optional)	17
1.5.4	Micro Base Station IDU to AU-ODU Communication	18
1.5.5	Data Communication (Ethernet Ports)	18
1.5.6	Configuration and Management	19
1.5.7	Zenvironmental	19
1.5.8	Standards Compliance, General	20
1.5.9	Services	21

1.5.10	Physical and Electrical	22
Chapter 2 -	Installation Guidelines	
2.1 Instal	ling the AU-ODU	28
2.1.1	AU-ODU Installation Requirements	28
2.1.2	Guidelines for Positioning the AU-ODU	29
2.1.3	IF Cables	29
2.1.4	Pole Mounting the ODU	30
2.1.5	AU-ODU	33
2.1.6	Connecting the Cables	34
2.2 Instal	ling the Micro Base Station Equipment	36
2.2.1	Installation Requirements	36
2.2.2	The Micro Base Station Front Panel	36
2.2.3	Power Requirements	39
2.2.4	Installing the Micro Base Station Unit	40
2.2.5	Daisy-chaining Two or More Micro Base Station	41
2.3 Instal	ling the GPS Adapter	42
2.3.1	Installation Requirements	42
2.3.2	The GPS Adapter	43
2.3.3	Installing the GPS Adapter	45
2.3.4	Micro Base Station to GPS Adapter Cable	46
2.3.5	GPS Adapter to Outdoor GPS Receiver Cable	47
Chapter 3 -	Commissioning	
3.1 Confi	guring Basic Parameters of Micro Base Station	50
3.1.1	Micro Base Station Configuration Parameters	52
3.1.2	RADIUS Parameters	53
3.1.3	Radio Cluster	54

3.1.4	ODU	54
3.1.5	Access Parameters	54
3.1.6	SU	55
3.2 Oper	ation Verification	56
3.2.1	AU-ODU LEDs	56
3.2.2	Micro Base Station LEDs	57
3.2.3	GPS Adapter LEDs	58
3.2.4	Verifying the Ethernet Connection	58
Chapter 4	Operation and Administration	
4.1 Breez	zeMAX System Management	60
4.2 The N	Monitor Program	62
4.2.1	Accessing the Monitor Program	62
4.2.2	Using the Monitor Program	63
4.3 IP Ad	dresses Configuration	65
4.4 The N	Aicro Base Station's Main Menu	66
4.4.1	Micro Base Station Menu	66
4.4.2	Radio Cluster Menu	66
4.4.3	ODU Menu	66
4.4.4	Access Parameters Menu	66
4.4.5	SU Menu	67
4.4.6	Services Menu	67
4.4.7	Exit	67
4.5 Micro	Base Station Menu	68
4.5.1	Show	68
4.5.2	Unit Control	71
453	Configuration	76

	4.5.4	Alarms and Traps	94
	4.5.5	Performance Monitoring	97
	4.5.6	Licenses	99
	4.5.7	RADIUS	.102
4.6	Radio	Cluster Menu	.112
	4.6.1	Show Summary	.112
	4.6.2	Select	.112
	4.6.3	Add	.113
	4.6.4	Radio Cluster Parameters	.113
4.7	ODU	Menu	.115
	4.7.1	Show Summary	.115
	4.7.2	Select	.116
	4.7.3	Add	.117
	4.7.4	ODU Parameters	.117
	4.7.5	Frequency Bands File and Frequency Bands Groups	.119
4.8	Acces	ss Parameters Menu	.121
	4.8.1	MAC Parameters	.121
	4.8.2	Phy Parameters	.123
	4.8.3	Multi Channel Parameters	.123
	4.8.4	Multirate Parameters	.126
	4.8.5	Voice Parameters	.129
4.9	SU Me	enu	.130
	4.9.1	Show Summary	.130
	4.9.2	Upgrading SU's SW	.132
	4.9.3	SW Files in mBST	.133
	4.9.4	Select by Name	. 134

4.9.5	Select by MAC Address	134
4.9.6	SU # Menu	135
4.9.7	Add New SU	155
4.9.8	Clear All Configured SU SW Files	155
4.10Servi	ces Menu	156
4.10.1	1 Introduction to Services	156
4.10.2	2 Introduction to Filtering Features	164
4.10.3	3 Common Operations in Services Menu	165
4.10.4	4 The Services Menu	166
4.10.5	5 Defining Local Service Profiles	196
4.10.6	6 Defining Local (Permanent) Services	196
4.10.7	7 Defining RADIUS Based Services	197
4.10.8	3 Pre-configured Profiles	197
4.11Parar	meters Summary	204
Appendix A	A - Software Upgrade	
A.1 Befor	e you Start	222
A.2 File L	oading Procedure	223
A.3 Comp	oleting the Software Upgrade (Switching Versions)	225
Appendix E	3 - Defining Service Profiles for Generic VoIP Gatewa	ıys
B.1 Introd	duction	228
B.1.1	Priority Marking	228
B.1.2	General Assumptions	228
B.2 1 PO	TS Basic VoIP G.729 Service Profile	230
B.2.1	Service Characteristics	230
B.2.2	RTP BW Calculation	230
B.2.3	RTCP BW Calculation	230

B.2.4	QoS Profile2	:30
B.3 1 PO	TS Advanced VoIP G.729 Service Profile2	:32
B.3.1	Service Characteristics	:32
B.3.2	Voice RTP BW Calculation	:32
B.3.3	Voice RTCP BW Calculation	:32
B.3.4	T.38 14,400 Kbps Fax RTP BW Calculation2	:32
B.3.5	FAX RTCP BW Calculation	:33
B.3.6	QoS Profiles	:33
B.4 1 PO	TS Basic VoIP G.711 Service Profile2	34
B.4.1	Service Characteristics	:34
B.4.2	RTP BW Calculation	:34
B.4.3	RTCP BW Calculation	34
B.4.4	QoS Profile	:34
B.5 1 PO	TS Advanced VoIP G.711 Service Profile2	:36
B.5.1	Service Characteristics	:36
B.5.2	Voice RTP BW Calculation	:36
B.5.3	Voice RTCP BW Calculation	:36
B.5.4	T.38 14,400 Kbps Fax RTP BW Calculation	:36
B.5.5	FAX RTCP BW Calculation	:37
B.5.6	QoS Profiles	:37
Glossary		39
Index		55

Figures

Figure 1-1: BreezeMAX System Architecture	4
Figure 1-2: Micro Base Station Unit	5
Figure 1-3: 4 sectors configuration, frequency reuse 1	7
Figure 1-4: 4 sectors configuration, frequency reuse 1/2	7
Figure 1-5: One sector configuration with second order diversity	8
Figure 1-6: One sector configuration with fourth order diversity	8
Figure 2-1: 2.x/3.x GHz AU-ODU-HP Pole Installation Using Special Clamps	31
Figure 2-2: 2.x/3.x GHz AU-ODU-HP Pole Installation Using Metal Band	32
Figure 2-3: Bottom Panel of the 2.x/3.x GHz AU-ODU-HP (except 2.3 GHz WCS)	33
Figure 2-4: Bottom Panel of the AU-ODU-HP - 2.3 GHz WCS	33
Figure 2-5: Micro Base Station Front Panel	36
Figure 2-6: GPS Adapter Front Panel	43
Figure 2-7: GPS Adapter Rear Panel	43
Figure 4-1: Filtering Functionality	165

Tables

Table 1-1: Radio Specifications	14
Table 1-2: Base Station 2.X GHz Antennas, Electrical Specifications	16
Table 1-3: Base Station 3.x GHz Antennas, Electrical Specifications	17
Table 1-4: Micro Base Station IDU to AU-ODU Communication	18
Table 1-5: Data Communication (Ethernet Ports)	18
Table 1-6: Configuration and Management	19
Table 1-7: Environmental Specifications	19
Table 1-8: Standards Compliance, General	20
Table 1-9: Services	21
Table 1-10: Mechanical Specifications, Micro Base Station Equipment	22
Table 1-11: Electrical Specifications, Micro Base Station Equipment	22
Table 1-12: Connectors, Micro Base Station Equipment	23
Table 1-13: Micro Base Station 2.X GHz Antennas, Mechanical Specifications	24
Table 1-14: Micro Base Station 3.x GHz Antennas, Mechanical Specifications	25
Table 2-1: IF Cables Requirements	30
Table 2-2: Maximum IF Cable Length (Double Shielded Cables)	30
Table 2-3: AU-ODU LEDs	34
Table 2-4: AU-ODU Connectors	34
Table 2-5: Micro Base Station Connectors	37
Table 2-6: Micro Base Station LEDs	37
Table 2-7: Electrical Specifications, Micro Base Station Equipment	39
Table 2-8: GPS Adapter Connectors	44
Table 2-9: GPS Adapter LEDs	44

Table 2-10: Micro Base Station to GPS Adapter Cable Pin Out	46
Table 2-11: GPS Adapter to Outdoor GPS Receiver Cable Pin Out	47
Table 3-1: Basic Micro Base Station Parameters	50
Table 3-2: AU-ODU LEDs	56
Table 3-3: Micro Base Station LEDs	57
Table 3-4: GPS Adapter LEDs	58
Table 4-1: COM Port Configuration	62
Table 4-2: Default Passwords	72
Table 4-3: Frequency Bands	119
Table 4-4: Rates (Modulation Schemes and Coding)	127
Table 4-5: Scanning Intermediate Steps	150
Table 4-6: Hybrid VLAN Mode	163
Table 4-7: Hybrid VLAN Mode	170
Table 4-8: Priority Marking Values	178
Table 4-9: Pre-Configured Data Service Profiles	198
Table 4-10: Pre-Configured Forwarding Rules for Data Service	199
Table 4-11: Pre-Configured Priority Classifiers for Data Services	200
Table 4-12: Pre-Configured QoS Profiles for Data Services	200
Table 4-13: Pre-Configured Voice Service Profiles (for DRAP-based Gateways)	200
Table 4-14: Pre-Configured Service Profiles for Generic VoIP Services	201
Table 4-15: Pre-Configured Forwarding Rule for Voice Services	201
Table 4-16: Pre-Configured Priority Classifiers for Generic VoIP Service	201
Table 4-17: Pre-Configured BE and RT QoS Profile for Generic VoIP Services	202
Table 4-18: Pre-Configured CG QoS Profile for Generic VoIP Services	202
Table 4-19: Pre-Configured Forwarding Rule for Transparent Services	203
Table 4-20: Pre-Configured QoS Profile for Transparent Services	203

Chapter 1 - System Description

In This Chapter:

- "Introducing BreezeMAX" on page 2
- "The Micro Base Station" on page 5
- "Networking Equipment" on page 10
- "Management Systems" on page 11
- "Specifications" on page 14

1.1 Introducing BreezeMAX

BreezeMAX TDD (BreezeMAX) is Alvarion's WiMAX compatible platform operating in Time Division Duplex (TDD) mode. It leverages Alvarion's market-leading knowledge of Broadband Wireless Access (BWA), industry leadership, proven field experience, and core technologies including many years of experience with OFDM technology.

Built from the ground up based on the IEEE 802.16/ETSI HIPERMAN standards, BreezeMAX is designed specifically to meet the unique requirements of the wireless Metropolitan Area Network (MAN) environment and to deliver broadband access services to a wide range of customers, including residential, SOHO, SME and multi-tenant customers. Its Media Access Control (MAC) protocol was designed for point-to-multipoint broadband wireless access applications, providing a very efficient use of the wireless spectrum and supporting difficult user environments. The access and bandwidth allocation mechanisms accommodate hundreds of subscriber units per channel, with subscriber units that may support different services to multiple end users.

The system uses OFDM radio technology, which is robust in adverse channel conditions and enables operation in non line of sight links. This allows easy installation and improves coverage, while maintaining a high level of spectral efficiency. In the uplink the system uses OFDMA-16, supporting N x Subscriber Units per Symbol (N=1 to 16). Modulation and coding can be adapted per burst, ever striving to achieve a balance between robustness and efficiency in accordance with prevailing link conditions.

BreezeMAX supports a wide range of network services, including Internet access (via IP or PPPoE tunneling), VPNs and Voice over IP. Service recognition and multiple classifiers that can be used for generating various service profiles enable operators to offer differentiated SLAs with committed QoS for each service profile.

BreezeMAX offers an innovative solution for a Self-Install CPE, including all the features, embedded capabilities and supplementary tools that support easy installation by a non-professional user and fully automated network-entry, authentication and services provisioning.

The elements that enable and support the Self-Install solution include:

- 4-channel Access Unit and high-power radios at the Base Station
- 2nd or 4th order transmit diversity at the Base Station.

- 4th order receive diversity at the Base Station using Maximum Receive Ratio Combining (MRRC).
- Uplink sub-channels using OFDMA-16 for increased service efficiency and improved link budget.
- A high-power CPE with an integral antenna array, providing 360 degrees coverage with smart selection of Tx and Rx antennas. An optional wall/window mounted antenna to extend the coverage area.
- Automatic frequency scanning and best Access Unit/Base Station selection algorithms in the CPE.
- Enhanced Automatic Transmit Power Control (ATPC) and dynamic rate selection (multirate) optimized for multiple sub-channels in the uplink.
- Centralized CPE authentication and service provisioning using either a commercial RADIUS server or an entry level BreezeMAX Service Manager server available from Alvarion.
- Centralized Service Profiles distribution to ensure location-free service availability and fully controlled service provisioning.
- A suite of features and support tools to enable fast and simple installation according to various business models.

The system operates in Time Division Duplex (TDD) and is currently available in the 2.3 GHz (WCS), 2.5 GHz (MMDS and MCS), 3.3 GHz and 3.5 GHzfrequency bands. The actual operating frequencies used by the system can be configured according to applicable radio regulations, license conditions and specific deployment considerations.

A BreezeMAX system comprises of the following:

- Customer Premise Equipment (CPE): BreezeMAX Subscriber Units and Alvarion's Voice/Networking Gateways.
- Base Station (BST) Equipment: BreezeMAX Base Station equipment, including the modular Base Station and its components or the stand-alone Micro Base Station (μBST), Outdoor Radio Units, GPS Receiver and other components.

- Networking Equipment: Standard switches/routers and other networking equipment, supporting connections to the backbone and/or Internet.
- Management Systems: SNMP-based Management, Billing and Customer Care, and other Operation Support Systems.

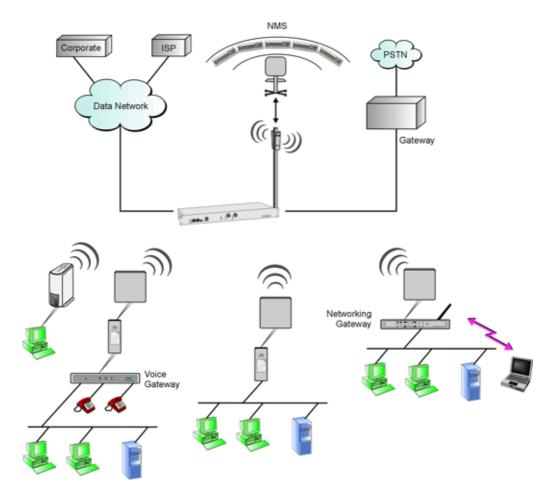


Figure 1-1: BreezeMAX System Architecture

1.2 The Micro Base Station

The Multi Carrier, High Power, Full Duplex Micro Base Station (µBST) provides all the functionality necessary to communicate with SUs and to connect to the backbone of the Service Provider. The Micro Base Station Unit is designed to provide an alternative to the BreezeMAX Modular Base Station and a low cost solution in places were the number of subscribers is limited, and only one or two sectors are necessary (i.e. communities areas). The use of the same AU-ODU that is used by the modular Base Station provides an easy migration path and protection of the initial investment when the customer base increases and there is a need to replace the Micro Base Station with the full, modular Base Station equipment.

The Micro Base Station equipment comprises an indoor Micro Base Station Unit and an outdoor radio unit (AU-ODU).

1.2.1 Micro Base Station Indoor Unit

The Micro Base Station unit provides the full base station functionality necessary for serving a single sector. The Micro Base Station is powered from a -48 VDC power source. The functionality of the Micro Base station is very similar to the combined functionalities of NPU and AU-IDU modules of the modular Base Station.

Figure 1-2: Micro Base Station Unit

The functionality of the Micro Base Station unit includes:

- Backbone Ethernet connectivity via a 10/100 Base-T network interface
- Traffic classification and connection establishment initiation
- Policy based data switching
- Service Level Agreements management

- Centralized agent for managing the Micro Base Station unit and all registered SUs
- Alarms management, including external alarm inputs and activation of external devices (future option).

An SNMP agent incorporated into the unit enables extensive In-Band (IB) management of the Micro Base Station and all its registered SUs. Out-Of-Band (OOB) management is supported through a dedicated 10/100 Base-T interface. A serial RS-232 port supports local configuration, monitoring and debugging.

The Micro Base Station also contains the WiMAX-ready MAC and modem. It includes four channels using a common PHY and MAC that can connect to up to four outdoor radio units, according to the selected diversity mode (refer to Section 1.2.3 below for more details). The Micro Base Station connects to the AU-ODUs via Intermediate Frequency (IF) cables carrying full duplex data, control and management signals between the Micro Base Station and the AU-ODU, as well as power (-48 VDC) and 64 MHz synchronization reference clock from the Micro Base Station to the AU-ODU. The IF Tx and Rx frequencies are 240 MHz and 140 MHz, respectively. IDU-ODU service channel at 14 MHz serves for bi-directional control, status and management signaling.

1.2.2 AU-ODU

The AU-ODU is a full duplex multi-carrier radio unit that connects to an external antenna. It is designed to provide high system gain and interference robustness utilizing high transmit power and low noise figure.

1.2.3 Micro Base Station Radio Configurations

The 4-Channel Micro Base Station support the following radio configurations:

1.2.3.1 Single Channel, No Diversity

This is the basic configuration, where the Micro Base Station connects to one ODU, serving a single sector with a directional antenna.

1.2.3.2 Multiple Channels, No Diversity

Up to 4 channels can be used to cover several sectors, where each channel connects to one ODU, with one ODU per sector. A single Micro Base Station can cover a 360° cell. Where the coverage of the cell can be built from 3 sectors of 120° each with frequency reuse 1, or 4 sectors of 90° each with frequency reuse 1 (i.e. frequency per sector) or 1/2 (i.e. 2 frequencies for 4 sectors where each frequency

is used for 2 opposite sectors). All ODUs served by the same Micro Base Station share a common MAC and modem. Each ODU is managed separately.

The following figure describes the multi channel use to cover a cell of 360° with 4 sectors, using frequency reuse 1:

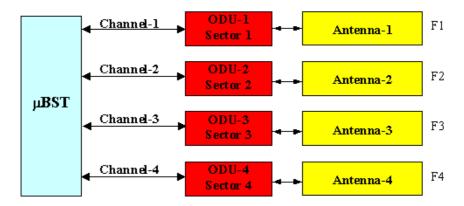


Figure 1-3: 4 sectors configuration, frequency reuse 1

The following figure describes the multi channel use to cover a cell of 360° with 4 sectors, using frequency reuse 1/2:

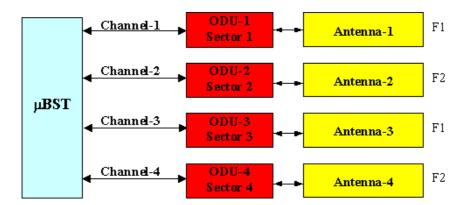


Figure 1-4: 4 sectors configuration, frequency reuse 1/2

1.2.3.3 2nd Order Diversity

Multiple channel configuration with second order diversity allows coverage of one sector with space diversity by a single Micro Base Station and two ODUs connected to channels 1 and 2. The same frequency and transmit power are set for both ODUs. The two ODUs served by the same Micro Base Station share a common MAC and modem.

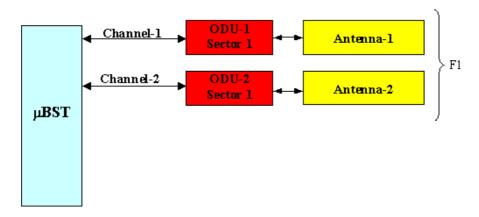


Figure 1-5: One sector configuration with second order diversity

1.2.3.4 4th Order Diversity

Multiple channel configuration with fourth order diversity allows a single sector coverage by the Micro Base Station with 4 ODUs. In each sector, both space and polarization diversities are implemented, using dual polarization slant antennas. The channels are paired: channels 1 and 2 form one pair, channels 3 and 4 form the second pair. The two ODUs connected to each pair are connected to the same dual polarization antenna. The same frequency and transmit power are set for all four ODUs. All ODUs served by the same Micro Base Station share a common MAC and modem.

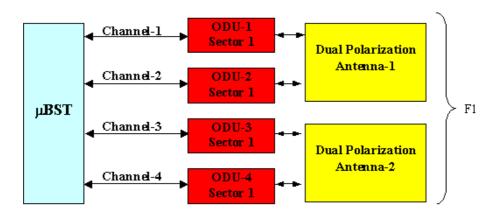


Figure 1-6: One sector configuration with fourth order diversity

1.2.4 **GPS**

GPS is used to synchronize the air link frames of Intra-site and Inter-site located Base Stations to ensure that in all sectors the air frame will start at the same

time, and that all sectors will switch from transmit (downlink) to receive (uplink) at the same time. This synchronization is necessary to prevent Intra-site and Inter-site sectors interference and saturation (assuming that all sectors are operating with the same frame size and with the same DL/UL ratio).

The GPS clock required is 1PPS with accuracy of 10⁻¹¹ and maximum jitter of 100ns. These GPS clock requirements can be reached by indoor or outdoor installed GPS unit when it is synchronized to at least 4 satellites.

Two types of GPS Receivers are available from Alvarion:

- Indoor GPS Receiver (with an outdoor antenna)
- Outdoor GPS Receiver

A GPS Adapter is required to provide the interface between the NPU and the GPS Receiver.

1.2.4.1 Indoor GPS Receiver

The Indoor GPS Receiver comprises a GPS receiver integrated with a stable OCXO oscillator, within a unit designed for mounting in a standard 19 inch rack. An up to 50 meter coaxial cable connects it to an active antenna. The indoor installed GPS system is able to provide up to 40 hours of clock holdover with a maximal drift of 50 microseconds when the GPS system losses satellites synchronization. The Indoor GPS provides 1PPS at TTL levels and the control channel is driven by an RS-232 serial interface. The unit is powered directly from a -48 VDC power source.

1.2.4.2 Outdoor GPS Receiver

The all-outdoor GPS Receiver is a pole mountable GPS receiver and antenna in a single environmentally protected enclosure. The Outdoor GPS Receiver is powered by a 12 VDC power source, supplied to it by the NPU via the GPS Adapter. The RS-422 interface allows installation at distances up to 100m.

1.2.4.3 GPS Adapter Unit

The GPS Adapter connects the different GPS units to the NPU, adapting the different interfaces. Future versions may include an internal GPS module that will allow an all-in-one low-cost solution. A future optional addition of OCXO in the GPS Adapter box may provide an improved hold over solution when the GPS is not synchronized. The GPS Adapter is powered by 12 VDC supplied by the NPU. The GPS Adapter is installed in a 1U high panel (the same panel that is used for the ODU Power Feeders).

1.3 Networking Equipment

The Micro Base Station equipment is connected to the backbone through standard data communication and telecommunication equipment. The Micro Base Station connects to the backbone through a 10/100 Base-T port.

The point-to-point link from the Micro Base Station to the backbone can be either wired or wireless.

Alvarion offers the DUET 6004, a V5.2 to SIP Access Gateway connecting a Class 5 switch over V5.2 to its' Voice Gateways.

1.3.1 DUET 6004 Access Gateway

The DUET 6004 is a carrier-grade V5.2 to SIP gateway, connecting a Class 5 switch over V5.2 to Alvarion's SIP stand alone Voice Gateways (VG-1D1V and VF-1D2V) or Voice Gateway IDUs (IDU-1D1V and IDU-1D2V).

A Local Exchange (LE) with the DUET 6004 support basic and advanced telephony services as CLASS services, IN services and others. The DUET can be either collocated with the BreezeMAX Base Station or installed at the LE premises concentrating the traffic of many Base Stations.

The LE switch provides the call processing, billing and administrative functions, while the DUET provides the signaling translation and media conversion:

- Signaling Translation: converting the V5.2 signaling into SIP commands and vice versa.
- Media Conversion: converting media formats such as PCM to G.729A and others. It also provides additional media related services such as Echo Canceling and others.
- Outbound SIP Proxy: The DUET operates as outbound SIP proxy for the Voice Gateways. All outbound calls from the user agents are sent to the DUET. Note that the DUET does not support SIP-to-SIP calls and all calls are always passed to the switch via the V5.2 interface.
- Registration: Processing registration requests of the SIP Voice Gateways connected to the BreezeMAX CPE.

The DUET complies with the V5.2 interface standard second edition and the SIP RFC 3261, "SIP: Session Initiation Protocol", making it a certified means to

provide telephony and advanced services over an IP network. It supports voice band data transmission of FAX G.3 (over G.711 or T.38), pay-phone signaling (Tax and reverse polarity), CLI, as well as other services that are hook flash based (call waiting, hold, call forward, etc.).

1.4 Management Systems

The end-to-end IP-based architecture of the system enables full management of all components, using standard management tools. An SNMP agent in the Micro Base Station implements standard and proprietary MIBs for remote setting of operational modes and parameters of the Base Station equipment as well as the Subscriber Units served by it. Security features incorporated in BreezeMAX units restrict the access for management purposes.

In addition, the Ethernet WAN can be used to connect to other Operation Support Systems including servers, Customer Care systems and AAA (Authentication, Authorization and Admission) tools.

1.4.1 AlvariSTAR™

AlvariSTAR is a comprehensive Carrier-Class network management system for Alvarion's Broadband Wireless Access products-based Networks. AlvariSTAR is designed for today's most advanced Service Providers' Network Operation Centers (NOCs), providing the network Operation, Administration and Maintenance (OA&M) staff and managers with all the network surveillance, monitoring and configuration capabilities that they require in order to effectively manage the BWA network while keeping the resources and expenses at a minimum.

AlvariSTAR is designed to offer the network's OA&M staff with a unified, scalable and distributable network management system. AlvariSTAR system uses a distributed client-server architecture, which provides the service provider with a robust, scalable and fully redundant network management system in which all single points of failure can be avoided.

AlvariSTAR provides the following BWA network management functionality:

- Device Discovery
- Device Inventory
- Topology

- Fault Management
- Configuration Management
- Service Management
- Data Collection
- Performance Monitoring
- Device embedded software upgrade
- Security Management
- Northbound interface to other Network Management Systems.

Embedded with the entire knowledge base of BWA network operations, AlvariSTAR is a unique state-of-the-art power multiplier in the hands of the service provider that enables the provisioning of satisfied customers. AlvariSTAR dramatically extends the abilities of the service provider to provide a rich portfolio of services and to support rapid customer base expansion.

1.4.2 AlvariCRAFT™

Alvarion's AlvariCRAFT is an SNMP (Simple Network Management Protocol) application designed for on-line management of BreezeMAX system components. This utility simplifies the installation and maintenance of small size installations by easily enabling the change of settings or firmware upgrade for one Micro Base Station at a time, including the managed device's associated SUs.

AlvariCRAFT allows accessing a wide array of monitoring and configuration options, including:

- Device Manager for the selected Micro Base Station, including it's associated SUs
- Selected unit configuration modification
- Local Service Profiles verification and modification
- Local Service Provisioning
- Firmware upgrade for the NPU, AUs and SUs

- On-line performance data monitoring
- Export of configuration details to a CSV file
- Support for Telnet cut-through to the Base Station and http cut-through to Gateways behind connected SUs.

1.4.3 BreezeMAX Service Manager

BreezeMAX Service Manager provides centralized management of user authentication and authorization using the industry standard RADIUS protocol. The BreezeMAX Service Manager receives from the NPU (operating as a NAS) the authentication details (User Name and Password) upon network entry of a new CPE, and respond (if authentication if verified by matching details in the database) by sending properties of the Services that should be granted to the user.

1.5 Specifications

1.5.1 Radio

Table 1-1: Radio Specifications

Item	Description			
Frequency Range	Unit/Band		Frequency (MHz)	
	AU-ODU-HP-2.3		2300 - 2360	
	AU-ODU-HP-2.3-WCS		2305 - 2317, 2348 - 2360 (including WCS filter)	
	AU-ODU-HP-2.5-A		2496 - 2602	
	AU-ODU-HP-2.5-B		2590 - 2690	
	AU-ODU-HP-TDD-3.3a		3300-3355	
	AU-ODU-HP-TDD-3.3b		3345-3400	
	AU-ODU-HP-T	DD-3.4a	3399.5 - 3455	
	AU-ODU-HP-T	DD-3.4b	3445 - 3500	
	AU-ODU-HP-T	DD-3.5a	3500 - 3555	
	AU-ODU-HP-T	DD-3.5b	3545 - 3600	
Operation Mode	TDD			
Channel Bandwidth	■ 3.5 MHz			
	5 MHz	ИНz		
Central Frequency Resolution	0.125 MHz (actual configurable frequencies depend on the local radio regulations and allocated spectrum)			
Antenna Port (AU-ODU)	N-Type, 50 Ohm			
Max. Input Power (at AU-ODU antenna port)	-60 dBm before saturation -8 dBm before damage			
Output Power (at AU-ODU antenna port)	2.x GHz:	36 dBm +/-1 dB maximum Power control range: 6 dB, in 1 dB steps		
	3.3 GHz	32 dBm +/-1 dB maximum Power control range: 10 dB, in 1 dB range		
	3.5 GHz	34 dBm +/-1 dB maximum Power control range: 10 dB, in 1 dB range		
Modulation	OFDM in the Downlink, OFDMA-16 in the Uplink (N x SUs per Symbol, N=1-16), BPSK, QPSK, QAM16, QAM64			

Table 1-1: Radio Specifications

Item	Description			
FEC	Convolutional Coding: 1/2, 2/3, 3/4			
Typical Sensitivity (BER=1E-6)	Modulation & Coding	Minimum SNR (dB)	Sensitivity (dBm) @ 3.5 MHz BW	Sensitivity (dBm) @ 5 MHz BW
	BPSK 1/2	2.5	-98.5	-97
	QPSK 1/2	5.9	-94.5	-93
	QPSK 3/4	8.6	-91.5	-90
	QAM16 1/2	11.4	-87.5	-86
	QAM16 3/4	14.8	-84.5	-83
	QAM64 2/3	20	-80.5	-79
	QAM64 3/4	20.9	-78.5	-77

1.5.2 2.X GHz Antennas (Optional)

Table 1-2: Base Station 2.X GHz Antennas, Electrical Specifications

Item	Description
BS ANT 60/2.X V	16.5 dBi minimum in the 2.3-2.7 GHz band, 60°AZ x 7°EL sector antenna, vertical polarization, compliance with ETSI EN 302 326-3 V1.2.1 (2007-01) and RoHS
BS ANT 90/2.X V	15.5 dBi minimum in the 2.3-2.7 GHz band, 90°AZ x 7°EL sector antenna, vertical polarization, compliance with ETSI EN 302 326-3 V1.2.1 (2007-01) and RoHS
BS ANT 120/2.X V	14 dBi minimum in the 2.3-2.7 GHz band, 120°AZ x 7°EL sector antenna, vertical polarization, compliance with ETSI EN 302 326-3 V1.2.1 (2007-01) and RoHS
BS ANT 65/2.X DP	2 x 17 dBi minimum in the 2.3-2.7 GHz band, 65°AZ x 7°EL sector antenna, dual slant +/- 45° polarization, compliance with ETSI EN 302 326-3 V1.2.1 (2007-01) and RoHS
BS ANT 90/2.X DP	2 x 15.5 dBi minimum in the 2.3-2.7 GHz band, 90°AZ x 8°EL sector antenna, dual slant +/- 45° polarization, compliance with ETSI EN 302 326-3 V1.2.1 (2007-01) and RoHS
BS ANT 120/2.X DP	2 x 13 dBi minimum in the 2.3-2.7 GHz band, 120°AZ x 8°EL sector antenna, dual slant +/- 45° polarization, compliance with ETSI EN 302 326-3 V1.2.1 (2007-01) and RoHS

16 System Description

1.5.3 3.x GHz Antennas (Optional)

Table 1-3: Base Station 3.x GHz Antennas, Electrical Specifications

Item	Description	
BS ANT 60V/3.3-3.8	16.5 dBi minimum in the 3.3-3.8 GHz band, 60° AZ x 7° EL, vertical polarization, compliant with ESTI EN 302 326-3 V1.2.1 (2007-01)	
BS ANT 90V/3.3-3.8	14.5 dBi minimum in the 3.3-3.8 GHz band, 90° AZ x 7° EL, vertical polarization, compliant with ESTI EN 302 326-3 V1.2.1 (2007-01)	
BS ANT 120V/3.3-3.8	13 dBi typical in the 3.3-3.8 GHz band, 120° AZ x 7° EL, vertical polarization, compliant with ESTI EN 302 326-3 V1.2.1 (2007-01)	
BS ANT 60/3.5H	16 dBi typical in the 3.4-3.7 GHz band, 60° AZ x 9° EL, horizontal polarization, compliant with EN 302 326-3 V1.2.1 (2007-01)	
BS ANT 90/3.5H	14 dBi typical in the 3.4-3.7 GHz band, 90° AZ x 8° EL, horizontal polarization, compliant with EN 302 326-3 V1.2.1 (2007-01)	
BS ANT 65/3.5 DP	2 x 16.5 dBi minimum in the 3.3-3.8 GHz band, 65°AZ x 7°EL sector antenna, dual slant +/- 45° polarization, compliance with ETSI EN 302 326-3 V1.2.1 (2007-01) and RoHS	
BS ANT 90/3.5 DP	2 x 15.5 dBi minimum in the 3.3-3.8 GHz band, 90°AZ x 7°EL sector antenna, dual slant +/- 45° polarization, compliance with ETSI EN 302 326-3 V1.2.1 (2007-01) and RoHS	
BS ANT 120/3.5DP	2 x 13 dBi minimum in the 3.3-3.8 GHz band, 120°AZ x 7°EL sector antenna, dual slant +/- 45° polarization, compliance with ETSI EN 302 326-3 V1.2.1 (2007-01) and RoHS	
Omni ANT 3.4-3.6	10 dBi typical in the 3.4-3.6 GHz band, 360° AZ x 9° EL, vertical polarization	

1.5.4 Micro Base Station IDU to AU-ODU Communication

Table 1-4: Micro Base Station IDU to AU-ODU Communication

Item	Description
IF Frequency	Tx: 240 MHz
	Rx: 140 MHz
Ref Synchronization Frequency	64 MHz
Bi-Directional Control Frequency	14 MHz
IF cable Impedance	50 Ohm
Maximum IF cable Attenuation	10 dB @ 240 MHz 7.5 dB @ 140 MHz 8 dB @ 64 MHz
Minimum IF cable Shielding Effectiveness	90 dB in the 10-300 MHz band
Maximum IF cable Return Loss	20 dB in the 10-300 MHz band
Maximum IF cable DC Resistance	1.5 Ohm

1.5.5 Data Communication (Ethernet Ports)

Table 1-5: Data Communication (Ethernet Ports)

Item	Description	
Standard Compliance	IEEE 802.3 CSMA/CD	
Maximum Packet Size	1550 Bytes (including 4 CRC bytes and 4 VLAN tag bytes)	
Speed and Duplex	Data Port 10/100 Mbps, Full Duplex	
	Management Port 10/100 Mbps, Half/Full Duplex with Auto Negotiation	

18 System Description

1.5.6 Configuration and Management

Table 1-6: Configuration and Management

Item	Description
Out Of Band (OOB) Management	Telnet via Management port
	SNMP via Management port
	■ Monitor port
In Band (IB) Management via Data Port	■ SNMP
	■ Telnet
SNMP Agents	SNMP ver 1 client
	MIB II (RFC 1213), Private BreezeMAX MIBs
Authentication	RADIUS
Software upgrade	Using TFTP
Configuration upload/download	Using TFTP

1.5.7 Environmental

Table 1-7: Environmental Specifications

Туре	Unit	Details
Operating	Outdoor units	AU-ODU-HP-2.3-WCS: -52°C to 55°C
temperature		All other ODUs: -40°C to 55°C
		Outdoor GPS Receiver: -40°C to 85°C
		Outdoor Antenna of Indoor GPS Receiver :-40°C to 70°C
	Indoor equipment	0°C to 40°C
Operating	Outdoor units	5%-95% non condensing, Weather protected
humidity	Indoor equipment	5%-95% non condensing

1.5.8 Standards Compliance, General

Table 1-8: Standards Compliance, General

Туре	Standard	
EMC	ETSI EN 301 489-1/4	
	■ ETSI EN 300-385	
Safety	■ EN 60950-1	
	■ UL 60 950-1	
Environmental	ETS 300 019:	
	Part 2-1 T 1.2 & part 2-2 T 2.3 for indoor & outdoor	
	Part 2-3 T 3.2 for indoor	
	Part 2-4 T 4.1E for outdoor	
Radio	ETSI EN 301 753 V.1.1.1	
	ETSI EN 301 021 V.1.6.1	
	FCC 04-135	
	■ FCC 27.53	

20 System Description

1.5.9 Services

Table 1-9: Services

Item	Description	
Max number of Services per μBST	1,023 (One or several services may be defined per subscriber, one or more subscribers can be supported per SU)	
Max number of Service Profiles per μBST	1,024	
Max number of Forwarding Rules per μBST	255	
Max number of Priority Classifiers per μBST	255	
Max number of QoS Profiles per μBST	255	
Max number of Subscribers per μBST	1,024 (applicable only for permanent SUs)	
Min number of data connections per Service	2 (1 uplink, 1 downlink)	
Max number of data connections per Service	8 (4 uplink, 4 downlink)	
Max number of data connections per SU	32	
Max number of data connections per μBST	3072 - 3 x number of SUs (3 connections are reserved for each SU)	
Max number of SUs per μBST	250	
Max number of MAC addresses in Bridging Table	μBST: 1,000 SU: 512 (Aging time is configurable. The default is 3 minutes for SU, 10 minutes for μBST)	
Max number of VLANs per Service	16	
Max number of VLANs per SU	16	
Max number of VLANs (VPL IDs) per μBST	1,024	
Max number of concurrent voice calls per Voice/L2 Service (with DRAP and/or Managed VoIP Service)	50	
Max number of concurrent voice calls per μBST (with DRAP and/or Managed VoIP Service)	50	

1.5.10 Physical and Electrical

1.5.10.1 Mechanical

Table 1-10: Mechanical Specifications, Micro Base Station Equipment

Unit	Dimensions (cm)	Weight (kg)
Micro Base Station IDU	1U ETSI type shelf, 1U x 44.4 x 27.2	3
AU-ODU-HP (excluding 2.3 GHz WCS models)	32.9 x 15.7 x 16.9.9	6.1
AU-ODU-HP (2.3 GHz WCS models)	32.9 x 15.7 x 20.9	8.6
GPS Adapter	15.7 x 14.6 x 3.17	0.4
Outdoor GPS Receiver	Tubular enclosure, 15.5 D x 12.7 H	0.363
Indoor GPS Receiver	1U x 30.8 x 21.3	1.4

^{* 1}U=44.45 mm (1.75")

1.5.10.2 Electrical

Table 1-11: Electrical Specifications, Micro Base Station Equipment

Unit	Details	
Power Source	-40.5 to -60 VDC	
Power Consumption (excluding ODUs)	53W typical, 64W max	kimum
AU-ODU-HP-2.x GHz	Tx (DL)	89W maximum, 75W typical
	Rx (UL)	15W maximum, 9W typical
AU-ODU-HP-3.x GHz	Tx (DL)	90W maximum, 62W typical
	Rx (UL)	20W maximum, 14W typical
GPS Adapter	12 VDC from the NPU	, 1.2W maximum
Indoor GPS Receiver	Power Source: -36 to -72 VDC	
	Power Dissipation: 20W maximum, 12W typical	
Outdoor GPS Receiver	12 VDC from the μBST via the GPS Adapter, 6W maximum	

22 System Description

1.5.10.3 Connectors

Table 1-12: Connectors, Micro Base Station Equipment

Connector	Connector	Description
Micro Base Station IDU	DC IN (on rear panel)	3 pin D-Type male Amphenol P/N 17TWA3W3PR157
	DATA	10/100Base-T (RJ-45) with 2 embedded LEDs. Cable connection to a PC: Crossed Cable connection to a hub: Straight
	MGMT	10/100Base-T (RJ-45) with 2 embedded LEDs. Cable connection to a PC: Crossed Cable connection to a hub: Straight
	GPS/SYNC IN	15-pin micro D-Type jack
	GPS/SYNC OUT	15-pin micro D-Type jack
	MON	3-pin low profile jack
	ODU 1 - ODU 2	4 x TNC jack, lightning protected
	ALRM IN	9-pin micro D-Type jack
	ALRM OUT	9-pin micro D-Type jack
AU-ODU	IF	TNC jack, lightning protected
	ANT	N-Type jack, 50 Ohm, lightning protected
GPS Adapter	BASE STATION INTERFACE	15-pin D-Type jack
	IDU GPS CMD	9-pin D-Type jack
	IDU GPS 1PPS IN	BNC jack
	ODU GPS	RJ-45 jack
Indoor GPS Receiver	POWER	4 pins power plug
	TIME OF DAY CHANNEL	9-pin D-Type jack
	COMMAND CHANNEL	9-pin D-Type jack
	2.048MHz	BNC jack
	1PPS	BNC jack
	ANTENNA	TNC jack
Outdoor GPS Receiver		12-pin round plug

1.5.10.4 2.X GHz Antennas, Mechanical Specifications

Table 1-13: Micro Base Station 2.X GHz Antennas, Mechanical Specifications

Unit	Description	Dimensions (cm)	Weight (kg)
BS ANT 60/2.X V	Downtilt Mounting Kit: 2" to 4.5" pole	109.3 x 21.3 x 12.4	5 maximum
	Connector: N-Type female		
BS ANT 90/2.X V	Downtilt Mounting Kit: 2" to 4.5" pole	109.3 x 21.3 x 12.2	5 maximum
	Connector: N-Type female		
BS ANT 120/2.X V	Downtilt Mounting Kit: 2" to 4.5" pole	109.3 x 20.5 x 11.9	5 maximum
	Connector: N-Type female		
BS ANT 65/2.X DP	Downtilt Mounting kit: 4 to 12 cm pole		2 maximum
	Connector: 2 x N-Type female		
BS ANT 90/2.X DP	Downtilt Mounting kit: 4 to 12 cm pole	100 x 12 x 5	2 maximum
	Connector: 2 x N-Type female		
BS ANT 120/2.X DP	Downtilt Mounting kit: 4 to 12 cm pole	100 x 17 x 9	5 maximum
	Connector: 2 x N-Type female		

24 System Description

1.5.10.5 3.x GHz Antennas, Mechanical Specifications

Table 1-14: Micro Base Station 3.x GHz Antennas, Mechanical Specifications

Unit	Description	Dimensions (cm)	Weight (kg)
BS ANT 60V/3.3-3.8	Mounting kit: 2" to 4" pole 76.6 x 15 x 8.7 2.2		2.2
	Connector: N-Type female		
BS ANT 90V/3.3-3.8	Mounting kit: 2" to 4" pole	76.6 x 15 x 8.6	2.2
	Connector: N-Type female		
BS ANT 120V/3.3-3.8	Mounting kit: 2" to 4" pole	76.6 x 14.4 x 8.3	2.0
	Connector: N-Type female		
BS ANT 60/3.5H	Mounting kit: 2" to 4" pole	50 x 20 x 2.8	2
	Connector: N-Type female		
BS ANT 90/3.5H	Mounting kit: 2" to 4" pole 60 x 25 x 5.5 2		2
	Connector: N-Type female		
BS ANT 65/3.5 DP	Downtilt Mounting kit: 4 to 12 cm pole 85.1 x 16 x 6.1 2 maximum		2 maximum
	Connector: 2 x N-Type female		
BS ANT 90/3.5 DP	Downtilt Mounting kit: 4 to 12 cm pole 85.1 x 16 x 6.1 2 maximum		2 maximum
	Connector: 2 x N-Type female		
BS ANT 120/3.5 DP	Downtilt Mounting kit: 4 to 12 cm pole	nting kit: 4 to 12 cm pole 68.8 x 16 x 14.5 2 maximum	
	Connector: 2 x N-Type female		
Omni ANT 3.4-3.6	Mounting bracket: up to 50 mm pole. Connector: N-Type female	67.5 tubular, 8 diameter	0.29

Chapter 2 - Installation Guidelines

In This Chapter:

- "Installing the AU-ODU" on page 28
- "Installing the Micro Base Station Equipment" on page 36

NOTE

Refer to the BreezeMAX TDD Micro Base Station Installation Manual for more detailed instructions on installation of the Micro Base Station and its components.

2.1 Installing the AU-ODU

The following sections describe how to install the AU-ODU, including pole mounting the ODU and connecting the cables.

For more detailed instructions, refer to the BreezeMAX TDD Micro Base Station Installation & Maintenance Manual.

NOTE

In sectors with diversity (either second or fourth order diversity), new 2.x GHz AU-ODUs with HC08 revision 137 (HW ready for 10 MHz bandwidth), cannot be connected to the same AU-IDU together with older AU-ODUs with HC08 version 134. All AU-ODUs connected to the same AU-IDU must use the same HC08 version.

2.1.1 AU-ODU Installation Requirements

2.1.1.1 AU-ODU Packing List

- AU-ODU
- Pole mounting kit

2.1.1.2 Additional Installation Requirements

The following items are also required to install the AU-ODU:

- IF cable with two TNC connectors* (see Section 2.1.3 for details on IF cable types and length).
- Antenna* and RF cable* for connecting the antenna to the AU-ODU.
- Grounding cable with an appropriate termination.
- Installation tools and materials, including appropriate means (e.g. a 1" to 4" pole) for installing the AU-ODU and antenna.
- An "H" kit for installation of up to 4 ODUs and 4 antennas that serve a single sector is optionally available*.

NOTE

Items marked with an asterisk (*) are available from Alvarion.

2.1.2 Guidelines for Positioning the AU-ODU

This section provides key guidelines for selecting the optimal installation locations for the AU-ODU and its antenna.

CAUTION

ONLY experienced installation professionals who are familiar with local building and safety codes and, wherever applicable, are licensed by the appropriate government regulatory authorities should install outdoor units and antennas.

Failure to do so may void the BreezeMAX product warranty and may expose the end user or Service Provider to legal and financial liabilities. Alvarion and its resellers or distributors are not liable for injury, damage or regulation violations associated with the installation of Outdoor Units or antennas.

Select the optimal locations for the equipment using the following guidelines:

- The ODU can be either pole or wall mounted. Its location should enable easy access to the unit for installation and testing.
- The higher the placement of the antenna, the better the achievable link quality.
- The antenna should be installed so as to provide coverage to all Subscriber Units within its service area.

NOTE

The recommended minimum distance between any two antennas in neighboring sectors is 0.5 meters.

The minimum distance between any two antenna in the same sector (space diversity configuration) is 10λ , where λ =C/Frequency (Hz). C is the speed of light in centimeters per second which is equal to 29,979,245,800.

An "H" kit for installation of up to 4 ODUs and 4 antennas that serve a single sector is optionally available from Alvarion. Refer to the detailed BreezeMAX TDD Micro Base Station Installation & Maintenance Manual for information on installing the "H" accessory. The "H" accessory is designed for separation distances of up to 1.3 meters between antennas.

The ODU should be installed as close as possible to the antenna.

2.1.3 IF Cables

The AU-ODU is connected to the Micro Base Station via an IF cable carrying both signals and power. The maximum permitted attenuation of the IF cable at applicable frequencies, its screening effectiveness and its maximum permitted DC

resistance (the sum of the DC resistance of the inner and outer conductors) are provided in the following table.

Table 2-1: IF Cables Requirements

Item	Description
Screening Effectiveness	90 dB minimum in the 10-300 MHz band.
IF cable Impedance	50 Ohm
Maximum IF cable Attenuation	10 dB @ 240 MHz
	7.5 dB @ 140 MHz
	8 dB @ 64 MHz
Maximum IF cable DC Resistance	1.5 Ohm
Maximum IF cable Return Loss	20 dB in the 10-300 MHz band

To comply with the required screening effectiveness requirement, it is recommended to use double shielded cables. The following table provides details on maximum length for some popular cables.

Table 2-2: Maximum IF Cable Length (Double Shielded Cables)

Cable	Maximum Length for AU-ODU-HP
LMR-195	30 meters
LMR-240	60 meters
LMR-400	150 meters

2.1.4 Pole Mounting the ODU

The ODU can be mounted on a 1" to 4" pole using one of the following options:

- Special clamps and threaded rods are supplied with each unit. There are two pairs of threaded holes on the back of the unit, enabling to use the clamps for mounting the unit on diverse pole diameters.
- The protrusions with grooves on the top backsides of the unit, and the protrusion on the bottom backside, enable the use of 9/16" wide metal bands (not included with the package) to secure the unit to a pole.

NOTE

Install the unit with the bottom panel, which includes the LEDs, facing downward.

2.1.4.1 Pole Mounting the 2.x/3.x GHz AU-ODU-HP Using Clamps

Figure 2-1 illustrates the method of mounting a High Power 2.x/3.x GHz AU-ODU-HP on a pole, using the clamps and threaded rods.

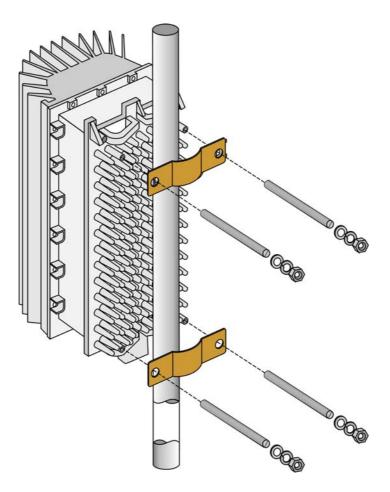


Figure 2-1: 2.x/3.x GHz AU-ODU-HP Pole Installation Using Special Clamps

NOTE

There is a groove on one end of the threaded rod. Insert the threaded rods with the grooves pointing outward, as these grooves enable you to use a screwdriver to fasten the rods to the unit.

2.1.4.2 Pole Mounting the 2.x/3.x GHz AU-ODU-HP Using Metal Bands

Figure 2-2 illustrates the method of mounting a High Power 2.x/3.x GHz AU-ODU-HP on a pole, using metal bands.

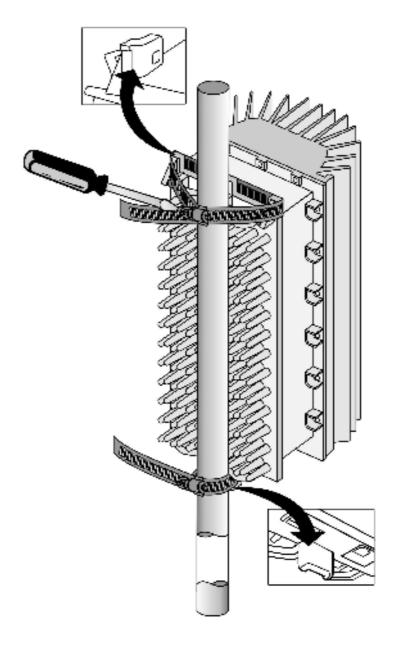


Figure 2-2: 2.x/3.x GHz AU-ODU-HP Pole Installation Using Metal Band

2.1.5 **AU-ODU**

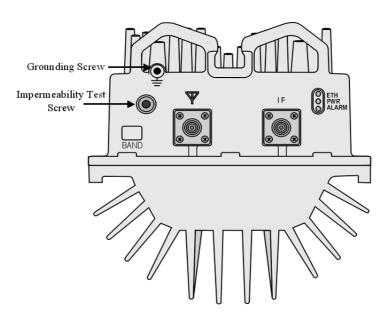


Figure 2-3: Bottom Panel of the 2.x/3.x GHz AU-ODU-HP (except 2.3 GHz WCS)

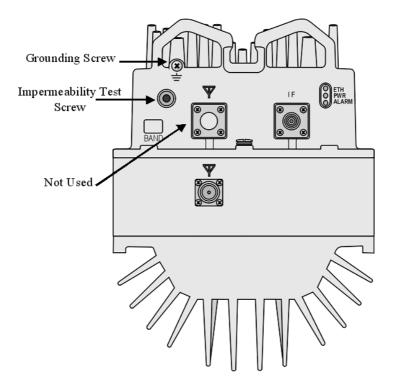


Figure 2-4: Bottom Panel of the AU-ODU-HP - 2.3 GHz WCS

A

CAUTION

Do not open the impermeability test screw - you may impair the sealing of the unit against moisture and humidity.

Table 2-3: AU-ODU LEDs

Name	Description	Functionality
ETH	Not Used	
PWR	Power indication	Off - Power failure
		Green - Power to ODU is OK, internal 3.3 VDC power supply is OK.
ALARM	IDU-ODU communication and synthesizer status indication	Off - IDU-ODU communication is OK, synthesizer is locked.
		Red - IDU-ODU communication failure or synthesizer is not locked

2.1.6 Connecting the Cables

Table 2-4: AU-ODU Connectors

Name	me Connector Functionality	
IF	TNC jack	Connection to the Micro Base Station
Y ANT	N-Type jack, 50 Ohm	Connection to an external antenna
≟ (GND)	Grounding screw	Connection to ground (earth)

2.1.6.1 Connecting the Grounding Cable

The Grounding screw (marked $\stackrel{\bot}{=}$) is located on the bottom panel of the outdoor unit.

To connect the grounding cable:

- 1 Connect one end of a grounding cable to the grounding screw and tighten the grounding screw firmly.
- 2 Connect the other end of the grounding cable to a good ground (earth) connection.

2.1.6.2 Connecting the Antenna Cable

To connect the RF cable:

- 1 Connect one end of the coaxial RF cable to the RF connector (marked \mathbf{Y}) located on the bottom panel of the unit.
- **2** Connect the other end of the RF cable to the antenna.
- **3** The RF connectors should be properly sealed to protect against rain and moisture.

2.1.6.3 Connecting the IF Cable

To connect the IF cable:

- 1 Connect one end of the coaxial IF cable to the IF connector on the bottom panel of the unit.
- 2 Verify that the length of the IF cable is sufficient to reach the Micro Base Station. See IF cable length limitation in Section 2.1.3.
- **3** The IF cable connector should be properly sealed to protect against rain and moisture.
- 4 Route the cable to the location selected for the indoor equipment.

2.2 Installing the Micro Base Station Equipment

2.2.1 Installation Requirements

2.2.1.1 Packing List

- Micro Base Station Unit
- DC power cable
- Monitor cable

2.2.1.2 Additional Installation Requirements

- Ethernet cable (straight) for connecting the unit to a hub/switch.
- A grounding cable with appropriate terminations for connecting the unit's ground terminal to the rack or to a ground connection.
- For installation in a 21" ETSI rack: two 21" ETSI rack adapters
- A portable PC for configuring parameters using the Monitor cable.
- Other installation tools and materials

2.2.2 The Micro Base Station Front Panel

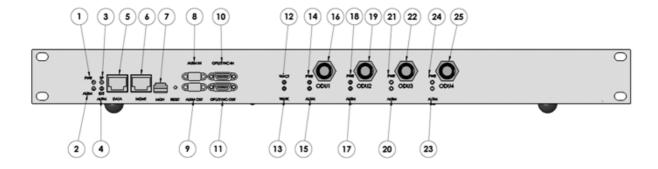


Figure 2-5: Micro Base Station Front Panel

Table 2-5: Micro Base Station Connectors

Name	Connector	Functionality
DATA (5)	10/100Base-T (RJ-45) with 2 embedded LEDs.	Connection to the backbone. Cable connection to a hub/switch/router: Straight
MGMT (6)	10/100Base-T (RJ-45) with 2	Connection to OOB management.
	embedded LEDs.	Cable connection to a PC: Crossed
		Cable connection to a hub/switch/router: Straight
MON (7)	3-pin low profile jack	Access for debugging and configuration using the Monitor program
ALRM IN (8)	9-pin micro D-Type jack	Not used currently. Connections to external alarm indicators (3 alarm inputs, NC or NO)
ALRM OUT (9)	9-pin micro D-Type jack	Not used currently. Connections for activation of external devices (4 dry contact pairs)
GPS/SYNC IN (10)	15-pin micro D-Type jack	Connection to a GPS Adapter (or to another Micro Base Station) that supplies
		synchronization signals.
GPS/SYNC OUT (11)	15-pin micro D-Type jack	Supply of synchronization signals to another
		unit
ODU 1 (16), ODU 2 (19), ODU 3 (22), ODU 4 (25)	4 x TNC jacks	IF connections to AU-ODUs.

Table 2-6: Micro Base Station LEDs

Name	Description	Functionality	
PWR (1)	Power indication	Off - Micro Base Station is not powered	
		Red - Input power failure	
		■ Green - Micro Base Station power is OK	
ALRM (2)	Micro Base Station alarm indication	Off - No Micro Base Station alarm	
		Red - Micro Base Station failure	
SP (3)	Spare	Not Used	
EXT ALRM (4)	External alarm indication	Red - External alarm (received via the ALRM IN port). Not applicable to the current release	
WACT (12)	IDU transmission indication	Off - No IDU transmission	
		Green - IDU transmission OK	

Table 2-6: Micro Base Station LEDs

Name	Description	Functionality
WLINK (13)	Wireless link status indication	Off - No SU is associated
		Green - At least one SU is associated
ODU 1 PWR (14), ODU 2 PWR (16),	IDU to ODU Power Indication	Off - No IDU to ODU power output
ODU 3 PWR (21), ODU 4 PWR (24)		Red - IDU to ODU power output failed
		■ Green - IDU to ODU power output OK
ODU 1 ALRM (15), ODU 2 ALRM (17),	IDU-ODU communication status	Off - IDU-ODU communication OK
ODU 2 ALRM (17), ODU 3 ALRM (20), ODU 4 ALRM (23)		Red - IDU-ODU communication failure

2.2.2.1 Preparing a DC Power Cable

A 2.5m DC power cable is supplied with each chassis. Additional DC cables can be ordered from Alvarion. If necessary, use the following instruction to prepare a DC cable.

To prepare the power cable:

- 1 Use a cable capable of supporting a current of at least 20A. Use a cable with 2 x 8AWG (or thicker) wires for the power plus an additional 8AWG to 20AWG ground wire.
- 2 The matching power connector to be used is Amphenol D-type power P/N 177TWA/3W3/SP3Y with high power socket contacts P/N 17DM53744-1.
- **3** Connect the cable to the power connector as follows:
 - ♦ Pin 1 (RTN): Red (8AWG min wire)
 - ♦ Pin 2 (-48V): Black (8AWG min wire)
 - ♦ Pin 3 (→): Ground (shield) (8AWG-20AWG wire)
- 4 Attach suitable terminal rings to the side that connects to the power source.

2.2.3 Power Requirements

Use the following table to calculate worst-case power source requirements for the Micro Base Station equipment:

Table 2-7: Electrical Specifications, Micro Base Station Equipment

Unit	Details	
Power Source	-40.5 to -60 VDC	
Power Supply efficiency	80% minimum	
Power Consumption (excluding ODUs)	53W typical, 64W max	kimum
AU-ODU-HP-2.x GHz	Tx (DL)	89W maximum, 75W typical
	Rx (UL)	15W maximum, 9W typical
AU-ODU-HP-3.x GHz	Tx (DL)	90W maximum, 62W typical
	Rx (UL)	20W maximum, 14W typical
GPS Adapter	12 VDC from the NPU, 1.2W maximum	
Indoor GPS Receiver	Power Source: -36 to -72 VDC	
	Power Dissipation: 20W maximum, 12W typical	
Outdoor GPS Receiver	12 VDC from the μBS	T via the GPS Adapter, 6W maximum

Example:

A full 2.x GHz Micro Base Station operating with DL-UL ratio of 60-40, with 4 ODUs, a GPS Adapter and an Outdoor GPS Receiver.

Maximum power consumption of the Micro Base Station IDU: 64 W

Maximum power consumption of the GPS components: [6(GPS Receiver) + 1.2(GPS Adapter)]/0.8(Efficiency) = 9W

When calculating the power requirements associated with the ODUs, we should distinguish between the peak power consumption (maximum current) and the average power consumption (taking into account Tx/Rx ratio) that affect the requirements from a backup power source.

For a 2.x GHz system, the peak power consumption of the 4 ODUs is 4*89/0.8=445W. Thus, the total peak power of the system under worst conditions is 64 + 9 + 445 = 518W.

The average maximum power consumption of the 4 ODUs, assuming DL-UL (Tx/Rx) ratio of 60-40, is 4*(89*0.60 + 15*0.40) = 238W. Thus, the average maximum power consumption of the system under worst case conditions is 238 + 64 + 9 = 311W.

2.2.4 Installing the Micro Base Station Unit

The indoor equipment should be installed as close as possible to the location where the IF cable(s) enters the building. The location of the indoor equipment should take into account its connection to the power source and to the base station networking equipment.

To install the Micro Base Station:

- 1 Place the unit on a shelf/desk or install it in a 19" cabinet. For installation in a 21" cabinet, attach suitable ETSI rack adapters to the chassis.
- 2 Connect one end of a grounding cable to the grounding screw located on the rear panel of the unit (marked) and firmly tighten the grounding screw. Connect the opposite end of the grounding cable to a ground (earth) connection or to the cabinet, if applicable.
- 3 Connect the DATA port to the backbone data equipment (use a straight Ethernet cable to connect to a hub/switch/router). The maximum length of the Ethernet cable is 100m.
- 4 If the MGMT port will be used for remote management, connect it to the appropriate data equipment (use a straight Ethernet cable to connect to a hub/switch/router). The maximum length of the Ethernet cable is 100m.
- 5 Connect the power cord to the unit's DC socket, located on the rear panel. Connect the other end of the power cord to the -48 VDC power source, as follows.
 - ♦ Connect the black wire to the 48 VDC contact of the power source.
 - ♦ Connect the red wire to the + (Return) contact.
 - ♦ Connect the ground wire to the ground.
- 6 Connect the IF cable(s) (already connected at the other end to the AU-ODU(s)) to the proper channels (ODU 1 to ODU 4 connectors). If only a single AU-ODU is used, connect the IF cable to the ODU-1 connector. If two AU-ODUs are used with second order diversioty, connect the relevant AU-ODUs to ODU-1 and ODU-2 connectors. To avoid transmissions at undesired frequencies, verify that the frequency and bandwidth parameters are properly configured before connecting the IF cables.

2.2.5 Daisy-chaining Two or More Micro Base Station

If two or more Micro Base Stations are collocated, their operation should be synchronized. Use a synchronization cable (supplied separately) to connect the GPS/SYNC OUT connector of the first (Master) unit to the GPS/SYNC IN connector of the second unit. The GPS/SYNC OUT of this second unit may be connected to the GPS/SYNC IN of a third unit, and so on, up to a maximum of 5 Micro Base Stations (one Master and 4 Slave units).

NOTE

The Chain parameters of the daisy-chained Micro Base Station must be configured properly.

2.3 Installing the GPS Adapter

2.3.1 Installation Requirements

2.3.1.1 Packing List

- A 19" panel for the GPS Adapter module.
- GPS Adapter module, including a 2m Micro Base Station to GPS Adapter cable and four screws.

2.3.1.2 Additional Installation Requirements

- A grounding cable with appropriate terminations for connecting the unit's ground terminal to the rack or to a ground connection.
- For installation in a 21" ETSI rack: two 21" ETSI rack adapters
- Other installation tools and materials

2.3.2 The GPS Adapter

The GPS Adapter connects the different GPS units to the Master Micro Base Station, adapting the different interfaces. Future versions may include an internal GPS module that will allow an all-in-one low-cost solution. A future optional addition of OCXO in the GPS Adapter box may provide an improved hold over solution when the GPS is not synchronized. The GPS Adapter is powered by 12 VDC supplied by the Micro Base Station. The GPS Adapter is installed in a 1U high panel.

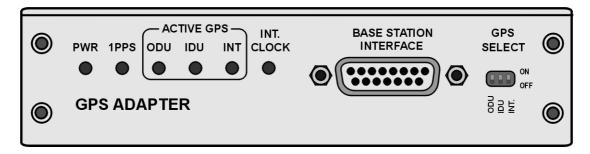


Figure 2-6: GPS Adapter Front Panel

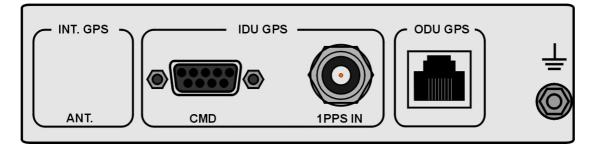


Figure 2-7: GPS Adapter Rear Panel

Table 2-8: GPS Adapter Connectors

Name	Connector	Functionality	
BASE STATION INTERFACE	15 pin D-Type jack	■ 1PPS and 16MHz synchronization signals (LVDS interface) to the Micro Base Station	
		Power (12 VDC) from the Micro Base Station	
		Serial control signals (RS-442 interface) from the Micro Base Station	
CMD	9 pin D-Type jack	Serial control signals (RS-232 interface) to the Indoor GPS Receiver.	
1PPS IN	BNC jack	1PPS signal (TTL levels) from Indoor GPS Receiver	
ODU GPS	RJ-45 jack	■ 1PPS (RS-442 interface) from Outdoor GPS Receiver	
		Serial control signals (RS-422 interface) to Outdoor GPS Receiver	
		Power (12 VDC) to Outdoor GPS Receiver	
블 (GND)	Grounding Screw	Connection to ground (earth)	

Table 2-9: GPS Adapter LEDs

Name	Description	Functionality
PWR	Input power indication	Off - Power input failure
	a.ca.iic.i	■ Green - 12 VDC power supply from NPU is OK
1PPS	1PPS signal indication	■ Blinking Green - 1PPS signal from GPS Receiver is detected
		Red - 1PPS signal is not detected
Active GPS - ODU	ODU GPS selection	Green - indicates that the selected GPS Receiver: is ODU (Outdoor)
	indication	Off - ODU GPS Receiver is not selected
Active GPS - IDU	IDU GPS selection	Green - indicates that the selected GPS Receiver: is IDU (Indoor)
	indication	Off - IDU GPS Receiver is not selected
Active GPS - INT	INT GPS selection	Green - indicates that the selected GPS Receiver: is INT (Internal). Internal is not supported in current release.
	indication	Off - INT GPS Receiver is not selected
INT CLOCK	Internal clock	
INTOLOGIC	source indication	Green - Internal 16MHz clock is ok (not supported in current release)
		Red - Internal clock is not available or clock failure

2.3.3 Installing the GPS Adapter

To install the GPS Adapter:

- 1 The GPS Adapter is installed on the 1U high panel. The panel is supplied with blank covers. Release the nuts on the rear side of the panel to remove the blank cover you want to replace with the GPS Adapter. Attach the GPS Adapter module to the panel using the four screws supplied with it.
- 2 Place the panel with the GPS Adapter on a shelf/desk or install it in a 19" cabinet, next to the Micro Base Station unit. The distance from the Micro Base Station equipment should allow connection of the 2 meters Micro Base Station to GPS Adapter cable. For installation in a 21" cabinet, attach suitable ETSI rack adapters to the panel.
- 3 Connect one end of a grounding cable to the grounding screw located on the rear panel of the GPS Adapter and firmly tighten the grounding screw. Connect the opposite end of the grounding cable to a ground (earth) connection or to the cabinet, if applicable.
- 4 Connect the Micro Base Station to GPS Adapter cable to the BASE STATION INTERFACE connector on the front panel of the GPS Adapter. Connect the other end of the cable to the GPS/SYNC IN connector of the Micro Base Station.
- 5 Select the GPS Receiver to be used using the GPS SELECT miniature DIP switches:
 - ♦ To use Outdoor GPS Receiver, move the ODU (left-most) switch to the ON (up) position. Make sure that the two other switches are in the OFF (down) position.
 - ♦ To use Indoor GPS Receiver, move the IDU (middle) switch to the ON (up) position. Make sure that the two other switches are in the OFF (down) position.
 - ♦ The INT (Internal) GPS Receiver option is not available in current release.
- 6 Connect the applicable cable(s) to the selected GPS Receiver.

NOTE

Refer to the documentation supplied with the GPS Receiver for instructions on how to install and

2.3.4 Micro Base Station to GPS Adapter Cable

Table 2-10: Micro Base Station to GPS Adapter Cable Pin Out

DB 15-pin Male (GPS Adapter)	Micro 15-pin Female (Micro Base Station)	Name	Description	
1	1	IN_SENSE	GPs Adapter Presence Indication	
2	2	EXT_16M_IN-	External 16MHz clock from GPS Adapter, LVDS twisted pair (Not Used)	
10	10	EXT_16M_IN+		
3	3	NC	Not Used	
4	4	1PPS_IN+	1PPS signal from GPS Adapter, LVDS	
11	11	1PPS_IN-	twisted pair,	
5	5	GPS_TX-	Transmit communication channel from	
13	13	GPS_TX+	GPS, RS422 twisted pair	
6	6	GPS_RX-	Receive communication channel to GPS, RS422 twisted pair	
14	14	GPS_RX+		
7	7	NC	Not Used	
8	8	GND	Ground	
9	9	GND	Ground	
12	12	NC	Not Used	
15	15	+12V	12 VDC to GPS	
Shell	Shell	Shield		
9				

2.3.5 GPS Adapter to Outdoor GPS Receiver Cable

Table 2-11: GPS Adapter to Outdoor GPS Receiver Cable Pin Out

12-pin Bayonet (GPS Receiver)	RJ 45 (GPS Adapter)	Name	Wire Color	Description
1	2	Power (12 VDC)	Orange	Twisted pair
9	1	Ground	Orange/White	
2	5	Receive-	Blue	RS422 twisted pair
3	6	Receive+	Blue/White	
4	4	Transmit-	Brown	RS422 twisted pair
5	3	Transmit+	Brown/White	7
11	8	1PPS+	Green/White	RS422 twisted pair
12	7	1PPS-	Green	
NC	Case		Shield	
10 9 1 00 9 5 12				

Chapter 3 - Commissioning

In This Chapter:

- "Configuring Basic Parameters of Micro Base Station" on page 50
- Operation Verification" on page 56

3.1 Configuring Basic Parameters of Micro Base Station

After completing the installation process, as described in the preceding chapter, some basic parameters must be configured using the Monitor application via the MON port of the Micro Base Station. These parameters are necessary to enable remote management using SNMP or Telnet.

If the Micro Base Station is in the default factory configuration, or if the IP parameters of either the Data or Management port are known, you may configure the parameters using Telnet. You may also use AlvariCRAFT, provided you know the IP parameters of one port and the Authorized Managers list in the Micro Base Station is either empty (default) or includes the IP address of the AlvariCRAFT station.

NOTE

The default Installer password is "installer".

Refer to the AlvariCRAFT User Manual for information on how to use it.

The basic parameters are listed in Table 3-1. Refer to Chapter 4 for detailed information on the applicable parameters.

Table 3-1: Basic Micro Base Station Parameters

Management Option	Parameters
MGMT port	Management Port IP address
	Management Port Subnet Mask
	Management Port Gateway
	Management Port Destination Subnet
	Management Port Destination Subnet Mask
	Management Port Management Traffic Enable/Disable
	Management Port Auto Negotiation Option
	Management Port Speed and Duplex (if Auto Negotiation Option is disabled)

50 Commissioning

Table 3-1: Basic Micro Base Station Parameters

Management Option	Parameters
DATA port	■ Data Port Subnet Mask
	■ Data Port Gateway
	■ Data Port Management VLAN ID
	■ Data Port Management Traffic Enable/Disable
	■ Data Port Auto Negotiation Option
	■ Data Port Speed and Duplex (if Auto Negotiation Option is disabled)
Authorized Managers (per	■ IP Address
manager)	Send Traps
	Read Community
	■ Write Community

The following are the guidelines for configuring the basic parameters:

- All parameters of both ports should be configured. Otherwise, default values shall be used.
- If remote OOB management via a router connected to the Management port is used, the parameters should be configured to ensure different subnets for the Data port, the Management port (local OOB management) and the Management Port Destination. The Management Port Destination Subnet is the subnet behind a router connected to the Management port.

NOTE

It is highly recommended to use the Management port for local management only. Typically the port should be down (disconnected).

CAUTION

Do not configure the IP Address of the Management port to 0.0.0.0, as this will cause loss of management connectivity via the Data port.

Authorized Manager(s) must be configured properly to enable remote management using AlvariSTAR (or another SNMP based application).

NOTE

If no Authorized Manager is defined in the device, it can be managed using SNMP by any station. If at least one Authorized Manager is defined, the device can be managed only by a station whose parameters match a defined Authorized Manager.

Once the basic parameters have been configured, additional parameters and services can be remotely configured using either SNMP management or the Monitor application via Telnet. Alternatively, it is possible to continue the configuration process using the Monitor application via the MON serial port.

Refer to Chapter 4 for information on how to access the Monitor application either via the MON port or via Telnet and how to use it.

To enable proper operation of the Base Station and all its components, the following parameters must also be configured:

NOTE

The following list includes only parameters that are mandatory for proper operation of the Base Station. Configuration of other parameters may be done either at the same time or later.

3.1.1 Micro Base Station Configuration Parameters

3.1.1.1 Cell Parameters

- Operator ID
- Cell ID

3.1.1.2 **Duplex Parameters**

- Duplex Mode (must be TDD)
- DL-UL Ratio

3.1.1.3 Synchronization - Clock Parameters

- External 1PPS Clock (in a master unit must be enabled to support 1PPS from GPS. Not applicable for a slave unit)
- External 16MHz Clock (in this release must be disabled. Not applicable for a slave unit)

52 Commissioning

3.1.1.4 Synchronization - Chain parameters

- Chain Number
- Clock Mode
- GPS Protocol
- Time Zone Offset From UTC
- Daylight Saving
- Daylight Saving Start Date
- Daylight Saving End Date
- Daylight Saving Advance Factor

3.1.2 RADIUS Parameters

3.1.2.1 RADIUS General Parameters

Shared Secret

3.1.2.2 RADIUS Authentication

At least one Authentication server must be defined to enable RADIUS-based provisioning of services.

- IP Address
- UDP Port
- Server Status

3.1.2.3 RADIUS Accounting

At least one Accounting server must be defined to enable RADIUS-based accounting.

- IP Address
- UDP Port

Server Status

3.1.3 Radio Cluster

Radio Cluster ID: Verify that all required Radio Cluster IDs are defined

3.1.4 ODU

Define the necessary ODUs. For each ODU, configure the following:

- ODU ID
- Associated Radio Cluster
- Configured ODU Frequency Band
- Tx Power
- Admin Status: Enable when completing the configuration process

3.1.5 Access Parameters

3.1.5.1 MAC

- Sector ID
- Maximum Cell Radius (km)

3.1.5.2 Phy

Bandwidth

3.1.5.3 Multi Channel

Diversity Mode

The following parameters must be configured for each channel used if Diversity Mode is No Diversity. Otherwise, only Channel 1 needs to be configured:

- Associated ODU
- Downlink (Tx) Frequency (MHz)

54 Commissioning

Admin Status: Enable when completing the configuration process

3.1.5.4 Multirate

- Uplink Basic Rate
- Minimum Number of Sub-Channels
- Downlink Basic Rate

3.1.5.5 Voice

- Maximum Number of Voice Calls
- Minimum Allocation

3.1.6 SU

3.1.6.1 SW Files in Micro Base Station - Default SW File (Advanced Si)

- Name
- Action

3.2 Operation Verification

The following sections describe how to verify the correct functioning of the Outdoor Units, Indoor Units, Ethernet connection and data connectivity.

3.2.1 AU-ODU LEDs

To verify the correct operation of the AU-ODU, examine the LED indicators located on the bottom panel of the outdoor unit.

The following tables list the provided LEDs and their associated indications.

NOTE

Verifying the correct operation of the Outdoor Unit using the LEDs, as described below, is only possible after the configuration of basic parameters has been completed.

Table 3-2: AU-ODU LEDs

Name	Description	Functionality
PWR	Power indication	Off - Power failure
		Green - Power to ODU is OK, internal 3.3 VDC power supply is OK.
ALARM	IDU-ODU communication and synthesizer status indication	Off - IDU-ODU communication is OK, synthesizer is locked.
		Red - IDU-ODU communication failure or synthesizer is not locked
ETH	Not Used	

3.2.2 Micro Base Station LEDs

To verify the correct operation of the Micro Base Station equipment, examine the LED indicators located on the front panel of the unit. The following table lists the LEDs of the Micro Base Station and their associated indications.

Table 3-3: Micro Base Station LEDs

Name	Description	Functionality
PWR	Power indication	Off - Micro Base Station is not powered
		Red - Input power failure
		■ Green - Micro Base Station power is OK
ALRM	Micro Base Station alarm indication	Off -Micro Base Station is OK
		Red - Micro Base Station failure
SP	Spare	Not Used
EXT ALRM	External alarm indication	Red - External alarm (received via the ALRM IN port). Not applicable in the current release.
WACT	IDU transmission indication	Off - No IDU transmission
		■ Green - IDU transmission OK
WLINK	Wireless link status indication	Off - No SU is associated
		■ Green - At least one SU is associated
ODU1-ODU4 PWR	IDU to ODU Power Indication	Off - No IDU to ODU power output
		Red - IDU to ODU power output failed
		■ Green - IDU to ODU power output OK
ODU1-ODU4 ALRM	IDU-ODU communication status	Off - IDU-ODU communication OK
		Red - IDU-ODU communication failure

3.2.3 GPS Adapter LEDs

To verify the correct operation of the GPS Adapter, examine the LED indicators located on the front panel of the unit. The following table lists the LEDs of the GPS Adapter and their associated indications.

Table 3-4: GPS Adapter LEDs

Name	Description	Functionality
PWR	Input power indication	Off - Power input failure
		■ Green - 12 VDC power supply from NPU is OK
1PPS	1PPS signal indication	■ Blinking Green - 1PPS signal from GPS Receiver is detected
		Red - 11PPS signal is not detected
Active GPS - ODU	ODU GPS selection indication	Green - indicates that the selected GPS Receiver: is ODU (Outdoor)
		Off - ODU GPS Receiver is not selected
Active GPS - IDU	IDU GPS selection indication	Green - indicates that the selected GPS Receiver: is IDU (Indoor)
		Off - IDU GPS Receiver is not selected
Active GPS - INT	INT GPS selection indication	Green - indicates that the selected GPS Receiver: is INT (Internal). Internal is not supported in current release.
		Off - INT GPS Receiver is not selected
INT CLOCK	Internal clock source indication	Green - Internal 16MHz clock is ok (not supported in current release)
		Red - Internal clock is not available or clock failure

3.2.4 Verifying the Ethernet Connection

After connecting the unit to an Ethernet outlet, verify that the Ethernet Integrity Indicator, which is the yellow LED embedded in the DATA port connector, is on. This indicates that the unit is connected to an Ethernet segment. The Ethernet Activity Indicator, which is the green embedded LED, should blink whenever the unit receives or transmits traffic on the DATA port.

58 Commissioning

Chapter 4 - Operation and Administration

In This Chapter:

- "BreezeMAX System Management" on page 60
- The Monitor Program" on page 62
- "The Micro Base Station's Main Menu" on page 66
- "Micro Base Station Menu" on page 68
- Radio Cluster Menu" on page 112
- ODU Menu" on page 115
- "Access Parameters Menu" on page 121
- SU Menu" on page 130
- "Services Menu" on page 156
- "Parameters Summary" on page 204

4.1 BreezeMAX System Management

All BreezeMAX system components associated with a Micro Base station are managed via the Micro Base Station. The Subscriber Units are not accessed directly: each configuration change or status enquiry is sent to the Micro Base Station that communicates with the SUs.

\blacksquare

NOTE

The SU can also be managed directly from its Ethernet port using the Installer Monitor program or the built-in Web Server. These options are available to support the installation process and enable special tests and performance monitoring at the SU's site.

The following management options are available:

- SNMP based management using AlvariSTAR (or another network management system customized to support management of BreezeMAX).
- Using Telnet to access the embedded Monitor application.
- Accessing the embedded Monitor application locally via the MON port.

NOTE

It is not possible to manage the Base Station vis the wireless link (from the SU's side).

Two management access methods are available to support management using SNMP and/or Telnet:

- Out-Of-Band (OOB) management via the dedicated MGMT port.
- In-Band (IB) management via the DATA port.

NOTE

To enable remote management of devices behind the SU, including Voice and Networking Gateways, IP connecctivity with the managed device is needed. This is possible only via the Data port.

Typically, BreezeMAX systems will be managed using AlvariSTAR or another SNMP based network management system.

This chapter describes how to manage the system using the Monitor application. For information on managing the system using AlvariSTAR refer to the Applicable AlvariSTAR documentation.

NOTE

To enable remote management (using SNMP and/or Telnet), the parameters of the applicable port (MGMT and/or DATA) must first be configured via the MON port. For details on the applicable parameters refer to Section 4.5.3.2 (Management Port) and Section 4.5.3.3 (Data Port).

4.2 The Monitor Program

4.2.1 Accessing the Monitor Program

To access the Monitor program via the MON connector:

- 1 Use the Monitor cable to connect the MON connector of the Micro Base Station to the COM port of your ASCII ANSI terminal or PC. The COM port connector on the Monitor cable is a 9 pin D type plug.
- 2 Run a terminal emulation program, such as HyperTerminal™.
- 3 Set the communication parameters as shown in the following table:

Table 4-1: COM Port Configuration

Parameter	Value
Baud Rate	9600
Data Bits	8
Stop Bits	1
Parity	None
Flow Control	Xon/Xoff
Port	Connected COM port

4 The password prompt is displayed. Enter the password and press the Enter key to get to the Main menu.

NOTE

There are 3 access levels, as described in Section Section 4.2.1. The default password for each of the access levels is:

Access Level	Default Password
Administrator	admin
Installer	installer
Monitor	monitor

To access the Monitor program using Telnet:

- 1 The PC used for accessing the Monitor program should be configured according to the parameters configured for the applicable port (MGMT or DATA port).
- 2 If you connect directly to the MGMT or DATA port, use a crossed Ethernet cable.
- **3** Run the Telnet program connecting to the IP address of the connected port.
- 4 The Enter the password message is displayed. Enter the password and press the Enter key to get to the Main menu.

NOTE

If you forgot the Installer or Monitor password, the Administrator can log-in (with the Administrator password) and define a new password for Installer and/or Monitor access level.

If you forgot the Administrator password, type "help" to receive a challenge string consisting of 24 characters. Contact Alvarion's Customer Service and provide the challenge string (after user identification) to receive a temporary password. You can use this password only once to enter the program. The password must be changed during the session to a different "permanent" password. The administrator should be notified of this new password. Five consecutive errors in entering the temporary password will invalidate it. In this case, repeat this procedure to receive a new challenge string for a new temporary password.

4.2.2 Using the Monitor Program

This section describes the Monitor program structure and navigation rules.

- There are three access levels to the Monitor program. The available actions depend on the access level (password) used for accessing the program:
 - ♦ Administrator: Read/Write permissions for all parameters. The default password is admin.
 - ♦ **Installer**: Read-only permission for the Services menu and for the RADIUS menu, Read/Write permissions for all other options excluding the Change Password option. The default password is installer.
 - ♦ **Monitor**: Read-only permissions for all parameters. The default password is monitor.
- Each menu or submenu specifies the unit type (BreezeMAX/μBST), the IP address of the port used for accessing the Monitor program (when using the MON port, this is the IP address of the DATA port), the running SW version

and a description of the menu. When accessing the Monitor program using Telnet, the IP address of the applicable port is displayed after the unit type.

- Each menu or submenu displays a list of numbered options. To access an option, enter the number of the required option at the > prompt and press the Enter key.
- At any point in the program, you can use the Esc key to return to the previous menu (one level up) without applying any change.
- The first selectable item in most menus is the Show option, enabling to view the current configuration of the applicable parameters. For some menus some additional status information is displayed.

For certain parameters, an updated value is applied only after reset or after entering a specific command. In these parameters, the configured value may differ from the actual value. If the configured value differs from the actual value both values will be displayed, where the first one is the configured value and the second is the actual value. For example: "Bandwidth (MHz): 5, 3.5" means that the configured bandwidth, to be applied after the next reset, is 5 MHz, and the current actual bandwidth is 3.5 MHz.

For certain parameters the actual values may not be available (such as when pre-configuring an ODU that is not yet connected). For these parameters a value of NA (Not Available) will be displayed.

- The Update/Add options will display all applicable parameters line by line, allowing to conveniently edit all of them. The current value is displayed for each parameter. To keep the current value press Enter. To change it enter a new value and press Enter.
- Press the Tab key for context sensitive help text (where applicable).
- If an erroneous value was entered the reason of the error or help text will be displayed, and the parameter entry text will be displayed again.
- Many menus include a Select By option, enabling to get a sub-menu for a selected entity according to the selection criteria.
- If the Monitor program is not used for 10 minutes, the session will be automatically terminated.
- Select the Exit option in the Main menu to exit the program and terminate the session.

4.3 IP Addresses Configuration

- 1 The following IP addresses should not be used and will be rejected:
- 0.0.0.0 0.255.255.255
- 255.255.255.255 (Broadcast)
- 224.0.0.0 239.255.255.255 (Multicasts, RFC 3171 D)
- 2 Note that the following IP addresses are reserved for specific applications:
- 10.0.0.0 10.255.255.255 (Private IP addresses, RFC 1918 A)
- 127.0.0.0 127.255.255.255 (Localhost Loopback Address, RFC 1700 A)
- 169.254.0.0 169.254.255.255 (Zeroconf / APIPA, RFC 3330 B)
- 172.16.0.0 172.31.255.255 (Private IP addresses, RFC 1918 B)
- 192.0.2.0 192.0.2.255 (Documentation and Examples, RFC 3330 C)
- 192.88.99.0 192.88.99.255 (IPv6 to IPv4 relay Anycast, RFC 3068 C)
- 192.168.0.0 192.168.255.255 (Private IP addresses, RFC 1918 C)
- 198.18.0.0 198.19.255.255 (Network Device Benchmark, RFC 2544 C)
- 240.0.0.0 255.255.255.255 (Reserved, RFC 1700 E)

4.4 The Micro Base Station's Main Menu

The Main menu of the Micro Base Station (μBST) Monitor program includes the following options:

- 1 Micro Base Station
- 2 Radio Cluster
- 3 ODU
- 4 Access Parameters
- 5 SU
- 6 Services
- X Exit

Following is a description of the menu items and the options available in each of the menu items.

4.4.1 Micro Base Station Menu

The Micro Base Station menu enables viewing general unit's details, viewing and configuring unit's parameters, managing the SW versions and viewing ports traffic counters. For more details refer to Section 4.5.

4.4.2 Radio Cluster Menu

The Radio Cluster menu enables viewing the details of existing Radio Clusters, defining new Radio Clusters, updating the parameters of an existing Radio Cluster and deleting a Radio Cluster from the database. For details refer to Section 4.6.

4.4.3 **ODU Menu**

The ODU menu enables viewing the status and configuration details of existing ODUs, configuring the parameters of new ODUs including pre-configuration of ODUs that are not yet installed, updating the parameters of existing ODUs and deleting ODUs from the database. For details refer to Section 4.7.

4.4.4 Access Parameters Menu

The Access Parameters menu enables viewing and configuring MAC, Phy, Multirate and other parameters that affect the wireless link. It also enables viewing and updating Channel's parameters. For details refer to Section 4.8.

4.4.5 **SU Menu**

The SU menu enables viewing summary information of all relevant SUs, configuring the parameters of a selected SU and defining new SUs. It also enables managing a selected SU's SW versions and viewing its current status, configuration and performance information. For more details refer to Section 4.9.

4.4.6 Services Menu

The Service menu enables viewing, updating and adding service profiles and subscribers, and allocating services to subscribers. It also enables viewing and updating filtering rules and the MAC Address Deny List. For more details refer to Section 4.10.

4.4.7 Exit

Select the Exit option (X) to exit the Monitor program and terminate the Telnet session.

4.5 Micro Base Station Menu

The Micro Base Station menu includes the following options:

- Show
- Unit Control
- Configuration
- Alarms and Traps
- Performance Monitoring
- Licenses
- RADIUS

4.5.1 **Show**

Select this option to view general unit's details as well as the current value/selected option of configurable parameters.

- Unit Details
 - ♦ IDU Serial Number
 - ♦ IDU Main Card HW Revision
 - ♦ IDU Main Card HW Configuration
 - ♦ IDU IF Card HW Revision
 - ♦ IDU IF Card HW Configuration
 - ♦ IDU Boot Version
 - ♦ IDU Temperature (Celsius)
 - ♦ IDU Cumulative Power On Time (hours): The cumulative power-on time of the IDU since first power-up.
 - Diversity Mode
 - Status

SW Versions

- ♦ Main SW File
- ♦ Main SW Version
- ♦ Shadow SW File
- ♦ Shadow SW Version
- ♦ Running From (Main or Shadow)
- ♦ Boot SW Version

For more details refer to Section 4.5.2.4.

General Parameters

- ♦ Device Name
- Device Location
- Operator ID
- ♦ Cell ID
- ♦ ATPC Enable/Disable
- Optimal Uplink RSSI (dBm)
- ♦ Redundant CPLD Version

For details refer to Section 4.5.3.1.

Management Port Configuration

- ♦ Management Port MAC Address
- ♦ Management Port IP Address
- Management Port Subnet Mask
- ♦ Management Port Gateway
- Management Port Dest Subnet
- ♦ Management Port Dest Subnet Mask
- Management Port Auto Negotiation
- Management Port Speed and Duplex

- ♦ Management Port Link Status (Up or Down)
- ♦ Management Port Management Traffic (Enabled/Disabled)

For details refer to Section 4.5.3.2.

- Data Port Configuration
 - Data Port MAC Address
 - Data Port IP Address
 - Data Port Subnet Mask
 - ♦ Data Port Gateway
 - ♦ Data Port Management VLAN
 - Data Port Auto Negotiation
 - Data Port Speed and Duplex
 - ♦ Data Port Link Status (Up or Down)
 - ♦ Data Port Management Traffic (Enabled/Disabled)

For details refer to Section 4.5.3.3.

- Authorized Managers (per manager)
 - ♦ IP Address
 - Send Traps
 - ♦ Read Community
 - Write Community

For details refer to Section 4.5.3.4.

- Bridge
 - ♦ Bridge Aging Time

For details refer to Section 4.5.3.5.

- Voice
 - ♦ DRAP TTL Retries

For details refer to Section 4.5.3.6.

- MAC Parameters
 - ♦ Sector ID
 - ♦ Maximum Cell Radius (km)

For details refer to Section 4.8.1.

- Phy Parameters
 - ♦ Bandwidth (MHz)

For details refer to Section 4.8.2.

- Multirate Parameters
 - Multirate Enable/Disable
 - Uplink Basic Rate
 - ♦ Downlink Basic Rate
 - ♦ Minimum Number of Sub-Channels

For details refer to Section 4.8.4.

- Voice Parameters:
 - ♦ Maximum Number of Voice Calls

For details refer to Section 4.8.5.

- Licenses Status
 - CPEs License Bank Status
 - ♦ Base Station Licenses

For details refer to Section 4.5.6.

4.5.2 Unit Control

The Unit Control menu enables changing the access Passwords and the Monitor Inactivity Timeout, resetting the μBST , reverting the μBST to the factory default configuration, managing the SW versions of the unit and creating backup files.

The Unit Control menu includes the following options:

- Change Password
- Reset
- Set Factory Defaults
- SW Versions Control
- Create Backup
- Monitor Inactivity Timeout

4.5.2.1 Change Password

For security and control reasons, the Change Password option is available only for users with Administration access rights. The Change Password option enables defining the passwords for each of the three different access levels: Administrator, Installer and Monitor. After changing the password for a selected access level, you will be prompted to re-enter the new password for confirmation.

1

NOTE

For security reasons, the passwords do not change after performing the Set Factory Defaults operation. For the same reason, the passwords cannot be managed using SNMP and are are not included in backup configuration files.

Valid passwords: Up to 16 printable characters, case sensitive.

The default passwords are:

Table 4-2: Default Passwords

Access Level	Default Password
Administrator	admin
Installer	installer
Monitor	monitor

4.5.2.2 Reset Unit

Select this option to reset the μBST . To avoid unintentional reset, you will be prompted to confirm the reset request. Changes to some of the configurable parameters are applied only after reset. Refer to Section 4.10 for information on

which parameters are changeable in run time and which changes are applied only after reset.

4.5.2.3 Set Factory Defaults

Select this option to set the μBST parameters (excluding the access Passwords) to their factory default values. Refer to Section 4.11 for information on the factory default values of these parameters. The parameters will revert to their default values after the next reset.

CAUTION

Setting the parameters of the μBST to their default values will disable remote management of the unit since this affects the IP and Ethernet parameters and will delete all Authorized Managers.

4.5.2.4 SW Version Control

The µBST can contain two SW versions:

- Main: Each time the μBST resets it will reboot using the version defined as Main.
- Shadow: Normally the Shadow version is the backup version. Each time a new SW File is downloaded to the μBST, it will be stored as a Shadow version, replacing the previous Shadow Version.

The typical process of upgrading to a new SW version includes the following steps:

- 1 Download the new SW File to the μBST . It will be stored as the Shadow version.
- 2 Reset and run the module from its Shadow version. Note that at this stage, if a reset were to occur, the unit will return to the previous Main version.
- 3 If you want to continue using the new version, swap the Shadow and Main versions. The new version is now defined as Main, and will be used each time the module reboots. The previous version is defined now as Shadow.

Each SW version includes two identifiers:

- SW File, which is the name of the downloaded SW file. This name does not necessarily include clear identification of the SW version number.
- SW Version, which provides the SW version number.

The SW Version Control submenu includes the following options:

- Show versions
- Run from Shadow
- Set as Main

4.5.2.4.1 Show Versions

Select this option to view the current available versions and the running version:

- Main SW File
- Main SW Version
- Shadow SW File
- Shadow SW Version
- Running From: Main or Shadow
- Boot SW Version

4.5.2.4.2 Run from Shadow

Select the Run from Shadow option to reset the μBST and run the Shadow version after power up. To avoid unintentional actions you will be prompted to confirm the request.

4.5.2.4.3 Set as Main

When the μBST is running the Shadow version (after selecting Reset and Run from Shadow), it will boot from the Main version after the next reset. Select the Set as Main option if you want to swap versions so that the running version will become the Main version and will be the version to be used after reset. To avoid unintentional actions you will be prompted to confirm the request.

4.5.2.5 Create Backup

The Create Backup option enables creating backup files of the μBST configuration. The backup file contains copies of all the applicable configuration files and databases in the system.

The following backup file types can be created:

- **Full:** The entire μBST configuration (excluding Passwords and basic IP parameters of the MGMT and DATA ports IP Address, Subnet Mask and Default Gateway).
- **Profiles**: All the profiles associated with services (Service Profiles, Forwarding Rules, Priority Classifiers, QoS Profiles).
- **Profiles and Services:** All the profiles and configurations associated with service (General Service parameters, Subscribers, Services, Service Profiles, Forwarding Rules, Priority Classifiers, QoS Profiles).
- **Filtering:** All the configurations of Filtering Rules, Interface Filtering and MAC Address Deny List.
- **Traps:** The configuration parameters for all traps.
- **BS License File**: All license related information, including total, available and used licenses, CPEs with allocated licenses (local or permanent), CPEs with grace or temporary grace licenses and CPEs for which grace license expired.

Upon selecting the backup type option, you will be requested to confirm the request. After confirmation, a message is displayed indicating that the backup file creation is in process. Upon successful completion of the process, a completion message will be displayed.

If a backup file of the same type already exists in the µBST, you will be asked whether to overwrite the existing file. If there was an error in the process of creating a backup file, an error message will be displayed, specifying the reason.

To upload/download the Backup File:

After the backup file has been created, it can be uploaded using a DOS based TFTP Client application to a target directory. To upload the file, use the command: *tftp -i <Port IP address> get <file name> <destination address>*.

The default file name is:

- Full: backup.res.
- Profiles: profiles.res
- Profiles and Services: profiles_srvcs.res

- Filtering: filtering.res
- Traps Configuration: Traps_Config.res
- BS License File: BSLicense_<Management Port MAC Address>.res

The file is encrypted and cannot be edited. However, it can be downloaded to other μBST(s) using a DOS based TFTP Client application with the command: *tftp-i <Port IP address> put <file name>*.

The target μBST will decrypt the backup file, extract all the configuration files and databases and will store them, replacing existing files/databases. The μBST should be reset to apply the downloaded configuration.

NOTE

To avoid loss of connectivity behind a router, the basic IP parameters of the MGMT and DATA ports (IP Address, Subnet Mask, Default Gateway) are not changed when loading a Full backup file to the μ BST. The values of these parameters configured in the target μ BST before the loading process, are maintained.

4.5.2.6 Monitor Inactivity Timeout

The Monitor Inactivity Timeout parameter determines the amount of inactive time following which the unit automatically exits the Monitor program.

The time out duration can range from 0 to 60 minutes. 0 means no inactivity timeout.

The default value is 10 minutes.

4.5.3 Configuration

The Micro Base station Configuration menu enables viewing and updating general parameters, parameters that define the functionality of the MGMT and DATA ports, the properties of authorized management stations and bridging functionality. It also enables configuring per Telnet session the types of messages that will be displayed upon occurrence of various events.

The Configuration menu includes the following options:

- General Parameters
- Management Port
- Data Port

- Authorized Managers
- Bridge
- Voice
- Debug Stream

4.5.3.1 General Parameters

Select this option to view or configure the general μBST parameters:

- Device Name
- Device Location
- ATPC
- Cell
- Duplex
- Synchronization

4.5.3.1.1 **Device Name**

The Device Name parameter provides identification information for the μBST.

The device name consists of up to 255 printable characters.

The default Device Name is a null string (empty).

4.5.3.1.2 Device Location

The Device Location parameter provides location information for the μBST .

The location name consists of up to 255 printable characters.

The default Device Location is a null string (empty).

4.5.3.1.3 ATPC

BreezeMAX employs an Automatic Transmit Power Control (ATPC) algorithm to dynamically adapt the transmit power of each SU so that it is received by the AU-ODU at an optimal level. ATPC is required to minimize the interference caused by a strong signal of an SU from one sector to other SU units in another sector. The ATPC algorithm will cause the SU to transmit a power level that minimizes the interference to other SU units, while maintaining a sufficient receiving power

level. The algorithm is managed by the Micro Base Station and optimal values are calculated separately for each SU based on the actual level at which it is received by the AU-ODU. MAP messages transmitted to the SUs include information on the estimated power level change required to achieve optimal transmit power level.

When several SUs transmit simultaneously each one increases the total level of noise. If a "strong" SU transmits simultaneously with a very "weak" SU, the noise induced by the "strong" one may cause the SNR of the "weak" SU to be too low. In order to avoid this, all SUs should not be too "strong" – their RSSI at the AU-ODU should be not be higher than a nominal RSSI (typically -74 dBm), defined by the Optimal Rx RSSI parameter. Changing the amount of subchannels may causes change in RSSI. In order to avoid this, reduction in amount of subchannels from 16 (full bandwidth) to 8, 4, 2 or 1, will be accompanied with a reduction of 3, 6, 9 or 12 dBm, respectively, in the SU's Tx power (unless the RSSI of the SU is below the nominal RSSI level).

The ATPC menu enables viewing/updating the following parameters:

4.5.3.1.3.1 ATPC Enable/Disable

The ATPC Enable/Disable parameter controls whether the ATPC algorithm will be used to determine current optimal transmit level for each SU served by the μBST .

The default is Enable.

NOTE

The ATPC algorithm should always be enabled. The option to disable it is available to support certain tests. After each reset, the μ BST boots with the ATPC enabled, disregarding its status before the device was reset.

4.5.3.1.3.2 Optimal Uplink RSSI

The Optimal Uplink RSSI sets the target level at which all transmissions should be received by the AU-ODUs for optimal performance.

The range is -80 to -74 (dBm).

The default is -74 dBm.

NOTE

The default configured value is -73 dBm. However, the actual default value used by the unit is -74 dBm. You can see the actual value of the Optimal Uplink RSSI in the Show menu of the Micro Base Station Menu (if the configured value differs from the actual one, both will be shown, starting with the configured value).

4.5.3.1.4 Cell

The Cell parameters provide a unique identifier for the μ BST. Updated Cell parameters are applied after resetting the μ BST. The Cell menu enables viewing/updating the following parameters:

4.5.3.1.4.1 Operator ID

A unique identifier of the network. The same Operator ID must be defined for all Base Stations/Micro Base Stations in the network, and it should not be used by any Base Station/Micro Base Station belonging to another network in the same area.

The Operator ID consists of 3 groups of up to three digits each, where the range for each group is 0 to 255.

The default Operator ID is 186.190.0.

Changes in the value configured for the Operator ID are applied only after reset.

4.5.3.1.4.2 Cell ID

A unique identifier of μBST . The same Cell ID should not be used by any other Base Station/Micro Base Station belonging to the network.

The Cell ID consists of 2 groups of up to three digits each, where the range for each group is 0 to 255.

The default Cell ID is 0.0.

Changes in the value configured for the Cell ID are applied only after reset.

4.5.3.1.5 **Duplex**

The Duplex parameters define the operation mode of the system. These parameters are applied after reset. The Duplex menu enables viewing/updating the following parameters:

4.5.3.1.5.1 Duplex Mode

The operation mode of the system: TDD or FDD.

NOTE

In systems that support only a single mode of operation, any attempt to change the Duplex Mode to a mode that is not supported will be rejected. If there is a mismatch between the configured value and the mode supported by the AUs, a suitable error message and trap will be sent and the system will not become operational until proper configuration is completed.

The default is TDD.

In the current release only TDD mode is supported, and the Duplex Mode should not be changed.

A change in the configured Duplex Mode is applied only after reset.

4.5.3.1.5.2 DL-UL Ratio

Applicable only when the Duplex Mode is set to TDD. Defines the ratio of transmit (Down Link) time to receive (Up Link) time, in percents.

The available values are:

- 1: 65-35
- 2: 60-40
- 3: 55-45
- 4: 50-50
- 5: 45-55
- 6: 40-60
- 7: 35-65

When Sub-channelization is enabled (Minimum Number of Sub-Channels is other than 16), some DL-UL Ratios are not supported for certain combinations of Bandwidth, Minimum Allocation and Maximum Cell Radius:

- For 3.5 MHz bandwidth and Minimum Allocation of 5 Symbols, UL-DL Ratios of 65-35 and 60-40 are not supported, regardless of Maximum Cell Radius. UL-DL Ratio of 55-45 is not supported for Maximum Cell Radius of 30 km or higher.
- For 3.5 MHz bandwidth and Minimum Allocation of 3 Symbols, UL-DL Ratio of 65-35 is not supported, regardless of Maximum Cell Radius. UL-DL Ratio of 60-40 is not supported for Maximum Cell Radius of 20 km or higher. UL-DL Ratio of 55-45 is not supported for Maximum Cell Radius of 50 km.
- For 5 MHz bandwidth and Minimum Allocation of 5 Symbols, UL-DL Ratio of 65-35 is not supported for Maximum Cell Radius of 40 KM or higher.

These combination will be rejected by the device, and a suitable trap will be issued. For all other combinations of Bandwidth and Micro Base Station Service Type, all DL-UL Ratios are supported for all values of Maximum Cell Radius.

The default is 50-50 (%).

A change in the configured DL-UL Ratio is applied only after reset.

A

CAUTION

The DL-UL Ratio of all Base Stations in the same coverage area (neighboring cells) must be set to the same value to ensure optimal performance and avoid uplink saturation.

4.5.3.1.6 Synchronization

The Synchronization menu includes the following options:

- Clock
- Chain
- GPS Info

4.5.3.1.6.1 Clock

The Clock parameters define the source for the main clocks in the system. These parameters are applied after reset. The Clocks menu enables viewing/updating the following parameters:

4.5.3.1.6.1.1 External 1PPS Clock

The 1PPS (Pulse Per Second) clock is used to determine the air-frame start time. Assuming that all systems use the same air-frame size and DL/UL Ratio, then, when the 1PPS clock is received from a GPS system, this mechanism ensures inter-site and intra-site synchronization among all sectors, preventing cross interference and saturation problems. When using the internal 1PPS clock (derived from the selected 16 MHz clock source), only intra-site synchronization among sectors can be achieved.

In a slave unit the External 1 PPS Clock is not configurable and it is set to Enable (the clock is received from the previous unit in the chain).

In a master unit the available options are Enable (use external 1PPS clock source) and Disable (use internal 1PPS clock source derived from the selected 16 MHz clock).

The default is Enable.

4.5.3.1.6.1.2 External 16 MHz Clock

The 16 MHz clock source is used for generation of all main clocking signals in the system, including the internal 1PPS clock. Using an external, accurate 16 MHz clock source will enable better hold-over of the 1PPS clock upon temporary loss (or reduced reliability when receiving less than 4 satellites) of the external 1PPS clock. This will allow a longer time of continued operation before appearance of interferences due to clock drifts among Base Stations.

In a slave unit the External 16 MHz Clock is not configurable and it is set to Enable (the clock is received from the previous unit in the chain).

In a master unit the available options are Enable (use external 16 MHz clock source) and Disable (use internal 16 MHz clock source).

The default is Disable

In the current release, external 16 MHz clock from the GPS Adapter is not available.

4.5.3.1.6.2 Chain

BreezeMAX enables chaining of co-located Micro Base Stations to fully support intra-site synchronization. When two or more Micro Base Stations are chained, all clocks and additional parameters required to ensure fully synchronized operation of all sectors are sent from the Master Micro Base Station to the Slave Micro Base Stations. Up to four Micro Base Stations (one Master and three Slave units) can be chained. The Chain menu includes parameters that must be shared by all Micro Base Stations belonging to the same chain, where most of them should be configured only in the Master Micro Base Station (they will be read-only in other chained Micro Base Stations).

The Chain menu includes the following:

4.5.3.1.6.2.1 Chain Number

The Chain Number is used as a unique identifier of a chain. All Micro Base Stations belonging to the same chain should be configured with the same Chain Number. The Chain Number can be used by a central management system to guarantee that certain limitations are met: For example, in each chain one, and only one Micro Base Station should be defined as Master.

The range is from 1 to 1500.

The default is 0, indicating that a Chain Number is not configured yet. A valid Chain Number must be configured, and this number must be unique in the system to properly support implementation of central management of the chaining feature.

4.5.3.1.6.2.2 Clock Mode

The Clock Mode parameter defines the location of the unit in the chain. The available options are:

- Master
- Redundant (not supported in current release)

- Slave1 (the first Slave unit in the chain, connected to the Master unit)
- Slave2 (the second Slave unit in the chain)
- Slave3 (the third Slave unit in the chain)
- Slave4 (the fourth Slave unit in the chain)

The default is Master.

Under normal conditions, the clocks are supplied by the Master unit to the Slave units. If Slave 1 will detect that it does not receive clocks for a certain period of time, it will assume that the Master unit has failed and will start using its internal 16 MHz clock, supplying the clocks also to the other slave units (if exist). Slave 2 will wait for a longer period of time before assuming that both the Master and Slave 1 have failed, and so on.

4.5.3.1.6.2.3GPS Supported

This is a read-only parameter indicating whether the use of GPS is supported by the Micro Base Station (through the Redundant CPLD). The options are Supported or Not Supported.

4.5.3.1.6.2.4 GPS Protocol

The GPS Protocol defines the communication protocol with the GPS receiver.

The available options are None, Trimble (for Outdoor GPS Receiver) and Symmetricom (for Indoor GPS Receiver).

The default is Trimble.

4.5.3.1.6.2.5 Time Zone Offset From UTC

This is the offset of the local time from UTC (Coordinated Universal Time).

The range is from -12:00 up to +13:00 in 30 minutes resolution. The format must be either -XX:YY or +XX:YY where YY is either 00 or 30.

The default is +02:00.

4.5.3.1.6.2.6 Daylight Saving

The Daylight Saving parameter is used to enable or disable the daylight saving feature using the following Daylight Saving Start Date, End Date and Advance Factor parameters.

The default is Enable

4.5.3.1.6.2.7 Daylight Saving Start Date

When Daylight Saving is enabled, this parameter defines the date for starting the daylight saving feature. At the beginning of this date (midnight at the beginning of this date), the clock will be advanced by the amount of hours specified by the Daylight Saving Advance Factor (see below).

Use the format dd:mm to define the date and month at which to start activating the Daylight Saving feature.

The default is 12.04

4.5.3.1.6.2.8 Daylight Saving End Date

When Daylight Saving is enabled, this parameter defines the date for ending the daylight saving feature (at "Daylight Saving Advance Factor" hours after midnight at the end of this date).

Use the format dd:mm to define the date and month at which to end activating the Daylight Saving feature.

The default is 15.09

4.5.3.1.6.2.9 Daylight Saving Advance Factor

This parameter enables configuring the amount of time by which the clock should be advanced during the daylight saving period.

The range is from 0 to 4:45 (hours) in steps of 15 minutes.

the default is 1:00.

4.5.3.1.6.2.10Stop Tx After Hold Over Timeout

For initial synchronization, a minimum of four satellites must be received properly (meeting certain criteria). Upon losing the 1PPS clock from the GPS, or if the received clock is not considered accurate enough because the number of received satellites dropped below the minimum (two satellites), the local 1PPS clock will be generated using the available 16 MHz clock. After a certain time (defined by the Hold Over Passed Timeout parameters described below), it is assumed that due to clock drifts there might be interferences among sectors belonging to the Micro Base Station and sectors belonging to neighboring Base Stations). If the Stop Tx After Hold Over Timeout parameter is set to Enable, the Micro Base Station will stop transmitting after this timeout (unless the number of properly received satellites has increased again to four or more), to prevent interferences to the sectors belonging to other Base Stations. If it is set to Disable, transmissions will continue indefinitely, at the expense of potential interferences to sectors belonging to other Base Stations.

The default is Disable (Hold Over indefinitely).

4.5.3.1.6.2.11Hold Over Passed Timeout (Min)

This parameter defines the Hold Over timeout, after which there might be interferences to other sectors. When the Stop Tx After Hold Over Timeout is enabled, transmissions will stop after this timeout. When the Stop Tx After Hold Over Timeout is disabled, this timeout is used to generate a trap indicating that there might be interferences to neighboring sectors.

The range is from 0 to 2880 (minutes).

The default is 30 (minutes).

4.5.3.1.6.3 GPS Info

The GPS Info menu displays read-only information received from the GPS receiver (when available). Currently this information is available only from the Outdoor GPS Receiver. The displayed details include:

- Number Of Received Satellites: The number of satellites received by the GPS receiver. For proper operation at least four satellites should be received.
- **Longitude**: The longitude as calculated by the GPS receiver. The format is <xx Deg yy.yyy Min, A>, where xx is the longitude in degrees, yy.yyy is in minutes (decimal format), and A is either N (North) or S (South). For example, 42 Deg 06.512 Min, N.
- **Latitude**: The latitude as calculated by the GPS receiver. The format is xx Deg yy.yyy Min, B, where xx is the latitude in degrees, yy.yyy is in minutes (decimal format), and B is either E (East) or W (West). For example, 024 Deg 25.290 Min, E.
- **Altitude**: The altitude in meters as calculated by the GPS receiver. For example: 00048,M
- Calculated Local Date and Time: The local date and time (using 24 hours clock) as calculated using the data received from the GPS receiver and taking into account the configured Time Zone Offset From UTC. The display format is: hh;mm;ss dd;mm;yyyy. For example: 13:04:23, 12/07/2006.
- Navigation Processor SW Version: The number and date of the Navigation Processor SW Version in the format 0xYY 0xZZ dd/mm/yyyy, where XX and YY are the Major and Minor SW Version Numbers in hexadecimal digits, respectively. For example: 0x1A 0x1F 11/3/2006 means that the Major SW

Version Number is 1A (hex), the Minor SW Version Number is 1F (hex), and the SW Version release date is 11 March 2006.

Signal Processor SW Version: The number and date of the Signal Processor SW Version in the format 0xYY 0xZZ dd/mm/yyyy, where XX and YY are the Major and Minor SW Version Numbers in hexadecimal digits, respectively. For example: 0x18 0x2B 11/3/2005 means that the Major SW Version Number is 18 (hex), the Minor SW Version Number is 2B (hex), and the SW Version release date is 11 March 2005.

4.5.3.2 Management Port Parameters

These parameters define the IP and Ethernet parameters for the Management (MGMT) port connecting the base station to the backbone.

NOTE

It is highly recommended to use the Management port for local management only. Typically the port should be down (disconnected).

The Ethernet interface of the MGMT port in the μ BST can be configured to operate either using Auto Negotiation or at a fixed speed/duplex mode (enabling selection between 10 Mbps Half Duplex, 10 Mbps Full Duplex, 100 Mbps Half Duplex or 100 Mbps Full Duplex).

4.5.3.2.1 Management Port IP Address

The IP address of the Management port.

The default is 10.0.0.1.

Refer to the limitations described in "IP Addresses Configuration" on page 65.

4.5.3.2.2 Management Port Subnet Mask

The Subnet mask of the Management port.

The default is 255.255.255.0.

In a binary representation (32 bits) the string must comprise a series of contiguous binary '1's starting from the MSB, followed by a series of contiguous binary '0's. 0.0.0.0 (all zeros, meaning "nothing") and 255.255.255.255 (all ones, meaning "this address only") are illegal and will be rejected.

NOTE

The local subnet of the Management port (defined by the Management Port IP Address and Management Port Subnet Mask parameters), must differ from the local subnet of the Data port (defined by the Data Port IP Address and Data Port Subnet Mask parameters) and from the subnet that is used as the Static Route for remote management via the Management port (defined by the Management Port Dest Subnet and Management Port Dest Subnet Mask parameters).

4.5.3.2.3 Management Port Gateway

The Gateway IP address of the Management port.

The default is 0.0.0.0 (meaning no default gateway).

Refer to the limitations described in "IP Addresses Configuration" on page 65 (except to the default 0.0.0.0 address that is permitted as it means no gateway).

4.5.3.2.4 Management Port Dest Subnet and Management Port Dest Subnet Mask

The Destination Subnet parameters define a Static Route, which is an IP subnet of stations that can manage the device when connected via a router to the Management port. The Static Route is applicable only when remote management is enabled for both the Management and Data ports (i.e., when both Management Port Management Traffic Enable/Disable and Data Port Management Traffic Enable/Disable parameters are set to Enable). If OOB management via a router connected to the MGMT port is used, the parameters should be configured to ensure different subnets for the Data port, the Management port and the Management Port Destination Subnet.

The default is 0.0.0.0 for both parameters (meaning no Static Route).

In a binary representation (32 bits) the subnet mask must comprise a series of contiguous binary '1's starting from the MSB, followed by a series of contiguous binary '0's.

NOTE

The Management Port Gateway, Destination Subnet and Destination Subnet Mask are grouped together. Exiting the configuration process (e.g. by pressing the Esc key) after configuring just the first one or two parameters in this group will discard the changes made.

The subnet that is used as the Static Route for remote management via the Management port (defined by the Management Port Dest Subnet and Management Port Dest Subnet Mask parameters) must differ from the local subnet of the Management port (defined by the Management Port IP Address and Management Port Subnet Mask parameters) and from the local subnet of the Data port (defined by the Data Port IP Address and Data Port Subnet Mask parameters).

4.5.3.2.5 Auto Negotiation Option

The Management port of the μBST can be configured to operate with Auto Negotiation Option enabled or disabled.

The default is Enabled.

When the Auto Negotiation Option is enabled, the Speed and Duplex parameter in the relevant Show menus displays the detected operation mode. When the Auto Negotiation Option is disabled, the Speed and Duplex parameter in the relevant Show menus displays the configured operation mode. Upon selection of the Disable option, the user is prompted to select the speed and duplex:

4.5.3.2.5.1 Select Link Speed and Duplex

This option is applicable only when the Auto Negotiation Option is disabled. The available options are 10 Mbps Half Duplex, 10 Mbps Full Duplex, 100 Mbps Half Duplex and 100 Mbps Full Duplex.

4.5.3.2.6 Management Port Management Traffic Enable/Disable

The Management Port Management Traffic Enable/Disable parameter allows enabling/disabling remote management traffic via a router connected to the Management port. This parameter does not affect management traffic via the local subnet defined by the Management Port IP Address and Management Port Subnet Mask.

If remote management for the Management port is disabled, then the unit can be managed by any PC on any of the following subnets (provided the PC is defined as an Authorized Manager):

- A The local subnet of the Management port (defined by the Management Port IP Address and Management Port Subnet Mask parameters).
- **B** The local subnet of the Data port (defined by the Data Port IP Address and Data Port Subnet Mask parameters).
- C Any subnet reachable via the default Gateway of the Data port (if Data Port Gateway is defined).

If remote management is enabled for both the Data Port and the Management port, then the unit can be managed by any PC on any of the following subnets (provided the PC is defined as an Authorized Manager):

- A The local subnet of the Management port (defined by the Management Port IP Address and Management Port Subnet Mask parameters).
- **B** The local subnet of the Data port (defined by the Data Port IP Address and Data Port Subnet Mask parameters).

- C Any subnet reachable via the default Gateway of the Data port (if Data Port Gateway is defined).
- D The Static Route subnet (defined by the Management Port Dest Subnet and Management Port Dest Subnet Mask parameters) reachable via the Gateway of the Management port.

NOTE

To prevent the undesired situation where remote management traffic is unintentionally disabled in both the Management and Data ports, the Data Port Management Traffic Enable/Disable parameter will be automatically forced to Enabled upon disabling the Management Port Management Traffic, and vice versa.

The Management Port Management Traffic Enable/Disable parameter is available only in the Monitor program. It is not available when using SNMP.

4.5.3.3 Data Port Parameters

These parameters define the IP and Ethernet parameters for the Data (DATA) port connecting the μBST to the backbone.

The Ethernet interface of the MGMT port in the μBST can be configured to operate either using Auto Negotiation or at a fixed speed/duplex mode (enabling selection between 10 Mbps Half Duplex, 10 Mbps Full Duplex, 100 Mbps Half Duplex or 100 Mbps Full Duplex).

4.5.3.3.1 Data Port IP Address

The IP address of the Data port.

The default is 1.1.1.3.

Refer to the limitations described in "IP Addresses Configuration" on page 65.

4.5.3.3.2 Data Port Subnet Mask

The subnet mask of the Data port.

The default is 255.255.255.0.

In a binary representation (32 bits) the string must comprise a series of contiguous binary '1's starting from the MSB, followed by a series of contiguous binary '0's. 0.0.0.0 (all zeros, meaning "nothing") and 255.255.255.255 (all ones, meaning "this address only") are illegal and will be rejected.

NOTE

The local subnet of the Data port (defined by the Data Port IP Address and Data Port Subnet Mask parameters), must differ from the local subnet of the Management port (defined by the Management Port IP Address and Management Port Subnet Mask parameters) and from the subnet that is used as the Static Route for remote management via the Management port (defined by the Management Port Dest Subnet and Management Port Dest Subnet Mask parameters).

4.5.3.3.3 Data Port Gateway

The IP address of the default Gateway for the Data port.

The default is 0.0.0.0 (meaning no default gateway).

Refer to the limitations described in "IP Addresses Configuration" on page 65 (except to the default 0.0.0.0 address that is permitted as it means no gateway).

4.5.3.3.4 Data Port Management VLAN

This parameter defines the VLAN ID for management frames via the Data port. If a value from 0 to 4094 is configured for the Management VLAN ID, then the device will accept management frames only if their VLAN tag is the same as this value.

Available values are 0-4094 or null (empty) for No VLAN.

The default is null (No VLAN).

CAUTION

The Data Port Management VLAN is updated in run-time (without reset).

4.5.3.3.5 Auto Negotiation Option

The Data port of the μBST can be configured to operate with Auto Negotiation Option enabled or disabled.

The default is Enabled.

When the Auto Negotiation Option is enabled, the Speed and Duplex parameter in the relevant Show menus displays the detected operation mode. When the Auto Negotiation Option is disabled, the Speed and Duplex parameter in the relevant Show menus displays the configured operation mode. Upon selection of the Disable option, the user is prompted to select the speed and duplex:

4.5.3.3.5.1 Select Link Speed and Duplex

This option is applicable only when the Auto Negotiation Option is disabled. The available options are 10 Mbps Half Duplex, 10 Mbps Full Duplex, 100 Mbps Half Duplex and 100 Mbps Full Duplex.

4.5.3.3.6 Data Port Management Traffic Enable/Disable

The Data Port Management Traffic Enable/Disable parameter allows enabling/disabling remote management traffic via a router connected to the DATA port. This parameter does not affect management traffic via the local subnet defined by the Data Port IP Address and Data Port Subnet Mask.

If remote management for the Data port is disabled, then the unit can be managed by any PC on any of the following subnets (provided the PC is defined as an Authorized Manager):

- A The local subnet of the Management port (defined by the Management Port IP Address and Management Port Subnet Mask parameters).
- **B** The local subnet of the Data port (defined by the Data Port IP Address and Data Port Subnet Mask parameters).
- C Any subnet reachable via the Gateway of the Management port (if defined). Note that in this case the Static Route (if defined) is ignored, and the defined Gateway becomes the default Gateway, enabling remote management by any PC reachable via the Gateway.

If remote management is enabled for both the Data Port and the Management port, then the unit can be managed by any PC on any of the following subnets (provided the PC is defined as an Authorized Manager):

- A The local subnet of the Management port (defined by the Management Port IP Address and Management Port Subnet Mask parameters).
- **B** The local subnet of the Data port (defined by the Data Port IP Address and Data Port Subnet Mask parameters).
- **C** Any subnet reachable via the default Gateway of the Data port (if Data Port Gateway is defined).
- D The remote Static Route subnet (defined by the Management Port Dest Subnet and Management Port Dest Subnet Mask parameters) reachable via the Gateway of the Management port.

NOTE

To prevent the undesired situation where remote management traffic is unintentionally disabled in both the Management and Data ports, the Management Port Management Traffic Enable/Disable parameter will be automatically forced to Enabled upon disabling the Data Port Management Traffic, and vice versa.

The Data Port Management Traffic Enable/Disable parameter is available only in the Monitor program. It is not available when using SNMP.

4.5.3.4 Authorized Managers

The Authorized Managers submenu enables defining the properties of management stations that are allowed to manage the Micro Base Station using SNMP, including the SUs associated with it.

NOTE

If no Authorized Manager is defined in the device, it can be managed using SNMP by any station, with the default Read and Write Communities. If at least one Authorized Manager is defined, the device can be managed only by a station whose parameters match a defined Authorized Manager.

The Authorized Manager submenu includes the following options:

4.5.3.4.1 Show All

Select this option to view the details of all currently defined authorized managers.

4.5.3.4.2 Select

This option enables selecting an existing authorized manager for viewing or updating its properties or for deleting it from the database. The selection is based on the authorized manager's IP address. Refer to the following Add section for details on the configurable parameters.

4.5.3.4.3 Add

Select this option to add a new authorized manager. Up to 10 Authorized Manager can be defined. The following parameters can be configured:

4.5.3.4.3.1 IP Address

The IP address of the Authorized Manager. Refer to the limitations described in "IP Addresses Configuration" on page 65.

4.5.3.4.3.2 Send Traps

The Send Traps parameters whether to enable or disable sending of traps to the Authorized Manager.

4.5.3.4.3.3 Read Community

The SNMP Read Community to be used by the Authorized Manager. A null Read Community means that the read (get) operation can only be performed using the Write Community.

Valid Community strings: Up to 23 printable characters, case sensitive.

4.5.3.4.3.4 Write Community

The SNMP Write Community to be used by the Authorized Manager. A null Write Community means that the Authorized Manager has Read only access rights.

Valid Community strings: Up to 23 printable characters, case sensitive.

4.5.3.5 **Bridge**

The Bridge submenu enables configuring the **Bridge Aging Time** parameter, setting the aging time for all addresses in the Forwarding Data Base.

The available values are from 1 to 1440 minutes, or 0 for no aging.

The default is 10 minutes.

4.5.3.6 Voice

The Voice submenu enables configuring the **DRAP TTL Retries** parameter. This parameter sets the limit of TTL retries for gateways that support the DRAP protocol before concluding that the gateway is no longer active and removing it from the database. The TTL retry time (the maximum time between two consecutive Allocation Requests) is 255 seconds.

The range is from 1 to 100.

The default is 4.

NOTE

During SW download to a gateway, which may take up to almost 15 minutes under worst conditions, the DRAP protocol is not active. If the gateway is removed from the database before SW download is completed, the download process will fail. During SW download, the DRAP TTL Retries parameter should be set to its default value of 4 (equivalent to 17 minutes).

4.5.3.7 Debug Stream

The Debug Stream submenu enables configuring the types of messages that will be displayed during the Telnet session upon the occurrence of various events. These messages are typically used for investigating various problem situations, and many of them are meaningful only to Alvarion's technicians. The DS Class Enable and DS Class Disable options can be used to enable or disable various classes of messages. The classes of messages that can be controlled include:

- ERR: Error messages that should not occur under regular conditions.
- SYS: Indication of important events and alarms.
- TRAP: Text messages displaying the information supplied by relevant traps.

The default for all classes is Disable.

NOTE

Enabling the display of selected classes is applicable only for the current Telnet session. These parameters affect only the session and are not stored in the device. Upon starting a new session, or after reseting the unit, all classes are disabled.

4.5.4 Alarms and Traps

The Alarms and Traps menu enables viewing the active alarms or the traps log, filtering the displayed traps and enabling/disabling traps. The available options are:

- Show Active Alarms
- Traps Display Filter
- Show Traps Log
- Trap Configuration

4.5.4.1 Show Active Alarms

Select to view the currently active alarms. For more details on active alarms refer to the Traps and Alarms document.

4.5.4.2 Traps Display Filter

Select to view/update the filtering criteria for the Traps Log display. The configurable filtering criteria are:

4.5.4.2.1 Minimum Severity

The Minimum Severity parameter enables defining the minimum severity filter. Traps whose severity is below the defined severity will not be displayed.

The options are Critical, Major, Minor, Warning and Info.

The default is Info severity, which means that all the traps in the log will be displayed.

4.5.4.2.2 Days

The Days parameter enables defining the period for which traps will be displayed.

The available options are from 1 to 31 days. Only traps that occurred within the last N days, where N is the value selected for this parameter, will be displayed.

The default is 31 days.

4.5.4.3 Show Traps Log

Select to view the traps log. The traps will be displayed based on the filtering criteria defined by the Minimum Severity and Days parameters in the Traps Display Filtering option, up to a maximum of the last 1000 traps. For more details refer to the Traps and Alarms document.

4.5.4.4 Trap Configuration

The Trap Configuration menu enables viewing current parameters of all traps and updating the parameters of a selected trap. It also enables viewing traps with modified parameters (different from the default) and restoring the configuration of all modified traps to their default values.

The available options are:

- Show Trap Status
- Admin Status
- Severity
- Suppression Interval

4.5.4.4.1 Show Traps Status

Select this option to view a list of all traps and their parameters. For each trap, the following details are displayed:

- Trap ID
- Name
- Admin Status (the default Admin Status for all traps is Enabled)
- Default Severity
- Current Severity
- Suppression Interval (in seconds. The default Suppression Interval is 0, which means no suppression)

4.5.4.4.2 Admin Status

The Admin Status menu enables viewing a list of all traps with Admin Status Disabled, updating the Admin Status of a selected trap and restoring the Admin Status of all traps to the default Enabled status. The Admin Status menu includes the following options:

- Show Disabled Traps List: Displays all traps with Admin Status Disabled (the default Admin Status for all traps is Enabled).
- Update: Enables modifying the Admin Status of a selected trap.
- Restore Defaults: Enables restoring the Admin Status of all traps to Enable.

4.5.4.4.3 **Severity**

The Severity menu enables viewing a list of all traps with Severity that differs from the default severity, updating the Severity of a selected trap and restoring the Severities of all traps to the default severities. The Severity menu includes the following options:

- **Show Traps with Modified Severity**: Displays all traps with Severity that differs from the default severity.
- **Update**: Enables modifying the Severity of a selected trap.
- **Restore Defaults**: Enables restoring the Severities of all traps to the default severities.

4.5.4.4.4 Suppression Interval

The Suppression Interval is the minimum time between consecutive transmissions of the same trap. This parameter can be used to prevent excessive retransmissions of the same trap. The Suppression Interval menu enables viewing a list of all traps with Suppression Interval that differs from the default suppression interval, updating the Suppression Interval of a selected trap and restoring the Suppression Intervals of all traps to the default value of 0 (no suppression).

The Severity menu includes the following options:

Show Traps with Modified Suppression Interval: Displays all traps with Suppression Interval that differs from the default suppression interval, which is 0 (no suppression).

- **Update:** Enables modifying the Suppression Interval of a selected trap. The available range is from 0 to 86,400 (seconds). 0 means no suppression.
- **Restore Defaults:** Enables restoring the Suppression Intervals of all traps to the default value (0).

4.5.5 Performance Monitoring

The Performance Monitoring menu enables to view and reset the μBST Ethernet Ports and Wireless Port counters. It also enables to view or reset the Burst Error Rate counters for the downlink to a selected SU. The Performance Monitoring submenu includes the following options:

- Ports Counters
- BER Test
- Burst Error Rate Counters

4.5.5.1 Ports Counters

The Performance Monitoring option enables to view and reset the μBST Ethernet Ports and wireless link counters. The Performance Monitoring submenu includes the following options:

- Management Port
- Data & Wireless Ports

4.5.5.1.1 Management Port Counters

The Management Port option enables viewing or resetting the Management (MGMT) port counters. The information displayed for each counter is the accumulated number since the last time the counters were reset. The counters are reset each time the μBST is reset, or upon activating the Reset Counters option.

The Management Port counters include:

- Packets Received
- Packets Discarded on Rx
- Packets Transmitted

Packets Discarded on Tx

4.5.5.1.2 Data & Wireless Ports Counters

The Data & Wireless Ports option enables viewing or resetting the counters of the Data (DATA) and wireless link ports. The information displayed for each counter is the accumulated number since the last time the counters were reset. The counters are reset each time the μBST is reset, or upon activating the Reset Counters option.

The Data & wireless Ports counters include:

Data Port Counters

- ♦ **Total Bytes received:** The total number of bytes received from the Data port, including Management frames. Frames with errors are not included.
- ◆ **Data Bytes Received:** The total number of data bytes received from the Data port. Management frames and frames with errors are not included.
- ♦ Data Bytes Discarded on Rx: The number of bytes in packets discarded due to internal communication errors.
- ♦ Total Bytes Transmitted: The total number of bytes transmitted to the Data port, including Management frames. Frames with errors are not included.
- ◆ **Data Bytes Transmitted:** The total number of data bytes transmitted to the Data port. Management frames and frames with errors are not included.
- ◆ **Data Bytes Discarded on Tx:** This count is always 0 (No discards).

Wireless Port Counters

- ◆ Data Bytes Received: The total number of data bytes received from the Wireless link. MAC management frames and frames with errors are not included.
- ◆ Data Bytes Discarded on Rx: The number of bytes in packets received from the Wireless link and discarded due to MAC protocol receive errors, such as duplicate sequence number, wrong sequence number etc. (not CRC errors).
- ♦ Data Bytes Transmitted: The total number of data bytes transmitted to the Wireless link. MAC Management frames and frames with errors are not included.

◆ Data Bytes Discarded on Tx: The number of bytes in packets discarded due to congestion in the wireless medium.

4.5.5.2 BER Test

This feature is not supported by the current version.

4.5.5.3 Burst Error Rate Counters

The Burst Error rate Counters option enables selecting a specific SU by its MAC address for viewing or resetting the Burst Error Rate counters for the applicable downlink. The information displayed for each rate in the uplink is the accumulated number since the last time the counters were reset. The downlink counters can be viewed in the applicable SU menu. For each rate the displayed information (for the uplink) includes:

- Total Burst
- Error Bursts
- Error Rate

The counters are reset each time the μBST is reset, or upon activating the Reset option.

4.5.6 Licenses

The License feature enables managing the license(s) granted to CPEs with limited capabilities ("L model" CPEs) as well as the general Base Station licenses. In an "L model" CPE, the overall throughput (the aggregate downlink and uplink MIR in all services allocated to subscribers behind the CPE) is limited to 2 Mbps. The Network Service Provider may purchase from Alvarion a bank of CPE unlimited bandwidth licenses, and allocate licenses to selected L model CPEs on a need basis (refer to Section 4.9.6.3.9 for details on assigning a license to a selected CPE). Rather than granting licenses only to specific L model CPEs, the Network Service Provider may also purchase a Base Station unlimited bandwidth license to override the bandwidth limitations of all L model CPEs served by the Base Station. Note however, that such a license is local; once the CPE moves to another Base Station it does not retain to capability for unlimited bandwidth. On the other hand, once a CPE has been allocated with a specific license, this license is permanent and the CPE is no longer identified as an L model CPE.

In addition, the basic Micro Base Station is supplied with the capability to support a maximum of 20 CPEs. The Network Service Provider may purchase licenses that will enable supporting a higher number of CPEs: 50, 150 or 250.

NOTE

The Number of CPEs licenses of the Micro Base Station are accumulative: To support 250 CPEs, it is needed to install first a license for 50 CPEs, followed by a license for 150 CPEs and then a license for 250 CPEs.

The various licenses (CPEs Unlimited Bandwidth Licenses Bank, Base Station Unlimited Bandwidth License for all CPEs and Number of Supported CPEs License) are supplied as files to be loaded to the Micro Base Station using TFTP. A license file can be loaded only to the Micro Base Station specified in the applicable order.

The Licenses menu enables viewing the current status of CPEs and Base Station Licenses. The available options are:

- Show CPEs License Bank Status
- Show Base Station Licenses
- Show Temporary Grace Licenses
- Show Grace Licenses
- Show License Log
- Show License Inventory Table

4.5.6.1 Show CPEs License Bank Status

Select this option to view the current status of the CPEs Licenses Bank (if available). The displayed information includes:

- **License ID**: The relevant license type. In the current version only a BW (Band-Width) license type is available.
- **License Value**: The specific details of the relevant licenses. In the current version all BW licenses are Unlimited.
- **License Count**: The number of currently available licenses (balance). Each time a license is granted to a specific CPE, the License Count is decremented by one.

4.5.6.2 Show Base Station Licenses

Select this option to view the current Base Station Licenses (if applicable). The displayed information includes the License ID and License Value for each applicable license. The applicable licenses that may be available are:

- Unlimited Bandwidth for all CPEs (License ID = BW, License Value = Unlimited).
- Number of CPEs (License ID = CPE, License Value = 50, 150, 250).

NOTE

A License Value of "Grace" for Number of CPEs license (License ID = CPE), indicates that the number of CPEs served by a Micro Base Station with no CPE license has exceeded 20. A message indicating this event is displayed, and a corresponding trap is sent. A grace period of 30 days is granted to the Micro Base Station, starting with the registration of the 21st CPE. During this grace period it can serve more 20 CPEs. When the grace period expires, the unit will be able to serve a maximum of 20 CPEs, and will reject any additional CPE that will try to associate with it.

4.5.6.3 Show Temporary Grace Licenses and Show Grace Licenses

The aggregate uplink and downlink MIR in all the services allocated to an L model CPE should not exceed 2 Mbps. If the aggregate MIR in the services assigned to such a CPE exceeds this limit, the Network Service Provider has a 30 days grace period. During the grace period the assigned services are provided to the CPE. At any time during the 30 days grace period the Network Service Operator can load to the CPE the required permanent license for unlimited bandwidth. If a license was not loaded during this grace period, the following will happen:

- During the first 3 days, defined as a temporary grace period, the Network Service Provider may change the services assigned to the CPE so that the aggregate MIR is no longer above 2 Mbps. The CPE will be removed from the list of Temporary Grace Licenses and will return to its previous status.
- After the 3 days temporary grace period, the CPE is moved to the Grace Licenses list. After expiry of the full 30 days grace period, the CPE is moved to a list of "Grace Period Expired" CPEs (even if during the grace period the services assigned to them were changed so that the aggregate MIR is no longer above 2 Mbps). A CPE that was moved to the Grace Period Expired list will remain in this list for 3 months. A CPE that is included in this list cannot be granted another grace period. Any attempt to assign to it a service that will bring the aggregate MIR to a value above 2 Mbps will be rejected.

The **Show Temporary Grace** Licenses displays a table that includes the MAC addresses of CPEs that are currently included in the Temporary Grace License list. For each CPE the displayed list includes also the License ID (only BW license is applicable in the current version) and the expiration date of the temporary grace period.

The **Show Grace Licenses** displays a table that includes the MAC addresses of CPEs that are currently included in the Grace License list. For each CPE the displayed list includes also the License ID (only BW license is applicable in the current version) and the expiry date of the grace period. n addition, the Status of each entry is displayed. The possible Status options are:

- Grace Activated
- Warning Issued (3 days before expiry date)
- License Expired
- Local permanent (SU received a Local license)
- Permanent (SU received a Permanent license)

4.5.6.4 Show License Log

The License Log contains the results of all trials to load a license file to the unit. The details displayed for each loading trial include the Date, Time, Load Status (Success Failure), File Name and Description. The Description for a successful operation is "License Loaded Successfully". For a failed operation, the Description provides the reason for the failure.

4.5.7 RADIUS

Managing a large number of users creates the need for significant administrative support together with careful attention to security, authorization and accounting. The use of RADIUS (Remote Authentication Dial In User Service) enables operators to manage a single database of users, supporting authentication (verifying user name and password) as well as configuration information detailing the type of service to deliver to the user and the traffic that the user transmitted and received, for billing proposes.

RADIUS is a protocol for carrying authentication, authorization, and configuration information between a Network Access Server (NAS), which desires to authenticate its links, and a shared Authentication server. A Network Access Server operates as a client of RADIUS. The client is responsible for passing user

information to designated RADIUS server(s(, and then acting on the response. RADIUS servers are responsible for receiving user connection requests, authenticating the user, and then returning all configuration information necessary for the client to deliver service to the user.

In BreezeMAX systems, a RADIUS NAS is implemented in each Base Station. Transactions between the client and RADIUS server are authenticated using Password Authentication Protocol (PAP) through encryption based on RSA Message Digest Algorithm MD5 and a Shared Secret, which is never sent over the network.

The Access-Request is submitted to the RADIUS server via the network. If no response is returned within a length of time, the request is re-sent a number of times. Once the RADIUS server receives the request, it validates the sending client. A request from a client for which the RADIUS server does not have a shared secret must be silently discarded. If the client is valid, the RADIUS server consults a database of users to find the user whose User Name matches the request. The user entry in the database contains the User Password that must be verified.

The SU authentication is a part of the network entry process:

- 1 User Name and Password should be configured in the SU.
- 2 All required Service Profiles and their components should be configured in the Micro Base Station (see "Defining Local Service Profiles" on page 196.
- 3 The RADIUS Authentication server(s) should be configured with the relevant SU's details (User Name and Password) and their corresponding services (see "Defining RADIUS Based Services" on page 197.
- 4 When an SU attempt registering at the Micro Base Station, the Micro Base Station searches within its local database whether this is a Permanent SU (defined in the database by its MAC Address).
 - ♦ If the Micro Base Station recognizes the SU as a Permanent one, it provides the Local (Permanent) Services as defined in the Micro Base Station's local database (see "Defining Local (Permanent) Services" on page 196.
 - ♦ If the SU is not defined as Permanent in the Micro Base Station's database, the Micro Base Station queries the RADIUS server for SU authentication and service provisioning.
- 5 The RADIUS server searches for the corresponding Service defined for the SU (based on the User Name and Password).
 - ♦ If it finds the applicable service(s) the RADIUS server replies to the Micro Base Station with the Service parameters (Service Profile Name, VLAN List,

Access VLAN Configuration, VLAN Transparency Mode Option and VLAN Classification Mode).

- ♦ If the RADIUS server does not find matching SU's credentials or defined service(s), it replies to the Micro Base Station with a reject message.
- 6 According to the response from the RADIUS server, the Micro Base Station either authenticates the SU and provides the appropriate service(s) or rejects the SU.
- 7 Part of the information sent from the RADIUS server can include the Authentication Time Out. Before the end of this time the Micro Base Station should re-authenticate the SU with the RADIUS server. This allows the operator to stop service for a customer even if the SU was not reset and the network entry process was not re-started.

A RADIUS server can be used for authentication purposes only, for accounting purposes only, or for both authentication and accounting purposes. Up to two servers of each type can be defined. Each server of each type (Authentication/accounting) can be defined as either Primary or Secondary. Only one server of each type can be defined as Primary. If two servers of a certain type are defined, then upon first trial of an authentication/accounting transaction the Micro Base Station will attempt to communicate with the Primary server of the relevant type (provided the server's Operation Status is Up). If it cannot communicate with the Primary server, it will attempt communicating with the other server (and vice versa). Upon succeeding to communicate with a certain server, this server is defined as Active (and the other one as Standby). As long as the Micro Base Station succeeds to communicate with an Active Authentication/Accounting server, it will continue using it for authentication/accounting transactions.

The RADIUS menu includes three sub-menus:

- General Parameters
- Authentication
- Accounting

4.5.7.1 General Parameters

The General Parameters menu enables viewing and modifying parameters that affect the communication with all RADIUS servers. These parameters include:

Shared Secret

- Retry Interval (sec)
- Maximum Number of Retries
- Keep Alive Timeout (sec)

4.5.7.1.1 Shared Secret

Shared Secret is the key used for encrypting the User name and Password in the messages to the RADIUS server(s).

For security and control reasons, the Shared Secret is displayed as a series of asterisks, and when defining it for the first time or updating it, the user is prompted to re-enter the new Shared Secret for confirmation.

NOTE

For security reasons, the Shared Secret does not change after performing the Set Factory Defaults operation. For the same reason, the Shared Secret cannot be configured using SNMP and it is not included in backup configuration files.

Valid Shared Secret: Up to 16 printable characters, case sensitive.

The default Shared Secret is null (Shared Secret must be defined).

4.5.7.1.2 Retry Interval (sec)

The Retry Interval parameter defines the time in seconds to wait before retransmitting a RADIUS message if no response is received.

The range is 1-5 (seconds).

The default value is 5 (seconds).

4.5.7.1.3 Maximum Number of Retries

The Maximum Number of Retries parameter defines the maximum number of retransmission attempts, before a decision is taken to revert to another server if configured, or give up.

The range is 0-5 (retries).

The default value is 3 (retries).

4.5.7.1.4 Keep Alive Timeout (sec)

The Micro Base Station maintains a keep alive mechanism with all defined servers. The Keep Alive Timeout defines the time in seconds to wait before reaching a decision that a certain server is no longer available.

The range is 60-180 (seconds).

The default value is 60 (seconds).

P

NOTE

When the Micro Base Station sends keep alive message to the server, it uses it's own default User Name and User Password.

These User Name and User Password must be configured in the users list (the same list used for the SUs) of the server, otherwise the server will response with a reject message.

The default User Name of the Micro Base Station is: KeepAliveUserNameAndPassword.

The default User Password of the Micro Base Station is: KeepAliveUserNameAndPassword

The default User Name and User Password of the Micro Base Station are not configurable.

4.5.7.2 Authentication

The Authentication menu enables viewing the status and parameters of defined Authentication servers, adding a new server (up to a maximum of two), or deleting a server from the database. The parameters of an existing server cannot be updated: to modify the parameters of a server, it must first be deleted and then defined again through the Add Server option.

The Authentication menu includes the following options:

- Show All
- Add Server
- Select Server

4.5.7.2.1 Show All

Select this option to view the current status and parameters of all defined Authentication servers. For each defined Authentication server the following details are displayed:

- IP Address
- UDP Port
- **Server Status**: Primary or Secondary
- **Operation Status**: Up or Down (according to the keep alive mechanism)
- **Activity Status**: Active or Standby (indicates whether this is the server currently in use for authentication purposes)

4.5.7.2.2 Add Server

Select this option to define a new Authentication server. Up to two Authentication servers can be defined. You will be prompted to configure the following parameters:

4.5.7.2.2.1 IP Address

The IP address of the Authentication server.

The default is null (IP address must be defined). Refer to the limitations described in "IP Addresses Configuration" on page 65.

4.5.7.2.2.2 UDP Port

Specifies the UDP port number used by the RADIUS server for authentication transactions.

Valid values: 1 to 65535.

The default value is 1812 (RFC 2865 requirement).

4.5.7.2.2.3 Server Status

Defines whether this server is Primary or Secondary. Each Authentication server can be defined as either Primary or Secondary. Only one Authentication server can be defined as Primary.

4.5.7.2.3 Select Server

This option enables selecting an existing Authentication for viewing its status and parameters, deleting it from the database or viewing its Statistics counters. The selection is based on the server's IP address.

The available options are:

- **Show**: Displays current status and parameters. For information on displayed details refer to Section 4.5.7.2.1),
- **Delete**: To delete the server from the database
- **Statistics**: To display or reset the Statistics Counters for this server. The Statistics Counters display traffic information according to the standard RFC 2618 "RADIUS Authentication Client MIB", as follows:
 - ♦ **Round Trip Time**: The time interval (in hundredths of a second) between the most recent Access-Reply/Access-Challenge and the Access-Request that matched it from this server.
 - ♦ Access Requests: The number of RADIUS Access-Request packets sent to this server. This does not include retransmissions.

- ♦ **Access Retransmissions**: The number of RADIUS Access-Request packets retransmitted to this server.
- ♦ Access Accepts: The number of RADIUS Access-Accept packets (valid or invalid) received from this server.
- ♦ Access Rejects: The number of RADIUS Access-Reject packets (valid or invalid) received from this server.
- ♦ **Access Challenges**: The number of RADIUS Access-Challenge packets (valid or invalid) received from this server.
- ♦ Malformed Access Responses: The number of malformed RADIUS Access-Response (Access-Accept, Access-Challenge or Access-Reject) packets received from this server. Malformed packets include packets with an invalid length. Bad authenticators or Signature attributes or unknown types are not included.
- ♦ Bad Authenticators: The number of RADIUS Access-Response packets containing invalid authenticators or Signature attributes received from this server.
- ♦ Pending Requests: The number of RADIUS Access-Request packets destined for this server that have not yet timed out or received a response. This counter is incremented when an Access-Request is sent and decremented due to receipt of an Access-Accept, Access-Reject or Access-Challenge, a timeout or retransmission.
- ♦ Timeouts: The number of authentication timeouts to this server. After a timeout the client may retry to the same server, send to a different server, or give up. A retry to the same server is counted as a retransmit as well as a timeout. A send to a different server is counted as a Request as well as a timeout.
- ♦ **Unknown Types**: The number of RADIUS packets of unknown type which were received from this server on the authentication port.
- ♦ Packets Dropped: The number of RADIUS packets of which were received from this server on the authentication port and dropped for any reason.

4.5.7.3 Accounting

The Accounting menu enables viewing the status and parameters of defined Accounting servers, adding a new server (up to a maximum of two), or deleting a server from the database. The parameters of an existing server cannot be updated: to modify the parameters of a server, it must first be deleted and then defined again through the Add Server option.

The Accounting menu includes the following options:

- Show All
- Add Server
- Select Server

4.5.7.3.1 Show All

Select this option to view the current status and parameters of all defined Accounting servers. For each defined Accounting server the following details are displayed:

- IP Address
- UDP Port
- Server Status: Primary or Secondary
- Operation Status: Up or Down (according to the keep alive mechanism)
- **Activity Status**: Active or Standby (indicates whether this is the server currently in use for accounting purposes)

4.5.7.3.2 Add Server

Select this option to define a new Accounting server. Up to two Accounting servers can be defined. You will be prompted to configure the following parameters:

4.5.7.3.2.1 IP Address

The IP address of the Accounting server.

The default is null (IP address must be defined). Refer to the limitations described in "IP Addresses Configuration" on page 65.

4.5.7.3.2.2 UDP Port

Specifies the UDP port number used by the RADIUS server for accounting transactions.

Valid values: 1 to 65535.

The default value is 1813 (RFC 2866 requirement).

4.5.7.3.2.3 Server Status

Defines whether this server is Primary or Secondary. Each Accounting server can be defined as either Primary or Secondary. Only one Accounting server can be defined as Primary.

4.5.7.3.3 Select Server

This option enables selecting an existing Accounting for viewing its status and parameters, deleting it from the database or viewing its Statistics counters. The selection is based on the server's IP address.

The available options are:

- **Show**: Displays current status and parameters. For information on displayed details refer to Section 4.5.7.3.1),
- **Delete**: To delete the server from the database.
- **Statistics**: To display or reset the Statistics Counters for this server. The Statistics Counters display traffic information according to the standard RFC 2620 "RADIUS Accounting Client MIB", as follows:
 - ♦ **Round Trip Time**: The time interval (in hundredths of a second) between the most recent Accounting-Response and the Accounting-Request that matched it from this server.
 - ♦ Requests: The number of RADIUS Accounting-Request packets sent to this server. This does not include retransmissions.
 - ♦ **Retransmissions**: The number of RADIUS Accounting-Request packets retransmitted to this server. Retransmissions include retries where the Identifier and Acct-Delay have been updated, as well as those in which they remain the same.
 - ♦ Response: The number of RADIUS packets received on the accounting port from this server.
 - ♦ Malformed Responses: The number of malformed RADIUS Accounting-Response packets received from this server. Malformed packets include packets with an invalid length. Bad authenticators or unknown types are not included.
 - ♦ **Bad Authenticators**: The number of RADIUS Accounting-Response packets containing invalid authenticators received from this server.

- ♦ Pending Requests: The number of RADIUS Accounting-Request packets sent to this server that have not yet timed out or received a response. This counter is incremented when an Accounting-Request is sent and decremented due to receipt of an Accounting-Response, a timeout or retransmission.
- ♦ Timeouts: The number of accounting timeouts to this server. After a timeout the client may retry the same server, send to a different server, or give up. A retry to the same server is counted as a retransmit as well as a timeout. A send to a different server is counted as an Accounting-Request as well as a timeout.
- ♦ **Unknown Types**: The number of RADIUS packets of unknown type which were received from this server on the accounting port.
- ♦ **Packets Dropped**: The number of RADIUS packets of which were received from this server on the accounting port and dropped for any reason.

4.6 Radio Cluster Menu

Radio Cluster is a logical entity used to describe and support management of the μBST 's elements associated with specific geographical sectors. A Radio Cluster represents one or several ODUs that serve (through their directional antennas) the same geographical sector. Up to four Radio Clusters can be defined per μBST .

The Radio Cluster(s) must be defined prior to defining the relevant ODU(s) and Access Parameters, including the Channel(s).

The Radio Cluster menu includes the following options:

- Show Summary
- Select
- Add

4.6.1 Show Summary

Select this option to view the current status of all defined Radio Clusters.

For each defined Radio Cluster, the display includes the following information:

- **ID:** Radio Cluster ID (1-2)
- **Name:** The string that is used as the descriptive name of the Radio Cluster.
- **Location:** The string that is used as the descriptive location of the Radio Cluster.
- **Sector Heading:** The direction (angle from the north) of the geographical sector.
- **Sector Beam Width:** The beam width of the antenna(s) used in the geographical sector.

4.6.2 Select

Use this option and select an already defined Radio Cluster to open the Radio Cluster # menu that will enable managing and configuring the selected Radio Cluster.

The selected Radio Cluster # menu includes the following options:

- **Show:** Select this option to view the current values defined for the selected Radio Cluster's parameters.
- **Update:** Select this option to update one or more of the selected Radio Cluster's parameters. For details on the configurable parameters Refer to Section 4.6.4.
- **Delete:** Select this option to delete the selected Radio Cluster from the database.

4.6.3 Add

Select this option to define a new Radio Cluster. For details on the configurable parameters refer to Section 4.6.4.

4.6.4 Radio Cluster Parameters

4.6.4.1 Radio Cluster ID

A number used to identify the Radio Cluster. The Radio Cluster ID is configurable only when adding a new Radio Cluster.

The available values range from 1 to 4.

4.6.4.2 Name

A string of up to 32 printable characters used as the descriptive name of the Radio Cluster. This is an optional descriptive parameter.

The default is an empty string.

4.6.4.3 **Location**

A string of up to 255 printable characters used to describe the location of the Radio Cluster. This is an optional descriptive parameter.

The default is the string defined as the Location parameter of the μBST .

4.6.4.4 Sector Heading

The direction of the geographical sector, defined in degrees from the north. This is an optional descriptive parameter.

The values range is from 0 to 359 (degrees from north).

The default value is 0 (degrees from north).

4.6.4.5 Sector Beam Width

The beam width, in degrees, of the antenna(s) used in the geographical sector. This is an optional descriptive parameter.

The values range is from 0 to 359 (degrees).

The default value is 90 (degrees).

4.7 ODU Menu

The ODU(s) must be defined prior to defining the relevant Access Parameters, including the Channel(s).

The ODU menu includes the following options:

- Show Summary
- Select
- Add

4.7.1 Show Summary

Select this option to view the current status of all defined ODUs.

For each defined ODU, the display includes the following information:

- **ID:** ODU ID (1-4)
- **Associated Radio Cluster:** The ID (1-4) defined for the associated Radio Cluster.
- **Configured Tx Power:** The defined Tx Power in dBm units.
- **ODU Configured Band:** The radio band configured for the ODU.
- Associated Channel
- Admin Status: Enabled or Disabled.

For details on the parameters refer to Section 4.7.4.

Upon first power-up of the μBST , one ODU is defined automatically, with ODU ID 1. The parameters of this automatically created ODU are:

- Associated Radio Cluster: NA
- Tx Power: 28 dBm
- ODU Configured Band: Not Defined

Admin Status: Enabled

4.7.2 Select

Use this option and select an already defined ODU to open the ODU # menu that will enable managing and configuring the selected ODU.

The selected ODU # menu includes the following options:

4.7.2.1 Show

Select this option to view the current value/selected option of applicable parameters. In addition, some general status information is displayed, as follows:

- ID
- Associated Radio Cluster
- Configured Tx Power
- ODU Configured Band
- Associated Channel (if any)
- Admin Status
- Oper Status (applicable only for an associated ODU)
- HC08 Version (applicable only for an associated ODU)
- CPLD Version (applicable only for an associated ODU)
- Card Serial Number (applicable only for an associated ODU)
- Temperature (Celsius) (applicable only for an associated ODU)
- HW Revision (applicable only for an associated ODU)
- HW Configuration Description (applicable only for an associated ODU)
- Max Tx Power: The maximum Tx Power supported by the ODU. This read-only parameter sets the upper limit for the Tx Power parameter (applicable only for an associated ODU).

Actual Tx Power: The actual Tx power, that may differ from the Configured Tx Power: If the configured value is below the minimum supported by the ODU the actual power will be set to the minimum supported by the unit. If the configured value is above the maximum supported by the ODU, the power will be changed to the maximum value supported by the unit (applicable only for an associated ODU).

4.7.2.2 Update

Select this option to update one or more of the selected ODU's parameters. For details on the configurable parameters refer to Section 4.7.4.

4.7.2.3 **Delete**

Select this option to delete the selected ODU from the database.

4.7.3 Add

Select this option to define a new ODU. For details on the configurable parameters refer to Section 4.7.4.

4.7.4 ODU Parameters

4.7.4.1 ODU ID

A number used to identify the ODU. The ODU ID is configurable only when adding a new ODU.

The available values range from 1 to 4.

4.7.4.2 Associated Radio Cluster

The ID of the associated Radio Cluster.

The available values range from 1 to 4. The value must be that of an already defined Radio Cluster.

4.7.4.3 Configured ODU Frequency Band

The Configured ODU Frequency Band will be modified through the use of Frequency Bands Configuration file (see Section 4.7.5).

The available values are the list numbers from the displayed list of available Frequency Bands.

The Configured ODU Frequency Band can be updated only if the ODU is not associated with any Channel, or if the Admin Status of the associated Channel is Disabled.

Compatibility between the Configured ODU Frequency Band and its actual band is verified by the μ BST upon trying to associate the ODU with a Channel. If the Configured ODU Frequency Band differs from the actual band supported by the ODU, a mismatch trap will be sent by the μ BST upon trying to associate it with a Channel and the association will be rejected.

4.7.4.4 Tx Power

The Tx Power parameter defines the power level of the transmitted signal at the antenna port of the ODU.

The range is from 13 to 50 dBm using a 0.25 dBm resolution. If the entered value is not compatible with the installed ODU, a trap will be issued. If the entered value is below the minimum supported by the ODU the actual power will be set to the minimum supported by the unit. If the entered value is above the maximum supported by the ODU, the power will be changed to the maximum value supported by the ODU.

The actually supported range is:

- 3.5 GHz units: 24 to 34 dBm.
- 2.x GHz units with HC08 version 134: 25 to 36 dBm.
- 2.x GHz units with HC08 version 137 (new ODU, HW ready for 10 MHz bandwidth): 30 to 36 dBm.

The default is 28 dBm (will be automatically changed to 30 in new 2.x GHz units with HC08 version 137).

If the Diversity Mode is set to Fourth Order Diversity, the Tx Power of the ODUs associated with Channels 2-4 will be forced to the value configured for the ODU associated with Channel 1.

If the Diversity Mode is set to Second Order Diversity, the Tx Power of the ODU associated with Channel 2 will be forced to the value configured for the ODU associated with Channel 1. Channels 3 and 4 are not used in Second Order Diversity Mode.

NOTE

In sectors with diversity (either second or fourth order diversity), new 2.x GHz AU-ODUs with HC08 revision 137 (HW ready for 10 MHz bandwidth), cannot be connected to the same Micro Base Station together with older AU-ODUs with HC08 version 134. All AU-ODUs connected to the same Micro Base Station must use the same HC08 version.

4.7.4.5 Admin Status

The transmit on/off status of the ODU.

The default option is Disabled.

4.7.5 Frequency Bands File and Frequency Bands Groups

The Frequency Bands Configuration file defines the characteristics of each of the frequency bands supported by the system. These characteristics include:

- Lowest Downlink Frequency
- Highest Downlink Frequency
- Step (resolution)
- Default Frequency
- Group ID: In certain cases, an AU/Micro Base Station can be connected to ODUs using different Frequency Bands. The Group ID defines the Frequency Bands Group, which includes all the Frequency Bands that can be used by the same AU. An AU/Micro Base Station cannot be associated with two or more ODUs that use Frequency Bands belonging to different Groups.

In the current release, the following Frequency Bands are supported for TDD systems:

Table 4-3: Frequency Bands

ID	Frequency Band	Group (ID)	Frequency Range	Resolution	Default Frequency (MHz)
12	2.3	2.3GHz (5)	2300-2360 MHz	125 KHz	2307.5
13	2.5A	2.5GHz (6)	2496-2602 MHz	125 KHz	2592.5
14	2.5B	2.5GHz (6)	2590-2690 MHz	125 KHz	2592.5
15	3.4a	3.5GHz TDD (7)	3399.5-3455 MHz	125 KHz	3446.75
16	3.4b	3.5GHz TDD (7)	3445-3500 MHz	125 KHz	3446.75
17	3.5a (TDD)	3.5GHz TDD (7)	3500-3555 MHz	125 KHz	3551.75
18	3.5b (TDD)	3.5GHz TDD (7)	3545-3600 MHz	125 KHz	3551.75
19	3.3a	3.3GHz TDD (8)	3300-3355 MHz	125 KHz	3350
20	3.3b	3.3GHz TDD (8)	3345-3400 MHz	125 KHz	3350

Table 4-3: Frequency Bands

ID	Frequency Band	Group (ID)	Frequency Range	Resolution	Default Frequency (MHz)
21	5.2	5.2GHz TDD (9)	5150-5350 MHz	500 KHz	5155

Note that the Frequency Bands File includes additional Frequency Bands for systems that support FDD Duplex Mode and are not applicable to the current release.

This mechanism allows adding new frequency bands without modifying the software by simply loading a new Frequency Bands File when the supporting hardware becomes available. The file will be either a part of the Micro Base Station's software or loaded later to the Micro Base Station, using an updated file obtained from Alvarion.

4.8 Access Parameters Menu

The Access Parameters menu enables viewing and updating the MAC, Phy, Multirate and other parameters that affect the wireless link parameters. It is important to note that changes to some parameters take effect only after reset. For these parameters, the applicable Show menus display the Current as well as the Configured value.

The Configuration menu includes the following options:

- MAC
- Phy
- Multi Channel
- Multirate
- Voice Parameters

4.8.1 MAC Parameters

The MAC menu enables viewing/updating the following parameters:

4.8.1.1 Base Station ID Parameters

The Operator ID, Cell ID and Sector ID constitute together the Base Station ID, which is the unique identifier of the μBST . An SU can be authenticated by the μBST only if its defined parameters match the Base Station ID configured for the μBST .

The Operator ID and Cell ID are defined in the Micro Base Station menu (see General Parameters, Section 4.5.3.1.4). In the MAC Parameters menu they are available only in the Show option.

The Sector ID parameter consists of three digits in the range of 0 to 255.

The default Sector ID is 0. Changes in Sector ID are applied only after reset.

4.8.1.2 Maximum Cell Radius

The Maximum Cell Radius is used to adapt various timing parameters of the MAC to the time it takes a message to reach its destination. This time delay is dependent upon the distance between the originating and receiving units. The

timing parameters should be adapted to the largest expected delay, which is determined from the distance from the μBST of the farthest SU served by it.

NOTE

For Non-Line-Of-Sight (NLOS) links using refractions, the cell distance should be higher than the line-of-sight distance. Typically a 10% margin is a good estimate for the increase in distance due to the NLOS operation.

The basic time element (symbol) used by a system operating in TDD mode is 68 microseconds for a bandwidth of 3.5 MHz and 50 microseconds for a bandwidth of 5 MHz. This symbol size is translated to a round trip delay of approximately 20 km for 3.5 MHz bandwidth and 15 km for 5 MHz bandwidth, or a cell radius of 10 km or 7.5 km, respectively.

NOTE

An SU located at a distance larger than the Maximum Cell Radius will be rejected during the network entry process.

The values range for the Maximum Cell Distance is from 10 to 50 km for a bandwidth of 3.5 MHz, and 7 to 45 km for a bandwidth of 5 MHz (representing a maximum delay of 6 symbols).

NOTE

The actual value that the system will use is a multiple of the the one-way delay for a single basic time element: N*10 km for a bandwidth of 3.5 MHz or N*7.5 km for a bandwidth of 5 MHz, where N is a an integer from 1 to 6. The value configured for the Maximum Cell Radius will be up-rounded to the nearest applicable value.

The read-only **Actual Maximum Cell Radius (km)** parameter in the Show option is the actual value used by the AU, that may differ from the configured value.

The default is 20 km.

4.8.2 Phy Parameters

The Phy menu enables viewing/updating the Bandwidth parameter:

4.8.2.1 Bandwidth

The frequency bandwidth used by the radio. A change in the Bandwidth parameter will take effect only after resetting the μBST .

The Admin Status of all Channels belonging to the μBST must be disabled to enable a configuration change in the Bandwidth parameter.

The available options are:

- 1 1.75 MHz
- 2 3.5 MHz
- 3 5.0 MHz
- 4 7 MHz
- 5 10 MHz

The current Bandwidth values applicable for 2.x/3.x GHz systems operating in TDD Mode are 3.5 MHz and 5 MHz. The device will reject any selection of a Bandwidth not supported by it.

The default is 3.5 MHz.

4.8.3 Multi Channel Parameters

Each μ BST can include up to 4 Channels with Channels IDs from 1 to 4, corresponding to up to 4 ODU connectors. Each channel can be connected to an ODU. The Multi Channel menu includes the following options:

- Show Summary
- Diversity Mode
- Select

Following is a description of these options:

4.8.3.1 Show Summary

Select this option to view the following information for each Channel:

Channel (1-4)

- Associated ODU
- Downlink (Tx) Frequency (MHz)
- Uplink (Rx) Frequency (MHz): Applicable only to Channels associated with a defined ODU. Computed using the rules defined in the Frequency Bands Configuration File. In TDD systems the Uplink Frequency is the same as the Downlink Frequency.
- Admin Status (Enabled/Disabled)
- Configured Tx Power: Applicable only to Channels associated with a defined ODU. The Tx Power in dBm configured in the ODU.
- Associated Radio Cluster: Applicable only to Channels associated with a defined ODU. The Associated Radio Cluster defined in the ODU.

Upon first power-up of the μBST , the channels are defined automatically, as follows:

- Associated ODU: Channel 1 is automatically associated with ODU 1. For all other Channels (2-4) the Associated ODU is NA.
- Downlink (Tx) Frequency (MHz): 3551.750
- Admin Status: Enabled for Channel 1, Disabled for all other Channels (2-4)

4.8.3.2 Diversity Mode

The Diversity Mode of the AU. For details on diversity modes refer to "Micro Base Station Radio Configurations" on page 6.

The available options are:

- 1 No Diversity
- 2 Second Order Diversity
- 3 Fourth Order Diversity for NLOS
- 4 Fourth Order Diversity for LOS and NLOS

Each of the Fourth Order Diversity modes uses a different downlink diversity scheme optimally adapted to the different propagation conditions prevailing in the relevant deployment scenario. Fourth Order Diversity for NLOS should typically

be used when all or most of the SUs operate in Non-Line-Of-Sight (NLOS) conditions (typical to CPE Si units). Fourth Order Diversity for LOS and NLOS mode will provide better overall performance in deployments where there are SUs operating in both Line-Of-Sight (LOS) conditions (expected for most CPE-PRO S units) and Non-Line-Of-Sight (NLOS) conditions.

The default is No Diversity.

NOTE

A change in the Diversity Mode parameter takes effect immediately: It automatically resets the μBST . It also disables the Admin Status of all its channels when changing from No Diversity to Second Order/Fourthe Order Diversity and vice versa. When changing from Fourth Order Diversity to Second Order Diversity, it disables the Admin Status of Channels 3 and 4..

4.8.3.3 Select

Use this option to select a Channel ID (1-4) to open the Channel # menu for viewing or updating the Channel's parameters. The configurable Channel parameters are:

- **Associated ODU:** An ODU ID (1-4) of an already defined ODU.
- **Downlink (Tx) Frequency (MHz):** The Tx frequency in MHz, which must be in accordance with the selected Bandwidth (see Section 4.8.2.1) and the rules defined in the Frequency Bands File for the frequency band selected as the Configured ODU Frequency Band of the associated ODU (see Section 4.7.4.3). The help text (displayed upon clicking the Tab key) reflects the limitations imposed by these rules.

In addition, the following rules must be followed in No Diversity mode if more than one channel is used:

- 1 After configuring the Downlink Frequencies f1 for one of the Channels, the Downlink Frequencies for other Channels should be configured using increments of +/- 0.875 MHz from the defined frequency: f1 +/-(N*0.875).
- 2 The Downlink Frequencies of all Channels should belong to the same Frequency Bands Group (see Section 4.7.5).
- Admin Status: The Admin Status must be disabled to enable changes in the Configured ODU Frequency Band of an associated ODU. If the Configured ODU Frequency Band differs from the actual band supported by the ODU, a mismatch trap will be sent by the μBST upon trying to associate it with a Channel and the association will be rejected.

The Admin Status of all Channels must be disabled to enable a configuration change in the Bandwidth parameter.

If the Diversity Mode is set to Fourth Order Diversity, the Downlink (Tx) Frequency and Admin Status of Channels 2-4 are not configurable: they are set automatically to the same values configured for Channel 1. The Tx Power of the ODUs associated with Channels 2-4 will be forced to the value configured for the ODU associated with Channel 1.

If the Diversity Mode is set to Second Order Diversity, the Downlink (Tx) Frequency and Admin Status of Channel 2 are not configurable: they are set automatically to the same values configured for Channel 1. The Tx Power of the ODU associated with Channel 2 will be forced to the value configured for the ODU associated with Channel 1. Channels 3 and 4 are not used in Second Order Diversity Mode.

The Show menu includes also the following read-only parameters:

- **Tx Power:** The Tx Power of the Associated ODU. If the actual value differs from the configured one, both values will be displayed (starting with the configured value).
- **Associated Radio Cluster:** As configured in the Associated ODU.
- **Uplink (Rx) Frequency:** Computed from the configured Downlink (Tx) Frequency according to the Duplex Separation of the applicable Frequency Band. In TDD systems the Uplink (Tx) Frequency is the same as the Downlink (Tx) Frequency.
- **Frequency Band:** The ODU Frequency Band. If there is a mismatch between the Configured ODU Frequency Band and its actual band, both values will be displayed.
- Operational Status

4.8.4 Multirate Parameters

BreezeMAX employs a multirate algorithm to dynamically adapt the modulation scheme and Forward Error Correction (FEC) coding to actual link conditions. The algorithm is managed by the Micro Base Station taking into account also information received from the served SUs. Optimal values are calculated separately for the uplink and downlink for each SU. MAP messages transmitted to

the SUs include information on the uplink rate that should be used by each SU for its next transmission.

The multirate algorithm optimizes the trade-off between capacity and error rate: In most deployments, most of the links use high order modulation most of the time, maximizing capacity. "Bad" links use lower order modulation, maximizing availability. The algorithm provides independent adaptation per SU, and it is performed independently for UL and DL, based on link quality information (Burst Error Rate, SNR). The algorithm provides dynamic adaptation - modulation can be changed on a per burst basis. UL transmission rate is determined by the AU, and DL transmission rate is determined by the SU.

The multirate algorithm in the uplink adapts dynamically both the modulation and the number of sub-channels to be allocated to each SU.

When the Multirate algorithm is disabled, communication with connected SUs will continue using the last uplink and downlink rates selected by the Multirate algorithm. The Set Rates option in the SU (see Section 4.9.6.3.4.2), which becomes available only when the Multirate algorithm is disabled in the AU, enables setting the Uplink Current Rate and the Downlink Current Rate to any of the values listed in Table 4-4.

The multirate algorithm chooses dynamically between several rates. These are also the rates that can be configured for the Basic Rate parameters.

No. Rate 1 BPSK 1/2 2 BPSK 3/4 (not applicable for TDD systems) 3 **QPSK 1/2** 4 **QPSK 3/4** 5 QAM16 1/2 QAM16 3/4 6 7 QAM64 2/3 8 QAM64 3/4

Table 4-4: Rates (Modulation Schemes and Coding)

NOTE

Rate 2 (BPSK 3/4) is not applicable to systems operating in TDD mode..

The Multirate menu enables viewing/updating the following parameters:

4.8.4.1 Multirate Enable/Disable

The Multirate Enable/Disable parameter controls whether the multirate algorithm should be used to determine current optimal rates in both the uplinks and the downlinks.

The default is Enable.

NOTE

The multirate algorithm should always be enabled. The option to disable it is available to enable using a fixed rate to support certain tests. After each reset, the μ BST boots with the multirate enabled, disregarding its status before the device was reset.

4.8.4.2 Uplink Basic Rate

The Uplink Basic Rate is the minimum rate to be used by the Multirate algorithm in all uplinks. This is also the rate to be used by SUs for non-scheduled transmissions, such as during the contention period.

The Uplink Basic Rate is also the initial rate to be used by the algorithm for each new SU that joins the cell when the Multirate algorithm is enabled.

The available options are listed in Table 4-4.

The default rate is the lowest rate BPSK 1/2 (rate 1).

4.8.4.3 Minimum Number of Sub-Channels

The system supports Sub-Channelization (OFDMA) in the uplink, providing two advantages:

- Ability to connect SUs with relatively poor link conditions: reducing the amount of uplink sub-channels from 16 (full bandwidth) to 8, 4, 2 or 1 sub-channels enables increasing the maximum transmit power of the SU by 3, 6, 9 or 12 dBm, respectively.
- Better utilization of uplink capacity, by enabling several SUs to share the bandwidth at the same time.

The available options are 1, 2, 4, 8, and 16 (full bandwidth) sub-channels. A value of 16 means that sub-channelization is disabled.

The default is 1 sub-channels (full OFDMA support).

Changes in Minimum Number of Sub-channels are applied only after reset.

4.8.4.4 Downlink Basic Rate

The Downlink Basic Rate is the minimum rate to be used by the Multirate algorithm in all downlinks. This is also the rate to be used for downlink broadcasts and multicasts. Multicasts and broadcasts are sent to multiple recipients with different link qualities. Therefore, it is preferable to use a relatively low rate for these transmissions, thus reducing the probability of errors and increasing the likelihood that all intended recipients will receive them properly. This is also the initial rate to be used by the algorithm for each new SU that joins the cell when the Multirate algorithm is enabled.

The available options are listed in Table 4-4.

The default rate is the lowest rate BPSK 1/2 (rate 1).

4.8.5 Voice Parameters

4.8.5.1 Maximum Number of Voice Calls

This parameter sets the upper limit of simultaneous voice calls that will be supported by the μBST . The limit is applicable for calls made by devices using DRAP, and/or calls made using the Managed VoIP Service.

The range is from 0 to 50 Voice Calls.

The default is 50.

4.8.5.2 Minimum Allocation

The Minimum Allocation parameter defines the minimum allocation of symbols in the uplink: 5 symbols for typical data only services or 3 symbols for deployments with significant VoIP traffic. A minimum allocation of 3 symbols can provide a higher capacity for VoIP calls, with a reduced overall throughput for data services.

The options are 5 Symbols (the default) or 3 Symbols.

NOTE

In most deployments with both VoIP and Data services it is recommended to use the default 5 Symbols minimum allocation. Consult with Alvarion's experts whether to use 3 Symbols minimum allocation in certain sectors, according to the specific traffic that should be supported.

Minimum Allocation can be changed only via the Monitor program (not available via SNMP).

4.9 SU Menu

The SU menu includes the following options:

- Show Summary
- SW Files in μBST
- Select by Name
- Select by MAC Address
- Add
- Clear All Configured SU SW Files

Following is a detailed description of these options.

4.9.1 Show Summary

Select this option to view summary information and main details for all connected and pre-configured SUs.

- For each SU, the following information is displayed:
 - ♦ MAC Address
 - User Name
 - ♦ SU Type:
 - > CPE (first generation CPE. Not applicable in TDD systems)
 - > CPE PRO
 - > CPR PRO-L
 - > CPE PRO2
 - > CPE PRO2-L
 - > CPE SI
 - > CPE SI-L (not applicable in current release)
 - > CPE SI2

> CPE-SI2-L (not applicable in current release)

CPE PRO, CPE PRO-L, CPE SI and CPE SI-L use first generation Intel's Pro/Wireless 5116 WiMAX chip. CPE PRO2, CPE PRO2-L, CPE SI2 and CPE SI2-L use second generation (IEEE 802.16e-ready) WiMAX chip. The "L" suffix indicates that the SU was supplied with limited capabilities (limited bandwidth).

- ♦ SU Status (Permanent or Temporary)
- SUID (an ID allocated to each SU by the connected μBST)
- ♦ Registration Status (In Service, Out Of Service)
- \diamond Configured SW File Name: The SW File configured in the μBST (together with the Configured Action).
- Configured SW Version: The SW Version of the SW File configured in the μBST.
- ♦ Configured Action: The operation to be performed with the Configured SW File when the SU is connected, as well as after each reset: Null (do not load), Load (load to Shadow), Run from Shadow or Set as Main.
- SW Download Status: The status of the last SW download operation (or None).
- ♦ SU IDU Type: Normal (Basic Universal IDU) or IDU-NG-4D1W
- ♦ Number of Gateways: The number of Alvarion Gateways connected to the SU (including IDU-NG-4D1W, if exists).
- ♦ Service Fault Status: OK or reason for denying services to the SU. The reason can be:
 - 1 Loop problem. A loop was detected on the Ethernet side of the SU. An rbNetworkingError Trap will be sent, and services to this SU will be denied until resetting the SU from the network (μBST) side (provided the problem no longer exists). The problem is detectable through periodical (every 5 seconds) transmissions to the Ethernet link of SNAP packets with "AA AA 03" in the header, and the destination MAC address is 00:10:E7:00:00:01. If the SU receives this packet from the

Ethernet, it means that there is a loop and the SU will send an appropriate message to the μBST .

NOTE

Another loop avoidance mechanism that is transparent to the operator is performed by the μ BST: The μ BST scans packets received from the network (DATA port) and verifies that the SRC MAC in the received packet does not match any of the addresses in the μ BST's bridging table. If there is a match it means that the source MAC address of the message received from the network side is identical to a MAC address of a device behind one of the SUs served by the μ BST. In case of a match, the μ BST discards all packets designated to the device with this MAC address, until it's aging time expires.

- 2 Duplicate SU Name: The SU Name (User Name) is already in use by another SU connected to the same Micro Base Station. A Micro Base Station cannot serve two SUs with the same User Name. Upon identifying an SU with an SU Name (User Name) that is identical to that of a previously registered SU, the new SU will be registered (to enable management), but will not receive any services. Its name in the μBST database will be changed to SU@<SU's MAC Address>. The system administrator will be informed of the problem through the Fault Status parameter in any of the relevant Show menus (Fault Status 2) and through a trap message (rbSuDuplicateName trap). If the administrator decides that the SU is legitimate and should receive services, a new User Name must be configured in the SU. The SU will receive services only after configuring it with a User Name that is unique in the Micro Base Station's database. (see also Section 4.9.6.3.1.1).
- Summary Information
 - ♦ Total Number of SUs: The total number of SUs in the database (including connected and pre-configured SUs)
 - ♦ Total Connected SUs

An SU that is defined as Temporary will be deleted from the database when it is disconnected.I

4.9.2 Upgrading SU's SW

To facilitate efficient upgrade of SU's SW, two upgrade levels are available:

■ SU level, for upgrading a single SU, described in Section 4.9.6.2.6.

■ Micro Base Station level, for upgrading all SUs served by Micro Base Station, as described in the following section.

4.9.3 SW Files in μBST

Up to four SU SW files can be stored in the μ BST. Any of the available files can be loaded by the μ BST to a selected SU. When four SU files are stored in the μ BST, a new file cannot be added until at least one of the existing files is deleted.

Default SW File Names and Default Actions can be defined. These are the SW File and associated Action that will be used for an SU after network entry. This feature simplifies the upgrade process, by defining the SW File and Action for all SUs served by the Micro Base Station. Two different pairs of Default SW File Name and Default Action may be defined, to optionally support SUs using either Standard Operation Mode or Advanced Si (Advanced - Self Install) Operation Mode. These Default SW File Names and Default Actions are applicable to all SUs in the Micro Base Station using the specified Operation Mode. However, they are not applicable to any Permanent SU whose Configured SW File Name (see Section 4.9.6.2.6) is other than None (null).

This menu enables viewing the current SU SW files stored in the μ BST and deleting selected file(s). It also enables defining the Default SW File Name and Default Action for each Operation Mode.

4.9.3.1 Show Files

Select this option to display the SU SW files currently stored in the μ BST. For each available SW file, the file name and the version number are displayed.

In addition, the Default SU SW File Name (if defined) and Default Action for each Operation Mode are also displayed.

4.9.3.2 Default SW File (Standard)

Select this option to define the Name of the SW File to be used for upgrading an SU using Standard Operation Mode after network entry, and the Action to be taken with this file. Not applicable to any Permanent SU whose Configured SW File Name (see Section 4.9.6.2.6) is other than None (null).

NOTE

The Default SW File (Standard) option is not applicable to this release that does not support products operating in Standard Operation Mode.

The Default SW File (Standard) parameters are:

4.9.3.2.1 Name

The Name of the SW File to be used for upgrading an SU using Standard Operation Mode after network entry. Should be one of the SU SW Files currently stored in the Micro Base Station, or None (null).

4.9.3.2.2 Action

The operation to be performed with the Default SW File (Standard) after network entry of an SU using Standard Operation Mode: None (do not load), Load (load to Shadow), Run from Shadow or Set as Main. Refer to Section 4.9.6.2.6 for more details on these Actions.

4.9.3.3 Default SW File (Advanced Si)

Select this option to define the Name of the SW File to be used for upgrading an SU using Advanced Si Operation Mode after network entry, and the Action to be taken with this file. Not applicable to any Permanent SU whose Configured SW File Name (see Section 4.9.6.2.6) is other than None (null). The Default SW File (Advanced Si) parameters are:

4.9.3.3.1 Name

The Name of the SW File to be used for upgrading an SU using Advanced Si Operation Mode after network entry. Should be one of the SU SW Files currently stored in the Micro Base Station, or None (null).

4.9.3.3.2 Action

The operation to be performed with the Default SW File (Advanced Si) after network entry of an SU using Advanced Si Operation Mode: None (do not load), Load (load to Shadow), Run from Shadow or Set as Main. Refer to Section 4.9.6.2.6 for more details on these Actions.

4.9.3.4 Delete a File

Select this option and enter the name of an existing SU SW file to delete it from the μBST Flash memory.

4.9.4 Select by Name

Use this option to select an SU by name to access the SU # menu that will enable managing and configuring the selected SU, viewing its performance information or deleting it from the database.

4.9.5 Select by MAC Address

Use this option to select an SU by its MAC address to access the SU # menu that will enable managing and configuring the selected SU, viewing its performance information or deleting it from the database.

4.9.6 SU # Menu

The SU # menu enables managing and configuring the selected SU. The SU # menu includes the following options:

- Show
- Unit Control
- Configuration
- Performance Monitoring
- Show MAC Addresses Behind SU
- Delete

4.9.6.1 Show

Select this option to view the current value/selected option of applicable parameters. In addition, some general status information is displayed, as follows:

- Equipment and Registration Parameters:
 - ♦ MAC Address
 - ♦ MAC Address Control Number (a number computed from the MAC Address that can be used for verification purposes)
 - ♦ User Name (SU Name)
 - ♦ SU Type
 - Organization Name
 - ♦ Address
 - Country
 - SU Status (Permanent or Temporary)
 - ♦ SUID
 - ♦ SU IDU Type
 - ♦ Number of Gateways
 - Service Fault Status

Configured SW Details

- ♦ Configured SW File Name
- ♦ Configured SW Version
- Configured Action

Uplink/Downlink Parameters

- ♦ Uplink RSSI (dBm)
- ♦ Uplink SNR (dB)
- Uplink Current Rate
- ♦ Downlink RSSI (dBm)
- ♦ Downlink SNR (dB)
- ♦ Downlink Current Rate

General HW Parameters

- Serial Number
- ♦ RF Card HW Revision
- ♦ Boot Version
- ♦ Cumulative Power On Time (hours): The cumulative power-on time of the SU since first power-up.
- ♦ Main Card HW Revision
- ♦ Main Card HW Configuration

■ SW Versions information:

- ♦ Main SW File Name
- Main SW Version
- ♦ Shadow SW File Name
- ♦ Shadow SW Version
- ♦ Running From (Main or Shadow)
- MAC (Standard FDD) Parameters (Applicable only to 3.x GHz units)

- ♦ Base Station ID
- Base Station Mask
- Phy (Standard FDD) Parameters (Applicable only to 3.x GHz units)
 - ♦ Bandwidth (MHz)
 - ♦ Uplink (Tx) Frequency (MHz)
- ATPC Parameters
 - ♦ ATPC Support
 - ♦ TX Power (dBm)
- Estimated Distance from BS (meters). The accuracy is from several hundreds of meters for line-of-sight links to 1500 meters for non-line-of-sight links.
- Bridging Parameters
 - Enable/Disable Limit on Number of Supported Devices
 - Maximum Number of Supported Devices
 - ♦ Bridge Aging Time (minutes)
- Si CPE Parameters
 - ♦ Antenna Selection: The antenna configured locally in the Si CPE
 - > Internal (1 6)
 - > External (7)
 - > Automatic (8)
 - ♦ Interface Type (Ethernet or USB)
 - ♦ Smart Card Status (Installed/Not Installed/Fault)
- Frequency Scanning Parameters
 - ♦ Bandwidth (MHz)
 - ♦ Start Downlink (Rx) Frequency
 - End Downlink (Rx) Frequency

- Scanning Main Step
- Scanning Intermediate Steps (Configured and Actual)
- ♦ Discrete Frequencies (if exist)
- Best BST/AU Parameters
 - ♦ Best BST/AU Support
 - Preferred BST/AU ID
 - ♦ Preferred BST/AU ID Mask
 - ♦ Selected BST/AU ID
 - ♦ Selected Downlink (Rx) Frequency
 - ♦ BST/AU ID
 - ♦ BST/AU ID Mask
 - ♦ Best BST/AU Table: includes details of all applicable BST/AUs: BST/AU ID, Downlink (Rx) Frequency, SNR (dB), Rx Antenna.

4.9.6.2 Unit Control

The SU Unit Control menu enables defining the SU's status, resetting the SU and managing the SW versions of the unit.

The Unit Control menu includes the following options:

- Status
- Reset
- Set Factory Defaults
- SW Version Control

4.9.6.2.1 SU Status

The SU Status parameter enables defining the status of the SU, which determines the services it can receive.

The available options are:

- 1 Permanent
- 2 Temporary

NOTE

An SU that is defined as Temporary will be deleted from the database when it is disconnected.

4.9.6.2.2 Reset Unit

Select this option to reset the unit. To avoid unintentional reset, you will be prompted to confirm the reset request. Changes to some of the configurable parameters are applied only after reset. Refer to Section 4.11 for information on which parameters are changeable in run time and which changes are applied only after reset.

4.9.6.2.3 Set Factory Defaults

Select this option to set the SU parameters to their factory default values. Refer to Section 4.11 for information on the factory default values of these parameters. The parameters will revert to their default values after the next reset.

4.9.6.2.4 SW Versions Control (only for Permanent SUs)

The SU can contain two SW versions:

- Main: Each time the SU resets it will reboot using the version defined as Main.
- Shadow: Normally the Shadow version is the backup version. Each time a new SW File is downloaded to the SU, it will be stored as a Shadow version, replacing the previous Shadow Version.

The process of upgrading to a new SW version is controlled by the μBST , and is performed using one of the SU SW files installed in the μBST . If the specified SU SW file does not exist in the SU, it will be downloaded to the SU and the requested operation will be executed, as described below. If it already exists in the SU, then actual loading is not necessary.

The following options are available in the SW Version Control menu:

- Show SW Versions
- SW File

4.9.6.2.5 Show SW Versions

Select this option to view the following information:

Configured SW (the version to be used network entry) Details:

- ♦ Configured SW File Name
- Configured SW Version
- Configured Action
- SW Versions in SU:
 - ♦ Main SW File Name
 - Main SW Version
 - Shadow SW File Name
 - ♦ Shadow SW Version
 - ♦ Running From: Main or Shadow
- Available Versions in μBST: The available SU SW file names and the SW Version of each file.

4.9.6.2.6 SW File

Select this option to define the Name of the SW File to be used for upgrading the SU after network, and the Action to be taken with this file:

4.9.6.2.6.1 Name

The Name of the SW File to be used for upgrading the SU after network entry. Should be one of the SU SW Files currently stored in the μBST , or None (null).

4.9.6.2.6.2 Action

The operation to be performed with the SW File after network entry of the SU: None (do not load), Load (load to Shadow), Run from Shadow or Set as Main:

- None: Select None to cancel a pending request for another operation (an operations will be executed only after the next reset).
- Download: Select this option to download a specified SW file from the μBST to the Shadow memory of the SU.

If the specified file already exists in the SU, no action will take place.

Run from Shadow: Select this option to download a specified SW file from the μBST to the Shadow memory of the SU, reset the SU and reboot using the Shadow version. Note that because the process is controlled by the μBST, the SU will continue running from the Shadow version after reset.

If the specified file already exists as the Shadow version (meaning that previously a Download operation was executed for this file name), the only actual operation to take place will be to reset and run from Shadow. If the specified file is the current Main version, no action will take place.

Set as Main: Select this option to download a specified SW file from the μBST to the Shadow memory of the SU, reset the SU and reboot using the Shadow version, and then swap the Main and Shadow SW Version, so that the running version (which was previously the Shadow version) will become the Main version, to be used after next reset.

If the specified file already exists as the running version and it is defined as the Shadow version (meaning that previously a Download and Run from Shadow operation was executed for this file name), the only actual operation to take place will be to swap the Main and Shadow versions. If it is already defined as the Main version, no action will take place.

4.9.6.3 Configuration

The SU Configuration menu enables viewing and updating the SU's parameters.

The Configuration menu includes the following options:

- Registration
- MAC (Standard FDD) (applicable only to 3.x GHz SUs)
- Phy (Standard FDD) (applicable only to 3.x GHz SUs)
- Multirate and ATPC
- Voice/Networking Gateways
- Ethernet Port
- Installer Password
- Bridging Parameters
- License
- Best BST/AU (Advanced Si)

Radio Parameters (Advanced Si)

4.9.6.3.1 Registration Parameters

The SU Registration Parameters option in the μ BST Monitor enables viewing the SU's Registration parameters. Registration parameters can be configured only locally at the SU (via the Ethernet/USB port).

4.9.6.3.1.1 User Name

The User Name can only be configured locally in the SU (SU Name).

The default User Name given to a new SU during the definition process (see Section 4.9.7) is SU@<SU's MAC Address>. An SU that is added to the database is added as Permanent. When an SU that exists in the database as a Permanent SU is registered, it receives services based on its MAC address, and the default User Name is replaced by the name configured in the SU.

A Micro Base Station cannot serve two SUs with the same User Name. Upon identifying an SU with a User Name that is identical to that of a previously registered SU, the new SU will be registered (to enable management), but will not receive any services. Its name in the μ BST database will be changed to SU@<SU's MAC Address>. The system administrator will be informed of the problem through the Fault Status parameter in any of the relevant Show menus (Fault Status 2) and through a trap message (rbSuDuplicateName trap). If the administrator decides that the SU is legitimate and should receive services, a new User Name must be configured in the SU. The SU will receive services only after configuring it with a User Name that is unique in the Micro Base Station's database.

4.9.6.3.1.2 Organization Name

The Organization Name configured in the SU.

4.9.6.3.1.3 Address

The Address configured in the SU.

4.9.6.3.1.4 Country

The Country name configured in the SU.

4.9.6.3.2 MAC (Standard FDD) Parameters

The SU MAC menu enables viewing/updating the MAC parameters for Standard operation mode. These parameters do not affect the operation of the unit when using Advanced Si operation mode. These parameters are provided to support the Automatic Platform Detection mechanism of the dual-mode CPEs, allowing pre-configuration of the relevant parameters before switching the sector to operate in FDD mode using Standard operation mode. These parameters are applicable only to SUs in the 3.x GHz bands.

4.9.6.3.2.1 Base Station ID

The Base Station ID is the identifier of the AU/Micro Base Station to which the SU can connect. An SU can be authenticated by an AU/Micro Base Station only if the Base Station ID and Base Station ID Mask configured in the SU match the Base Station ID configured for the AU/Micro Base Station.

After power-up the SU will start searching for available AUs/Micro Base Stations in the range defined by the Base Station ID and Base Station ID Mask, and will try to connect to the first found AU/Micro Base Station whose Base Station ID is in the defined range.

A change in the Base Station ID and Base Station ID Mask will take effect only after resetting the SU.

The Base Station ID consists of six groups of up to three digits each, where the range for each group is 0 to 255. The first three groups define the Operator ID, the next two groups define the Cell ID and the sixth group defines the Sector ID.

A change in the Base Station ID is applied only after reset.

4.9.6.3.2.2 Base Station ID Mask

The Base Station ID Mask, together with the Base station ID define the AU(s)/Micro Base Station(s) that can synchronize with the SU.

The Base Station ID Mask consists of 6 groups of up to 3 digits each, where the range of each group is 0 to 255. The first 3 groups form the mask for the Operator ID. The next 2 groups form the mask for the Cell ID, and the last group forms the mask for the Sector ID.

A change in the Base Station ID Mask is applied only after reset.

4.9.6.3.3 Phy (Standard FDD) Parameters

The SU Phy menu enables viewing/updating the Phy parameters for Standard operation mode. These parameters do not affect the operation of the unit when using Advanced Si operation mode. For more details refer to Section 4.9.6.3.2.:

4.9.6.3.3.1 Bandwidth (MHz)

The frequency bandwidth used by the radio. A change in the Bandwidth parameter will take effect only after resetting the SU.

The available options are:

- 1 1.75 MHz
- 2 3.5 MHz
- 3 5 MHz

4 - 7 MHz

5 - 10 MHz

A trial to configure a bandwidth that is not supported by the SU will be rejected.

4.9.6.3.3.2 Uplink (Tx) Frequency (MHz)

The Uplink (Tx) Frequency is the frequency used in the uplink (from SU to AU/Micro Base Station). A change in the Uplink Frequency parameter will take effect only after resetting the SU.

The available values depend on the HW of the SU and the configured Bandwidth for Standard operation mode.

4.9.6.3.4 Multirate and ATPC Parameters

The Multirate and ATPC mechanism are controlled by the μBST (except to the option to temporarily control them locally at the SU for testing purposes). The Show Multirate and ATPC Status and Parameters option enables viewing the current status of the applicable parameters. The Set Rates option can be used to set uplink and downlink rates per SU only when Multirate is disabled.

4.9.6.3.4.1 Show

The Show option enables viewing the current status of the following parameters:

- Uplink RSSI (dBm)
- Uplink SNR (dB)
- Uplink Rate
- Downlink RSSI (dBm)
- Downlink SNR (dB)
- Downlink Rate
- ATPC Support
- Tx Power (dBm)

4.9.6.3.4.2 Set Rates

The Set Rates option is available only when the Multirate algorithm is disabled in the μ BST (see Section 4.8.4), allowing to set the Uplink Current Rate and the Downlink Current Rate to any of the values listed in Table 4-4.

The defaults are the last rates used by the Multirate algorithm before it was disabled. For SUs that join the cell when the Multirate algorithm is disabled, the defaults are the applicable Basic Rates.

4.9.6.3.5 Voice/Networking Gateways

The Voice/Networking Gateways option enables viewing details on the Voice/Networking Gateways connected to the SU. This is applicable for Alvarion's gateways supporting the DRAP protocol and/or SIP VoIP gateways using a Managed VoIP Service. For each gateway, the following details are provided:

- Gateway Type (applicable only for gateways that use DRAP)
- Protocol (DRAP or Dynamic, where Dynamic indicates a SIP gateway using a Manasged VoIP Service)
- IP Address
- VLAN ID (management)
- Number Of Active Calls (applicable only for Voice Gateways)

The following gateways that support DRAP are currently available from Alvarion:

- IDU-NG-4D1W: A Networking Gateway that serves also as an SU IDU, supporting 4 data ports and 1 Wireless LAN port.
- AVG-1D1V: A stand-alone (external) Voice Gateway, supporting 1 data port and 1 POTS port.
- AVG-1D2V: A stand-alone (external) Voice Gateway, supporting 1 data port and 2 POTS ports.

4.9.6.3.6 Ethernet Port

The Ethernet Port menu enables configuration of the Ethernet port operation mode (speed and duplex).

4.9.6.3.6.1 Show

The Show option enables viewing the configured and actual operation modes:

- Current Ethernet Port Auto Negotiation
- Current Ethernet Port Speed and Duplex

- Configured Ethernet Port Auto Negotiation
- Configured Ethernet Port Speed and Duplex (NA if Configured Ethernet Port Auto Negotiation is set to Enable)
- Ethernet Port Link Status (Up or Down)

4.9.6.3.6.2 Update

Select the Update option to change the Ethernet Port parameters:

- **Ethernet Port Auto Negotiation**: Enable or Disable.
- **Ethernet Port Speed and Duplex**: Available only if the configured Ethernet Port Auto Negotiation is set to Disable. The available options are 10 Half, 10 Full, 100 Half and 100 Full.

4.9.6.3.7 Installer Password

The Installer Password option enables viewing the current Installer Password and configuring a new password. The Installer Password is used for accessing the SU's Monitor (Installer) program locally, using Telnet via the SU's Ethernet port.

The Installer Password consists of a string of up to 20 printable characters, case sensitive.

4.9.6.3.8 Bridging Parameters

The Bridging Parameters menu enables setting a limit on the maximum number of Ethernet devices behind the SU and configuring the aging time for devices in the SU's bridging table.

NOTE

The SU's Bridging parameters are available only in the μBST . They are not available locally in the SU.

The Bridging parameters are:

4.9.6.3.8.1 Enable/Disable Limit on Number of Supported Devices

If the Enable/Disable Limit on Number of Supported Devices parameter is set to Disable, the maximum number of supported devices is 512.

The default is Disable.

4.9.6.3.8.2 Maximum Number of Supported Devices

This parameter is applicable only when the Enable/Disable Limit on Number of Supported Devices parameter is set to Enable.

The available range is from 1 to 512 devices.

The default is 512.

4.9.6.3.8.3 Bridge Aging Time

The Bridge Aging Time sets the aging time for all addresses in the SU's Forwarding Data Base.

The available values are from 1 to 1440 minutes.

The default is 3 minutes.

4.9.6.3.9 License

The License menu is applicable only to L (Limited capabilities) model SU. It enables loading a new license to the SU (if a required license is available in the CPE Licenses Bank). In the current release where only a BW license is available, after such a license is loaded to an SU its' Type will be updated and it will no long be identified as an L model unit: CPE PRO-L will be changed to CPE PRO, CPE PRO2-L will be changed to CPE PRO2.

4.9.6.3.10 Best BST/AU (Advanced Si)

An SU that can communicate with more than one AU/Micro Base Station may become associated with the first AU/Micro Base Station it "finds", not necessarily the best choice in terms of quality of communication. Changes in Base Station deployment and subscriber density can accumulate to create substantial changes in SU performance. The quest for load sharing together with the desire to create best throughput conditions for the SU created the need for the Best BST/AU feature, to enable an SU to connect to the best AU/Micro Base Station in its neighborhood.

When the Best BST/AU feature is enabled, the SU scans all AUs/Micro Base Stations in a predefined range, in all frequencies (according to the frequencies defined in the Frequency Scanning menu) and in all available antennas (according to the local definition in the SU, as indicated by the Antenna Selection parameter in the Show menu of the SU). Each of the AUs/Micro Base Stations with which the SU can communicate (perform initial phase of network entry) is given a quality mark based on the quality of the signal at which it is received by the SU, for each of the relevant antennas. At the end of the scanning period, the SU reaches a Best BST/AU decision according to the information gathered. The AU/Micro Base Station with the highest quality mark is selected as the Best BST/AU, and the SU will immediately try to associate with it using the relevant frequency and antenna.

The range used for scanning is defined by the BST/AU ID and BST/AU ID Mask parameters of the SU. The initial range can be limited by defining a preferred range of BST/AU IDs, and selecting the best AU/Micro Base Station in the

preferred range. If no AU/Micro Base Station is found in the preferred range, the SU will scan the entire range.

The Best BST/AU Parameters menu includes the following options:

4.9.6.3.10.1 Show

The Show option enables viewing the following:

- Best BST/AU Support
- Preferred BST/AU ID
- Preferred BST/AU ID Mask
- Selected BST/AU ID
- Selected Downlink (Rx) Frequency
- Preferred BST/AU ID
- Preferred BST/AU ID Mask
- Best BST/AU Table, displaying for each AU/Micro Base Station with which the SU can communicate (including the selected AU/Micro Base Station) the following parameters:
 - ♦ BST/AU ID
 - Downlink (Rx) Frequency (MHz)
 - SNR (dB)
 - Rx Antenna

4.9.6.3.10.2 Update

The Update option enables configuration of the following parameters (changes in Best BST/AU parameters take effect only after reset):

4.9.6.3.10.2.1Best BST/AU Support

The Best BST/AU Support parameter allows enabling of disabling the Best BST/AU feature in the SU.If the Best BST/AU Support feature is disabled, the SU will start scanning in the range defined by the BST/AU ID and BST/AU ID Mask and select the first found AU/Micro Base Station.

4.9.6.3.10.2.2Preferred BST/AU ID and Preferred BST/AU ID Mask

These two parameters define the initial range for scanning in order to find the best AU/Micro Base Station. The SU will select the best AU/Micro Base Station within this range. If no AU/Micro Base Station is found within this range, the SU will continue searching in the entire range defined by the BST/AU ID and BST/AU ID Mask parameters.

The Preferred BST/AU ID and Preferred BST/AU ID Mask consist of 6 groups of up to 3 digits each, where the range of each group is 0 to 255. The first 3 groups form the base address/mask for the Operator ID. The next 2 groups form the base address/mask for the Cell ID, and the last group forms the base address/mask for the Sector ID. The range defined by these two parameters must be within the range defined by the BST AU ID and BST AU ID Mask.

4.9.6.3.10.2.3 BST/AU ID and BST/AU ID Mask

These two parameters define the overall range for scanning in order to find the best AU/Micro Base Station. The SU will initially scan the range defined by the Preferred BST/AU ID and Preferred BST/AU ID Mask (if applicable). If no AU/Micro Base Station is found within this range, the SU will continue searching in the entire range defined by the BST/AU ID and BST/AU ID Mask parameters.

The BST/AU ID and BST/AU ID Mask consist of 6 groups of up to 3 digits each, where the range of each group is 0 to 255. The first 3 groups form the base address/mask for the Operator ID. The next 2 groups form the base address/mask for the Cell ID, and the last group forms the base address/mask for the Sector ID.

4.9.6.3.10.3 Clear

Select this option to clear the current Best BST/AU Table. Typically this should be done prior to initiating a full scanning process (otherwise the SU will try first the AUs that are included in the current table).

4.9.6.3.11 Radio Parameters (Advanced Si)

The Radio Parameters menu enables viewing and updated the bandwidth, frequency scanning and antenna parameters. The Radio Parameters menu includes the following options:

- Bandwidth
- Frequency Scanning
- Discrete Frequencies

- Update Scanning Table
- Force Full scanning

4.9.6.3.11.1 Bandwidth (MHz)

The frequency bandwidth used by the radio. A change in the Bandwidth parameter will take effect only after resetting the SU.

The available options are:

- 1 1.75 MHz
- 2 3.5 MHz
- 3 5 MHz
- 4 7 MHz
- 5 10 MHz

A trial to configure a bandwidth that is not supported by the SU will be rejected.

4.9.6.3.11.2 Frequency Scanning

The list of frequencies that participate in the scanning process includes a set of frequencies belonging to the scanning range and/or a set of up to 10 discrete frequencies.

The frequencies belonging to the scanning range are defined by Start Downlink (Rx) Frequency, End Downlink (Rx) Frequency, Main Step and Intermediate Steps. The set of frequencies to be scanned is defined as follows:

The "Main Frequencies" are defined by the Start Frequency, End Frequency and Main Step, using the formula F(N) =Start Frequency + N*Main Step, with End Frequency as the upper limit: F(1) = Start Frequency + Main Step, F(2) = Start Frequency + 2*Main Step.....

The Intermediate Steps can be used to define additional frequencies using a finer resolution. The Intermediate Steps includes a list of up to 8 entries represented by numbers from 1 to 8, or 0 (none) for no Intermediate Steps. The intermediate steps are defined as follows:

Table 4-5: Scanning Intermediate Steps

Number included	Effect on scanned frequencies set
None (0)	Only "Main Frequencies" (Start Frequency + N*Main Step) as defined above are included in the set

Table 4-5: Scanning Intermediate Steps

Number included	Effect on scanned frequencies set
1	Start Frequency is added to the set of "Main Frequencies"
2	All intermediate frequencies defined by "Main Frequency" + 125 KHz are added to the scanning set
3	All intermediate frequencies defined by "Main Frequency" + 250 KHz are added to the scanning set
4	All intermediate frequencies defined by "Main Frequency" + 375 KHz are added to the scanning set
5	All intermediate frequencies defined by "Main Frequency" + 500 KHz are added to the scanning set
6	All intermediate frequencies defined by "Main Frequency" + 625 KHz are added to the scanning set
7	All intermediate frequencies defined by "Main Frequency" + 750 KHz are added to the scanning set
8	For a bandwidth of 3.5 MHz: All intermediate frequencies defined by "Main Frequency" + 875 KHz are added to the scanning set
	For a bandwidth of 5 MHz: All intermediate frequencies defined by "Main Frequency" + 1250 KHz are added to the scanning set

For example, the Intermediate Steps list 1,2,5 means that the scanned frequencies are: Start Frequency, Start Frequency + 125 KHz, Start Frequency + 500 KHz, Start Frequency +N*Main Step, Start Frequency +N*Main Step + 125 KHz, Start Frequency +N*Main Step + 500 KHz (N=1, 2,.... End Frequency is the upper limit for the scanned frequencies).

The Frequency Scanning menu enables viewing and updating the scanning range parameters. It also enables viewing the current set of discrete frequencies (if exist) as defined in the SU. In the current release discrete frequencies can be defined/modified only locally at the SU.

The Frequency Scanning menu includes the following options:

4.9.6.3.11.2.1Show

The Show option enables viewing the following:

- Start Downlink (Rx) Frequency (MHz)
- End Downlink (Rx) Frequency (MHz)
- Scanning Main Step
- Scanning Intermediate Steps (Configured)
- Scanning Intermediate Steps (Actual)

■ Discrete Frequencies (or "No discrete frequency configured")

4.9.6.3.11.2.2Update

The Update menu enables configuration of the following parameters (changes in Frequency Scanning parameters take effect only after reset):

- Start Downlink (Rx) Frequency (MHz): The lowest frequency in the range of frequencies to be scanned. The available values depend on the frequency range defined by the Frequency Bands belonging to the applicable Frequency Bands Group (see Section 4.7.5), and the configured Bandwidth.
- **End Downlink (Rx) Frequency (MHz)**: The highest frequency in the range of frequencies to be scanned. The available values depend on the frequency range defined by the Frequency Bands belonging to the applicable Frequency Bands Group (see Section 4.7.5), and the configured Bandwidth.
- **Scanning Main Step (KHz)**: The Main Scanning Step, used to define the set of "Main Frequencies" as described above.

For 2.x/3.x GHz units and a bandwidth of 3.5 MHz, the range is from 125 KHz to 1750 KHz, in steps of 125 KHz.

For 2.x/3.x GHz units and a bandwidth of 5 MHz, the range is from 125 KHz to 5000 KHz, in steps of 125 KHz.

■ Intermediate Scanning Steps: The Intermediate Scanning Steps includes a sequence of up to 8 entries of numbers between 1 to 8, or 0 for none, that define the intermediate frequencies to be scanned, as described above.

The highest step (in KHz) defined by the Intermediate Scanning Steps must be smaller than the Scanning Main Step.

4.9.6.3.11.3 Discrete Frequencies

The Discrete Frequencies menu enables viewing and editing the list of discrete frequencies that will be included in the Frequency Scanning Table. The Discrete Frequencies menu includes the following options:

Show: Select this option to view the current list of discrete frequencies (if any)

- **Update List**: Enter a list of up to 10 discrete frequencies, separated by commas (no space). This list will replace the current list of discrete frequencies.
- **Add Frequency**: Enter one frequency to be added to the current list of discrete frequencies.
- **Delete Frequency**: Enter one frequency to be removed from the current list of discrete frequencies.
- **Delete All**: Select this option to delete the entire list of discrete frequencies.

4.9.6.3.11.4 Update Scanning Table

Select this option to update the frequency scanning table in run time (without resetting the unit).

4.9.6.3.11.5 Force Full Scanning

Select this option to initiate a full scanning process.

4.9.6.4 Performance Monitoring

The Performance Monitoring sub-menu provides the following options:

- Ports Counters
- Burst Error Rate Counters

4.9.6.4.1 SU Ports Counters

The SU Ports Counters menu enables viewing or resetting the Ethernet and Wireless ports counters. The information displayed for each counter is the accumulated number since the last time the counters were reset. The counters are reset each time the SU is reset, or upon activating the Reset Counters option.

The displayed counters include:

Ethernet Port Counters

- ◆ Data Bytes Received: The total number of data bytes received from the Ethernet link. Management frames and frames with errors are not included.
- ◆ Data Bytes Discarded on Rx: The number of bytes discarded when a packet received from the Ethernet port is not forwarded to the Wireless port due to bridging or classification considerations.

- ◆ Data Bytes Transmitted: The total number of data bytes transmitted to the Ethernet link. Management frames and frames with errors are not included.
- ♦ **Data Bytes Discarded on Tx:** The number of bytes discarded when a packet received from the Wireless port is not forwarded to the Ethernet port due to bridging or VLAN considerations.

Wireless Port Counters

- ◆ Data Bytes Received: The total number of data bytes received from the Wireless link. Management frames and frames with errors are not included.
- ◆ Data Bytes Discarded on Rx: The number of bytes in packets received from the Wireless link and discarded due to MAC protocol receive errors, such as duplicate sequence number, wrong sequence number etc. (not CRC errors).
- ◆ Data Bytes Transmitted: The total number of data bytes transmitted to the Wireless link. MAC Management frames and frames with errors are not included.
- ◆ Data Bytes Discarded on Tx: The number of bytes in packets discarded due to congestion in the wireless medium.

4.9.6.4.2 Burst Error Rate Counters

In the downlink, each burst uses a single rate and may include data intended for several SUs. In the uplink, each burst is from a different SU (also using a single rate).

The Burst Error rate Counters option enables viewing or resetting the Burst Error Rate counters. The information displayed for each rate in uplink and downlink is the accumulated number since the last time the counters were reset. For each direction (uplink/downlink) the displayed information includes the following statistics for each rate:

- Total Burst
- Error Bursts
- Error Rate

The counters are reset each time the SU is reset, or upon activating the Reset option.

4.9.6.5 Show MAC Addresses Behind SU

Select this option to view a list of the MAC Addresses of the devices behind the SU. If VLAN behind the SU is used, the VLAN ID used by each device is displayed next to its MAC Address.

4.9.6.6 **Delete**

This option enables deleting the selected SU from the database. Only disconnected (Out of Service) SUs can be deleted.

4.9.7 Add New SU

Select the Add New SU option to add a new SU to the database. The Add New SU sub-menu includes the following parameters:

- SU MAC Address
- SW File Name: The SW File to be used by the SU. Should be either a File Name known to exist in the SU or an SU SW File Name in the μBST.
- Operation: The action to be performed with the specified SW File after the SU connects to the Micro Base Station (None, Download, Run from Shadow or Set as Main).

A new SU that attempts to communicate with the base station when the base station operates in Advanced Mode will be registered only if its MAC address exists in the database.

4.9.8 Clear All Configured SU SW Files

Select this option to clear (delete) the Configured SW File in all Permanent SUs served by the Micro Base Station.

4.10 Services Menu

4.10.1 Introduction to Services

4.10.1.1 Services, Subscribers and Service Profiles

A Service is a virtual connection between a Subscriber's application and the Network Resource. The Network Resource could be Internet, Content Provider, Corporate Network, etc.

The Services are implemented as IEEE 802.16 connections within the wireless domain. Each Service can include up to 4 uplink and 4 downlink connections. Implementation within the provider's backbone domain depends on the specific backbone network.

A Subscriber is an entity that may be associated with any number of devices connected to any number of SUs. Each Service associates a certain Service Profile with Subscriber's device(s) behind a specific SU.

NOTE

The Subscriber entity is not applicable when Services are provisioned using a RADIUS server.

The Service Profile's properties depend on the Service Type. All data Services have the following properties:

- VLAN ID based Classification: Each Service can be associated with up to 16 VLAN IDs, enabling creation of VLANs within the wireless domain and differentiation of services to different end-users behind the same SU based on VLAN ID classification.
- Quality of Service (QoS) and Priority based Classification: Up to 4 uplink and 4 downlink QoS profiles can be assigned to each Service. The data will be mapped onto these connections by either IEEE 802.1p or DSCP priority tags. This will lead to creation of the corresponding number of Uplink and Downlink connections supporting differentiated services to up to 4 applications based on either IEEE 802.1p or DSCP prioritization schemes. In cases where prioritization is not used, a single pair of uplink/downlink connections is created.
- Forwarding Rules: A Forwarding Rule is assigned to each Service, defining various features that define the handling of certain message types in the wireless domain. These features, that define the wireless broadcast domain for

all Services that use the Forwarding Rule, include Unicast and Broadcast relaying, QoS Profile for Multicasts and Unknown Address Forwarding Policy. The available features depend on the Service Type.

- Aggregation: Several Services in the Wireless Domain may be aggregated into a single Virtual Private Link (VPL) in the backbone domain.
- Priority Marking: Ethernet frames transmitted to the backbone may be marked with a configurable priority (DSCP or IEEE 802.1p), enabling the upstream network to handle the traffic accordingly.
- Auto-configuration: The Ethernet Addresses of the Subscribers' PCs are automatically learnt just as in a standard Bridge. For each Ethernet Address it also learns the VLAN behind the SU it belongs to.

Currently, the following Service types are supported:

- L2 (layer 2) Data Service
- PPPoE Data Service
- Voice Service
- Managed VoIP Service

4.10.1.2 Service Types

4.10.1.2.1 L2 Service

L2 (Layer 2) service transports Layer 2 (Ethernet) frames between the subscriber's site and the Network Resource located behind the provider's backbone and/or between the subscriber's sites. L2 service is transparent to the layer 3 protocol: it can also be used for PPPoE traffic, and it support DRAP-based Voice services.

4.10.1.2.2 **PPPoE Service**

PPPoE (Point-to-Point Protocol over Ethernet) Access service provides connectivity between a PPPoE enabled devices at the subscriber's site and a PPPoE aware Access Concentrator behind the Base Station. In a PPPoE Forwarding Rule, Unicast and Multicast Relaying are always disabled, packets with Unknown Address are always rejected. The frames are forwarded only between the Subscribers' PCs and the PPPoE Access Concentrator. Frames that are not PPPoE Ethertype are discarded.

4.10.1.2.3 Voice Service

The Voice service provides telephony services through an external Voice Gateway connected to the Subscriber Unit's data port. The Voice service is designed for Alvarion's Voice Gateways, using the proprietary DRAP signaling protocol to identify VoIP sessions and to verify optimal handling of these sessions. Upon provisioning of such a service, the system automatically handles Signaling and RTP connections establishment, including QoS issues. Appropriate connections are established to satisfy to actual demand, according to session status and required bandwidth. In a Voice Forwarding Rule, Unicast and Multicast Relaying are always enabled, packets with Unknown Address are always forwarded.

DRAP (Dynamic Resources Allocation Protocol) is a protocol between the Gateway (installed behind the Subscriber Unit) and the base station. The protocol provides an auto-discovery mechanism for the Gateway, so that no specific configuration is needed and the Gateway can automatically locate and register with the base station. The protocol uses a few simple messages enabling a Voice Gateway to request resources when calls are made, and the base station to dynamically allocate them.

Using the DRAP solution has the following advantages:

- Maintain telephony toll quality over the wireless network dynamically allocate Continuous Grant (CG) connections for active calls, maintaining the QoS and low jitter needed for toll-quality voice services. Bandwidth is allocated according to actual requirements of each call, taking into account the Codec's type and sampling rate being used.
- Allocate CG bandwidth only for the duration of the call the air resources are allocated and released according to the DRAP messages, which are based on the VoIP signaling. This dynamic allocation ensures efficient use of the air resources.
- Prevent callers from placing calls if a sector is overloaded the operator can control and limit the maximum number of concurrent calls per wireless sector and per end user voice gateway. Thus, the operator has complete control of its network and the resources in it.
- Automatic support of Codec changing in a VoIP call the DRAP messages update the BreezeMAX equipment on any Codec change or subsequent bandwidth allocation change during the call, hence the exact required bandwidth is always provided. This is essential in fax transmissions where the call might begin with one Codec and switch to another to accommodate the fax transmission.

■ VoIP stack is always in synch with the wireless transport - as the DRAP is integrated into the VoIP stack all calls are terminated according to the VoIP standard. Even if no resources are available, the voice gateway receives an appropriate message from the BreezeMAX system and sends the required signaling message according to the VoIP standard used.

4.10.1.2.4 Managed VoIP Service

The Managed VoIP Service and all parameters and functionality associated with it are intended for future releases that will fully support this feature.

The Managed VoIP service for SIP Voice Gateways uses external Application Function (AF) entity that serves as a SIP proxy and Policy Function (PF) entity that communicates with the Micro Base Station using R3 signaling protocol to provide admission control for the voice sessions. The Micro Base Station recognizes at uplink direction the first SIP packet transfer from any voice connection using a specified port (port 5060) and using R3 location allocation command indicates to the PF its own IP address and the specific SIP client's IP address. This will be used by AF to hook the SIP signaling messages and requesting the Micro Base Station to add, remove or increase resources for specific call at uplink (outgoing call) or downlink (incoming call). Only those calls allocated with resources by the Micro Base Station will be allowed to be established and served. Those rejected due to insufficient resources will not be allocated and will be rejected by SIP signaling managed by the AF. The criteria for rejecting are the allowed number of simultaneous calls per each Micro Base Station (this parameter serves for both Managed VoIP sessions and DRAP-based sessions) the allowed number of voice calls for the specific Service.

The Managed VoIP Service allows also data connections that function like a regular L2 Service, including the ability to transport PPPoE traffic. The data connection is used also for initial detection of SIP traffic in the uplink. Upon actual provisioning of a Managed VoIP service, the system automatically handles Signaling and RTP connections establishment, including QoS issues. Appropriate connections are established to satisfy to actual demand, according to session status and required bandwidth.

4.10.1.3 Supporting Generic (3rd Party) VoIP Services

When using VoIP devices that do not support the DRAP protocol and the SIP-Aware functionality (based on external AF and PF) is not supported, the required service can be provided through a Data (L2) service with a CG QoS (see Section 4.10.4.7) that is defined in accordance with the estimated bandwidth required for the service. The required bandwidth depends on several parameters,

such as codec type, sample rate and T.38 Fax Relay support. The service parameters depend also on the marking features of the VoIP equipment (the ability to use either DSCP or 802.1p to distinguish between RTP, RTCP and VoIP Signaling, and Data traffic).

The system includes several pre-configured Service Profiles for commonly used VoIP applications. For details on the pre-configured profiles, refer to Section 4.10.8. For details on defining Service Profiles for generic VoIP devices, refer to Appendix B.

4.10.1.4 Authentication and Service Provisioning

The Authentication and Service Provisioning process is affected by the Base Station's Service Mode (Advanced or Quick) and by specific SU Status (Permanent or Temporary).

A Permanent SU (an SU that is defined as such in the database) is provisioned with the "permanent" Service(s) defined for it in the database (if any). The Services are provisioned based on the SU's MAC Address.

A Temporary SU (not defined as Permanent in the database) will be authenticated and provisioned with the Service(s) defined for it by the RADIUS Authentication server. The authentication and service provisioning are based on the SU Name (User Name) and User Password. The SU will be added to the database as a Temporary SU.

If rejected by the RADIUS Authentication server (or RADIUS Authentication server is not available), then the service provisioning for a temporary SU depends on Service Mode:

In Advanced Service Mode, the SU will be rejected (no services).

In Quick Service Mode, the SU will be able to use default services based on the Default Service Profile(s), provided it uses the "quick" User Password "quickynikinyoky". It is possible to define up to two Default Service Profiles: one for PPPoE services and one for L2 or Voice or Managed VoIP services. The SU will be added to the database as a Temporary SU.

The quickynikinyoky User Password will be sent by the SU in the following cases:

- A quickynikinyoky is the User Password configured in the SU
- B A new SU with a null User Name and User Password: The SU will send its MAC Address as User Name with User Password quickynikinyoky. In this case, the SU may receive specific services from the RADIUS Authentication server based on these credentials.
- C Null (blank) User Password (non-null User Name)

RADIUS Authorization and Accounting servers (may be implemented in the same server) are required for proper service provisioning.

A Base Station will reject an SU if its name (User Name) is identical to that of another SU that is already served by the Base Station However, several SUs connected to different Base Stations may be authenticated and provisioned with services even if they use the same User Name and User Password. The maximum number of duplicate SUs using the same User Name and User Password that may be authenticated by the Authentication server (Duplicate Sessions) is configured in the RADIUS Accounting server.

The service provisioning information sent by the RADIUS Authentication server to the Base Station includes for each service (up to a maximum of 5 services per SU) the name of the Service Profile and VLAN parameters. In addition, the authentication message includes also the Session Timeout and Termination Action. If the Termination Action is Default, the Session (services to the SU) will be terminated. If the Termination Action is RADIUS-request, the Base Station will try to re-authenticate the user. If the service configuration in the Authentication server has been changed, the services provisioned to the SU (if re-authenticated) will be updated accordingly.

4.10.1.5 Using VLANs and VPLs

VLANs can be used for creating within the BreezeMAX network virtual groups of multiple end-users (stations) belonging to the same organization (Subscriber). They may also be used to differentiate between different end-users (stations) connected to the same SU.

In the backbone, VPL ID (Virtual Private Link ID) is used. VPL is a virtual connection between two points on the network, such as a base station and a service provider or corporate network, identified by the VPL ID, with functionality that is similar to VLAN ID (VLAN on the backbone network). Typically, it is used to separate between different traffic types (e.g. Data and VoIP), or traffic to/from different ISPs or different corporate networks.

If the VPL ID is None (No VPL ID) and VLAN Transparency Mode is Off, frames arriving from the infrastructure side with a VLAN ID tag will be discarded. Tagged frames arriving from the wireless domain will be forwarded without a VLAN tag, unless 802.1p Priority Marking is used. If 802.1p Priority Marking is used, tagged frames will be forwarded with VPL ID = 0 and the defined Priority Marking Value.

If the VPL ID is other than None (applicable only if VLAN Transparency Mode is Off), all untagged frames forwarded to the network will be tagged with the VPL ID. The VLAN ID in tagged frames arriving from the wireless network will be replaced by the VPL ID.

The guidelines that should be followed when defining VPL ID are:

- Several Service Profiles may share the same VPL ID. However, the following rules must be met:
 - ♦ Any number of L2 and/or Voice Service Profiles may share the same VPL ID, provided they all use the same Forwarding Rule.
 - ♦ Any number of PPPoE Service Profiles may share the same VPL ID, provided they all use the same Forwarding Rule.
 - ♦ Any number of Managed VoIP Service Profiles may share the same VPL ID, provided they all use the same Forwarding Rule.
 - ♦ Any number of L2, Voice, Managed VoIP and PPPoE Service Profiles may share the same VPL ID, provided that different Forwarding Rules are used for the groups of PPPoE, Managed VoIP and L2/Voice Service Profiles.

The VLAN Transparency Mode defines the method of transferring packets to the operator's upstream network. When set to On, data packets sent from the Base Station to the backbone will be transferred transparently. The VPL ID parameter is not applicable to Service Profiles with VLAN Transparency Mode On.

- For tagged packets, the VPL ID will be their VLAN tag.
- For untagged packets, the VPL ID will be None.

For packets received from the network, the forwarding decision will be according to the packet's VPL ID. If the VPL ID is unknown (either None or not included in the list of VPL IDs defined for any of the existing, non-transparent Service Profiles), the system will assume this is a transparent VLAN packet (if at least one transparent Service is defined) and transfer it with the original VLAN tag (or untagged if there is no VLAN tag).

For transparent services, VLAN Classification Mode can be set to On to enable downlink classification based on both the MAC Address and VLAN ID, to support applications with multiple VLAN IDs per a single MAC address. All Services assigned to the same SU must be configured with the same VLAN Classification Mode (Either On or Off). If VLAN Classification Mode is On, only a single VLAN ID can be defined for the Service. This means that the allowed combinations are:

- Hybrid VLAN Mode is Off and the VLAN List includes a single VLAN ID.
- Hybrid VLAN Mode is On and the VLAN List is empty.

For transparent services it is also possible to configure an Access VLAN to be used with untagged packets received on the Ethernet port of the SU. This parameter is applicable only for a transparent service with Hybrid Mode set to On, or a transparent service with Hybrid Mode set to Off and an empty VLAN list.

A maximum of one Access VLAN can be defined per SU.

Hybrid VLAN Mode of operation enables classification of both tagged and untagged packets or untagged packets only, according to the following rules:

Hybrid VLAN Mode	VLAN List	Forwarded Packets
Off	Exists	Only packets tagged with a VLAN ID that exists in the VLAN List. VLAN List can include up to 16 entries.
	Empty	All (both untagged and tagged with any VLAN ID)
On	Exists	Untagged packets, and packets tagged with a VLAN ID that exists in the VLAN List. VLAN List can include up to 15 entries.
	Empty	Only untagged frames.

Table 4-6: Hybrid VLAN Mode

The guidelines that should be followed when defining VLAN IDs and related parameters are:

- A specific VLAN ID behind a certain SU can be associated only with a single Service of a certain Service Type. It is not possible to define two Services of the same Service Type for the same SU and VLAN ID. However, the same SU and VLAN ID can be associated with two Services of different Service Types, provided one of them is a PPPoE Service (the combinations L2 and Voice, L2 and Managed VoIP, Voice and Managed VoIP are forbidden).
- For each Service Type, a maximum of one Service that enables forwarding of untagged packets can be assigned to an SU. Forwarding of untagged packets is supported when either Hybrid VLAN Mode is On, or Hybrid VLAN Mode is Off and the VLAN List is empty. It is not possible to define for the same SU two Services of the same Service Type that enable forwarding of untagged packets. However, the same SU and untagged packets can be associated with two Services of different Service Types, provided one of them is a PPPoE Service (the combinations L2 and Voice, L2 and Managed VoIP, Voice and Managed VoIP are forbidden).
- The maximum total number of VLAN IDs behind the same SU is 16 (15 when there is a Service with Hybrid VLAN Mode On is assigned to the SU).

- The combination of VLAN Transparency Service On, Hybrid VLAN Mode Off and an empty VLAN List means that all packets are forwarded. This combination should be used only if the Service Provider can ensure that there will not be conflicts between VLAN IDs used by devices behind the SU and existing VPL IDs.
- To avoid conflicts, a transparent Service Profile cannot be assigned to a Service if the Service's VLAN ID list includes a VLAN ID that is equal to any of the already assigned VPL IDs.
- The combination VLAN Transparency Mode On, Hybrid VLAN Mode On and an empty VLAN List means that only untagged frames should be forwarded. Such a Service cannot be assigned if there is an assigned non-transparent Service with VPL ID = None.

4.10.2 Introduction to Filtering Features

The Filtering features allow a network operator to control the traffic in the system by forwarding or discarding packets according to a set of rules based on multiple allow/deny criteria. This provides both improved network security and better utilization of the wireless medium.

The filtering is done at the base station, controlling the traffic between the network and the wireless link. The filtering features enable:

- Filtering packets arriving from the network interface (From Network Filtering), using a set of either Layer 2 or Layer 3/Layer 4 Filtering Rules.
- Filtering packets arriving from the wireless link (From Wireless Filtering), using a set of either Layer 2 or Layer 3/Layer 4 Filtering Rules.
- Discarding packets to/from specific MAC addresses (MAC Address Deny List).
 This is applicable to MAC Addresses behind SUs.

The filtering functionality is described in Figure 4-1.

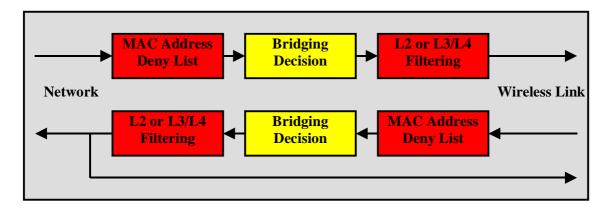


Figure 4-1: Filtering Functionality

The filtering definition process includes the following steps:

- 1 Defining list(s) of Filtering Rules. Each Filtering Rule defines a combination of values for certain packet fields. Filtering Rules can be of 2 types: Layer 2 Filtering Rules (using fields of the Ethernet frame) and Layer 3/Layer 4 Filtering Rules (using fields of the IP and/or UDP/TCP headers).
- 2 Associating each Interface (From Network, From Wireless Link) with a set of either Layer 2 or Layer 3/Layer 4 filters from the relevant Filtering Rules lists, and defining the action to be taken upon receiving a packet that matches any of the selected Filtering Rules: Allow (forward) or Deny (discard).

4.10.3 Common Operations in Services Menu

Except for the General submenu, all submenus available in the Services menu enable viewing, editing, deleting and adding applicable entities, such as Subscribers, Services, Service Profiles, etc.

Some or all of the following options are available in all submenus of the Services menu:

4.10.3.1 Show All

Select this option to see the current details of all entities in the applicable submenu (Subscribers, Services, etc.).

4.10.3.2 Show by

This option enables selecting an entity by a specific identifier such as Name or MAC Address. Select this option and enter the appropriate parameter's value to access the menu for a selected entity. This will enable you to choose from the following options:

- Show: Select this option to view the details of the selected entity.
- Update: Select this option to edit the details of the selected entity.
- Delete: Select this option to remove the selected entity from the database.

4.10.3.3 Show List

Select this option to view all defined entities in the applicable submenu sorted by the entity type ID (Subscriber ID, Service ID, etc.). The entity ID is an identifier attached automatically to each new entity. You can select a specific entity by its ID. This will open the Selected Entity menu with the Show, Update and Delete options described above.

4.10.3.4 Select

Select this option to select an entity by its Name. This will open the Selected Entity menu with the Show, Update and Delete options described above.

4.10.3.5 Add

Select this option to add a new entity to the database.

4.10.4 The Services Menu

The Services menu includes the following options:

- General
- Subscribers
- Services
- Service Profile
- Forwarding Rules
- Priority Classifiers
- QoS Profiles
- Filtering Rules
- Interface Filtering

- MAC Addresses Deny List
- Managed VoIP

4.10.4.1 General

The General menu includes general service parameters. It includes the following options:

4.10.4.1.1 Show

Select this option to view the current values/options of the General parameters.

4.10.4.1.2 Update

Select this option to update any of the General parameters. The General parameters are:

4.10.4.1.2.1 Service Mode

The Service Mode of the base station.

The available options are:

- 1 Advanced
- 2 Quick

For more information on Service Modes refer to Section 4.10.1.4.

The default Service Mode is Quick (2).

4.10.4.1.2.2 Default L2/Voice/Managed-VoIP Service Profile

The default L2 or Voice or Managed VoIP Service Profile to be used by temporary SUs in Quick Mode.

Available profiles - any of the L2 or Voice or Managed VoIP Service Profiles existing in the database.

4.10.4.1.2.3 Default PPPoE Service Profile

The default PPPoE Service Profile to be used by temporary SUs in Quick Mode.

Available profiles - any of the PPPoE Service Profiles existing in the database.

4.10.4.2 Subscribers

The Subscribers menu enables defining new Subscribers, viewing or editing details of previously defined Subscribers and removing Subscribers from the database.

The Subscriber entity is applicable only to Permanent Services (services that are defined in the μBST 's database and are provisioned to Permanent SUs).

The Subscribers database in the µBST can hold up to 1024 Subscribers.

The configurable Subscriber's parameters are:

4.10.4.2.1 Subscriber Name

This is the name of the subscriber, which must be unique for the entire network.

A Subscriber Name consists of 1 to 32 printable characters.

4.10.4.2.2 First Name

An optional parameter for information purposes.

A First Name consists of up to 50 printable characters.

4.10.4.2.3 Last Name

An optional parameter for information purposes.

A Last Name consists of up to 50 printable characters.

4.10.4.2.4 Description

An optional parameter for information purposes.

A Description consists of up to 50 printable characters

4.10.4.2.5 Admin Status

The administrative status of the Subscriber can be either Enabled or Disabled. Select Disabled to disable all services to the Subscriber.

4.10.4.3 **Services**

There are two types of Services:

A Permanent Service is defined locally in the database of the Micro Base Station and it defines a Service to be provisioned to a Permanent SU.

A Temporary Service can only be granted to a Temporary SU. Typically, Temporary Services are provided by a RADIUS Authentication Server. A Temporary Service may also be granted by the Micro Base Station (based on the Default Service Profiles) when a RADIUS server is not available, or when the SU is rejected by the RADIUS server, provided the SU uses the "quick" User Password "quickynikinyoky". A Temporary Service is given a default name of <SU Name>#<Number>. A Temporary Service cannot be defined, deleted or edited locally using either the Monitor program or SNMP.

The Services menu enables viewing all Services, defining new permanent Services, editing details of previously defined permanent Services and removing permanent Services from the database.

-

NOTE

The proper process of removing a Service is:

- 1. Disable the Service (set the Admin Status to Disable)
- 2. Delete the Service.

If the Service is not disabled prior to being the deleted, VLAN ID included in the VLAN List of the deleted Service may still be used by other Services to the same SU that use the same Forwarding Rule as the deleted Service.

The Services database in the µBST can hold up to 1023 Services.

The Services menu also enables viewing and resetting the Service counters.

4.10.4.3.1 Service Parameters

The Service's parameters are:

4.10.4.3.1.1 Name

A Service Name consists of 1 to 32 printable characters.

A "temporary" Service is given a default name of <SU MAC Address>#<Number>.

4.10.4.3.1.2 Subscriber Name

The Subscriber to which the Service is allocated.

The Subscriber Name must be that of a Subscriber that exists in the database.

The Subscriber Name is not applicable to a "temporary" Service.

4.10.4.3.1.3 Service Profile Name

The Service Profile to be used in the Service.

The Service Profile Name must be that of a Service Profile that exists in the database.

4.10.4.3.1.4 SU MAC Address

The MAC Address of the SU associated with the Service.

The SU MAC Address must be that of a Permanent SU that exists in the database.

The MAC Address can be changed (in Update option) only if the Admin status of the Service is set to Disabled.

4.10.4.3.1.5 VLAN List

A list of VLAN IDs listing the VLAN IDs behind the SU associated with the applicable Subscriber.

The list includes VLAN IDs, each one in the range of 0 to 4094, separated by commas. Select null (empty string) for No VLAN. The VLAN List is not displayed in Show menus if the list is empty.

When Hybrid VLAN Mode is Off, the VLAN List can include up to 16 VLAN IDs. When Hybrid VLAN Mode is On, the VLAN List can include up to 15 VLAN IDs (the 16th entry is reserved for No VLAN).

The maximum total number of VLAN IDs behind a single SU is 16. (15 when there is a Service with Hybrid VLAN Mode On is assigned to the SU).

Refer to Section 4.10.1.5 for guidelines regarding VLAN ID configuration.

4.10.4.3.1.6 Hybrid VLAN Mode

Hybrid VLAN Mode of operation enables classification of both tagged and untagged packets or untagged packets only, according to the following rules:

Hybrid VLAN Mode	VLAN List	Forwarded Packets
Off	Exists	Only packets tagged with a VLAN ID that exists in the VLAN List. VLAN List can include up to 16 entries.
	Empty	All (both untagged and tagged with any VLAN ID)
On	Exists	Untagged packets, and packets tagged with a VLAN ID that exists in the VLAN List. VLAN List can include up to 15 entries.
	Empty	Only untagged frames.

Table 4-7: Hybrid VLAN Mode

Note that for each Service Type, a maximum of one Service that enables forwarding of untagged packets can be assigned to an SU. Forwarding of untagged packets is supported when either Hybrid VLAN Mode is On, or Hybrid VLAN Mode is Off and the VLAN List is empty. It is not possible to define for the same SU two Services of the same Service Type that enable forwarding of untagged packets. However, the same SU and untagged packets can be associated with two Services of different Service Types, provided one of them is a PPPoE Service (the combinations L2 and Voice, L2 and Managed VoIP, Voice and Managed VoIP are forbidden).

4.10.4.3.1.7 VLAN Classification Mode

The VLAN Classification feature enables using VLAN ID (in addition to destination MAC address) for classification of transparent service downlink traffic before transmission to the destination MAC address. The VLAN Classification feature supports applications where multiple VLANs are associated with a single MAC address, allowing to assign different services to different VLANs.

VLAN Classification Mode can be set to On only if the following conditions are met:

■ The VLAN Transparency Mode of the applicable Service Profile is set to On.

- A single VLAN ID is defined for the Service. This means that the allowed combinations are:
 - ♦ Hybrid VLAN Mode is Off and the VLAN List includes a single VLAN ID.
 - ♦ Hybrid VLAN Mode is On and the VLAN List is empty.
- All Services assigned to the same SU must be configured with the same VLAN Classification Mode (Either On or Off).

4.10.4.3.1.8 Access VLAN

The Access VLAN parameter enables defining a VLAN ID to be used with untagged packets received on the Ethernet port of the SU. This parameter is applicable only for a transparent service (VLAN Transparency Mode is On) with Hybrid Mode set to On, or a transparent service with Hybrid Mode set to Off and an empty VLAN list.

A tag with the defined Access VLAN will be added by the Micro Base Station to untagged packets in the uplink. The tag will be removed by the Micro Base Station from packets in the downlink. For a multicast connection, the Micro Base Station will send in addition to the VLAN list the single Access VLAN. The SU will be responsible to remove the Access VLAN if it is received on a multicast connection.

A maximum of one Access VLAN can be defined per SU.

The range is from 1 to 4094 or null for no Access VLAN.

4.10.4.3.1.9 Admin Status

The administrative status of the Service can be either Enabled or Disabled. Select Disabled to disable the Service.

4.10.4.3.1.10Operation Status

A read-only display of the operational status that is available in the Show menus only. Up means that the Service is currently in use.

4.10.4.3.2 Performance

The Performance sub-menu enables viewing and resetting the connections' counters of the Service. For each connection in each direction the following information is displayed:

- Connection ID and direction
- Connection Type: BE, NRT, RT or CG.
- QoS Profile Parameters: The values of the relevant QoS Profile's parameters.

- Bytes Submitted: The number of bytes submitted by upper layers to this connection.
- Bytes Transmitted: The number of bytes transmitted to the wireless port through this connection, including retransmissions.
- Bytes Retransmitted: The number of bytes retransmitted to the wireless port through this connection.
- Bytes Dropped: The number of bytes dropped from this connection due to congestion in the wireless link. (identical to Bytes Discarded).
- Bytes Discarded: The number of bytes discarded from this connection due to congestion in the wireless link. (identical to Bytes Dropped).
- Packets Submitted: The number of packets submitted by upper layers to this connection.
- Packets Transmitted: The number of packets transmitted to the wireless port through this connection, excluding retransmissions.
- Packets Dropped: The number of packets dropped from this connection due to congestion in the wireless link. (identical to Packets Discarded).
- Packets Discarded: The number of packets discarded from this connection due to congestion in the wireless link. (identical to Packets Dropped).
- Average Delay: The average packet delay in milliseconds, measured for this connection over the last 15 seconds. The value is updated every 15 seconds.
- Delay Variance: The variance (the standard deviation squared) of the packet delay, in milliseconds squared, measured for this connection over the last 15 seconds. The value is updated every 15 seconds.
- Maximum Delay: The maximum packet delay in milliseconds, measured for this connection over the last 15 seconds. The value is updated every 15 seconds.
- Data Loss Indicator (%): The percentage of dropped packets, out of the total demand, measured for this connection over the last 15 seconds. The value is updated every 15 seconds.

DLI (%) = 100 * (Packets Dropped) / (Packets Submitted)

CIR Utilization (%): The CIR utilization measured for an RT or NRT connection over the last 15 seconds. Not applicable for BE and CG connections.

k = 100 x (the minimum between bytes transferred and CIR)/CIR is calculated for each 1 second interval. CIR Utilization equals the average of k over the last 15 seconds, and may vary from 0 to 100. The value is updated every 15 seconds.

■ EIR Utilization (%): Excess Information Rate utilization measured for a BE or NRT connection over the last 15 seconds. Not applicable for RT and CG connections.

 $k=100 \ x$ (bytes transferred-CIR)/(MIR-CIR) is calculated for each 1 second interval. In BE CIR = 0. The EIR Utilization equals the average of k over the last 15 seconds, and may range from 0 to 100. The value is updated every 15 seconds.

Average Throughput (bits/s): The average throughput, in bits/second, measured for this connection over the last 15 seconds. The value is updated every 15 seconds.

4.10.4.4 Service Profiles

Each Service Profile defines the properties of the defined service. Each Service Profile is associated with specific Forwarding Rule and Priority Classifier (Priority Classifiers are not applicable to Voice Service Profiles).

The Service Profile menu enables viewing all Service Profiles in the database, defining new Service Profiles, editing details of previously defined Service Profiles and removing Service Profiles from the database.

The Service Profiles database can hold up to 1024 Service Profiles.

The configurable Service Profile's parameters are:

4.10.4.4.1 Service Profile Name

A Service Profile Name consists of 1 to 32 printable characters.

4.10.4.4.2 Service Type

The Service Type of the Service Profile. The Service Type parameter is configurable only when defining a new Service Profile (Add). It is not changeable.

The currently available Service Type options are:

- 1 L2
- 2 PPPoE
- 3 Voice
- 4 Managed VoIP

For more details refer to Section 4.10.1.2.

4.10.4.4.3 VLAN Transparency Mode

The VLAN Transparency Mode defines the method of transferring packets to the operator's upstream network.

When set to On, data packets sent from the Base Station to the backbone will be transferred transparently. The VPL ID parameter is not applicable to Service Profiles with VLAN Transparency Mode On. Also the Forwarding Rule selection parameter is not applicable to transparent Service Profiles. All transparent Service Profiles share a single pre-configured Forwarding Rule, and a pre-configured QoS Profile for multicasts. For details on these profiles refer to Table 4-19 and Table 4-20. The pre-configured Transparent Forwarding Rule can be modified but not deleted.

- For tagged packets, the VPL ID will be their VLAN tag.
- For untagged packets, the VPL ID will be None.

For packets received from the network, the forwarding decision will be according to the packet's VPL ID. If the VPL ID is unknown (either None or not included in the list of VPL IDs defined for any of the existing, non-transparent Service Profiles), the system will assume this is a transparent VLAN packet (if at least one transparent Service is defined) and transfer it with the original VLAN tag (or untagged if there is no VLAN tag).

NOTE

The combination of VLAN Transparency Service On, Hybrid VLAN Mode Off and an empty VLAN List means that all packets are forwarded. This combination should be used only if the Service Provider can ensure that there will not be conflicts between VLAN IDs used by devices behind the SU and existing VPL IDs.

When set to Off, data packets sent from the Base Station to the backbone will be transferred with a VLAN tag according to the VPL ID. The VLAN ID in tagged frames arriving from the wireless network will be replaced by the VPL ID. For packets received from the network, the forwarding decision will be according to the Forwarding Rule defined in the Service Profile with a matching VPL ID.

To avoid conflicts, a transparent Service Profile cannot be assigned to a Service if the Service's VLAN ID list includes a VLAN ID that is equal to any of the already assigned VPL IDs.

NOTE

The combination VLAN Transparency Mode On, Hybrid VLAN Mode On and an empty VLAN List means that only untagged frames should be forwarded. Such a Service cannot be assigned if there is an assigned non-transparent Service with VPL ID = None.

4.10.4.4.4 VPL ID

A Virtual Private Link ID to be used in the backbone behind the Base Station. The VPL ID parameter is applicable only to Service Profiles with VLAN Transparency Mode Off.

To avoid conflicts, it is not allowed to define a VPL ID that is identical to any of the VLAN IDs in the already assigned transparent Services (Services using a Service Profile with VLAN Transparency Mode On).

Several Service Profiles may share the same VPL ID. However, the following rules must be met:

- Any number of L2 and/or Voice Service Profiles may share the same VPL ID, provided they all use the same Forwarding Rule.
- Any number of PPPoE Service Profiles may share the same VPL ID, provided they all use the same Forwarding Rule.
- Any number of Managed VoIP Service Profiles may share the same VPL ID, provided they all use the same Forwarding Rule.
- Any number of L2, Voice, Managed VoIP and PPPoE Service Profiles may share the same VPL ID, provided that different Forwarding Rules are used for the groups of PPPoE, Managed VoIP and L2/Voice Service Profiles.

Available values are in the range of 0 to 4094 or null (empty string) for No VPL ID. A value of 4095 is displayed for No VPL ID.

4.10.4.4.5 Priority Marking Mode

In some cases, the network operator may want to use the BreezeMAX system for marking QoS classes, in order to provide network-wide QoS and enable the upstream network to handle the traffic accordingly. Within the BreezeMAX system, frames can be classified to QoS classes using Priority Classifiers, based on either a DSCP header or 802,1p tag. This applies only in cases where an

external networking device marks the applicable fields. BreezeMAX also enables marking data transmitted to the backbone network with either DSCP or 802.1p values, where the marking is done per Service Profile. This marking overrides marking performed by external devices behind the SU. Typically, Priority Marking by the μ BST will be used in the following cases:

- The external networking equipment behind the SU does not use priority marking.
- The service provider does not trust the priority marking defined by the user's equipment.
- The service provider uses a priority marking type (DSCP or 802.1p) that differs from the one used by the user's networking equipment.

The system supports three marking modes:

1 Transparent Marking Mode (No Priority Marking): In this case, the system should forward the frames to the uplink network without any changes.

If 802.1p classification is used at the SU, the frames will be transmitted to the operator's network according to the following rules:

- ♦ If VLAN Transparency Mode is Off, the frames will be forwarded with their original 802.1p value and the configured VPL ID. If no VPL ID is configured (VPL ID = Null), the 802.1p tags will not be forwarded.
- ♦ If VLAN Transparency Mode is On, the frames will be forwarded without any change (with the original 802.1p value and VLAN ID, if exists).

For DSCP classification at the SU:

- \diamond If the VPL ID is configured (VLAN Transparency Mode Off), the μ BST adds an 802.1Q header with the configured VPL ID and 802.1p=0.
- ♦ If VLAN Transparency Mode is On, the μBST adds a 802.1Q header with the original VLAN ID (if exists).

Note that there may be a disparity between the DSCP values and the default 802.1p = 0 value.

2 802.1p Marking Mode:

- ♦ If VLAN Transparency Mode is Off, all frames are marked with the configured VPL ID and the 802.1p Marking Value. If no VPL ID is configured (VPL ID = None), the 802.1Q header will include a VLAN ID = 0.
- ♦ If VLAN Transparency Mode is On, all frames are marked with the original VLAN ID and the 802.1p Marking Value.

NOTE

If the Priority Marking Value is set to 0, untagged packets (without VLAN ID) will be forwarded without any change. This is applicable to transparent services and to to non-transparent services with no VPL ID.

- ♦ If 802.1p classification is used at the SU, the original 802.1p tags are replaced by the configured 802.1p Marking Value.
- ♦ If DSCP classification is used at the SU, an 802.1Q header is added, with the configured VPL ID (if VLAN Transparency Mode is Off) or the original VLAN ID (if VLAN Transparency Mode is On), and the 802.1p Marking Value. The original DSCP bits are kept.
- **3 DSCP Marking Mode:** All frames are marked with the configured DSCP Marking Values.

If 802.1p classification is used at the SU, the frames will be transmitted to the operator's network according to the following rules:

- ♦ If VLAN Transparency Mode is Off, the frames will be forwarded with their original 802.1p value and the configured VPL ID. If no VPL ID is configured (VPL ID = Null), the 802.1p tags will not be forwarded.
- ♦ If VLAN Transparency Mode is On, the frames will be forwarded without any change (with the original 802.1p value and VLAN ID, if exists).

If DSCP classification is used at the SU, the original DSCP bits will be replaced by the configured DSCP Marking Value.

NOTE

- PPPoE frames can be marked only with 802.1p. DSCP marking for PPPoE services is not supported.
- In L2 Services, many protocols may be carried over Ethernet. As BreezeMAX bridges all these protocols, there's no way to know what protocol type is encapsulated in Ethernet beforehand. Consequently, if DSCP Marking is configured for L2, the BreezeMAX system uses DSCP marking only for IP packets (e.g. Ethertype 0x0800). If 802.1p Marking is configured, it is used for all frames.

4.10.4.4.6 Priority Marking Value

The Priority Marking Value enables definition of the marking value for data frames transmitted to the backbone, according to the configured Priority Marking Mode:

Table 4-8: Priority Marking Values

Priority Marking Mode	Priority Marking Values Range
Transparent	Not Applicable
802.1p	0 - 7
DSCP	0 - 63

4.10.4.4.7 Forwarding Rule

The Forwarding Rule to be used by the Service Profile. The Forwarding Rule parameter is not applicable to transparent Service Profiles (VLAN Transparency Mode On), as all transparent Service Profiles share the same pre-defined Forwarding Rule.

The Forwarding Rule must be one of the names that exist in the database after being defined using the Forwarding Rule menu. The Service Type defined in the selected Forwarding Rule must match the one defined for the Service Profile. However, L2 Forwarding Rule can be used in a Voice Service Profile, and vice versa.

4.10.4.4.8 Priority Classifier (L2, PPPoE and Managed VolP Service Type)

The Priority Classifier to be used by the Service Profile. Not applicable for Voice Services (DRAP-based) that use provide connections according to the gateway's properties, call status and required RTP bandwidth.

The Priority Classifier must be one of the names that exist in the database, after being defined using the Priority Classifier menu.

4.10.4.4.9 Maximum Number of Voice Calls (L2, Voice and Managed VoIP Service Type)

The Maximum Number of Voice Calls parameter sets the upper limit on the number of simultaneous VoIP calls that can be supported by the Service using the Service Profile. This parameter is applicable for L2 and Voice Service Profiles for calls made by devices that support DRAP, and for Managed VoIP Service Profiles for calls to/from SIP gateways that are managed by suitable Policy Function and Application Function entities.

The available range is from 0 to 50 calls.

NOTE

To properly support Call Waiting, the Maximum Number of Voice Calls should be configured to a value that is twice the number of actual voice sessions that can be supported simultaneously.

4.10.4.4.10 Voice Domain (Managed VolP Service Type)

The Voice Domain parameter specifies the Voice Domain associated with the Managed VoIP Service Profile. It must be one of the Voice Domains available in the database of the Micro Base Station.

4.10.4.4.11 Service Profile Class

A read-only parameter (available only in Show menu). Currently the Class of all Service Profiles is Local.

4.10.4.5 Forwarding Rules

The Forwarding Rule includes the features that affect the wireless broadcast domain. Any number of L2 and/or Voice Services may belong to the same broadcast domain if they share the same Forwarding Rule. Data in a PPPoE Service can pass only between the subscriber's equipment and an Access Concentrator behind the Base Station. Any number of Managed VoIP Services may belong to the same broadcast domain if they share the same Forwarding Rule.

The Forwarding Rule menu enables viewing all Forwarding Rules in the database, defining new Forwarding Rules, editing details of previously defined Forwarding Rules and removing Forwarding Rules from the database.

The Forwarding Rules database can hold up to 255 Forwarding Rules.

The configurable Forwarding Rule's parameters are:

4.10.4.5.1 Forwarding Rule Name

A Forwarding Rule Name consists of 1 to 32 printable characters.

4.10.4.5.2 Service Type

The Service Type for which the Forwarding Rule is defined. The Service Type parameter is configurable only when defining a new Service Profile (Add). It is not changeable.

The currently available Service Type options are:

- 1 L2
- 2 PPPoE
- 3 Voice

4 - Managed VoIP

For more details refer to Section 4.10.1.2.

4.10.4.5.3 Unicast Relaying (L2 and Managed VolP Service Type)

The Unicast Relaying parameter determines whether the Micro Base Station performs unicast relaying. When the Unicast Relaying parameter is enabled, unicast packets originating from devices on the wireless link can be transmitted back to the wireless link devices. If disabled, these packets are not sent to the wireless link even if they are intended for devices on the wireless link.

Unicast Relaying is applicable only to L2 and Managed VoIP Forwarding Rules. In all PPPoE Forwarding Rules it is set to Disable. In all Voice Forwarding Rules it is set to Enable.

4.10.4.5.4 Broadcast Relaying (L2 and Managed VoIP Service Type)

The Broadcast Relaying parameter determines whether the Micro Base Station performs broadcast relaying. When the Broadcast Relaying parameter is enabled, broadcast packets originating from devices on the wireless link are transmitted by the Micro Base Station back to the wireless link devices, as well as to the backbone. If disabled, these packets are sent only to the backbone and are not sent back to the wireless link.

Broadcast Relaying is applicable only to L2 and Managed VoIP Forwarding Rules. In all PPPoE Forwarding Rules it is set to Disable. In all Voice Forwarding Rules it is set to Enable.

4.10.4.5.5 Unknown Forwarding Policy (L2 and Managed VoIP Services Type)

The Unknown Forwarding Policy parameter determines the mode of controlling the flow of information from the backbone to the wireless media. Select from the following options:

- 1 Reject: The Micro Base Station will transmit unicast packets only to those addresses that the Micro Base Station knows to exist on the wireless link side.
- 2 Forward: Enables the transmission of all packets, except unicast packets sent to addresses that the Micro Base Station recognizes as being on its wired backbone side.

Unknown Forwarding Policy is applicable only to L2 and Managed VoIP Forwarding Rules. In all PPPoE Forwarding Rules it is set to Reject. In all Voice Forwarding Rules it is set to Forward.

4.10.4.5.6 Multicast QoS Profile

The Multicast QoS Profile is the QoS Profile to be used for mulicast and broadcast messages.

The QoS Profile must be one of the names that exist in the database after being defined using the QoS Profile menu.

4.10.4.5.7 Forwarding Rule Class

A read-only parameter (available only in Show menu). Currently the Class of all Forwarding Rules is Local.

4.10.4.6 Priority Classifiers (L2, Managed VoIP and PPPoE Service Type)

The Priority Classifier defines the QoS Profiles to be allocated to users/sessions differentiated by DSCP or 802.1p priority classifiers. Priority Classifiers are not applicable to Voice Service Profiles.

Each Priority Classifier can define up to 4 uplink and 4 downlink QoS profiles.

NOTE

DSCP based Priority Classifiers are applicable only to IP or ARP traffic. It is not applicable to PPPoE and other Ethernet type traffic.

If a Priority Classifier is not applicable for a certain traffic (e.g. DSCP based profile with PPPoE traffic or 802.1p based profile with traffic that do not use VLAN tags), no prioritization scheme will be in effect and quality of service will be determined by the first QoS Profile in the applicable lists.

The Priority Classifier menu enables viewing all Priority Classifiers in the database, defining new Priority Classifiers, editing details of previously defined Priority Classifiers and removing Priority Classifiers from the database.

The Priority Classifiers database can hold up to 255 Priority Classifiers.

The configurable Priority Classifier's parameters are:

4.10.4.6.1 Priority Classifier Name

A Priority Classifier Name consists of 1 to 32 printable characters.

4.10.4.6.2 **Priority Type**

The prioritization mechanism used by the Priority Classifier.

The available options are:

- 1 DSCP
- 2 802.1p

4.10.4.6.3 Uplink Upper Priority Limits

The Uplink Upper Priority Limits parameter enables to define up to four ranges, where each range may be assigned a different QoS Profile for uplink communication. The list includes up to 4 numbers separated by commas, where

each number must be higher than its predecessor and the last number must be the highest available for the applicable priority type (7 for 802.1p, 63 for DSCP).

Examples for acceptable lists:

DSCP Priority: [10,30,50,63]; [21,42,63]; [20,63]; [63].

802.1p Priority: [2,4,6,7]; [1,5,7]; [6,7]; [7].

A ranges list of 21,42,63 means that packets with a priority from 0 to 21 will be transmitted using the first QoS Profile defined in the Uplink QoS Profiles list (see below), packets with a priority from 22 to 42 will be transmitted using the second QoS Profile defined in the Uplink QoS Profiles list and packets with a priority higher than 42 (43 63) will be transmitted using the third Uplink QoS Profile.

A ranges list that includes a single entry (63 for DSCP and 7 for 802.1p) means that priority based classification is not used.

4.10.4.6.4 Uplink QoS Profiles

The Uplink QoS Profiles parameter enables to define up to four QoS Profiles, where each entry is the QoS Profile associated with the applicable entry in the Uplink Upper Priority Limits list. The list includes up to four QoS Profile Names, where each name must be one of the names that exist in the database after being defined using the QoS Profile menu. Each entry in the Uplink QoS Profiles list is associated with the applicable entry in the Uplink Priority Ranges list.

4.10.4.6.5 Downlink Upper Priority Limits

The DownLink Upper Priority Limits list functionality is the same as that of the Uplink Upper Priority Limits list, except that the ranges are defined for downlink communication.

4.10.4.6.6 Downlink QoS Profiles

The Downlink QoS Profiles list functionality is the same as that of the Uplink QoS Profiles list, except that the QoS Profiles are associated with the entries in the Downlink Upper Priority Limits list.

4.10.4.6.7 Priority Classifier Class

A read-only parameter (available only in Show menu). Currently the Class of all Priority Classifiers is Local.

4.10.4.7 QoS Profiles

The QoS Profile defines the Quality of Service parameters that are applicable when the QoS Profile is used.

Different QoS Profile Types are available to support different service requirements:

- Real-Time (RT) service is designed to meet the needs of Real Time Variable Bit Rate like services characterized by requirements for guaranteed rate and delay such as streaming video or audio. These services are dynamic in nature, but offer periodic dedicated requests opportunities to meet real-time requirements. Because the Subscriber Unit issues explicit requests, the protocol overhead and latency is increased, but capacity is granted only according to the real needs of the connection. QoS Profile parameters include Committed Information Rate (CIR) and Committed Time (CT).
- Non-Real-Time (NRT) service is very similar to the Real-Time polling service except that connections may utilize random access transmit opportunities for sending bandwidth requests. These Non Real Time Variable Bit Rate services, such as file transfer and Internet access with a minimum guaranteed rate, are characterized by requirement for a guaranteed rate, but can tolerate longer delays and are rather insensitive to jitter. QoS Profile parameters include Committed Information Rate (CIR), Committed Time (CT) and Maximum Information Rate (MIR) that limits the rate so that bandwidth intensive services will not expand to occupy the full bandwidth.
- Best Effort (BE) service is for services where neither throughput nor delay guarantees are provided. The Subscriber Unit sends requests for bandwidth in either random access slots or dedicated transmission opportunities. The occurrence of dedicated opportunities is subject to network load, and the Subscriber Unit cannot rely on their presence. Service parameters include Maximum Information Rate (MIR). Committed Time (CT) is set to a fixed value (Short) and cannot be configured.
- **Continuous Grant (CG)** service is tailored for carrying constant bit rate (CBR) real-time services characterized by fixed size data packets on a periodic basis such as VoIP or E1/T1. The Base Station schedules regularly, in a preemptive manner, grants of the size defined at connection setup, without an explicit request from the Subscriber Unit. This eliminates the overhead and latency of bandwidth requests in order to meet the delay and jitter requirements of the underlying service. Service parameters include Packet Size (unsolicited grant size) and Sampling Rate (grant interval).

The priorities of allocating bandwidth to connections are in accordance with the QoS Type of the connections, in the following order:

- **1** CG
- 2 RT

3 NRT

4 BE

For each of the RT, NRT and BE connection, there is a second level of priorities according to the Committed Time (CT), where connections with CT=Short gets the highest priority and connections with CT=Long gets the lowest priority.

The QoS Profile menu enables viewing all QoS Profiles in the database, defining new QoS Profiles, editing details of previously defined QoS Profiles and removing QoS Profiles from the database.

The QoS Profiles database can hold up to 255 QoS Profiles.

The available QoS Profile parameters depend on the QoS Type. The configurable QoS Profile's parameters are:

4.10.4.7.1 **QoS Profile Name**

A QoS Profile Name consists of 1 to 32 printable characters.

4.10.4.7.2 QoS Type

The QoS Type that defines the QoS parameters that are applicable to the service. The available options are:

- 1 CG (Continuous Grant)
- 2 RT (Real Time)
- 3 NRT (Non real time)
- 4 BE (Best Effort)

4.10.4.7.3 CT (RT and NRT QoS Types)

The CT (Committed Time) parameter defines the time window over which the information rate is averaged to ensure compliance with the CIR or MIR parameter. It is used also to prioritize bandwidth allocation to connections, where for each QoS Type, connections with a shorter CT get higher priority.

The available options are Short (50 mS), Medium (100 mS), and Long (200 mS). For BE QoS only Short is applicable.

4.10.4.7.4 CIR (RT and NRT QoS Types)

CIR is the information transfer rate that the system is committed to transfer under normal conditions. The rate is averaged over a minimum increment of time, which is defined by the CT parameter.

The range is from 0 to 12,000 Kbps.

4.10.4.7.5 MIR (NRT and BE QoS Types)

MIR is the maximum information rate that the system will allow for the connection. The rate is averaged over a minimum increment of time, which is defined by the CT parameter.

The range is from 1 to 12,000 Kbps.

MIR cannot be lower than CIR (applicable to NRT QoS type).

4.10.4.7.6 Packet Size (CG QoS Type)

The Packet Size parameter defines the amount of data in bytes that is expected for each grant.

The range is from 64 to 1550 (bytes).

4.10.4.7.7 Sample Interval (CG QoS Type)

The Sample Interval parameter defines the time in milliseconds between two successive grants (inter arrival time).

The range is from 5 to 100 (milliseconds).

4.10.4.7.8 QoS Profile Class

A read-only parameter (available only in Show menu). Currently the Class of all QoS Profiles is Local.

4.10.4.8 Filtering Rules

The Filtering Rules menu enables defining L2 Filtering Rules and L3/L4 Filtering Rules.

4.10.4.8.1 L2 Filtering Rules

An L2 (Layer 2) Filtering Rule includes the MAC Address and Ethertype. Each entry can be defined for either the Source or Destination MAC Address field. It is possible to define "Any" for either the MAC Address or Ethertype field (but not for both fields).

The L2 Filtering Rules menu enables defining new L2 Filtering Rule, viewing details of previously defined L2 Filtering Rules and removing L2 Filtering Rules from the database. It is not possible to edit the parameters of an existing L2 Filtering Rule. The database can hold up to 255 L2 Filtering Rules.

The configurable L2 Filtering Rule parameters are:

4.10.4.8.1.1 Rule Name

The name of the L2 Rule. The L2 Rule Name is a string of 1 to 32 printable characters.

4.10.4.8.1.2 MAC Address

A string of 6 octets (where each octet is represented by two hexadecimal numbers) separated by dashes ("-"). An empty entry means "Any". An "Any" MAC Address means that the filter is defined only by the Ethertype field.

4.10.4.8.1.3 MAC Address Direction

The direction (Source or Destination) of the MAC Address. Indicates whether the defined MAC Address is for the Source MAC Address field or the Destination MAC Address field in the Ethernet frame. The MAC Address Direction parameter is not applicable to "Any" MAC Address.

4.10.4.8.1.4 Ethertype

The Ethertype of the Ethernet frame. The Ethertype is defined by 4 hexadecimal digits. An empty entry means "Any" and is applicable only if a MAC Address is defined (the combination of "Any" for both the MAC Address and Ethertype is not allowed).

4.10.4.8.2 L3/L4 Filtering Rules

An L3/L4 (Layer 3/Layer 4) Filtering Rule includes the IP Address and Protocol. It is possible to define "Any" for either the IP Address or Protocol field (but not for both fields). The protocol can be TCP (6), UDP (17) or "Any". If the specified Protocol is either TCP (6) or UDP (17), either the Source or Destination can be defined. The direction is applicable for both IP Address and Port.

The L3/L4 Filtering Rules menu enables defining new L3/L4 Filtering Rule, viewing details of previously defined L3/L4 Filtering Rules and removing L3/L4 Filtering Rules from the database. It is not possible to edit the parameters of an existing L3/L4 Filtering Rule. The database can hold up to 255 L3/L4 Filtering Rules.

The configurable L3/L4 Filtering Rule parameters are:

4.10.4.8.2.1 Rule Name

The name of the L3/L4 Rule. The L3/L4 Rule Name is a string of 1 to 32 printable characters.

4.10.4.8.2.2 IP Address

A string of 4 decimal numbers (where each number is in the range from 1 to 255) separated by dashes ("-"). An empty entry means "Any". An "Any" IP Address means that the filter is defined only by the Protocol field (and optionally by the Port and Port Direction for UDP or TCP protocols).

4.10.4.8.2.3 Protocol

The protocol of the IP packet. The applicable protocols are TCP (6), UDP (17) or "Any". An empty entry means "Any" and is applicable only if an IP Address is

defined (the combination of "Any" for both the IP Address and Protocol is not allowed).

4.10.4.8.2.4 Port

The TDP/UCP port number, which is applicable only if the Protocol parameter is configured to a value of either 6 (TCP) or 17 (UDP). The Port is defined by a number in the range from 0 to 65534.

4.10.4.8.2.5 Port Direction

The direction (Source or Destination) of the Port and the IP Address. Indicates whether the Port number and IP address are for the relevant Source or Destination field in the IP frame.

4.10.4.9 Interface Filtering

The Interface Filtering menu enables viewing and editing the filtering mechanisms to be used on frames received from the network (From Network Filtering) and from the wireless link (From Wireless Filtering).

The Interface Filtering menu also enables viewing and resetting the Filtering Rules Counters, which display for each of the applicable rules the number of frames matching the rule, accumulated since the last reset. In addition, there is a Non Matching counter, displaying the number of frames that did not match any of the relevant rules. The counters will be reset also after changing the Active Rule Type or disabling the Admin Status.

For each of the interfaces, the configurable parameters are:

4.10.4.9.1 L2 Filtering Rules List

The L2 Filtering Rules List submenu enables viewing details on the L2 Filtering Rules assigned to the interface, adding Rules (from the L2 Filtering Rules lists) to the list of Rules assigned to the interface, and deleting one or all Rules from the list. It also enables viewing/resetting the counter for a selected Rule. The counter displays the number of frames matching the Rule, accumulated since the last reset. The counter will be reset also after changing the Active Rule Type or disabling the Admin Status.

4.10.4.9.2 L3/L4 Filtering Rules List

The L3/L4 Filtering Rules List submenu enables viewing details on the L3/L4 Filtering Rules assigned to the interface, adding Rules (from the L3/L4 Filtering Rules lists) to the list of Rules assigned to the interface, and deleting one or all Rules from the list. It also enables viewing/resetting the counter for a selected Rule. The counter displays the number of frames matching the Rule, accumulated since the last reset. The counter will be reset also after changing the Active Rule Type or disabling the Admin Status.

4.10.4.9.3 Active Rule Type

The Active Rule Type parameter defines which of the Filtering Rules List is used.

The available options are Layer 2 and Layer 3/4.

The default option is Layer 2.

4.10.4.9.4 Admin Status

The Admin Status parameter defines whether the filtering mechanism is enabled or disabled.

The default option is Disabled.

4.10.4.9.5 Default Action

The Default Action parameter defines the action to be taken for a frame matching any of the applicable Filtering Rules: Deny (discard) or Allow (forward).

If the Default Action is Allow, all frames matching any of the applicable Filtering Rules will be forwarded, and all other frames will be discarded.

If the Default Action is Deny, all frames matching any of the applicable Filtering Rules will be discarded, and all other frames will be forwarded.

NOTE

L3/L4 Filtering Rules are applicable only to IP packets. If the Default Action is Allow, non-IP packets will be forwarded although they do not match any of the applicable Forwarding Rules.

The default option is Deny.

The menu also enables viewing and resetting the Non Matching Counter, which displays the total number of frames that did not match any of the applicable Filtering Rules, accumulated since the last reset. The counter will be reset also after changing the Active Rule Type or disabling the Admin Status.

NOTE

- Broadcasts and Management frames received from the network, whose destination is the μBST, are never filtered.
- ARP messages will be forwarded automatically if the following conditions are met:
 - 1. Active Rule Type is L3/L4.
 - 2. The L3/L4 Filtering Rules List includes at least one L4 Filtering Rule (a defined protocol).
 - 3. The Default Action is Allow.

This is applicable for both interfaces.

4.10.4.10 Filtering Examples

Example 1: Block All Broadcasts Except ARP and PPPoE

To block all broadcasts except ARP and PPPoE, define an L2 Filtering Rule that includes all other broadcasts. Typically this includes broadcasts with IP Ethertype. The parameters of this rule will be:

MAC Address: FF-FF-FF-FF-FF

MAC Address Direction: Destination

Ethertype: 800

Assuming the intention is to block this broadcast in both directions, this Filtering Rule should be included in the L2 Filtering Rules List of both the From Network Filtering and the From Wireless Filtering. In addition, for both Interfaces the following configuration should be defined:

Active Rule Type: Layer 2

Admin Status: Enabled

■ Default Action: Deny

If broadcasts using other Ethertypes except IP, ARP and PPPoE are excepted, similar Layer 2 Filtering Rules should be defined for these Ethertypes (with the broadcast MAC Address), and these rules should be added to the applicable Layer 2 Filtering Rules Lists.

Example 2: Block DHCP Server behind SU

To prevent the use of a DHCP server behind an SU, define the following L3/L4 Filtering Rule:

IP Address: Any (empty)

Protocol: 17 (UDP)

Port: 67 (the source port of the DHCP server)

Port Direction: Source

This Filtering Rule should be included in the L3/L4 Filtering Rules List of the From Wireless Filtering. In addition, the following configuration should be defined for the From Wireless Filtering Interface:

Active Rule Type: Layer 3/4

Admin Status: Enabled

Default Action: Deny

4.10.4.11 MAC Addresses Deny List

The MAC Addresses Deny List menu enables viewing and editing the MAC Addresses Deny List. This list is used to deny services to MAC Addresses behind SUs. Uplink frames whose source MAC address matches any of the entries in the list and downlink frames whose destination MAC address matches any of the entries in the list will be discarded.

The MAC Addresses Deny List menu also enables viewing and resetting the MAC Addresses Deny List Counters, which display for each of the entries in the list the number of frames that were discarded because they match the entry, accumulated since the last reset.

4.10.4.12 Managed VolP

The Managed VoIP menu enables defining, editing and viewing the parameters that are necessary for proper provisioning of Managed VoIP Services. It also enables viewing and resetting relevant statistics counters.

The Managed VoIP menu includes the following options:

- Policy Function General Parameters
- Policy Function Servers
- Voice Domain

4.10.4.12.1 Policy Function General Parameters

The Policy Function General Parameters submenu enables viewing and editing the general parameters that affect the communication of the Micro Base Station with the Policy Function server(s) and with the SIP devices. It also enables viewing the packets received from unknown devices on the port dedicated for communication with the PF server(s).

The Policy Function General Parameters submenu includes the following options:

4.10.4.12.1.1Show All

The Show All option enables viewing the current configuration of the following parameters:

- Retry Interval (sec)
- Maximum Number of Retries
- Listener Port Number
- UDP Destination Port
- Statistics

4.10.4.12.1.2Retry Interval (sec)

The Retry Interval parameter defines the time in seconds to wait before retransmitting a message to the Policy Function server if no response is received.

The range is 1-60 (seconds).

The default value is 10 (seconds).

4.10.4.12.1.3Maximum Number of Retries

The Maximum Number of Retries parameter defines the maximum number of retransmission attempts, before a decision is taken to revert to another server if configured (not applicable for current release), or give up.

The range is 0-5 (retries).

The default value is 3 (retries).

4.10.4.12.1.4Listener Port Number

The Listener Port Number is the number of the port used by the Micro Base Station for listening to R3 messages from Policy Function server(s).

The range is 1-65535.

The default port number is 3799.

4.10.4.12.1.5UDP Destination Port

The UDP Destination Port is the number of the port used by the Micro Base Station for receiving SIP messages from the voice gateway (provided that a Managed VoIP Service is provisioned to the relevant SU). The same port number must be configured in all the relevant voice gateways.

The range is 1-65535.

The default port number is 5060.

4.10.4.12.1.6Statistics

The Statistics option enables viewing or resetting the PF Listener Counter that indicates the total number of packets received from unknown servers(s) since the last reset.

4.10.4.12.2 Policy Function Servers

The Policy Function Servers menu enables viewing the status and parameters of defined Policy Function servers, updating the parameters of a server, adding a new server, or deleting a server from the database.

The Policy Function Servers menu includes the following options:

- Show All
- Add Server
- Select Server

4.10.4.12.2.1Show All

Select this option to view the current status and parameters of all defined Policy Function servers. For each defined server the following details are displayed:

- IP Address
- UDP Port
- VLAN ID

4.10.4.12.2.2Add Server

Select this option to define a new Policy Function server. Up to 255 Policy Function servers can be defined. You will be prompted to configure the following parameters:

4.10.4.12.2.2.1IP Address

The IP address of the Policy Function server.

The default is null (IP address must be defined). Refer to the limitations described in "IP Addresses Configuration" on page 65.

4.10.4.12.2.2.2UDP Port

Specifies the UDP port number used by the Policy Function server for receiving messages from the Micro Base Station.

Valid values: 1 to 65535.

4.10.4.12.2.2.3VLAN ID

The VLAN ID used for communication with the Policy Function server.

Valid values are 0-4094 or null for no VLAN ID.

4.10.4.12.2.2.4Shared Secret

Shared Secret is the key used for encrypting the user's credentials in the messages between the Micro Base Station and the Policy Function.

For security reasons, the Shared Secret is displayed as a series of asterisks, and when defining it for the first time or updating it, the user is prompted to re-enter the new Shared Secret for confirmation.

The Shared Secret comprises a string of 1 to 16 printable characters.

4.10.4.12.2.3Select Server

This option enables selecting an existing Policy Function Server for viewing its status and parameters, updating its definition, deleting it from the database or viewing its Statistics counters. The selection is based on the server's IP address.

The available options are:

4.10.4.12.2.3.1Show

Select this option to display current status and parameters of the server. For information on displayed details refer to Section 4.10.4.12.2.1),

4.10.4.12.2.3.2Delete

Select this option to delete the server from the database.

4.10.4.12.2.3.3Update

Select this option to update the parameters of the server (the IP Address cannot be changed).

4.10.4.12.2.3.4Statistics

Select this option to display or reset the Statistics Counters for this server. The Statistics Counters display traffic information as follows:

- **Round Trip Time**: The time interval (in millisecond) between the most recent Access-Reply and the Access-Request that matched it from this server.
- **Requests from BS**: The number of PF Access-Request packets sent to this server. This does not include retransmissions.
- **Requests from PF**: The number of PF Access-Request packets sent from this server.
- **Retransmissions to PF**: The number of PF Access-Request packets retransmitted to this server.
- **Access Accepts**: The number of PF Access-Accept packets sent to this server.
- **Access Rejects**: The number of PF Access-Reject packets sent to this server.
- **Malformed Packets**: The number of malformed PF Access-Request packets received from this server. Malformed packets include packets with an invalid length.
- **Pending Requests**: The number of PF Access-Request packets destined for this server that have not yet timed out or received a response. This counter is incremented when an Access-Request is sent and decremented due to receipt of an Access-Accept or Access-Reject, a timeout or retransmission.
- **Timeouts**: The number of timeouts to this server that caused packets to be dropped.
- **Unknown Types**: The number of packets of unknown type which were received from this server.
- **Packets Dropped**: The number of PF packets of which were received from this server and were dropped for any reason.

4.10.4.12.3 Voice Domain

The Voice Domain menu enables viewing the parameters of defined Voice Domains, adding a new Voice Domain, updating the definition of a Voice Domain, or deleting a Voice Domain from the database.

The Voice Domain menu includes the following options:

Show All

- Show List
- Select
- Add

4.10.4.12.3.1Show All

Select this option to display the parameters of all Voice Domains in the database. For each Voice Domain, the following details are displayed:

- ID (1-10, assigned automatically when adding a new Voice Domain)
- Name
- PF IP address

4.10.4.12.3.2Show List

Select this option to view a list of all Voice Domains in the database sorted by the Voice Domain IDs. For each Voice Domain ID, the Voice Domain Name is displayed. You can select a Voice Domain by its ID for viewing its details, editing its parameters or deleting it from the database.

4.10.4.12.3.3Select

Use this option to select a Voice Domain by its Name for viewing its details, editing its parameters or deleting it from the database.

4.10.4.12.3.4Add

Select this option to add a new Voice Domain. Up to 10 Voice Domains may be defined. The configurable parameters are:

4.10.4.12.3.4.1 Voice Domain Name

The name of the Voice Domain.

The Voice Domain Name comprises a string of 1 to 32 printable characters.

4.10.4.12.3.4.2PF IP Address

The IP Address of the Policy Function associated with the Voice Domain. The same PF IP Address may be associated with several Voice Domains.

The PF IP Address must be the IP Address of one of the Policy Servers available in the database.

4.10.5 Defining Local Service Profiles

The process of defining completely new Service Profiles should be done "from bottom up", as each entity in the process is defined using one or more "lower level" entities.

To define a new Service Profile "from scratch":

- 1 Define the QoS profiles that should be available for the required Priority Classifier (Uplink/Downlink QoS Profiles) and for the required Forwarding Rule (Multicast QoS Profile).
- 2 Define the Priority Classifier that should be available for the required Service Profile. All QoS Profiles required for the Uplink/Downlink QoS profiles list must be defined in advance.
- 3 Define the Forwarding Rule that should be available for the required Service Profile. The QoS Profile required for the Multicast QoS Profile parameter must be defined in advance.
- 4 Define the Service Profile. The required Priority Classifier and Forwarding Rule must be defined in advance.
- 5 Once there are various QoS Profiles, Priority Classifiers and Forwarding Rules in the database, you can skip one or more of the steps 1 to 3.

4.10.6 Defining Local (Permanent) Services

To define a new Service "from scratch":

- 1 Verify that the necessary Service Profile(s) are available in the database.
- 2 Define the relevant Subscriber.
- **3** Verify that the applicable SU is defined.
- **4** Use existing Subscriber Name, SU MAC Address and Service Profile Name to define the required Service.

Once there are various Subscribers and SUs in the database, you can skip one or more of the steps 2 to 3.

4.10.7 Defining RADIUS Based Services

- 1 Verify that the necessary Service Profiles are available in the database of the relevant Base Station(s).
- 2 The Users List of the server must include the default User Name and Password of the Micro Base Station (both are KeepAliveUserNameAndPassword).
- 3 The format of the each Service in the ID Filter in the RADIUS Authentication server(s) is n:v:h:a:c; The ID Filter may include up to 5 Services, separated by ";": s1;s2;...
 - ♦ n = Service Profile Name
 - ♦ v=<VLAN List>. v=<> is an empty VLAN list.
 - ♦ h=ON or OFF, indicating the configured Hybrid VLAN Mode.
 - ♦ a=<OFF or ON, VLAN ID>, indicating the configured Access VLAN Mode, and the Access VLAN ID for Access VLAN ON.
 - ♦ c=ON/OFF, indicating the configured VLAN Classification Mode.

Example 1: n=be_96:v=<2,4,5>:h=ON:a=<ON,100>:c=ON;

Example 2: n=be_128:v=<22>:h=OFF:a=<OFF>:c=OFF;

4.10.8 Pre-configured Profiles

At manufacturing stage, each μBST is configured with a set of pre configured Profiles. Certain parameters of these Profiles may be modified to reflect specific implementation requirements. When the software version is upgraded, these pre-configured Profiles will not be installed again in the μBST . This is to prevent configuration problems from occurring if the modified Profiles differ from the factory loaded Profiles.

Note that upon resetting to μBST to its default configuration (Set Factory Defaults), pre-configured Profiles that were modified are not affected.

The pre-configured Service Profiles are:

- Internet Access L2 for basic Internet Access service with Best Effort QoS, utilizing L2 Service Type. This is the recommended Default Service Profile for Quick Mode.
- Internet Access PPPoE for basic Internet Access service with Best Effort QoS, utilizing PPPoE Service Type.

- **Gold, Silver and Bronze Teleworking** for teleworking applications with different QoS requirements. The pre-configured Teleworking Services are asymmetric: DL Rate > UL Rate.
- **Gold, Silver and Bronze LAN-to-LAN** for LAN-to LAN applications with different QoS requirements. The pre-configured LAN-to-LAN Services are symmetric: DL rate = UL rate.
- **VoIP Service Profiles** for DRAP-based gateways. Two pre configured VoIP service Profiles are defined; VoIP 1V for gateways with a single POTS interface, and VoIP 2V for fully supporting gateways for 2 POTS interfaces.

Service Profiles for Generic VoIP Devices:

- ♦ 1 POTS Basic VoIP G.729: 1 POTS, no Fax, G.729 codec with a 20 milliseconds sample interval, no priority marking.
- ♦ 1 POTS Advanced VoIP G.729: 1 POTS, T.38 Fax, G.729 codec with a 20 milliseconds sample interval, DSCP priority marking.
- ♦ 1 POTS Basic VoIP G.711: 1 POTS, no Fax, G.711 codec with a 20 milliseconds sample interval, no priority marking.
- ♦ 1 POTS Advanced VoIP G.711: 1 POTS, T.38 Fax, G.729 codec with a 20 milliseconds sample interval, DSCP priority marking.

For more details of defining Service Profiles for Generic (3rd party) VoIP devices, refer to Appendix B.

Except for the Basic PPPoE Internet Access pre-configured Service Profiles, all pre-configured Data Service Profiles use L2 Service Type to ensure transport of all L2 and L3 protocols.

It is recommended to use the L2 Best Effort Internet Access pre configured Service Profile as the Default Data Service Profile in Quick Mode.

The following tables provide details on the pre-configured Service Profiles, Forwarding Rules, Priority Classifiers and QoS Profiles.

Table 4-9: Pre-Configured Data Service Profiles

Name	Service Type	VPL ID*	Forwarding Rule	Priority Classifier
Internet Access L2	L2	Null	Internet Access L2	BE Asymmetric
Internet Access PPPoE	PPPoE	11	Internet Access PPPoE	BE Asymmetric

Table 4-9: Pre-Configured Data Service Profiles

Name	Service Type	VPL ID*	Forwarding Rule	Priority Classifier
Gold Teleworking	L2	12	Gold Teleworking	Gold Asymmetric
Silver Teleworking	L2	13	Silver Teleworking	Silver Asymmetric
Bronze Teleworking	L2	14	Bronze Teleworking	Bronze Asymmetric
Gold LAN-to-LAN	L2	15	Gold LAN-to-LAN	Gold Symmetric
Silver LAN-to-LAN	L2	16	Silver LAN-to-LAN	Silver Symmetric
Bronze LAN-to-LAN	L2	17	Bronze LAN-to-LAN	Bronze Symmetric

In all pre-configured Data Service Profiles, the **Priority Marking Mode** is set to Transparent and the **Maximum Number of Voice Calls** is 0.

As Internet Access L2 is the recommended Default Data Service Profile, a VPL ID = None is used to ensure availability of basic data services in Quick Mode.

Table 4-10: Pre-Configured Forwarding Rules for Data Service

Name	Service Type	Unicast relaying	Broadcast Relaying	Unknown forwarding Policy	Multicast QoS
Internet Access L2	L2	Disable	Disable	Forward	BE 750
Internet Access PPPoE	PPPoE	Disable (hard coded)	Disable (hard coded)	Forward (hard coded)	BE 750
Gold Teleworking	L2	Disable	Disable	Forward	NRT 1500/1750
Silver Teleworking	L2	Disable	Disable	Forward	NRT 1000/1150
Bronze Teleworking	L2	Disable	Disable	Forward	NRT 750/850
Gold LAN-to-LAN	L2	Enable	Enable	Forward	NRT 1500/1750
Silver LAN-to-LAN	L2	Enable	Enable	Forward	NRT 1000/1150
Bronze LAN-to-LAN	L2	Enable	Enable	Forward	NRT 750/850

^{*} VPL IDs are assigned arbitrary values and should be configured in accordance with specific network implementation, taking into account the considerations described in Section 4.10.1.5.

Table 4-11: Pre-Configured Priority Classifiers for Data Services

Name	Туре	Uplink Priority ranges	Uplink QoS Profiles	Downlink Priority ranges	Downlink QoS Profiles
BE Asymmetric	802.1p	7	BE 96	7	BE 750
Gold Asymmetric	802.1p	7	NRT 128/192	7	NRT 1500/1750
Silver Asymmetric	802.1p	7	NRT 96/128	7	NRT 1000/1150
Bronze Asymmetric	802.1p	7	NRT 96/128	7	NRT 750/850
Gold Symmetric	802.1p	7	NRT 1500/1750	7	NRT 1500/1750
Silver Symmetric	802.1p	7	NRT 1000/1150	7	NRT 1000/1150
Bronze Symmetric	802.1p	7	NRT 750/850	7	NRT 750/850

Table 4-12: Pre-Configured QoS Profiles for Data Services

Name	Туре	CIR (Kbps)	MIR (Kbps)	СТ
BE 96	Best Effort	NA	96	Short*
BE 750	Best Effort	NA	750	Short*
NRT 96/128	Non Real Time	96	128	Medium
NRT 128/192	Non Real Time	128	192	Medium
NRT 750/850	Non Real Time	750	850	Medium
NRT 1000/1150	Non Real Time	1000	1150	Medium
NRT 1500/1750	Non Real Time	1500	1750	Medium

^{*} Although Medium CT may be indicated for these BE QoS Profiles (legacy from previous versions), the actual CT is Short.

Table 4-13: Pre-Configured Voice Service Profiles (for DRAP-based Gateways)

Name	Service Type	VPL ID*	Priority Marking Mode	Maximum Number of Voice Calls**	Forwarding Rule
VoIP 1V	Voice	18	Transparent	2	VoIP
VoIP 2V	Voice	18	Transparent	4	VoIP

^{*} VPL IDs are assigned arbitrary values and should be configured in accordance with specific network implementation, taking into account the considerations described in Section 4.10.1.5.

** To properly support Call Waiting, an additional connection must be available. Thus, the Maximum Number of Voice Calls is twice the maximum expected number of actual voice sessions.

Table 4-14: Pre-Configured Service Profiles for Generic VoIP Services

Name	Service Type	VPL ID*	Forwarding Rule	Priority Classifier
1 POTS Basic VoIP G.729	L2	19	VoIP	1 POTS Basic VoIP G.729
1 POTS Advanced VoIP G.729	L2	19	VoIP	1 POTS Advanced VoIP G.729
1 POTS Basic VoIP G.711	L2	19	VoIP	1 POTS Basic VoIP G.711
1 POTS Advanced VoIP G.711	L2	19	VoIP	1 POTS Advanced VoIP G.711

In all pre-configured Service Profiles for generic VoIP services, the **Priority**Marking Mode is set to Transparent and the Maximum Number of Voice Calls is
0.

Table 4-15: Pre-Configured Forwarding Rule for Voice Services

Name	Service Type	Unicast Relaying	Broadcast Relaying	Unknown forwarding Policy	Multicast QoS
VoIP	Voice	Enable (hard coded)	Enable (hard coded)	Forward (hard coded)	BE 128

All pre-configured Service profiles for Voice (DRAP-based VoIP Services and Generic (3rd party) VoIP Services share the same pre-configured Forwarding Rule, to enable direct communication between all users of VoIP Services, regardless of the gateway type and other possible differences in the Service Profiles.

Table 4-16: Pre-Configured Priority Classifiers for Generic VolP Service

Name	Туре	Uplink Priority Ranges	Uplink QoS Profiles	Downlink Priority Ranges	Downlink QoS Profiles
1 POTS Basic VoIP G.729	DSCP	63	CG 47	63	CG 47

^{*} VPL IDs are assigned arbitrary values and should be configured in accordance with specific network implementation, taking into account the considerations described in Section 4.10.1.5.

Table 4-16: Pre-Configured Priority Classifiers for Generic VoIP Service

Name	Туре	Uplink Priority Ranges	Uplink QoS Profiles	Downlink Priority Ranges	Downlink QoS Profiles
1 POTS Advanced VoIP	DSCP	0	BE 64	0	BE 64
G.729		26	RT 6	26	RT 6
		63	CG 38	63	CG 38
1 POTS Basic VoIP G.711	DSCP	63	CG 108	63	CG 108
1 POTS Advanced VoIP	DSCP	0	BE 64	0	BE 64
G.711		26	RT 11	26	RT 11
		63	CG 88	63	CG 88

Table 4-17: Pre-Configured BE and RT QoS Profile for Generic VoIP Services

Name	Туре	CIR (Kbps)	MIR (Kbps)	СТ
BE 64	Best Effort	NA	64	Short*
BE 128	Best Effort	NA	128	Short*
RT 6	Real Time	6	NA	Short
RT 11	Real Time	11	NA	Short

^{*} Although Medium CT may be indicated for these BE QoS Profiles (legacy from previous versions), the actual CT is Short.

Table 4-18: Pre-Configured CG QoS Profile for Generic VoIP Services

Name	Туре	Packet Size (Bytes)	Sample Interval (msec)
CG 38	Continuous Grant	94	20
CG 47	Continuous Grant	117	20
CG 88	Continuous Grant	218	20
CG 108	Continuous Grant	270	20

The following tables provide details on the pre-configured Profiles used for Transparent Services (VLAN Transparency Mode is ON):

Table 4-19: Pre-Configured Forwarding Rule for Transparent Services

Name	Service Type	Unicast Relaying	Broadcast Relaying	Unknown forwarding Policy	Multicast QoS
@@Transparent@@	L2	Enable	Enable	Forward	@@Transparent@@

NOTE

The name of the Transparent Forwarding Rule cannot be edited.

Table 4-20: Pre-Configured QoS Profile for Transparent Services

Name	Туре	CIR (Kbps)	MIR (Kbps)	СТ
@@Transparent@@	Best Effort	NA	128	Short*

^{*} Although Long CT may be indicated for this BE QoS Profile (legacy from previous versions), the actual CT is Short.

4.11 Parameters Summary

Table 4-21: Micro Base Station Monitor Parameters Summary

Parameter	Range	Default	Run-Time Updated		
Micro Base Station General Parameters					
Device Name	Up to 255 printable characters	Null	Yes		
Device Location	Up to 255 printable characters	Null	Yes		
ATPC Enable/Disable	1 - Disable	Enable	Yes		
	2 - Enable				
	Disable is temporary until next reset of the AUs				
Optimal Uplink RSSI (dBm)	-80 to -74	-74	No		
Operator ID	X.X.X	186.190.0	No		
	X: 0-255				
Cell ID	X.X	0.250	No		
	X: 0-255				
Duplex Mode	FDD, TDD	TDD	No		
	Only TDD spplicable to current version)				
DL-UL Ratio	1: 65-35 (%)	50-50 (%)	No		
	2: 60-40 (%)				
	3: 55-45 (%)				
	4: 50-50 (%)				
	5: 45-55 (%)				
	6: 40-60 (%)				
	7: 35-65 (%)				
	(See Section 4.5.3.1.5.2 for limitations)				
External 1PPS Clock	1 - Disable	Enable	No		
	2 - Enable				
External 16MHz Clock	1 - Disable	Disable	No		
	2 - Enable				

Table 4-21: Micro Base Station Monitor Parameters Summary

Parameter	Range	Default	Run-Time Updated
Alarms and Traps			
Traps Display Filter-Minimum	1 - Critical	Info	Yes
Severity	2 - Major		
	3 - Minor		
	5 - Info		
	4 - Warning		
Traps Display Filter-Days	1 - 31 days	31 days	Yes
Traps Configuration-Admin	1 - Disable	Enable	Yes
Status	2 - Enable		
Trap Configuration-Severity	1 - Critical	Depends on trap	Yes
	2 - Major		
	3 - Minor		
	4 - Warning		
	5 - Info		
Trap Configuration-Suppression Interval	0 - 86,400 (seconds). 0 means no suppression	0 (no suppression	Yes
RADIUS General Parameter	rs ·	1	l
Shared Secret	Up to 16 printable characters, case sensitive. Available only via Monitor.	null (must be defined)	Yes
Retry Interval (sec)	1-5 (seconds)	5 (seconds)	Yes
Maximum Number of Retries	0-5	5	Yes
Keep Alive Timeout (sec)	60-180 (seconds)	60 (seconds)	Yes
RADIUS Authentication (up	to two servers)	•	
IP Address	IP address	null	Yes
UDP Port	1-65535	1812	Yes
Server Status	1 - Primary		Yes
	2 - Secondary		
	(Only one server can be Primary)		
RADIUS Accounting (up to	two servers)	1	1
IP Address	IP address	null	Yes

Table 4-21: Micro Base Station Monitor Parameters Summary

Parameter	Range	Default	Run-Time Updated
UDP Port	1-65535	1813	Yes
Server Status	1 - Primary		Yes
	2 - Secondary		
	(Only one server can be Primary)		
Chain			
Chain Number	1 - 1500	0 (not defined yet-must be defined)	No
Clock Mode	1 - Master	Master	No
	2 - Redundant (not applicable in current release)		
	3 - Slave1		
	4 - Slave2		
	5 - Slave3		
	6 - Slave4		
GPS Protocol	0 - None	Trimble	No
	1 - Trimble		
	2 - Symmetricom		
Time Zone Offset From UTC	-12:00 to +13:00	+02:00	Yes
Daylight Saving	1 - Disable	Enable	Yes
	2 - Enable		
Daylight Saving Start Date	dd.mm	12.04	Yes
Daylight Saving End Date	dd.mm	15.09	Yes
Daylight Saving Advance Factor	0 to 4:45 hours in 15 minutes steps	1:00	Yes
Stop Tx After Hold Over Timeout	1 - Disable	Disable	Yes
	2 - Enable		
Hold Over Passed Timeout	0 - 2880 (minutes)	30 (minutes)	Yes
Unit Control Parameters			
Administrator Password	Up to 16 printable characters, case sensitive	admin	Yes

Table 4-21: Micro Base Station Monitor Parameters Summary

Parameter	Range	Default	Run-Time Updated
Installer Password	Up to 16 printable characters, case sensitive	installer	Yes
Monitor Password	Up to 16 printable characters, case sensitive	monitor	Yes
Monitor Inactivity Timeout	0 - 60 minutes (0 means no timeout)	10 minutes	Yes
Management Port Parameters			
Management Port IP Address	IP address	10.0.0.1	No
Management Port Subnet Mask	IP address	255.255.255.0	No
Management Port Gateway	IP address	0.0.0.0	No
Management Port Destination Subnet	IP address	0.0.0.0	No
Management Port Destination Subnet Mask	IP address	0.0.0.0	No
Management Port Auto	1 - Disable	Enable	No
negotiation Option	2 - Enable		
Management Port Speed and	1 - 10 Mbps Half Duplex		No
Duplex	2 - 10 Mbps Full duplex		
	3 - 100 Mbps Half Duplex		
	4 - 100 Mbps Full Duplex		
Management Port Management	1 - Disable	Enable	Yes
Traffic Enable/Disable	2 - Enable		
Data Port Parameters			
Data Port IP Address	IP address	1.1.1.3	No
Data Port Subnet Mask	IP address	255.255.255.0	No
Data Port Gateway	IP address	0.0.0.0	No
Data Port Management VLAN ID	0-4094 or Null for No VLAN	Null	Yes
Data Port Auto Negotiation	1 - Disable	Enable	No
Option	2 - Enable		

Table 4-21: Micro Base Station Monitor Parameters Summary

Parameter	Range	Default	Run-Time Updated
Data Port Speed and Duplex	1 - 10 Mbps Half Duplex		No
	2 - 10 Mbps Full duplex		
	3 - 100 Mbps Half Duplex		
	4 - 100 Mbps Full Duplex		
Data Port Management Traffic	1 - Disable	Enable	Yes
Enable/Disable	2 - Enable		
Authorized Managers			
Authorized Manager IP Address	IP address	NA	Yes
Authorized Manager Send Traps	1 - Disable	NA	Yes
	2 - Enable		
Authorized Manager Read Community	Up to 23 printable characters, case sensitive	NA	Yes
Authorized Manager Write Community	Up to 23 printable characters, case sensitive	NA	Yes
Bridge			
Bridge Aging Time	1 - 1440 minutes or 0 for no aging	10 minutes	Yes
Voice			<u> </u>
DRAP TTL Retries	1 - 100	4	Yes
Radio Cluster Parameters			
Radio Cluster ID	1 - 4		Yes
Name	Up to 32 printable characters	Null	Yes
Location	1 to 255 printable characters	Null	Yes
Sector Heading	0 - 359 (degrees)	0	Yes
Sector Beam Width	0 - 359 (degrees)	90	Yes
ODU Parameters			
ODU ID	1 - 4		Yes
Associated Radio Cluster	1 - 4 (must be a defined Radio cluster ID)		Yes
Configured ODU Frequency Band	According to loaded Frequency Bands file	0 (Not Defined)	Yes

Table 4-21: Micro Base Station Monitor Parameters Summary

Parameter	Range	Default	Run-Time Updated
Tx Power (dBm)	13 - 50 (dBm, in increments of 0.25)	28	Yes
	Actual range depends on ODU Type:		
	3.5 GHz units: 24 to 34 dBm.		
	2.x GHz units with HC08 version 134: 25 to 36 dBm.		
	2.x GHz units with HC08 version 137: 30 to 36 dBm		
Admin Status	1 - Disable	Disable	Yes
	2 - Enable		
Access Parameters - MAC			
Sector ID	0-255	0	No
ARQ Enable/Disable	1 - Disable 2 - Enable (not supported in version 4.0.2)	Disable	No
Maximum Cell Radius (km)	Bandwidth 3.5 MHz: 10 -50 km	20 km	No
	Bandwidth 5 MHz: 7 - 45 km		
Access Parameters - Phy			
Bandwidth (MHz)	1 - 1.75	3.5	No
	2 - 3.5		
	3 - 5		
	4 - 7		
	5 - 10		
	Only values supported by the unit will be accepted		
Access Parameters - Multi Chani	nel		
Diversity Mode	1 - No Diversity	No Diversity	Yes
	2 - Second Order Diversity		Causes automatic
	3 - Fourth Order Diversity for NLOS		reset
	4 - Fourth Order Diversity for LOS and NLOS		
Channel ID	1 - 4		

Table 4-21: Micro Base Station Monitor Parameters Summary

Parameter	Range	Default	Run-Time Updated
Associated ODU	1 -4 (must be a defined ODU ID)		No
Downlink (Tx) Frequency (MHz)	According to the Configured ODU Frequency Band and Bandwidth		No
Admin Status	1 - Disable	Disable	No
	2 - Enable		
Access Parameters - Multirate			
Multirate Enable/Disable	1 - Disable	Enable	Yes
	2 - Enable		
	Disable is temporary until next reset		
Uplink Basic Rate	1 - BPSK 1/2	BPSK 1/2	Yes
	2 - BPSK 3/4		
	3 - QPSK 1/2		
	4 - QPSK 3/4 (not applicable for TDD)		
	5 - QAM16 1/2		
	6 - QAM16 3/4		
	7 - QAM64 2/3		
	8 - QAM64 3/4		
Minimum Number of Sub-Channels	1, 2, 4, 8, 16	1	No
Downlink Basic Rate	1 - BPSK 1/2	BPSK 1/2	Yes
	2 - BPSK 3/4 (not applicable for TDD)		
	3 - QPSK 1/2		
	4 - QPSK 3/4		
	5 - QAM16 1/2		
	6 - QAM16 3/4		
	7 - QAM64 2/3		
	8 - QAM64 3/4		
Access Parameters - Voice Parar	neters	•	ı
Maximum Number of Voice Calls	0 - 50	50	Yes

Table 4-21: Micro Base Station Monitor Parameters Summary

Parameter	Range	Default	Run-Time Updated
Minimum Allocation	1 - 5 Symbols	5 Symbols	No
	2 - 3 Symbols Available only via Monitor.		
SU - SW Files in Micro Base Stat	ion - Default SW File (Standard) Not appl	icable for current rele	ase.
Name	A name of an SU SW File that exist in the Micro Base Station		Yes
Action	0 - None		Yes
	1 - Load		
	2 - Run from Shadow		
	3 - Set as Main		
SU - SW Files in Micro Base State	ion - Default SW File (Advanced Si)	•	
Name	A name of an SU SW File that exist in the Micro Base Station		Yes
Action	0 - None		Yes
	1 - Load		
	2 - Run from Shadow		
	3 - Set as Main		
SU Control Parameters			
SU Status	1 - Permanent	Permanent	Yes
	2 - Temporary		
SW File: Name	A name of an SU SW File that exist in the Micro Base Station		Yes
SW File: Action	0 - None		Yes
	1 - Load		
	2 - Run from Shadow		
	3 - Set as Main		
SU Registration Parameters	1	•	
Name	Read-only (User Name)		NA
Organization Name	Read-only		NA
Address	Read-only		NA
Country Code	Read-only		NA

Table 4-21: Micro Base Station Monitor Parameters Summary

Parameter	Range	Default	Run-Time Updated			
SU MAC (Standard FDD) Parame	SU MAC (Standard FDD) Parameters					
Base Station ID	X.X.X.X.X		No			
	X: 0 - 255					
Base Station ID Mask	X.X.X.X.X		No			
	X: 0 - 255					
SU Phy (Standard FDD) Paramete	ers					
Bandwidth (MHz)	1 - 1.75		No			
	2 - 3.5					
	3-5					
	4 - 7					
	5 - 10 Only values supported by the SU will be accepted					
Uplink (Tx) Frequency (MHz)	Depends on the SU's HW and the configured Bandwidth		No			
SU Multirate and ATPC Paramete	ers					
Uplink Rate	Applicable only if Multirate in μBST, is disabled:	New SU: Uplink Basic Rate.	Yes			
	1 - BPSK 1/2	Connected SU:				
	2 - BPSK 3/4 (not applicable for TDD)	Last used rate.				
	3 - QPSK 1/2					
	4 - QPSK 3/4					
	5 - QAM16 1/2					
	6 - QAM16 3/4					
	7 - QAM64 2/3					
	8 - QAM64 3/4					

Table 4-21: Micro Base Station Monitor Parameters Summary

Parameter	Range	Default	Run-Time Updated
Downlink Rate	Applicable only if Multirate in μBST is disabled:	New SU: Downlink Basic	Yes
	1 - BPSK 1/2	Rate.	
	2 - BPSK 3/4 (not applicable for TDD)	Connected SU: Last used rate.	
	3 - QPSK 1/2		
	4 - QPSK 3/4		
	5 - QAM16 1/2		
	6 - QAM16 3/4		
	7 - QAM64 2/3		
	8 - QAM64 3/4		
SU Ethernet Port Parameters		•	
Ethernet Port Auto Negotiation	1 - Disable		No
	2 - Enable		
Ethernet Port Speed and Duplex	Available only if Ethernet Port Auto Negotiation is set to Disable		No
	1 - 10 Mbps Half Duplex		
	2 - 10 Mbps Full duplex		
	3 - 100 Mbps Half Duplex		
	4 - 100 Mbps Full Duplex		
SU Installer Password		•	
Installer Password	Up to 20 printable characters, case sensitive	installer	Yes
SU Bridging Parameters			
Enable/Disable Limit on Number	1 - Disable	Disable	Yes
of Supported Devices	2 - Enable		
Maximum Number of Supported Devices	1 - 512	512	Yes
Bridge Aging Time	1 - 1440 minutes	3 minutes	Yes
SU Best BST/AU Parameters (Ad	vanced Si)		
Best BST/AU Support	1 - Disable		No
	2 - Enable		

Table 4-21: Micro Base Station Monitor Parameters Summary

Parameter	Range	Default	Run-Time Updated
Preferred BST/AU ID	X.X.X.X.X		No
	X: 0 - 255		
Preferred BST/AU ID Mask	X.X.X.X.X		No
	X: 0 - 255		
BST/AU ID	X.X.X.X.X		No
	X: 0 - 255		
BST/AU ID Mask	X.X.X.X.X		No
	X: 0 - 255		
SU Radio Parameters (Advanced	Si)		
Bandwidth (MHz)	1 - 1.75		No
	2 - 3.5		
	3 - 5		
	4 - 7		
	5 - 10 Only values supported by the SU will be accepted		
Start Downlink (Rx) Frequency (MHz)	Depends on Frequency Bands Group available for the AU, and the Bandwidth.		No
End Downlink (Rx) Frequency (MHz)	Depends on Frequency Bands Group available for the AU, and the Bandwidth.		No
Scanning Main Step (KHz)	2.x/3.x GHz units and bandwidth 3.5MHz: 125 to 1750 KHz in steps of 125		No
	2.x/3.x GHz units and bandwidth 5MHz: 125 to 5000 KHz in steps of 125		
Scanning Intermediate Steps	A sequence of up to 8 entries of numbers between 1 to 8, or 0 for none.		No
Services - General Parameters			

Table 4-21: Micro Base Station Monitor Parameters Summary

Parameter	Range	Default	Run-Time Updated
Service Mode	1 - Advanced	Quick	Yes
	2 - Quick		
Default L2/Voice/Managed-VoIP Service Profile	Name of an existing L2 or Voice or Managed VoIP Service Profile, or None.	Internet Access L2	Yes
Default PPPoE Service Profile	Name of an existing PPPoE Service Profile, or None.	None	Yes
Services - Subscribers Paramete	ers		
Subscriber Name	1 to 32 printable characters. Must be unique in the network.		Yes
First Name	Up to 50 printable characters.		Yes
Last Name	Up to 50 printable characters.		Yes
Description	Up to 50 printable characters.		Yes
Admin Status	1 - Disabled		Yes
	2 - Enabled		
Servics - Services Parameters			
Service Name	1 to 32 printable characters.		Yes
Subscriber Name	A Subscriber Name (1 to 32 printable characters) that exists in the database		
SU MAC Address	MAC Address of an SU that exists in the database	ts in the Y	
Service Profile Name	A Service Profile Name (1 to 32 printable characters) that exists in the database		Yes
VLAN List	A list of different numbers separated by commas where each entry is from 1 to 4094. Null is for No VLAN.		Yes
	Up to 16 entries when Hybrid VLAN Mode is Off. Up to 15 entries when Hybrid VLAN Mode is On.		
Hybrid VLAN Mode	1 - Off		Yes
	2 - On		
VLAN Classification Mode	1 - Off		Yes
	2 - On		
Access VLAN	1-4094		Yes

Table 4-21: Micro Base Station Monitor Parameters Summary

Parameter	Range	Default	Run-Time Updated
Admin Status	1 - Disabled		Yes
	2 - Enabled		
Services - Service Profiles Paran	neters		
Service Profile Name	1 to 32 printable characters.		Yes
Service Type	Applicable only for new Service Profiles (Add):		Yes
	1 - L2		
	2 - PPPoE		
	3 - Voice		
	4 - Managed VoIP		
VLAN Transparency Mode	1 - Off		Yes
	2 - On		
VPL ID	0 - 4094 or null for No VPL ID.		Yes
Priority Marking Mode	1 - Transparent		Yes
	2 - 802.1p		
	3 - DSCP		
Priority Marking Value	802.1p: 0 - 7		Yes
	DSCP: 0 - 63		
Forwarding Rule	A Forwarding Rule Name (1 to 32 printable characters) that exists in the database		Yes
Priority Classifier	A Priority Classifier Name (1 to 32 yrintable characters) that exists in the database		Yes
Maximum Number of Voice Calls	0 - 50		Yes
Voice Domain	A Voice Domain Name (1 to 32 printable characters) that exists in the database		Yes
Services - Forwarding Rule Parameters			
Forwarding Rule Name	1 to 32 printable characters		Yes

Table 4-21: Micro Base Station Monitor Parameters Summary

Parameter	Range	Default	Run-Time Updated
Service Type	Applicable only for new Service Profiles (Add):		Yes
	1-L2		
	2 - PPPoE		
	3 - Voice		
	4 - Managed Voice		
Unicast Relaying	Applicable only for L2 and Managed VoIP Service types:		Yes
	1 - Disabled		
	2 - Enabled		
Broadcast Relaying	Applicable only for L2 and Managed VoIP Service types:		Yes
	1 - Disabled		
	2 - Enabled		
Unknown Forwarding Policy	Applicable only for L2 and Managed VoIP Service types:		Yes
	1 - Reject		
	2 - Forward		
Multicast QoS Profile	A QoS Profile Name (1 to 32 printable characters) that exists in the database		Yes
Services - Priority Classifiers Pa	rameters		
Priority Classifier Name	1 to 32 printable characters		Yes
Priority Type	1 - DSCP		Yes
	2 - 802.1p		
Uplink Priority Ranges	Up to 4 numbers separated by commas, where each number must be higher than its predecessor and the last number must be the highest available for the applicable priority type (7 for 802.1p, 63 for DSCP).		Yes

Table 4-21: Micro Base Station Monitor Parameters Summary

Parameter	Range	Default	Run-Time Updated
Uplink QoS Profiles	Up to four QoS Profile Names separated by commas, where each name (1 to 32 printable characters) is a name of a QoS Profile that exists in the database. The number of entries in the list must be identical to number of entries in Uplink Priority Ranges list.		Yes
Downlink Priority Ranges	Up to 4 numbers separated by commas, where each number must be higher than its predecessor and the last number must be the highest available for the applicable priority type (7 for 802.1p, 63 for DSCP).		Yes
Downlink QoS Profiles	Up to four QoS Profile Names separated by commas, where each name (1 to 32 printable characters) is a name of a QoS Profile that exists in the database. The number of entries in the list must be identical to number of entries in Downlink Priority Ranges list.		Yes
Services - QoS Profiles Paramete	ers		
QoS Profile Name	1 to 32 printable characters		Yes
QoS Type	1 - CG		Yes
	2 - RT		
	3 - NRT		
	4 - BE		
СТ	Applicable to RT and NRT:		Yes
	1 - Short		
	2 - Medium		
	3 - Long		
CIR (Kbps)	Applicable to RT and NRT:		Yes
	0 - 12,000		
MIR (Kbps)	Applicable to NRT and BE: 1 - 12,000. MIR cannot be lower than CIR (NRT)		Yes

Table 4-21: Micro Base Station Monitor Parameters Summary

Parameter	Range	Default	Run-Time Updated
Packet Size (Bytes)	Applicable to CG		Yes
	64 - 1550 (Bytes)		
Sample Interval (msec)	Applicable to CG		Yes
	5 - 100 (milliseconds)		
Services - L2 Filtering Rules Para	ameters		
L2 Filtering Rule Name	1 to 32 printable characters		Yes
MAC Address	MAC address or null for Any		Yes
MAC Address Direction	1 - Source		Yes
	2 - Destination		
Ethertype	4 hexadecimal digits or null for Any		Yes
Services - L3/L4 Filtering Rules I	Parameters		
L3/L4 Filtering Rule Name	1 to 32 printable characters		Yes
IP Address	IP address or null for Any		Yes
Protocol	6 (TCP), 17 (UDP), or null for Any		Yes
Port	0-65534		Yes
Port Direction	1 - Source		Yes
	2 - Destination		
Services - From Wireless Filterin	g/From Network Filtering Parameters		
L2 Filtering Rules List - Add	L2 Filtering Rule ID		Yes
L3/L4 Filtering Rules List - Add	L3/L4 Filtering Rule ID		Yes
Active Filtering Rule Type	1 - Layer 2	Layer 2	Yes
	2 - Layer 3/4		
Admin Status	1 - Disabled	Disabled	Yes
	2 - Enabled		
Default Action	1 - Deny	Deny	Yes
	2 - Allow		
Services - MAC Address Deny List			
Add	MAC address (of a device behind SU)		Yes
Services - Managed VoIP - Policy Function General Parameter			

Table 4-21: Micro Base Station Monitor Parameters Summary

Parameter	Range	Default	Run-Time Updated
Retry Interval	1-60 (seconds)	10	Yes
Maximum Number of Retries	0-5	3	Yes
Listener Port Number	1-65535	3799	Yes
UDP Destination Port	1-65535	5060	Yes
Services - Managed VolP - Policy	Function Servers		
IP Address	IP address		Yes
UDP Port	1-65535		Yes
VLAN ID	0-4094 or null for none		Yes
Shared Secret	1-16 printable characters		Yes
Services - Managed VoIP - Voice Domain			
Voice Domain Name	1-32 printable character		Yes
PF IP Address	IP address of a Policy Server that exists in the database		Yes

Appendix A - Software Upgrade

In This Appendix:

- "Before you Start" on page 222
- "File Loading Procedure" on page 223
- "Completing the Software Upgrade (Switching Versions)" on page 225

A.1 Before you Start

NOTE

This section describes software upgrades using the Monitor program. The upgrade procedure can also be performed using AlvariSTAR. For instructions on using AlvariSTARS for software upgrade, refer to "The Software Upgrade Manager" section in the AlvariSTARS User Manual.

Loading of new SW files to the unit's FLASH memory can be performed by a simple loading procedure using a TFTP application. Upgrade packages can be obtained from the Technical Support section of Alvarion's web site, http://www.alvarion.com/.

Before performing an upgrade procedure, be sure you have the most recent instructions, and that the correct SW files are available in your computer.

If you are loading new SU/AU SW files, verify that no more than three SU/AU SW files exist in the NPU/ μ BST. If there are four SU/AU SW files in the unit, one of them must be deleted before loading a new SU/AU SW file.

To view the current SU/AU SW files in NPU/μBST:

Select SU/AU > SW Files in NPU/ μ BST > Show Files.

To delete an SU/AU SW file from NPU/μBST:

Select SU/AU > SW Files in NPU/ μ BST > Delete a File and enter the name of the file to be deleted.

A.2 File Loading Procedure

To load software files:

- 1 Verify that you have IP connectivity from your computer to the NPU/μBST (either the MGMT or the DATA port). To verify the connection, ping the unit's IP address and verify that PING replies are being received.
- 2 To perform the upgrade, use a DOS TFTP utility with the following syntax: *tftp -i hostaddress put sourcefile*

where -i stands for binary mode and hostaddress is the IP address of the unit to be upgraded (NPU/ μ BST). The put command instructs the PC client to send a file to the hostaddress. sourcefile is the name of the SW file in the PC Client.

For example, to load the file su_4_1_1_4 to the SU whose IP address is 172.17.31.215, use the following command:

tftp -i 172.17.31.215 put su_4_1_1_4

NOTE

It is recommended to upgrade all system elements with the latest software version. Nevertheless, it is possible to upgrade each unit separately and independently.

- 3 Following a successful completion of the file loading process, the Transfer successful DOS message is displayed.
- 4 The unit decompresses the loaded file and checks the integrity of the new version. The new version replaces the previous shadow version only after verification. If verification tests fail, the loaded version will be rejected. The unit will reject a file if either the file name or the version number matches the current Main versions.
- 5 Check that the loaded versions exist in the unit:

To view the current NPU/ μ BST SW Versions in the unit:

Select *Unit Control > SW Versions Control > Show Versions*.

To view the current NPU/ μ BST SW Versions in the unit:

Select SU/AU > SW Files in $NPU/\mu BST > Show$ Files.

A.3 Completing the Software Upgrade (Switching Versions)

After verifying successful upload of all software files, set the new version as the main version in each one of the upgraded system elements:

- SU(s): Select the SU that should be upgraded. Select *Unit Control > SW*Versions Control > Set as Main, and enter the new SU SW Version. The unit will reset automatically and will use the new version after power-up. Repeat the process for all SUs that should be upgraded.
- AU(s): Select the AU that should be upgraded. Select *Unit Control > SW*Versions Control > Set as Main, and enter the new AU SW Version. The unit will reset automatically. After power-up, the unit will use the new version. Repeat the process for all AUs that should be upgraded.
- NPU/µBST: Select *Unit Control > SW Versions Control > Run from Shadow*. The system will reset automatically. After power-up, the NPU/µBST will run from the new version, that at this stage is still marked as the Shadow Version. To switch versions, select *Unit Control > SW Versions Control > Set as Main*.

Appendix B - Defining Service Profiles for Generic VolP Gateways

In This Appendix:

- "Introduction" on page 228
- "1 POTS Basic VoIP G.729 Service Profile" on page 230
- "1 POTS Advanced VoIP G.729 Service Profile" on page 232
- "1 POTS Basic VoIP G.711 Service Profile" on page 234
- "1 POTS Advanced VoIP G.711 Service Profile" on page 236

B.1 Introduction

This section describes the method used for defining the pre-configured Service Profiles for Generic (3rd party) VoIP devices that do not use the DRAP protocol and that cannot use Managed VoIP Services. The same principles can be used for modifying the pre-configured profiles or creating new ones for VoIP services that have different characteristics.

B.1.1 Priority Marking

We distinguish between two types of Service Profiles for Generic VoIP devices:

- Marking is not used: This scenario is applicable when the VoIP device behind the SU does not support either DSCP or 802.1p marking to distinguish between different VoIP related traffic types, or when such marking is not used for any reason. The implication is that a single Continuous Grant connection should be used for all VoIP traffic.
- **Marking is used:** This scenario is applicable when the VoIP device is capable of marking the different VoIP related traffic types. The assumption is that 3 different priority marks are used: One for RTP traffic, the second for RTCP and VoIP Signaling, and a third one for Data (Device Management).

B.1.2 General Assumptions

- **Protocol Header:** 18 bytes for Ethernet L2 header (including 4 bytes for VLAN), plus 40 bytes of IP/UDP/RTP headers. A total of 58 bytes.
- RTCP bandwidth: RFC 3556, Session Description Protocol (SDP) Bandwidth Modifiers for RTP Control Protocol (RTCP) Bandwidth, states that normally, the amount of bandwidth allocated to RTCP in an RTP session is 5% of the session bandwidth. To be on the safe side allocate 10% of the RTP bandwidth to RTCP.
- **VoIP Signaling:** Cisco states that its IP Phones generate approximately 150 bps signaling traffic (without L2 overhead). To be on the safe side assume 2 Kbps of VoIP Signaling traffic for each POTS interface.
- **Fax:** Fax services are assumed to be based on T.38 Fax Relay. Protocol Header is assumed to be 58 bytes (same as for RTP).

■ **Data:** Data traffic may include ARP, DHCP, TFTP, SNMP, HTTP and other management protocols. The recommended default bandwidth value is up to 64 Kbps if a Best Effort connection is used for this traffic. If a Continuous Grant service is used for all VoIP related traffic, a lower bandwidth will be allocated to Data traffic. Note that the use of bandwidth consuming protocols when an active call is present should be avoided.

B.2 1 POTS Basic VoIP G.729 Service Profile

B.2.1 Service Characteristics

- G.729 codec, 20msec sample interval
- 1 POTS
- No Fax
- Priority marking behind the SU is not used: All VoIP related traffic is classified onto a single Continuous Grant (CG) connection.
- Multiple media streams to support Call-Waiting: If the traffic exceeds the BW allocated to the CG connection, the SU may request to double the allocated BW.

B.2.2 RTP BW Calculation

The required bandwidth for a G.729 call (8 Kbps codec bit rate) with RTP and 20 bytes of voice payload is:

Total packet size (bytes) = (Ethernet of 18 bytes) + (IP/UDP/RTP header of 40 bytes) + (voice payload of 20 bytes) = 78 bytes

Total packet size (bits) = (78 bytes) * 8 bits per byte = 624 bits

PPS (Packets Per Second) = (8 Kbps codec bit rate) / (160 bits) = 50 pps

Note: 160 bits = 20 bytes (voice payload) * 8 bits per byte

Bandwidth per call = Total packet size (624 bits) * 50 pps = 31.2 Kbps

B.2.3 RTCP BW Calculation

RTCP BW is 10% of RTP: 10 % of 31.2 Kbps approximately 3.1 Kbps.

B.2.4 QoS Profile

The calculated bandwidth required for RTP traffic is 31.2 Kbps. To accommodate for other traffic types, such as RTCP (up to 3.1 Kbps), Voice Signaling (up to 2 Kbps) and Data (Device Management), we allocate to it a total bandwidth of 31.2 x 1.5=46.8 Kbps (equivalent to a Packet Size of 936 bits, or 117 bytes). The SU may

request twice this BW so it will be allocated with up to approximately 94 Kbps. This is assumed to be sufficient for all traffic scenarios, including Call Waiting.

Thus, the CG 47 QoS Profile parameters are:

Packet Size: 117 bytes

Sample Interval: 20 msec

B.3 1 POTS Advanced VoIP G.729 Service Profile

B.3.1 Service Characteristics

- G.729 codec, 20msec sample interval
- 1 POTS
- T.38 Fax
- DSCP priority marking behind the SU is used, with the following values:
 - ♦ 63: RTP traffic
 - ♦ 26: RTCP and VoIP traffic
 - ♦ 0: Data traffic
- Single media stream to support Call-Waiting

B.3.2 Voice RTP BW Calculation

The required bandwidth for a G.729 call (8 Kbps codec bit rate) with RTP and 20 bytes of voice payload is:

Total packet size (bytes) = (Ethernet of 18 bytes) + (IP/UDP/RTP header of 40 bytes) + (voice payload of 20 bytes) = 78 bytes

Total packet size (bits) = (78 bytes) * 8 bits per byte = 624 bits

PPS (Packets Per Second) = (8 Kbps codec bit rate) / (160 bits) = 50 pps

Note: 160 bits = 20 bytes (voice payload) * 8 bits per byte

Bandwidth per call = Total packet size (624 bits) * 50 pps = 31.2 Kbps

B.3.3 Voice RTCP BW Calculation

RTCP BW is 10% of RTP: 10 % of 31.2 Kbps is 3.12 Kbps.

B.3.4 T.38 14,400 Kbps Fax RTP BW Calculation

The required bandwidth with a 20 msec sample interval is as follows:

Total packet size (bytes) = (Ethernet of 18 bytes) + (IP/UDP/RTP header of 40 bytes) + (voice payload of 36 bytes) = 94 bytes

Total packet size (bits) = (94bytes) * 8 bits per byte = 752 bits

PPS = (14.4 Kbps bit rate) / (288 bits) = 50 pps

Note: 288 bits = 36 bytes (voice payload) * 8 bits per byte

Bandwidth per call = total packet size (752bits) * 50 pps = 37.6 Kbps

Since Fax BW is higher than Voice BW, the Fax BW requirement mandates the CG connection's attributes. This is true for all G.729 and G.723 codecs.

B.3.5 FAX RTCP BW Calculation

RTCP BW is 10% of RTP: 10 % of 37.6 Kbps is 3.76 Kbps.

B.3.6 QoS Profiles

B.3.6.1 CG QoS for RTP traffic

The calculated bandwidth required for RTP traffic is 37.6 Kbps (equivalent to a Packet Size of 752 bits, or 94 bytes). Thus, the CG 38 QoS Profile parameters are:

Packet Size: 117 bytes

Sample Interval: 20 msec

B.3.6.2 RT QoS for RTCP and VoIP Signaling

The required bandwidth is 5.76 Kbps (3.76 Kbps for Fax RTCP plus 2 Kbps for VoIP Signaling). We round it up to 6 Kbps. Thus, the required RT 6 QoS Profile parameters are:

CIR: 6 Kbps

CT: Short

B.3.6.3 BE QoS for Data

As stated, the recommended QoS Profile for Data is BE 64, with the following parameters:

MIR: 64 Kbps

CT: Short

B.4 1 POTS Basic VoIP G.711 Service Profile

B.4.1 Service Characteristics

- G.711 codec, 20msec sample interval
- 1 POTS
- No Fax
- Priority marking behind the SU is not used: All VoIP related traffic is classified onto a single Continuous Grant (CG) connection.
- Multiple media streams to support Call-Waiting: If the traffic exceeds the BW allocated to the CG connection, the SU may request to double the allocated BW.

B.4.2 RTP BW Calculation

The required bandwidth for a G.711 call (64 Kbps codec bit rate) with RTP and 160 bytes of voice payload is:

Total packet size (bytes) = (Ethernet of 18 bytes) + (IP/UDP/RTP header of 40 bytes) + (voice payload of 160 bytes) = 218 bytes

Total packet size (bits) = (218 bytes) * 8 bits per byte = 1744 bits

PPS = (64 Kbps codec bit rate) / (1280 bits) = 50 pps

Note: 1280 bits = 160 bytes (voice payload) * 8 bits per byte

Bandwidth per call = total packet size (1744 bits) * 50 pps = 87.2Kbps

B.4.3 RTCP BW Calculation

RTCP BW is 10% of RTP: 10 % of 87.2 Kbps approximately 8.7 Kbps.

B.4.4 QoS Profile

The calculated bandwidth required for RTP traffic is approximately 88 Kbps. To accommodate for other traffic types, such as RTCP (up to 8.7 Kbps), Voice Signaling (up to 2 Kbps) and Data (Device Management), we allocate to it a total bandwidth of 108 Kbps (equivalent to a Packet Size of 2160 bits, or 270 bytes). The SU may request twice this BW so it will be allocated with up to approximately

216 Kbps. This is assumed to be sufficient for all traffic scenarios, including Call Waiting.

Thus, the CG 108 QoS Profile parameters are:

Packet Size: 270 bytes

Sample Interval: 20 msec

B.5 1 POTS Advanced VoIP G.711 Service Profile

B.5.1 Service Characteristics

- G.729 codec, 20msec sample interval
- 1 POTS
- T.38 Fax
- DSCP priority marking behind the SU is used, with the following values:
 - ♦ 63: RTP traffic
 - ♦ 26: RTCP and VoIP traffic
 - ♦ 0: Data traffic
- Single media stream to support Call-Waiting

B.5.2 Voice RTP BW Calculation

The required bandwidth for a G.711 call (64 Kbps codec bit rate) with RTP and 160 bytes of voice payload is:

Total packet size (bytes) = (Ethernet of 18 bytes) + (IP/UDP/RTP header of 40 bytes) + (voice payload of 160 bytes) = 218 bytes

Total packet size (bits) = (218 bytes) * 8 bits per byte = 1744 bits

PPS = (64 Kbps codec bit rate) / (1280 bits) = 50 pps

Note: 1280 bits = 160 bytes (voice payload) * 8 bits per byte

Bandwidth per call = total packet size (1744 bits) * 50 pps = 87.2 Kbps

B.5.3 Voice RTCP BW Calculation

RTCP BW is 10% of RTP: 10 % of 87.2 Kbps is 8.72 Kbps.

B.5.4 T.38 14,400 Kbps Fax RTP BW Calculation

The required bandwidth with a 20 msec sample interval is as follows:

Total packet size (bytes) = (Ethernet of 18 bytes) + (IP/UDP/RTP header of 40 bytes) + (voice payload of 36 bytes) = 94 bytes

Total packet size (bits) = (94 bytes) * 8 bits per byte = 752 bits

PPS = (14.4 Kbps bit rate) / (288 bits) = 50 pps

Note: 288 bits = 36 bytes (voice payload) * 8 bits per byte

Bandwidth per call = total packet size (752 bits) * 50 pps = 37.6 Kbps

As Fax BW is lower than Voice BW, the Voice BW requirement mandates the CG connection's attributes. This is true for all G.711 codecs.

B.5.5 FAX RTCP BW Calculation

RTCP BW is 10% of RTP: 10 % of 37.6 Kbps is 3.76 Kbps.

B.5.6 QoS Profiles

B.5.6.1 CG QoS for RTP traffic

The calculated bandwidth required for RTP traffic is 87.2 Kbps (equivalent to a Packet Size of 1744 bits, or 218 bytes). Thus, the CG 88 QoS Profile parameters are:

Packet Size: 218 bytes

Sample Interval: 20 msec

B.5.6.2 RT QoS for RTCP and VolP Signaling

The required bandwidth is 10.72 Kbps (8.72 Kbps for Voice RTCP plus 2 Kbps for VoIP Signaling). We round it up to 611 Kbps. Thus, the required RT 11 QoS Profile parameters are:

CIR: 11 Kbps

CT: Short

B.5.6.3 BE QoS for Data

As stated, the recommended QoS Profile for Data is BE 64, with the following parameters:

MIR: 64 Kbps

CT: Short

Glossary

AAA

ANSI

ARP

ARQ

ASCII

ATM

ATPC

ΑU

BE

Authentication, Authorization, and Accounting (Pronounced "triple a."). A system (or several systems) that controls what resources users have access to, and keeps track of the activity of users over the network.

American National Standards Institute. A voluntary organization composed of corporate, government, and other members that coordinates standards-related activities, approves U.S. national standards, and develops positions for the United States in international standards organizations.

Address Resolution Protocol. Internet protocol used to map an IP address to a MAC address. Defined in RFC 826.

Automatic Repeat reQuest. A communication technique in which the receiving device detects errors and requests retransmissions.

American Standard Code for Information Interchange. A code for representing English characters as numbers, with each letter assigned a number from 0 to 127.

Asynchronous Transfer Mode. A network technology that dynamically allocates bandwidth. ATM uses fixed-size data packets and a fixed channel between two points for data transfer. ATM was designed to support multiple services such as voice, graphics, data, and full-motion video. It allows service providers to dynamically assign bandwidth to individual customers.

Automatic Transmit Power Control

Access Unit

Best effort. A service where neither throughput nor delay guarantees are provided. The subscriber unit sends requests for bandwidth in either random access slots or dedicated transmission opportunities. The occurrence of dedicated opportunities is subject to network load, and the subscriber unit cannot rely on their presence. Service parameters include Committed Time (CT) and Maximum Information Rate (MIR).

BER Bit Error Rate. In a digital transmission, BER is the percentage of

bits with errors divided by the total number of bits that have been

transmitted, received or processed over a given time period.

BPSK Binary Phase-Shift Keying. A data transfer technique. BPSK

transmits data using two phase modulation signals, one phase representing a binary one, and the other representing a binary zero. The signal is divided into bits; their status is determined by the preceding wave. If the wave changes, for example, the signal is

reversed.

BST Base Station **BW** Bandwidth

BWA Broadband Wireless Access

CBR Constant Bit-Rate

CG Continuous Grant. Also known as Unsolicited Grant Services (UGS),

is tailored for carrying constant bit- rate (CBR) real-time services characterized by fixed size data packets on a periodic basis such as VoIP or E1/T1. Service parameters include unsolicited grant size

(packet size) and normal grant interval (sample interval).

CIR Committed Information Rate. The rate (in bits per second) at which a

network guarantees to transfer information under normal conditions, averaged over a minimum increment of time.

CPE Customer Premise Equipment. Communications equipment that

resides on the customer's premises.

CPLD Complex Programmable Logic Device

CRC Cyclical Redundancy Check. A common technique for detecting data

transmission errors, in which the frame recipient calculates a remainder by dividing frame contents by a prime binary divisor and compares the calculated remainder to a value stored in the frame by

the sending equipment.

CSMA/CD Carrier Sense Multiple Access with Collision Detection.

Media-access mechanisms wherein devices ready to transmit data first check the channel for a carrier. If no carrier is sensed for a specific period of time, a device can transmit. If two devices transmit at once, a collision occurs and is detected by all colliding devices. This collision subsequently delays retransmissions from those devices for some random length of time. Ethernet and IEEE 802.3

use CSMA/CD access.

CT Committed Time. The time interval used for measuring average

information transfer rates.

DHCP Dynamic Host Configuration Protocol. A protocol for dynamically

assigning IP addresses from a pre-defined list to nodes on a network. Using DHCP to manage IP addresses simplifies client configuration

and efficiently utilizes IP addresses.

DIP Switch A group of subminiature switches mounted in a Dual Inline Package

compatible with standard integrated-circuit sockets.

DL Down Link

DOS Disk Operating System

DRAP Dynamic Resources Allocation Protocol

DSCP Differentiated Service Code Point, AKA DiffServ: An alternate use for

the ToS byte in IP packets. Six bits of this byte are being reallocated for use as the DSCP field where each DSCP specifies a particular

per-hop behavior that is applied to the packet.

DiffServ See DSCP

DLI Data Loss Indicator

EIR Excess Information Rate. Specifies the excess rate (above the

committed rate) of information that can be available to a user. The EIR is used by the traffic policing mechanism to prevent users from

sending excess traffic to the network. (EIR = MIR-CIR).

EIRP Equavalent Isotropic Radiated Power. The apparent power

transmitted towards the receiver, if it is assumed that the signal is radiated equally in all directions. The EIRP is equal to the power (in dBm) at the antenna port, plus the power gained from the directivity

of the antenna (in dBi).

EMC Electro-Magnetic Compatibility. The capability of equipment or

systems to be used in their intended environment within designed efficiency levels without causing or receiving degradation due to unintentional EMI (Electro Magnetic Interference). EMC generally

encompasses all of the electromagnetic disciplines.

ETSI European Telecommunications Standards Institute. A non-profit

organization producing voluntary telecommunications standards used throughout Europe, some of which have been adopted by the

EC as the technical base for Directives or Regulations.

FCC Federal Communications Commission. A U.S. government agency that supervises, licenses, and controls electronic and electromagnetic transmission standards. **FDD** Frequency Division Duplex. Full duplex operation by using a pair of frequencies, one for transmission and one for reception. FEC Forward Error Correction. A method of communicating data that can corrects errors in transmission on the receiving end. Prior to transmission, the data is put through a predetermined algorithm that adds extra bits specifically for error correction to any character or code block. If the transmission is received in error, the correction bits are used to check and repair the data. FFT Fast Fourier Transform. An algorithm for converting data from the time domain to the frequency domain; often used in signal processing. FTP File Transfer Protocol. A protocol for exchanging files over the Internet. FTP uses the Internet's TCP/IP protocols to enable data transfer. G.711 A 64 Kbps PCM voice-coding technique. Described in the ITU-T standard in its G-series recommendations. G.723.1 A compression technique that can be used for compressing speech or audio signal components at a very low bit rate as part of the H.324 family of standards. This codec has two bit rates associated with it: 5.3 and 6.3 Kbps. The higher bit rate provides a somewhat higher quality of sound. The lower bit rate provides system designers with additional flexibility. Described in the ITU-T standard in its G-series recommendations. G.729 A compression technique where voice is coded into 8 Kbps streams. There are two variations of this standard (G.729 and G.729 Annex A) that differ mainly in computational complexity; both provide speech quality similar to 32-kbps ADPCM. Described in the ITU-T standard in its G-series recommendations. **GPS** Global Positioning System. A system that uses satellites, receivers and software to allow users to determine their precise geographic position. H.323 A protocol suite defined by ITU-T for voice transmission over internet (Voice over IP or VoIP). In addition to voice applications, H.323 provides mechanisms for video communication and data

collaboration, in combination with the ITU-T T.120 series standards.

IB In-Band

IDU Indoor Unit

IEEE Institute of Electrical and Electronics Engineers. IEEE (pronounced

I-triple-E) is an organization composed of engineers, scientists, and students. The IEEE is best known for developing standards for the computer and electronics industry. In particular, the IEEE 802

standards for local-area networks are widely followed.

IEEE 802.1p A QoS method - A three-bit value that can be placed inside an

802.1Q frame tag.

IEEE 802.16 Also known as WIMAX. A group of broadband wireless

communications standards for metropolitan area networks (MANs)

developed by a working group of the IEEE.

IEEE 802.16e 802.16e, also known as 802.16-2005, is an IEEE standard

addressing mobility of wireless broadband (WiMax). IEEE 802.16e is sometimes called Mobile WiMAX, after the WiMAX forum for interoperability. 802.16e, based on an existing WiMAX standard 802.16a, adds WiMAX mobility in the 2-to-6 GHz-licensed bands. 802.16e allows for fixed wireless and mobile Non Line of Sight (NLOS) applications primarily by enhancing the OFDMA (Orthogonal

Frequency Division Multiple Access).

IEEE 802.1Q The IEEE 802.1Q standard defines the operation of VLAN Bridges

that permit the definition, operation and administration of Virtual LAN topologies within a Bridged LAN infrastructure. The 802.1Q specification establishes a standard method for inserting VLAN membership information into Ethernet frames. A tag field containing VLAN (and/or 802.1p priority) information can be inserted into an

Ethernet frame, carrying VLAN membership information.

IEEE 802.3 A Local Area Network protocol suite commonly known as Ethernet.

Ethernet uses Carrier Sense Multiple Access bus with Collision Detection CSMA/CD. This method allows users to share the network cable. However, only one station can use the cable at a time. A

variety of physical medium dependent protocols are supported.

IEEE 802.11b The IEEE 802.11b (also referred to as 802.11 High Rate or Wi-Fi). An

extension to 802.11 standard for wireless Ethernet networks, that applies to wireless LANS and provides 11 Mbps transmission (with a

fallback to 5.5, 2 and 1 Mbps) in the 2.4 GHz band.

IEEE 802.11g

An extension to 802.11 standard for wireless Ethernet networks, that applies to wireless LANs and provides 20+ Mbps in the 2.4 GHz band.

IETF

Internet Engineering Task Force. One of the task forces of the IAB (Internet Architecture Board), formally called the Internet Activities Board, which is the technical body that oversees the development of the Internet suite of protocols (commonly referred to as "TCP/IP"). The IETF is responsible for solving short-term engineering needs of the Internet.

IF

Intermediate Frequency. Radio communications systems modulate a carrier frequency with a baseband signal in order to achieve radio transmission. In many cases, the carrier is not modulated directly. Instead, a lower IF signal is modulated and processed. At a later circuit stage, the IF signal is converted up to the transmission frequency band.

ΙP

Internet Protocol. The standard that defines how data is transmitted over the Internet. IP bundles data, including e-mail, faxes, voice calls and messages, and other types, into "packets", in order to transmit it over public and private networks.

IPsec

Security Architecture for IP Network. IP Control Protocol (IPCP) and IPv6 Control Protocol IPsec provides security services at the IP layer by enabling a system to select required security protocols, determine the algorithm(s) to use for the service(s), and put in place any cryptographic keys required to provide the requested services. IPsec can be used to protect one or more "paths" between a pair of hosts, between a pair of security gateways, or between a security gateway and a host.

ISP

Internet Service Provider

ITU-T

International Telecommunication Union - Telecommunications. An intergovernmental organization through which public and private organizations develop telecommunications. The ITU was founded in 1865 and became a United Nations agency in 1947. It is responsible for adopting international treaties, regulations and standards governing telecommunications. The standardization functions were formerly performed by a group within the ITU called CCITT, but after a 1992 reorganization the CCITT no longer exists as a separate entity.

LAN Local area Network. A computer network limited to a small

geographical area, such as a single building. The network typically

links PCs as well as shared resources such as printers.

LED Light Emitting Diode.

LOS Line Of Sight. A condition where a signal travels over the air directly

from a wireless transmitter to a wireless receiver without passing an

obstruction.

LVDS Low Voltage Differential Signaling. A low noise, low power, low

amplitude method for high-speed (gigabits per second) data

transmission over copper wire.

μ**BST** Micro Base Station

MAC Media Access Control. The lower of the two sub-layers of the data

link layer defined by the IEEE. The MAC sub-layer handles access to shared media, such as whether token passing or contention will be

used.

MAC Address Standardized data link layer address that is required for every port

or device that connects to a LAN. Other devices in the network use these addresses to locate specific ports in the network and to create and update routing tables and data structures. MAC addresses are

6bytes long and are controlled by the IEEE.

MAN Metropolitan Area Network. A data network designed for a town or

city. In terms of geographic breadth, MANs are larger than local-area networks (LANs), but smaller than wide-area networks (WANs).

MCS Multipoint Communications Systems. Applications licensed at 2500

MHz in Canada. A wide variety of applications are possible, including one-way and two-way transmission and a diversity of

distribution capacities.

MD5 A Message-Digest algorithm developed by RSA Laboratories used for

creating unforgeable digital signatures. MD5 produces an 128-bit (16 byte) message digest. Most existing software applications that

handle certificates only support MD5.

MIB Management Information Base. A database of objects that can be

monitored by a network management system. SNMP uses

standardized MIB formats that allow any SNMP tools to monitor any

device defined by a MIB.

NAT

MIR Maximum Information Rate. Specifies the maximum rate of

information that can be available to a user. The MIR is used by the traffic policing mechanism to prevent users from sending excess $\frac{1}{2}$

traffic to the network.

MMDS Multichannel Multipoint Distribution Service. MMDS is a licensed

wireless service that has the capability to provide broadband access.

MMDS operates in several parts of the 2 GHz spectrum.

MRRC Maximum Receive Ratio Combining.

NA Not Available or Not Applicable

NAS Network Access Server. A Network Access Server operates as a client

of RADIUS. The client is responsible for passing user information to

designated RADIUS server(s(, and then acting on the response.

(Basic NAT) is a method by which IP addresses are mapped from one group to another, transparent to end users. Network Address Port

Network Address Translation. Basic Network Address Translation

Translation, or NAPT is a method by which many network addresses and their TCP/UDP ports are translated into a single network address and its TCP/UDP ports. Together, these two operations, referred to as traditional NAT, provide a mechanism to connect a

realm with private addresses to an external realm with globally

unique registered addresses.

NIC

Network Interface Card. An expansion board you insert into a computer (or a built-in component) that enables the computer to connect to a network. Most NICs are designed for a particular type of

network, protocol, and media, although some can serve multiple

networks.

NIU Network Interface Unit

NLOS Non Line Of Sight. A condition where a signal from a wireless

transmitter passes several obstructions before arriving at a wireless receiver. The signal may be reflected, refracted, diffracted, absorbed or scattered. These create multiple signals that will arrive at a receiver at different times, from different paths, and with different strength. Consequently, wireless systems developed for NLOS environment have to incorporate a number of techniques to overcome this problem and that make the systems more complex than those for LOS. But NLOS capable systems simplify network

planning and site acquisition.

NMS Network Management System. A system responsible for managing at

least part of a network. An NMS is generally a reasonably powerful and well-equipped computer, such as an engineering workstation.

NMSs communicate with agents to help keep track of network

statistics and resources.

NOC Network Operations Center. The physical space from which a

typically large telecommunications network is managed, monitored

and supervised.

NPU Network Processing Unit

NRT Non Real Time. is very similar to the Real-Time polling service except

that connections may utilize random access transmit opportunities for sending bandwidth requests. These Non Real Time Variable Bit Rate (NRT-VBR) services, such as file transfer and Internet access with a minimum guaranteed rate, are characterized by requirement for a guaranteed rate, but can tolerate longer delays and are rather insensitive to jitter. Service parameters include CIR, Committed Time (CT), and MIR that limit the rate as otherwise bandwidth

intensive services may expand to occupy full bandwidth.

OA&M Operation, Administration & Maintenance. Provides the facilities

and the personnel required to manage a network.

ODU Outdoor Unit

OFDM Orthogonal Frequency Division Multiplexing: A method for

multiplexing signals, which divides the available bandwidth into a series of frequencies known as tones. Orthogonal tones do not interfere with each other when the peak of one tone corresponds with the null. The rapid switching, frequency-hopping technique is

intended to allow more robust data service.

OFDMA Orthogonal Frequency Division Multiple Access. It's a logical

extension of OFDM and a modulation/multiple access technique. OFDMA divides a signal into sub-channels (i.e. groups of carriers), with each sub-channel (or several sub-channels) being allocated to a

different subscriber.

OOB Out-Of-Band

PAP Password Authentication Protocol. A means of authenticating

passwords which is defined in RFC 1334. PAP uses a two-way handshaking procedure. The validity of the password is checked at

login.

PER

Packet Error Rate. In a digital transmission, PER is the percentage of packets with errors divided by the total number of packets that have been transmitted, received or processed over a given time period.

PHY

PHYsical Layer. The physical, or lowest, layer of the OSI Network Model. In a wireless network, the PHY defines parameters such as data rates, modulation method, signaling parameters, transmitter/receiver synchronization, etc. Within an actual radio implementation, the PHY corresponds to the radio front end and baseband signal processing sections.

POTS

Plain Old Telephone System. A basic analog telephone equipment.

PPPoE

Point-to-Point Protocol over Ethernet. PPPoE relies on two widely accepted standards: PPP and Ethernet. PPPoE is a specification for connecting the users on an Ethernet to the Internet through a common broadband medium, such as a single DSL line, wireless device or cable modem. All the users over the Ethernet share a common connection, so the Ethernet principles supporting multiple users in a LAN combines with the principles of PPP, which apply to serial connections.

QAM

Quadrature Amplitude Modulation. A technique used in wireless applications to double the available bandwidth by combining two amplitude-modulated signals. The two combined signals differ in phase by 90 degrees; this technique doubles the bandwidth by combining the two signals at the source before transmission, transmitting digital data at a rate of 4 bits per signal change.

QoS

Quality of Service. Measure of performance for a transmission system that reflects its transmission quality and service availability.

OPSK

Quadrature Phase Shift Keying. A data transfer technique used in coaxial cable networks that sends data using modulating signals. Four different phases represent data, with each signal's information determined by the signal before it. For example, if a phase stays the same from one signal to the other, the information has not changed.

RADIUS

Remote Authentication Dial-In User Service, an authentication and accounting system used by many Internet Service Providers (ISPs). When you connect to the system you must enter your username and password. This information is passed to a RADIUS server, which checks that the information is correct, and then authorizes access to the system.

RF Radio frequency. An AC signal of high enough frequency to be used

for wireless communications.

RFC Request For Comments. The name of the result and the process for

creating a standard on the Internet. New standards are proposed and published on the Internet, as a Request For Comments. The proposal is reviewed by the Internet Engineering Task Force.

RoHS Restriction of the use of certain Hazardous Substances in electrical

and electronic equipment, reference EC Directive 2002/95/EC of 27

January 2003.

RS-232 A serial interface published by the EIA (Electronic Industries

Association) for asynchronous data communication over distances up to a few hundred feet. Characterized by a single-ended (not differential) physical layer, it uses one signal wire for transmission, another for reception, and a common wire (ground), plus some

timing and control signals.

RS-422 RS-422 is a serial interface standard in which data is sent in a

differential pair (two wires, or twisted pair cable), which allows greater distances and higher data rates than non-differential serial

schemes such as RS-232.

RSA A public-key encryption technology developed by RSA Data Security,

Inc. The acronym stands for Rivest, Shamir, and Adelman, the inventors of the technique. The RSA algorithm is based on the fact that there is no efficient way to factor very large numbers. Deducing an RSA key, therefore, requires an extraordinary amount of computer processing power and time. The RSA algorithm has become the de facto standard for industrial-strength encryption,

especially for data sent over the Internet.

RSSI Received Signal Strength Indicator. A signal or circuit that indicates

the strength of the incoming (received) signal in a receiver.

R&TTE Radio & Telecommunications Terminal Equipment. The R&TTE

Directive 1999/5/EC governs the marketing and use of R&TTE equipment. With the exception of a few categories of equipment, the Directive covers all equipment, which uses the radio frequency spectrum. It also covers all terminal equipment attached to public

telecommunication networks.

RT

Real Time. Real Time service is designed to meet the needs of Real Time Variable Bit Rate (RT-VBR) like services characterized by requirements for guaranteed rate and delay such as streaming video or audio. These services are dynamic in nature, but offer periodic dedicated requests opportunities to meet real-time requirements. Because the subscriber equipment issues explicit requests, the protocol overhead and latency is increased, but capacity is granted only according to the real needs of the connection. Service parameters include CIR and CT.

RTCP

RTP Control Protocol. A protocol that monitors the QoS of an RTP connection and conveys information about the on-going session.

RTP

Real Time Protocol. An Internet protocol for transmitting real-time data such as audio and video. RTP itself does not guarantee real-time delivery of data, but it does provide mechanisms for the sending and receiving applications to support streaming data. Typically, RTP runs on top of the UDP protocol, although the specification is general enough to support other transport protocols.

 $\mathbf{R}\mathbf{x}$

Receive

SIP

Session Initiation Protocol. An application-layer control IETF protocol that can establish, modify, and terminate multimedia sessions such as Internet telephony calls (VoIP). SIP can also invite participants to already existing sessions, such as multicast conferences. Media can be added to (and removed from) an existing session. SIP transparently supports name mapping and redirection services, which supports personal mobility - users can maintain a single externally visible identifier regardless of their network location.

SLA

Service Level Agreement. A contract between a service provider and the end user, which stipulates and commits the service provider to a required level of service. An SLA relates to issues such as specified level of service, support options, enforcement or penalty provisions for services not provided, a guaranteed level of system performance as relates to downtime or uptime, a specified level of customer support and what software or hardware will be provided and for what fee.

SME

Small and Medium-sized Enterprises. SMEs are small-scale entrepreneurial private enterprises: they are usually defined as having less than 250 employees, but most have far fewer.

SNAP

Sub Network Access Protocol

SNMP

Simple Network Management Protocol. A network management protocol that provides a means to monitor and control network devices, and to manage configurations, statistics collection, performance, and security. SNMP works by sending messages, called protocol data units (PDUs), to different parts of a network. SNMP-compliant devices, called agents, store data about themselves in Management Information Bases (MIBs) and return this data to the SNMP requesters.

SNR

Signal to Noise Ratio. The ratio of the amplitude of a desired analog or digital data signal to the amplitude of noise in a transmission channel at a specific point in time. SNR is typically expressed logarithmically in decibels (dB). SNR measures the quality of a transmission channel or a signal over a network channel. The greater the ratio, the easier it is to identify and subsequently isolate and eliminate the effects of noise. SNR also is abbreviated as S/N.

SOHO

Small Office Home Office. A term that refers to the small or home office environment and the business culture that surrounds it. Typically it refers to an office or business with ten or fewer computers and/or employees.

SRC

Source

SU

Subscriber Unit

TCP

Transmission Control Protocol. Connection-oriented transport layer protocol that provides reliable full-duplex data transmission. TCP is the part of the TCP/IP suite of protocols that is responsible for forming data connections between nodes that are reliable, as opposed to IP, which is connectionless and unreliable.

TCP/IP

Transmission Control Protocol/Internet Protocol. A set of protocols developed by the U.S. Department of Defense to allow communication between dissimilar networks and systems over long distances. TCP/IP is the de facto standard for data transmission over networks, including the Internet.

TDD

Time Division Duplex is a duplexing technique dividing a radio channel in time to allow downlink operation during part of the frame period and uplink operation in the remainder of the frame period.

TDM

Time Division Multiplexing. Technique in which information from multiple channels can be allocated bandwidth on a single link based on pre-assigned time slots. Bandwidth is allocated to each channel regardless of whether the station has data to transmit. **TFTP** Trivial File Transfer Protocol. Simplified version of FTP that allows

files to be transferred from one computer to another over a network,

usually without the use of client authentication.

TTL Time To Live

Tx Transmit

U A unit for measuring the height in rack cabinets. 1U = 1.75 inches.

UDP User Datagram Protocol. Connectionless transport layer protocol in

the TCP/IP protocol stack. UDP is a simple protocol that exchanges datagrams without acknowledgments or guaranteed delivery, $\,$

requiring that error processing and retransmission be handled by

other protocols. UDP is defined in RFC 768.

UL Up Link

UTC Coordinated Universal Time. The reference for the official time used

by all countries in the world, and it is independent from the time zones. The modern implementation of Greenwich Mean Time.

VLAN Virtual Local Area Network. A group of devices on one or more LANs

that are configured with the same VLAN ID so that they can

communicate as if they were attached to the same wire, when in fact they are located on a number of different LAN segments. Used also

to create separation between different user groups.

VLSI Very Large Scale Integration. The process of placing thousands (or

hundreds of thousands) of electronic components on a single chip.

VoIP Voice over Internet Protocol. Provides an advanced digital

communications network that bypasses the traditional public switched telephone system and uses the Internet to transmit voice communication. VoIP enables people to use the Internet as the transmission medium for telephone calls by sending voice data in packets using IP rather than by traditional circuit switched

transmissions of the PSTN.

VPL Virtual Private Link. A virtual connection between two points on the

network, such as a base station and a service provider or corporate network. Identified by the VPL ID, with functionality that is similar

to VLAN ID (VLAN on the backbone network).

VPN

Virtual Private Network. A private network of computers that's at least partially connected by public lines. A good example would be a private office LAN that allows users to log in remotely over the Internet (an open, public system). VPNs use encryption and secure protocols like PPTP to ensure that data transmissions are not intercepted by unauthorized parties.

WAN

Wide Area Network. A computer network that spans a relatively large geographical area. Wide area networks can be made up of interconnected smaller networks spread throughout a building, a state, or the entire globe.

WCS

Wireless Communications Services. The variety of services available using frequencies in the 2.3 GHz band for general fixed wireless use.

WEEE

Waste Electronic and Electrical Equipment. The purpose of Directive 2002/96/EC on waste electrical and electronic equipment (WEEE) is, as a first priority, the prevention of waste electrical and electronic equipment (WEEE), and in addition, the reuse, recycling and other forms of recovery of such wastes so as to reduce the disposal of waste. It also seeks to improve the environmental performance of all operators involved in the life cycle of electrical and electronic equipment, e.g. producers, distributors and consumers and in particular those operators directly involved in the treatment of waste electrical and electronic equipment.

WIMAX

The name commonly given to the IEEE 802.16 standard. Specifications for fixed broadband wireless metropolitan access networks (MANs) that use a point-to-multipoint architecture. WIMAX supports very high bit rates in both uploading to and downloading from a base station up to a distance of 30 miles.

Index

Numerics	Add	
$1\text{POTS Advanced VoIP G.711 Pre-Configured Profile,}\\ 198$	Accounting Server, 109 Authentication Server, 107	
$1\text{POTS Advanced VoIP G.729 Pre-Configured Profile,}\\ 198$	Authorized Manager, 92 New SU, 155 ODU, 117	
1 POTS Basic VoIP G.711 Pre-Configured Profile, 198	Radio Cluster, 113	
1 POTS Basic VoIP G.729 Pre-Configured Profile, 198	Add New SU, 155	
802.1p Marking Mode, 176	Add Server	
	Accounting, 109	
A	Authentication, 107	
Access Parameters, 121	Address, 142	
Access VLAN, 171	Admin Status	
Accounting	Channel, 125	
Activity Status, 109	Interface Filtering, 188	
Add Server, 109	odu, 119	
Delete Selected Server, 110	Service, 171	
IP Address, 109	Subscriber, 168	
Operation Status, 109	Trap Configuration, 96	
Select Server, 110	Administrator Password, 72	
Server Status, 110	Advanced Service Mode, 160	
Show All, 109	Alarms and Traps, 94	
Show Selected Server, 110	Altitude, 85	
Statistics, 110	Antenna Selection, 137	
UDP Port, 109	Associated ODU, 125	
Accounting Parameters, 108	Associated Radio Cluster, 117	
Action	ATPC Enable/Disable, 78	
SU SW File, 140	ATPC Parameters, 77	
Active Alarms	AU-ODU	
Show, 94	Connectors, 34	
Active Rule Type, 188	Installation, 28	
Activity Status	LEDs, 34	
Accounting, 109	Authentication	
Authentication, 106	Activity Status, 106	
Actual Maximum Cell Radius (km), 122	Add Server, 107	
Actual Tx Power, 117	Delete Selected Server, 107	

IP Address, 107	Basic Parameters, 50
Operation Status, 106	BE, 183
Select Server, 107	BER Test, 99
Server Status, 107	Best BST/AU Parameters, 147
Show All, 106	Best BST/AU Support, 148
Show Selected Server, 107	Best BST/AU Table, 148
Statistics, 107	Best Effort (BE) QoS Profile, 183
UDP Port, 107	Bridge Aging Time
Authentication Parameters, 106	Micro Base Station, 93
Authorized Managers	su, 147
Add, 92	Bridging Parameters (SU), 146
IP Address, 92	Broadcast Relaying, 180
Parameters, 92	Bronze LAN-to-LAN Pre-Configured Profile, 198
Read Community, 92	Bronze Teleworking Pre-Configured Profile, 198
Select, 92	BST/AU ID, 149
Send Traps, 92	BST/AU ID Mask, 149
Show All, 92	Burst Error Rate Counters
Write Community, 92	Micro Base Station, 99
Auto Negotiation Option	su, 154
Data Port, 90	
Management Port, 88	C
	Calculated Local Date and Time, 85
B	Cell ID, 79
Backup File	Cell Parameters, 79
BS License File, 75	CG, 183
Creating, 74	Chain Number, 82
Filtering, 75	Chain Parameters, 82
Full, 75	Change Password, 72
Profiles, 75	Channel
Profiles and Services, 75	Admin Status, 125
Traps Configuration, 75	Associated ODU, 125
Upload/Download, 75	Associated Radio Cluster, 126
Bandwidth	Downlink (Tx) Frequency, 125
Micro Base Station, 123	Frequency Band, 126
SU (Phy Standard FDD Parameters), 143	Select, 125
SU (Radio Parameters, Advanced Si), 150	Tx Power, 126
Base Station ID	Uplink (Rx) Frequency, 126
Micro Base Station, 121	CIR, 184
SU (MAC Standard FDD Parameters), 143	Clear All Configured SU SW Files
Base Station ID Mask	_
	su, 155
SU (MAC Standard FDD Parameters), 143	SU, 155 Clock Mode, 82

Committed Information Rate, 184	Subnet Mask, 89
Committed Time, 184	Data Port Counters (Micro Base Station), 98
Configuration	Daylight Saving, 83
Micro Base Station, 76	Daylight Saving Advance Factor, 84
su, 141	Daylight Saving End Date, 84
Configured Action	Daylight Saving Start Date, 84
su, 131	Days, 94
Configured SW File Name	Default Action
su, 131	Interface Filtering, 188
Configured SW Version	Default L2/Voice Service Profile, 167
su, 131	Default PPPoE Service Profile, 167
Connectors	Default SW File (Adv-Si)
au-odu, 34	su, 134
GPS Adapter, 44	Default SW File (Std)
Micro Base Station, 37	su, 133
Continuous Grant (CG) QoS Profile, 183	Defining Local Service Profiles, 196
Counters	Defining Local Services, 196
Burst Error Rate (Micro base Station), 99	Defining RADIUS Based Services, 197
Burst Error Rate (SU), 154	Delete
Data Port, 98	Accounting Server, 110
Management Port, 97	Authentication Server, 107
Micro Base Station, 97	odu, 117
SU Ethernet Port, 153	su, 155
SU Ports, 153	SU SW File, 134
SU Wireless Port, 154	Device Location, 77
Wireless Port (Micro Base Station), 98	Device Name, 77
Country, 142	Discrete Frequencies, 151
CPEs License Bank, 100	Diversity Mode, 124
Create Backup, 74	DL-UL Ratio, 80
ст, 184	Downlink (Tx) Frequency (MHz) (Micro Base Station) 125
D	Downlink Basic Rate (Micro Base Station), 129
Data & Wireless Ports Counters (Micro Base Station),	Downlink QoS Profiles, 182
98	Downlink Upper Priority Limits, 182
Data Port	DRAP
Auto Negotiation Option, 90	description, 158
Gateway, 90	DRAP TTL Retries, 93
IP Address, 89	DSCP Marking Mode, 177
Management Traffic Enable/Disable, 91	Duplex Mode, 79
Management VLAN, 90	Duplex Parameters, 79
Parameters, 89	Duplicate Sessions, 161
Select Link Speed and Duplex, 90	Duplicate SU Name, 132

E	General Service Parameters
— Enable/Disable Limit on Number of Supported	Default L2/Voice Service Profile, 167
Devices (SU), 146	Default PPPoE Service Profile, 167
End Downlink (Rx) Frequency, 152	Menu, 167
Ethernet Port (SU), 145	Service Mode, 167
Ethernet Port Auto Negotiation	Show, 167
SU, 146	Update, 167
Ethernet Port Speed and Duplex	Gold LAN-to-LAN Pre-Configured Profile, 198
SU, 146	Gold Teleworking Pre-Configured Profile, 198
Ethertype (L2 Filtering Rule), 186	GPS Adapter
External 16MHz Clock, 81	Connectors, 44
External 1PPS Clock, 81	Installation, 42
2	LEDs, 44
F	GPS Info, 85
	GPS Protocol, 83
File Loading Procedure, 223	GPS Supported, 83
Filtering Rules	Grace Licenses, 101
Menu, 185	
First Name, 168	H
Forwarding Rule	Hold Over Passed Timeout, 85
Broadcast Relaying, 180	Hybrid VLAN Mode, 170
Menu, 179	
Multicast QoS Profile, 180	1
Name, 179	IDU Type, 131
Service Type, 179	IF Cables, 29
Unicast Relaying, 180	Installation, 27
Unknown Forwarding Policy, 180	AU-ODU, 28
Forwarding Rule Class, 181	GPS Adapter, 42
Forwarding Rule Name, 179	Micro Base Station, 36
Forwarding Rules	Installer Password
Definition, 156	Micro Base Station, 72
Frequency Bands File, 119	SU, 146
Frequency Bands Groups, 119	Interface Filtering
Frequency Scanning Parameters, 150	Active Rule Type, 188
From Network Filtering, 187	Admin Status, 188
From Wireless Filtering, 187	Default Action, 188
	From Network Filtering, 187
G	From Wireless Filtering, 187
Gateway	L2 Filtering Rules List, 187
Data Port, 90	L3/L4 Filtering Rules List, 187
Management Port, 87	Menu, 187
General Micro Base Station Parameters, 77	Interface Type, 137
	111011400 1, po, 10,

Intermediate Scanning Steps, 152	M
Internet Access L2 Pre-Configured Profile, 197	MAC (Standard FDD) Parameters
Internet Access PPPoE Pre-Configured Profile, 197	SU, 142
IP Address	MAC Address (L2 Filtering Rule), 186
Accounting Server, 109	MAC Address Control Number, 135
Authentication Server, 107	MAC Address Direction (L2 Filtering Rule), 186
Authorized Manager, 92	MAC Addresses Deny List, 190
Data Port, 89	MAC Parameters
L3/L4 Filtering Rule, 186	Micro Base Station, 121
Management Port, 86	Management Port
	Auto Negotiation Option, 88
K	Dest Subnet, 87
Keep Alive Timeout, 105	Dest Subnet, 67 Dest Subnet Mask, 87
,	Gateway, 87
1	IP Address, 86
I O Filtoning Pulsa	Management Traffic Enable/Disable, 88
L2 Filtering Rules	Parameters, 86
Ethertype, 186 MAC Address, 186	Select Link Speed and Duplex, 88
	Subnet Mask, 86
MAC Address Direction, 186	Management Port Counters, 97
Menu, 185 Rule Name, 185	Management Traffic Enable/Disable
L2 Filtering Rules List, 187	Data Port, 91
L2 Service, 157	Management Port, 88
L3/L4 Filtering Rules	Management VLAN (Data Port), 90
IP Address, 186	Marking Mode
Menu, 186	802.1p, 176
Port, 187	DSCP, 177
Port Direction, 187	Transparent, 176
Protocol, 186	Max Tx Power, 116
Rule Name, 186	Maximum Cell Radius, 121
L3/L4 Filtering Rules List, 187	Maximum Information Rate, 185
Last Name, 168	Maximum Number of Retries, 105
Latitude, 85	Maximum Number of Supported Devices (SU), 146
LEDs	Maximum Number of Voice Calls
AU-ODU, 34	Micro Base Station, 129
GPS Adapter, 44	Service Profile, 178
Micro Base Station, 37	Micro Base Station
Licenses, 99	Bandwidth, 123
Longitude, 85	Base Station ID Parameters, 121
Loop, 131	Configuration Menu, 76
<u>F</u> ,	Connectors, 37
	Installation 36

LEDs, 37	Associated Radio Cluster, 117
MAC Parameters, 121	Configured ODU Frequency Band, 117
Maximum Number of Voice Calls, 129	Delete, 117
Multirate Parameters, 126	ID, 117
Performance Monitoring, 97	Menu, 115
Phy Parameters, 123	Parameters, 117
Reset Unit, 72	Select, 116
Set Factory Defaults, 73	Show, 116
Show, 68	Show Summary, 115
SW Versions Control, 73	Tx Power, 118
Unit Control, 71	Update, 117
Voice Parameters, 129	Operation Status
Micro Base Station Service Type, 129	Accounting, 109
Minimum Number of Sub-Channels, 128	Authentication Server, 106
Minimum Severity, 94	Service, 171
MIR, 185	Operator ID, 79
Monitor	Optimal Uplink RSSI, 78
Via Telnet, 63	Organization Name, 142
Via the MON Port, 62	
Monitor Inactivity Timeout, 76	P
Monitor Password, 72	Packet Size, 185
Multi Channel	Password
Show Summary, 123	Defaults (Micro Base Station), 72
Multi Channel Parameters, 123	Micro Base Station, 72
Multicast QoS Profile, 180	Performance
Multirate Algorithm, 126	Service, 171
Multirate and ATPC Parameters (SU), 144	Performance Monitoring
${\it Multirate\ Enable/Disable\ (Micro\ Base\ Station),\ 128}$	Micro Base Station, 97
Multirate Parameters	su, 153
Micro Base Station, 126	Permanent, 160
	Phy (Standard FDD) Parameters
N	su, 143
Navigation Processor SW Version, 85	Phy Parameters
Non-Real-Time (NRT) QoS Profile, 183	Micro Base Station, 123
NRT, 183	Port (L3/L4 Filtering Rule), 187
Number of Gateways, 131	Port Direction (L3/L4 Filtering Rule), 187
Number Of Received Satellites, 85	Ports Counters
	Micro Base Station, 97
0	Power Cable
ODU	Micro Base Station, 38
Add, 117	Power Requirements, 39
Admin Status, 119	PPPoE Service, 157

Preferred BST/AU ID, 149	Location, 113
Preferred BST/AU ID Mask, 149	Menu, 112
Priority Classifier	Name, 113
Downlink QoS Profiles, 182	Parameters, 113
Downlink Upper Priority Limits, 182	Sector Beam Width, 114
Menu, 181	Sector Heading, 113
Name, 181	Select, 112
Priority Type, 181	Show Summary, 112
Uplink QoS Profiles, 182	Radio Parameters (Advanced Si), 149
Uplink Upper Priority Limits, 181	RADIUS
Priority Classifier Name, 181	Defining Services, 197
Priority Marking Mode, 175	RADIUS General Parameters, 104
Priority Marking Value, 178	RADIUS Parameters, 102
Priority Type, 181	Read Community (Authorized Manager), 92
Profiles	Real-Time (RT) QoS Profile, 183
Pre-configured, 197	Registration Parameters
Protocol (L3/L4 Filtering Rule), 186	su, 142
	Reset Unit
Q	Micro Base Station, 72
QoS Profile	su, 139
Best Effort (BE) Service Type, 183	Retry Interval, 105
CIR, 184	RT, 183
Continuous Grant (CG) Service Type, 183	Run from Shadow
ст, 184	Micro Base Station, 74
Menu, 182	su, 140
MIR, 185	
Name, 184	S
Non-Real-Time (NRT) Service Type, 183	Sample Interval, 185
Packet Size, 185	Scanning Main Step, 152
QoS Type, 184	Sector Beam Width, 114
Real-Time (RT) Service Type, 183	Sector Heading, 113
Sample Interval, 185	Sector ID, 121
QoS Profile Class, 185	Select
QoS Profile Name, 184	Authorized Manager, 92
QoS Type, 184	Channel, 125
Quick Service Mode, 160	odu, 116
quickynikinyoky, 160	Radio Cluster, 112
	Select by MAC Address
R	su, 134
Radio Cluster	Select by Name
Add, 113	su, 134
ID, 113	Select Link Speed and Duplex
10, 113	- *

Data Port, 90	VLAN Transparency Mode, 174
Management Port, 88	VPL ID, 175
Select Server	Service Profile Class, 179, 182
Accounting, 110	Service Profile Name, 173
Authentication, 107	Service Profiles
Send Traps	Defining Local Service Profiles, 196
Authorized Manager, 92	Service Type
Server Status	L2 Service, 157
Accounting, 110	РРРоЕ, 157
Authentication, 107	Voice, 158
Service	Services
Access VLAN, 171	Defining Local Services, 196
Admin Status, 171	Defining RADIUS Based Services, 197
Best Effort, 183	Session Timeout, 161
Continuous Grant, 183	Set as Main
Definition, 156	Micro Base Station, 74
General Parameters, 167	su, 141
Generic VoIP (non DRAP-based), 159	Set Factory Defaults
Hybrid VLAN Mode, 170	Micro Base Station, 73
l2, 157	su, 139
Menu, 168	Set Rates, 144
Name, 169	Severity
Non-Real-Time, 183	Trap Configuration, 96
Operation Status, 171	Shared Secret, 105
Performance, 171	Show
РРРоЕ, 157	Accounting Server, 110
Real-Time, 183	Authentication Server, 107
SU MAC Address, 169	Base Station Licenses, 101
Types, 157	CPEs License Bank Status, 100
VLAN Classification Mode, 170	General Service Parameters, 167
VLAN List, 169	Grace Licenses, 101
Voice (DRAP-based), 158	Micro Base Station Parameters, 68
Service Fault Status, 131	odu, 116
Service Mode, 167	SU #, 135
Service Profile	Temporary Grace Licenses, 101
Definition, 156	Show Active Alarms, 94
Maximum Number of Voice Calls, 178	Show All
Menu, 173	Accounting Servers, 109
Name, 173	Authentication Servers, 106
Priority Marking Mode, 175	Authorized Managers, 92
Priority Marking Value, 178	Show MAC Addresses Behind SU, 155
Service Type, 173	Show Summary

Multi Channel, 123	Installer Password, 146
odu, 115	Loop, 131
Radio Cluster, 112	MAC (Standard FDD) Parameters, 142
su, 130	Menu, 130
Show Traps Log, 95	Multirate and ATPC Parameters, 144
Signal Processor SW Version, 86	Number of Gateways, 131
Silver LAN-to-LAN Pre-Configured Profile, 198	Organization Name, 142
Silver Teleworking Pre-Configured Profile, 198	Performance Monitoring, 153
Smart Card Status, 137	Phy (Standard FDD) Parameters, 143
Software Upgrade, 221	Registration Parameters, 142
Start Downlink (Rx) Frequency, 152	Reset Unit, 139
Statistics	Select by MAC Address, 134
Accounting, 110	Select by Name, 134
Authentication, 107	Service Fault Status, 131
Stop Tx After Hold Over Timeout, 84	Set Factory Defaults, 139
SU	Set Rates, 144
Add New SU, 155	Status, 138
Address, 142	SW Files in Micro Base Station, 133
Bandwidth (Phy Standard FDD Parameters), 143	SW Versions Control, 139
Bandwidth (Radio Parameters, Advanced Si),	Unit Control, 138
150	Uplink (Tx) Frequency (Phy Standard FDD
Base Station ID (MAC Standard FDD	Parameters), 144
Parameters), 143	User Name, 142
Base Station ID Mask (MAC Standard FDD	Voice/Networking Gateways, 145
Parameters), 143	SU#
Bridge Aging Time, 147	Menu, 135
Bridging Parameters, 146	Show, 135
Clear All Configured SU SW Files, 155	SU Ethernet Port Counters, 153
Configuration Menu, 141	SU MAC Address
Configured Operation, 131	Service, 169
Configured SW File Name, 131	SU Ports Counters, 153
Configured SW Version, 131	SU Status, 138
Country, 142	SU Type, 130
Default SW File (Adv-Si), 134	SU Wireless Port Counters, 154
Default SW File (Std), 133	Subnet Mask
Delete, 155	Data Port, 89
Delete SW File, 134	Management Port, 86
Duplicate SU Name, 132	Subscriber
Ethernet Port, 145	Admin Status, 168
Ethernet Port Auto Negotiation, 146	Definition, 156
Ethernet Port Speed and Duplex, 146	Description, 168
IDU Type, 131	First Name, 168

Last Name, 168	Accounting Server, 109
Menu, 167	Authentication, 107
Name, 168	Unicast Relaying, 180
Subscriber Name, 168	Unit Control
SUID, 131	Micro Base Station, 71
Suppression Interval, 96	su, 138
SW File	Unknown Forwarding Policy, 180
su, 140	Update
SW Files in Micro Base Station, 133	General Service Parameters, 167
SW Versions Control	odu, 117
Micro Base Station, 73	Uplink (Tx) Frequency
su, 139	SU (Phy Standard FDD Parameters), 144
	Uplink Basic Rate (Micro Base Station), 128
T	Uplink QoS Profiles, 182
Temporary, 160	Uplink Upper Priority Limits, 181
Temporary, 100 Temporary Grace Licenses, 101	User Name, 142
Termination Action, 161	
Time Zone Offset From UTC, 83	V
Transparent Marking Mode, 176	VLAN Classification Mode, 170
Trap Configuration, 95	VLAN List, 169
Admin Status, 96	VLAN Transparency Mode, 174
Severity, 96	Voice Parameters (Micro Base Station), 129
Suppression Interval, 96	Voice Service, 158
Traps	Voice/Networking Gateways (SU), 145
Display Filter, 94	VoIP 1V Pre-Configured Profile, 198
Log, 95	VoIP 2V Pre-Configured Profile, 198
Traps Display Filter	VPL ID, 175
Days, 94	
Minimum Severity, 94	W
Tx Power (ODU), 118	Wireless Port Counters
	Micro Base Station, 98
U	Write Community (Authorized Manager), 92
UDP Port	