

REIXS Beamline Reference Manual

(Work in Progress)

Feizhou He

Updated: April 28, 2015

TABLE OF CONTENTS

1.0	Introd	duction1				
2.0	Advanced Controls1					
	2.1	Startir	ng the Beamline from Scratch	1		
		2.1.1	Beamline Pump Down	1		
		2.1.2	RSXS Endstation Pump Down	1		
		2.1.3	Turn on the Electronics	1		
3.0	Bean	nline Se	etup	2		
	3.1	Calibr	ating the Beamline Components	2		
		3.1.1	EPU Calibration	2		
		3.1.2	Calibrating Apertures and Slits	3		
		3.1.3	Calibrating Mirror positions	4		
		3.1.4	Calibrating Chopper	4		
		3.1.5	Monochromator Calibration	5		
	3.2	Calibr	ating the Photon Energy	8		
		3.2.1	Calibration References	8		
		3.2.2	Tuning the Monochromator Energy Scale	8		
4.0	RSX	S Endst	tation Setup	9		
	4.1	RSXS	Endstation Pump Down	9		
		4.1.1	Scattering chamber Pump Down	9		
		4.1.2	Rotary Feedthrough Pump Down	10		
		4.1.3	Loadlock Pump Down	10		
		4.1.4	Transfer chamber Pump Down	10		
	4.2	Setup	RSXS Endstation Electronics	10		
		4.2.1	Detectors	10		
		4.2.2	Scaler Setup	10		
		4.2.3	Temperature Control Setup	11		
	4.3	Setup	Motors and SPEC	11		
		4.3.1	AML UHV Motors	11		
		4.3.2	Attocube ANC350 Controller	12		
		4.3.3	Macro Motors	15		
	4.4 Setup SPEC Control					
5.0	XES	Endsta	tion Setup	15		

5.1	XES Endstation Pump Down	15
5.2	Setup XES Endstation Electronics	16
Appendix A:	REIXS Beamline Motor Settings	17
Appendix B:	REIXS Information	18
Appendix C:	Attocube Motor Settings	20

1.0 Introduction

The Resonant Elastic and Inelastic Soft X-ray Scattering (REIXS) Beamline is a soft X-ray beamline dedicated to soft X-ray scattering and soft X-ray spectroscopy experiments. The beamline is located at 10ID-2 port of Canadian Light Source.

This document describes the setups and calibration of REIXS Beamline.

2.0 Advanced Controls

2.1 Starting the Beamline from Scratch

All valves closed

2.1.1 Beamline Pump Down

If one vacuum section has been vented, use turbo cart to pump down to below 10^{-6} Torr. Bakeout the section.

Pumps, pump down individual vacuum sections, bakeout

Before a power outage, close all gate valves to isolate each vacuum section. If the power outage is less than 2-3 days, usually the vacuum can be recovered by turning on the ion pumps in each section. Otherwise, use turbo cart to pump down each section to below 10^{-6} Torr before turning on the ion pump.

2.1.2 RSXS Endstation Pump Down

Turbo pump for scattering chamber and load lock.

Pump down the Cryo pump by either chamber turbo pump or through the roughing port on the cryo pump. Then start cryo pump.

Pump down the Thermionics 2L/s ion pump for the rotary feedthrough differential pumping. Close the valve to turbo roughing line. Connect a turbo cart, open both valves on the differential pumping line. Pump the differential pumping line to $<10^{-6}$ Torr, then start the ion pump. Current < 5mA?? Close the valve besides the 2L/s ion pump. Close the valve to turbo cart. Open the valve to 700L/s turbo roughing line.

2.1.3 Turn on the Electronics

IOC1610-201 OPI1610-201 OPI1610-202 IOC1610-403 Start VME crates Start NIM crate Start control software for the beamline

3.0 Beamline Setup

Power ready Air ready Cooling ready Vacuum ready.

3.1 Calibrating the Beamline Components

3.1.1 EPU Calibration

For qualified beamline staff only.

The REIXS EPU Control can be accessed by typing: runREIXS_Epu & from a command line window (xterm), or click the [R-EPU] button in the REIXS Advanced Control Interface.

Clicking the [Calibrate EPU] button will bring up the EPU Calibration panel. Clicking [Run] button in the "Calibrate EPU" line will automatically calibrate all five motors on the REIXS EPU. Clicking other [Run] buttons will calibrate individual motors. When all the motors are calibrated, the calibration status shows Calibrated with green beackground.

Other details of the REIXS EPU could also be accessed from this interface. **DO NOT** make adjustments without comprehensive knowledge of EPU control.

X /home/control/opi/Interface/SRInterface/InsertionDevices/E 🗕 🔳 🗙					
10ID-2 REIXS EPU UND1410-02					
Gap 26.7125 mm -0.0005 YES					
Gap setpoint 26.7130 CALIBRATED					
Move Status MOVE DONE					
STOP					
Emergency Open AUTO OPEN FORCE OPEN					
Progress Relative move 0.0005 mm					
Operating Mode Sequence Mode Scan Mode					
Gap Encoders Downstream Gap Reference Upstream Downstream Upstream Downstream 26.7125 26.7100 mm					
Taper setpoint 0.0000 feedback -0.0025 mm delta 0.0000 backlash 0.0254 mm					
Girders set 0.0000 mm MOVE DONE					
Q1 Upper outboard -1 0 1 -1/2 1/2 ON 0.0000 0.0005					
Q2 Upper inboard -1 0 1 -1/2 1/2 ON 37.4975 37.4980					
Q3 Lower inboard -1 0 1 -1/2 1/2 ON 0.0000 -0.0005					
Q4 Lower outboard -1 0 1 -1/2 1/2 ON -37.4975 -37.4975					
LINEAR HORIZ _ LOAD SETPOINT GO STOP					
Interlocks Auto Open BYPASSED Permissive tio ACTIVE BYPASSED 0 Emergency Off PRESSED					
CALIBRATE EPU MOTORS CLOSED LOOP					
Correction Coils Use Correction NO YES TEST CORRECTION COILS					

3.1.2 Calibrating Apertures and Slits

REIXS Beamline has several apertures / slits.

3.1.2.1 Variable Aperture

Variable Aperture

🗙 /home/control/opi/Beamlines/REIXS_Beamline/Motors/reixsVaria							
REIXS Variable Aperture							
	PSL161 REIX aper	0-1-120-01:X ture horizontal					
Gap mm 4.	000	4.001 mm					
Center mm 13	3.800	13.801 mm	MOVE DONE				
Up mm 15	5.8000	15.8010 mm	LISTOPS				
Down mm	1.8000	11.8003 mm	MUTURS				
Calibration	TOP	RUN In progra	ess ()				
Progress: Calibration successful							
PSL1610-1-I20-01:Z REIX aperture vertical							
Gap mm 5.	000	5.000 mm					
Center mm -1	.500	-1.500 mm	MOVE DONE				
Up mm 1.	0000	1.0001 mm	ноторя				
Down mm -4	.0000	-3.9997 mm	MUTURS				
Calibration STOP RUN In progress O Status CALIBRATED							
Progress: Calibration successful							

3.1.2.2 *4-Jaw #1 and 4-Jaw #2*

4-Jaw #1 and 4-Jaw #2

3.1.2.3 Exit Slit

Exit Slit has four motors. Vertical gap: beam based calibration Inboard and outboard blade motors are the same as 4-Jaw motors. Roll motor

3.1.3 Calibrating Mirror positions

For qualified beamline staff only.

It is not necessary to move the mirrors for encoder calibration. Use procedure below for every motor / encoder pair for each mirror:

- 1. Open motor control interface for one motor.
- 2. Verify the settings for motor velocity, base velocity and acceleration. Make corrections if needed.
- 3. On Power/Backlash tab, turn off the Motor Power.
- 4. Go to Calibration tab, verify the values of Step Slope, Encoder Slope and Calib Position. Make corrections if needed.
- 5. Click the Home CW button. The motor feedback value should be changing.
- 6. Go to the corresponding motor, push the encoder tip back. Once the reference mark is detected, the motor feedback value will stop. The encoder is calibrated now.
- 7. Go back to Power/Backlash tab and turn on the motor power (or Auto Hardware for some motors).

Other details of the motor could also be accessed from this interface. **DO NOT** make adjustments without comprehensive knowledge of motor control.

3.1.4 Calibrating Chopper

Chopper must rotate in the positive direction for correct operation. If the chopper has moved in negative direction, it must rotate in positive direction for one revolution, so that the encoder can pass the home position reference mark and establish the correct angle readout.

LED indicators on the Chopper Controller in the NIM Crate show the status of the chopper system.

Once chopper is stopped, use "Move Relative" to adjust chpper position.

[SYNCD] - Chopper calibrated

- [DS1] Data stream 1 (REIXS EPU Beam)
- [DS2] Data stream 1 (SM EPU Beam)

3.1.5 Monochromator Calibration

For qualified beamline staff only. DO NOT make adjustments without comprehensive knowledge of monochromator control.

Verify motor parameters: velocity, base velocity, accelaration

Translation motors calibration

In the "REIXS Energy" panel, click [ENABLE] button to activate the energy control. Use the input box to set the energy for monochromator and EPU. Click [Stop] button to stop all motors of monochromator and of EPU immediately. "Status" shows if the monochromator and EPU have reached correct setpoints.

The [Disable/Enable] buttons are used to activate/deactivate individual components.

X /home/control/opi/Beamlines/REIXS_Beamline/Motors/reixsEnergyTwoEpus.ed
REIXS Energy
Energy 880.000 eV Status READY STOP Mode DISABLE ENABLE TEST
Monochromator CONFIGURE MONO Mono Energy 880.01 eV READY
Grating Ni LEG Au LEG Au HEG Au HEG Au HEG Au HEG energy setpoint mono setpoint feedback status Angle 2.82231 3.69796 3.697951 deg MOVE DONE Offset 0.87565 DISABLE ENABLE
Mirror NICKEL CARBON SILICON GOLD GOLD
Angle 1.78650 1.76904 1.769001 deg MOVE DONE Offset -0.01746 DISABLE FINABLE
CONFIGURE EPU ACCESS
REIXS Harmonic 1 3 5 7 9 EPU Access ENABLED READY
Gap energy setpoint gap setpoint feedback status Gap 66.617 66.6174 66.6185 mm MOVE DONE offset 0.000 DISABLE ENABLE
Girders Polarization Linear Horiz J MOVE DONE Linear Inclined Angle 0.000 deg
SM Harmonic 1 3 5 7 9 CONFIGURE EPU EPU Access DISABLED READY READY
energy setpoint gap setpoint feedback status Gap 49.962 28.5987 28.5985 mm MOVE DONE offset 0.000 DISABLE ENABLE
Girders Polarization mode Circular Left _ MOVE DONE Linear Inclined Angle 0.000 deg

1.1.1.1 Selecting Gratings and M2 Coatings

The REIXS monochromator has three gratings. There are four coatings the M2 mirror.

In the "Monochromator" panel, user can select which grating and coating are used. The setpoint and feedback values are also displayed.

Monochromator feedback Mono Energy 880.01 eV	CONFIGURE MONO READY		
Grating Ni LEG Au LEG Au HEG	Au HEG		
energy setpoint mono setpoint	feedback status		
Angle 2.82231 3.69796	3.697951 deg MOVE DONE		
Offset 0.87565	DISABLE ENABLE		
Mirror NICKEL CARBON SILICON	GOLD GOLD		
energy setpoint mono setpoint	feedback status		
Angle 1.78650 1.76904	1.769001 deg MOVE DONE		
Offset -0.01746	DISABLE ENABLE		

3.1.5.1 Configure EPU Access

This panel is used to switch EPU access. Normal mode: [REIXS Only]

2-in-1 mode: [REIXS & SM]

1.1.1.2 Selecting EPU Harmonics

Depending on the desired photon energy range, appropriate EPU harmonics shall be selected for optimum flux.

For circular polarization, only the first harmonics can be used.

For linear polarization, use the first harmonics for energy between 80

REIXS EPU	Harmonic Access	CONFIGURE EPU READY	
Gap offset	energy setpoint 66.617 0.000	gap setpoint feedback 66.6174 66.6185 mm	status MOVE DONE DISABLE ENABLE
Girders Polarization mode Linear Inclined Angle		Linear Horiz J	MOVE DONE DISABLE ENABLE

eV and 1000 eV. Use the third harmonics for energy between 800 eV to 2000 eV. Use the fifth harmonics for energy above 1500 eV.

After executing the command to change EPU harmonics, the EPU does not respond immediately. The EPU harmonics will change the next time energy or polarization is changed.

When the EPU control is established, the "Access" field shows "ENABLED"

3.1.5.2 Setup EPU Lookup Tables

The [Configure EPU] button will bring up the panel for loading EPU lookup tables for gap and girder phase control.

Polynomial

A /IIC	Jine/G	.ontroi/opi/			nine/ m			
REIXS Energy - REIXS EPU								
На	irmo	nic	Loaded Tables			Select Table		
		gap	LOOKUP OPERATOR		DR	LOOKUP OPERATOR		J
	l girder		LOOKUP OPERATOR		DR	LOOKUP OPERATOR		
		gap	LOOF	UP OPERATO	DR	LOOKUP	OPERATOR _	J
	3	girder	LOOKUP OPERATOR		DR	LOOKUP	OPERATOR _	J
		gap	LOOF	UP OPERATO	DR	LOOKUP	OPERATOR _	J
	5	girder	LOOF	LOOKUP OPERATOR		LOOKUP	OPERATOR _]
		gap	LOOK	UP OPERATO	DR	LOOKUP	OPERATOR _	ת
	7	girder	LOOK	UP OPERATO	DR	LOOKUP	OPERATOR _	J
		gap	LOOK	UP OPERATO	R		OPERATOR	Ē
	9 airder LOOKUP OPERATOR			R				
10	l cad table status OK reixsEnu girder harm1 lookun table							
		Table da	te M	on Jan 18 11:	09:30 a	2010 .		
Ga	р			lookup	s	etpoint	feedback	
Setpoint 37.1		37.170		37.1700	37.1695	mm		
		Offs	set		0.00	0		mm
Po	lariz	ation/Ph	ase					
	S	TXM form	nat	0.000		Line	ar Inclined A	ngle
Pol	ariz	ation mo	de 🗌	LINEAR HOR	IZ _	J	0.000	deg
Girders lookup			se	etpoint	feedback			
Q1 Up Outboard 0.000				0.0000	0.0000	mm		
Q2 Up Inboard 0.000				0.0000	0.0000	mm		
Q3	Do	wn Inbo	ard	0.000		0.0000	-0.0005	mm
Q4 Down Outboard 0.000 0.0000 0.0000 mm								
Debug level 0								
					_			

1.1.1.3 Monochromator Parameters

Clicking [Configure Mono] button will bring up the following panel. In this panel, various monochromator parameters can be configured. This is to be used by beamline staff only.

	X /home/control/opi/Beamlines/REIXS_Beamline/Motors/reixsMonochromator.edl					
	REIXS Monochromator					
Grating parameters	Grating Translation DISABLE ENABLE					
Line Density	enable SELECT GRATING TEEdback					
, Position	lines 800.00 800.00 800.00 lines					
	position <u>ves</u> 9.50 74.50 <mark>139.50</mark> 139.50 mm 139.51 mm					
b2	b2 VES 5.70000e-04 5.70000e-04 5.37747e-04 5.3777e-04					
Grating offset	mirror offset ves 0.00000 0.00000 -0.01746 -0.01746 deg					
Mirror Offset	setpoint feedback status MOVE DONE					
	calculated setpoint feedback difference status					
	29.02188 29.02152 mm					
	max retry 0 percent 100.00					
	STOP MOTION deadband 0.00005 deg approach '					
Mirror position	Mirror Translation DISABLE ENABLE					
	SELECT MIRROR COATING feedback					
	enable NICKEL CARBON SILICON GOLD GOLD					
	YES 27.0 47.0 67.0 96.0 96.03mm					
For both grating and	setpoint feedback Status MOVE DONE					
mirror	MOTOR					
Max retry: 0	calculated setpoint feedback difference status					
Deadband: 0.00005	13.89168 13.89304 mm					
Percent approach: 100%	STOP MOTION Include COCCE In animatic Motion					
· · · · · · · · · · · · · · · · · · ·						
-						

3.1.5.3 *IK320 Encoder interface*

comprehensive knowledge of mo	nochromator control.				
	X /home/control/opi/Beamlines/REIXS_Beamline/Motors/HHEncoder.edl				
For both M2 mirror and Gratings	ENC1610-l20-04 Mono grating encoder				
	Sample rate Position 3.516487 deg 27.59971 mm 50.0 Hz 0.040 Reference offset 0.868500 Read source CARD 1 + 2 / 2				
Sample rate 0.04coc E0Hz	Feedback Reference single average long average SINGLE AVERAGE 3.516483 deg 3.516487 deg 3.516498 deg 1 sample 20 samples 50 samples				
Sample fale 0.04sec 50Hz	Ik320 Card 1				
Initialization [Run Init]	Position 2.648931 Axis 2 CALIBRATED				
"Init completed: SUCCESS"	Zard state START REF DONE Init card RUN INIT Init completed: SUCCESS Read continuous READ Read rate 25.0 Hz DETAIL				
	Ik320 Card 2				
Calibration	Position 2.647036 Axis 2 CALIBRATED				
[Card 1 + 2] and [RUN]	Ard state START REF DONE Init card RUN INIT Init completed: SUCCESS Read continuous READ				
"Calibrated" with green	Calibration CARD 1+2 Calibration in progress Calibration of the second s				
Dackyrounu	riogress. Succesiai campration STOP STOP				

For qualified beamline staff only. DO NOT make adjustments without

3.2 Calibrating the Photon Energy

3.2.1 Calibration References

3.2.1.1 Using Gas cell

X-ray Photoionization of gas phase Nitrogen, Neon, Argon, Carbon monoxide or Carbon Dioxide, Oxygen

3.2.1.2 *Solid references*

Through X-ray Absorption Spectroscopy (XAS) of well-defined absorption edges

Metal, Ni, Stainless Steel

Oxides: La edge, Ni edge,

Si, graphite

3.2.2 Tuning the Monochromator Energy Scale

The REIXS Mono Calibration panel is used to fine tune the monochromator calibration. The calibration needs to be carried out for each grating. Using a calibration reference with known energy, optimize the flux by adjusting monochromator M2 mirror and grating pitch. Input the known energy into the red "Energy" box. Then input the two red "Offset" values into the corresponding "Grt Offset" and "M2 Offset" boxes. Click the Grating button above this column. The "USE" column will show the current used values. The monochromator is now calibrated to this reference energy.

🗙 REIXS Mono Calib						
REIXS Mono Calibration Stop						
	Ni LEG	Au LEG	Au HEG	USE		
Position	9.500	74.500	139.500	139.500		
Lines	800.003	799.970	800.005	6 800.005		
b2	5.76598e-04	5.76722e-04	5.37747e-	04 5.37747e-04		
Grt Offset	0.89105	0.88736	0.87381	0.87381		
M2 Offset	-0.02340	-0.04521	-0.0181	7 -0.01817		
	Calcuated Angles	d Curre Angle	nt es	Offset		
Energy	988.00	0		X 1E-6		
Beta	2.66	3 3.53	728 8	73806.490		
Alpha	0.70	8		X 1E-6		
Theta	1.68	6 1.66	763 -	18169.494		

1.1.2 Tuning the EPU Calibration

To be done only after monochromator calibration. Needs to be done for each type of polarization. Scan EPU gap at each energy point.

Using polynomial equations to calculate EPU gap.

4.0 RSXS Endstation Setup

Need to reach UHV. Setup motors. Setup detectors.

4.1 RSXS Endstation Pump Down

RSXS Endstation has several chambers.

4.1.1 Scattering chamber Pump Down

The main scattering chamber has a Pfeiffer Turbo pump and a CTI cryo pump.

Two gate valves

- 1. Open the gate valve to the turbo pump. If cryo pump is at room temperature, open the gate valve to the cryo pump.
- 2. Turn on roughing pump.
- 3. Turn on turbo pump.
- 4. Turn on ion gauge when the Convection gauge shows 0
- 5. Turn on cryo pump. The Lakeshore 211 Temperature Monitor shows the cryo pump temperature, ~15K during the normal operation.

RGA on the Scattering Chamber.

4.1.2 Rotary Feedthrough Pump Down

The 2L ion pump on rotary feedthrough needs to be pumped down before start.

- 1. Close the valve to the main chamber roughing line.
- 2. Connect a turbo cart to the pumping port for the rotary feedthrough.
- 3. Open the valve between the first and second stage of the rotary feedthrough.
- 4. Turn on the turbo cart.
- 5. When the turbo cart reaches base pressure, turn on the small ion pump. Green light
- 6. Close the valve between the first and second stage of the rotary feedthrough.
- 7. Open the valve to the main chamber roughing line.
- 8. Close the valve to the pumping port for the rotary feedthrough.
- 9. Stop the turbo cart.

4.1.3 Loadlock Pump Down

Pfeiffer Turbo pump:

- 1. Close loadlock door. Close gate valve.
- 2. Turn on roughing pump
- 3. Turn on turbo pump. The venting valve will close automatically.
- 4. Turn on ion gauge when the Convection gauge shows 0

4.1.4 Transfer chamber Pump Down

4.2 Setup RSXS Endstation Electronics

Turn on power to the NIM Crate and VME Crate in the endstation electronics rack.

4.2.1 Detectors

Photodiode: connected to Electrometer through a Triax cable TEY: SR-570 Current Amplifier Channeltron: Ortec Micro-Channelplate (MCP):

4.2.2 Scaler Setup

SIS3820 Scaler Setup Input Mode: Mode 4 Output Mode: 2 Mode: Continuous Source: Clock

4.2.3 Temperature Control Setup

Lakeshore 325 Temperature control Temperature Sensor: Si Diode DT-670 Heater: 25 Ω , 25W max PID setting

4.3 Setup Motors and SPEC

There are nine AML UHV motors and two Attocube piezo motors in the Scattering chamber.

4.3.1 AML UHV Motors

The AML UHV motors are controlled by SPEC as epics motors. The APS motor record connects to CLS motor record through a wrapper software.

Motor parameters:

TTH, tth, ...

Motor temperature: Omron Temperature monitor, keep temperature below 65°C.

4.3.2 Attocube ANC350 Controller

The two piezo motors inside the polarization analyzer are controlled by the Attocube ANC350 Controller.

File Edit View Favorites Tools Help

daisy.exe Shortcut 1 KB

Address C:\Documents and Settings\XAS\Desktop\Attocube

🔇 Back 🔹 🕥 🔹 🏂 🔎 Search 🌔 Folders 🛛 🎲 🗙 🌱 🏢

dadiscyr.exe

Initial setup

To setup the Attocube controller and motors, quit FOURC first. After power on the ANC350, from Windows computer, open the Attocube folder on the desktop.

💌 🔁 Go

😼 My Computer

The software "dgdiscvr.exe" is used to setup the IP address for the ANC350 controller.

The ANC350 is connected to the REIXS VLAN (642)

Host name: MC2E1610-401

Domain: clsi.ca

Static IP address: 10.52.11.100

Subnet mask: 255.255.252.0

Default Gateway (routers): 10.52.11.254

Confirm the network connection is established.

Location: C:\Attocube\ANC350\ANC350_Software\ANC350_V1440\ 1014 bytes

Software "daisy.exe" is used to setup the motor parameters.

Open the "daisy" software. It will try to connect to the ANC350 server. Once connected, the left indicator at the bottom will be green. If it failed to connect to ANC350, click the "start" icon (like a thunderbolt) to try again.

Once connected to the ANC350, click "Open File" icon, and select "ANC350_3.ngp" profile. There will be four tabs opened in "Daisy" interface.

The first tab is Global Settings. Keep the default values.

🏶 ANC 350 Global Settings - Daisy @ ANC 350server 📃 🗖 🗙
File Window Displays Server Settings Help
😂 🖬 🛪 📴 🛃 考 📾 🏟 👂 🖛 🥖
🔍 ANC350 Global Settings 🛛 Q ANC350 Axis 1 🔍 ANC350 Axis 2 🔍 ANC350 Axis 3 🖂
Static Voltage
Save Settings
Clear Settings
Flash Status
Temperature Status

The second tab is for ANR101/RES Motor. This motor is used to position the multilayers for either horizontal polarization or vertical polarization.

The default motor profile can be loaded using "Load Actor profile" button and then choose "ANR101res_95_171.aps" file.

🖁 Open F	ile				×
Look in: Firmwa Firmwa ANR10 ANR10 ANRv5	re1500 L_APS_files L_APS_files Jifes_ <u>55_</u> 171.aps Jifes_95_171.orig.aps 51_C4_029.aps	vare/ANC350_V144	10/ANC350_GUI/ 🛩	← € 🕈	
File name:	ANR101res_95_171.a	36			Ipen
File type:	APS files (*.aps)		(v C.	ancel

ANC350 Axis 1 - Daisy	@ ANC350server		_ 🗆 🛛
nie window Displays Berve	a man men 4	- /	
ANC350 Global Settings	ANC350 Axis 1	ANC350 Axis 2	O ANC350 Axis 3
Auis 1		4	~
Position			\
	159.000	[deg]	
Rot. Count	0		
Automatic Positioning			
Rot. Count F	Position 159 deg	Absolute	Relative
Hump detected		Moving	•
Hump detection	Single Ci	rcle Mode 🔲 🛛 Tai	get GND
-Manual Positioning			
Single Step 💽		Amplitude 42 V	DC Level 12.447 V
Continuous 🗲	-	Speed[deg/s] 22.14	Frequency 2000 Hz
Endless 🗲	-	Step Width[deg] 0.011	🔽 Output Enable
Ext. Coars	e	Step Count	Amplitude Control
Load Actor Profile Lo	ad:ANR101res_95_171	.aps	- mprode
Sensor Status Error	Connected	Enabl	e 💿
Capacity Measurement C	apacity: ΟμF		

Uncheck the "Target Ground" checkbox. This parameter could not be changed within FOURC.

The third tab is for ANRv51/RES Motor. This motor is used to change the multilayers and also to scan the analyzer theta angle.

The default motor profile can be loaded using "Load Actor profile" button and then choose "ANRv51_C4_029.aps" file.

Also uncheck the "Target Ground" checkbox.

🕷 ANC350 Axis 2 - Daisy @ ANC350server	
File Window Displays Server Settings Help	
🖆 🖬 🛪 📴 💽 💁 🎘 🛍 🚳 👙 🗶 🖋	
🔍 ANC350 Global Settings 🛛 🔍 ANC350 Axis 1 🔍 ANC350 Axis 2 🔾	ANC350 Axis 3
Avie 2	
Position	1
14.999 [deg]	
Rot. Count 0	
-Automatic Positioning	
Rot. Count Position	Delative
0 15 deg Absolute	Helative
Hump detected 🌑 Moving 🌘	
Hump detection 🗌 Single Circle Mode 🗌 Target (GND 🔲
-Manual Positioning	
Amplitude DI	C Level
Single Step	3.92 V
Castinuary + + Speed[deg/s] Fit	equency
Continuous	000112
Endless - 0.031	Output Enable
Step Count Ar	mplitude Control
Ext. Loarse 1	Amplitude 💌
Load Actor Profile Load:ANRv51_C4_023.aps	
Sensor Status	
Error 🜑 Connected 🗿 Enable	•
Capacity Measurement Start Capacity: 0 µF	

The fourth tab (ANC350 Axis 3) is not used.

Now close all tabs by clicking the "close"

icon (red cross). And then disconnect the ANC350 server by clicking the "shutdown" icon (blue handgun).

The ANC350 front panel is shown above. The first slot is the master module, and shows the driving voltage of the module in focus. The second and third modules are for the Analyzer and ATH motors, respectively. The current angular position or holding voltage is shown. Refer to Attocube User Manual for more information.

Setup in FOURC

Start SPEC using "runFOURC". If you see startup message as following, quit SPEC and try again (or use "reconfig"):

```
Getting configuration parameters from "SPECD/fourc/config".
Bad packet from Attocube.
Purported Attocube ANC350 on "MC2E1610-401.clsi.ca" is unusable.
ANC350 motor "ana" (unit 0, ch 0) unusable: controller unresponsive.
ANC350 motor "ath" (unit 0, ch 1) unusable: controller unresponsive.
```

The following startup message means communication with ANC350 has been established:

```
Getting configuration parameters from "SPECD/fourc/config".
Using Attocube ANC350 (fw 0.0.2.1 new) on "MC2E1610-401.clsi.ca".
Found ANC350 chan 0 for "ana", resistive, 0.011 deg/step
Found ANC350 chan 1 for "ath", resistive, 0.031 deg/step
```

The two motors are:

Analyzer	ana	ANR101/RES
ATH	ath	ANRv51/RES

Both ana and ath motors have resistive encoders. The real time position is displayed on the ANC350 front panel.

From SPEC, use motor_par() function to change the motor parameters. Refer to SPEC help page "Attocube" for more information. Be careful the unit of the parameters.

If FOURC reports discrepancy between the setpoint and feedback, answer "no" to keep using the encoder (feedback) value as the true motor position.

motor_par(ana, "dump") and motor_par(ath, "dump") commands can be used to list
all the parameters for Attocube motors. See Appendix C for typical parameters.

4.3.3 Macro Motors

The photo energy is a macro motor in SPEC – engy

Voltage Source?

Linear Inclined Polarization angle – lian

4.4 Setup SPEC Control

SPEC control

Config: Motors, Devices, Scalers

Macros: Macro Motors, Macro Hardware, Pre and Post

Polarization, harmonics

Energy

Sample Temperature

5.0 XES Endstation Setup

5.1 XES Endstation Pump Down

Sample Chamber Grating Chamber Detector Chamber

5.2 Setup XES Endstation Electronics

Motion control Gratings Microchannel Plate (MCP)

Appendix A: REIXS Beamline Motor Settings

Motor Settings

Appendix B: REIXS Information

[telnet]

telnet ioc1610-201 10000

application	ioc	port	
variableAperture	IOC1610-201	10000	variable aperture for SM and REIXS
reixsMotors	IOC1610-201	10001	motors on REIXS beamline
reixsChopper	IOC1610-201	10002	chopper on REIXS beamline
HHEncoder	IOC1610-201	10003	encoders for REIXS mono
reixsEnergy	IOC1610-201	10004	set up energy on beamline
uofsMotors	IOC1610-201	10011	motors for U of S endstation
apsMotors	IOC1610-201	10021	motors for UBC endstation
picoammeter	IOC1610-108	10000	picoammeters in POE
picoammeter	IOC1610-022	10000	picoammeters along beamline
keithleyMeter LakeShore325 SIS3820	IOC1610-401 IOC1610-401 IOC1610-403	10000 10001	REIXS Keithley Meters for RSXS REIXS Lakeshore Controller for RSXS SIS3820 Scaler for RSXS

[Example] control@OPI2031-001:181 >telnet ioc1610-201 10002 Trying 10.52.8.2... Connected to ioc1610-201.cs.clsi.ca (10.52.8.2). Escape character is '^]'. @@@ Welcome to the procServ process server (procServ Version 2.4.0) @@@ Use ^X to kill the child, auto restart is OFF, use ^T to toggle auto restart @@@ procServ server PID: 29993 @@@ Server startup directory: /etc/rc.d/init.d @@@ Child startup directory: /iocApps/REIXS_Beamline/IOC1610-201/REIXS_IK320_Encoders @@@ Child started as: /bin/sh @@@ Child "/bin/sh" PID: 30749 @@@ procServ server started at: Jul 02, 2009 11:00:56 AM @@@ Child "/bin/sh" started at: Jul 02, 2009 11:14:15 AM

@@@@ 2 user(s) and 0 logger(s) connected (plus you)

- ^C Kill
- ^R restart
- ^] talk to telnet
- quit exit telnet

[Restart Sub-Process]

[Example] Fix mono mirror angle glitch:

telnet IOC1610-201 10003	telnet into the IOCApp ProcServe:
seqShow	list processes:

seqStop monoAngle stop unresponsive process (monoAngle for mono glitch)

To lookup the restart command, find iocApp in directory /iocApps/REIXS_Beamline, eg: /iocApps/REIXS_Beamline/IOC1610-201/REIXS_IK320_Encoders (for mono glitch)

st.cmd contains the seq commands with the required parameters (there are two for the mono glitch):

seq monoAngle "deviceLabel=GRATING, monoDevice=MONO1610-I20-01:grating, unit=deg, motor=SMTR1610-I20-04, encoder=ENC1610-I20-04, motorUnit=mm"

seq monoAngle "deviceLabel=MIRROR, monoDevice=MONO1610-I20-01:mirror, unit=deg, motor=SMTR1610-I20-02, encoder=ENC1610-I20-02, motorUnit=mm"

Run these command from the procServe telnet session to restart the process.

[Clear Registers]

Start up application with VME could run out of registers. Use /iocApps/vme-commands/clearMaps

Need to logon to IOC1610-201

/iocApps/1100_drv/clearMa	ps /dev/sis1100_1 0	will clear register (0) for VA application
/iocApps/1100_drv/clearMa	ps /dev/sis1100_1 1 5	will clear registers (1-5) for reixsMotors
application		
/iocApps/1100_drv/clearMa	ps /dev/sis1100_1 6	will clear register (6) for reixsChopper
application		
/iocApps/1100_drv/clearMa	ps /dev/sis1100_1	will clear all registers
/iocApps/1100_drv/clearMa	ps /dev/sis1100 2	will clear all registers for IK320

[Computer ID]

REIXS Main IOC:	IOC1610-201
REIXS OPI:	OPI1610-203, OPI1610-204
RSXS IOC:	IOC1610-403
RSXS Temp:	IOC0000-045

Tony's computer: OPI2031-001 /home/wilsont/Epics/Sandbox/epics_local/cs-apps/Beamlines/REIXS_Beamline

Appendix C: Attocube Motor Settings

Typical Attocube motors parameters. Some parameters will be updated during operation. Some parameters are read-only (ro). Refer to SPEC help page "Attocube" for more information.

ana motor

296.FOURC> motor par(ana,"dump")		
_ Direction:	forward (0)	"actordir"
Loop gain =	0.00041 deg/V (410)	"actorgain"
Loop offset =	15000 mV	"actoroffset"
Approach speed:	disabled (0)	"adaptsetpctrl"
Setpoint for speed feedback:	amplitude (1)	"amplctrl"
Speed feedback factor =	1	"amplctrlavg"
Speed feedback sensitivity =	10 (10000)	"amplctrlsensitivity"
Amplitude =	42000 mV	"amplitude"
Capacitance (ro) =	1684	"capacitance"
DC level =	12447 mV	"dclevel"
Frequency =	2000 Hz	"frequency"
Hump detection:	enabled (1)	"humpenable"
Maximum amplitude =	70000 mV	"maxampl"
Maximum frequency =	2000 Hz	"maxfrequ"
Max position for actuator (ro) =	-272000 deg (-271999936) "maxpos"
Min position for actuator (ro) =	-272000 deg (-271999936) "minpos"
Optical sensor periods =	1000 per deg	"period"
Position (ro) =	159.002 deg (159002)	"position"
Minimum position of sensor =	0 deg	"positionmin"
Maximum position of sensor =	320 deg (320000)	"positionmax"
Position loop time =	0.0005 ms (500)	"poslooptime"
Reference offset =	0 deg	"refoffset"
Reference position (ro) =	1.129 deg (1129)	"refpos"
Reference voltage (global) =	2000 mV	"refvolt"
Output relays =	1	"relays"
Movement type:	rotary (1)	"rotary"
Sensor-average factor =	6	"sensoravg"
Sensor direction:	forward (0)	"sensordir"
Internal signal averaging =	6	"sensorres"
Sensor units =	20 deg	"sensorunit"
Shortest way algorithm:	disabled (0)	"singlecircle"
Target approach speed =	0.01 deg/sec (10000)	"slowspeed"
Speed (ro) =	22.14 deg/sec (22140)	"speed"
Approach speed gain =	1 Hz (1000)	"speedgain"
Step width (ro) =	0.011 deg (11)	"step_width"
Sticky hump:	enabled (1)	"stickyhump"
Hump sensitivity =	200 deg	"humpsensitivity"
Minimum steps for hump =	10 steps	"humpstepsmin"
Minimum time frame for hump =	500 msec	"humptime"
Position feedback factor =	6	"targetctrlavg"
Position feedback sensitivity =	8000 (800000) "	targetctrlsensitivity"
Positioning accuracy =	0.002 deg (2)	"targetrange"
Minimum hold-time for success =	300 msec	"targettime"
Resistive transfer gain =	332.03 deg/V (332030)	"transfergain"
Sensor type:	resistive (1)	"transfertype"

ath motor

		297.FOURC> motor par(ath,"dump")
"actordir"	forward (0)	Direction:
"actorgain"	0.0014 deg/V (1400)	Loop gain =
"actoroffset"	5200 mV	Loop offset =
"adaptsetpctrl"	disabled (0)	Approach speed:
"amplctrl"	amplitude (1)	Setpoint for speed feedback:
"amplctrlavg"	1	Speed feedback factor =
"amplctrlsensitivity"	10 (10000)	Speed feedback sensitivity =
"amplitude"	28000 mV	Amplitude =

Capacitance (ro) =	2077	"capacitance"
DC level =	16224 mV	"dclevel"
Frequency =	2000 Hz	"frequency"
Hump detection:	enabled (1)	"humpenable"
Maximum amplitude =	70000 mV	"maxampl"
Maximum frequency =	2000 Hz	"maxfrequ"
Max position for actuator (ro) =	88.123 deg (88123)	"maxpos"
Min position for actuator (ro) =	83.217 deg (83217)	"minpos"
Optical sensor periods =	1000 per deg	"period"
Position (ro) =	15.002 deg (15002)	"position"
Minimum position of sensor =	0 deg	"positionmin"
Maximum position of sensor =	325 deg (325000)	"positionmax"
Position loop time =	0.0001 ms (100)	"poslooptime"
Reference offset =	0 deg	"refoffset"
Reference position (ro) =	4.098 deg (4098)	"refpos"
Reference voltage (global) =	2000 mV	"refvolt"
Output relays =	1	"relays"
Movement type:	rotary (1)	"rotary"
Sensor-average factor =	6	"sensoravg"
Sensor direction:	forward (0)	"sensordir"
Internal signal averaging =	6	"sensorres"
Sensor units =	20 deg	"sensorunit"
Shortest way algorithm:	disabled (0)	"singlecircle"
Target approach speed =	0.01 deg/sec (10000)	"slowspeed"
Speed (ro) =	63.839 deg/sec (63839)	"speed"
Approach speed gain =	1 Hz (1000)	"speedgain"
Step width (ro) =	0.031 deg (31)	"step width"
Sticky hump:	enabled (1)	"stickyhump"
Hump sensitivity =	200 deg	"humpsensitivity"
Minimum steps for hump =	10 steps	"humpstepsmin"
Minimum time frame for hump =	500 msec	"humptime"
Position feedback factor =	6	"targetctrlavg"
Position feedback sensitivity =	1000 (1000000)	"targetctrlsensitivity"
Positioning accuracy =	0.002 deg (2)	"targetrange"
Minimum hold-time for success =	300 msec	"targettime"
Resistive transfer gain =	341.483 deg/V (341483)	"transfergain"
Sensor type:	resistive (1)	"transfertype"