BTV Y NP SPao Yo
VQvPhA\C/\ = _.l.Vv r..rG C«A\ N A BN <
C S \ A\ e o Lo P e Sy T
ﬁrbbov /AOECGVPQV.O,\ <k CO v O3 S NS - s AAC U LD GONSE .) S 4GSR0 (o ¥
A G ro st 2 gy .Gﬁ@:c,«iw 2 Gothc,\OoET. ACLDOY 3 AT o N0 (B G2 BT it
W,G«Q\ O”\G owcq &7 t\orb S B Q'anicm_n% thG & % C\ﬂ Cz.OEX O«CVQLU,C o) (Ac,\c bA_\ rﬁowmﬁxag o 10C<CE(CE WEFCE)2
> IS V&L, YR , 8 LB T M . L v V- =30 i Sl
Q FGQ CVQH.HQ.HOOYO“_.LC ,AV Q«VQ& G Mv/\vowou.l._rrwwx Q C ,\.\ W | A.\HL._UO/L. .\K&(OOW(NW (,\ & Q.NA.\ ,G A“(\LN S Q.\w vaw QM\O.P Q NO OM\P @ O/ T G
3 PQG 00 5\ CE.Q nw\ O/Qwr QQPﬁQu ON\ 7 = % b OS5 C(DA(

VA5 bLJ 7C C »DLOOOT_T.\, GG

2 boEL TOE 20V 0 S CrO Grcr

f o G G O OV

Q

GO\MCQ N v,\v <
(o7) O OGV <. .\CFL & CwL.rC/\« 0
Y ,mor <& G ! ,:: S & a1 .
D B B 2,8 Q S o:@f .
WRCPY Y QEO o ivo«oi o5

\CV(FN\O&(7 ¢ 4 /
Y Q = SUNOET O AOr, §IGLE
A Wh‘\m\\, _wnw \ .er\mw\o P\LPC/\, & M nm.ﬁ %h_m._o CCFUrO/\, T ARY) G A&Cx /&\O(@
w. x)f\C ,ﬁ L ﬁl. — 4 ey S N h\ ') r@ ,\-) «(. \?
r.\cov\o._\..ﬁ R A LG D.lth.H Ov I~ _.\ ‘Q [w) C4.rfwav [A\O z\ 0 .A\..v »\Q A ~4 DN /x), 60 0 Q.H) O/f,\ Gz <r 5
0N & crOJQS L O, @y, & A58 0&70§ o DG AﬁovL Y C, D 504 a2 o
\mw.((NS CL1 < b Aw QQMT. Dy AQ H(h.u//ﬂ, &7 ,%W\ Q V(o .(Qv 0 OVr O O OH_HQU Qw. 0 <0, (A\Ofw\ > A\OO Qd\(G(ﬂQ..MOn(@ Aﬂ\ﬂm‘ CAWC. U _.G e ,C(G (O
& fgrayg) WG O gl ~ ‘O\IL\OI\ SCWC .,F«Qr,\FQq\ 0/\\ 10 & = .\, Q ADALCV_, hO VCCQ.HOO(QNHO C\AQ..»—.((N Ov hA m 0 O< G Q\v rh J2S) O m nL.v Wr(oo
'CLL rﬂrC(,_ & CH C ~F A,\,O.‘vtﬁxm Q va il &CQ«.. & G G 0/4 Qw oS /\ 0 C/»m A = LT < rO p \ ¥ 'S 5 ,(A\,\.
CLLY 29,8 SLIdys T & S .Quhormnv\@« £ ?«.«m ﬁl.h Y O« O(& o el N GO« wrcNQO O ok bn_\., T\QP«O@ = mn_mH G0 0 QH, B W\Cz«tronE rh
N 74 \ 4 A3 i
S BN Y I e 2 @ ELrs oy ale g RIS L APES S G b Sk
N L] ~,
B SUTE D, S e (0 N il &.awm o)l o5 Wt
R QY \Am 0\%L<Q1w.(r.\A

o .PA\O«» 0«\ O G G ()
_L_w O %r
(o P r r rQ/QT A‘v
\ [Cr ' @ A G 6 M_ S /\ﬁ\w Q.IH\
L ¢ € r

LG«Q,*QAOL X / 5
\ " af o, R @i e CL %
A 1
xh.\\ n.Qw\n,w\,wf &S & D MWWOO\(O(m R E \Obh\@(&7 e Sy
(@} ’)\ PAL @D (O/\, ¥ - a Vo &Y .
D LD %% 30 ,Oxo?o = 5 € ,mw = W %< G605 g S W S D oA a@ G NS orrc Sty o <o .
R e e e &4 B g g SIS SR erro LRI S o S o & ci@mﬂf a1 &2 CeEt ' DSOS A8 Y o g
FEQ (QQJM\P MWO nCOfr M\Q @ mw ,.N_V‘Ow w‘ mrTA o Y& 0 5 Oﬁ.rowr /ﬁ\r\,@,~N W«.M_bO:\ 22.) 08 CcLl & & 3 ,OE; C<(CW\M\MVT. & OH_D 2 m</C<«% nnw,\vrw
| : 5.@mno i RO L o B Oﬁ,cv&O o oy CU:G,KEL, = (00) e NG
~ Bt DOS SUED WY L% O T Wi RIS =/ /e
JQ.M .h/.\h\/ v QV.Q m.' A\Q\/%‘H Qﬁ.m q _..O»/\Q.NrQWw'Q.H _.|. ,ﬁﬂvuv o Q.NQC_«L_U 2 Gw ..| ‘C » ﬁCHCO %\;DN _.\nla.vlﬁvz\h\GM\C G C< ﬁR\O = Iﬂw&m
§po & S SETEHIY) DG < LIV ST 0T, O\,% S Go?@\ BR S ey oy o e\q«Coﬁ(«
rO«» m - A\C,GQ«/\ ,\ m & h.h e rﬂ,vV,O/\\Ar\C\ i _.I.VOH«W\O,VMW\\CN & q C«\ QVQA(%V_:L a7 M Q(PNOV (AQ&O QOHL y A‘.rﬂﬁ mﬂ
£y o, D D x O A %!
.0<GQ«\ «5&&04 caoMo o 50&c€0<30< Ocpbx%odcxrcoz. %LM? L,ﬁc? e
,Nw i thr\ .,(A\OVC/\CPQLLO CLDATy & OE\QK = < A.Mm: Yy c(A\h\ DNQA\.L & _.W”G« C(Cr.q § & .,?vaG,\
> B , L i 4 r._ N A - »/ pe. { (e
Ser ¢o %of?r 8 010 mw S GIL & a1 5 et S crowco,,) Acréoch "y i g ,o, R 3 AE a0 &
R AT - RN e S AR s S oo SEA S8 % 35 8% 1L g VB SN Bl Ol
&Q\ K5, rO % & f.orr /\4% e Cc«fc. ,orxfﬁc TauS, QQ.Q,,O«:,\\XZ.,\% g
QQ\WO A.\ A&.OM\; Q O/y F&\C O ﬁ&.\o A.\ &) h\C YL, O O/ . C\ o L, PNO
,\Q 9 ﬁ&\ A.N\OML o 10 ND ;\C CML:\Q_\/.C .C m\ 0« C/\ O O4OU_.L_UC<Q\/(,\;Ch& T‘Q nruu ne /ﬂ/b‘ 0/\»\0 ‘ 30 NG,. QOML,
ETS a0 S s ﬁmw ,4 ‘g O‘O DR 6B S p\,C O« & et 67,00 8 /owaow vo;un,ﬁ. RO LN &5
n.u:Ccr & A&\A 50 & G/0 OFFO,QA S U G OA \O\(.,) O«QT W, Zor _10‘@ Os.ﬁ\,u cLl i
ad ¥ & “r \OT(QrCO Y& N N SN S e LOS UD S ¢ V 4 &6 HDANGT & YR,
me ﬁTV. .F\w,ﬂ@.\.n\.\.mw C.\O CO 5 MbrO«Q_\HwaGQNO\QJ‘. C EDG O ,A\A.,ﬁ\.v O\m. nﬂvﬁvﬂ%r ,(O\QKCFL
© N [L9~ = AILoWe el
<, wu«‘O m, - rAn.w ﬂ rC(,Q.H Oﬁb(&«(\fm\a\r%bowz\%\r<Cbtrf&01 y T PM.\QV U 0« PAN_U ,Cf,,_‘\ «aﬂm.w_ /»\ _‘&r 4
V¢ SO B C S oIS Y 13 o Qo A S0 e 2hed & EMaT
5 QOY nW\ m .ﬁ\,\u, L.\CC\A.\(AR‘O. 04 P[\ CxQG«A T:L B S/ &> % Oﬁtrv/FFHOFer &7E e MG.O = 7/ Fla\ré (QCVU
& Vg % $a1 %og/mo\r %0 B Bre v Vel & g LS o> P .W«S 075 CL gy 0¥ 0T
S r & ¢ = v . 3 5 R oy = [_
5 C,\O s, ﬂGrr/m\O‘ ,0« h.\yvﬂﬁ(%m.@wt(‘chb W&Q\(MAOO(QM)W nwzb G CIOE GV,&\ o€ G,ﬂG,O/. LQ rO\ LDy @ HI O«.Obb@f
S\ NS5 [> (®) Lol | ; £ Y 0 ¢ S) S /\.w: > A0) < =
o M.o@o« 58 S8 S S =S M%cmwomqw o= OO OcL omuo\ - .m -.Sopocv SRR Qroéﬁw va <
' : A &0 Gl &F S o A% Lp ¥ N
. PO sﬁOT\»Oﬁ.TQw_.C%[C D o ASHOD W 0«/ 2 ‘»C(C & UT0 ¢ CJ«O.r 0\ C(.Lr 0¢ \/7
SRR YR GOCLD E, @ s -0 & & wedd S i adlys &o@.owmv Z qﬁ&o R O 5% Qc SE s\imz w3 (7% mogo S m
A A RO a0 &% 5 O g Eh =, tDS sen) el N R ’ O oOLb
xmw.,/\ @\, ST SV e LD 4 T\% 5 OQ 2] QQ 2 Dd,vO(O(QH3, m et ,AwQAvANCbN\ /,QGthth(,\ %\% hbrC_MrOHL & & CLLS «rQAr o AT QOH
"CLY &% eCL & %?oﬁo et e % X N c.woéqo? o O S 2. ,;N Yoa 0% & S S G %7#6 Lo en > S v
U”N,,u rfbv@ 2, (ttCA mb 2 CED So Ov @7 0«0\0 AAM.\G\C%W\,\O, /nOLr a«\oAOnv\ TN m MW\W%M\Q.Ha 4 OJm&(Q NU/.OM,ONW:@« S f.\OEQECEuO% mvC< ,\,,QE
(< RN, zAva,\,wa 7, 0.8 OE A IELY ¢ Q4 B L5 . a > PO %
LRI 0Bty B K] OO TN O< < & frﬁﬂ O = S8\ A 2 NUX (G GC. Q¥) B CED X,
5 LF B2 QO NS I ox\ RS 0 C& O L B o o @UCLD Y & Tcr o Wp o S X% oo QVCL arz- 7
%< «Cn\\./\,«.n. D 2 O(O«[& N 2 QA\G Ot&L‘N/ S \,\GOW;.I_r Y, \ hq NO(CK\,..
N -rG,OO 8¢ S R JC10£ «A< 07 o B W o, @y, G‘CrC,\AQHO\,FI.;«,[S \&
D BB ,rogrorﬂoéx« IS N o S 5 Jo& QOL,or,, X B ravcc7L/a b
LRV _.G,Q AOO«O(S. <)T O/\,r/ Gf/ﬁcl,ﬂwﬂfﬁ,.ﬁl % 'S 2 S .(60(e =) 66 %
v , % Cbor &7 &A™ CO\ Aﬂor v P S .Aorv/c L4 L CLT e S
.vmv.v.»%,\, \IN.V _‘rh\mv» M\ 0«, EQCHUWG fOO G CLD O o Ciyy Corw OAA\QMUOJOOVP\O Qc&tovcﬂb S Cc, Q« NCOA«OHE xm 5 //(Amw \04 o [QMD@WMM O< . »nﬂ
e QORI X S " O_Lc N v TR 9) A NY AR g oY ST \ L0Tp "
N Ar gt Bo? A Q JWNQ.H.OH.H.L =1 'Qfﬂ\.«b { L m\b %«.nmuw CW\LA\”M r(A W(««r@db ,\ (._.ulu.r,ﬂwgm vC O Q\//\'thr@ «GO/\ S @l
DS g \O V" &G 3 \'=2 : &, i b
Q) T N~ A C O\A\\&xﬂ “Ogs ..\nuu ,zb\Q.g\CO;\u CO\ PMm =% h:,\.Pt\(h:
A7)./~ ALY W Bl Y W«\Tﬂ..\».\ C F Q.HLO G~

preliminary, uncorrected version — March 23, 2013

preliminary, uncorrected version — March 23, 2013

preliminary, uncorrected version — March 23, 2013

Contents
Introduction

1 Abitof Lua

1.1 The language

1.2 Data types

1.3 TgX’s data types

1.4 Control structures
1.5 Conditions

1.6 Namespaces

1.7 Comment

2 Getting started

2.1 Some basics

2.2 The main command
2.3 Spaces and Lines
24 Direct output

2.5 Catcodes

3 More on functions
31 Why we need them
3.2 How we can avoid them
3.3 Trial typesetting

4 A few Details

4.1 Variables

4.2 Modes

4.3 Token lists

4.4 Node lists

5 Some more examples
51 Appetizer

52 A few examples

53 Styles

54 A complete example
55 Interfacing

5.6 Using helpers

57 Formatters

6 Graphics

6.1 The regular interface
6.2 The Lua interface

7 Macros

7.1 Introduction

7.2 Parameters

7.3 User interfacing

preliminary, uncorrected version — March 23, 2013

O O ©

12

14
15
16

17
17
18
18
20
21

25
25
26
27

29
29
29
30
31

35
35
36
39
40
43
47
49

51
51
55

57
57
57
57

8 Verbatim

8.1 Introduction

8.2 Special treatment
8.3 Multiple lines

8.4 Pretty printing

9 Logging

10 Lua Functions

10.1 Introduction

10.2 Tables

10.3 Math

10.4 Booleans

10.5 Strings

10.6 utf

10.7 Numbers and bits
10.8 lpeg patterns

109 10O

10.10 File

10.11 Dir

10.12 URL

10.13 OS

10.14 A few suggestions

11 The Lua interface code
11.1 Introduction

11.2 Characters

11.3 Fonts

11.4 Nodes

11.5 Resolvers

11.6 Mathematics (math)
11.7 Graphics (grph)
11.8 Languages (lang)
11.9 MetaPost (mlib)
11.10 LuaTgX (luat)

11.11 Tracing (trac)

12 Callbacks

12.1 Introduction
12.2 Actions

12.3 Tasks

12.4 Paragraph and page builders

12.5 Some examples

13 Backend code

13.1 Introduction

13.2 Structure

13.3 Data types

134 Managing objects
13.5 Resources

13.6 Annotations

13.7 Tracing

13.8 Analyzing

preliminary, uncorrected version — March 23, 2013

61
61
61
61
62

67

69
69
69
79
79
80
91
95
97
102
103
107
108
110
113

115
115
115
122
126
129
131
131
132
132
132
132

133
133
133
135
138
138

139
139
139
139
142
142
143
143
143

14 Nice to know
14.1 Introduction
14.2 Templates

15 Summary
16 Special commands

17 Files
17.1 Preprocessing

preliminary, uncorrected version — March 23, 2013

145
145
145

147

151

153
153

preliminary, uncorrected version — March 23, 2013

Introduction 7

Introduction

Sometimes you hear folks complain about the TEX input language, i.e. the backslashed commands
that determine your output. Of course, when alternatives are being discussed every one has a favourite
programming language. In practice coding a document in each of them triggers similar sentiments
with regards to coding as TgX itself does.

So, just for fun, I added a couple of commands to ConTgXt MKIV that permit coding a document in
Lua. In retrospect it has been surprisingly easy to implement a feature like this using metatables.
Of course it’s a bit slower than using TgX as input language but sometimes the Lua interface is more
readable given the problem at hand.

After a while I decided to use that interface in non-critical core ConTgXt code and in styles (modules)
and solutions for projects. Using the Lua approach is sometimes more convenient, especially if the
code mostly manipulates data. For instance, if you process xml files of database output you can use
the interface that is available at the TEX end, or you can use Lua code to do the work, or you can
use a combination. So, from now on, in ConTgXt you can code your style and document source in (a
mixture of) TgX, xml, MetaPost and in Lua.

In the following chapters I will introduce typesetting in Lua, but as we rely on ConTgXt it is unavoid-
able that some regular ConTEXt code shows up. The fact that you can ignore backslashes does not
mean that you can do without knowledge of the underlying system. I expect that the user is somewhat
familiar with this macro package. Some chapters are follow ups on articles or earlier publications.

Although much of the code is still experimental it is also rather stable. Some helpers might disappear
when the main functions become more clever. This manual is definitely far from complete. If you
find errors, please let me know. If you think that something is missing, you can try to convince me
to add it.

Hans Hagen
Hasselt NL
2009 — 2013

preliminary, uncorrected version — March 23, 2013

8 Introduction

preliminary, uncorrected version — March 23, 2013

Abitof Lua 9

1 A bit of Lua

1.1 The language

Small is beautiful and this is definitely true for the programming language Lua (moon in Portuguese).
We had good reasons for using this language in LuaTgX: simplicity, speed, syntax and size to mention
a few. Of course personal taste also played a role and after using a couple of scripting languages
extensively the switch to Lua was rather pleasant.

As the Lua reference manual is an excellent book there is no reason to discuss the language in great
detail: just buy ‘Programming in Lua’ by the Lua team. Nevertheless I will give a short summary of
the important concepts but consult the book if you want more details.

1.2 Data types
The most basic data type is nil. When we define a variable, we don’t need to give it a value:
local v

Here the variable v can get any value but till that happens it equals nil. There are simple data types
like numbers, booleans and strings. Here are some numbers:

local n =1+ 2 % 3
local x 2.3

Numbers are always floats! and you can use the normal arithmetic operators on them as well as func-
tions defined in the math library. Inside TgX we have only integers, although for instance dimensions
can be specified in points using floats but that’s more syntactic sugar. One reason for using integers
in TEX has been that this was the only way to guarantee portability across platforms. However, we're
30 years along the road and in Lua the floats are implemented identical across platforms, so we don’t
need to worry about compatibility.

Strings in Lua can be given between quotes or can be so called long strings forced by square brackets.

local s = "Whatever"
local t = s .. ' you want'
local u =t .. [[to knowl]] .. [[--[about Lua!]l--1]

The two periods indicate a concatenation. Strings are hashed, so when you say:

local s = "Whatever"
local t = s
local u =t

only one instance of Whatever is present in memory and this fact makes Lua very efficient with
respect to strings. Strings are constants and therefore when you change variable s, variable t keeps
its value. When you compare strings, in fact you compare pointers, a method that is really fast. This
compensates the time spent on hashing pretty well.

Booleans are normally used to keep a state or the result from an expression.

! This is true for all versions upto 5.2 but following version can have a more hybrid model.

preliminary, uncorrected version — March 23, 2013

10 A bit of Lua

local b = false
local c n > 10 and s == "whatever"

The other value is true. There is something that you need to keep in mind when you do testing on
variables that are yet unset.

local b = false
local n

The following applies when b and n are defined this way:

b == false true
n == false false
n == nil true
b == nil false
b ==n false
n == nil true
Often a test looks like:

if somevar then
else

end

In this case we enter the else branch when somevar is either nil or false. It also means that by
looking at the code we cannot beforehand conclude that somevar equals true or something else. If
you want to really distinguish between the two cases you can be more explicit:

if somevar == nil then
elseif.somevar == false then
else.

end

or

if somevar == true then
else
end

but such an explicit test is seldom needed.

There are a few more data types: tables and functions. Tables are very important and you can recog-
nize them by the same curly braces that make TgX famous:

local t = {1, 2, 3}
local u={a=4,b=9, c=16 }
local v = { [1] = "a", [3] = "2", [4] = false }

preliminary, uncorrected version — March 23, 2013

A bitof Lua 11

localw={1, 2, 3, a=4, b=9, c =16 }

The t is an indexed table and u a hashed table. Because the second slot is empty, table v is partially
indexed (slot 1) and partially hashed (the others). There is a gray area there, for instance, what hap-
pens when you nil a slot in an indexed table? In practice you will not run into problems as you will
either use a hashed table, or an indexed table (with no holes), so table w is not uncommon.

We mentioned that strings are in fact shared (hashed) but that an assignment of a string to a variable
makes that variable behave like a constant. Contrary to that, when you assign a table, and then copy
that variable, both variables can be used to change the table. Take this:

local t = {1, 2, 3}
local u t

We can change the content of the table as follows:
tl1], (3] = t[3], t[1]

Here we swap two cells. This is an example of a parallel assigment. However, the following does the
same:

t[1], t[3] = ul3], ul1]

After this, both t and u still share the same table. This kind of behaviour is quite natural. Keep in
mind that expressions are evaluated first, so

t[#t+1], t[#t+1] = 23, 45

Makes no sense, as the values end up in the same slot. There is no gain in speed so using parallel
assignments is mostly a convenience feature.

There are a few specialized data types in Lua, like coroutines (built in), file (wWhen opened), 1peg
(only when this library is linked in or loaded). These are called “userdata” objects and in LuaTgX
we have more userdata objects as we will see in later chapters. Of them nodes are the most notice-
able: they are the core data type of the TEX machinery. Other libraries, like math and bit32 are just
collections of functions operating on numbers.

Functions look like this:

function sum(a,b)
print(a, b, a + b)
end

or this:

function sum(a,b)
return a + b
end

There can be many arguments of all kind of types and there can be multiple return values. A function
is a real type, so you can say:

local f = function(s) print("the value is: " .. s) end

In all these examples we defined variables as 1ocal. This is a good practice and avoids clashes. Now
watch the following:

preliminary, uncorrected version — March 23, 2013

12 A bit of Lua

local n = 1

function sum(a,b)
n=n+1
return a + b
end

function report()
print ("number of summations: " .. n)
end

Here the variable n is visible after its definition and accessible for the two global functions. Actually
the variable is visible to all the code following, unless of course we define a new variable with the
same name. We can hide n as follows:

do
local n =1

sum = function(a,b)
n=n+1
return a + b

end

report = function()
print ("number of summations: " .. n)
end
end

This example also shows another way of defining the function: by assignment.

Thedo ... endcreatesaso called closure. There are many places where such closures are created, for
instance in function bodies or branches like if ... then ... else. This means that in the following
snippet, variable b is not seen after the end:

if a > 10 then
local b = a + 10
print (b*b)

end

When you process a blob of Lua code in TgX (using \directlua or \latelua) it happens in a closure
with an implied do ... end. So, local defined variables are really local.

1.3 TgX's data types

We mentioned numbers. At the TEX end we have counters as well as dimensions. Both are numbers
but dimensions are specified differently

local n = tex.count[0]
local m = tex.dimen.lineheight
local o = tex.sp("10.3pt") -- sp or 'scaled point' is the smallest unit

The unit of dimension is ‘scaled point” and this is a pretty small unit: 10 points equals to 655360 such
units.

preliminary, uncorrected version — March 23, 2013

A bitof Lua 13

Another accessible data type is tokens. They are automatically converted to strings and vice versa.

tex.toks[0] = "message"
print(tex.toks[0])

Be aware of the fact that the tokens are letters so the following will come out as text and not issue a
message:

tex.toks[0] = "\message{just text}"
print(tex.toks[0])

1.4 Control structures

Loops are not much different from other languages: we have for ... do, while ... doand repeat
. until. We start with the simplest case:

for index=1,10 do
print (index)
end

You can specify a step and go downward as well:

for index=22,2,-2 do
print (index)
end

Indexed tables can be traversed this way:

for index=1,#list do
print(index, list[index])
end

Hashed tables on the other hand are dealt with as follows:

for key, value in next, list do
print(key, value)
end

Here next is a built in function. There is more to say about this mechanism but the average user will
use only this variant. Slightly less efficient is the following, more readable variant:

for key, value in pairs(list) do
print (key, value)
end

and for an indexed table:

for index, value in ipairs(list) do
print (index, value)
end

The function call to pairs(1list) returns next, list so there is an (often neglectable) extra over-
head of one function call.

preliminary, uncorrected version — March 23, 2013

14 A bit of Lua

The other two loop variants, while and repeat, are similar.

i=0

while i < 10 do
i=41i+1
print (i)

end

This can also be written as:

i=0

repeat
i=1i+1
print (i)

until i = 10

Or:

i=0

while true do
i=1i+1
print (i)
if i = 10 then

break

end
end

Of course you can use more complex expressions in such constructs.

1.5 Conditions

Conditions have the following form:

if a == b or ¢ > d or e then
elééif f == g then

eléé

ena

Watch the double ==. The complement of this is ~=. Precedence is similar to other languages. In
practice, as strings are hashed. Tests like

if key == "first" then
ena

and

if n == 1 then

ena

preliminary, uncorrected version — March 23, 2013

A bitof Lua 15

are equally efficient. There is really no need to use numbers to identify states instead of more verbose
strings.

1.6 Namespaces

Functionality can be grouped in libraries. There are a few default libraries, like string, table, 1peg,
math, io and os and LuaTgX adds some more, like node, tex and texio.

A library is in fact nothing more than a bunch of functionality organized using a table, where the
table provides a namespace as well as place to store public variables. Of course there can be local
(hidden) variables used in defining functions.

do
mylib = { }

local n =1

function mylib.sum(a,b)

n=n-+1
return a + b
end

function mylib.report()
print ("number of summations: " .. n)
end
end

The defined function can be called like:
mylib.report()

You can also create a shortcut, This speeds up the process because there are less lookups then. In the
following code multiple calls take place:

local sum = mylib.sum

for i=1,10 do
for j=1,10 do
print(i, j, sum(i,j))
end
end

mylib.report()

As Lua is pretty fast you should not overestimate the speedup, especially not when a function is called
seldom. There is an important side effect here: in the case of:

print(i, j, sum(i,j))
the meaning of sum is frozen. But in the case of

print(i, j, mylib.sum(i,j))

preliminary, uncorrected version — March 23, 2013

16 A bit of Lua

The current meaning is taken, that is: each time the interpreter will access my1lib and get the current
meaning of sum. And there can be a good reason for this, for instance when the meaning is adapted
to different situations.

In ConTgXt we have quite some code organized this way. Although much is exposed (if only because
it is used all over the place) you should be careful in using functions (and data) that are still exper-
imental. There are a couple of general libraries and some extend the core Lua libraries. You might
want to take a look at the files in the distribution that start with 1-, like 1-table.lua. These files
are preloaded.? For instance, if you want to inspect a table, you can say:

local t = { "aap", "noot", "mies" }
table.print(t)

You can get an overview of what is implemented by running the following command:
context s-tra-02 --mode=tablet

todo: add nice synonym for this module and also add helpinfo at the to so that we can do context --styles

1.7 Comment

You can add comments to your Lua code. There are basically two methods: one liners and multi line
comments.

local option = "test" -- use this option with care

local method = "unknown" --[[comments can be very long and when entered
this way they and span multiple lines]]

The so called long comments look like long strings preceded by -- and there can be more complex
boundary sequences.

2 In fact, if you write scripts that need their functionality, you can use mtxrun to process the script, as mtxrun has the core
libraries preloaded as well.

preliminary, uncorrected version — March 23, 2013

Getting started 17

2 Getting started

2.1 Some basics

I assume that you have either the so called ConTgXt standalone (formerly known as minimals) in-
stalled or TEXLive. You only need LuaTgX and can forget about installing pdfTEX or XgIEX, which
saves you some megabytes and hassle. Now, from the users perspective a ConTgXt run goes like:

context yourfile

and by default a file with suffix tex, mkvi or mkvi will be processed. There are however a few other
options:

context yourfile.xml

context yourfile.rlx --forcexml
context yourfile.lua

context yourfile.pqr —--forcelua
context yourfile.cld

context yourfile.xyz --forcecld
context yourfile.mp

context yourfile.xyz --forcemp

When processing a Lua file the given file is loaded and just processed. This options will seldom be
used as it is way more efficient to let mtxrun process that file. However, the last two variants are what
we will discuss here. The suffix c1d is a shortcut for ConTgXt Lua Document.

A simple c1d file looks like this:

context.starttext ()
context.chapter("Hello There!")
context.stoptext ()

So yes, you need to know the ConTgXt commands in order to use this mechanism. In spite of what
you might expect, the codebase involved in this interface is not that large. If you know ConTgXt, and
if you know how to call commands, you basically can use this Lua method.

The examples that I will give are either (sort of) standalone, i.e. they are dealt with from Lua, or they
are run within this document. Therefore you will see two patterns. If you want to make your own
documentation, then you can use this variant:

\startbuffer
context("See this!")
\stopbuffer

\typebuffer \ctxluabuffer
I use anonymous buffers here but you can also use named ones. The other variant is:

\startluacode
context ("See this!")
\stopluacode

preliminary, uncorrected version — March 23, 2013

18 Getting started

This will process the code directly. Of course we could have encoded this document completely in
Lua but that is not much fun for a manual.

2.2 The main command

There are a few rules that you need to be aware of. First of all no syntax checking is done. Second
you need to know what the given commands expects in terms of arguments. Third, the type of your
arguments matters:

nothing : just the command, no arguments
string : anargument with curly braces
array : alist between square backets (sometimes optional)
hash : an assignment list between square brackets
boolean : when true a newline is inserted

: when false, omit braces for the next argument

In the code above you have seen examples of this but here are some more:

context.chapter("Some title")
context.chapter({ "first" }, "Some title")
context.startchapter({ title = "Some title", label = "first" })

This blob of code is equivalent to:

\chapter{Some title}
\chapter [first]{Some title}
\startchapter[title={Some title},label=first]

You can simplify the third line of the Lua code to:
context.startchapter { title = "Some title", label = "first" }

In case you wonder what the distinction is between square brackets and curly braces: the first category
of arguments concerns settings or lists of options or names of instances while the second category
normally concerns some text to be typeset.

Strings are interpreted as TEX input, so:
context.mathematics("\\sqrt{273}")
and if you don’t want to escape:
context.mathematics([[\sqrt{273}]11)

are both correct. As TEX math is a language in its own and a de-facto standard way of inputting math
this is quite natural, even at the Lua end.

2.3 Spaces and Lines

In a regular TgX file, spaces and newline characters are collapsed into one space. At the Lua end the
same happens. Compare the following examples. First we omit spaces:

context ("left")
context ("middle")

preliminary, uncorrected version — March 23, 2013

Getting started 19

context("right")
leftmiddleright
Next we add spaces:

context ("left")
context (" middle ")
context ("right")

left middle right
We can also add more spaces:

context ("left ")
context (" middle ")
context (" right")

left middle right

In principle all content becomes a stream and after that the TgX parser will do its normal work: col-
lapse spaces unless configured to do otherwise. Now take the following code:

context ("before")
context ("word 1")
context ("word 2")
context ("word 3")
context ("after")

beforeword 1word 2word 3after

Here we get no spaces between the words at all, which is what we expect. So, how do we get lines
(or paragraphs)?

context ("before")
context.startlines()
context("line 1")
context("line 2")
context("line 3")
context.stoplines()
context ("after")

before
line 1line 2line 3
after

This does not work out well, as again there are no lines seen at the TEX end. Newline tokens are
injected by passing true to the context command:

context ("before")
context.startlines()
context("line 1") context(true)
context("line 2") context(true)

preliminary, uncorrected version — March 23, 2013

20 Getting started

context("line 3") context(true)
context.stoplines()
context ("after")

before

line 1
line 2
line 3

after
Don’t confuse this with:

context ("before") context.par()
context("line 1") context.par()
context("line 2") context.par()
context("line 3") context.par()
context("after") context.par()

before
line 1
line 2
line 3
after

There we use the regular \par command to finish the current paragraph and normally you will use
that method. In that case, when set, whitespace will be added between paragraphs.

This newline issue is a somewhat unfortunate inheritance of traditional TgX, where \n and \r mean
something different. I'm still not sure if the cld do the right thing as dealing with these tokens also
depends on the intended effect. Catcodes as well as the LuaTEX input parser also play a role. Anyway,
the following also works:

context.startlines()
context("line 1\n")
context("line 2\n")
context ("line 3\n")
context.stoplines()

2.4 Direct output

The ConTgXt user interface is rather consistent and the use of special input syntaxes is discouraged.
Therefore, the Lua interface using tables and strings works quite well. However, imagine that you
need to support some weird macro (or a primitive) that does not expect its argument between curly
braces or brackets. The way out is to precede an argument by another one with the value false. We
call this the direct interface. This is demonstrated in the following example.

\unexpanded\def\bla#1{[#1]}

preliminary, uncorrected version — March 23, 2013

Getting started 21

\startluacode
context.bla(false, "**xx")
context.par()
context.bla("*xx")
\stopluacode

This results in:
[*]**
[***]

Here, the first call results in three * being passed, and #1 picks up the first token. The second call
to bla gets {***} passed so here #1 gets the triplet. In practice you will seldom need the direct
interface.

In ConTEXt for historical reasons, combinations accept the following syntax:

\startcombination % optional specification, like [2%*3]
{\framed{content one}} {caption one}
{\framed{content two}} {caption two}

\stopcombination

You can also say:

\startcombination
\combination {\framed{content one}} {caption one}
\combination {\framed{content twol}} {caption two}
\stopcombination

When coded in Lua, we can feed the first variant as follows:

context.startcombination()
context.direct ("one","two")
context.direct("one","two")

context.stopcombination()

To give you an idea what this looks like, we render it:
one one
two two

So, the direct function is basically a no-op and results in nothing by itself. Only arguments are
passed. An equivalent but bit more ugly looking is:

context.startcombination()
context(false,"one","two")
context (false,"one","two")

context.stopcombination()

2.5 Catcodes

If you are familiar with the inner working of TgX, you will know that characters can have special
meanings. This meaning is determined by their catcodes.

preliminary, uncorrected version — March 23, 2013

22 Getting started

context ("$x=1$")

This gives: x = 1 because the dollar tokens trigger inline math mode. If you think that this is annoy-
ing, you can do the following:

context.pushcatcodes("text")
context ("$x=18")
context.popcatcodes ()

Now we get: $x=1$. There are several catcode regimes of which only a few make sense in the per-
spective of the cld interface.

ctx, ctxcatcodes, context the normal ConIgXt catcode regime
prt, prtcatcodes, protect the ConTEXt protected regime, used for modules

tex, texcatcodes, plain the traditional (plain) TeX regime

txt, txtcatcodes, text the ConTEXt regime but with less special characters
vrb, vrbcatcodes, verbatim a regime specially meant for verbatim

xml, xmlcatcodes a regime specially meant for xml processing

In the second case you can still get math:

context.pushcatcodes("text")
context.mathematics("x=1")
context.popcatcodes ()

When entering a lot of math you can also consider this:

context.startimath()
context ("x"

context ("=")

context ("1")
context.stopimath()

Module writers of course can use unprotect and protect as they do at the TgX end.
As we've seen, a function call to context acts like a print, as in:

context ("test ")
context.bold("me")
context (" first")

test me first

When more than one argument is given, the first argument is considered a format conforming the
string.format function.

context.startimath()
context("%s = %0.5f",utf.char(0x03C0) ,math.pi)
context.stopimath()

T = 3.14159
This means that when you say:

context(a,b,c,d,e,f)

preliminary, uncorrected version — March 23, 2013

Getting started 23

the variables b till f are passed to the format and when the format does not use them, they will not
end up in your output.

context("%s %s %s",1,2,3)
context(1,2,3)

The first line results in the three numbers being typeset, but in the second case only the number 1 is
typeset.

preliminary, uncorrected version — March 23, 2013

24 Getting started

preliminary, uncorrected version — March 23, 2013

More on functions 25

3 More on functions

3.1 Why we need them

In a previous chapter we introduced functions as arguments. At first sight this feature looks strange
but youneed to keep in mind thata call to a context function has no direct consequences. It generates
TEX code that is executed after the current Lua chunk ends and control is passed back to TgX. Take
the following code:

context.framed({

frame = "on",
offset = "bmm",
align = "middle"

3,

context.input ("knuth")

)

We call the function framed but before the function body is executed, the arguments get evaluated.
This means that input gets processed before framed gets done. As a result there is no second argu-
ment to framed and no content gets passed: an error is reported. This is why we need the indirect
call:

context.framed({

frame = "on",
align = "middle"
+,
function() context.input("knuth") end

)

This way we get what we want:

Thus, I came to the conclusion that the designer of a new system must not only be the
implementer and first large—scale user; the designer should also write the first user manual.
The separation of any of these four components would have hurt TgX significantly. If I had not
participated fully in all these activities, literally hundreds of improvements would never have been
made, because I would never have thought of them or perceived why they were important.
But a system cannot be successful if it is too strongly influenced by a single
person. Once the initial design is complete and fairly robust, the real test begins
as people with many different viewpoints undertake their own experiments.

The function is delayed till the framed command is executed. If your applications use such calls a
lot, you can of course encapsulate this ugliness:

mycommands = mycommands or { }

function mycommands.framed_input (filename)
context.framed({
frame = "on",
align = "middle"
s

function() context.input(filename) end

preliminary, uncorrected version — March 23, 2013

26 More on functions

end

mycommands . framed_input ("knuth")
Of course you can nest function calls:

context.placefigure(

"caption",
function()
context.framed({
frame = "on",
align = "middle"
},
function() context.input("knuth") end
)
end

)
Or you can use a more indirect method:

function text()
context.framed({

frame = "on",
align = "middle"
1,
function() context.input("knuth") end
)
end

context.placefigure(
"none",
function() text() end
)

You can develop your own style and libraries just like you do with regular Lua code. Browsing the
already written code can give you some ideas.

3.2 How we can avoid them

As many nested functions can obscure the code rather quickly, there is an alternative. In the following
examples we use test:

\def\test#1{[#1]}
context.test("test 1 ",context("test 2a")," test 3")

This gives: test 2a[test 1] test 3. As you can see, the second argument is executed before the encap-
sulating call to test. So, we should have packed it into a function but here is an alternative:

context.test("test 1 ",context.delayed("test 2a")," test 3")

Now we get: [test 1 Jtest 2a test 3. We can also delay functions themselves, look at this:

preliminary, uncorrected version — March 23, 2013

More on functions 27

context.test("test 1 ",context.delayed.test("test 2b")," test 3")

The result is: [test 1 J[test 2b] test 3. This feature also conveniently permits the use of temporary
variables, as in:

local f = context.delayed.test("test 2c")
context ("before ",f," after")

Of course you can limit the amount of keystrokes even more by creating a shortcut:

local delayed = context.delayed

context.test("test 1 ",delayed.test("test 2")," test 3")
context.test("test 4 ",delayed.test("test 5")," test 6")

So, if you want you can produce rather readable code and readability of code is one of the reasons
why Lua was chosen in the first place. This is a good example of why coding in TEX makes sense as
it looks more intuitive:

\test{test 1 \test{test 2} test 3}
\test{test 4 \test{test 5} test 6}

There is also another mechanism available. In the next example the second argument is actually a
string.

local nested = context.nested

context.test("test 8",nested.test("test 9"),"test 10")

There is a pitfall here: a nested context command needs to be flushed explicitly, so in the case of:
context.nested.test("test 9")

a string is created but nothing ends up at the TgX end. Flushing is up to you. Beware: nested only
works with the regular ConTgXt catcode regime.

3.3 Trial typesetting

Some typesetting mechanisms demand a preroll. For instance, when determining the most optimal
way to analyse and therefore typeset a table, it is necessary to typeset the content of cells first. Inside
ConTgXt there is a state tagged ‘trial typesetting” which signals other mechanisms that for instance
counters should not be incremented more than once.

Normally you don’t need to worry about these issues, but when writing the code that implements
the Lua interface to ConTgXt, it definitely had to be taken into account as we either or not can free
cached (nested) functions.

You can influence this caching to some extend. If you say

function()
context ("whatever")
end

the function will be removed from the cache when ConTgXt is not in the trial typesetting state. You
can prevent removal of a function by returning true, as in:

preliminary, uncorrected version — March 23, 2013

28 More on functions

function()
context ("whatever")
return true

end

Whenever you run into a situation that you don’t get the outcome that you expect, you can consider
returning true. However, keep in mind that it will take more memory, something that only matters
on big runs. You can force flushing the whole cache by:

context.restart()

An example of an occasion where you need to keep the function available is in repeated content, for
instance in headers and footers.

context.setupheadertexts {
function()
context.pagenumber ()
return true
end

b
Of course it is not needed when you use the following method:
context.pagenumber ("pagenumber")

Because here ConTgXt itself deals with the content driven by the keyword pagenumber.

preliminary, uncorrected version — March 23, 2013

A few Details 29

4 A few Details

4.1 Variables

Normally it makes most sense to use the English version of ConTEXt. The advantage is that you can
use English keywords, as in:

context.framed({
frame = "on",
},
"some text"

)
If you use the Dutch interface it looks like this:

context.omlijnd({
kader = "aan",
+,
"wat tekst"
)

A rather neutral way is:

context.framed({
frame = interfaces.variables.on,
},
"some text"

)

But as said, normally you will use the English user interface so you can forget about these matters.
However, in the ConTgXt core code you will often see the variables being used this way because there
we need to support all user interfaces.

4.2 Modes

Context carries a concept of modes. You can use modes to create conditional sections in your style
(and/or content). You can control modes in your styles or you can set them at the command line or
in job control files. When a mode test has to be done at processing time, then you need constructs
like the following:

context.doifmodeelse("screen",

function()

—-- mode == screen
end,
function()

-- mode ~= screen
end

)

However, often a mode does not change during a run, and then we can use the following method:

preliminary, uncorrected version — March 23, 2013

30 A few Details

if tex.modes["screen"] then
else
end

Watch how the modes table lives in the tex namespace. We also have systemmodes. At the TEX end
these are mode names preceded by a *, so the following code is similar:

if tex.modes["*mymode"] then
—-— this is the same

elseif tex.systemmodes["mymode"] then
-- test as this

else
-- but not this

end

Inside ConTgXt we also have so called constants, and again these can be consulted at the Lua end:
if tex.constants["someconstant'] then

else

enc'l

But you will hardly need these and, as they are often not public, their meaning can change, unless of
course they are documented as public.

4.3 Token lists

There is normally no need to mess around with nodes and tokens at the Lua end yourself. However,
if you do, then you might want to flush them as well. Say that at the TEX end we have said:

\toksO = {Don't get \inframed{framed}!}
Then at the Lua end you can say:
context (tex.toks[0])

and get: Don’t get ! In fact, token registers are exposed as strings so here, register zero has
type string and is treated as such.

context ("< %s >",tex.toks[0])

This gives: < Don’t get ! >. But beware, if you go the reverse way, you don’t get what you
might expect:

tex.toks[0] = [[\framed{oepsl}]]

If we now say \the\toksO we will get \framed{oeps} as all tokens are considered to be letters.

preliminary, uncorrected version — March 23, 2013

A few Details 31

4.4 Node lists

If you're not deep into TEX you will never feel the need to manipulate node lists yourself, but you
might want to flush boxes. As an example we put something in box zero (one of the scratch boxes).

\setbox0 = \hbox{Don't get \inframed{framed}!}
At the TeX end you can flush this box (\box0) or take a copy (\copy0). At the Lua end you would do:

context.copy()
context.direct (0)

or:

context.copy(false,0)

but this works as well:

context (node.copy_list(tex.box[0]))

So we get: Don’t get ! If you do:

context (tex.box[0])

you also need to make sure that the box is freed but let’s not go into those details now.

Here is an example if messing around with node lists that get seen before a paragraph gets broken
into lines, i.e. when hyphenation, font manipulation etc take place. First we define some colors:

\definecolor [mynesting:0] [r=.6]
\definecolor [mynesting:1] [g=.6]
\definecolor [mynesting:2] [r=.6,g=.6]

Next we define a function that colors nodes in such a way that we can see the different processing
stages.

\startluacode
local enabled = false
local count =0

local setcolor nodes.tracers.colors.set
function userdata.processmystuff (head)
if enabled then
local color = "mynesting:" .. (count % 3)
-- for n in node.traverse(head) do
for n in node.traverse_id(nodes.nodecodes.glyph,head) do
setcolor(n,color)
end
count = count + 1
return head, true
end
return head, false
end

function userdata.enablemystuff ()

preliminary, uncorrected version — March 23, 2013

32 A few Details

enabled = true
end

function userdata.disablemystuff ()
enabled = false

end

\stopluacode

We hook this function into the normalizers category of the processor callbacks:

\startluacode
nodes.tasks.appendaction("processors", "normalizers", "userdata.processmystuff")
\stopluacode

We now can enable this mechanism and show an example:

\startbuffer

Node lists are processed \hbox {nested from \hbox{inside} out} which is not
what you might expect. But, \hbox{coloring} does not \hbox {happen} really
nested here, more \hbox {in} \hbox {the} \hbox {order} \hbox {of} \hbox
{processing}.

\stopbuffer

\ctxlua{userdata.enablemystuff ()}
\par \getbuffer \par
\ctxlua{userdata.disablemystuff ()}

The \par is needed because otherwise the processing is already disabled before the paragraph gets
seen by TEX.

Node lists are processed nested from inside out which is not what you might expect. But, coloring
does not happen really nested here, more in the order of processing.

\startluacode
nodes.tasks.disableaction("processors", "userdata.processmystuff")
\stopluacode

Instead of using an boolean to control the state, we can also do this:

\startluacode
local count =0
local setcolor nodes.tracers.colors.set

function userdata.processmystuff (head)
count = count + 1
local color = "mynesting:" .. (count % 3)
for n in node.traverse_id(nodes.nodecodes.glyph,head) do
setcolor(n,color)

end
return head, true
end
nodes.tasks.appendaction("processors", "after", "userdata.processmystuff")

preliminary, uncorrected version — March 23, 2013

A few Details 33

\stopluacode
Disabling now happens with:

\startluacode
nodes.tasks.disableaction("processors", "userdata.processmystuff")
\stopluacode

As you might want to control these things in more details, a simple helper mechanism was made:
markers. The following example code shows the way:

\definemarker [mymarker]
Again we define some colors:

\definecolor [mymarker:1] [r=.6]
\definecolor [mymarker:2] [g=.6]
\definecolor [mymarker:3] [r=.6,g=.6]

The Lua code like similar to the code presented before:

\startluacode

local setcolor = nodes.tracers.colors.setlist
local getmarker nodes.markers.get

local hlist_code nodes.codes.hlist

local traverse_id node.traverse_id

function userdata.processmystuff (head)
for n in traverse id(hlist_code,head) do
local m = getmarker(n,"mymarker")

if m then
setcolor(n.list,"mymarker:" .. m)
end
end
return head, true
end
nodes.tasks.appendaction("processors", "after", "userdata.processmystuff")
nodes.tasks.disableaction("processors", "userdata.processmystuff")
\stopluacode

This time we disabled the processor (if only because in this document we don’t want the overhead.

\startluacode
nodes.tasks.enableaction("processors", "userdata.processmystuff")
\stopluacode

Node lists are processed \hbox \boxmarker{mymarker}{1} {nested from \hbox{inside}
out} which is not what you might expect. But, \hbox {coloring} does not \hbox
{happen} really nested here, more \hbox {in} \hbox \boxmarker{mymarker}{2} {the}
\hbox {order} \hbox {of} \hbox \boxmarker{mymarker}{3} {processing}.

\startluacode
nodes.tasks.disableaction("processors", "userdata.processmystuff")

preliminary, uncorrected version — March 23, 2013

34 A few Details

\stopluacode
The result looks familiar:

Node lists are processed nested from inside out which is not what you might expect. But, coloring
does not happen really nested here, more in the order of processing.

preliminary, uncorrected version — March 23, 2013

5 Some more examples

5.1 Appetizer

Some more examples

35

Before we give some more examples, we will have a look at the way the title page is made. This way

you get an idea what more is coming.

local todimen, random = number.todimen, math.random

context.startTEXpage ()

local paperwidth
local paperheight

tex.dimen.paperwidth
tex.dimen.paperheight

local nofsteps = 25
local firstcolor = "darkblue"
local secondcolor = "white"

context.definelayer(
{ "titlepage" }
)

context.setuplayer (
{ "titlepage" 1},
{
width = todimen(paperwidth),
height = todimen(paperheight),

)

context.setlayerframed(
{ "titlepage" 1},

{ offset = "-5pt" },

{
width = todimen(paperwidth),
height = todimen(paperheight),
background = "color",

backgroundcolor = firstcolor,
backgroundoffset = "10pt",
frame = "off",

3,

nn

)

local settings = {
frame = "off",
background = "color",
backgroundcolor = secondcolor,
foregroundcolor = firstcolor,
foregroundstyle "type",

preliminary, uncorrected version — March 23, 2013

36 Some more examples

for i=1, nofsteps do
for j=1, nofsteps do
context.setlayerframed(

{ "titlepage" },

{
x = todimen((i-1) * paperwidth /nofsteps),
y = todimen((j-1) * paperheight/nofsteps),
rotation = random(360),

},
settings,
IICLDII

end
end

context.tightlayer (
{ "titlepage" }
)

context.stopTEXpage ()

return true

This does not look that bad, does it? Of course in pure TEX code it looks mostly the same but loops
and calculations feel a bit more natural in Lua then in TgX. The result is shown in figure 5.1. The
actual cover page was derived from this.

5.2 A few examples

As it makes most sense to use the Lua interface for generated text, here is another example with a
loop:

context.startitemize { "a", "packed", "two" }
for i=1,10 do
context.startitem()
context("this is item %i",i)
context.stopitem()
end
context.stopitemize ()

this is item 1
this is item 2
this is item 3
this is item 4
this is item 5
this is item 6
this is item 7
this is item 8
this is item 9
this is item 10

T p@m e a0 T

preliminary, uncorrected version — March 23, 2013

Some more examples 37

.
B IEQCOERHOEQE QBDEH SHQE

Q
o] %@@ @ 48
@@ma SOHOTT G QRGO CTE S6H O

EOOTOPOLHITOIBL GG WOE ©8 08
SEZOSHEEBE Gl aESH 8 0§ B
R & £ BE S A =E

mo ODBOBDLHODADE

Figure 5.1 The simplified cover page.

Just as you can mix TEX with xml and MetaPost, you can define bits and pieces of a document in Lua.
Tables are good candidates:

local one = {
align = "middle",
style = "type",

}

local two = {
align = "middle",
style = "type",

background = "color",
backgroundcolor = "darkblue",
foregroundcolor = "white",

}
local random = math.random
context.bTABLE { framecolor = "darkblue" }
for i=1,10 do
context.bTR()
for i=1,20 do
local r = random(99)
context.bTD(r < 50 and one or two)
context ("%2i",r)
context.eTD()

preliminary, uncorrected version — March 23, 2013

38 Some more examples

B 74 52 56 74 [YflBY 50 55 56 62 79 56 [EYENEY 55 ¥ 0 ki
55 80 90 55 73 61 89 Bfg 95 f¥ 69 53 67 P 28 50
) 65 B 50 71 P86 78 89 78 57 92 80 56 [
AP 75 [51 Y 53 76 Rl 99 69 61 7l 71 [84 93 96 53
55 83 99 79) 55 B 97 62 92 EYjEPBY 64 [99 66 65 |EJER

o1 PRI 75 B 59 8457374 88 71.71..

50 A8 25 706667 67 7770 ﬂ 64

50/ 2 5115 o] o[175/ 15,13088 o | 5 oo 1 20
6578“63 6888553 64“63 92 73

7499 72 92“93 Y 20 36 k& 22| 35 Yl 31(36(31
Table 5.1 A table generated by Lua.

end
context.eTR()
end
context.eTABLE()

Here we see a function call to context in the most indented line. The first argument is a format
that makes sure that we get two digits and the random number is substituted into this format. The
result is shown in table 5.1. The line correction is ignored when we use this table as a float, otherwise
it assures proper vertical spacing around the table. Watch how we define the tables one and two
beforehand. This saves 198 redundant table constructions.

Not all code will look as simple as this. Consider the following:

context.placefigure(
"caption",
function() context.externalfigure({ "cow.pdf" }) end

)

Here we pass an argument wrapped in a function. If we would not do that, the external figure would
end up wrong, as arguments to functions are evaluated before the function that gets them (we already
showed some alternative approaches in previous chapters). A function argument is treated as special
and in this case the external figure ends up right. Here is another example:

context.placefigure("Two cows!",function()
context.bTABLE()
context.bTR()
context.bTD()
context.externalfigure(
{ "cow.pdf" 1},
{ width = "3cm", height = "3cm" }
)
context.eTD()
context.bTD { align = "{lohi,middle}" }
context ("and")
context.eTD()
context.bTD()
context.externalfigure(

preliminary, uncorrected version — March 23, 2013

Some more examples 39

{ "cow.pdf" 1},
{ width = "4cm", height = "3cm" }
)
context.eTD()
context.eTR()
context.eTABLE()
end)

In this case the figure is not an argument so it gets flushed sequentially with the rest.

and

Figure 5.2 Two cows!

5.3 Styles

Say that you want to typeset a word in a bold font. You can do that this way:

context ("This is ")
context.bold("important")
context ("!")

Now imagine that you want this important word to be in red too. As we have a nested command, we
end up with a nested call:

context("This is ")
context.bold(function() context.color({ "red" }, "important") end)
context ("!")

or

context ("This is ")
context.bold(context.delayed.color({ "red" }, "important"))
context ("!")

In that case it’s good to know that there is a command that combines both features:

context("This is ")
context.style({ style = "bold", color = "red" }, "important")
context ("!")

But that is still not convenient when we have to do that often. So, you can wrap the style switch in a
function.

local function mycommands.important(str)
context.style({ style = "bold", color = "red" }, str)
end

context("This is ")

preliminary, uncorrected version — March 23, 2013

40 Some more examples

mycommands . important ("important")
context (", and ")

mycommands . important ("this")
context (" too !")

Or you can setup a named style:

context.setupstyle({ "important" }, { style = "bold", color = "red" })

context("This is ")

context.style({ "important" }, "important")
context(", and ")

context.style({ "important" }, "this")
context (" too !")

Or even define one:

context.definestyle({ "important" }, { style = "bold", color = "red" })

context ("This is ")
context.important ("important")
context(", and ")
context.important ("this")
context (" too !")

This last solution is especially handy for more complex cases:

context.definestyle({ "important" }, { style = "bold", color = "red" })

context("This is ")
context.startimportant ()
context.inframed("important")
context.stopimportant ()
context (", and ")
context.important ("this")
context (" too !'")

This is , and this too !

5.4 A complete example

One day my 6 year old niece Lorien was at the office and wanted to know what I was doing. As I
knew she was practicing arithmetic at school I wrote a quick and dirty script to generate sheets with
exercises. The most impressive part was that the answers were included. It was a rather braindead
bit of Lua, written in a few minutes, but the weeks after I ended up running it a few more times, for
her and her friends, every time a bit more difficult and also using different arithmetic. It was that

script that made me decide to extend the basic cld manual into this more extensive document.

We generate three columns of exercises. Each exercise is a row in a table. The last argument to the

function determines if answers are shown.

local random = math.random

preliminary, uncorrected version — March 23, 2013

Some more examples 41

local function ForLorien(n,maxa,maxb,answers)
context.startcolumns { n = 3 }
context.starttabulate { "lrlclrlclrl" }
for i=1,n do
local sign = random(0,1) > 0.5
local a, b = random(1l,maxa or 99), random(l,max or maxb or 99)
if b > a and not sign then a, b = b, a end
context.NC()
context (a)
context.NC()
context.mathematics(sign and "+" or "-")
context.NC()
context (b)
context.NC()
context ("=")
context.NC()
context (answers and (sign and a+b or a-b))
context.NC()
context.NR()
end
context.stoptabulate()
context.stopcolumns ()
context.page()
end

This is a typical example of where it’s more convenient to write the code in Lua that in TgX’s macro
language. As a consequence setting up the page also happens in Lua:

context.setupbodyfont {

"palatino",
n 14pt n

}

context.setuplayout {
backspace = "2cm",
topspace = "2cm",
header = "1icm",
footer = "Ocm",
height = "middle",
width = "middle",

}

This leave us to generate the document. There is a pitfall here: we need to use the same random
number for the exercises and the answers, so we freeze and defrost it. Functions in the commands
namespace implement functionality that is used at the TEX end but better can be done in Lua than in
TeX macro code. Of course these functions can also be used at the Lua end.

context.starttext ()
local n = 120

commands .freezerandomseed ()

preliminary, uncorrected version — March 23, 2013

42 Some more examples

ForLorien(n,10,10)
ForLorien(n,20,20)
ForLorien(n,30,30)
ForLorien(n,40,40)
ForLorien(n,50,50)

commands .defrostrandomseed ()

ForLorien(n,10,10,true)
ForLorien(n,20,20,true)
ForLorien(n,30,30,true)
ForLorien(n,40,40,true)
ForLorien(n,50,50,true)

context.stoptext ()
1 6
8 - 5 = 10 - 4 = 9 + 10 = 8 - 5 =3 10 - 4 = 6 9 + 10 = 19
4 + 2 = 5 - 1 = 7 - 3 = 4 + 2 = 6 5 - 1 = 4 7 - 3 = 4
8 - 2 = 10 + 8 = 5 - 4 = 8 - 2 =6 10 + 8 = 18 5 - 4 =1
4 + 7 = 9 + 8 = 5 + 4 = 4 + 7 =11 9 + 8 =17 5+ 4 =9
5+ 1 = 9 - 3 = 8 + 9 = 5+ 1= 6 9 - 3 = 6 8 + 9 =17
9 - 8 = 5 - 1 = 5 + 6 = 9 - 8 = 1 5 - 1 = 4 5 + 6 = 11
8 + 3 = 6 - 1 = 8 + 4 = 8 + 3 =11 6 - 1 =5 8 + 4 = 12
6 - 6 = 7 + 7 = 2 - 1 = 6 - 6 = 0 7 + 7 = 14 2 - 1 =1
7 - 4 = 6 - 5 = 0 - 6 = 7 - 4 = 3 6 — 5 =1 10 - 6 = 4
7 - 2 = 7 + 3 = 0 - 3 = 7 - 2 =5 7 + 3 =10 0 - 3 =7
7 - 1 = 4 - 2 = 6 + 6 = 7 - 1 = 6 4 - 2 = 2 6 + 6 = 12
7 - 4 = 3 + 7 = 1+ 7 = 7 - 4 =3 3 + 7 =10 1+ 7 =8
6 - 3 = 10 - 3 = 5 - 3 = 6 - 3 = 3 0 - 3 =7 5 - 3 = 2
5 - 1 = 3 - 2 = 9 + 10 = 5 - 1= 4 3 - 2 =1 9 + 10 = 19
8 - 2 = 9 - 4 = 0 - 7 = 8 - 2 =6 9 - 4 = 5 0 - 7= 3
3+ 2 = 8 + 5 = 9 + 6 = 3 + 2 =5 8 + 5 =13 9 + 6 =15
7 + 7 = 8 - 6 = 0 - 3 = 7+ 7 = 14 8§ - 6 = 2 0 - 3 =7
5 + 8 = 4 + 5 = 10 + 8 = 5 + 8 =13 4 + 5 =9 10 + 8 = 18
0 - 1 = 6 - 5 = 7 - 1 = 10 - 1= 9 6 - 5 = 1 7 - 1 =6
10 - 6 = 8 - 1 = 7 + 3 = 10 - 6 = 4 8§ - 1 =7 7 + 3 =10
8 - 2 = 2 + 6 = 9 + 10 = 8 - 2 =6 2 + 6 = 8 9 + 10 = 19
8 + 8 = 4 - 3 = 3 - 2 = 8 + 8 = 16 4 - 3 =1 3 - 2 =1
6 + 4 = 4 + 1 = 1+ 1 = 6 + 4 =10 4 + 1 = 5 1+ 1= 2
10 + 7 = 6 - 1 = 5 + 3 = 10 + 7 =17 6 - 1 =5 5+ 3 =8
1+ 7 = 1+ 5 = 8 + 4 = 1+ 7 =8 1+ 5 =6 8 + 4 = 12
7 + 7 = 3 + 5 = 10 - 4 = 7 + 7 = 14 3 + 5 =8 10 - 4 = 6
8 - 2 = 10 + 7 = 5 - 4 = 8 - 2 = 6 0 + 7 =17 5 - 4 =1
8 - 6 = 4 + 3 = 9 - 1 = 8 - 6 = 2 4 + 3 =7 9 - 1 = 8
10 - 6 = 4 - 2 = 6 + 9 = 10 - 6 = 4 4 - 2 = 2 6 + 9 =15
8§ - 1 = 7 + 6 = 6 + 9 = 8§ - 1 =7 7 + 6 =13 6 + 9 =15
6 + 4 = 7 - 3 = 5 + 2 = 6 + 4 =10 7 - 3 = 4 5+ 2 =7
3+ 1 = 5 + 2 = 1+ 1 = 3+ 1 = 4 5 + 2 =7 1 + 1 = 2
4 + 6 = 8 - 5 = 1+ 7 = 4 + 6 =10 8§ - 5 = 3 1+ 7 =38
10 + 7 = 6 - 5 = 5+ 9 = 10 + 7 =17 6 - 5 = 1 5+ 9 = 14
1 + 10 = 3 + 10 = 6 - 4 = 1 + 10 = 11 3 + 10 = 13 6 - 4 = 2
0 + 3 = 6 - 3 = 4 + 3 = 0 + 3 =13 6 - 3 = 3 4 + 3 =7
0 - 7 = 6 + 4 = 4 + 8 = 10 - 7 = 3 6 + 4 =10 4 + 8 = 12
7 + 3 = 3 + 4 = 1 + 10 = 7 + 3 =10 3 + 4 =7 1 + 10 = 11
2 + 9 = 6 + 6 = 5+ 1 = 2 + 9 =11 6 + 6 = 12 5+ 1= 6
8 - 5 = 5 - 4 = 5 - 1 = 8 - 5 =3 5 - 4 =1 5 - 1= 4
exercises answers

Figure 5.3 Lorien’s challenge.

A few pages of the result are shown in figure 5.3. In the ConTEXt distribution a more advanced version
can be found in s-edu-01.cld as I was also asked to generate multiplication and table exercises. In
the process I had to make sure that there were no duplicates on a page as she complained that was
not good. There a set of sheets is generated with:

moduledata.educational.arithematic.generate {

name = "Bram Otten",
fontsize = "12pt",
columns = 2,

preliminary, uncorrected version — March 23, 2013

Some more examples 43

run = {
{ method = "bin_add_and_subtract", maxa = 8, maxb = 8 1,
{ method = "bin_add_and_subtract", maxa = 16, maxb = 16 },
{ method = "bin_add_and subtract", maxa = 32, maxb = 32 },
{ method = "bin_add_and_subtract", maxa = 64, maxb = 64 },
{ method = "bin_add_and_subtract", maxa = 128, maxb = 128 },
},

5.5 Interfacing

The fact that we can define functionality using Lua code does not mean that we should abandon the
TeX interface. As an example of this we use a relatively simple module for typesetting morse code.?
First we create a proper namespace:

moduledata.morse = moduledata.morse or { }
local morse moduledata.morse

We will use a few helpers and create shortcuts for them. The first helper loops over each utf character
in a string. The other two helpers map a character onto an uppercase (because morse only deals with
uppercase) or onto an similar shaped character (because morse only has a limited character set).

local utfcharacters = string.utfcharacters
local ucchars, shchars = characters.ucchars, characters.shchars

The morse codes are stored in a table.

local codes = {

~=TCcdnoo=Ex"HaMlHaQ®

NX<+-HxmUv=trC"ummTow

| S oy S [y N [y N U oy AN N Dy S N [y NN I [y Ny S—
|
-

L I s s T s s N s s T s T s B s Y e W e W
S S T Y Y T T T N Y Y S
. | . .
. . . | . .
. . = . w
-
L I s s B s s N s s B s T s I s W s W s W |

0 O N O

O N 01 W

L B s W ey By B
[T Ty Y
. e
-
L B s Wy Wy B
e e
-

[H.ll] = ", _._. _II’ I:ll,ll:l = ll__,___|l’

3 The real module is a bit larger and can format verbose morse.

preliminary, uncorrected version — March 23, 2013

44 Some more examples

[":"] = Moo [n;n] = M. ._ ",
["?"] = "..__.."’ ["!"] = "o "’
["-"] = R ["/"] = "= .- ",
["("] = meemen, [)M] = Mmoo
["="] = "=eeeot, [MQM] = Moo
[nnu] = n.____.n’ [lui] = N.—..—. ||’
[uAu] = Me——aon

["A"] = "emeon,

["A"] = et

["}E"] ll._._"’

['g"] = "-emee

[uEu] ", ._ ,u,

[uNu] n__,__u,

["0"] = "-—--v,

["g"] = "--me,

[nUu] ", __n’

["8"] = "o e,

morse.codes = codes

Asyou can see, there are a few non ascii characters supported as well. There will never be full Unicode
support simply because morse is sort of obsolete. Also, in order to support Unicode one could as well
use the bits of utf characters, although . .. memorizing the whole Unicode table is not much fun.

We associate a metatable index function with this mapping. That way we can not only conveniently
deal with the casing, but also provide a fallback based on the shape. Once found, we store the repre-
sentation so that only one lookup is needed per character.

local function resolvemorse(t,k)
if k then
local u = ucchars[k]

local v = rawget(t,u) or rawget(t,shchars[u]) or false
tlk] = v
return v

else
return false
end
end

setmetatable(codes, { __index = resolvemorse })

Next comes some rendering code. As we can best do rendering at the TEX end we just use macros.

local MorseBetweenWords = context.MorseBetweenWords
local MorseBetweenCharacters = context.MorseBetweenCharacters
local MorseLlong = context.Morselong

local MorseShort = context.MorseShort

local MorseSpace = context.MorseSpace

preliminary, uncorrected version — March 23, 2013

Some more examples 45

local MorseUnknown = context.MorseUnknown

The main function is not that complex. We need to keep track of spaces and newlines. We have a
nested loop because a fallback to shape can result in multiple characters.

function morse.tomorse(str)
local inmorse = false
for s in utfcharacters(str) do
local m = codes[s]
if m then
if inmorse then
MorseBetweenWords ()
else
inmorse = true
end
local done = false
for m in utfcharacters(m) do
if done then
MorseBetweenCharacters()
else
done = true
end
if m == "-" then
MorseShort ()
elseif m == "-" then
MorseLong ()
elseif m == " " then
MorseBetweenCharacters()
end
end
inmorse = true
elseif s == "\n" or s == " " then
MorseSpace ()
inmorse = false
else
if inmorse then
MorseBetweenWords ()

else
inmorse = true
end
MorseUnknown (s)
end
end
end

We use this function in two additional functions. One typesets a file, the other a table of available
codes.

function morse.filetomorse(name,verbose)
morse.tomorse(resolvers.loadtexfile (name) ,verbose)
end

preliminary, uncorrected version — March 23, 2013

46 Some more examples

function morse.showtable()
context.starttabulate { "[111]" }
for k, v in table.sortedpairs(codes) do
context.NC() context (k)
context.NC() morse.tomorse(v,true)
context.NC() context.NR()
end
context.stoptabulate ()
end

We're done with the Lua code that we can either put in an external file or put in the module file. The
TEX file has two parts. The typesetting macros that we use at the Lua end are defined first. These can
be overloaded.

\def\MorseShort
{\dontleavehmode
\vrule
width \MorseWidth
height \MorseHeight
depth \zeropoint
\relax}

\def\MorseLong
{\dontleavehmode
\vrule
width 3\dimexpr\MorseWidth
height \MorseHeight
depth \zeropoint
\relax}

\def\MorseBetweenCharacters
{\kern\MorseWidth}

\def\MorseBetweenWords
{\hskip3\dimexpr\MorseWidth\relax}

\def\MorseSpace
{\hskip7\dimexpr\MorseWidth\relax}

\def\MorseUnknown#1
{[\detokenize{#1}]}

The dimensions are stored in macros as well. Of course we could provide a proper setup command,
but it hardly makes sense.

\def\MorseWidth {0.4em}
\def\MorseHeight{0.2em}

Finally we have arrived at the macros that interface to the Lua functions.

\def\MorseString#1{\ctxlua{moduledata.morse.tomorse(\! !'bs#1\!'!es)}}
\def\MorseFile #1{\ctxlua{moduledata.morse.filetomorse("#1")}}

preliminary, uncorrected version — March 23, 2013

Some more examples

\def\MorseTable {\ctxlua{moduledata.morse.showtable()}}
A string is converted to morse with the first command.

\Morse{A more advanced solution would be to convert a node list. That
way we can deal with weird input.}

This shows up as:

Reduction and uppercasing is demonstrated in the next example:
\MorseString{AAARAR355555}
This gives:

5.6 Using helpers

47

The next example shows a bit of Ipeg. On top of the standard functionality a few additional functions

are provided. Let’s start with a pure TEX example:

\defineframed
[colored]
[foregroundcolor=red,
foregroundstyle=\underbar,
offset=.1ex,
location=1low]

\processisolatedwords {\input ward \relax} \colored

The| ’Ea@ @ @ habitat @ lanimal| [life) |is| in| [old]| ’gg\ land| {}Es\ @ fatall[illness.| [Several|[in

’fact@

is| [like] [the]

—

would] e[lhappening| whether| humans| [had] lever| levolved| jor| Inot.| But] our] jpresence|
of [an|

effect/|of| lan/[old|-|]age| [patient| whol[smokes|many] packs @ cigarettes| |per||day| || land]|

wel|humans

| |

g‘ lthe] cigarettes.

Because this processor macro operates at the TEX end it has some limitations. The content is collected
in a very narrow box and from that a regular paragraph is constructed. It is for this reason that no

color is applied: the snippets that end up in the box are already typeset.
An alternative is to delegate the task to Lua:

\startluacode
local function process(data)

preliminary, uncorrected version — March 23, 2013

48 Some more examples

local words = lpeg.split(lpeg.patterns.spacer,data or "")

for i=1,#words do
if i == 1 then
context.dontleavehmode ()
else
context.space()
end
context.colored(words[i])
end

end

process(io.loaddata(resolvers.findfile("ward.tex")))
\stopluacode

The\ \Earth
It| [would|
effect][of] \an

@ the|cigarettes.

as| |a H lhabitat] W lanimal| flife] lis| [in| [old] |age| land has\ H [fatal| [illness.| [Several] @ [fact.
be[lhappening whether] {humans\ lhad] \ever\ levolved| \or\ not.| But| jour] [presencelis like[|the
\old age[[pahenﬂ {Who[[smokes\1 {manv[[packs oﬂ [c1garettes[‘IL‘ ldav[E [and[@ [humans

L

The function splits the loaded data into a table with individual words. We use a splitter that splits
on spacing tokens. The special case for i = 1 makes sure that we end up in horizontal mode (read:
properly start a paragraph). This time we do get color because the typesetting is done directly. Here
is an alternative implementation:

local done = false

local function reset()
done = false
return true

end

local function apply(s)
if done then
context.space()
else
done = true
context.dontleavehmode ()
end
context.colored(s)
end

local splitter = lpeg.P(reset)
* lpeg.splitter(lpeg.patterns.spacer,apply)

local function process(data)

lpeg.match(splitter,data)
end

This version is more efficient as it does not create an intermediate table. The next one is comaprable:

preliminary, uncorrected version — March 23, 2013

Some more examples 49

local function apply(s)
context.colored("%s ",s)
end

local splitter lpeg.splitter(lpeg.patterns.spacer,apply)

local function process(data)
context.dontleavevmode ()
lpeg.match(splitter,data)
context.removeunwantedspaces ()
end

5.7 Formatters

Sometimes can save a bit of work by using formatters. By default, the context command, when
called directly, applies a given formatter. But when called as table this feature is lost because then we
want to process non-strings as well. The next example shows a way out:

The last one is the most interesting one here: in the subnamespace formatted (watch the d) a format
specification with extra arguments is expected.

preliminary, uncorrected version — March 23, 2013

50 Some more examples

preliminary, uncorrected version — March 23, 2013

Graphics 51

6 Graphics

6.1 The regular interface

If you are familiar with ConTgXt, which by now probably is the case, you will have noticed that it
integrates the MetaPost graphic subsystem. Drawing a graphic is not that complex:

context.startMPcode ()
context [[
draw
fullcircle scaled 1lcm
withpen pencircle scaled 1mm
withcolor .bwhite
dashed dashpattern (on 2mm off 2mm) ;
1]
context.stopMPcode ()

We get a gray dashed circle rendered with an one millimeter thick line:
¢~

\ \

\ol

So, we just use the regular commands and pass the drawing code as strings. Although MetaPost is
a rather normal language and therefore offers loops and conditions and the lot, you might want to
use Lua for anything else than the drawing commands. Of course this is much less efficient, but it
could be that you don’t care about speed. The next example demonstrates the interface for building
graphics piecewise.

context.resetMPdrawing()

context.startMPdrawing()
context ([[fill fullcircle scaled 5cm withcolor (0,0,.5) ;11)
context.stopMPdrawing ()

context.MPdrawing("pickup pencircle scaled .5mm ;")
context.MPdrawing ("drawoptions (withcolor white) ;")

for i=0,50,5 do
context.startMPdrawing()

context ("draw fullcircle scaled %smm ;",i)
context.stopMPdrawing()
end

for i=0,50,5 do
context.MPdrawing("draw fullsquare scaled " .. i .. "mm ;")
end

context.MPdrawingdonetrue ()

context.getMPdrawing()

preliminary, uncorrected version — March 23, 2013

52 Graphics

This gives:

I the first loop we can use the format options associated with the simple context call. This will not
work in the second case. Even worse, passing more than one argument will definitely give a faulty
graphic definition. This is why we have a special interface for MetaFun. The code above can also be
written as:

local metafun = context.metafun
metafun.start ()

metafun("fill fullcircle scaled 5cm withcolor %s ;",
metafun.color ("darkblue"))

metafun("pickup pencircle scaled .5mm ;")
metafun("drawoptions(withcolor white) ;")

for i=0,50,5 do
metafun("draw fullcircle scaled %smm ;",i)
end

for i=0,50,5 do
metafun("draw fullsquare scaled %smm ;",i)
end

metafun.stop()

Watch the call to color, this will pass definitions at the TEX end to MetaPost. Of course you really
need to ask yourself “Do I want to use MetaPost this way?”. Using Lua loops instead of MetaPost
ones makes much more sense in the following case:

local metafun = context.metafun

function metafun.barchart (t)
metafun.start ()
local t = t.data
for i=1,#t do
metafun("draw unitsquare xyscaled(%s,%s) shifted (%s,0);",
10, t[il=*10, ix*10)
end
metafun.stop()

preliminary, uncorrected version — March 23, 2013

Graphics 53

end

local one {1, 4, 6, 2, 3, }
local two {8, 1, 3,5, 9, }

b b b

context.startcombination()
context.combination(metafun.delayed.barchart { data
context.combination(metafun.delayed.barchart { data
context.stopcombination()

one }, "one")
two }, "two")

We get two barcharts alongside:

one two

local template = [[
path p, q ; color c[] ;
cl := \MPcolor{darkblue} ;
c2 := \MPcolor{darkred} ;

p := fullcircle scaled 50 ;

1l := length p ;

n :=7s ;

q := subpath (0,%s/n*1) of p ;

draw q withcolor c2 withpen pencircle scaled 1 ;

fill fullcircle scaled 5 shifted point length g of q withcolor cl ;
setbounds currentpicture to unitsquare shifted (-0.5,-0.5) scaled 60 ;
draw boundingbox currentpicture withcolor cl ;

currentpicture := currentpicture xsized(lcm) ;

1]

local function steps(n)
for i=0,n do
context.metafun.start ()
context.metafun(template,n,i)
context.metafun.stop()
if i < n then
context.quad()
end
end
end

context.hbox(function() steps(10) end)

.\\'\/\/\(\C\CCQ

preliminary, uncorrected version — March 23, 2013

54 Graphics

Using a template is quite convenient but at some point you can loose track of the replacement values.
Also, adding an extra value can force you to adapt the following ones which enlarges the change for
making an error. An alternative is to use the template mechanism. Although this mechanism was
originally made for other purposes, you can use it for whatever you like.

local template = [[
path p ; p := fullcircle scaled 4cm ;
draw p withpen pencircle scaled .bmm withcolor red ;
freedotlabel (")lefttop%", point 1 of p,origin) ;
freedotlabel ("Jrighttop’%", point 3 of p,origin) ;
freedotlabel ("}leftbottom)", point 5 of p,origin) ;
freedotlabel ("J)rightbottom)",point 7 of p,origin) ;

1]

local variables = {
lefttop = "one",
righttop = "two",
leftbottom = "three",
rightbottom = "four" ,

}

context.metafun.start ()
context.metafun(utilities.templates.replace(template,variables))
context.metafun.stop()

Here we use named placeholders and pass a table with associated values to the replacement function.
Apart from convenience it’s also more readable. And the overhead is rather minimal.

two one

three four

To some extent we fool ourselves with this kind of Luafication of MetaPost code. Of course we can
make a nice MetaPost library and put the code in a macro instead. In that sense, doing this in ConTEXt
directly often gives better and more efficient code.

Of course you can use all relevant commands in the Lua interface, like:

context.startMPpage ()
context ("draw origin")
for i=0,100,10 do
context ("..{down}(%d,0)",i)
end
context (" withcolor \\MPcolor{darkred} ;")
context.stopMPpage ()

to get a graphic that has its own page. Don’t use the metafun namespace here, as it will not work
here. This drawing looks like:

preliminary, uncorrected version — March 23, 2013

Graphics 55

6.2 The Lua interface

Messing around with graphics is normally not needed and if you do it, you’d better know what you're
doing. For TEX a graphic is just a black box: a rectangle with dimensions. You specify a graphic, in a
format that the backend can deal with, either or not apply some scaling and from then on a reference
to that graphic, normally wrapped in a normal TgX box, enters the typesetting machinery. Because
the backend, the part that is responsible for translating typeset content onto a viewable or printable
format like pdf, is built into LuaTgX, at some point the real image has to be injected and the backend
can only handle a few image formats: png, jpg, jbig and pdf.

In ConTEXt some more image formats are supported but in practice this boils down to converting the
image to a format that the backend can handle. Such a conversion depends on an external programs
and in order not to redo the conversion each run ConTEXt keeps track of the need to redo it.

Some converters are built in, for example one that deals with gif images. This is normally not a
preferred format, but it happens that we have to deal with it in cases where organizations use that
format (if only because they use the web). Here is how this works at the Lua end:

figures.converters.gif = {
pdf = function(oldname,newname)
os.execute(string.format("gm convert %s %s",oldname,newname))
end

}

We use gm (Graphic Magic) for the conversion and pass the old and new names. Given this definition
at the TEX end we can say:

\externalfigure [whatever.gif] [width=4cm]
Here is a another one:

figures.converters.bmp = {
pdf = function(oldname,newname)
os.execute(string.format("gm convert %s %s",oldname,newname))
end

}

In both examples we convert to pdf because including this filetype is quite fast. But you can also go
to other formats:

figures.converters.png = {
png = function(oldname,newname,resolution)
local command = string.format('gm convert -depth 1 "%s" "%s"',oldname,newname)
logs.report(string.format ("running command %s",command))
os.execute (command)
end

b
Instead of directly defining such a table, you can better do this:

figures.converters.png = figures.converters.png or { }

preliminary, uncorrected version — March 23, 2013

56 Graphics

figures.converters.png.png = function(oldname,newname,resolution)
local command = string.format('gm convert -depth 1 "%s" "%s"',oldname,newname)
logs.report(string.format ("running command %s",command))
os.execute (command)

end

Here we check if a table exists and if not we extend the table. Such converters work out of the box if
you specify the suffix, but you can also opt for a simple:

\externalfigure[whatever] [width=4cm]

In this case ConTgXt will check for all known supported formats, which is not that efficient when no
graphic can be found. In order to let for instance files with suffix bmp can be included you have to
register it as follows. The second argument is the target.

figures.registersuffix("bmp","bmp")

At some point more of the graphic inclusion helpers will be opened up for general use but for now
this is what you have available.

preliminary, uncorrected version — March 23, 2013

Macros 57

7 Macros

7.1 Introduction

You can skip this chapter if you're not interested in defining macros or are quite content with defin-
ing them in TEX. It’s just an example of possible future interface definitions and it’s not the fastest
mechanism around.

7.2 Parameters

Right from the start ConTeXt came with several user interfaces. As a consequence you need to take
this into account when you write code that is supposed to work with interfaces other than the English
one. The TEX command:

\setupsomething[key=value]
and the Lua call:
context.setupsomething { key = value }

are equivalent. However, all keys at the TEX end eventually become English, but the values are un-
changed. This means that when you code in Lua you should use English keys and when dealing with
assigned values later on, you need to translate them of compare with translations (which is easier).
This is why in the ConTgXt code you will see:

if somevalue == interfaces.variables.yes then
end

instead of:

if somevalue == "yes" then

end

7.3 User interfacing

Unless this is somehow inhibited, users can write their own macros and this is done in the TgX lan-
guage. Passing data to macros is possible and looks like this:

\def\test#1#2{.. #1 .. #2 .. } \test{a}{b}
\def\test [#1]#2{.. #1 .. #2 .. } \test[a]{b}

Here #1 and #2 represent an argument and there can be at most 9 of them. The [] are delimiters and
you can delimit in many ways so the following is also right:

\def\test (#1><#2){.. #1 .. #2 .. } \test(a><b)

Macro packages might provide helper macros that for instance take care of optional arguments, so
that we can use calls like:

\test[1,2,3] [a=1,b=2,c=3]{whatever}

preliminary, uncorrected version — March 23, 2013

58 Macros

and alike. If you are familiar with the ConTgXt syntax you know that we use this syntax all over the
place.

If you want to write a macro that calls out to Lua and handles things at that end, you might want to
avoid defining the macro itself and this is possible.

An example of a definition and usage at the Lua end is:

\startluacode

function test(opt_1, opt_2, arg_1)
context.startnarrower ()
context ("options 1: %s",interfaces.tolist(opt_1))
context.par ()
context ("options 2: %s",interfaces.tolist(opt_2))
context.par()
context ("argument 1: %s",arg_ 1)
context.stopnarrower ()

end

interfaces.definecommand {
name = "test",
arguments = {
{ "option", "list" 1},
{ "option", "hash" 1},

{ "content", "string" },
},
macro = test,
+
\stopluacode

test: \test[1] [a=3]{whatever}
The call gives:

test:
options 1: 1
options 2: a=3
argurnentl:vvhatever

If you want to to define an environment (i.e. a start—stop pair, it looks as follows:

\startluacode

local function startmore(opt_1)
context.startnarrower ()
context ("start more, options: %s",interfaces.tolist(opt_1))
context.startnarrower ()

end

local function stopmore(opt_1)
context.stopnarrower ()
context("stop more, options: %s",interfaces.tolist(opt_1))
context.stopnarrower ()

end

preliminary, uncorrected version — March 23, 2013

interfaces.definecommand ("more", {

environment = true,
arguments = {

{ "option", "list" 1},

s

starter = startmore,
stopper = stopmore,

1)
\stopluacode

more: \startmore[l] one \startmore[2] two \stopmore

This gives:

more:
start more, options: 1
one

start more, options: 2

two

stop more, options: 2

one
stop more, options: 1

one \stopmore

Macros

59

The arguments are know in both startmore and stopmore and nesting is handled automatically.

preliminary, uncorrected version — March 23, 2013

60 Macros

preliminary, uncorrected version — March 23, 2013

Verbatim 61

8 Verbatim

8.1 Introduction

If you are familiar with traditional TEX, you know that some characters have special meanings. For
instance a $ starts and ends inline math mode:

$e=mc~2%

If we want to typeset math from the Lua end, we can say:
context.mathematics("e=mc~2")

This is in fact:

\mathematics{e=mc~2}

However, if we want to typeset a dollar and use the ctxcatcodes regime, we need to explicitly access
that character using \char or use a command that expands into the character with catcode other.

One step further is that we typeset all characters as they are and this is called verbatim. In that mode
all characters are tokens without any special meaning.

8.2 Special treatment

The formula in the introduction can be typeset verbatim as follows:
context.verbatim("$e=mc”~2$")

This gives:

$e=mc”2%

You can also do things like this:
context.verbatim.bold("$e=mc~2%")

Which gives:

$e=mc/2$

So, within the verbatim namespace, each command gets its arguments verbatim.
context.verbatim.inframed({ offset = "Opt" }, "$e=mc~2$")

Here we get: . So, settings and alike are processed as if the user had used a regular
context.inframed but the content comes out verbose.

If you wonder why verbatim is needed as we also have the type function (macro) the answer is that
it is faster, easier to key in, and sometimes the only way to get the desired result.

8.3 Multiple lines

Currently we have to deal with linebreaks in a special way. This is due to the way TgX deals with
linebreaks. In fact, when we print something to TgX, the text after a \n is simply ignored.

preliminary, uncorrected version — March 23, 2013

62 Verbatim

For this reason we have a few helpers. If you want to put something in a buffer, you cannot use the
regular buffer functions unless you make sure that they are not overwritten while you're still at the
Lua end.

context.tobuffer("temp",str)
context.getbuffer("temp")

Another helper is the following. It splits the string into lines and feeds them piecewise using the
context function and in the process adds a space at the end of the line (as this is what TEX normally
does.

context.tolines(str)

Catcodes can get in the way when you pipe something to TEX that itself changes the catcodes. This
happens for instance when you write buffers that themselves have buffers or have code that changes
the line endings as with startlines. In that case you need to feed back the content as if it were a
file. This is done with:

context.viafile(str)

The string can contain newlines. The string is written to a virtual file that is input. Currently names
looks like virtual://virtualfile.1 but future versions might have a different name part, so best
use the variable instead. After all, you don’t know the current number in advance anyway.

8.4 Pretty printing

In ConTgXt MKII there have always been pretty printing options. We needed it for manuals and it
was also handy to print sources in the same colors as the editor uses. Most of those pretty printers
work in a line-by-line basis, but some are more complex, especially when comments or strings can
span multiple lines.

When the first versions of LuaTgX showed up, rewriting the MKII code to use Lua was a nice exercise
and the code was not that bad, but when Ipeg showed up, I put it on the agenda to reimplement them
again.

We only ship a few pretty printers. Users normally have their own preferences and it’s not easy to
make general purpose pretty printers. This is why the new framework is a bit more flexible and
permits users to kick in their own code.

Pretty printing involves more than coloring some characters or words:

spaces should honoured and can be visualized
newlines and empty lins need to be honoured as well
optionally lines have to be numbered but

wrapped around lines should not be numbered

It’s not much fun to deal with these matters each time that you write a pretty printer. This is why we
can start with an existing one like the default pretty printer. We show several variants of doing the
same. We start with a simple clone of the default parser.

In the meantime the lexer of the SciTE editor that I used also provides a mechanism for using lpeg based lexers. Although
in the pretty printing code we need a more liberal one I might backport the lexers I wrote for editing TEX, MetaPost, Lua,
cld, xml and pdf as a variant for the ones we use in MkIV now. That way we get similar colorschemes which might be handy
sometimes.

preliminary, uncorrected version — March 23, 2013

Verbatim 63

local P, V = lpeg.P, 1lpeg.V

local grammar = visualizers.newgrammar ("default", {

pattern = V("default:pattern"),
visualizer = V("pattern")"1
)

local parser = P(grammar)

visualizers.register("test-0", { parser = parser })

We distinguish between grammars (tables with rules), parsers (a grammar turned into an lpeg ex-
pression), and handlers (collections of functions that can be applied. All three are registered under
a name and the verbatim commands can refer to that name.

\starttyping[option=test-0,color=]
Test 123,

test 456 and

test 789!

\stoptyping

Nothing special happens here. We just get straightforward verbatim.

Test 123,
test 456 and
test 789!

Next we are going to color digits. We collect as many as possible in a row, so that we minimize the
calls to the colorizer.

local patterns, P, V = lpeg.patterns, lpeg.P, lpeg.V

local function colorize(s)
context.color{"darkred"}
visualizers.writeargument (s)
end

local grammar = visualizers.newgrammar ("default", {
digit = patterns.digit™1 / colorize,
pattern v("digit") + V("default:pattern"),
visualizer = V("pattern")~1

)

local parser = P(grammar)

visualizers.register("test-1", { parser = parser })

Watch how we define a new rule for the digits and overload the pattern rule. We can refer to the
default rule by using a prefix. This is needed when we define a rule with the same name.

\starttyping[option=test-1,color=]
Test 123,
test 456 and

preliminary, uncorrected version — March 23, 2013

64 Verbatim

test 789!
\stoptyping

This time the digits get colored.

Test 123,
test 456 and
test 789!

In a similar way we can colorize letters. As with the previous example, we use ConTgXt commands
at the Lua end.

\starttyping[option=test-2,color=]
Test 123,

test 456 and

test 789!

\stoptyping

Again we get some coloring.

Test 123,
test 456 and
test 789!

It will be clear that the amount of rules and functions is larger when we use a more complex parser.
It is for this reason that we can group functions in handlers. We can also make a pretty printer
configurable by defining handlers at the TeX end.

\definestartstop
[MyDigit]
[style=bold,color=darkred]

\definestartstop
[MyLowercase]
[style=bold,color=darkgreen]

\definestartstop
[MyUppercase]
[style=bold,color=darkblue]

The Lua code now looks different. Watch out: we need an indirect call to for instance MyDigit be-
cause a second argument can be passed: the settings for this environment and you don’t want that
get passed to MyDigit and friends.

\starttyping[option=test-3,color=]
Test 123,

test 456 and

test 789!

\stoptyping

We get digits, upper- and lowercase characters colored:

Test 123,
test 456 and

preliminary, uncorrected version — March 23, 2013

Verbatim 65

test 789!
You can also use parsers that don’t use Ipeg:

local function parser(s)
visualizers.write("["..s.."]1")
end

visualizers.register("test-4", { parser = parser })

\starttyping[option=test-4,space=on,color=darkred]
Test 123,

test 456 and

test 789!

\stoptyping

The function visualizer.write takes care of spaces and newlines.

[Test 123,
test 456, ,and
test,789!]

We have a few more helpers:

visualizers.write interprets the argument and applies methods
visualizers.writenewline goes to the next line (similar to \par
visualizers.writeemptyline inserts an empty line (similer to \blank
visualizers.writespace inserts a (visible) space
visualizers.writedefault writes the argument verbatim without interpretation

These mechanism have quite some overhead in terms of function calls. In the worst case each token
needs a (nested) call. However, doing all this at the TgX end also comes at a price. So, in practice this
approach is more flexible but without too large a penalty.

In all these examples we typeset the text verbose: what is keyed in normally comes out (either or not
with colors), so spaces stay spaces and linebreaks are kept.

local function parser(s)
local s = string.gsub(s,"show","demonstrate")
local s = string.gsub(s,"'re"," are"
context(s)

end

visualizers.register("test-5", { parser = parser })
We can apply this visualizer as follows:

\starttypingl[option=test-5,color=darkred,style=]

This is just some text to show what we can do with this mechanism. In
spite of what you might think we're not bound to verbose text.
\stoptyping

This time the text gets properly aligned:

This is just some text to demonstrate what we can do with this mechanism. In

preliminary, uncorrected version — March 23, 2013

66 Verbatim

spite of what you might think we are not bound to verbose text.
It often makes sense to use a buffer:

\startbuffer [demo]

This is just some text to show what we can do with this mechanism. In
spite of what you might think we're not bound to verbose text.
\stopbuffer

Instead of processing the buffer in verbatim mode you can then process it directly:

\setuptypingl[file] [option=test-5,color=darkred,style=]
\ctxluabuffer [demo]

Which gives:

In this case, the space is a normal space and not the fixed verbatim space, which looks better.

preliminary, uncorrected version — March 23, 2013

Logging 67

9 Logging

Logging and localized messages have always been rather standardized in ConTgXt, so upgrading the
related mechanism had been quite doable. In MKIV for a while we had two systems in parallel: the
old one, mostly targeted at messages at the TgX end, and a new one used at the Lua end. But when
more and more hybrid code showed up, integrating both systems made sense.

Most logging concerns tracing and can be turned on and off on demand. This kind of control is now
possible for all messages. Given that the right interfaces are used, you can turn off all messages:

context --silent

This was already possible in MKII, but there TEX’s own messages still were visible. More important
is that we have control:

context —--silent=structure*,resolvex,fontx*

This will disable all reporting for these three categories. It is also possible to only disable messages
to the console:

context —--noconsole
In ConTgXt you can use directives:

\enabledirectives[logs.blocked=structure*,resolve*,font*]
\enabledirectives[logs.target=file]

As all logging is under Lua control and because this (and other) kind of control has to kick in early
in the initialization the code might look somewhat tricky. Users won’t notice this because they only
deal with the formal interface. Here we will only discuss the Lua interfaces.

Messages related to tracing are done as follows:

local report_whatever = logs.reporter("modules","whatever")

report_whatever("not found: %s","this or that")

The first line defined a logger in the category modules. You can give a second argument as well, the
subcategory. Both will be shown as part of the message, of which an example is given in the second
line.

These messages are shown directly, that is, when the function is called. However, when you generate
TEX code, as we discuss in this document, you need to make sure that the message is synchronized
with that code. This can be done with a messenger instead of a reporter.

local report_numbers = logs.reporter ("numbers","check")
local status_numbers = logs.messenger ("numbers","check")

status_numbers("number 1: %s, number 2: %s",123,456)
report_numbers("number 1: %s, number 2: %s",456,123)

Both reporters and messages are localized when the pattern given as first argument can be found in
the patterns subtable of the interface messages. Categories and subcategories are also translated,
but these are looked up in the translations subtable. So in the case of

preliminary, uncorrected version — March 23, 2013

68 Logging

report_whatever("found: %s",filename)
report_whatever("not found: %s",filename)

you should not be surprised if it gets translated. Of course the category and subcategory provide
some contextual information.

preliminary, uncorrected version — March 23, 2013

Lua Functions 69

10 Lua Functions

10.1 Introduction

When you run ConTgXt you have some libraries preloaded. If you look into the Lua files you will
find more than is discussed here, but keep in mind that what is not documented, might be gone or
done different one day. Some extensions live in the same namespace as those provided by stock Lua
and LuaTgX, others have their own. There are many more functions and the more obscure (or never
being used) ones will go away:.

The Lua code in ConTgXt is organized in quite some modules. Those with names like 1-*.1ua are
rather generic and are automatically available when you use mtxrun to run a Lua file. These are
discusses in this chapter. A few more modules have generic properties, like some in the categories
util-*.lua, trac-*.lua, luat-*.lua, data-*.luaand 1xml-*.lua. They contain more special-
ized functions and are discussed elsewhere.

Before we move on the the real code, let’s introduce a handy helper:
inspect (somevar)

Whenever you feel the need to see what value a variable has you can insert this function to get some
insight. It knows how to deal with several data types.

10.2 Tables

[lual concat

These functions come with Lua itself and are discussed in detail in the Lua reference manual so we
stick to some examples. The concat function stitches table entries in an indexed table into one string,
with an optional separator in between. If can also handle a slice of the table

local str = table.concat(t)

local str = table.concat(t,separator)
local str = table.concat(t,separator,first)
local str = table.concat(t,separator,first,last)

Only strings and numbers can be concatenated.

table.concat({"a”,"b","c","d","e"})

abcde

table.concat({"a","b","c","d","e"},"+")

atb+c+d+e

table.concat({"a","b","c","d","e”},“+",2,3)

b+c

preliminary, uncorrected version — March 23, 2013

70 Lua Functions

[lua] insert remove
You can use insert and remove for adding or replacing entries in an indexed table.

table.insert(t,value,position)
value = table.remove(t,position)

The position is optional and defaults to the last entry in the table. For instance a stack is built this
way:

table.insert(stack,"top")
local top = table.remove(stack)

Beware, the insert function returns nothing. You can provide an additional position:
table.insert(list,"injected in slot 2",2)

local thiswastwo = table.remove(list,2)

[lual] unpack

You can access entries in an indexed table as follows:

local a, b, ¢ = t[1], t[2], t[3]

but this does the same:

local a, b, ¢ = table.unpack(t)

This is less efficient but there are situations where unpack comes in handy.

[lua] sort
Sorting is done with sort, a function that does not return a value but operates on the given table.

table.sort(t)
table.sort (t,comparefunction)

The compare function has to return a consistent equivalent of true or false. For sorting more
complex data structures there is a specialized sort module available.

t={"a","b","c"} table.sort(t)

t={
llall
b
llbll
b
llCIl
b

¥

t={"a","b","c"} table.sort(t,function(x,y) return x > y end)

t={
IICII 5
llbll’

lla ,

3

preliminary, uncorrected version — March 23, 2013

Lua Functions 71

t={"a","b","c"} table.sort(t,function(x,y) return x < y end)

t={
ngn ,
np" ,
nen ,

}

sorted

The built-in sort function does not return a value but sometimes it can be if the (sorted) table is
returned. This is why we have:

local a = table.sorted(b)

keys sortedkeys sortedhashkeys sortedhash

The keys function returns an indexed list of keys. The order is undefined as it depends on how the
table was constructed. A sorted list is provided by sortedkeys. This function is rather liberal with
respect to the keys. If the keys are strings you can use the faster alternative sortedhashkeys.

local s = table.keys (t)
local s = table.sortedkeys (t)
local s = table.sortedhashkeys (t)

Because a sorted list is often processed there is also an iterator:

for key, value in table.sortedhash(t) do
print (key,value)
end

There is also a synonym sortedpairs which sometimes looks more natural when used alongside
the pairs and ipairs iterators.

table.keys({ [1] = 2, ¢ = 3, [true]l =1 })

t={
1,
true,
IICII
b

}

table.sortedkeys({ [1] = 2, ¢ = 3, [true] =1 })

t={
1,
IICII
)
true,

3

table.sortedhashkeys({ a = 2, ¢ =3, b=11})

t={

preliminary, uncorrected version — March 23, 2013

72 Lua Functions

llall ,
llbll ,
llCll s

}

serialize print tohandle tofile

The serialize function converts a table into a verbose representation. The print function does the
same but prints the result to the console which is handy for tracing. The tofile function writes the
table to a file, using reasonable chunks so that less memory is used. The fourth variant tohandle
takes a handle so that you can do whatever you like with the result.

table.serialize (root, name, reduce, noquotes, hexify)
table.print (root, name, reduce, noquotes, hexify)
table.tofile (filename, root, name, reduce, noquotes, hexify)
table.tohandle (handle, root, name, reduce, noquotes, hexify)

The serialization can be controlled in several ways. Often only the first two options makes sense:

table.serialize({ a = 2 })
t={

[||an]=2’
}

table.serialize({ a 2 }, "name")

name={
[||an]=2’
b

2 }, true)

table.serialize({ a

return {
[||an]=2,
}

table.serialize({ 2 }, false)

{
[uan]:z’
b

)
1]

table.serialize({ a = 2 }, "return")

return {
[||an]=2’
}

2}, 12)

table.serialize({ a

[12]1={
[||an]=2’
b

preliminary, uncorrected version — March 23, 2013

Lua Functions 73

table.serialize({ a [3] "b", [true] "6" }, nil, true)

Il
N

t={
[3]="b",
[||au]=2’
[true]l="6",
}

[3]

table.serialize({ a "b", [true] "6" }, nil, true, true)

Il
N

t={
[3]="b",
[||au]=2’
[true]l="6",
}

table.serialize({ a [3] "b", [true] "6" }, nil, true, true, true)

I
N

t={
[3]="b",
[||au]=2,
[true]l="6",
}

In ConTgXt there is also a tocontext function that typesets the table verbose. This is handy for
manuals and tracing.
identical are_equal

These two function compare two tables that have a similar structure. The identical variant operates
on a hash while are_equal assumes an indexed table.

local b = table.identical (one, two)

local b = table.are_equal (one, two)
table.identical({ a={x =23} 3}, {a={x=31}}
false

table.identical{ a={x=23} 2}, {a={x=21}1})
true

table.are_equal({ a={x=21%}}, {a={x=31}1}
true

table.are_equal{ a={x=2%} 3}, {a={x=22}}

true

table.identical({ "one", "two" }, { "one", "two" })

true

preliminary, uncorrected version — March 23, 2013

74 Lua Functions

table.identical({ "one", "two" }, { "two", "one" })

false
table.are_equal({ "one", "two" }, { "one", "two" })
true
table.are_equal({ "one", "two" }, { "two", "one" })
false

tohash fromhash swapped swaphash reversed reverse mirrored

We use tohash quite a lot in ConTgXt. It converts a list into a hash so that we can easily check if (a
string) is in a given set. The fromhash function does the opposite: it creates a list of keys from a
hashed table where each value that is not false or nil is present.

local hashed
local indexed

table.tohash (indexed)
table.fromhash(hashed)

The function swapped turns keys into values vise versa while the reversed and reverse reverses
the values in an indexed table. The last one reverses the table itself (in-place).

local swapped = table.swapped (indexedtable)
local reversed = table.reversed (indexedtable)
local reverse = table.reverse (indexedtable)
local mirrored = table.mirrored (hashedtable)

table.tohash({ "a", "b", "c" })

t={
["a"]=true,
["b"]=true,
["c"]=true,

3

table.fromhash({ a = true, b = false, ¢ = true })

t={
ngn ,
nen ,

}

table.swapped({ "a", "b", "c" })

t={
["a"]=1,
["b"]=2,
["c"]=3,
}

table.reversed({ "a", "b", "c" })

t={

preliminary, uncorrected version — March 23, 2013

Lua Functions 75

llCll ,
llbll ,
llall s

}
table.reverse({ 1, 2, 3, 4 })

t={
4,

b

b

=N W

b

3

table.mirrored({ a = "x", b = "y", ¢ = "z" })

t={
["a"]="x",
["b"]="y",
I:"C"] =|lzl| s
["x"]="a",
[llyll] =llbll s
["z"]="c",

}

append prepend

These two functions operate on a pair of indexed tables. The first table gets appended or prepended
by the second. The first table is returned as well.

table.append (one, two)
table.prepend(one, two)

The functions are similar to loops using insert.

table.append({ nan, "b", nen }’ { "d", gt })

t={
Ilall s
llbll s
IlCll s
Ildll s
llell s

}
table.prepend({ nau’ "b", "C" }, { "d", ||en })

t={
lldll ,
Ilell 5
Hall s
Ilbll s
IICII N

preliminary, uncorrected version — March 23, 2013

76 Lua Functions

merge merged imerge imerged

You can merge multiple hashes with merge and indexed tables with imerge. The first table is the
target and is returned.

table.merge (one, two, ...)
table.imerge (one, two, ...)

The variants ending with a d merge the given list of tables and return the result leaving the first
argument untouched.

local merged = table.merged (one, two, ...)
local merged = table.imerged (one, two, ...)

table.merge({ a =1, b=2, c=32}, {d=113}, {a=01}

t={
["a"]=0,
["b"]=2,
I:"C"] =3’
["d"] =1 s
b

table.imerge({ |,a||’ "b", "C" }, { "d", nen }’ { nfn, ||gn })

t={
llall s
Ilbll s
IICII s
lldll B
Ilell s
'Ifll s
Ilgll s

copy fastcopy

When copying a table we need to make a real and deep copy. The copy function is an adapted version
from the Lua wiki. The fastopy is faster because it does not check for circular references and does
not share tables when possible. In practice using the fast variant is okay.

local copy = table.copy (v
local copy = table.fastcopy(t)

flattened

A nested table can be unnested using flattened. Normally you will only use this function if the
content is somewhat predictable. Often using one of the merge functions does a similar job.

local flattened = table.flatten(t)

preliminary, uncorrected version — March 23, 2013

Il
[
T’

Il

>
-~
(¢]

Il
w
-
Q

Il
&
~

table.flattened({ a

t={
[uan] =1 s
["b"]=2,
["C"] =3’
I:"d"]=4,
b

table.flattened({ 1, 2, { 3, { 4 } }, 5})

t={

O W=

-

}

table.flattened({ 1, 2, { 3, { 4 } }, 5}, 1)

t={

table.flattened({ a =1, b =2, { ¢ =33}, d = 4})

t={
[uan] =1 ,
I:"b"]=2,
["C"] =3’
["d"]=4,
b

table.flattened({ 1, 2, { 3, { c =43} 3}, 5})

{

3

t

b

b

a w N~

[:'C"] =4’
b

table.flattened({ 1, 2, { 3, { c =4 3} }, 5}, 1)

t={
1,
2,

preliminary, uncorrected version — March 23, 2013

Lua Functions

77

78 Lua Functions

loweredkeys

The name says it all: this function returns a new table with the keys being lower case. This is handy
in cases where the keys have a change to be inconsistent, as can be the case when users input keys
and values in less controlled ways.

local normalized = table.loweredkeys { a = "a", A = "b", b = "c" }

table.loweredkeys({ a = 1, b = 2, C = 3})

t={
[uan] =1 s
["b"]=2,
["C"] =3’
b

contains

This function works with indexed tables. Watch out, when you look for a match, the number 1 is not
the same as string "1". The function returns the index or false.

if table.contains(t, 5) then ... else ... end
if table.contains(t,"5") then ... else ... end

table.contains({ "a", 2, true, "1"}, 1)

false

table.contains({ "a", 2, true, "1"}, "1")

4

unique
When a table (can) contain duplicate entries you can get rid of them by using the unique helper:
local t = table.unique { 1, 2, 3, 4, 3, 2, 5, 6 }

table.unlque({ lla|l 1|bll Ilcll |lall lldll })

t={
llall ,
Ilbll 5
HCII s
Ildll s

preliminary, uncorrected version — March 23, 2013

Lua Functions 79

count

The name speaks for itself: this function counts the number of entries in the given table. For an
indexed table #t is faster.

local n = table.count(t)

table.count({ 1, 2, [4] = 4, a = "a" })

4

sequenced

Normally, when you trace a table, printing the serialized version is quite convenient. However, when
it concerns a simple table, a more compact variant is:

print(table.sequenced(t, separator))

table.sequenced({ 1, 2, 3, 4})

1121314

table.sequenced({ 1, 2, [4] =4, a="a" }, ", ")

1, 2

10.3 Math

In addition to the built-in math function we provide: round, odd, even, div, mod, sind, cosd and
tand.

At the TgX end we have a helper 1uaexpr that you can use to do calculations:
\luaexpr{1l + 2.3 * 4.5 + math.pi} = \cldcontext{l + 2.3 * 4.5 + math.pi}

Both calls return the same result, but the first one is normally faster than the context command
which has quite some overhead.

14.49159265359 = 14.49159265359

The \luaexpr command can also better deal with for instance conditions, where it returns true or
false, while \cldcontext would interpret the boolean value as a special signal.

10.4 Booleans

tonumber
This function returns the number one or zero. You will seldom need this function.

local state = boolean.tonumber(str)

boolean.tonumber (true)

1

preliminary, uncorrected version — March 23, 2013

80 Lua Functions

toboolean

When dealing with configuration files or tables a bit flexibility in setting a state makes sense, if only
because in some cases it’s better to say yes than true.

local b
local b

toboolean(str)
toboolean(str,tolerant)

When the second argument is true, the strings true, yes, on, 1, t and the number 1 all turn into
true. Otherwise only true is honoured. This function is also defined in the global namespace.

string.toboolean("true")

true

string.toboolean("yes")

false

string.toboolean("yes",true)

true

is_boolean

This function is somewhat similar to the previous one. It interprets the strings true, yes, onand t as
true and false, no, off and f as false. Otherwise nil is returned, unless a default value is given,
in which case that is returned.

if is_boolean(str) then ... end
if is_boolean(str,default) then ... end

string.is_boolean("true")

true

string.is_boolean("off")

false

string.is_boolean("crap",true)

true

10.5 Strings

Lua strings are simply sequences of bytes. Of course in some places special treatment takes place.
For instance \n expands to one or more characters representing a newline, depending on the operat-
ing system, but normally, as long as you manipulate strings in the perspective of LuaTgX, you don’t
need to worry about such issues too much. As LuaTgX is a utf-8 engine, strings normally are in that
encoding but again, it does not matter much as Lua is quite agnostic about the content of strings: it
does not care about three characters reflecting one Unicode character or not. This means that when
you use for instance the functions discussed here, or use libraries like 1peg behave as you expect.

Versions later than 0.75 are likely to have some basic Unicode support on board but we can easily
adapt to that. At least till LuaTgX version 0.75 we provided the slunicode library but users cannot

preliminary, uncorrected version — March 23, 2013

Lua Functions 81

assume that that will be present for ever. If you want to mess around with utf string, use the utf
library instead as that is the one we provide in MKIV. It presents the stable interface to whatever Lua
itself provides and /or what LuaTgX offers and /or what is there because MkIV implements it.

[lua] byte char

As long as we're dealing with ascii characters we can use these two functions to go from numbers to
characters and vise versa.

string.byte("luatex")

108

string.byte("luatex",1,3)

108 117 97

string.byte("luatex",-3,-1)

116 101 120

string.char(65)

A
string.char(65,66,67)

ABC

[lual] sub

You cannot directly access a character in a string but you can take any slice you want using sub. You
need to provide a start position and negative values will count backwards from the end.

local slice = string.sub(str,first,last)

string.sub("abcdef",2)

bcdef

string.sub("abcdef",2,3)

bc

string.sub("abcdef",-3,-2)

de

[lua] gsub

There are two ways of analyzing the content of a string. The more modern and flexible approach is to
use 1peg. The other one uses some functions in the string namespace that accept so called patterns
for matching. While 1peg is more powerfull than regular expressions, the pattern matching is less
powerfull but sometimes faster and also easier to specify. In many cases it can do the job quite well.

local new, count = string.gsub(old,pattern,replacement)

preliminary, uncorrected version — March 23, 2013

82 Lua Functions

The replacement can be a function. Often you don’t want the number of matches, and the way to
avoid this is either to store the result in a variable:

local new = string.gsub(old,"lua","LUA")
print (new)

or to use parentheses to signal the interpreter that only one value is return.
print ((string.gsub(old,"lua","LUA"))

Patterns can be more complex so you'd better read the Lua manual if you want to know more about
them.

string.gsub("abcdef","b","B")

aBcdef

string.gsub("abcdef"," [bc]",string.upper)

aBCdef
An optional fourth argument specifies how often the replacement has to happen

string.gsub("textextextex","tex","abc")

abcabcabcabc

string.gsub("textextextex","tex","abc",1)

abctextextex

string.gsub("textextextex","tex","abc",2)

abcabctextex

[lua] find
The find function returns the first and last position of the match:
local first, last = find(str,pattern)

If you're only interested if there is a match at all, it’s enough to know that there is a first position. No
match returns nil. So,

if find("luatex","tex") then ... end

works out okay. You can pass an extra argument to find that indicates the start position. So you can
use this function to loop over all matches: just start again at the end of the last match.

A fourth optional argument is a boolean that signals not to interpret the pattern but use it as-is.

string.find("abc.def","c% .d",1,false)

3

string.find("abc.def","c}% .d",1,true)

nil

preliminary, uncorrected version — March 23, 2013

Lua Functions 83

string.find("abc% .def","c% .d",1,false)

nil

string.find("abc) .def","c% .d",1,true)

3

[lual] match gmatch
With match you can split of bits and pieces of a string. The parenthesis indicate the captures.
local a, b, ¢, ... = string.match(str,pattern)

The gmatch function is used to loop over a string, for instance the following code prints the elements
in a comma separated list, ighoring spaces after commas.

for s in string.gmatch(str,"([~,%s])+") do
print(s)
end

A more detailed description can be found in the Lua reference manual, so we only mention the special
directives. Characters are grouped in classes:

%a letters

%1 lowercase letters

»u uppercase letters

%d digits

Jw letters and digits

%c control characters

%p punctuation

%x hexadecimal characters
%s space related characters

You can create sets too:

[%1%d] lowercase letters and digits

[“%d%p] all characters except digits and punctuation
[p-z] all characters in the range p upto z

[par] all characters p, q and r

There are some characters with special meanings:

the beginning of a string

$ end of astring
any character
* zero or more of the preceding specifier, greedy
- zero or more of the preceding specifier, least possible
+ one or more of the preceding specifier
? zero or one of the preceding specifier

() encapsulate capture
%b capture all between the following two characters

preliminary, uncorrected version — March 23, 2013

84 Lua Functions

You can use whatever you like to be matched:

par the sequence pgr
my name is (%w) the word following my name is

If you want to specify such a token as it is, then you can precede it with a percent sign, so to get a
percent, you need two in a row.

string.match("before:after","~(.-):")

before

string.match("before:after","~([":]1)")

b

string.match("before:after","bef (.*)ter")

ore:af

string.match("abcdef"," [b-e]+")

bcde

string.match("abcdef"," [b-e]*")

string.match("abcdef","b-e+")

e

string.match("abcdef","b-ex")

Such patterns should not be confused with regular expressions, although to some extent they can do
the same. If you really want to do complex matches, you should look into lpeg.

[lual] lower upper
These two function spreak for themselves.

string.lower ("LOW")

low

string.upper ("upper")

UPPER

[lual] format

The format function takes a template as first argument and one or more additional arguments de-
pending on the format. The template is similar to the one used in ¢ but it has some extensions.

local s = format(format, str, ...)

preliminary, uncorrected version — March 23, 2013

Lua Functions 85

The following table gives an overview of the possible format directives. The s is the most proba-
bly candidate and can handle numbers well as strings. Watch how the minus sign influences the
alignment.’

integer hi 12345 12345
integer hd 12345 12345
unsigned yAN -12345 u+03039
character he 123 Y
hexadecimal %x 123 b

WX 123 7B
octal ho 12345 30071
string hs abc abcd

%-8s 123 123

%8s 123 123
float %0.2f 12.345 12.35

exponential %0.2e 12.345 1.23e+001
%0.2E 12.345 1.23E+001
autofloat %0.2g 12.345 12
%0.2G 12.345 12

string.format ("U+) 05X",2010)

U+007DA

formatters

The format function discussed before is the built-in. As an alternative ConTgXt provides an addi-
tional formatter that has some extensions. Interesting is that that one is often more efficient, although
there are cases where the speed is comparable. In addition to the regular format function we have
the following extra formatting keys:®

utf character %c 322 1
force tostring %S nil
%Q nil
%N 0123 123
signed number KL 1234 +1234
rounded number Y%r 1234.56 1235
unicode valueOx %h % 1234
%H ¥ 1234
unicode value U+ %u % 1234 u+00142 u+004d2
%U ¥ 1234 U+00142 U+004D2
points hp 1234567 18.838pt
basepoints %b 1234567 18.76762bp
table concat %t {1,2,3} 123
’xt {1,2,3} 1%2%3

o

There can be differences between platforms although so far we haven’t run into problems. Also, Lua 5.2 does a bit more
checking on correct arguments.
6 As we run out of keys some are somewhat counter intuitive, like 1 for booleans (logical).

preliminary, uncorrected version — March 23, 2013

86 Lua Functions

table serialize »T {1,2,3} 1%2%3
%T {a=1,b=3} a=1 b=2
%+T {a=1,b=3} a=1[+b=2]

boolean (IOgIC) %1 ng == n"p"
%L ngt == npn
whitespace Yw 3 ‘
h2w 3 |
AW

There is also a generic formatter: a and A. This one converts the argument into a string and deals
with strings, number, booleans, tables and whatever. We mostly use these in tracing. The lowercase
variant uses single quotes, and the uppercase variant uses double quotes.

There are two more formatters plugged in: !xml! and !tex!. These are best demonstrated with an
example:

local xf = formatter["xml escaped: %!xml!"]
local xr = formatter["tex escaped: %!tex!"]

print(xf("x > 1 && x < 10"))
print (xt("this will cost me $123.00 at least"))

weird, this fails when cld-verbatim is there as part of the big thing: catcodetable 4 suddenly lacks the
comment being a other

The context command uses the formatter so one can say:

\startluacode
context ("first some xml: %'xml!, and now some %'tex!",

"x > 1 && x < 10", "this will cost me $123.00 at least")
\stopluacode

This renders as follows:
first some xml: x > 1 && x < 10, and now some this will cost me $123.00 at least

You can extend the formatter but we advise you not to do that unless you're sure what you're doing.
You never know what ConTgXt itself might add for its own benefit.

However, you can define your own formatter and add to that without interference. In fact, the main
formatter is just defined that way. This is how it works:

local MyFormatter = utilities.strings.formatters.new()

utilities.strings.formatters.add (
MyFormatter,
"upper" ,
"string.upper (%s)"

)

Now you can use this one as:

context.bold(MyFormatter["It's %s or %!upper!."]("this","that"))

preliminary, uncorrected version — March 23, 2013

Lua Functions 87

It’s this or THAT.
Because we’re running inside ConTgXt, a better definition would be this:

local MyFormatter = utilities.strings.formatters.new()

utilities.strings.formatters.add (
MyFormatter,
"U.C" ,
"myupper (%s)",
"local myupper = characters.upper"

)

utilities.strings.formatters.add (
MyFormatter,
"1C",
"mylower (%s)",
"local mylower = characters.lower"

)

utilities.strings.formatters.add (
MyFormatter,
n Shll s
"myshaped (%s)",
"local myshaped = characters.shaped"

)

context (MyFormatter ["Uppercased: %'uc!"]("AAARARa&as4a"))
context.par ()

context (MyFormatter ["Lowercased: %!'lc!"]("AAARARa&a544"))
context.par()

context (MyFormatter ["Reduced: %!sh!"] ("AAAAAA&44544"))

As expected we get:

...... O N £ A ~ e O

Uppercased: AAAAAAAAAAAA

Lowercased: adadaijasaasa
Reduced: AAAAAAaaaaaa

Of course you can also apply the casing functions directly so in practice you shouldn’t use formatters
without need. Among the advantages of using formatters are:

e They provide a level of abstraction.

e They can replace multiple calls to \context.

e Sometimes they make source code look better.

e Using them is often more efficient and faster.

The last argument might sound strange but considering the overhead involved in the context (re-
lated) functions, doing more in one step has benefits. Also, formatters are implemented quite effi-
ciently, so their overhead can be neglected.

In the examples you see that a formatter extension is itself a template.

preliminary, uncorrected version — March 23, 2013

88 Lua Functions

local FakeXML = utilities.strings.formatters.new()

utilities.strings.formatters.add(FakeXML,"b",[["<" ..%s..">" 11)
utilities.strings.formatters.add(FakeXML,"e", [["</"..%s..">" 11)
utilities.strings.formatters.add(FakeXML,"n", [["<" ..%s.."/>"]11)

context (FakeXML["It looks like %!b!xmlY%!e! doesn't it?"]("it","it"))
This gives: It looks like <it>xml</it> doesn’t it?. Of course we could go over the top here:

local FakeXML = utilities.strings.formatters.new()
local stack = { }

function document.f_b(s)
table.insert(stack,s)
return "<" .. s .. ">"
end

function document.f_e()
return "</" .. table.remove(stack) .. ">"
end

utilities.strings.formatters.add(FakeXML,"b", [[document.f_b(%s)]1])
utilities.strings.formatters.add(FakeXML,"e", [[document.f_e()]1])

context (FakeXML["It looks like %1!b!xml¥%0'!'e! doesn't it?"]("it"))

This gives: It looks like <it>xml</it> doesn’t it?. Such a template look horrible, although it’s not too
far from the regular format syntax: just compare %1f with %1!e!. The zero trick permits us to inject
information that we’ve put on the stack. As this kind of duplicate usage might occur most, a better
solution is available:

local FakeXML = utilities.strings.formatters.new()

utilities.strings.formatters.add(FakeXML,"b",[["<" .. %s .. ">"]11)
utilities.strings.formatters.add(FakeXML,"e",[["</" .. %s .. ">"11)

context (FakeXML["It looks like %!b!xml%-1'e! doesn't it?"]("it"))

We get: It looks like <it>xml</it> doesn’t it?. Anyhow, in most cases you will never feel the need
for such hackery and the regular formatter works fine. Adding this extension mechanism was rather
trivial and it doesn’t influence the performance.

In ConTgXt we have a few more extensions:

utilities.strings.formatters.add (
strings.formatters, "unichr",
[["U+" .. format("%%05X",%s) .. " (" .. utfchar(¥%s) .. ")"]1]

utilities.strings.formatters.add (
strings.formatters, "chruni",

preliminary, uncorrected version — March 23, 2013

Lua Functions 89

[[utfchar(¥%s) .. " (U+" .. format("%%05X",%s) .. ")"]]
)

This one is used in messages:

context ("Missing character %!chruni! in font.",234) context.par()
context ("Missing character %!unichr! in font.",234)

This shows up as:
context("Missing character context("Missing character

If you look closely to the definition, you will notice that we use %s twice. This is a feature of the
definer function: if only one argument is picked up (which is default) then the replacement format
can use that two times. Because we use a format in the constructor, we need to escape the percent
sign there.

strip

This function removes any leading and trailing whitespace characters.

local s = string.strip(str)

string.strip(" lua + tex = luatex ")

lua + tex = luatex

split splitlines checkedsplit

The line splitter is a special case of the generic splitter. The split function can get a string as well an
lpeg pattern. The checkedsplit function removes empty substrings.

local t = string.split (str, pattern)
local t = string.split (str, lpeg)
local t = string.checkedsplit (str, lpeg)
local t = string.splitlines (str)
string.split("a, b,c, d", ",")

t={

||a||’

n bll,

llCll’

n dll’

}

string.split("p.q,r", lpeg.S(",."))

t={

-

preliminary, uncorrected version — March 23, 2013

90 Lua Functions

string.checkedsplit(";one;;two", ";")

t={
"one" ,
"two" ,

}

string.splitlines("lua\ntex nic")

t={
n luaH
b
"tex nic",

}

quoted unquoted

You will hardly need these functions. The quoted function can normally be avoided using the format
pattern %q. The unquoted function removes single or double quotes but only when the string starts
and ends with the same quote.

string.quoted (str)
string.unquoted(str)

local g
local u

string.quoted([[test]])

"test"

string.quoted([[test"test]])

"test\"test"

string.unquoted([["test]])

"test

string.unquoted([["t\"est"]])

t\"est

string.unquoted([["t\"est"x]])

t\"est

string.unquoted("\'test\'")

test

count

The function count returns the number of times that a given pattern occurs. Beware: if you want to
deal with utf strings, you need the variant that sits in the 1peg namespace.

local n = count(str,pattern)

preliminary, uncorrected version — March 23, 2013

Lua Functions 91

string.count("test me", "e")

2

limit

This function can be handy when you need to print messages that can be rather long. By default,
three periods are appended when the string is chopped.

print(limit(str,max,sentinel)

string.limit("too long", 6)

too. ..

string.limit("too long", 6, " (etc)")

(etc)

is_empty
A string considered empty by this function when its length is zero or when it only contains spaces.
if is_empty(str) then ... end

string.is_empty("")

true

string.is_empty(" ")

true

string.is_empty(" 7 ")

false

escapedpattern topattern

These two functions are rather specialized. They come in handy when you need to escape a pattern,
i.e. prefix characters with a special meaning by a %.

local e = escapedpattern(str, simple)
local p = topattern (str, lowercase, strict)

The simple variant does less escaping (only - . ?* and is for instance used in wildcard patterns when
globbing directories. The topattern function always does the simple escape. A strict pattern gets
anchored to the beginning and end. If you want to see what these functions do you can best look at
their implementation.

10.6 utf

We used to have the slunicode library available but as most of it is not used and because it has a
somewhat fuzzy state, we will no longer rely on it. In fact we only used a few functions in the utf

preliminary, uncorrected version — March 23, 2013

92 Lua Functions

namespace so as ConTEXt user you'd better stick to what is presented here. You don’t have to worry
how they are implemented. Depending on the version of LuaTgX it can be that a library, a native
function, or Ipegis used.

char byte

As utf is a multibyte encoding the term char in fact refers to a Lua string of one upto four 8-bit char-
acters.

local b
local c

utf.byte("a")
utf.char (0OxE5)

The number of places in ConTgXt where do such conversion is not that large: it happens mostly in
tracing messages.

logs.report("panic","the character U+/,05X is used",utf.byte("&"))

utf.byte("a")

230
utf.char (0xE6)

x

sub

If you need to take a slice of an utf encoded string the sub function can come in handy. This function
takes a string and a range defined by two numbers. Negative numbers count from the end of the
string.

utf.sub("123456a4a384a",1,7)

123456a

utf.sub("123456a448344",0,7)

123456a

utf.sub("123456a44344",0,9)

123456344

utf.sub("1234563455344",4)

456aa43ad

utf.sub("123456345344",0)

123456344534

utf.sub("123456a43544",0,0)

preliminary, uncorrected version — March 23, 2013

Lua Functions 93

utf.sub("123456a44834a" ,4,4)

4
utf.sub("123456a345354",4,0)

utf.sub("123456a43534a",-3,0)

utf.sub("123456a435844",0,-3)

1234564444
utf.sub("123456a43344",-5,-3)

aaa

utf.sub("123456345354",-3)

aa

len

There are probably not that many people that can instantly see how many bytes the string in the
following example takes:

local 1 = utf.len("AAARAR353553")

Programming languages use ascii mostly so there each characters takes one byte. In cjk scripts how-
ever, you end up with much longer sequences. If you ever did some typesetting of such scripts you
have noticed that the number of characters on a page is less than in the case of a Latin script. As in-
formation is coded in less characters, effectively the source of a Latin or cjk document will not differ
that much.

utf.len("0000066686")

10

values characters

There are two iterators that deal with utf. In LuaTgX these are extensions to the string library but
for consistency we’ve move them to the utf namespace.

The following function loops over the utf characters in a string and returns the Unicode number in u:

for u in utf.values(str) do
--— u is a number
end

The next one returns a string c that has one or more characters as utf characters can have upto 4 bytes.

for ¢ in utf.characters(str) do
-— ¢ is a string

preliminary, uncorrected version — March 23, 2013

94 Lua Functions

end

ustring xstring tocodes
These functions are mostly useful for logging where we want to see the Unicode number.

utf.ustring (0xE6)

U+000E6

utf.ustring("a")

U+000F9

utf.xstring(0xE6)

0xO000E6

utf.xstring("a")

0x000EO

utf.tocodes ("udi")

0x00F9 0xOOFA 0xOOFC

utf.tocodes("aaa","")

0x00EO00x00E10x00E4

utf.tocodes ("066" ,)

0x00F2+0x00F3+0x00F6

split splitlines totable

The split function splits a sequence of utf characters into a table which one character per slot. The
splitlines does the same but each slot has a line instead. The totable function is similar to split,
but the later strips an optionally present utf bom.

utf.split("666")

table: OD5BACCO

count

This function counts the number of times that a given substring occurs in a string. The patterns can
be a string or an Ipeg pattern.

utf.count ("66606660666","56")

3

utf.count("4aaa",lpeg.P("a") + lpeg.P("a"))

2

preliminary, uncorrected version — March 23, 2013

Lua Functions 95

remapper replacer substituter
With remapper you can create a remapping function that remaps a given string using a (hash) table.

local remap = utf.remapper { a = 'd', b = "c¢", ¢ = "b", d = "a"

print(remap("abcd 1234 abcd"))

A remapper checks each character against the given mapping table. Its cousin replacer is more
efficient and skips non matches. The substituter function only does a quick check first and avoids
building a string with no replacements. That one is much faster when you expect not that many
replacements.

The replacer and substituter functions take table as argument and an indexed as well as hashed
one are acceptable. In fact you can even do things like this:

local rep = utf.replacer { [lpeg.patterns.digit] = "!" }

is_valid

This function returns false if the argument is no valid utf string. As LuaTgXis pretty strict with respect
to the input, this function is only useful when dealing with external files.

function checkfile(filename)
local data = io.loaddata(filename)
if data and data ~= "" and not utf.is_valid(data) then
logs.report("error","file J%q contains invalid utf",filename)
end
end

10.7 Numbers and bits

In the number namespace we collect some helpers that deal with numbers as well as bits. Starting
with Lua 5.2 a library bit32 is but the language itself doesn’t provide for them via operators: the
library uses functions to manipulate numbers upto 232, For advanced bit manipulations you should
use the bit32 library, otherwise it’s best to stick to the functions described here.

hasbit setbit clearbit

As bitsets are numbers you will also use numbers to qualify them. So, if you want to set bits 1, 4 and
8, you can to that using the following specification:

local b=1+4 + 8 -—- 0x1 + 0x4 + 0x8
local b 13 -- or 0xC

However, changing one bit by adding a number to an existing doesn’t work out that well if that
number already has that bit set. Instead we use:

local b = number.setbit(b,0x4)
In a similar fashion you can turn of a bit:

local b = number.clearbit(b,0x4)

preliminary, uncorrected version — March 23, 2013

96 Lua Functions

Testing for a bit(set) is done as follows:

local okay = number.hasbit(b,0x4)

bit

Where the previously mentioned helpers work with numbers representing one or more bits, it is
sometimes handy to work with positions. The bit function returns the associated number value.

number.bit (5)

16

tobitstring

There is no format option to go from number to bits in terms of zeros and ones so we provide a helper:
tobitsting.

number.tobitstring(2013)

0000011111011101

number.tobitstring(2013,3)

000000000000011111011101

number.tobitstring(2013,1)

11011101

bits
If you ever want to convert a bitset into a table containing the set bits you can use this function.

number.bits(11)

t={
4,
2,
1,

}

toset

A string or number can be split into digits with toset. Beware, this function does not return a
function but multiple numbers

local a, b, ¢, d = number.toset("1001")
The returned values are either numbers or nil when an valid digit is seen.

number.toset (100101)

100101

preliminary, uncorrected version — March 23, 2013

Lua Functions 97

number.toset ("100101")

100101

number.toset ("21546")

21546

valid

This function can be used to check or convert a number, for instance in user interfaces.

number.valid(12)

12
number.valid("34")

34

number.valid("ab",56)

56

10.8 lpeg patterns

For LuaTgX and ConTgXt MKIV the 1peg library came at the right moment as we can use it in lots
of places. An in-depth discussion makes no sense as it’s easier to look into 1-1peg.lua, so we stick
to an overview.” Most functions return an 1peg object that can be used in a match. In time critical
situations it’s more efficient to use the match on a predefined pattern that to create the pattern new
each time. Patterns are cached so there is no penalty in predefining a pattern. So, in the following
example, the splitter that splits at the asterisk will only be created once.

local splitter_1
local splitter_2

lpeg.splitat ("*")
lpeg.splitat ("*")

local n, m = lpeg.match(splitter_1,"2%x4")
local n, m = lpeg.match(splitter_2,"2%x4")

[lual] match print PR S V C Cc Cs

The match function does the real work. Its first argument is a 1peg object that is created using the
functions with the short uppercase names.

local P, R, C, Ct = 1lpeg.P, 1lpeg.R, 1lpeg.C, lpeg.Ct
local pattern = Ct((P("[") * C(R("az")~0) * P(']') + P(1))"0)
local words = lpeg.match(pattern,"a [first] and [second] word")

In this example the words between square brackets are collected in a table. There are lots of examples
of 1peg in the ConTgXt code base.

7 1f you search the web for lua 1lpeg you will end up at the official documentation and tutorial.

preliminary, uncorrected version — March 23, 2013

98 Lua Functions

anywhere
local p = anywhere(pattern)

lpeg.match(lpeg.Ct ((1lpeg.anywhere("->")/"!")~0), "oeps->what->more")

t={

nwyn
. 3

nyn
. b

3

splitter splitat firstofsplit secondofsplit

The splitter function returns a pattern where each match gets an action applied. The action can
be a function, table or string.

local p = splitter(pattern, action)

The splitat function returns a pattern that will return the split off parts. Unless the second argu-
ment is true the splitter keeps splitting

local p = splitat(separator,single)

When you need to split off a prefix (for instance in a label) you can use:

local p
local p

firstofsplit(separator)
secondofsplit(separator)

The first function returns the original when there is no match but the second function returns nil
instead.

lpeg.match(lpeg.Ct (1peg.splitat("->",false)), "oeps->what->more")

t={
n Oepsll ,
"what",
"more",

3

lpeg.match(lpeg.Ct(lpeg.splitat("->",false)), "oeps")

t={
"oeps",

}

lpeg.match(1lpeg.Ct(lpeg.splitat("->",true)), "oeps->what->more")

t={
n OepS"
"what->more",

}
lpeg.match(lpeg.Ct(lpeg.splitat("->",true)), "oeps")
t={

preliminary, uncorrected version — March 23, 2013

Lua Functions 99

n Oepsll s

}

lpeg.match(lpeg.firstofsplit(":"), "before:after")

before

lpeg.match(lpeg.firstofsplit(":"), "whatever")

whatever

lpeg.match(lpeg.secondofsplit(":"), "before:after")

after

lpeg.match(lpeg.secondofsplit(":"), "whatever")

nil

split checkedsplit

The next two functions have counterparts in the string namespace. They return a table with the
split parts. The second function omits empty parts.

local t = split (separator,str)
local t = checkedsplit(separator,str)

lpeg.split(",","a,b,c")

t={
ngn ,
np" ,
nen ,

}

lpeg.split(",",",a, 9b:C9")

t={

nn

3
llall N
nn

b
llbll N
IICII ,
nn

3

lpeg.checkedsplit(",",",a,,b,c,")

t={
ngn ,
np" ,
nen ,

}

preliminary, uncorrected version — March 23, 2013

100 Lua Functions

stripper keeper replacer

These three functions return patterns that manipulate a string. The replacer gets a mapping table
passed.

local p = stripper(str or pattern)
local p = keeper (str or pattern)
local p = replacer (mapping)

lpeg.match(lpeg.stripper (1peg.R("az")), "[-a-b-c-d-1")

lpeg.match(lpeg.stripper("ab"), "[-a-b-c-d-1")

[---c-d-]

lpeg.match(lpeg.keeper (lpeg.R("az")), "[-a-b-c-d-1")

abcd

lpeg.match(lpeg.keeper("ab"), "[-a-b-c-d-]")

ab

lpeg.match(lpeg.replacer{{"a","p"},{"b","q"}}, "[-a-b-c-d-1")

[-p-gq-c-d-]

balancer

One of the nice things about 1peg is that it can handle all kind of balanced input. So, a function is
provided that returns a balancer pattern:

local p = balancer(left,right)
lpeg.match(lpeg.Ct ((1peg.C(1lpeg.balancer ("{","}"))+1)~0),"{a} {b{c}}")

t={
n {a}ﬂ s
"{b{c}}",
}

lpeg.match(lpeg.Ct ((1lpeg.C(1lpeg.balancer (" ((","]1"))+1)~0),"((al ((b((c]I™)

t={
"((al",
"((b((cI]",
+

counter

The counter function returns a function that returns the length of a given string. The count function
differs from its counterpart living in the string namespace in that it deals with utf and accepts strings
as well as patterns.

preliminary, uncorrected version — March 23, 2013

Lua Functions 101

local fnc = counter(lpeg.P("a") + lpeg.P("a"))
local len = fnc("&aaa")

UP US UR

In order to make working with utf-8 input somewhat more convenient a few helpers are provided.

local p = lpeg.UP(utfstring)
local p = lpeg.US(utfstring)
local p = lpeg.UR(utfpair)

local p = lpeg.UR(first,last)

utf.count("44aa",lpeg.UP("aa"))

1

utf.count("4ada",lpeg.US("aa"))

utf.count("44aa",1lpeg.UR("ad"))

utf.count("44aa",lpeg.UR("aa"))

utf.count("4ada",lpeg.UR(0x0000,0xFFFF))

patterns
The following patterns are available in the patterns table in the 1peg namespace:

HEX alwaysmatched anything argument balanced beginline beginofstring cardinal

cfloat chartonumber cnumber collapser colon comma commaspacer containseol content
context cunsigned digit dimenpair doublequoted dquote emptyline endofstring eol

equal escaped float hex hexadecimal integer letter linesplitter longtostring
lowercase nested nestedbraces nestedparents newline nodquote nonspacer nonwhitespace
nosquote number oct octal paragraphs period propername qualified quoted rootbased
semicolon sentences sign singlequoted somecontent space spaceortab spacer splitthousands
sqlescape squote stripper stripzeros tab texescape textline toentities tolower
toshape toupper underscore undouble unquoted unsigned unsingle unspacer uppercase

url urlescaper urlsplitter urlunescaped urlunescaper utf8 utf8byte utf8char
utf8character utf8four utf8one utf8three utf8two utfbomutflinesplitter utfoffset
utftohigh utftolowutftype validatedutf validdimen validutf8 validutf8char
whitespace words xml xmlescape

There will probably be more of them in the future.

preliminary, uncorrected version — March 23, 2013

102 Lua Functions

109 10O

The io library is extended with a couple of functions as well and variables but first we mention a few
predefined functions.

[lual] open popen...

The IO library deals with in- and output from the console and files.

local £ = io.open(filename)

When the call succeeds £ is a file object. You close this file with:

f:close()

Reading from a file is done with f:read (. ..) and writing to a file with f:write(...). In order to
write to a file, when opening a second argument has to be given, often wb for writing (binary) data.
Although there are more efficient ways, you can use the f:1ines () iterator to process a file line by
line.

You can open a process with io.popen but dealing with this one depends a bit on the operating
system.

fileseparator pathseparator

The value of the following two strings depends on the operating system that is used.

io.fileseparator
io.pathseparator

io.fileseparator

\

io.pathseparator

loaddata savedata

These two functions save you some programming. The first function loads a whole file in a string. By
default the file is loaded in binary mode, but when the second argument is true, some interpretation
takes place (for instance line endings). In practice the second argument can best be left alone.

io.loaddata(filename,textmode)
Saving the data is done with:

io.savedata(filename,str)
io.savedata(filename,tab, joiner)

When a table is given, you can optionally specify a string that ends up between the elements that
make the table.

preliminary, uncorrected version — March 23, 2013

Lua Functions 103

exists size noflines
These three function don’t need much comment.

io.exists(filename)
io.size(filename)
io.noflines(fileobject)
io.noflines(filename)

characters bytes readnumber readstring

When I wrote the icc profile loader, I needed a few helpers for reading strings of a certain length and
numbers of a given width. Both accept five values of n: -4, -2, 1, 2 and 4 where the negative values
swap the characters or bytes.

io.characters(f,n) --
io.bytes(f,n)

The function readnumber accepts five sizes: 1, 2, 4, 8, 12. The string function handles any size and
strings zero bytes from the string.

io.readnumber (f,size)
io.readstring(f,size)

Optionally you can give the position where the reading has to start:
io.readnumber (f,position,size)
io.readstring(f,position,size)

ask

In practice you will probably make your own variant of the following function, but at least a template
is there:

io.ask(question,default,options)
For example:

local answer = io.ask("choice", "two", { "one", "two" })

10.10 File

The file library is one of the larger core libraries that comes with ConTgXt.

dirname basename extname nameonly

We start with a few filename manipulators.

local path file.dirname (name,default)

local base file.basename (name)

local suffix = file.extname(name,default) -- or file.suffix
local name file.nameonly(name)

preliminary, uncorrected version — March 23, 2013

104 Lua Functions

file.dirname("/data/temp/whatever.cld")

/data/temp

file.dirname("c:/data/temp/whatever.cld")

c:/data/temp

file.basename("/data/temp/whatever.cld")

whatever.cld

file.extname("c:/data/temp/whatever.cld")

cld

file.nameonly("/data/temp/whatever.cld")

whatever

addsuffix replacesuffix
These functions are used quite often:

local filename = file.addsuffix(filename, suffix, criterium)
local filename = file.replacesuffix(filename, suffix)

The first one adds a suffix unless one is present. When criterium is true no checking is done and
the suffix is always appended. The second function replaces the current suffix or add one when there
is none.

file.addsuffix("whatever","cld")

whatever.cld

file.addsuffix("whatever.tex","cld")

whatever.tex

file.addsuffix("whatever.tex","cld",true)

whatever.tex.cld

file.replacesuffix("whatever","cld")

whatever.cld

file.replacesuffix("whatever.tex","cld")

whatever.cld

is_writable is_readable
These two test the nature of a file:

file.is_writable(name)
file.is_readable(name)

preliminary, uncorrected version — March 23, 2013

Lua Functions 105

splitname join collapsepath
Instead of splitting off individual components you can get them all in one go:
local drive, path, base, suffix = file.splitname(name)

The drive variable is empty on operating systems other than MS Windows. Such components are
joined with the function:

file.join(...)

The given snippets are joined using the / as this is rather platform independent. Some checking takes
place in order to make sure that nu funny paths result from this. There is also collapsepath that
does some cleanup on a path with relative components, like . ..

file.splitname("a:/b/c/d.e")

a:/b/c/ d e

file.join("a","b","c.d")

a/b/c.d

file.collapsepath("a/b/../c.d")

a/c.d

file.collapsepath("a/b/../c.d",true)

t:/manuals/cld-mkiv/a/c.d

splitpath joinpath

By default splitting a execution path specification is done using the operating system dependant
separator, but you can force one as well:

file.splitpath(str,separator)
The reverse operation is done with:
file.joinpath(tab,separator)

Beware: in the following examples the separator is system dependent so the outcome depends on
the platform you run on.

file.splitpath("a:b:c")

t={
"a:b:c",

}

file.splitpath("a;b;c")

t={
llall

llbll ,

preliminary, uncorrected version — March 23, 2013

106 Lua Functions

llCIl ,

}

file.joinpath({"a","b","c"})

a;b;c

robustname

In workflows filenames with special characters can be a pain so the following function replaces char-
acters other than letters, digits, periods, slashes and hyphens by hyphens.

file.robustname(str,strict)

file.robustname("We don't like this!")

We-don-t-like-this-

file.robustname("We don't like this!",true)

We-don-t-like-this

readdata writedata

These two functions are duplicates of functions with the same name in the io library.

Copy

There is not much to comment on this one:

file.copy(oldname,newname)

is_qualified_path is_rootbased_path

A qualified path has at least one directory component while a rootbased path is anchored to the root
of a filesystem or drive.

file.is_qualified_path(filename)
file.is_rootbased_path(filename)

file.is_qualified_path("a")

false

file.is_qualified_path("a/b")

true

file.is_rootbased_path("a/b")

false

file.is_rootbased_path("/a/b")

true

preliminary, uncorrected version — March 23, 2013

Lua Functions 107

10.11 Dir

The dir library uses functions of the 1fs library that is linked into LuaTgX.

current
This returns the current directory:

dir.current()

glob globpattern globfiles

The glob function collects files with names that match a given pattern. The pattern can have wild-
cards: * (oen of more characters), ? (one character) or ** (one or more directories). You can pass the
function a string or a table with strings. Optionally a second argument can be passed, a table that the
results are appended to.

local files = dir.glob(pattern,target)
local files = dir.glob({pattern,...},target)

The target is optional and often you end up with simple calls like:
local files = dir.glob("*.tex")

There is a more extensive version where you start at a path, and applies an action to each file that
matches the pattern. You can either or not force recursion.

dir.globpattern(path,patt,recurse,action)

The globfiles function collects matches in a table that is returned at the end. You can pass an
existing table as last argument. The first argument is the starting path, the second arguments controls
analyzing directories and the third argument has to be a function that gets a name passed and is
supposed to return true or false. This function determines what gets collected.

dir.globfiles(path,recurse,func,files)

makedirs

With makedirs you can create the given directory. If more than one name is given they are concati-
nated.

dir .makedirs(name,...)

expandname
This function tries to resolve the given path, including relative paths.
dir.expandname (str)

dir.expandname(".")

t:/manuals/cld-mkiv

preliminary, uncorrected version — March 23, 2013

108 Lua Functions

10.12 URL

split hashed construct
This is a specialized library. You can split an url into its components. An url is constructed like this:

foo://example.com:2010/alpha/beta?gamma=delta#epsilon

scheme foo://

authority example.com:2010
path /alpha/beta
query gamma=delta

fragment epsilon

A string is split into a hash table with these keys using the following function:
url.hashed(str)

or in strings with:

url.split(str)

The hash variant is more tolerant than the split. In the hash there is also a key original that holds
the original url and and the boolean noscheme indicates if there is a scheme at all.

The reverse operation is done with:
url.construct (hash)

url.hashed("foo://example.com:2010/alpha/beta?gamma=delta#epsilon")

t={
["authority"]="example.com:2010",
["filename"]="example.com:2010/alpha/beta",
["fragment"]="epsilon",
["noscheme"]=false,
["original"]="foo://example.com:2010/alpha/beta?gamma=delta#epsilon",
["path"]="alpha/beta",
["queries"]={
[ugamman] ="delta" ,
¥,
["query"]="gamma=delta",
["scheme"]="foo",

3

url.hashed("alpha/beta")

t={
["authority"]="",
["filename"]="alpha/beta",
["fragment"]="",
["noscheme"]=true,
["original"]="alpha/beta",

preliminary, uncorrected version — March 23, 2013

["path"]="alpha/beta",
[uqueryn] =nn s
["scheme"]="file",

}

Lua Functions

url.split("foo://example.com:2010/alpha/beta?gamma=delta#epsilon")

t={
"foo" ,
"example.com:2010",
"alpha/beta",
"gamma=delta",
"epsilon",

}

url.split("alpha/beta")

t={
nn
nn ’
nn
nn

b

nn
b

hasscheme addscheme filename query

There are a couple of helpers and their names speaks for themselves:

url.hasscheme(str)
url.addscheme(str,scheme)
url.filename(filename)
url.query(str)

url.hasscheme("http://www.pragma-ade.com/cow.png")

http

url.hasscheme ("www.pragma-ade.com/cow.png")

false

url.addscheme ("www.pragma-ade.com/cow.png", "http://")

http://:///www.pragma-ade.com/cow.png

url.addscheme ("www.pragma-ade.com/cow.png")

file:///www.pragma-ade.com/cow.png

url.filename("http://www.pragma-ade.com/cow.png")

http://www.pragma-ade.com/cow.png

preliminary, uncorrected version — March 23, 2013

109

110 Lua Functions

url.query("a=b&c=d")

t={
["a"]="b",
["C"] ="g" s

b

10.13 OS

[lua luatex] env setenv getenv

In ConTgXt normally you will use the resolver functions to deal with the environment and files. How-
ever, a more low level interface is still available. You can query and set environment variables with
two functions. In addition there is the env table as interface to the environment. This threesome
replaces the built in functions.

os.setenv(key,value)
os.getenv(key)
os.env [key]

[lua] execute

There are several functions for running programs. One comes directly from Lua, the otheres come
with LuaTgX. All of them are are overloaded in ConTgXt in order to get more control.

os.execute(...)

[luatex] spawn exec
Two other runners are:

os.spawn(...)
os.exec (...)

The exec variant will transfer control from the current process to the new one and not return to the
current job. There is a more detailed explanation in the LuaTgX manual.
resultof launch

The following function runs the command and returns the result as string. Multiple lines are com-
bined.

os.resultof (command)
The next one launches a file assuming that the operating system knows what application to use.

os.launch(str)

preliminary, uncorrected version — March 23, 2013

Lua Functions 111

type name platform libsuffix binsuffix

There are a couple of strings that reflect the current machinery: type returns either windows or
unix. The variable name is more detailed: windows, msdos, 1inux, macosx, etc. If you also want the
architecture you can consult platform.

local t = os.type
local n = os.name
local p = os.platform

These three variables as well as the next two are used internally and normally they are not needed in
your applications as most functions that matter are aware of what platform specific things they have
to deal with.

local s = os.libsuffix
local b os.binsuffix

These are string, not functions.
os.type

windows

os.name

windows

os.platform

mswin

os.libsuffix

dll

os.binsuffix

exe

[lual time

The built in time function returns a number. The accuracy is implementation dependent and not that
large.

os.time()

1364044238

[luatex] times gettimeofday

Although Lua has a built in type os.time function, we normally will use the one provided by LuaTgX
as it is more precise:

os.gettimeofday ()

There is also a more extensive variant:

preliminary, uncorrected version — March 23, 2013

112 Lua Functions

os.times()

This one is platform dependent and returns a table with utime (use time), stime (system time),
cutime (children user time), and cstime (children system time).

os.gettimeofday ()

1364044238.8033

os.times ()
t={
["cstime"]=0,
["cutime"]=0,
["stime"]1=0,
["utime"]=1364044238.8345,
}
runtime
More interesting is:
os.runtime()

which returns the time spent in the application so far.

os.runtime()

8.0340888500214

Sometimes you need to add the timezone to a verbose time and the following function does that for
you.

os.timezone(delta)

os.timezone()

1

os.timezone (1)

+01:00

os.timezone(-1)

+01:00

uuid
A version 4 UUID can be generated with:
os.uuid()

The generator is good enough for our purpose.

preliminary, uncorrected version — March 23, 2013

Lua Functions 113

os.uuid()

1bab8af1-42f3-a84a-b27f-916bdf8d4751

10.14 A few suggestions

You can wrap all kind of functionality in functions but sometimes it makes no sense to add the over-
head of a call as the same can be done with hardly any code.

If you want a slice of a table, you can copy the range needed to a new table. A simple version with
no bounds checking is:

local new = { } for i=a,b do new[#new+1] = o0ld[i] end
Another, much faster, variant is the following.
local new = { unpack(old,a,b) }

You can use this variant for slices that are not extremely large. The function table. sub is an equiv-
alent:

local new = table.sub(old,a,b)

An indexed table is empty when its size equals zero:

if #indexed == 0 then ... else ... end

Sometimes this is better:

if indexed and #indexed == 0 then ... else ... end
So how do we test if a hashed table is empty? We can use the next function as in:
if hashed and next(indexed) then ... else ... end
Say that we have the following table:

local t = { a=1, b=2, ¢c=3 }

The call next (t) returns the first key and value:

local k, v = next(t) -— "a", 1

The second argument to next can be a key in which case the following key and value in the hash
table is returned. The result is not predictable as a hash is unordered. The generic for loop uses this
to loop over a hashed table:

for k, v in next, t do

end

Anyway, when next (t) returns zero you can be sure that the table is empty. This is how you can
test for exactly one entry:

if t and not next(t,next(t)) then ... else ... end

preliminary, uncorrected version — March 23, 2013

114 Lua Functions

Here it starts making sense to wrap it into a function.

function table.has_one_entry(t)
t and not next(t,next(t))
end

On the other hand, this is not that usefull, unless you can spent the runtime on it:

function table.is_empty(t)
return not t or not next(t)
end

preliminary, uncorrected version — March 23, 2013

The Lua interface code 115

11 The Lua interface code

11.1 Introduction

There is a lot of Lua code in MKIV. Much is not exposed and a lot of what is exposed is not meant to
be used directly at the Lua end. But there is also functionality and data that can be accessed without
side effects.

In the following sections a subset of the built in functionality is discussed. There are often more func-
tions alongside those presented but they might change or disappear. So, if you use undocumented
teatures, be sure to tag them somehow in your source code so that you can check them out when
there is an update. Best would be to have more functionality defined local so that it is sort of hidden
but that would be unpractical as for instance functions are often used in other modules and or have
to be available at the TgX end.

It might be tempting to add your own functions to namespaces created by ConTgXt or maybe overload
some existing ones. Don’t do this. First of all, there is no guarantee that your code will not interfere,
nor that it overloads future functionality. Just use your own namespace. Also, future versions of
ConTgXt might have a couple of protection mechanisms built in. Without doubt the following sections
will be extended as soon as interfaces become more stable.

11.2 Characters

There are quite some data tables defined but the largest is the character database. You can consult this
table any time you want but you're not supposed to add or change its content if only because changes
will be overwritten when you update ConTgXt. Future versions may carry more information. The
table can be accessed using an unicode number. A relative simple entry looks as follows:

characters.data[0x00C1]

{
["adobename"]="Aacute",
["category"]="1u",
["contextname"]="Aacute",
["description"]="LATIN CAPITAL LETTER A WITH ACUTE",
["direction"]="1",
["lccode"]=225,
["linebreak"]="al",
["shcode"]=65,
["specials"]={ "char", 65, 769 },
["unicodeslot"]=193,

+

Much of this is rather common information but some of it is specific for use with ConTgXt. Some
characters have even more information, for instance those that deal with mathematics:

characters.data[0x2190]

{

["adobename"]="arrowleft",
["category"]="sm",

preliminary, uncorrected version — March 23, 2013

116 The Lua interface code

["Cjde"] =|lall s
["description"]="LEFTWARDS ARROW",
["direction"]="on",
["linebreak"]="ai",
["mathextensible"]="1",
["mathfiller"]="leftarrowfill",
["mathspec"]={
{
["class"]="relation",
["name"]="leftarrow",
1,
{
["class"]="relation",
["name"]="gets",

}’
{

["class"]="under",
["name"]="underleftarrow",

s
{

["class"]="over",
["name"]="overleftarrow",
1,
1,
["mathstretch"]="h",
["unicodeslot"]1=8592,
}

Not all characters have a real entry. For instance most cjk characters are virtual and share the same
data:

characters.data[0x3456]

{
["unicodeslot"]=13398,
+

You can also access the table using utf characters:

characters.data["&a"]

{
["adobename"]="adieresis",
["category"]="11",
["contextname"]="adiaeresis",
["description"]="LATIN SMALL LETTER A WITH DIAERESIS",
["direction"]="1",
["linebreak"]="al",
["shcode"]=97,
["specials"]={ "char", 97, 776 },
["uccode"]=196,
["unicodeslot"]=228,

preliminary, uncorrected version — March 23, 2013

The Lua interface code 117

}

A more verbose string access is also supported:
characters.data["U+0070"]

{
["adobename"]="p",
["category"]="11",
["cjkwd"]="na",
["description"]="LATIN SMALL LETTER P",
["direction"]="1",
["linebreak"]="al",
["mathclass"]="variable",
["uccode"]=80,
["unicodeslot"]=112,

}

Another (less usefull) table contains information about ranges in this character table. You can access
this table using rather verbose names, or you can use collapsed lowercase variants.

characters.blocks["CJK Compatibility Ideographs"]

{
["description"]="CJK Compatibility Ideographs",
["first"]1=63744,
["last"]=64255,
["Otf n] ="hang" s
}

characters.blocks["hebrew"]

{
["description"]="Hebrew",
["first"]=1424,
["last"]=1535,
["Otf n] ="hebr" s

}

characters.blocks["combiningdiacriticalmarks"]

{
["description"]="Combining Diacritical Marks",
["first"]=768,
["last"]=879,

}

Some fields can be accessed using functions. This can be handy when you need that information for
tracing purposes or overviews. There is some overhead in the function call, but you get some extra
testing for free. You can use characters as well as numbers as index.

characters.contextname("&a")

adiaeresis

preliminary, uncorrected version — March 23, 2013

118 The Lua interface code

characters.adobename (228)

adieresis

characters.description("a")

LATIN SMALL LETTER A WITH DIAERESIS
The category is normally a two character tag, but you can also ask for a more verbose variant:

characters.category(228)

11

characters.category(228,true)

Letter Lowercase
The more verbose category tags are available in a table:

characters.categorytags["1u"]

Letter Uppercase

There are several fields in a character entry that help us to remap a character. The 1ccode indicates
the lowercase code point and the uccode to the uppercase code point. The shcode refers to one or
more characters that have a similar shape.

characters.shape ("&")

o7

characters.uccode("a")

196

characters.lccode("a")

228

characters.shape (100)

100

characters.uccode (100)

68

characters.lccode(100)

100

You can use these function or access these fields directly in an entry, but we also provide a few virtual
tables that avoid accessing the whole entry. This method is rather efficient.

characters.lccodes["a"

228

preliminary, uncorrected version — March 23, 2013

The Lua interface code 119

characters.uccodes["&"]

196

characters.shcodes["&4"]

97

characters.lcchars["&a"]

5

characters.ucchars["&a"]

i

characters.shchars["4"]

a

As with other tables, you can use a number instead of an utf character. Watch how we get a table for
multiple shape codes but a string for multiple shape characters.

characters.lcchars [0x00C6]

x

characters.ucchars [0x00C6]

E

characters.shchars [0x00C6]

AE

characters.shcodes [0x00C6]

{
65,
69,

+

These codes are used when we manipulate strings. Although there are upper and lower functions
in the string namespace, the following ones are the real ones to be used in critical situations.

characters.lower ("AAARAR355554")

EEEEEEEEEEEED

characters.upper ("AAARAR355544")

AARRKAAAARAR

characters.shaped ("AAARAR345554")

AAAAAAaaaaaa

A rather special one is the following:

preliminary, uncorrected version — March 23, 2013

120 The Lua interface code

characters.lettered("Only 123 letters + count!")

Onlyletterscount

With the second argument is true, spaces are kept and collapsed. Leading and trailing spaces are
stripped.

characters.lettered("Only 123 letters + count!",true)

Only letters count

Access to tables can happen by number or by string, although there are some limitations when it
gets too confusing. Take for instance the number 8 and string "8": if we would interpret the string
as number we could never access the entry for the character eight. However, using more verbose
hexadecimal strings works okay. The remappers are also available as functions:

characters.tonumber ("a")

97

characters.fromnumber (100)

d

characters.fromnumber (0x0100)

A

characters.fromnumber ("0x0100")

A

characters.fromnumber ("U+0100")

A

In addition to the already mentioned category information you can also use a more direct table ap-
proach:

characters.categories["&"]

11

characters.categories[100]

11

In a similar fashion you can test if a given character is in a specific category. This can save a lot of
tests.

characters.is_character[characters.categories[67]]

true

characters.is_character[67]

nil

preliminary, uncorrected version — March 23, 2013

The Lua interface code 121

characters.is_character[characters.datal[67].category]

true

characters.is_letter[characters.datal[67].category]

true

characters.is_command [characters.datal[67] .category]

nil

Another virtual table is the one that provides access to special information, for instance about how a
composed character is made up of components.

characters.specialchars["3"]

a

characters.specialchars[100]

d
The outcome is often similar to output that uses the shapecode information.

Although not all the code deep down in ConTgXt is meant for use at the user level, it sometimes
can eb tempting to use data and helpers that are available as part of the general housekeeping. The
next table was used when looking into sorting Korean. For practical reasons we limit the table to ten
entries; otherwise we would have ended up with hundreds of pages.

7} - I HANGUL SYLLABLE GA
Edy o } - HANGUL SYLLABLE GAG
7r - I ™ HANGUL SYLLABLE GAGG
iy - } 1 HANGUL SYLLABLE GAGS
Z+ 7 } L HANGUL SYLLABLE GAN
& 7 } = HANGUL SYLLABLE GANJ
z - } s HANGUL SYLLABLE GANH
z 7 } © HANGUL SYLLABLE GAD
z 7 I = HANGUL SYLLABLE GAL
5 - I 21 HANGUL SYLLABLE GALG

\startluacode

local data = characters.data

local map = characters.hangul.remapped

local first, last = characters.getrange("hangulsyllables")
last = first + 9 -- for now

context.start ()

context.definedfont { "file:unbatang" }

context.starttabulate { "I|TIIT|IT|ITIITI" }

preliminary, uncorrected version — March 23, 2013

122 The Lua interface code

for unicode = first, last do
local character = datalunicode]
local specials = character.specials
if specials then
context.NC()
context.formatted ("%04V" ,unicode)
context.NC()
context.formatted("%c" ,unicode)
for i=2,4 do
local chr = specials[i]
if chr then
chr = map[chr] or chr
context.NC()
context.formatted("%04V",chr)
context.NC()
context.formatted("%c",chr)
else
context.NC()
context.NC()
end
end
context.NC()
context(character.description)
context.NC()
context.NR()
end
end
context.stoptabulate ()

context.stop()
\stopluacode

11.3 Fonts

There is a lot of code that deals with fonts but most is considered to be a black box. When a font is
defined, its data is collected and turned into a form that TgX likes. We keep most of that data available
at the Lua end so that we can later use it when needed.

A font instance is identified by its id, which is a number where zero is reserved for the so called
nullfont. The current font id can be requested by the following function.

fonts.currentid ()

5

The fonts.current () call returns the table with data related to the current id. You can access the
data related to any id as follows:

local tfmdata = fonts.identifiers[number]

preliminary, uncorrected version — March 23, 2013

The Lua interface code 123

Not all entries in the table make sense for the user as some are just meant to drive the font initialization
at the TgX end or the backend. The next table lists the most important ones. Some of the tables are
just shortcuts to en entry in one of the shared subtables.

ascender number the height of a line conforming the font
descender number the depth of a line conforming the font
italicangle number the angle of the italic shapes (if present)
designsize number the design size of the font (if known)

size number the size in scaled points if the font instance
factor number the multiplication factor for unscaled dimensions
hfactor number the horizontal multiplication factor

vfactor number the vertical multiplication factor

extend number the horizontal scaling to be used by the backend
slant number the slanting to be applied by the backend
characters table the scaled character (glyph) information (tfm)
descriptions table the original unscaled glyph information (otf, afm, tfm)
indices table the mapping from unicode slot to glyph index
unicodes table the mapoing from glyph names to unicode
marks table ahash table with glyphs that are marks as entry
parameters table the font parameters as TgX likes them

mathconstants table the OpenType math parameters
mathparameters table a reference to the MathConstants table

shared table atable with information shared between instances
unique table atable with information unique for this instance
unscaled table the unscaled (intermediate) table

goodies table the ConTgXt specific extra font information

fonts table the table with references to other fonts

cidinfo table a table with special information for the backend
filename string the full path of the loaded font

fontname string the font name as specified in the font (limited in size)
fullname string the complete font name as specified in the font

name string the (short) name of the font

psname string the (unique) name of the font as used by the backend
hash string the hash that makes this instance unique

id number the id (number) that TgX will use for this instance
type string anidicator if the fontis virtual or real

format string a qualification for this font, e.g. opentype

mode string the ConIgXt processing mode, node or base

The parameters table contains variables that are used by TgX itself. You can use numbers as index
and these are equivalent to the so called \fontdimen variables. More convenient is is to access by
name:

slant the slant per point (seldom used)
space the interword space
spacestretch the interword stretch
spaceshrink the interword shrink

xheight the x-height (not per se the heigth of an x)
quad the so called em-width (often the width of an emdash)
extraspace additional space added in specific situations

preliminary, uncorrected version — March 23, 2013

124 The Lua interface code

The math parameters are rather special and explained in the LuaTEX manual. Quite certainly you
never have to touch these parameters at the Lua end.

En entry in the characters table describes a character if we have entries within the Unicode range.
There can be entries in the private area but these are normally variants of a shape or special math

glyphs.

name
index

height

depth

width

tounicode
expansion_factor
left_protruding
right_protruding
italic

next
vert_variants
horiz_variants
top_accent
mathkern

kerns

ligatures
commands

the name of the character

the index in the raw font table

the scaled height of the character

the scaled depth of the character

the scaled height of the character

a utf-16 string representing the conversion back to unicode

a multiplication factor for (horizontal) font expansion

a multiplication factor for left side protrusion

a multiplication factor for right side protrusion

the italic correction

a pointer to the next character in a math size chain

a pointer to vertical variants conforming OpenType math

a pointer to horizontal variants conforming OpenType math
information with regards to math top accents

a table describing stepwise math kerning (following the shape)
a table with intercharacter kerning dimensions

a (nested) table describing ligatures that start with this character
a table with commands that drive the backend code for a virtual shape

Not all entries are present for each character. Also, in so called node mode, the 1igatures and kerns
tables are empty because in that case they are dealt with at the Lua end and not by TgX.

Say that you run into a glyph node and want to access the data related to that glyph. Given that
variable n points to the node, the most verbose way of doing that is:

local g = fonts.identifiers[n.id].characters[n.char]

Given the speed of LuaTgX this is quite fast. Another method is the following:

local g = fonts.characters[n.id] [n.char]

For some applications you might want faster access to critical parameters, like:

local quad =
local xheight

fonts.quads
fonts.xheights[n.id] [n.char]

[n.id] [n.char]

but that only makes sense when you don’t access more than one such variable at the same time.

Among the shared tables is the feature specification:

fonts.current () .shared.features

{

["analyze"]=true,

["curs"]=true,

["devanagari"]=true,
["extrafeatures"]=true,

preliminary, uncorrected version — March 23, 2013

The Lua interface code 125

["features"]=true,
["kern"]=true,
["liga"]=true,
["mark"]=true,
["mkmk"]=true,
["mode"]="node",
["number"]=33,
["script"]="df1lt",
["tlig"]=true,
["trep"]=true,
+

As features are a prominent property of OpenType fonts, there are a few datatables that can be used
to get their meaning.

fonts.handlers.otf.tables.features['liga']

standard ligatures

fonts.handlers.otf.tables.languages['nld']

dutch

fonts.handlers.otf.tables.scripts['arab']

arabic

There is a rather extensive font database built in but discussing its interface does not make much
sense. Most usage happens automatically when you use the name: and spec: methods of defining
fonts and the mtx-fonts script is built on top of it.

table.sortedkeys(fonts.names.data)

{
"cache_uuid",
"cache_version",
"datastate",
"fallbacks",
"families",
"files",
"indices",
"mappings",
"names",
"rejected",
"sorted _fallbacks",
"sorted_families",
"sorted_mappings",
"specifications",
"statistics",
"version",

}

You can load the database (if it's not yet loaded) with:

preliminary, uncorrected version — March 23, 2013

126 The Lua interface code

names.load(reload,verbose)

When the first argument is true, the database will be rebuild. The second arguments controls ver-
bosity.

Defining a font normally happens at the TEX end but you can also do it in Lua.

local id, fontdata = fonts.definers.define {

lookup = "file", -- use the filename (file spec name)

name = "pagella-regular", -- in this case the filename

size = 10%65535, -- scaled points

global = false, -- define the font globally

cs = "MyFont", -- associate the name \MyFont

method = "featureset", -- featureset or virtual (* or Q)

sub = nil, -— no subfont specifier

detail = "whatever", -- the featureset (or whatever method applies)

}

In this case the detail variable defines what featureset has to be applied. You can define such sets
at the Lua end too:

fonts.definers.specifiers.presetcontext (

"whatever",
"default",
{
mode = "node",
dlig = "yes",
}

)

The first argument is the name of the featureset. The second argument can be an empty string or
a reference to an existing featureset that will be taken as starting point. The final argument is the
featureset. This can be a table or a string with a comma separated list of key/value pairs.

11.4 Nodes

Nodes are the building blocks that make a document reality. Nodes are linked into lists and at various
moments in the typesetting process you can manipulate them. Deep down in ConTgXt we use quite
some Lua magic to manipulate lists of nodes. Therefore it is no surprise that we have some tracing
available. Take the following box.

\setboxO\hbox{It's in \hbox{\bf all} those nodes.}

This box contains characters and glue between the words. The box is already constructed. There can
also be kerns between characters, but of course only if the font provides such a feature. Let’s inspect
this box:

nodes.toutf (tex.box[0])

It’s in all those nodes.

nodes.toutf (tex.box[0] .1list)

It’s in all those nodes.

preliminary, uncorrected version — March 23, 2013

The Lua interface code 127

This tracer returns the text and spacing and recurses into nested lists. The next tracer does not do
this and marks non glyph nodes as [-]:

nodes.listtoutf (tex.box[0])

(-]

nodes.listtoutf (tex.box[0].1list)

It’s[-]in[-][-][-]1t[-]hose[-]Inodes.

A more verbose tracer is the next one. It does show a bit more detailed information about the glyphs
nodes.

nodes.tosequence (tex.box [0])

hlist

nodes.tosequence (tex.box[0] .1list)

U+0049:1 U+0074:t U+2019:’ U+0073:s glue U+0069:1 U+006E:n glue hlist glue U+0074:t
kern U+0068:h U+006F:0 U+0073:s U+0065:e glue U+006E:n U+006F:0 U+0064:d U+0065:e
U+0073:s U+002E: .

The fourth tracer does not show that detail and collapses sequences of similar node types.

nodes.idstostring(tex.box[0])

[hlist]

nodes.idstostring(tex.box[0].1list)

[4xglyph] [glue] [2*glyph] [glue] [hlist] [glue]l [glyph] [kern] [4*glyph] [glue]
[6+glyph]

The number of nodes in a list is identified with the count function. Nested nodes are counted too.

nodes.count (tex.box[0])

27

nodes.count (tex.box[0] .1list)

26
There are functions to check node types and node id’s:

local str = node.type(1l)
local num = node.id("vlist")

These are basic LuaTgX functions. In addition to those we also provide a few mapping tables. There
are two tables that map node id’s to strings and backwards:

nodes.nodecodes regular nodes, some fo them are sort of private to the engine
nodes.noadcodes math nodes that later on are converted into regular nodes

Nodes can have subtypes. Again we have tables that map the subtype numbers onto meaningfull
names and reverse.

preliminary, uncorrected version — March 23, 2013

128 The Lua interface code

nodes.listcodes subtypes of hlist and v1ist nodes

nodes.kerncodes subtypes of kern nodes

nodes.gluecodes subtypes of glue nodes (skips)

nodes.glyphcodes subtypes of glyph nodes, the subtype can change
nodes.mathcodes math specific subtypes

nodes.fillcodes these are not really subtypes but indicate the strength of the filler

nodes.whatsitcodes subtypes of a rather large group of extension nodes

Some of the names of types and subtypes have underscores but you can omit them when you use
these tables. You can use tables like this as follows:

local glyph_code = nodes.nodecodes.glyph
local kern_code = nodes.nodecodes.kern
local glue_code nodes.nodecodes.glue

for n in nodes.traverse(list) do
local id == n.id
if id == glyph_code then

elseif id == kern_code then

elseif id == glue_code then
else

end
end

You only need to use such temporary variables in time critical code. In spite of what you might think,
lists are not that long and given the speed of Lua (and successive optimizations in LuaTgX) looping
over a paragraphs is rather fast.

Nodes are created using node . new. If you study the ConTEXt code you will notice that there are quite
some functions in the nodes . pool namespace, like:

local g = nodes.pool.glyph(fnt,chr)

Of course you need to make sure that the font id is valid and that the referred glyph in in the font.
You can use the allocators but don’t mess with the code in the pool namespace as this might interfere
with its usage all over ConTgXt.

The nodes namespace provides a couple of helpers and some of them are similar to ones provided in
the node namespace. This has practical as well as historic reasons. For instance some were prototypes
functions that were later built in.

local head, current = nodes.before (head, current, new)
local head, current = nodes.after (head, current, new)
local head, current = nodes.delete (head, current)

local head, current = nodes.replace(head, current, new)

nodes.remove (head, current)

local head, current, old

Another category deals with attributes:

preliminary, uncorrected version — March 23, 2013

The Lua interface code 129

nodes.setattribute (head, attribute, value)
nodes.unsetattribute (head, attribute)

nodes.setunsetattribute (head, attribute, value)
nodes.setattributes (head, attribute, value)

nodes.unsetattributes (head, attribute)
nodes.setunsetattributes(head, attribute, value)
nodes.hasattribute (head, attribute, value)

11.5 Resolvers

All io is handled by functions in the resolvers namespace. Most of the code that you find in the
data-x*.lua files is of litle relevance for users, especially at the Lua end, so we won’t discuss it here
in great detail.

The resolver code is modelled after the kpse library that itself implements the TeX Directory Structure
in combination with a configuration file. However, we go a bit beyond this structure, for instance in
integrating support for other resources that file systems. We also have our own configuration file.
But important is that we still support a similar logic too so that regular configurations are dealt with.

During a run LuaTgX needs files of a different kind: source files, font files, images, etc. In practice
you will probably only deal with source files. The most fundamental function is findfile. The first
argument is the filename to be found. A second optional argument indicates the file type.

The following table relates so called formats to suffixes and variables in the configuration file.

variable format suffix

AFMFONTS afm afm
adobe font metric
adobe font metrics

bib bib

bst bst
FONTCIDMAPS cid cid cidmap

cid map

cid maps

cid file

cid files
FONTFEATURES fea fea

font feature
font features
font feature file
font feature files

TEXFORMATS fmt fmt
format
tex format

FONTCONFIG_PATH fontconfig

fontconfig file
fontconfig files
ICCPROFILES icc icc
icc profile
icc profiles
CLUAINPUTS lib dll

preliminary, uncorrected version — March 23, 2013

130 The Lua interface code

LUAINPUTS
MPMEMS

MPINPUTS
OFMFONTS

OPENTYPEFONTS

OVFFONTS

T1FONTS

TEXINPUTS
TEXMFSCRIPTS

TFMFONTS

TTFONTS

VFFONTS

lua

mem
metapost
mp

ofm

format

omega font metric
omega font metrics

otf
opentype
opentype
opentype
ovf

font
fonts

omega virtual font
omega virtual fonts

pfb

typel
type 1

typel font
type 1 font
typel fonts
type 1 fonts

tex

texmfscript
texmfscripts

script
scripts
tfm

tex font
tex font
ttf
truetype
truetype
truetype
truetype
truetype
truetype
truetype
vt

metric
metrics

font

fonts
collection
collections
dictionary
dictionaries

lua luc tma tmc

mem

mp mpvi mpiv mpii

ofm tfm

otf

ovf vf

pfb pfa

tex mkvi mkiv mkii

rb pl py

tfm

ttf ttc dfont

vf

virtual font
virtual fonts

There are a couple of more formats but these are not that relevant in the perspective of ConTgXt.

When a lookup takes place, spaces are ignored and formats are normalized to lowercase.

file.strip(resolvers.findfile("context.tex"),"tex/")

file.strip(resolvers.findfile("context.mkiv"),"tex/")

c:/data/develop/context/sources/context.mkiv

preliminary, uncorrected version — March 23, 2013

The Lua interface code

file.strip(resolvers.findfile("context"),"tex/")

texmf-context/scripts/context/stubs/unix/context

file.strip(resolvers.findfile("data-res.lua"),"tex/")

c:/data/develop/context/sources/data-res.lua

file.strip(resolvers.findfile("lmsans10-bold"),"tex/")

file.strip(resolvers.findfile("lmsans10-bold.otf"),"tex/")

texmf/fonts/opentype/public/1m/1lmsans10-bold.otf

file.strip(resolvers.findfile("lmsans10-bold","otf"),"tex/")

texmf/fonts/opentype/public/1m/1lmsans10-bold.otf

file.strip(resolvers.findfile("lmsans10-bold","opentype"),"tex/")

texmf/fonts/opentype/public/1m/1lmsans10-bold.otf

file.strip(resolvers.findfile("lmsans10-bold","opentypefonts"),"tex/")

texmf/fonts/opentype/public/1m/1lmsans10-bold.otf

file.strip(resolvers.findfile("lmsans10-bold","opentype fonts"),"tex/")

texmf/fonts/opentype/public/1m/1Imsans10-bold.otf
The plural variant of this function returns one or more matches.

resolvers.findfiles("texmfcnf.lua","cnf")

{
"c:/data/develop/tex-context/tex/texmf-local/web2c/texmfcnf.lua",

}

resolvers.findfiles("context.tex","")

{
}

11.6 Mathematics (math)

todo

11.7 Graphics (grph)

is a separate chapter

preliminary, uncorrected version — March 23, 2013

131

132 The Lua interface code

11.8 Languages (lang)

todo

11.9 MetaPost (mlib)

todo

11.10 LuaTgX (luat)

todo

11.11 Tracing (trac)

todo

preliminary, uncorrected version — March 23, 2013

12 Callbacks

12.1 Introduction

Callbacks 133

The LuaTgX engine provides the usual basic TgX functionality plus a bit more. It is a deliberate choice
not to extend the core engine too much. Instead all relevant processes can be overloaded by new
functionality written in Lua. In ConTgXt callbacks are wrapped in a protective layer: on the one hand
there is extra functionality (usually interfaced through macros) and on the other hand users can pop
in their own handlers using hooks. Of course a plugged in function has to do the right thing and not
mess up the data structures. In this chapter the layer on top of callbacks is described.

12.2 Actions

Nearly all callbacks in LuaTgX are used in ConIgXt. In the following list the callbacks tagged with
enabled are used and frozen, the ones tagged disabled are blocked and never used, while the ones
tagged undefined are yet unused.

buildpage_filter
char_exists
define_font
find_cidmap_file
find_data_file
find_enc_file
find_font_file
find_format_file
find_image_file
find_map_£file
find_opentype_£file
find_output_file
find_pk_file

find read_file
find_sfd_file
find_truetype_file
find_typel_file
find_vf _file

find write_file
finish_pdffile
hpack_filter
hyphenate

kerning
ligaturing
linebreak filter
mlist_to_hlist
open_read_file
post_linebreak_filter
pre_dump
pre_linebreak_filter
pre_output_filter
process_input_buffer

enabled
undefined
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
disabled
disabled
disabled
enabled
enabled
enabled
enabled
enabled
enabled
undefined
disabled

vertical spacing etc (mvl)

definition of fonts (tfmdata preparation)
find file using resolver
find file using resolver
find file using resolver
find file using resolver
find file using resolver
find file using resolver
find file using resolver
find file using resolver
tind file using resolver
find file using resolver
find file using resolver
find file using resolver
find file using resolver
tind file using resolver
find file using resolver
find file using resolver

all kind of horizontal manipulations (before hbox creation)
normal hyphenation routine, called elsewhere

normal kerning routine, called elsewhere

normal ligaturing routine, called elsewhere

breaking paragraps into lines

preprocessing math list

open file for reading

all kind of horizontal manipulations (after par break)

lua related finalizers called before we dump the format
all kind of horizontal manipulations (before par break)

actions performed when reading data

preliminary, uncorrected version — March 23, 2013

134 Callbacks

process_jobname
process_output_buffer
read_cidmap_file
read_data_file

undefined
disabled
undefined
enabled

actions performed when writing data
read file at once
read file at once

read_enc_file enabled read file at once

read_font file enabled read file at once

read_map_file enabled read file at once

read_opentype_file undefined read file at once

read_pk_file enabled read file at once

read_sfd_file enabled read file at once

read_truetype_file undefined read file at once

read_typel_file undefined read file at once

read_vf file enabled read file at once

show_error_hook enabled

start_page_number enabled actions performed at the beginning of a shipout
start_run enabled actions performed at the beginning of a run
stop_page_number enabled actions performed at the end of a shipout
stop_run enabled actions performed at the end of a run
token filter undefined

vpack_filter enabled vertical spacing etc

Eventually all callbacks will be used so don’t rely on undefined callbacks not being protected. Some
callbacks are only set when certain functionality is enabled.

It may sound somewhat harsh but if users kick in their own code, we cannot guarantee ConTgXt’s
behaviour any more and support becomes a pain. If you really need to use a callback yourself, you
should use one of the hooks and make sure that you return the right values.

All callbacks related to file handling, font definition and housekeeping are frozen and cannot be
overloaded. A reason for this are that we need some kind of protection against misuse. Another
reason is that we operate in a well defined environment, the so called TgX directory structure, and we
don’t want to mess with that. And of course, the overloading permits ConTgXt to provide extensions
beyond regular engine functionality.

So as a fact we only open up some of the node list related callbacks and these are grouped as follows:

category callback usage
processors pre_linebreak_filter called just before the paragraph is broken into lines
hpack_filter called just before a horizontal box is constructed

finalizers post_linebreak_filter called just after the paragraph has been broken into
lines

shipouts no callback yet applied to the box (or xform) that is to be shipped out

mvlbuilders buildpage_filter called after some material has been added to the main
vertical list

vboxbuilders vpack_filter called when some material is added to a vertical box

math mlist_to_hlist called just after the math list is created, before it is

turned into an horizontal list

Each category has several subcategories but for users only two make sense: before and after. Say
that you want to hook some tracing into the mvlbuilder. This is how it’s done:

function third.mymodule.myfunction(where)

preliminary, uncorrected version — March 23, 2013

Callbacks 135

nodes.show_simple_list(tex.lists.contrib_head)
end

nodes.tasks.appendaction("processors", "before", "third.mymodule.myfunction")

As you can see, in this case the function gets no head passed (at least not currently). This example
also assumes that you know how to access the right items. The arguments and return values are
given below.?

category arguments return value
processors head, ... head, done
finalizers head, ... head, done
shipouts head head, done
mvlbuilders done
vboxbuilders head, ... head, done
parbuilders head, ... head, done
pagebuilders head, ... head, done
math head, ... head, done
12.3 Tasks

In the previous section we already saw that the actions are in fact tasks and that we can append (and
therefore also prepend) to a list of tasks. The before and after task lists are valid hooks for users
contrary to the other tasks that can make up an action. However, the task builder is generic enough
for users to be used for individual tasks that are plugged into the user hooks.

Of course at some point, too many nested tasks bring a performance penalty with them. At the end
of a run MKIV reports some statistics and timings and these can give you an idea how much time is
spent in Lua.

The following tables list all the registered tasks for the processors actions:

category function

before unset

normalizers typesetters.characters.handler
fonts.collections.process
fonts.checkers.missing
userdata.processmystuff

characters scripts.autofontfeature.handler
typesetters.cleaners.handler
typesetters.directions.handler
typesetters.cases.handler
typesetters.breakpoints.handler
scripts.preprocess

words builders.kernel.hyphenation
languages.words.check

fonts builders.paragraphs.solutions.splitters.split

This interface might change a bit in future versions of ConTgXt. Therefore we will not discuss the few more optional argu-
ments that are possible.

preliminary, uncorrected version — March 23, 2013

136 Callbacks

nodes.handlers.characters
nodes.injections.handler
nodes.handlers.protectglyphs
builders.kernel.ligaturing
builders.kernel.kerning
nodes.handlers.stripping

lists typesetters.spacings.handler
typesetters.kerns.handler
typesetters.digits.handler
typesetters.italics.handler
typesetters.paragraphs.handler

after userdata.processmystuff

Some of these do have subtasks and some of these even more, so you can imagine that quite some
action is going on there.

The finalizer tasks are:

category function

before unset

normalizers unset

fonts builders.paragraphs.solutions.splitters.optimize

lists typesetters.margins.localhandler
builders.paragraphs.keeptogether

after unset

Shipouts concern:

category function

before unset

normalizers typesetters.margins.finalhandler
nodes.handlers.cleanuppage
typesetters.alignments.handler
nodes.references.handler
nodes.destinations.handler
nodes.rules.handler
nodes.shifts.handler
structures.tags.handler
nodes.handlers.accessibility
nodes.handlers.backgrounds
nodes.handlers.alignbackgrounds

finishers nodes.visualizers.handler
attributes.colors.handler
attributes.transparencies.handler
attributes.colorintents.handler
attributes.negatives.handler
attributes.effects.handler
attributes.viewerlayers.handler

preliminary, uncorrected version — March 23, 2013

after

There are not that many mvlbuilder tasks currently:

unset

category function

before unset

normalizers typesetters.margins.globalhandler
streams.collect
nodes.handlers.migrate
builders.vspacing.pagehandler
typesetters.checkers.handler

after unset

The vboxbuilder perform similar tasks:

category function

before unset

normalizers builders.vspacing.vboxhandler
typesetters.checkers.handler

after unset

Callbacks

137

In the future we expect to have more parbuilder tasks. Here again there are subtasks that depend on
the current typesetting environment, so this is the right spot for language specific treatments.

The following actions are applied just before the list is passed on the the output routine. The return

value is a vlist.

Both the parbuilders and pagebuilder tasks are unofficial and not yet meant for users.

Finally, we have tasks related to the math list:

category

function

before

unset

normalizers

noads.
noads.
noads.
noads.
noads.
noads.
noads.
noads.
noads.
noads.

handlers.
handlers.
handlers.
handlers.
handlers.
.collapse
handlers.
handlers.
handlers.
handlers.

handlers

unscript
variants
families
relocate
render

resize
check
tags
italics

builders

builders.kernel.mlist_to_hlist

after

unset

As MKIV is developed in sync with LuaTgX and code changes from experimental to more final and

reverse, you should not be too surprised if the registered function names change.

You can create your own task list with:

preliminary, uncorrected version — March 23, 2013

138 Callbacks

nodes.tasks.new("mytasks",{ "one", "two" })

After that you can register functions. You can append as well as prepend them either or not at a
specific position.

nodes.tasks.appendaction ("mytask","one","bla.alpha")
nodes.tasks.appendaction ("mytask","one","bla.beta")

nodes.tasks.prependaction("mytask","two","bla.gamma")
nodes.tasks.prependaction("mytask","two","bla.delta")

nodes.tasks.appendaction ("mytask","one","bla.whatever","bla.alpha")
Functions can also be removed:
nodes.tasks.removeaction("mytask","one","bla.whatever")

As removal is somewhat drastic, it is also possible to enable and disable functions. From the fact that
with these two functions you don’t specify a category (like one or two) you can conclude that the
function names need to be unique within the task list or else all with the same name within this task
will be disabled.

nodes.tasks.enableaction ("mytask","bla.whatever")
nodes.tasks.disableaction("mytask","bla.whatever")

The same can be done with a complete category:

nodes.tasks.enablegroup ("mytask","one")
nodes.tasks.disablegroup("mytask","one")

There is one function left:
nodes.tasks.actions ("mytask",2)

This function returns a function that when called will perform the tasks. In this case the function
takes two extra arguments in addition to head.’

Tasks themselves are implemented on top of sequences but we won’t discuss them here.

12.4 Paragraph and page builders

Building paragraphs and pages is implemented differently and has no user hooks. There is a mech-
anism for plugins but the interface is quite experimental.

12.5 Some examples

todo

9 Specifying this number permits for some optimization but is not really needed

preliminary, uncorrected version — March 23, 2013

Backend code 139

13 Backend code

13.1 Introduction

In ConTEXt we’ve always separated the backend code in so called driver files. This means that in the
code related to typesetting only calls to the api take place, and no backend specific code is to be used.
Currently a pdf backend is supported as well as an xml export.1°

Some ConTgXt users like to add their own pdf specific code to their styles or modules. However,
such extensions can interfere with existing code, especially when resources are involved. Therefore
the construction of pdf data structures and resources is rather controlled and has to be done via the
official helper macros.

13.2 Structure

A pdf file is a tree of indirect objects. Each object has a number and the file contains a table (or
multiple tables) that relates these numbers to positions in a file (or position in a compressed object
stream). That way a file can be viewed without reading all data: a viewer only loads what is needed.

1 0 obj <<
/Name (test) /Address 2 O R
>>
2 0 obj [
(Main Street) (24) (postal code) (MyPlace)
]

For the sake of the discussion we consider strings like (test) also to be objects. In the next table we
list what we can encounter in a pdf file. There can be indirect objects in which case a reference is used
(2 0 R)and direct ones.

It all starts in the document’s root object. From there we access the page tree and resources. Each
page carries its own resource information which makes random access easier. A page has a page
stream and there we find the to be rendered content as a mixture of (Unicode) strings and special
drawing and rendering operators. Here we will not discuss them as they are mostly generated by the
engine itself or dedicated subsystems like the MetaPost converter. There we use literal or \latelua
whatsits to inject code into the current stream.

13.3 Data types

There are several datatypes in pdf and we support all of them one way or the other.

type form meaning

constant /... A symbol (prescribed string).

string ... A sequence of characters in pdfdoc encoding
unicode <02 A sequence of characters in utfl6 encoding
number 3.1415 A number constant.

boolean true/false A boolean constant.

10 This chapter is derived from an article on these matters. You can find nore information in hybrid. pdf.

preliminary, uncorrected version — March 23, 2013

140 Backend code

reference N O R A reference to an object

dictionary << ... >> Acollection of key value pairs where the value itself is an (indirect) object.

array [...] A list of objects or references to objects.

stream A sequence of bytes either or not packaged with a dictionary that contains
descriptive data.

xform A special kind of object containing an reusable blob of data, for example
an image.

While writing additional backend code, we mostly create dictionaries.
<< /Name (test) /Address 2 0 R >>

In this case the indirect object can look like:

[(Main Street) (24) (postal code) (MyPlace) 1

The LuaTEX manual mentions primitives like \pdfobj, \pdfannot, \pdfcatalog, etc. However,
in MKIV no such primitives are used. You can still use many of them but those that push data into
document or page related resources are overloaded to do nothing at all.

In the Lua backend code you will find function calls like:

local d = lpdf.dictionary {
Name lpdf.string("test"),
Address = lpdf.array {
"Main Street", "24", "postal code", "MyPlace",

}
}

Equaly valid is:

local d = lpdf.dictionary()
d.Name = "test"

Eventually the object will end up in the file using calls like:
local r = lpdf.immediateobject(tostring(d))

or using the wrapper (which permits tracing):

local r = lpdf.flushobject(d)

The object content will be serialized according to the formal specification so the proper << >> etc.
are added. If you want the content instead you can use a function call:

local dict = d(O)
An example of using references is:

local a = lpdf.array {
"Main Street", "24", "postal code", "MyPlace",

}

local d = lpdf.dictionary {
Name = 1lpdf.string("test"),
Address = 1pdf.reference(a),

preliminary, uncorrected version — March 23, 2013

b
local r = lpdf

.flushobject (d)

We have the following creators. Their arguments are optional.

Backend code 141

function optional parameter
lpdf.null

lpdf .number number
lpdf.constant string
lpdf.string string
lpdf.unicode string
lpdf.boolean boolean

lpdf.array
lpdf.dictionar
lpdf.reference
lpdf.verbose

indexed table of objects
y hash with key/values

string

indexed table of strings

tostring(lpdf.

null())

null

tostring(1lpdf.

number (123))

123

tostring (1pdf.

constant ("whatever"))

/whatever

tostring(lpdf.

string("just a string"))

(just a string

tostring (1pdf.

)

unicode("just a string"))

<feff006200750

tostring(1pdf.

07300740020006100200073007400720069006e0067>

boolean(true))

true

tostring(lpdf.

array { 1, lpdf.constant("c"), true, "str" })

[1 /c true (str)]

tostring(lpdf.dictionary { a=1, b=lpdf.constant("c"), d=true, e="str" })

<< /a1 /b /c

tostring(1lpdf.

/e (str) /d true >>

reference(123))

123 0 R

tostring(lpdf.

verbose ("whatever"))

whatever

preliminary, uncorrected version — March 23, 2013

142 Backend code

13.4 Managing objects

Flushing objects is done with:

1lpdf.flushobject (obj)

Reserving object is or course possible and done with:
local r = lpdf.reserveobject()

Such an object is flushed with:

1pdf.flushobject (r,obj)

We also support named objects:

1lpdf.reserveobject ("myobject")

1pdf.flushobject("myobject",obj)
A delayed object is created with:
local ref = pdf.delayedobject(data)

The data will be flushed later using the object number that is returned (ref). When you expect that
many object with the same content are used, you can use:

local obj = lpdf.shareobject(data)
local ref = 1lpdf.shareobjectreference(data)

This one flushes the object and returns the object number. Already defined objects are reused. In
addition to this code driven optimization, some other optimization and reuse takes place but all that
happens without user intervention. Only use this when it’s really needed as it might consume more
memory and needs more processing time.

13.5 Resources

While LuaTgX itself will embed all resources related to regular typesetting, MKkIV has to take care of
embedding those related to special tricks, like annotations, spot colors, layers, shades, transparencies,
metadata, etc. Because third party modules (like tikz) also can add resources we provide some macros
that makes sure that no interference takes place:

\pdfbackendsetcatalog {key}{string}
\pdfbackendsetinfo {key}{string}
\pdfbackendsetname {key}{string}

\pdfbackendsetpageattribute {key}{string}
\pdfbackendsetpagesattribute{key}{string}
\pdfbackendsetpageresource {key}{string}

\pdfbackendsetextgstate {key}{pdfdata}
\pdfbackendsetcolorspace {key}{pdfdata}
\pdfbackendsetpattern {key}{pdfdata}
\pdfbackendsetshade {key}{pdfdata}

preliminary, uncorrected version — March 23, 2013

Backend code 143

One is free to use the Lua interface instead, as there one has more possibilities but when code is shared
with other macro packages the macro interface makes more sense. The names of the Lua functions
are similar, like:

lpdf.addtoinfo(key,anything_valid_pdf)

Currently we expose a bit more of the backend code than we like and future versions will have a more
restricted access. The following function will stay public:

lpdf.addtopageresources (key,value)
1lpdf.addtopageattributes (key,value)
1lpdf.addtopagesattributes(key,value)

lpdf.adddocumentextgstate (key,value)
1pdf.adddocumentcolorspac (key,value)
1lpdf.adddocumentpattern (key,value)
1lpdf.adddocumentshade (key,value)

1lpdf.addtocatalog (key,value)
1lpdf.addtoinfo (key,value)
1lpdf.addtonames (key,value)

13.6 Annotations

You can use the Lua functions that relate to annotations etc. but normally you will use the regular
ConTgXt user interface. You can look into some of the 1pdf-* modules to see how special annotations
can be dealt with.

13.7 Tracing
There are several tracing options built in and some more will be added in due time:

\enabletrackers
[backend.finalizers,
backend.resources,
backend.objects,
backend.detail]

As with all trackers you can also pass them on the command line, for example:
context --trackers=backend.* yourfile

The reference related backend mechanisms have their own trackers. When you write code that gen-
erates pdf, it also helps to look in the pdf file so see if things are done right. In that case you need to
disable compression:

\nopdfcompression
13.8 Analyzing

The epdf library that comes with LuaTgX offers a userdata interface to pdf files. On top of that
ConTgXt provides a more Lua-ish access, using tables. You can open a pdf file with:

preliminary, uncorrected version — March 23, 2013

144 Backend code

local mypdf = 1lpdf.epdf.load(filename)
When opening is successful, you have access to a couple of tables:

\NC \type{pages} \NC indexed \NC \NR
\NC \type{destinations} \NC hashed \NC \NR
\NC \type{javascripts} \NC hashed \NC \NR

\NC \type{widgets} \NC hashed \NC \NR
\NC \type{embeddedfiles} \NC hashed \NC \NR
\NC \type{layers} \NC indexed \NC \NR

These provide efficient access to some data that otherwise would take a bit of code to deal with.
Another top level table is the for pdf characteristic Catalog. Watch the capitalization: as with other
native pdf data structures, keys are case sensitive and match the standard.

Here is an example of usage:

local MyDocument = lpdf.epdf.load("somefile.pdf")
context.starttext ()

local pages = MyDocument.pages
local nofpages = pages.n

context.starttabulate { "lclclc|" }

context.NC() context("page")
context.NC() context("width")
context.NC() context("height") context.NR()

for i=1, nofpages do
local page = pagesl[i]
local bbox = page.CropBox or page.MediaBox
context.NC() context(i)
context.NC() context(bbox[4]-bbox[2])
context.NC() context(bbox[3]-bbox[1]) context.NR()
end

context.stoptabulate()

context.stoptext ()

preliminary, uncorrected version — March 23, 2013

Nice to know 145

14 Nice to know

14.1 Introduction

As we like to abstract interfaces it is no surprise that ConTgXt and therefore it’s Lua libraries come
with all kind of helpers. In this chapter I will explain a few of them. Feel free to remind of adding
more here.

14.2 Templates

Eventually we will move this to the utilities section.

When dealing with data from tables or when order matters it can be handy to abstract the actual data
from the way it is dealt with. For this we provide a template mechanism. The following example
demonstrate its use.

require("util-ran") -- needed for this example

[[IL1l1lcl1]
[[\NC %initials)% \NC %surname’, \NC %length \NC \NR]]

local preamble
local template

context.starttabulate { preamble }
for i=1,10 do
local row = utilities.templates.replace(template, {
surname = utilities.randomizers.surname(5,10),
initials = utilities.randomizers.initials(1,3),
length string.format ("%0.2f" ,math.random(140,195)),

b
context (row)
end
context.stoptabulate()

This renders a table with random entries:

YW. Tymuvyp 162.00

E.N. Yzixaz 179.00
AH. Ejapowos 142.00
L [jipunejym 187.00
LW. [jawis 155.00
0O.QE. Cojat 161.00
I jysopivid 188.00

A.QU. Iryzipihux 142.00
E.L.O. Woricekip 145.00
Y. Agakox 164.00

The nice thing is that when we change the order of the columns, we don’t need to change the table
builder.

[[lcl1l1l1]
[[\NC %length’% \NC %initials?, \NC %surname, \NC \NR]]

local preamble
local template

preliminary, uncorrected version — March 23, 2013

146 Nice to know

The replace function takes a few more arguments. There are also a some more replacement options.

[(la 'x' all }))

true 1}))

[[a 'x'" all, y = "oeps" },'sql"))

= [[a '"%y%' all, y = "oeps" },'sql',true))
[[a "x" all}))

(la "x" all}))

replace("test '%[x]%' test",{
replace("test '%[x]%' test",{
replace("test '%[x]%' test",{
replace("test '%[x]%' test",{
replace([[test %[x]% test]],{
replace([[test %(x)% test]l],{

Ea T T T T
|

The first argument is the template and the second one a table with mappings from keys to values. The
third argument can be used to inform the replace mechanism what string escaping has to happen.
The last argument triggers recursive replacement. The above calls result in the following strings:

test 'a 'x' \127 a' test
test 'true' test

test 'a ''x'' a' test
test 'a ''oeps'' a' test
test a \"x\" \127 a test
test "a \"x\" \127 a" test

These examples demonstrate that by adding a pair of square brackets we get escaped strings. When
using parenthesis the quotes get added automatically. This is somewhat faster in case when Lua is
the target, but in practice it is not that noticeable.

preliminary, uncorrected version — March 23, 2013

Summary 147

15 Summary

context("...")

The string is flushed directly.

context("format",...)

The first string is a format specification according that is passed to the Lua function format in the
string namespace. Following arguments are passed too.

format ("format",...)

context(123,...)

The numbers (and following numbers or strings) are flushed without any formatting.

123... (concatenated)

context (true)
An explicit endlinechar is inserted.

™M

context(false,...)

Strings and numbers are flushed surrounded by curly braces, an indexed table is flushed as option
list, and a hashed table is flushed as parameter set.

multiple {...} or [...] etc

context (node)

The node(list) is injected at the spot. Keep in mind that you need to do the proper memory manage-
ment yourself.

context.command(value,...)
The value (string or number) is flushed as a curly braced (regular) argument.

\command {valuel}...

context.command({ value },...)
The table is flushed as value set. This can be an identifier, a list of options, or a directive.

\command [value]...

preliminary, uncorrected version — March 23, 2013

148 Summary

context.command({ key = value },...)
The table is flushed as key/value set.

\command [key={valuel}]...

context.command (true)
An explicit endlinechar is inserted.

\command ~"M

context.command (node)

The node(list) is injected at the spot. Keep in mind that you need to do the proper memory manage-
ment yourself.

\command {node(list)}

context.command(false,value)
The value is flushed without encapsulating tokens.

\command value

context.command({ value }, { key = value }, value, false, value)
The arguments are flushed accordingly their nature and the order can be any.

\command [value] [key={valuel}]{value}value

context.direct(...)

The arguments are interpreted the same as if direct was a command, but no \direct is injected in
front.

context.delayed(...)

The arguments are interpreted the same as in a context call, but instead of a direct flush, the argu-
ments will be flushed in a next cycle.

context.delayed.command(...)

The arguments are interpreted the same as in a command call, but instead of a direct flush, the com-
mand and arguments will be flushed in a next cycle.

context.nested.command

This command returns the command, including given arguments as a string. No flushing takes place.

preliminary, uncorrected version — March 23, 2013

Summary 149

context.nested

This command returns the arguments as a string and treats them the same as a regular context call.

context.formatted.command

This command returns the command that will pass it’s arguments to the string formatter.

context.formatted

This command passes it’s arguments to the string formatter.

context.metafun.start(...)

This starts a MetaFun (or MetaPost) graphic.

context.metafun()

This finishes and flushes a MetaFun (or MetaPost) graphic.

context.metafun.stop(...)

The argument is appended to the current graphic data.

context.metafun.stop("format",...)

The argument is appended to the current graphic data but the string formatter is used on following
arguments.

preliminary, uncorrected version — March 23, 2013

150 Summary

preliminary, uncorrected version — March 23, 2013

Special commands 151

16 Special commands

There are a few functions in the context namespace that are no macros at the TEX end.
context.runfile("somefile.cld")

Another useful command is:

context.settracing(true)

There are a few tracing options that you can set at the TgX end:

\enabletrackers[context.files]
\enabletrackers[context.trace]

A few macros have special functions at the Lua end. One of them is \char. The function makes sure
that the characters ends up right. The same is true for \chardef. So, you don’t need to mess around
with \relax or trailing spaces as you would do at the TgX end in order to tell the scanner to stop
looking ahead.

context.char(123)

Other examples of macros that have optimized functions are \par, \bgroup and \egroup.

preliminary, uncorrected version — March 23, 2013

152 Special commands

preliminary, uncorrected version — March 23, 2013

Files 153

17 Files

17.1 Preprocessing

Although this option must be used with care, it is possible to preprocess files before they enter TgX.
The following example shows this.

local function showline(str,filename,linenumber,noflines)
logs.simple("[1c] file: %s, line: %s of %s, length: %s",
file.basename(filename) ,linenumber,noflines,#str)
end

local function showfile(str,filename)
logs.simple("[fc] file: %s, length: %s",
file.basename(filename) ,#str)
end

resolvers.installinputlinehandler (showline)
resolvers.installinputfilehandler(showfile)

Preprocessors like this are rather innocent. If you want to manipulate the content you need to be
aware of the fact that modules and such also pass your code, and manipulating them can give unex-
pected side effects. So, the following code will not make ConTEXt happy.

local function foo()
return "bar"
end

resolvers.installinputlinehandler (foo)
But, as we pass the filename, you can base your preprocessing on names.

There can be multiple handlers active at the same time, and although more detailed control is pos-
sible, the current interface does not provide that, simply because having too many handlers active
is asking for trouble anyway. What you can do, is putting your handler in front or after the built in
handlers.

resolvers.installinputlinehandler ("before",showline)
resolvers.installinputfilehandler("after", showfile)

Of course you can also preprocess files outside this mechanism, which in most cases might be a better
idea. However, the following example code is quite efficient and robust.

local function MyHandler(str,filename)
if file.suffix(filename) == "veryspecial" then
logs.simple("preprocessing file 'Js',filename)
return MyConverter (str)
else
return str
end
end

resolvers.installinputfilehandler("before" ,MyHandler)

In this case only files that have a suffix . veryspecial will get an extra treatment.

preliminary, uncorrected version — March 23, 2013

154 Files

preliminary, uncorrected version — March 23, 2013

