Information and Communication Technologies (ICT) Programme
Project N°: FP7-1CT- 247615

HEAP

Deliverable D3.4

Data dependency visualization tool

User Manual and Tutorial

Author(s):

Status -Version:

Date:

Distribution - Confidentiality:
Code:

Mihai T. Lazarescu (PoliTo) / Joeri van Ruth (ACE)
V1.4

23 January 2012

Public

HEAP_D3.4 V1.4 20120123

Abstract: In this deliverable there is a description of the data dependency visualization sub-toolset

© Copyright by the HEAP Consortium

FP7-1CT-247615 - HEAP
Free Software-Based Flow for the Visualization of the

Parallelism in the Program Execution -- User Manual and Tutorial

Disclaimer

This document contains material, which is the copyright of certain HEAP contractors, and may not be
reproduced or copied without permission. All HEAP consortium partners have agreed to the full pub-
lication of this document. The commercial use of any information contained in this document may
require a license from the proprietor of that information.

The HEAP Consortium consists of the following companies:

No | Participant name Participant Country Country
short name

1 ST Microelectronics STM Co-ordinator Italy

2 Synelixis Solutions Ltd Synelixis Contractor Greece

3 Thales Communications Thales Contractor France

4 ACE Associated Compiler Experts B.V. ACE Contractor Netherlands

5 Compaan Design Compaan Contractor Netherlands

6 Politechnico Di Torino PoliTo Contractor Italy

7 ATHENA Industrial Systems Institute Athena Contractor Greece

8 Universita Degli Studi Di Genova UniGe Contractor Italy

9 SingularLogic SiLo Contractor Greece

10 | Uppsala Universitet Uppsala Contractor Sweden

HEAP_D3.4_ V1.4 20120123

Page 3 of 25

FP7-1CT-247615 - HEAP
Free Software-Based Flow for the Visualization of the

Parallelism in the Program Execution -- User Manual and Tutorial

Document Revision History

Date Issue Author/Editor/Contributor | Summary of main changes

2011—09—19 1.1 Mihai T. Lazarescu 1% draft. No deliverable no. yet

2011—09—20 1.2 Joeri van Ruth 2" draft. No deliverable no. yet

2011—12—14 1.3 Mihai T. Lazarescu Updated for tracer written in C.

2012—01—21 1.4 Mihai T. Lazarescu Dependency viewer and analysis
tools details.

2012—01—23 14 Joeri van Ruth Document edit and final review

HEAP_D3.4_ V1.4 20120123 Page 4 of 25

FP7-1CT-247615 - HEAP
Free Software-Based Flow for the Visualization of the

Parallelism in the Program Execution -- User Manual and Tutorial

Table of contents

IO 1 g oo [Tod T o ST SRRRROR 7
FZ o To I O 1 = | o PSSV PRTURPRORTR 7
2.1. Source Code Analysis and INStrUMENTALION..........ccooiviiiiiii i 7
2.2. Run-Time Data Dependency Tracer LIDIarycccooveieeiieeiie i see e sne e 7
2.3. Data Dependency ViSUAIIZALION........c.cccviieiiiiieee ettt e s e e nnee s 8
2.4, IDE ... bRttt R Rt R Rt bt e Rt e Rt Rt e bt et neereans 9
3. DeMO ViIrtual IMACKHINE.........ccuiiiiice ettt 10
3.1. Load the DEMO PrOJECT.......cciiieieiie ettt sttt te e sbesbe e saesbeenaesnenne s 10
3.2. RUN the DEMO ANGIYSISc.viiieiiieiieiie ettt et te e et e be e e e saesreenaesreane s 13
3.3. Run the Data Dependency ViSUGHZAatioNccccccveieiiiiieiise e 15
A INEW PTOJECT ...ttt bbb bbb b bbbt e et b bbb e 18
5. NetBeans Project for HEAP extensions and ZGRVIBWENcccoooiiieeiieiieenenesie e ee e 20
6. Excerpts of Code::Blocks Documentation on Creation of a New Project..........cccocevveevevrinnnen. 22
LT I N LT o] (o] Tt Y72 o ST 22
6.2. Changing file COMPOSITIONcciiiiie et e e e ee e ee e reees 23
6.2.1. AddiNg @ BIANK FIlE......eoiiieececce e e 23
6.2.2. Adding a pre-eXisting file.........ccooiv i 25
6.2.3. REMOVING @ IO .oviiiiieiec e sttt sre e e saeens 25

HEAP_D3.4_ V1.4 20120123 Page 5 of 25

FP7-1CT-247615 - HEAP
Free Software-Based Flow for the Visualization of the

Parallelism in the Program Execution -- User Manual and Tutorial

Abbreviations

HEAP_D3.4_ V1.4 20120123 Page 6 of 25

FP7-1CT-247615 - HEAP
Free Software-Based Flow for the Visualization of the

Parallelism in the Program Execution -- User Manual and Tutorial

1. Introduction
The open-source flow for the visualization of the execution parallelism provides:

e an IDE for the development of C language-based software projects

o agraphical visualization program that displays and allows the exploration of data dependen-
cies, with automated cross-references to the source code in the IDE.

The companion tools for data dependency profiling are reported in D3.2:

e a program to analyse the developer C source code and to generate a functional model in-
strumented with code for data collection during program execution

o alibrary to analyse the data gathered during program execution, at run-time, and to generate
a compact representation of the data dependencies between program instructions.

A free software virtual machine was configured with the whole chain as a means to achieve a consis-
tent distribution able to demonstrate the tool functionality and receive valuable feedback for its fur-
ther development.

2. Tool Chain

The tool chain and the virtual machine make use only of free software tools.

The changes to the tools as well as the virtual machine configuration provided are considered a beta
release. Please provide feedback to improve it.

2.1. Source Code Analysis and Instrumentation

The source code analysis and instrumentation tool is based on the CIL platform® (C Intermediate
Language). CIL is written in ocaml® and provides a high-level representation along with a set of
tools that facilitate the analysis and the source-to-source transformations of C programs.

CIL is both lower-level than abstract-syntax trees, by clarifying ambiguous constructs and removing
redundant ones, and also higher-level than typical intermediate languages designed for compilation,
by maintaining types and a close relationship with the source program. The main advantage of CIL is
that it compiles all valid C programs into a few core constructs with a very clean semantics. Also CIL
has a syntax-directed type system that makes it easy to analyse and manipulate C programs. Further-
more, the CIL front-end is able to process not only ANSI-C programs but also those using Microsoft
C or GNU C extensions.

A new code analysis and instrumentation module was written for the HEAP project. Some suitable
existing CIL modules were merged and extended to implement the required functionality for code
analysis and annotation.

2.2. Run-Time Data Dependency Tracer Library

The tracer library was written first in Perl® to allow fast prototyping of data structures and algorithms
for analysis. Once the structure was consolidated, it was fully rewritten in C to reduce the run time

! http://sourceforge.net/projects/cil/

http://caml.inria.fr/ocaml/
http://www.perl.org/

HEAP_D3.4_ V1.4 20120123 Page 7 of 25

FP7-1CT-247615 - HEAP
Free Software-Based Flow for the Visualization of the

Parallelism in the Program Execution -- User Manual and Tutorial

(about 16x speed increase with respect to the Perl version and about 450x slower than the normal
application run).

The tracer library is linked with the instrumented application program under analysis to obtain an
executable program. To perform the execution analysis, this program should be run using the same
inputs as the normal (not annotated) application program. Data dependency is collected during pro-
gram execution and at the end a summary file is generated that contains all the data needed to repre-
sent graphically the dependencies and the cross-references with the source program in the IDE.

2.3. Data Dependency Visualization

This tool chain component is based on the free software program ZGRViewer.* It is a graph visual-
izer implemented in Java and based upon the Zoomable Visual Transformation Machine.”

ZGRViewer is specifically aimed at displaying graphs expressed using the DOT language from
AT&T GraphViz and processed by programs dot, neato or others such as twopi. It is designed to
handle large graphs and offers a zoomable user interface (ZUI), which enables smooth zooming and
easy navigation in the visualized structure.

In the latest version it can provide:
e overview + detail views;
o focus+context magnification with Sigma Lenses views;
o graphical fish-eye focus+context distortion views;
e navigation along graph edges with Link Sliding;
¢ navigation from node to node with Bring & Go.

The tool chain includes the latest stable release (version 0.8.2), thus the features may differ from the
latest development version.

Several classes were developed to integrate ZGRViewer with the HEAP tool chain. Its code and op-
eration were analysed thoroughly to find the best way to integrate it to the HEAP flow to both sim-
plify the integration, the debug, and maintenance of the integration as well as of the whole tool chain.

Special attention was given to the following objectives:

¢ limit as much as possible the changes to the original ZGRViewer code, both as entity as well
as number. All changes to the original code were well tagged and documented to simplify fu-
ture updates of the ZGRViewer code from the project (porting to newer versions of
ZGRViewer)

o define a flexible format for the transfer of the data output by the tracer at the end of the anno-
tated program execution. An XML template was defined such way to allow for easy data
structure creation in the viewer and also be flexible enough to easily accommodate future ex-
tensions or other modifications

e define a bidirectional Inter-Process Communication subsystem to allow the communication
of commands and data between the viewer and the IDE. The IPC is based on UNIX pipes and
ASCII commands and data. It allows an easy integration with almost any IDE that is able to
implement the other end of the IPC, reducing to a bare minimum the compatibility require-
ments between the viewer and the IDE

http://zvtm.sourceforge.net/zgrviewer/news.html

> http://zvtm.sourceforge.net/

HEAP_D3.4_ V1.4 20120123 Page 8 of 25

FP7-1CT-247615 - HEAP
Free Software-Based Flow for the Visualization of the

Parallelism in the Program Execution -- User Manual and Tutorial

o a powerful graph driver for the GraphViz “dot” layout engine that generates an easy to un-
derstand dependency graph colourisation and a suitable node and arch layout in most cases

o an efficient cross-reference mechanism between the source code in the IDE and the nodes of
the data dependency graph, including pop-up windows with data and keyboard short cuts to
facilitate and speed up the graph exploration;

e an efficient internal data representation of the graph able to both deal with a large number of
nodes and edges and also to simplify the graph transformation algorithms.

The HEAP-specific code was grouped under the “IDE” package with sub-packages for generic IPC
classes, Code::Blocks-specific IPC classes, graph and IR classes, and utility classes. Both the
ZGRViewer project and the HEAP additions make up a single project under the NetBeans IDE (see
annex 5).

Most of the functions and graphic interface are presented in detail in the following sections.

2.4. IDE

The IDE functionality is provided by Code::Blocks.® Code::Blocks is a well established cross-
platform IDE that supports projects in C/C++/D languages. It runs on Linux, OS X, and Windows
platforms providing by design a consistent look, feel, and operation mode. It is written in C++ using
the wxWidgets’ library and is designed to be very extensible and fully configurable.

The IDE functionality was extended to suit the specific requests of the HEAP project, in particular
the interface with the graph viewer based on the Java project ZGRViewer.

The recommended way to extend the functionality of the IDE is by writing plug-ins. The plug-ins can
be written either in an IDE-specific scripting language or in C++, like its core. To decide what lan-
guage to use it was considered that writing a script requires less time than writing C++ code, but the
scripting interface did not allow to spawn threads, feature needed to handle the IPC with the view via
UNIX pipes. Consequently, the plug-in had to be written in C++.

The plug-in implements all the functionality needed to integrate the ZGRViewer-based graph viewer
into customized for HEAP in the Code::Blocks IDE to offer the designer a single interface for con-
trolling the development and optimisation of the project. To this end, the plug-in extends the IDE
functionality with:

o ability to create the communication pipes and to spawn the viewer process upon the devel-
oper command using a specific HEAP menu

e automatically connect to the viewer process using the pipes to establish the first contact with
the viewer after its initialization

e implement the IPC listener and transmitter, and the IPC protocol for exchanging commands
and data with the viewer

e implementing the interaction with the IDE elements (e.g., the editors, the menus, the project
information) necessary to provide the developer the needed visual feedbacks, such as:

A open and select the line requested by the developer through the viewer interface (for in-
stance to display the line represented by a graph node)

A retrieve and send to the viewer the number required of context lines for a given source
code line that are used to display on the graph the source code context for a given node

6 http://www.codeblocks.org/

http://www.wxwidgets.org/

HEAP_D3.4_ V1.4 20120123 Page 9 of 25

FP7-1CT-247615 - HEAP
Free Software-Based Flow for the Visualization of the

Parallelism in the Program Execution -- User Manual and Tutorial

A provide the block folding information for all project files to the viewer to collapse the
corresponding nodes

A send the viewer the refresh command upon developer click on the “update” item in the
HEAP menu

o ability to end the viewer process and remove the communication pipes upon developer com-
mand using the HEAP menu

e interact with the IDE graphical elements, such as main and context menus.

Most of these functionalities and graphical items of the HEAP plug-in are presented in detail in the
following sections.

3. Demo Virtual Machine

A Linux® VirtualBox® virtual machine (VM) was configured to reliably support the functionality of
the tool chain. Its installation is described in D3.2, where the reader is now referred.

The users defined on the virtual machine are:
e root with the password: DemollHEAP
This login can be used to perform administration tasks on the VM, if required.
e heapdemouser with the password: Demol1HEAP
This login is used for all tool chain-related activities.
Demo Project

The buttons to launch the applications of interest are exposed for convenience on the top panel of the
workspace, right next to Fedora menus:

ﬂhpplicatiunS Places 5System P. F. |£J

From left to right, they are:

. opens a terminal window;

5]
ﬂ opens Code::Blocks IDE;

. F. discards a hanged instance of the Code::Blocks IDE;

&
|-EJ displays the user manual of the distribution.

3.1. Load the Demo Project

7]
Click on the Code::Blocks button (n) to start the IDE:

8 https://secure.wikimedia.org/wikipedia/en/wiki/Linux

http://www.virtualbox.org/

HEAP_D3.4_ V1.4 20120123 Page 10 of 25

FP7-1CT-247615 - HEAP
Free Software-Based Flow for the Visualization of the

Parallelism in the Program Execution -- User Manual and Tutorial

Machine View Devices Help

BAppl\catluns Places System E ! ﬂ
H

¥ Start here - Code:Blo. ..

Start'here - Code:Blocks 10.05

File Edit View Search Project Build Debug Tools Plugins Settings Help HEAP

‘FeEA|

Qm

@ B8 Buildtarget:l GllE

Management 3]

| Projects | Symbols
& iorizpace

Start here [@

\®

Release 1005 rev 0 {unknown date) gcec 451 Linux/unicode

Code::Blocks

Tie open source, cross-plaforo 1
it codeblocks ong

- 32 bit

—~—— S
.u Create a new project % Open an existing project

u Visit the Code:Blocks forums Report a bug Reguest a new feature

Recent projects

» No recent
projects
i

<]

Logs & others

[® Scripting console

J /| Code::Blocks: @[), Search results

[£ Debugger [£ Build log l # Build messages

elcome to the script console!

AstylePTugin
ClassWizard
Projectsimporter
Compiler
ScriptedWizard
Autosave

ToDolist
FilesExtensionHandler

OpenFilesList

N

Welcome to Code:Blocks!

[\ |cerautt

Select “File” from the top menu, then click on “Open...”.

@2 E | & BRight Ct:;l

In the file chooser window that opens

navigate to “heapdemouser/projects/mjpeg_par”, select “mjpeg_par.cbp” and click on “Open”:

HEAP_D3.4_ V1.4 20120123

Page 11 of 25

FP7-1CT-247615 - HEAP
Free Software-Based Flow for the Visualization of the

Parallelism in the Program Execution -- User Manual and Tutorial

'7? heapdemouser " projects l[m]pag_pnrl
Places Name ~ | Size Modified 2
Q, search [| barbaralzex12s8.U 8.0 KB 07/05/2011
@ Recently Used D barbaral28x128.V 8.0 KB 07/05/2011
& heapdemouser | | barbaral2gx128.Y 16.0 KB 07/05/2011
(] File System | | csize.h 1.0KB 06/14/2011
[| pcTh 39KB 06/14/2011
E] marker.h 704 bytes 06/14/2011
D mjpeg_func.h 504 bytes 06/21/2011
E’l mjpeg_par.c 13.2 KB Thursday
! mjpeg_parchp 11KB 04202011
: D mjpeq_par.cil.c 1212 KB Yesterday at 20:14
i @ mjpeg_parlayout 246 bytes Yesterday at 20011
@ mjpeg_parxml 169.9 KB Yesterday at 20:15
|| param.h 13 KB 06/14/2011
Ljah 11 KB 06/14/2011
|| tables.h 3.6 KB 06/14/2011
@ tracer 731 KB Yesterday at 20:14
El types.h 1.1 KE Monday
| | Video inh 357 bytes 06/14/2011 v
l Add l lR-‘:m-:--..--':l lAII files (*) s l
Cancel l [Open l

The “mjpeg_par” project will open:
Machine View Devices Help

€9 Appiications Places System [¥ mipeg_parc [mijpeg_p W || 21°C sunsepls 1649

n mjpeg_par.c [mjpeg_par]'- Code::Blocks 10.05 EIIES

File Edit View Search Project Build Debug Tools Plugins Settings Help HEAP

3 E@| . 5E0AR[0ra 00 mmmelm i

BB 0|06

Management ® | mjpeg_par.c i
J Projects | Symbols 1 219 void BoundDctMetrix(int *matrix, int Bound) A
20 B9 Il
v 0 221 | int *mptr;
- 2
% mipeg_par 223 B for(mptr=matrix:nptrenatrizBLOCKSIZE: nptrie) {
b B sources 224 if (*mptriBound < 0)
225 “mptr = -Bound;
226 else 1f (*mptr-Bound > 0)
227 “mptr = Bound:
28 + }
29 Ly
230
231 void mainDCT{const TBlocks *input, TBlocks *output)
m B
233 int DCTBound, DCTSHift;
234 DCTBound = ((DataPrecision) ?16383:1624) :
235 DCTShift = ((DataPrecision)72648:128):
236
237 /L
238 PreshiftDctMatrix((int*] (*input).YL.pixel, DCTShift): // Shift
233 ReferenceDct ((int*) (*input).Y1.pixel, (*output).Yl.pixel); 74 DCT
240 BoundDCtFEErix((*oUtput) Y1, pixel, DCTBound); /1 Bound, limit
241
202 e
243 PreshiftDctMatrix((int*] (*input).Y2.pixel, DCTShift): // Shift
244 ReferenceDct | (int*) (*input].¥2.pixel. (*output).Y2.pixel): £ DCT
245 BoundDet et rix((*output] .¥2.pixel, DCTBound): 7/ Bound, Limit
246
247 f1u1
248 ReferenceDct | (int*) (*input).UL.pixel, (*output).Ul.pixel): 77 DT L
249 BoundDct Mt rix((*output) .UL. pixel, DCTBound): // Bound, limit ()
1>)
Logs & others ¥ | Scripting consale ®
J /| Code::Blocks IE[(), Search results IQDebugger]QBuMd log N & Build messages elcome to the script console!
Autosave ~
ToDolist
FilesExtensionHandler
OpenFilesList
Running startup script
Script/function 'edit_startup_script script’ registered under menu '&Settings/-Edit startup script!
Opening /home/heapdemouseriprojects/mjpeg_par/mipeg_par.chp -
G —

/homefheapdemouser/projects/mjpeg_par/mjpeg_parc UTF-8 Line 233, Column 23 Insert ‘ ‘Reader\te ‘defau\t

@//@ @ @& Brghtctr

HEAP_D3.4 V1.4 20120123 Page 12 of 25

FP7-1CT-247615 - HEAP
Free Software-Based Flow for the Visualization of the

Parallelism in the Program Execution -- User Manual and Tutorial

Now start the visualization program by clicking on the “HEAP” entry of the top menu and then on

“Run”:
"HEAP'|

[|

The ZGRViewer visualizer window will open:

Machine View Devices Help

@ PE | @ FHrgntcr

Arrange the IDE and the ZGRV windows on the screen to have a clear view of both. If you have two
monitors attached to the host machine you may wish to move the ZGRV window on the second
monitor of the VM and then move this VM second monitor window on the second physical monitor
of the host.

3.2. Run the Demo Analysis

The analysis tool chain is run from the command line. A script is provided that loosely glues together
the whole chain.

Note: the instrumented program runs about 450 times slower than the native run.

Open a terminal window by clicking on the icon in the top panel of the workspace and go into the
directory of the mjpeg_par project of the IDE:

HEAP_D3.4_ V1.4 20120123 Page 13 of 25

FP7-1CT-247615 - HEAP
Free Software-Based Flow for the Visualization of the

Parallelism in the Program Execution -- User Manual and Tutorial

File Edit Wiew 5Search Terminal Help

[heapdemouser@democheap ~]1% cd projects/ | %
mijpeg_par/ tracer/ VisPlugin/ zgrv/
[heapdemouser@emcheap ~]% cd projects/mjpeg_par/
[heapdemouser@lemcheap mjpeg_parl]$ 1s

barbaral2g8x128.U0 DCT.h mjpeq_par.chp param.h types.h
barbaral28x1258.V marker.h mjpeg_par.cil.c Q.h Video in.h
barbaral28x128.Y mjpeg_func.h mjpeg_par.layout tables.h Video out.h
csize.h mjpeg_par.c mjpeg_par.xml VLE.h

[heapdemouser@emcheap mjpeg_par]s

In this directory run the tracer.sh script with arguments:
tracer.sh -- mjpeg_par.c

where:
e - (double dash) ends the command line options that are passed to the compiler and linker;

e mjpeg_par.c is the name of the source file to analyse:

HEAP_D3.4 V1.4 20120123 Page 14 of 25

FP7-1CT-247615 - HEAP
Free Software-Based Flow for the Visualization of the

Parallelism in the Program Execution -- User Manual and Tutorial

File Edit Wiew Search Terminal Help

[heapdemouser@demoheap ~1% cd projects/mjpeg_par/ (~]
[heapdemouser@lemcheap mjpeg_parl$ 1s

barbaralzgx12a.U0 DCT.h mjpeq_par.chp param.h types.h
barbaral28x128.V marker.h mjpeg_par.cil.c 0.h Video in.h
barbaral2gx128.Y mjpeg func.h mjpeg par.layout tables.h Video out.h

csize.h mjpeg_par.c mjpeq_par.xml VLE.h
[heapdemouser@emcheap mjpeg_parl$ tracer.sh -- mjpeg_par.c

+ /home/heapdemouser/projects/tracer/cil-1.4.0/bin/cilly --save-temps --noWrap -
-nofrintln --dooneRet --dosimplify --doimarw -c mjpeg_par.c

-D_GNUCC -E -DCIL=1 mjpeg _par.c -o ./mjpeg_par.i
JShome/heapdemouser/projects/tracer/cil-1.4.8/0b /%86 LINUX/cilly.asm. exe --out .
/mipeqg par.cil.c --noWrap --noPrintln --dooneRet --dosimplify --doimarw ./mjpeq_
par.1i

-D_GNUCC -E ./mjpeq_par.cil.c -o ./mjpeg_par.cil.i

-D_GNUCC -c -o ./mjpeg_par.o ./mjpeg_par.cil.1

+ rm -f mjpeg_par.1 mjpeg_par.c mjpeg_par.cil.1

+ gcc mjpeg_par.cil.c -lavl -1xml2 -lheap -o tracer

+ rm - mjpeg_par.cil.o

+ . ftracer

W: no arg 1 for instruction 19 (main())

W: no arg 2 for instruction 2@ (maini))
+
+
+
[

gcc

gce
gcc

test -5 model.xml

test model.xml = mjpeg_par.xml

me model. xml mjpeqg_par.xml
heapdemouser@emoheap mjpeg_parl$ [v)

where:

+ /home/heapdemouser/projects/tracer/cil-1.4.0/bin/cilly is the starting command for CIL
compilation

the three gcc compilations that follow are part of the cilly run and generate the instrumented
model of the user program, mjpeg_par.cil.c

+ rm -f mjpeg_par.i mjpeg_par.o mjpeg_par.cil.i cleans the temporary files from the di-
rectory

the next gcc run compiles the CIL model (mjpeg_par.cil.c) and links it with the data depend-
ency tracer library (libheap) and other system libraries (libxml2, libavl)

the rm command cleans the temporary files from the directory

the data dependency tracer is then run. It actually runs the user program instrumented for
data dependency tracing together with the data dependency tracer

finally, the mv command renames the file with the generated data to the name expected by
the ZGRViewer-based visualizer.

3.3. Run the Data Dependency Visualization

After each operation that can affect the visualization (e.g., change the folding in the IDE editor, up-
date the visualizer data) the visualizer should be informed on the update. Access the HEAP menu on
the top menu of the IDE and click on the “Update” entry:

HEAP_D3.4_ V1.4 20120123 Page 15 of 25

FP7-1CT-247615 - HEAP
Free Software-Based Flow for the Visualization of the

Parallelism in the Program Execution -- User Manual and Tutorial

HEAP |

[+] Run Ctri+! |

| |

Notice how the visualizer window displays the data dependency among program instructions:

ZGRViewer-)/tmp/zgrviewer DotFile3462248229219253419]gv: BEE

File View Help

Each ellipse represents a program instruction that was executed. The ellipse colour can vary from
white (seldom executed) to intense red (most executed).

Each directed arch that connects two ellipses represents a data dependency between the two instruc-
tions. The arch colour can vary from light cyan (for seldom occurring dependencies) to intense red
(for most occurring dependencies) and, at the same time, the arch width is modulated by the same
factor, the widest for the most occurring.

The visualizer implements a few handy short cuts:

e ‘C’ -- with the cursor on a node, display the source code of the node with 5 context lines:

HEAP_D3.4_ V1.4 20120123 Page 16 of 25

FP7-1CT-247615 - HEAP
Free Software-Based Flow for the Visualization of the

Parallelism in the Program Execution -- User Manual and Tutorial

iffhl == HULLY {
thl = fopenCharbaral 28128 ¥", "p"2;
C=0;
while Cich = getcCthlld = EOFD {
compy [C] = ch;

C4+)

il

iffhz == MULL) {

e ‘C’ -- with the cursor on a node, display the source code of the node with 10 context lines:

A4 open dmage files only the first time when mainvideoln is called
A4 and put them in arrays
it CisFirst == 1 0 {

isFirst = 0;

ifthl == WULL) §
thl = fopen"barbaral28x125 %", "r"J;
c=0;
while Cich = getcCfhll) 1= EOFD
comp [C] = ch;

C++;

il

iTCfhE == MULLD §
The = fopen ("barbaral2gx125 0", "r");
c =0;
while Cich = getcCfh2)) 1= EOFD
compl [c] = ch;

C++;

il

e ‘e’ -- with the cursor on a node, move the IDE editor cursor on the source line corresponding
to the node;

e ‘m’ -- with the cursor on an arch, display the unabridged list of data dependencies repre-
sented by the arch:

HEAP_D3.4 V1.4 20120123 Page 17 of 25

FP7-1CT-247615 - HEAP
Free Software-Based Flow for the Visualization of the

Parallelism in the Program Execution -- User Manual and Tutorial

L b

(Ll lba ot Beg] >0t

sourcematrix[13],
sourcematrix[17],
sourcematrix[20],
sourcematrix[24],
sourcematrix [25],
sourcematrix[31],
sourcematrix[35],

sourcematrix[14],
sourcematrix[18],
sourcematrixz[21],
sourcematrix[25],
sourcematrix=[29],
sourcematrix[32],
sourcematrix[36],

ourcematriz, sourcematrix[10], sourcematrix[11l], sourcematrixz[lZ],

sourcematrix[15],
sourcematrix[19],
sourcematrix[22],
sourcematrix[26],

sourcematrix[2], sourcematrix[30],

sourcematrix[33],
sourcemnatrix[37],

sourcematrix[16],
sourcematrix[1],

sourcematrix[23],
sourcematrix[27],

sourcematrix[34],
sourcematrix[38],

sourcematrix[39],
sourcematrix[42],
sourcematriz[46],

sourcematrix[3], sourcematrix[40], sourcematrix[41],
sourcematrix[43], sourcematrix[44], sourcematrix[45],
sourcematrix[47], sourcematrix[48], sourcematrix[49],
sourcematrix[4], sourcematrix[50], sourcematrix[51], sourcematrix[52],
sourcematrix[53], sourcematrix[54], sourcematrix[55], sourcematrix[5e],
sourcematrix[57], sourcematrix[58], sourcematrix[59], sourcematrix[5],
sourcematrix[60], sourcematrix[6l], sourcematrixz[6Z], sourcematrix[e3],
sourcematrix[6], sourcematrix[7], sourcematrix[8], sourcematrix[9]

‘g’ -- best fit of the graph on screen;

use the mouse wheel to zoom in/out.

To further facilitate the exploration of the data dependencies, the graph nodes can be folded by fold-
ing in the IDE the lines corresponding to the nodes source lines. For instance, by folding all blocks in
the IDE we obtain the dependency view between the functions:

Machine View Devices Help

fold all the blocks in the IDE:

B Applications Places System [H n n | @ heapdemouser@de... || Mg mjpeg_parc [mjpeg_... || 4| ZGRviewer - tmp/zg... | [N | Hg [[2] 20 °C Sun Sep 18,1824
H mipegiparic[(mjpegipar] - Code:BlocKs 10/05) HEE
File Edit View Search Project Build Debug Toocls Plugins Settings Help HEAP
HE ™] B QRG> o Build target: Debug 2| P IE M o a
Management ® mipeg_par.c
Projects | Symbols 382 lﬂ
383
Sl #] iorkspace | 384 void EncodeAC{int *mat rix]
3| @
< S mjpeg_par o
P B sources 427
428
429
430
431 void EncodeDC{int coef, int *LastDC)
432 { Toggle breakpoint
g Run to cursor
454
455 void EncodeHuffman (int value)
56 my Insert >
453
460 Swap header/source
461 void fputv(int n,int b) "
462 Ediit >
464
465 void UseHuffman(int *code, int *size) Bookmarks >
466 { | [
474
475 void mainVLEiconst TBlocks *blocks, TPackets *strei Format this file (AStyle) Unfold all
547 j R Toggle all
Z:S #include "Video_out.h Add Todo item L
550 void mainVideoDut(const THeaderInfo *HeaderInfo, o gt yiew Fold current block
551 i P Unfold current block
zgé Configure editor. Toggle current block
a m Properties.. E‘_
Logs & others Remove file from project ® Scripting consale =
- |
/| Code::Blocks [¥| () Search results €yDebugger | €3 Build log | ¥ Build messages Melcome to the script console!
Autosave =
ToDolList 2
FilesExtensionHandler
OpenFilesList
Running startup script
Script/function ‘edit_startup_script.script’ registered under menu '&Settings/-Edit startup script’
Opening fhome/heapdemouser/projectsimjpeg_par/mjpeg_par.cbp ——
i) E— 7
/homefheapdemouser/projects/mjpeg_par/mjpeg_par.c UTF-8 Line 431, Column 37 Insert Read/Write default
Qrdm @ [#] right ctrl
e update the visualizer:

HEAP_D3.4_ V1.4 20120123

Page 18 of 25

FP7-1CT-247615 - HEAP
Free Software-Based Flow for the Visualization of the

The nodes still visible are the function arguments.

4. New Project
Creating a new project for data dependency analysis requires the following steps:

1. create a new project under the IDE and populate it with the project source files (please refer
to the Code::Blocks documentation®® for detailed explanation and to annex 6).

Unless you are going to use Code::Blocks for development, importing a project for data de-
pendency analysis is usually just a matter of copying the project file tree under the project di-
rectory using standard GUI or command line tools

2. make sure the project compiles well with the native compiler (gcc), runs and produces the
proper results

3. apply the data dependency analysis as described in section 3.2;
4. visualize the data dependency results as described in section 3.3.

An important aspect to consider when creating a new IDE project is its location. If the project direc-
tory is set on the VM virtual disk it can be lost with the next updates of the VM. It is safer to create
the project on the host file system that is accessible to the host OS using the shared folders configura-
tion in section 3.

10 http://wiki.codeblocks.org/index.php?title=Creating_a_new_project

HEAP_D3.4_ V1.4 20120123 Page 19 of 25

FP7-1CT-247615 - HEAP
Free Software-Based Flow for the Visualization of the

Parallelism in the Program Execution -- User Manual and Tutorial

Annexes

5. NetBeans Project for HEAP extensions and
ZGRViewer

The HEAP-specific classes are expanded in the left panel.

The ZGRViewer project is unexpanded, under the net.claribole.zgrviewer and
net.claribole.zgrviewer .dot packages.

The external ZGRViewer libraries and utilities are located under the “Other Sources” and “Libraries”
folders.

HEAP_D3.4_ V1.4 20120123 Page 20 of 25

FP7-ICT-247615 - HEAP

Free Software-Based Flow for the Visualization of the
Parallelism in the Program Execution -- User Manual and Tutorial

File Edit Wiew MNavigate Source Refactor Bun Debug Profile Team Tools Window Help

P B % ¥ @ [assertions

v % W D B B-

S
Pro... 40 xl Files

~ %BEGF’MEwer
v TgSource Packages
= [gIDE.IPC
& Ipc.java
& Ipcinput.java
& [pcOutput. java
< [5IDE.IPC.CB
CBContext.java
CBDisplay.java
CBFold.java
CBQuIit.java
CBSimStats. java
lpcCallback.java
lpcCallbacks. java
IDE. Ltil
RGE. java
IDE. graph
Display.java
DisplayDOT.java
Fold.java
Folds.java
GEdge java
GEdgeStats.java
GMade. java
GModeStats java
o B REva
& MNodeXRef.java
& ToolTip.java
[& xRef.java
b [Lgnet.claribole.zgrviewer
P £ net.claribole.zgrviewer. dot
0} Other Sources
B Generated Sources (antlr)
& Libraries
4, Project Files

l Sernvices

B Qﬂ@@@@@@@

1=1]

U U Y Y EY

P
P
P
b

VA l@ lpc.java Xl@ IpcCallbacks.java xl@ XRef.jav

e B-8-oS@E P

!

3]
{

Integer hits = Integer.parselntiattr.

f4 Create and record a new edge
Ff owith the given attributes,

GMode fram = getNodeForName(sourceMod
assert from I= null;

GMode to = getNodefForNamelsinkModelId)
assert to I= null;

S/ Assume all edges are directed for
GEdge edge = new GEdge(from, to, addr

from,addEdge(edge) ;
to.addEdge(edge) ;

Annotate the <transfers= tag contents
of an IDE-provided simulation results.

@param transfers
<transfers> tag to annotate.

ivate void annotateProjectTransfersIrii

assert transfers != null;

for (Mode node = getFirstitransfers);
if i(node.getModeMame(] .equalsIgno
annotateProjectTransfersTrans

Ff Silently dignore anything else.

Annotate the <project= tag contents
of an IDE-provided simulation results.

@param project
<sproject= tag to annotate.

ivate void annotateProjectIriMode proje

assert project != null:

HEAP_D3.4_ V1.4 20120123

Usages @Gutput k) Tasks Java Call Hierarchy Q, search Results

Page 21 of 25

FP7-1CT-247615 - HEAP
Free Software-Based Flow for the Visualization of the

Parallelism in the Program Execution -- User Manual and Tutorial

6. Excerpts of Code::Blocks Documentation on Crea-

tion of a New Project

This section is a guide to many of the beginning (and some intermediate) features of the creation and
modification of a Code::Blocks project. If this is your first experience with Code::Blocks, here is a
good starting point.

6.1. The project wizard

Launch the Project Wizard through Fi le->New->Project. . . to start a new project. Here there are
many pre-configured templates for various types of projects, including the option to create custom
templates. Select Console application, as this is the most common for general purposes, and click Go.

Mew from template [E3m]
Projects Category: [*:.ﬁ.]l categories > v] [Go]
Build targets
@ e) *
Custom N _ _ —

User templates ARM Project AVR Project Code::Blocks Console

plugin application

8 © & [

D application DirectX Dynamic Link Empty project
project Library

= o g =

FLTK project Fortran DLL Fortran Fortran library
application

GLFW GLUT View as
e e 8 S

@) Large icons
GLFVW project GLUT project GTK+ project Irrlicht project) List

m

TIP: Try right-dlicking an item

1. Select a wizard type first on the left
2. Select a spedfic wizard from the main window (filter by categories if needed)
3, Press Go

The console application wizard will appear next. Continue through the menus, selecting C++ when
prompted for a language. In the next screen, give the project a name and type or select a destination
folder. As seen below, Code::Blocks will generate the remaining entries from these two.

HEAP_D3.4 V1.4 20120123 Page 22 of 25

FP7-1CT-247615 - HEAP
Free Software-Based Flow for the Visualization of the

Parallelism in the Program Execution -- User Manual and Tutorial

Conscle application @
Please select the folder where you want the new project
m Console to be created as well as its tite.
Project title:
HelloWorld

Folder to create project in; e
cA =]
Project filename;

HelloWorld, cbp

Resulting filename:
C:\Helloworld\HelloWarld . chp

< Back ” Mext = || Cancel |

Finally, the wizard will ask if this project should use the default compiler (normally GCC) and the
two default builds: Debug and Release. All of these settings are fine. Press finish and the project will
be generated. The main window will turn gray, but that is not a problem, the source file needs only to
be opened. In the Projects tab of the Management pane on the left expand the folders and double
click on the source file main.cpp to open it in the editor.

Management 4

41 | Projects | Symbols Files »

—--O Workspace
- Mg HelloWorld

5= Sources

This file contains some default code.

6.2. Changing file composition

A single source file is of little uses in programs of any useful complexity. In order to handle this,
Code::Blocks has several very simple methods of adding additional files to the project.

6.2.1. Adding a blank file

To add the new file to the project, bring up the file template wizard through either File->New-
>File... orMain Toolbar->New file (button)->File...

HEAP_D3.4_ V1.4 20120123 Page 23 of 25

FP7-1CT-247615 - HEAP
Free Software-Based Flow for the Visualization of the

Parallelism in the Program Execution -- User Manual and Tutorial

H File.cpp - Code:Blocks svn build H File.cpp - CodexBlocks svn build
Edit View Search Project Buld Debug wxSmith Tools Plugins DowBlocks Settings File Edit View Search Project Build Debug wxSmith

[New e ashieN | - {Bls Bl 3 [Q &
0k Empy fi Ctrl-Shift-N |
i Open.. (trl-0 Class... HE @ mpty e - : !
(pen with hex editor Project.. r_ @ Class.. B
QOpen defagltworkspace Build target.. = 1 Project.. =
Recent projects ¢ e o{ Buildtarget.
Recent files J :
Custom.. Fil..
e ' From template... Customn...
Nassi Shneiderman diagram From template...
[Savefile z. Nassi Shneiderman diagram
&l Save all s Cel-Shif-5 Il

Select C/C++ source and click Go. Continue through the following dialogues very much like the
original project creation, selecting C++ when prompted for a language. On the final page, you will be
presented with several options. The first box will determine the new file name and location (as noted,
the full path is required). You may optionally use the corresponding button to bring up a file browser
window to save the file's location. Checking Add file to active project will store the file name in the
Sources folder of the Projects tab of the Management panel. Checking any of the build targets will
alert Code::Blocks that the file should be compiled and linked into the selected target(s). This can be
useful if, for example, the file contains debug specific code, as it will allow the inclusion (or exclu-
sion) from the appropriate build target. In this example, however, the hello function is of key impor-
tance, and is required in each target, so select all the boxes and click Finish to generate the file.

P o)

C/C++ source ==

Please enter the file's location and name and
TR

a ‘_,fl..++ FILE whether to add it to the active project.

Filename with full path:

C:'\HeloWorldhello, cpp B

Add file to active project
In build target(s):

Toebg |

v | Release

HEAP_D3.4 V1.4 20120123 Page 24 of 25

FP7-1CT-247615

- HEAP

Free Software-Based Flow for the Visualization of the

Parallelism in the Program Execution -- User Manual and Tutorial

6.2.2. Adding

a pre-existing file

Click Project->Add files. .. to open a file browser. Here you may select one or multiple files
(using combinations of Ctrl and Shift). (The option Project->Add files recursively. .. will
search through all the subdirectories in the given folder, selecting the relevant files for inclusion.)

Click Open to bring up a dialogue requesting to which build targets the file(s) should belong. For this
example, select both targets.

Multiple selection o][
Select the targets this file should belong to;

v | Debug Wildcard select

v | Release

[Ok] [Cancel

]

Toagle selection
Select all
Deselect all

Il

Selected: 2

Note: if the current project has only one build target, this dialogue will be skipped.

6.2.3. Removi

ng afile

Using the above steps, add a new C++ source file, useless.cpp, to the project. Removing this un-
needed file from the project is straightforward. Simply right-click on useless.cpp in the Projects tab
of the Management pane and select Remove file from project.

A 2Mel

E--O Waorkspace

EHE- Sou

41 | Projects | Symbols Files I

- g HelloWorld

v

useless.cpp X

1

rces
hello.cpp
main.cpp

Save useless.cpp
Close useless.cpp

Open with

Remowe file from project

HEAP_D3.4_ V1.4 20120123

-

Page 25 of 25

	1. Introduction
	2. Tool Chain
	2.1. Source Code Analysis and Instrumentation
	2.2. Run-Time Data Dependency Tracer Library
	2.3. Data Dependency Visualization
	2.4. IDE

	3. Demo Virtual Machine
	3.1. Load the Demo Project
	3.2. Run the Demo Analysis
	3.3. Run the Data Dependency Visualization

	4. New Project
	5. NetBeans Project for HEAP extensions and ZGRViewer
	6. Excerpts of Code::Blocks Documentation on Creation of a New Project
	6.1. The project wizard
	6.2. Changing file composition
	6.2.1. Adding a blank file
	6.2.2. Adding a pre-existing file
	6.2.3. Removing a file

