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1 Saphira Software & Resources
This Software Manual provides the general and technical details you will need to program and operate

your intelligent mobile robot, such as a Pioneer from ActivMedia, with Saphira software.

1.1 Saphira Client/Server
Saphira is a robotics application development environment written, maintained, and constantly updated at

SRI International’s (formerly Stanford Research Institute) Artificial Intelligence Center, notably under the
direction of Dr. Kurt Konolige, who developed the Pioneer mobile robot platform.

Saphira operates in a client/server environment. The Saphira library is a set of routines for building
clients. These routines perform the work of communications and housekeeping for the robot server. And the
Saphira library integrates a number of useful functions for sending commands to the server, gathering
information from the robot’s sensors, and packaging them for display in a graphical window-based user
interface. In addition, Saphira supports higher-level functions for robot control and sensor interpretation,
including fuzzy-control behavior and reactive planning systems, and a map-based navigation and
registration system.

The Saphira client connects to a robot server with the basic components for robotics sensing and
navigation: drive motors and wheels, position encoders, and sensors. The server handles the low-level
details of robot sensor and drive management, sends information, and responds to Saphira commands
through a special communications packet protocol we describe in detail in Chapter 6. Some of the server
details are robot-specific, so we encourage you to consult your robot’s operation manual and supplementary
Saphira materials for details, as well.

The Saphira client library is available for Microsoft Windows NT and 95 and for most UNIX systems
(SunOS, Solaris, SGI, OSF, FreeBSD, and Linux). Saphira sources and libraries are written in ANSI C.
There is an Application Programmer’s Interface (API) of calls to the Saphira library. Programming details
are in the following chapters of this manual.

1.2 Colbert Robot Programming Language
With Version 6, Saphira has added a C-like language, Colbert, for writing robot control programs. With

Colbert, users can quickly write and debug complex control procedures, called activities. Activities have a
finite-state semantics that makes them particularly suited to representing procedural knowledge of
sequences of action. Activities can start and stop direct robot actions, low-level behaviors, and other
activities. Activities are coordinated by the Colbert executive, which supports concurrent processing of
activities.

Colbert comes with a runtime evaluation environment in which users can interactively view their
programs, edit and rerun them, and link in additional standard C code. Users may program interactively in
Colbert, which makes all of the Saphira API functions available in the runtime environment. Future
additions to Colbert include a compiler for efficient execution of debugged programs, and multiple-robot
coordination.

1.3 Behavior Compiler and Executive
Saphira uses fuzzy control rules for implementing low-level control programs, or behaviors. Behaviors are

defined using standard C structures and functions. To make writing and debugging behaviors easier,
Saphira has a behavior compiler that translates a simple fuzzy-control-rule syntax into the required C code.
As of Saphira 6.1, behaviors are a type of activity, and can be turned on and off from the activities window.
The behavior window is output-only and shows more detail on behavior execution.

1.4 Robot Simulator
Saphira also comes with a software simulator of your physical robot and its environment. This feature

allows you to debug your applications conveniently on your computer.
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The simulator has realistic error models for the sonar sensors and wheel encoders. Even its
communication interface is the same as for a physical robot, so you won’t need to reprogram or make any
special changes to the client to have it run with either the real robot or the simulator. But unlike the real
thing, the simulator has a single-step mode which lets you examine each and every step of your program in
detail.

The simulator also lets you construct 2-D models of real or imagined environments, called worlds. World
models are abstractions of the real world, with linear segments representing the vertical surfaces of
corridors, hallways, and the objects in them. Because the 2-D world models are only an abstraction of the
real world, we encourage you to refine your client software using the real robot in a real-world environment.

1.5 Required and Optional Components
The following is a list of components that you’ll need, as well as some options you may desire, to operate

your robot with Saphira. Consult your mobile robot’s Operation Manual for component details.

• Mobile robot with Saphira-enabled servers
• Radio modems or Ethernet radio bridge (optional)
• Computer: Power Macintosh1; Pentium or 486-class PC with Microsoft Windows 95 or NT,

FreeBSD, or Linux operating system; or UNIX workstation
• Open communication port (TCP/IP or serial)
• Four to five megabytes of hard-disk storage
• PKUNZIP (PCs), GUNZIP (PCs and UNIX), StuffIt Lite, or compatible archive-decompression

software
Optional:

• C-program source-file editor and compiler. Note: The current Windows95/NT version of Saphira
supports only Microsoft’s Visual C/C++ software, not Borland’s Turbo-C/C++ products. Necessary
for compiling new subroutines in standard C.

• Motif GUI and libraries for FreeBSD/Linux/UNIX. Necessary only to compile new clients; with
Colbert, users may instead operate in an application environment that is already compiled

1.6 Saphira Client Installation
The latest information for installing and running Saphira can be found in the readme file in the

distribution; please examine this file carefully before and during installation. The update file has
information about major changes in the latest releases of the Saphira system; you should consult it as a
general guide for updating older programs.

The Saphira distribution software, including the saphira demonstration program, Colbert, simulator,
and accompanying C libraries, come stored as a compressed archive of directories and files either on a 3.5-
inch, 1.44MB floppy diskette, or at the ActivMedia Internet site. Each archive is configured and compiled
for a particular operating system, such as Windows95/NT or Solaris. Choose the version that matches your
client computer system. You may obtain additional Saphira archives for other platforms and updates from
the ActivMedia Internet site; see Additional Resources later in this chapter for details.

The Windows95/NT versions are PKZIP’d, and UNIX versions come GZIP’d and TAR’d. To decompress
the software into usable files, you will need the appropriate decompression/archive software: PKUNZIP,
GUNZIP, or compatible program; consult the respective program’s user manual or help files.

For Linux and other UNIX users, we recommend that you create a saphira directory in /usr/local
or another publicly accessible directory, and set the appropriate permissions for access and use by your

                                                       
1 We do not recommend using Macintosh for Saphira development at this time, because the native

operating system (System 8) does not fully support multitasking, which is essential for Saphira operation.
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robotics groups. Copy the Saphira archive to that directory, then uncompress and untar the Saphira archive.
For example, with Linux the command is:

tar -zxvf linux61e.tgz
For Windows95/NT or Macintosh, uncompress the ZIP or SIT archive, respectively, but the location of the

files is up to you. The recommended directory is c:\saphira, which means the toplevel Saphira directory
will be c:\saphira\ver61. This is the directory that the sample MSVC projects assume.

For all systems, upon decompression a hierarchy of folders and files will appear inside a newly
established, version-related Saphira directory; ver61 for Saphira version 6.1, for example. The distribution
directory for the Windows 95/NT Saphira version 6.1 looks like the one in Figure 1-1/:
ver61/

bin/
saphira.exe Saphira/Colbert runtime application
direct.exe direct motion control example
pioneer.exe simulator
btech.exe Pioneer Fast-Track Vision system demo
bgram behavior grammar compiler
sf.dll DLL library for MS 95/NT
msvcrt40.dll required MS Windows DLL

  colbert/ Colbert language samples
handler/
src/
samples/ tutorial examples
apps/ application source examples
basic/

behavior.beh behavior examples
include/ header files
obj/ UNIX library files
maps/ Saphira example maps
worlds/ simulator world files
params/ parameters for different robots
readme explanation text file
update comparison of versions
license operation license

Figure 1-1. Distribution directory for Window 95/Windows NT in Saphira version 6.1.

IMPORTANT NOTICE!

All Saphira operations require that the environment variable SAPHIRA be set to the top-
level directory, e.g., /usr/local/saphira/ver61 on a Unix system (note that the
directory name does not have a final slash), or c:\saphira\ver61 on an Microsoft

Windows system. If you do not set this variable correctly, Saphira clients and the
simulator will fail to work, or fail to work properly!  Please set this as soon as you install

the distribution.

If you have a previous installation of Saphira, your SAPHIRA environment variable will be set to the old
top-level directory. You must reset it to the top-level directory of the new distribution. All new clients will
complain and fail to execute until you do.

A useful method on UNIX systems is to make a soft link to /usr/local/saphira/ver61 using the
file current. The environment variable can be set to /usr/local/saphira/current and will
remain unchanged when installing a new system; only the soft link current need be reset.

UNIX systems should use one of the following methods, preferably in the user’s .cshrc or other default
shell script parameter file:



4

export SAPHIRA=/usr/local/saphira/ver61 (bash shell)
setenv SAPHIRA /usr/local/saphira/ver61 (csh shell)

In Windows 95 and NT 3.51, assuming the top-level Saphira directory is c:\saphira\ver61, add the
following line to the file C:\AUTOEXEC.BAT:

SET SAPHIRA=C:\saphira\ver61

In Windows NT 4.0, go to Start/Settings/System, and click on the Environment tab. Add the variable
SAPHIRA in either the user or system-wide settings.

The Saphira library is now in a sharable form on both UNIX and MS Windows machines. This means
that a Saphira application will link into the library at runtime, rather than compile time. All clients share a
copy of the library, take up less space, and are quicker to compile. Saphira applications must be able to find
these libraries.

Under UNIX, the distribution contains the file handler/obj/libsf.so.6.0.x.  You can make the
library accessible to an application in two ways. We recommend leaving it in this directory and putting the
directory name onto the load library list using the shell command:

export LD_LIBRARY_PATH=${SAPHIRA}/handler/obj

A second method is to copy the library file into the standard library directory, usually /usr/lib.

Under MS Windows, the shared library is bin\sf.dll. You must copy or move this file to the
standard MS Windows system directory. In Windows 95 this is C:\Windows\System; in Windows NT it
is C:\Winnt\System32.

If an application cannot find the shared libraries, it will complain and exit. Also, problems will arise if the
application uses older libraries. It is good practice to clean up by deleting older shared libraries after doing
an installation.

1.7 Saphira Quick Start
To start the Saphira client demonstration program, navigate to inside the bin/ directory and execute the

program named saphira(.exe). For instance, use the mouse to double-click the saphira.exe icon
inside the saphira/ver61/bin/ folder on your Windows 95 desktop.

With UNIX, you must be running the X-Window system to execute the Saphira client software and make
sure to export or setenv the SAPHIRA=path parameter.

The Saphira client window will appear, with a graphics display of the robot internals, a text information
display, and an interaction window. Type help in the interaction window for a list of command classes that
you can query for further information.

Have a robot server or the simulator readied for a Saphira connection. For example, execute the
saphira/ver61/bin/pioneer(.exe) robot simulator on the same computer, or simply turn on your
Pioneer robot and connect its serial port (or radio modems) to your basestation computer running the
Saphira demonstration program.

In the Saphira interaction window, type connect serial to connect on the standard serial port. If
your radio modem is connected to a different serial port, use connect serial <port>, where
<port> is the name of the serial port, e.g., /dev/ttyS1 or COM2.

If you’re using the simulator, you can connect using connect local, which opens a local port to the
simulator and starts things up. You should have started the simulator first by executing pioneer(.exe)
from the same bin/ directory.

Bxx users can connect using either a TCP/IP connection or a local connection; typically the Saphira server
will start listening on a local port. Run the Saphira client on the same machine as the server, and use
connect local to make a connection.
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You also can connect via the Connect menu on the main Saphira window.
After you initiate the connection, the Saphira client and robot server perform a synchronization routine

and, if successful, will establish a connection. We provide a number of clues on both the client and server so
that you can follow the synchronization process. Success is distinct: The Saphira main window comes alive
with sonar readings, and the robot’s sonars begin a rhythmic, audible ticking.

We detail Saphira client operation in the following chapter. For now, we leave it to you to find the manual
drive keys and take your robot for a joyride. (Hints: arrows move, and the spacebar stops the motors.) The
demonstration Colbert program colbert/demo.act is loaded automatically in the sample application; it
and has more activities you can try out, by starting them from the Function/Activities window.

1.8 Additional Resources
Every new Saphira licensee gets three additional and valuable resources: a private account on our Internet

server for downloading Saphira software, updates, and manuals; access to the private Saphira-users
newsgroup; and direct access to the Saphira technical support team.

1.8.1 Saphira Software
We have a World Wide Web server connected full-time to the global Internet, where customers obtain

Saphira software and support materials:
http://robots.activmedia.com

Some areas of the website are restricted to licensed customers. To gain access, enter the username and
password that are written on the Registration & Account Sheet accompanying your Saphira
distribution and this manual.

1.8.2 Saphira Newsgroup

We maintain an e-mail-based newsgroup through which Saphira owners can share ideas, software, and
questions about the robot. To sign up, send an e-mail message to our automated newsgroup server:

To: saphira-users request@activmedia.com

From: <your return e-mail address goes here>

Subject: <choose one command:>

help (returns instructions)

lists (returns list of newsgroups)
subscribe

unsubscribe

Our SmartList-based listserver will respond automatically. After you subscribe, send your e-mail
comments, suggestions, and questions intended for the worldwide community of Saphira users:

To: saphira-users@activmedia.com

From: <your return email address goes here>

Subject: <something of interest to all members of saphira-users>
Access to the Saphira-users newslist is limited to subscribers, so your address is safe from spam. However,

the list currently is unmoderated, so please confine your comments and inquiries to issues concerning the
operation and programming of Saphira.

1.8.3 Support
Have a problem? Can’t find the answer in this or any of the accompanying manuals? Or know a way that
we might improve Saphira? Share your thoughts and questions directly with us:
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saphira-support@activmedia.com

Your message goes to our Saphira technical support team; a staff member will help you or point you to a
place where you may find help. Because this is a support option, not a general-interest newsgroup like
saphira-user, we must reserve the option to reply only to questions about bugs or problems with
Pioneer.

1.8.4 SRI Saphira Web Pages
Saphira is under continuing active development at SRI International. SRI maintains a set of web pages

with more information about Saphira, including
tutorials and other documentation on various parts of Saphira
class projects from Stanford CS327B, Real-World Autonomous Systems

information about SRI robots and projects that use Saphira, including the integration of Saphira with
SRI’s Open Agent Architecture

links to other sites using Pioneer robots and Saphira
The entry to the SRI Saphira web pages is http://www.ai.sri.com/~konolige/saphira.

1.8.5 Acknowledgments
The Saphira system reflects the work of many people at SRI, starting with Stan Rosenschein, Leslie

Kaelbling, and Stan Reifel, who built and programmed Flakey in the mid 1980’s. Major contributions have
been made by Alessandro Saffiotti, Karen Myers, Enrique Ruspini, Didier Guzzoni, and many others.
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2 Saphira System Overview
Saphira is an architecture for mobile robot control. Originally, it was developed for the research robot

Flakey2 at SRI International, and after being in use for over 10 years has evolved into an architecture that
supports a wide variety of research and application programming for mobile robotics. Saphira and Flakey
appeared in the October 1994 show Scientific American Frontiers with Alan Alda. Saphira and the Pioneer
robots placed first in the AAAI robot competition “Call a Meeting” in August 1996, which also appeared in
an April 1997 segment of the same program.3

The Saphira system can be thought of as two architectures, with one built on top of the other. The system
architecture is an integrated set of routines for communicating with and controlling a robot from a host
computer. The system architecture is designed to make it easy to define robot applications by linking in
client programs. Because of this, the system architecture is an open architecture. Users who wish to write
their own robot control systems, but don’t want to worry about the intricacies of hardware control and
communication, can take advantage of the micro-tasking and state reflection properties of the system
architecture to bootstrap their applications. For example, a user interested in developing a novel neural
network control system might work at this level.

On top of the system routines is a robot control architecture, that is, a design for controlling mobile
robots that addresses many of the problems involved in navigation, from low-level control of motors and
sensors to high-level issues such as planning and object recognition. Saphira’s control architecture contains
a rich set of representations and routines for processing sensory input, building world models, and
controlling the actions of the robot. As with the system architecture, the routines in the control architecture
are tightly integrated to present a coherent framework for robot control. The control architecture is flexible
enough that users may pick among various methods for achieving an objective, for example, choosing
between a fuzzy control regime or. more direct control of the motors. It is also an open architecture, as
users may substitute their own methods for many of the predefined routines, or add new functions and share
their innovations with other research groups.

In this section, we’ll give a brief overview of the two architectures and discuss the main concepts of
Saphira. More in-depth information can be found in the documentation at the SRI Saphira web site
(http://www.ai.sri.com/~konolige/saphira).

2.1 System Architecture
Think of Saphira’s system architecture as the basic operating system for robot control. Figure 2-1 shows

the structure for a typical Saphira application. Saphira routines are in blue, user routines in red. Saphira
routines are all micro-taskss that are invoked during? every Saphira cycle (100 ms) by Saphira’s built-in
micro-tasking OS. These routines handle packet communication with the robot, build up an internal picture
of the robot’s state, and perform more complex tasks, such as navigation and sensor interpretation.

                                                       
2 See http://www.ai.sri.com/people/flakey for a description of Flakey and further references.
3 A write-up of this event is in AI Magazine, Spring 1997 (for a summary see
http://www.ai.sri.com/~konolige/saphira/aaai.html).
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2.1.1 Micro-Tasking OS
The Saphira architectures are built on top of a synchronous, interrupt-driven OS. Micro-tasks are finite-

state machines (FSMs) that are registered with the OS. Each 100 ms, the OS cycles through all registered
FSMs, and performs one step in each of them. Because these steps are performed at fixed time intervals, all
the FSMs operate synchronously, that is, they can depend on the state of the whole system being updated
and stable before they are called. It’s not necessary to worry about state values changing while the FSM is
executing. FSMs also can take advantage of the fixed cycle time to provide precise timing delays, which are
often useful in robot control. Because of the 100 ms cycle, the architecture supports reactive control of the
robot in response to rapidly changing environmental conditions.

The micro-tasking OS involves some limitations: each micro-task must accomplish its job within a small
amount of time and relinquish control to the micro-task OS. But with the computational capability of
today’s computers, where a 100 MHz Pentium processor is an average microprocessor, even complicated
processing such as the probability calculations for sonar processing can be done in milliseconds.

The use of a micro-tasking OS also helps to distribute the problem of controlling the robot over many
small, incremental routines. It is often easier to design and debug a complex robot control system by
implementing small tasks, debugging them, and them combining them to achieve greater competence.

Synchronous micro-tasking OS

Packet communications

State reflector

Control and
application
routines

User micro-tasks
and activities

User
async
routines

TTY or TCP/IP
connection

Saphira Client
Process

Figure 2-1 Saphira System Architecture.

Blue areas represent routines in the Saphira library, red routines are from the
user. All the routines on the left are executed synchronously every 100 ms.

Additional user routines may also execute asynchronously as separate threads and
share the same address space.
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2.1.2 User Routines
User routines are of two kinds. The first kind is a micro-task, like the Saphira library routines, that runs

synchronously every Saphira cycle. In effect, the user micro-task is an extension of the library routines and
can access the system architecture at any level. Typically the lowest level that user routines will work at is
with the state reflector, which is an abstract view of the robot’s internal state.

Saphira and user micro-tasks are written in the C language, and all operate within the same executing
thread, so they share variables and data structures. User micro-tasks have full access to all the information
typically used by Saphira routines.

Although user micro-tasks can be coded directly as FSMs in the C language, it’s much more convenient to
write activities in the Colbert language. The activity language has a rich set of control concepts and a user-
friendly syntax, both of which make writing control programs much easier. Activities are a special type of
micro-task and run in the same 100 ms cycle as other micro-tasks. Activities are interpreted by the Colbert
executive, so the user can trace them, break into and examine their actions, and rewrite them, without
leaving the running application. Developers can concentrate on refining their algorithms, rather than
dealing with the limitations of debugging in a compile-reload/re-execute cycle.

Because they are invoked every 100 ms, micro-tasks must partition their work into small segments that
can comfortably operate within this limit, e.g., checking some part of the robot state and issuing a motor
command. For more complicated tasks, such as planning, more time may be required, and this is where the
second kind of user routine is important. Asynchronous routines are separate threads of execution that share
a common address space with the Saphira library routines, but they are independent of the 100 ms Saphira
cycle. The user may start as many of these separate execution threads as desired, subject to limitations of the
host operating system. The Saphira system has priority over any user threads; thus, such time-consuming
operations as planning can coexist with the Saphira system architecture, without affecting the real-time
nature of robot control.

Finally, because all Saphira routines are in a library, user programs that link to these routines need to
include only those routines they will actually use. So, a Saphira client executable can be a compact program,
even though the Saphira library itself contains facilities for many different kinds of robot programs.

2.1.3 Packet Communications
Saphira supports a packet-based communications protocol for sending commands to the robot server and

receiving information back from the robot. Typical clients will send an average of one to four commands a
second, and all clients receive 10 packets a second back from the robot. These information packets contain
sensor readings and motor movement information (see Section 7.3). The amount of data sent is typically
only 30 to 50 bytes per packet, so even a relatively modest 9600 baud channel can accommodate it. Saphira
has the capability of connecting to a robot server over a tty line, an Ethernet with TCP/IP, or a local IPC
link.

Because the data channel may be unreliable (e.g., a radio modem), packets have a checksum to determine
if the packet is corrupted. If so, the packet is discarded, which avoids the overhead of sending
acknowledgment packets and assures that the system will receive new packets in a timely manner. But the
packet communication routines must be sensitive to lost information, and have several methods for assuring
that commands and information are eventually received, even in noisy environments. If a significant
percentage of packets are lost, then Saphira’s performance will degrade.

2.1.4 State Reflector
It is tedious for robot control programs to deal with the issues of packet communication. So, Saphira
incorporates an internal state reflector to mirror the robot’s state on the host computer. Essentially, the state
reflector is an abstract view of the actual robot’s internal state. There is information about the robot’s
movement and sensors, all conveniently packaged into data structures available to any micro-task or
asynchronous user routine. Similarly, to control the robot, a routine sets the appropriate control variable in
the state reflector, and the communication routines will send the appropriate command to the robot.
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2.2 Saphira Control Architecture
The Saphira control architecture is built on top of the state reflector (Figure 2-1). It consists of a set of

micro-taskss that implement all of the functions required for mobile robot navigation in an office
environment. A typical client will use a subset of this functionality.

2.2.1 Representation of Space
Mobile robots operate in a geometric space, and the representation of that space is critical to their

performance. There are two main geometrical representations in Saphira. The Local Perceptual Space (LPS)
is an egocentric coordinate system a few meters in radius centered on the robot. For a larger perspective,
Saphira uses a Global Map Space (GMS) to represent objects that are part of the robot’s environment, in
absolute (global) coordinates.

The LPS is useful for keeping track of the robot’s motion over short space-time intervals, fusing sensor
readings, and registering obstacles to be avoided. The LPS gives the robot a sense of its local surroundings.
The main Saphira interface window displays the robot’s LPS (see Figure2-1). In local mode (from the
Display menu), the robot stays centered in the window, pointing up, and the world revolves around it.

Global Map

Local
Perceptual
Space

State Reflector

Colbert
Executive

Agent
Interface

TCP/IP link to
other agents

Registration
routines

Sensor interp
routines

Direct motion
control

Fuzzy control

Display
routines

Figure 2-1. Saphira’s Control Architecture.

The control architecture is a set of routines that interpret sensor readings
relative to a geometric world model, and a set of action routines that map
robot states to control actions. Registration routines link the robot’s local
sensor readings to its map of the world, and the Procedural Reasoning
System sequences actions to achieve specific goals. The agent interface links
the robot to other agents in the Open Agent Architecture.
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Keeping the robot fixed in position makes it easy to describe strategies for avoiding obstacles, going to goal
positions, and so on.

Structures in the GMS are called artifacts, and represent objects in the environment or internal structures,
such as paths. A collection of objects, such as corridors, doors, and rooms, can be grouped together into a
map and saved for later use. The GMS is not displayed as a separate structure, but its artifacts appear in the
LPS display window.

2.2.2 Direct Motion Control
The simplest method of controlling the robot is to modify the robot motion setpoints in the state reflector.

A motion setpoint is a value for a control variable that the motion controller on the robot will try to achieve.
For example, one of the motion setpoints is forward velocity. Setting this in the state reflector will cause the
communications routines to reflect its value to the robot, whose onboard controllers will then try to keep the
robot going at the required velocity.

Two direct motion channels handle rotation and translation of the robot. Any combination of velocity or
position setpoints may be used for these channels (see Section 8.4).

2.2.3 Behaviors and Fuzzy Control
For more complicated motion control, Saphira provides a facility for implementing behaviors as sets of

fuzzy control rules. Behaviors have a priority and activity level, as well as other well-defined state variables
that mediate their interaction with other behaviors and with their invoking routines. For example, a routine
can check whether a behavior has achieved its goal or not by checking the appropriate behavior-state
variable.

Version 5.3 includes several major changes in behavior management. Behaviors are no longer invoked
with sfInitBehavior or sfInitIntendBeh; instead, use sfStartBehavior (which takes a
variable number of arguments for the behavior), or the start command from the Colbert interaction
window.

Behaviors can be turned on and off by sending them signals, either from the interaction window, or from
the Function/Activities window. Behaviors can not be controlled from the Function/Behaviors window; the
check box that appears there shows only whether a behavior is active or not.

2.2.4 Activities and Colbert
To manage complex goal-seeking activities, Saphira provides a method of scheduling actions of the robot

using a new control language, called Colbert. With Colbert, you can build libraries of activities that
sequence actions of the robot in response to environmental conditions. For example, a typical activity might
move the robot down a corridor while avoiding obstacles and checking for blockages.

Activity schemas are the basic building block of Colbert. When instantiated, an activity schema is
scheduled by the Colbert executive as another micro-task, with advanced facilities for spawning child
activities and behaviors, and coordinating actions among concurrently running activities.

Activity schemas are written using the Colbert Language. The language has a rich set of control concepts,
and a user-friendly syntax, similar to C’s, that makes writing activities much easier. Because the language
is interpreted by the executive, it is much easier to develop and debug activities, because errors can be
trapped, an activity changed in a text editor, and then reinvoked, without leaving the running application.

2.2.5 Sensor Interpretation Routines
Sensor interpretation routines are processes that extract data from sensors or the LPS, and return

information to the LPS. Saphira activates interpretative processes in response to different tasks. Obstacle
detection, surface reconstruction, and object recognition are some of the routines that currently exist; all
work with data reflected from the sonars and from motion sensing.
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2.2.6 Registration and Maps
In the global map space, Saphira maintains a set of internal data structures (artifacts) that represent the
office environment. Artifacts include corridors, door, walls, and rooms. These maps can be created either by
direct input from a map file, or by running the robot in the environment and letting Saphira extract the
relevant information.
Registration is the process of keeping the robot’s global location in an internal map consistent with sensor
readings from the local environment. Routines exist for extracting relevant information from the LPS and
matching it to map structures in the GMS, then updating the robot’s position.

2.2.7 Graphics Display
Displaying internal information of the client is essential for debugging robot control programs. Saphira
provides a set of graphics routines that can be called by micro-tasks. A set of pre-defined micro-tasks
display information about the state reflector and other data structures, such as the artifacts of the GMS. User
programs also may invoke the graphics routines directly to display relevant information.

2.2.7.1 Agent Interface
A Saphira client can communicate with other Internet-based agents through its agent interface to the Open
Agent Architecture (OAA). The OAA is an agent-based architecture for distributed information gathering
and control and has extensive facilities for user interaction, such as speech and pen-based agents. Currently
the OAA interface is under development at SRI; issues concerning its use in Saphira outside SRI have to be
resolved before it can be released.

2.3 Running the Sample Client
This section exercises some of Saphira’s capabilities through a sample client. It also illustrates the graphical
user interface for interacting with clients.

To run the sample application, execute the file saphira(.exe) in the Saphira bin distribution
directory. This executable requires only runtime files found on your system, and the relevant loadable
libraries from Saphira (sf.dll or libsf.so.6.0.x). You should have installed these as directed in
Section 1.6.

The Saphira client will initialize an interface window showing the LPS (see Figure 2-3). The robot is in
the center of the display, pointing up. An information area appears at the left of the window, the menu bar
at the top, and a text-based interaction window at the bottom.

2.3.1 Loading an Activity File
The Saphira client in bin/saphira has only a bare set of micro-tasks loaded (you can see the source

code in handler/src/apps/saphira.c). The capabilities of the client are increased by loading in
Colbert files, which contain activity schemas and invocations of API functions. A sample activity file,
colbert/demo.act, is used as an example in the rest of this section (the .act extension signifies a
Colbert language file). When the saphira client starts, it looks for the file init.act in the current load
directory, which by default is $(SAPHIRA)/colbert. The initialization file loads the demonstration file
demo.act.

To load your own init file, you can either change the load directory by setting the environment variable
SAPHIRA_LOAD, or change the init.act file in the colbert/ directory.

The demo.act file defines several activity schemas, then invokes them and a few predefined behaviors
for obstacle avoidance. Please refer to the code for more details.

2.3.2 Connecting to a Robot
 As we mentioned earlier, connecting Saphira with either the simulator or the actual robot is similar. First,

if you are using the simulator, make sure that the correct robot parameters are loaded (the simulator defaults
to using Pioneer parameters; see Chapter 3). Otherwise, the Saphira client auto-detects the robot server type
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and loads its parameters when first connected (see Chapter 6 for details), so it isn’t  necessary to load a
parameter file into the Saphira application unless you’re using a custom configuration.

You can connect using either the interaction window commands or the menu.
 Serial port connection to Pioneer (radio modem or fixed line). In the Saphira interaction window, type

connect serial to connect on the standard serial port. If your radio modem is connected to a different
serial port, use connect serial <port>, where <port> is the name of the serial port, e.g.,
/dev/ttyS1 or COM2. The Connect/Serial Port menu item will also work for the standard serial port.
You can set the standard serial port and baud rate; see Section 4.6 for details.

 Simulator connection. If you’ve started the simulator, it’s listening on a local internal port. Type
connect local, which opens the local port to the simulator and starts things up. Or, choose the
Connect/Local Port menu item.

 B14 and B21 users. Bxx users must start up the Saphira server on a Bxx computer; see the instructions
that come with the Saphira server software. Usually, the Saphira server will start listening on the local port.
Run the Saphira client on the same machine as the server (with telnet from a desktop machine), and use
connect local in the interaction window or the Connect/Local Port menu item.

If you have a problem connecting with the simulator or robot server, the communication connection will
fail, and a message describing the problem will appear in Saphira’s main window information area. Typical
causes for failure of the simulator or the actual robot (and their solutions) include:

(Bxx robots) Make sure the physical robot’s Saphira-compatible server software is properly installed and
running and that no other Saphira client is connected to it.
Make sure the simulator is running and no other Saphira client or simulator server is running on the same
machine.
In rare cases, the communications pipe may be blocked. This can occur if the server or client exits
abnormally from a previous connection, without shutting it down properly. Try deleting the pipe file and
starting again. If this doesn’t work, the only remedy is rebooting the machine.
Make sure that the communications tether or radio modem is plugged into the correct serial port with the
correct cable.
Remove the serial tether cable from the robot’s serial port if you use the radio modem.
Make sure the client radio modem is within range of robot, is on the correct channel, and has a strong link
signal.
Make sure the serial port is not in use by another application.

Once connected, the Saphira client will display information about the state of the robot and allow you to
command the robot from the menu and keyboard.

2.3.3 LPS Display
The Saphira client’s display contains most of the items likely to be found in the robot’s LPS (see Section

8.6). It is a bird’s-eye view of the environment around the robot. The LPS may be switched between a robot-
centric display and global coordinates, using the Display/Local menu item.

The main Saphira window components include:

2.3.3.1 Robot icon
The robot icon in the center of the screen shows the robot in relation to its environment. If in local view,

the LPS appears in robot-centric coordinates: the robot remains at the center of the screen and the
environment moves around it. In GMS (global) mode (local mode off), the environment becomes fixed and
the robot icon wanders around the screen. The size of the robot icon is controlled by the RobotRadius
and RobotDiagonal values in the robot’s parameter file (see Chapter 9)
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2.3.3.2 Sonar readings
Accumulated sonar readings appear on screen as small open rectangles. Current sonar readings are

slightly larger open rectangles. The number of sonar readings accumulated can be set by the user ( see
Section 8.6.1 for more information about the buffers).

2.3.3.3 Control point
The elongated open rectangle directly in front of the robot icon is its heading control point, as returned by

the server in robot-centric coordinates. Normally, this control point is positioned directly ahead of the robot,
veering to one side or the other in response to a turn directive from the client. The robot adjusts its heading
accordingly, trying to keep heading towards the control point.

2.3.3.4 Velocity vectors
Two lines emanating from the center of the robot icon indicate the translational and rotational velocity of

the robot, as returned from the robot server. The length of each vector is directly proportional to the
velocity. Also, each vector points in the respective direction of motion. For example, when the robot is
turning clockwise, as in Figure 6-3, the rotational vector points to the right.

2.3.3.5 Obstacle sensitivity areas
Several obstacle-avoidance behaviors temporarily draw large, open rectangles in the LPS, indicating

detected obstacles that they are actively avoiding. Obstacle-avoidance rectangles appear just ahead and to
the sides of the robot in robot-centric coordinates. In the global view, these rectangles do not appear in the
proper place near the robot icon.
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2.3.4 Artifacts
Artifacts are internal representations of external objects or imaginary constructions, such as goal

positions. Figure 2.-3. shows a corridor artifact (long double lines) and a doorway labeled door 2.

2.3.5 Information Area
The information area is at the left of the main window. It contains four sets of data returned from the

robot server.

2.3.5.1 Status (St)
Shows the robot server status as moving, stopped, or no servo when the motors are stuck.

Figure 2.-3. Saphira client LPS in local mode.

The corridor and door artifacts are the robot’s internal map. Small squares are sonar
readings. The larger rectangles are sensitivity areas used by the obstacle-avoidance
behaviors. The lines drawn at the center of the robot show angular and forward velocity.
The small rectangle immediately in front of the robot is the angular setpoint.
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2.3.5.2 Velocity (Tr, Rot)
The robots translational (Tr) velocity in millimeters per second and rotational (Rot) velocity in degrees per

second.

2.3.5.3 Position (X, Y, Th)
Absolute robot position in millimeters and degrees. Note that this is not the server dead-reckoned position,

which has accumulated errors. Instead, it is the registered global position of the robot based on Saphira’s
map registration routines operating in conjunction with position integration returned from the server.

2.3.5.4 Communication (MPac, SPac, VPac)
The communication values in the information area are the number of packets of the given type received in

the last second. They are useful for checking the communication link with the server. Normally, a client
will receive 10 motor packets (Mpac) and approximately 25 sonar packets (SPac) per second. Vision
packets (Vpac) currently are not supported.

2.3.5.5 Miscellaneous (Bat, CPU, Scrn)
The battery (Bat) voltage level on the server indicates when the robot needs to be recharged. The CPU

utilization is the percentage of total processing time used by the client. On UNIX machines, this does not
include CPU time used by the X server, which can be an appreciable fraction of total CPU time. The last
value is the LPS update rate.

2.3.6 Text Interaction Area
The interaction area is at the bottom of the window. Here Saphira prints information about the system,

and the user can type commands to the Colbert evaluator.  A scroll bar allows the user to look at previous
information. The small square on the far upper right of the window is a dragging handle for resizing the
interaction area.

In the interaction area, you can do the following tasks:
 Load activity files and change the working directory
 Connect and disconnect from a robot server
 Define, start, and stop activities
 Trace and untrace activities
 Get help on API and evaluator functions
 Examine and set internal Saphira variables
The evaluator lets users write and debug programs from the running Saphira application. Usually, the user

code will be in a text file that is read into the system with the load command, as we did for this example
(colbert/demo.act). The code file contains a mixture of activity schema definitions and calls to
library functions. The user can invoke the activities from the interaction area with the start command, or
use the Function/Activities window. During execution, the user can examine the state of Saphira variables,
and stop and start other activities. If an error occurs, the offending activity is suspended and a message is
printed. The user can change the Colbert text file, reload it, and run the changed activities. There is no need
to exit from the application and recompile. Even new C functions can be dynamically linked into the system
by loading a shared object file.

2.3.7 Menus
The main client window contains seven pull-down menus.4 These let you control the display of

information in the LPS and related subwindows, manage communication to the server, and load and save
parameter and map files:

                                                       
4 Not all menus are implemented for all versions.
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2.3.8 Connect Menu
The Connect menu lets you make and break a connection to the robot server. The menu contains three

items: the standard serial port, a local port for the simulator and Bxx robot servers, and a TCP connection.
Choosing one of these items causes the client to try to connect to the physical robot or to the simulator.
Parameters such as the baud rate and port names can be changed from the interaction window or via library
calls ( see Section 4.6).

The Disconnect option closes an open connection to the robot.
Exit causes the client program to terminate, closing any open connection first.

2.3.8.1 Files Menu
Load the robot’s parameters and map files by selecting the appropriate item from the Files menu. A file-

selection dialog box appears for choosing the file. Loading a new map does not delete any old map artifacts;
use the Delete Map item for this.

You can save the current map to a file using the Save Map item, which invokes a file-save dialog. Use
Delete Map to erase all artifacts in the current map.

The Load menu does not load Colbert files; to do this, use the Colbert evaluator commands in the
interaction area.

2.3.8.2 Grow and Shrink
Clicking either the Grow or Shrink menu causes the LPS display to grow or shrink in scale, respectively.

2.3.8.3 Display Menu
The first item in the Display menu is another pulldown menu controlling the display update rate. On some

systems, high update rates consume significant portions of available CPU time, and lowering the update rate
will increase performance. If the number of motor packets (Mpacs) per second falls significantly below 10,
and you have a good connection to the robot server, then a high display-update rate may be the culprit.

The Local item controls the LPS viewpoint. When on, the view is robot-centric; when off, the view is
world-centric (global). Note that this controls only the display of information; all internal geometric
structures remain the same.

Single Step mode is useful for debugging and can be used only with the simulator. When on, it causes the
simulator to wait for a signal from the client at each 100 ms time step. Pressing the S key in the client
window signals the next time step.

The Wake option, if on, deposits “breadcrumbs” in the display, showing the last 10 seconds of robot
travel.

If it is on, the Occ Grid menu item displays the occupancy grid constructed using the MURIEL
algorithm.5 This item is not implemented on Macintosh or machines without color capability. On some
machines, turning on Occ Grid may create a situation in which a large percentage of available CPU time is
used for updating the display.

2.3.8.4 Sonars Menu
The Clear Buffer item clears all of the accumulated sonar readings from the client internal buffers.
The Sonars On item toggles the sonar capability of the robot server. (This item isn’t currently

implemented on the robot server; the sonars are always on.)

2.3.8.5 Functions Menu
The Functions menu toggles the display of the Behaviors, Processes, and Activities windows.

                                                       
5 The MURIEL algorithm is described in a paper that can be found at
http://www.ai.sri.com/~konolige/saphira.
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2.3.9 Keyboard Actions
In addition to using Saphira’s pulldown menus, you may control some of the functions of the robot server
directly from the client keyboard (see Error! Reference source not found.). These keys work only when
the main Saphira window is active.

The sample Saphira client we provide defines a set of keyboard actions for robot motion and for turning
some behaviors on and off. In a user application, the function sfProcessKey lets you intercept
keystrokes and initiate your own “hotkey” actions.

2.3.10 Behaviors Window
Saphira’s Behaviors window shows graphically the state of all current behaviors. It is invoked from the

Functions/Behaviors menu in the main window. To understand the contents of this window, you may find it
useful to review the previous section in this chapter on Saphira behaviors.

Our sample Saphira client invokes four behaviors: two for obstacle avoidance, one for going forward at a
constant velocity, and one for stopping. The obstacle avoidance behaviors are called Avoid Collision and
Keep Off. Avoid Collision prevents the robot from banging into obstacles at close range by initiating a
sharp turn and slowing down the robot. The Keep Off behavior deflects the robot from longer-range
obstacles. The Constant Velocity behavior attempts to keep the robot going forward at a fixed speed of about
300 mm per second.

The Stop behavior, not surprisingly, stops the robot. It is useful when you want the robot to stop if no
other behavior is managing the robot’s movements. For example, if the Constant Velocity behavior is
invoked and then killed, the robot will still have a residual forward velocity. In the absence of any other
behaviors, it will keep moving forward. Invoking Stop at a low priority assures that the robot will stop if it
is not doing anything else.

  Table 2-1. Keyboard-controlled behaviors for
  the Saphira client.

Key Action

i, ↑ Increment forward velocity

m, ↓ Decrement forward velocity

j, ← Incremental left turn

l, → Incremental right turn

k, space All stop

g Constant Velocity on/off
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Figure 2-2 shows a typical Behaviors window. The first two behaviors in our sample client are active, that
is, they can contribute to the control of the robot (their running parameter is 1). The other two are inactive.
The active state of a behavior may be changed by signaling its invoking activity in the Activities window.

Note: This is a change from version 5.x, in which the buttons were active in the behavior window.

The dark bar next to each behavior name indicates the state of the behavior. Two vertical lines, represent
the behavior’s outputs for turning and forward/backward movement. For example, the Keep Off behavior
in Figure 2-2 is fully active for both turning and moving, as indicated by the horizontal activity bars going
through the vertical lines (see the details in Figure 2-3). This behavior instructs the robot to turn right and
to move backwards (slow down) in this example, as indicated by the direction bars on either side of the
vertical lines.

Figure 2-2. Saphira’s Behaviors window (Linux/Motif version).

Keep Off

Turn               Move

On/off indicator

Behavior name

Activity bars

Direction
bars

Figure 2-3  Keep Off behavior display expanded
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The behaviors appear in order of their priority in influencing the robot’s actions, with the highest priority
behaviors at the top of the window. At the bottom, the Summation line gives the end result of combining the
active behaviors according to their priority. It is the summation that ultimately controls the robot server’s
actions.

It’s often useful to view an individual behavior’s activity in more detail. Individual behavior windows can
be opened by shift-clicking on the behavior name (UNIX systems) or left-clicking just to the right of the
name (MS Windows). Figure 2-4 shows a typical behavior window while active. The invocation parameters
of the window are in the upper left; pointer parameters have their addresses printed. The right-hand side of
the window shows the state variables of the behavior: whether it’s active or not, activity levels, and so on.
Finally, at the bottom of the window, the rules are printed, showing their antecedent values and control sets.

The format of the rules is:  Name  Antecedent  Direction Value.
The antecedent value determines how strongly the rule applies. The direction is a single character: greater

than (>) or less than (<) for right or left turn, plus (+) or minus (-) for speed up or slow down. The value
indicates the desired control signal; a left turn of 5.0 degrees, for example.

2.3.11 Processes Window
The Processes window displays the states of all micro-taskss in the Saphira client multitasking queue (see

Figure 2-5). Open it from the Functions/Processes menu in the main window. The Processes window
contains a scrolled list, in which each entry consists of the micro-task name and state. The display is
updated in real time as the micro-task state changes.

Figure 2-4. Behavior window for Keep-Off.
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You may interrupt a running micro-task by selecting it in the window and pressing the Enter key, or by
double-clicking with the mouse. This action forces the micro-task state to INT (interrupt). Resume an
interrupted micro-task with the same action, which forces the micro-task state to RES (resume).

An interrupted micro-task does not automatically suspend processing; a micro-task’s behavior depends on
how the micro-task handles the interrupt state. Some micro-tasks  ignore the interrupt and continue with
their tasks. For example, the motor micro-task does not care what its state is—it always performs the same
action of sending motor commands to the robot server. In general, you should interrupt only micro-tasks
that you have added to the Saphira application, and for which there is a defined interrupt behavior.

2.3.12 Activities Window
Saphira’s Activities window shows the state and relationship of all current Colbert activities (Figure 2-6).

Open it from the Functions/Activities menu in the main window.
The Activities window contains a scrolled list similar to the Processes window, and each line contains the

activity’s name and its state. The state information is updated in real time as the activity state changes.
Relationships between activities are indicated by line indentations. For instance, in the example in Figure

2-6, the second activity follow it is indented to show that it is a child of the first activity. The two
activities combine to invoke a corridor-following sequence for the robot. The top-level activity waits until
the robot has found a corridor, then invokes its child activity to select a path to follow down the center of
the corridor. In addition, the top-level activity monitors the state of the robot, and when it is no longer in
the corridor, or gets turned sideways to the corridor, it disables the follow it activity.

As with micro-tasks, you may manually interrupt an activity by selecting it and pressing the Enter key, or
by double-clicking it with the mouse. If the activity is running, this will force it into the INT (interrupt)
state. Normally, an activity will respond to this state by suspending. Use the same action to reactivate an
interrupted/suspended activity. This will invoke the RES (resume) state. Normally, an activity will respond
to this state by reinitializing and starting its characteristic behaviors.

The sample Saphira client contains several activities. Some of these are wrappers for a behavior, that is,
their sole purpose is to control a single behavior. The reason for this is to provide behaviors with the same
facilities as activities, e.g., timeouts, signaling, and hierarchical invocation (see Section 4.8.3).

The activity BumpAndGo is an example of an activity that produces direct action. It waits until the robot
bumps into something and its motors stall out; then it turns off all behavior output and maneuvers the robot

Figure 2-5. A sample Saphira Processes window.
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in a short back-and-turn sequence to get it out of the stall. This activity is traced, so you’ll see the results of
its evaluated statements printed in the interaction area. Beware: It’s hard to make the robot run into
something unless you turn off the obstacle-avoidance behaviors.

Another activity, follow a found corridor, has the robot find and follow corridors. The activity
monitors the robot environment until it detects a corridor, then starts a subactivity, a behavior,  that projects
a path for the robot down the middle of the corridor.

2.3.13 System Environment Variables
Several environment variables can be set to control defaults in Saphira clients. Following is a complete list

of them, and their effects. In MS Windows, environment variables are set in AUTOEXEC.BAT, or via the
user profiles (Windows NT). In UNIX, they are set from a shell using setenv or export.

Figure 2-6. An example Saphira Activities window.
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3 The Simulator
The simulator is a very useful alternative to a physical robot for developing robotics programs. Although

there is nothing like real world conditions to humble the most ambitious robotics project, the simulator does
have the distinct advantage of having a single-step mode in which you can reenact every detail of your
programs, including a robotics fatality.

And, too, the simulator has realistic error models for the sonar sensors and wheel encoders so that, in
general, if a client program works with the simulator, it will work on the physical robot. The simulator also
lets you construct a simple world in which the simulated robot navigates. You can even change the robot’s
operating characteristics to simulate your own robot designs. And because the packet interface of the
simulator is the same as the physical robot, no changes to the client program are required in switching
between the two.

The disadvantage of the simulator is that the environment model is an abstraction of the real world, with
simple 2-D linear segments in place of the complex geometrical objects the real robot will encounter in the
real world. For example, the simulator assumes all objects are sensor-high, so it can’t simulate a door
stop—something the real robot will have to overcome to traverse rooms in a real building.

3.1 Starting the Simulator
Execute the program named pioneer(.exe) in the Saphira bin/ directory. (By default, the simulator

acts like the Pioneer 1 Mobile Robot—hence, its name. We tell you how to simulate other robots in a
following section of this chapter.)  Normally, the simulator connects to the client using an interprocess
communications channel on the same machine. It is also possible to run multiple copies of the simulator on

Table 2-1. Environment variables used to control defaults in Saphira clients.

Environment Variable Effect

SAPHIRA Top level of the Saphira distribution. This variable must
be set for Saphira clients and the simulator to run
correctly. In Unix, there should be no final slash in the
path, e.g., /usr/local/saphira/ver61.

SAPHIRA_LOAD Initial load directory for the Colbert evaluator. This
directory is searched for the file init.act when the
Colbert evaluator starts. If not set, defaults to the directory
from which the client was started.

SAPHIRA_COMSERIAL Serial port for connecting to the robot. Defaults to the
primary serial port for the system being used, e.g., COM1
under MS Windows, /dev/cua0 under Linux, and so
on.

SAPHIRA_SERIALBAUD Baud rate for serial connection. Defaults to 9600.

SAPHIRA_COMPIPE Local communication port for connection to the Saphira
simulator. Can be set so that multiple copies of the
simulator can run on the same machine, and clients can
connect to them. This variable affects both the simulator
and the client application. Default depends on the system.

SAPHIRA_COMSERVER Machine name or IP address for TCP/IP connection.
Defaults to NULL.
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the same machine with different communication channels (handy for class work), or to have the simulator
listen on a tty port or a TCP/IP port on a remote machine.

If, for some reason, the client terminates abnormally, the simulator can be disconnected using the
Disconnect option from the Quit menu. Disconnecting or quitting the simulator while the client is
connected will cause the client to quit.

Once connected with a client, the simulator displays a window of its activity. A sample window is shown
in Error! Reference source not found.. The simulated robot is the circular icon in the center of the screen;
the straight lines are simulated world segments: walls, corridors, rooms, and so on. A collection of
segments—a world—may be defined in a simple text file (see below) and loaded from the simulator’s Load
(Files) menu.

3.1.1 Listening on Other Ports
The simulator listens on an interprocess communication channel for connections from a server. In UNIX

systems, this is a local UNIX socket; under Windows, it is a mailbox. Default names for these sockets are
supplied by the simulator. Only one simulator may be connected at a time to that socket or mailbox. In some
cases, it is convenient to start up multiple copies of the simulator; or, for some reason, the socket may be
busy or unavailable. In these cases, the simulator can be started with an alternative socket name. Set the
environment variable SAPHIRA_COMPIPE to the name of the desired socket before starting the simulator,
and it will be used instead of the default. The simulator window shows which socket it’s listening on.

To connect to a particular socket from the client side, set the SAPHIRA_COMPIPE environment variable
to the name of the desired simulator socket before trying to connect. Under UNIX and Windows NT,
different users can set these variables in a unique way, so that several users logged in to the same machine
can start up their private versions of the simulator.

The simulator also can listen on a tty port (for debugging tty access) or TCP/IP socket (for remote
machine access). In these cases, the simulator must be started with command-line arguments specifying the
type of access. Two choices are available:

pioneer tcp
pioneer /dev/tty1

The first form starts the simulator and listens on a TCP/IP socket for network connections from a client. On
the client side, you must specify the network address or network name of the machine the simulator is
running on (using the set server command or the SAPHIRA_COMSERVER environment variable).

The second form accepts any argument that is not tcp. This argument is assumed to be the name of a tty
port, and the simulator listens for connections on that port.
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In MS Windows, you can start the simulator with command-line arguments by using the Run item in the
Start menu.

3.2 Parameter File
The default operating parameters for the simulator are for the Pioneer 1. You may reset these working

parameters to simulate nearly any mobile robot by constructing then loading a special robot parameter file
into the simulator from the Load/Files menu. Find a variety of prepared parameter files in the Saphira
params/ directory. The newly loaded model is active for as long as you run the simulator or until you load
another parameter file.

You use a parameter file to prescribe a variety of simulated robot characteristics, such as placement of
sonars and drive-error tolerances. Once constructed, store your parameter file in common text (ASCII)
format in the params/ directory; usually, you add the suffix .p to the file name. A sample, annotated
parameter file listing is in Appendix A, and the parameter file resides in the Saphira collection as
params/pioneer.p.

Figure 3-1. A sample window of the simulator.
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Three important parameters control the amount of error in the simulated robot’s motion (Table 3.1).
Consult the listing in Section 9 for more details.

3.3 World Description File
A world description file is a plain text (ASCII) document typically stored with the file name suffix.wld,

which describes the size and contents of a simulated world. A sample world file can be found in the Chapter
10, along with instructions on how to create your own worlds. We’ve also included several sample world
files with the Saphira distribution found in the worlds/ directory.

If the simulator is connected to a client, the client can tell the simulator to load a world file via the
sfLoadWorldFile function.

3.4 Simulator Menus
Several simulator menus control the parameters and actions of the simulated robot. The menu options

provide controls for loading world and parameter files, for adjusting the display, and for changing the
connection type, for example. (Not all menus are implemented in every version.)

3.4.1 Load (Files) Menu
The File/Load Params item brings up a file selection dialog to load a robot parameter file. The parameter

file changes the characteristics of the simulated robot, such as the number and placement of the sonars. By
default, the Pioneer robot parameters are loaded.

The File/Load World item brings up a file-selection dialog to load a world file.

3.4.2 Connect Menu
The Connect menu controls the port that the simulator listens on, and also disconnects the simulator from

an aborted client.
By default, the simulator is listening on the interprocess communication port, waiting for a client on the

same machine. The simulator also can listen on one of the serial ports, if the appropriate port name is
selected from the menu. In this case, the simulator and client can run on different machines.

The Disconnect item causes an immediate disconnect of the simulator from its connected client. Normally,
the simulator will disconnect automatically when the client sends it the sfCLOSE command.

In situations in which the client has a system error and exits abnormally, the client may remain connected,
even though the connection is no longer valid. In this case, the Disconnect item will force the connection to
close, so the simulator can go back to a listening state.

With the Windows95/NT version, the Connect menu also includes an Exit option.

3.4.3 Display Menu (Grow, Shrink and Wake)
The Grow and Shrink menus or items in the simulator’s Display menu change the size of the display.
The Wake item, if on, causes a the simulator to display a breadcrumb of the last few seconds of simulated

robot travel.

Table 3.1. Example drive error tolerance values for a parameters file.

Parameter Pioneer Value Description

EncodeJitter 0.01 Error in distance

AngleJitter 0.02 Error in angular position

AngleDrift 0.003 Angular drift with forward
movement
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3.4.4 Recenter Menu
Selecting the Recenter menu item centers the display around the current robot position. It does not change

the robot’s position.
Usually, the simulator will keep the robot icon near the center of the display by moving the display

window when the robot approaches an edge.

3.4.5 Exit Menu
The Exit menu (or item in Connect menu) terminates the simulator. A connected simulator should be

disconnected first from the client side, or it will cause the client to abort.
Exiting shuts down any current connection and exits the application. Quitting a connected simulator will

usually cause the client to quit as well, so it’s a good idea to disconnect from the client side first.

3.4.6 Information Area
The information area at the bottom of the simulator window shows messages about the connection status.

It also shows the absolute x,y position of the robot in meters, and the angle of the robot in degrees.

3.5 Mouse Actions
The left mouse button puts the simulated robot at the position of the cursor. This moves the robot in its

world, and the x,y coordinates at the bottom of the screen will change. If the robot becomes stuck against a
wall, using the left mouse button to move it a little can unstick it.

The middle button moves the simulated world position at the cursor to the center of the display.

3.6 Compass
The simulator’s compass has a standard deviation of 3 degrees from the robot’s true heading. Compass

readings are sent back in the information packet. The simulated compass differs from the real compass in
that it does not reflect bias in the magnetic environment, which can be quite severe. In the simulator,
magnetic north is always along the positive x direction.
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4 Using Colbert
This section describes the Colbert language and evaluator. Colbert is a C-like language with a semantics

based on finite state machines. It has the such standard C constructs as sequences, iteration, and
conditionals, but they are interpreted in a way that makes sense for robot programming. The main construct
of Colbert is the activity schema, or act, a procedure that describes a set of coordinated actions that the
robot should perform.

Colbert is an interpreted language, which means that you write text files containing Colbert activities,
load them into a Saphira client, and then start them up. The Colbert evaluator parses and executes the
activities, and reports back results and errors. Having an evaluator is very convenient for development and
debugging, because you can try out code without having to recompile and relink an entire client, and then
try to get back to the state you’re interested in.

The Colbert evaluator has the following capabilities.
Direct execution of control statements from a running Saphira client.
Tracing of activities: users so that can see exactly what statements are being executed.
Signaling between activities: activities may start sub-activities, or interrupt activities that are already

running.
Trapping of errors: fatal errors, such as divide by 0, disable just the offending activity and print an error

message.
Error correction: buggy activities can be edited with a text editor and reloaded, without exiting the

running Saphira client.
A technical paper describing Colbert is available from the website

http://www.ai.sri.com/~konolige/saphira in the Publications section.

4.1 A Colbert Example
We’ll introduce the Colbert language with a short example, using the direct motion calls to the robot (see

Listing 4-1). The example file is in colbert/direct.act.

The first step is to start the Saphira client and connect to a robot or the simulator (see Section 2.3). After
you’ve successfully connected, try typing the following statement in the interaction area at the bottom of the
client:

> move(500);<cr>

This is an example of a direct motion command, which tells the robot to move immediately (see Section
8.4). You must type the semicolon to indicate the end of the command, just as in C, otherwise the evaluator
will complain about a syntax error. The robot should move forward ½ meter (500 mm). If you execute this
command without connecting to the robot, you receive an error message indicating that the command
cannot be executed. You can try other commands such as turn (a complete list of the direct motion
commands is in Section 4.7), or you can type help movement to have the list printed in the interaction
area. Utility commands such as help and load do not follow normal C syntax, and a semicolon is
unnecessary.

You can enlarge or shrink the interaction area by grabbing the separator handle (located at the left,
between the LPS and interaction windows) with the mouse, and moving it up or down.

The next step is to load the sample file. First, check the current load directory with the pwd command in
the interaction area. By default, it is the directory of the shell from which you started Saphira (the default
can be changed by setting the environment variable SAPHIRA_LOAD). The load directory can be changed
with the cd command, or you can give the load path directly in the load command, relative to the current
directory, or as an absolute path.

For example, if you’re in the bin directory, use this sequence:
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load ../colbert/direct.act<cr>

(in MS Windows, the forward slashes will be backslashes). Loading the file defines three activities, and

starts one of them (aa), which calls the other two. A listing of the file is in Listing 4-1. Activity schemas
are defined in a manner similar to C functions, using the keyword act. Just as with C functions, acts take
arguments, which are given when the activity is called, or instantiated. For example, in the act aa, the
patrol activity is called with an argument of 4, which means that the robot will go back and forth 4 times.

The direct motion commands in patrol and square are executed by the evaluator, which waits until
they complete before moving on to the next statement. The same thing is true of the calls to the patrol
and square activity within aa. This is an example of blocking execution of motion commands or
activities, which is generally desirable for sequences of actions. In other cases, you may want to start several
activities in parallel (e.g., a monitoring activity and a direct-action activity). In this case, Colbert provides a
nonblocking instantiation mode.

In addition to direct motion calls, activities can reference standard C variables and functions. A number of
library variables and functions are available initially, and more can be added through the use of  the
sfAddEvalXXX functions. The C syntax of the evaluator has some limitations; for example, you can’t
embed assignments within a C expression.

Unlike standard C files, Colbert files allow you to execute statements from within the file. In the example,
the last two statements are executed. One is a call to a library function for setting the state of the LPS

/* Colbert example exercising the direct motion calls */
act patrol(int a) /* go back and forth 'a' times */
{
while (a != 0)
{
turnto(180);
     a = a-1;
move(1000);
turnto(0);
move(1000);
}
}

act square /* move in a square */
{
int a;
a = 4;
while(a)
{
a = a-1;
move(1000);
turn(90);
}
}

act aa /* call them sequentially */
{
trace patrol;
start patrol(4);
trace square;
start square;
}

sfSetDisplayState(sfGLOBAL, 1); /* put display into global coords */
start aa; /* start up the toplevel activity */

Listing 4-1. A direct motion application in the Colbert language.
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display. The other starts up the aa activity. So, loading the file has the effect of defining three acts, then
setting the display state and starting the top-level activity.

4.2 Evaluator Interaction Area
The interaction area is at the bottom of the Saphira client window. This area is always present in a

Saphira client for output of messages (sfMessage and sfSMessage library calls). If the micro-task
sfRunEvaluator has been invoked, then it is also available for user text input to the Colbert evaluator.
The sample client bin/saphira invokes the evaluator.

At the beginning of a session, several lines are written to the interaction window, showing the Saphira
top-level directory and the current working directory for loading Colbert files. There is an input prompt (>).
You may type input at this prompt, and edit it using standard editing commands, e.g., the delete and
backspace keys. The characteristics of text editing are set by the XKeysymDB file and the X resources
databases in UNIX. If you have trouble getting text editing to work in UNIX systems, please check with a
local X guru.

The evaluator accepts commands and activity definitions from the user. Commands are always just a
single line, but you can extend a line by typing a backslash (\) as the last character, and continuing on
subsequent lines. A carriage return (<cr>) is needed to input the line. The cursor need not be at the end of
a line in order to use a carriage return. At the command line, a terminating semicolon (;) is optional for
all statements.

For convenience, some of the utility commands do not adhere to C syntax. For example, the load
command accepts its string argument without quotes, so you can type load src/test.act, for
example.

You have access to a history list of previous input. You can cycle through previous lines by using the Ctrl-
P (back) and Ctrl-N (forward) keys. After you retrieve a line, you may edit it. Text may be selected, cut, and
pasted using the standard mouse keys. As in C, case is significant.

A scroll bar on the right sight of the interaction area lets you scroll back through previous messages.
Currently, no limit is imposed on the amount of text kept.

4.3 Evaluator Help
The evaluator has a simple help facility to remind you of commands.
help provides a list of help topics

help topic provides help on the specified topic

help <fn> provides helps on an API function, or list of API functions containing fn

Topics include utility commands (file loading, directories), communication, direct motion commands, and
information on particular API functions. Not all API functions have associated help text; we are adding
them in future versions.
Help text can be added using the sfAddEvalHelp function, and retrieved with sfGetEvalHelp. Both
these functions are available in Colbert and from compiled C code.

4.4 Syntax Errors
As much as possible, Colbert uses ANSI C syntax. But it also extends this syntax with new commands and

constructions for robot control, and omits some parts, such as embedded assignments and arrays. If the
parser cannot understand the input, it will print an error message in the interaction area, and abort the
loading of any file currently in progress.

Determining the reason for a syntax error is a difficult problem, and the parser does not even try to do
this. Instead, it will print the token that it was trying to parse when the error occurred, as well as the line
number in the file, if a file was being loaded. For example, the ill-formed C expression:
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1 + ) 2;

produces the error message:

*** Parsing error at token “)”

because the parser could not fit the token ) into the C expression it was trying to form. These are the most
common sources of syntax errors:
C constructions not supported by Colbert. These include embedded assignments, variable initializations, the
comma operator, arrays, etc. (see Section 4.9.1).
Colbert keywords that are not ANSI C keywords. There are many of these (e.g., connect, waitfor); see
Section 4.9.3.
Functions not defined in Colbert. Most C library functions are not initially available in Colbert, although
you can make them accessible (see Section 4.10.2). Using one of these functions will give a syntax error.

4.5 Evaluator File Loading
Colbert source files may be input from text files, using the load command. Any errors in the source are

indicated in the interaction window, and file loading is aborted at that point. Load files can contain
definitions of activities, as well as commands to be executed, including any commands that can be typed in
the user interaction area. So, for example, it’s possible to load a file that loads other files.

This command, for example, loads file from the current load directory:
load [<file>]

file is actually a path from the current directory; e.g., colbert/demo.act is a legal filename. C
syntax does not apply to filenames, so any non-blank characters are allowed. Without arguments, the
command prints a list of loaded shared object files.

This command unloads a shared object file:

unload [<file>]

It is used only under MS Windows for unloading DLLs. Without  arguments, it unloads the last shared
object.

Colbert source files can have an arbitrary extension (except for .so or .dll), but by convention their
extension is .act. This extension must be included in the filename.

Evaluator files can be changed and reloaded as often as desired. If an activity schema is redefined by
reloading, then all instances of the schema are changed. This has implications for how the user should
handle instantiated activities that are being debugged. The state of the activity is not changed by the
redefinition, so the activity will continue execution at its current line. This may not make sense if the line
numbering has changed. However, the standard states (sfINTERRUPT, sfSUSPEND, and so on) are the
same for all activities, so these are “safe” states for redefinition. In general, it’s probably best to suspend an
activity if you’re going to change its definition.
Redefining an instantiated activity does not change its arguments or internal state. Normally, this is what
you would like, because the activity can resume operation with the same arguments and internal variables.
However, if the number of arguments or their ordering is redefined, or internal variable declarations are
changed, then the instantiated activity may be confused as to how to find the values of these entities. In this
case, it is better to remove the activity and restart it.

4.5.1 Loading Shared Object Files
Some API functions will work only in compiled C code, and cannot be called from the evaluator. These
include such functions as sfAddEvalVar and sfAddEvalStruct, which access underlying C
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constructs. In addition, application code which performs significant computation should be compiled as C
code for efficiency.
The loader will load compiled C code in the form of shared object files (.so extension in UNIX, .dll in
MS Windows). These files are loaded and dynamically linked with the running Saphira system. (See
Sections 4.10 and Chapter? 6 for information on how to compile shared object files, and for some
examples.)  The loader recognizes the extension and calls appropriate dynamic loading routines. If present,
the function sfLoadInit() is evaluated after the file is loaded.

Under MS Windows, it is impossible to relink a DLL file that is in use by an application. Therefore, you
must unload the DLL file first, using the unload command. For convenience, unload with no arguments
unloads the most recently loaded file.

Table 4-1. Colbert commands to query and set the load directory.

Command Effect
pwd Prints working directory, value of variable

sfLoadDirectory.
cd <path> Changes the working directory according to path. Path may be

an absolute or relative path. Prints the new working directory.
Affects sfLoadDirectory

4.5.2 Load Directory
Files are loaded based on the current load directory. The following commands query and set this directory

(see Table 4-1). The argument to cd does not use C syntax, and can contain any non-blank characters.

By default, the initial load directory is the directory of the shell that Saphira was started in. The default
load directory can be changed by setting the environment variable SAPHIRA_LOAD to a directory. The
load directory is also available to programs as the API variable sfLoadDirectory, whose type is a
string. Setting this variable causes the load directory to change.

When started, the evaluator will look for a file init.act in the initial load directory, and load it in.
This file is used for automatically configuring Saphira on start-up.

4.5.3 Sample Application Files
Sample files that mimic the behavior of the old saphira and direct clients are available in the

colbert/ directory.

Table 4-2.

Command Effect

demo.act Invokes several behaviors, along with some activities: bump-
and-go for getting out of stall situations, and follow-corridor
for following a found corridor. Some of these activities and
behaviors are started in a suspended state; double-click on
them in the Activities window to start them.

direct.act Defines some simple direct motion activities, and starts them
up. Must be connected to a robot, or you’ll receive an error
message when starting the direct motion commands.

packet.act Communicates directly with the robot using the packet
protocol.
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4.6 Communication and Connection Utilities
Colbert offers several utility commands for setting communication modes and for connecting and

disconnecting with the robot (see Table 4-3).
Table 4-3 Colbert commands for connecting to and disconnecting from the robot.

Command Effect
connect serial [<port>] Connects via <port> or the current serial port

(sfComSerial) at the specified baud rate
(sfSerialBaud).

set serial [<port>] Sets or returns the serial port (sfComSerial). If <port>
is given, sets the serial port to this value. The first serial port
of the machine (COM1, /dev/ttya, etc.) is the default.

set baud [<rate>] Sets or returns the baud rate of the serial connection
(sfSerialBaud). If the argument <baud>.is given, sets it
to this value. The default rate is 9600 baud. With PSOS 4.3,
the Pioneer server now supports 19200 baud. Other baud rates
may be used for specialized applications.

connect local [<pipe] Connects via the local communication port with name
<pipe> or the default name (sfComPipe). This is the
normal connection for the simulator, or for the Bxx robot
servers. The default name of the connection can be changed by
setting sfComPipe to another string.

set local [<pipe>] Sets or returns the local connection name. This command is
useful when running multiple simulators on the same
machine, because each simulator can be assigned a unique
local connection name.

connect server
[<netaddr>]

Connects to a robot server via TCP/IP to a remote machine
specified by <netaddr> or the default address
(sfComServer). The robot may be a Bxx or simulator server
on a remote machine.

set server [<netaddr>] Sets or returns the remote server net address
(sfComServer). These addresses may be network names
(e.g., flakey.ai.sri.com) or numbers (e.g.,
128.18.65.12).

disconnect Disconnects from the currently connected robot server.
exit Exits from the Saphira executable, disconnecting from any

robot server first.

Parameters to the connection commands are usually held in library variables and can also be accessed (set
and queried) by using the variables.

4.7 Direct Motion Commands
The evaluator provides a set of direct motion commands that can move and rotate the robot. These

commands are Colbert language statements, and can be typed in the interaction window.
The direct motion commands are not C functions, and do not return any value. They also have a syntax

for specifying a timeout value and a non-blocking mode. The general form of a direct motion command is:

command(int arg) [timeout n] [noblock];
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where timeout n specifies a time in 100 ms increments for the command to complete, and noblock
means that the command will be executed without blocking, i.e., control will continue with the next
statement. Some motion commands are implicitly non-blocking: speed and rotate. In the interaction
window, all direct motion commands are issued non-blocking, whether or not noblock is specified. Non-
blocking motion commands can be checked for completion with the sfDonePosition and
sfDoneHeading commands.
More information on direct motion control, as well as C library functions, can be found in Section 8.4.
These API calls are available from the evaluator, and are an alternate way of issuing direct motion
commands.

Table 4-4.

Command Effect
move(int mm); Move the robot mm millimeters forward (positive) or

backwards (negative). Blocking.
turn(int deg); Turn the robot deg degrees clockwise (negative) or counter-

clockwise (positive) degrees from the current heading.
Blocking.

turnto(int deg); Turn the robot to the heading deg degrees. Positive values
are counter-clockwise, negative values are clockwise. Blocking.

speed(int mms); Move the robot at a speed of mms millimeters per second
forward (positive) or backwards (negative). Non-blocking.

rotate(int degs); Move the robot at a rotational speed of degs degrees per
second counter-clockwise (positive) or clockwise (negative).
Non-blocking.

halt; Halts all direct motion commands.

4.8 Activity Schemas
Activity schemas are Colbert language programs for controlling the robot. They are interpreted using the

Colbert evaluator. Activities execute similarly to normal C functions, evaluating statements in order, with
sequences, loops, and conditionals. However, the underlying execution model is quite different: it is a finite-
state machine. Each statement of the activity is a node that can potentially wait for a condition to hold
before going on to the next statement, or can change the flow of execution. For example, every primitive
action (move, turn, and so on) that is invoked causes the program to stay at that statement until the action
is completed or times out.

4.8.1 Act Definition
Activities are defined as sets of statements in the Colbert language (see below). As the example in Listing

4-2 shows, the syntax is similar to that of C functions, with the keyword act as the first token:

Listing 4-2. The syntax of Colbert
activities is similar to that of C functions.

act actname(parameters)
{
    variable declarations
    update statements
    body statements
}
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Listing 4-3 shows a sample activity that moves the robot in a square. One internal variable, a, keeps track
of the four legs of the square. The main body of the act is a while loop that decrements a, turns the robot
90 degrees, and moves it along on the next leg. The act’s parameter, len, specifies the length of each side
of the square.

We haven’t explained yet how the act is executed; the next subsection explains this in detail. But note that
the move and turn actions halt the activity until they are completed. The Colbert evaluator accomplishes
this by calling the activity periodically to check and see if it can proceed. On each call, the update
statement is evaluated. This statement prints the following sequence of  messages in the interaction area:

a is 0
a is 4
a is 4
...
a is 3
a is 3
...

Initially, the variable a is set to 0 when the act is first started. The update code then prints this value in
the interaction area, and the body code starts. In the first statement, a is set to 4, and then the turn action
starts. While the robot turns, the activity is polled by the Colbert evaluator; each time it is polled, the
update code is evaluated, and the value of a is printed.

4.8.2 Colbert Evaluator and Activity States
Activity schemas, once instantiated, are called activities, or acts. Each act is a micro-task that runs in the

normal 100 ms control cycle of Saphira. But unlike standard micro-tasks, acts have special facilities for
robot control, including task completion, timeouts, hierarchical invocation, and signaling.

When an activity schema is invoked, it is added to the micro-task schedule. On each cycle of the
scheduler, the act is given to the Colbert evaluator for evaluation. The act’s current state is the statement
that will be executed next. The evaluator evaluates statements starting from the current state, until it hits a
break condition, at which point it returns control to the scheduler. Thus, each act gets a small amount of
computation time on each cycle, and its current state keeps track of where execution should resume. The
state of an activity may be retrieved with sfGetTaskState function (see Section 4.8.4).

Break conditions are designed to fit naturally into the execution cycle of acts. Typically, an act will
perform a few simple computations, then invoke a robot action, behavior, or activity, and wait for its

act square(int len) /* move in a square */
{
int a;

 update
  { sfSMessage(“a is: %d”, a); }

a = 4;
while(a)
{
a = a-1;
move(len);
turn(90);
}
}

Listing 4-3. A sample activity schema definition in Colbert.
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completion. In the square activity, both turn and move caused the act to wait. Acts will wait for two
reasons:

 A direct motion action, a behavior, or a sub-activity is blocking execution. Direct motion actions are
discussed in Section 4.7, Direct Motion Commands; behaviors and subactivities are invoked with the
start command, discussed in the next section. Most such actions are implicitly blocking until
completion, unless the noblock keyword is given on invocation.

An explicit wait is issued with the waitfor statement. This statement waits for its condition to hold
before continuing execution, for example, waits until either a or b is nonzero:

waitfor (a || b);
Besides explicit and implicit waiting conditions, an act can be suspended or interrupted by signals from

other acts or itself. These special states are described in Section 4.8.3 on signaling.
To prevent an act from taking too much computation time, single breaks also occur in many situations. A

single break causes the act to return control to the scheduler, but does not initiate a waiting condition. In the
next micro-task cycle, the act continues execution at the current state. Single breaks are issued at the end of
the following statements:

goto
the last statement in a while body

the condition of a while statement being false

start
signal
Single breaks ensure that an act does not evaluate large numbers of statements before returning control to

the scheduler. For example, it is impossible to go through a loop without encountering at least one break.
On the other hand, sequences of ordinary statements, such as variable assignments, will all execute in the
same cycle, thus making act evaluation efficient.

Evaluation of acts is similar to the execution of finite-state machines. In fact, you can view activity
schemas as a shorthand for finite-state machines, with special syntax for sequences, conditionals, and
iterations. Figure 4-1 shows the finite-state execution model of the patrol activity. The states of the
finite-state machine map to states of the activity; the wait conditions are represented by transition arcs that
are satisfied when the wait condition holds. One of the most interesting characteristics of the Colbert
language is its ability to represent finite-state machines in a compact, readable form.

The current state of an act is an integer, because acts are micro-tasks (see Section 8.5). The state is an index
into the body of the act and shows where the next statement to execute is. The Saphira system maintains a
mapping between these internal states and the source lines of the activity schema definition, so that it can
indicate source lines during tracing. Activity states are set by sending them signals (see Section 4.8.3), and
the state can be examined using the library functions sfGetTaskState, sfTaskFinished, and
sfTaskSuspended (see Section 4.8.4).

4.8.3 Invocation and Signaling
Activities and behaviors are invoked with the start command, which has the following form:

start <schema> [iname <symbol>] [timeout <int>] [priority <int>]
               [noblock] [suspend];

The <schema> argument is required, and is the name of the activity or behavior schema. All of the other
arguments are optional, and cause modification of the invoked activity or behavior.

Table 4-5.
Command Effect
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iname <symbol> An instance name to give the executing
program. All references to the activity are
through its instance name, for example, the
activity can be signaled using this name. By
default, the instance name is the schema name. If
you start two instances of the same schema, you
must give them different instance names.

timeout <int> A timeout in 100 ms units. After this amount
of time, if the activity or behavior is still
executing, it is terminated.

priority <int> Behaviors only: specifies the behavior priority.

noblock Doesn’t wait for completion of this activity or
behavior, go on to the next statement of the act.

suspend Invokes the activity or behavior, but leave it
suspended. The act or behavior is added to the
list of micro-tasks, but it does not start executing.

c

Turnto(0)

Move(1000)

start

d

e

a=a-1
Turnto(180)

a != 0

a == 0
done

f Move(1000)

Turnto done

Turnto done

Move done

Move done
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From C code, activities can be started using the function sfStartActivity (see the Saphira API
reference).

Once started, an act may be signaled by other acts, by itself, or by the user through the interaction area or
the Activities window. Sending an act a signal causes it to go into a special state. For example, a
suspending act or behavior can be restarted by sending it a resume signal. We can illustrate the utility of
signals with a monitoring example. Suppose we want to program the robot to patrol until it sees some object
in front; then it should stop patrolling and approach the object. To accomplish this task, we’ll set up two
activities: the patrol activity of the previous example, and a supervisory activity that checks if there is
something in front of the robot, and if so, approaches it (see Listing 4-4).

This activity starts off by invoking patrol with a negative argument, so it continues indefinitely.
However, instead of causing the approach to wait for its completion, the patrol activity is invoked
with two special parameters. The first, timeout 300, causes patrol to quit after 30 seconds (300
cycles) have elapsed. The second, noblock, allows the execution of approach to continue in parallel
with patrol. The former now goes into a monitoring loop, in which it checks for objects in front, for a
motor stall, and for the state of the patrol activity. If it determines that patrol has timed out, or if a
motor stalls (indicating the robot ran into something immovable), then approach exits in a failure state.
The activity executive keeps track of the dependencies among activities; in this case, because approach
called patrol, exiting approach automatically exits patrol. Thus, if the motor stalls, all activity
started by approach will be suspended.

If, on the other hand, approach determines that an object is less than 2 meters in front (by calling the
perceptual routine sfObjInFront, which returns the distance to the nearest object), then it suspends the
patrol activity, and moves to within 20 cm of the object. The patrol activity must be suspended,
otherwise the move action will conflict with the actions being issued by patrol. After the robot moves
near the object, the approach activity exits with the success state.

In this example, two activities execute concurrently, and coordination is achieved by signals that are sent
between them. Activities can examine each others’ state, and take appropriate action. As the monitoring
activity, approach has the responsibility of checking the state of patrol to see if it has timed out, and
also of checking for other conditions that would cause the suspension of patrol and the initiation of new
activities. Finally, if approach is itself part of a larger activity, then by exiting with success or failure, it
can signal other activities of its result.

Signals are sent by one of the following commands. If the optional argument is given, it is the
instantiation name of the activity or behavior to signal. If not, the activity signals itself. It may seem strange
for an activity to send itself some of these signals, e.g., interrupt, but it does make sense, because the

patrol 

act approach()
{
int x;
start patrol(-1) timeout 300 noblock;
checking:
if (sfGetTaskState(“patrol”) == sfTIMEOUT || sfIsStalled())
     fail;
x = sfObjInFront();
if (x > 2000) goto checking;
suspend patrol;
move(x - 200);
succeed;
}

Listing 4-4. An activity that monitors another.
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effect of the signal is also communicated to the children. The only signal that can’t be sent to self is
resume, since an activity can’t send a signal when it is suspended.

Table. 4-6. Colbert commands that send signals.

Command Signal

stop   [<symbol>] sfSUSPEND

suspend [<symbol>] sfSUSPEND

succeed [<symbol>] sfSUCCESS

fail   [<symbol>] sfFAILURE

interrupt [<symbol>] sfINTERRUPT

resume  <symbol> sfRESUME

remove  [<symbol>] sfREMOVE

trace   [<symbol>]

untrace [<symbol>]

The stop and suspend commands both put the activity or behavior into a suspended state, where no
evaluation is performed. The interrupt command is similar, but instead it signals an interrupt state, in
which the activity can perform special processing before suspending. Within an activity, processing for
interrupts is indicated by the special oninterrupt label. For example, in the code fragment in Listing
4-5, the activity will remove the follow-corridor behavior before suspending itself:

...
   start sfFollowCorridor(e, p) priority 2 iname follow noblock;
...
 oninterrupt:
   remove follow;
   suspend;

Listing 4-5. Colbert code fragment

The resume command resumes an activity or behavior. For activities, processing resumes at the
onresume label. If no such label exists, the activity resumes at its first statement.

succeed and fail are special commands for stopping an activity. The activity is considered to be
finished: no more processing takes place, as in the case of suspension. But other activities can check for
these states to determine if the activity accomplished its job or not. When an activity “falls through” and
finishes its last statement, it will enter the sfSUCCESS state by default.

Normally, sub-activities (those started from other activities) are not removed from the active process list
when they finish. This is so that other activities can check on their progress, determine if they finished, and
so on. An activity can be explicitly removed from the active process list by giving it the special state
sfREMOVE with the remove command. It’s a good idea to remove activities and behaviors when they’re
done. Top-level activities (those with no parents) are removed automatically when they finish.
The trace and untrace signals change the tracing state of activities (see Section 4.8.7).

Note that all of the signaling commands can be issued in the user interaction area, which is the normal way
to start, stop, and trace activities. These commands are also used inside activities, as a means of
coordinating their action.

4.8.4 Accessing Activity States
Because Colbert lacks a special construct for referring to the state of an activity; the library functions
sfGetTaskState, sfTaskFinished and sfTaskSuspended are used:
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int sfGetTaskState(char *iname);
int sfTaskFinished(char *iname);
int sfTaskSuspended(char *iname);

sfGetTaskState returns the state of the micro-task whose instance name is iname. This micro-task
may be an activity, behavior, or simple micro-task. If no such micro-task exists, the result is sfINACTIVE.
Note that the instance name is a string, because sfGetTaskState is a C function (see Listing 4-4 for an
example).
States that are less than or equal to 10 are special states: initial, suspended, finished, or interrupted states. A
micro-task that has completed its activity will be in one of the finished states: succeeded, failed, or timed
out. The function sfTaskFinished returns 1 if the micro-task is in one of these states, and 2 if it is not
present or is in the state sfREMOVE. If the micro-task is present and not finished, then
sfTaskFinished returns 0.

A suspended micro-task has the state sfSUSPEND if it is suspended indefinitely, or a negative integer if it
is suspended for a number of cycles. The function sfTaskSuspended returns 1 if a micro-task is in a
suspended state, and 0 otherwise.

4.8.5 Hierarchical Invocation
Like other micro-tasks, acts can run concurrently, accomplishing different goals for the robot. The

previous section showed an example of a monitoring activity running in parallel with a movement activity.
Here, both activities are active and performing a certain task. In other cases, it may be useful to sequence a
set of activities, waiting for one to complete before starting another. A parent activity controls the sequence
by starting each subactivity in turn.

Colbert supports an execution model in which activities may be invoked as children of an executing activity.
The technical term for this is hierarchical task decomposition, an important method for robot control.
Consider the task of moving an object from one place to another. It’s natural to decompose this into three
subtasks: picking up the object, going to the destination, and dropping the object. In Colbert, we would do

this using the activity in Listing 4-6.

The subactivities pickup, goto, and drop are executed in turn. The move_object activity stops at
each until it finishes, then goes on to the next. This default execution model is the same as for primitive
actions.

The hierarchical structure of activities is important for signals. Any signal sent to a parent is reflected to
its active children. For example, if an activity is interrupted, all of its children also receive interrupt signals.
This means that any behaviors or direct motion commands are suspended. Similarly, if an activity is
resumed, all of its suspended children are also resumed. Hierarchical invocation makes it easy to turn sets of
activities on and off.

4.8.6 Activity Window
Activities and behaviors can be controlled from the activity window, invoked from the

Functions/Activities menu. The activity window shows the state of all activities and behaviors in the system.

act move_object(int dest)
{
start pickup;
start goto(dest);
start drop;
}

Listing 4-6. An activity with subactivities.
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Double-clicking on the activity or behavior will change its state from running  to interrupted/suspended, or
from suspended to resumed.

4.8.7 Tracing and Error Recovery
Activities can be traced by sending them the trace signal. For a traced activity, as each statement is

evaluated, its value is printed in the user interaction area, along with the source line of the statement. The
source line is an offset from the beginning of the activity schema definition.

To cut down on the amount of output, the executive prints information only when the state of a traced
activity changes. For example, nothing is printed while an activity is waiting for completion of a direct
motion command. Information is printed when the command finishes, and the activity goes on to the next
statement.

The evaluator traps all fatal errors—all fatal user errors, for instance—in micro-tasks. An error message
is printed, and the offending command is exited. In the case of an error caused by a statement in an activity,
the line number of the activity (relative to the top of the activity) is printed, and the activity is suspended.

4.9 Colbert Language
The Colbert language is C-like, in that it has a syntax that is close to that of ANSI C. It has many but not

all of C’s expression and statement constructs, and additional constructs that are specific to Saphira, such as
the direct motion commands, and the invocation of activities and behaviors.

Colbert is not meant to be a replacement for writing code in C. You cannot define new C functions in
Colbert (acts are like functions, but are executed differently). For any complicated computation, we
recommend writing a C function, compiling it into a shared object, and then loading it into the evaluator
(see Section 4.10).

Most of the Saphira library functions, variables, and structures are available in Colbert. Few C library
functions (such as the trigonometric functions) exist, but these can easily be added by the user via shared
object files.

4.9.1 Major Changes from ANSI C
The typing system is slightly different. The basic types are int, float, void, and string

(essentially, char *). No double or char type is available. Structures are permitted, but only by
explicitly importing them from a native C shared-object file.

No arrays or array operators exist.
The type double is not available; instead, all floating-point numbers are single precision (float).

No typedef operator exists, and new structures cannot be defined in Colbert; they must be imported
from native C object files.

The following operators are not defined: ?:, op=, >>, <<, ++, --, ,.

Explicit type casting is not permitted (although implicit casting is performed).
The for and switch statements are not defined.

Variables may not be initialized when defined.
No embedded assignments are allowed, e.g.,  if ((x = a) > 2) { … }

New functions are not defined in Colbert but may be imported from native C object files.

Only a few standard C library functions are initially available, although others can be made available by
telling the evaluator about them with sfAddEvalFn (see below). This and the other sfAddEvalXXX
functions are available only in C code, so you must compile and load a shared object file to link in C library
functions.

Some of these limitations may be removed in future releases. As Colbert provides for dynamic linking of
C object files, these restrictions aren’t absolute: Native C functions can be loaded. For example, to reference
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an array, you can define a C function that takes an offset and array as its argument, and returns the array
element.

4.9.2 Comments
Standard C comment syntax is used:

/* a comment */

4.9.3 Keywords
In addition to many of the ANSI C keywords, Colbert defines several new keywords that cannot be used as

variables, labels, or other names. A list of these names follows:act, behavior, fail, halt,
help, iname, interrupt, load, move, noblock, priority, remove, resume,
rotate, speed, string, succeed, suspend, timeout, trace, turn, turnto,
untrace, update, and waitfor.

4.9.4 Types
The type system of Colbert is simplified from ANSI C. Table 4-7 shows the predefined types.

Table 4-7.  predefined types in Colbert.

Type C index
int sfINT

float sfFLOAT

void sfVOID

string sfSTRING

act sfACTIVITY

behavior sfBEHAVIOR

void * sfPTR

The first six are basic types. Note that the type double doesn’t exist; all floating-point numbers in Colbert
are single precision. This decision was made to keep all types the same size on 32-bit machines. For the
same reason, Colbert has neither a char or bitfield type. Users can always provide access to C data
with non-Colbert types by writing native C functions to convert them to Colbert types.
string is equivalent to (char *), but is atomic, i.e., *str is illegal if str is a string. The last,
sfPTR, is a convenience definition for a generic pointer.

The sfACTIVITY and sfBEHAVIOR types are special basic types for activities and behaviors, similar to
functions. Activity schemas are defined with the act keyword (see Section 4.9.12). Behavior types are not
input by Colbert; instead, behaviors are defined using the behavior compiler (see Chapter 4), and made
available in Colbert with the sfAddEvalVar or sfAddEvalConst functions (see Section 4.10.3).

Function pointer types exist, but the user has no access to them from Colbert, so they are omitted here.
It is often necessary to refer to Colbert types from C code; for example, when defining C functions for
Colbert. All types in Colbert have a corresponding C index, an integer, so they can be referred to from
standard C code. For examples of the use of these indices, see Sections 4.10.2, 4.10.3, and 4.10.4.

4.9.5 Expressions
Expressions use ANSI C syntax. The following are valid expressions:
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2.3
"a string"
1 + 4.3
(2 > a) || !b
fn(arg1, arg2)
exp.slot
exp->slot
*exp
&exp
sizeof(type)

Expressions typed at the command window, and followed by a semicolon, are evaluated and the result
printed, with the type of the result given in parentheses.

Pointer arithmetic is not implemented.
The comma (,) and question mark (?:)operators are not implemented.

The type of an expression is determined by the type of its components. Colbert performs implicit type
casting in the following cases.

In arithmetic operations and comparisons, all numbers are converted to floating-point if any one of the
components is floating-point. Pointers are converted to integers.

In logical operations, floating point numbers and pointers are cast to integers.
In assignments, the value to be assigned is cast to the type of the variable being assigned.
In function evaluation, the arguments are cast according to the function prototype.

4.9.6 Variables
Variables are defined using ANSI C syntax. The type of the variable is given by one of the five predefined

types, or by a type imported with sfAddEvalStruct. Pointers and pointers to pointers, and so on, are
legal; but no special modifiers such as const or extern are permitted.

int a;
ptr tonowhere;
float **f;
robot *r;

Variables can be declared at the beginning of acts, and at the top level of a Colbert source file. Top-level
variables have global extent and are accessible by all Colbert activities. Variables declared within an act are
local to that act and function as static variables. Each invocation of an activity schema gets its own copy of
the local variables.
All variables are initialized to 0.
Colbert variables also can be declared by linking them to a native C variable with the sfAddEvalVar
function. These variables need not have an explicit Colbert declaration, although it is legal to give them
one. The value of the Colbert variable reflects the value of the C variable.

4.9.7 Statement Grouping
Statements are grouped by using curly braces, as in this example:

{ <stmt1> <stmt2> <stmt3> }

Grouping is useful in Colbert-specific forms, such as update in act definition, that take only a single
statement.

The empty statements ; and {} are valid statements.

4.9.8 Conditional Statements
Colbert uses the standard if statement for conditionals:
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if (<c_exp>) <stmts> [ else <stmts> ]

Colbert requires a special form for waiting until a certain condition holds:

waitfor <c_exp> [timeout <n>];

This statement effectively causes the Colbert executive to suspend further sequential execution of the act
until the condition c_exp becomes nonzero. On each cycle of the scheduler, c_exp is evaluated, and if it
is 0, control states at the waitfor statement. The waitfor statement without the optional timeout
parameter is equivalent to this sequence:

while (!c_exp) {}

The timeout parameter is very handy for preventing blocks in an activity. After n cycles, if the condition
still has not been satisfied, the waitfor completes, and execution continues with the next statement.

Unlike suspension, waitfor does not affect any child activities, which keep executing normally.

4.9.9 Iteration and Branching Statements
The only iteration construct in Colbert is the while statement:

while (<c_exp>) <stmts>

c_exp is evaluated, and if false, a single break occurs, so control returns to the scheduler. On the next
cycle, execution continues with the statement after the while.

Control may also be transferred in an act using the goto statement and labels, as in this sequence:

<label>:
goto <label>;

Labels may occur only at the top level of an activity schema. goto’s cause a single break when they are
executed, so that control returns to the scheduler.

4.9.10 Assignment Statements
Values may be assigned to any expression that represents a storage location. This includes variables and

locations described by pointers and structure members. Implicit type conversion is made to convert the value
to the type of the storage location. The following are valid assignment operations:

point p;
int a;
int *b;
float *c;
a = 2;
b = &a;
*b = 3;
p.x = 1.0;
c = &p.x;
*c = *b;

If a Colbert variable is linked to a native C variable by the sfAddEvalVar function, then changing the
value of the Colbert variable will also change the value of the linked C variable.

4.9.11 Function Statements
Function expressions are also considered as statements.

4.9.12 Activity Schemas
Activity schemas are defined using the special keyword act. They are similar to function definitions, but

are interpreted by the Colbert executive as a special type of micro-task.
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The activity name is any symbol. The symbol cannot be declared as a variable or function. If the name was
previously assigned to an activity schema, the old definition is replaced by the new one. Note that any
instances of the schema running as micro-tasks are unaffected by the redefinition; you must re-invoke the
activity schema to get the new definition.

The activity schema takes a set of parameters, which are variables local to the activity. If no parameters
are provided, the parentheses may be omitted.

Optional local variables are declared only at the beginning of the activity schema.
An optional update block is a statement that is evaluated every time the activity is invoked by the

scheduler. Typically, the update block is used to set the values of variables to reflect a change in the state of
the robot. goto, labels, and iteration are illegal in the update statement.

Body statements are executed in accordance with the finite-state machine semantics described in Section
4.8.2. Labels are allowed only at the top level of body statements. Some special labels indicate places to start
execution on exceptional conditions.

Table 4-8.

Command Description

oninterrupt Branch location for an interrupt signal.

onresume Branch location when an activity resumes because it was
sent an sfRESUME signal.

4.9.13 Direct actions
Direct actions are statements that result in robot motion (see Table 4-9). These statements may appear

anywhere a statement is allowed in an activity schema. The general form is:

command(int arg) [timeout n] [noblock];

where timeout n specifies a time in 100 ms increments for the command to complete, and noblock
means that the command will be executed without blocking; that is, control will continue with the next
statement. Some motion commands are implicitly non-blocking: speed and rotate.

Table 4-9. Direct action statements in Colbert.

Command Effect

move(int mm); Moves the robot mm millimeters forward (positive) or backwards
(negative). Blocking.

turn(int deg); Turns the robot deg degrees clockwise (negative) or counter-
clockwise (positive) degrees from the current heading. Blocking.

turnto(int deg); Turns the robot to the heading deg degrees. Positive values are
counterclockwise, negative values are clockwise. Blocking.

speed(int mms); Moves the robot at a speed of mms millimeters per second
forward (positive) or backwards (negative). Non-blocking.

rotate(int degs); Moves the robot at a rotational speed of degs degrees per
second counter-clockwise (positive) or clockwise (negative). Non-
blocking.

halt; Halts all direct motion commands.

4.9.14 Activity and Behavior Invocation and Signaling
Activities and behaviors are started with the start statement (see Listing 4-7)
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Listing 4-7. In Colbert, activities and behaviors begin with the
start statement.

The activity should be invoked with as many arguments as in its definition. If there are no arguments,
then the argument’s parentheses may be omitted. All of the optional keywords can occur in any order.
noblock causes execution to continue with the next statement, after a single break and without waiting
for the activity to complete. The activity can be given an instance name so that other activities can refer to
it; by default, this name is its schema name. If another activity or behavior has this instance name, an error
is signaled. The priority keyword is only for behaviors, which compete for control on the basis of their
priorities. A timeout specifies the maximum number of 100 ms cycles the activity or behavior will be
allowed to execute. If present, suspend invokes the activity or behavior but leaves it in a suspended state,
pending a resume signal.

Note that the activity schema must be defined with the act command before the start command is
executed, or an error will result. Currently the only way to invoke an activity is to use the activity schema
name. For behaviors, the behavior schema must be defined with the behavior compiler and loaded into
Colbert, and its name made available with sfAddEvalVar or sfAddEvalConst.

Activities and behaviors are sent signals with the signal statement:

signal [ <symbol> ];

The optional argument specifies the instantiation name of an activity or behavior to signal. If no such
activity or behavior exists, an error is issued. The available signals are shown in Table 4-10.

Table 4-10. Signals for activities and behaviors in Colbert.

Command Signal Description

stop   [<symbol>] sfSUSPEND Suspends execution of the activity. Execution
can be resumed with the resume command.

suspend [<symbol>] sfSUSPEND Same as stop.

succeed [<symbol>] sfSUCCESS Causes the activity to finish in the
sfSUCCESS state.

fail   [<symbol>] sfFAILURE Causes the activity to finish in the
sfFAILURE state.

interrupt [<symbol>] sfINTERRUPT Interrupts the activity, branching to the
oninterrupt label, if it exists. If not, the
activity stays in the sfINTERRUPT state, and
no further execution occurs.

resume  <symbol> sfRESUME Resumes a suspended or interrupted activity. If
the onresume label exists, starts at this point;
otherwise starts at the beginning of the activity.

remove  [<symbol>] sfREMOVE Causes the scheduler to reap the activity.

start <aname> [([c_exp]*)] [ noblock ]
                           [ iname <symbol> ]
                           [ priority <int> ]
                           [ suspend ]
                           [ timeout <int> ] ;
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trace   [<symbol>] Traces the activity.

untrace [<symbol>] Untraces the activity.

4.10 Loading Native C Code
Native object files can be dynamically loaded into the execution environment, giving access to Saphira

internals and new C functions. Because Colbert has only a limited implementation of C, in many cases you
must load C object files to accomplish a task. For example, the only way to define new structures is to load
in an appropriate C object file.

4.10.1 Format of Native C Files
In general, a C source file will contain user-defined functions and variables, and a special function,

sfLoadInit, that will be called when the file is loaded. SfLoadInit will contain calls to the
sfAddEvalXXX functions, which will make native C functions and variables defined in the file (or
already loaded in the system) available to Colbert. Listing 4-8 shows an example load file (in
handler/src/apps/testload.c).



48

/*
 * test load file for dynamic loading
 */
#include "saphira.h"

int nopen = 0;

int myfn(int a)
{
  return a+1;
}

struct mystruct
{
  int a;
  float b;
  void *c;
} m;

int ind_mystruct;

EXPORT void sfLoadInit(void) /* evaluated on load */
{
  float a = 1.3;
  a = sqrt(a);
  printf("Opened! %d %f\n", nopen++, a);
  sfSMessage("Opened: %d", nopen);
  sfAddEvalFn("myfn", myfn, sfINT, 1, sfINT);
  sfAddEvalConst("sfFollowCorridor", sfBEHAVIOR, sfFollowCorridor);
  sfAddEvalConst("sfLEFT",  sfINT, 0);
  sfAddEvalVar("sfCurrentEnvironment", sfPTR,
                  (fvalue *)&sfCurrentEnvironment);

  ind_mystruct = sfAddEvalStruct("mystruct", sizeof(struct
                     mystruct), (char *)&m, 3,

       "a", &m.a, sfINT,
       "b", &m.b, sfFLOAT,
       "c", &m.c, sfPTR);

  sfAddEvalVar("m", ind_mystruct, (fvalue *)&m);
}

Listing 4-8. Example load file in Colbert.

The function sfLoadInit, if present, is invoked when the object file is loaded into Saphira. In this case,
it prints a message, then makes a structure, a variable, a function, a behavior, a constant, and another
variable visible to Colbert. Details on how to make C functions and variables available in Colbert are
contained in the next few sections.

When a file is unloaded or reloaded, the function sfLoadExit() is called to help clean up anything
that could cause problems. For example, any activities that access C functions or variables defined in the file
should be removed, or they will cause an error.

4.10.2 Making Native C Functions Accessible
Native C functions, including Saphira library functions, are made accessible in Colbert with the

sfAddEvalFn function. sfAddEvalFn is not callable from Colbert, because Colbert has no way to
access the underlying C environment. It must always be compiled and loaded from a shared object file,
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usually as a call in the sfLoadInit function (see the example in the previous section). The format of
sfAddEvalFn is:

sfAddEvalFn(char *name, void *fn, int rtype, int nargs, ...)

name is the name of the function as seen by Colbert. fn is a function pointer to the C function being
made available. The return type, rtype, is the C index of a Colbert type (see Section 4.9.3). The
predefined types are shown in Table 4-11.

Table 4-11. Predefined function
types in Colbert.

Type C index
int sfINT

float sfFLOAT

void sfVOID

string sfSTRING

act sfACTIVITY

behavior sfBEHAVIOR

void * sfPTR

In addition, pointers to types can be defined with the function sfTypeRef(int type). For example, to
define a pointer to an integer, use:

sfTypeRef(sfINT)

The function sfTypeDeref performs the inverse operation, giving the type of the reference of a pointer;
but this is less useful in defining argument types.
nargs is the number of arguments of the function, currently a maximum of seven. If the function takes a
variable number of arguments, then use a negative number here, where |nargs| is the number of required
arguments of the function. Each argument to the function is described by the C index of its type. For
example, the library function void sfSMessage(char *format, …) is made accessible with this
command:

sfAddEvalFn(“sfSMessage”, sfSMessage, sfVOID, -1, sfSTRING);

sfSMessage has one required argument, a string, and returns void.

4.10.3 Making Native C Variables Accessible
Native C variables in user code and the Saphira library are made accessible in Colbert with the

sfAddEvalVar function. This function can only be called from loaded C object files, not from the
Colbert evaluator. It must always be compiled and loaded from a shared object file, usually as a call in the
sfLoadInit function (see the example in the Section 4.10.1). The format of sfAddEvalVar is:

sfAddEvalVar(char *name, int type, (fvalue *)&cvar);

name is the name of the variable as seen by Colbert. cvar is the variable being made available. Note that
a pointer to the variable is required, and it is cast to the type fvalue *. This is so that the Colbert
executive can change the value of the variable. The  type of the variable, type, is the C index of a Colbert
type (see Section 4.9.3). The predefined variable types are shown in Table 4-12:
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Table 4-12. Predefined variable types
in Colbert.

Type C index
int sfINT

float sfFLOAT

void sfVOID

string sfSTRING

act sfACTIVITY

behavior sfBEHAVIOR

void * sfPTR

In addition, pointers to types can be defined with the function sfTypeRef(int type). For example, to
define a pointer to an integer, use:

sfTypeRef(sfINT)

The function sfTypeDeref performs the inverse operation, giving the type of the reference of a pointer;
but this is less useful in defining argument types.
A C variable made available in Colbert is both accessed and changed by the appropriate Colbert expression.
For example, sfRobot is available in the bin/saphira executable, having been defined by:

sfAddEvalVar("sfRobot",  sfSrobot, (fvalue *)&sfRobot);

The type sfSrobot is also defined (see the next section). The robot’s current global position is available
in Colbert as the members sfRobot.ax, sfRobot.ay, and sfRobot.ath. For example, the following
Colbert statement will increment the global x position by 1 meter (this is just an example; the recommended
way to change the global position is with sfMoveRobot):

sfRobot.ax = sfRobot.ax + 1000.0;

Besides variables, constants can be defined in Colbert, with sfAddEvalConst. The format is similar to
that for adding variables:

sfAddEvalConst(char *name, int type, (fvalue)val);

where val is a constant expression. For example, these are some of the predefined constant loaded into
bin/saphira:

sfAddEvalConst("sfConstantVelocity", sfBEHAVIOR,
                sfConstantVelocity);
sfAddEvalConst("sfVSLOWLY", sfFLOAT, 3.0);
sfAddEvalConst("sfSLOWLY", sfFLOAT, 4.0);

The only way to start a behavior from Colbert is to define it in C, and then make it accessible with
sfAddEvalConst or sfAddEvalVar.

4.10.4 Making Native C Structures Accessible
Native C structures are made accessible in Colbert with the sfAddEvalStruct function. New

structures cannot be defined in Colbert; they must already exist in a loaded C object file.
sfAddEvalStruct can only be called from loaded C object files, not from the Colbert evaluator. It must
always be compiled and loaded from a shared object file, usually as a call in the sfLoadInit function
(see the example in the Section 4.10.1). The format of sfAddEvalStruct is:

sfAddEvalStruct(char *name, int size, (char *)&s, int num, ...);
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name is the name of the structure as seen by Colbert. size is the size in bytes of the structure. s is an
instance of the structure being made accessible; here a pointer to it is passed to the function. num is the
number of members in the structure. The rest of the arguments are triplets, each defining one structure
member. The format of the triplets is:

(char *)slotname, &s.slot, int type

where slotname is the Colbert name for the member, s.slot is the instance structure member, and
type is the C index of the member type. The available types appear in Table 4-13.

Table 4-13. Predefined Structure
types in Colbert.

Type C Index
int sfINT

float sfFLOAT

void sfVOID

string sfSTRING

act sfACTIVITY

behavior sfBEHAVIOR

void * sfPTR

In addition, pointers to types can be defined with the function sfTypeRef(int type). For example, to
define a pointer to an integer, use:

sfTypeRef(sfINT)

The function sfTypeDeref performs the inverse operation, giving the type of the reference of a pointer;
but this is less useful in defining argument types.
For example, the sfRobot structure is defined as shown in Listing 4-9.

Listing 4-9. The Colbert structure sfRobot.

The structure name in Colbert is robot, and it has 22 available members, each with its own name and
type. Not all members need be declared to Colbert. The sfAddEvalStruct returns a new type index,
which is stored in the C variable sfSrobot. This index is used in making the definition of the Saphira
variable sfRobot available in Colbert. As with the other sfAddEvalXXX functions,
sfAddEvalStruct must be compiled into a shared object file, and then loaded into Colbert.

int sfSrobot;
    robot r;
    sfSrobot = sfAddEvalStruct(
       "robot", sizeof(robot), (char *)&r, 22,
       "x", &r.x, sfFLOAT, /* local coords */
       "y", &r.y, sfFLOAT,
       "th", &r.th, sfFLOAT,
       "ax", &r.ax, sfFLOAT, /* global coords */
       "ay", &r.ay, sfFLOAT,
       "ath", &r.ath, sfFLOAT,
       "control", &r.control, sfFLOAT, /* heading control */
       ...
       "status", &r.status, sfINT, /* status int here */
       ...



52

C indexes for pointer types are constructed using the functions sfTypeRef and sfTypeDeref. For
example, in C code, to get a type index for a pointer to the robot structure, use:

sfTypeRef(sfSrobot)

The size of a structure is returned in Colbert by the sizeof(typename) function. The currently-loaded
structures are printed with the help structs command.

The robot and point types are predefined in the bin/saphira executable.

4.10.5 Compiling and Loading C Files
Chapter 6 has more detailed information about the particulars of compiling native C files and making

them into shared object files. Under UNIX, the object files must be converted into a shareable object file
(.so). The shareable object file is loaded with the load command, as  in this example:
load ..../testload.so

A dynamically loaded file may be recompiled and reloaded at any point.
Under MS Windows, C code is compiled into a Dynamic Link Library (DLL). The DLL is then loaded

into Saphira, again with the load command. DLLs cannot be relinked or reloaded, unless they are first
unloaded. From Colbert, use the unload command to unload a DLL that you are going to relink.
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5 Behavioral Control
You can control robot motion in two different ways. The direct motion commands were introduced in

Sections 2.2.2 and 4.7. Direct motion control is appropriate for moving the robot through simple sequences
of action, e.g., the BumpAndGo activity backs and turns the robot when it bumps into something. But in
certain cases, the trajectory of the robot must satisfy complicated demands from the task and various
maintenance policies. For example, in navigating from one room to another in an office environment, the
trajectory is defined in large part by goal positions at corridor intersections. The robot should achieve these
positions as quickly as possible, subject to safety and power considerations. On a more local scale, the robot
should avoid obstacles and respond to contingencies, such as closed doors or blocked corridors.

One approach to complex control is to decompose the problem into a set of small actions to accomplish
particular goals, which can then be combined into a more comprehensive control strategy. Each such small
action, with its associated goal, is called a behavior. A behavior looks at some set of sensor information and
outputs a desired action, based on its goal. For example, an obstacle-avoidance behavior might look at the
current sonar readings and decide to slow down or turn the robot.

As of Saphira 6.x, behaviors are treated as a type of activity, and are invoked and disabled using the same
commands as activities. In particular, while the behavior window still exists for displaying information
about behaviors, you cannot turn a behavior on and off from this window. Instead, use the Activities
window. Also, we recommend starting and controlling behaviors using Colbert, which provides a
convenient interface to behavior activation and a uniform view of behaviors, direct actions, and activities.

5.1 Behaviors and Fuzzy Control
Every behavioral-control scheme must decide on representations for the output action and must include a

method for arbitrating among competing outputs, when several behaviors want to control the robot. In
Saphira, we use fuzzy control rules to define output actions, and competing outputs are merged based on
priorities and degree of activation of a behavior. A fuzzy control rule maps states of the LPS into control
actions for the robot. A tutorial on Saphira’s fuzzy control system can be found in the Saphira
documentation; please refer to it for explanations of the concepts mentioned here.

This section describes how to define and execute behaviors in the Saphira system. Behaviors are specified
using the behavior grammar, which simplifies the task of  writing behavior control rules. Specifications in
the behavior grammar are translated into C code by the bin/bgram program, and the resulting source
code can be compiled and loaded into Saphira.

The Saphira library also has a number of precompiled behaviors available for obstacle avoidance and goal
seeking (see Section 5.9).

5.2 Invoking Behaviors
We introduce behaviors with an example invocation of a predefined behavior. You can invoke behaviors

in two ways: with the Colbert start command from the interaction area or an activity, or with the
sfStartBehavior function from C code.

The behavior sfGoToPos moves the robot to a goal position. It takes three arguments: the speed at
which the robot is to move (in mm/sec), a point artifact representing the goal position, and a success radius
(in mm). In the interaction area, type:

point *goal;
goal = sfCreateLocalPoint(1000, 0, 0);
sfAddPoint(goal);
start sfGoToPos(200, goal, 100);

The first two statements create a point artifact situated 1 meter in front of the robot. The sfAddPoint
function adds it to the pointlist, so that its position is updated as the robot moves. Finally, the start
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command invokes the sfGoToPos behavior at 200 mm/sec to the goal point, with success defined as
being at most 100 mm from the goal. If the robot is connected, it will start to move towards the goal point,
and stop when it gets near.

5.2.1 Presenting Behaviors to Colbert
Behaviors are defined using the behavior compiler, which generates a C code file that can be compiled

and loaded into Saphira (see Section 5.4). Behaviors are represented as C structures and can be presented as
constants to Colbert. If myBehavior is a behavior, then the following construct will make myBehavior
available to the Colbert evaluator:
sfAddEvalConst("myBehavior", sfBEHAVIOR, myBehavior)

The sfAddEvalConst call should be included in an sfLoadInit function in the C file.

5.2.2 Invoking Behaviors from C Code
From C code, you can invoke behaviors using the sfStartBehavior function. The arguments are

similar to those of the start command.
sfprocess sfStartBehavior(behavior *b, char *iname, int timeout,

                     int priority, int suspended, ...)

The first argument of the sfStartBehavior function is a pointer to the behavior structure, as defined
below. The second is the instance name of the behavior. In Saphira 6.x, behaviors are also micro-tasks and
so are referred to by their instance name. The timeout value is the number of 100 ms cycles the behavior
will run; use 0 for no timeout.

The next argument is the priority of the behavior closure, relative to others. Lower values get higher
priority; 0 is the highest priority and should be used for the most important emergency maneuvers, such as
collision avoidance. Saphira treats all behaviors with the same priority equally in terms of competing for
control of the robot; ones with larger priority numbers (lower priority) are suppressed by activity of higher-
priority behaviors.

The suspended argument is 0 if the closure is started in an active state, and 1 if it is suspended. A
closure that is suspended is present but not active and does not affect the robot’s movements. The suspended
state of a behavior can be changed by using Colbert signals (see Section 4.8.3), or with the library function
sfSetTaskState (see Section 8.5.3).

The remaining arguments to this function set up the parameters of the closure. They must be the same
number and have the same type as the parameters specified in the behavior definition. Listing 5-1 shows an
example invocation of the predefined behavior sfKeepOff.

Listing 5-1. Invocation of the predefined behavior sfKeepOff.

5.3 Behaviors as Activities
Behaviors are a special type of activity. They have special properties, such as a priority and various internal
state variables (goal, turn, and velocity activity). On the other hand, they are similar to basic actions
in that they cannot invoke subactivities.

sfStartBehavior(sfKeepOff, “keep off”,  /* instance name */
                           0,           /* no timeout */
                           1,           /* priority */
                           0,           /* no suspension */
                           100.0,       /* caution speed */
                           0.4);        /* sensitivity */
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Behaviors can be suspended or killed by sending them signals, using the task signal facility (see Section
4.8.3). All of the behavior functions from version 5.3, such as sfInitBehavior and
sfKillBehavior, are not available in 6.x. Active behaviors appear in the Function/Activities window.
Just as with other activities, they can be interrupted and resumed by double-clicking in this window.
Conceptually, there are two types of activities: those that achieve some goal and those that act to maintain a
state. Goal-achieving behaviors can terminate on their own, like direct actions. They do this by setting the
goal state in their Activity section (see Section 5.8.5). A behavior whose goal state is greater than 0.8 is
considered to be successful and is terminated by the behavior executive.
Like direct actions, behaviors may be started in either blocking or non-blocking mode from within an
activity. Blocking mode is generally useful only with goal-achieving behaviors, which will terminate when
their goal state is sufficiently fulfilled. Blocking mode is useful for sequencing goal-achieving behaviors.
Non-blocking mode is useful for starting a set of behaviors executing concurrently.
When an activity is suspended, all of the behaviors it or its subactivities invoke are also suspended. On
resumption, these behaviors are resumed. If an activity terminates, all of its behaviors are terminated. One
common mistake in invoking behaviors from activities occurs when the activity terminates unintentionally.
For example, the following activity, will start the three behaviors, then succeed and promptly terminate all
three:

act startb()
{
   start b1() noblock;
   start b2() noblock;
   start b3() noblock;
}

The net effect is that the behaviors never really get executed.

5.4 Behavior Grammar
The behavior grammar is a convenient syntax for defining behaviors. The BNF for the grammar is given
below. For reference, Listing 5-2 provides an example of a typical behavior using this syntax. This behavior
sends the robot towards a goal position.

Listing 5-2. Example behavior grammar; the sequence sends a robot toward a goal position.

BeginBehavior myGoto    /* behavior name */
Params 
sfPTR goal_pt /* pointer to goal point */
sfFLOAT radius /* how close we come, in mm */
Rules
If too_left Then Turn Right
If too_right Then Turn Left
If Not (near_goal Or too_left Or too_right) Then
                                                                 Speed 200.0
If near_goal Or too_left Or too_right Then Speed 0.0
Update
float phi = sfPointPhi(goal_pt);
float dist = sfPointDist(goal_pt);
too_right = up_straight(phi, 10, 50);
too_left  = straight_down(phi, -50, -10);
near_goal = straight_down(dist, radius, radius*2);
Activity
Turn Not near_goal
Speed Not near_goal
Goal near_goal
EndBehavior
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Sample behaviors can be found in the file handler /src/basic/behavior.beh. You can refer to these
for reference and ideas on how to write behaviors.

5.5 Behavior Grammar in BNF
Listing 5-3 provides the complete rules for the behavior grammar, in the form accepted by the YACC or

BISON parsers.

Listing 5-3. Complete rules for the behavior grammar, in the form accepted by the YACC or BISON
parsers

5.6 Behavior Executive
Before any behaviors can be invoked and run, the behavior executive must be started. Normally this is

done using the sfInitControlProcs call.

Behaviors and direct motion control will conflict if a client attempts to use both at the same time to
control the robot. For example, in the bin/saphira sample client, the bump-and-go procedure uses
direct motion control, while the obstacle-avoidance routines are behaviors. The bump-and-go procedure is

/*  Behavior definition: name params rules init update activity */

BEHAVIOR:=
     “BeginBehavior” symbol
     “Params”   [PARAM_STMTS]
     “Rules”    [RULE_STMTS]
    [“Init”      C_STMTS]
     “Update”   [C_STMTS]
     “Activity” [ACT_STMTS]
     “EndBehavior”

/* behavior parameters */
PARAM_STMTS:=
       {“sfINT” | “sfFLOAT” | “sfPTR”} symbol [PARAM_STMTS]

/* Rule definition: name fuzzy-var action mod */
RULE_STMTS:=
      [SYMBOL] “If” FUZZY_EXP “Then” CONTROL [RULE_STMTS]

/* fuzzy expression */
FUZZY_EXP:=
       symbol | float
     | “Not” FUZZY_EXP
     | FUZZY_EXP “And” FUZZY_EXP
     | FUZZY_EXP “Or”  FUZZY_EXP
     | “(“ FUZZY_EXP “)”

/* rule actions and modifiers */
CONTROL:=
       “Turn Left”  [MOD] | “Turn Right” [MOD]
     | “Turn” symbol [MOD]| “Speed” MVAL

MOD:=
       “Very Slowly” | “Slowly” | “Moderately” | “Sharply”
     | “Very Sharply”| symbol

MVAL:=
       symbol | int | float

/* activity statements */
ACT_STMTS:=
      {“Turn” | “Speed” | “Goal” | “Progress”} FUZZY_EXP
         [ACT_STMTS]
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inactive until the robot hits something, at which point it takes over motion control and backs the robot up.
To suppress behavior execution during this time, the sfBehaviorControl flag is set to 0. When the
bump-and-go procedure finishes, it resets the flag to 1, and the behaviors resume control:
int sfBehaviorControl
int sfHasDCHead

A value of 0 for sfBehaviorControl suppresses behavior control of motion, although all behaviors
are still evaluated. A value of 1 allows the results of behavior evaluation to control the robot motion.
sfHasDCHead controls whether the DCHEAD or DHEAD commands are used to control robot turning.

DCHEAD was implemented on PSOS 4.3 and later. Set sfHasDCHead to 1 to use DCHEAD commands;
it can result in smoother and more responsive turning. The default value is 0.

5.7 Fuzzy variables.
Fuzzy variables are floating-point numbers in the range [0,1]. Several functions are defined for creating

fuzzy variables from single numeric values.

5.7.1 Fuzzy variable creation functions

float straight_up (float x, float min, float max)
float down_straight (float x, float min, float max)
float f_greater (float x, float c, float delta)
float f_smaller (float x, float c, float delta)
float f_eq (float x, float c, float delta)

The functions straight_up and down_straight convert numerical values into a fuzzy value based
on its inclusion in a range. Both take three arguments: the value itself, the start of the range, and the end of
the range. straight_up returns 0.0 if the value is below the range and 1.0 if it is above; it interpolates
linearly between them (see Figure 5-1). down_straight is the opposite: values below the start return 1.0;
those above, 0.0. Intermediate ones are linearly interpolated.

The functions f_smaller, f_greater, and f_eq compare two numbers and return a fuzzy value
based on whether the first is smaller than, larger than, or equal to the second. The delta argument is the
range over which the fuzzy value will vary.

1.0

0.0

-70.0 -30.0

Figure 5-1. The straight-up function.
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5.7.2 Fuzzy variable combination functions
Combine fuzzy variables by using the T-norm functions max (for disjunction), min (for conjunction),

and unary minus (for negation). The utility functions f_and, f_or, and f_not are provided to
implement these operators:
float f_not (float x)
float f_and (float x, float y)
float f_or (float x, float y)

5.8 Implementing Behaviors
For reference, we include descriptions of the parts of behaviors defined using structures and functions in

C. If you use the behavior syntax to write behaviors, you generally won’t have to worry about these details.

5.8.1 Input parameters
The variables that constitute the input to the behavior are contained in a structure called beh_params.

Each parameter is either a floating point number or a pointer; pointers are used for complex variables such
as goal points. The beh_params type is an array of such parameters.
typedef union /* a param can be either a fp number */
{ /* or a pointer */
 float f;
 void * p;
} param;

typedef param * beh_params;

Listing 5-4.

5.8.2 Update function
On each Saphira cycle (100 ms), the behavior updates its state variables (using information from the LPS)

and then evaluates its rules. Updating is accomplished by an update function, which takes the beh_param
structure as an argument.

5.8.3 Init function
When Saphira instantiates a behavior schema, its init function is called to set up the initial fuzzy state.

The input to the init function is a beh_params structure, containing the initial parameters of the
behavior. The init function can set any initial state that is needed by the behavior; a clock, for example, if
the behavior has a timeout.

5.8.4 Rules
Each behavior rule is defined as a structure beh_rule, which consists of a name and two indices into the

fuzzy state: the antecedent value for the rule and the mean value of the output action. Each rule can
recommend only one action, which is the consequent value: one of Accel, Decel, Turn_left, or
Turn_right:
typedef struct
{
 char *name; /* name of the rule */
 int *antecedent, /* activity of this rule */
   *consequent, /* action to take */
   *parameter; /* mean value of action */
} beh_rule;

Listing 5-5.

For example rule definitions, see below. Note that the consequent value constants are external integers,
but they are not declared in the Saphira headers, so they must be declared in the application code.
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5.8.5 Activity
The activity section of a behavior defines how it operates in the larger context of other behaviors. The

activity section comprises four fuzzy state variables, given in Table 5-1.

Table 5-1. Behavior state variables and their definitions.

Variable Effect
Turn Controls the rotation channel of the robot. If it is 0.0, this behavior has no effect on

robot rotation. If it is 1.0, then it competes fully with other behaviors of the same priority
for control of rotation. Default is 0.0

Speed Controls the velocity channel of the robot. If it is 0.0, this behavior has no effect on the
speed of the robot. If it is 1.0, then it competes fully with other behaviors of the same
priority for control of the robot’s speed. Default is 0.0.

Goal Indicates whether the behavior is achieving a goal. A value of 0.0 indicates no goal
achievement. A value greater than 0.8 signals that the behavior has achieved its goal.

Progress Indicates whether the behavior is successfully moving towards a goal. Not currently
used.

The Turn and Speed state variables control how much effect the behavior will have on these actions of
the robot, relative to other behaviors of the same priority. The Goal variable is used to determine whether
the behavior has succeeded in achieving its goal. When the Goal is greater than 0.8, the behavior is
considered to be successful and terminates in the state SUCCESS.

5.8.6 Behavior schema
A complete behavior schema is a structure combining its rules, init, and update functions (the activity

section is part of the update function). The rules can be included directly in the definition; Listing 5-6
shows the constant velocity function:
extern int Accel, Decel, Turn_left, Turn_right;

behavior
constant_velocity =

{ "Constant Vel", cv_setup, cv_check_speed, 1,
2, { { "Speed-Up", &cv_too_slow ,

&Accel, &cv_speedup},
{ "Slow-Down", &cv_too_fast,

&Decel, &cv_slowdown}
  }

};

Figure 5-6. The behavior schema for the constant velocity function.

The first argument is the name of the behavior; the second is the init function; the third is the update
function; and the fourth argument is the number of parameters. The number of rules is the fifth argument,
and the rules themselves are the sixth. Note that all global variables are referenced as pointers in the
behavior.

The maximum number of rules in a behavior is 10. The consequent values, Accel and so on, must be
declared as external integers.

5.9 Predefined Saphira Behaviors
Saphira has a number of predefined behaviors for obstacle avoidance and goal-directed movement. Most

of the complexity of these behaviors are in the update functions, which extract data from the LPS and
update a small set of fuzzy variables relevant to the behavior. Besides integrating these behaviors with your
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own routines, you can use them as templates to create new behaviors. The example code is
handler/src/basic/behavior.beh in your Saphira distribution software.

Note that the variables in the example are pointers to behavior structures and can be used directly in the
sfStartBehavior function. See the sample behavior definition file behavior.beh for examples.

This sequence sets the velocity setpoint on the robot server to its first parameter, an integer in millimeters
per second:
behavior *sfConstantVelocity

This one sets the velocity setpoint to zero. It doesn’t permit parameters:
behavior *sfStop

This structure slows and turns the robot sharply to avoid immediate obstacles:
behavior *sfAvoidCollision

It takes four parameters, which are listed in Table 5.2. Additionally, the default turn direction, when it is
completely blocked, is given by the global variable sfPreferredTurnDir, which should be set to either
sfLEFTTURN or sfRIGHTTURN. User programs and other behaviors can set this variable to change the
action of this behavior.

This structure slows the robot sharply to avoid immediate obstacles:
behavior *sfStopCollision

This behavior differs from sfAvoidCollision in that it doesn’t turn the robot; another behavior must
do that. The structure takes three parameters, which are listed in Table 7-4.

Table 5.2. Behavior parameters for avoiding a collision.

Parameter Effect
sfFLOAT Front sensitivity to obstacles. Value from 0.5 (not sensitive) to

3.0 (very sensitive).
sfFLOAT Side sensitivity to obstacles. Value from 0.5 (not sensitive) to

3.0 (very sensitive).
sfFLOAT Turning gain: controls how rapidly the robot turns away from

obstacles. Value from 4.0 (slow turn) to 10.0 (fast turn).
sfFLOAT Standoff. Defines the avoidance “bubble” around the robot.

Value from flakey_radius (at the robot) to
flakey_radius + standoff (standoff mm from the
robot).

sfPreferredTurnDir This global variable controls the default direction of turn when
the front is blocked. Values are sfLEFTTURN or
sfRIGHTTURN.
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This structure gently steers the robot around and away from distant objects:
behavior *sfKeepOff

The behavior takes two parameters and uses the global variable sfPreferredTurnDir, described in
Table 5.4. The priority for sfKeepOff should always be less than (higher priority number) than that for
sfAvoidObstacle when they are invoked together.

This structure sends the robot to a given point:
behavior *sfGoToPos

It takes three parameters, described in Table 5.5.

To move the robot near a given goal position and point the robot towards the goal position, use the
following structure:
behavior *stAttendAtPos

It takes three parameters, described in Table 5.6.

Table 5.3. Behavior parameters for stopping a collision.

Parameter Effect
sfFLOAT Front sensitivity to obstacles. Value from 0.5 (not sensitive) to 3.0 (very

sensitive).
sfFLOAT Side sensitivity to obstacles. Value from 0.5 (not sensitive) to 3.0 (very

sensitive).
sfFLOAT Standoff. Defines the avoidance “bubble” around the robot. Value from

flakey_radius (at the robot) to flakey_radius + standoff
(standoff mm from the robot).

Table 5.4. Keep off behavior parameters

Parameter Effect
sfFLOAT Caution speed. Robot slows to this speed when more

distant obstacles are detected. Value in mm/sec.
sfFLOAT Sensitivity to obstacles. Value from 0.2 (not sensitive) to

2.0 (very sensitive).
sfPreferredTurnDir This global variable controls the default direction of turn

when the front is blocked. Values are sfLEFTTURN or
sfRIGHTTURN.

Table 5.5. Go to position behavior parameters

Parameter Effect
sfFLOAT Speed (in mm/sec). Robot moves at this speed towards goal position.
sfPTR Goal position. Should be a pointer to a point artifact.
sfFLOAT Success radius (in mm). Defines how close the robot must be to the goal

position before the behavior goal is satisfied.



62

Use this structure to tell the robot to follow a lane, as represented by a lane artifact:
behavior *sfFollow

The lane structure is a directed point with a width, although the width is ignored in this behavior, because
explicit parameters for the latitude the robot are allowed in the lane. A goal point represents a position in
the lane that the robot is to achieve.

When active, the behavior draws its lane as a set of dotted lines in the LPS. This behavior takes seven
parameters, described in Table 5.7. This behavior sets the sfPreferredTurnDir variable according to
how the robot is misaligned with the lane.   

This structure tells the robot to follow a corridor, as represented by a corridor artifact:
behavior *sfFollowCorridor

The corridor structure is a directed point with a width; the width is used to set up a lane down the center
of the corridor for the robot to follow. A goal point, represents a position in the lane that the robot is to
achieve.

When active, the behavior draws its lane as a set of dotted lines in the LPS. This behavior takes two
parameters, described in Table 5.8. This behavior sets the sfPreferredTurnDir variable depending
on how the robot is misaligned with the corridor.

Table 5.6. Attend at position behavior parameters

Parameter Effect
sfFLOAT Speed. Robot moves at this speed towards goal position. Value in

mm/sec.
sfPTR Goal position. Should be a pointer to a point artifact.
sfFLOAT Success radius. Defines how close the robot must be to the goal position

before the behavior goal is satisfied. Value in mm.

Table 5.7. Follow lane behavior parameters

Parameter Effect
sfPTR Lane. This is a point or lane artifact representing a line the robot is to

follow. Parameters below define allowed deviations from the line.
sfPTR Goal position. The robot moves along the lane in the direction of the goal

until it reaches it. Should be a pointer to a point artifact.
sfFLOAT Right edge (in mm). Distance the robot is allowed to wander from the

right side of the line.
sfFLOAT Left edge (in mm). Distance the robot is allowed to wander from the left

side of the line.
sfFLOAT Speed off lane (in mm/sec). How fast the robot travels when it is out of

the lane.
sfFLOAT Speed in lane (in mm/sec). How fast the robot travels when it is in the

lane.
sfFLOAT Turn ratio. How important it is to be centered/aligned in the right

direction; 0.0: direction overrides; 1.0: center overrides.
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To tell the robot to go in a doorway, as represented by a door artifact, use this sequence:
behavior *sfFollowDoor

The direction is whether to go in or out of the doorway; this could be decided automatically by the position
of the robot but isn’t because the robot may already be on the correct side.

When active, the behavior draws its lane as a set of dotted lines in the LPS. This behavior takes two
parameters, described in Table 5.9. This behavior sets the sfPreferredTurnDir variable depending on
how the robot is misaligned with the lane through the doorway.

Use this structure to turn the robot to point in the direction of a goal position:
behavior *sfTurnTo

The robot always turns in the direction that makes the smallest turn. Table 5.10 shows the p

Table 5.8. Follow corridor behavior parameters

Parameter Effect
sfPTR Corridor. This is a corridor artifact the robot is to follow. The path of the

robot is bounded by a lane set in from the sides of the corridor.
sfPTR Goal position. The robot moves along the corridor in the direction of the

goal until it reaches it. This should be a pointer to a point artifact.

Table 5.9. Follow door behavior parameters

Parameter Effect
sfPTR Door. This is a door artifact the robot is to go in or out of. The path of the

robot is bounded by a narrow lane perpendicular to the door.
sfINT Direction (sfIN or sfOUT). IN means into the room; OUT means out of

the room and into the corridor.

Table 5.10. TurnTo parameters.

Parameter Effect
sfPTR Goal position. The robot turns until it points towards this goal.

Should be a pointer to a point artifact.
sfFLOAT Success angle (in degrees). If the robot is within this angle of

pointing towards the goal, it will have succeeded.
sfFLOAT Turn speed. How fast the robot turns to the goal. Value of 0.5 is

slow speed, 2.0 is fast.speed, 2.0 is fast.
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6 Creating Load Files and Clients
This chapter describes how to create Saphira clients, and provides examples of the three types of clients:
Loadable clients. Loadable clients are created by loading files into a base system, typically

bin/saphira. The files may be Colbert language interpreted files, or compiled C code in shared object
files.

Stand-alone clients. Stand-alone clients are created by compiling C code and linking it with the Saphira
libraries to create a stand-alone executable.

Foreign clients. These clients are called from a program written in another language, e.g., PROLOG or
LISP. The foreign language executable loads and executes routines from the Saphira libraries and compiled
user C code.

The chosen method is up to the user. With Colbert, the user stays within an interactive debugging
environment and can debug and re-execute procedures without the burdensome debug-recompile-reload-re-
execute cycle. Colbert sources and shared object files are also much easier to distribute and share than C
source for clients. So, the interactive method is the one we recommend for most development tasks. For
mature applications, it may be useful to create a new client, with all user functions preloaded.

It is also possible to use the Saphira system from other languages such as  LISP or PROLOG, as long as
they have a foreign-function interface facility. In this case, the developer writes routines in C or C++ and
compiles them into object files, then these object files, together with the Saphira libraries, are loaded into
the LISP or PROLOG system.

C or C++  programs can be compiled into object files using standard compilers, such as gcc or MS
Visual C++. The header files in handler/include contain prototypes and definitions of structures and
variables in the Saphira library. After compiling his or her files, the developer links them with the Saphira
library to create either a shared object file, or an executable client. Shared object files are loaded into
Colbert, and clients are stand-alone systems for controlling the robot. User clients may also invoke the
Colbert evaluator; for instance, the sample client bin/saphira calls  the evaluator as a micro-task.

The next chapter contains details of the Saphira API, which should be used as a reference guide to the
Saphira libraries. In addition to the Saphira API, the best reference material is the example clients and
shared object files that are defined in the Saphira distribution and in the tutorial documentation at the SRI
Saphira website (http://www.ai.sri.com/~konolige/saphira). The sample clients and shared
objects are found in the handler/src/apps directory; they are explained in more detail below.

6.1 Host System Requirements
Saphira libraries are available for most UNIX systems (including SunOS 4.1.3, Solaris 2.x, SGI Irix, DEC

OSF, Linux, and FreeBSD), as well as MS Windows 95 and NT 3.51 and 4.0. For UNIX systems, we
recommend using the Gnu gcc compiler and linking tools from the Free Software Foundation. These tools
provide a uniform base for making clients, and the sample programs are all made with them.

In addition, if you want to create stand-alone clients that use any of the graphics or user interface routines,
you will need the following libraries and headers:

X11R5 or later
Motif 2.0 or later

These libraries are not required if you are simply compiling shared objects for loading into the Colbert
evaluator, because the library functions are already present in the client.

For MS Windows, the libraries have been compiled with MS Visual C 4.x tools. A DLL file and an
associated LIB file are available. For the best compatibility, we recommend using MSVC 4.0 or later: all of
the sample clients are given with .MAK files for MSVC 4.0. It may be possible to use Borland tools, but they
have not been tested; incompatibilities between MSVC and Borland LIB files may arise.
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6.2 Compiling and Linking C Source Files
To compile a loadable shared object file or Saphira client, you must have installed the Saphira distribution

according to the directions in the readme file. In particular, the environment variable SAPHIRA must be
set to the top level of the distribution: we recommend /usr/local/saphira/ver61 in a UNIX
system, for example.

After installing the Saphira distribution, follow these steps to create a client or a shared object file:
 Write a C or C++ program containing your code, including calls to Saphira library functions.
 Compile the program to produce an object file.
 Link the object file together with the relevant Saphira library to create an executable or shared object file.
As of Saphira 6.0, all the Saphira library routines are contained in a shared library. In MS Windows, this

is sf.dll; in UNIX systems, it is the shared library libsf.so.6.x.y, where x and y are the major
and minor versions of Saphira. The symbolic link libsf.so points to the current shared object library.

In MS Windows, shared libraries (DLLs) cannot be relinked unless no application is using them. If you
have loaded a DLL, then make changes to the source code and try to relink it, you will get an error saying
that the DLL file is busy. The unload command can be used to unload the DLL from Saphira so the link
can proceed.

6.2.1 Writing C or C++ Client Programs
To develop a stand-alone Saphira application, or to load C routines into Colbert, you write one or more C

or C++ programs that contain your own functions, and make calls to the Saphira library routines. It may
help to review Chapter 2 for an explanation of micro-tasks and asynchronous user routines.

For a stand-alone client, the main file will always follow the structure in UNIX systems, as shown in Listing
6-1.
#include “saphira.h” /* header file for Saphira library */

...definition of startup, connect, and disconnect callbacks...

void main(int argc, char **argv)
{
   /* register callbacks */
   sfOnConnectFn(myConnectFn);
   sfOnStartupFn(myStartupFn);

/* start up Saphira micro-tasking OS */
   sfStartup(0);
}

Listing 6-1. xxxxxx

The Saphira library headers, as well as other relevant system and graphics headers, are loaded by the
handler/saphira.h file. This file is always included, whether creating a stand-alone client, or
loadable shared object files. The callbacks are defined to start up Saphira or user micro-tasks when the
client connects to or disconnects from the robot. The main function is the entry to the client; it registers the
callbacks, and then starts up the Saphira micro-tasker with the call to sfStartup. An argument of 0 to
this function means that control does not return to the main program: All processing is done using micro-
tasks, and the client exits when the File/Exit item is chosen from the menu.
Programming in MSVC is similar, except that the form of the main function changes to MS Windows
programming standards (see Listing 6-2)
.
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#include “saphira.h” /* header file for Saphira library */

...definition of startup, connect, and disconnect callbacks...

int PASCAL WinMain(Handle hInst, HANDLE hPrevInstance,
LPSTR lpszCmdLine, int nCmdShow)

{
   /* register callbacks */
   sfOnConnectFn(myConnectFn);
   sfOnStartupFn(myStartupFn);

/* start up Saphira micro-tasking OS */
   sfStartup(hInst, nCmdShow, 0);
   return 0;
}

Listing 6-2.

In this case, control does return to the main program after the Saphira client exits, and the user should
return 0 to indicate that the exit was normal.

Main
thread

Saphira
OS

Execute
micro-tasks

Execute
micro-tasks

Execute
micro-tasks

100 ms

200 ms

300 ms

sfStartup

User
async
routines

For most robot programming, all operations can be handled in micro-tasks. If a more compute-intensive
task must be done concurrently, then sfStartup should be called with an argument of 1, which means
that the Saphira micro-tasking OS is started, and immediately returns control to the main program. The
user can now run any routines concurrently with the Saphira OS, which is executing its micro-tasks every
100 ms. The micro-tasks and the asynchronous user routines share the same address space and can
communicate via global variables.

Figure 6-1 is a graphical view of the execution process. The main client thread starts up, and invokes the
Saphira OS with the sfStartup  function. After start-up, the OS wakes up every 100 ms and runs every
micro-task. If the argument to sfStartup is 0, then control never returns to the main thread. If it is 1,
then control returns immediately, and both threads execute concurrently.

Explanations of some sample Saphira client programs are given later in this chapter.

6.2.2 Compiling and Linking Client Programs under UNIX
After the client programs are written, they must be compiled with a C or C++ compiler. We recommend

the gcc compiler for UNIX systems; all sample programs have been compiled using this compiler. Other C

Figure 6-1. Concurrent execution of Saphira OS and user asynchronous tasks.
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compilers provided with UNIX systems should also work, however.
The compiler and linker are typically called using the make facility. The file

handler/src/apps/makefile is used to make all of the sample clients and load files. Listing 6-3
shows a portion of this makefile:

Listing 6-3. A portion of th e makefile for Saphira applications.

The first part of the makefile defines variables that are useful in compilation and linking. Note that the
SAPHIRA environment variable must be defined as the top level of the Saphira distribution (with no final
slash). The handler/include directory contains header files, and handler/obj has the libraries.

Next, the file handler/include/os.h is read in. This file determines the operating system type and
sets some system library variables appropriately, for X windows and Motif. It also sets the CONFIG variable
to the particular OS of the machine, which is important for handling some of the system routines correctly.
For most OSes, the Motif (MOTIFD), X11 (X11D), and system libraries (LLIBS) are set correctly, but in
some cases this may not be true. In this event, go into the os.h file and change the definitions under your
OS.

One peculiarity of os.h is that it relies on the conditional preprocessing facilities of gnu make
(gmake). Not all native makes support this facility. If you get errors during the preprocessing phase of the
compilation from os.h, switch to gmake.

#############################################################
# November 1996
#
# Makefile for Saphira applications
#
#############################################################

SRCD = ./
OBJD = ./
INCD = $(SAPHIRA)/handler/include/
LIBD = $(SAPHIRA)/handler/obj/
BIND = ./

# find out which OS we have
include $(SAPHIRA)/handler/include/os.h

CFLAGS =  -g -D$(CONFIG)
CC = gcc
INCLUDE = -I$(INCD) -I$(X11D)include

#############################################################
all: $(BIND)btech $(BIND)saphira $(BIND)async $(BIND)packet $(BIND)nowin
touch all

$(OBJD)saphira.o: $(SRCD)saphira.c
$(CC) $(CFLAGS) -c $(SRCD)saphira.c $(INCLUDE) -o $(OBJD)saphira.o

$(BIND)saphira: $(OBJD)saphira.o
$(CC)  $(OBJD)saphira.o -o $(BIND)saphira \
-L$(SAPHIRA)/handler/obj -lsf -L$(MOTIFD)lib $(LLIBS) -lc -lm

$(OBJD)testload.o: $(SRCD)testload.c $(INCD)saphira.h
$(CC) $(CFLAGS) -c $(SRCD)testload.c $(INCLUDE) -o $(OBJD)testload.o

testload.so: $(OBJD)testload.o
$(LD) $(SHARED) $(OBJD)testload.o -o testload.so
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The compile command makes saphira.o from the saphira.c file. It is important that the variable -
D$(CONFIG) is passed to the compiler, because this tells the header files what particular variant of UNIX
is being used. The include directories are the Saphira header directory and the X11 directory.

The link command takes the object file generated by the compile command and links it with the
Saphira library and system libraries to form the executable. The Saphira library is indicated by -lsf. This
is the library that opens a graphics window and has all the user interface functions. If you don’t want a
window, use the -lsfx library. The LLIBS variable indicates other system libraries that may be needed
by this particular UNIX system. The executable is deposited in the same directory as the source file and can
be invoked by typing its name at the shell prompt.

The file testload.so is an example of a shared object file, which is loadable under Colbert. The C
source is compiled as usual, but the linking step is different. Instead of creating an executable file, the LD
command is invoked to create a shared object file (with the extension.so). You must include the shared
object flags SHARED, defined in os.h for each particular OS.

6.2.3 Compiling and Linking Client Programs under MSVC
With Microsoft Windows, the sample Saphira clients are MS Visual C++ 4.x projects. All of the sample

clients in the handler/src/apps directory have two .mak files, one for btech, and one for all the
rest. Load these into MSVC, and you should be able to compile and link the clients. One problem with the
included projects is that they use absolute path names for the source files (including the library file
sf.lib). At this time there seems to be no way to specify relative path names, so if you use a different
distribution directory (something other than c:\saphira\ver61), you will not be able to compile the
sample applications until you add in the same files using the add files command.

To run the clients, make sure that the SF.DLL file is accessible in the C:\Windows\System directory,
or in a directory on your PATH variable.

The easiest way to compile and link your own clients is to use the sample project files and modify them to
include your source files instead of the sample clients. Here are some things to remember when creating
new MSVC projects.

 The Saphira library file handler/obj/sf.lib must be included in the project files.

The project must be compiled in 32-bit mode, not in 16-bit mode.
 You must add the directory for the include files, $(SAPHIRA)\handler\include, into the

Additional Include Directories slot in the Build/Settings menu under the C/C++ tab and Preprocessor
category. Also, make sure the symbol _WINDOWS is defined in the Preprocessor Definitions slot here.

 Executables should be linked with the multithreaded libraries, in the Code Generation item of the C/C++
tab of Build/Settings.

To make a loadable shared file for Colbert, select the dynamic load library (.dll) project type. The
library header file (.lib extension), containing linkage information for the load library, is not needed by
Colbert.

6.2.4 Debugging C Code under UNIX
The Colbert interaction window is a handy facility for debugging clients, because you can query the values

of variables, start and stop activities, and so on. Often, it may be necessary to invoke a more heavy-duty
debugging apparatus, especially for complicated C programs. The Gnu debugger gdb can be useful,
especially when started in Emacs. Here are a few tips for interacting with the Gnu debugger.

To start up, give gdb the name of the client executable (usually saphira). At the debugger prompt,
type run to start the client. Before running the program, the Saphira libraries (libsf.so) aren’t loaded,
so you can’t set breakpoints in Saphira functions. Similarly, user load files aren’t yet present. After the
client is running and you have loaded any shared object files into Colbert, you can set breakpoints by
interrupting back to the debugger prompt. All the Saphira library exported functions and variables can be
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examined, and you can set breakpoints in the library functions. The Saphira library has been compiled with
the -g option, so its symbols are available to the debugger. However, the source code is not in the
distribution, so you can’t step through library functions.

If you loaded a user shared object file into Colbert, say testload.so, you won’t see its symbols, even if
you used the -g option on compilation. That’s because user shared objects are read by the dynamic loader,
and the debugger has no way of tracking these loads. So it must be explicitly told of user shared object files
with the sharedlibrary command. For example, giving the debugger command sharedlibrary
testload.so will make all the symbols in this file available to the debugger, assuming it was compiled
with the -g option.

6.2.5 Debugging C Code under MS Windows
You can use the MSVC debugger to set breakpoints and step through compiled C code loaded into Colbert

as DLLs. All of the exported library symbols can also be examined, although source code is not available.
To invoke the debugger, start from an MSVC project creating the DLL in question (use the Debug build

option). Use the Execute command; you will be prompted for the name of an executable file, which
should be the Saphira client. After the client is started, load the DLL into it via Colbert’s load command.
The MSVC debugger will halt the client on breakpoints, and you can examine the state of the computation.

6.3 Client Examples
In this section, we provide examples of the ways of writing Saphira clients. These files are all in

handler/src/apps. For explanations of the functions and data structures, see the relevant sections of
the Saphira API reference. Most of the examples exist as loadable Colbert files and compilable stand-alone
clients.
saphira.c

This is the source for the basic client bin/saphira. It invokes very basic micro-tasks for communication
and display, and starts the Colbert evaluator.
demo.act/c

A demonstration client that invokes behaviors, activities, and perception micro-tasks, as well as user-
interface functions on the mouse buttons.
testload.c

Source for a shared object file to be loaded into Colbert.
direct.act/c

 This client uses the state reflector and the direct motion routines to move the robot back and forth between
two points. The patrol routine is a Saphira micro-task.
packet.act/c

This client bypasses the state reflector for Saphira, providing its own packet communication handler.
async.c

This client uses the state reflector and direct motion routines, but instead of invoking a micro-task it calls
the motion routines asynchronously.
nowin.c

Like the previous client, this one calls the motion commands asynchronously, but ignores the user interface
routines and connects to the robot directly.

6.3.1 The Basic Saphira Client
The basic client, bin/saphira, is used as the typical development environment. It starts up basic

micro-tasks for communication and control. It also starts the Colbert evaluator for user interaction, which
loads the Colbert file init.act from the working directory, if it exists.

Like all Saphira C source files, this example starts with a header file that reads in all prototype and
structure information for the Saphira libraries. The headers can be read by C or C++ programs; all library
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names are C names. The file handler/include/saphira.h automatically configures the C compiler
for the operating system you’re running on: UNIX (SGI, Solaris, Linux, FreeBSD) or MS Windows 95/NT.
If you need to customize these files, for example, if you have the Motif libraries in a different place from the
one Saphira assumes, then look in handler/include/os.h and the various configuration files
handler/include/conf-xxx.h for library and header file definitions.

Saphira provides a way to call user functions whenever it is started up or connects to the robot. It does this
by registering user functions as callbacks with sfOnStartupFn and sfOnConnectFn. Whenever a
start-up or connect event takes place, Saphira calls the registered user function.

The start-up callback can be used to initialize various features of Saphira’s display, such as the display
rate, or local/global mode. You can’t set these before calling sfStartup, because the windows aren’t
created yet. If you don’t want to do any special processing here, there’s no need to define a start-up
callback.

In this application, myStartupFn is invoked when the Saphira OS is initialized, and it sets the display
rate to 5 Hz  (see the sfSetDisplayState function in the API reference).   myConnectFn is invoked
when the client connects to the robot server (using the Connect menu or connect command); here it is
empty because no special processing is to be done on connect. You don’t need to register this callback if you
don’t do any special processing on connect; it’s here for illustration purposes.

In the main function, the callbacks are registered, and then the Saphira OS is started by sfStartup.
Because the argument is 0, this function does not return, and all computation takes place in the micro-tasks.

The Saphira main window system passes keystrokes to your process via the callback registered with
sfKeyProcFn. This callback should return 0 if the you want the default key action: moving the robot
when the user presses one of the movement keys, for example. Otherwise, the function should return 1 to
signal that it has handled the keypress. If you don’t want to perform any special keyboard actions, you don’t
have to register a callback.

Similarly, mouse clicks are sent to the callback registered with sfButtonProcFn. Again, returning 0
from the callback means the default action is invoked; returning 1 means the callback handled the mouse
click. The mouse callback simply returns 0, invoking the default mouse-click action. Note that the mouse
callback could have been omitted; we include it here simply to illustrate how to invoke a mouse callback
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#include "saphira.h"

void myConnectFn(void);   /* prototypes */
void myStartupFn(void);
int myKeyFn(int ch);
int myButtonFn(int x, int y, int b, int m);

#ifdef IS_UNIX   /* UNIX main function */
void main(int argc, char **argv)
{
  /* set up user button and key processing */
  sfButtonProcFn(myButtonFn);
  sfKeyProcFn(myKeyFn);
  sfOnConnectFn(myConnectFn);
  sfOnStartupFn(myStartupFn);
  /* start up, don't return */
  printf("starting...\n");
  sfStartup(0);
}
#endif

#ifdef MS_WINDOWS
int PASCAL WinMain (HANDLE hInst, HANDLE hPrevInstance,
      LPSTR lpszCmdLine, int nCmdShow)
{
  /* set up user button and key processing */
  sfButtonProcFn(myButtonFn);
  sfKeyProcFn(myKeyFn);
  sfOnConnectFn(myConnectFn);
  sfOnStartupFn(myStartupFn);
  sfStartup(hInst, nCmdShow, 0);
  return 0;
}
#endif

void
myStartupFn(void)
{
  sfSetDisplayState(sfDISPLAY, 2); /* set it to 5 Hz */
  sfRunEvaluator(); /* do the evaluator */
}

int myButtonFn(int x, int y, int b, int m)
{  return 0; } /* do default handling */

int myKeyFn(int ch) /* any user processing of keys here */
{
  switch(ch)
  {
    case SPACEKEY:
    sfSetVelocity(0); /* stop the robot */
    sfMessage(“Stopped!”);
    return 1;
  }
  return 0; /* return 0 for default handling */
}
void myConnectFn(void) /* start those processes */
{}

Listing 6-4
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6.3.2 The Demo Client
This is the most complex client example; it makes use of activities and predefined micro-tasks and

behaviors to implement a handler for the robot. We include behaviors for obstacle avoidance and forward
motion at constant velocity, as well as processes for interpreting sonars, recognizing corridors, and
registering the robot against previously found objects.

The demo client comes in two forms: a loadable Colbert language file (demo.act), and a compilable
native C code file. We encourage you to use the Colbert language, as it’s more understandable and easier to
work with and modify.

The Colbert file, shown immediately below, is loaded into the evaluator by using the load command in
the interaction window. Colbert files can contain functions to evaluate at the top level of the file. On load,
the file starts by invoking several sets of predefined micro-tasks for behavior control
(sfInitControlProcs), registration of the robot to a map (sfInitRegistrationProcs), sensor
interpretation and object recognition (sfInitInterpretationProcs), and an environment-tracking
procedure (sfInitAwareProcs). These library functions are all accessible in Colbert and are invoked as
the file is read.

The second set of statements initializes a variable, and then starts up four behaviors for obstacle avoidance
and movement. The movement behaviors are invoked in a suspended state, so that they won’t cause the
robot to move until they’re resumed (from the Activities menu or with the resume command).
/*
 * demo.act
 * Demonstration of behaviors and activities
 *  using the Colbert evaluator
 */

sfInitControlProcs(); /* for behavior control */
sfInitRegistrationProcs();/* register robot using sensed artifacts */
sfInitInterpretationProcs(); /* find walls and doors */
sfInitAwareProcs(); /* figure out where we are */

/* Start up some behaviors */

sfPreferredTurnDir = sfLEFTTURN;
start sfAvoidCollision(3, 3, sfSHARPLY, 100) priority 0;
start sfKeepOff(100, .25, sfLEFTTURN) priority 1;
start sfConstantVelocity(200) priority 2 suspend;
start sfStop priority 3 suspend;

Listing 6-5.

The second part of the file defines two activity schemas, one for following a corridor, the other for reacting
when the robot bumps into something and the motors stall.
FindAndFollow is a corridor-following activity based on the fuzzy control behavior
sfFollowCorridor. It starts out by waiting for the current environment of the robot to be a corridor
(sfInitAwareProcs has the job of updating the environment variables). When this occurs, it fires up
the sfFollowCorridor behavior with a goal position 10 meters ahead of the robot. Note that the
behavior is started in noblock mode, which means the execution of FindAndFollow continues in
parallel with the behavior. The activity is now in monitor mode, checking whether the behavior finishes or
the corridor ends. If so, it removes the behavior and goes back to checking for a new corridor. Note the use
of waitfor at several points to block execution until certain conditions hold.

FindAndFollow is started up from within the file using the start command. If the activity is
interrupted (say by double-clicking in the Activities window), then it first removes the corridor-following
behavior, then suspends itself.
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/* Define an activity to follow the current corridor */

act FindAndFollow
{
  point *e; /* old environment */
  point *p; /* point to go to */
 NOCORRIDOR: /* here we have no corridor */
  waitfor (sfCurrentEnvironment != NULL &&

   sfCurrentEnvironment->type == CORRIDOR);
    /* wait until we have a corridor */
  e = sfCurrentEnvironment;
  p = sfCreateLocalPoint(10000, 0, 0); /* point ahead of robot */
  sfAddPoint(p);
  start sfFollowCorridor(e, p) priority 2 iname follow noblock;
                                /* follow corridor to point */
  waitfor (sfCurrentEnvironment != e || sfTaskFinished("follow"));
  remove follow; /* remove this behavior */
  goto NOCORRIDOR; /* resume checking for corridor */
 oninterrupt:
  remove follow;
  suspend;
}

start FindAndFollow suspend;

Listing 6-6.

The BumpAndGo schema uses direct actions, rather than behaviors, to rescue the robot from stall
situations. The update facility of activity schemas is used to calculate a stalled variable on each
cycle. The act allows behaviors to control the robot until it detects a stall condition; then, it turns off
behavior execution and starts issuing direct action commands. In the file, the BumpAndGo activity is
initiated in the active state.

/*
 * This activity detects bump collisions on Pioneer
 */

act BumpAndGo
{
  int stalled; /* static local variables */
  int recovering;

 update
/* code executed on every cycle */

   stalled = sfStalledMotor(0) + sfStalledMotor(1);

 NOCONTACT:
  untrace;
  sfBehaviorControl = 1; /* behaviors on */

  waitfor stalled;
  sfBehaviorControl = 0; /* behaviors on */
  [...]
}

start BumpAndGo; /* start it up */

Listing 6-7.
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The stand-alone client version, demo.c, has most of the same functions. However, because Colbert
activities are available only in the evaluator, the FindAndFollow and BumpAndGo activities are not
present.

The code starts by defining the main function, setting callbacks as in the saphira client, and then
calling sfStartup to initiate the Saphira system. The start-up callback simply sets the display update
rate to 5 Hz. On connection to the robot, the registration and interpretation micro-tasks are started up, just
as in the Colbert file. In addition, a user micro-task is invoked. This micro-task is defined below.

Listing 6-8.

The user micro-task (test_control_proc) is very simple; it starts up several behaviors, then puts
itself into a suspended state. You can change the state of the invoked behaviors from Saphira’s
Function/Activities menu (see previous chapter). All of the behaviors used in this function are available as
part of the Saphira library.

/*
 * The demo client
 */
#include "saphira.h"

void myConnectFn(void);
void myStartupFn(void);
int myKeyFn(int ch); /* any user key processing here */
int myButtonFn(int x, int y, int b, int m);

void main(int argc, char **argv)
{
/* set up user button and key processing */
sfButtonProcFn(myButtonFn);
sfKeyProcFn(myKeyFn);
sfOnConnectFn(myConnectFn);
sfOnStartupFn(myStartupFn);

/* start up, give it control */
sfStartup(0);
}

void myStartupFn(void)
{
sfSetDisplayState(sfDISPLAY, 2); /* set it to 5 Hz */
}

void myConnectFn(void) /* start those processes */
{
sfInitRegistrationProcs();
sfInitInterpretationProcs();
sfInitControlProcs();
sfInitAwareProcs();
sfInitProcess(test_control_proc,"User Process");
}
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Listing 6-9.

6.3.3 The testload.so Loadable Object File Example
Native C code can be loaded into Colbert and executed by compiling the code and linking it to create a
shared object file in UNIX, or a dynamic load library in MS Windows. The sample file testload.c
contains a Saphira library and user function calls in C source. As in the stand-alone client examples, the
header file saphira.h must be included at the beginning of the source file. The rest of the file contains C
function, variable, and structure definitions. The difference between loadable objects and a stand-alone
client is that they don’t have a no main function; instead, the sfLoadInit function is called after
loading the file, and it typically makes the objects in the file available to the Colbert evaluator, through use
of sfAddEvalXXX function calls. For information on the effect of these calls, see Section 4.10.1.

Under UNIX, the loadable object source is compiled normally, and the resultant object file is converted to a
loadable object file (with the extension .so) using the LD command and the SHARED link flags (see
Section 6.2.2). Under MS Windows, the project type is set to Dynamic Load Library rather than
Application.

/*
test load file for dynamic loading
*/

#include "saphira.h"

int nopen = 0;

int
myfn(int a)
{
return a+1;
}

struct mystruct
{

void test_control_proc(void)
{
switch(process_state)
{
case INIT:
sfPreferredTurnDir = sfLEFTTURN;
sfStartBehavior(sfConstantVelocity, 0, 3, 0,
300.0);
sfStartBehavior(sfStop, 0, 4, 0);
sfStartBehavior(sfAvoidCollision, 0, 0, 0,
3.0, /* front sensitivity */
3.0, /* side sensitivity */
sfSHARPLY, /* turn gain */
100.0); /* standoff */
sfStartBehavior(sfKeepOff, 0, 1, 0,
100.0, /* caution speed */
0.25); /* sensitivity */
process_state = SUSPEND;
break;
case RESUME:
sfMessage("Resumed");
break;
}
}
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int a;
float b;
void *c;
};

struct mystruct m;
int ind_mystruct;

EXPORT void
sfLoadInit(void) /* this should be evaluated on open */
{
float a = 1.3;
a = sqrt(a);
printf("Opened! %d %f\n", nopen++, a);
sfSMessage("Opened: %d", nopen);
sfAddEvalFn("myfn", myfn, sfINT, 1, sfINT);
sfAddEvalConst("sfFollowCorridor",   sfBEHAVIOR, sfFollowCorridor);
sfAddEvalConst("sfLEFT",  sfINT, 0);
sfAddEvalVar("sfCurrentEnvironment", sfPTR,
                    (fvalue *)&sfCurrentEnvironment);

ind_mystruct = sfAddEvalStruct("mystruct", sizeof(struct mystruct),
                                  (char *)&m, 3,
"a", &m.a, sfINT,
"b", &m.b, sfFLOAT,
"c", &m.c, sfPTR);
sfAddEvalVar("m", ind_mystruct, (fvalue *)&m);

}

Listing 6-10.

6.3.4 The Direct Client
Using direct motion commands, the direct client moves the robot back and forth along a two meter

line. The direct client comes in two forms: a loadable Colbert language file (direct.act), and a
stand-alone native C code file. We encourage you to use the Colbert language, as it’s more understandable
and easier to work with and modify.

The two activities, patrol and square, are straightforward realizations of the robot routines in
Colbert. A third activity, aa, turns on tracing and sequences the two activities. Statements at the end set
global mode on the display, and initiate the aa activity. Note that you should be connected to the robot
before loading this file, otherwise an error will occur when the direct actions are attempted.

/*#########################################
direct.act  --- exercising the direct motion API
*#########################################
*/
act patrol(int a) /* go back and forth 'a' times */
{
while (a)
{
a = a-1;
     turnto(180);
move(1000);
turnto(0);
move(1000);
}
}

act square /* move in a square */
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{
int a;
a = 4;
while(a)
{
a = a-1;
move(1000);
turn(90);
}
}

act aa /* call them sequentially */
{
trace patrol;
start patrol(4);
trace square;
start square;
}

sfSetDisplayState(sfGLOBAL, 1); /* put display into global coords */
start aa; /* start up the toplevel activity */

Listing 6-11.

The stand-alone client is direct.c. Instead of loading a shared object file into the basic Saphira client,
here we create a stand-alone executable that incorporates the Saphira libraries and user code.

In the main function, start-up and connection callbacks are registered, and then the Saphira system is
started. The patrol activity is implemented as a micro-task, only part of which is shown here. Note the
explicit completion testing for the direct actions, in contrast to the Colbert implicit waits. Other limitations
of micro-tasks relative to activities also exist, e.g., no parameters and no timeouts. The micro-task is
initiated using the sfInitProcess function.
#include "saphira.h"

void patrol(void)
{
switch(process_state) {
case INIT:
case 20:
sfSetPosition(2000);
process_state = 21;
break;
case 21:
if (sfDonePosition(100))
process_state = 22;
break;
  [...]
}}

void myStartupFn(void)
{
sfSetDisplayState(sfGLOBAL, TRUE); /* use the global view */
}

void myConnectFn(void)
{
sfSetMaxVelocity(200); /* robot moves at this speed */
sfInitProcess(patrol,"patrol");
}

void main(int argc, char **argv)

{



78

sfOnConnectFn(myConnectFn);/* register a connect function */
sfOnStartupFn(myStartupFn);/* register a startup function */
sfStartup(0); /* start up the Saphira window */

}

Listing 6-12.

6.3.5 The Packet Client
This client handles low-level communication with the robot server. It takes advantage of the low-level

Saphira communication routines, which parse packets and put the information into the state reflector
structures. The Saphira OS is active, allowing concurrent execution of micro-tasks and activities. But the
default packet and motor control handlers (packets and motor micro-tasks) are turned off, so that the user
program can take over these functions. The packet client comes in two forms: a loadable Colbert
language file (packet.act), and a compilable native C code file. We encourage you to use the Colbert
language, as it’s more understandable and easier to work with and modify.

The example starts out by defining an activity schema for packet communications, DoPackets. This
activity first turns off the default Saphira packet and motor micro-tasks, which are invoked by sfStartup.
It then waits until the client connects to the robot, and tells the robot server to open its motor control and
start traveling forward at 300 mm/sec. If the connection does not succeed in 10 seconds, the activity exits
with failure. Note the use of a timeout in the waitfor statement to accomplish this.

After this initialization, the activity reads packets in a while loop, calling the default packet processor
sfProcessClientPacket for each packet. Default processing updates the client state reflector in
sfRobot, so that position integration values are available to the client. Every 10 cycles, new commands
are sent to the robot server to keep the information packets coming, and to keep going at the requested
velocity. Also, the robot position is printed in the information area. Note that, because Colbert has no
explicit type casts, and the sfSMessage function does not handle floats correctly, the robot coordinates
are first implicitly cast to integers via an assignment, and then printed out.

At the end of the activity, the robot velocity is set to 0, and the client disconnects from the robot. At the
top level of the file, the connect function acts to connect the client to the robot simulator, and then the
DoPackets activity is invoked.
/*#########################################
packet.act  --- routines for connecting and
reading packets
*#########################################
*/

act DoPackets()
{
int i;  int x;  int y;

remove packets;
remove motor;
waitfor(sfIsConnected) timeout 100;
  if (!sfIsConnected) fail;
sfRobotComInt(sfCOMOPEN,1); /* open the motor controller */
sfResetRobotVars(); /* reset all app variables */
sfRobotCom(sfCOMPULSE); /* ask for data */
sfRobotComInt(sfCOMVEL, 300); /* move forward at 300 mm/sec */

i = 0;
while (i<100)
{
if (sfWaitClientPacket(1000)) /* wait 1 second for a packet */
{
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i = i+1;
sfProcessClientPacket(sfReadClientByte());
}
if ((i % 10) == 0)
{
sfRobotCom(sfCOMPULSE); /* keep asking */
sfRobotComInt(sfCOMVEL, 300); /* keep it going... */
sfSMessage("%d packets received", i);
x = sfRobot.ax;
y = sfRobot.ay;
sfSMessage("X: %d  Y: %d", x, y);
}
}

sfRobotComInt(sfCOMVEL, 0); /* stop the robot */
sfDisconnectFromRobot();
}

connect local; /* connect to simulator */

/* for the Pioneer on a tty line,
use 'connect serial <port>' */

start DoPackets();

Listing 6-13.

The stand-alone client is similar, but uses a micro-task instead of the activity. As in every stand-alone
client, the start-up function is registered, and then the sfStartup function is invoked to initiate the
Saphira OS.

In the start-up function, the display state is changed to show global movement of the robot, and the task
myTask is instantiated. Then, the two default Saphira micro-tasks that handle packets and motor control
are removed, so that the user task can perform these functions. Finally, the sfConnectToRobot
function is called to connect the client to the robot server.

The myTask micro-task waits until the robot is connected, then opens the motor controller and tells it to
move forward at 300 millimeters per second. Execution now proceeds as in the packet.act activity; the
only difference is that the micro-task must explicitly sequence its operations by changing state. After the
packets are received, the task stops the robot and disconnects from the server.
#include "saphira.h"
void myStartupFn(void); /* forward refs */
void myTask(void);

void main(int argc, char **argv)
{
int i = 0;
sfOnStartupFn(myStartupFn); /* register a startup function */
sfStartup(0); /* start up the Saphira window, wait */
}

void myStartupFn(void)
{
sfSetDisplayState(sfGLOBAL, TRUE); /* use the global view */
sfInitProcess(myTask, "myPackets");
sfRemoveTask("packets"); /* get rid of default packet process */

sfRemoveTask("motor"); /* get rid of default motor control */

/* open up the connection, to the simulator or robot */

sfConnectToRobot(sfLOCALPORT, sfCOMLOCAL);   /* this is for the simulator */
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/* sfConnectToRobot(sfTTYPORT, sfCOM1);  this is for Pioneer */
}

void myTask(void)
{
static int i = 1;
switch (process_state)
{
case sfINIT:
if (sfIsConnected) process_state = 10;
break;

case 10: /* connected */
sfRobotComInt(sfCOMOPEN,1); /* open the motor controller */
sfResetRobotVars(); /* reset all app variables */
sfRobotCom(sfCOMPULSE); /* ask for data */
sfRobotComInt(sfCOMVEL, 300); /* move forward at 300 mm/sec */
process_state = 20;
break;

case 20:
/* read 100 packets */
if (i > 100) process_state = 30;
while (sfWaitClientPacket(0)) /* poll for packets */
{
i++;
sfProcessClientPacket(sfReadClientByte());
}
if (i % 10 == 0)
{
sfRobotCom(sfCOMPULSE); /* keep asking */
sfRobotComInt(sfCOMVEL, 300); /* keep it going... */
sfSMessage("%d packets received", i);
sfSMessage("X: %f  Y: %f", sfRobot.ax, sfRobot.ay);
}
break;

case 30:
sfRobotComInt(sfCOMVEL, 0); /* stop the robot */
sfDisconnectFromRobot();
process_state = sfSUCCESS;
break;
}
}

Listing 6-14.

6.3.6 The Async Client
This client demonstrates asynchronous control of the robot; that is, control outside the micro-task loop. As

in the direct client, the start-up and connect callbacks are defined and then registered in the main
function. Then, sfStartup is called with an argument of 1, which starts up the Saphira OS but continues
executing the user’s program in the main function. It’s important that the Saphira OS be operating,
because its default micro-tasks handle communication and motor control to the robot server, which keeps
the state reflector current. The direct action calls of the user program depend on these micro-tasks.

The program waits in a while loop until the user connects to a robot, then starts to issue a series of direct
motion commands. The motion commands are synchronized using the sfDoneXXX functions to wait for
completion, and sfPause to wait for a time interval.
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Finally, it closes the connection to the robot and exits. When the main program exits, the Saphira OS is
also automatically exited. If you want to keep the micro-task OS operating, start a while loop whose body
is sfPause(1000).

Note that the packet communication and state reflection micro-tasks are initiated in the connect callback
(myConnectFn). It’s important to do this, because the direct motion commands rely on state reflection to
control the robot.

Listing 6-15.

6.3.7 The Nowin Client
Like the async client, this client makes use of the asynchronous execution of user routines. But instead

of starting up the Saphira interface window, it just connects to the robot by a function call, and then starts
executing direct motion commands. If this client is linked with the non-window library (sfx), then no

#include "saphira.h"

void myStartupFn(void)
{
sfSetDisplayState(sfGLOBAL, TRUE); /* use the global view */
}

void main(int argc, char **argv)
{
int i = 0;

sfOnStartupFn(myStartupFn); /* register a startup function */
sfStartup(1); /* start up the Saphira OS,

   and then keep going */

while (!sfIsConnected) sfPause(0); /* wait until connected */

sfSetRVelocity(100); /* in deg/sec */
sfPause(4000);
sfSetRVelocity(0);
sfPause(4000);

for (i=0; i<280; i+=20)
{
printf("Turn %d degrees\n", i);
sfSetDHeading(i); /* turn i degrees cc */
while (!sfDoneHeading(10))
          sfPause(0); /* wait till we're within 10 degrees */
sfSetDHeading(-i); /* turn i degrees c */
while (!sfDoneHeading(10))
          sfPause(0); /* wait till we're within 10 degrees */
}

sfSetVelocity(300); /* move forward at 300 mm/sec */

for (i=0; i<10; i++)
{
printf("X: %f  Y: %f\n", sfRobot.ax, sfRobot.ay);
sfPause(1000); /* DON'T USE SLEEP!!!! */
sfSetDHeading(10);
}

sfSetVelocity(0); /* stop */
sfPause(4000);
sfDisconnectFromRobot(); /* we're gone... */
}
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interface window will appear. In MS Windows, you specify a console application instead of window
application, and use the main function instead of WinMain. In sfStartup, you must still pass three
arguments, but the first two, which are window parameters, should be NULL.

Note that, even though windows are not being displayed, the Saphira OS is operating, and the basic set of
micro-tasks are managing communication and control.

#include "saphira.h"

[ omitted callback definitions ]
void main(int argc, char **argv)
int i = 0;

sfOnConnectFn(myConnectFn); /* register a conn function */
sfOnStartupFn(myStartupFn); /* register a startup function */
sfStartup(1); /* start up the Saphira OS,

   and then keep going */
sfConnectToRobot(sfLOCALPORT, sfCOMLOCAL);
                               /* this is for the simulator */
while (!sfIsConnected) sfPause(100);
sfSetVelocity(300); /* move forward at 300 mm/sec */

for (i=0; i<10; i++)
{
printf("X: %f  Y: %f\n", sfRobot.ax, sfRobot.ay);
sfPause(1000); /* DON'T USE SLEEP!!!! */
sfSetDHeading(10);
}

sfSetVelocity(0); /* stop */
sfPause(4000);
sfDisconnectFromRobot(); /* we're gone... */
}

Listing 6-16.
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7 Saphira Servers
In the Saphira client/server model, the robot server works to manage all the low-level details of the robot’s
systems, including operating the drives, firing the sonars and collecting echoes, and so on, on command
from and reporting to a separate client application, such as Saphira. With Pioneer, this is the Pioneer Server
Operating System (PSOS. The capabilities of the Pioneer robot server, and its connection to the client, are
shown in Figure 7-1.

High-level robotics applications developers do not need to know many details about a particular robot

server, because the Saphira client insulates them from this lowest level of control. Some of you, however,
may want to write your own robotics control and reactive planning programs, or just would like to have a
closer programming relationship with your robot. This chapter explains how to communicate with your
robot via the Saphira client/server interface. The functions and commands, of course, are supported in the
Saphira C libraries that came with your robot, but not every robot supports all commands. Please consult
your robot’s operation manual or Saphira supplement for those details.

7.1 Communication Packet Protocol
The Saphira-mediated robot or its simulator communicates with a client application using a special packet
protocol. It is a bit stream consisting of four main elements (Table 7.1): a two-byte header, a one-byte count
of the number of data and checksum bytes in the packet, a client command including arguments or a server
information data block, and a two-byte checksum.

Figure 7-1. Saphira client-robot server
architecture.
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7.1.1 Packet Data Types
Packetized client commands and server information blocks use several data types, as defined in Table 7.2.
There is no convention for sign; each packet type is interpreted idiosyncratically by the receiver. Negative
integers are sign-extended.

7.1.2 Packet Checksum
A communication packet checksum is derived by successively adding data byte pairs (high byte first) to the
running checksum (initially zero), disregarding sign and overflow. If an odd number of data bytes exists,
the last byte is XORed to the low-order byte of the checksum.
Note: The checksum word is placed at the end of the packet with its bytes in the reverse order of that used
for arguments and data; that is, b0 is the high byte, and b1 is the low byte.

Use the C-code fragment in Listing 6-17 in your client applications to compute a checksum:

Table 7.1 Main elements of PSOS communication packet protocol

Component Bytes Value Description

Header 2 0xFA, 0xFB Packet header; same for client and server

Byte Count 1 N + 2 Number of subsequent data bytes plus
checksum; must be less than 200 total bytes
long

Data N command
or SIB

Client command or server information block
(discussed in subsequent sections)

Checksum 2 computed Packet integrity checksum

Table 7.2 Communication packet data types

Data Type Byte Count Byte Order

Integer 2 b0 low byte; b1 high byte

Word 4 b0 low byte; b3 high byte

String up to ~200,
length-prefixed

b0 length of string;
b1 first byte of string

String unlimited
null-terminated

b0 first byte of string;
0 (null) last byte
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int
calc_chksum(unsigned char *ptr) /* ptr is array of bytes, first is data count
*/
{
  int n;
  int c = 0;
  n = *(ptr++);
  n -= 2; /* don't use chksum word */
  while (n > 1) {
    c += (*(ptr)<<8) | *(ptr+1);
    c = c & 0xffff;
    n -= 2;
    ptr += 2;
  }
  if (n > 0) c = c ^ (int)*(ptr++);
  return(c);
}

Listing 6-17. C-code fragment to computer checksum.

7.1.3 Packet Errors
Currently, the Saphira server interface ignores a client command packet whose byte count exceeds 200 or

has an erroneous checksum. The client should similarly ignore erroneous server information packets
(Saphira does).

The Saphira client/server interface does not acknowledge receipt of a command packet, nor does it have
any facility to handle client acknowledgment of a server information packet. Hence, Saphira client/server
communication is as reliable as the physical communication link. UNIX pipes with the simulator or a cable
tether between the robot and client computer are very reliable links. Radio modem-mediated communication
is much less reliable. Accordingly, when designing client applications that may use radio modems, do not
expect to receive every information packet intact, nor have every command accepted by the server.

The design decision to provide an unacknowledged packet interface is a consequence of the realtime
nature of the client/server interaction. Simply retransmitting server information blocks or command packets
would result in antiquated data not at all useful for a reactive client or server.

For some operations, however, the data do not decay as rapidly: Some commands are not overly time-
sensitive, such as those that perform such housekeeping functions as changing the sonar polling sequence. It
would be useful to have a reliable packet protocol for these operations, and we are considering this for a
future release of Saphira server interface.

In the meantime, the Saphira client/server interface provides a simple means for dealing with ignored
command packets: Most of the client commands alter state variables in the server. By examining those
values in the server information packet, client software may detect ignored commands and reissue them
until achieving the correct state.

7.2 Client Commands
Saphira client/server interface implements a structured command format for receiving and responding to
directions from the client for control and operation of the robot or its simulator. You may send client
commands to the robot at a maximum rate of once every 100 milliseconds. The client must send a command
at least once every two seconds; otherwise, the server will stop the robot’s onboard drives.

The client command is comprised of a one-byte command number optionally followed by, if required by
the command, a one-byte description of the argument type and the argument. To work, of course, the client
command and its optional argument must be included as the data component of a client communication
packet (see Table 7.3 and earlier sections of this chapter).

Table 7.4 contains the list and brief descriptions of the currently implemented Saphira client commands,
which we discuss in detail in following sections. These and additional server operating commands used by
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most, but not all, Saphira-enabled robots, also appear in the Saphira header file
handler/include/saphira.h. Check your robot’s operation manual, Saphira supplement, and
Saphira distribution UPDATE text file for the latest details.

7.2.1 Client Command Argument Types
Three different types of client command arguments exist: positive integers two bytes long, negative

integers two bytes long, and strings of up to 195 characters long (200-byte limit on packets) terminated with
a 0 (NULL). Byte order is least-significant byte first. Negative integers are transmitted as their absolute
value (unlike information packets, which use sign extension for negative integers; see below). The argument
is either an integer, a string, or nothing, depending on the command.

7.2.2 Saphira Client Command Support
Saphira fully supports client commands with useful library functions. Prototypes can be found in

handler/include/saphira.h and saphira.pro. See Chapters 5 and 6 for details.

Table 7.3  Client command communication packet.

Component Bytes Value Description

Header 2 0xFA, 0xFB Packet header; same for client and server

Byte Count 1 N + 2 Number of command bytes plus checksum;
must be less than 200 total bytes long

Command
Number

1 0 - 255 Client command number;
see Table 4-4

Arg Type
(optional)

1
0x3B or
0x1B or

0x2B

Data type of command argument, if included:
(sfARGINT) positive integer

(sfARGNINT) negative int or absolute value

(sfARGSTR) string, null-terminated

Argument
(optional)

N data Command argument; integer or null-terminated
string

Checksum 2 computed Packet integrity checksum
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7.3 Server Information Packets
The Saphira-aware server automatically sends a packet of information over the communication port back

to the client every 100 milliseconds. The server information packet informs the client about a number of the
robot’s operating parameters and readings, using the order and data types shown in Table 7-5. Your client
application may use the Saphira library function sfProcessClientPacket to parse the server
information and deposit the results in various buffers of the state reflector. (See the section on the state
reflector in the API reference for information about these structures.)

Table 7.4. PSOS 4.2 supported client commands.

Command
Name         Number

Argument
Value(s)

Description

sfSYNC0 0 none Start connection; server echoes these
sfSYNC1 1 none Synchronization commands back to
sfSYNC2 2 none client.

sfCOMPULSE 0 none Communication pulse
sfCOMOPEN 1 none Open the motor controller
sfCOMCLOSE 2 none Close server and client connection
sfCOMPOLLING 3 string Set sonar polling sequence
sfCOMSETO 7 none Set server origin
sfCOMVEL 11 signed int

mm/sec
Forward (+) or reverse (-) velocity

sfCOMHEAD 12 unsigned int
degrees

Turn to absolute heading 0-360 degrees

sfCOMDHEAD 13 signed int
degrees

Turn heading +-255 degrees

sfCOMRVEL 21 signed int
degrees/sec

Set rotational velocity +- 255 degrees/sec

sfCOMVEL2 32 2 bytes
4*mm/sec

Set wheel velocities independently +-
4mm/sec

sfCOMDIGOUT 30 integer
bits 0-7

Set digital output bits

sfCOMTIMER 31 integer
pin 0-7

Initiate user input timer, triggering an event
with specified pin

sfCOMGRIPPER 33 integer
0, 1, 4, 5

Sets gripper state

sfCOMPTUPOS 41 bytes
0-4, 0-200

Set pulse-width for RC servo control. First
argument is RC servo number, second is
width of pulse in 10 us increments (i.e., 0 to
2000 us).

sfCOMSTEP 64 none Single-step mode (simulator only)
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Table 7-5. Saphira server information data packet (minimum contents).

Name Data Type Description

Header int Exactly 0xFA, 0xFB

Byte Count byte Number of data bytes + 2; must be less
than 201 (0xC9)

Status byte = 0x3S; where S = Motors status
sfSTATUSNOPOWER Motors power off
sfSTATUSSTOPPED Motors stopped
sfSTATUSMOVING Robot moving

Xpos unsigned int (15 ls-bits) Wheel-encoder integrated coordinates;
platform-dependent units—multiply by

Ypos unsigned int (15 ls-bits) DistConvFactor in the parameter
file to convert to mm; roll-over ~ 3 m

Th pos signed int Orientation in platform-dependent units—
multiply by AngleConvFactor for
degrees.

L vel signed int Wheel velocities (respective Left and
Right) in platform-dependent units—

R vel signed int Multiply by VelConvFactor  to
convert to mm/sec.

Battery byte Battery charge in tenths of volts

Bumpers 2 bytes - L and R Motor stall indicators

Bumpers unsigned int

Control signed int Setpoint of the server’s angular position
servo—multiply by AngleConvFactor
for degrees

PTU unsigned int Pulse width of last RC servo command
received

Compass byte Compass reading, 0-179 (x2 for actual
reading)

Sonar readings byte Number of new sonar readings included
in information packet; readings follow:

Sonar num byte Sonar number

Sonar range unsigned int Sonar reading—multiply by
RangeConvFactor for mm

…rest of the sonar readings…

Input timer unsigned int User input timer reading

User Analog byte User analog input reading

User input byte User digital input pins

User output byte User digital output pins

Checksum into Checksum (see previous section)
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In future versions, server information packets may contain additional, appended data fields. To remain
compatible, have your client application accept the entire data packet, even though it may use only a few
selected fields.

7.4 Start-Up and Shutdown
Before exerting any control, a client application must first establish a connection to the robot server via an
RS-232 serial link (9600 baud), an interprocess connection (UNIX pipe, for example, or MS Windows
mailslot), or TCP/IP network. Over that established communication link, the client then sends commands to
and receives back operating information from the server.
Connection is usually done through the library function sfConnectToRobot, which takes two
arguments. The first is the connection type, the second is the port name. Table 7-6 lists the types and some
special port names available in the Saphira library.

sfConnectToRobot performs three tasks:

 Synchronizes the communication channel by sending and receiving three SYNC packets.

 Reads an autoconfiguration packet sent by the server to identify the characteristics of the robot.
 Sends a motor open command to the server.
Instead of using sfConnectToRobot, the user can perform these tasks with low-level library calls,
detailed in the next few sections.

7.4.1 Synchronization—sfCOMSYNC
When first started, the Saphira-aware server, including the simulator, is in a “wait” state listening for

communication packets over its designated port. (See your robot operating manual for details about your
robot’s servers.) To establish a connection, the client application sends, in succession, a series of three
synchronization packets through the host communication port—sfSYNC0, sfSYNC1, and sfSYNC2.
The server responds to each, forming a succession of identical synchronization packets. The client should
listen for the returned packets and issue the next synchronization packet only after it has received the echo.

A string may be used for unusual port names—if a serial communications card has extra tty ports, for
instance. With Macintosh, it’s best to use the modem port, if it’s available, rather than the printer port.

Table 7-6. Port types and names for client/server connections

Port types Descripton
sfLOCALPORT Connect to simulator on the host machine
sfTTYPORT Connect to robot on a tty port
sfTCPPORT Connect to robot on over TCP/IP network

Port names
sfComPipe Local pipe or mailslot name
sfCOM1 tty port 1 (/dev/ttya or /dev/cua0 for UNIX;

COM1 for MSW; modem for Mac)
sfCOM2 tty port 2 (/dev/ttyb or /dev/cua1 for UNIX,

COM2 for MSW, printer for Mac)
sfComServer Host name/IP address of simulator server running

on another machine
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7.4.2 Autoconfiguration
The Saphira-aware servers (PSOS v4.1 or later) send configuration information back to the client in the

last sync packet (sfSYNC2). Following the sync byte are three null-terminated strings that represent the
robot name, robot class, and robot subclass (see Table 7-7). You can read these strings with the library
function sfReadClientString. The function sfConnectToRobot reads the strings and sets the
appropriate Saphira variables to their values.

The parameter file that is appropriate for a robot can be found in the Saphira params directory. The
name of the parameter file will be the same as the lowercase version of the subclass string (if it exists) or the
class string.

7.4.3 Opening the Servers—sfCOMOPEN
After the communication link is established, the client should then send the sfCOMOPEN command,

which causes the robot or the simulator to perform housekeeping functions, start the sonar and motor
controllers (among other things), start listening for client commands, and to begin transmitting server
information.

7.4.4 Keeping the Beat—sfCOMPULSE
As mentioned earlier, a server “safety watchdog” expects that the robot receives at least one

communication packet from the client every two seconds. Otherwise, it assumes the client/server connection
is broken and shuts down the robot’s motors. If your client application will be otherwise distracted for some
time, periodically issue the sfCOMPULSE client command to let the server know you are indeed alive and
well. If the robot shuts down due to lack of communications traffic, it will revive upon receipt of a client
command and automatically accelerate to the last-specified speed at the current heading.

7.4.5 Closing the Connection—sfCOMCLOSE
To close a connection and reset the server to the wait state, simply issue the client sfCOMCLOSE

command.

7.4.6 Movement Commands
Rotation Translation

sfCOMHEAD     absolute heading

sfCOMDHEAD     differential heading from control pt

sfCOMDCHEAD differential heading from current sfCOMVEL     forward/back
velocity

sfCOMRVEL      rotational velocity

Table 7-7. Robot configuration information.

Name Description
sfRobotName Given name for Pioneer-class robots,

computer name for Bxx--class robots,
simulator” for the simulator

sfRobotClass Pioneer, B14, or B21
sfRobotSubclass pion1 (Pioneer 1) or pionat  (Pioneer AT)

Null string for other robots and simulators

Table 7-8. Server motion command types
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sfCOMVEL2    left and right wheel velocities

As of PSOS 4.2, the robot server accepts several different types of motion commands. You can set the turn
angle or velocity, and the forward/back velocity; or, you can control the two wheel velocities independently.
Table 7-8 summarizes the command modes available.

The robot server automatically switches to the required motion control mode when it receives one of these
commands. For example, if it is in two-wheel velocity mode, and it is sent an sfCOMHEAD command, it
abandons two-wheel velocity mode and starts controlling the heading and velocity of the robot.

Command Argument(s) Typical Invocation
sfCOMHEAD degrees (int)  [0, 360] sfRobotComInt(sfCOMHEAD, 320)

sfCOMD[C]HEA
D

degrees (int)  [-180, 180] sfRobotComInt(sfCOMDHEAD, -10)

sfCOMRVEL degrees/sec (int) [-200,
200]

sfRobotComInt(sfCOMRVEL, -80)

sfCOMVEL mm/sec (int)  [-400, 400] sfRobotComInt(sfCOMVEL, 150)

sfCOMVEL2 4 mm/sec (int)  [-100, 100] sfRobotCom2Bytes(sfCOMVEL2,40,50
)

The arguments for these commands are given in Table 7.9, below. The heading commands are with
respect to the robot’s internal coordinate system (see the section below).

The Saphira-aware robot server will try to make the robot achieve the desired velocity and heading as
soon as the commands are received, using its internal (de)acceleration managers. Check your robot’s
operation manual to find its absolute maximum achievable motion and rotational velocities.

7.5 Robot in Motion
When the Saphira-aware robot server receives a velocity command, it accelerates at a constant rate set

internally to the speed you provided as the argument for sfCOMVEL. Rotational headings are achieved by a
trapezoidal velocity function (see Figure 7-2). This function is recomputed each time a new heading
command is received, making on-the-fly orientation changes possible.

Table 7.9. Motion command arguments

rotational
velocity

time

max velocity

accel decel

position
achieved

short turn,
max velocity
not  reached

position
achieved

start
position

Figure 7-2. Trapezoidal turning velocity profile.
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7.5.1 Position Integration
Your robot keeps track of its position and orientation based on dead-reckoning from wheel motion, which

is an internal coordinate position. A server command, sfCOMSETO, resets the robot server’s internal x,y
position coordinates to (0,0,0).

Registration between external and internal coordinates deteriorates rapidly with movement, due to
gearbox play, wheel imbalance and slippage, and many other real-world factors. You can rely on the dead-
reckoning ability of the robot for just a short range—on the order of several meters and one revolution,
depending on the surface (carpets tend to be worse than hard floors).

Also, moving too fast or too slow tends to exacerbate absolute-position errors. Accordingly, consider the
robot’s dead-reckoning capability as a means of tying together sensor readings taken over a short period of
time, not as a method of keeping the robot on course with respect to a global map.

The orientation commands sfCOMHEAD,  sfCOMDHEAD, and sfCOMDCHEAD turn the robot with
respect to its internal dead-reckoned angle (see Figure 7-3). On start-up, the robot is at the origin (0,0),
pointing towards the positive x-axis at 0 degrees. Absolute angles vary between 0 and 360 degrees. As the
robot moves, it will update this internal position based on dead-reckoning. The x,y position is always
positive and rolls over at about 3,000 millimeters. So, if the robot is at position (400,2900) and moves +400
millimeters along the y-axis and -600 millimeters along the x-axis, its new position will be (2800,300).

0

+90

+180

+270

+X

+Y

Front

7.6 Sonars
When opened by the appropriate client command (see sfCOMOPEN, above), a Saphira-aware robot server

automatically coordinates and begins firing its robot sonars in a predefined default sequence; it sends the
results to the client via the server information packet. Details about the configuration and firing sequence of
the sonars are found in the robot’s operation manual.

Use the sfCOMPOLLING command to change the polling sequence of the sonars:

Figure 7-3  Internal coordinate system of a Saphira-aware server.
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sfRobotComStr(sfCOMPOLLING, str)

where str is a null-terminated string of bytes that can be, at most, 12 bytes long. Each byte is 1 + sonar
number. For example, the following string starts the sonar polling sequence 0, 1, 0, 5:
"\001\002\001\006"

Note that sonar numbers can be repeated. If the string is empty, all sonars are turned off.
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8 Guide to the Saphira API
This chapter details the current library of functions for development of a Saphira client. Additional

information about prototypes, structures, and variables can be found in the various header files in the
handler/include/ directory of your Saphira distribution. Also study the sample source files in
handler/src/apps as examples of working Saphira applications.

Most of these functions and variables are available in the Colbert evaluator. Those that are not are
indicated in the text.

8.1 Saphira OS Functions
Use the following functions to initialize, configure, and operate the Saphira OS (see Section 2 for a

summary of OS properties).

void sfStartup (int async)
void sfStartup (HANDLE hInst, int cmdShow, int async)
void sfPause(int ms)

The first format is for UNIX systems; the second for MS Windows. When invoked, sfStartup
initializes the Saphira OS. If the client has been linked with the window libraries, a user interface window
is opened, and Saphira information is displayed graphically.

If async is 0, Saphira has principal control of the client and thereafter calls other functions only from
the Saphira multitasking OS (see below). If async is 1, control returns immediately to the calling
program, and the Saphira interface runs as a separate thread.

The sfStartup function may be called at any time by your program, but it should be called only once.
Also include with the Windows version of this function the application instance handle (hInst) and the
window visibility parameter (cmdShow).

If the client program is running asynchronously, in parallel with the Saphira OS, then it may be useful to
insert timing breaks in the client code. The appropriate method is with sfPause, which waits a specified
number of milliseconds before continuing. sfPause allows the Saphira OS to keep running during the
break. These functions are not available in Colbert.

void sfOnStartupFn (void (*fn)())
void sfOnConnectFn (void (*fn)())
void sfOnDisconnectFn (void (*fn)())
int  sfIsConnected
int  sfIsExited

These functions register callbacks for Saphira events: when the Saphira OS first starts up, when it
connects to a robot, and when it disconnects. The functions are only used in stand-alone client code that
calls sfStartup. The variable sfIsConnected is also useful in Colbert activities to check if the robot
server is currently connected to the client. The user should not change the value of this variable.

The variable sfIsExited is set to 1 when the user requests Saphira to exit from the Connect/Exit menu
item. This variable is useful for async user code, which calls sfStartup in non-blocking mode and then
continues execution. The code can check the sfIsExited flag to see if there is an exit request.

None of these callbacks is obligatory; in user code, usually the connect callback is registered. The start-up
callback should include any relevant initialization code, such as menu or directory settings, in this function.
The connect callback should start micro-tasks, behaviors, and other Saphira control routines. The
disconnect callback can be used to clean up after the Saphira client disconnects from a robot.
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Use the sfSetDisplayState function to change the state of a display mode in the Saphira window
interface:
void sfSetDisplayState (int menu, int state)

If you call this function before connecting to the robot (in the start-up callback), it will set the default state
for the display function. Thereafter, the preset display values are sticky—Saphira automatically resets them
to the preset values, perhaps different from the defaults given in Table 8-1), whenever a new connection is
made with the robot.

sfMessage writes the null-terminated string str into the message section of the information area in the
Saphira main window, followed by a carriage-return:
void sfMessage (char *str)

Use sfSMessage to format the string much as you would C’s standard printf function, which
accepts optional arguments that are to be inserted into the string.  :
void sfsMessage (char *str, …)

A problem in the Colbert evaluator prevents floating-point numbers from being printed using
sfSMessage. As a workaround, convert them to integers before calling sfSMessage. (The
sfKeyProcFn registers an optional user key process callback, with the prototype of myKeyFn:
void sfKeyProcFn (int (*fn)())

int  myKeyFn(int ch)

It is called by Saphira whenever the user presses a key when the main Saphira window is active. The
argument ch is the character representing the key that was pressed and is operating-system-dependent.
Return 0 if you don’t handle the keypress; return 1 if you do, particularly to override any of Saphira’s built-
in key processing routines (see Table 8-1).

Not available in Colbert. The sfButtonProcFn registers an optional user button process callback, with
the prototype of myButtonFn:
void  sfButtonProcFn (int (*fn)())

int   myButtonFn (int x, int y, int b, int m)
int   sfLeftButton, sfMiddleButton, sfRightButton
int   sfShiftMask, sfControlMask, sfAltMask
float sfScreenToWorldX (int x, int y)
float sfScreenToWorldY(int x, int y)

It is called by Saphira whenever the user clicks the mouse when the main Saphira window is active. The x
and y arguments are the screen position of the cursor; b is the mouse button, with the values

Table 8-1. Optional states for various Saphira display functions.

Menu State (int)* Description
sfDISPLAY 0-10; 2 Controls display update rate. State is the number of 100

ms cycles between updates. Value 10 is once per
second, for example. Value of 0 turns the display off.

sfGLOBAL TRUE, FALSE Controls local/global viewpoint of display window.
sfWAKE TRUE, FALSE Controls drawing of breadcrumb wake behind robot.
sfSTEP TRUE, FALSE Controls single-step mode when connected to the

Pioneer simulator.
sfOCCGRID TRUE, FALSE Controls display of occupancy grid results. If enabled,

enables global viewpoint.

Default state values are in bold typeface.
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sfButtonLeft, sfButtonRight, and sfButtonMiddle. The shift mask argument m is an integer
that has bits set indicating which modifier keys were pressed. Return 0 if you don’t handle the mouse click;
return 1 if you do, to override any of Saphira’s built-in mouse processing routines.

To convert from screen to global robot coordinates, use the sfScreenToWorld functions, which return
their answers in mm.

Not available in Colbert.

8.2 Predefined Saphira Micro-Tasks
We’ve provided a variety of predefined Saphira micro-tasks for control of the robot. You may initiate

these micro-task sets using the API functions described here, or invoke them individually using the
sfInitProcess API call (see Section 8.5)

Both the micro-task function and the instantiation name given by the init function are described here.
The instantiation name is used to refer to the running micro-task, and is shown in the Function/Processes
window. To remove a micro-task with instantiation name iname, you can type remove iname in the
interaction window or an activity, or use sfRemoveTask(“iname”) from C code.

void sfInitBasicProcs(void)

.Starts up a set of basic communication, display, motor, and sensor control processes. Among other
activities, these processes implement the client state reflector. The processes invoked are shown in
Table 8-2.

Table 8-2. Basic communication, display, motor, and sensor control processes

Function Name Description
pulse_proc pulse Sends communication pulse every 1 second
motor_proc motor Coordinates keyboard and behavior motor commands
clamp_proc clamp Rotates the world around the robot
sonar_proc sonar Adds new sonar readings to the sonar buffer
wake_proc wake Draws a wake of the robot’s motion
draw_proc draw Updates Saphira display window
process_waiting_packets packets Parses information packets from robot server

Drawing, wake, and clamping processes are affected by variables that users can set from the Display menu
in Saphira’s main window.

sfInitBasicProcs is invoked by sfStartup, so the user should not have to call this function. Not
available in Colbert.

void sfInitControlProcs(void)

Starts up a process for evaluating all active behaviors. If you want to run without using the fuzzy behavior
controller, by using the direct motion functions, then don’t initiate this process.

Table 8-3.

Function Name Description
execute_current_behaviors execute Evaluates behaviors and outputs a motor control
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void sfInitInterpretationProcs (void)

Starts up processes for interpretation of sonar results.

Table 8-4.

Function Name Description
occgrid_proc occupancy grid Computes an occupancy grid
side_segment_proc side segs Forms linear artifacts robot motion
test_wall_proc test wall Performs wall recognition
test_wall_break_proc test wall break door and junction recognition

These processes must be started to have results deposited in sfLeftWallHyp and sfRightWallHyp.

void sfInitRegistrationProcs (void)

Starts up position registration processes useful for navigation in an office environment.

Table 8-5.

Function Name Description
test_match_proc test matching matching of linear and point artifacts
test_environment_proc test where identification of current situation

void sfRunEvaluator (void)

This micro-task starts up the Colbert evaluator, which is the executive for activities. The evaluator also
accepts input from the interaction window. The basic client bin/saphira.c starts this process. If you
define a stand-alone client, and want to run Colbert, then start this micro-task (using sfInitProcess) in
your start-up callback.

8.3 State Reflection
State reflection is a way of isolating client programs from the work involved in send control commands

and gathering sensory information from the robot. The state reflector is a set of data structures in the client
that reflects the sensor and motor state of the robot. The client can examine sensor information by looking
at the reflector data, and can control the robot by setting reflector control values. It is the responsibility of
the Saphira OS to maintain the state reflector by communicating with the robot server, receiving
information packets and parsing them into the state reflector, and sending command packets to implement
the state reflector control values. The micro-tasks started by sfInitBasicProcs are the relevant ones:
You must invoke this function for the state reflector to function.

The state reflector has three important data structures.
 The sfRobot structure holds motion and position integration information, as well as some sensor

readings (motor stall sensors, digital I/O ports).
 The sonar buffers hold information about current and past sonar returns.
 The control structures command robot motions.
This section describes the robot and sonar information structures; the next one, the direct motion

commands that affect the control structures.
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struct robot sfRobot

The variable sfRobot holds basic information reflected from the robot server. Table 8-6, below, shows
the values of the various fields in this structure; the definition is in handler/include/struct.h.

All of the values in the sfRobot structure are reflected from the robot server back to the client,
providing information about the robot’s state. In this way, it is possible to tell if a command has been
executed. For example, the digoutput field reflects the actual value of the digital output bits set on the
robot.

The interpretation of some of the values in the structure is robot-dependent, e.g., the bumpers field
reflects motor stall information for the Pioneer robots. The Saphira library provides some convenience
functions for interpreting these fields; see the following subsections.

This variable is defined in Colbert, as well as the robot structure, and most of the fields are available; type

help robot for a list of fields.

sfRobot field Units Description

x, y, th mm, mm, degrees Robot’s location in robot
coordinates;

always (0, 0, 0)
ax, ay, ath mm, mm, degrees Robot’s global location
tv, mtv mm/sec Current and max velocity
rv, mrv deg/sec Current and max rotational velocity
leftv, rightv mm/sec Left and right wheel velocities
status int

STATUS_STOPPED
STATUS_MOVING
STATUS_NOT_CONNECTE

D
STATUS_NO_HIGH_POWER

Robot status:
Robot stopped
Robot moving
Client not connected
Robot motors stalled

battery 1/10 volt Battery power
bumpers int Bumper state
ptu usecs Pan/tilt unit (servo) heading
diginput int Digital input state
digoutput int Digital output state
analog 0-255 [0V-5V] Analog input voltage
motor_packet_count
sonar_packet_count
vision_packet_coun

t

counts per second Packet communication information

8.3.1 Motor Stall Function
On Pioneer-class robots, the motors stall if the robot encounters an obstacle. Each motor can stall
independently, and this can yield information about where the obstacle is, e.g., if the right motor stalls, then
the right wheel or right side of the robot is affected. However, you can’t rely absolutely on this behavior, as

Table 8-6. Definition of the sfRobot structure.
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sometimes both motors will stall even when the obstacle is on one side or the other. Motor stall information
is returned in the bumpers field.

int sfStalledMotor (int which)

Return 1 if the motor is stalled and 0 if it isn’t. The argument which is sfLEFT or sfRIGHT.

8.3.2 Sonar buckets
The current range reading of sonar sensors is held in an sdata structure, defined below. The structures

for all the sonars are in an array called sbucket, e.g., sbucket[2] is the sdata structure for sonar
number 2. Sonars start at number 0. This variable is not defined in Colbert, which doesn’t have arrays;
instead use the convenience function sfSonarBucket.

Fields in the sdata structure indicate the robot’s position when the sonar was fired, the range of the
sonar reading, and the position in robot coordinates of the point on the sonar axis at the range of the
reading. The field snew is set to 0xFFFF when a new reading is received; the client program can poll this
field to ascertain if the reading is new, and set it to 0 to indicate that it has been read.

A value of 5000 for the sonar range indicates that no echo was received after the sonar fired and waited
for a return. Several convenience functions for accessing current sonar readings are described below.

Sonar readings are accumulated over short periods of time into a set of buffers in the LPS; see the section

on the LPS, below.

Listing 8-1.

sdata *sfSonarBucket(int num)
 int   sfSonarRange(int num)
 float sfSonarXCoord(int num)
 float sfSonarYCoord(int num)
 int   sfSonarNew(int num)

The first function returns a pointer to the data structure of the num’th sonar, or NULL if no such sonar
exists.

The next three functions return the range and x,y coordinates of the sonar reading. The last function
returns 1 if it’s a new reading, 0 if not; it also resets the new flag to 0 so that the same reading isn’t
returned twice.

8.4 Direct Motion Control
Direct motion control uses the state reflector capability of the Saphira OS to implement a useful client-

side motion control system. Instead of sending motor commands to the server, a client sets motion setpoints
in the state reflector. The OS takes care of transmitting appropriate motor commands to the robot.

Direct motion control offers three advantages over sending motor control packets directly.

typedef struct /* sonar data collection buffer */
{
float fx, fy, fth; /* robot position when sonar read */
float afx, afy, afth; /* absolute position when sonar read */
float x, y; /* sonar reading in flakey RW coords */
int range; /* sonar range reading in mm */
int snew; /* whether it's a new reading */
} sdata;

IMPORT extern sdata sbucket[]; /* holds one sdata per sonar, indexed by sonar
number */
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It checks that the setpoints are actually sent to the robot server, given the unreliability of the
communication channel.

It implements a set of checking functions for determining when the motion commands are finished.
It has a position control mode which moves the robot a specified distance forward or backward.
Direct control of the two control channels (translation and rotation) is independent, and commands to

control them can be issued and will execute concurrently.
The direct motion functions require the state reflector to be operational; that is, the function

sfInitBasicProcs must be called. This is done automatically by sfStartup, so the user need not
call it explicitly.

void sfSetVelocity(int vel)
 void sfSetRVelocity(int rvel)

Set the translational and rotational setpoints in the state reflector. If the state reflector is active, these
setpoints are transferred to the robot. Values for translational velocity are in mm/sec; for rotational velocity,
degrees/sec.

void sfSetHeading(int head)
 void sfSetDHeading(int dhead)

The first function sets the absolute heading setpoint in the state reflector. The argument is in degrees,
from 0 to 359.

The second function increments or decrements the heading setpoint. The argument is in degrees, from
-180 to +180.

If the state reflector is active, the heading setpoint is transferred to the robot.

void sfSetPosition(int dist)
 void sfSetMaxVelocity(int vel)

The first function sets the distance setpoint in the state reflector. The argument is in mm, either positive
(forward) or negative (backward). If the state reflector is active, it sends motion commands to the robot to
move the required distance. The maximum velocity attained during motion is given by
sfSetMaxVelocity, in mm/sec.

int sfDonePosition(int dist)
 int sfDoneHeading(int ang)

Checks whether a previously-issued direct motion command has completed. The argument indicates how
close the robot has to get to the commanded position or heading before it is considered completed.
Arguments are in mm for position and in degrees for heading. On a Pioneer robot, you should use at least
100 mm for the distance completion, and 10 degrees for angle. Otherwise, the robot may not move enough
to trigger the completion function. Note that, even though the robot may not achieve a given heading very
precisely if it is just turning in a circle, as it moves forward or backward it will track the heading better.

float sfTargetVel(void)
 float sfTargetHead(void)

These functions return the current reflected values for the velocity and heading setpoints, respectively.
Values are in mm/sec and degrees.
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8.5 Saphira Multitasking
One problem facing any high-level robotics controller is developing an adequate real-time base for the

many concurrent processes that must be run. Rather than depend on the machine OS for this capability, we
have implemented a simple “round robin” cooperative scheme that places responsibility on each individual
process to complete its task in a timely and reasonable manner. Each process is called a micro-task, because
it accomplishes a limited amount of work.

Compute-intensive processes that take a long time to complete, but that can execute asynchronously with
the Saphira system, can be implemented as concurrently executing threads. Accordingly, use the Saphira
sfStartup function with an async argument of 1 and prepare your processes so that they execute as a
concurrent thread, as we describe below.

Colbert activities and behaviors are also micro-tasks and are defined using the Colbert language or
behavior compiler (see Chapters 1 and 4). Some of the micro-task control functions described below are
useful for these tasks, as well. To distinguish behaviors and activities from other micro-tasks, we call the
latter simple micro-tasks.

8.5.1 Micro-task Definition
Simple micro-tasks are functions with no arguments together with state information. Micro-tasks access

their state through a global integer variable, process_state. Processes are initiated by an API call,
sfInitProcess, which places the function onto the process stack. After they are initialized, Saphira will
call them with an initial state of sfINIT. The micro-task can change its state by setting the value of
process_state. User-defined state values are integers greater than 10; values less than 10 are reserved
for special states (see Table 8-7).

Process cycle time is 100 ms. On every cycle, Saphira calls each micro-task, with its process_state
set to the current value for that micro-task. The micro-task may change its state by resetting
process_state. A micro-task may suspend itself by setting the state to sfSUSPEND. Another micro-
task or your program must resume a suspended micro-task (see below for relevant functions). A micro-task
may also suspend itself for n cycles by setting process_state to -n, in which case it will use
sfResume to resume after the allotted time expires.

Table 8.7. Saphira multiprocessing reserved process state values.

State Explanation

sfINIT Initial state

sfSUSPEND Suspended state

sfRESUME Resumed state

sfINTERRUPT Interrupted state

sfREMOVE Requests the scheduler to remove this micro-task

sfSUCCESS Micro-task succeeded (default ending)

sfFAILURE Micro-task failed

sfTIMEOUT Micro-task timed out

-n Suspend this micro-task for n cycles
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The sfINTERRUPT state indicates an interrupt request from another micro-task or the user. Micro-tasks
should be written to respond to interrupts by saving needed information, then suspending until receipt of a
resume request. Many of Saphira’s predefined micro-tasks are written in this way.
The sfSUCCESS and sfFAILURE states are used to indicate the successful or unsuccessful completion of
a micro-task. The micro-task may set these as appropriate, or signal other micro-tasks to set them. No
further processing takes place unless the micro-task is resumed.
Simple micro-tasks do not have timeouts, but activities and behaviors do. In these cases, a state of
sfTIMEOUT means that the micro-task has timed out before completing its job.

The fixed cycle time of a micro-task invocation means that micro-tasks can have guaranteed response time
for critical tasks; a controller can issue a command every 100 ms, for example. Of course, response time
depends on the conformity of all micro-tasks: The combined execution time of all micro-tasks must never
exceed 100 ms. If it does, the cycle time will exceed 100 ms for all micro-tasks. Hence, allow around 2–5
ms of compute time per micro-task, and divide large micro-tasks into smaller pieces, each able to execute
within the 2–5 ms time frame, or run them as concurrent threads.

Listing 8-2 provides an example of a typical interpretation micro-task function. It starts by setting up
housekeeping variables, then proceeds to alternate door recognition with display of its results every second
or so.
#define FD_FIND 20
#define FD_DISPLAY 21
void find_doors(void)
{

int found_one;
switch(process_state)
{
  case sfINIT: /* Come here on startup */

found_one = 0;
{ ... }
process_state = FD_FIND;
break;

  case sfRESUME: /* Come here after suspend */
process_state = FD_FIND;
break;

  case sfINTERRUPT: /* Interrupt request */
found_one = 0;
process_state = sfSUSPEND;
break;

  case FD_FIND: /* Looking for doors */
{ call recognition function }
process_state = FD_DISPLAY;
break;

  case FD_DISPLAY: /* Now we display it */
if (found_one)

{ call display function }
process_state = -8; /* suspend for 8 ticks */
break;

  }
}

Listing 8-2. Example of a typical interpretation micro-task function.

8.5.2 State Inquiries
The state of a micro-task can be queried with the following functions.

int sfGetProcessState(sfprocess *p)
 int sfGetTaskState(char *iname)
 int sfSuspended(sfprocess *p)
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 int sfTaskSuspended(char *iname)
 int sfFinished(sfprocess *p)
 int sfTaskFinished(char *iname)

These functions come in two varieties: those that take a micro-task pointer as an argument, and those that
take an instantiation name. The latter first look up the micro-task in the task list, using the instantiation
name.
sfGetProcessState returns the state of the process as an integer, if it exists; otherwise, it returns 0.

sfSuspended is 1 if the micro-task is suspended and 0 if it is active.

sfFinished is 1 if the task has completed successfully, failed, or timed out; it is 2 if the micro-task is
not on the scheduler’s list; and it is 0 if the micro-task is still active.

8.5.3 Micro-Task Manipulation
When instantiating a micro-task, give it a unique string name and later refer to it by name or pointer. The

following Saphira functions initiate, suspend, and resume micro-tasks:

sfprocess *sfInitProcess (void *fn(void), char *name)

The sfInitProcess function starts up a micro-task with the name name and function fn, and returns
the micro-task instance pointer, which can be used in micro-task-manipulation functions. No corresponding
function for deleting micro-tasks exists—suspend it if it is no longer needed.

sfprocess *sfFindProcess (char *name)

The sfFindProcess function searches for and returns the first micro-task instance it finds with the
name name. A micro-task instance pointer is returned if successful; else NULL.

void sfSetProcessState (sfprocess *p, int state)
 void sfSuspendProcess (sfprocess *p, int n)
 void sfSuspendTask (char *iname, int n)
 void sfSuspendSelf (int n)
 void sfInterruptProcess (sfprocess *p)
 void sfInterruptTask (char *iname)
 void sfInterruptSelf (void)
 void sfResumeProcess (sfprocess *p)
 void sfResumeTask (char *iname)
 void sfRemoveProcess (sfprocess *p)
 void sfRemoveSelf (void)
 void sfRemoveTask (char *iname)

The sfSetProcessState function sets the state of micro-task instance p to state. The argument p
must be a valid micro-task instance pointer, returned from sfFindProcess or sfInitProcess. The
other functions are particular calls to sfSetProcessState. The other functions are convenience
functions for signaling micro-tasks to set certain states.

8.5.4 Invoking Behaviors
Behavior activities can be invoked from Colbert with the start command, or from C code with the

following function.
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sfprocess sfStartBehavior(behavior *b, char *in, int tout,
                 int pri, int suspend, ...)

The sfStartBehavior function instantiates a behavior activity, using behavior schema b. The
instantiation name is in, and the priority of the behavior is pri. A timeout (tout) must be specified; a
timeout of 0 means the behavior will execute indefinitely. The suspend argument is 0 if the behavior is to
be active immediately, and 1 if it is to be started in a suspended state, to be activated by a resume signal.

The remainder of the arguments to sfStartBehavior are the arguments to the behavior. There must be
exactly the same number and types of arguments as are specified by the behavior parameters.
This function is equivalent to the following:

start b(...) iname in timeout tout priority pri [suspend]

where b is the name of the behavior schema.

8.5.5 Activity Schema Instantiation
An activity schema can be instantiated from another Colbert activity or the user interaction area, with the

start command (see Section 4.8.3). Alternatively, activities can be started from C code with the
sfStartActivity function.

int sfStartActivity(char *schema, char *in, int tout,
                     int suspend, ...)

The sfStartActivity function instantiates an activity whose library name is schema. The
instantiation name is in. A timeout (tout) must be specified; a timeout of 0 means the activity executes
indefinitely. The suspend argument is 0 if the behavior is to be active immediately, and 1 if it is to be
started in a suspended state, to be activated by a resume signal.

The remainder of the arguments to sfStartActivity are the arguments to the activity. The number
and types of arguments must equal the number specified by the behavior parameters.
This function is equivalent to this one:

start schema(...) iname in timeout tout [suspend]

where schema is the name of the activity schema.

The function returns 0 if it instantiated the activity successfully, and -1 if it did not.

8.6 Local Perceptual Space
Local Perceptual Space (LPS) is a geometric representation of the robot and its immediate environment.

Unlike the internal coordinate system we described in Chapter 4 (a system that represents the dead-
reckoned position of the robot server), the LPS is an egocentric coordinate space that remains clamped to
the robot center (see Figure 8-1).

Units in the LPS are millimeters and degrees. For example, the position of a point artifact in the LPS is
represented by an x and y coordinate in mm, and as an angle relative to the x axis, in degrees. Note:
Starting with version 6.1, all internal and user angles are specified in degrees, rather than radians.

8.6.1 Sonar buffers
The current range readings of all the sonars can be found in the sonar bucket structures (see the section on

the state reflector ,above). As the robot moves, these readings are accumulated in the LPS in three internal
buffers. These buffers are available to user programs and are also used by the obstacle-finding functions in
the next subsection.
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The reading values are placed on the centerline of the sonar at the range that the sonar indicates.
Saphira’s display routines draw sonar readings as small open rectangles, and if the robot moves about
enough, they give a good picture of the world.

The three buffers are the front and two side buffers (left and right). Each buffer is a cbuf structure,
defined below. Client programs, unless they are interested in the temporal sequence of sonar readings, can
treat these buffers as linear structures with size limit. The buffer size can be changed using the functions
defined below.

The reason for having different buffers is that they satisfy different needs of the robot control software.
The front sonars, pointed in the direction of the robot’s travel, warn when obstacles are approaching. But
the spatial definition of these sonars isn’t very good, and it’s almost impossible to distinguish the shape of
the obstacle. A wall in front of the robot, for example, will look only a little bit like a straight line (see the
excellent book by Leonard and Durant-Whyte).
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The side-pointing sonars are somewhat useful for obstacle avoidance, because they signal when it isn’t
useful  to turn to one side or the other. But their main purpose is to delineate features for the recognition
algorithms. They are good for this purpose because the robot often is moving parallel to wall surfaces. As
side sonar readings are accumulated, it’s possible to pick out a nice straight feature.

The buffers differ slightly in how they accumulate sonar readings and therefore serve different purposes.
They are all circular buffers; that is, a new reading replaces the oldest one. The front buffer, sraw_buf,

Figure 8-1. Saphira’s LPS coordinate system.
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accumulates one reading each time a sonar is fired, regardless of whether it sees anything. If nothing is
found, the valid flag at that buffer position is set to 0; otherwise, it is set to 1, and the xbuf and ybuf
slots are set to the position of the sonar reading, in the robot’s local coordinate system. This strategy
guarantees that the front buffer can be cleared out after  nothing has been in the robot’s way for a short
time. For example, if the robot is getting 20 front sonar readings a second, and the front buffer is 30
elements long, it will be completely clear in 1.5 seconds if nothing is in front of the robot.

The two side buffers, sr_buf and sl_buf, accumulate sonar readings only when a side sonar actually
sees a surface; hence, their valid flag is always set. Thus, readings stay in the side buffers for longer
periods of time, and Saphira has a chance to figure out what the features are.

As the robot moves, all the entries in the circular buffers are updated to reflect the robot’s motion; i.e., the

sonar readings stay registered with respect to the robot’s movements.

Listing 8-3.

void sfSetFrontBuffer (int n)
void sfSetSideBuffer (int n)
float sfFrontMaxRange

 These buffers are not currently available in Colbert. The first two functions, when given an argument
greater than zero, set the front and side buffer limits to that argument, respectively. If given an argument of
0, they clear their buffers, that is, set the valid flags to 0. These buffer limits can also be set from the
parameter file; they are initialized for a particular robot on connection.
sfFrontMaxRange is the maximum range at which a front sonar reading is considered valid. It is
initially set to 2500 (2.5 meters). Setting this range higher will make the obstacle-avoidance routines more
sensitive and subject to false readings; setting it lower will make them less sensitive.

8.6.2 Occupancy functions
The following functions look at the raw sonar readings to determine if an obstacle is near the robot. Other

Saphira interpretation micro-tasks use the sonar readings to extract line segments representing walls and
corridors.

Saphira has several functions for testing whether sonar readings exist in areas around the robot. The
different functions are useful in different types of obstacle-detection routines; for example, when avoiding
obstacles in front of the robot, it’s often useful to disregard readings taken from the side sonars.

The detection functions come in two basic flavors: box functions and plane functions. Box functions look
at a rectangular region in the vicinity of the robot, while plane functions look at a portion of a half-plane.

#define CBUF_LEN 200
typedef struct /* Circular buffers. */
{
int start; /* internal buffer pointer */
int end; /* internal buffer pointer */
int limit; /* current buffer size */
float xbuf[CBUF_LEN];
float ybuf[CBUF_LEN];
int valid[CBUF_LEN]; /* set to 1 for valid entry */
} cbuf;

cbuf *sraw_buf, *sr_buf, *sl_buf;
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int sfOccBox (int xy,  int cx, int cy, int h, int w)
int sfOccBoxRet (int xy, int cx, int cy, int h, int w,
                 float *x, float *y)

When using these functions, it helps to keep in mind the coordinate system of the LPS. They look at a
rectangle centered on cy,cy with height h and width w. sfOccBox returns the distance in millimeters to
the nearest point to the center of the robot in the x direction (xy = sfFRONT) or y direction (xy =
sfSIDES). The returned value will always be a positive number, even when looking on the right side of the
robot (negative y values). If no sonar reading is made within the rectangle, it returns 5,000 (5 meters).

For example, in the case of an LPS shown in Figure 8-2,
sfOccBox(sfSIDES,1000,600,900,800,1) returns 300; sfOccBox(sfFRONT, 1000,-
600,900,600,0) returns 600.

sfOccBoxRet returns the same result as sfOccBox, but also sets the arguments *x and *y to the
closest reading in the rectangle, if one exists.

+90

+180

-90

+X

+Y

Front

0
c x : 1 0 0 0 ,  c y : - 6 0 0

h : 9 0 0

w : 8 0 0

Figure 8-2. Sensitivity rectangle for the sfOccBox functions.
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int sfOccPlane (int xy, int source, int d, int s1, int s2)
 int sfOccPlaneRet (int xy, int source, int d, int s1, int s2,
                    float *x, float *y)

The plane functions are slightly different. Instead of looking at a centered rectangle, they consider an
infinite rectangle defined by three sides: a line perpendicular to the direction in question, and two side
boundaries.

Figure 8-3 shows the relevant areas for sfOccPlane(sfFRONT,sfFRONT,600,400,1200). The
first parameter indicates positive x direction for the placement of the rectangle. The second parameter
indicates the source of the sonar information: the front sonar buffer (sfFRONT), the side sonar buffer
(sfSIDES), or both (sfALL).

The rectangle is formed in the positive x direction, with the line X = 600 forming the bottom of the
rectangle. The left side is at Y = 400, the right at Y = -1200. The nearest sonar reading within these bounds
is at an x distance of 650, and that is returned.

Note that the baseline of sfOccPlane is always a positive number. To look to the rear, use an xy
argument of sfBACK; the left side is xy = sfLEFT; and the right side is xy = sfRIGHT.

As with sfOccBox, a value of 5000 is returned if no sonar reading is made. And, to return the
coordinates of the nearest point in the rectangle, use the sfOccPlaneRet function.

8.7 Artifacts
Through Saphira, you can place a variety of artificial constructs within the geometry of the LPS and have

them registered automatically with respect to the robot’s movement. Generally, these artifacts are the result
of sensor interpretation routines and represent points and surfaces in the real world. But they can also be
purely imaginary objects–for example, a goal point to achieve or the middle of a corridor.

Artifacts, like the robot, exist in both the LPS and the global map space. Their robot-relative coordinates
in the LPS (x, y, th) can be used to guide the robot locally; e.g.., to face towards a goal point. Their
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Figure 8-3 Sensitivity rectangle for sfOccPlane functions.
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global coordinates (ax, ay, ath) represent position and orientation in the global space. As the robot
moves, Saphira continuously updates the LPS coordinates of all artifacts, to keep them in their relative
positions with respect to the robot. The global positions of artifacts don’t change, of course. But the dead-
reckoning used to update the robot’s global position as it moves contains errors, and the robot’s global
position gradually decays in accuracy. To bring it back into alignment with stationary artifacts, registration
routines use sensor information to align the robot with recognized objects. These functions are described in
a subsequent section.

You may add and delete artifacts in the LPS. User may add two types of artifacts. Map artifacts are
permanent artifacts representing walls, doorways, and so on in the office environment. Goal artifacts are
temporary artifacts placed in the LPS when a behavior is invoked. The artifact functions as an input to the
behavior– for example, a behavior to reach a goal position exists, and the goal is represented as a point
artifact in the LPS. Usually, these artifacts are deleted when the behavior is completed.

The system also maintains artifacts of different types: An artifact represents the origin of the global
coordinate system, for instance, and various hypothesis artifacts represent hypothesized objects extracted by
the perceptual routines and used by the registration routines.

8.7.1 Points and Lines
All artifacts are defined as C structures. Each has a type and a category. The type defines what the artifact

represents; the simplest artifacts are points and lines, while corridors are a more complex type. You may
define your own artifact types.

The category of an artifact relates to its use by the LPS. Currently, Saphira supports three categories:
system for artifacts with an internal function,  percept for artifacts representing hypothesized objects
extracted from sensor input, and artifact for user-created artifacts such as map information and goal
artifacts..
typedef enum
{
 SYSTEM, PERCEPT, ARTIFACT
} cat_type;

typedef enum
{
 INVALID, POS, WALL, CORRIDOR, LANE, DOOR, JUNCTION, OFFICE, BREAK, OBJECT
} pt_type;

Listing 8-4.

The point type consists of a directed point (position and direction), with an identifier, a type, a category,
and other parameters used by the system. All x,y coordinates are in millimeters, and direction is in degrees
from -180 to 180. The type POS is used for goal positions in behaviors. Other types may add additional
fields to the basic point type– for example, length and width for corridors.
typedef struct
{
  float x, y, th; /* x, y, th position of point relative to robot */
  pt_type type; /* type of point */
  cat_type cat; /* category */
  boolean snew; /* whether we just found it */
  boolean viewable; /* whether it's valid */
  int id; /* unique numeric id */
  float ax, ay, ath; /* global coords */
  unsigned int matched; /* last time we matched */
  unsigned int announced; /* last time we announced */
} point;

Listing 8-5.



110

The orientation of a point is useful when defining various behaviors. For example, a doorway is
represented by a point at its center, a width, and a direction indicating which way is into the corridor.

point *sfCreateLocalPoint (float x, float y, float th)
 point *sfCreateGlobalPoint (float x, float y, float th)
 void   sfSetLocalCoords (point *p)
 void   sfSetGlobalCoords (point *p)

The first two functions use the supplied coordinates to create new ARTIFACT points of type POS, which is
very useful for behavir goal positions. For example, sfCreateLocalPoint(1000.0, 0.0,
0.0)creates a point 1 meter in front of the robot.

The second two functions reset the local or global coordinates from the other set, based on the robots current
position. These functions are useful after making a change in one set of coordinates.

To keep a point’s local coordinates updated within the LPS, it must be added to the pointlist after it is
created. The pointlist is a list of artifacts that Saphira updates when the robot moves.

void sfAddPoint (point *p)
 void sfAddPointCheck (point *p)
 void sfRemPoint (point *p)
 point *sfFindArtifact (int id)
 void sfRemArtifact (int id)
 list *sfPointList

 These functions add and delete members of the pointlist. Ordinarily, to add a point to the pointlist, you
use sfAddPointCheck, which first checks to make sure point p is not in the list already before adding it.
It is not a good idea to have two copies of a pointer to a point in the pointlist, because its position will get
updated twice. The sfRemPoint function removes a point from the list, of course. sfFindArtifact
returns the artifact on the pointlist with identifier id, if it exists; otherwise, it returns NULL. Finally,
sfRemArtifact removes an artifact from the list, given its id.

The pointlist is available as the value of the variable sfPointList. The definition of a list is given in
handler/include/struct.h. If it is necessary to check current artifacts, a function can iterate
through this list.

point *sfGlobalOrigin
 point *sfRobotOrigin

These are SYSTEM points representing the global origin (0,0,0) and the robot’s current position.

8.7.2 Other Artifact Creation Functions
Walls, corridors, doors, junctions, and lanes can all be created with the following help functions. These

artifacts are important in defining maps for the robot.

point *sfCreateLocalArtifact(int type, int id, float x, float y,
float th, float width, float length)

 point *sfCreateGlobalArtifact(int type, int id, float x, float y,
float th, float width, float length)

Type Return Value

Table 8-7. Artifact creation types.
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sfCORRIDO
R

corridor *

sfLANE lane *

sfDOOR door *

sfJUNCTIO
N

junction *

sfWALL wall *

sfPOINT point *

These two functions create and return artifacts of the specified type, using either local or global
coordinates. Table 8.7 shows the allowed types:

Although these functions are declared as returning type point *, in fact they return a pointer to the
appropriate structure, and the result should be cast as such. All these structures are similar in their first
several arguments (i.e., local and global coordinates), so all can be used in the geometry manipulation
functions.

Unlike the sfCreateXPoint functions, these functions automatically add the artifact to the pointlist.
So, if you want to create a point and add it to the pointlist, use the sfPOINT type here, instead of the
sfCreateXPoint functions.

Not all types use all of the parameters: length and width are ignored for sfPOINT,  length is ignored for
sfDOOR and sfJUNCTION., and width is ignored for sfWALL. In general, the x, y ,th coordinates
are for a point in the middle of the artifact. Figure 8-4 hows the geometry of the constructed artifacts.
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Artifacts are most often used in constructing maps for the robot and registering it based on sensor
readings (see Section 8.10).

Figure 8-4 Geometry of artifact types. The defining point for the artifact is shown as a vector with a
circle at the origin.
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8.7.3 Geometry Functions
Saphira provides a set of functions to manipulate the geometric parameters of artifacts. These functions

typically work on the local coordinates of the artifact. To update an artifact properly after changing its local
coordinates, you should call the sfSetGlobalCoords function.

float sfNormAngle(float ang)
 float sfNorm2Angle(float ang)
 float sfNorm3Angle(float ang)
 float sfAddAngle(float a1, float a2)
 float sfSubAngle(float a1, float a2)
 float sfAdd2Angle(float a1, float a2)
 float sfSub2Angle(float a1, float a2)

These functions compute angles in the LPS. Normally, angles in the LPS are represented in degrees, using
floating-point numbers. Artifact angles are always normalized to the interval [ ]0 360, . sfNormAngle will

put its argument into this range. The corresponding functions sfAddAngle and sfSubAngle also
normalize their results in this way.

It is often convenient to give headings in terms of positive (counterclockwise) and negative (clockwise)
angles. The second normalization function, sfNorm2Angle, converts its argument to the range

[ ]−180 180, , so that the discontinuity in angle is directly behind the robot. The corresponding functions

sfAdd2Angle and sfSub2Angle also normalize their results this way.

Finally, it is sometimes useful to reflect all angles into the upper half-plane [ ]−90 90, . The function

sfNorm3Angle will do this to its argument, by reflecting any angles in the lower half-plane around the
X-axis; e.g., +100 degrees is reflected to +80 degrees.

float sfPointPhi (point *p)
 float sfPointDist (point *p)
 float sfPointNormalDist (point *p)
 float sfPointDistPoint(point *p1, point *p2)
 float sfPointNormalDistPoint (point *p, point *q)
 void  sfPointBaricenter (point *p1, point *p2, point *p3)

The first three functions compute properties of points relative to the robot. The function sfPointPhi
returns the angle of the vector between the robot and point p, in degrees from -180 to 180. sfPointDist
returns the distance from the point to the robot. sfPointNormalDist returns the distance from the robot
to the line represented by the artifact point; it will be positive if the normal segment is to the left of the
robot’s x axis, and negative if to the right.

The second three functions compute properties of points. sfPointDistPoint returns the distance
between its arguments. sfPointNormalDistPoint returns the distance from point q to the line
represented by artifact point p. The distance will be positive if the normal segment is to the left of q’s x
axis, and negative if to the right. sfPointBaricenter sets point p3 to be the point midway between
point p1 and p2.

void  sfChangeVP (point *p1, point *p2, point *p3)
 void  sfUnchangeVP (point *p1, point *p2, point *p3);
 float sfPointXo (point *p)
 float sfPointYo (point *p)
 float sfPointXoPoint (point *p, point *q)
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 float sfPointYoPoint (point *p, point *q)
 void  sfPointMove (point *p1, float dx, float dy, point *p2)
 void  sfMoveRobot (float dx, float dy, float dth)

These functions transform between coordinate systems. Because each point artifact represents a coordinate
system, often it is convenient to know the coordinates of one point in another’s system. All functions that
transform points operate on the local coordinates; if you want to update the global coordinates as well, use
sfSetGlobalCoords.

sfChangeVP takes a point p2 defined in the LPS and sets the local coordinates of p3 to be p2’s
position in the coordinate system of p1. sfUnchangeVP does the inverse, that is, takes a point p2 defined
in the coordinate system of p1, and sets the local coordinates of p3 to be p2’s position in the LPS.

In some behaviors it’s useful to know the robot’s position in the coordinate system of a point.
sfPointXo and sfPointYo give the robot’s x and y coordinates relative to their argument’s coordinate
system. sfPointXoPoint and sfPointYoPoint do the same for an arbitrary point q.
sfPointMove sets p2 to the coordinates of p1 moved a distance dx and dy in its own coordinate
system.
sfMoveRobot moves the robot in the global coordinate system by the given amount. This is a trickier

operation than one might suspect, because the local coordinates of all artifacts must be updated to keep
them in proper correspondence with the robot. Note that the values dx and dy are in the robot’s coordinate
system; e.g., sfMoveRobot(1000,0,0) moves the robot forward 1 meter along the direction it is
currently pointing.

Line artifacts are called walls. A wall consists of a straight line segment defined by its directed
centerpoint, plus length. Any linear surface feature may be modeled using the wall structure. The only type
currently defined is WALL.

Like points, walls may be added or removed from the pointlist so that Saphira registers them in the LPS
with the robot’s movements. Cast each to type point before manipulating them with the pointlist functions
described above.

Drawing artifacts on the LPS display screen is useful for debugging behaviors and interpretation routines.
Saphira currently draws most types of artifacts if their viewable slot is greater than 0.

8.8 Sensor Interpretation
Besides the occupancy functions, the Saphira library includes functions for analyzing a sequence of sonar

readings and constructing artifacts that correspond to objects in the robot’s environment. We are gradually
making these internal functions available to users, as we work on tutorial materials illustrating their utility.
Currently, the only interpretation routines are for wall hypotheses.

wall sfLeftWallHyp
 wall sfRightWallHyp

These wall structures contain the current wall hypothesis on the left and right sides of the robot, using the
side sonar buffers. If a wall structure is found, then the viewable flag is set non-zero in the structure, and
the wall dimensions are updated to reflect the sensor readings. For wall hypotheses to be found, the wall-
finding routines must be invoked with sfInitInterpretationProcs.

8.9 Drawing and Color Functions
Use the following commands function to display custom lines and rectangles on the screen and to control

the screen colors. All arguments are in millimeters in the global LPS coordinate system.
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void sfDrawVector (float x1, float y1, float x2, float y2)
 void sfDrawRect (float x, float y, float dx, float dy)
 void sfDrawCenteredRect (float x, float y, float w, float h)

sfDrawVector draws a line from x1, y1 to x2, y2. This line is in global coordinates.

To draw a rectangle, use the function sfDrawCenteredRect or sfDrawRect. The centered version
takes a center point of the rectangle, and a width and height. The non-centered version takes the lower-left
corner position, a width, and a height.

Saphira’s graphics routines now use a state machine model, in which color, line thickness, and other
graphics properties are set by a function, and remain for all subsequent graphics calls until they are set to
new values. Note that because you cannot depend on the state of the graphics context when you make a
graphics call, you should set it appropriately.

void sfSetLineWidth (int w)
 void sfSetLineType (int w)
 void sfSetLineColor (int color)
 void sfSetPatchColor (int color)
 int sfRobotColor
 int sfSonarColor
 int sfWakeColor
 int sfArtifactColor
 int sfStatusColor
 int sfSegmentColor

For lines, set the width w to the desired pixel width. This width affects all lines drawn in rectangles and
vectors. You may select one of two line types: Set the w function parameter to sfLINESOLID for a solid
line, and sfLINEDASHED for a dashed line. The patch and line colors accept a color value as shown in
Table 8.8.

Color Reference Valu
e

sfColorYellow 0

sfColorLightYellow 3

sfColorRed 5

sfColorLightRed 8

sfColorDarkTurquoise 10

sfColorDarkOliveGree
n

11

sfColorOrangeRed 12

sfColorMagenta 13

sfColorSteelBlue 14

sfColorBrickRed 15

sfColorBlack 100

sfColorWhite 101

Saphira drawing colors for the robot icon and various artifacts can be set using the variables shown above.

Table 8.8. Saphira colors.
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8.10 Maps and Registration
Saphira has a set of routines for creating and using global maps of an indoor environment. This facility is

still under construction; this section gives an overview of current capabilities and some of the functions a
client program can access.

A map is a collection of artifacts with global position information. Typically, a map will consist of
corridors, doors, and walls—all artifacts of the offices where the robot is situated. Maps may be loaded and
deleted using the interface Files menu or by using function calls.

A map can either be created by the robot as it wanders around the environment, or you may create one as
a file. You can also save the map created by the robot to a file, for later recall.

8.10.1 Map File Format
A map file contains optional comments, designated with a semicolon (;) prefix, and lines specifying

artifacts in the map. All coordinates for artifacts are global coordinates. For example, Listing 8-6 shows a
portion of the map file for SRI’s Artificial Intelligence Center.

Listing 8-6.

The CORRIDOR lines define a series of corridor artifacts. The number in parentheses is the (optional)
artifact ID, and it must be a positive integer. The first three coordinates are the x, y, and θ position of the
center of the corridor in millimeters and degrees. The fourth coordinate is the length of the corridor, and the
fifth is the width.
DOOR entries are defined in much the same way, except that the third coordinate is the direction of the

normal of the door, which is useful for going in an out. The fourth coordinate is the width of the door.
JUNCTION entries are like doors, but delimit where corridors meet. T-junctions should have three

junction artifacts, and X-junctions four. It’s not necessary to put in any junctions, but they can be useful in
keeping the robot registered (see below).

The WALL entry does not have an ID. The first two coordinates are the x,y position of the center of the
wall; the third is the direction of the wall, and the fourth is its length. Wall segments are used where a
corridor is not appropriate–the walls of rooms or for large open areas, for example.

The map file, when loaded into a Saphira client using the Files/Load Map menu (or the function
sfLoadMapFile), creates the artifact structure shown in Figure 8-5-5. For illustration, the defining point
of the artifact is also shown as a small circle with a vector. These points will not appear in the Saphira
window.

;;
;; Map of a small portion of the SRI Artificial Intelligence Center
;;
;;               X     Y   Th  Length Width
CORRIDOR (1) 2000, 3000, 0,  3500,  800
CORRIDOR (2) 1000, 2000, 90, 6000, 1000
DOOR (3) 3000, 2600, 90,       1000
DOOR (4) 1500, 1000, 180,      1000
JUNCTION (5) 1500, 3000, 0,         800
WALL (6) 1000, 4000, 0,  1000
WALL (8)  800, 3500, 90,  400
WALL  800, 4500, 90,  400



116

corr 1

corr 2

0,0

2.0

2.03.0

1.0

door 3

X

Y

door 4

1.04.0

3.0

junction 5

Note that a map represents artificial structures in the Saphira client, in the same way that latitude and
longitude lines are artifacts in global maps and are not found on the earth’s surface. The robot or simulator
will not pay attention to these lines, because they are internal to the client. This can be a useful feature. For
example, a corridor is conceptually a straight path through an office environment; even where it has door
openings or junctions with other corridors, you can imagine the corridor walls as extended through these
areas. The robot can still go “through” the artifact corridor sides at these points. The registration micro-
tasks (described below) use the map artifacts as registration markers, matching sensor data from the sonars
against this internal model to keep the robot registered on the map.

Obstacles within corridors, such as water coolers or boxes, can be represented using wall structures, such
as the one in corridor 2.

int sfLoadMapFile (char *name)
 int sfSaveMapFile(char *name)
 char *sfMapDir
 int sfDeleteMapArtifacts(void)
 int sfLoadWorldFile(char *name)

The sfLoadMapFile function loads a map file name into Saphira. It returns 0 if successful; -1 if the
file cannot be found. Any map file errors are reported in the message window, but note that only the last one
is displayed long enough to be read.

If the argument to the map file functions is a relative directory path (e.g., maps/mymap), then Saphira
will use the map directory sfMapDir as a prefix for this path. By default, sfMapDir is set to the
directory maps in the top level of the Saphira distribution.

Figure 8-5. Sample map created from the map file above, as shown in a Saphira client. Corridor
artifacts display with double dotted lines; doors display with double solid lines; walls display as single
solid lines; junctions as pairs of solid lines. Numbers are the artifact ID’s. For illustration, the defining
vector for each artifact is shown.
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Loaded artifacts are added to any map artifacts already in the system. To delete all map artifacts, use the
sfDeleteMapArtifacts function. An individual artifact can be deleted using its ID number (see
Section 8.7).

The current client map can be saved to a file using sfSaveMapFile. The saved file is in map file
format, so it can be read in using sfLoadMapFile.

When using the simulator with Saphira clients that have maps, it is useful to have the simulated world
correspond to the map. Unfortunately, the format of simulator world files is different from map files, and
currently no utility exists to convert map files into simulator world files. They must be created by hand.

A simulator world file can be loaded into the simulator either by the menu commands in the simulator, or
by the sfLoadWorldFile command issued from a client connected to the simulator.

8.10.2 Map Registration
As the robot moves, its dead-reckoned position will accumulate errors. To eliminate these errors, a

registration routine attempts to match linear segments and door openings against its map artifacts. This lets
you align the robot’s global position with the global map. The micro-task that performs registration is called
test matching. In the sample Saphira client, this micro-task is invoked by the function
sfInitRegistrationProcs. To disable registration, either do not start the test matching micro-
task, or set its state to sfSUSPEND, using sfTaskSuspend.

The registration micro-tasks will preferentially match a complete doorway or corridor, if it has constructed
the corresponding hypothesis from sonar readings and a suitable map artifact is close by. Otherwise, it will
attempt to match single walls or sides of doorways. Matching corridors and walls helps keep the robot’s
angle aligned, and also its sideways distance. Finding doors helps it to align in a forward/back direction.
Both of these are important to keeping the robot registered, but the angle registration is critical, because the
robot’s dead-reckoned position quickly deteriorates if its heading is off.

Corridor junctions can also be important landmarks for registration. Ideally, junctions should be
automatically generated from intersections of corridors. However, this capability does not currently exist,
and you have to put them in by hand. In Figure 8-5, Junction 5 is only one of three possible junction
artifacts for the corridor intersection. It will be used to register the robot as it moves down Corridor 2, just
as it would be to move through a doorway. To register the robot as it moves in Corridor 1, you would have
to put in the other two junctions at right angles to Junction 5.

8.10.3 Map Element Creation
A by-product of the registration micro-task is that sometimes a corridor or doorway is found that does not

match any map artifact. In this case, Saphira will, by default, create a new artifact and add it to the map. To
turn off this feature, set the variable add_new_features to FALSE.

In finding corridors, Saphira by default attempts to align them on 90 degree angles, which is typical for
office environments. To turn off this feature, set the variable snap_to_right_angle_grid to FALSE.

Map elements can also be created by hand, using the artifact creation functions of Section 8.7.

8.11 File Loading Functions
This section describes functions for loading Colbert files, shared object files, parameter files, and

simulator world files. Map file loading functions can be found in the previous section.
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int sfLoadEvalFile(char *name)
 char *sfLoadDirectory
 int sfLoadParamFile(char *name)
 char *sfParamDir
 int sfLoadWorldFile(char *name)

sfLoadEvalFile loads a Colbert language file or loadable shared object file into Saphira. The load
directory, sfLoadDirectory, is set by default to the value of the environment variable SAPHIRA_LOAD
if it exists, or to the working directory if it doesn’t. The load directory is used as a prefix on relative path
names; absolute path names are always loaded with no modification. All load functions return 0 if
successful, and -1 if not.

Parameter files for different robot servers can be loaded with the sfLoadParamFile function.
Bewcause Saphira clients autoload the correct parameter file when they connect to a robot server, the user
should call this function only in special circumstances. The load directory is in sfParamDir, which is set
by default to the directory params at the top level of the Saphira distribution.

A Saphira client, if it is connected to the simulator, can cause the simulator to load a world file through
the sfLoadWorldFile command.

8.12 Colbert Evaluator Functions
Several library functions add functionality to the Colbert evaluator, by linking the evaluator to native C
functions, variables, and structures. For examples, see Section 1 on the Colbert language.

int sfAddEvalFn (char *name, void *fn, int rtype, int nargs, ...)
 int sfAddEvalVar (char *name, int type, void *v)
 int sfAddEvalConst (char *name, int type, ...)
 int sfAddEvalStruct (char *name, int size, char *ex, int numslots, ...)

These functions all return the Colbert index of the defined Colbert object. Generally this index is not useful
in user programs, and can be ignored. The exception is the sfAddEvalStruct function, which returns
the type index of the Colbert structure.
sfAddEvalFn makes the native C function fn available to Colbert as name. The return type of the
function is rtype, and the number of parameters is nargs. The additional arguments are the types of each
of the parameters. A Colbert function may have a maximum of seven parameters. Functions with a variable
number of parameters should set nargs to the negative of the number of fixed parameters and give the
types of the fixed parameters.
sfAddEvalVar makes a native C variable of type type available to Colbert as name. A pointer to the
variable should be passed in v as type (fvalue *). For example, if the variable is myVar, use
(fvalue *)&myVar. The value of the C variable can be modified from Colbert.

sfAddEvalConst defines a constant in Colbert with name name and type type. The function should
have one additional argument, which is the constant value, either an integer, floating-point number, or
pointer.
sfAddEvalStruct makes a native C structure available to Colbert with name name. The size of the
structure, in bytes, should be given in size. A pointer to an example structure should be passed in ex. The
number of structure elements is given by numslots. The additional arguments are triplets describing the
elements, in any order. A sample element description follows:

“x”, &ex.x, sfFLOAT,

Here x is the Colbert name of the element, &ex.x is a pointer to the example element, and sfFLOAT is
an integer describing the type of the element.
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This function returns the Colbert index of the structure type, which should be saved for future reference by
the program.

int sfINT, sfFLOAT, sfSTRING, sfVOID, sfPTR
 int sfSrobot, sfSpoint
 int sfTypeRef (int type)
 int sfTypeDeref (int type)

These constants and functions refer to Colbert type indices, which are integers. The first set of constants are
the basic type indices for Colbert; the second set are predefined structures. sfTypeRef returns the index
of a pointer to its argument, while sfTypeDeref returns the index to the type referenced by its
argument, or 0 if its argument is not a pointer type index.

void sfAddHelp(char *name, char *str)
 char *sfGetHelp(char *name)

These functions are the C interface to Colbert’s help facility. SfAddHelp adds the string str as a help
string for the Colbert object named name. It puts it in alphabetical order, so that searching for help entries
is easier. The help string may have embedded formatting commands such as “\t” and “\n”.

sfGetHelp returns the help string associated with name, or NULL if there is none.

void sfLoadInit(void)
 void sfLoadExit(void)

When a shared object file is loaded, the special function sfLoadInit, if it is defined in the file, is
evaluated at the end of the load. Colbert variables, functions, and structures are typically defined here.
When a shared object file is unloaded or reloaded, the special function sfLoadExit, if it is defined in the file,
is executed. This function should disable activities that reference C functions and variables defined in the
file.
Note that these functions can be defined in each loaded file. In MS Windows, they must be declared
EXPORT.

8.13 Packet Communication Functions
Saphira contains several functions that help you manage communications between your client application

and the Pioneer server directly (PSOS; see Chapter 4), rather than going through the Saphira OS. If you
start up the Saphira OS with sfStartup, do not use these functions to parse information packets or
send motor control commands.

int sfConnectToRobot(int port, char *name)
 char *sfRobotName
 char *sfRobotClass
 char *sfRobotSubclass

(This Saphira function tries to open a communications channel to the robot server on port type port with
name name. It returns 1 if it is successful; 0 if not. This function also is available as the connect
command in Colbert.

Table 8-9. Port types and names for server connections.

Classification Name Description

Port types sfLOCALPORT Connects to simulator on the host machine
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sfTTYPORT Connects to Pioneer on a tty port

Port names sfCOMLOCAL local pipe or mailslot name
sfCOM1 tty port 1 (/dev/ttya or /dev/cua0 for UNIX;

COM1 for MSW; modem for Mac)
sfCOM2 tty port 2 (/dev/ttyb or /dev/cua1 for UNIX,

COM2 for MSW, printer for Mac)

This function also sets the global variables sfRobotName, sfRobotClass, and sfRobotSubclass
according to the information returned from the robot; see Table 8-10, below. Assuming the environment
variable SAPHIRA is set correctly, it will autoload the correct parameter file from the params directory,
using first the subclass if it exists, and then the class.

Table 8-10. Robot names and classes.
Structure Explanation
(char *)sfRobotName See robot descriptions for information on how to set the name. The

simulator returns the name of the machine it is running on.
(char *)sfRobotClass Robot classes are B14, B21, and Pioneer.
(char

*)sfRobotSubclass
Subclasses are subtypes, e.g., in Pioneer-class robots the subclass is

either pion1 (Pioneer I) or pionat (Pioneer AT).

void sfDisconnectFromRobot (void)

This structure sends the server a close command, then shuts down the communications channel to the
server.

void sfResetRobotVars (void)

Resets the values of all internal client variables to their defaults. Should be called after a successful
connection.

void sfRobotCom (int com)
 void sfRobotComInt (int com, int arg)
 void sfRobotCom2Bytes(int com, int b1, int b2)
 void sfRobotComStr (int com, char *str)
 void sfRobotComStrn (int com, char *str, int n)

These Saphira functions packetize and send a client command to the robot server. Use the command type
appropriate for the type of argument. See Section 7.2 for a list and description of currently supported PSOS
commands.

The string commands send stings in different formats: sfRobotComStr sends out a null-terminated
string (its str argument), and sfRobotComStrn sends out a Pascal-type string, with an initial string
count; in this case str can contain null characters.

The function sfRobotCom2Bytes sends an integer packed from two bytes, an upper byte, b1, and a
lower byte, b2.
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int sfWaitClientPacket (int ms)
 int sfHaveClientPacket (void)

Use sfWaitClientPacket to have Saphira listen to the client/server communication channel for up to
ms milliseconds, waiting for an information packet to arrive from the server. If Saphira receives a packet
within that time period, it returns 1 to your application. If it times out, Saphira returns 0. This function
always waits at least 100 ms if no packet is present. To poll for a packet, use sfHaveClientPacket.

void sfProcessClientPacket (int type)

 sfProcessClientPacket parses a client packet into the sfRobot structure and sonar buffers.
Typically, a client will call sfWaitClientPacket or sfHaveClientPacket to be sure a packet is
waiting to be parsed. The argument to sfProcessClientPacket is a byte, the type of the packet. This
byte can be read using sfReadClientByte. By examining this byte, the client can determine if it wishes
to parse the packet itself, or send it on to sfProcessClientPacket.

int  sfClientBytes (void)
 int  sfReadClientByte (void)
 int  sfReadClientSint(void)
 int  sfReadClientUsint (void)
 int  sfReadClientWord (void)
 char *sfReadClientString (void)

These functions return the contents of packets, if you want to dissect them yourself rather than using
sfProcessClientPacket. sfClientBytes returns the number of bytes remaining in the current
packet. The other functions return objects from the packet: bytes, small integers (2 bytes), unsigned small
integers (2 bytes), words (4 bytes), and null-terminated strings.
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9 Saphira Vision
Current versions of Saphira have both generic vision support and explicit support of the Fast Track Vision

System (FTVS), which is available as an option for the Pioneer 1 Mobile Robot. The FTVS is a product
developed by Newton Labs, Inc. and adapted for Pioneer. The generic product name is the Cognachrome
Vision System. Details about the system, manuals, and development libraries can be found at Newton Labs’
Web site: http://www.newtonlabs.com.

With Saphira, the FTVS intercepts packet communication from the client to robot server, interprets
commands from the client, and sends new vision information packets back to the client. Saphira includes
support for setting some parameters of the vision system, but not for training the FTVS on new objects, or
for viewing the output of the camera. For this, please see the FTVS user manual about operating modes. In
the future, we intend to migrate some of the training functions to the Saphira client. We also intend to have
Saphira display raw and processed video.

Saphira also includes built-in support for interpreting vision packet results. If your robot has a vision
system, Saphira will automatically interpret vision packets and store the results as described below.

9.1  Channel modes
The FTVS supports three channels of color information: A, B, and C. Each channel can be trained to

recognize its own color space. Each channel also supports a processing mode, which determines how the
video information on that channel is processed and sent to Saphira. A channel is in one of three modes:

 BLOB_MODE  0
 BLOB_BB_MODE 2
 LINE_MODE 1
Note: these definitions, as well as other camera definitions, can be found in

handler/include/chroma.h

 To change the channel mode from a Saphira client, issue this command:
sfRobotComStr (VISION_COM,"pioneer_X_mode=N")

where the mode N is 0, 1, or 2, and the channel X is a, b, or c (small letters). On start-up, the vision
system channels are set to BLOB_MODE. (The processing performed in BLOB_MODE,
BLOB_BB_MODE, and LINE_MODE is explained in the FTVS manual.)

As Table 9-1 shows, several FTVS parameters affect the processing in line mode.
Table 9-1. FTVS parameters used to determine a line segment.

Parameter Description

line_bottom_row First row for line processing

line_num_slices How many rows are processed

line_slice_size How many pixels thick each row is

line_min_mass Number of pixels needed to

These parameters can be set using a command such as the following:

sfRobotComStr (VISION_COM,”line_bottom_row=0”)
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9.2 Vision Packets
If the FTVS is working properly, it will send a vision packet every 100 ms to the Saphira client. In the

information window, the VPac slot should read about 10, indicating that 10 packets/second are being
delivered. If it reads 0, the vision system is not sending information.

Saphira parses these packets into a vision information structure (see Listing 9-1).

struct vinfo {
int type; /* BLOB, BLOB_BB or LINE MODE */
int x, y; /* center of mass */
int area; /* size */
int h, w; /* height and width of bounding box */
int first, num; /* first and number of lines */
};

Listing 9-1. Saphira vision information structure.

In BLOB_MODE, the x, y, and area slots are active. The x,y coordinates are the center of mass of the
blob in image coordinates, where the center of the image is 0,0. For the lens shipped with the FTVS, each
pixel subtends approximately degree:
#define DEG_TO_PIXELS 3.0 /* approximately 3 pixels per degree */

This constant lets a client convert from image pixel coordinates to angles. The area is the approximate
size of the blob in pixels. If the area is 0, no blob was found.

In BLOB_BB_MODE, the bounding box of the blob is also returned, with h and w being the height and
width of the box in pixels.

In LINE_MODE, the slots x, first, and num are active. The value x is the horizontal center of the line.
first is the first (bottom-most) row with a line segment, and num is the number of consecutive rows with
line segments. If no line was found, num is zero.

The following global variables hold information for each channel: extern struct vinfo
sfVaInfo, sfVbInfo, sfVcInfo.

For example, to see if channel A is in BLOB_MODE, use this command:
sfVaInfo.type == 0

9.3 Sample Vision Application
The sample Saphira client which enables the FTVS can be found as the source file

handler/src/apps/btech.c and /chroma.c.  The compiled executables are found in the bin/
directory.  These files define functions to put the channels into BLOB_BB_MODE, to turn the robot looking
for a blob on channel A, to draw the blob on the graphics window, and to approach the blob.

This sequence sets up parameters of the vision system, putting all channels into BLOB_BB_MODE and
initializing line parameters:

void setup_vision_system(void)

This one returns the X-image-coordinate of a blob on channel (0=A, 1=B, 2=C), if the blob’s center is
within delta pixels of the center of the image:

int found_blob(int channel, int delta)

If no blob is found with these parameters, it returns -1000.
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void draw_blobs(void)

This is the process for drawing any blobs found by the vision system. The blob is drawn as a rectangle
centered at the correct angular position, and at a range at which a surface two feet on a side would produce
the perceived image size. The size of the rectangle is proportional to the image area of the blob.

void find_blob(void)

This command defines the activity for turning left until a blob is found in the center of the image on
channel A, or until 20 seconds elapses.

void search_and_go_blob(void)

This command defines the activity for finding a blob (using find_blob) on channel A, then
approaching it. It uses sonars to detect when it is close to the blob.
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10 Parameter Files
This section describes the parameter files used by the Pioneer simulator and Saphira client to describe the
physical robot and its characteristics.

10.1 Parameter File Types
Pioneer robots have four parameter files:

pioneer.p
psos41x.p
psos41m.p
psosat.p

The  sequence 41 refers to PSOS versions equal to or greater than PSOS version 4.1. Early versions of the
Pioneer that have not been upgraded to at least version 4.1 should use the pioneer.p parameter file.
These Pioneers do not send an autoconfiguration packet; therefore, Saphira clients by default are configured
for pre-PSOS 4.1 robots and will correctly control these robots without explicitly loading a parameter file.
Pioneer robots with PSOS 4.1 or later send an autoconfiguration packet on connection that tells the Saphira
client which parameter file to load. Pioneers made before August 1996 use old-style motors, and these load
psos41x.p. Those made after this date use new-style motors, and load psos41m.p. The only difference
is in some of the conversion factors for distance and velocity.
The Pioneer AT has its own parameter file, pionat.p. The only change from psos41m.p is that the
robot is larger than the other Pioneers.
The B14 and B21 robots from RWI also have parameter files, b14.p and b21.p.

10.2 Sample Parameter File
The sample parameter file in Listing 10-1 illustrates most of the parameters that can be set. This is the file
psos41m.p. An explanation of the parameters is given in Table 10-1, below.

;;
;; Parameters for the Pioneer robot
;; New motors
;;
AngleConvFactor 0.0061359 ; radians per encoder count diff (2PI/1024)
DistConvFactor 0.05066   ; 5in*PI / 7875 counts (mm/count)
VelConvFactor   2.5332   ; mm/sec / count  (DistConvFactor * 50)
RobotRadius    220.0   ; radius in mm
RobotDiagonal     90.0   ; half-height to diagonal of octagon
Holonomic 1   ; turns in own radius
MaxRVelocity 2.0   ; radians per meter
MaxVelocity  400.0     ; mm per second

;;
;; Robot class, subclass
;;
Class Pioneer
Subclass PSOS41m
Name Erratic

;; These are for seven sonars: five front, two sides
;;
;; Sonar parameters
;; SonarNum N is number of sonars
;; SonarUnit I X Y TH is unit I (0 to N-1) description
;;   X, Y are position of sonar in mm, TH is bearing in degrees
;;
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Listing 10-1. The example parameter file, psos41m.p, shows how to set most Saphira parameters.

RangeConvFactor 0.1734 ; sonar range mm per 2 usec tick
;;
SonarNum 7
;;         #   x   y   th
;;-------------------------
SonarUnit  0  100 100  90
SonarUnit  1  120  80  30
SonarUnit  2  130  40  15
SonarUnit  3  130   0   0
SonarUnit  4  130 -40 -15
SonarUnit  5  120 -80 -30
SonarUnit  6  100 -100 -90
SonarUnit  7    0   0   0

;; Number of readings to keep in circular buffers
FrontBuffer 20
SideBuffer  40

Listing 10-2.

Floating-point parameters can be in any standard format and do not require a decimal point. Integer
parameters may not have a decimal point. Strings are any sequence of non-space characters.

Table 10-1. Functions of Saphira parameters.

Parameter Type Description
AngleConvFactor float Converts from robot angle units (4096 per revolution) to radians.
VelConvFactor float Converts from robot velocity units to mm/sec
DistConvFactor float Converts from robot distance units to mm
DiffConvFactor float Converts from robot angular velocity to rads/sec
RangeConvFactor float Converts from robot sonar range units to mm

Holonomic integer Value of 1 says the robot is holonomic (can turn in place); value of 0
says it is nonholonomic (front-wheel steering). Holonomic robot icon
is octagonal; nonholonomic is rectangular.

RobotRadius float Radius of holonomic robot in mm.
RobotDiagonal float Placement of the horizontal bar indicating the robot’s front, in mm

from the front end. (Sorry about the name.)
RobotWidth float Width of nonholonomic robot, in mm.
RobotLength float Length of nonholonomic robot, in mm.

MaxVelocity float Maximum velocity of the robot, in mm/sec.
MaxRVelocity float Maximum rotational velocity of the robot in degrees/sec.
MaxAcceleration float Maximum acceleration of the robot in mm/sec/sec

Class string Robot class: pioneer, b14, b21. Not case-sensitive. Useful only for
the simulator, which will assume this robot personality. The client
gets this info from the autoconfiguration packet.

Subclass string Robot subclass. For the Pioneer, indicates the type of controller and
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body combination. Values are psos41m, psos41x, or pionat. Not
case-sensitive. Useful only for the simulator, as for the Class
parameter.

Name string Robot name. Useful only for the simulator, as for the Class
parameter.

SonarNum integer Number of active sonars.
SonarUnit n,x,y,th Description sonar unit n. The x,y,th arguments describe the pose of

the sonar on the robot body, relative to the robot center. Provide one
such entry for each active sonar unit. Used by both the simulator and
client.

FrontBuffer integer Number of front sonar readings to keep. Higher values mean the robot
will be more sensitive to obstacles but slower to get rid of moving
obstacle readings.

SideBuffer integer Number of side sonar readings to keep. Higher values mean the
interpretation routines can find longer side segments.
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11 Sample World Description File
Worlds for the simulator are defined as a set of line segments using absolute or relative coordinates.

Comment lines begin with a semicolon. All other non-blank lines are interpreted as directives.
The first two lines of the file describe the width and height of the world, in millimeters. The simulator

won’t draw lines outside these boundaries. It’s usually a good idea to include a “world boundary” rectangle,
as is done in the example below, to keep the robot from running outside the world.

Any entry in the world file that starts with a number is interpreted as creating a single line segment. The
first two numbers are the x,y coordinates of the beginning and the second two are the coordinates of the end
of the line segment. The coordinate system for the world starts in the lower left, with +Y pointing up and
+X to the right (Figure 11-1).

+X, 0 degrees

+Y, 90 degrees

0,0

Figure 11-1. Coordinate system for world definition.

The position of segments may also be made relative to an embedded coordinate system. The push x y
theta directive in the world file causes subsequent segments to use the coordinate system with origin at
x,y and whose x axis points in the direction. The theta. push directives may be nested, in which case
the new coordinate system is defined with respect to the previous one. A pop directive reverts to the
previous coordinate system.

The position x y theta directive positions the robot at the indicated coordinates.

Listing 11-1 is a fragment of the simple.wld world description file found in Saphira’s worlds
directory.

;;; Fragment of a simple world

width 38000
height 30000

  0 0 0 30000 ; World frontiers
  0 0 38000 0
  38000 30000 0 30000
  38000 30000 38000 0

push 10000 14000 0
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;; upper corridor          ; length = 14,600; width = 2,000
  0 12000 3000 12000 ; EJ 231 - J. Lee
  3900 12000 4200 12000 ; EJ 233 - D. Moran
  5100 12000 8000 12000 ; EJ 235 - J. Bear
  8900 12000 9200 12000 ; EJ 237 - E. Ruspini
  10000 12000 12000 12000 ; EJ 239 - J. Dowding
  12800 12000 14600 12000

;; Starting position

position 17500 14000 -90

Listing 11-1. Fragment of the simple.wld world description file found in Saphira’s worlds
directory.



130

12 Saphira API Reference

Artifacts Page
void sfAddAngle 112
void sfAdd2Angle 112
void sfAddPoint(point *p) 110
void sfAddPointCheck(point *p) 110
void sfChangeVP(point *p1, point *p2, point *p3) 112
point *sfCreateGlobalPoint(float x, float y, float th) 110
point *sfCreateLocalPoint(float x, float y, float th) 110
point *sfFindArtifact(int id) 110
point *sfGlobalOrigin 110
void sfMoveRobot(float dx, float dy, float dth) 113
void sfNormAngle 112
void sfNorm2Angle 112
void sfNorm3Angle 112
void sfPointBaricenter(point *p1, point *p2, point *p3) 112
float sfPointDist(point *p) 112
float sfPointDistPoint(point *p1, point *p2) 112
void sfPointMove(point *p1, float dx, float dy, point *p2) 113
float sfPointNormalDist(point *p) 112
float sfPointNormalDistPoint(point *p, point *q) 112
float sfPointPhi(point *p) 110
float sfPointXo(point *p) 112
float sfPointXoPoint(point *p, point *q) 112
float sfPointYo(point *p) 112
float sfPointYoPoint(point *p, point *q) 113
void sfRemPoint(point *p) 110
point *sfRobotOrigin 110
void sfSetGlobalCoords(point *p) 110
void sfSetLocalCoords(point *p) 110
void sfSubAngle 112
void sfSub2Angle 112
void sfUnchangeVP(point *p1, point *p2, point *p3) 112

Behaviors
BEHCLOSURE sfFindBehavior(char *name)Error! Bookmark not defined.
BEHCLOSURE sfInitBehavior(behavior *b, int priority,

int running, ...) Error! Bookmark not defined.
BEHCLOSURE sfInitBehaviorDup(behavior *b, int priority,

int running, ...) Error! Bookmark not defined.
int sfBehaviorControl 57
void sfBehaviorOff(BEHCLOSURE b) Error! Bookmark not defined.

void sfBehaviorOn(BEHCLOSURE b) Error! Bookmark not defined.

void sfKillBehavior(BEHCLOSURE b) Error! Bookmark not defined.

void sfSetBehaviorState(BEHCLOSURE b, int state)Error! Bookmark not defined.

Behaviors; Predefined Saphira
behavior *sfAttendAtPos Error! Bookmark not defined.

behavior *sfAvoidCollision Error! Bookmark not defined.
behavior *sfConstantVelocity 60
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behavior *sfFollow Error! Bookmark not defined.

behavior *sfFollowCorridor Error! Bookmark not defined.

behavior *sfFollowDoor Error! Bookmark not defined.

behavior *sfGoToPos Error! Bookmark not defined.

behavior *sfKeepOff Error! Bookmark not defined.
behavior *sfStop 60
behavior *sfStopCollision Error! Bookmark not defined.

behavior *TurnTo Error! Bookmark not defined.

Direct Motion Control
int sfDoneHeading 100
int sfDonePosition(int dist) 100
void sfSetDHeading(int dhead) 100
void sfSetHeading(int head) 100
void sfSetMaxVelocity(int vel) 100
void sfSetPosition(int dist) 100
void sfSetRVelocity(int rvel) 100
void sfSetVelocity(int vel) 100
void sfTargetHead(void) 100
void sfTargetVel(void) 100

Drawing and Color
void sfDrawCenteredRect(float x, float y, float w, float h) 114
void sfDrawRect(float x,float y,float dx,float dy) 114
void sfSetLineColor(int color) 114
void sfSetLineType(int w) 114
void sfSetLineWidth(int w) 114
void sfSetPatchColor(int color) 114
void sfSetTextColor(int color)

Fuzzy Variables
float down_straight(float x, float min, float max) 57
float f_and(float x, float y) 58
float f_eq(float x, float c, float delta) 57
float f_greater(float x, float c, float delta) 57
float f_not(float x) 58
float f_or(float x, float y) 58
float f_smaller(float x, float c, float delta) 57
float straight_up(float x, float min, float max) 57

Activities
int finished(process *p) Error! Bookmark not defined.
process *intend_beh(behavior *b, char *name, int timeout,
beh_params params, int priority) Error! Bookmark not defined.
process *sfInitActivity(void (*fn)(void), char *name,

 int timeout, ...) Error! Bookmark not defined.

Map File
int sfLoadMapFile(char *name) <Unix; MSW> 116
int sfLoadMapFile(char *name, int vref) <Mac> 116

Occupancy
int sfOccBox(int xy,  int cx, int cy, int h, int w) 107
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int sfOccBoxRet(int xy, int cx, int cy, int h, int w,
float *x, float *y) 107

int sfOccPlane(int xy, int source, int d, int s1, int s2) 108
int sfOccPlaneRet(int xy, int source, int d, int s1, int s2,

float *x, float *y) 108

OS and Window Functions
int myButtonFn(int x, int y, int b) 95
int myKeyFn(int ch) 95
void sfButtonProcFn(int (*fn)()) 95
void sfErrMessage(char *str) 95
void sfErrSMessage(char *str, ...) Error! Bookmark not defined.
void sfKeyProcFn(int (*fn)()) 95
void sfOnConnectFn(void (*fn)()) 94
void sfOnDisconnectFn(void (*fn)()) 94
void sfOnStartupFn(void (*fn)()) 94
float sfScreenToWorldX(int x, int y) 95
float sfScreenToWorldY(int x, int y) 95
void sfSetDisplayState(int menu, int state) 95
void sfSMessage(char *str, ...) Error! Bookmark not defined.

void sfStartup(HANDLE hInst, int cmdShow, int async)Error! Bookmark not
defined.

void sfStartup(int async) Error! Bookmark not defined.

void sfPause(in ms) Error! Bookmark not defined.
int sfIsConnected 94

Packet Functions
char *sfReadClientString(void) 121
int sfClientBytes(void) 121
int sfConnectToRobot(int port, char *name) 119
int sfHaveClientPacket(void) 121
int  sfReadClientByte(void) 121
int  sfReadClientSint(void) 121
int  sfReadClientUsint(void) 121
int  sfReadClientWord(void) 121
int sfWaitClientPacket(int ms) 121
void sfDisconnectFromRobot(void) 120
void sfProcessClientPacket(void) 121
void sfResetRobotVars(void) 120
void sfRobotCom(int com) 120
void sfRobotCom2Bytes(int b1, int b2) 120
void sfRobotComInt(int com, int arg) 120
void sfRobotComStr(int com, char *str) 120
void sfRobotComStrn(int com, char *str, int n) 120

Processes
process *sfFindProcess(char *name) 103
process *sfInitProcess(void *fn(void), char *name) 103
void sfInterruptProcess(process *p) 103
void sfInterruptSelf(void) 103
void sfResumeProcess(process *p 103
void sfSetProcessState(process *p, int state) 103
void sfSuspendProcess(process *p, int n) 103
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void sfSuspendSelf(int n) 103

Processes; Predefined
void sfInitBasicProcs(void) 96
void sfInitControlProcs(void) 96
void sfInitInterpretationProcs(void) 97
void sfInitRegistrationProcs(void) 97

Sensor Interpretation
wall sfLeftWallHyp 113
wall sfRightWallHyp 113

Sonars
float sfFrontMaxRange 106
void sfSetFrontBuffer(int n) 106
void sfSetSideBuffer(int n) 106
int sfSonarRange(int num) 99
int sfSonarNew(int num) 99
float sfSonarXCoord(int num) 99
float sfSonarYCoord(int num) 99

State Reflection
struct robot sfRobot 98
int sfStalledMotor(int which) 99
void sfTargetHead(void) 100
void sfTargetVel(void) 100

Vision
void draw_blobs(void) 124
void find_blob(void) 124
int found_blob(int channel, int delta) 123
sfRobotComStr(VISION_COM,"line_bottom_row=0") 122
sfRobotComStr(VISION_COM,"pioneer_X_mode=N") 122
void search_and_go_blob(void) 124
void setup_vision_system(void) 123
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13 Index
activities

defining, 34
Activities

intend_beh, 103
invoking behaviors, 103

Activities window, 21
activity, 1
Activity

loading, 12
activity files

demo.act, 12
Activity language. See Colbert
API

artifacts, 107
Drawing and Color, 112. See  drawing and color
Fuzzy variables, 57. See  fuzzy variables
General. See  API
maps, 114. See  maps
Motor stall, 97
OS functions, 93
window mode. See  OS functions

argument types, 86
Artifacts, 15, 107

points and lines, 108. See  points and lines
async sample client, 80
asynchronous routines, 65
Asynchronous routines, 9
Attend at position parameters, 61
autoconfiguration, 90
AUTOEXEC.BAT, 22
Avoid collision parameters, 60
bat, 16
battery, 16
Behavior executive, 56
Behavior grammar, 56
behavior.beh, 60
Behaviors

sfInitBehavior, 54
Behaviors

Attend At Position, 61
Avoid Collision, 60
behavior.beh, 60
Constant Velocity, 60
Description, 11
Follow Corridor, 62
Follow Door, 63
Follow Lane, 62
Go To Position, 61
grammar, 56
implementing, 58
init function, 58
input parameters, 58
keep off, 19
Keep Off, 61

Predefined, 59
rules, 58
schema, 59
Stop Collision, 60
Turn To, 63
update function, 58
window, 18

Behaviors window, 18
Behaviors:, 54
Bxx

connecting, 13
C++ programs, 65
cd, 32
Channel modes, 121
checksum, 84
chroma.h, 121
Client

Activities window, 21
artifacts, 15
bat, 16
battery, 16
Behaviors window, 18
commands, 85. See Client commands
connect menu, 17
connect menu:. See  files menu. See  connect menu
control point, 14
CPU, 16
display, 13
display menu, 17. See  display menu
files menu, 17
functions menu, 17
grow, 17
Information area, 15
interaction area, 16
keyboard, 18
main window, 13
MPac, 16
obstacle sensitivity, 14
position, 16
Processes window, 20
shrink, 17
sonars, 14
sonars menu, 17. See  sonars menu
SPac, 16
Starting, 1
status, 15
velocity, 16
velocity vectors, 14
VPac, 16

Client commands
argument types, 86
communication rate, 85
composition, 86
General, 85
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PSOS, 86
saphira.h, 86

Client installation. See Installation
Clients

async example, 80
direct example, 76
nowin example, 81
packet example, 78
saphira example, 72

Colbert, 1, 28
Activities, 11, 34
evaluator, 16, 28
example, 28
help facility, 30
interaction area, 16, 30
Language, 11
load directory, 31, 32
loading files, 28, 31
loading shared object files, 31
sample applications, 32
syntax errors, 30

Colbert commands
cd, 32
connect, 33
connection, 33
direct motion, 33
disconnect, 33
exit, 33
halt, 34
move, 34
pwd, 32
rotate, 34
set baud, 33
set serial, 33
set server, 33
speed, 34
turn, 34
turnto, 34

COMDHEAD, 86
COMDIGOUT, 86
Communication packets, 83. See  packets
communications rate, 87
COMOPEN, 86
COMORIGIN, 86
compiling clients, 65

MS Visual C++, 68
system requirements, 64
Unix clients, 66

COMPOLLING, 86
Components

Optional, 2
COMPTUPOS, 86
COMPULSE, 86
COMSETO, 86
COMSTEP, 86
COMTIMER, 86

COMVEL, 86
config.h, 70
configuration, 90
connect, 17, 33
connect menu

connect, 17
disconnect, 17, 26

Connecting, 12
CPU, 16
data types, 84
delete map, 17
demo.act, 12
direct client example, 76
direct motion, 28, 33
direct motion control, 56
Direct motion control, 11, 98
disconnect, 17, 26, 33
display

states, 94
display menu, 17

local, 17
occ grid, 17
single step, 17
wake, 17

display states, 94
down_straight, 57
draw_blobs, 123
drawing and color

set_vector_buffer, 113
sfDrawCenteredRect, 113
sfDrawRect, 113
sfSetLineColor, 113
sfSetLineType, 113
sfSetLineWidth, 113
sfSetPatchColor, 113

Email
pioneer-support, 5
pioneer-users, 5
saphira-users, 5

environment variable
LD_LIBRARY_PATH, 4
SAPHIRA_LOAD, 12

environment variables, 22
SAPHIRA, 22
SAPHIRA_COMPIPE, 22
SAPHIRA_COMSERIAL, 22
SAPHIRA_COMSERVER, 22
SAPHIRA_LOAD, 22, 32
SAPHIRA_SERIALBAUD, 22
setting, 22

errors, 85
exit, 33
exit menu, 27
f_and, 58
f_eq, 57
f_greater, 57
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f_not, 58
f_or, 58
f_smaller, 57
Fast Track Vision System, 121
files menu

delete map, 17
save map, 17

find_blob, 123
Follow corridor parameters, 62
Follow door parameters, 63
Follow lane parameters, 62
found_blob, 122
functions menu, 17
fuzzy variables

down_straight, 57
f_eq, 57
f_greater, 57
f_or, 58
f_smaller, 57
straight_up, 57

Fuzzy variables, 57
combination functions, 58

Go to position parameters, 61
grow, 17, 26
Gzip. See Installation
halt, 34
help facility, 30
information area, 27
information packet, 87
init.act, 12
Installation, 2
intend_beh, 103
interaction area, 16
Interaction area, 30
Keep off behavior, 19
Keep off parameters, 61
keyboard, 18, 75
keyboard actions, 75
Konolige, Dr. Kurt, 1
LD_LIBRARY_PATH environment variable, 4
load directory, 12, 31, 32
load menu

load param file, 26
load world file, 26

load param file, 26
load world file, 26
loading files, 31

load directory, 32
object files, 31

Loading files
Colbert files, 28

local, 17
Local Perceptual Space, 103, 104
LPS, 103. See  Local Perceptual Space
main window, 13
manual drive, 18

maps
file format, 114
registration and creation, 116
sfLoadMapFile, 115

Menus. See  also Client
Saphira client, 16
Simulator, 26

micro-tasking OS, 7, 8, 65, 66
micro-tasks, 7, 8, 9, 10, 12, 20, 21, 65, 66, 69, 70, 72,

74, 80, 81, 96, 100. See processes
motion setpoint, 11, 98
motor stall

sfStalledMotor, 98
Motor stall, 97
mouse, 75
mouse actions, 75
move, 34
MPac, 16
MS Visual C++, 68
myButtonFn, 94
myKeyFn, 94
Newsgroups

pioneer-users, 5
saphira-users, 5

Newton Labs, Inc, 121
nowin example client, 81
occ grid, 17
occupancy

sfOccBox, 106
sfOccBoxRet, 106
sfOccPlaneRet, 107

occupancy:, 107
Open Agent Architecture (OAA), 6, 10, 12
OS functions

sfIsConnected, 93
sfPause, 93

OS functions
display states, 94
myButtonFn, 94
myKeyFn, 94
sfButtonProcFn, 94
sfErrMessage, 94
sfErrSMessage, 94
sfKeyProcFn, 94
sfMessage, 94
sfOnConnectFn, 93
sfOnDisconnectFn, 93
sfOnStartupFn, 93
sfScreenToWorldX, 94
sfScreenToWorldY, 94
sfSetDisplayState, 94
sfSMessage, 94
sfStartup, 93

os.h, 70
packet client example, 78
packet communication, 7, 9, 69, 81, 97, 121
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packet functions
sfRobotCom2Bytes, 119

packet functions
port types and names, 119
sfClientBytes, 120
sfConnectToRobot, 118
sfDisconnectFromRobot, 119
sfHaveClientPacket, 120
sfProcessClientPacket, 120
sfReadClientByte, 120
sfReadClientSint, 120
sfReadClientString, 120
sfReadClientUsint, 120
sfReadClientWord, 120
sfResetRobotVars, 119
sfRobotCom, 119
sfRobotComInt, 119
sfRobotComStr, 119
sfRobotComStrn, 119
sfWaitClientPacket, 120

packets
checksum, 84
data types, 84
errors, 85
protocols, 83

Parameter File, 124
parameter files, 25
PCOMCLOSE, 86
pioneer-support, 5
Pkzip. See Installation
points and lines

sfAdd2Angle, 111
sfAddAngle, 111
sfAddPoint, 109
sfAddPointCheck, 109
sfChangeVP, 112
sfCreateGlobalPoint, 109
sfCreateLocalPoint, 109
sfFindArtifact, 109
sfGlobalOrigin, 109
sfMoveRobot, 112
sfNorm2Angle, 111
sfNorm3Angle, 111
sfNormAngle, 111
sfPointBaricenter, 111
sfPointDist, 111
sfPointDistPoint, 111
sfPointMove, 112
sfPointNormalDist, 111
sfPointNormalDistPoint, 111
sfPointPhi, 111
sfPointXo, 112
sfPointXoPoint, 112
sfPointYo, 112
sfPointYoPoint, 112
sfRemPoint, 109

sfRobotOrigin, 109
sfSetGlobalCoords, 109
sfSetLocalCoords, 109
sfSub2Angle, 111
sfSubAngle, 111
sfUnchangeVP, 112

port types and names, 119
Predefined Behaviors, 59
Procedural Reasoning System, 10
processes

sfFindProcess, 102
sfInitProcess, 102
sfInterruptProcess, 102
sfInterruptSelf, 102
sfResumeProcess, 102
sfSetProcessState, 102
sfSuspendProcess, 102
sfSuspendSelf, 102
state values, 100

Processes
window, 20

Processes window, 20
PSOS, 83, 86
pwd, 32
README, 65
recenter menu, 27
registration, 96, 114
Registration, 10, 12, 92
robot configuration, 90
rotate, 34
sample applications, 32

demo.act, 32
direct.act, 32
packet.act, 32

Saphira
API, 93. See  API
behaviors, 53. See  Behaviors
Behaviors, 11
colors, 113
compiling clients, 65
General description, 1
Global Map Space (GMS), 10
maps, 114
multiprocessing, 100
Occupancy functions, 105. See  occupancy
packet functions, 118. See  packet functions
Path, 4
processes, 95, 100, 102. See  Saphira processes
Quick start, 4
Representation of space, 10
Robots, 1
Servers, 83
vision, 121

Saphira behaviors, 53
Saphira colors, 113
SAPHIRA environment variable, 3, 4, 65, 67, 68, 119
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saphira example client, 72
Saphira maps, 114
Saphira processes, 95

, 95
sfInitControlProcs, 95
sfInitInterpretationProcs, 96
sfInitRegistrationProcs, 96

Saphira vision, 121
Saphira: Local Perceptual Space (LPS), 10
SAPHIRA_COMPIPE, 22
SAPHIRA_COMSERIAL, 22
SAPHIRA_COMSERVER, 22
SAPHIRA_LOAD, 12, 22, 32
SAPHIRA_SERIALBAUD, 22
save map, 17
search_and_go_blob, 123
sensor interpretation, 96, 112
Sensor interpretation routines, 11
serial port

connecting, 13
Server

Information packet, 87
Server information packet, 87
Servers, 83

autoconfiguration, 90
Pioneer Server Operating System, 83
position integration, 91
sfCOMCLOSE, 90
sfCOMDHEAD, 91
sfCOMOPEN, 90
sfCOMPOLLING, 92
sfCOMPULSE, 90
sfCOMSETO, 91
sfCOMSYNC, 89
sfCOMVEL, 91
shut down, 89
sonars, 92
start up, 89

set, 33
set_vector_buffer, 113
setup_vision_system, 122
sfAdd2Angle, 111
sfAddAngle, 111
sfAddHelp, 30
sfAddPoint, 109
sfAddPointCheck, 109
sfAttendAtPos, 61
sfAvoidCollision, 60
sfBehaviorControl, 57
sfButtonProcFn, 94
sfChangeVP, 112
sfClientBytes, 120
sfCOMCLOSE, 90
sfCOMDHEAD, 91
sfCOMOPEN, 90
sfComPipe, 33

sfCOMPOLLING, 92
sfCOMPULSE, 90
sfCOMRVEL, 91
sfComSerial, 33
sfComServer, 33
sfCOMSETO, 91
sfCOMSYNC, 89
sfCOMVEL, 91
sfCOMVEL2, 91
sfConnectToRobot, 118
sfConstantVelocity, 60
sfCreateGlobalPoint, 109
sfCreateLocalPoint, 109
sfDisconnectFromRobot, 119
sfDoneHeading, 34, 99
sfDonePosition, 34, 99
sfDrawCenteredRect, 113
sfDrawRect, 113
sfErrMessage, 94
sfErrSMessage, 94
sfFindArtifact, 109
sfFindProcess, 102
sfFollow, 62
sfFollowCorridor, 62
sfFollowDoor, 63
sfFrontMaxRange, 105
sfGlobalOrigin, 109
sfGoToPos, 61
sfHaveClientPacket, 120
, 95
sfInitBehavior, 54
sfInitBehaviorDup, 54
sfInitControlProcs, 95
sfInitInterpretationProcs, 96
sfInitProcess, 102
sfInitRegistrationProcs, 96
sfInterruptProcess, 102
sfInterruptSelf, 102
sfIsConnected, 93
sfKeepOff, 61
sfKeyProcFn, 94
sfLeftWallHyp, 112
sfLoadDirectory, 32
sfLoadMapFile, 115
sfMessage, 94
sfMoveRobot, 112
sfNorm2Angle, 111
sfNorm3Angle, 111
sfNormAngle, 111
sfOccBox, 106
sfOccBoxRet, 106
sfOccPlane, 107
sfOccPlaneRet, 107
sfOnConnectFn, 93
sfOnDisconnectFn, 93
sfOnStartupFn, 93
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sfPause, 93
sfPointBaricenter, 111
sfPointDist, 111
sfPointDistPoint, 111
sfPointMove, 112
sfPointNormalDist, 111
sfPointNormalDistPoint, 111
sfPointPhi, 111
sfPointXo, 112
sfPointXoPoint, 112
sfPointYo, 112
sfPointYoPoint, 112
sfProcessClientPacket, 120
sfReadClientByte, 120
sfReadClientSint, 120
sfReadClientString, 120
sfReadClientUsint, 120
sfReadClientWord, 120
sfRemPoint, 109
sfResetRobotVars, 119
sfResumeProcess, 102
sfRightWallHyp, 112
sfRobot, 97
sfRobotCom, 119
sfRobotCom2Bytes, 119
sfRobotComInt, 119
sfRobotComStr, 119, 121
sfRobotComStrn, 119
sfRobotOrigin, 109
sfRunEvaluator, 30
sfScreenToWorldX, 94
sfScreenToWorldY, 94
sfSerialBaud, 33
sfSetDHeading, 99
sfSetDisplayState, 94
sfSetFrontBuffer, 105
sfSetGlobalCoords, 109
sfSetHeading, 99
sfSetLineColor, 113
sfSetLineType, 113
sfSetLineWidth, 113
sfSetLocalCoords, 109
sfSetMaxVelocity, 99
sfSetPatchColor, 113
sfSetPosition, 99
sfSetProcessState, 102
sfSetRVelocity, 99
sfSetSideBuffer, 105
sfSetVelocity, 99
sfSMessage, 94
sfStalledMotor, 98
sfStartup, 93
sfStopCollision, 60
sfSub2Angle, 111
sfSubAngle, 111
sfSuspendProcess, 102

sfSuspendSelf, 102
sfTargetHead, 99
sfTargetVel, 99
sfUnchangeVP, 112
sfWaitClientPacket, 120
shared library

installation, 4
shrink, 17, 26
shut down, 89
simulator

connecting, 13
Simulator

connect menu, 26. See  connect menu
Description, 23
display menu, 26
exit menu, 27
General description, 1
grow, 26
information area, 27
load menu, 25, 26. See  load menu
Menus, 26
mouse actions, 27
parameter files, 25
pioneer.exe, 23
recenter menu, 27
shrink, 26
socket, 24
Starting, 23
wake, 26
Worlds, 26

single step, 17
Software

Download site, 5
sonar buffers

sfFrontMaxRange, 105
sfSetFrontBuffer, 105
sfSetSideBuffer, 105

Sonar buffers, 103
sonars, 92
sonars menu

clear buffer, 17
sonars on, 17

SPac, 16
speed, 34
SRI International, ii, 1, 6, 7, 12, 64, 114
start up, 89
start-up callback, 70
State reflection, 96
state reflector, 9, 10, 11, 12, 69, 78, 87, 95, 96, 98, 99,

103
sfRobot, 97

Stop collision parameters, 60
straight_up, 57
Support

pioneer-support, 5
SYNC0, 86
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SYNC0, 89
SYNC1, 86
SYNC1, 89
SYNC2, 86
SYNC2, 89
syntax errors, 30
turn, 34
turnto, 34
TurnTo, 63
Unix clients, 66
user process, 74

sample, 74
ver53, 3. See also Installation
Vision, 121

channel modes, 121. See  Vision:

chroma.h, 121
draw_blobs, 123
find_blob, 123
found_blob, 122
packets, 122
sample application, 122
search_and_go_blob, 123
setup_vision_system, 122
sfRobotComStr, 121

Vision packets, 122
VPac, 16
wake, 17, 26
World Description File, 127
World files, 26
Zip. See Installation
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14 Warranty & Liabilities

The developers and  marketers of Saphira software shall bear no liabilities for operation and use with any
robot or any accompanying software except that covered by the warranty and period. The developers and
marketers shall not be held responsible for any injury to persons or property involving the Saphira software
in any way. They shall bear no responsibilities or liabilities for any operation or application of the software,
or for support of any of those activities. And under no circum stances will the developers, marketers, or
manufacturers of Saphira take responsibility for or support any special or custom modification to the
software.

Saphira Software Manual Version 6.1f, August 1998
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