Actiy |11

e i

Pioneer

Mobile Robots

with Pioneer Server Operating System Software

Saphira Software
Manual

Version 6.1

Copyright 1998 Kurt G. Konolige, PhD. All rights reserved.

Under international copyright laws, this manual or any portion may not be copied or on any way
duplicated without the expressed written consent of Kurt G. Konolige, Ph.D.

The Saphiralibraries and software on disk or available for network download are solely owned and
copyrighted by SRI International (formerly Stanford Research Institute). Developers and users are
authorized by revocable license to develop and operate Saphira-based custom software for personal,
research, and educational use only. Duplication, distribution, reverse-engineering, or commercial
application of the software without the expressed written consent of SRI International is explicitly
forbidden.

The various names and logos for products used in this manual are registered trademarks or trademarks of
their respective companies. Mention of any third-party hardware or software constitutes neither an
endorsement nor a recommendation.

Saphira Manual Version 6.1f, August 1998.

Contents

1 SAPHIRA SOFTWARE & RESOURCES
1.1 Saphira Client/Server
1.2 Colbert Robot Programming Language
1.3 Behavior Compiler and Executive
1.4 Robot Simulator
1.5 Required and Optional Components
1.6 Saphira Client Installation
1.7 Saphira Quick Start
1.8 Additional Resources

181
182
183
184
185

Saphira Software
Saphira Newsgroup
Support

SRI Saphira Web Pages
Acknowledgments

2 SAPHIRA SYSTEM OVERVIEW
2.1 System Architecture

211
212
213
214

Micro-Tasking OS

User Routines

Packet Communications
State Reflector

2.2 Saphira Control Architecture

221
222
223
224
225
226
227

Representation of Space
Direct Motion Control
Behaviors and Fuzzy Control
Activities and Colbert

Sensor Interpretation Routines
Registration and Maps
Graphics Display

2.3 Running the Sample Client

231
232
233
234
235
2.3.6
2.3.7
238
239
2.3.10
2311
2312
2.3.13

Loading an Activity File
Connecting to a Robot
LPS Display

Artifacts

Information Area

Text Interaction Area
Menus

Connect Menu
Keyboard Actions
Behaviors Window
Processes Window
Activities Window
System Environment Variables

&
d

OO0V UDRMNNNRERPRERPEREPE

THE SIMULATOR
3.1 Starting the Simulator

311

Listening on Other Ports

3.2 Parameter File
3.3 World Description File
3.4 Simulator Menus

34.1
34.2
343
344
345
3.4.6

Load (Files) Menu

Connect Menu

Display Menu (Grow, Shrink and Wake)
Recenter Menu

Exit Menu

Information Area

3.5 Mouse Actions
3.6 Compass

4 USING COLBERT

4.1 A Colbert Example

4.2 Evaluator Interaction Area
4.3 Evaluator Help

4.4 Syntax Errors

4.5 Evaluator File Loading

451
452
453

Loading Shared Object Files
Load Directory
Sample Application Files

4.6 Communication and Connection Utilities
4.7 Direct Motion Commands
4.8 Activity Schemas

481
4.8.2
4.8.3
484
4.85
4.8.6
4.8.7

Act Definition

Colbert Evaluator and Activity States
Invocation and Signaling

Accessing Activity States
Hierarchical Invocation

Activity Window

Tracing and Error Recovery

4.9 Colbert Language

49.1
4.9.2
4.9.3
494
4.9.5
4.9.6
4.9.7
4.9.8
4.9.9
4.9.10
49.11
49.12
49.13
4.9.14

Magjor Changes from ANSI C
Comments

Keywords

Types

Expressions

Variables

Statement Grouping

Conditional Statements

Iteration and Branching Statements
Assignment Statements

Function Statements

Activity Schemas

Direct actions

Activity and Behavior Invocation and Signaling

4.10 Loading Native C Code

23
23
24
25
26
26
26
26
26
27
27
27
27
27

28
28
30
30
30
31
31
32
32
33

GRRE

36
39
40
40
41
41
41
42
42
42
42
43
43

GRRRRS

45
47

4.10.1 Format of Native C Files

4.10.2 Making Native C Functions Accessible
4.10.3 Making Native C Variables Accessible
4.10.4 Making Native C Structures Accessible
4.10.5 Compiling and Loading C Files

5 BEHAVIORAL CONTROL

5.1 Behaviors and Fuzzy Control

5.2 Invoking Behaviors

5.2.1 Presenting Behaviors to Colbert
5.2.2 Invoking Behaviors from C Code
5.3 Behaviorsas Activities

5.4 Behavior Grammar

5.5 Behavior Grammar in BNF

5.6 Behavior Executive

5.7 Fuzzy variables.

5.7.1 Fuzzy variable creation functions
5.7.2 Fuzzy variable combination functions
5.8 Implementing Behaviors

5.8.1 Input parameters

5.8.2 Update function

5.8.3 Init function

584 Rules

5.85 Activity

5.8.6 Behavior schema

5.9 Predefined Saphira Behaviors

6 CREATING LOAD FILES AND CLIENTS

6.1 Host System Requirements

6.2 Compiling and Linking C Source Files

6.2.1 Writing C or C++ Client Programs

6.2.2 Compiling and Linking Client Programs under UNIX
6.2.3 Compiling and Linking Client Programs under MSVC
6.2.4 Debugging C Code under UNIX

6.2.5 Debugging C Code under MS Windows

6.3 Client Examples

6.3.1 TheBasic Saphira Client

6.3.2 TheDeno Client

6.3.3 Thetest| oad. so Loadable Object File Example
6.34 TheDirect Client

6.3.5 ThePacket Client

6.3.6 TheAsync Client

6.3.7 TheNow n Client

7 SAPHIRA SERVERS

7.1 Communication Packet Protocol
7.1.1 Packet Data Types
7.1.2 Packet Checksum

47
48
49
50
52

53
53

GELLY

56
56
57
57
58
58
58
58
58
58
59
59
59

64

65
65
66
68
68
69
69
69
72
75
76
78
80
81

83

REA

7.1.3 Packet Errors

7.2 Client Commands

7.2.1 Client Command Argument Types
7.2.2 Saphira Client Command Support
7.3 Server Information Packets

7.4 Start-Up and Shutdown

7.4.1 Synchronization—sf COVEYNC
7.4.2 Autoconfiguration

7.4.3 Opening the Servers—sf COMOPEN
7.4.4 Keeping the Beat—sf COMPULSE
7.4.5 Closing the Connection—sf COMCLOSE
746 Movement Commands

7.5 Robot in Motion

7.5.1 Position Integration

7.6 Sonars

8 GUIDE TO THE SAPHIRA API
8.1 Saphira OS Functions
8.2 Predefined Saphira Micro-Tasks
8.3 State Reflection
8.3.1 Motor Stall Function
8.3.2 Sonar buckets
8.4 Direct Motion Control
8.5 Saphira Multitasking
8.5.1 Micro-task Definition
8.5.2 State Inquiries
8.5.3 Micro-Task Manipulation
8.5.4 Invoking Behaviors
8.5.5 Activity Schema Instantiation
8.6 Local Perceptual Space
8.6.1 Sonar buffers
8.6.2 Occupancy functions
8.7 Artifacts
8.7.1 Pointsand Lines
8.7.2 Other Artifact Creation Functions
8.7.3 Geometry Functions
8.8 Sensor Interpretation
8.9 Drawing and Color Functions
8.10 Maps and Registration
8.10.1 Map File Format
8.10.2 Map Registration
8.10.3 Map Element Creation
8.11 File L oading Functions
8.12 Colbert Evaluator Functions
8.13 Packet Communication Functions

9 SAPHIRA VISION
9.1 Channel modes
9.2 Vision Packets

Vi

85
85
86
86
87
89
89
90
90
90
90
90
91
92
92

94
94
96
97
98
99
99

101

101

102

103

103

104

104

104

106

108

109

110

112

113

113

115

115

117

117

117

118

119

122
122
123

9.3 Sample Vision Application

10 PARAMETER FILES
10.1 Parameter File Types
10.2 Sample Parameter File

11 SAMPLE WORLD DESCRIPTION FILE

12 SAPHIRA API REFERENCE

13 INDEX

14 WARRANTY & LIABILITIES

123

125
125
125

128

130

134

141

Vi

List of Tables

viii

List of Figures

1 Saphira Software & Resources

This Software Manual provides the general and technical details you will need to program and operate
your intelligent mobile robot, such as a Pioneer from ActivMedia, with Saphira software.

1.1 Saphira Client/Server

Saphirais arobotics application development environment written, maintained, and constantly updated at
SRI International’ s (formerly Stanford Research Institute) Artificial Intelligence Center, notably under the
direction of Dr. Kurt Konolige, who devel oped the Pioneer mobile robot platform.

Saphira operatesin a client/server environment. The Saphiralibrary is a set of routines for building
clients. These routines perform the work of communications and housekeeping for the robot server. And the
Saphira library integrates a number of useful functions for sending commands to the server, gathering
information from the robot’ s sensors, and packaging them for display in a graphical window-based user
interface. In addition, Saphira supports higher-level functions for robot control and sensor interpretation,
including fuzzy-control behavior and reactive planning systems, and a map-based navigation and
registration system.

The Saphira client connects to a robot server with the basic components for robotics sensing and
navigation: drive motors and wheels, position encoders, and sensors. The server handles the low-level
details of robot sensor and drive management, sends information, and responds to Saphira commands
through a special communications packet protocol we describe in detail in Chapter 6. Some of the server
details are robot-specific, so we encourage you to consult your robot’ s operation manual and supplementary
Saphira materials for details, as well.

The Saphiraclient library is available for Microsoft Windows NT and 95 and for most UNIX systems
(SunOS, Solaris, SGI, OSF, FreeBSD, and Linux). Saphira sources and libraries are written in ANSI C.
There is an Application Programmer’s Interface (API) of calls to the Saphiralibrary. Programming details
are in the following chapters of this manual.

1.2 Colbert Robot Programming Language

With Version 6, Saphira has added a C-like language, Colbert, for writing robot control programs. With
Colbert, users can quickly write and debug complex control procedures, called activities. Activities have a
finite-state semantics that makes them particularly suited to representing procedural knowledge of
seguences of action. Activities can start and stop direct robot actions, low-level behaviors, and other
activities. Activities are coordinated by the Colbert executive, which supports concurrent processing of
activities.

Colbert comes with a runtime evaluation environment in which users can interactively view their
programs, edit and rerun them, and link in additional standard C code. Users may program interactively in
Colbert, which makes all of the Saphira APl functions available in the runtime environment. Future
additions to Colbert include a compiler for efficient execution of debugged programs, and multiple-robot
coordination.

1.3 Behavior Compiler and Executive

Saphira uses fuzzy control rules for implementing low-level control programs, or behaviors. Behaviors are
defined using standard C structures and functions. To make writing and debugging behaviors easier,
Saphira has a behavior compiler that translates a simple fuzzy-control-rule syntax into the required C code.
As of Saphira 6.1, behaviors are atype of activity, and can be turned on and off from the activities window.
The behavior window is output-only and shows more detail on behavior execution.

1.4 Robot Simulator

Saphira also comes with a software simulator of your physical robot and its environment. This feature
allows you to debug your applications conveniently on your computer.

The simulator has realistic error models for the sonar sensors and wheel encoders. Even its
communication interface is the same as for a physical robot, so you won’t need to reprogram or make any
special changes to the client to have it run with either the real robot or the simulator. But unlike the real
thing, the simulator has a single-step mode which lets you examine each and every step of your program in
detail.

The simulator also lets you construct 2-D models of real or imagined environments, called worlds. World
models are abstractions of the real world, with linear segments representing the vertical surfaces of
corridors, hallways, and the objects in them. Because the 2-D world models are only an abstraction of the
real world, we encourage you to refine your client software using the real robot in a real-world environment.

1.5 Required and Optional Components
The following isalist of components that you'll need, as well as some options you may desire, to operate
your robot with Saphira. Consult your mobile robot’s Operation Manual for component details.

Mobile robot with Saphira-enabled servers

Radio modems or Ethernet radio bridge (optional)

Computer: Power Macintosh!; Pentium or 486-class PC with Microsoft Windows 95 or NT,
FreeBSD, or Linux operating system; or UNIX workstation

Open communication port (TCP/IP or serial)

Four to five megabytes of hard-disk storage

PKUNZIP (PCs), GUNZIP (PCs and UNIX), Stufflt Lite, or compatible archive-decompression
software

Optional:

C-program source-file editor and compiler. Note: The current Windows95/NT version of Saphira
supports only Microsoft’s Visual C/C++ software, not Borland's Turbo-C/C++ products. Necessary
for compiling new subroutines in standard C.

Motif GUI and libraries for FreeBSD/Linux/UNIX. Necessary only to compile new clients; with
Colbert, users may instead operate in an application environment that is already compiled

1.6 Saphira Client Installation

The latest information for installing and running Saphira can be found in the r eadne filein the
distribution; please examine this file carefully before and during installation. The updat e file has
information about major changes in the latest releases of the Saphira system; you should consult it as a
general guide for updating older programs.

The Saphira distribution software, including the saphi r a demonstration program, Colbert, simulator,
and accompanying C libraries, come stored as a compressed archive of directories and files either on a 3.5-
inch, 1.44MB floppy diskette, or at the ActivMedia Internet site. Each archive is configured and compiled
for a particular operating system, such as Windows95/NT or Solaris. Choose the version that matches your
client computer system. Y ou may obtain additional Saphira archives for other platforms and updates from
the ActivMedia Internet site; see Additional Resources later in this chapter for details.

The Windows95/NT versions are PKZIP d, and UNIX versions come GZIP' d and TAR'd. To decompress
the software into usable files, you will need the appropriate decompression/archive software: PKUNZIP,
GUNZIP, or compatible program; consult the respective program’s user manual or help files.

For Linux and other UNIX users, we recommend that you create asaphi r a directory in/ usr/ | ocal
or another publicly accessible directory, and set the appropriate permissions for access and use by your

1 We do not recommend using Macintosh for Saphira development at this time, because the native
operating system (System 8) does not fully support multitasking, which is essential for Saphira operation.

robotics groups. Copy the Saphira archive to that directory, then uncompress and untar the Saphira archive.
For example, with Linux the command is:

tar -zxvf linux6le.tgz
For Windows95/NT or Macintosh, uncompress the ZIP or SIT archive, respectively, but the location of the
filesis up to you. The recommended directory isc: \ saphi r a, which means the toplevel Saphira directory
will bec: \ saphi r a\ ver 61. Thisisthe directory that the sample MSV C projects assume.
For all systems, upon decompression a hierarchy of folders and files will appear inside a newly
established, version-related Saphira directory; ver 61 for Saphiraversion 6.1, for example. The distribution
directory for the Windows 95/NT Saphira version 6.1 looks like the one in Figure 1-1/:

ver 61/

bi n/
saphira. exe Saphiral/ Col bert runtine application
di rect . exe direct motion control exanple
pi oneer . exe si mul at or
bt ech. exe Pi oneer Fast-Track Vision system deno
bgr am behavi or granmmar conpil er
sf.dll DLL library for MS 95/ NT
nmsvcrt40. dl | required M5 Wndows DLL

col bert/ Col bert | anguage sanpl es

handl er/

src/

sanpl es/ tutorial exanples

apps/ appl i cati on source exanpl es

basi c/
behavi or. beh behavi or exanpl es

i ncl ude/ header files

obj / UNI X library files

maps/ Saphira exanpl e maps

wor | ds/ simulator world files

par ans/ paraneters for different robots

readme expl anation text file

updat e conpari son of versions

i cense operation |icense

Figure 1-1. Distribution directory for Window 95/Windows NT in Saphira version 6.1.

IMPORTANT NOTICE!

All Saphira operations require that the environment variable SAPHIRA be set to the top-
level directory, e.g.,/ usr/ | ocal / saphi ra/ ver 61 on aUnix system (note that the
directory name does not have afinal dash), or c: \ saphi ra\ ver 61 on an Microsoft

Windows system. If you do not set this variable correctly, Saphira clients and the
simulator will fail to work, or fail to work properly! Please set this as soon as you install
the distribution.

If you have a previous installation of Saphira, your SAPHIRA environment variable will be set to the old
top-level directory. You must reset it to the top-level directory of the new distribution. All new clients will
complain and fail to execute until you do.

A useful method on UNIX systemsisto make asoft link to/ usr/ | ocal / saphi ra/ ver 61 using the
filecur r ent . The environment variable can be setto/ usr/ | ocal / saphi ra/ current and will
remain unchanged when installing a new system; only the soft link cur r ent need be reset.

UNIX systems should use one of the following methods, preferably in the user’s .cshr ¢ or other default
shell script parameter file:

export SAPH RA=/usr /| ocal / saphira/ver6l (bash shell)
setenv SAPHI RA /usr /1 ocal / saphira/ver6l (csh shell)

In Windows 95 and NT 3.51, assuming the top-level Saphiradirectory isc: \ saphi ra\ ver 61, add the

following line to the file C: \ AUTOEXEC. BAT:
SET SAPHI RA=C: \ saphira\ver6l

In Windows NT 4.0, go to Start/Settings/System, and click on the Environment tab. Add the variable
SAPHIRA in either the user or system-wide settings.

The Saphiralibrary is now in a sharable form on both UNIX and MS Windows machines. This means
that a Saphira application will link into the library at runtime, rather than compile time. All clients share a
copy of the library, take up less space, and are quicker to compile. Saphira applications must be able to find
these libraries.

Under UNIX, the distribution contains the file handl er/ obj /1 i bsf. so. 6. 0. x. You can make the
library accessible to an application in two ways. We recommend leaving it in this directory and putting the
directory name onto the load library list using theshel I command:

export LD LI BRARY_PATH=${ SAPHI RA}/ handl er/ obj

A second method is to copy the library file into the standard library directory, usualy / usr/1i b.

Under MS Windows, the shared library is bi n\ sf. dl | . You must copy or move thisfile to the
standard M'S Windows system directory. In Windows 95 thisis C: \ W ndows\ Syst e in Windows NT it
isC.\ Wnnt\ Syst enB2.

If an application cannot find the shared libraries, it will complain and exit. Also, problems will ariseif the
application uses older libraries. It is good practice to clean up by deleting older shared libraries after doing
an installation.

1.7 Saphira Quick Start

To start the Saphira client demonstration program, navigate to inside the bi n/ directory and execute the
program named saphi r a(. exe) . For instance, use the mouse to double-click the saphi r a. exe icon
insidethe saphi ra/ ver 61/ bi n/ folder on your Windows 95 desktop.

With UNIX, you must be running the X-Window system to execute the Saphira client software and make
sureto export or set env the SAPHIRA=path parameter.

The Saphira client window will appear, with a graphics display of the robot internals, a text information
display, and an interaction window. Type hel p in the interaction window for alist of command classes that
you can query for further information.

Have arobot server or the simulator readied for a Saphira connection. For example, execute the
saphi ra/ ver 61/ bi n/ pi oneer (. exe) robot simulator on the same computer, or simply turn on your
Pioneer robot and connect its serial port (or radio modems) to your basestation computer running the
Saphira demonstration program.

In the Saphira interaction window, type connect seri al to connect on the standard serial port. If
your radio modem is connected to a different serial port, useconnect serial <port >, where
<por t > isthe name of the seria port, e.g.,/ dev/ttyS1 or COVR.

If you're using the simulator, you can connect using connect | ocal , which opensalocal port to the
simulator and starts things up. Y ou should have started the simulator first by executing pi oneer (. exe)
from the same bi n/ directory.

Bxx users can connect using either a TCP/IP connection or alocal connection; typically the Saphira server
will start listening on alocal port. Run the Saphira client on the same machine as the server, and use
connect | ocal tomake aconnection.

Y ou also can connect via the Connect menu on the main Saphira window.

After you initiate the connection, the Saphira client and robot server perform a synchronization routine
and, if successful, will establish a connection. We provide a number of clues on both the client and server so
that you can follow the synchronization process. Success is distinct: The Saphira main window comes alive
with sonar readings, and the robot’ s sonars begin a rhythmic, audible ticking.

We detail Saphira client operation in the following chapter. For now, we leave it to you to find the manual
drive keys and take your rabot for ajoyride. (Hints: arrows move, and the spacebar stops the motors.) The
demonstration Colbert program col bert / deno. act isloaded automatically in the sample application; it
and has more activities you can try out, by starting them from the Function/Activities window.

1.8 Additional Resources

Every new Saphira licensee gets three additional and valuable resources: a private account on our Internet
server for downloading Saphira software, updates, and manuals; access to the private Saphira-users
newsgroup; and direct access to the Saphira technical support team.

1.8.1 Saphira Software
We have a World Wide Web server connected full-time to the global Internet, where customers obtain
Saphira software and support materials:
http://robots. activnedi a.com
Some aresas of the website are restricted to licensed customers. To gain access, enter the username and
password that are written onthe Regi strati on & Account Sheet accompanying your Saphira
distribution and this manual.

1.8.2 Saphira Newsgroup

We maintain an e-mail-based newsgroup through which Saphira owners can share ideas, software, and
guestions about the robot. To sign up, send an e-mail message to our automated newsgroup server:

To: saphi ra-users request @ctivnedi a.com
From <your return e-mail address goes here>
Subj ect : <choose one command:>

hel p (returns instructions)
lists (returnslist of newsgroups)
subscri be

unsubscri be

Our SmartList-based listserver will respond automatically. After you subscribe, send your e-mail
comments, suggestions, and questions intended for the worldwide community of Saphira users:

To: saphira-users@ctivmedi a. com
From <your return email address goes here>
Subj ect : <something of interest to all member s of saphira-users>

Access to the Saphira-users newslist is limited to subscribers, so your address is safe from spam. However,
the list currently is unmoderated, so please confine your comments and inquiries to issues concerning the
operation and programming of Saphira.

1.8.3 Support

Have a problem? Can’'t find the answer in this or any of the accompanying manuals? Or know a way that
we might improve Saphira? Share your thoughts and questions directly with us:

saphi ra- support @cti viredi a. com

Y our message goes to our Saphira technical support team; a staff member will help you or point you to a
place where you may find help. Because thisis a support option, not a general-interest newsgroup like
saphi r a- user, we must reserve the option to reply only to questions about bugs or problems with
Pioneer.

1.8.4 SRI Saphira Web Pages

Saphirais under continuing active development at SRI International. SRl maintains a set of web pages
with more information about Saphira, including

tutorials and other documentation on various parts of Saphira
class projects from Stanford CS327B, Real-World Autonomous Systems

information about SRI robots and projects that use Saphira, including the integration of Saphira with
SRI’s Open Agent Architecture

links to other sites using Pioneer robots and Saphira
The entry to the SRI Saphiraweb pagesishtt p://ww. ai . sri.conf ~konol i ge/ saphi ra.

1.8.5 Acknowledgments

The Saphira system reflects the work of many people at SRI, starting with Stan Rosenschein, Leslie
Kaelbling, and Stan Reifel, who built and programmed Flakey in the mid 1980's. Magjor contributions have
been made by Alessandro Saffiotti, Karen Myers, Enrique Ruspini, Didier Guzzoni, and many others.

2 Saphira System Overview

Saphirais an architecture for mobile robot control. Originally, it was developed for the research robot
Flakey? at SRI International, and after being in use for over 10 years has evolved into an architecture that
supports awide variety of research and application programming for mobile robotics. Saphira and Flakey
appeared in the October 1994 show Scientific American Frontiers with Alan Alda. Saphira and the Pioneer
robots placed first in the AAAI robot competition “ Call aMeeting” in August 1996, which also appeared in
an April 1997 segment of the same program.3

The Saphira system can be thought of as two architectures, with one built on top of the other. The system
architecture is an integrated set of routines for communicating with and controlling a robot from a host
computer. The system architecture is designed to make it easy to define robot applications by linking in
client programs. Because of this, the system architecture is an open architecture. Users who wish to write
their own robot control systems, but don’t want to worry about the intricacies of hardware control and
communication, can take advantage of the micro-tasking and state reflection properties of the system
architecture to bootstrap their applications. For example, a user interested in developing a novel neural
network control system might work at this level.

On top of the system routinesis arobot control architecture, that is, a design for controlling mobile
robots that addresses many of the problems involved in navigation, from low-level control of motors and
sensors to high-level issues such as planning and object recognition. Saphira’s control architecture contains
arich set of representations and routines for processing sensory input, building world models, and
controlling the actions of the robot. As with the system architecture, the routines in the control architecture
are tightly integrated to present a coherent framework for robot control. The control architecture is flexible
enough that users may pick among various methods for achieving an objective, for example, choosing
between a fuzzy control regime or. more direct control of the motors. It is also an open architecture, as
users may substitute their own methods for many of the predefined routines, or add new functions and share
their innovations with other research groups.

In this section, we'll give a brief overview of the two architectures and discuss the main concepts of
Saphira. More in-depth information can be found in the documentation at the SRI Saphira web site
(http://ww. ai.sri.com ~konol i ge/ saphira).

2.1 System Architecture

Think of Saphira s system architecture as the basic operating system for robot control. Figure 2-1 shows
the structure for atypical Saphira application. Saphira routines are in blue, user routines in red. Saphira
routines are all micro-taskss that are invoked during? every Saphira cycle (100 ms) by Saphira’s built-in
micro-tasking OS. These routines handle packet communication with the robot, build up an internal picture
of the robot’ s state, and perform more complex tasks, such as navigation and sensor interpretation.

2Seehttp://ww. ai . sri.con peopl e/ fl akey for adescription of Flakey and further references.

3 A write-up of this event isin Al Magazine, Spring 1997 (for a summary see
http://ww. ai . sri.com ~konol i ge/ saphira/aaai.htnl).

Saphira Client

User micro-tasks
and activities

Control and
application
routines

State reflector
Packet communications
Synchronous micro-tasking OS

TTY or TCP/IP

connection i

Figure 2-1 Saphira System Architecture.

Blue areasrepresent routinesin the Saphiralibrary, red routines are from the
user. All the routines on the left are executed synchronously every 100 ms.
Additional user routines may also execute asynchronoudly as separ ate threads and
share the same address space.

2.1.1 Micro-Tasking OS

The Saphira architectures are built on top of a synchronous, interrupt-driven OS. Micro-tasks are finite-
state machines (FSMs) that are registered with the OS. Each 100 ms, the OS cycles through all registered
FSMs, and performs one step in each of them. Because these steps are performed at fixed time intervals, all
the FSM's operate synchronously, that is, they can depend on the state of the whole system being updated
and stable before they are called. 1t’ s not necessary to worry about state values changing while the FSM is
executing. FSM's also can take advantage of the fixed cycle time to provide precise timing delays, which are
often useful in robot control. Because of the 100 ms cycle, the architecture supports reactive control of the
robot in response to rapidly changing environmental conditions.

The micro-tasking OS involves some limitations: each micro-task must accomplish its job within a small
amount of time and relinquish control to the micro-task OS. But with the computational capability of
today’ s computers, where a 100 MHz Pentium processor is an average microprocessor, even complicated
processing such as the probability calculations for sonar processing can be done in milliseconds.

The use of a micro-tasking OS also helps to distribute the problem of controlling the robot over many
small, incremental routines. It is often easier to design and debug a complex robot control system by
implementing small tasks, debugging them, and them combining them to achieve greater competence.

2.1.2 User Routines

User routines are of two kinds. Thefirst kind is a micro-task, like the Saphiralibrary routines, that runs
synchronously every Saphira cycle. In effect, the user micro-task is an extension of the library routines and
can access the system architecture at any level. Typically the lowest level that user routines will work at is
with the state reflector, which is an abstract view of the robot’sinternal state.

Saphira and user micro-tasks are written in the C language, and all operate within the same executing
thread, so they share variables and data structures. User micro-tasks have full accessto all the information
typically used by Saphira routines.

Although user micro-tasks can be coded directly as FSMs in the C language, it's much more convenient to
write activities in the Colbert language. The activity language has arich set of control concepts and a user-
friendly syntax, both of which make writing control programs much easier. Activities are a special type of
micro-task and run in the same 100 ms cycle as other micro-tasks. Activities are interpreted by the Colbert
executive, so the user can trace them, break into and examine their actions, and rewrite them, without
leaving the running application. Developers can concentrate on refining their algorithms, rather than
dealing with the limitations of debugging in a compile-reload/re-execute cycle.

Because they are invoked every 100 ms, micro-tasks must partition their work into small segments that
can comfortably operate within this limit, e.g., checking some part of the robot state and issuing a motor
command. For more complicated tasks, such as planning, more time may be required, and this is where the
second kind of user routine is important. Asynchronous routines are separate threads of execution that share
a common address space with the Saphira library routines, but they are independent of the 100 ms Saphira
cycle. The user may start as many of these separate execution threads as desired, subject to limitations of the
host operating system. The Saphira system has priority over any user threads; thus, such time-consuming
operations as planning can coexist with the Saphira system architecture, without affecting the real-time
nature of robot control.

Finally, because all Saphiraroutines arein alibrary, user programs that link to these routines need to
include only those routines they will actually use. So, a Saphira client executable can be a compact program,
even though the Saphiralibrary itself contains facilities for many different kinds of robot programs.

2.1.3 Packet Communications

Saphira supports a packet-based communications protocol for sending commands to the robot server and
receiving information back from the robot. Typical clients will send an average of one to four commands a
second, and all clients receive 10 packets a second back from the robot. These information packets contain
sensor readings and motor movement information (see Section 7.3). The amount of data sent is typically
only 30 to 50 bytes per packet, so even arelatively modest 9600 baud channel can accommodate it. Saphira
has the capability of connecting to arobot server over atty line, an Ethernet with TCP/IP, or alocal 1PC
link.

Because the data channel may be unreliable (e.g., a radio modem), packets have a checksum to determine
if the packet is corrupted. If so, the packet is discarded, which avoids the overhead of sending
acknowledgment packets and assures that the system will receive new packets in atimely manner. But the
packet communication routines must be sensitive to lost information, and have several methods for assuring
that commands and information are eventually received, even in noisy environments. If a significant
percentage of packets are lost, then Saphira’s performance will degrade.

2.1.4 State Reflector

It istedious for robot control programs to deal with the issues of packet communication. So, Saphira
incorporates an internal state reflector to mirror the robot’ s state on the host computer. Essentially, the state
reflector is an abstract view of the actual robot’sinternal state. There is information about the robot’s
movement and sensors, al conveniently packaged into data structures available to any micro-task or
asynchronous user routine. Similarly, to control the robot, a routine sets the appropriate control variable in
the state reflector, and the communication routines will send the appropriate command to the rabot.

2.2 Saphira Control Architecture

The Saphira control architecture is built on top of the state reflector (Figure 2-1). It consists of a set of
micro-taskss that implement all of the functions required for mobile robot navigation in an office
environment. A typical client will use a subset of this functionality.

TCP/IPlink to
other agents

)

Display

routines Colbert
Executive

Globa Map
Registration
; Loca
routines Fuzzy control
Bl (W

Space

Sensor interp Direct motion
routines | | M control

State Reflector

Figure 2-1. Saphira’s Control Architecture.

The control architectureisa set of routinesthat interpret sensor readings
relative to a geometric world model, and a set of action routinesthat map
robot statesto control actions. Registration routineslink therobot’slocal
sensor readingsto its map of the world, and the Procedural Reasoning
System sequences actions to achieve specific goals. The agent interface links
therobot to other agentsin the Open Agent Architecture.

2.2.1 Representation of Space

Mobile robots operate in a geometric space, and the representation of that spaceis critical to their
performance. There are two main geometrical representations in Saphira. The Local Perceptual Space (LPS)
is an egocentric coordinate system afew meters in radius centered on the robot. For alarger perspective,

Saphira uses a Global Map Space (GMS) to represent objects that are part of the robot’ s environment, in
absolute (global) coordinates.

The LPSis useful for keeping track of the robot’s motion over short space-time intervals, fusing sensor
readings, and registering obstacles to be avoided. The LPS gives the robot a sense of itslocal surroundings.
The main Saphirainterface window displays the robot’s L PS (see Figure2-1). In local mode (from the
Display menu), the robot stays centered in the window, pointing up, and the world revolves around it.

10

Keeping the robot fixed in position makes it easy to describe strategies for avoiding obstacles, going to goal
positions, and so on.

Structuresin the GMS are called artifacts, and represent objects in the environment or internal structures,
such as paths. A collection of objects, such as corridors, doors, and rooms, can be grouped together into a
map and saved for later use. The GMS s not displayed as a separate structure, but its artifacts appear in the
LPS display window.

2.2.2 Direct Motion Control

The simplest method of controlling the robot is to modify the robot motion setpoints in the state reflector.
A motion setpoint is avalue for a control variable that the motion controller on the robot will try to achieve.
For example, one of the motion setpointsis forward velocity. Setting thisin the state reflector will cause the
communications routines to reflect its value to the robot, whose onboard controllers will then try to keep the
robot going at the required velocity.

Two direct motion channels handle rotation and translation of the robot. Any combination of velocity or
position setpoints may be used for these channels (see Section 8.4).

2.2.3 Behaviorsand Fuzzy Control

For more complicated motion control, Saphira provides a facility for implementing behaviors as sets of
fuzzy control rules. Behaviors have a priority and activity level, as well as other well-defined state variables
that mediate their interaction with other behaviors and with their invoking routines. For example, a routine
can check whether a behavior has achieved its goal or not by checking the appropriate behavior-state
variable.

Version 5.3 includes several major changes in behavior management. Behaviors are no longer invoked
with sf I ni t Behavi or or sfl ni t1nt endBeh; instead, use sf St ar t Behavi or (which takesa
variable number of arguments for the behavior), or the st art command from the Colbert interaction
window.

Behaviors can be turned on and off by sending them signals, either from the interaction window, or from
the Function/Activities window. Behaviors can not be controlled from the Function/Behaviors window; the
check box that appears there shows only whether a behavior is active or not.

2.2.4 Activitiesand Colbert

To manage complex goal-seeking activities, Saphira provides a method of scheduling actions of the robot
using a new control language, called Colbert. With Colbert, you can build libraries of activities that
seguence actions of the robot in response to environmental conditions. For example, atypical activity might
move the robot down a corridor while avoiding obstacles and checking for blockages.

Activity schemas are the basic building block of Colbert. When instantiated, an activity schemais
scheduled by the Colbert executive as another micro-task, with advanced facilities for spawning child
activities and behaviors, and coordinating actions among concurrently running activities.

Activity schemas are written using the Colbert Language. The language has arich set of control concepts,
and a user-friendly syntax, similar to C's, that makes writing activities much easier. Because the language
isinterpreted by the executive, it is much easier to develop and debug activities, because errors can be
trapped, an activity changed in atext editor, and then reinvoked, without leaving the running application.

2.25 Sensor Interpretation Routines

Sensor interpretation routines are processes that extract data from sensors or the LPS, and return
information to the LPS. Saphira activates interpretative processes in response to different tasks. Obstacle
detection, surface reconstruction, and object recognition are some of the routines that currently exist; all
work with data reflected from the sonars and from motion sensing.

11

2.2.6 Registration and Maps

In the global map space, Saphira maintains a set of internal data structures (artifacts) that represent the
office environment. Artifacts include corridors, door, walls, and rooms. These maps can be created either by
direct input from amap file, or by running the robot in the environment and letting Saphira extract the
relevant information.

Registration is the process of keeping the robot’s global location in an internal map consistent with sensor
readings from the local environment. Routines exist for extracting relevant information from the LPS and
matching it to map structures in the GM S, then updating the robot’ s position.

2.2.7 GraphicsDisplay

Displaying internal information of the client is essential for debugging robot control programs. Saphira
provides a set of graphics routines that can be called by micro-tasks. A set of pre-defined micro-tasks
display information about the state reflector and other data structures, such as the artifacts of the GMS. User
programs also may invoke the graphics routines directly to display relevant information.

2271 Agent Interface

A Saphiraclient can communicate with other Internet-based agents through its agent interface to the Open
Agent Architecture (OAA). The OAA is an agent-based architecture for distributed information gathering
and control and has extensive facilities for user interaction, such as speech and pen-based agents. Currently
the OAA interface is under development at SRI; issues concerning its use in Saphira outside SRI have to be
resolved before it can be released.

2.3 Running the Sample Client

This section exercises some of Saphira’s capabilities through a sample client. It also illustrates the graphical
user interface for interacting with clients.

To run the sample application, execute the file saphi r a(. exe) inthe Saphira bi n distribution
directory. This executable requires only runtime files found on your system, and the relevant loadable
libraries from Saphira(sf. dl | orli bsf. so. 6. 0. x). You should have installed these as directed in
Section 1.6.

The Saphira client will initialize an interface window showing the L PS (see Figure 2-3). Therobot isin
the center of the display, pointing up. An information area appears at the left of the window, the menu bar
at the top, and a text-based interaction window at the bottom.

2.3.1 Loading an Activity File

The Saphiraclient in bi n/ saphi r a has only abare set of micro-tasks loaded (you can see the source
codein handl er/ src/ apps/ saphi ra. c) . The capabilities of the client are increased by loading in
Colbert files, which contain activity schemas and invocations of API functions. A sample activity file,
col bert/ denp. act , isused as an example in the rest of this section (the. act extension signifiesa
Colbert language file). When the saphi r a client starts, it looks for the filei ni t . act in the current load
directory, which by default is $(SAPHI RA) / col bert . Theinitiaization file loads the demonstration file
deno. act .

To load your own init file, you can either change the load directory by setting the environment variable
SAPHI RA_LQAD, or changethei ni t . act fileinthecol bert/ directory.

Thedeno. act file defines several activity schemas, then invokes them and a few predefined behaviors
for obstacle avoidance. Please refer to the code for more details.

2.3.2 Connecting to a Robot

Aswe mentioned earlier, connecting Saphira with either the simulator or the actual robot is similar. First,
if you are using the simulator, make sure that the correct robot parameters are loaded (the simulator defaults
to using Pioneer parameters; see Chapter 3). Otherwise, the Saphira client auto-detects the robot server type

12

and loads its parameters when first connected (see Chapter 6 for details), so it isn’'t necessary to load a
parameter file into the Saphira application unless you’ re using a custom configuration.

Y ou can connect using either the interaction window commands or the menu.

Serial port connection to Pioneer (radio modem or fixed line). In the Saphirainteraction window, type
connect seri al toconnect on the standard serial port. If your radio modem is connected to a different
serial port, useconnect serial <port>,where <port > isthe name of the serial port, e.g.,

/ dev/ttyS1 or COMR. The Connect/Serial Port menu item will also work for the standard serial port.
Y ou can set the standard serial port and baud rate; see Section 4.6 for details.

Simulator connection. If you’ ve started the simulator, it’s listening on alocal internal port. Type
connect | ocal , which opensthelocal port to the smulator and starts things up. Or, choose the
Connect/Local Port menu item.

B14 and B21 users. Bxx users must start up the Saphira server on a Bxx computer; see the instructions
that come with the Saphira server software. Usually, the Saphira server will start listening on the local port.
Run the Saphira client on the same machine as the server (with telnet from a desktop machine), and use
connect | ocal intheinteraction window or the Connect/Loca Port menu item.

If you have a problem connecting with the simulator or robot server, the communication connection will
fail, and a message describing the problem will appear in Saphira’s main window information area. Typical
causes for failure of the simulator or the actual robot (and their solutions) include:

(Bxx robots) Make sure the physical robot’ s Saphira-compatible server software is properly installed and
running and that no other Saphira client is connected to it.

Make sure the simulator is running and no other Saphira client or simulator server is running on the same
machine.

In rare cases, the communications pipe may be blocked. This can occur if the server or client exits
abnormally from a previous connection, without shutting it down properly. Try deleting the pipe file and
starting again. If this doesn’t work, the only remedy is rebooting the machine.

Make sure that the communications tether or radio modem is plugged into the correct serial port with the
correct cable.

Remove the serial tether cable from the robot’ s serial port if you use the radio modem.

Make sure the client radio modem is within range of robot, is on the correct channel, and has a strong link
signal.

Make sure the serial port is not in use by another application.

Once connected, the Saphira client will display information about the state of the robot and allow you to
command the robot from the menu and keyboard.

2.3.3 LPSDisplay

The Saphira client’ s display contains most of the items likely to be found in the robot’ s L PS (see Section
8.6). It isabird’ s-eye view of the environment around the robot. The LPS may be switched between a robot-
centric display and global coordinates, using the Display/Local menu item.

The main Saphira window components include:

2331 Roboticon

The robot icon in the center of the screen shows the robot in relation to its environment. If in local view,
the LPS appears in robot-centric coordinates: the robot remains at the center of the screen and the
environment moves around it. In GM S (global) mode (local mode off), the environment becomes fixed and
the robot icon wanders around the screen. The size of the robot icon is controlled by the Robot Radi us
and Robot Di agonal valuesin the robot’s parameter file (see Chapter 9)

13

2.3.3.2 Sonar readings

Accumulated sonar readings appear on screen as small open rectangles. Current sonar readings are
dlightly larger open rectangles. The number of sonar readings accumulated can be set by the user (see
Section 8.6.1 for more information about the buffers).

2.3.3.3 Control point

The elongated open rectangle directly in front of the robot icon is its heading control point, as returned by
the server in robot-centric coordinates. Normally, this control point is positioned directly ahead of the robot,
veering to one side or the other in response to a turn directive from the client. The robot adjusts its heading
accordingly, trying to keep heading towards the control point.

2.3.34 Veocity vectors

Two lines emanating from the center of the robot icon indicate the translational and rotational velocity of
the rabot, as returned from the robot server. The length of each vector is directly proportiona to the
velocity. Also, each vector pointsin the respective direction of motion. For example, when the robot is
turning clockwise, asin Figure 6-3, the rotational vector points to the right.

2.3.35 Obstacle sensitivity areas

Several obstacle-avoidance behaviors temporarily draw large, open rectangles in the LPS, indicating
detected obstacles that they are actively avoiding. Obstacle-avoidance rectangles appear just ahead and to
the sides of the robot in robot-centric coordinates. In the global view, these rectangles do not appear in the
proper place near the robot icon.

14

I Saphira —- Piorneer server on simulator

Connect Files Grow Shrink Display Sonars Functions

LPS Yalues

St: =top
Trt 0
Foty 0

Hi 009353
Y1 00107
Thi 044

HPac: 4
SPac: 18
WPac: 0

Bat: 13,00
CPU: Z2E
Scrn: 5,0Hz

=i

Irvoking activity BumpAndGo
In corridor 1 100001

Found doar 1 on right

In corridor 1 121

Found door 1 an left

>1

=l

Figure 2.-3. Saphira client LPSin local mode.

Thecorridor and door artifacts are the robot’sinternal map. Small squares are sonar
readings. Thelarger rectangles are sensitivity areas used by the obstacle-avoidance
behaviors. Thelinesdrawn at the center of the robot show angular and forward velocity.
The small rectangle immediately in front of theraobot isthe angular setpoint.

2.3.4 Artifacts
Artifacts are internal representations of external objects or imaginary constructions, such as goal
positions. Figure 2.-3. shows a corridor artifact (long double lines) and a doorway labeled door 2.

2.3.5 Information Area

The information areais at the left of the main window. It contains four sets of data returned from the
robot server.
2351 Status(St)

Shows the robot server status as novi ng, st opped, or no ser vo when the motors are stuck.

15

2352 Veocity (Tr, Rot)
The robots tranglational (Tr) velocity in millimeters per second and rotational (Rot) velocity in degrees per
second.

2353 Postion (X,Y, Th)

Absolute robot position in millimeters and degrees. Note that this is not the server dead-reckoned position,
which has accumulated errors. Instead, it is the registered global position of the robot based on Saphira’'s
map registration routines operating in conjunction with position integration returned from the server.

2354 Communication (MPac, SPac, VPac)

The communication values in the information area are the number of packets of the given type received in
the last second. They are useful for checking the communication link with the server. Normally, a client
will receive 10 motor packets (Mpac) and approximately 25 sonar packets (SPac) per second. Vision
packets (Vpac) currently are not supported.

2355 Miscellaneous (Bat, CPU, Scrn)

The battery (Bat) voltage level on the server indicates when the robot needs to be recharged. The CPU
utilization is the percentage of total processing time used by the client. On UNIX machines, this does not
include CPU time used by the X server, which can be an appreciable fraction of total CPU time. The last
value is the LPS update rate.

2.3.6 Text Interaction Area
The interaction areais at the bottom of the window. Here Saphira prints information about the system,
and the user can type commands to the Colbert evaluator. A scroll bar allows the user to look at previous
information. The small square on the far upper right of the window is a dragging handle for resizing the
interaction area.
In the interaction area, you can do the following tasks:
Load activity files and change the working directory
Connect and disconnect from arobot server
Define, start, and stop activities
Trace and untrace activities
Get help on API and evaluator functions
Examine and set internal Saphira variables
The evaluator lets users write and debug programs from the running Saphira application. Usually, the user
code will bein atext file that is read into the system with the| oad command, as we did for this example
(col bert/ deno. act) . The code file contains a mixture of activity schema definitions and calls to
library functions. The user can invoke the activities from the interaction area with the st ar t command, or
use the Function/Activities window. During execution, the user can examine the state of Saphira variables,
and stop and start other activities. If an error occurs, the offending activity is suspended and a message is
printed. The user can change the Colbert text file, reload it, and run the changed activities. There is no need
to exit from the application and recompile. Even new C functions can be dynamically linked into the system
by loading a shared object file.

2.3.7 Menus

The main client window contains seven pull-down menus.# These let you control the display of
information in the LPS and related subwindows, manage communication to the server, and load and save
parameter and map files:

4 Not all menus are implemented for all versions.

16

2.3.8 Connect Menu

The Connect menu lets you make and break a connection to the robot server. The menu contains three
items: the standard serial port, alocal port for the simulator and Bxx robot servers, and a TCP connection.
Choosing one of these items causes the client to try to connect to the physical robot or to the simulator.
Parameters such as the baud rate and port names can be changed from the interaction window or vialibrary
calls (see Section 4.6).

The Disconnect option closes an open connection to the robot.
Exit causes the client program to terminate, closing any open connection first.

2381 FilesMenu

Load the robot’ s parameters and map files by selecting the appropriate item from the Files menu. A file-
selection dialog box appears for choosing the file. Loading a new map does not delete any old map artifacts;
use the Delete Map item for this.

Y ou can save the current map to afile using the Save Map item, which invokes afile-save dialog. Use
Delete Map to erase all artifacts in the current map.

The Load menu does not load Colbert files; to do this, use the Colbert evaluator commands in the
interaction area

2382 Grow and Shrink
Clicking either the Grow or Shrink menu causes the LPS display to grow or shrink in scale, respectively.

2.3.83 Display Menu

The first item in the Display menu is another pulldown menu controlling the display update rate. On some
systems, high update rates consume significant portions of available CPU time, and lowering the update rate
will increase performance. If the number of motor packets (M pacs) per second falls significantly below 10,
and you have a good connection to the robot server, then a high display-update rate may be the cul prit.

The Local item controls the LPS viewpoint. When on, the view is robot-centric; when off, the view is
world-centric (global). Note that this controls only the display of information; all internal geometric
structures remain the same.

Single Step mode is useful for debugging and can be used only with the ssmulator. When on, it causes the
simulator to wait for asignal from the client at each 100 ms time step. Pressing the S key in the client
window signals the next time step.

The Wake option, if on, deposits “breadcrumbs’ in the display, showing the last 10 seconds of robot
travel.

If it is on, the Occ Grid menu item displays the occupancy grid constructed using the MURIEL
algorithm.5 Thisitem is not implemented on Macintosh or machines without color capability. On some
machines, turning on Occ Grid may create a situation in which alarge percentage of available CPU timeis
used for updating the display.

2384 SonarsMenu

The Clear Buffer item clears al of the accumulated sonar readings from the client internal buffers.

The Sonars On item toggles the sonar capability of the robot server. (Thisitem isn’t currently
implemented on the robot server; the sonars are always on.)

2385 FunctionsMenu
The Functions menu toggles the display of the Behaviors, Processes, and Activities windows.

5 The MURIEL agorithm is described in a paper that can be found at
http://ww. ai . sri.com ~konol i ge/ saphira.

17

2.3.9 Keyboard Actions

In addition to using Saphira’s pulldown menus, you may control some of the functions of the robot server
directly from the client keyboard (see Error! Reference sour ce not found.). These keys work only when
the main Saphirawindow is active.

The sample Saphira client we provide defines a set of keyboard actions for robot motion and for turning
some behaviors on and off. In a user application, the function sf Pr ocessKey lets you intercept
keystrokes and initiate your own “hotkey” actions.

2.3.10 Behaviors Window

Saphira s Behaviors window shows graphically the state of al current behaviors. It isinvoked from the
Functions/Behaviors menu in the main window. To understand the contents of this window, you may find it
useful to review the previous section in this chapter on Saphira behaviors.

Our sample Saphira client invokes four behaviors: two for obstacle avoidance, one for going forward at a
constant velocity, and one for stopping. The obstacle avoidance behaviors are called Avoid Collision and
Keep Off. Avoid Collision prevents the robot from banging into obstacles at close range by initiating a
sharp turn and slowing down the robot. The Keep Off behavior deflects the robot from longer-range
obstacles. The Constant Velocity behavior attempts to keep the robot going forward at a fixed speed of about
300 mm per second.

The Stop behavior, not surprisingly, stops the robot. It is useful when you want the robot to stop if no
other behavior is managing the robot’s movements. For example, if the Constant Vel ocity behavior is
invoked and then killed, the robot will still have aresidual forward velocity. In the absence of any other
behaviors, it will keep moving forward. Invoking Stop at alow priority assures that the robot will stop if it
is not doing anything else.

Table 2-1. Keyboard-controlled behaviors for
the Saphira client.

Key Action

i, - Increment forward velocity
m, Decrement forward vel ocity
j, = Incremental left turn

[, ® Incremental right turn

k, space All stop

g Constant Velocity on/off

18

Figure 2-2 shows atypical Behaviors window. The first two behaviorsin our sample client are active, that
is, they can contribute to the control of the robot (their running parameter is 1). The other two are inactive.
The active state of a behavior may be changed by signaling itsinvoking activity in the Activities window.

I© Avoid Collision
I Eeep OFF

=l Constant Yel

=l Stop

Summation

Figure 2-2. Saphira’s Behaviorswindow (Linux/M otif version).

Note: Thisis a change from version 5.x, in which the buttons were active in the behavior window.

The dark bar next to each behavior name indicates the state of the behavior. Two vertical lines, represent
the behavior’ s outputs for turning and forward/backward movement. For example, the Keep Off behavior
in Figure 2-2 is fully active for both turning and moving, as indicated by the horizontal activity bars going
through the vertical lines (see the details in Figure 2-3). This behavior instructs the robot to turn right and
to move backwards (slow down) in this example, as indicated by the direction bars on either side of the
vertical lines.

Turn Move

7

B Keep Off

/\\ Behavior name Pi feCti(V
On/off indicator Activity bars

Figure 2-3 Keep Off behavior display expanded

19

The behaviors appear in order of their priority in influencing the robot’s actions, with the highest priority
behaviors at the top of the window. At the bottom, the Summation line gives the end result of combining the
active behaviors according to their priority. It isthe summation that ultimately controls the robot server’s
actions.

It's often useful to view an individual behavior’s activity in more detail. Individual behavior windows can
be opened by shift-clicking on the behavior name (UNIX systems) or left-clicking just to the right of the
name (M S Windows). Figure 2-4 shows a typical behavior window while active. The invocation parameters
of the window are in the upper left; pointer parameters have their addresses printed. The right-hand side of
the window shows the state variables of the behavior: whether it’s active or not, activity levels, and so on.
Finally, at the bottom of the window, the rules are printed, showing their antecedent values and control sets.

The format of the rulesis: Name Antecedent Direction Vaue.
The antecedent value determines how strongly the rule applies. The direction is a single character: greater

Obstacle-Left 0,0
Obstacle=Front 0,7
Obstacle-Cauti 0.5

[¢] Keep Off
Farams Running o
100, 0000 Priority 1
0, 250000 Act. Turn 0,2
2 Act Yel 0,2
[oal 0,0
Progrezs 1.0
Rules
Dbztacle=Right 0,0 < 5.0
0
0
7

5
> 5,
<h
- 17.1

Figure 2-4. Behavior window for K eep-Off.

than (>) or less than (<) for right or left turn, plus (+) or minus (-) for speed up or slow down. The value
indicates the desired control signal; aleft turn of 5.0 degrees, for example.

2.3.11 Processes Window

The Processes window displays the states of all micro-taskss in the Saphira client multitasking queue (see
Figure 2-5). Open it from the Functions/Processes menu in the main window. The Processes window
contains a scrolled list, in which each entry consists of the micro-task name and state. The display is
updated in real time as the micro-task state changes.

20

Process State

Ipulse INIT |

motor INIT

clamp IMIT
sonar 10

wake INIT
drauw INIT
test matching 10
test where 10
people tracking

speech input

Figure 2-5. A sample Saphira Processes window.

Y ou may interrupt a running micro-task by selecting it in the window and pressing the Enter key, or by
double-clicking with the mouse. This action forces the micro-task stateto | NT (interrupt). Resume an
interrupted micro-task with the same action, which forces the micro-task state to RES (resume).

An interrupted micro-task does not automatically suspend processing; a micro-task’s behavior depends on
how the micro-task handles the interrupt state. Some micro-tasks ignore the interrupt and continue with
their tasks. For example, the motor micro-task does not care what its state is—it always performs the same
action of sending motor commands to the robot server. In general, you should interrupt only micro-tasks
that you have added to the Saphira application, and for which there is a defined interrupt behavior.

2.3.12 ActivitiesWindow

Saphira s Activities window shows the state and relationship of all current Colbert activities (Figure 2-6).
Open it from the Functiong/Activities menu in the main window.

The Activities window contains a scrolled list similar to the Processes window, and each line contains the
activity’ s name and its state. The state information is updated in real time as the activity state changes.

Relationships between activities are indicated by line indentations. For instance, in the example in Figure
2-6, the second activity f ol | ow it isindented to show that it isachild of the first activity. The two
activities combine to invoke a corridor-following sequence for the rabot. The top-level activity waits until
the robot has found a corridor, then invokesiits child activity to select a path to follow down the center of
the corridor. In addition, the top-level activity monitors the state of the robot, and when it is no longer in
the corridor, or gets turned sideways to the corridor, it disablesthef ol | ow it activity.

As with micro-tasks, you may manually interrupt an activity by selecting it and pressing the Enter key, or
by double-clicking it with the mouse. If the activity is running, thiswill forceit into the | NT (interrupt)
state. Normally, an activity will respond to this state by suspending. Use the same action to reactivate an
interrupted/suspended activity. Thiswill invoke the RES (resume) state. Normally, an activity will respond
to this state by reinitializing and starting its characteristic behaviors.

The sample Saphira client contains several activities. Some of these are wrappers for a behavior, that is,
their sole purposeis to control a single behavior. The reason for thisis to provide behaviors with the same
facilities as activities, e.g., timeouts, signaling, and hierarchical invocation (see Section 4.8.3).

The activity BunpAndGo is an example of an activity that produces direct action. It waits until the robot
bumps into something and its motors stall out; then it turns off all behavior output and maneuvers the robot

21

in a short back-and-turn sequence to get it out of the stall. This activity is traced, so you'll see the results of
its evaluated statements printed in the interaction area. Beware: It s hard to make the robot run into
something unless you turn off the obstacle-avoidance behaviors.

Another activity, fol | ow a found corri dor, hastherobot find and follow corridors. The activity
monitors the robot environment until it detects a corridor, then starts a subactivity, a behavior, that projects
apath for the robot down the middle of the corridor.

Intention

follow a found corridor
follow it

Figure 2-6. An example Saphira Activities window.

2.3.13 System Environment Variables

Several environment variables can be set to control defaults in Saphira clients. Following is a complete list
of them, and their effects. In MS Windows, environment variables are set in AUTOEXEC. BAT, or viathe
user profiles (Windows NT). In UNIX, they are set from a shell using set env or export .

22

Table 2-1. Environment variables used to control defaults in Saphira clients.
Environment Variable Effect

SAPH RA Top level of the Saphira distribution. This variable must
be set for Saphira clients and the simulator to run
correctly. In Unix, there should be no final slash in the
path, e.g.,/ usr/ | ocal / saphira/ver61.

SAPH RA LOAD _InitiaJ Iqad directory for thg C(_)Ibgrt evaluator. This

- directory is searched for thefilei ni t . act when the
Colbert evaluator starts. If not set, defaults to the directory
from which the client was started.

SAPH RA COVEERI AL _Serial por_t for connecting to the ropot. Defaults to the
- primary serial port for the system being used, e.g., COML
under MS Windows, / dev/ cuaO under Linux, and so

on.
SAPHI RA_SERI ALBAUD Baud rate for serial connection. Defaults to 9600.
SAPHI RA_COVPI PE Local communication port for connection to the Saphira

simulator. Can be set so that multiple copies of the
simulator can run on the same machine, and clients can
connect to them. This variable affects both the simulator
and the client application. Default depends on the system.

SAPHI RA COVBERVER Machine name or |P address for TCP/IP connection.
- Defaultsto NULL.

3 The Simulator

The simulator is avery useful aternative to a physical robot for developing robotics programs. Although
thereis nothing like real world conditions to humble the most ambitious robotics project, the simulator does
have the distinct advantage of having a single-step mode in which you can reenact every detail of your
programs, including a robotics fatality.

And, too, the simulator has realistic error models for the sonar sensors and wheel encoders so that, in
general, if aclient program works with the simulator, it will work on the physical robot. The simulator aso
lets you construct a simple world in which the simulated robot navigates. Y ou can even change the robot’s
operating characteristics to simulate your own robot designs. And because the packet interface of the
simulator is the same as the physical robot, no changes to the client program are required in switching
between the two.

The disadvantage of the simulator is that the environment model is an abstraction of the real world, with
simple 2-D linear segments in place of the complex geometrical objects the real robot will encounter in the
real world. For example, the smulator assumes all objects are sensor-high, so it can’t simulate a door
stop—something the real robot will have to overcome to traverse roomsin areal building.

3.1 Starting the Simulator

Execute the program named pi oneer (. exe) inthe Saphirabi n/ directory. (By default, the simulator
acts like the Pioneer 1 Mobile Robot—hence, its name. We tell you how to simulate other robotsin a
following section of this chapter.) Normally, the simulator connects to the client using an interprocess
communications channel on the same machine. It is aso possible to run multiple copies of the smulator on

23

the same machine with different communication channels (handy for class work), or to have the simulator
listen on atty port or a TCP/IP port on a remote machine.

If, for some reason, the client terminates abnormally, the simulator can be disconnected using the
Disconnect option from the Quit menu. Disconnecting or quitting the simulator while the client is
connected will cause the client to quit.

Once connected with a client, the smulator displays awindow of its activity. A sample window is shown
in Error! Reference source not found.. The ssimulated robot is the circular icon in the center of the screen;
the straight lines are simulated world segments: walls, corridors, rooms, and so on. A collection of
segments—a world—may be defined in a simple text file (see below) and loaded from the simulator’s L oad
(Files) menu.

3.1.1 Listening on Other Ports

The simulator listens on an interprocess communication channel for connections from a server. In UNIX
systems, thisisalocal UNIX socket; under Windows, it is a mailbox. Default names for these sockets are
supplied by the ssmulator. Only one simulator may be connected at a time to that socket or mailbox. In some
cases, it is convenient to start up multiple copies of the simulator; or, for some reason, the socket may be
busy or unavailable. In these cases, the simulator can be started with an alternative socket name. Set the
environment variable SAPHI RA_COWVPI PE to the name of the desired socket before starting the simulator,
and it will be used instead of the default. The simulator window shows which socket it’ s listening on.

To connect to a particular socket from the client side, set the SAPHI RA_COVPI PE environment variable
to the name of the desired simulator socket before trying to connect. Under UNIX and Windows NT,
different users can set these variables in a unique way, so that several userslogged in to the same machine
can start up their private versions of the simulator.

The ssimulator also can listen on atty port (for debugging tty access) or TCP/IP socket (for remote
machine access). In these cases, the simulator must be started with command-line arguments specifying the
type of access. Two choices are available:

pi oneer tcp
pi oneer /dev/ttyl

The first form starts the simulator and listens on a TCP/IP socket for network connections from a client. On
the client side, you must specify the network address or network name of the machine the smulator is
running on (using theset ser ver command or the SAPHI RA_COVSERVER environment variable).
The second form accepts any argument that isnot t cp. This argument is assumed to be the name of atty
port, and the simulator listens for connections on that port.

24

In MS Windows, you can start the simulator with command-line arguments by using the Run item in the
Start menu.

[pioneer zerver H=] B3

Connect Filezs Grow Shrink ‘Wake FRecenter

#0118 [Client open request
i ek
Th: 148 iwhorld: Maranwld 53

Figure 3-1. A sample window of the ssimulator.

3.2 Parameter File

The default operating parameters for the simulator are for the Pioneer 1. Y ou may reset these working
parameters to simulate nearly any mobile robot by constructing then loading a special robot parameter file
into the simulator from the Load/Files menu. Find a variety of prepared parameter files in the Saphira
par ans/ directory. The newly loaded model is active for as long as you run the simulator or until you load
another parameter file.

You use a parameter file to prescribe a variety of simulated robot characteristics, such as placement of
sonars and drive-error tolerances. Once constructed, store your parameter file in common text (ASCII)
format in the par ans/ directory; usually, you add the suffix . p to the file name. A sample, annotated
parameter filelisting isin Appendix A, and the parameter file resides in the Saphira collection as
par ans/ pi oneer . p.

25

Three important parameters control the amount of error in the simulated robot’ s motion (Table 3.1).
Consult the listing in Section 9 for more details.

Table 3.1. Exampledrive error tolerance values for a parametersfile.

Parameter Pioneer Value | Description

EncodelJi tter 0.01 Error in distance

Anglelditter 0.02 Error in angular position

Angl eDrift 0.003 Angular drift with forward
movement

3.3 World Description File

A world description file is a plain text (ASCII) document typically stored with the file name suffix. Wl d,
which describes the size and contents of a simulated world. A sample world file can be found in the Chapter
10, along with instructions on how to create your own worlds. We' ve also included several sample world
files with the Saphira distribution found in thewor | ds/ directory.

If the simulator is connected to a client, the client can tell the ssimulator to load aworld file via the
sf LoadWor | dFi | e function.

3.4 Simulator Menus

Several simulator menus control the parameters and actions of the simulated robot. The menu options
provide controls for loading world and parameter files, for adjusting the display, and for changing the
connection type, for example. (Not all menus are implemented in every version.)

34.1 Load (Files) Menu

The File/Load Params item brings up afile selection dialog to load arobot parameter file. The parameter
file changes the characteristics of the simulated robot, such as the number and placement of the sonars. By
default, the Pioneer robot parameters are loaded.

The File/Load World item brings up a file-selection dialog to load aworld file.

3.4.2 Connect Menu
The Connect menu controls the port that the simulator listens on, and aso disconnects the simulator from
an aborted client.

By default, the simulator is listening on the interprocess communication port, waiting for a client on the
same machine. The simulator also can listen on one of the seria ports, if the appropriate port nameis
selected from the menu. In this case, the simulator and client can run on different machines.

The Disconnect item causes an immediate disconnect of the ssmulator from its connected client. Normally,
the simulator will disconnect automatically when the client sendsiit the sf CLOSE command.

In situations in which the client has a system error and exits abnormally, the client may remain connected,
even though the connection is no longer valid. In this case, the Disconnect item will force the connection to
close, so the simulator can go back to alistening state.

With the Windows95/NT version, the Connect menu also includes an Exit option.

3.4.3 Display Menu (Grow, Shrink and Wake)
The Grow and Shrink menus or itemsin the ssmulator’ s Display menu change the size of the display.

The Wake item, if on, causes a the simulator to display a breadcrumb of the last few seconds of simulated
robot travel.

26

3.4.4 Recenter Menu

Selecting the Recenter menu item centers the display around the current robot position. It does not change
the robot’ s position.

Usually, the simulator will keep the robot icon near the center of the display by moving the display
window when the robot approaches an edge.

345 Exit Menu

The Exit menu (or item in Connect menu) terminates the simulator. A connected simulator should be
disconnected first from the client side, or it will cause the client to abort.

Exiting shuts down any current connection and exits the application. Quitting a connected simulator will
usually cause the client to quit as well, so it’s a good idea to disconnect from the client side first.

3.4.6 Information Area
The information area at the bottom of the simulator window shows messages about the connection status.
It also shows the absolute x,y position of the robot in meters, and the angle of the robot in degrees.

3.5 Mouse Actions

The left mouse button puts the simulated robot at the position of the cursor. This moves the robot in its
world, and the x,y coordinates at the bottom of the screen will change. If the robot becomes stuck against a
wall, using the left mouse button to move it alittle can unstick it.

The middle button moves the simulated world position at the cursor to the center of the display.

3.6 Compass

The simulator’ s compass has a standard deviation of 3 degrees from the robot’ s true heading. Compass
readings are sent back in the information packet. The simulated compass differs from the real compassin
that it does not reflect bias in the magnetic environment, which can be quite severe. In the ssimulator,
magnetic north is always along the positive x direction.

27

4 Using Colbert

This section describes the Colbert language and evaluator. Colbert is a C-like language with a semantics
based on finite state machines. It has the such standard C constructs as sequences, iteration, and
conditionals, but they are interpreted in away that makes sense for robot programming. The main construct
of Colbert is the activity schema, or act, a procedure that describes a set of coordinated actions that the
robot should perform.

Colbert is an interpreted language, which means that you write text files containing Colbert activities,
load them into a Saphira client, and then start them up. The Colbert evaluator parses and executes the
activities, and reports back results and errors. Having an evaluator is very convenient for development and
debugging, because you can try out code without having to recompile and relink an entire client, and then
try to get back to the state you're interested in.

The Colbert evaluator has the following capahilities.

Direct execution of control statements from a running Saphira client.

Tracing of activities: users so that can see exactly what statements are being executed.

Signaling between activities: activities may start sub-activities, or interrupt activities that are already
running.

Trapping of errors: fatal errors, such as divide by 0, disable just the offending activity and print an error
message.

Error correction: buggy activities can be edited with atext editor and rel oaded, without exiting the
running Saphira client.

A technical paper describing Colbert is available from the website
http://ww. ai . sri.com ~konol i ge/ saphi r a in the Publications section.

4.1 A Colbert Example

WEe'll introduce the Colbert language with a short example, using the direct motion calls to the robot (see
Listing 4-1). The examplefileisin col bert/direct. act.

The first step is to start the Saphira client and connect to a robot or the simulator (see Section 2.3). After
you' ve successfully connected, try typing the following statement in the interaction area at the bottom of the
client:

>nove(500); <cr >

Thisis an example of a direct motion command, which tells the robot to move immediately (see Section
8.4). Y ou must type the semicolon to indicate the end of the command, just asin C, otherwise the evaluator
will complain about a syntax error. The robot should move forward ¥2 meter (500 mm). If you execute this
command without connecting to the robot, you receive an error message indicating that the command
cannot be executed. Y ou can try other commands such ast ur n (acomplete list of the direct motion
commandsisin Section 4.7), or you cantype hel p novenent to have thelist printed in the interaction
area. Utility commands such as hel p and | oad do not follow normal C syntax, and a semicolon is
unnecessary.

Y ou can enlarge or shrink the interaction area by grabbing the separator handle (located at the left,
between the LPS and interaction windows) with the mouse, and moving it up or down.

The next step is to load the sample file. First, check the current load directory with the pwd command in
the interaction area. By default, it is the directory of the shell from which you started Saphira (the default
can be changed by setting the environment variable SAPHI RA_LOAD). The load directory can be changed
with the cd command, or you can give the load path directly in the| oad command, relative to the current
directory, or as an absolute path.

For example, if you'reinthe bi n directory, use this sequence:

28

load ../col bert/direct. act<cr>

(in MS Windows, the forward slashes will be backslashes). L oading the file defines three activities, and

/* Col bert exanpl e exercising the direct notion calls */

act patrol (int a)
while (a !'= 0)

{

turnt o(180);
a = a-1;

nmove(1000) ;

turnto(0);

nmove(1000) ;

}

}

act square
{
int a;

a = 4;
whi | e(a)
{
a = a-1;
nmove(1000) ;
turn(90);

}

}

act aa
{
trace patrol;
start patrol (4);
trace square;
start square;

}

sf Set Di spl aySt at e(sf GLOBAL,

start aa;

/* go back and forth "a'" times */

/* nmove in a square */

/* call them sequentially */

1); /* put display into global coords */
/* start up the toplevel activity */

Listing 4-1. A direct motion application in the Colbert language.

starts one of them (aa), which calls the other two. A listing of thefileisin Listing 4-1. Activity schemas
are defined in amanner similar to C functions, using the keyword act . Just as with C functions, acts take
arguments, which are given when the activity is called, or instantiated. For example, in the act aa, the

pat r ol activity is caled with an argument of 4, which means that the robot will go back and forth 4 times.

The direct motion commands in pat r ol and squar e are executed by the evaluator, which waits until
they compl ete before moving on to the next statement. The same thing is true of the calls to the pat r ol
and squar e activity within aa. Thisis an example of blocking execution of motion commands or
activities, which is generally desirable for sequences of actions. In other cases, you may want to start several
activitiesin paralel (e.g., amonitoring activity and a direct-action activity). In this case, Colbert provides a
nonblocking instantiation mode.

In addition to direct motion calls, activities can reference standard C variables and functions. A number of
library variables and functions are available initially, and more can be added through the use of the
sf AddEval XXX functions. The C syntax of the evaluator has some limitations; for example, you can’'t
embed assignments within a C expression.

Unlike standard C files, Colbert files allow you to execute statements from within the file. In the example,
the last two statements are executed. Oneisacall to alibrary function for setting the state of the LPS

29

display. The other starts up the aa activity. So, loading the file has the effect of defining three acts, then
setting the display state and starting the top-level activity.

4.2 Evaluator Interaction Area

The interaction areais at the bottom of the Saphira client window. This areais always present in a
Saphira client for output of messages (sf Message and sf SMessage library calls). If the micro-task
sf RunEval uat or hasbeen invoked, then it is also available for user text input to the Colbert evaluator.
The sample client bi n/ saphi r a invokes the evaluator.

At the beginning of a session, severa lines are written to the interaction window, showing the Saphira
top-level directory and the current working directory for loading Colbert files. There is an input prompt (>).
Y ou may type input at this prompt, and edit it using standard editing commands, e.g., the delete and
backspace keys. The characteristics of text editing are set by the XKeysynDB file and the X resources
databases in UNIX. If you have trouble getting text editing to work in UNIX systems, please check with a
local X guru.

The evaluator accepts commands and activity definitions from the user. Commands are always just a
single line, but you can extend a line by typing a backslash (\) as the last character, and continuing on
subsequent lines. A carriage return (<cr >) is needed to input the line. The cursor need not be at the end of
alinein order to use a carriage return. At the command line, aterminating semicolon (;) is optional for
all statements.

For convenience, some of the utility commands do not adhere to C syntax. For example, the | oad
command accepts its string argument without quotes, so you cantypel oad src/test. act, for
example.

Y ou have access to a history list of previousinput. You can cycle through previous lines by using the Ctrl-
P (back) and Ctrl-N (forward) keys. After you retrieve aline, you may edit it. Text may be selected, cut, and
pasted using the standard mouse keys. Asin C, case is significant.

A scroll bar on the right sight of the interaction area lets you scroll back through previous messages.
Currently, no limit isimposed on the amount of text kept.

4.3 Evaluator Help
The evaluator has a simple help facility to remind you of commands.
hel p providesalist of help topics
hel p t opi c provides help on the specified topic
hel p <f n> provides helps on an API function, or list of API functions containing f n
Topicsinclude utility commands (file loading, directories), communication, direct motion commands, and

information on particular API functions. Not all API functions have associated help text; we are adding
them in future versions.

Help text can be added using the sf AddEval Hel p function, and retrieved with sf Get Eval Hel p. Both
these functions are available in Colbert and from compiled C code.

4.4 Syntax Errors

As much as possible, Colbert uses ANSI C syntax. But it also extends this syntax with new commands and
constructions for robot control, and omits some parts, such as embedded assignments and arrays. If the
parser cannot understand the input, it will print an error message in the interaction area, and abort the
loading of any file currently in progress.

Determining the reason for a syntax error is a difficult problem, and the parser does not even try to do
this. Instead, it will print the token that it was trying to parse when the error occurred, as well asthe line
number in thefile, if afile was being loaded. For example, theill-formed C expression:

30

1+) 2

produces the error message:
*** Parsing error at token “)”

because the parser could not fit the token) into the C expression it was trying to form. These are the most
common sources of syntax errors:

C constructions not supported by Colbert. These include embedded assignments, variable initializations, the
comma operator, arrays, etc. (see Section 4.9.1).

Colbert keywords that are not ANSI C keywords. There are many of these (e.g., connect ,wai t f or); see
Section 4.9.3.

Functions not defined in Colbert. Most C library functions are not initially available in Colbert, although
you can make them accessible (see Section 4.10.2). Using one of these functions will give a syntax error.

4.5 Evaluator File Loading

Colbert source files may be input from text files, using thel oad command. Any errorsin the source are
indicated in the interaction window, and file loading is aborted at that point. Load files can contain
definitions of activities, as well as commands to be executed, including any commands that can be typed in
the user interaction area. So, for example, it’s possible to load afile that |oads other files.

This command, for example, loads file from the current load directory:

load [<file>]

fil e isactually apath from the current directory; e.g., col bert/ deno. act isalegal filename. C
syntax does not apply to filenames, so any non-blank characters are allowed. Without arguments, the
command prints alist of loaded shared object files.

This command unloads a shared object file:

unl oad [<fil e>]

It isused only under MS Windows for unloading DLLs. Without arguments, it unloads the last shared
object.

Colbert source files can have an arbitrary extension (except for . so or . dl |), but by convention their
extension is. act . This extension must be included in the filename.

Evaluator files can be changed and reloaded as often as desired. If an activity schemais redefined by
reloading, then all instances of the schema are changed. This has implications for how the user should
handle instantiated activities that are being debugged. The state of the activity is not changed by the
redefinition, so the activity will continue execution at its current line. This may not make sense if the line
numbering has changed. However, the standard states (sf | NTERRUPT, sf SUSPEND, and so on) are the
same for all activities, so these are “safe” states for redefinition. In general, it’s probably best to suspend an
activity if you're going to change its definition.

Redefining an instantiated activity does not change its arguments or internal state. Normally, thisis what
you would like, because the activity can resume operation with the same arguments and internal variables.
However, if the number of arguments or their ordering is redefined, or internal variable declarations are
changed, then the instantiated activity may be confused as to how to find the values of these entities. In this
case, it is better to remove the activity and restart it.

45.1 Loading Shared Object Files

Some API functions will work only in compiled C code, and cannot be called from the evaluator. These
include such functions as sf AddEval Var and sf AddEval St ruct , which access underlying C

31

constructs. In addition, application code which performs significant computation should be compiled as C
code for efficiency.

The loader will load compiled C code in the form of shared object files(. so extensionin UNIX, . dl | in
MS Windows). These files are loaded and dynamically linked with the running Saphira system. (See
Sections 4.10 and Chapter? 6 for information on how to compile shared object files, and for some
examples.) The loader recognizes the extension and calls appropriate dynamic loading routines. If present,
the function sf Loadl ni t () isevaluated after the fileisloaded.

Under MS Windows, it isimpossible to relink aDLL file that isin use by an application. Therefore, you
must unload the DLL filefirst, using the unl oad command. For convenience, unl oad with no arguments
unloads the most recently loaded file.

Table 4-1. Colbert commandsto query and set the load directory.

Command Effect

pwd Prints working directory, value of variable
sf LoadDi rectory.

cd <path> Changes the working directory according to path. Path may be
an absolute or relative path. Prints the new working directory.
Affectssf LoadDi r ect ory

45.2 Load Directory

Files are |oaded based on the current load directory. The following commands query and set this directory
(see Table 4-1). The argument to cd does not use C syntax, and can contain any non-blank characters.

By default, theinitial load directory isthe directory of the shell that Saphira was started in. The default
load directory can be changed by setting the environment variable SAPHIRA_LOAD to adirectory. The
load directory is also available to programs as the API variable sf LoadDi r ect or y, whose typeisa
string. Setting this variable causes the load directory to change.

When started, the evaluator will look for afilei ni t. act intheinitial load directory, and load it in.
Thisfileis used for automatically configuring Saphira on start-up.

45.3 Sample Application Files
Sample files that mimic the behavior of the old saphi ra and di r ect clients are available in the
col bert/ directory.

Table 4-2.

Command Effect

demo.act Invokes several behaviors, along with some activities: bump-
and-go for getting out of stall situations, and follow-corridor
for following afound corridor. Some of these activities and
behaviors are started in a suspended state; double-click on
them in the Activities window to start them.

direct.act Defines some simple direct motion activities, and starts them
up. Must be connected to arobot, or you'll receive an error
message when starting the direct motion commands.

packet.act Communicates directly with the robot using the packet
protocol.

32

4.6 Communication and Connection Utilities
Colbert offers several utility commands for setting communication modes and for connecting and

disconnecting with the robot (see Table 4-3).

Table 4-3 Colbert commands for connecting to and disconnecting from the robot.

Command

Effect

connect serial [<port>]

Connects via<por t > or the current serial port
(sf ConBeri al) at the specified baud rate
(sf Seri al Baud).

set serial [<port>]

Sets or returns the serial port (sf Conteri al). If <port >
isgiven, setsthe seria port to thisvalue. Thefirst serial port
of the machine (COML, / dev/ t t ya, etc.) isthe default.

set baud [<rate>]

Sets or returns the baud rate of the serial connection
(sf Seri al Baud). If the argument <baud>.is given, sets it
to this value. The default rate is 9600 baud. With PSOS 4.3,
the Pioneer server now supports 19200 baud. Other baud rates
may be used for specialized applications.

connect | ocal [<pipe]

Connects viathe local communication port with name
<pi pe> or the default name (sf ConPi pe). Thisisthe
normal connection for the simulator, or for the Bxx robot
servers. The default name of the connection can be changed by
setting st ConPi pe to another string.

set | ocal [<pipe>]

Sets or returns the local connection name. This command is
useful when running multiple simulators on the same
machine, because each simulator can be assigned a unique
local connection name.

connect server
[<net addr >]

Connects to a robot server via TCP/IP to a remote machine
specified by <net addr > or the default address
(sf Coner ver). The robot may be a Bxx or simulator server
on aremote machine.

set server [<netaddr>]

Sets or returns the remote server net address
(sf ConBer ver). These addresses may be network names
(eg., fl akey. ai . sri. conj or numbers (e.g.,
128. 18. 65. 12).

di sconnect

Disconnects from the currently connected robot server.

exit

Exits from the Saphira executable, disconnecting from any
robot server first.

Parameters to the connection commands are usually held in library variables and can also be accessed (set

and queried) by using the variables.
4.7 Direct Motion Commands

The evaluator provides a set of direct motion commands that can move and rotate the robot. These
commands are Colbert language statements, and can be typed in the interaction window.

The direct motion commands are not C functions, and do not return any value. They also have a syntax
for specifying atimeout value and a non-blocking mode. The general form of a direct motion command is:

command(int arg) [tineout n] [noblock];

33

wheret i meout n specifiesatimein 100 msincrements for the command to complete, and nobl ock
means that the command will be executed without blocking, i.e., control will continue with the next
statement. Some motion commands are implicitly non-blocking: speed andr ot at e. In the interaction
window, al direct motion commands are issued non-blocking, whether or not nobl ock is specified. Non-
blocking motion commands can be checked for completion with the sf DonePosi ti on and

sf DoneHeadi ng commands.

More information on direct motion control, aswell as C library functions, can be found in Section 8.4.
These API calls are available from the evaluator, and are an alternate way of issuing direct motion
commands.

Table 4-4.

Command Effect

nmove(int mm; Move the robot mm millimeters forward (positive) or
backwards (negative). Blocking.

turn(int deg); Turn the robot deg degrees clockwise (negative) or counter-
clockwise (positive) degrees from the current heading.
Blocking.

turnto(int deg); Turn the robot to the heading deg degrees. Positive values
are counter-clockwise, negative values are clockwise. Blocking.

speed(int mms); Move the robot at a speed of ms millimeters per second
forward (positive) or backwards (negative). Non-blocking.

rotate(int degs); Move the robot at arotational speed of degs degrees per
second counter-clockwise (positive) or clockwise (negative).
Non-blocking.

hal t; Halts all direct motion commands.

4.8 Activity Schemas

Activity schemas are Colbert language programs for controlling the robot. They are interpreted using the
Colbert evaluator. Activities execute similarly to normal C functions, evaluating statements in order, with
seguences, loops, and conditionals. However, the underlying execution model is quite different: it isafinite-
state machine. Each statement of the activity is a node that can potentially wait for a condition to hold
before going on to the next statement, or can change the flow of execution. For example, every primitive
action (nove, t ur n, and so on) that is invoked causes the program to stay at that statement until the action
is completed or times out.

4.8.1 Act Definition
Activities are defined as sets of statements in the Colbert language (see below). Asthe examplein Listing
4-2 shows, the syntax is similar to that of C functions, with the keyword act asthe first token:

act act nane(paranet ers)
{
vari abl e decl arati ons
updat e statenents
body st atenents
}

Listing 4-2. The syntax of Colbert
activitiesis similar to that of C functions.

Listing 4-3 shows a sample activity that moves the robot in a square. One internal variable, a, keeps track
of the four legs of the square. The main body of the act isawhi | e loop that decrements a, turns the robot
90 degrees, and moves it along on the next leg. The act’s parameter, | en, specifies the length of each side
of the square.

act square(int |en) /* nmove in a square */
{
int a
updat e
{ sfSMessage(“a is: %@”, a); }

a = 4;
whi | e(a)
{

a = a-1;
nmove(l en);
turn(90);
}
}

Listing 4-3. A sample activity schema definition in Colbert.

We haven't explained yet how the act is executed; the next subsection explains this in detail. But note that
thenmove andt urn actions halt the activity until they are completed. The Colbert evaluator accomplishes
this by calling the activity periodically to check and see if it can proceed. On each call, the updat e
statement is evaluated. This statement prints the following sequence of messages in the interaction area:

ais o
ais 4
ais 4
ais 3
ais 3

Initially, the variable a is set to O when the act isfirst started. Theupdat e code then printsthisvaluein
the interaction area, and the body code starts. In the first statement, a is set to 4, and then thet ur n action
starts. While the robot turns, the activity is polled by the Colbert evaluator; each timeit is polled, the

updat e codeisevaluated, and the value of a is printed.

4.8.2 Colbert Evaluator and Activity States

Activity schemas, once instantiated, are called activities, or acts. Each act is a micro-task that runsin the
normal 100 ms control cycle of Saphira. But unlike standard micro-tasks, acts have special facilities for
robot control, including task completion, timeouts, hierarchical invocation, and signaling.

When an activity schemaisinvoked, it is added to the micro-task schedule. On each cycle of the
scheduler, the act is given to the Colbert evaluator for evaluation. The act’s current state is the statement
that will be executed next. The evaluator evaluates statements starting from the current state, until it hits a
break condition, at which point it returns control to the scheduler. Thus, each act gets a small amount of
computation time on each cycle, and its current state keeps track of where execution should resume. The
state of an activity may be retrieved with sf Get TaskSt at e function (see Section 4.8.4).

Break conditions are designed to fit naturally into the execution cycle of acts. Typically, an act will
perform a few simple computations, then invoke a robot action, behavior, or activity, and wait for its

35

completion. Inthesquar e activity, botht ur n and nove caused the act to wait. Acts will wait for two
reasons:

A direct motion action, a behavior, or a sub-activity is blocking execution. Direct motion actions are
discussed in Section 4.7, Direct Motion Commands; behaviors and subactivities are invoked with the
start command, discussed in the next section. Most such actions are implicitly blocking until
completion, unlessthe nobl ock keyword is given on invocation.

An explicit wait isissued with thewai t f or statement. This statement waits for its condition to hold
before continuing execution, for example, waits until either a or b is nonzero:

waitfor (a|| b);

Besides explicit and implicit waiting conditions, an act can be suspended or interrupted by signals from
other acts or itself. These special states are described in Section 4.8.3 on signaling.

To prevent an act from taking too much computation time, single breaks also occur in many situations. A
single break causes the act to return control to the scheduler, but does not initiate a waiting condition. In the
next micro-task cycle, the act continues execution at the current state. Single breaks are issued at the end of
the following statements:

goto

the last statement in awhi | e body

the condition of awhi | e statement being false

start

signal

Single breaks ensure that an act does not evaluate large numbers of statements before returning control to
the scheduler. For example, it isimpossible to go through aloop without encountering at least one break.
On the other hand, sequences of ordinary statements, such as variable assignments, will all execute in the
same cycle, thus making act evaluation efficient.

Evaluation of actsis similar to the execution of finite-state machines. In fact, you can view activity
schemas as a shorthand for finite-state machines, with special syntax for sequences, conditionals, and
iterations. Figure 4-1 shows the finite-state execution model of the pat r ol activity. The states of the
finite-state machine map to states of the activity; the wait conditions are represented by transition arcs that
are satisfied when the wait condition holds. One of the most interesting characteristics of the Colbert
language is its ability to represent finite-state machines in a compact, readable form.

The current state of an act is an integer, because acts are micro-tasks (see Section 8.5). The state is an index
into the body of the act and shows where the next statement to execute is. The Saphira system maintains a
mapping between these internal states and the source lines of the activity schema definition, so that it can
indicate source lines during tracing. Activity states are set by sending them signals (see Section 4.8.3), and
the state can be examined using the library functions sf Get Task St at e, sf TaskFi ni shed, and

sf TaskSuspended (see Section 4.8.4).

4.8.3 Invocation and Signaling
Activities and behaviors are invoked with the st ar t command, which has the following form:

start <schema> [inane <synbol >] [tinmeout <int>] [priority <int>]
[nobl ock] [suspend];

The <schema> argument is required, and is the name of the activity or behavior schema. All of the other
arguments are optional, and cause modification of the invoked activity or behavior.

Table 4-5.
Command Effect

36

iname <symbol>

An instance name to give the executing
program. All references to the activity are
through its instance name, for example, the
activity can be signaled using this name. By
default, the instance name is the schema name. If
you start two instances of the same schema, you
must give them different instance names.

timeout <int>

A timeout in 100 ms units. After this amount
of time, if the activity or behavior is still
executing, it is terminated.

priority <int>

Behaviors only: specifies the behavior priority.

noblock Doesn’'t wait for completion of this activity or
behavior, go on to the next statement of the act.
suspend Invokes the activity or behavior, but leave it

suspended. The act or behavior is added to the
list of micro-tasks, but it does not start executing.

Move done

Turnto done
d
Move done
e

Turnto done

f

a=a-1
Turnto(180)

Move(1000)

Turnto(0)

Move(1000)

37

From C code, activities can be started using the function sf St art Acti vity (seethe Saphira API
reference).

Once started, an act may be signaled by other acts, by itself, or by the user through the interaction area or
the Activities window. Sending an act asignal causesit to go into a special state. For example, a
suspending act or behavior can be restarted by sending it ar esune signal. We can illustrate the utility of
signals with a monitoring example. Suppose we want to program the robot to patrol until it sees some object
in front; then it should stop patrolling and approach the object. To accomplish this task, we'll set up two
activities: the patrol activity of the previous example, and a supervisory activity that checksif thereis
something in front of the robot, and if so, approachesit (see Listing 4-4).

act approach()

int Xx;

start patrol (-1) tineout 300 nobl ock;

checki ng:

if (sfCetTaskState(“patrol”) == sfTIMEQUT || sflsStalled())
fail;

x = sfQojInFront();

if (x > 2000) goto checki ng;
suspend patrol ;

nmove(x - 200);

succeed,;

}

Listing 4-4. An activity that monitors another.

This activity starts off by invoking pat r ol with a negative argument, so it continues indefinitely.
However, instead of causing the appr oach to wait for its completion, the pat r ol activity isinvoked
with two special parameters. Thefirst, t i meout 300, causes pat r ol to quit after 30 seconds (300
cycles) have elapsed. The second, nobl ock, alows the execution of appr oach to continuein parallel
with pat r ol . The former now goes into a monitoring loop, in which it checks for objectsin front, for a
motor stall, and for the state of the pat r ol activity. If it determinesthat pat r ol hastimed out, or if a
motor stalls (indicating the robot ran into something immovable), then appr oach exitsin afailure state.
The activity executive keeps track of the dependencies among activities; in this case, because appr oach
caled pat r ol , exiting appr oach automatically exitspat r ol . Thus, if the motor stalls, all activity
started by appr oach will be suspended.

If, on the other hand, appr oach determines that an object is less than 2 metersin front (by calling the
perceptual routine sf Gbj | nFr ont , which returns the distance to the nearest object), then it suspends the
pat r ol activity, and movesto within 20 cm of the object. The patrol activity must be suspended,
otherwise the move action will conflict with the actions being issued by pat r ol . After the robot moves
near the object, the appr oach activity exits with the success state.

In this example, two activities execute concurrently, and coordination is achieved by signals that are sent
between them. Activities can examine each others' state, and take appropriate action. As the monitoring
activity, appr oach hasthe responsibility of checking the state of pat r ol to seeif it has timed out, and
also of checking for other conditions that would cause the suspension of pat r ol and the initiation of new
activities. Finally, if appr oach isitself part of alarger activity, then by exiting with success or failure, it
can signal other activities of its result.

Signals are sent by one of the following commands. If the optional argument is given, it isthe
instantiation name of the activity or behavior to signal. If not, the activity signalsitself. It may seem strange
for an activity to send itself some of these signals, e.g., i nt er r upt , but it does make sense, because the

38

effect of the signal is also communicated to the children. The only signal that can’'t be sent to self is
r esumne, since an activity can’t send a signal when it is suspended.

Table. 4-6. Colbert commands that send signals.

Command Signal

stop [<symbol>] SfSUSPEND
suspend [<symbol>] SfSUSPEND
succeed [<symbol>] SfSUCCESS
fail [<symbol>] SFFAILURE
interrupt [<symbol>] SFINTERRUPT
resume <symbol> SFRESUME
remove [<symbol>] SFREMOVE
trace [<symbol>]

untrace [<symbol>]

Thest op and suspend commands both put the activity or behavior into a suspended state, where no
evaluation is performed. Thei nt er r upt command is similar, but instead it signals an interrupt state, in
which the activity can perform special processing before suspending. Within an activity, processing for
interrupts is indicated by the special oni nt er r upt label. For example, in the code fragment in Listing
4-5, the activity will remove the follow-corridor behavior before suspending itself:

”start sf Fol | onCorridor(e, p) priority 2 inane foll ow nobl ock;

oni nterrupt:
remove foll ow,
suspend;

Listing 4-5. Colbert code fragment

Ther esune command resumes an activity or behavior. For activities, processing resumes at the
onr esumne label. If no such label exists, the activity resumes at its first statement.

succeed andfail arespecia commandsfor stopping an activity. The activity is considered to be
finished: no more processing takes place, as in the case of suspension. But other activities can check for
these states to determine if the activity accomplished itsjob or not. When an activity “falls through” and
finishesits last statement, it will enter the sf SUCCESS state by default.

Normally, sub-activities (those started from other activities) are not removed from the active process list
when they finish. Thisis so that other activities can check on their progress, determine if they finished, and
so on. An activity can be explicitly removed from the active process list by giving it the specia state

sf REMOVE withther enbve command. It's agood idea to remove activities and behaviors when they’re
done. Top-level activities (those with no parents) are removed automatically when they finish.

Thetrace anduntrace signalschange thetracing state of activities (see Section 4.8.7).

Note that all of the signaling commands can be issued in the user interaction area, which is the normal way
to start, stop, and trace activities. These commands are also used inside activities, as a means of
coordinating their action.

4.8.4 Accessing Activity States

Because Colbert lacks a special construct for referring to the state of an activity; the library functions
sf Get TaskSt at e, sf TaskFi ni shed and sf TaskSuspended are used:

39

i nt sfCGetTaskState(char *inane);
i nt sfTaskFi ni shed(char *inane);
i nt sfTaskSuspended(char *iname);

sf Get TaskSt at e returns the state of the micro-task whose instance nameisi nane. This micro-task
may be an activity, behavior, or simple micro-task. If no such micro-task exists, the result issf | NACTI VE.
Note that the instance name is a string, because sf Get TaskSt at e isaC function (see Listing 4-4 for an
example).

States that are less than or equal to 10 are special states: initial, suspended, finished, or interrupted states. A
micro-task that has completed its activity will be in one of the finished states: succeeded, failed, or timed
out. The function sf TaskFi ni shed returns 1 if the micro-task isin one of these states, and 2 if it is not
present or isin the state sf REMOVE. If the micro-task is present and not finished, then

sf TaskFi ni shed returnsO.

A suspended micro-task has the state sf SUSPEND if it is suspended indefinitely, or a negative integer if it
is suspended for a number of cycles. The function sf TaskSuspended returns1if amicro-task isina
suspended state, and O otherwise.

4.8.5 Hierarchical Invocation

Like other micro-tasks, acts can run concurrently, accomplishing different goals for the robot. The
previous section showed an example of a monitoring activity running in parallel with a movement activity.
Here, both activities are active and performing a certain task. In other cases, it may be useful to sequence a
set of activities, waiting for one to complete before starting another. A parent activity controls the sequence
by starting each subactivity in turn.

Colbert supports an execution model in which activities may be invoked as children of an executing activity.
The technical term for thisis hierarchical task decomposition, an important method for robot control.
Consider the task of moving an object from one place to another. It' s natural to decompose this into three
subtasks: picking up the object, going to the destination, and dropping the object. In Colbert, we would do

act nove_object(int dest)

start pickup;
start goto(dest);
start drop;

}
Listing 4-6. An activity with subactivities.

this using the activity in Listing 4-6.

The subactivities pi ckup, got o, and dr op are executed in turn. The nove_obj ect activity stops at
each until it finishes, then goes on to the next. This default execution model is the same as for primitive
actions.

The hierarchical structure of activitiesisimportant for signals. Any signal sent to a parent is reflected to
its active children. For example, if an activity isinterrupted, all of its children also receive interrupt signals.
This means that any behaviors or direct motion commands are suspended. Similarly, if an activity is
resumed, al of its suspended children are also resumed. Hierarchical invocation makes it easy to turn sets of
activities on and off.

4.8.6 Activity Window
Activities and behaviors can be controlled from the activity window, invoked from the
Functiong/Activities menu. The activity window shows the state of al activities and behaviorsin the system.

40

Double-clicking on the activity or behavior will change its state from running to interrupted/suspended, or
from suspended to resumed.

4.8.7 Tracing and Error Recovery

Activities can be traced by sending them thet r ace signal. For atraced activity, as each statement is
evaluated, its value is printed in the user interaction area, along with the source line of the statement. The
source line is an offset from the beginning of the activity schema definition.

To cut down on the amount of output, the executive prints information only when the state of a traced
activity changes. For example, nothing is printed while an activity is waiting for completion of a direct
motion command. Information is printed when the command finishes, and the activity goes on to the next
statement.

The evaluator traps all fatal errors—all fatal user errors, for instance—in micro-tasks. An error message
is printed, and the offending command is exited. In the case of an error caused by a statement in an activity,
the line number of the activity (relative to the top of the activity) is printed, and the activity is suspended.

4.9 Colbert Language

The Colbert language is C-like, in that it has a syntax that is close to that of ANSI C. It has many but not
all of C's expression and statement constructs, and additional constructs that are specific to Saphira, such as
the direct motion commands, and the invocation of activities and behaviors.

Colbert is not meant to be a replacement for writing code in C. Y ou cannot define new C functionsin
Colbert (acts are like functions, but are executed differently). For any complicated computation, we
recommend writing a C function, compiling it into a shared object, and then loading it into the evaluator
(see Section 4.10).

Most of the Saphiralibrary functions, variables, and structures are available in Colbert. Few C library
functions (such as the trigonometric functions) exist, but these can easily be added by the user via shared
object files.

49.1 Major Changesfrom ANSI C

The typing system is dlightly different. The basic typesarei nt, f| oat , voi d, and st ri ng
(essentially, char *). Nodoubl e or char typeisavailable. Structures are permitted, but only by
explicitly importing them from a native C shared-object file.

No arrays or array operators exist.

Thetypedoubl e isnot available; instead, al floating-point numbers are single precision (f | oat).

Not ypedef operator exists, and new structures cannot be defined in Colbert; they must be imported
from native C object files.

The following operators are not defined: ?2: , op=, >>, <<, ++,- -, , .

Explicit type casting is not permitted (although implicit casting is performed).

Thefor andsw tch statementsare not defined.

Variables may not be initialized when defined.

No embedded assignments are allowed, eg.,, i f ((x = a) > 2) { ...}

New functions are not defined in Colbert but may be imported from native C object files.

Only afew standard C library functions are initially available, although others can be made available by
telling the evaluator about them with sf AddEval Fn (see below). This and the other sf AddEval XXX
functions are available only in C code, so you must compile and load a shared object fileto link in C library
functions.

Some of these limitations may be removed in future releases. As Colbert provides for dynamic linking of
C object files, these restrictions aren’'t absolute: Native C functions can be loaded. For example, to reference

41

an array, you can define a C function that takes an offset and array as its argument, and returns the array
element.

4.9.2 Comments
Standard C comment syntax is used:

/* a conmment */

49.3 Keywords
In addition to many of the ANSI C keywords, Colbert defines several new keywords that cannot be used as
variables, labels, or other names. A list of these namesfollows.act, behavior, fail, halt,

hel p, iname, interrupt, |oad, nove, noblock, priority, renove, resune,
rotate, speed, string, succeed, suspend, timeout, trace, turn, turnto,

untrace, update, and waitfor.

494 Types
The type system of Colbert is simplified from ANSI C. Table 4-7 shows the predefined types.

Table 4-7. predefined typesin Colbert.

Type C index

i nt sf I NT

fl oat sf FLOAT
voi d sfva D
string sf STRI NG
act sfACTIVITY
behavi or sf BEHAVI OR
void * sf PTR

The first six are basic types. Note that the type doubl e doesn’t exist; all floating-point numbersin Colbert
are single precision. This decision was made to keep all types the same size on 32-bit machines. For the
same reason, Colbert has neither achar orbitfi el d type Userscan always provide access to C data
with non-Colbert types by writing native C functions to convert them to Colbert types.

string isequivadentto (char *),butisatomic,i.e, *str isillegal if str isastring. Thelast,

sf PTR, is aconvenience definition for a generic pointer.

Thesf ACTI VI TY and sf BEHAVI OR types are special basic types for activities and behaviors, similar to
functions. Activity schemas are defined with theact keyword (see Section 4.9.12). Behavior types are not
input by Colbert; instead, behaviors are defined using the behavior compiler (see Chapter 4), and made
available in Colbert with the sf AddEval Var or sf AddEval Const functions (see Section 4.10.3).
Function pointer types exist, but the user has no access to them from Colbert, so they are omitted here.

It is often necessary to refer to Colbert types from C code; for example, when defining C functions for
Colbert. All typesin Colbert have a corresponding C index, an integer, so they can be referred to from
standard C code. For examples of the use of these indices, see Sections 4.10.2, 4.10.3, and 4.10.4.

495 Expressons
Expressions use ANSI C syntax. The following are valid expressions:

42

2.3

"a string"
1+4.3

(2 >a) || !'b
fn(argl, arg2)
exp. sl ot

exp- >sl ot

*exp

&exp

si zeof (type)

Expressions typed at the command window, and followed by a semicolon, are evaluated and the result
printed, with the type of the result given in parentheses.

Pointer arithmetic is not implemented.

The comma(,) and question mark (?:) operators are not implemented.

The type of an expression is determined by the type of its components. Colbert performs implicit type
casting in the following cases.

In arithmetic operations and comparisons, all numbers are converted to floating-point if any one of the
components is floating-point. Pointers are converted to integers.

Inlogical operations, floating point numbers and pointers are cast to integers.
In assignments, the value to be assigned is cast to the type of the variable being assigned.
In function evaluation, the arguments are cast according to the function prototype.

4.9.6 Variables

Variables are defined using ANSI C syntax. The type of the variable is given by one of the five predefined
types, or by atype imported with sf AddEval St r uct . Pointers and pointers to pointers, and so on, are
legal; but no special modifiers such asconst or ext er n are permitted.
int a;
ptr tonowhere;

float **f;
robot *r;

Variables can be declared at the beginning of acts, and at the top level of a Colbert source file. Top-level
variables have global extent and are accessible by all Colbert activities. Variables declared within an act are
local to that act and function as static variables. Each invocation of an activity schema gets its own copy of
thelocal variables.

All variables are initialized to 0.

Colbert variables also can be declared by linking them to a native C variable with the sf AddEval Var
function. These variables need not have an explicit Colbert declaration, although it islegal to give them
one. The value of the Colbert variable reflects the value of the C variable.

4.9.7 Statement Grouping
Statements are grouped by using curly braces, asin this example:

{ <stmt 1> <stm 2> <stm 3> }

Grouping is useful in Colbert-specific forms, such asupdat e in act definition, that take only asingle
statement.
The empty statements; and {} arevalid statements.

4.9.8 Conditional Statements
Colbert usesthe standard i f statement for conditionals:

43

if (<c_exp>) <stnts> [else <stnts>]

Colbert requires a special form for waiting until a certain condition holds:
wai tfor <c_exp> [timeout <n>];

This statement effectively causes the Colbert executive to suspend further sequential execution of the act
until the condition c_exp becomes nonzero. On each cycle of the scheduler, c_exp isevauated, and if it
is0, control states at thewai t f or statement. Thewai t f or statement without the optional t i neout
parameter is equivalent to this sequence:

while (!'c_exp) {}

The timeout parameter is very handy for preventing blocks in an activity. After n cycles, if the condition
still has not been satisfied, thewai t f or completes, and execution continues with the next statement.

Unlike suspension, wai t f or does not affect any child activities, which keep executing normally.

499 Iteration and Branching Statements
The only iteration construct in Colbert isthewhi | e statement:

while (<c_exp>) <stnts>

c_exp isevaluated, and if false, a single break occurs, so control returns to the scheduler. On the next
cycle, execution continues with the statement after the whi | e.

Control may also be transferred in an act using the got o statement and labels, as in this sequence:

<| abel >:
got o <l abel >;

Labels may occur only at the top level of an activity schema. got 0’ s cause a single break when they are
executed, so that control returns to the scheduler.

4.9.10 Assignment Statements
Values may be assigned to any expression that represents a storage location. This includes variables and
locations described by pointers and structure members. Implicit type conversion is made to convert the value
to the type of the storage location. The following are valid assignment operations:
poi nt p;
int a;
int *b;
float *c;

&a;

3;
.X = 1.0;
= &p. X;
c = *b;

If a Colbert variable islinked to a native C variable by the sf AddEval Var function, then changing the
value of the Colbert variable will aso change the value of the linked C variable.

4.9.11 Function Statements
Function expressions are also considered as statements.

4.9.12 Activity Schemas
Activity schemas are defined using the special keyword act . They are similar to function definitions, but
are interpreted by the Colbert executive as a specia type of micro-task.

The activity nameis any symbol. The symbol cannot be declared as a variable or function. If the name was
previously assigned to an activity schema, the old definition is replaced by the new one. Note that any
instances of the schema running as micro-tasks are unaffected by the redefinition; you must re-invoke the
activity schemato get the new definition.

The activity schematakes a set of parameters, which are variables local to the activity. If no parameters
are provided, the parentheses may be omitted.

Optional local variables are declared only at the beginning of the activity schema.

An optional update block is a statement that is evaluated every time the activity isinvoked by the
scheduler. Typically, the update block is used to set the values of variables to reflect a change in the state of
the robot. got o, labels, and iteration areillegal in the update statement.

Body statements are executed in accordance with the finite-state machine semantics described in Section
4.8.2. Labels are allowed only at the top level of body statements. Some special labels indicate placesto start
execution on exceptional conditions.

Table 4-8.
Command Description
oninterrupt Branch location for an interrupt signal.
onresume Branch location when an activity resumes because it was
sent an sf RESUME signal.

4.9.13 Direct actions
Direct actions are statements that result in robot motion (see Table 4-9). These statements may appear
anywhere a statement is allowed in an activity schema. The general form is:

command(int arg) [tineout n] [nobl ock];

wheret i meout n specifiesatimein 100 msincrements for the command to complete, and nobl ock
means that the command will be executed without blocking; that is, control will continue with the next
statement. Some motion commands are implicitly non-blocking: speed andr ot at e.

Table 4-9. Direct action statementsin Colbert.

Command Effect

move(int mm); Moves the robot mm millimeters forward (positive) or backwards
(negative). Blocking.

turn(int deg); Turns the robot deg degrees clockwise (negative) or counter-
clockwise (positive) degrees from the current heading. Blocking.

turnto(int deg); Turns the robot to the heading deg degrees. Positive values are
counterclockwise, negative values are clockwise. Blocking.

speed(int mms); Moves the robot at a speed of nrs millimeters per second
forward (positive) or backwards (negative). Non-blocking.

rotate(int degs); Moves the robot at arotational speed of degs degrees per
second counter-clockwise (positive) or clockwise (negative). Non-
blocking.

halt; Halts all direct motion commands.

4.9.14 Activity and Behavior Invocation and Signaling
Activities and behaviors are started with the st art statement (see Listing 4-7)

45

start <aname> [([c_exp]*)] [noblock]
[iname <synbol >]
[priority <int>]
[suspend]
[tineout <int>] ;

Listing 4-7. In Colbert, activities and behaviors begin with the
start statement.

The activity should be invoked with as many arguments asin its definition. If there are no arguments,
then the argument’ s parentheses may be omitted. All of the optional keywords can occur in any order.
nobl ock causes execution to continue with the next statement, after a single break and without waiting
for the activity to complete. The activity can be given an instance name so that other activities can refer to
it; by default, this name is its schema name. If another activity or behavior has this instance name, an error
issignaled. Thepri ority keywordisonly for behaviors, which compete for control on the basis of their
priorities. A t i meout specifies the maximum number of 100 ms cycles the activity or behavior will be
allowed to execute. If present, suspend invokes the activity or behavior but leaves it in a suspended state,
pending ar esune signal.

Note that the activity schema must be defined with theact command beforethest art command is
executed, or an error will result. Currently the only way to invoke an activity is to use the activity schema
name. For behaviors, the behavior schema must be defined with the behavior compiler and loaded into
Colbert, and its name made available with sf AddEval Var or sf AddEval Const .

Activities and behaviors are sent signals with the si gnal statement:
signal [<synmbol >];

The optional argument specifies the instantiation name of an activity or behavior to signal. If no such
activity or behavior exists, an error is issued. The available signals are shown in Table 4-10.

Table 4-10. Signals for activities and behaviors in Colbert.

Command Signal Description
stop [<symbol>] SfSUSPEND Suspends execution of the activity. Execution
can be resumed with ther esume command.
suspend [<symbol>] SfSUSPEND Same as st op.
succeed [<symbol>] SfSUCCESS Causes the activity to finishin the
sf SUCCESS dtate.
fail [<symbol>] SFFAILURE Causes the activity to finish in the
sf FAI LURE date.
interrupt [<symbol>] SFINTERRUPT Interrupts the activity, branching to the

oni nterrupt labe, if it exists. If not, the
activity staysin thesf | NTERRUPT state, and
no further execution occurs.

resume <symbol> SFRESUME Resumes a suspended or interrupted activity. If
theonr esune label exists, starts at this point;
otherwise starts at the beginning of the activity.

remove [<symbol>] SFREMOVE Causes the scheduler to reap the activity.

46

trace [<symbol>] Traces the activity.

untrace [<symbol>] Untraces the activity.

4.10 Loading Native C Code

Native object files can be dynamically loaded into the execution environment, giving access to Saphira
internals and new C functions. Because Colbert has only a limited implementation of C, in many cases you
must load C object files to accomplish atask. For example, the only way to define new structures is to load
in an appropriate C object file.

4.10.1 Format of Native C Files

In general, a C source file will contain user-defined functions and variables, and a special function,
sfLoadl ni t, that will be called when thefileisloaded. Sf Loadl ni t will contain callsto the
sf AddEval XXX functions, which will make native C functions and variables defined in the file (or
already loaded in the system) available to Colbert. Listing 4-8 shows an example load file (in
handl er/ src/ apps/testl oad. c).

47

/*
* test load file for dynam c | oadi ng
*/

#i ncl ude "saphira. h"

i nt nopen = O;
int nyfn(int a)
{

return a+l;

}

struct nystruct

{
int a;
float b;
void *c;
}m

int ind_nystruct;

EXPORT void sfLoadlnit(void) /* evaluated on |oad */

{
float a = 1.3;
a = sqgrt(a);
printf("Qpened! %l %\n", nopent+, a);
sf SMessage(" Opened: %", nopen);
sf AddEval Fn("nyfn", myfn, sfINT, 1, sfINT);
sf AddEval Const (" sf Fol | onCorri dor", sfBEHAVI OR, sfFoll owCorridor);
sf AddEval Const (" sfLEFT", sfINT, 0);
sf AddEval Var (" sf Current Envi ronment ", sfPTR,
(fval ue *)&sf Current Envi ronnent) ;
i nd_nystruct = sfAddEval Struct ("mystruct”, sizeof(struct
nmystruct), (char *)&m 3,
"a", &ma, sflNT,
"b", &m b, sfFLOAT,
"c", &mec, sfPTR);
sf AddEval Var ("nf, ind_nystruct, (fvalue *)&n;
}

Listing 4-8. Exampleload filein Colbert.

The function sf Loadl ni t , if present, isinvoked when the object file isloaded into Saphira. In this case,
it prints a message, then makes a structure, a variable, afunction, a behavior, a constant, and another
variable visible to Colbert. Details on how to make C functions and variables available in Colbert are
contained in the next few sections.

When afileis unloaded or reloaded, the function sf LoadExi t () iscalled to help clean up anything
that could cause problems. For example, any activities that access C functions or variables defined in the file
should be removed, or they will cause an error.

4.10.2 Making Native C Functions Accessible

Native C functions, including Saphira library functions, are made accessible in Colbert with the
sf AddEval Fn function. sf AddEval Fn isnot callable from Colbert, because Colbert has no way to
access the underlying C environment. It must always be compiled and loaded from a shared object file,

48

usually asacall inthesf Loadl ni t function (see the example in the previous section). The format of
sf AddEval Fn is

sf AddEval Fn(char *name, void *fn, int rtype, int nargs, ...)

nane isthe name of the function as seen by Colbert. f n isafunction pointer to the C function being
made available. The return type, r t ype, isthe C index of a Colbert type (see Section 4.9.3). The
predefined types are shown in Table 4-11.

Table 4-11. Predefined function
typesin Colbert.

Type C index

i nt sf I NT

fl oat sf FLOAT
voi d sfva D
string sf STRI NG
act sfACTIVITY
behavi or sf BEHAVI OR
void * sf PTR

In addition, pointers to types can be defined with the function sf TypeRef (i nt t ype) . For example, to
define a pointer to an integer, use:

sf TypeRef (sf 1 NT)

The function sf TypeDer ef performs the inverse operation, giving the type of the reference of a pointer;
but thisis less useful in defining argument types.

nar gs isthe number of arguments of the function, currently a maximum of seven. If the function takes a
variable number of arguments, then use a negative number here, where | nar gs| isthe number of required
arguments of the function. Each argument to the function is described by the C index of its type. For
example, the library function void sf SMessage(char *format, ..) ismadeaccessiblewith this
command:

sf AddEval Fn(“sf SMessage”, sfSMessage, sfVOD, -1, sfSTRING;
sf SMessage has one required argument, a string, and returnsvoi d.

4.10.3 Making Native C Variables Accessible

Native C variablesin user code and the Saphira library are made accessible in Colbert with the
sf AddEval Var function. Thisfunction can only be called from loaded C object files, not from the
Colbert evaluator. It must always be compiled and loaded from a shared object file, usualy asacall in the
sf Loadl ni t function (see the example in the Section 4.10.1). The format of sf AddEval Var s

sf AddEval Var (char *nanme, int type, (fvalue *)&cvar);

nane isthe name of the variable as seen by Colbert. cvar isthe variable being made available. Note that
apointer to the variable isrequired, and it is cast to the type f val ue *. Thisis so that the Colbert
executive can change the value of the variable. The type of the variable, t ype, isthe C index of a Colbert
type (see Section 4.9.3). The predefined variable types are shown in Table 4-12:

49

Table 4-12. Predefined variable types

in Colbert.
Type C index
i nt sf I NT
fl oat sf FLOAT
voi d sfva D
string sf STRI NG
act sfACTIVITY
behavi or sf BEHAVI OR
void * sf PTR

In addition, pointers to types can be defined with the function sf TypeRef (i nt t ype) . For example, to
define a pointer to an integer, use:

sf TypeRef (sf 1 NT)

The function sf TypeDer ef performs the inverse operation, giving the type of the reference of a pointer;
but thisis less useful in defining argument types.

A C variable made available in Colbert is both accessed and changed by the appropriate Colbert expression.
For example, sf Robot isavailableinthe bi n/ saphi r a executable, having been defined by:

sf AddEval Var (" sf Robot", sfSrobot, (fvalue *)&sfRobot);

Thetypesf Sr obot isalso defined (see the next section). The robot’ s current global position is available
in Colbert as the members sf Robot . ax, sf Robot . ay, and sf Robot . at h. For example, the following
Colbert statement will increment the global x position by 1 meter (thisis just an example; the recommended
way to change the global position iswith sf MbveRobot):

sf Robot . ax = sfRobot.ax + 1000. O;

Besides variables, constants can be defined in Colbert, with sf AddEval Const . The format is similar to
that for adding variables:

sf AddEval Const (char *nane, int type, (fvalue)val);

whereval isaconstant expression. For example, these are some of the predefined constant loaded into
bi n/ saphi ra:
sf AddEval Const (" sf Const ant Vel oci ty", sfBEHAVI OR

sf Const ant Vel ocity);

sf AddEval Const ("sf VSLOALY", sfFLQOAT, 3.0);
sf AddEval Const ("sf SLOALY", sfFLOAT, 4.0);

The only way to start a behavior from Colbert isto defineit in C, and then make it accessible with
sf AddEval Const or sf AddEval Var .

4.10.4 Making Native C Structures Accessible

Native C structures are made accessible in Colbert with the sf AddEval St ruct function. New
structures cannot be defined in Colbert; they must already exist in aloaded C object file.
sf AddEval St ruct canonly be called from loaded C object files, not from the Colbert evaluator. It must
always be compiled and loaded from a shared object file, usually asacall inthesf Loadl nit function
(see the example in the Section 4.10.1). The format of sf AddEval Struct s

sf AddEval Struct (char *nane, int size, (char *)&s, int num ...);

50

nane isthe name of the structure as seen by Colbert. si ze isthe sizein bytes of the structure. s isan
instance of the structure being made accessible; here a pointer to it is passed to the function. num isthe
number of membersin the structure. The rest of the arguments are triplets, each defining one structure
member. The format of the tripletsis:

(char *)slotnanme, &s.slot, int type

where sl ot nane isthe Colbert name for the member, s. sl ot isthe instance structure member, and
t ype isthe Cindex of the member type. The available types appear in Table 4-13.

Table 4-13. Predefined Structure
typesin Colbert.

Type C Index

i nt sf I NT

fl oat sf FLOAT

voi d sfva D
string sf STRI NG
act sfACTIVITY
behavi or sf BEHAVI OR
void * sf PTR

In addition, pointers to types can be defined with the function sf TypeRef (i nt t ype) . For example, to
define a pointer to an integer, use:

sf TypeRef (sf 1 NT)
The function sf TypeDer ef performs the inverse operation, giving the type of the reference of a pointer;

but thisis less useful in defining argument types.
For example, the sf Robot structure is defined as shown in Listing 4-9.

i nt sfSrobot;

robot r;

sf Srobot = sf AddEval Struct (
"robot", sizeof(robot), (char *)&, 22,
"x", & .x, sfFLOAT, /* local coords */
"y", &r.y, sfFLOAT,
"th", & .th, sfFLOAT,
"ax", &r.ax, sfFLOAT, /* global coords */
"ay", &r.ay, sfFLOAT,
"ath", &r.ath, sfFLOAT,
"control", & .control, sfFLOAT, /* heading control */

"status", & .status, sfINI, /* status int here */

Listing 4-9. The Colbert structure sf Robot .

The structure name in Colbert isr obot , and it has 22 available members, each with its own name and
type. Not all members need be declared to Colbert. The sf AddEval St ruct returnsanew type index,
which is stored in the C variable sf Sr obot . Thisindex is used in making the definition of the Saphira
variable sf Robot availablein Colbert. Aswith the other sf AddEval XXX functions,

sf AddEval St ruct must be compiled into a shared object file, and then loaded into Colbert.

51

C indexes for pointer types are constructed using the functions sf TypeRef and sf TypeDer ef . For
example, in C code, to get atype index for a pointer to the robot structure, use:

sf TypeRef (sf Sr obot)

The size of a structure isreturned in Colbert by the si zeof (t ypenane) function. The currently-loaded
structures are printed withthehel p structs command.

Ther obot and poi nt typesare predefined in the bi n/ saphi r a executable.

4.10.5 Compiling and Loading C Files

Chapter 6 has more detailed information about the particulars of compiling native C files and making
them into shared object files. Under UNIX, the object files must be converted into a shareable abject file
(.s0). The shareable object file is loaded with the load command, as in this example:

load/testload. so

A dynamically loaded file may be recompiled and reloaded at any point.

Under MS Windows, C code is compiled into a Dynamic Link Library (DLL). The DLL isthen loaded
into Saphira, again with thel oad command. DLLs cannot be relinked or reloaded, unless they are first
unloaded. From Colbert, use the unl oad command to unload aDLL that you are going to relink.

52

5 Behavioral Control

Y ou can control robot motion in two different ways. The direct motion commands were introduced in
Sections 2.2.2 and 4.7. Direct motion control is appropriate for moving the robot through simple sequences
of action, e.g., the BunpAndGo activity backs and turns the robot when it bumps into something. But in
certain cases, the trajectory of the robot must satisfy complicated demands from the task and various
maintenance policies. For example, in navigating from one room to another in an office environment, the
trajectory is defined in large part by goal positions at corridor intersections. The robot should achieve these
positions as quickly as possible, subject to safety and power considerations. On a more local scale, the robot
should avoid obstacles and respond to contingencies, such as closed doors or blocked corridors.

One approach to complex control is to decompose the problem into a set of small actions to accomplish
particular goals, which can then be combined into a more comprehensive control strategy. Each such small
action, with its associated goal, is called a behavior. A behavior looks at some set of sensor information and
outputs a desired action, based on its goal. For example, an obstacle-avoidance behavior might ook at the
current sonar readings and decide to slow down or turn the robot.

As of Saphira 6.x, behaviors are treated as a type of activity, and are invoked and disabled using the same
commands as activities. In particular, while the behavior window still exists for displaying information
about behaviors, you cannot turn a behavior on and off from this window. Instead, use the Activities
window. Also, we recommend starting and controlling behaviors using Colbert, which provides a
convenient interface to behavior activation and a uniform view of behaviors, direct actions, and activities.

5.1 Behaviorsand Fuzzy Control

Every behavioral-control scheme must decide on representations for the output action and must include a
method for arbitrating among competing outputs, when several behaviors want to control the robot. In
Saphira, we use fuzzy control rules to define output actions, and competing outputs are merged based on
priorities and degree of activation of a behavior. A fuzzy control rule maps states of the LPS into control
actions for the robot. A tutorial on Saphira s fuzzy control system can be found in the Saphira
documentation; please refer to it for explanations of the concepts mentioned here.

This section describes how to define and execute behaviors in the Saphira system. Behaviors are specified
using the behavior grammar, which simplifies the task of writing behavior control rules. Specifications in
the behavior grammar are translated into C code by the bi n/ bgr amprogram, and the resulting source
cade can be compiled and loaded into Saphira.

The Saphiralibrary aso has a number of precompiled behaviors available for obstacle avoidance and goal
seeking (see Section 5.9).

5.2 Invoking Behaviors

We introduce behaviors with an example invocation of a predefined behavior. Y ou can invoke behaviors
in two ways: with the Colbert st art command from the interaction area or an activity, or with the
sf St art Behavi or function from C code.

The behavior sf GoToPos moves the robot to agoal position. It takes three arguments: the speed at
which the robot is to move (in mm/sec), a point artifact representing the goal position, and a success radius
(in mm). In the interaction area, type:
poi nt *goal ;
goal = sfCreatelocal Point (1000, 0, 0);

sf AddPoi nt (goal) ;
start sfGToPos(200, goal, 100);

The first two statements create a point artifact situated 1 meter in front of the robot. The sf AddPoi nt
function adds it to the pointlist, so that its position is updated as the robot moves. Finally, the start

53

command invokes the sf GoToPos behavior at 200 mm/sec to the goal point, with success defined as
being at most 100 mm from the goal. If the robot is connected, it will start to move towards the goal point,
and stop when it gets near.

5.2.1 Presenting Behaviorsto Colbert

Behaviors are defined using the behavior compiler, which generates a C code file that can be compiled
and loaded into Saphira (see Section 5.4). Behaviors are represented as C structures and can be presented as
constants to Colbert. If myBehavior is a behavior, then the following construct will make myBehavi or
available to the Colbert evaluator:

sf AddEval Const (" nyBehavi or", sfBEHAVI OR, mnyBehavi or)

The sf AddEval Const call should beincluded in an sf Loadl ni t function in the C file.

5.2.2 Invoking Behaviorsfrom C Code

From C code, you can invoke behaviors using the sf St ar t Behavi or function. The arguments are
similar to those of thest art conmmand.

sf process sf StartBehavi or (behavior *b, char *inane, int tineout,

int priority, int suspended, ...)

The first argument of the sf St ar t Behavi or function is a pointer to the behavior structure, as defined
below. The second is the instance name of the behavior. In Saphira 6.x, behaviors are also micro-tasks and
so are referred to by their instance name. Thet i meout valueisthe number of 100 ms cycles the behavior
will run; use O for no timeouit.

The next argument is the priority of the behavior closure, relative to others. Lower values get higher
priority; O isthe highest priority and should be used for the most important emergency maneuvers, such as
collision avoidance. Saphiratreats all behaviors with the same priority equally in terms of competing for
control of the robot; ones with larger priority numbers (lower priority) are suppressed by activity of higher-
priority behaviors.

Thesuspended argument isOif the closureis started in an active state, and 1 if it is suspended. A
closure that is suspended is present but not active and does not affect the robot’s movements. The suspended
state of abehavior can be changed by using Colbert signals (see Section 4.8.3), or with the library function
sf Set TaskSt at e (see Section 8.5.3).

The remaining arguments to this function set up the parameters of the closure. They must be the same
number and have the same type as the parameters specified in the behavior definition. Listing 5-1 shows an
example invocation of the predefined behavior sf KeepOf f .

sf St art Behavi or (sf KeepOfrf, “keep off”, /[/* instance name */
0, /* no tineout */
1, [* priority */
0, /* no suspension */
100. 0, /* caution speed */
0.4); /* sensitivity */

Listing 5-1. Invocation of the predefined behavior sf KeepOF f .

5.3 BehaviorsasActivities

Behaviors are a special type of activity. They have specia properties, such as a priority and various internal
state variables (goal , t ur n, and vel oci ty activity). On the other hand, they are similar to basic actions
in that they cannot invoke subactivities.

Behaviors can be suspended or killed by sending them signals, using the task signal facility (see Section
4.8.3). All of the behavior functions from version 5.3, such assf | ni t Behavi or and

sf Ki I | Behavi or, are not available in 6.x. Active behaviors appear in the Function/Activities window.
Just as with other activities, they can be interrupted and resumed by double-clicking in this window.

Conceptually, there are two types of activities: those that achieve some goal and those that act to maintain a
state. Goal-achieving behaviors can terminate on their own, like direct actions. They do this by setting the
goal statein their Activity section (see Section 5.8.5). A behavior whose goal state is greater than 0.8 is
considered to be successful and is terminated by the behavior executive.

Like direct actions, behaviors may be started in either blocking or non-blocking mode from within an
activity. Blocking mode is generally useful only with goal-achieving behaviors, which will terminate when
their goal state is sufficiently fulfilled. Blocking mode is useful for sequencing goal-achieving behaviors.
Non-blocking mode is useful for starting a set of behaviors executing concurrently.

When an activity is suspended, all of the behaviorsit or its subactivities invoke are also suspended. On
resumption, these behaviors are resumed. If an activity terminates, all of its behaviors are terminated. One
common mistake in invoking behaviors from activities occurs when the activity terminates unintentionally.
For example, the following activity, will start the three behaviors, then succeed and promptly terminate all
three:

act starthb()

start b1() nobl ock;
start b2() nobl ock;
start b3() nobl ock;

The net effect is that the behaviors never really get executed.

5.4 Behavior Grammar

The behavior grammar is a convenient syntax for defining behaviors. The BNF for the grammar is given
below. For reference, Listing 5-2 provides an example of atypical behavior using this syntax. This behavior
sends the robot towards a goal position.

Begi nBehavi or nyGot o /* behavi or nanme */

Par ans

sf PTR goal _pt /* pointer to goal point */

sf FLOAT radi us /* how cl ose we cone, in nm */

Rul es

If too_|left Then Turn Ri ght

If too_right Then Turn Left

If Not (near_goal O too_ left O too_right) Then
Speed 200.0

If near_goal O too_ left Or too_right Then Speed 0.0

Updat e

float phi = sfPointPhi(goal pt);

float dist = sfPointD st(goal_pt);

too_right = up_straight(phi, 10, 50);

too_left = straight_down(phi, -50, -10);

near _goal = straight_down(dist, radius, radius*2);
Activity

Turn Not near _goal
Speed Not near _goal
Goal near _goal
EndBehavi or

Listing 5-2. Example behavior grammar; the sequence sends a robot toward a goal position.

55

Sample behaviors can be found in the file handler / sr ¢/ basi ¢/ behavi or . beh. You can refer to these
for reference and ideas on how to write behaviors.

5.5 Behavior Grammar in BNF

Listing 5-3 provides the complete rules for the behavior grammar, in the form accepted by the YACC or
BISON parsers.

/* Behavior definition: name parans rules init update activity */

BEHAVI OR: =
“Begi nBehavi or” synbol
“ Par ans” [PARAM STMTS]
“Rul es” [RULE_STMrS]
[“Init” C _STMIS]
“ Updat e” [C_STMIS]
“Activity” [ACT_STMIS]

“ EndBehavi or”

/* behavi or paraneters */
PARAM STMTS: =
{“sfINT” | “sfFLOAT” | “sfPTR'} synbol [PARAM STMIS]

/* Rule definition: nane fuzzy-var action nmod */
RULE_STMS: =
[SYMBOL] “If” FUZZY_EXP “Then” CONTROL [RULE_STMIS]

/* fuzzy expression */
FUZZY_EXP: =
synbol | fl oat
| “Not” FUZZY_EXP
| FUZZY_EXP “And” FUZZY_EXP
| FUZZY EXP “Or" FUZZY_EXP
| “(* FUZZY_EXP “)”

/* rule actions and nodifiers */
CONTRCL: =
“Turn Left” [MOD] | “Turn Right” [MOD]
| “Turn” synmbol [MOD]| “Speed” MVAL

“Very Slowly” | “Slowy” | “Moderately” | “Sharply”
| “Very Sharply”| synbol

MVAL: =

synbol | int | float
/* activity statenments */
ACT_STMIS: =

{“Turn” | “Speed” | “Goal” | “Progress”} FUZZY_EXP
[ACT_STMIS]

Listing 5-3. Complete rulesfor the behavior grammar, in the form accepted by the YACC or BISON
parsers

5.6 Behavior Executive

Before any behaviors can be invoked and run, the behavior executive must be started. Normally thisis
doneusing thesf | ni t Cont r ol Procs call.

Behaviors and direct motion control will conflict if a client attempts to use both at the same time to
control the rabot. For example, in the bi n/ saphi r a sample client, the bump-and-go procedure uses
direct motion control, while the obstacle-avoidance routines are behaviors. The bump-and-go procedure is

56

inactive until the robot hits something, at which point it takes over motion control and backs the robot up.
To suppress behavior execution during thistime, the sf Behavi or Cont r ol flagis set to 0. When the
bump-and-go procedure finishes, it resets the flag to 1, and the behaviors resume control:

i nt sf Behavi or Cont r ol
i nt sf HasDCHead

A vaue of Ofor sf Behavi or Cont r ol suppresses behavior control of motion, although all behaviors
are still evaluated. A value of 1 allows the results of behavior evaluation to control the robot motion.

sf HasDCHead controls whether the DCHEAD or DHEAD commands are used to control robot turning.
DCHEAD was implemented on PSOS 4.3 and later. Set sf HasDCHead to 1 to use DCHEAD commands;
it can result in smoother and more responsive turning. The default valueis 0.

5.7 Fuzzy variables.
Fuzzy variables are floating-point numbers in the range [0,1]. Several functions are defined for creating
fuzzy variables from single numeric values.

5.7.1 Fuzzy variable creation functions

float straight_up (float x, float mn, float nmax)
float down_straight (float x, float min, float nmax)
float f_greater (float x, float c, float delta)
float f_smaller (float x, float c, float delta)
float f_eq (float x, float c, float delta)

The functions st r ai ght _up and down_st r ai ght convert numerical values into afuzzy value based
onitsinclusion in arange. Both take three arguments: the value itself, the start of the range, and the end of
therange. strai ght _up returns 0.0 if the valueis below the range and 1.0 if it is above; it interpolates
linearly between them (see Figure 5-1). down_st r ai ght isthe opposite: values below the start return 1.0;
those above, 0.0. Intermediate ones are linearly interpol ated.

A

1.0

0.0
<= »

-70.0 -30.0

Figure5-1. The st r ai ght - up function.

Thefunctionsf _smal | er,f _great er, andf _eq compare two numbers and return afuzzy value
based on whether the first is smaller than, larger than, or equal to the second. Thedel t a argument isthe
range over which the fuzzy value will vary.

57

5.7.2 Fuzzy variable combination functions

Combine fuzzy variables by using the T-norm functions max (for digunction), m n (for conjunction),
and unary m nus (for negation). The utility functionsf _and, f_or,andf_not areprovidedto
implement these operators:

float f_not (float x)
float f_and (float x, float y)
float f_or (float x, float y)

5.8 Implementing Behaviors
For reference, we include descriptions of the parts of behaviors defined using structures and functionsin
C. If you use the behavior syntax to write behaviors, you generally won't have to worry about these details.

5.8.1 Input parameters

The variables that constitute the input to the behavior are contained in a structure called beh_params.
Each parameter is either a floating point number or a pointer; pointers are used for complex variables such
as goa points. The beh_paramstypeis an array of such parameters.

typedef union /* a param can be either a fp nunber */
/* or a pointer */

float f;

void * p;

} param

typedef param * beh_par ans;

Listing 5-4.

5.8.2 Update function

On each Saphira cycle (100 ms), the behavior updates its state variables (using information from the LPS)
and then evaluates its rules. Updating is accomplished by an update function, which takes the beh_par am
structure as an argument.

5.8.3 I nit function

When Saphirainstantiates a behavior schema, itsi ni t function is called to set up theinitial fuzzy state.
Theinput tothei ni t functionisabeh_par ans structure, containing theinitial parameters of the
behavior. Thei ni t function can set any initial state that is needed by the behavior; a clock, for example, if
the behavior has a timeout.

5.84 Rules

Each behavior rule is defined as a structure beh_r ul e, which consists of a name and two indices into the
fuzzy state: the antecedent value for the rule and the mean value of the output action. Each rule can
recommend only one action, which is the consequent value: one of Accel , Decel , Turn_l eft, or
Turn_right:

typedef struct

char *nane; /* name of the rule */
int *antecedent, /* activity of this rule */
consequent / action to take */
par anet er ; / mean val ue of action */
} beh_rul e;
Listing 5-5.

For example rule definitions, see below. Note that the consequent value constants are external integers,
but they are not declared in the Saphira headers, so they must be declared in the application code.

58

5.85 Activity
The activity section of abehavior defines how it operates in the larger context of other behaviors. The
activity section comprises four fuzzy state variables, given in Table 5-1.

Table 5-1. Behavior state variables and their definitions.

Variable Effect

Turn Controls the rotation channel of the robot. If it is 0.0, this behavior has no effect on
robot rotation. If it is 1.0, then it competes fully with other behaviors of the same priority
for control of rotation. Default is 0.0

Speed Controls the velocity channel of the robot. If it is 0.0, this behavior has no effect on the
speed of the robot. If it is 1.0, then it competes fully with other behaviors of the same
priority for control of the robot’s speed. Default is 0.0.

Coal Indicates whether the behavior is achieving agoal. A value of 0.0 indicates no goal
achievement. A value greater than 0.8 signal s that the behavior has achieved its goal.

Progress Indicates whether the behavior is successfully moving towards a goal. Not currently
used.

TheTur n and Speed state variables control how much effect the behavior will have on these actions of
the robot, relative to other behaviors of the same priority. The Goal variable is used to determine whether
the behavior has succeeded in achieving its goal. When the Goal is greater than 0.8, the behavior is
considered to be successful and terminates in the state SUCCESS.

5.8.6 Behavior schema

A complete behavior schemais a structure combining itsrules, i ni t , and updat e functions (the activity
section is part of the updat e function). The rules can be included directly in the definition; Listing 5-6
shows the constant velocity function:

extern int Accel, Decel, Turn_left, Turn_right;

behavi or
constant _velocity =
{ "Constant Vel", cv_setup, cv_check_speed, 1,
2, { { "Speed-Up", &cv_too_slow,
&Accel , &cv_speedup},
{ "SI ow Down", &cv_too_fast,
&Decel , &cv_sl owdown}

}s

Figure 5-6. The behavior schema for the constant velocity function.

The first argument is the name of the behavior; the second isthei ni t function; the third isthe updat e
function; and the fourth argument is the number of parameters. The number of rulesis the fifth argument,
and the rules themselves are the sixth. Note that al global variables are referenced as pointersin the
behavior.

The maximum number of rulesin abehavior is 10. The consequent values, Accel and so on, must be
declared as external integers.

5.9 Predefined Saphira Behaviors

Saphira has a number of predefined behaviors for obstacle avoidance and goal-directed movement. Most
of the complexity of these behaviors are in the update functions, which extract data from the LPS and
update a small set of fuzzy variables relevant to the behavior. Besides integrating these behaviors with your

59

own routines, you can use them as templates to create new behaviors. The example code is
handl er/ src/ basi c/ behavi or . beh in your Saphira distribution software.

Note that the variables in the example are pointers to behavior structures and can be used directly in the
sf St art Behavi or function. See the sample behavior definition file behavi or . beh for examples.

This sequence sets the velocity setpoint on the robot server to its first parameter, an integer in millimeters
per second:
behavi or *sf Constant Vel ocity

This one sets the velocity setpoint to zero. It doesn’t permit parameters:
behavi or *sf St op

This structure slows and turns the robot sharply to avoid immediate obstacles:
behavi or *sf Avoi dCol I'i si on

It takes four parameters, which are listed in Table 5.2. Additionally, the default turn direction, when it is
completely blocked, is given by the global variable sf Pr ef er r edTur nDi r, which should be set to either
sf LEFTTURN or sf Rl GHTTURN. User programs and other behaviors can set this variable to change the
action of this behavior.

Table 5.2. Behavior parametersfor avoiding a collision.

Parameter Effect

sf FLOAT Front sensitivity to obstacles. Value from 0.5 (not sensitive) to
3.0 (very sensitive).

sf FLOAT Side senditivity to obstacles. Value from 0.5 (not sensitive) to
3.0 (very sensitive).

sf FLOAT Turning gain: controls how rapidly the robot turns away from
obstacles. Value from 4.0 (slow turn) to 10.0 (fast turn).

sf FLOAT Standoff. Defines the avoidance “bubble” around the robot.

Vauefromf | akey_radi us (at the robot) to

fl akey_radi us + standoff (standoff mmfrom the
robot).

sfPreferredTurnDir | Thisglobal variable controls the default direction of turn when
the front is blocked. Values are sf LEFTTURN or

sf RI GHTTURN.

This structure slows the rabot sharply to avoid immediate obstacles:
behavi or *sf StopCol i sion

This behavior differsfrom sf Avoi dCol | i si onin that it doesn’'t turn the robot; another behavior must
do that. The structure takes three parameters, which are listed in Table 7-4.

60

Table 5.3. Behavior parametersfor stopping a collision.

Parameter | Effect

sf FLOAT | Front sensitivity to obstacles. Value from 0.5 (not sensitive) to 3.0 (very
sensitive).

sf FLOAT | Side sensitivity to obstacles. Vaue from 0.5 (not sensitive) to 3.0 (very
sensitive).

sf FLOAT | standoff. Defines the avoidance “bubble” around the robot. Value from
fl akey_radi us (at therobot) tof | akey_radi us + st andof f
(st andof f mm from the robot).

This structure gently steers the robot around and away from distant objects:

behavi or *sf KeepO f

The behavior takes two parameters and uses the global variable sf Pr ef er r edTur nDi r, described in
Table 5.4. The priority for sf KeepOF f should always be less than (higher priority number) than that for
sf Avoi dQnst acl e when they are invoked together.

Table 5.4. Keep off behavior parameters

Parameter Effect

sf FLOAT Caution speed. Robot slows to this speed when more
distant obstacles are detected. Value in mm/sec.

sf FLOAT Sensitivity to obstacles. Value from 0.2 (not sensitive) to

2.0 (very sendgitive).

sfPreferredTurnDir | Thisglobal variable controls the default direction of turn
when the front is blocked. Values are sf LEFTTURN or
sf RI GHTTURN.

This structure sends the robot to a given point:
behavi or *sf GoToPos

It takes three parameters, described in Table 5.5.

Table5.5. Goto position behavior parameters

Parameter | Effect
sf FLOAT | Speed (in mm/sec). Robot moves at this speed towards goal position.
sf PTR Goal position. Should be a pointer to a point artifact.

sf FLOAT | Success radius (in mm). Defines how close the robot must be to the goal
position before the behavior goal is satisfied.

To move the robot near a given goal position and point the robot towards the goal position, use the
following structure:
behavi or *st AttendAt Pos

It takes three parameters, described in Table 5.6.

61

Table5.6. Attend at position behavior parameters

Parameter | Effect

sf FLOAT | Speed. Robot moves at this speed towards goal position. Vauein
MmM/Sec.

sf PTR Goal position. Should be a pointer to a point artifact.

sf FLOAT | Success radius. Defines how close the robot must be to the goal position
before the behavior goal is satisfied. Valuein mm.

Use this structure to tell the robot to follow alane, as represented by a lane artifact:

behavi or *sf Fol | ow

The lane structure is a directed point with a width, although the width is ignored in this behavior, because
explicit parameters for the latitude the robot are allowed in the lane. A goal point represents a position in
the lane that the robot is to achieve.

When active, the behavior draws its lane as a set of dotted linesin the LPS. This behavior takes seven
parameters, described in Table 5.7. This behavior setsthe sf Pr ef er r edTur nDi r variable according to
how the robot is misaligned with the lane.

Table5.7. Follow lane behavior parameters

Parameter | Effect

sf PTR Lane. Thisis apoint or lane artifact representing a line the robot is to
follow. Parameters below define allowed deviations from the line.
sf PTR Goal position. The robot moves along the lane in the direction of the goal

until it reachesit. Should be a pointer to a point artifact.

sf FLOAT | Right edge (in mm). Distance the robot is allowed to wander from the
right side of the line.

sf FLOAT | Left edge (in mm). Distance the robot is allowed to wander from the left
side of theline.

sf FLOAT | Speed off lane (in mm/sec). How fast the robot travels when it is out of
the lane.

sf FLOAT | Speed in lane (in mm/sec). How fast the robot travels when it isin the
lane.

sf FLOAT | Turn ratio. How important it is to be centered/aligned in the right
direction; 0.0: direction overrides; 1.0: center overrides.

This structure tells the robot to follow a corridor, as represented by a corridor artifact:

behavi or *sf Fol | owCorri dor

The corridor structure is adirected point with awidth; the width is used to set up alane down the center
of the corridor for the rabot to follow. A goal point, represents a position in the lane that the robot is to
achieve.

When active, the behavior draws its lane as a set of dotted linesin the LPS. This behavior takes two
parameters, described in Table 5.8. This behavior setsthe sf Pr ef er r edTur nDi r variable depending
on how the robot is misaligned with the corridor.

62

Table5.8. Follow corridor behavior parameters

Parameter | Effect

sf PTR Corridor. Thisis acorridor artifact the robot is to follow. The path of the
robot is bounded by alane set in from the sides of the corridor.
sf PTR Goal position. The robot moves along the corridor in the direction of the

goal until it reachesit. This should be a pointer to a point artifact.

To tell the rabot to go in adoorway, as represented by a door artifact, use this sequence:

behavi or *sf Fol | owDoor

The direction is whether to go in or out of the doorway; this could be decided automatically by the position
of the robot but isn’t because the robot may already be on the correct side.

When active, the behavior draws its lane as a set of dotted linesin the LPS. This behavior takes two
parameters, described in Table 5.9. This behavior setsthe sf Pr ef er r edTur nDi r variable depending on
how the robot is misaligned with the lane through the doorway.

Table5.9. Follow door behavior parameters

Parameter | Effect

sf PTR Door. Thisis adoor artifact the robot isto go in or out of. The path of the
robot is bounded by a narrow lane perpendicular to the door.
sfINT Direction (sf | Nor sf QUT). | N means into the room; OUT means out of

the room and into the corridor.

Use this structure to turn the robot to point in the direction of agoal position:
behavi or *sf TurnTo

The robot always turnsin the direction that makes the smallest turn. Table 5.10 shows the p

Table5.10. Tur nTo parameters.

Parameter Effect

sf PTR Goal position. The robot turns until it points towards this goal.
Should be a pointer to a point artifact.

sf FLOAT Success angle (in degrees). If the robot is within this angle of
pointing towards the goal, it will have succeeded.

sf FLOAT Turn speed. How fast the robot turns to the goal. Value of 0.5 is
slow speed, 2.0 isfast.speed, 2.0 isfadt.

63

6 Creating Load Filesand Clients

This chapter describes how to create Saphira clients, and provides examples of the three types of clients:

Loadable clients. Loadable clients are created by loading files into a base system, typically
bi n/ saphi r a. The files may be Colbert language interpreted files, or compiled C code in shared object
files.

Stand-alone clients. Stand-alone clients are created by compiling C code and linking it with the Saphira
libraries to create a stand-alone executable.

Foreign clients. These clients are called from a program written in another language, e.g., PROLOG or
LISP. The foreign language executabl e loads and executes routines from the Saphira libraries and compiled
user C code.

The chosen method is up to the user. With Colbert, the user stays within an interactive debugging
environment and can debug and re-execute procedures without the burdensome debug-recompile-reload-re-
execute cycle. Colbert sources and shared object files are also much easier to distribute and share than C
source for clients. So, the interactive method is the one we recommend for most devel opment tasks. For
mature applications, it may be useful to create a new client, with all user functions preloaded.

It is aso possible to use the Saphira system from other languages such as LISP or PROLOG, aslong as
they have aforeign-function interface facility. In this case, the developer writes routinesin C or C++ and
compiles them into object files, then these object files, together with the Saphira libraries, are loaded into
the LISP or PROLOG system.

C or C++ programs can be compiled into object files using standard compilers, suchasgcc or MS
Visual C++. The header filesin handl er/ i ncl ude contain prototypes and definitions of structures and
variables in the Saphiralibrary. After compiling his or her files, the developer links them with the Saphira
library to create either a shared object file, or an executable client. Shared object files are loaded into
Colbert, and clients are stand-alone systems for controlling the robot. User clients may also invoke the
Colbert evaluator; for instance, the sample client bi n/ saphi ra calls the evaluator as a micro-task.

The next chapter contains details of the Saphira API, which should be used as a reference guide to the
Saphiralibraries. In addition to the Saphira API, the best reference material is the example clients and
shared object files that are defined in the Saphira distribution and in the tutorial documentation at the SRI
Saphirawebsite (ht t p: / / www. ai . sri . com ~konol i ge/ saphi r a). The sample clients and shared
objects are found in the handl er/ sr ¢/ apps directory; they are explained in more detail below.

6.1 Host System Requirements

Saphira libraries are available for most UNIX systems (including SunOS 4.1.3, Solaris 2.x, SGI Irix, DEC
OSF, Linux, and FreeBSD), aswell as MS Windows 95 and NT 3.51 and 4.0. For UNIX systems, we
recommend using the Gnu gcc compiler and linking tools from the Free Software Foundation. These tools
provide a uniform base for making clients, and the sample programs are all made with them.

In addition, if you want to create stand-alone clients that use any of the graphics or user interface routines,
you will need the following libraries and headers:

X11R5 or later

Motif 2.0 or later

These libraries are not required if you are simply compiling shared objects for loading into the Colbert
evaluator, because the library functions are already present in the client.

For MS Windows, the libraries have been compiled with MS Visual C 4.x tools. A DLL file and an
associated L1 B file are available. For the best compatibility, we recommend using MSVC 4.0 or later: all of
the sample clients are given with . MAK filesfor MSVC 4.0. It may be possible to use Borland tools, but they
have not been tested; incompatibilities between MSVC and Borland L1 B files may arise.

6.2 Compiling and Linking C Source Files

To compile aloadable shared object file or Saphira client, you must have installed the Saphira distribution
according to the directionsin the r eadne file. In particular, the environment variable SAPHI RA must be
set to the top level of the distribution: we recommend / usr /| ocal / saphi ra/ ver 61 inaUNIX
system, for example.

After installing the Saphira distribution, follow these steps to create a client or a shared object file:
Write a C or C++ program containing your code, including calls to Saphira library functions.
Compile the program to produce an abject file.
Link the object file together with the relevant Saphiralibrary to create an executable or shared object file.
As of Saphira 6.0, all the Saphiralibrary routines are contained in a shared library. In MS Windows, this
issf.dl|;inUNIX systems, it isthe shared library | i bsf . so. 6. x. y, wherex andy arethe major
and minor versions of Saphira. The symbolic link | i bsf . so pointsto the current shared object library.
In MS Windows, shared libraries (DLLSs) cannot be relinked unless no application is using them. If you
have loaded a DL L, then make changes to the source code and try to relink it, you will get an error saying
that the DLL fileis busy. The unl oad command can be used to unload the DLL from Saphira so the link
can proceed.

6.2.1 Writing C or C++ Client Programs

To develop a stand-alone Saphira application, or to load C routines into Colbert, you write one or more C
or C++ programs that contain your own functions, and make calls to the Saphiralibrary routines. It may
help to review Chapter 2 for an explanation of micro-tasks and asynchronous user routines.

For a stand-alone client, the main file will always follow the structure in UNIX systems, as shown in Listing
6-1.

#i ncl ude “saphira.h” /* header file for Saphira library */
...definition of startup, connect, and di sconnect call backs...

void main(int argc, char **argv)
{
/* register callbacks */
sf OnConnect Fn(myConnect Fn) ;
sf OnSt ar t upFn(mySt art upFn) ;

/* start up Saphira mcro-tasking OS */
sf Startup(0);
}

Listing 6-1. XXXXXX

The Saphira library headers, as well as other relevant system and graphics headers, are loaded by the

handl er/ saphi r a. h file. Thisfile is always included, whether creating a stand-alone client, or
loadabl e shared object files. The callbacks are defined to start up Saphira or user micro-tasks when the
client connectsto or disconnects from the robot. The mai n function is the entry to the client; it registers the
callbacks, and then starts up the Saphira micro-tasker with the call to sf St ar t up. An argument of O to
this function means that control does not return to the main program: All processing is done using micro-
tasks, and the client exits when the File/Exit item is chosen from the menu.

Programming in MSV C is similar, except that the form of the mai n function changesto MS Windows
programming standards (see Listing 6-2)

65

#i ncl ude “saphira.h” /* header file for Saphira library */
...definition of startup, connect, and di sconnect call backs...

i nt PASCAL W nMai n(Handl e hlnst, HANDLE hPrevl nst ance,
LPSTR | pszCndLi ne, i nt nCndShow)
{

/* register callbacks */
sf OnConnect Fn(myConnect Fn) ;
sf OnSt ar t upFn(mySt art upFn) ;

/* start up Saphira mcro-tasking OS */
sf Startup(hl nst, nCndShow, O0);
return O;

}

Listing 6-2.

In this case, control does return to the main program after the Saphira client exits, and the user should
return O to indicate that the exit was normal.

Main Saphira
thread oS
TstStartup
<
100 Execute
User ms micro-tasks
async
routines Execute
200 ms micro-tasks
300 Execute
ms micro-tasks
\ 4 \ 4

For most robot programming, all operations can be handled in micro-tasks. If a more compute-intensive
task must be done concurrently, then sf St ar t up should be called with an argument of 1, which means
that the Saphira micro-tasking OS is started, and immediately returns control to the main program. The
user can now run any routines concurrently with the Saphira OS, which is executing its micro-tasks every
100 ms. The micro-tasks and the asynchronous user routines share the same address space and can
communicate via global variables.

Figure 6-1 isagraphica view of the execution process. The main client thread starts up, and invokes the
Saphira OS with the sf St ar t up function. After start-up, the OS wakes up every 100 ms and runs every
micro-task. If the argument to s St ar t up is 0, then control never returns to the main thread. If itis1,
then control returns immediately, and both threads execute concurrently.

Explanations of some sample Saphira client programs are given later in this chapter.

6.2.2 Compiling and Linking Client Programs under UNIX
After the client programs are written, they must be compiled with a C or C++ compiler. We recommend
the gcc compiler for UNIX systems; all sample programs have been compiled using this compiler. Other C

Figure 6-1. Concurrent execution of Saphira OS and user asynchronous tasks.

66

compilers provided with UNIX systems should also work, however.

The compiler and linker are typically called using the make facility. Thefile
handl er/ src/ apps/ makefi | e isused to make all of the sample clients and load files. Listing 6-3
shows a portion of this makefile:

HUHHHR BB BB HHHHHHHR AR BB HHHHH BB R AR BB HH BB R BB B HH B R B R R
Novenber 1996

#

Makefile for Saphira applications

#

HHHBHBHBHARH BB R H B H A B H B AR B R AR B AR B AR B R A
SRCD = ./

oBJD = ./

I NCD = $(SAPHI RA) / handl er /i ncl ude/

LI BD = $(SAPHI RA) / handl er/ obj /

BIND = ./

find out which OS we have
i ncl ude $(SAPHI RA) / handl er/i ncl ude/ 0s. h

CFLAGS = -g - D$(CONFI G
CC = gcc
I NCLUDE = -1$(INCD) -1$(X11D)i ncl ude

HHHBHBHBHAHH BB R H B H A B H B R AR B AR B AR B AR B R A
al | : $(BI ND)btech $(BI ND)saphira $(BI ND)async $(Bl ND) packet $(Bl ND)nowi n
touch all

$(OBJID) saphira. o: $(SRCD)saphira.c
$(CC) $(CFLAGS) -c $(SRCD)saphira.c $(I NCLUDE) -o $(OBJID)saphira.o

$(Bl ND) saphira: $(OBJD)saphira.o
$(CC) $(OBID)saphira.o -o $(BI ND)saphira \
-L$(SAPHI RA)/ handl er/obj -1sf -L$(MOTIFD)lib $(LLIBS) -lc -Im

$(OBID)test | oad. o: $(SRCD)testl oad. ¢ $(I NCD)saphira.h
$(CC) $(CFLAGS) -c $(SRCD)testload.c $(INCLUDE) -o $(OBID)test! oad.o

testl oad. so: $(OBID)testl oad. o
$(LD) $(SHARED) $(OBIJD)testload.o -o testload.so

Listing 6-3. A portion of th emakef i | e for Saphira applications.

The first part of the makef i | e defines variables that are useful in compilation and linking. Note that the
SAPHI RA environment variable must be defined as the top level of the Saphira distribution (with no final
slash). Thehandl er /i ncl ude directory contains header files, and handl er/ obj hasthe libraries.

Next, thefile handl er/i ncl ude/ os. h isread in. Thisfile determines the operating system type and
sets some system library variables appropriately, for X windows and Motif. It aso sets the CONFI Gvariable
to the particular OS of the machine, which isimportant for handling some of the system routines correctly.
For most OSes, the Motif (MOTI FD), X11 (X11D), and system libraries (LLI BS) are set correctly, but in
some cases this may not be true. In this event, go into the os. h file and change the definitions under your
os.

One peculiarity of 0s. h isthat it relies on the conditional preprocessing facilities of gnu make
(gmake). Not all native makes support this facility. If you get errors during the preprocessing phase of the
compilation from os. h, switch to gmake.

67

The compile command makes saphi ra. o fromthesaphi r a. c file. It isimportant that the variable -
D$(CONFI G is passed to the compiler, because this tells the header files what particular variant of UNIX
is being used. The include directories are the Saphira header directory and the X11 directory.

Thel i nk command takes the object file generated by the conpi | e command and links it with the
Saphira library and system libraries to form the executable. The Saphiralibrary isindicated by - | sf . This
isthe library that opens a graphics window and has al the user interface functions. If you don’t want a
window, usethe - | sf x library. The LLI BS variable indicates other system libraries that may be needed
by this particular UNIX system. The executable is deposited in the same directory as the source file and can
be invoked by typing its name at the shell prompt.

Thefilet est | oad. so isan example of a shared object file, which is loadable under Colbert. The C
source is compiled as usual, but the linking step is different. Instead of creating an executable file, the LD
command is invoked to create a shared object file (with the extension. so). Y ou must include the shared
object flags SHARED, defined in 0s. h for each particular OS.

6.2.3 Compiling and Linking Client Programsunder MSVC

With Microsoft Windows, the sample Saphira clients are MS Visual C++ 4.x projects. All of the sample
clientsinthe handl er/ src/ apps directory havetwo . mak files, onefor bt ech, and one for all the
rest. Load these into MSVC, and you should be able to compile and link the clients. One problem with the
included projects is that they use absolute path names for the source files (including the library file
sf. li b).Atthistime there seemsto be no way to specify relative path names, so if you use a different
distribution directory (something other than c: \ saphi r a\ ver 61), you will not be able to compile the
sample applications until you add in the same filesusing the add fi | es command.

To run the clients, make sure that the SF. DLL fileis accessiblein the C: \ W ndows\ Syst emdirectory,
or in adirectory on your PATH variable.

The easiest way to compile and link your own clientsis to use the sample project files and modify them to
include your source files instead of the sample clients. Here are some things to remember when creating
new MSVC projects.

The Saphiralibrary file handl er / obj / sf . | i b must be included in the project files.

The project must be compiled in 32-bit mode, not in 16-bit mode.

Y ou must add the directory for the include files, $(SAPHI RA) \ handl er\ i ncl ude, into the
Additional Include Directories slot in the Build/Settings menu under the C/C++ tab and Preprocessor
category. Also, make sure the symbol _ W NDOWS is defined in the Preprocessor Definitions slot here.

Executables should be linked with the multithreaded libraries, in the Code Generation item of the C/C++
tab of Build/Settings.

To make aloadable shared file for Colbert, select the dynamic load library (. dl |) project type. The
library header file (. | i b extension), containing linkage information for the load library, is not needed by
Colbert.

6.2.4 Debugging C Code under UNIX

The Colbert interaction window is a handy facility for debugging clients, because you can query the values
of variables, start and stop activities, and so on. Often, it may be necessary to invoke a more heavy-duty
debugging apparatus, especially for complicated C programs. The Gnu debugger gdb can be useful,
especially when started in Emacs. Here are afew tips for interacting with the Gnu debugger.

To start up, givegdb the name of the client executable (usually saphi r a). At the debugger prompt,
typer un to start the client. Before running the program, the Saphiralibraries (1 i bsf . so) aren't loaded,
S0 you can’t set breakpointsin Saphirafunctions. Similarly, user load files aren’t yet present. After the
client is running and you have loaded any shared object filesinto Colbert, you can set breakpoints by
interrupting back to the debugger prompt. All the Saphiralibrary exported functions and variables can be

68

examined, and you can set breakpoints in the library functions. The Saphira library has been compiled with
the - g option, so its symbols are available to the debugger. However, the source code is not in the
distribution, so you can't step through library functions.

If you loaded a user shared object file into Colbert, say t est | oad. so, you won't seeits symbols, even if
you used the - g option on compilation. That's because user shared aobjects are read by the dynamic loader,
and the debugger has no way of tracking these loads. So it must be explicitly told of user shared object files
withtheshar edl i brary command. For example, giving the debugger command shar edl i brary
t est| oad. so will make all the symbolsin thisfile available to the debugger, assuming it was compiled
with the - g option.

6.2.5 Debugging C Code under MS Windows
Y ou can use the MSV C debugger to set breakpoints and step through compiled C code loaded into Colbert
asDLLs. All of the exported library symbols can also be examined, although source code is not available.
To invoke the debugger, start from an MSV C project creating the DLL in question (use the Debug build
option). Usethe Execut e command; you will be prompted for the name of an executable file, which
should be the Saphira client. After the client is started, load the DLL into it via Colbert’s| oad command.
The MSVC debugger will halt the client on breakpoints, and you can examine the state of the computation.

6.3 Client Examples

In this section, we provide examples of the ways of writing Saphira clients. Thesefilesare al in
handl er/ src/ apps. For explanations of the functions and data structures, see the relevant sections of
the Saphira API reference. Most of the examples exist as loadable Colbert files and compilable stand-alone
clients.

saphira.c
This is the source for the basic client bi n/ saphi r a. It invokes very basic micro-tasks for communication
and display, and starts the Colbert evaluator.

deno. act/c
A demonstration client that invokes behaviors, activities, and perception micro-tasks, as well as user-
interface functions on the mouse buttons.

testl oad. c
Source for a shared object file to be loaded into Colbert.

direct.act/c
This client uses the state reflector and the direct motion routines to move the robot back and forth between
two points. The patrol routine is a Saphira micro-task.

packet . act/c
This client bypasses the state reflector for Saphira, providing its own packet communication handler.

async. c
This client uses the state reflector and direct motion routines, but instead of invoking a micro-task it calls
the motion routines asynchronously.

now n. c
Like the previous client, this one calls the motion commands asynchronously, but ignores the user interface
routines and connects to the robot directly.

6.3.1 TheBasic Saphi ra Client

The basic client, bi n/ saphi r a, isused as the typical development environment. It starts up basic
micro-tasks for communication and control. It also starts the Colbert evaluator for user interaction, which
loads the Colbert filei ni t . act from the working directory, if it exists.

Like all Saphira C source files, this example starts with a header file that readsin all prototype and
structure information for the Saphira libraries. The headers can be read by C or C++ programs; all library

69

names are C names. Thefilehandl| er /i ncl ude/ saphi r a. h automatically configures the C compiler
for the operating system you're running on: UNIX (SGI, Solaris, Linux, FreeBSD) or MS Windows 95/NT.
If you need to customize these files, for example, if you have the Motif libraries in a different place from the
one Saphira assumes, then look in handl er/ i ncl ude/ os. h and the various configuration files

handl er /i ncl ude/ conf - xxx. h for library and header file definitions.

Saphira provides away to call user functions whenever it is started up or connects to the robot. It does this
by registering user functions as callbacks with sf OnSt ar t upFn and sf OnConnect Fn. Whenever a
start-up or connect event takes place, Saphira calls the registered user function.

The start-up callback can be used to initialize various features of Saphira’s display, such as the display
rate, or local/global mode. Y ou can’t set these before calling sf St ar t up, because the windows aren’t
created yet. If you don’t want to do any specia processing here, there’s no need to define a start-up
callback.

In this application, my St ar t upFn isinvoked when the Saphira OS isinitialized, and it sets the display
rateto 5 Hz (seethesf Set Di spl aySt at e function in the API reference). myConnect Fn isinvoked
when the client connects to the robot server (using the Connect menu or connect command); hereitis
empty because no specia processing isto be done on connect. Y ou don’t need to register this callback if you
don’'t do any special processing on connect; it's here for illustration purposes.

In the mai n function, the callbacks are registered, and then the Saphira OS is started by sf St ar t up.
Because the argument is O, this function does not return, and al computation takes place in the micro-tasks.

The Saphira main window system passes keystrokes to your process via the callback registered with
sf KeyPr ocFn. This callback should return O if the you want the default key action: moving the robot
when the user presses one of the movement keys, for example. Otherwise, the function should return 1 to
signal that it has handled the keypress. If you don’t want to perform any special keyboard actions, you don’t
have to register a callback.

Similarly, mouse clicks are sent to the callback registered with sf But t onPr ocFn. Again, returning O
from the callback means the default action is invoked; returning 1 means the callback handled the mouse
click. The mouse callback simply returns 0, invoking the default mouse-click action. Note that the mouse
callback could have been omitted; we include it here simply to illustrate how to invoke a mouse callback

70

#i ncl ude "saphira. h"

voi d myConnect Fn(voi d); /* prototypes */
voi d nmySt artupFn(void);

int myKeyFn(int ch);

int myButtonFn(int x, int y, int b, int m;

#ifdef IS _UN X /* UNI X main function */
void main(int argc, char **argv)
{

/* set up user button and key processing */
sf But t onPr ocFn(nyBut t onFn) ;

sf KeyPr ocFn(nyKeyFn) ;

sf OnConnect Fn(myConnect Fn) ;

sf OnSt ar t upFn(mySt art upFn) ;

/* start up, don't return */
printf("starting...\n");

sf Startup(0);

y o
#endi f

#i f def MS_W NDOWS

int PASCAL W nMai n (HANDLE hl nst, HANDLE hPrevl nst ance,
LPSTR | pszCndLi ne, i nt nCndShow)

{

/* set up user button and key processing */
sf But t onPr ocFn(nyBut t onFn) ;

sf KeyPr ocFn(nyKeyFn) ;

sf OnConnect Fn(myConnect Fn) ;

sf OnSt ar t upFn(mySt art upFn) ;

sf Startup(hl nst, nCndShow, O0);

return O;

y o
#endi f

voi d
my St ar t upFn(voi d)
{

sf Set Di spl aySt at e(sf DI SPLAY, 2); /* set it to 5 Hz */
sf RunEval uat or () ; /* do the eval uator */
}
int myButtonFn(int x, int y, int b, int m
{ return 0; } /* do default handling */
int myKeyFn(int ch) /* any user processing of keys here */
swi t ch(ch)
case SPACEKEY:
sf Set Vel oci ty(0); /* stop the robot */
sf Message(“ St opped! ") ;
return 1;
return O; /* return O for default handling */
voi d myConnect Fn(voi d) /* start those processes */
{}
Listing 6-4

71

6.3.2 TheDeno Client

This isthe most complex client example; it makes use of activities and predefined micro-tasks and
behaviors to implement a handler for the robot. We include behaviors for obstacle avoidance and forward
motion at constant velocity, as well as processes for interpreting sonars, recognizing corridors, and
registering the robot against previously found objects.

Thedeno client comesin two forms: aloadable Colbert language file (deno. act), and a compilable
native C code file. We encourage you to use the Colbert language, as it’s more understandable and easier to
work with and modify.

The Colbert file, shown immediately below, isloaded into the evaluator by using thel oad command in
the interaction window. Colbert files can contain functions to evaluate at the top level of thefile. On load,
the file starts by invoking several sets of predefined micro-tasks for behavior control
(sf 1 ni t Cont rol Procs), registration of the robot to amap (sf I ni t Regi strati onProcs), sensor
interpretation and object recognition (sf I ni t I nt er pr et at i onPr ocs), and an environment-tracking
procedure (sf I ni t Awar ePr ocs). These library functions are all accessible in Colbert and are invoked as
thefileisread.

The second set of statements initializes a variable, and then starts up four behaviors for obstacle avoidance
and movement. The movement behaviors are invoked in a suspended state, so that they won't cause the
robot to move until they’re resumed (from the Activities menu or with ther esume command).

/*
* denp. act
* Denpnstration of behaviors and activities
* using the Col bert eval uator
*/

sflnitControl Procs(); /* for behavior control */
sflnitRegistrationProcs();/* register robot using sensed artifacts */
sflnitlnterpretati onProcs(); /* find walls and doors */

sf I ni t Anar eProcs(); /* figure out where we are */

/* Start up sone behaviors */

sfPreferredTurnDir = sf LEFTTURN;

start sfAvoidCol lision(3, 3, sfSHARPLY, 100) priority O;
start sfKeepOrf(100, .25, sfLEFTTURN) priority 1;

start sf Constant Vel ocity(200) priority 2 suspend;

start sfStop priority 3 suspend;

Listing 6-5.

The second part of the file defines two activity schemas, one for following a corridor, the other for reacting
when the robot bumps into something and the motors stall.

Fi ndAndFol | ow isa corridor-following activity based on the fuzzy control behavior

sf Fol | owCor ri dor . It starts out by waiting for the current environment of the robot to be a corridor
(sf 1 ni t Anar ePr ocs hasthejob of updating the environment variables). When this occurs, it fires up
thesf Fol | owCor ri dor behavior with agoal position 10 meters ahead of the robot. Note that the
behavior is started in nobl ock mode, which means the execution of Fi ndAndFol | ow continuesin
parallel with the behavior. The activity is now in monitor mode, checking whether the behavior finishes or
the corridor ends. If so, it removes the behavior and goes back to checking for a new corridor. Note the use
of wai t f or at several points to block execution until certain conditions hold.

Fi ndAndFol | ow isstarted up from within the fileusing the st art command. If the activity is
interrupted (say by double-clicking in the Activities window), then it first removes the corridor-following
behavior, then suspends itself.

72

/* Define an activity to follow the current corridor */

act Fi ndAndFol | ow

{
poi nt *e; /* old environnment */
poi nt *p; /* point to go to */

NOCORRI DOR: /* here we have no corridor */
wai t for (sfCurrentEnvironment !'= NULL &&

sf Curr ent Envi r onnment - >t ype == CORRI DOR) ;
/* wait until we have a corridor */
e = sfCurrent Envi ronnent ;
p = sfCreatelocal Poi nt (10000, 0, 0); /* point ahead of robot */
sf AddPoi nt (p) ;
start sfFollowCorridor(e, p) priority 2 inanme follow nobl ock;
follow corridor to point */
wai t f or (sf Current Envi ronnent e || sfTaskFinished("follow"));
renmove foll ow /* renove this behavior */
got o NOCORRI DOR; /* resune checking for corridor */
oni nt err upt:
renmove foll ow
suspend;

}

start Fi ndAndFol | ow suspend;

ri
| *
I =

Listing 6-6.

The BunpAndGo schema uses direct actions, rather than behaviors, to rescue the robot from stall
situations. Theupdat e facility of activity schemasisused to calculateast al | ed variable on each
cycle. The act allows behaviors to control the robot until it detects a stall condition; then, it turns off
behavior execution and starts issuing direct action commands. In the file, the BunpAndGo activity is
initiated in the active state.

/*
* This activity detects bunp collisions on Pioneer
*/

act BunpAndGo
{

int stalled; /* static |local variables */
int recovering;

updat e

/* code executed on every cycle */
stalled = sfStall edvbtor(0) + sfStalledMotor(1);

NOCONTACT:
untrace;
sf Behavi or Cont r ol

1; /* behaviors on */

wai tfor stall ed;
sf Behavi or Cont r ol

[...]

0; [/* behaviors on */

start BunpAndGo; [* start it up */

Listing 6-7.

73

The stand-alone client version, denp. ¢, has most of the same functions. However, because Colbert
activities are available only in the evaluator, the Fi ndAndFol | ow and BunpAndGo activities are not
present.

The code starts by defining the mai n function, setting callbacks asin the saphi ra client, and then
calling sf St art up toinitiate the Saphira system. The start-up callback ssimply sets the display update
rate to 5 Hz. On connection to the robot, the registration and interpretation micro-tasks are started up, just
asin the Colbert file. In addition, a user micro-task is invoked. This micro-task is defined below.

/*
* The deno client
*/

#i ncl ude "saphira. h"

voi d myConnect Fn(voi d);

voi d nmySt artupFn(void);

int myKeyFn(int ch); /* any user key processing here */
int myButtonFn(int x, int y, int b, int m;

void mai n(int argc, char **argv)

/* set up user button and key processing */
sf But t onPr ocFn(nyBut t onFn) ;

sf KeyPr ocFn(nyKeyFn) ;

sf OnConnect Fn(myConnect Fn) ;

sf OnSt ar t upFn(mySt art upFn) ;

/* start up, give it control */
sf Startup(0);
}

voi d nmySt artupFn(voi d)

{
sf Set Di spl aySt at e(sf DI SPLAY, 2); /* set it to 5 Hz */
}

voi d myConnect Fn(voi d) /* start those processes */

sflnit Regi strati onProcs();

sflnitlnterpretati onProcs();

sflnitControl Procs();

sf I ni t Anar eProcs();

sflnitProcess(test_control _proc,"User Process");

}

Listing 6-8.

The user micro-task (t est _cont rol _proc) isvery simple; it starts up several behaviors, then puts
itself into a suspended state. Y ou can change the state of the invoked behaviors from Saphira’'s
Function/Activities menu (see previous chapter). All of the behaviors used in this function are available as
part of the Saphiralibrary.

74

voi d test_control _proc(void)
swit ch(process_st at e)

case INT:

sfPreferredTurnDir = sf LEFTTURN;

sf St art Behavi or (sf Const ant Vel ocity, 0, 3, O,
300.0);

sf St art Behavi or (sf Stop, 0, 4, 0);

sf St art Behavi or (sf Avoi dCol I i sion, 0, 0, O,
3.0, /* front sensitivity */

3.0, /* side sensitivity */

sf SHARPLY, /* turn gain */

100.0); /* standoff */

sf St art Behavi or (sf KeepOff, 0, 1, O,

100.0, /* caution speed */

0.25); /* sensitivity */

process_state = SUSPEND;

br eak;

case RESUME:

sf Message(" Resuned") ;

br eak;

}
}

Listing 6-9.

6.3.3 Thetest| oad. so Loadable Object File Example

Native C code can be loaded into Colbert and executed by compiling the code and linking it to create a
shared object filein UNIX, or adynamic load library in MS Windows. The sasmplefilet est | oad. c
contains a Saphira library and user function callsin C source. Asin the stand-alone client examples, the
header file saphi r a. h must be included at the beginning of the source file. The rest of the file contains C
function, variable, and structure definitions. The difference between loadable objects and a stand-alone
client isthat they don't have ano mai n function; instead, the sf Loadl ni t functionis called after
loading the file, and it typically makes the objects in the file available to the Colbert evaluator, through use
of sf AddEval XXX function calls. For information on the effect of these calls, see Section 4.10.1.

Under UNIX, the loadable object source is compiled normally, and the resultant object file is converted to a
loadable object file (with the extension . so) using the LD command and the SHARED link flags (see
Section 6.2.2). Under MS Windows, the project typeis set to Dynamic Load Library rather than
Application.

/*

test load file for dynamic | oading
*/

#i ncl ude "saphira. h"

int nopen = 0;

i nt

myfn(int a)

{

return a+1;

}

struct nystruct

{

75

int a;

fl oat b;
|void *c;
}s

struct nystruct m
int ind_nmystruct;

EXPORT voi d
sf Loadl ni t (voi d) /* this should be eval uated on open */

{
float a = 1.3;
a = sqrt(a);
printf("Opened! % %\n", nopen++, a);
sf SMessage(" Opened: %", nopen);
sf AddEval Fn("nyfn", nyfn, sfINT, 1, sflNT);
sf AddEval Const (" sf Fol | owCorri dor", sf BEHAVI OR, sf Fol | owCorri dor);
sf AddEval Const ("sfLEFT", sfINT, 0);
sf AddEval Var (" sf Current Envi ronnent", sfPTR,
(fval ue *)&sf Current Envi ronnent) ;

ind_nmystruct = sfAddEval Struct("nystruct"”, sizeof(struct nystruct),
(char *)&m 3,

", &ma, sflNT,

", &m b, sfFLOAT,

", &nc, sfPTR);

sf AddEval Var ("', ind_nystruct, (fvalue *)&m;

}

a
b
c
f

Listing 6-10.

6.3.4 TheDirect Client

Using direct motion commands, thedi r ect client moves the robot back and forth along a two meter
line. Thedi rect client comesin two forms: aloadable Colbert language file (di r ect . act), and a
stand-alone native C code file. We encourage you to use the Colbert language, as it's more understandable
and easier to work with and modify.

Thetwo activities, pat r ol and squar e, are straightforward realizations of the robot routinesin
Colbert. A third activity, aa, turns on tracing and sequences the two activities. Statements at the end set
global mode on the display, and initiate the aa activity. Note that you should be connected to the robot
before loading this file, otherwise an error will occur when the direct actions are attempted.

| * BHHHHH R HHH R H TR
direct.act --- exercising the direct notion API
* HRR R HH TR TR TR
*/
act patrol (int a) /* go back and forth "a'" times */
whil e (a)
{
a = a-1;
turnt o(180);
nmove(1000) ;

turnto(0);
nmove(1000) ;
}

}

act square /* nmove in a square */

76

int a;

la = 4;

whi | e(a)

{

a = a-1;

nove(1000) ;

turn(90);

}

}

act aa /* call them sequentially */
{

trace patrol;
start patrol (4);
trace square;
start square;

}

sf Set Di spl aySt at e(sf GLOBAL, 1); /* put display into gl obal coords */
start aa; /* start up the toplevel activity */
Listing 6-11.

The stand-alone client isdi r ect . c. Instead of loading a shared object file into the basic Saphira client,
here we create a stand-al one executable that incorporates the Saphira libraries and user code.

Inthe mai n function, start-up and connection callbacks are registered, and then the Saphira system is
started. The pat r ol activity isimplemented as a micro-task, only part of which is shown here. Note the
explicit completion testing for the direct actions, in contrast to the Colbert implicit waits. Other limitations
of micro-tasks relative to activities also exist, e.g., no parameters and no timeouts. The micro-task is
initiated using the sf I ni t Process function.

#i ncl ude "saphira. h"
voi d patrol (voi d)

switch(process_state) {
case INT:

case 20:

sf Set Posi ti on(2000) ;
process_state = 21;

br eak;

case 21:

if (sfDonePosition(100))
process_state = 22;

br eak;

[...]
)
voi d nmySt artupFn(voi d)

{
sf Set Di spl aySt at e(sf GLOBAL, TRUE); /* use the global view */
}

voi d myConnect Fn(voi d)

{
sf Set MaxVel oci t y(200) ; /* robot nmoves at this speed */
sflnitProcess(patrol,"patrol");

}

void main(int argc, char **argv)

| {

77

sf OnConnect Fn(myConnect Fn) ; /* reai ster a connect function */
sf OnSt art upFn(nmyStartupFn);/* register a startup function */

| sfStartup(0); /* start up the Saphira w ndow */

}
Listing 6-12.

6.3.5 ThePacket Client

This client handles low-level communication with the robot server. It takes advantage of the low-level
Saphira communication routines, which parse packets and put the information into the state reflector
structures. The Saphira OS is active, allowing concurrent execution of micro-tasks and activities. But the
default packet and motor control handlers (packets and motor micro-tasks) are turned off, so that the user
program can take over these functions. The packet client comesin two forms: aloadable Colbert
language file (packet . act), and a compilable native C code file. We encourage you to use the Colbert
language, asit’s more understandable and easier to work with and modify.

The example starts out by defining an activity schemafor packet communications, DoPacket s. This
activity first turns off the default Saphira packet and motor micro-tasks, which are invoked by sf St ar t up.
It then waits until the client connects to the robot, and tells the robot server to open its motor control and
start traveling forward at 300 mm/sec. If the connection does not succeed in 10 seconds, the activity exits
with failure. Note the use of atimeout inthewai t f or statement to accomplish this.

After thisinitialization, the activity reads packetsin awhi | e loop, calling the default packet processor
sf ProcessCl i ent Packet for each packet. Default processing updates the client state reflector in
sf Robot , so that position integration values are available to the client. Every 10 cycles, new commands
are sent to the robot server to keep the information packets coming, and to keep going at the requested
velocity. Also, the robot position is printed in the information area. Note that, because Colbert has no
explicit type casts, and the sf SMessage function does not handle floats correctly, the robot coordinates
arefirst implicitly cast to integers via an assignment, and then printed out.

At the end of the activity, the robot velocity is set to 0, and the client disconnects from the robot. At the
top level of thefile, theconnect function acts to connect the client to the robot simulator, and then the
DoPacket s activity isinvoked.

| * H#H#BHH AR HH B H PR H R H R R R
packet.act --- routines for connecting and
readi ng packets

* HAHHHHHHBHBH B HH B H B AR B AR B R AR

*/

act DoPacket s()

{

int i; int x; int vy;

renove packets;

renove notor;

wai t f or (sfl sConnected) tinmeout 100;
if (!sflsConnected) fail;

sf Robot Conml nt (sf COMOPEN, 1) ; /* open the notor controller */
sf Reset Robot Var s() ; /* reset all app variables */

sf Robot Con{ sf COVPULSE) ; /* ask for data */

sf Robot Coml nt (sf COWEL, 300); /* nove forward at 300 nm sec */
i = 0;

whi | e (i <100)

if (sfWaitdientPacket (1000)) /* wait 1 second for a packet */
{

78

i = i+1;

sf Processd i ent Packet (sf ReadCl i ent Byte());
|}
if ((i %10) == 0)
{

sf Robot Con{ sf COMPULSE) ; /* keep asking */

sf Robot Coml nt (sf COWEL, 300); /* keep it going... */
sf SMessage(" % packets received", i);

x = sf Robot . ax;

y = sfRobot . ay;

sf SMessage("X: %d Y: %", X, y);

}

}

sf Robot Coml nt (sf COWEL, 0); /* stop the robot */

sf Di sconnect Fr omRobot () ;

}

connect | ocal; /* connect to sinulator */

/* for the Pioneer on a tty line,
use 'connect serial <port>' */

start DoPackets();

Listing 6-13.

The stand-alone client is similar, but uses a micro-task instead of the activity. Asin every stand-alone
client, the start-up function is registered, and then the sf St art up function isinvoked to initiate the
Saphira OS.

In the start-up function, the display state is changed to show global movement of the robot, and the task
nmyTask isinstantiated. Then, the two default Saphira micro-tasks that handle packets and motor control
are removed, so that the user task can perform these functions. Finally, the sf Connect ToRobot
function is called to connect the client to the robot server.

ThemmyTask micro-task waits until the robot is connected, then opens the motor controller and tellsit to
move forward at 300 millimeters per second. Execution now proceeds asin the packet . act activity; the
only difference is that the micro-task must explicitly sequence its operations by changing state. After the
packets are received, the task stops the robot and disconnects from the server.

#i ncl ude "saphira. h"
voi d nmySt artupFn(void); /* forward refs */
voi d nmyTask(voi d);

void main(int argc, char **argv)

int i =0;

sf OnSt ar t upFn(mySt art upFn) ; /* register a startup function */
sf Startup(0); /* start up the Saphira w ndow, wait */
}

voi d nmySt artupFn(voi d)

{

sf Set Di spl aySt at e(sf GLOBAL, TRUE); /* use the global view */
sflnitProcess(myTask, "nyPackets");

sf RenoveTask(" packets"); /* get rid of default packet process */

sf RenoveTask(" notor"); /* get rid of default notor control */
/* open up the connection, to the sinmulator or robot */

sf Connect ToRobot (sf LOCALPORT, sf COMLOCAL) ; /* this is for the sinulator */

79

ﬁ* sf Connect ToRobot (sf TTYPORT, sfCOML); this is for Pioneer */

voi d myTask(voi d)
{

static int i = 1;
switch (process_state)

case sfINT:
if (sflsConnected) process_state = 10;

br eak;

case 10: /* connected */

sf Robot Coml nt (sf COMOPEN, 1) ; /* open the notor controller */
sf Reset Robot Var s() ; /* reset all app variables */

sf Robot Con{ sf COVPULSE) ; /* ask for data */

sf Robot Coml nt (sf COWEL, 300); /* nove forward at 300 nm sec */
process_state = 20;

br eak;

case 20:

/* read 100 packets */

if (i > 100) process_state = 30;

while (sfWaitCientPacket(0)) /* poll for packets */
{

i ++;

sf Processd i ent Packet (sf ReadCl i ent Byte());

i}f (i %10 == 0)

{

sf Robot Con{ sf COMPULSE) ; /* keep asking */

sf Robot Coml nt (sf COWEL, 300); /* keep it going... */
sf SMessage(" % packets received", i);

sf SMessage("X: % Y: %", sfRobot.ax, sfRobot.ay);

br eak;

case 30:

sf Robot Conml nt (sf COWEL, 0); /* stop the robot */
sf Di sconnect Fr omRobot () ;

process_state = sf SUCCESS;

br eak;

}

}

Listing 6-14.

6.3.6 TheAsync Client

This client demonstrates asynchronous control of the robot; that is, control outside the micro-task loop. As
inthedi r ect client, the start-up and connect callbacks are defined and then registered in the mai n
function. Then, sf St ar t up is called with an argument of 1, which starts up the Saphira OS but continues
executing the user’s program in the mai n function. It’simportant that the Saphira OS be operating,
because its default micro-tasks handle communication and motor control to the robot server, which keeps
the state reflector current. The direct action calls of the user program depend on these micro-tasks.

The program waitsin awhi | e loop until the user connects to a robot, then starts to issue a series of direct
motion commands. The motion commands are synchronized using the sf Done XXX functions to wait for
completion, and sf Pause to wait for atime interval.

80

Finally, it closes the connection to the robot and exits. When the main program exits, the SaphiraOSis
also automatically exited. If you want to keep the micro-task OS operating, start awhi | e loop whose body
issf Pause(1000) .

Note that the packet communication and state reflection micro-tasks are initiated in the connect callback
(myConnect Fn). It'simportant to do this, because the direct motion commands rely on state reflection to
control the robot.

#i ncl ude "saphira. h"

voi d nmySt artupFn(voi d)

{

sf Set Di spl aySt at e(sf GLOBAL, TRUE); /* use the global view */
}

void main(int argc, char **argv)

int i =0;

sf OnSt ar t upFn(mySt art upFn) ; /* register a startup function */
sfStartup(l); /* start up the Saphira CS,

and then keep going */
while (!sflsConnected) sfPause(0); /* wait until connected */
sf Set RVel oci t y(100) ; /* in deg/sec */
sf Pause(4000) ;
sf Set RVel oci ty(0);
sf Pause(4000) ;
for (i=0; i<280; i+=20)

{
printf("Turn % degrees\n", i);

sf Set DHeadi ng(i) ; /* turn i degrees cc */
whil e (!sfDoneHeadi ng(10))

sf Pause(0) ; /* wait till we're within 10 degrees */
sf Set DHeadi ng(-i); /* turn i degrees c */
whil e (!sfDoneHeadi ng(10))

sf Pause(0) ; /* wait till we're within 10 degrees */
}
sf Set Vel oci t y(300) ; /* move forward at 300 nml sec */

for (i=0; i<10; i++)

{
printf("X: 9% Y: 9%\n", sfRobot.ax, sfRobot.ay);

sf Pause(1000); /* DON T USE SLEEP!'!!! */

sf Set DHeadi ng(10) ;

}

sf Set Vel oci ty(0); /* stop */

sf Pause(4000) ;

sf Di sconnect FronRobot (); /* we're gone... */
}

Listing 6-15.

6.3.7 TheNow n Client

Liketheasync client, this client makes use of the asynchronous execution of user routines. But instead
of starting up the Saphira interface window, it just connects to the robot by a function call, and then starts
executing direct motion commands. If this client is linked with the non-window library (sf x), then no

81

interface window will appear. In MS Windows, you specify a console application instead of window
application, and use the mai n function instead of W nMai n. In sf St ar t up, you must still pass three
arguments, but the first two, which are window parameters, should be NULL.

Note that, even though windows are not being displayed, the Saphira OS is operating, and the basic set of
micro-tasks are managing communication and control.

#i ncl ude "saphira. h"

[omitted call back definitions]
void main(int argc, char **argv)

int i =0;

sf OnConnect Fn(myConnect Fn) ; /* register a conn function */

sf OnSt ar t upFn(mySt art upFn) ; /* register a startup function */
sfStartup(l); /* start up the Saphira CS,

and then keep going */
sf Connect ToRobot (sf LOCALPORT, sf COMLOCAL) ;
/* this is for the simulator */
while (!sflsConnected) sfPause(100);
sf Set Vel oci t y(300) ; /* move forward at 300 nml sec */

for (i=0; i<10; i++)

{
printf("X: 9% Y: 9%\n", sfRobot.ax, sfRobot.ay);

sf Pause(1000); /* DON T USE SLEEP!'!!! */

sf Set DHeadi ng(10) ;

}

sf Set Vel oci ty(0); /* stop */

sf Pause(4000) ;

sf Di sconnect FronRobot (); /* we're gone... */
}

Listing 6-16.

82

7 Saphira Servers

In the Saphira client/server model, the robot server works to manage all the low-level details of the robot’s
systems, including operating the drives, firing the sonars and collecting echoes, and so on, on command
from and reporting to a separate client application, such as Saphira. With Pioneer, thisis the Pioneer Server
Operating System (PSOS. The capabilities of the Pioneer robot server, and its connection to the client, are
shown in Figure 7-1.

High-level robotics applications developers do not need to know many details about a particular robot

Client Application

Communcations
Server || “lient Searial
=)
Local Fipe

Communication
FPackets
Telocity & Fosition
Integration

Angle

Controls

Server
Interface

Somar
& I/0
Schednles

Fokot

P Encoder
Control " Counting
Speatx
Funchions

Sonar I:.0
Fanging Control

Figure 7-1. Saphira client-robot server
ar chitecture.

server, because the Saphira client insulates them from this lowest level of control. Some of you, however,
may want to write your own robotics control and reactive planning programs, or just would like to have a
closer programming relationship with your robot. This chapter explains how to communicate with your
robot via the Saphira client/server interface. The functions and commands, of course, are supported in the
Saphira C libraries that came with your robot, but not every robot supports all commands. Please consult
your robot’ s operation manual or Saphira supplement for those details.

7.1 Communication Packet Protocol

The Saphira-mediated robot or its simulator communicates with a client application using a special packet
protocol. It is abit stream consisting of four main elements (Table 7.1): atwo-byte header, a one-byte count
of the number of data and checksum bytes in the packet, a client command including arguments or a server
information data block, and a two-byte checksum.

83

Table 7.1 Main elements of PSOS communication packet protocol

Component | Bytes | Value Description

Header 2 OxFA, OXFB | Packet header; same for client and server

Byte Count 1 N+ 2 Number of subsequent data bytes plus
checksum; must be less than 200 total bytes
long

Data N command Client command or server information block

or SIB (discussed in subsequent sections)
Checksum 2 computed Packet integrity checksum

7.1.1 Packet Data Types

Packetized client commands and server information blocks use several datatypes, as defined in Table 7.2.
There is no convention for sign; each packet type is interpreted idiosyncratically by the receiver. Negative
integers are sign-extended.

Table 7.2 Communication packet data types

Data Type Byte Count Byte Order
Integer 2 by low byte; b, high byte
Word 4 by low byte; bs high byte
String up to ~200, by length of string;
length-prefixed b, first byte of string
String unlimited by first byte of string;
null-terminated 0 (null) last byte

7.1.2 Packet Checksum

A communication packet checksum is derived by successively adding data byte pairs (high byte first) to the
running checksum (initially zero), disregarding sign and overflow. If an odd number of data bytes exists,
the last byte is XORed to the low-order byte of the checksum.

Note: The checksumword is placed at the end of the packet with its bytesin the reverse order of that used
for arguments and data; that is, by is the high byte, and b, isthe low byte.

Use the C-code fragment in Listing 6-17 in your client applications to compute a checksum:

i nt
cal c_chksun{unsi gned char *ptr) /* ptr is array of bytes, first is data count
*/

{
int n;
int ¢ = 0;
n = *(ptr++);
n-=2; /* don't use chksum word */
while (n > 1) {
c += (*(ptr)<<8) | *(ptr+1);
c =¢c Oxffff;
n-= 2;
ptr += 2;

%f (n>0) ¢c =c ™ (int)*(ptr++);
return(c);

}

Listing 6-17. C-code fragment to computer checksum.

7.1.3 Packet Errors

Currently, the Saphira server interface ignores a client command packet whose byte count exceeds 200 or
has an erroneous checksum. The client should similarly ignore erroneous server information packets
(Saphira does).

The Saphira client/server interface does not acknowledge receipt of a command packet, nor does it have
any facility to handle client acknowledgment of a server information packet. Hence, Saphira client/server
communication is as reliable as the physical communication link. UNIX pipes with the simulator or a cable
tether between the robot and client computer are very reliable links. Radio modem-mediated communication
ismuch less reliable. Accordingly, when designing client applications that may use radio modems, do not
expect to receive every information packet intact, nor have every command accepted by the server.

The design decision to provide an unacknowledged packet interface is a consequence of the realtime
nature of the client/server interaction. Simply retransmitting server information blocks or command packets
would result in antiquated data not at all useful for a reactive client or server.

For some operations, however, the data do not decay as rapidly: Some commands are not overly time-
sensitive, such as those that perform such housekeeping functions as changing the sonar polling sequence. It
would be useful to have areliable packet protocol for these operations, and we are considering this for a
future release of Saphira server interface.

In the meantime, the Saphira client/server interface provides a simple means for dealing with ignored
command packets: Most of the client commands alter state variables in the server. By examining those
values in the server information packet, client software may detect ignored commands and reissue them
until achieving the correct state.

7.2 Client Commands

Saphira client/server interface implements a structured command format for receiving and responding to
directions from the client for control and operation of the robot or its simulator. Y ou may send client
commands to the robot at a maximum rate of once every 100 milliseconds. The client must send a command
at least once every two seconds; otherwise, the server will stop the robot’ s onboard drives.

The client command is comprised of a one-byte command number optionally followed by, if required by
the command, a one-byte description of the argument type and the argument. To work, of course, the client
command and its optional argument must be included as the data component of a client communication
packet (see Table 7.3 and earlier sections of this chapter).

Table 7.4 contains the list and brief descriptions of the currently implemented Saphira client commands,
which we discussin detail in following sections. These and additional server operating commands used by

85

most, but not all, Saphira-enabled robots, also appear in the Saphira header file
handl er /i ncl ude/ saphi r a. h. Check your robot’ s operation manual, Saphira supplement, and
Saphira distribution UPDATE text file for the latest details.

Table 7.3 Client command communication packet.

Component | Bytes | Value Description
Header 2 OxFA, OxFB | Packet header; same for client and server
Byte Count 1 N+ 2 Number of command bytes plus checksum,
must be less than 200 total bytes long
Command 1 0-255 Client command number;
Number see Table4-4
Arg Type 1 Datatype of command argument, if included:
(optional) 0x3B or (sf ARG NT) positive integer
0x1B or (sf ARGNI NT) negative int or absolute value

0x2B (sf ARGSTR) string, null-terminated
Argument N data Command argument; integer or null-terminated
(optional) string
Checksum 2 computed Packet integrity checksum

7.2.1 Client Command Argument Types

Three different types of client command arguments exist: positive integers two bytes long, negative
integers two bytes long, and strings of up to 195 characters long (200-byte limit on packets) terminated with
a0 (NULL). Byte order is least-significant byte first. Negative integers are transmitted as their absolute
value (unlike information packets, which use sign extension for negative integers; see below). The argument
is either an integer, a string, or nothing, depending on the command.

7.2.2 Saphira Client Command Support
Saphira fully supports client commands with useful library functions. Prototypes can be found in
handl er /i ncl ude/ saphi ra. h and saphi r a. pr 0. See Chapters 5 and 6 for details.

86

Table 7.4. PSOS 4.2 supported client commands.

Command Argument Description
Name Number | Valug(s)
sf SYNCO 0 none Start connection; server echoes these
sf SYNC1 1 none Synchronization commands back to
sf SYNC2 2 none client.
sf COVPULSE 0 none Communication pulse
sf COMOPEN 1 none Open the motor controller
sf COMCLOSE 2 none Close server and client connection
sf COVPOLLI NG 3 string Set sonar polling sequence
sf COVBETO 7 none Set server origin
sf COWEL 11| signedint | Forward (+) or reverse (-) velocity
mm/sec
sf COVHEAD 12 | unsignedint | Turn to absolute heading 0-360 degrees
degrees
sf COVDHEAD 13| signedint | Turn heading +-255 degrees
degrees
sf COVRVEL 21| signedint | Set rotational velocity +- 255 degrees/sec
degrees/sec
sf COWEL?2 32 2 bytes Set wheel velocities independently +-
4*mm/sec | Amm/sec
sf COvVDI GOUT 30 integer Set digital output bits
bits 0-7
sf COMTI MER 31 integer Initiate user input timer, triggering an event
pin 0-7 with specified pin
sf COMGRI PPER | 33 integer Sets gripper state
0,145
sf COVPTUPOS 41 bytes Set pulse-width for RC servo control. First
0-4, 0-200 | argument is RC servo number, second is
width of pulsein 10 us increments (i.e., O to
2000 us).
sf COVBTEP 64 none Single-step mode (simulator only)

7.3 Server Information Packets

The Saphira-aware server automatically sends a packet of information over the communication port back
to the client every 100 milliseconds. The server information packet informs the client about a number of the
robot’ s operating parameters and readings, using the order and data types shown in Table 7-5. Y our client
application may use the Saphiralibrary function sf Pr ocessd i ent Packet to parse the server
information and deposit the results in various buffers of the state reflector. (See the section on the state
reflector in the API reference for information about these structures.)

87

Table 7-5. Saphira server information data packet (minimum contents).

Name Data Type Description
Header int Exactly OxFA, OXFB
Byte Count byte Number of data bytes + 2; must be less
than 201 (0xC9)
Status byte = 0x3S; where S= Motors status
sf STATUSNOPOVER Motors power off
sf STATUSSTOPPED Motors stopped
sf STATUSMOVI NG Rabot moving
Xpos unsigned int (15 Is-bits) Wheel-encoder integrated coordinates,
platform-dependent units—multiply by
Y pos unsigned int (15 Is-bits) Di st ConvFact or i n the parameter
file to convert to mm,; roll-over ~3m
Th pos signed int Orientation in platform-dependent units—
multiply by Angl eConvFact or for
degrees.
L vel signed int Wheel velocities (respective Left and
Right) in platform-dependent units—
Rve signed int Multiply by Vel ConvFact or to
convert to mm/sec.
Battery byte Battery charge in tenths of volts
Bumpers 2bytes-L andR Motor stall indicators
Bumpers unsigned int
Control signed int Setpoint of the server’s angular position
servo—multiply by Angl eConvFact or
for degrees
PTU unsigned int Pulse width of last RC servo command
received
Compass byte Compass reading, 0-179 (x2 for actual
reading)
Sonar readings | byte Number of new sonar readings included
in information packet; readings follow:
Sonar num byte Sonar number
Sonar range unsigned int Sonar reading—multiply by
RangeConvFactor for mm
...rest of the | sonar readings...
Input timer unsigned int User input timer reading
User Analog byte User analog input reading
User input byte User digital input pins
User output byte User digital output pins
Checksum into Checksum (see previous section)

88

In future versions, server information packets may contain additional, appended data fields. To remain
compatible, have your client application accept the entire data packet, even though it may use only afew
selected fields.

7.4 Start-Up and Shutdown

Before exerting any control, a client application must first establish a connection to the robot server viaan
RS-232 serial link (9600 baud), an interprocess connection (UNIX pipe, for example, or MS Windows
mailslot), or TCP/IP network. Over that established communication link, the client then sends commands to
and receives back operating information from the server.

Connection is usually done through the library function sf Connect ToRobot , which takes two
arguments. The first is the connection type, the second is the port name. Table 7-6 lists the types and some
special port names available in the Saphiralibrary.

Table 7-6. Port types and namesfor client/server connections

Port types Descripton

sf LOCALPORT Connect to simulator on the host machine

sf TTYPORT Connect to robot on atty port

sf TCPPORT Connect to robot on over TCP/IP network

Port names

sf ConPi pe Local pipe or mailslot name

sf COML tty port 1 (/dev/ttya or /dev/cua0 for UNIX;
COM1 for MSW; modem for Mac)

sf COVR2 tty port 2 (/dev/ttyb or /dev/cual for UNIX,
COM?2 for MSW, printer for Mac)

sf Coner ver Host name/I P address of simulator server running
on another machine

sf Connect ToRobot performsthree tasks:

Synchronizes the communication channel by sending and receiving three SYNC packets.

Reads an autoconfiguration packet sent by the server to identify the characteristics of the robot.

Sends a motor open command to the server.

Instead of using sf Connect ToRobot , the user can perform these tasks with low-level library calls,
detailed in the next few sections.

7.4.1 Synchronization—sf COVEYNC

When first started, the Saphira-aware server, including the simulator, isin a“wait” state listening for
communication packets over its designated port. (See your robot operating manual for details about your
robot’ s servers.) To establish a connection, the client application sends, in succession, a series of three
synchronization packets through the host communication port—sf SYNCO, sf SYNC1, and sf SYNC2.
The server responds to each, forming a succession of identical synchronization packets. The client should
listen for the returned packets and issue the next synchronization packet only after it has received the echo.

A string may be used for unusual port names—if a serial communications card has extra tty ports, for
instance. With Macintosh, it’s best to use the nodemport, if it's available, rather than the pr i nt er port.

89

7.4.2 Autoconfiguration

The Saphira-aware servers (PSOS v4.1 or later) send configuration information back to the client in the
last sync packet (sf SYNC2). Following the sync byte are three null-terminated strings that represent the
robot name, robot class, and robot subclass (see Table 7-7). Y ou can read these strings with the library
function sf Readd i ent St ri ng. The function sf Connect ToRobot reads the strings and sets the
appropriate Saphira variables to their values.

Table 7-7. Rabot configuration information.

Nare Description

sf Robot Nane Given name for Pioneer-class robots,
computer name for Bxx--class robots,
simulator” for the ssimulator

sf Robot Cl ass Pioneer, B14, or B21

sf Robot Subcl ass | pi on1 (Pioneer 1) or pi onat (Pioneer AT)
Null string for other robots and simulators

The parameter file that is appropriate for a robot can be found in the Saphirapar ans directory. The
name of the parameter file will be the same as the lowercase version of the subclass string (if it exists) or the
class string.

7.4.3 Opening the Servers—sf COVMOPEN

After the communication link is established, the client should then send the sf COMOPEN command,
which causes the robot or the simulator to perform housekeeping functions, start the sonar and motor
controllers (among other things), start listening for client commands, and to begin transmitting server
information.

7. 4. 4Keeping the Beat—sf COVPULSE

As mentioned earlier, a server “safety watchdog” expects that the robot receives at |east one
communication packet from the client every two seconds. Otherwise, it assumes the client/server connection
is broken and shuts down the robot’s motors. If your client application will be otherwise distracted for some
time, periodically issue the sf COMPUL SE client command to let the server know you are indeed alive and
well. If the robot shuts down due to lack of communications traffic, it will revive upon receipt of aclient
command and automatically accelerate to the last-specified speed at the current heading.

7.4.5 Closing the Connection—sf COMCLOSE
To close a connection and reset the server to the wait state, simply issue the client sf COMCLOSE
command.

7.4.6 Movement Commands

Rotation Translation

sf COVHEAD absolute heading

Table 7-8. Server maotion command types

sf COVDHEAD differential heading from control pt

sf COVDCHEAD differential heading from current sf COWEL forward/back
velocity

sf COVRVEL rotational velocity

90

sf COWEL2 left and right wheel velocities

As of PSOS 4.2, the robot server accepts several different types of motion commands. Y ou can set the turn
angle or velocity, and the forward/back velocity; or, you can control the two wheel velocities independently.
Table 7-8 summarizes the command modes available.

The robot server automatically switches to the required motion control mode when it receives one of these
commands. For example, if it isin two-wheel velocity mode, and it is sent an sf COVHEAD command, it
abandons two-wheel velocity mode and starts controlling the heading and velocity of the robot.

Command Argument(s) Typical Invocation

sf COVHEAD degrees (int) [0, 360] sf Robot Conl nt (sf COVHEAD, 320)

Table 7.9. Motion command arguments

st COMD[C] HEA degrees (int) [-180, 180] sf Robot Coml nt (sf COVDHEAD, - 10)
D
sf COVRVEL degrees/sec (int) [-200, sf Robot Conml nt (sf COVRVEL, - 80)
200]
sf COWEL mmy/sec (int) [-400, 400] sf Robot Conl nt (sf COWEL, 150)
sf COWEL2 4 mm/sec (int) [-100, 100] sf Robot Con?2Byt es(sf COWEL?2, 40, 50

)

The arguments for these commands are given in Table 7.9, below. The heading commands are with
respect to the robot’ s internal coordinate system (see the section below).

The Saphira-aware robot server will try to make the robot achieve the desired velocity and heading as
soon as the commands are received, using its internal (de)acceleration managers. Check your robot’s
operation manual to find its absolute maximum achievable motion and rotational velocities.

7.5 Robot in Motion

When the Saphira-aware robot server receives a velocity command, it accelerates at a constant rate set
internally to the speed you provided as the argument for sf COWEL. Rotational headings are achieved by a
trapezoidal velocity function (see Figure 7-2). This function is recomputed each time a new heading
command is received, making on-the-fly orientation changes possible.

A

short turn,
max velocity
not reached

rotational
velodty

—
\ time \ \
start position position
position achieved achieved

Figure 7-2. Trapezoidal turning velocity profile.

91

7.5.1 Position Integration

Y our robot keeps track of its position and orientation based on dead-reckoning from wheel motion, which
isan internal coordinate position. A server command, sf COVBETOQ, resets the robot server’sinternal x,y
position coordinates to (0,0,0).

Registration between external and internal coordinates deteriorates rapidly with movement, due to
gearbox play, wheel imbalance and slippage, and many other real-world factors. Y ou can rely on the dead-
reckoning ability of the robot for just a short range—on the order of several meters and one revolution,
depending on the surface (carpets tend to be worse than hard floors).

Also, moving too fast or too slow tends to exacerbate absolute-position errors. Accordingly, consider the
robot’ s dead-reckoning capability as a means of tying together sensor readings taken over a short period of
time, not as a method of keeping the robot on course with respect to a global map.

The orientation commands sf COVHEAD, sf COVDHEAD, and sf COVDCHEAD turn the robot with
respect to its internal dead-reckoned angle (see Figure 7-3). On start-up, the robot is at the origin (0,0),
pointing towards the positive x-axis at 0 degrees. Absolute angles vary between 0 and 360 degrees. Asthe
robot moves, it will update this internal position based on dead-reckoning. The x,y position is aways
positive and rolls over at about 3,000 millimeters. So, if the robot is at position (400,2900) and moves +400
millimeters along the y-axis and -600 millimeters along the x-axis, its new position will be (2800,300).

0

+X

Front

490 +Y +270

+180

Figure 7-3 Internal coordinate system of a Saphira-aware server.

7.6 Sonars

When opened by the appropriate client command (see sf COMOPEN, above), a Saphira-aware robot server
automatically coordinates and begins firing its robot sonars in a predefined default sequence; it sends the
results to the client via the server information packet. Details about the configuration and firing sequence of
the sonars are found in the robot’ s operation manual.

Use the sf COVPCOLLI NG command to change the polling sequence of the sonars:

92

sf Robot Confst r (sf COVWPOLLI NG, str)

where st r isanull-terminated string of bytes that can be, at most, 12 bytes long. Each byteis 1 + sonar

number. For example, the following string starts the sonar polling sequence 0, 1, 0, 5:
"\ 001\ 002\ 001\ 006"

Note that sonar numbers can be repeated. If the string is empty, all sonars are turned off.

93

8 Guideto the Saphira API

This chapter details the current library of functions for development of a Saphira client. Additional
information about prototypes, structures, and variables can be found in the various header filesin the
handl er /i ncl ude/ directory of your Saphiradistribution. Also study the sample sourcefilesin
handl er/ src/ apps as examples of working Saphira applications.

Most of these functions and variables are available in the Colbert evaluator. Those that are not are
indicated in the text.

8.1 Saphira OS Functions
Use the following functions to initialize, configure, and operate the Saphira OS (see Section 2 for a
summary of OS properties).

void sfStartup (int async)
void sfStartup (HANDLE hlnst, int cmdShow, int async)
voi d sfPause(int mns)

Thefirst format isfor UNIX systems; the second for MS Windows. When invoked, sf St ar t up
initializes the Saphira OS. If the client has been linked with the window libraries, a user interface window
is opened, and Saphirainformation is displayed graphically.

If async is0, Saphira has principal control of the client and thereafter calls other functions only from
the Saphira multitasking OS (see below). If async is1, control returns immediately to the calling
program, and the Saphira interface runs as a separate thread.

Thesf St art up function may be called at any time by your program, but it should be called only once.
Also include with the Windows version of this function the application instance handle (hl nst) and the
window visibility parameter (cndShow).

If the client program is running asynchronously, in parallel with the Saphira OS, then it may be useful to
insert timing breaks in the client code. The appropriate method is with sf Pause, which waits a specified
number of milliseconds before continuing. sf Pause allows the Saphira OS to keep running during the
break. These functions are not available in Colbert.

void sfOnStartupFn (void (*fn)())
voi d sf OnConnect Fn (void (*fn)())
voi d sfOnDi sconnectFn (void (*fn)())
int sflsConnected

int sflsExited

These functions register callbacks for Saphira events: when the Saphira OS first starts up, when it
connects to arobot, and when it disconnects. The functions are only used in stand-alone client code that
calssf Start up. Thevariablesf | sConnect ed isalso useful in Colbert activities to check if the robot
server is currently connected to the client. The user should not change the value of this variable.

Thevariable sf | sExi t ed isset to 1 when the user requests Saphira to exit from the Connect/Exit menu
item. This variable is useful for async user code, which callssf St ar t up in non-blocking mode and then
continues execution. The code can check the sf | SExi t ed flag to seeif thereis an exit request.

None of these callbacks is obligatory; in user code, usually the connect callback is registered. The start-up
callback should include any relevant initialization code, such as menu or directory settings, in this function.
The connect callback should start micro-tasks, behaviors, and other Saphira control routines. The
disconnect callback can be used to clean up after the Saphira client disconnects from a robot.

94

Usethesf Set Di spl aySt at e function to change the state of a display mode in the Saphira window
interface:

voi d sfSetDisplayState (int nmenu, int state)

If you call this function before connecting to the robot (in the start-up callback), it will set the default state
for the display function. Thereafter, the preset display values are sticky—Saphira automatically resets them
to the preset values, perhaps different from the defaults given in Table 8-1), whenever a new connection is
made with the robot.

Table 8-1. Optional statesfor various Saphira display functions.

Menu State (int)* Description

sf DI SPLAY | 0-10; 2 Controls display update rate. State is the number of 100
ms cycles between updates. Value 10 is once per
second, for example. Value of 0 turns the display off.

sf GLOBAL TRUE, FALSE | Controlsloca/global viewpoint of display window.

st WAKE TRUE, FALSE | Controls drawing of breadcrumb wake behind robot.

sf STEP TRUE, FALSE | Controls single-step mode when connected to the
Pioneer ssimulator.

sf OCCGRID | TRUE, FALSE | Controls display of occupancy grid results. If enabled,
enables global viewpoint.

Default state values are in bold typeface.

sf Message writes the null-terminated string st r into the message section of the information areain the
Saphira main window, followed by a carriage-return:

voi d sfMessage (char *str)

Usesf SMessage to format the string much as you would C's standard pr i nt f function, which
accepts optional arguments that are to be inserted into the string. :

voi d sfsMessage (char *str, .)

A problem in the Colbert evaluator prevents floating-point numbers from being printed using
sf SMessage. Asaworkaround, convert them to integers before calling sf SMessage. (The
sf KeyPr ocFn registers an optional user key process callback, with the prototype of myKeyFn:

voi d sfKeyProcFn (int (*fn)())
int nyKeyFn(int ch)

It is called by Saphirawhenever the user presses a key when the main Saphirawindow is active. The
argument ch isthe character representing the key that was pressed and is operating-system-dependent.
Return 0 if you don’'t handle the keypress; return 1 if you do, particularly to override any of Saphira’s built-
in key processing routines (see Table 8-1).

Not available in Colbert. The sf But t onPr ocFn registers an optional user button process callback, with
the prototype of nyBut t onFn:

void sfButtonProcFn (int (*fn)())

i nt myButtonFn (int x, int y, int b, int m

i nt sfLeftButton, sfM ddl eButton, sfRightButton
i nt sf Shi ft Mask, sfControl Mask, sfAltMask

float sfScreenToWwrldX (int x, int y)

float sfScreenToWwsrldY(int x, int y)

It is called by Saphirawhenever the user clicks the mouse when the main Saphira window is active. The x
and y arguments are the screen position of the cursor; b is the mouse button, with the values

95

sf Butt onLeft, sf ButtonRi ght, and sf Butt onM ddl e. The shift mask argument mis an integer
that has bits set indicating which modifier keys were pressed. Return O if you don’t handle the mouse click;
return 1 if you do, to override any of Saphira’s built-in mouse processing routines.

To convert from screen to global robot coordinates, usethe sf Scr eenToWdr | d functions, which return
their answersin mm.

Not available in Colbert.

8.2 Predefined Saphira Micro-Tasks

WEe' ve provided a variety of predefined Saphira micro-tasks for control of the robot. Y ou may initiate
these micro-task sets using the API functions described here, or invoke them individually using the
sflnitProcess API cal (see Section 8.5)

Both the micro-task function and the instantiation name given by thei ni t function are described here.
The instantiation name is used to refer to the running micro-task, and is shown in the Function/Processes
window. To remove a micro-task with instantiation name i nane, you can typer enove i nane inthe
interaction window or an activity, or use sf RenoveTask(" i nane”) from C code.

voi d sflnitBasicProcs(void)

Starts up a set of basic communication, display, motor, and sensor control processes. Among other
activities, these processes implement the client statereflector. The processesinvoked are shown in
Table 8-2.

Table 8-2. Basic communication, display, motor, and sensor control processes

Function Name Description

pul se_proc pul se Sends communication pulse every 1 second

not or _pr oc not or Coordinates keyboard and behavior motor commands
cl anp_proc cl anp Rotates the world around the robot

sonar _proc sonar Adds new sonar readings to the sonar buffer
wake_proc wake Draws a wake of the robot’s motion

draw_proc dr aw Updates Saphira display window

process_waiti ng_packets packets | Parsesinformation packets from robot server

Drawing, wake, and clamping processes are affected by variables that users can set from the Display menu
in Saphira’ s mai n window.

sf 1 ni t Basi cProcs isinvoked by sf St ar t up, so the user should not have to call this function. Not
available in Colbert.

voi d sflnitControl Procs(void)

Starts up a process for evaluating al active behaviors. If you want to run without using the fuzzy behavior
controller, by using the direct motion functions, then don’t initiate this process.

Table 8-3.

Function Name Description

execut e_current_behavi ors | execute | Evauatesbehaviorsand outputsamotor control

96

void sflnitlnterpretati onProcs (void)

Starts up processes for interpretation of sonar results.

Table 8-4.

Function Name Description

occgrid_proc occupancy grid Computes an occupancy grid

si de_segnent _proc si de segs Forms linear artifacts robot motion
test_wall _proc test wall Performs wall recognition
test_wal |l _break_proc |test wall break [doorandjunctionrecognition

These processes must be started to have results deposited in sf Lef t Wl | Hyp and sf Ri ght Wal | Hyp.

void sflnitRegistrationProcs (void)

Starts up position registration processes useful for navigation in an office environment.
Table 8-5.

Function Name Description
test _match_proc test matching | matching of linear and point artifacts
test_environment_proc |test where identification of current situation

voi d sfRunEval uator (void)

This micro-task starts up the Colbert evaluator, which is the executive for activities. The evaluator aso
accepts input from the interaction window. The basic client bi n/ saphi r a. ¢ startsthis process. If you
define a stand-alone client, and want to run Colbert, then start this micro-task (using sf | ni t Pr ocess) in
your start-up callback.

8.3 State Reflection

State reflection is away of isolating client programs from the work involved in send control commands
and gathering sensory information from the robot. The state reflector is a set of data structuresin the client
that reflects the sensor and motor state of the robot. The client can examine sensor information by looking
at the reflector data, and can control the robot by setting reflector control values. It is the responsibility of
the Saphira OS to maintain the state reflector by communicating with the robot server, receiving
information packets and parsing them into the state reflector, and sending command packets to implement
the state reflector control values. The micro-tasks started by sf | ni t Basi cPr ocs are the relevant ones:
Y ou must invoke this function for the state reflector to function.

The state reflector has three important data structures.

The sf Robot structure holds motion and position integration information, as well as some sensor
readings (motor stall sensors, digital 1/0 ports).

The sonar buffers hold information about current and past sonar returns.

The control structures command robot motions.

This section describes the robot and sonar information structures; the next one, the direct motion
commands that affect the control structures.

97

struct robot sfRobot

The variable sf Robot holds basic information reflected from the robot server. Table 8-6, below, shows
the values of the various fields in this structure; the definitionisin handl er /i ncl ude/ struct. h.

All of thevaluesin the sf Robot structure are reflected from the robot server back to the client,
providing information about the robot’ s state. In thisway, it is possible to tell if acommand has been
executed. For example, the di gout put field reflects the actual value of the digital output bits set on the
robot.

The interpretation of some of the values in the structure is robot-dependent, e.g., the bunper s field
reflects motor stall information for the Pioneer robots. The Saphiralibrary provides some convenience
functions for interpreting these fields; see the following subsections.

Thisvariable is defined in Colbert, as well as the robot structure, and most of the fields are available; type

Table 8-6. Definition of the sf Robot structure.

hel p robot for alist of fields.

sf Robot field Units Description
X, y, th mm, mm, degrees Robot’s location in robot
coordinates,
always (0, 0, 0)

ax, ay, ath mm, mm, degrees Robot’s global location
tv, ntv mm/sec Current and max velocity
rv, nrv deg/sec Current and max rotational velocity
leftv, rightv mm/sec Left and right whee! velocities
status int Robot status:

STATUS_STOPPED Robot stopped

STATUS MOVING Rabot moving

STATUS NOT_CONNECTE Client not connected

D Robot motors stalled

STATUS NO_HIGH_POWER
battery 1/10 volt Battery power
bunpers int Bumper state
ptu USecs Pan/tilt unit (servo) heading
di gi nput int Digital input state
di gout put int Digital output state
anal og 0-255 [OV-5V] Analog input voltage
not or _packet _count counts per second Packet communication information
sonar _packet _count
Vi si on_packet _coun

t

8.3.1 Motor Stall Function

On Pioneer-class robots, the motors stall if the robot encounters an obstacle. Each motor can stall
independently, and this can yield information about where the obstacleis, e.g., if the right motor stalls, then
the right wheel or right side of the robot is affected. However, you can't rely absolutely on this behavior, as

98

sometimes both motors will stall even when the obstacle is on one side or the other. Motor stall information
isreturned in the bunper s field.

int sfStalledMotor (int which)

Return 1 if the motor is stalled and O if it isn’t. The argument whi ch issf LEFT or sf Rl GHT.

8.3.2 Sonar buckets

The current range reading of sonar sensorsis held in an sdat a structure, defined below. The structures
for al the sonarsarein an array called sbucket , e.g., sbucket [2] isthe sdat a structure for sonar
number 2. Sonars start at number 0. This variable is not defined in Colbert, which doesn’t have arrays;
instead use the convenience function sf Sonar Bucket .

Fieldsin the sdat a structure indicate the robot’ s position when the sonar was fired, the range of the
sonar reading, and the position in robot coordinates of the point on the sonar axis at the range of the
reading. The field snewis set to OXFFFF when a new reading is received; the client program can poll this
field to ascertain if the reading is new, and set it to O to indicate that it has been read.

A value of 5000 for the sonar range indicates that no echo was received after the sonar fired and waited
for areturn. Several convenience functions for accessing current sonar readings are described below.

Sonar readings are accumulated over short periods of time into a set of buffersin the LPS; see the section

typedef struct /* sonar data collection buffer */
{
float fx, fy, fth; /* robot position when sonar read */
float afx, afy, afth; /* absol ute position when sonar read */
float x, vy; /* sonar reading in flakey RWcoords */
int range; /* sonar range reading in nm*/
int snew /* whether it's a new reading */
} sdat a;
| MPORT extern sdata sbucket[]; /* hol ds one sdata per sonar, indexed by sonar
nunber */

on the LPS, below.

Listing 8-1.

sdat a *sf Sonar Bucket (i nt nun)
i nt sf Sonar Range(i nt nun)
float sfSonar XCoord(i nt num
float sfSonarYCoord(int num
i nt sf Sonar New(i nt nun

The first function returns a pointer to the data structure of the nunith sonar, or NULL if no such sonar
exists.

The next three functions return the range and x,y coordinates of the sonar reading. The last function
returns 1 if it'sanew reading, O if not; it also resets the new flag to 0 so that the same reading isn’t
returned twice.

8.4 Direct Motion Control

Direct motion control uses the state reflector capability of the Saphira OS to implement a useful client-
side motion control system. Instead of sending motor commands to the server, a client sets motion setpoints
in the state reflector. The OS takes care of transmitting appropriate motor commands to the robot.

Direct motion control offers three advantages over sending motor control packets directly.

99

It checks that the setpoints are actually sent to the robot server, given the unreliability of the
communication channel.

It implements a set of checking functions for determining when the motion commands are finished.

It has a position control mode which moves the robot a specified distance forward or backward.

Direct control of the two control channels (translation and rotation) is independent, and commands to
control them can be issued and will execute concurrently.

The direct motion functions require the state reflector to be operational; that is, the function
sf 1 ni t Basi cProcs must be called. Thisis done automatically by sf St ar t up, so the user need not
call it explicitly.

void sfSetVelocity(int vel)
void sfSetRVelocity(int rvel)

Set the translational and rotational setpointsin the state reflector. If the state reflector is active, these
setpoints are transferred to the robot. VValues for translational velocity are in mm/sec; for rotational velocity,
degrees/sec.

voi d sf Set Headi ng(i nt head)
voi d sf Set DHeadi ng(i nt dhead)

The first function sets the absolute heading setpoint in the state reflector. The argument is in degrees,
from 0O to 359.

The second function increments or decrements the heading setpoint. The argument isin degrees, from
-180 to +180.

If the state reflector is active, the heading setpoint is transferred to the robot.

voi d sfSetPosition(int dist)
voi d sf Set MaxVel ocity(int vel)

The first function sets the distance setpoint in the state reflector. The argument isin mm, either positive
(forward) or negative (backward). If the state reflector is active, it sends motion commands to the robot to
move the required distance. The maximum velocity attained during motion is given by
sf Set MaxVel oci ty, in mm/sec.

i nt sfDonePosition(int dist)
i nt sfDoneHeadi ng(int ang)

Checks whether a previously-issued direct motion command has completed. The argument indicates how
close the robot has to get to the commanded position or heading before it is considered completed.
Arguments are in mm for position and in degrees for heading. On a Pioneer robot, you should use at least
100 mm for the distance completion, and 10 degrees for angle. Otherwise, the robot may not move enough
to trigger the completion function. Note that, even though the robot may not achieve a given heading very
precisaly if itisjust turning in acircle, asit moves forward or backward it will track the heading better.

fl oat sfTarget Vel (voi d)
fl oat sfTarget Head(voi d)

These functions return the current reflected values for the velocity and heading setpoints, respectively.
Values are in mm/sec and degrees.

100

8.5 Saphira Multitasking

One problem facing any high-level robotics controller is developing an adequate real-time base for the
many concurrent processes that must be run. Rather than depend on the machine OS for this capability, we
have implemented a simple “round robin” cooperative scheme that places responsibility on each individual
process to complete itstask in atimely and reasonable manner. Each processis called a micro-task, because
it accomplishes alimited amount of work.

Compute-intensive processes that take a long time to complete, but that can execute asynchronously with
the Saphira system, can be implemented as concurrently executing threads. Accordingly, use the Saphira
sf St ar t up function with an async argument of 1 and prepare your processes so that they execute as a
concurrent thread, as we describe below.

Colbert activities and behaviors are also micro-tasks and are defined using the Colbert language or
behavior compiler (see Chapters 1 and 4). Some of the micro-task control functions described below are
useful for these tasks, as well. To distinguish behaviors and activities from other micro-tasks, we call the
latter simple micro-tasks.

8.5.1 Micro-task Definition

Simple micro-tasks are functions with no arguments together with state information. Micro-tasks access
their state through a global integer variable, pr ocess_st at e. Processes are initiated by an API call,
sf 1 ni t Process, which places the function onto the process stack. After they are initialized, Saphirawill
call them with an initial state of sf I NI T. The micro-task can change its state by setting the value of
process_st at e. User-defined state values are integers greater than 10; values less than 10 are reserved
for special states (see Table 8-7).

Table 8.7. Saphira multiprocessing reserved process state values.

State Explanation
sfINT Initial state

sf SUSPEND Suspended state
sf RESUVE Resumed state

sf I NTERRUPT |Interrupted state

sf REMOVE Requests the scheduler to remove this micro-task
sf SUCCESS Micro-task succeeded (default ending)

sf FAI LURE Micro-task failed

sf TI MEQUT Micro-task timed out

-n Suspend this micro-task for n cycles

Process cycletime is 100 ms. On every cycle, Saphira calls each micro-task, withitspr ocess_st at e
set to the current value for that micro-task. The micro-task may change its state by resetting
process_st at e. A micro-task may suspend itself by setting the state to sf SUSPEND. Another micro-
task or your program must resume a suspended micro-task (see below for relevant functions). A micro-task
may also suspend itself for n cycles by setting pr ocess_st at e to -n, in which case it will use
sf Resune to resume after the allotted time expires.

101

The sf | NTERRUPT state indicates an interrupt request from another micro-task or the user. Micro-tasks
should be written to respond to interrupts by saving needed information, then suspending until receipt of a
resume request. Many of Saphira’ s predefined micro-tasks are written in this way.

The sf SUCCESS and sf FAI LURE states are used to indicate the successful or unsuccessful completion of
amicro-task. The micro-task may set these as appropriate, or signal other micro-tasks to set them. No
further processing takes place unless the micro-task is resumed.

Simple micro-tasks do not have timeouts, but activities and behaviors do. In these cases, a state of
sf TI MEQUT means that the micro-task has timed out before completing its job.

The fixed cycle time of a micro-task invocation means that micro-tasks can have guaranteed response time
for critical tasks; a controller can issue acommand every 100 ms, for example. Of course, response time
depends on the conformity of all micro-tasks: The combined execution time of al micro-tasks must never
exceed 100 ms. If it does, the cycle time will exceed 100 ms for all micro-tasks. Hence, alow around 2-5
ms of compute time per micro-task, and divide large micro-tasks into smaller pieces, each able to execute
within the 2-5 mstime frame, or run them as concurrent threads.

Listing 8-2 provides an example of atypical interpretation micro-task function. It starts by setting up
housekeeping variables, then proceeds to alternate door recognition with display of its results every second
or so.

#define FD_FI ND 20
#defi ne FD_DI SPLAY 21
voi d find_doors(void)
{
int found_one;
swit ch(process_st at e)

{

case sfINT: /* Come here on startup */
found_one = 0;
{ ...}
process_state = FD_FI ND;
br eak;

case sf RESUVE: /* Come here after suspend */
process_state = FD_FI ND;
br eak;

case sfINTERRUPT: /* Interrupt request */
found_one = 0;
process_state = sf SUSPEND;
br eak;

case FD_FI ND: /* Looking for doors */
{ call recognition function }
process_state = FD_DI SPLAY;
br eak;

case FD_DI SPLAY: /* Now we display it */
if (found_one)

{ call display function }

process_state = -8; /* suspend for 8 ticks */
br eak;

}

Listing 8-2. Example of a typical inter pretation micro-task function.

8.5.2 Statelnquiries
The state of a micro-task can be queried with the following functions.

i nt sfCGetProcessState(sfprocess *p)
i nt sfCGet TaskSt ate(char *i nane)
i nt sfSuspended(sfprocess *p)

102

i nt sfTaskSuspended(char *i namne)
i nt sfFinished(sfprocess *p)
i nt sfTaskFi ni shed(char *i nane)

These functions come in two varieties: those that take a micro-task pointer as an argument, and those that
take an instantiation name. The latter first look up the micro-task in the task list, using the instantiation
name.

sf Get ProcessSt at e returns the state of the process as an integer, if it exists; otherwise, it returns 0.
sf Suspended is1if the micro-task is suspended and O if it is active.

sf Fi ni shed is1if the task has completed successfully, failed, or timed out; it is 2 if the micro-task is
not on the scheduler’slist; and it is O if the micro-task is till active.

8.5.3 Micro-Task Manipulation
When instantiating a micro-task, give it a unique string name and later refer to it by name or pointer. The
following Saphira functions initiate, suspend, and resume micro-tasks:

sfprocess *sflnitProcess (void *fn(void), char *nane)

Thesf I ni t Process function starts up a micro-task with the name name and function f n, and returns
the micro-task instance pointer, which can be used in micro-task-manipulation functions. No corresponding
function for deleting micro-tasks exists—suspend it if it is no longer needed.

sf process *sfFi ndProcess (char *nane)

The sf Fi ndPr ocess function searches for and returns the first micro-task instance it finds with the
name namne. A micro-task instance pointer is returned if successful; else NULL.

voi d sfSetProcessState (sfprocess *p, int state)
voi d sf SuspendProcess (sfprocess *p, int n)
voi d sf SuspendTask (char *inane, int n)
voi d sfSuspendSel f (int n)

voi d sflnterruptProcess (sfprocess *p)

voi d sflnterruptTask (char *inane)

void sflnterruptSelf (void)

voi d sf ResuneProcess (sfprocess *p)

voi d sfResuneTask (char *inane)

voi d sf RenmoveProcess (sfprocess *p)

voi d sfRenmoveSel f (void)

voi d sfRemoveTask (char *inane)

The sf Set Pr ocessSt at e function sets the state of micro-task instance p to st at e. The argument p
must be a valid micro-task instance pointer, returned from sf Fi ndPr ocess or sf | ni t Process. The
other functions are particular callsto sf Set Pr ocessSt at e. The other functions are convenience
functions for signaling micro-tasks to set certain states.

8.5.4 Invoking Behaviors
Behavior activities can be invoked from Colbert with the st art command, or from C code with the
following function.

103

sf process sf StartBehavi or (behavior *b, char *in, int tout,
int pri, int suspend, ...)

The sf St ar t Behavi or function instantiates a behavior activity, using behavior schemab. The
instantiation nameisi n, and the priority of the behavior ispri . A timeout (t out) must be specified; a
timeout of 0 means the behavior will execute indefinitely. The suspend argument is O if the behavior isto
be active immediately, and 1 if it isto be started in a suspended state, to be activated by ar esune signal.
The remainder of the argumentsto sf St ar t Behavi or are the arguments to the behavior. There must be
exactly the same number and types of arguments as are specified by the behavior parameters.

This function is equivalent to the following:

start b(...) inane in tineout tout priority pri [suspend]

where b is the name of the behavior schema.

8.5.5 Activity Schema Instantiation

An activity schema can be instantiated from another Colbert activity or the user interaction area, with the
st art command (see Section 4.8.3). Alternatively, activities can be started from C code with the
sfStartActivity function.

int sfStartActivity(char *schema, char *in, int tout,
i nt suspend, ...)

Thesf St art Acti vi ty function instantiates an activity whose library nameisschena. The
instantiation nameisi n. A timeout (t out) must be specified; atimeout of 0 means the activity executes
indefinitely. The suspend argument is O if the behavior is to be active immediately, and 1 if it isto be
started in a suspended state, to be activated by ar esune signal.

The remainder of the argumentsto sf St art Acti vi ty arethe argumentsto the activity. The number
and types of arguments must equal the number specified by the behavior parameters.

This function is equivalent to this one:

start schema(...) iname in timeout tout [suspend]

where schema isthe name of the activity schema.
The function returns O if it instantiated the activity successfully, and -1 if it did not.

8.6 Local Perceptual Space

Local Perceptual Space (LPS) is a geometric representation of the robot and its immediate environment.
Unlike the internal coordinate system we described in Chapter 4 (a system that represents the dead-
reckoned position of the robot server), the LPS is an egocentric coordinate space that remains clamped to
the robot center (see Figure 8-1).

Unitsin the LPS are millimeters and degrees. For example, the position of a point artifact in the LPSis
represented by an x and y coordinate in mm, and as an angle relative to the x axis, in degrees. Note:
Sarting with version 6.1, all internal and user angles are specified in degrees, rather than radians.

8.6.1 Sonar buffers

The current range readings of all the sonars can be found in the sonar bucket structures (see the section on
the state reflector ,above). As the robot moves, these readings are accumulated in the LPS in three internal
buffers. These buffers are available to user programs and are also used by the obstacle-finding functionsin
the next subsection.

104

The reading values are placed on the centerline of the sonar at the range that the sonar indicates.
Saphira s display routines draw sonar readings as small open rectangles, and if the robot moves about
enough, they give agood picture of the world.

The three buffers are the front and two side buffers (left and right). Each buffer isacbuf structure,
defined below. Client programs, unless they are interested in the temporal sequence of sonar readings, can
treat these buffers as linear structureswith sizel i m t . The buffer size can be changed using the functions
defined below.

The reason for having different buffersis that they satisfy different needs of the robot control software.
The front sonars, pointed in the direction of the robot’s travel, warn when obstacles are approaching. But
the spatial definition of these sonarsisn’t very good, and it’s amost impossible to distinguish the shape of
the obstacle. A wall in front of the robot, for example, will look only alittle bit like a straight line (see the
excellent book by Leonard and Durant-Whyte).

i

O0
(1320,-350)
+X
O
. O
Heading oo
control T— I:l (m}
o o
Front Forward and
rotational
0 — iti
+90° +Y — velocities _900
|/
0
+180

Figure 8-1. Saphira’s L PS coordinate system.

The side-pointing sonars are somewhat useful for obstacle avoidance, because they signal when it isn’t
useful to turn to one side or the other. But their main purpose is to delineate features for the recognition
algorithms. They are good for this purpose because the robot often is moving paralel to wall surfaces. As
side sonar readings are accumulated, it’s possible to pick out a nice straight feature.

The buffers differ dightly in how they accumulate sonar readings and therefore serve different purposes.
They are all circular buffers; that is, a new reading replaces the oldest one. The front buffer, sr aw_buf ,

105

accumulates one reading each time a sonar is fired, regardless of whether it sees anything. If nothing is
found, theval i d flag at that buffer position is set to O; otherwise, it is set to 1, and the xbuf and ybuf
dots are set to the position of the sonar reading, in the robot’ s local coordinate system. This strategy
guarantees that the front buffer can be cleared out after nothing has been in the robot’ s way for a short
time. For example, if the robot is getting 20 front sonar readings a second, and the front buffer is 30
elementslong, it will be completely clear in 1.5 seconds if nothing isin front of the robot.

The two side buffers, sr _buf and sl _buf , accumulate sonar readings only when a side sonar actually
sees a surface; hence, their val i d flag is always set. Thus, readings stay in the side buffers for longer
periods of time, and Saphira has a chance to figure out what the features are.

As the robot moves, all the entriesin the circular buffers are updated to reflect the robot’s motion; i.e., the

#defi ne CBUF_LEN 200
typedef struct /* Circular buffers. */

int start; /* internal buffer pointer */
int end; /* internal buffer pointer */
int limt; /* current buffer size */

fl oat xbuf[CBUF_LEN] ;

fl oat ybuf[CBUF_LEN] ;

int valid[CBUF_LEN]; /* set to 1 for valid entry */
} cbuf;

cbuf *sraw buf, *sr_buf, *sl| _buf;

sonar readings stay registered with respect to the robot’ s movements.
Li sting 8-3.

void sfSetFrontBuffer (int n)
voi d sfSetSideBuffer (int n)
fl oat sfFront MaxRange

These buffers are not currently available in Colbert. The first two functions, when given an argument
greater than zero, set the front and side buffer limits to that argument, respectively. If given an argument of
0, they clear their buffers, that is, set theval i d flagsto 0. These buffer limits can also be set from the
parameter file; they are initialized for a particular robot on connection.

sf Fr ont MaxRange is the maximum range at which a front sonar reading is considered valid. It is
initially set to 2500 (2.5 meters). Setting this range higher will make the obstacle-avoi dance routines more
sensitive and subject to false readings; setting it lower will make them less sensitive.

8.6.2 Occupancy functions

The following functions look at the raw sonar readings to determine if an obstacle is near the robot. Other
Saphira interpretation micro-tasks use the sonar readings to extract line segments representing walls and
corridors.

Saphira has several functions for testing whether sonar readings exist in areas around the robot. The
different functions are useful in different types of obstacle-detection routines; for example, when avoiding
obstacles in front of the robot, it’s often useful to disregard readings taken from the side sonars.

The detection functions come in two basic flavors. box functions and plane functions. Box functions ook
at arectangular region in the vicinity of the robot, while plane functions look at a portion of a half-plane.

106

int sfCccBox (int xy, int cx, int cy, int h, int w)
int sfCccBoxRet (int xy, int cx, int cy, int h, int w,
float *x, float *y)

When using these functions, it helps to keep in mind the coordinate system of the LPS. They look at a
rectangle centered on cy,cy with height h and width w. sf CccBox returns the distance in millimeters to
the nearest point to the center of the robot in the x direction (xy = sf FRONT) or y direction (xy =
sf SI DES). The returned value will always be a positive number, even when looking on the right side of the
robot (negative y values). If no sonar reading is made within the rectangle, it returns 5,000 (5 meters).

For example, in the case of an LPS shown in Figure 8-2,
sf CccBox(sf SI DES, 1000, 600, 900, 800, 1) returns 300; sf CccBox(sf FRONT, 1000, -

600, 900, 600, 0) returns 600.

sf CccBoxRet returnsthe same result as sf CccBox, but also sets the arguments * x and *y to the

closest reading in the rectangle, if one exists.

OO
cx:1000, cy:-600
+X 7
O
<0]
h:900
Front
0 w: 800 o
+90 +Y \ 4 -90

N/

+180O

Figure 8-2. Sensitivity rectangle for thesf GccBox functions.

107

int sfCccPlane (int xy, int source, int d, int s1, int s2)
int sfCccPlaneRet (int xy, int source, int d, int sl1, int s2,
float *x, float *y)

The plane functions are slightly different. Instead of looking at a centered rectangle, they consider an
infinite rectangle defined by three sides: a line perpendicular to the direction in question, and two side
boundaries.

Figure 8-3 shows the relevant areas for sf OccPl ane(sf FRONT, sf FRONT, 600, 400, 1200) . The
first parameter indicates positive x direction for the placement of the rectangle. The second parameter
indicates the source of the sonar information: the front sonar buffer (sf FRONT), the side sonar buffer
(sf SI DES), or both (sf ALL).

The rectangle is formed in the positive x direction, with the line X = 600 forming the bottom of the

rectangle. Theleft sideisat Y =400, theright at Y =-1200. The nearest sonar reading within these bounds
is at an x distance of 650, and that is returned.

i

OO

+X s2=-1200
sl =400 (]

(]
oo
(]
m
Front return = 650
0 0
+90 +Y -90

Figure 8-3 Sensitivity rectanglefor sf OccPl ane functions.

Note that the baseline of sf OccPl ane isaways a positive number. To look to the rear, use an xy
argument of sf BACK; the left sideisxy = sf LEFT; and theright sideisxy = sf Rl GHT.

Aswith sf OccBox, avalue of 5000 is returned if no sonar reading is made. And, to return the
coordinates of the nearest point in the rectangle, use the sf CccPl aneRet function.

8.7 Artifacts

Through Saphira, you can place a variety of artificial constructs within the geometry of the LPS and have
them registered automatically with respect to the robot’ s movement. Generally, these artifacts are the result
of sensor interpretation routines and represent points and surfaces in the real world. But they can also be
purely imaginary objects—for example, agoal point to achieve or the middle of a corridor.

Artifacts, like the robot, exist in both the LPS and the global map space. Their robot-relative coordinates
inthe LPS (x, vy, th) canbeused to guidethe robot locally; e.g.., to face towards a goa point. Their

108

global coordinates (ax, ay, at h) represent position and orientation in the global space. As the robot
moves, Saphira continuously updates the LPS coordinates of all artifacts, to keep them in their relative
positions with respect to the robot. The global positions of artifacts don’t change, of course. But the dead-
reckoning used to update the robot’ s global position as it moves contains errors, and the robot’ s global
position gradually decays in accuracy. To bring it back into alignment with stationary artifacts, registration
routines use sensor information to align the robot with recognized objects. These functions are described in
a subsequent section.

You may add and delete artifacts in the LPS. User may add two types of artifacts. Map artifacts are
permanent artifacts representing walls, doorways, and so on in the office environment. Goal artifacts are
temporary artifacts placed in the LPS when a behavior isinvoked. The artifact functions as an input to the
behavior— for example, a behavior to reach a goal position exists, and the goal is represented as a point
artifact in the LPS. Usually, these artifacts are deleted when the behavior is completed.

The system also maintains artifacts of different types: An artifact represents the origin of the global
coordinate system, for instance, and various hypothesis artifacts represent hypothesized objects extracted by
the perceptual routines and used by the registration routines.

8.7.1 Pointsand Lines

All artifacts are defined as C structures. Each has atype and a category. The type defines what the artifact
represents; the simplest artifacts are points and lines, while corridors are a more complex type. Y ou may
define your own artifact types.

The category of an artifact relates to its use by the LPS. Currently, Saphira supports three categories:
system for artifacts with an internal function, percept for artifacts representing hypothesized objects
extracted from sensor input, and artifact for user-created artifacts such as map information and goal
artifacts..

typedef enum

{
SYSTEM PERCEPT, ARTI FACT
} cat_type

typedef enum

I N\VALI D, POS, WALL, CORRI DOR, LANE, DOOR, JUNCTI ON, OFFI CE, BREAK, OBJECT
} pt_type;

Listing 8-4.

The poi nt type consists of adirected point (position and direction), with an identifier, atype, a category,
and other parameters used by the system. All x,y coordinates are in millimeters, and direction isin degrees
from -180 to 180. The type POS is used for goal positionsin behaviors. Other types may add additional
fieldsto the basic poi nt type-for example, length and width for corridors.

typedef struct

float x, y, th;

pt_type type;

cat _type cat;

bool ean snew,

bool ean vi ewabl e;

int id;

float ax, ay, ath;

unsi gned i nt nat ched

unsi gned i nt announced
} point;

X, Y, th position of point relative to robot */
type of point */

category */

whet her we just found it */

whether it's valid */

uni que nuneric id */

gl obal coords */

last time we matched */

last tinme we announced */

E R R B . .

—~ e e e

Listing 8-5.

109

The orientation of a point is useful when defining various behaviors. For example, a doorway is
represented by a point at its center, awidth, and a direction indicating which way is into the corridor.

poi nt *sf CreatelLocal Point (float x, float y, float th)
poi nt *sf Created obal Point (float x, float y, float th)
voi d sf Set Local Coords (point *p)

voi d sf Set d obal Coords (poi nt *p)

The first two functions use the supplied coordinates to create new ARTI FACT points of type PCS, which is
very useful for behavir goal positions. For example, sf Cr eat eLocal Poi nt (1000. 0, 0.0,
0. 0) creates a point 1 meter in front of the robot.

The second two functions reset the local or global coordinates from the other set, based on the robots current
position. These functions are useful after making a change in one set of coordinates.

To keep apoint’slocal coordinates updated within the LPS, it must be added to the pointlist after it is
created. The pointlist isalist of artifacts that Saphira updates when the robot moves.

voi d sf AddPoi nt (point *p)
voi d sf AddPoi nt Check (point *p)
voi d sfRenPoi nt (point *p)
poi nt *sfFindArtifact (int id)
void sfRemArtifact (int id)
ist *sfPointList

These functions add and delete members of the pointlist. Ordinarily, to add a point to the pointlist, you
use sf AddPoi nt Check, which first checks to make sure point p isnot in the list already before adding it.
It is not a good idea to have two copies of a pointer to a point in the pointlist, because its position will get
updated twice. The sf RenPoi nt function removes a point from the list, of course. sf Fi ndArti f act
returns the artifact on the pointlist with identifier i d, if it exists; otherwise, it returns NULL. Finally,
sf RemArti fact removes an artifact from the list, giveniitsi d.

The pointlist is available as the value of the variable sf Poi nt Li st . The definition of alist isgivenin

handl er /i ncl ude/ struct. h. If it is necessary to check current artifacts, a function can iterate
through this list.

poi nt *sfd obal Origin
poi nt *sfRobot Ori gin

These are SYSTEMpoints representing the global origin (0,0,0) and the robot’ s current position.

8.7.2 Other Artifact Creation Functions
Walls, corridors, doors, junctions, and lanes can all be created with the following help functions. These
artifacts are important in defining maps for the robot.

poi nt *sfCreatelLocal Artifact(int type, int id, float x, float vy,
float th, float width, float |ength)

poi nt *sfCreated obal Artifact(int type, int id, float x, float vy,
float th, float width, float |ength)

Type Return Value |

Table 8-7. Artifact creation types.

110

sf CORRI DO corridor *

R

sf LANE | ane *

sf DOOR door *

st JUNCTI O junction *
N

sf WALL wal | *

sf PO NT poi nt *

These two functions create and return artifacts of the specified type, using either local or global
coordinates. Table 8.7 shows the allowed types:

Although these functions are declared as returning type poi nt *, in fact they return a pointer to the
appropriate structure, and the result should be cast as such. All these structures are similar in their first
several arguments (i.e., local and global coordinates), so all can be used in the geometry manipulation
functions.

Unlike the sf Cr eat eXPoi nt functions, these functions automatically add the artifact to the pointlist.
So, if you want to create a point and add it to the pointlist, use the sf PO NT type here, instead of the
sf Cr eat eXPoi nt functions.

Not all types use all of the parameters: length and width are ignored for sf PO NT, length isignored for
sf DOOR and sf JUNCTI ON,, and width isignored for sf WALL. In general, the x, y , t h coordinates
are for apoint in the middle of the artifact. Figure 8-4 hows the geometry of the constructed artifacts.

length length
dth . idth .
Wi Wi

X,y,th X,y,th

Corridor Lane

length

> width width
X,y,th
y.th y.th
wall d d
Door Junction

Figure 8-4 Geometry of artifact types. The defining point for the artifact is shown as a vector with a
circleat theorigin.

Artifacts are most often used in constructing maps for the robot and registering it based on sensor
readings (see Section 8.10).

111

8.7.3 Geometry Functions

Saphira provides a set of functions to manipulate the geometric parameters of artifacts. These functions
typically work on the local coordinates of the artifact. To update an artifact properly after changing itslocal
coordinates, you should call the sf Set G obal Coor ds function.

float sfNornmAngl e(fl oat ang)
float sfNornRAngl e(fl oat ang)
float sfNornBAngl e(fl oat ang)
float sfAddAngle(float al, float a2)
float sfSubAngle(float al, float a2)
float sfAdd2Angl e(float al, float a2)
float sfSub2Angl e(float al, float a2)

These functions compute angles in the LPS. Normally, angles in the L PS are represented in degrees, using
floating-point numbers. Artifact angles are always normalized to the interval [0,360] . sf Nor mAngl e will
put its argument into this range. The corresponding functions sf AddAngl e and sf SubAngl e also
normalize their resultsin this way.

It is often convenient to give headings in terms of positive (counterclockwise) and negative (clockwise)
angles. The second normalization function, sf Nor nRAngl e, converts its argument to the range

[- 180,180] , S0 that the discontinuity in angle is directly behind the robot. The corresponding functions
sf Add2Angl e and sf Sub2Angl e also normalize their results this way.
Finally, it is sometimes useful to reflect all angles into the upper half-plane [- 90,90] . The function

sf Nor mBAngl e will do thisto its argument, by reflecting any anglesin the lower half-plane around the
X-axis; e.qg., +100 degrees is reflected to +80 degrees.

float sfPointPhi (point *p)
float sfPointDist (point *p)
float sfPointNormal Di st (point *p)
fl oat sfPointDistPoint(point *pl, point *p2)
float sfPointNormal D st Point (point *p, point *q)
void sfPointBaricenter (point *pl, point *p2, point *p3)

The first three functions compute properties of points relative to the robot. The function sf Poi nt Phi
returns the angle of the vector between the robot and point p, in degrees from -180 to 180. sf Poi nt Di st
returns the distance from the point to the robot. sf Poi nt Nor mal Di st returns the distance from the robot
to the line represented by the artifact point; it will be positive if the normal segment is to the left of the
robot’s x axis, and negative if to the right.

The second three functions compute properties of points. sf Poi nt Di st Poi nt returns the distance
between its arguments. sf Poi nt Nor mal Di st Poi nt returns the distance from point q to the line
represented by artifact point p. The distance will be positive if the normal segment is to the left of g’s x
axis, and negative if to theright. sf Poi nt Bar i cent er setspoint p3 to be the point midway between
point p1 and p2.

void sfChangeVP (point *pl, point *p2, point *p3)
void sfUnchangeVP (point *pl, point *p2, point *p3);
float sfPointXo (point *p)

float sfPointYo (point *p)

fl oat sfPoint XoPoint (point *p, point *q)

112

float sfPointYoPoint (point *p, point *q)
void sfPointMve (point *pl, float dx, float dy, point *p2)
void sfMveRobot (float dx, float dy, float dth)

These functions transform between coordinate systems. Because each point artifact represents a coordinate
system, often it is convenient to know the coordinates of one point in another’s system. All functions that
transform points operate on the local coordinates; if you want to update the global coordinates as well, use
sf Set d obal Coords.

sf ChangeVP takes a point p2 defined in the LPS and sets the local coordinates of p3 to bep2’'s
position in the coordinate system of p1. sf UnchangeVP does the inverse, that is, takes a point p2 defined
in the coordinate system of p1, and sets the local coordinates of p3 to be p2’s position in the LPS.

In some behaviorsit’s useful to know the robot’s position in the coordinate system of a point.
sf Poi nt Xo and sf Poi nt Yo give the robot’s x and y coordinates relative to their argument’ s coordinate
system. sf Poi nt XoPoi nt and sf Poi nt YoPoi nt do the same for an arbitrary point q.
sf Poi nt Move setsp2 to the coordinates of p1 moved a distance dx and dy in its own coordinate
system.

sf MoveRobot moves the robot in the global coordinate system by the given amount. Thisis atrickier
operation than one might suspect, because the local coordinates of all artifacts must be updated to keep
them in proper correspondence with the robot. Note that the values dx and dy are in the robot’ s coordinate
system; e.g., sf MoveRobot (1000, 0, 0) moves the robot forward 1 meter along the direction it is
currently pointing.

Line artifacts are called walls. A wall consists of a straight line segment defined by its directed
centerpoint, plus length. Any linear surface feature may be modeled using the wall structure. The only type
currently defined isWALL.

Like points, walls may be added or removed from the pointlist so that Saphira registers them in the LPS
with the robot’ s movements. Cast each to type poi nt before manipulating them with the pointlist functions
described above.

Drawing artifacts on the LPS display screen is useful for debugging behaviors and interpretation routines.
Saphira currently draws most types of artifactsif their vi ewabl e slot is greater than 0.

8.8 Sensor Interpretation

Besides the occupancy functions, the Saphira library includes functions for analyzing a sequence of sonar
readings and constructing artifacts that correspond to objects in the robot’ s environment. We are gradually
making these internal functions available to users, as we work on tutorial materiasillustrating their utility.
Currently, the only interpretation routines are for wall hypotheses.

wal | sflLeftWall Hyp
wal | sfRi ght Wal | Hyp

These wall structures contain the current wall hypothesis on the left and right sides of the robot, using the
side sonar buffers. If awall structure is found, then the vi ewabl e flag is set non-zero in the structure, and
the wall dimensions are updated to reflect the sensor readings. For wall hypotheses to be found, the wall-
finding routines must be invoked with sf 1 ni t I nt er pr et ati onPr ocs.

8.9 Drawing and Color Functions
Use the following commands function to display custom lines and rectangles on the screen and to control
the screen colors. All arguments are in millimeters in the global LPS coordinate system.

113

void sfDrawector (float x1, float yl, float x2, float y2)
void sfDrawRect (float x, float y, float dx, float dy)
voi d sfDrawCent eredRect (float x, float y, float w, float h)

sf DrawMect or drawsalinefromx1, yltox2, y2.Thislineisingloba coordinates.

To draw arectangle, use the function sf Dr awCent er edRect or sf Dr awRect . The centered version
takes a center point of the rectangle, and awidth and height. The non-centered version takes the lower-left
corner position, awidth, and a height.

Saphira’s graphics routines now use a state machine model, in which color, line thickness, and other
graphics properties are set by a function, and remain for all subsequent graphics calls until they are set to
new values. Note that because you cannot depend on the state of the graphics context when you make a
graphics call, you should set it appropriately.

void sfSetLineWdth (int w)
voi d sfSetLineType (int w)
voi d sfSetLineColor (int color)
voi d sf Set Pat chCol or (int col or)
nt sf Robot Col or
nt sf Sonar Col or
nt sfWakeCol or
nt sfArtifactCol or
nt sfStat usCol or

i
i
i
i
i
i nt sf Segnent Col or

For lines, set the width w to the desired pixel width. Thiswidth affects all lines drawn in rectangles and
vectors. You may select one of two line types: Set thew function parameter to SFLINESOLID for a solid
line, and sSFLINEDASHED for a dashed line. The patch and line colors accept a color value as shown in
Table 8.8.

Table 8.8. Saphira colors.

Color Reference Valu
e

sf Col or Yel | ow

sf Col or Li ght Yel | ow
sf Col or Red

sf Col or Li ght Red

sf Col or Dar kTur quoi se 10
sf Col or Dar kA i veG ee 11

n
sf Col or Or angeRed 12
sf Col or Magent a 13
sf Col or St eel Bl ue 14
sf Col or Bri ckRed 15
sf Col or Bl ack 100
sfCol orWhite 101

Saphira drawing colors for the robot icon and various artifacts can be set using the variables shown above.

114

8.10 Maps and Registration

Saphira has a set of routines for creating and using global maps of an indoor environment. This facility is
still under construction; this section gives an overview of current capabilities and some of the functions a
client program can access.

A map isacollection of artifacts with global position information. Typically, a map will consist of
corridors, doors, and walls—all artifacts of the offices where the robot is situated. Maps may be loaded and
deleted using the interface Files menu or by using function calls.

A map can either be created by the robot as it wanders around the environment, or you may create one as
afile. You can also save the map created by the robot to afile, for later recall.

8.10.1 Map File Format

A map file contains optional comments, designated with a semicolon (;) prefix, and lines specifying
artifacts in the map. All coordinates for artifacts are global coordinates. For example, Listing 8-6 shows a
portion of the map file for SRI’s Artificial Intelligence Center.

Map of a snmll portion of the SRI Artificial Intelligence Center

- X Y Th Length Wdth
CORRI DOR (1) 2000, 3000, 0, 3500, 800
CORRI DOR (2) 1000, 2000, 90, 6000, 1000
DOOR (3) 3000, 2600, 90, 1000
DOOR (4) 1500, 1000, 180, 1000
JUNCTI ON (5) 1500, 3000, O, 800
WALL (6) 1000, 4000, 0, 1000

WALL (8) 800, 3500, 90, 400

WALL 800, 4500, 90, 400

Listing 8-6.

The CORRI DOR lines define a series of corridor artifacts. The number in parentheses is the (optional)
artifact ID, and it must be a positive integer. The first three coordinates are the x, y, and q position of the
center of the corridor in millimeters and degrees. The fourth coordinate is the length of the corridor, and the
fifth is the width.

DOOR entries are defined in much the same way, except that the third coordinate is the direction of the
normal of the door, which is useful for going in an out. The fourth coordinate is the width of the door.

JUNCTI ON entries are like doors, but delimit where corridors meet. T-junctions should have three
junction artifacts, and X-junctions four. It s not necessary to put in any junctions, but they can be useful in
keeping the robot registered (see below).

The WALL entry does not have an ID. The first two coordinates are the x,y position of the center of the
wall; the third is the direction of the wall, and the fourth is its length. Wall segments are used where a
corridor is not appropriate-the walls of rooms or for large open areas, for example.

The map file, when loaded into a Saphira client using the Files/Load Map menu (or the function
sf LoadMapFi | e), creates the artifact structure shown in Figure 8-5-5. For illustration, the defining point
of the artifact is also shown as a small circle with a vector. These points will not appear in the Saphira
window.

115

— X
o —+ 30
<@ door 3

i C(éi’l‘ 1

0,0
Y 4.0 3.0 20 1.0

Figure 8-5. Sample map created from the map file above, as shown in a Saphira client. Corridor
artifacts display with double dotted lines; door s display with double solid lines; walls display as single
solid lines; junctions as pairs of solid lines. Numbers are the artifact 1D’s. For illustration, the defining
vector for each artifact is shown.

Note that a map represents artificial structures in the Saphira client, in the same way that latitude and
longitude lines are artifacts in global maps and are not found on the earth’ s surface. The robot or simulator
will not pay attention to these lines, because they are internal to the client. This can be a useful feature. For
example, a corridor is conceptually a straight path through an office environment; even where it has door
openings or junctions with other corridors, you can imagine the corridor walls as extended through these
areas. The rabot can still go “through” the artifact corridor sides at these points. The registration micro-
tasks (described below) use the map artifacts as registration markers, matching sensor data from the sonars
against this internal model to keep the robot registered on the map.

Obstacles within corridors, such as water coolers or boxes, can be represented using wall structures, such
asthe onein corridor 2.

i nt sfLoadMapFile (char *nane)
i nt sfSaveMapFil e(char *nane)
char *sf MapDir
i nt sfDel eteMapArtifacts(void)
i nt sfLoadWbrl dFil e(char *nane)

The sf LoadMapFi | e function loads a map file name into Saphira. It returns O if successful; -1 if the
file cannot be found. Any map file errors are reported in the message window, but note that only the last one
is displayed long enough to be read.

If the argument to the map file functions is arelative directory path (e.g., maps/ mymap), then Saphira
will use the map directory sf MapDi r as aprefix for this path. By default, sf MapDi r is set to the
directory maps in thetop level of the Saphira distribution.

116

L oaded artifacts are added to any map artifacts already in the system. To delete all map artifacts, use the
sf Del et eMapArti facts function. Anindividua artifact can be deleted using its ID number (see
Section 8.7).

The current client map can be saved to afile using sf SaveMapFi | e. The saved fileisin map file
format, so it can beread in using sf LoadMapFi | e.

When using the simulator with Saphira clients that have maps, it is useful to have the simulated world
correspond to the map. Unfortunately, the format of simulator world filesis different from map files, and
currently no utility exists to convert map filesinto simulator world files. They must be created by hand.

A simulator world file can be loaded into the simulator either by the menu commands in the simulator, or
by the sf LoadWor | dFi | e command issued from a client connected to the simulator.

8.10.2 Map Registration

As the robot moves, its dead-reckoned position will accumulate errors. To eliminate these errors, a
registration routine attempts to match linear segments and door openings against its map artifacts. This lets
you align the robot’ s global position with the global map. The micro-task that performs registration is called
t est mat chi ng. In the sample Saphira client, this micro-task is invoked by the function
sflnitRegistrati onProcs. Todisableregistration, either do not start thet est nmat chi ng micro-
task, or set its state to sf SUSPEND, using sf TaskSuspend.

The registration micro-tasks will preferentially match a complete doorway or corridor, if it has constructed
the corresponding hypothesis from sonar readings and a suitable map artifact is close by. Otherwise, it will
attempt to match single walls or sides of doorways. Matching corridors and walls helps keep the robot’s
angle aligned, and also its sideways distance. Finding doors helpsit to align in aforward/back direction.
Both of these are important to keeping the robot registered, but the angle registration is critical, because the
robot’ s dead-reckoned position quickly deterioratesif its heading is off.

Corridor junctions can also be important landmarks for registration. Ideally, junctions should be
automatically generated from intersections of corridors. However, this capability does not currently exist,
and you have to put them in by hand. In Figure 8-5, Junction 5 is only one of three possible junction
artifacts for the corridor intersection. It will be used to register the robot as it moves down Corridor 2, just
as it would be to move through a doorway. To register the robot as it movesin Corridor 1, you would have
to put in the other two junctions at right angles to Junction 5.

8.10.3 Map Element Creation

A by-product of the registration micro-task is that sometimes a corridor or doorway is found that does not
match any map artifact. In this case, Saphirawill, by default, create a new artifact and add it to the map. To
turn off this feature, set the variableadd _new f eat ur es to FALSE.

In finding corridors, Saphira by default attempts to align them on 90 degree angles, which istypical for
office environments. To turn off this feature, set the variablesnap_t o_ri ght _angl e_gri d to FALSE.

Map elements can also be created by hand, using the artifact creation functions of Section 8.7.

8.11 File Loading Functions
This section describes functions for loading Colbert files, shared object files, parameter files, and
simulator world files. Map file loading functions can be found in the previous section.

117

nt sflLoadEval Fil e(char *nane)
char *sflLoadDirectory

i nt sflLoadParantil e(char *nane)
char *sf ParanDir

i nt sfLoadWorl dFil e(char *nane)

sf LoadEval Fi | e loads a Colbert language file or loadable shared object file into Saphira. The load
directory, sf LoadDi r ect ory, is set by default to the value of the environment variable SAPHI RA_LQAD
if it exists, or to the working directory if it doesn’t. The load directory is used as a prefix on relative path
names; absolute path names are always loaded with no modification. All load functions return O if
successful, and -1 if not.

Parameter files for different robot servers can be loaded with the sf LoadPar anti | e function.
Bewcause Saphira clients autoload the correct parameter file when they connect to a robot server, the user
should call this function only in special circumstances. The load directory isin sf Par anDi r , which is set
by default to the directory par ans at the top level of the Saphira distribution.

A Saphiraclient, if it is connected to the simulator, can cause the simulator to load a world file through
the sf LoadWor | dFi | e command.

8.12 Colbert Evaluator Functions

Several library functions add functionality to the Colbert evaluator, by linking the evaluator to native C
functions, variables, and structures. For examples, see Section 1 on the Colbert language.

i nt sfAddEval Fn (char *nane, void *fn, int rtype, int nargs, ...)
i nt sfAddEval Var (char *nane, int type, void *v)
i nt sfAddEval Const (char *nane, int type, ...)
i nt sfAddEval Struct (char *name, int size, char *ex, int nunslots, ...)

These functions all return the Colbert index of the defined Colbert object. Generally thisindex is not useful
in user programs, and can be ignored. The exception isthe sf AddEval St ruct function, which returns
the type index of the Colbert structure.

sf AddEval Fn makesthe native C function f n available to Colbert as nane. The return type of the
functionisrt ype, and the number of parametersis nar gs. The additional arguments are the types of each
of the parameters. A Colbert function may have a maximum of seven parameters. Functions with a variable
number of parameters should set nar gs to the negative of the number of fixed parameters and give the
types of the fixed parameters.

sf AddEval Var makesanative C variable of typet ype availableto Colbert as name. A pointer to the
variable should be passed in v astype (f val ue *) . For example, if the variableis nyVar , use

(fval ue *) &myVar . The value of the C variable can be modified from Colbert.

sf AddEval Const defines a constant in Colbert with name nanme and typet ype. The function should
have one additional argument, which is the constant value, either an integer, floating-point number, or
pointer.

sf AddEval St ruct makesanative C structure available to Colbert with name nane. The size of the
structure, in bytes, should be givenin si ze. A pointer to an example structure should be passed in ex. The
number of structure elementsis given by nunsl ot s. The additional arguments are triplets describing the
elements, in any order. A sample element description follows:

“x”, &ex.x, sfFLOAT,

Here x isthe Colbert name of the element, &ex. x isapointer to the example element, and sf FLOAT is
an integer describing the type of the element.

118

This function returns the Colbert index of the structure type, which should be saved for future reference by
the program.

int sfINT, sfFLOAT, sfSTRING sfVAD, sfPTR
i nt sfSrobot, sfSpoint

int sfTypeRef (int type)

i nt sfTypeDeref (int type)

These constants and functions refer to Colbert type indices, which are integers. The first set of constants are
the basic type indices for Colbert; the second set are predefined structures. sf TypeRef returns the index
of apointer to its argument, while sf TypeDer ef returnsthe index to the type referenced by its
argument, or O if its argument is not a pointer type index.

voi d sf AddHel p(char *nane, char *str)
char *sf Get Hel p(char *nane)

These functions are the C interface to Colbert’s help facility. Sf AddHel p addsthestring st r asahelp
string for the Colbert object named nane. It putsit in alphabetical order, so that searching for help entries
iseasier. The help string may have embedded formatting commands suchas“\ t ” and “\ n”.

sf Get Hel p returnsthe help string associated with name, or NULL if thereis none.

voi d sflLoadlnit(void)
voi d sflLoadExit(void)

When a shared object file is loaded, the special function sf Loadl ni t, if it isdefined in thefile, is
evaluated at the end of the load. Colbert variables, functions, and structures are typically defined here.
When a shared object file is unloaded or rel oaded, the special function sfLoadExit, if it is defined in thefile,
is executed. This function should disable activities that reference C functions and variables defined in the
file.

Note that these functions can be defined in each loaded file. In MS Windows, they must be declared
EXPORT.

8.13 Packet Communication Functions

Saphira contains several functions that help you manage communications between your client application
and the Pioneer server directly (PSOS; see Chapter 4), rather than going through the Saphira OS. If you
start up the Saphira OS with sf St art up, do not use these functions to parse information packets or
send motor control commands.

nt sfConnect ToRobot (i nt port, char *nane)
char *sf Robot Narme

char *sf Robot d ass

char *sf Robot Subcl ass

(This Saphira function tries to open a communications channel to the robot server on port type port with
name nane. It returns 1 if it is successful; O if not. This function also is available asthe connect
command in Colbert.

Table 8-9. Port types and names for server connections.

Classification | Nanme Description
Port types sf LOCALPORT | Connects to simulator on the host machine

119

sf TTYPORT Connects to Pioneer on atty port
Port names sf COMLOCAL local pipe or mailslot name

sf COML tty port 1 (/ dev/ ttya or/ dev/ cuaO for UNIX;
COML for MSW; nodemfor Mac)
sf COVR2 tty port 2 (/ dev/ ttyb or/ dev/ cual for UNIX,

COWR for MSW, pri nt er for Mac)

This function also sets the global variables sf Robot Nane, sf Robot Cl ass, and sf Robot Subcl ass
according to the information returned from the robot; see Table 8-10, below. Assuming the environment
variable SAPHI RA is set correctly, it will autoload the correct parameter file from the par ans directory,
using first the subclassiif it exists, and then the class.

Table 8-10. Robot names and classes.

Structure Explanation
(char *)sf Robot Name See robot descriptions for information on how to set the name. The
simulator returns the name of the machine it is running on.
(char *)sfRobotd ass Robot classes are B14, B21, and Pi oneer .
(char Subclasses are subtypes, e.g., in Pioneer-class robots the subclass is
*) sf Robot Subcl ass either pi on1 (Pioneer 1) or pi onat (Pioneer AT).

voi d sfDi sconnect FronRobot (voi d)

This structure sends the server acl ose command, then shuts down the communications channel to the
server.

voi d sfReset Robot Vars (voi d)

Resets the values of al interna client variables to their defaults. Should be called after a successful
connection.

voi d sfRobot Com (i nt com
voi d sfRobot Com nt (int com int arg)
voi d sf Robot Com2Bytes(int com int bl, int b2)
voi d sfRobot ConStr (int com char *str)
voi d sfRobotConStrn (int com char *str, int n)

These Saphira functions packetize and send a client command to the robot server. Use the command type
appropriate for the type of argument. See Section 7.2 for alist and description of currently supported PSOS
commands.

The string commands send stings in different formats: sf Robot ContSt r sends out a null-terminated
string (itsstr argument), and sf Robot Contt r n sends out a Pascal-type string, with an initial string
count; inthiscase st r can contain null characters.

The function sf Robot Con2Byt es sends an integer packed from two bytes, an upper byte, b1, and a
lower byte, b2.

120

int sfWaitCientPacket (int ns)
i nt sfHaved i ent Packet (void)

UsesfWai t O i ent Packet to have Saphiralisten to the client/server communication channel for up to
nms milliseconds, waiting for an information packet to arrive from the server. If Saphira receives a packet
within that time period, it returns 1 to your application. If it times out, Saphira returns 0. This function
alwayswaits at least 100 msif no packet is present. To poll for a packet, use sf Haved i ent Packet .

voi d sfProcessC ientPacket (int type)

sf ProcessCl i ent Packet parsesaclient packet into the sf Robot structure and sonar buffers.
Typicaly, aclient will call sfWai t G i ent Packet or sf Haved i ent Packet to be sure apacket is
waiting to be parsed. The argument to sf ProcessC i ent Packet isabyte, the type of the packet. This
byte can beread using sf ReadCl i ent Byt e. By examining this byte, the client can determine if it wishes
to parse the packet itself, or send it onto sf Pr ocessd i ent Packet .

int sfdientBytes (void)
int sfReadCientByte (void)
int sfReaddientSint(void)
int sfReaddientUsint (void)
int sfReaddientWrd (void)
char *sfReaddientString (void)

These functions return the contents of packets, if you want to dissect them yourself rather than using
sf ProcessCl i ent Packet . sf Cl i ent Byt es returns the number of bytes remaining in the current
packet. The other functions return objects from the packet: bytes, small integers (2 bytes), unsigned small
integers (2 bytes), words (4 bytes), and null-terminated strings.

121

9 Saphira Vision

Current versions of Saphira have both generic vision support and explicit support of the Fast Track Vision
System (FTVS), which is available as an option for the Pioneer 1 Mobile Robot. The FTV S is a product
developed by Newton Labs, Inc. and adapted for Pioneer. The generic product name is the Coghachrome
Vision System. Details about the system, manuals, and development libraries can be found at Newton Labs’
Web site: ht t p: / / www. newt onl abs. com

With Saphira, the FTV S intercepts packet communication from the client to robot server, interprets
commands from the client, and sends new vision information packets back to the client. Saphiraincludes
support for setting some parameters of the vision system, but not for training the FTV S on new abjects, or
for viewing the output of the camera. For this, please see the FTV S user manual about operating modes. In
the future, we intend to migrate some of the training functions to the Saphira client. We also intend to have
Saphira display raw and processed video.

Saphira aso includes built-in support for interpreting vision packet results. If your robot has avision
system, Saphirawill automatically interpret vision packets and store the results as described below.

9.1 Channe modes

The FTV S supports three channels of color information: A, B, and C. Each channel can be trained to
recognize its own color space. Each channel also supports a processing mode, which determines how the
video information on that channel is processed and sent to Saphira. A channel isin one of three modes:

BLOB_MODE 0
BLOB BB_MODE 2
LINE_MODE 1

Note: these definitions, as well as other camera definitions, can be found in
handl er/i ncl ude/ chrona. h

To change the channel mode from a Saphira client, issue this command:
sf Robot ContStr (VI SI ON_COM " pi oneer _X node=N")

where the mode Nis O, 1, or 2, and the channel Xisa, b, or ¢ (small letters). On start-up, the vision
system channels are set to BLOB_MODE. (The processing performed in BLOB_MODE,
BLOB_BB_MODE, and LINE_MODE is explained in the FTVS manual.)

As Table 9-1 shows, several FTV S parameters affect the processing in line mode.
Table 9-1. FTVS parameters used to determine a line segment.

Parameter Description

l'i ne_bottomrow First row for line processing
['ine_numslices How many rows are processed
l'ine_slice_size How many pixels thick each row is
i ne_m n_mass Number of pixels needed to

These parameters can be set using a command such as the following:

sf Robot ContStr (VISION_COM "l i ne_bottom row=0")

122

9.2 Vision Packets

If the FTVSisworking properly, it will send a vision packet every 100 msto the Saphira client. In the
information window, the VPac dot should read about 10, indicating that 10 packets/second are being
delivered. If it reads O, the vision system is not sending information.

Saphira parses these packets into a vision information structure (see Listing 9-1).

struct vinfo {

int type; /* BLOB, BLOB BB or LINE MODE */

int x, vy; /* center of mass */

int area; /* size */

int h, w /* height and wi dth of boundi ng box */
int first, num /* first and nunber of |ines */

};

Listing 9-1. Saphira vision information structure.

In BLOB_MODE, thex, vy, and ar ea slots are active. The x,y coordinates are the center of mass of the
blob in image coordinates, where the center of theimageis 0,0. For the lens shipped with the FTVS, each
pixel subtends approximately degree:

#define DEG TO PI XELS 3.0 /* approxi mately 3 pixels per degree */

This constant lets a client convert from image pixel coordinates to angles. The area is the approximate
size of the blob in pixels. If the areais 0, no blob was found.

In BLOB_BB_MODE, the bounding box of the blob is also returned, with h and w being the height and
width of the box in pixels.

InLINE_MODE, thedlotsx, fi r st , and numare active. The value x is the horizontal center of the line.
first isthefirst (bottom-most) row with aline segment, and numis the number of consecutive rows with
line segments. If no line was found, num is zero.

The following global variables hold information for each channel: ext ern struct vinfo
sf val nfo, sfVblnfo, sfVclnfo.

For example, to seeif channel A isin BLOB_MODE, use this command:
sfVal nfo.type ==

9.3 Sample Vision Application

The sample Saphira client which enables the FTV S can be found as the source file
handl er/ src/ apps/ bt ech. c and/ chr oma. c. The compiled executables are found in the bi n/
directory. These files define functions to put the channelsinto BLOB_BB_MODE, to turn the robot looking
for ablob on channel A, to draw the blob on the graphics window, and to approach the blob.

This sequence sets up parameters of the vision system, putting all channelsinto BLOB_BB_MODE and
initializing line parameters:

voi d setup_vision_systen(voi d)

This one returns the X-image-coordinate of a blob on channel (0=A, 1=B, 2=C), if the blob’s center is
within del t a pixels of the center of the image:

i nt found_bl ob(int channel, int delta)

If no blob is found with these parameters, it returns -1000.

123

voi d draw_bl obs(voi d)

This is the process for drawing any blobs found by the vision system. The blob is drawn as arectangle
centered at the correct angular position, and at a range at which a surface two feet on a side would produce
the perceived image size. The size of the rectangleis proportional to the image area of the blob.

voi d find_bl ob(voi d)

This command defines the activity for turning left until ablob isfound in the center of the image on
channel A, or until 20 seconds €l apses.

voi d search_and_go_bl ob(voi d)

This command defines the activity for finding ablob (using f i nd_bl ob) on channel A, then
approaching it. It uses sonars to detect when it is close to the blob.

124

10 Parameter Files

This section describes the parameter files used by the Pioneer simulator and Saphira client to describe the
physical robot and its characteristics.

10.1 Parameter File Types

Pioneer rabots have four parameter files:

pi oneer.p
psos4lx. p
psos4lm p
psosat.p

The sequence 41 refersto PSOS versions equal to or greater than PSOS version 4.1. Early versions of the
Pioneer that have not been upgraded to at least version 4.1 should use the pi oneer . p parameter file.
These Pioneers do not send an autoconfiguration packet; therefore, Saphira clients by default are configured
for pre-PSOS 4.1 rabots and will correctly control these robots without explicitly loading a parameter file.
Pioneer robots with PSOS 4.1 or later send an autoconfiguration packet on connection that tells the Saphira
client which parameter file to load. Pioneers made before August 1996 use old-style motors, and these load
psos4l1x. p. Those made after this date use new-style motors, and load psos41m p. The only difference
isin some of the conversion factors for distance and velocity.

The Pioneer AT hasits own parameter file, pi onat . p. The only change from psos41m p isthat the
robot is larger than the other Pioneers.

The B14 and B21 raobots from RWI also have parameter files, b14. p and b21. p.

10.2 Sample Parameter File

The sample parameter file in Listing 10-1 illustrates most of the parameters that can be set. Thisisthefile
psos4lm p. An explanation of the parametersis given in Table 10-1, below.

Par aneters for the Pioneer robot
;. New notors

Angl eConvFact or 0. 0061359 ; radi ans per encoder count diff (2Pl/1024)
Di st ConvFact or 0. 05066 ; Bin*Pl / 7875 counts (nm count)

Vel ConvFact or 2.5332 ; mmsec / count (DistConvFactor * 50)
Robot Radi us 220.0 : radius in mm

Robot Di agonal 90.0 ; hal f-height to diagonal of octagon
Hol onomi ¢ 1 ; turns in own radius

MaxRVel oci ty 2.0 ; radi ans per neter

MaxVel oci ty 400. 0 ; mm per second

:: Robot class, subcl ass

Cl ass Pi oneer
Subcl ass PS0CS41m
Nanme Erratic

These are for seven sonars: five front, two sides

;; Sonar paraneters

D Sonar Num N i s nunber of sonars

- SonarUnit I XY THis unit | (0 to N-1) description

D X, Y are position of sonar in nm TH is bearing in degrees

125

Listing 10-1. The example parameter file, psos41lm p, showshow to set most Saphira parameters.

RangeConvFact or 0.1734 ; sonar range nmm per 2 usec tick
Sonar Num 7

D # X y th
SonarUnit O 100 100 90
SonarUnit 1 120 80 30
SonarUnit 2 130 40 15
SonarUnit 3 130 0 0
SonarUnit 4 130 -40 -15
SonarUnit 5 120 -80 -30
SonarUnit 6 100 -100 -90
SonarUnit 7 0 0 0

;; Nunber of readings to keep in circular buffers
Front Buf fer 20
Si deBuffer 40

Listing 10-2.

Floating-point parameters can be in any standard format and do not require a decimal point. Integer
parameters may not have a decimal point. Strings are any sequence of non-space characters.

Table 10-1. Functions of Saphira parameters.

Parameter Type Description

Angl eConvFact or | float Converts from robot angle units (4096 per revolution) to radians.
Vel ConvFact or float Converts from robot velocity units to mm/sec

D st ConvFact or float Converts from robot distance units to mm

D f f ConvFact or float Converts from robot angular velocity to rads/sec
RangeConvFactor | float Converts from robot sonar range units to mm

Hol onomi ¢ integer Value of 1 says the robot is holonomic (can turn in place); value of O

saysit is nonholonomic (front-wheel steering). Holonomic robot icon
is octagonal; nonholonomic is rectangular.

Robot Radi us float Radius of holonomic robot in mm.

Robot Di agonal float Placement of the horizontal bar indicating the robot’ s front, in mm
from the front end. (Sorry about the name.)

Robot W dt h float Width of nonholonomic robot, in mm.

Robot Lengt h float Length of nonholonomic robot, in mm.

MaxVel oci ty float Maximum velocity of the robot, in mm/sec.

MaxRVel oci ty float Maximum rotational velocity of the robot in degrees/sec.

MaxAccel eration | float Maximum acceleration of the robot in mm/sec/sec

d ass string Raobot class: pi oneer, b14, b21. Not case-sensitive. Useful only for

the simulator, which will assume this robot personality. The client
gets thisinfo from the autoconfiguration packet.

Subcl ass string Robot subclass. For the Pioneer, indicates the type of controller and

126

body combination. Values are psos41m psos41x, or pi onat . Not
case-sensitive. Useful only for the smulator, asfor the Gl ass
parameter.

Name string Robot name. Useful only for the simulator, asfor the d ass
parameter.

Sonar Num integer Number of active sonars.

Sonar Uni t n,x,y,t h | Description sonar unit n. The x,y,t h arguments describe the pose of
the sonar on the robot body, relative to the robot center. Provide one
such entry for each active sonar unit. Used by both the ssmulator and
client.

Front Buf f er integer Number of front sonar readings to keep. Higher values mean the robot
will be more sensitive to obstacles but slower to get rid of moving
obstacle readings.

Si deBuf f er integer | Number of side sonar readings to keep. Higher values mean the

interpretation routines can find longer side segments.

127

11 Sample World Description File

Worlds for the simulator are defined as a set of line segments using absolute or relative coordinates.
Comment lines begin with a semicolon. All other non-blank lines are interpreted as directives.

The first two lines of the file describe the width and height of the world, in millimeters. The simulator
won't draw lines outside these boundaries. It’s usually a good idea to include a“world boundary” rectangle,
asis done in the example below, to keep the robot from running outside the world.

Any entry in the world file that starts with a number is interpreted as creating a single line segment. The
first two numbers are the x,y coordinates of the beginning and the second two are the coordinates of the end
of the line segment. The coordinate system for the world starts in the lower left, with +Y pointing up and
+Xto theright (Figure 11-1).

+Y, 90 degrees
A

» +X, 0degrees

0,0

Figure 11-1. Coordinate system for world definition.

The position of segments may also be made relative to an embedded coordinate system. Thepush x y
t het a directive in the world file causes subsequent segments to use the coordinate system with origin at
X,y and whose x axis points in the direction. Thet het a. push directives may be nested, in which case
the new coordinate system is defined with respect to the previous one. A pop directive revertsto the
previous coordinate system.

Theposition x y thet a directive positions the robot at the indicated coordinates.

Listing 11-1 is afragment of the si npl e. W d world description file found in Saphira’ swor | ds
directory.

;;; Fragment of asimple world

width 38000
height 30000

0 0030000 : World frontiers
00380000

38000 30000 0 30000

38000 30000 38000 0

push 10000 14000 O

128

;; upper corridor ; length = 14,600; width = 2,000

0 12000 3000 12000 yEI231-J Lee
3900 12000 4200 12000 ; EJ233 - D. Moran
5100 12000 8000 12000 ; E31235 - J. Bear
8900 12000 9200 12000 ; EJ 237 - E. Ruspini
10000 12000 12000 12000 ; EJ239 - J. Dowding
12800 12000 14600 12000

;; Starting position

position 17500 14000 -90

Listing 11-1. Fragment of the si npl e. W d world description file found in Saphira’swor | ds
directory.

129

12 Saphira API Reference

Artifacts

voi d
voi d
voi d
voi d
voi d
poi nt
poi nt
poi nt
poi nt
voi d
voi d
voi d
voi d
voi d
fl oat
fl oat
voi d
fl oat
fl oat
fl oat
fl oat
fl oat
fl oat
fl oat
voi d
poi nt
voi d
voi d
voi d
voi d
voi d

sf AddAngl e

sf Add2Angl e

sf AddPoi nt (poi nt *p)

sf AddPoi nt Check(poi nt *p)

sf ChangeVP(poi nt *pl, point *p2, point *p3)

*sf Creat ed obal Poi nt (fl oat x, float

y, float th)

*sf CreateLocal Point(float x, float y, float th)

*sfFindArtifact(int id)
*sfd obal Origin
sf MoveRobot (fl oat dx, float dy, float
sf Nor mAngl e
sf Nor nRAngl e
sf Nor nBAngl e

sf Poi nt Bari center (point *pl, point *p2, point

sf Poi nt Di st (poi nt *p)

dt h)

sf Poi nt Di st Poi nt (poi nt *pl, point *p2)
sf Poi nt Move(poi nt *pl, float dx, float dy, point *p2) 113

sf Poi nt Nor mal Di st (poi nt *p)
sf Poi nt Nor mal Di st Poi nt (poi nt *p, poi
sf Poi nt Phi (poi nt *p)
sf Poi nt Xo(poi nt *p)
sf Poi nt XoPoi nt (poi nt *p, point *q)
sf Poi nt Yo(poi nt *p)
sf Poi nt YoPoi nt (poi nt *p, point *q)
sf RemPoi nt (poi nt *p)
*sf Robot Origin
sf Set A obal Coor ds(poi nt *p)
sf Set Local Coor ds(poi nt *p)
sf SubAngl e
sf Sub2Angl e

nt *q)

sf UnchangeVP(poi nt *pl, point *p2, point *p3)

Behaviors

BEHCLOSURE sf Fi ndBehavi or (char *name) Error!

BEHCLOSURE sf | ni t Behavi or (behavi or *b, int

int running, ...) Error!

BEHCLOSURE sf | ni t Behavi or Dup(behavi or *b,

int running, ...) Error!

i nt sf Behavi or Cont r ol

voi d
voi d
voi d
voi d

sf Behavi or Of f (BEHCLOSURE b) Error!
sf Behavi or On(BEHCLOSURE b) Error!
sfKi | | Behavi or (BEHCLOSURE b) Error!
sf Set Behavi or St at e(BEHCLOSURE b, int

Behaviors; Predefined Saphira
behavi or *sf AttendAt Pos Error!

behavi or *sf Avoi dCol | i si on Error!
behavi or *sf Constant Vel ocity

130

priority,
Bookmar k not
int priority,
Bookmar k not

Bookmar k not
Bookmar k not
Bookmar k not
state)Error!

Bookmar k not
Bookmar k not

*p3)

Page
112
112
110
110
112
110
110
110
110
113
112
112
112
112
112
112

112
112
110
112
112
112
113
110
110
110
110
112
112
112

Bookmar k not defi ned.

def i ned.

defi ned.

57
defi ned.
defi ned.
defi ned.
Bookmar k not

def i ned.
def i ned.
60

def i ned.

behavi or *sf Fol | ow

behavi or *sf Fol | owCorri dor
behavi or *sf Fol | owDoor
behavi or *sf GoToPos

behavi or *sf KeepOf f

behavi or *sf St op

behavi or *sf StopCol |ision
behavi or *TurnTo

Direct Motion Control
i nt sfDoneHeadi ng
i nt sfDonePosition(int dist)

voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d

sf Set DHeadi ng(i nt dhead)
sf Set Headi ng(i nt head)

sf Set MaxVel oci ty(int vel)
sf Set Posi tion(int dist)
sf Set Rvel oci ty(int rvel)
sf Set Vel oci ty(int vel)

sf Tar get Head(voi d)

sf Tar get Vel (voi d)

Drawing and Color

voi d sf DrawCent er edRect (fl oat x,
voi d sfDrawRect (float x,float y,float
voi d sf SetLineCol or(int color)

voi d sfSetLineType(int w)

voi d sfSetLineWdth(int w)

voi d sf Set Pat chCol or (i nt col or)
voi d sf Set Text Col or (i nt col or)
Fuzzy Variables

float down_straight(float x, float
float f_and(float x, float y)
float f_eq(float x, float c, float
float f_greater(float x, float
float f_not(float x)

float f_or(float x, float y)

float f_smaller(float x, float
float straight_up(float x, float
Activities

int finished(process *p)

C,

C,

process *intend_beh(behavior *b,
beh_parans parans, int priority)

process *sflnitActivity(void (*fn)(void),

int tinmeout,

Map File

i nt sfLoadMapFil e(char *nane) <Uni x;

i nt sflLoadMapFil e(char *name,

Occupancy

int sfOccBox(int xy, int cx, int

Error! Bookmark
Error! Bookmark
Error! Bookmark
Error! Bookmark
Error! Bookmark

Error! Bookmark
Error! Bookmark

float y, float w,

dx, fl oat dy)

mn, float max)

del t a)

float delta)

float delta)

m n,

fl oat max)

Error! Bookmark

char *nane,

Error! Bookmark

Error! Bookmark

cy,

VBWs
int vref) <Mac>

int h, int w

not defi
not defi
not defi
not defi
not defi

not defi
not defi

fl oat

h)

ned.
ned.
ned.
ned.
ned.
60
ned.
ned.

100
100
100
100
100
100
100
100
100
100

114
114
114
114
114
114

57
58
57
57
58
58
57
57

not defi ned.

int tinmeout,

not defi ned.

char *nane,

not defi ned.

116
116

107

131

int sfOccBoxRet(int xy, int ¢cx, int cy, int h, int w,

float *x, float *y) 107
int sfCccPlane(int xy, int source, int d, int sl, int s2) 108
int sfCccPlaneRet(int xy, int source, int d, int sl1, int s2,

float *x, float *y) 108
OS and Window Functions
int nyButtonFn(int x, int y, int b) 95
int nyKeyFn(int ch) 95
voi d sfButtonProcFn(int (*fn)()) 95
voi d sfErrMessage(char *str) 95
voi d sfErrSMessage(char *str, ...) Error! Bookmark not defined.
voi d sfKeyProcFn(int (*fn)()) 95
voi d sf OnConnect Fn(void (*fn)()) 94
voi d sf OnDi sconnect Fn(void (*fn)()) 94
void sfOnStartupFn(void (*fn)()) 94
float sfScreenToWwsrldX(int x, int y) 95
float sfScreenToWwsrldY(int x, int y) 95
voi d sfSetDisplayState(int menu, int state) 95
voi d sf SMessage(char *str, ...) Error! Bookmark not defined.

voi d sfStartup(HANDLE hlnst, int cndShow, int async)Error! Bookmark not
defi ned.

void sfStartup(int async) Error! Bookmark not defined.
voi d sfPause(in ns) Error! Bookmark not defined.
int sflsConnected 94

Packet Functions

char *sfReadC ientString(void) 121
int sfCientBytes(void) 121
i nt sfConnect ToRobot (i nt port, char *nane) 119
i nt sfHaved i ent Packet (voi d) 121
int sfReaddientByte(void) 121
int sfReaddientSint(void) 121
int sfReadd ientUsint(void) 121
int sfReaddientWrd(void) 121
int sfWaitdientPacket (int ns) 121
voi d sf Di sconnect Fr omRobot (voi d) 120
voi d sfProcessd i ent Packet (voi d) 121
voi d sf Reset Robot Var s(voi d) 120
voi d sf Robot Con{i nt con) 120
voi d sf Robot Com2Bytes(int bl, int b2) 120
voi d sf Robot Comint(int com int arg) 120
voi d sfRobot ConStr(int com char *str) 120
voi d sfRobot ConStrn(int com char *str, int n) 120
Processes

process *sfFi ndProcess(char *nane) 103
process *sflnitProcess(void *fn(void), char *nane) 103
voi d sflnterruptProcess(process *p) 103
voi d sflnterruptSel f(void) 103
voi d sf ResuneProcess(process *p 103
voi d sf SetProcessState(process *p, int state) 103
voi d sf SuspendProcess(process *p, int n) 103

132

voi d sf SuspendSel f(int n)
Processes; Predefined

voi d sflnitBasicProcs(void)
voi d sflnitControl Procs(void)

void sflnitlnterpretati onProcs(void)
voi d sflnitRegistrationProcs(void)

Sensor I nterpretation
wal | sfLeftWall Hyp
wal | sfRi ght\Vall Hyp

Sonars

fl oat sf Front MaxRange

voi d sfSetFrontBuffer(int n)
voi d sf Set Si deBuffer(int n)
i nt sfSonar Range(int num

i nt sfSonarNew(int num

fl oat sfSonar XCoord(int num
fl oat sfSonar YCoord(int num

State Reflection

struct robot sfRobot

int sfStalledMotor(int which)
voi d sf Tar get Head(voi d)

voi d sf Tar get Vel (voi d)
Vision

voi d draw_bl obs(voi d)

voi d find_bl ob(voi d)

int found_blob(int channel, int
sf Robot ContStr (VI SI ON_COM "1 i ne_bot t om r ow=0")
sf Robot Const r (VI SI ON_COM " pi oneer _X_node=N")

voi d search_and_go_bl ob(voi d)

voi d setup_vision_systen{void)

103

96
96
97
97

113
113

106
106
106
99
99
99
99

98
99
100
100

124
124
123
122
122
124
123

133

Index

13 I ndex

activities Predefined, 59

defining, 34 rules, 58
Activities schema, 59

intend_beh, 103 Stop Collision, 60

invoking behaviors, 103 Turn To, 63
Activities window, 21 update function, 58
activity, 1 window, 18
Activity Behaviors window, 18

loading, 12 Behaviors:, 54
activity files Bxx

demo.act, 12 connecting, 13
Activity language. See Colbert C++ programs, 65
APl cd, 32

artifacts, 107 Channel modes, 121

Drawing and Color, 112. See drawing and color checksum, 84

Fuzzy variables, 57. See fuzzy variables chroma.h, 121

General. See AP Client

maps, 114. See maps Activities window, 21

Motor stall, 97 artifacts, 15

OS functions, 93 bat, 16

window mode. See OS functions battery, 16

argument types, 86
Artifacts, 15, 107
points and lines, 108. See points and lines
async sample client, 80
asynchronous routines, 65
Asynchronous routines, 9
Attend at position parameters, 61
autoconfiguration, 90
AUTOEXEC.BAT, 22
Avoid collision parameters, 60

Behaviors window, 18

commands, 85. See Client commands

connect menu, 17

connect menu:. See files menu. See connect menu
control point, 14

CPU, 16

display, 13

display menu, 17. See display menu

files menu, 17

functions menu, 17

bat, 16 grow, 17
battery, 16 Information area, 15
Behavior executive, 56 interaction area, 16
Behavior grammar, 56 keyboard, 18
behavior.beh, 60 main window, 13
Behaviors MPac, 16
sfInitBehavior, 54 obstacle sensitivity, 14
Behaviors position, 16
Attend At Position, 61 Processes window, 20
Avoid Collision, 60 shrink, 17
behavior.beh, 60 sonars, 14
Constant Velocity, 60 sonars menu, 17. See sonars menu
Description, 11 SPac, 16
Follow Corridor, 62 Starting, 1
Follow Door, 63 status, 15
Follow Lane, 62 velocity, 16
Go To Position, 61 velocity vectors, 14
grammar, 56 VPac, 16

implementing, 58
init function, 58
input parameters, 58
keep off, 19

Keep Off, 61

134

Client commands

argument types, 86
communication rate, 85
composition, 86
General, 85

PSOS, 86

saphira.h, 86
Client installation. See Installation
Clients

async example, 80

direct example, 76

nowin example, 81

packet example, 78

saphira example, 72
Colbert, 1, 28

Activities, 11, 34

evaluator, 16, 28

example, 28

help facility, 30

interaction area, 16, 30

Language, 11

load directory, 31, 32

loading files, 28, 31

loading shared object files, 31

sample applications, 32

syntax errors, 30
Colbert commands

cd, 32

connect, 33

connection, 33

direct motion, 33

disconnect, 33

exit, 33

halt, 34

move, 34

pwd, 32

rotate, 34

set baud, 33

set serial, 33

set server, 33

speed, 34

turn, 34

turnto, 34
COMDHEAD, 86
COMDIGOUT, 86

Communication packets, 83. See packets

communications rate, 87
COMORPEN, 86
COMORIGIN, 86
compiling clients, 65
MSVisual C++, 68
system requirements, 64
Unix clients, 66
COMPOLLING, 86
Components
Optional, 2
COMPTUPOS, 86
COMPULSE, 86
COMSETO, 86
COMSTEP, 86
COMTIMER, 86

COMVEL, 86

config.h, 70

configuration, 90

connect, 17, 33

connect menu
connect, 17
disconnect, 17, 26

Connecting, 12

CPU, 16

data types, 84

delete map, 17

demo.act, 12

direct client example, 76

direct motion, 28, 33

direct motion control, 56

Direct motion control, 11, 98

disconnect, 17, 26, 33

display
states, 94

display menu, 17
local, 17
occ grid, 17
single step, 17
wake, 17

display states, 94

down_straight, 57

draw_blobs, 123

drawing and color
set_vector_buffer, 113
sfDrawCenteredRect, 113
sfDrawRect, 113
sfSetLineColor, 113
sfSetLineType, 113
sfSetLineWidth, 113
sfSetPatchColor, 113

Email
pioneer-support, 5
pioneer-users, 5
saphira-users, 5

environment variable
LD _LIBRARY_PATH, 4
SAPHIRA_LOAD, 12

environment variables, 22
SAPHIRA, 22
SAPHIRA_COMPIPE, 22
SAPHIRA_COMSERIAL, 22
SAPHIRA_COMSERVER, 22
SAPHIRA_LOAD, 22, 32
SAPHIRA_SERIALBAUD, 22
setting, 22

errors, 85

exit, 33

exit menu, 27

f_and, 58

f_eq, 57

f_greater, 57

135

Index

f_not, 58
f_or, 58
f_smaller, 57
Fast Track Vision System, 121
files menu
delete map, 17
save map, 17
find_blob, 123
Follow corridor parameters, 62
Follow door parameters, 63
Follow lane parameters, 62
found_blob, 122
functions menu, 17
fuzzy variables
down_straight, 57
f_eq, 57
f_greater, 57
f_or, 58
f_smaller, 57
straight_up, 57
Fuzzy variables, 57
combination functions, 58
Go to position parameters, 61
grow, 17, 26
Gzip. SeeInstallation
halt, 34
help facility, 30
information area, 27
information packet, 87
init.act, 12
Installation, 2
intend_beh, 103
interaction area, 16
Interaction area, 30
Keep off behavior, 19
Keep off parameters, 61
keyboard, 18, 75
keyboard actions, 75
Konalige, Dr. Kurt, 1
LD_LIBRARY_PATH environment variable, 4
load directory, 12, 31, 32
load menu
load param file, 26
load world file, 26
load param file, 26
load world file, 26
loading files, 31
load directory, 32
object files, 31
Loading files
Colbert files, 28
local, 17
Loca Perceptual Space, 103, 104
LPS, 103. See Local Perceptual Space
main window, 13
manual drive, 18

136

maps
file format, 114
registration and creation, 116
sfLoadMapFile, 115

Menus. See aso Client
Saphiraclient, 16
Simulator, 26

micro-tasking OS, 7, 8, 65, 66

micro-tasks, 7, 8, 9, 10, 12, 20, 21, 65, 66, 69, 70, 72,
74, 80, 81, 96, 100. See processes

motion setpoint, 11, 98

motor stall
sfStalledMotor, 98

Motor stall, 97

mouse, 75

mouse actions, 75

move, 34

MPac, 16

MSVisual C++, 68

myButtonFn, 94

myKeyFn, 94

Newsgroups
pioneer-users, 5
saphira-users, 5

Newton Labs, Inc, 121

nowin example client, 81

occ grid, 17

occupancy
sfOccBox, 106
sfOccBoxRet, 106
sfOccPlaneRet, 107

occupancy:, 107

Open Agent Architecture (OAA), 6, 10, 12

OS functions
sfIsConnected, 93
sfPause, 93

OS functions
display states, 94
myButtonFn, 94
myKeyFn, 94
sfButtonProcFn, 94
sfErrMessage, 94
sfErrSMessage, 94
sfKeyProcFn, 94
sfMessage, 94
sfOnConnectFn, 93
sfOnDisconnectFn, 93
sfOnStartupFn, 93
sfScreenToWorldX, 94
sfScreenToWorldY, 94
sfSetDisplayState, 94
sfSMessage, 94
sfStartup, 93

os.h, 70

packet client example, 78

packet communication, 7, 9, 69, 81, 97, 121

packet functions
sfRobotCom2Bytes, 119

packet functions
port types and names, 119
sfClientBytes, 120
sfConnectToRobot, 118
sfDisconnectFromRobot, 119
sfHaveClientPacket, 120
sfProcessClientPacket, 120
sfReadClientByte, 120
sfReadClientSint, 120
sfReadClientString, 120
sfReadClientUsint, 120
sfReadClientWord, 120
sfResetRobotVars, 119
sfRobotCom, 119
sfRobotComint, 119
sfRobotComStr, 119
sfRobotComStrn, 119
sfWaitClientPacket, 120

packets
checksum, 84
data types, 84
errors, 85
protocols, 83

Parameter File, 124

parameter files, 25

PCOMCLOSE, 86

pioneer-support, 5

Pkzip. See Installation

points and lines
sfAdd2Angle, 111
sfAddAngle, 111
sfAddPoint, 109
sfAddPointCheck, 109
sfChangeVP, 112
sfCreateGlobal Point, 109
sfCreatel_oca Point, 109
sfFindArtifact, 109
sfGlobalOrigin, 109
sfMoveRobot, 112
sfNorm2Angle, 111
sfNorm3Angle, 111
sfNormAngle, 111
sfPointBaricenter, 111
sfPointDist, 111
sfPointDistPoint, 111
sfPointMove, 112
sfPointNormalDist, 111
sfPointNormal DistPoint, 111
sfPointPhi, 111
sfPointXo, 112
sfPointXoPoint, 112
sfPointY o, 112
sfPointY oPoint, 112
sfRemPoint, 109

sfRobotOrigin, 109
sfSetGlobal Coords, 109
sfSetl ocal Coords, 109
sfSub2Angle, 111
sfSubAngle, 111
sfUnchangeVP, 112
port types and names, 119
Predefined Behaviors, 59
Procedural Reasoning System, 10
processes
sfFindProcess, 102
sfInitProcess, 102
sfinterruptProcess, 102
sfinterruptSelf, 102
sfResumeProcess, 102
sf SetProcessState, 102
sfSuspendProcess, 102
sfSuspendSelf, 102
state values, 100
Processes
window, 20
Processes window, 20
PSOS, 83, 86
pwd, 32
README, 65
recenter menu, 27
registration, 96, 114
Registration, 10, 12, 92
robot configuration, 90
rotate, 34
sample applications, 32
demo.act, 32
direct.act, 32
packet.act, 32
Saphira
API, 93. See AP
behaviors, 53. See Behaviors
Behaviors, 11
colors, 113
compiling clients, 65
General description, 1
Globa Map Space (GMS), 10
maps, 114
multiprocessing, 100
Occupancy functions, 105. See occupancy
packet functions, 118. See packet functions
Path, 4
processes, 95, 100, 102. See Saphira processes
Quick start, 4
Representation of space, 10
Robots, 1
Servers, 83
vision, 121
Saphira behaviors, 53
Saphira colors, 113

SAPHIRA environment variable, 3, 4, 65, 67, 68, 119

137

Index

saphira example client, 72
Saphira maps, 114
Saphira processes, 95
,95
sfInitControl Procs, 95
sfInitInterpretationProcs, 96
sfInitRegistrationProcs, 96
Saphiravision, 121

Saphira: Local Perceptua Space (LPS), 10

SAPHIRA_COMPIPE, 22
SAPHIRA_COMSERIAL, 22
SAPHIRA_COMSERVER, 22
SAPHIRA_LOAD, 12, 22, 32
SAPHIRA_SERIALBAUD, 22
save map, 17
search_and_go_blob, 123
sensor interpretation, 96, 112
Sensor interpretation routines, 11
serial port
connecting, 13
Server
Information packet, 87
Server information packet, 87
Servers, 83
autoconfiguration, 90
Pioneer Server Operating System, 83
position integration, 91
sfCOMCLQOSE, 90
sfCOMDHEAD, 91
sfCOMOPEN, 90
sSfCOMPOLLING, 92
sfCOMPULSE, 90
sfCOMSETO, 91
sfCOMSYNC, 89
sfCOMVEL, 91
shut down, 89
sonars, 92
start up, 89
set, 33
set_vector_buffer, 113
setup_vision_system, 122
sfAdd2Angle, 111
sfAddAngle, 111
sfAddHelp, 30
sfAddPoint, 109
sfAddPointCheck, 109
sfAttendAtPos, 61
sfAvoidCollision, 60
sfBehaviorControl, 57
sfButtonProcFn, 94
sfChangeVP, 112
sfClientBytes, 120
sfCOMCLQOSE, 90
sfCOMDHEAD, 91
sfCOMOPEN, 90
sfComPipe, 33

138

SfCOMPOLLING, 92
sfCOMPULSE, 90
sfCOMRVEL, 91
sfComSerial, 33
sfComServer, 33
sfCOMSETO, 91
sfCOMSYNC, 89
sfCOMVEL, 91
sfCOMVEL2, 91
sfConnectToRobot, 118
sfConstantVelocity, 60
sfCreateGlobal Point, 109
sfCreatel_oca Point, 109
sfDisconnectFromRobot, 119
sfDoneHeading, 34, 99
sfDonePosition, 34, 99
sfDrawCenteredRect, 113
sfDrawRect, 113
sfErrMessage, 94
sfErrSMessage, 94
sfFindArtifact, 109
sfFindProcess, 102
sfFollow, 62
sfFollowCorridor, 62
sfFollowDoor, 63
sfFrontMaxRange, 105
sfGlobaOrigin, 109
sfGoToPos, 61
sfHaveClientPacket, 120
,95

sfInitBehavior, 54
sfinitBehaviorDup, 54
sfInitControl Procs, 95
sfInitInterpretationProcs, 96
sfInitProcess, 102
sfInitRegistrationProcs, 96
sfinterruptProcess, 102
sfinterruptSelf, 102
sfIsConnected, 93
sfKeepOff, 61
sfKeyProcFn, 94
sfLeftWallHyp, 112
sfLoadDirectory, 32
sfLoadMapFile, 115
sfMessage, 94
sfMoveRobot, 112
sfNorm2Angle, 111
sfNorm3Angle, 111
sfNormAngle, 111
sfOccBox, 106
sfOccBoxRet, 106
sfOccPlane, 107
sfOccPlaneRet, 107
sfOnConnectFn, 93
sfOnDisconnectFn, 93
sfOnStartupFn, 93

sfPause, 93
sfPointBaricenter, 111
sfPointDist, 111
sfPointDistPoint, 111
sfPointMove, 112
sfPointNormalDist, 111

sfPointNormal DistPoint, 111

sfPointPhi, 111
sfPointXo, 112
sfPointXoPoint, 112
sfPointY o, 112
sfPointY oPoint, 112
sfProcessClientPacket, 120
sfReadClientByte, 120
sfReadClientSint, 120
sfReadClientString, 120
sfReadClientUsint, 120
sfReadClientWord, 120
sfRemPoint, 109
sfResetRobotVars, 119
sfResumeProcess, 102
sfRightwWallHyp, 112
sfRobot, 97
sfRobotCom, 119
sfRobotCom2Bytes, 119
sfRobotComint, 119
sfRobotComStr, 119, 121
sfRobotComStrn, 119
sfRobotOrigin, 109
sfRunEvaluator, 30
sfScreenToWorldX, 94
sfScreenToWorldY, 94
sfSerialBaud, 33
sfSetDHeading, 99
sfSetDisplayState, 94
sfSetFrontBuffer, 105
sfSetGlobal Coords, 109
sfSetHeading, 99
sfSetLineColor, 113
sfSetLineType, 113
sfSetLineWidth, 113
sfSetlocal Coords, 109
sfSetMaxVelocity, 99
sfSetPatchColor, 113
sfSetPosition, 99

sf SetProcessState, 102
sfSetRVelocity, 99
sfSetSideBuffer, 105
sfSetVeocity, 99
sfSMessage, 94
sfStalledMotor, 98
sfStartup, 93
sfStopCaollision, 60
sfSub2Angle, 111
sfSubAngle, 111
sfSuspendProcess, 102

sfSuspendSelf, 102
sfTargetHead, 99
sfTargetVel, 99
sfUnchangeVP, 112
sfWaitClientPacket, 120
shared library
installation, 4
shrink, 17, 26
shut down, 89
simulator
connecting, 13
Simulator
connect menu, 26. See connect menu
Description, 23
display menu, 26
exit menu, 27
General description, 1
grow, 26
information area, 27
load menu, 25, 26. See load menu
Menus, 26
mouse actions, 27
parameter files, 25
pioneer.exe, 23
recenter menu, 27
shrink, 26
socket, 24
Starting, 23
wake, 26
Worlds, 26
single step, 17
Software
Download site, 5
sonar buffers
sfFrontMaxRange, 105
sfSetFrontBuffer, 105
sfSetSideBuffer, 105
Sonar buffers, 103
sonars, 92
sonars menu
clear buffer, 17
sonarson, 17
SPac, 16
speed, 34
SRI Internationdl, ii, 1, 6, 7, 12, 64, 114
start up, 89
start-up callback, 70
State reflection, 96

state reflector, 9, 10, 11, 12, 69, 78, 87, 95, 96, 98, 99,

103

sfRobot, 97
Stop collision parameters, 60
straight_up, 57
Support

pioneer-support, 5
SYNCQO, 86

139

Index

SYNCO, 89
SYNC1, 86
SYNC1, 89
SYNC2, 86
SYNC2, 89
syntax errors, 30
turn, 34
turnto, 34
TurnTo, 63
Unix clients, 66
user process, 74
sample, 74
vers3, 3. Seealso Installation
Vision, 121

channel modes, 121. See Vision:

140

chroma.h, 121
draw_blobs, 123
find_blob, 123
found_blob, 122
packets, 122
sample application, 122
search_and_go_blob, 123
setup_vision_system, 122
sfRobotComStr, 121

Vision packets, 122

VPac, 16

wake, 17, 26

World Description File, 127

World files, 26

Zip. See Installation

14 Warranty & Liabilities

The developers and marketers of Saphira software shall bear no liabilities for operation and use with any
robot or any accompanying software except that covered by the warranty and period. The developers and
marketers shall not be held responsible for any injury to persons or property involving the Saphira software
in any way. They shall bear no responsibilities or liabilities for any operation or application of the software,
or for support of any of those activities. And under no circum stances will the developers, marketers, or
manufacturers of Saphira take responsibility for or support any special or custom modification to the
software.

Saphira Software Manual Version 6.1f, August 1998

141

Index

142

