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Abstract 
 
The aim of this Master’s Thesis has been to explore ways in which bioinformatics can be 
applied to proteomics data and research to create additional value.  The idea is that 
bioinformatics can make current research methods more effective and create new valuable 
information and visualizations that can spark novel hypotheses.  Our efforts have resulted in a 
program called Matchmaker, a useful tool for comparison of genomics and proteomics data. 
 
We have based our work on a study where obese diabetic mice have been treated with the 
substance rosiglitazone in the hopes of normalizing their condition.  Rosiglitazone is a ligand 
that binds to peroxisome proliferator-activated receptor γ (PPARγ), which in turn activates the 
transcription of a large number of genes involved in lipid metabolism.  The rosiglitazone 
study was conducted both at the proteomic and the genomic levels, making expression data 
available both for proteins and mRNA. 
 
The initial task we undertook involved automating a search method for finding PPAR 
Response Elements (PPRE) in the promoter region of certain mouse genes.  After further 
analysis this proved not to be feasible, primarily due to incompleteness of the mouse genome. 
 
The central task of our thesis has been to create a tool for the automation of a genomic and 
proteomic comparative analys is.  Using the rosiglitazone study as a testing ground, we created 
Matchmaker, a program that given genomic and proteomic expression data respectively, 
matches the identified proteins with their corresponding genes and provides visualization 
options for the results.  To get an idea of the statistical significance of the results, we chose to 
calculate confidence intervals for the matches. 
 
Creating a user-friendly interface for Matchmaker was of primary importance.  Therefore we 
have created a clear and easy-to-use web interface with drop-down menus for genomic data 
selection and a text area for proteomic data submission. The program subsequently matches 
the data sets and moves on to a page where the results are shown in table format.  From the 
results page, buttons automatically export the data to Excel and Spotfire, where the data can 
be analysed in various ways. 
 
Although the design of the program has been our primary effort, we also wanted to perform 
an analysis of the results in the case of the rosiglitazone study to evaluate the usefulness of the 
program.  We found that protein and gene expression levels were moderately correlated.  A 
number of expected trends were also confirmed. 
 
Integrated analysis of expression levels is very important for the understanding of systems 
biology, and will play an increasing role when more experiments become coordinated, 
expression technologies are refined and sequence databases grow.  We are confident that our 
program Matchmaker will make broader perspectives possible and that analysis of the results 
will lead to new and useful hypotheses. 
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1. Introduction 
 
This Master’s Thesis has been performed at AstraZeneca in Mölndal.  The proteomics 
researchers at the department of Cell Biology and Biochemistry conduct experiments with 
2D-gels and mass spectrometry to, among other things, be able to tell whether proteins have 
been up- or down-regulated after treatment with a substance.  The ultimate goal of the 
research is to find a substance that can be used as a drug to normalize an unhealthy condition.   
 
The idea for our thesis has been to create a bioinformatics tool to extract more valuable 
information around these experiments.  Bioinformatics can be defined as information 
technology applied to the management and analysis of biological data.  Computing power can 
be a useful assistant in automation, organisation, and analysis.  Databases store great amounts 
of information effectively, and bioinformatics tools make use of these to analyse a problem in 
a specific way.  Our central task in this thesis has been to combine proteomic and genomic 
data in a comparative analysis. 
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Figure 1.1 –  The principles and workflow of a proteomic and genomic comparative study  

(kindly provided by Björn Dahllöf)  

1.1 Background 

To describe why we have written this thesis, it is important to relate some background 
information on the technologies that we base our work on.  We also want to describe the 
disease area connected with the insulin resistance syndrome (IRS).  This will give an idea of 
the importance of and meaning behind IRS research, which the proteomics group at 
AstraZeneca Mölndal is primarily involved with.  It is data from experiments within IRS 
which we have used in our thesis. 

1.1.1 Proteomics 
Proteomics is the large-scale analysis of the protein complement of the genome, the so-called 
“proteome”.  One of the main uses for proteomics is in ‘differential display’.  By studying 
differences in protein abundance in cell samples before and after certain perturbations, (such 
as a comparison of sick tissue with healthy, or sick with treated) conclusions can be drawn as 
to cell functionality and potential drug candidates.  The most common technique today for 
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this analysis is the use of 2D-PAGE (PolyAcrylamide Gel Electrophoresis) for separation 
followed by Mass Spectrometry (MS) for identification.1 
 
In 2D-PAGE, proteins first migrate towards their iso-electric point along the pH scale (the 
first dimension).  In the second step the proteins are solubilized and evenly negatively 
charged by the detergent SDS.  When an electric field is applied, proteins will move through 
the porous polyacrylamide gel with a speed inversely correla ted to their size, and the 
separation will instead reflect their molecular weight (the second dimension). 
 
After separation the gels are stained in order to visualize the protein spots, which are then 
analysed using image analysis software tools.  Usually the focus is on spots that differ 
between different groups of samples, and their intensities can be compared and tested for 
significance.  The proteins in the interesting spots must be identified using MS before any 
conclusions can be drawn. 
 
There are commonly two MS identification methods in use today.  The proteins are initially 
digested in-gel.  In Matrix Assisted Laser Desorption/Ionization – Time Of Flight (MALDI-
TOF) the resulting peptides are then fired at by a laser and ionized so that they fly to a 
detector, resulting in time of flight distributions according to their masses.  These flight times 
work as fingerprints which are searched against databases to finally determine the protein 
identity.  The second method uses two mass spectrometers in tandem (MS/MS) that ionize the 
peptides by “electro spray” and break the peptides down into even shorter fragments that 
allow for sequencing.  This method is far more specific for identification than the MALDI  
“fingerprint” method, but also more complex and time consuming.  A recent development has 
been a system that combines the two above mentioned techniques, thus benefiting from both 
specificity and speed. 
 
It should be mentioned that this relatively straightforward approach to protein expression 
analysis can not identify and determine all proteins expressed in a cell at a given time point.  
Only the most abundant spots (~20% of all proteins) are visible enough to be quantified, and 
the interesting group of membrane proteins does not come out well at all on the gels.  In 
addition, proteins that have yet not been identified and annotated in databases can not be 
determined using MALDI MS. 

1.1.2 Microarrays  
Microarray technology allows us to monitor the interactions among thousands of genes 
simultaneously on a single chip.  Hybridisation (i.e. base-pairing: A-T and G-C for DNA; A-
U and G-C for RNA) is the underlying principle of microarray technology.  Arrays are 
orderly arrangements of samples, and microarrays get their name from the very small sample 
size, typically measured in 10s of microns.  They provide a medium for matching known and 
unknown DNA or RNA samples based on base-pairing rules.  They require specialized 
robotics and imaging equipment.  The so-called “probe” is the tethered nucleic acid on the 
microarray plate with known sequence, whereas the “target” is the free nucleic acid sample 
whose identity/abundance is being detected (although this nomenclature is sometimes 
reversed in literature).  There are two major areas of application for the microarray 
technology, identification of sequence (gene/gene mutation) and determination of expression 
level (abundance) of genes. 
 

The Affymetrix GeneChip is a microarray method invented by the company Affymetrix.  The 
GeneChip involves probes of oligonucleotides (25mer) synthesized in situ (on-chip).2  Instead 
of using amplification techniques such as PCR, the oligonucleotides are synthetically 
produced by the techniques of photolithography and solid-phase DNA synthesis directly on 
the chip.  This allows for the production of all possible combinations of sequences.  The 
chemical steps involved are:  
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1. Synthetic linkers with photochemically removable protecting groups are attached to a 
glass substrate.  

2. A filtering mask directs light to specific areas on the glass surface and thereby removes 
the protecting groups.  

3. Single deoxynucleosides with a protecting group, brought to the surface, bind to the 
unprotected sites.  

4. A new mask is applied and the procedure is repeated until a highly dense collection of 
any desired oligonucleotides is obtained.   

The array is then taken to a hybridisation chamber where fluorescent-labelled nucleotide 
samples are injected and hybridised to the complementary oligonucleotides.  Laser excitation 
makes the samples fluorescent and a 2D fluorescence image of hybridisation intensity is 
obtained by a scanner. 
 
The short chains in the Affymetrix technique with only single points of constraint at either 
end are highly accessible for hybridisation.  This potentially allows for more accurate mRNA 
quantification and the number of dynamic possibilities for detection increases.  However, 
disadvantages of the short-chain Affymetrix technique include the variations in melting 
temperature due to AT-GC composition, and the reduction in specificity due to the small 
number of nucleotides (~25). 
 
The Affymetrix GeneChip is a very high-density microarray, where a single 1.28x1.28 cm 
array today can contain probe sets for approximately 40,000 human genes and ESTs 
(Expressed Sequence Tags).  This compactness is advantageous because it allows more genes 
to be analysed simultaneously.  The use of perfect match probes as well as mismatch probes 
(where a single nucleotide is substituted) greatly reduces the contribution of background noise 
due to cross-hybridisation and increases the quantitative accuracy and reproducibility of the 
measurements.  These probe sets will be described in more detail in Section 2.3.2. 

1.1.3 The Insulin Resistance Syndrome 
One of the most rapidly increasing diseases among nations with a high standard of living is 
Type II Diabetes Mellitus (T2DM).  According to WHO (World Health Organisation), the 
number of people affected will double up to 300 million within the next 25 years.3  Not only 
today’s welfare states, but also developing countries with food and exercise habits resembling 
the industrialized world’s, will see a dramatic increase of this disorder.  
 
T2DM is preceded by insulin resistance, which means that the signalling properties of the 
insulin molecules have less effect in the cell.  Insulin is a peptide hormone whose main 
function is to control 
glucose levels in the blood, 
and lack of these leads to 
elevated glucose levels 
with glucose intolerance 
and diabetes as a result.  
When the cells first 
become less sensitive 
towards insulin, pancreas 
increases its insulin 
production to overcome 
the “resistance” and 
thereby keeping blood 
glucose on a normal level.  
Eventually the insulin 
producing ß-cells will 

 

Figure 1.2  - The appropriate signalling through the insulin pathway is critical 
for the regulation of glucose levels and the avoidance of diabetes4 
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become exhausted, the production will halt and diabetes evolves. 
In addition to being a precursor to diabetes, the Insulin Resistance Syndrome (IRS) has other 
serious implications, such as hypertension, atherosclerosis and dyslipidemia (high triglyceride 
levels and low high-density lipoprotein levels) with probable cardiovascular disease as a 
consequence.5  It is therefore obvious that a successful treatment of IRS would directly 
improve the health of millions of people across the world and lower national medical costs. 
 
Advances within this research have led to the discovery of a suitable target: The Peroxisome 
Proliferator-Activated Receptors (PPARs).  These are ligand-activated nuclear hormone 
receptors that work as transcription factors bound to the DNA, ready to activate and regulate 
genes responsible for glucose and lipid metabolism.  There are three main types of PPARs: 
PPARa, PPARd and PPAR? commonly present in different cell types. 

 
PPARs exist as heterodimers together with 
another nuclear receptor RXR and bind to 
PPAR Response Elements (PPREs) in the 
genes' promoter regions.  When the genes 
in question are inactivated a co-repressing 
protein complex keeps the histones 
deacetylated, thereby inhibiting tran-
scription.  If a ligand is added, a co-
activating protein complex instead binds to 
the PPAR-RXR heterodimer and the 
histones are acetylated.  This allows for 
gene transcription. 
 
A certain group of small molecules have 
proven to have activating ligand effects for 

the PPARs, the so-called thiazolidinediones (TZDs).  When insulin resistant obese and 
diabetic animals are treated with these agents, insulin sensitivity and many of its other 
associated pathological effects are normalized. 
 

1.2 Purpose 

The purpose of our thesis is to explore ways in which bioinformatics can be applied to 
proteomics data and research to create additional value.  The idea is that bioinformatics can 
make current methods more effective and bring in new valuable information and 
visualizations that can spark novel ideas for the researcher. 

1.2.1 PPAR Response Elements 
In a search for proteins that are up-regulated by PPARs, it is natural to ask the question: 
“Which proteins have PPAR Response Elements (PPRE) in the promoter region of their 
complementary genes?”  PPREs are known to be a seat for the PPARs which induce 
transcription.  Response elements have a high degree of conservation and most of them have a 
certain sequence motif.  The PPRE is a so-called DR-1 motif, meaning a direct repeat of a 
nucleotide sequence with one intervening nucleotide.  The spacing nucleotide is usually an A 
or T.  The repeating sequence can also vary somewhat, although the consensus motif is 
AGGTCA[AT]AGGTCA.6  Any promoter region with this DR-1 sequence has a high 
likelihood of binding PPARs. 
 
Localisations of PPREs in the promoter regions of a few known genes are described in the 
literature.  These are, however, not all the PPREs in the mouse genome and a method for 
finding additional such response elements would be very desirable.  If a method could be 
developed into an automated application, it would be useful within biological research. 
 

Figure 1.3 – A picture diagram of PPARs 
(kindly provided by Björn Dahllöf)  
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Thus, we began by deriving a method for searching PPREs in the promoter region of genes 
corresponding to mouse proteins of interest, and tested this on a small number of proteins.  
We then proceeded with an evaluation of whether our method was suitable for full-scale 
automation. 

1.2.2 Gene/protein correlations 
A second and larger task we have undertaken is to create a user friendly program to match 
proteomics and genomics data and visualize the extent of correlation graphically.  Prior to 
starting our thesis, we read an article in Science with the title Integrated Genomic and 
Proteomic Analyses of a Systematically Perturbed Metabolic Network.7  This article 
emphasized the importance of an integrated analysis to more fully understand the interacting 
networks in living cells. 
 
Our idea has been to investigate correlation between gene and protein expression data to be 
able to verify old conclusions as well as gain new understanding of metabolic pathways and 
mechanisms of action of drugs.  A question of interest for many is: “To what degree can 
expression at the mRNA level be correlated to expression at the protein level, and what are 
the reasons for non-correlation?” 
 
The process of protein production from the original DNA sequence is not entirely 
straightforward.  An understanding of the process will yield hints as to why mRNA levels and 
protein levels are not strictly correlated. 
 

 

    
 

Figure 1.5 - Model of subsequent processes in a cell.  Integrated expression analysis on both the 
genomic and proteomic level can help in answering questions about the intermediary mechanisms. 
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Figure 1.4 – A schematic drawing of a drug ligand binding to PPAR, in turn activating 
the PPRE sequence in the promoter region of a gene 
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The initial RNA molecule produced by transcription contains both intron and exon 
sequences.8  Its two ends are modified, and the introns are removed by an enzymatically 
catalysed RNA splicing reaction.  The resulting mRNA is then transported from the nucleus 
to the cytoplasm, where it is translated into protein.  The final level of a protein depends on 
the efficiency of each step and on the rates of degradation of the RNA and protein molecules. 
 
Matchmaker 

Comparing mRNA and protein data can give clues to answering the question marks in Figure 
1.5 and ultimately lead to the localization of new and more effective drug targets.  So what is 
an effective way of producing and visualizing a comparison?  Our answer to that question has 
been to develop a program we have called Matchmaker. 
 
Microarray analysis generates huge amounts of data.  One chip detects the expression of 
thousands of genes and ESTs.  Proteomics does not operate on quite the same level, but there 
are still potentially hundreds of protein spots.  Matching these two manually is an extremely 
time consuming process that would never be economically justifiable.  Therefore, automation 
in Matchmaker opens up the possibility of a comparison at minimal time-cost. 
 
Creating an easy-to-use interface for the comparison has been a very important part of our 
project.  Without this, the program would not be used.  We analysed what visualization 
methods would be the most effective and what information these would entail.  It was 
important to receive feedback from the users.  Through Matchmaker we have provided 
researchers with a helpful tool in sparking new ideas and insight into the original data. 
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2. Analysis and Strategy 
 
For a comparative analysis we needed an experiment conducted similarly on both the protein 
and gene levels.  There has been an interest for such a combination at AstraZeneca Mölndal, 
but as of yet only a few of these studies exist.  One such study, however, served as the testing 
ground for our program, as well as the basis for the PPRE search.  The chapter is divided into 
a description of the study and an analysis of PPRE existence and gene/protein linkage 
respectively. 
 

2.1 The rosiglitazone study 

The proteome study we have primarily looked at involves lean mice, obese control mice, and 
obese mice treated with rosiglitazone (a TZD, see Section 1.1.3) for seven days.9  Tissue 
samples from liver and white adipose tissue have been extracted.  The treated group consisted 
of four animals and the control group consisted of five animals.  After image processing of 
the fluorescently stained 2D gels, thousands of protein spots were readily quantified.  From 
these, hundreds of spots differed significantly from the control group spots according to a 
Student’s t-test (P<0.05).  111 spots representing 58 unique proteins were identified by mass 
spectrometry.  Failures in spot identification were due either to very low chemical quantity of 
the proteins, or to the lack of a hit in the databases queried.  Although only proteins whose 
expression showed significant changes were chosen, we were also able to include a number of 
“unchanged” proteins in our analysis.  The reason these had been identified was that they had 
showed significant changes in the other comparison (lean vs. obese control). 
 
The treatment effects of rosiglitazone were explored in a similar study at the mRNA level 
with Affymetrix Mu6k chips (about 6000 genes/ESTs).10  Tissue samples were extracted from 
liver, mesenterial fat, epididimys fat, brown fat and quadriceps.  Groups of three mice were 
treated one, three and seven days.  The conditions were similar to the proteome study, except 
for the fact that the mice were treated with ten times as high a dose. 
 
We have used the obese treated vs. obese control comparison in liver tissue as our primary 
means of testing our program. 
 

2.2 PPRE 

Before dwelling deeper into our methods, a few concepts used in bioinformatics need to be 
explained: 
 
• EMBL (European Molecular Biology Laboratory) is a laboratory that maintains Europe’s 

primary nucleotide sequence data resource.11,12  The EMBL Nucleotide Sequence 
Database is a comprehensive database of DNA and RNA sequences collected from the 
scientific literature, patent applications and directly submitted from researchers and 
sequencing groups.  It collaborates with GenBank in the USA and the DNA Database of 
Japan (DDBJ). 

 
• BLAST (Basic Local Alignment Search Tool) is a set of similarity search programs 

designed to explore all of the available sequence databases regardless of whether the 
query is protein or DNA.13  It uses a heuristic algorithm, which seeks local as opposed to 
global alignments and is therefore able to detect relationships among sequences that 
share only isolated regions of similarity. 
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• ZSearch is a multiple sequence similarity search tool that performs similarity searches to 
compare query sequences against a database of sequences.14  It makes use of the BLAST 
algorithm.  Similarity searching is a key bioinformatics tool, enabling the identification 
of regions of similarity between sequences that may indicate a shared structure or 
function. 

 
• There are three types of quality classes assigned to sequenced genomic DNA.15  The first 

two classes are found in the EMBL High Throughput Genome (HTG) division, while the 
last class is moved to the Primary division (Figure 2.1).  All first-time sequenced contigs 
(pieces of cloned genomic DNA) greater than 2 kb get an accession number and are 
deposited as Phase 1 sequence in HTG.  This accession number never changes during the 
following progress.  The contigs are at that point unordered, unoriented and contain gaps.  
As sequencing progresses the quality increases.  Phase 2 contains ordered and oriented 
sequences that may contain gaps.  Finished sequences with no gaps belong to Phase 3 
and are found in the Primary divisions (Rodent division in the mouse genome case).  
Sequences in Phase 1 and 2 are also called “working draft sequences”. 

 

 
Figure 2.1 – The orientation and relative size of contigs in the different 

classes of the sequenced  genome 

 
In order to evaluate the possibility of an automated search for PPRE DR-1 sequences from an 
initial list of interesting proteins, it was important to first derive a method for finding such 
motifs.  We used AstraZeneca’s Electronic Laboratory (E-Lab)16 and the following work flow 
to search for the DR-1 sequences:  
 
1. The SWISS-PROT accession number is taken from an Excel sheet with a list of proteins 

that are to be examined. 
 
2. The SWISS-PROT entry is found using E-Lab.  (In most cases, the protein was from 

mouse, but could also be a rat or human homologue.) 
 
3. On the entry’s DR-line (Database Reference) there are one or many links to the 

corresponding genes’ EMBL entries.  We always choose the first one. 
 
4. This EMBL entry is BLAST searched via ZSearch, against the EMBL divisions Rodents 

and High Throughput Genomes, to find genomic DNA that could contain a promoter 
region for the gene in question. 

 
5. A list of hits is produced and sorted according to Percent Identity (percentage of matching 

nucleotides).  Successful hits will be significantly longer than the query sequence since 
genomic DNA that contains a promoter region as well as the coding region is needed.  
The Query Percent (percentage of the total query sequence that was used in the match) is 
another important value to look at.  Since BLAST is a local similarity search tool, a hit 
could match only one or a few of the exons within the gene, making the Query Percent 
less than 100.  Even if the hit only matches the first exon, we can still go further upstream 
and look for the promoter region. 
 

If the hit sequence is from Phase 1 or 2 in HTG it is very important to be aware of the size, 
order and orientation of the contigs.  Below is an example of an acceptable hit, although 
the query sequence is quite short. 
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Score = 77.8 bits (39), Expect = 5e-14 
 Identities = 39/39 (100%) 
 Strand = Plus / Minus 
                                                    
Query: 1       gaaagatggcaccagttgctggcaagaaggccaagaagg 39 
                      | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |  
Sbjct: 45710 gaaagatggcaccagttgctggcaagaaggccaagaagg 45672 
 
Sbjct contig:   24863  -  66286: contig of 41424 bp in length  
 
As can be seen in “Sbjct contig”, the contig has an uninterrupted section between the start 
of the query gene and about 20 kb upstream.  Thus, here is a proper location to search for 
the DR-1.  However, with the unfinished genome we can not be sure how large the 
promoter region is, and where the previous gene ends.  Therefore we scan 10 kb (10 000 
nucleotides) ahead of the query match and assume that this covers most of the promoting 
region.  The problem is in some cases more complex than this; for example, certain parts 
of a promoter region can exist hundreds of kb away from the gene.  This is not something 
we can take into account. 
 
If a hit meets the criteria Percent Id > 95% (errors in sequencing taken into account), 
Query Percent > 15%, and it contains genomic DNA about 10 kb (10.000 nucleotides) 
upstream of the gene in a single contig (without gaps) it is fine to proceed.  A contig must 
thus contain both the beginning and the full promoter region of the gene to be valid for 
further searching.  It is not possible to jump to the next contig because there is a gap of 
unknown size between the contigs.  

 
6. When proper genomic DNA is found, ZSearch is used to search for the DR-1 motif.  If a 

hit coincides well with the consensus DR-1 it is likely to be a PPRE. 
 

2.3 Matchmaker 

To design a program that would automate the linkage between proteomic and genomic 
expression, we needed to analyse the technologies behind the data to discover possibilities 
and pitfalls. 

2.3.1 2D-PAGE analysis 
The Proteomics group uses a program called PDQuest to analyse spot intensities from 2D-
gels.  As an example, Figure 2.2 below shows 6 gels being matched in another study.  The 
left two gels are from obese mice, the middle two from lean mice, and the right two from 
treated obese mice.  After manual “landmarking” of a number of spots, the program attempts 
to match the spots on the different gels automatically.  However, there is a lot of manual 
labour involved in checking that matches are correct and removing noise (spots that are 
artefacts rather than proteins).  The histogram in the figure represents one spot.  Each bar 
shows the intensity of that spot in one of the gels.  In the example, the last six bars are the 
treated obese gels and it can be seen that the protein is strongly up-regulated. 
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Figure 2.2 – A PDQuest window where gels are being matched 

(Kindly provided by Boel Lanne) 
 
PDQuest has built-in statistical features, but the proteomics group instead uses an Excel 
macro.  The macro is based on the assumption that the logarithmic intensity values are 
normally distributed, and can thus make use of Student’s t-tests to calculate a P-value (see 
Section 2.3.4). 

2.3.2 Affymetrix analysis 
The Affymetrix system is built so that one DNA probe set is designed to detect one cRNA 
transcript.17  A probe set usually consists of 16-20 probe pairs. A probe pair in turn consists of 
two probe cells, a perfect match (PM) and a mismatch (MM).  The PM probes are designed to 
be complementary to a reference sequence.  The MM probes are the same, except for a 
homomeric base mismatch at the central position (e.g. 13th of 25 base length probe array).  
These serve as a control for cross-hybridization. 
 

 
Figure 2.3 – Affymetrix gene expression monitoring with oligonucleotide arrays.  A single 1.28 x 1.28 
cm array containing features smaller than 22 x 22 µm.  Oligonucleotide probes are chosen based on 
uniqueness criteria and composition design rules. For eukaryotic organisms, probes are chosen 
typically from the 3´ end of the gene or transcript (nearer to the poly(A) tail) to reduce problems that 
may arise from the use of partially degraded mRNA. The use of the PM minus MM differences 
averaged across a set of probes greatly reduces the contribution of background and cross–
hybridisation and increases the quantitative accuracy and reproducibility of the measurements.2 

Obese          Lean          Treated Obese 
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Affymetrix uses a number of absolute analysis algorithms to compare the intensities of the 
PM and MM probe cells to determine if a transcript is present (P), marginal (M), or absent (A; 
undetected).  This is called the Absolute Call.  If, for example, the MM intensity is close to 
the PM intensity, cross-hybridization is frequent, producing a lot of noise that makes the PM 
intensity unreliable.  When this is the case, the Affymetrix algorithms will tend to yield an A. 
 
A metric that makes use of the probe cell intensities directly is the Average Difference.  It is 
an average of the differences between every PM probe cell and its control MM probe cell.  
The Avg Diff is thus directly related to the level of expression of the transcript. 
 
Affymetrix has designed a great number of additional metrics, but we have found Avg Diff 
and Abs Call to be the most important for our purposes, and have chosen to rely on them for 
further analysis.  Together they allow for creation of an expression ratio, filtering of poor 
data, and calculation of confidence intervals.   
 
The probe sets on a GeneChip will naturally be of  varying quality after an experiment has 
been performed.  Before matching the mRNA data with the protein data, it is preferable to 
sort out the poor quality values from the mRNA data so that we get reasonably reliable plots.  
We have done this by setting criteria on the Absolute Call: at least two thirds of the 
experiments in one of the two cases compared (e.g. treated or untreated) must be P or M for 
the probe set to be included.  In other words, comparing treated and untreated with 3 
experiments in each, we would accept values PPA/AAA and PPP/PPA, but reject PAA/PAA 
and AAA/AAA.  We have decided to keep cases such as PPP/AAA and vice versa even 
though their Avg Diff ratios are unreliable, because they clearly imply an up- and down-
regulation respectively. 
 
The Avg Diff values in Affymetrix experiments can sometimes be negative.  This implies that 
the average MM intensity is stronger than the average PM intensity for the probe set.  An 
explanation for this could be an extreme form of cross-hybridization where other transcripts 
have lodged themselves on the MM probe.  Another explanation could be that it is actually 
the MM probe that is correct, and the PM instead acts as the mismatch.  In either case, the 
Avg Diff values can not be trusted.  Essentially all negative values are labelled as A, so due to 
our criteria we get rid of most of the negative values.  The negative values left are included in 
our calculations for statistical reasons.  If they happen to make the entire average ratio 
negative, the probe set will be excluded from the comparison. 
 
Affymetrix has included a certain number of probe sets that do not follow their standard 
selection rules.  One example is an incomplete probe set, meaning that there are not as many 
probe cells as usual.  Another example is when a probe set is not specific enough to detect a 
single gene, but rather a family of similar genes.  We have decided to filter out these cases 
from the comparison, since they would not give reliable values. 

2.3.3 Matching genes and proteins 
An Affymetrix probe set is designed to represent a gene or EST, and every gene codes for at 
least one protein.  Thus, we should in many cases be able to find a corresponding probe set on 
an Affymetrix chip for every protein identified in a proteomics experiment.  If the 
experiments at the mRNA and protein levels respectively have been carried out identically or 
at least in a similar fashion, it should be possible to directly compare the expression ratios for 
the two levels.  The advantage of using ratios in both cases is that it gives a relative measure 
of the change in expression rather than an absolute measure, and thus is better suited for a 
comparison. 
 
Affymetrix supplies information on the reference gene/EST that each probe set represents.  
The next step involves the decision on how to match the gene or EST with a corresponding 
protein.  The peptide masses from the mass spectrometry analysis are matched to a protein 
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database, and since this database primarily contains SWISS-PROT and TrEMBL entries, we 
have decided to build our program to cope with these. 
 
To check whether a gene matches a protein, a BLAST search must be done.  After studying 
the EMBL and SWISS-PROT/TrEMBL databases, we came across the fact that these 
databases already are cross-referenced with each other.  In the EMBL gene entry, the db_xref 
row in an entry’s Feature Table section has a link to a SWISS-PROT /TrEMBL protein 
accession number if the criteria are good enough.  In the case of an EMBL EST entry, there 
often exists a link in the Description (DE) row directly to protein, or to a gene which we can 
further link to a protein.  The above described method (without BLAST) is time saving and 
easy to follow. 
 
The use of the accession number in the linking is due to it being the “most unique” identifier.  
Both the ID and AC rows are supposed to act as “unique” identifiers.  However, the ID can 
change due to its inherent construction.  It is built up using an alphanumeric code (X_Y) that 
is supposed to reflect the protein name and the species it comes from.  “X” is a mnemonic 
code of at most 4 alphanumeric characters representing the protein name (e.g. INS for 
Insulin).  “Y” is a mnemonic species identification code of at most 5 alphanumeric characters 
representing the biological source of the protein.  This code is generally made of the first 
three letters of the genus and the first two letters of the species.  If a protein is suddenly found 
to belong to a different class or needs a new name, the ID can change. 
 
“Accession numbers are the primary means of identifying sequences and provide a stable way 
of identifying entries from release to release. For reasons of consistency it sometimes required 
to change the entry name (ID) between releases (e.g. to ensure that related entries have similar 
names).  An accession number, however, always remains in the accession number list of the 
latest version of the entry in which it first appeared. Accession numbers allow unambiguous 
citation of database entries. Researchers who wish to cite entries in their publications should 
always cite the first accession number in the list (the ‘primary’ accession number) to ensure 
that readers can find the relevant data in a subsequent release. Readers wishing to find the 
data thus cited must look at all the accession numbers in each entry's list. Secondary accession 
numbers allow tracking of data when entries are merged or split. For example, when two 
entries are merged into one, a new ‘primary’ accession number goes at the start of the list, and 
those from the merged entries are added after this one as ‘secondary’ numbers.”18  
 
With this in mind, linking genes and proteins by accession number is a safe method as long as 
we make sure to check the entire row of accession numbers, not just the primary one.  In 
Appendix C, an example of an EMBL gene entry and its related SWISS-PROT protein entry 
is shown. 

2.3.4 Statistical considerations 
To understand the underlying complications and limitations of the proteomics and genomics 
technologies, some statistics is necessary.  Of course to do a proper statistical comparative 
study, experiments at both protein and mRNA level would have to be carried out in exactly 
the same way.  It would be ideal to use the same tissue, the same number of animals, the same 
substance concentration, and so on.  The primary studies we have to work with do not entirely 
meet up to these criteria.  However, our goal has been to get a statistical feel for the 
technologies and also to come with suggestions on how to make future comparisons more 
statistically significant. 
 
The P-values used by Proteomics give a picture of whether a protein’s expression can be said 
to be significantly changed.  However, the P-value does not take into account the chance 
occurrences of certain values that are likely to be present the more values we have.  To then 
get a proper idea of significance, an adjusted P-value should be used (see Appendix D). 
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The confidence interval is a good measure to get an idea of the variance in a number of 
samples.  The 95% confidence interval, commonly used, gives us a region in which we could 
find the point with 95% certainty given our experimental data.  We have calculated 
confidence intervals for both the proteomic and genomic variances and used somewhat 
different formulas for the two levels (see Appendix D).  Considering that the intensities are 
skewed, we have assumed a log-normal distribution in the protein case.  This method is not 
possible for the Affymetrix intensity values (Avg Diff), because these can in certain cases be 
negative.  Instead we have used an approximation called Fieller’s Theorem.19 
When the confidence intervals have been worked out, we have chosen to plot them along with 
the average intensity values in log scale (those points with negative average genomic 
intensities are filtered out prior to this).  Log scale is more appropriate considering the span in 
intensity values and also places points at the origin when expression is unchanged on both the 
proteomic and genomic levels. 
 
Affymetrix has, as described in a Section 2.3.2, several of their own statistical metrics for 
their data.  They do not, however, give a detailed explanation of the underlying statistics, and 
can thus be hard to rely upon. 
 
Worth mentioning is that we have not taken into account the inter-chip variation.  This is the 
variation within a single probe set, between the PM and MM values (see Section 2.3.2).  
Knowledge of the intra-chip variation can affect the confidence interval in both directions, but 
we did not consider it necessary to take into consideration for our purposes. 
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3. Program Design 
 
This chapter discusses the design of our program Matchmaker.  A section on usability is 
followed by a description of the program’s functional and technical structure. 
 

3.1 Usability 

The usability aspect of our program was of primary importance.  We felt the need to create a 
clear, concise, attractive, and informative web interface to make the usage of the program 
simple and pleasant. 

3.1.1 User analysis 
Matchmaker is intended for use primarily by the proteomics team (cell biologists).  Molecular 
biologists can also make use of the program.  The users are not expected to have any 
programming or UNIX experience, and thus a web interface is used and kept as simple and 
clear as possible.  The users have a good knowledge of the underlying biology and at least a 
basic knowledge of both expression techniques, so these do not need to be explained in the 
program. 

3.1.2 System design 
WEB INTERFACE 

In the first stage of the program, the user must select the two studies to compare.  The 
genomics data is stored in databases.  Thus, it was felt that building an invisible database 
interface which would allow the user to select a study from the database list was the best 
option. 
 
Certain parts of a proteomics study are stored in a database, but the intensity values we 
needed are not.  Instead, this information is handled in Excel sheets.  Since it was beyond the 
scope of the project to expand the proteomics database to contain this data, we decided to 
make use of a text area that the user can paste the data into.  Copying from the Excel sheet to 
the web page text area is easy and intuitive for the user.  The user has to order the columns of 
the sheet in a specific way so that the program understands the input.  See Section 3.4 and 
Appendix A for more detail. 
 
VISUALIZATION 

For the visualization, we wanted to be able to make 1D bar plots with error bars (the 
confidence intervals) and 2D scatter plots with large flexibility in viewing the data.  We found 
Spotfire and Excel had these capabilities and were commonly used by our user group.  We 
decided to incorporate these two applications into the design of our program, with the benefits 
of the power of the applications and their familiarity and accessibility within the user group.  
Excel has good functionality with bar plots, allowing the user to easily create these plots with 
the error bars using the values from the program results.  Spotfire is a powerful visualization 
tool.  With the use of its Application Programming Interface (API), we were able to program 
certain settings so that a scatter plot opens in the correct way with our result data at the click 
of a button.  All the result data is imported into Spotfire (not only the x- and y- values) so that 
the user has the ability to view extensive information about points in the graph.  The user also 
has the ability to modify the plot in a number of ways throughout the analysis. 
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3.2 Functional structure 

The following figure shows our design in functional terms. 

Web Interface
Homepage (1)

Affymetrix
Selection

(3)

Protein
Pasting (4)

Central
Processing

(5)

Visualization
of results (8)

Help (2)

Result
Guide (9)

Vis. Options
(11)

Spotfire
(12)

Excel
(13)

BDAT Database (6)

EMBL Database (7)

Links to EMBL &
Swiss-Prot (10)

 
Figure 3.1 – Matchmaker’s functional structure from a user’s perspective 

 
1. Homepage 
The homepage is the user’s first view of the program Matchmaker.  From here the user makes 
his/her selections and can view the help section. 
 
2.  Help 
This is a help section that describes what Matchmaker is capable of and a step-by-step guide 
in using the program.  The help section is embedded in the homepage, avoiding unnecessary 
extra windows. 
 
3. Affymetrix selection 
The user must select which Affymetrix study to use in the comparison from the drop-down 
menus. 
 
4. Protein pasting 
The user must also decide which protein study to use in the comparison.  The data from this 
study is pasted into a text area. 
 
5. Central Processing 
This is the core of the program where the proteomics and genomics studies are matched and 
the results organized for subsequent presentation. 
 
6. BDAT Database 
BDAT stands for the Biological Data Analysis Team.  After conducting an experiment, the 
researchers working with genomics data extract the most useful information from the 
Affymetrix databases and store it in the BDAT database. 
 
7. EMBL Database 
The protein-gene/EST links are found in EMBL entries. 
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8. Visualization of results 
The results are shown in a table on the web page.  There is a choice of further visualization 
options in Spotfire and Excel.  There are also hypertext links from each accession number to 
AstraZeneca’s Electronic Laboratory (E-Lab), where AstraZeneca locally stores their version 
of a number of public databases. 
 
9. Result Guide 
The result guide helps the user to understand the results and continue with further analysis. 
 
10. Links to E-Lab 
Each EMBL, SWISS-PROT or TrEMBL accession number has a hypertext link to the 
database entry in E-lab. 
 
11. Visualization Options 
The visualization options in Excel or Spotfire are activated by pressing on the appropriate 
button.  
 
12. Spotfire 
Spotfire.net Desktop 5.1 plots protein log-ratio against gene log-ratio.  It is a powerful tool for 
further graphical analysis. 
 
13. Excel 
Microsoft Excel 2000 is useful for viewing the data and adding/making adjustments.  It is also 
useful for creating bar graphs with error bars. 

3.3 Technical structure 

Matchmaker is built on a Perl platform.20,21  The web interface is in HTML and CGI scripts 
enable selection and forms.22,23  Perl DBI allows connection to an Oracle database and SQL 
commands extract data from the Oracle database.24,25  SRS commands allow for connection to 
the EMBL and SWISS-PROT/TrEMBL databases.  The API scripts for accessing Spotfire 
and Excel are written in VBScript. 
 

BDAT (7)
(Oracle Database

 with Affymetrix data)

EMBL  (8)
(Nucleotide Database)

MM_SELECT.pl
(5)

Perl, CGI

MM_RESULTS.pl
(6)

Perl, CGI

VBScript

Perl DBI

Perl DBI

SRS

EXCEL
(10)

SPOTFIRE
(11)

E-LAB
(EMBL/SwissProt/

TrEMBL)
(13)

Hypertext Link

TEXT
FORMAT

(12)

TITLE.html
(2)

HTML

HELP.html
(4)

HTML

FOOTER.html
(3)

HTML

MATCHMAKER.html
(1)

HTML

RESULT_GUIDE.html
(9)

HTML

 
 

Figure 3.2 – Matchmaker’s technical structure 
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1. MM_FRAMES.html 
An HTML file that defines the four frames of Matchmaker’s homepage.  
 
2. TITLE.html 
An HTML file that creates the title frame. 
 
3. FOOTER.html 
An HTML file that creates the footer frame. 
 
4. HELP.html 
An HTML file that creates the help frame. 
 
5. MM_SELECT.pl 
A Perl CGI and HTML file that controls the selection of genomics data.  The connection with 
the Oracle BDAT database is controlled us ing the Perl database interface (DBI). The choices 
selected, as well as the protein data pasted into the text area, are saved as parameters that are 
sent on to MM_RESULTS.pl. 
 
6. MM_RESULTS.pl 
A Perl and HTML file that matches the two data sets. 
 
7. BDAT database 
A denormalized Oracle database with Affymetrix data.  The bioinformatics group has 
extracted some of the more useful Affymetrix data into this database. BDAT table columns 
include probe set name, time point, tissue, Avg Diff, Abs Call, and individual.  The probe set 
name has to be linked with another table that has the matching EMBL accession number for 
each probe set. 
 
8. EMBL database 
Entries for all publicly known genes and ESTs are stored in this database. 
 
9. RESULT_GUIDE.html 
An HTML file that guides the user through the results with tips on how to analyse them. 
 
10. E-Lab links 
The accession numbers have hypertext links to E-lab, where the specific gene, EST or protein 
entry can be studied in more detail. 
 
11. Excel 
The link to Excel is written in VBScript.  It imports the data into an Excel sheet. 
 
12. Spotfire 
The link to Spotfire is also written in VBScript.  It imports the data into a scatter plot.  
Additional features using Spotfire’s API make sure that the axes are correct and that the 
points are coloured by protein, and adjust the label density. 
 
13. Text format 
A link to the data in tabbed text format.  This option is mainly available should the other 
options fail. 
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3.4 User interface 
 
The user’s first impression of the application is of great importance.  Matchmaker’s 
homepage is designed to be clear, simple, and informative (Figure 3.3).  The initial web page 
is built in four frames.  The program logo is in the top frame, the program in the left frame, 
and the help section in the right frame.  At the bottom there is a frame with creator 
information and links. 
 

 
Figure 3.3 – Matchmaker’s selection page.  Here the Affymetrix study has been chosen and the 

proteomics data pasted in. 

We have chosen to build the help section into the initial page for two main reasons: the 
selection frame does not need the entire width of the page, and having the help section nearby 
saves the user opening a new screen.  The help section with a step-by-step guide through the 
selection process can be found in Appendix A. 
 
The results page (Figure 3.4) pops up when the user has submitted the selections and the 
program has matched the genomic and proteomic data.  On this page there is a link to a 
Results Guide (see Appendix A).  The guide explains the table columns as well as the 
visualization possibilities.  The guide would not fit on the same page as the results, because of 
the size of the results table.  We have chosen to make the Results Guide link open a new web 
browser window so that the results page remains intact and can be viewed simultaneously. 
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Figure 3.4 – The results page shows the results in a table and contains the buttons for export to Excel 

and Spotfire 

 
From the results page, the data can be exported to Excel and/or Spotfire at the click of a 
button.  The large table contains all the protein spots that have been entered into the program 
and the accompanying data, as well as genomic data if a match has been found. 
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4. Results 

4.1 PPRE 

We examined the same proteins that were identified in the study described in Section 2.1.  In 
most cases there were no acceptable hits against genomic sequences, since either the Percent 
Id was too low or a long enough sequence of genomic DNA could not be found.  When a hit 
indeed was found it was usually a Phase 1 HTG sequence with too many gaps in the wrong 
places, i.e. a continuous sequence long enough to hold a promoter region did not exist.  
Consequently, no DR-1 motifs could be found in these proteins using the search method 
mentioned above. 

4.2 Matchmaker 

After applying Matchmaker on the rosiglitazone study data sets, several proteins could be 
linked to genes or ESTs.  Of the 59 unique proteins from 86 different 2D gel spots, links to 30 
genes and 2 ESTs were found.  Thus, about half of the proteins could not be assigned to a 
gene or an EST using Matchmaker’s algorithm.  We have found three distinct reasons for this: 
 
1. A corresponding gene or EST was found on the GeneChip, but the criteria stated in 

Section 2.3.2 had not been fulfilled since the proportion of Absent transcripts (A:s 
rather than P:s) was unacceptable or the probe sets were not reliable in some other way 
(7% of the non-linked proteins). 

 
2. The protein is a mouse protein, whose corresponding gene did not yet have a transcript 

on this GeneChip Mu6k - version (55%). However, it is probable that these genes will 
exist on later chip versions.  For example, we found three of these transcripts in the 
newer Mu11k (11 000 genes/ESTs) chip. 

 
3. The protein is not a mouse protein, but from another organism such as rat or human.  

Mass spectrometry could not assign the protein to an entry in the mouse database and 
therefore a homologue from a different organism with a good hit was chosen instead 
(28% rats and 10% human). 

 
To visualize the gene/EST – protein links that were found, we used Matchmaker’s built-in 
function buttons to transfer the result data to Spotfire and Microsoft Excel.  Spotfire provides 
various ways to plot the “Protein Log-Ratios” against the “Gene/EST Log-Ratios”, a couple 
of which can be seen in Appendix  B, Graphs 1-2 (B.1-B.2).  However, visualizing the 
confidence intervals was very complicated since an adequate tool does not yet exist in 
Spotfire. It also proved to give messy and almost unreadable plots.  Instead we plotted 
confidence intervals in Excel, where they could easily be added using the error bar function in 
a 1D bar diagram, with expression values from the proteins and their corresponding genes 
plotted next to each other.  Graph B.3 shows all genes and proteins, where spots from five 
proteins have been merged. 
 
To reveal expression similarities in different groups of proteins/genes the diagrams were 
divided according to protein classes.  Graphs B.4-B.5 show similar behaviours in the groups 
“Amino acid metabolism” and “Proven or presumed PPREs”. 
 
Confidence intervals for eight genes were not calculated, since the statistical criteria in 
Section 2.3.4 were not fulfilled.  The only proteins without confidence intervals were the 
merged protein spots, “merged” implying an average over all spots matched to the same 
protein.  Since there are dependencies between spots belonging to the same proteins, our 
method for calculating confidence intervals is not adequate for the merged protein spots. 
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5. Discussion 

5.1 PPRE 

The main reason for not finding any DR-1 motifs was that the mouse genome is still incomplete.  
When a genomic sequence region was found it was usually divided into unordered contigs, 
which made the search for a promoter region impossible or at least very difficult.  In order to 
produce a fully automated DR-1 search tool, a search method had to be derived on the basis of a 
test of a small number of proteins with known PPREs.  Since the DR-1 motif was not found 
even for these proteins, automation was not considered. 
 
Currently the EMBL database contains very little genomic DNA.  No valid hits were 
generated starting from the proteins that were used in this study.  To find any DR-1 regions in 
the public genomic material that is present today, much handiwork as well as biological 
knowledge and experience is needed. 
 
A DR-1 search will most likely become easier in the future.  The sequencing of the mouse 
genome will proceed and the genome databases will be continuously updated.  As of October 
the 9th 2001, only 13.2% of the mouse genome exists as a working draft sequence and only 
1.7% has been fully sequenced.26  The working draft sequence of the mouse genome is 
planned to be finished 2003, and the fully completed genome 2005.  A complete and 
annotated version of the mouse genome was recently made available from the genomic 
company Celera.  This sequence data is, however, only commercially available. 
 

5.2 Matchmaker 

CORRELATION 

As can be seen in Graph B.1 expression levels for both protein and mRNA seem to be 
moderately correlated, with R ˜ 0.5.  This correlation coefficient suggests that mRNA and 
protein levels are to some degree connected, but that they in certain cases are regulated by 
more complicated mechanisms.  A number of strongly up-regulated proteins with documented 
PPRE regions in their complementary genes could not be matched in our program because 
they were rat proteins.  Had these been matched, they would most likely have increased the 
correlation coefficient. 
 
Nevertheless, a clear up- or down-regulation on both levels strengthens experimental results.  
In addition, a direct correlation would theoretically suggest the possibility of using the gene 
rather than the protein in pharmaceutical drug targeting.  Knowledge of correlation can thus 
be useful both in proteomics and genomics research. 
 
REASONS FOR POOR CORRELATION 

Even though it is natural to expect a correlation between mRNA and protein levels, there are 
reasons why this is not always the case.  There are known alterations that can occur in the 
DNA>RNA>protein mechanism and that need to be considered.  Post-transcriptional 
changes refer to either degradation of mRNA or changes of the translational efficiency, i.e. 
the efficiency by which mRNA is translated to proteins.  Post-translational changes refer to 
degradation or modifications of proteins. 
 
Below are descriptions and possible explanations of drug effects and exceptions from the 
“mRNA-yields-protein” relation: 
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1. mRNA level unchanged, protein level up/down:  The translational efficiency has 
changed, which renders more or less protein from the same amount of mRNA (post-
transcriptional).  The protein is modified or degraded soon after translation (post-
translational). 

 
2. mRNA up/down, protein unchanged:  Short lived mRNA does not have enough time to 

produce sufficient amounts of detectable proteins (post-transcriptional).  The protein is 
produced, but is soon degraded or modified (post-translational). 

 
3. mRNA up, protein down or vice versa:  More of mRNA is produced but the 

translational efficiency is reduced even more or vice versa (post-transcriptional and 
post-translational).  

 
INDIRECT PPAR REGULATION 

One explanation for up-regulation of genes, without PPREs in their promoter regions, is that 
they can be indirectly influenced by “PPRE genes”.  A drug ligand bound to PPAR, activating 
a PPRE and inducing transcription could result in a gene product that is part of a different 
gene regulating protein complex.  The activation of a new promoter sequence, without PPRE,  
would then lead to increased levels of other mRNA and ultimately to the production of other 
proteins.  Thus, there is a complicated network of “cause and effect”, which is far from 
wholly understood. 
 
FUNCTIONAL CATEGORIES  

When studying expression levels of different functional categories, clear tendencies in 
especially two categories are evident.  Treating obese mice with rosiglitazone shows that 
genes and proteins involved in amino acid metabolism are down-regulated on both levels 
(Graph B.4).  This effect has recently been shown and published.27  The indication is that 
PPARα is a key controller of intermediary metabolism during fasting.  Graph B.5 indicates 
that genes with proven or possible PPREs are up-regulated, although their corresponding 
proteins are generally not as positively affected.  Apparently there have been alterations in the 
mRNA to protein chain. 
 
Dividing and visualizing proteins according to functional categories can support thoughts 
about which category non-classified proteins belong to.  Points in a certain region of the plot 
may have similar function.  Thus, if a non-classified protein shows a similar expression 
profile to a classified group of proteins, it may also belong to that group.   
 
STATISTICAL COMMENTS 

Regarding the statistical significance of the result data a few things need to be mentioned.  
About 25% of the genes did not fulfil the statistical criteria for calculating reasonable 
confidence intervals (see Appendix D).  In addition, many of the calculated confidence 
intervals were very large (see Graph B.3).  These values reflect the limited reliability of the 
Affymetrix microarray technique.  In general, the confidence intervals for the protein 
expression levels were not as wide as for the gene expression levels.  The proteomics team 
have done certain experiments to test the variance of the 2D-PAGE method.  They have come 
to the conclusion that the method’s coefficient of variance (CV, standard deviation/mean) is 
around 20%.  Similar experiments have been done with Affymetrix, but there the results 
showed that the CV increased with decreasing intensity.28  For the majority of the intensity 
values, CV was between 10% and 100%.  The variance is clearly larger than in the 
proteomics case. 
 
In many cases with very wide or unreliable intervals there has been one specific mouse whose 
mRNA expression value (Avg. Diff.) differs significantly from the others.  Since there were 
only three mice in each group, each individual has a large impact on the intervals.  No matter 
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how accurate measurements will get, they will always reflect individual variance.  Therefore, 
it is important to conduct experiments with several individuals to acquire more statistically 
significant results. 
 
VISUALIZATION POSSIBILITIES  

Through Matchmaker the user can export the result data to both Spotfire and Microsoft Excel, 
which give excellent graphical representations when combined.  By analysing the data from 
the rosiglitazone study using Matchmaker we had the opportunity to explore suitable ways for 
visualizing the results.  An advantage with Spotfire is that every column in the original data 
table can be used and displayed in the scatter plot itself, the “Query Devices” window and/or 
the “Details-on-Demand” window.  Size, shape and colour of the markers in the plot can all 
represent different features (columns), simulating additional dimensions.  New columns can 
also be created by calculations or by binning (organizing data into “bins”) old columns.  
These features allow the user to filter the data visually in ways that can highlight areas of 
interest. 
 
In Spotfire we coloured the markers according to protein accession numbers and used 
different shapes for gene and EST transcripts.  By binning the P-values in three groups 
(<0.05;0.05-0.10;>0.10) and making check boxes of the groups it is easy to distinguish 
proteins that are not changed significantly.  The functional classes of the proteins were 
denoted in “Comment1” and check boxes allowed for the choice of which protein classes to 
be displayed.  “Comment2” contained the reasons for why gene links to certain proteins were 
not found, or whether a protein was merged or not.  We have chosen to leave an unmerged 
alternative, since there can be multiple reasons behind why the same protein has been 
identified on many gel spots.  Splitting could for example be due to natural degradation or 
induced by the 2D-PAGE method. 
 
As mentioned earlier, Spotfire is not yet suitable for visualizing confidence intervals, 
especially when there are lot of markers.  Excel, however, has a well developed functionality 
for error bars, which can be used for confidence intervals in this case.  Also here gene/protein 
bars can be ordered into functional categories or any other suitable way. 
 
A combination of scatter plots in Spotfire and bar diagrams in Excel creates a complete 
method for visualizing the result data. 
 
TECHNICAL LIMITATIONS  

The Affymetrix technology will soon have the capability to fit essentially all of a mouse’s 
genes on a GeneChip.  The most recent chip fits 40,000 human genes, but has compromised 
accuracy by reducing the number of probe cells for each probe set.  The biggest problem in 
the case of the mouse genome is that all genes have not yet been publicly sequenced. 
  
The 2D-gel technique has limitations in the number of proteins that can be detected.  A 
dilemma exists between efficient protein quantification and detectability of proteins with a 
very low concentration.  Also, the proteome has not been fully established. 
 
HOW PROTEOMICS CAN BENEFIT FROM MATCHMAKER 

Due to for example the statistical reasons mentioned above, the simultaneous expression 
levels from proteomics and genomics experiments should not be blindly trusted.  They may, 
however, give useful indications, which can be more thoroughly investigated by examining 
the raw data from the conducted experiments. 
 
Global and integrated analyses are also important when investigating regulation and 
interconnections within and between metabolic pathways in cells.  In addition, Matchmaker 
can be powerful when used as a verification of results in literature. 
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The comparative analysis has its greatest effect when using studies with the exact same set-
up.  However, it can also be informative to compare two studies that are somewhat different, 
but where the researcher for example knows that similar functions are affected in the body.  
These could be used as more of a rough guide to check whether the genomic and proteomic 
regulation are affected similarly. 
 

5.3 Matchmaker in the future 

In the rosiglitazone study neither the same tissue samples nor drug concentrations were used 
in the two different experiments.  It is naturally important for the biological relevance to have 
the same conditions in both experiments in the future.  Therefore, to be able to use 
Matchmaker more precisely and with maximum benefit, coordinated studies must be strived 
for. 
 
If MS identif ication fails to identify a protein, a homologue from another organism is used if 
the hit is good enough.  However, Matchmaker can not match protein and genes from 
different organisms.  If a match still is desirable, the user has the choice of BLAST searching 
for a hit with a worse score but from the correct organism.  The new hit is probably not the 
correct protein, but could be from the same family or at least have a similar function and 
therefore be useful in further analysis. 
 
Matchmaker will become even more useful in the future because: 
 
1. More genomics and proteomics experiments will be coordinated. 
2. The public gene and protein databases as well as the MS peptide database will grow. 
3. The precision of the Affymetrix and 2D-PAGE/MS technologies is likely to improve. 
4. More genes will fit on a chip, and ESTs will be replaced by genes.   
 
We have thought of several developmental steps for Matchmaker that do not fit within the 
scope of this thesis but that can be considered in the future. 
 

• Matchmaker can be more closely intertwined with the local information system 
NEXIS (Next generation proteomics and EXpression Analysis Information System). 

• Links and cross-references to a variety of databases can be added, such as PDB 
(Protein Data Bank) and Enzyme (Enzyme data bank).  

• If all proteomics data were inserted into AstraZeneca Mölndal’s Proteome Study 
database (PS), Matchmaker could offer a selection system for this data in the same 
way that it does for the genomics data.  Pasting into the text area would then be 
unnecessary. 
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5.4 Concluding remarks 
 

• Automating the process of finding PPRE motifs in the mouse genome proved not to 
be feasible, primarily due to incompleteness of genomic mouse DNA. 

 
• Using Matchmaker on the comparison of obese mice with and without rosiglitazone 

treatment showed that protein and gene expression levels were moderately correlated.  
In certain cases this implies alterations in the “DNA to protein” process.  In addition, 
a number of expected trends were confirmed. 

 
• Matchmaker’s automated matching of gene and protein expression allows for quick 

and easy comparative analyses of large data sets, making broader perspectives 
possible.  Analysis of the results will lead to new and useful hypotheses. 

 
• Integrated analysis of expression levels is important for the understanding of systems 

biology, and will play an increasing role when more experiments become 
coordinated, expression technologies are refined and sequence databases grow. 

 
• Matchmaker is a first step in making use of genomics and proteomics data 

simultaneously.  It has highlighted the potential benefits of such a comparison and 
will lead the way for more such applications in the future.  
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Appendix A - User Documentation 
 

A.1 Introduction 

WHAT DOES MATCHMAKER DO? 

Matchmaker starts out by asking for an Affymetrix and a proteomics data set to compare. The 
Affymetrix data set is chosen as a specific table in the BDAT Oracle database, while the 
Proteomics data set is pasted into a text area in a specified format. In the bulk of the program 
proteins are matched with their respective genes or ESTs and the result is displayed on-
screen. There is a link to the data where it is temporarily stored as a text file, and button 
options that export the data to Excel and Spotfire. Excel is primarily used to add comments 
and be able to save the results, as well as to create bar plots with errors bars. Spotfire is used 
for plotting the data 2-dimensionally and analyzing further. 
 
TECHNICAL DESCRIPTION 

Matchmaker consists of a web page (HTML) where selections of genomics and proteomics 
data are made, and a web page with results and visualization options.  Perl CGI scripts run in 
the background to insure interactivity, and also to match the data sets.  The connections to the 
Oracle databases are handled using SQL commands with the Perl Database Interface (DBI), 
and SRS commands allow for connection to the EMBL and SWISS-PROT/TrEMBL 
databases.  The Excel and Spotfire visualization buttons are programmed with VBScript. 
 
LOCATION 

Matchmaker is available on AstraZeneca Mölndal’s intranet at the address (URL): 
 
http://bioinfo.seml.astrazeneca.net/farmmc/matchmaker.html 
 

A.2 System requirements 

The program is designed to run faultlessly in the Topaz environment, AstraZeneca’s global 
Windows 2000 pla tform.  Topaz has Internet Explorer 5.0. 
 
The program relies on the bioinformatics group’s BDAT server to be available and kept 
standardised.  The program also relies on the availability of the local SRS system for 
accessing EMBL, SWISS-PROT, and TrEMBL entries. 
 
For the visualization options in Excel and Spotfire respectively, these applications must be 
installed on the computer. 
 

A.3 Step-by-step guide 

This is a step-by-step guide to the selection process. 
 
Step1: Affymetrix - Choice of disease area 
The first thing to do is to choose the Affymetrix disease area to compare with.  Simply select 
one from the pull-down menu. 
Press “Next” 
 
Step2: Affymetrix - Choice of particular study/tissue 
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Choose the Affymetrix study to compare with.  Simply select one from the pull-down menu. 
Press “Next” 
Step3: Affymetrix - Choice of the time point ratio 
Choose two treatment days to produce a ratio.  For example, "treated day 7 vs. untreated" 
would mean choosing 7 for time point 1 and 0 for time point 2. 
Usually you will be wanting to compare studies of exactly the same type in Affymetrix and 
proteomics.  Thus, make sure that also the ratios are inserted into the program in the same 
way (e.g. treated vs. untreated). 
Press “Next” 
 
Step4: Name of output file  
Write in a name for your result file.  The results will be temporarily stored in this name on a 
UNIX disk. To safely keep the results for future use, please save them on your own disk 
afterwards. 
Press “Next” 
 
Step5: Proteomics - Insertion of data 
Now it's time to insert the proteomics data.  The data has to be in a specified format to be 
properly understood by the program. 
 
The file can be created in Excel (or saved as a text file) and then copied and pasted into the 
text area on the web page. 
 
Important: 
 

• Make sure that all 10 column headings are entered even if they don’t contain any 
data.  Also, make sure that the columns are in the correct order and that the heading 
of the first column is "SSP". 

• Make sure there are no line feeds anywhere within a column (do not press enter or tab 
when typing in a cell). 

• The program requires the logged average intensities. 
 
Finally, press “Submit”.  The program will now start processing the input.  It could take 
several minutes for the results to appear. 
 

A.4 Result guide 

This guide describes the results and the options for visualization of the results. 
 
The results are shown in a large table (see Column Description below).  There is also a small 
table with the following information: 
 

• # of protein spots: Tells us how many different protein spots were pasted into the text 
area. 

• # of unique proteins: Several spots can be the same protein, so the number of unique 
proteins is less than the number of spots. 

• # of gene-protein links: The number of unique gene-protein links. The number in 
parentheses refers to the spots for each protein being separately counted. 

• # of EST-protein links: The number of unique EST-protein links. The number in 
parentheses refers to the spots for each protein being separately counted. 

 
Besides the two tables in the browser, you have three more alternatives for viewing the results 
(all at the top of the page): 
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• The first button opens an Excel sheet with the data. Excel is primarily used to add 
comments and be able to save the results, as well as to create bar plots with errors 
bars. Please save your data in Excel onto your own M-drive! 

• The second button opens Spotfire and plots the data immediately (Protein log-ratio 
vs. Gene/EST log-ratio). This 2-dimensional plot can then be manipulated in many 
ways for further analysis. 

 
You can save your Spotfire plot in two ways: 
 

• Saving as a Spotfire Analysis File (*.sfs) will save the plot and the data. 
• Saving as a Spotfire Template File (*.sft) will only save the adjustments you have 

made to the plot. This is a good alternative if, after making adjustments, you would 
like to add some more information to the data (e.g. in Excel) and then reinsert the 
data into Spotfire. 

 
The third alternative is primarily for use if the first option for some reason doesn't work. You 
can click on the link with the name of your output file, and it is then shown as a tabbed text 
file in the web browser.  From here you can save the file by choosing "File/Save As" in the 
web browser. 
 
 
Column description 
The large result table has several columns: 
 

• The Proteomics columns initially pasted into the text area carry through and appear in 
the table. Each protein accession number is a hypertext link to the SWISS-
PROT/TrEMBL entry in E-Lab. 

• The "EMBL accession number" is the gene or EST link to the protein. If no link was 
found, this will be stated. Each EMBL accession number is a hypertext link to the 
EMBL entry in E-Lab. 

• A "Type" column has been added to show whether the link is with a gene or an EST. 
• There are three columns for the gene/EST log-ratio and its lower and upper bound 

according to a 95% confidence interval. In some cases the interval does not satisfy the 
criteria of the statistical method, and in these cases no interval will be shown 
(interpret as interval being too big). The interval is based on the inter-chip spread 
(essentially the variation in individuals) and does not take into account the intra-chip 
spread (within the probe sets). 

• The "Absolute Call" column refers to an Affymetrix statistically based call, that 
decides on whether it thinks the correct mRNA has indeed attached to the probe set. 
"A" means absent, "M" means marginal, and "P" means present. The ratio you see 
shows each mouse (chip) in the two time points respectively. Our criteria for this is 
that at least 2/3 of the chips in either the first or the second time point are "P" or "M". 
Otherwise the gene/EST will not be shown, even if it could be linked to a protein. 

• Don't forget that you can add useful comments into the "Comment1" and 
"Comment2" columns before or after running the program! 
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Appendix B – Result diagrams 

Graph 1 – Scatter plot where the colours represent protein 
names and the shapes whether the mRNA molecules are 
genes or ESTs.  Ratios refer to treated/untreated.  The 
straight line is a least squares fit.  Five proteins have more 
than one spot, and these spots have been merged. 

Graph 2 – Same as in Figure 1 except that no protein spots 
have been merged. 
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Graph 3 – Bar diagram of protein and mRNA expression ratios (treated/untreated).  The error bars represent confidence intervals when applicable 
Only expression ratios for unique and merged protein spots are shown.
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Protein and mRNA expression ratios for genes and proteins involved in
Amino acid metabolism

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

as
pa

rt
at

e
am

in
ot

ra
ns

fe
ra

se
,

cy
to

pl
as

m
ic

or
ni

th
in

e
ca

rb
am

oy
ltr

an
sf

er
as

e
pr

ec
ur

so
r 

ph
en

yl
al

an
in

e-
4-

hy
dr

ox
yl

as
e

ar
gi

ni
no

su
cc

in
at

e
sy

nt
ha

se
 

or
ni

th
in

e
am

in
ot

ra
ns

fe
ra

se
pr

ec
ur

so
r

4-
hy

dr
ox

yp
he

ny
lp

yr
uv

at
e

di
ox

yg
en

as
e 

4-
hy

dr
ox

yp
he

ny
lp

yr
uv

at
e

di
ox

yg
en

as
e

4-
hy

dr
ox

yp
he

ny
lp

yr
uv

at
e

di
ox

yg
en

as
e

M
E

R
G

E
D

 4
-

hy
dr

ox
yp

he
ny

lp
yr

uv
at

e
di

ox
yg

en
as

e

Proteins with corresponding genes

E
xp

re
ss

io
n

 L
o

g
R

at
io

Protein Log-Ratio

Gene/ EST Log-Ratio

  
 
Graph 4 – Expression ratios for genes and proteins involved in amino acid metabolism. Proteins with 

with and without merged spots are shown. 
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Graph 5 – Expression ratios for genes and proteins with proven or presumed PPRE.  Proteins with 
and without merged spots are shown. 
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Appendix C – EMBL and SWISS-PROT Entries 

 
EMBL gene entry 
 
In one of the feature table (FT) rows there is a cross-reference (db_xref) to a SWISS-PROT 
entry with the corresponding protein. 
 
----------------------------- 
 
ID   MMADFP     standard; RNA; ROD; 1680 BP. 
XX 
AC   M93275; 
XX 
SV   M93275.1 
XX 
DT   15-MAY-1992 (Rel. 31, Created) 
DT   04-MAR-2000 (Rel. 63, Last updated, Version 3) 
XX 
DE   Mouse adipose differentiation related protein (ADFP) mRNA, complete cds. 
XX 
KW   adipose differentiation-related protein. 
XX 
OS   Mus musculus (house mouse) 
OC   Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; 
OC   Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus. 
XX 

… 
DR   MGD; MGI:87920; Adfp. 
DR   SWISS-PROT; P43883; ADFP_MOUSE. 
XX 
FH   Key             Location/Qualifiers 
FH 
FT   source          1..1680 
FT                   /db_xref="taxon:10090" 
FT                   /organism="Mus musculus" 
FT                   /strain="C3H" 
FT                   /cell_line="1246" 
FT                   /tissue_type="adipose" 
FT   5'UTR           1..78 
FT                   /note="putative" 
FT   mRNA            1..1680 
FT                   /evidence=EXPERIMENTAL 
FT   CDS PEPT        79..1356 
FT                   /codon_start=1 
FT                   /db_xref="SWISS-PROT:P43883" 
FT                   /evidence=EXPERIMENTAL 
FT                   /standard_name="ADRP" 
FT                   /gene="ADFP" 
FT                   /product="adipose differentiation related protein" 
FT                   /protein_id="AAA37176.1" 
FT                   translation="MAAAVVDPQQSVVMRVANLPLVSSTYDLVSSAYVSTKDQYPYLRS 
FT                    AEKGVKTVTSAAMTSALPIIQKLEPQIAVANTYACKGLDRMEERLPILNQPTSEI 
FT                   VTGAKDVVTTTMAGAKDSVASTVSGVVDKTKGAVTGSVERTKSVVNGSINTV 
FT                   VGPFYPQSTEVNKASLKVQQSEVKAQ" 
FT   3'UTR           1357..1680 
FT                   /note="putative" 
FT   polyA_signal    1664..1669 
FT                   /note="putative" 
FT   polyA_site      1680 
XX 
SQ   Sequence 1680 BP; 422 A; 413 C; 460 G; 385 T; 0 other; 

agtggtgatctggaccgtgcggacttgctcgtccc…………………….. 
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SWISS-PROT e ntry 
 
The following SWISS-PROT protein entry corresponds to the EMBL gene entry above. 
 
----------------------------- 
 
ID   ADFP_MOUSE     STANDARD;      PRT;   425 AA. 
AC   P43883; 
DT   01-NOV-1995 (Rel. 32, Created) 
DT   01-NOV-1995 (Rel. 32, Last sequence update) 
DT   30-MAY-2000 (Rel. 39, Last annotation update) 
DE   Adipophilin (Adipose differentiation-related protein) (ADRP). 
GN   ADFP OR ADRP. 
OS   Mus musculus (Mouse). 
OC   Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; 
OC   Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus. 
OX   NCBI_TaxID=10090; 
RN   [1] 
RP   SEQUENCE FROM N.A. 
RC   TISSUE=Adipocyte; 
RX   MEDLINE=92390349; PubMed=1518805; 
RA   Jiang H.P., Serrero G.; 
RT   "Isolation and characterization of a full-length cDNA coding for an 
RT   adipose differentiation-related protein."; 
RL   Proc. Natl. Acad. Sci. U.S.A. 89:7856-7860(1992). 
RN   [2] 
RP   SEQUENCE FROM N.A. 
RC   STRAIN=C3H; TISSUE=Adipose tissue; 

… 
CC   -!- FUNCTION: MAY BE INVOLVED IN DEVELOPMENT AND MAINTENANCE OF 
CC       ADIPOSE TISSUE. 
CC   -!- SUBCELLULAR LOCATION: MEMBRANE-ASSOCIATED. 
CC   -!- TISSUE SPECIFICITY: ADIPOSE TISSUE SPECIFIC. EXPRESSED ABUNDANTLY 
CC       AND PREFERENTIALLY IN FAT PADS. 
CC   -!- INDUCTION: BY DEXAMETHASONE. 
CC   -!- SIMILARITY: BELONGS TO THE PERIPILIN FAMILY. 
DR   EMBL; M93275; AAA37176.1; -. 
DR   EMBL; L09734; -; NOT_ANNOTATED_CDS. 
DR   MGD; MGI:87920; Adfp. 
DR   InterPro; IPR004279; perilipin. 
DR   Pfam; PF03036; perilipin; 1. 
KW   Membrane. 
SQ   SEQUENCE   425 AA;  46664 MW;  82624E6CE3429C22 CRC64; 
MAAAVVDPQQSVVMRVANLPLVSSTYDLVSSAYVSTKDQYPYLRSVCEMAEKGVKTVTSA 
AMTSALPIIQKLEPQIAVANTYACKGLDRMEERLPILNQPTSEIVASARGAVTGAKDVVT 
TTMAGAKDSVASTVSGVVDKTKGAVTGSVERTKSVVNGSINTVLGMVQFMNSGVDNAITK 
SEMLVDQYFPLTQEELEMEAKKVEGFDMVQKPSNYERLESLSTKLCSRAYHQALSRVKEA 
KQKSQETISQLHSTVHLIEFARKNMHSANQKIQGAQDKLYVSWVEWKRSIGYDDTDESHC 
VEHIESRTLAIARNLTQQLQTTCQTVLVNAQGLPQNIQDQAKHLGVMAGDIYSVFRNAAS 
FKEVSDGVLTSSKGQLQKMKESLDEVMDYFVNNTPLNWLVGPFYPQSTEVNKASLKVQQS 
EVKAQ 
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Appendix D - Statistics 
 
Fieller’s Theorem (confidence intervals for the Affymetrix data) 

Fieller’s theorem is used in finding a confidence set for a ratio of paramaters, ρ = θ1 / θ2.  In 

general there are two statistics, 1̂θ and 2θ̂  , which estimate θ1 and θ2, respectively.  It is 

assumed that )ˆ,ˆ( 21 θθ follows either exactly or approximately a bivariate normal distribution 

with mean (θ1, θ2) with σ11 = var( 1̂θ ), σ22 = var( 2θ̂ ), σ12 = cov( 1̂θ , 2θ̂ ). 
 
…With t1-α/2(d) denoting the 100(1-α/2)th percentile of the t distribution with d degrees of 
freedom, P[H(ρ)2 ≤ t1-α/2(d)2] = 1 - α. (1) 
 
Equation (1) can be rewritten as P(Q(ρ) ≤ 0) = 1 - α, where Q(ρ) = f0-2f1ρ+f2ρ2 is a quadratic 

function of ρ, with f0 = 2
1̂θ - t1-α/2(d)2

11σ̂ , f1 = 1̂θ 2θ̂ - t1-α/2(d)2
12σ̂ , and f2 = 2

2θ̂ - t1-α/2(d)2
22σ̂ . 

 

Defining 20
2

1 fffD −= , 211 /)( fDfr −= , 212 /)( fDfr += , the confidence set for 
ρ is: 
 
Case 1: A finite interval [r1,r2], if D ≥ 0 and f2 ≥ 0. 
Case 2: The complement of a finite interval, (-∞, r2] ∪ [r1, ∞), if D ≥ 0 and f2 < 0. 
Case 3: (-∞, ∞) if D < 0 and f2 < 0. 
 
So for our purposes, the equation must fulfil the Case 1 criteria for the confidence interval to 
be used in the plots.   
 
Confidence intervals for the proteomics data 

Assuming X has a log-normal distribution, then ),(~)ln( 2σµNX , i.e. normally 

distributed with expected value µ  and variance 2σ .  

Let nXX ,,1 K  och mYY ,,1 K  represent random samples from two log-normal distributions. 

Assuming also that ),(~)ln( 2σµ Xi NX  and ),(~)ln( 2σµYi NY , we have a 95% 
confidence interval for the estimate of the difference (on the log scale) between the expected 
values YX µµ ˆˆ −  given by 
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and 

Xs , Ys are the standard deviations for the random samples, )2(2/05.01 −+− mnt  is the 97.5% 
quantile from the t-distribution with m+n-2 degrees of freedom. 
 
Taking the anti-logarithm of the end points in the interval above we get a confidence interval 

for the quotient between the medians YX eeYX µµ /
~

/
~

=  to our two log-normal distributions.  
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P-values 

A p-value )(ˆ xα  is the smallest α level on which we could reject the null hypothesis, given 
the data that we have received. The p-value is not a significance level since it is data- 
dependent (a significance level α is the risk we are willing to take to reject a true null 
hypothesis).  
 
For a two sample t-test (two-sided) the p-value is given by 
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where ν is the degrees of freedom, ( )zΓ  is the Gamma function and 
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The above integral is solved numerically. 
 
Holm’s step-down method (adjusted p-values) 

Let kppp ,,, 21 K  denote the original p-values, sorted in ascending order, that have been 
received from k  hypothesis tests, the adjusted p-values are then defined sequentially by  
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This method is used in multiple testing to adjust p-values when the tests are dependent (it 
works even if they are independent). 


