
Universitat Politècnica de Catalunya

SENSORS AS A SERVICE IN THE CLOUD

Author:

Eduard Montserrat

Supervisor:

Fatos Xhafa

Departament de Ciències de la Computació

Universitat Politècnica de Catalunya

Degree in Informatics Engineering

Software Engineering Specialization

Barcelona School of Informatics – FIB

April 22th, 2015

2

1 TABLE OF CONTENTS

2 Introduction ... 6

3 Background .. 7

3.1 Big Data .. 7

3.2 Sensors ... 8

3.3 Internet of things ... 9

3.4 Service in the cloud .. 10

4 Scope ... 11

4.1 Project definition ... 11

4.2 Limitations and risks .. 12

4.3 Methodology .. 12

4.4 Software tools .. 14

4.5 Validation methods .. 14

5 State of art ... 15

5.1 Sensor as a Service ... 15

5.2 Sensor Clusters and the Cloud ... 17

5.2.1 Fixed Clusters .. 17

5.2.2 Agile Clusters .. 18

5.2.3 Personal Clusters .. 18

6 Planning ... 20

6.1 Task Description ... 20

6.2 Estimated time ... 21

6.3 Final Time ... 21

6.4 Action Plan ... 21

6.5 Estimated task plan .. 22

6.6 Final task plan .. 25

7 Feasibility study ... 26

7.1 Initial considerations .. 26

3

7.2 Human resources cost ... 26

7.3 Expenses... 28

7.4 Sales ... 30

7.5 Social impact .. 32

7.6 Environmental impact .. 32

8 Product Specification ... 33

8.1 Introduction ... 33

8.2 Stakeholders .. 33

8.3 Goals... 33

8.4 Domain Properties and hypothesis.. 34

8.5 Conceptual Schema ... 34

8.6 Use cases .. 35

8.7 Requirements ... 42

8.7.1 Functional Requirements ... 43

8.7.2 Non Functional requirements .. 45

8.8 Satisfaction argument .. 50

9 Design .. 52

9.1 User interface... 53

9.2 Sensor as a Service Logic .. 53

9.3 Database .. 53

9.4 Cloud Management ... 54

9.4.1 Cloud API layer .. 54

9.5 Communication .. 60

9.6 Physical sensor ... 61

10 Implementation ... 62

10.1 Software used .. 65

10.2 Views .. 65

10.3 Testing .. 67

10.3.1 Functionality testing ... 68

4

10.3.2 Usability testing .. 68

10.3.3 9.3.3 Interface testing... 69

10.3.4 Compatibility testing .. 69

10.3.5 Performance testing ... 69

10.3.6 Security testing ... 69

11 API .. 71

12 Results.. 72

12.1 Conclusions .. 72

12.2 Future Work ... 72

13 Glossary ... 73

14 Appendix 1 ... 74

14.1 OpenStack set up ... 74

15 References ... 77

5

The cloud is absorbing and becoming the established way to build the internet. We

have assumed the challenge to create a platform where the cloud is at the center and

intimately bound to the Internet of Things. It is yet another, solution to the problem of

resource sharing. We not just saw it as a problem but also a new business model. We

designed a model to conduct a rational sensor sharing with payment to the owners of

the resources. This documents analysis and discusses trending concepts like Big Data

and Internet of Things. The project described in this document tries to be alike the

reality. We perused to build a product that can be “online” tomorrow. It is not likely to

happen, but with some tweaks, more time and more experts it can became a reality.

The solution proposed is a web app that enables sharing sensors among the users of

the platform. We tried with Raspberries Pi acting like sensors and I can say that we are

very hapy with the resutl. The web provides a map where the user can navigate and

gather data from the specified sensor. The quantity of data consumed is stored and

used to make the payment or get paid. The sensor information, as well as the sensor

data, can be obtained through an API. It allows third applications to collect the data.

El termino cloud está absorbiendo y convirtiéndose en el estándar en internet. En este

Proyecto hemos asumido el reto de crear una plataforma donde el cloud está en el

centro y muy ligado al internet de la cosas. Es por lo tanto, una solución más a la

problemática de compartición de recursos. Hemos diseñado un modelo para compartir

recursos, en este caso sensores, de forma racional y donde el propietario del recurso

recibe una monetización por ello. Este documento analiza y discute conceptos muy de

moda actualmente como Big Data y el comentado Internet de las cosas o IoT. Hemos

intentado modelar la realidad de la forma más precise posible. Y por consiguiente

hacer un producto que pudiera funcionar mañana mismo. La solución presentada no

está suficientemente pulida para tal caso. No obstante con más tiempo y expertos en

cada material podría ver la luz.

La solución presentada es una aplicación web que permite compartir sensores entre

los usuarios de la plataforma. Hemos probado con Raspberry Pies actuando como

sensores. La web tiene un mapa donde los usuarios pueden navegar, seleccionar

sensores y visualizar la información que estos obtienen. La cantidad de datos

consumidos es almacenada y usada posteriormente para realizar el pago o cobro. Toda

la información está disponible mediante una API para que terceras aplicaciones

puedan hacer uso.

6

2 INTRODUCTION

Nowadays, the term “cloud” has become a significant trend in computing. Cloud

computing or merely the cloud stands for allocate components over the internet and

access them remotely. The components could be software, hardware, or both.

The word itself, the cloud, is also an excellent trade name for marketing campaigns. The

cloud aims to be simple, user-friendly and portable.

The aspects implicated in a computer based engineering solution have become more

sophisticated. Eventually, each of those will be impossible to be managed by the same

entity. Cloud computing allows to maximize efficiency by delegating the components to

third parties. Each subject of the chain is expert and responsible to work at the best

performance.

 The National Institute of Standards and Technology of United States defines cloud

computing as: “Cloud computing is a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction”. The

essential Characteristics are On-demand self-service; Broad network access; Rapid

Elasticity; Measured service [1].

The term Cloud computing did not appear in the last few years. John McCarthy

introduced the first approximation to the idea in 1961. He said at the MIT Centennial:

“If computers of the kind I have advocated become the computers of the future, then

computing may someday be organized as a public utility just as the telephone system is

a public utility. The computer utility could become the basis of a new and important

industry.” [2]. Probably the first use of the word, in the actual meaning, was in 2006

when Google CEO Eric Schmidt said at an industry conference: “What’s interesting is

that there is an emergent new model. I do not think people have really understood how

big this opportunity really is. It starts with the premise that the data services and

architecture should be on servers. We call it cloud computing—they should be in a

“cloud” somewhere.” [3]. Swiftly, many of the big IT companies started to use it. Amazon

launches EC2 a few weeks later. NASA, IBM, Microsoft and lastly Apple also developed

cloud solutions.

7

3 BACKGROUND

 This section reviews and contextualizes the foundations of this project.

3.1 BIG DATA

IEEE Spectrum [4] recognizes both sensors and big data as to of the five technologies

that will shape the world. According to the BCC Research [5], the global market for

sensors was around $56.3 billion in 2010. In 2011, it was around $62.8 billion. Global

demand for sensors is expected to increase up to $91.5 billion by 2016, at a compound

annual growth rate of 7.8%.

Infosys, a global leader in consulting, technology, and outsourcing solutions established

cloud computing, sensor networks, and intelligence as a key for growing your enterprise

[6].

Big data is not new concept or idea. However, earlier notions of Big Data were limited

to few organizations such as Google, Yahoo, Microsoft, Facebook or IBM. This has

changed. With recent developments in technologies such as sensors, computer

hardware and the Cloud, the storage and processing power increase and the cost comes

down rapidly. As a result, many sources (sensors, humans, applications) start generating

data and organizations tend to store them for a long time due to inexpensive storage

and processing capabilities. The challenge now is to take advantage of this new source.

Thus, Big data has become an extended word in the industry. Big Data is a broad concept

that has no precise definition because it is not a particular process or methodology.

However, there are three characteristics that can be used to define big data, as also

known as 3V’s [7]: volume, variety, and velocity.

- Volume: It stands for the massive amount of data generated. As of 2012, about 2.5

Exabyte of data are created each day, and that number is doubling every 40 months or

so. More data cross the internet every second than were stored on the entire Internet

just 20 years ago. For instance, “it is estimated that Walmart collects more than 2.5

petabytes of data every hour from its customer transactions” [8].

 - Variety: Variety means the types of data. Difference sources will produce big data such

as sensors, devices, social networks, the web or mobile phones. Therefore design a

database compatible with a large variety of formats and attributes and make it

interoperable is not an easy task.

8

- Velocity: This means how frequently the data is generated. We can identify three main

categories: occasional, frequent, and real-time.

Some researchers consider “Value” also as a chief characteristic of big data. It means

that somewhere within that data, there is some valuable information, though most of

the pieces of data individually may seem valueless.

The following steps represents the process of merging big data with IoT.

-Finding a sensor on the internet may become an issue. The discovery is crucial to assure

a reliable solution.

-Combining the raw data with business intelligence and social integration.

-Seeking to help companies understand the results of the analysis.

-Data visualization is highly important to present a good-looking, efficient and

convenient data.

Information science represents the evolution from raw data in a pyramid known as

DIKW.

Figure 1: DIKW pyramid

3.2 SENSORS

A sensor [9] is a device that detects or measures a physical property and records,

indicates, or otherwise responds to it.

Digital sensor harvests quantitative measurements and turns analog input into a digital

signal. I do not go into detail of the hardware specification.

Wisdom

Knowledge

Information

Data

Data

Mining

Knowledge

engineering

Mining

Teamwork

9

 Sensors used to imply expensive, and sometimes large contraptions to measure real-

world variables. They are often exposed to hazardous environments where human

observation would be not only much less accurate, but dangerous as well. It can be

solved thanks to microelectromechanical systems, or MEMS technology, enabling the

creation of tiny structures that could be fabricated using semiconductor processes.

MEMS has launched sensor technology to a place where small, inexpensive, far accurate

sensors that can be attached to almost anything.

A big trend in MEMS sensor design today is packing more into less space, with multiple

sensor types in a single package. The latest TPMS devices combine pressure sensors with

radial acceleration and temperature sensors. Adding variables can help compensate for

changing weather, such as underinflation with cooler days in autumn.

The combination of more sophisticated variables with more powerful localized

processing into a single part is driving new breakthroughs. Motion sensors, with a

gyroscope, accelerometer, and magnetometer provide affordable 9-axis orientation

data for tiny devices. The state-of-the-art Bosch Sensortec BNO055 packs an ARM

Cortex-M3 MCU onboard, enabling advanced sensor fusion algorithms for uses such as

augmented reality and indoor navigation.

Sensors have transformed from things to read into things that can do something, when

coupled with the right software and a better understanding of their surroundings.

Efficient implementations of IPv6 TCP/IP stacks more suited for embedded use.

However, simply Ethernet and TCP/IP specifications carry a significant amount of

overhead. TCP/IP is useful for long file transfers, but in a short amount of data like many

sensors typically provide, the required headers and formatting can be more than the

actual data itself. Every bit transmitted consumes precious power.

3.3 INTERNET OF THINGS

Internet of things or IoT stands for connecting the physical world to the Internet. Things?

Could be anything or anyone, Objects, machines, vehicles, animals, sensors or even

people. To turn a physical object to a smart thing on the internet we have to take a

number of steps. First of all, the object needs a unique identity. The protocol ipv6, with

an astonishing 2^128 number of addresses, has more than enough addresses to map all

the objects on earth. For the sake of curiosity, 2^128 is much larger than the atoms of

the surface on earth or the nanoseconds that have passed since the Big Bang. Secondly,

10

the thing has to communicate. The third step is to be able to sense the environment.

Moreover, optionally the possibility to interact with the sensor.

IoT allows an entirely new way to interact with the world and the possibilities that can

offer intrigue the companies and academics. At the present time IoT can be used to

connect with things, monitor environment or a person’s health, search for things, track

traffic, control things or play with things among an endless number of possibilities. This

change cannot come along without some concerns. What about the privacy or security.

Some critics say that it will lead to a mass disruption where our lives will be guided for

some smart device and a flaw in the system can cause a failure on a broad scale

magnifying its consequences to an unknown level. The possibilities for the intruders will

fear anyone.

IoT is happening now, big companies, states, and startups are heavy investing on it. It

will change our lives. The remaining question is how it will affect.

3.4 SERVICE IN THE CLOUD

Providing services on the cloud is a model that is growing fast. It is defined as a style of

computing in which massively scalable IT-related capabilities are provided “as a service”

using Internet technologies to multiple external customers.

Cloud computing consists of three main layers or model, Infrastructure as a Service

(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). Each layer has been

discussed in [10]. In addition to the primary layers, some other layers has been

introduced such as Database as a Service (DBaaS), Data as a Service (DaaS), Ethernet as

a Service (EaaS), Network as a Service (NaaS), Identity and Policy Management as a

Service (IPMaaS), Metal as a Service (MAAS) or Sensing as a service (SaaS) among others.

In general, all these models are called XaaS, which means “X” can be virtually anything.

11

4 SCOPE

4.1 PROJECT DEFINITION

The main idea of the project is to design and implement a system to manage sensors in

the cloud.

A wide range of sensors and networking technologies commonly used in fielded sensor

networks add a unique set of challenges to sensor identification and discovery, sensor

access and control, and sensor data consume. Current solutions often use tailored

systems (both hardware and software) that access sensors individually, which increases

their complexity and cost, limits their scalability, and reduces their effectiveness

The proposal comes from the necessity of grouping several resources from different

organizations in one solution. Today many of the sensors of the public administration

work independently. There are many advantages of developing such system.

Economical, because it reduces the amount of equipment as well as the amount of

personal needed to maintain the systems.

The system pretends to work not only across the public departments but also with

companies. The resources might be shareable, saleable or rentable. The project

comprises the design and implementation of the backend, an interface and a business

model applied to the system created. The solution may also allow an external

application to obtain data from the sensors as a push notification. This feature can be

used for avoiding disasters that can occur e.g. a river overflow.

The project tries to offer a solution to solve a critical infrastructure. It has to be able to

address hardware failures. Another major risk lies in the security. The idea is to include

high-priority agents of the public administration such as police or fire department. To

do so, it is mandatory to create a secure system. Non-authorized users cannot get access

to the resources. Available hardware like sensors might lead to unfinished modules.

We believe that the project is viable according the following reasons. The solution

decreases public expenditure. The companies may use it too, selling, buying or renting

sensor. It is also viable because it builds up Smart Cities that is a growing concept

involving more and more interconnecting cities every year.

12

Once the project is finished, the following features will be available:

 Sensor network management

 Auto discover new sensors

 In case of failure, reallocate similar sensor data

 Web client

 Business model design

4.2 LIMITATIONS AND RISKS

The solution is intended to run in a real environment and provide a useful

implementation in the field of Internet of Things. Therefore, it exists significant risks

than can occur and few limitations that may arise in the development process.

- Hardware communication

- Security threats

- Scarce quantity of hardware devices to test limitation

- Budget limitation

- Underestimate the cost of some processes

- Some aspects of the project can be outside of the software engineering field

4.3 METHODOLOGY

According to the limitations of the project: solo project, four-month time, hardware and

software integration, little feedback from the users. The next development life cycles

were selected to fit the requirements [11] [12] [13] [14]

4.3.1.1 Waterfall

It is a sequential model, which each process starts when the previous step has

finished. The phases, followed in order are Requirements, Design,

Implementation, Verification, and Maintenance.

Pros:

· Easy to learn and follow

· Ideal when all the requirements are known, and they will not change

 Cons:

 · A bad design will lead to a failed project

 · Strong penalization over the mistakes

 · No client feedback until the last part of the cycle

13

4.3.1.2 Unified Process

It is an interactive and incremental development process. It has four phases:

Inception, Elaboration, Construction, and Transition. Each phase has a defined

set of deliverables and contains added, or improved functionality compared

with the previous release.

Pros:

· Adaptability

· Useful working in a team

Cons:

· Difficult to update

· Slower than the average

4.3.1.3 Agile software development

 The Agile method proposes an incremental and iterative approach to software

design. Designers are free to respond to changes in conditions as they arise and

make changes as the project progresses. Agile development is a guideline; it

exists numerous solutions that implement it.

 Pros:

· Flexible

 · Adaptability to clients

 · It works well when the requirements are not defined or known

 · It facilities the communications with the developers and customers

 Cons:

· Hard to predict the budget, amount of hours

· Client active participation and constant helps

· Lack of extensive documentation

· Changes in the programmers become dangerous because the development is

carried out

Taking into consideration that one person performs the project. There is no need to

create a communication protocol neither split the work. However, there is a need to use

an efficient, reasonable and structured methodology to implement a structured and

easy to deal project. Among all the methodologies analyzed, the methodology that will

be used in the project would be a custom methodology mixing waterfall and unified

process. UP because it helps to document the work done and waterfall because it

provides a natural methodology than will not take much time, the requirements are

defined, and there is no feedback from the client.

14

4.4 SOFTWARE TOOLS

All the work done is stored automatically in a Dropbox [15] folder. It assures up to date

files, accessible anywhere, and consistency. An integrated development

environment (IDE) will be used to code the software. GitHub will handle the source code

management. It provides the code hosting, and all the Git features [16]. The website will

be hosted in UGDSI Computing Laboratory, a UPC department.

4.5 VALIDATION METHODS

In order to validate the workflow a week or a fortnight meeting (physical or virtual) with

the tutor will be carried out. Besides that, periodical tests will be performed over the

system to address the possible issues that may occur.

15

5 STATE OF ART

How we can achieve the potential of Sensors as a Service could offer? It is not an easy

question. To take the maximum advantage of a sensor network requires a synergy

between the hardware and the software. The system has to be defined together; it is

not like a PC where the hard and soft can be done quite separately.

We can choose a sensor that barely sends the data obtained or a sensor that can

compute the data flow and a communication like Ethernet, wireless or a custom one.

Just like it happened with the phones, this type of sensors are called smart sensor. Other

questions arise, such as power consumption, battery life, accuracy, reliability and

connection protocol.

The next step relies on how to deal with the enormous amount of data generated. This

part represents the core of the project. Can the reader imagine a city like Barcelona with

a million of sensors streaming data all the time? What happened if a fireman would like

to watch the temperature in the forest to do some prevention work but even more

useful if they are the sensors themselves that alert about a possible fire o one that just

started and even more useful if that notification also arrives at the police, major and all

the departments what this concerns. The possibilities are unimaginable.

The scope of the project is broad. There are many concepts involved directly or

indirectly. The purpose of this document is to provide an overview of the subjects I will

have to handle to develop a successful prototype.

5.1 SENSOR AS A SERVICE

Read a variable, or data flow is relatively straightforward given all the sensor and

networking technology we could have. The tricky part is to determine the context (the

relation between past and current readings) and interpret it, supporting the next

decision a person should make. A practical example of it is a Tire-pressure monitoring

system (TPMS). Many drivers do not check the pressure in his or her car tiers or even if

they do get an accurate reading is difficult. A sensor can help by notifying the flaw in the

car dashboard. That information is not very useful inside the vehicle when the driver is

outside with the air pump inflating the tire. Nissan [17] cars honk the horn when a tire

is sufficiently re-inflated.

16

The Microsoft Research and University of Pittsburgh have recently published a paper

named “Finger Shadow: An OLED Power Optimization based on Smartphone Touch

Interactions” [18]. They explain a method that can save battery life by dimming the

screen area covered by user's fingers. They said that could save 13% on average of

screen power consumption.

Moreover, the actual capabilities came mixing different sensors. For instance, a GPS

localization combined with a purchase history that can guide the user to a shop that he

or she might like. It can compare prices of the same product in the area.

The next three examples illustrate the bigger potential of sensor fusion, bringing

together more variables and supporting advanced computational platforms [19].

· Movea’s MotionCore™ contains a context engine optimized for mobile devices (low-

power and small footprint). It can determine three sets of conditions: 1) Device Position:

on body, on table, in bag, in hand, near ear; 2) User Activity: standing, walking, biking,

running; 3) Mode of Transport: walking indoors, walking outdoors, in a car, on a plane,

in an elevator, on a train.

· Sensor Platforms’ FreeMotion™ Library also creates context, with two extensions: a

resource manager, which directs compute resources when context has changed, and

minimizes power consumption when setting is unchanged; and the idea of context as

virtual sensor, an abstraction for developers to access via API. FreeMotion has recently

been ported to the NVIDIA® Tegra® 4, with its quad-core ARM Cortex-A15 processors

and 72 GPU cores.

· Xsens has concentrated on biomechanical motion tracking, going way beyond

“walking” or “dancing” into the analysis of 23 body segments. Unlike systems that use

reflective dots and depend on lighting and camera angles, Xsens uses MEMS inertial

sensors and advanced software to model smoothly and assess human movement in real-

time.

Enabling context starts with the local processing at the sensor itself, and most sensor

vendors – Analog Devices, Bosch Sensortec, Freescale, InvenSense, Kionix,

STMicroelectronics, and other members of the MEMS Industry Group – provide libraries

to help translate readings into context. For example, STMicroelectronics’ iNEMO Engine

is a sensor fusion library implementing Kalman, filtering for adaptive prediction,

available in both a free version and a professional version.

Here is a list of related implementations, frameworks or designs:

17

- Physical Sensor Management with Virtualized Sensors on Cloud Computing [20].

The authors propose an infrastructure called Sensor-Cloud infrastructure that

can manage physical sensors on IT infrastructure. The Sensor-Cloud

Infrastructure virtualizes a physical sensor as a virtual sensor on the cloud

computing. Dynamic grouped virtual sensors on cloud computing can be

automatic provisioned when the users need them.

- SenaaS: An Event-driven Sensor Virtualization Approach for Internet of Things

Cloud [21]. The authors propose an Internet of Things virtualization framework

to support connected objects sensor event processing and reasoning by

providing a semantic overlay of underlying IoT cloud. It encapsulates both

physical and virtual sensors into services according to Service Oriented

Architecture (SOA). SenaaS mainly focuses on providing sensor management as

a service rather than providing sensor as a service.

- OpenIoT: Open Source blueprint for large scale self-organizing cloud

environments for IoT applications [22]. OpenIoT is an Open Source middleware

platform aimed to connect Internet-Objects to the cloud.

5.2 SENSOR CLUSTERS AND THE CLOUD

Gathering sensors, devices, networks, and users together on the cloud can be done with

three sorts of sensor clusters: fixed, agile, and personal.

5.2.1 Fixed Clusters

Many applications of sensors are set: the number of sensors is known, the wireless

coverage is pre-determined, and the network topology and bandwidth requirements are

predictable. These fixed clusters are, usually, managed with knowledge of exactly what

sensors should be on the network at any given time to aid in security and maintenance.

With a limited range, fixed clusters commonly use familiar WSNs such as ZigBee [23],

6LoWPAN, and Wi-Fi depending on the exact requirements of the devices. They send

their data to a gateway or concentrator for cloud connectivity. Gateways offer

bandwidth, backed by a high-speed wired or fibered pipe. Thousands of sensors can roll

up into one real-time view, and data can be brought into storage networks for further

analysis.

18

Fixed clusters are common in industrial, point-of-sale, healthcare, and surveillance

applications.

5.2.2 Agile Clusters

With longer distances and ad-hoc connections involved, agile clusters incorporate

endpoints that move over relatively wide ranges and join and leave networks of interest.

An example is an electric vehicle charging station, which is discoverable by nearby cars

looking for a charge and seeking information on wait times or special offers such as

nearby shopping discounts.

Agile clusters typically use cellular M2M (Machine to Machine) technology, which

enables a mobile device to access the cloud anywhere there is coverage – ubiquitous in

urban and suburban settings, and even more useful with small cell technology. Cellular

M2M is well suited for data and not disturbed by a node moving from the access point

to the access point, even during transmission. Cellular M2M devices can also be actively

managed, with data plans, security, and bandwidth controls.

Typical applications for agile clusters are transportation, digital signage, and vending

machines. Roaming may be an imperative feature for an application such as a delivery

vehicle. Other devices may not move routinely during operation but can be set up or

taken down quickly without adding networking infrastructure, once there is coverage

for a given area.

5.2.3 Personal Clusters

With data and application capability, the smartphone and tablet have brought the

power of the cloud to the individual. The space is being extended with smartwatches

and lifestyle monitoring devices. Personal clusters are that setup directly around you,

anytime, anyplace, with short range networks using the smart device as display and

gateway.

These small yet significant clusters rely on Bluetooth, NFC, and Wi-Fi Direct for most of

their capability – WSNs found in most smartphones today. Sensors are paired, tethered,

or scanned as needed, usually with some user interface presented via an application on

a mobile device.

The applications of personal clusters are just being imagined. The recent push for

automotive smartphone integration is an example, with the car being transformed into

a gigantic rolling set of sensors. Other examples are the “quantified self” and mHealth

19

and fitness applications, and smart home with security, convenience, and entertainment

features.

The common theme in all these clusters is the cloud, able to connect sensors quickly and

share data without boundaries. Debate rages about which WSN technology is “better”,

depending on variables like range, signal penetration, addressability, topology, power

efficiency, and more.

20

6 PLANNING

The project separate 5 phases. In order to start each point, the previous one must be

done. All the elements of the phases mentioned in this document have to be backed up

with documentary evidence of the work performed. The deadlines stipulated may

change over the project if it does not compromise the whole project.

The waterfall methodology is followed in the project planning.

The calendar is not a regular one. As the project is carried out individually with a very

few schedule restrictions, the timing is flexible. Therefore, it means there is no working

time established, e.g. the work may be done on weekends as well as at night.

6.1 TASK DESCRIPTION

STEP 1 – STRATEGIC PLAN

This stage is part of the GEP course. The goal of it is to help the student to pass the initial

milestone. It helps to guide the students in their projects and assure that the idea is

properly carried out.

STEP 2 – SYSTEM DESIGN

This phase comes after the definition. It bases on prepare all the requirements that will

be needed to implement the solution.

STEP 3 – IMPLEMENTATION & VALIDATION

This step is the core of the project. The solution is constructed based on the information

provided in the two previous phases. The validation of the coding is not formal. The

validation is performed checking the correctness of the features.

STEP 4 – TESTING

This phase will test the code. Even the previous step validates the software; it still may

contain little errors such as poorly user input checking, hardware incompatibility, and

security flaws.

STEP 5 – FINISH PROJECT

This phase divided into two parts. The first part chronologically is dedicated to finishing

the documentation and formatting the deliverable. If needed, a user manual will be

written.

The second part relies on preparing the final presentation of the solution.

21

6.2 ESTIMATED TIME

In order to plan the amount of hours needed to develop the project, I take into

consideration the following factors. The difficulty of the phase; the days that I will be

working on it, previous work on the subject and the credits ECTS of the project.

Phase Estimated work-hour

Select Project 18h

Strategic Plan 106h

System Design 55h

Implementation & Validation 240h

Testing 40h

Finish project 90h

Total 549h

Table 1: Estimated work-hour

The central part of the project focus on implementing and testing the solution created.

According to that, the major part of the time will be dedicated to writing the code and

test it in a real environment.

6.3 FINAL TIME

The product has reached the final step. The code and the documentation are written.

Looking back to the initial estimation the project took the amount of hours described.

It was accurate. The unique fault is that Testing did not take that many hours.

6.4 ACTION PLAN

 As said previously, the methodology followed is a waterfall. It means that there is not

overlap among the tasks. To start a new task, the previous must be finished. It means

that each part represents a milestone. There are a few tasks can be overlapped as

specified in the diagram. However, it can be modifications if it appears some

inconvenience or new key features that should be added.

22

6.5 ESTIMATED TASK PLAN

In order to put the solution into practice, the following set of resources will be used.

There are two groups, the elements used eventually, and the ones used every time.

Occasionally: PC, Server acting as a cloud server, a group of sensors (cameras,

temperature, humidity), GitHub, Webcam. The essential tools are Microsoft Office

2013, Windows 7, IDE and Dropbox.

The following image shows the tasks to be performed. It contains the start and finish

date, the predecessor task, the resources required and the type of job.

Task Name Duration Start Finish Pre Resource Names

Sensors as a Service
Project

40 days
Mon
08/09/14

Mon
26/01/15

Phase 1 - Strategic
Plan (GEP)

101 days
Mon
08/09/14

Mon
26/01/15

Scope 5 days
Mon
08/09/14

Fri
12/09/14

Consultant;Essential
tools[1]

Planning 3 days
Mon
15/09/14

Wed
17/09/14

2
Consultant;Essential
tools[1]

Budget &
Sustainability

3 days
Thu
18/09/14

Mon
22/09/14

3
Essential
tools[1];Accountant

Preliminary
Presentation

5 days
Tue
23/09/14

Mon
29/09/14

4
Essential
tools[1];Consultant;Web
cam[1]

Contextualization &
References

9 days
Tue
23/09/14

Fri
03/10/14

4
Essential
tools[1];Consultant

Final presentation &
delivery

7 days
Mon
06/10/14

Tue
14/10/14

6
Essential
tools[1];Consultant

Phase 2 - System
design

15 days
Mon
13/10/14

Fri
31/10/14

Requirements
Definition

5 days
Mon
13/10/14

Fri
17/10/14

7 Essential tools[1];Analyst

Architecture Design 5 days
Mon
20/10/14

Fri
24/10/14

9 Essential tools[1];Analyst

23

Hardware
requirements

4 days
Mon
20/10/14

Thu
23/10/14

9 Essential tools[1];Analyst

Use case definition 6 days
Fri
24/10/14

Fri
31/10/14

10 Essential tools[1];Analyst

Phase 3 -
Implementation &
Validation

1 day
Mon
03/11/14

Mon
08/12/14

Core architecture
implementation

4 days
Fri
07/11/14

Wed
12/11/14

12
Essential
tools[1];Programmer;Ecli
pse[1];Github[1];Server

Core Architecture
Validation

0,5 days
Thu
13/11/14

Thu
13/11/14

14
Essential
tools[1];Programmer;Ecli
pse[1];Github[1];Server

Use Case n
implementation

8,5 days
Wed
26/11/14

Mon
08/12/14

15
Essential
tools[1];Programmer;Ecli
pse[1];Github[1];Server

Use Case n Validation 8,5 days
Wed
26/11/14

Mon
08/12/14

16

Essential
tools[1];Programmer;Ecli
pse[1];Github[1];Sensors
[1];Server

Phase 4 - Testing 1 day
Tue
09/12/14

Wed
17/12/14

Test whole
implementation
among different
systems

3,5 days
Fri
12/12/14

Wed
17/12/14

17
Essential
tools[1];Tester;Sensors[1
];Server

Phase 5 - Finish
project

1 day
Thu
18/12/14

Fri
23/01/15

Finish documentation 6 days
Thu
18/12/14

Thu
25/12/14

18
Essential
tools[1];Consultant

Format the
deliverable

3 days
Fri
26/12/14

Tue
30/12/14

21
Essential
tools[1];Administrative

Prepare the
presentation

18 days
Wed
31/12/14

Fri
23/01/15

22
Essential
tools[1];Consultant

Present the solution 1 day
Mon
26/01/15

Mon
26/01/15

23
Essential
tools[1];Consultant

Table 2: Tasks

24

The next image displayed below is a Gantt diagram of the workflow.

Figure 2: Gantt diagram

25

6.6 FINAL TASK PLAN

The initial project was supposed to be presented in January. It took much time than I

expected. Limit the boundaries and knowing the tools to use required much time. The

estimated made in September were quite right, but the fact that I had to learn and

establish exactly what I wanted to do made the project longer. In order to adjust to the

reality, from the previous Gantt I added a couple of months more allocated to learn

and establish the goals of the system.

26

7 FEASIBILITY STUDY

7.1 INITIAL CONSIDERATIONS

- The amounts showed in this section are based on the Spanish average

- The personnel costs are obtained from the INE (Instituto Nacional de estadística).

Precisely from the trimestral survey of labor cost divided by jobs. [24]

- Cost per hour covers all the expenses of the worker. It includes the wage, the

vacations, and the bonuses.

- Extra cost per hour covers the taxes (Cotizaciones a la Seguridad Social) and

expenses e.g. Gas.

- The amortizations are calculated in days of use. The same result can be used to

calculate how much will cost to rent the hardware.

7.2 HUMAN RESOURCES COST

The following images represents the budget required to carry out the project.

Step Job Type # Hours
Cost per

hour
Extra cost

per h.
Total

Select project topic and
register it

Choose a subject Consultant 6 17,75 € 5,85 € 141,60 €

Contact the tutor Administrative 4 11,67 € 4,15 € 63,28 €
Apply for the project Administrative 4 11,06 € 4,15 € 60,84 €

Prepare the environment Technical 4 15,09 € 5,90 € 83,96 €

Total 18 349,68 €

1. Strategic Plan

Scope Consultant 16 17,75 € 5,85 € 377,60 €

Planning Consultant 13 17,75 € 5,85 € 306,80 €

Budget & Sustainability Accountant 15 14,03 € 5,06 € 286,35 €
Preliminary presentation Consultant 13 17,75 € 5,85 € 306,80 €

Contextualization &
References

Consultant 21 17,75 € 5,85 € 495,60 €

Final presentation &
delivery

Consultant 28 17,75 € 5,85 € 660,80 €

Total 106 2.433,95 €

2. System Design

27

Requirements Definition Analyst; I+D 15 18,43 € 5,42 € 357,75 €
Architecture Design Analyst; I+D 10 18,43 € 5,42 € 238,50 €

Hardware requirements Analyst; I+D 10 18,43 € 5,42 € 238,50 €

Use case definition Analyst; I+D 20 18,43 € 5,42 € 477,00 €

Total 55 1.311,75 €

3. Implementation &
Validation

Core architecture
implementation

Programmer 50 17,75 € 5,85 € 1.180,00 €

Core architecture
Validation

Programmer 10 17,75 € 5,85 € 236,00 €

Use Case n
implementation

Programmer 150 17,75 € 5,85 € 3.540,00 €

Use Case n Validation Programmer 30 17,75 € 5,85 € 708,00 €

Total 240 5.664,00 €

4. Testing

Test whole
implementation among

different systems
Tester 40 16,42 € 4,61 € 841,20 €

Total 40 841,20 €

5. Finish project

Finish documentation Consultant 30 17,75 € 5,85 € 708,00 €
Format the deliverable Administrative 5 11,06 € 4,15 € 76,05 €

Prepare the presentation Consultant 50 17,75 € 5,85 € 1.180,00 €

Present the solution Consultant 5 17,75 € 5,85 € 118,00 €

Total 90 2.082,05 €

Total 549 12.682,63 €

Adjustment 5% 27 634,13 €

TOTAL 576 13.316,76 €
Table 3: Human resource cost

The adjustment is to cover possible unexpected situations.

28

7.3 EXPENSES

Amortizations

Items
Days Value

Depreciation
per year

Depreciation
per day

Cost

PC 2 150 1.000 € 25% 10,27% 205,48 €

Server 1 120 1.500 € 25% 8,22% 123,29 €

Sensors 4 80 30 € 25% 5,48% 6,58 €

Windows 7 1 150 129 € 33% 13,56% 17,49 €

Microsoft Office 365
small business

1 150 150 € 100% 41,10% 61,64 €

Total 2.809 € 414 €
Table 4: Amortization

Energy

Hours
Kw kWh Cost

Energy consumption
PC

500 0,3 0,13 € 19,50 €

Energy consumption
Server

2200 0,25 0,13 € 71,50 €

Energy consumption
Office

550 1 0,13 € 71,50 €

Total 3250 1,55 163 €
Table 5: Energy consumption

Supplies

Months

Cost
per

month
 Cost

Water supply 4 15 € 60 €

Internet &
telephone

4 50 € 200 €

Office supplies 1 50 € 50 €

Total 310 €
Table 6: Supplies cost

Headquarters

Months
Cost per
month

 Cost

Rent 5 800 € 4.000 €

Maintenance 5 100 € 500 €

Total 4.500 €
Table 7: Headquarters cost

29

Taxes # Months
Cost per
month

Management cost Cost

Cotització a la seguretat
social

5 - -

IBI 5 50 € 250 €

Waste tax 5 - -

IAE - - -

Impuesto de sociedades - - -

Business society
establishment

- - 500 € 500 €

Total 750 €

Table 8: Taxes

Total 6.136,98 €

Adjustment 5% 306,85 €

TOTAL 6.443,83 €

Table 9: Total expenses

There are some considerations. “Cotización a la Seguridad social” is included in the

personnel wages as part of the extra cost per hour. The IBI tax is paid to the council and

varies in each city. Usually, the amount of money is calculated in function of the price of

the local where the business activity takes place. For further information check [25]. The

waste tax is paid to the council and varies in each city. In many cities, you do not have

to pay it. The IAE (Impuesto Actividades Económicas) is paid to the council. Only the

companies that exceed 1 million euros have to pay it. The business establishment

includes the paperwork required to start a company e.g. trade name register. To create

a society, at least, the owner/s must have 3.000€ capital for a limited company and

60.000€ for a corporation. The “Impuesto de Sociedades” is paid depending on the

profit. There are many factors that can change the percentage. It varies from 20% to

30%, but it can be fewer thanks to some tax deduction e.g. hire a new employee. For

further information [26]

30

7.4 SALES

The previous calculations represent the cost of the project. In this section, I will describe

how to make the project profitable.

Product Cost Total Cost % Profit Sale Price

Personnel 13.316,76 € 30% 17.311,79 €

Expenses 6.443,83 € 30% 8.376,98 €

Total 19.761 € 25.689 €

Table 10: Overall product Cost

Marketing # Hours
Cost per

hour
Extra cost per

h.
Budget

Google campaign - - - 4.000 €

Facebook campaign - - - 3.000 €

Other advertisement - - - 2.000 €

Salesman 80 16,42 € 4,61 € 1.682 €

Total 10.682 €
Table 11: Marketing cost

Concept Job Type

Average
Hours

Cost per
hour

Extra
cost per

h.

Total
Cost

%
Profit

Sale
Price

Install a new
sensor on the city

Technical 0,5 15,09 € 5,90 € 10 € 30% 13,64

Sensor cost - - - - 15 € 30% 19,50

Sensor
configuration

Programmer 0,2 17,75 € 5,85 € 5 € 30% 6,14

Administrative
management

Administrative 0,1 11,67 € 4,15 € 2 € 30% 2,06

Extras (traveling,
managing)

- - - - 5 € 0% 5,00

Total 37 € 46 €

Table 12: Install a sensor cost

31

 Concept Gross with profit

Product cost 25.689 €

Marketing 10.682 €

Total cost 36.371 €

Customers 100

Monthly amortization 3,0%

Average user per month expenses 10,911 €

VAT 21%

Average user per month expenses VAT 13,203 €

Table 13: Average user payment

I believe that the product is profitable. The costs and profits describe a reasonable

scenario, also includes variations and unexpected events. The information of the table

1 comes from the calculations made before. Table 2 stands for an approximation of a

marketing campaign. Table 3 represents the cost of mounting a sensor over the city. This

calculation is difficult because it depends on many factors such as internet connectivity,

city facilities and many more. I thought that an approximation to the cost of mounting a

sensor was needed in order to calculate an average payment per sensor. I assumed that

the system will run with a hundred of active subscribers, and an amortization of 3%

monthly which means that the entire initial investment plus a profit of 30% will be paid

in less than 3 years. I sincerely believe that the business analysis is accurate, and the

solution can be a serious competitor in the market.

Variable Value

Cost of a sensor 46 €

Usage hour per month and sensor 200

Company sell price per hour and sensor 0,2317 €

Our income per hour 0,018 €

Average sell price sensor per hour 0,2500 €

Table 14: Average price sensor per hour

32

7.5 SOCIAL IMPACT

The solution to develop is focused in a relatively new field. Nowadays is not widely used

practically. It exists many research investigations but still there is a lack of practical

experiments compared to the possibilities that IoT can bring. A goal of the product is to

make it economically viable but also to test this new environment deep. I honestly think

that my work will contribute creating a useful solution. The project is limited to work in

Barcelona environment. Because it is where it will be tested, and Barcelona is one of the

top smart cities in the world.

The project intends to create a system to work in the public administration. Help the

different departments to share resources, unify and simply the management of remote

sensors. It also improves citizens’ life as they could access to this information and take

profit of the business model designed.

7.6 ENVIRONMENTAL IMPACT

This project has a very little impact on the environment. The central part of the project

is developed using a standard PC. A group of sensors is required to produce the last part.

The power consumption of the PCs is described in the expenses section. The amount is

5037w of electricity. Converted to CO2, it represents three tons of CO2, plus the CO2 of

the transport, the total number results in 3.5 tons of CO2 sent out. This estimation is

based on the Spanish electricity system according to the European Union [27]. For

further information about CO2 consumption check out the IDAE (Instituto para la

Diversificación y Ahorro de Energía) web page.

The project is carried out entirely within the PCs or the sensors. The amount of paper

used is insignificant as well as water or others.

The sensors could emit radio electrical or electromagnetic radiations. However, the

intensity will be very low. Thus, it cannot be considered pollution.

The software developed will be available for future work on the field. In fact, it can help

another project to save resources, therefore, occasionally it can save energy.

The hardware required is reduced to a group of sensors that could be borrowed from

the university and be used after the project for other purposes.

By means of conclusion, I would say the ecological footprint of this project is reasonable.

33

8 PRODUCT SPECIFICATION

8.1 INTRODUCTION

Our product is a web application that facilitate the access of the sensors. The solution

is intended to work among a variety of situations. Companies could loan sensors, and

other companies or final users can use them paying a establish price. This section

describes the software to be developed technology independent.

8.2 STAKEHOLDERS

The following table describes the stakeholders of the project.

Role Description
Subscriber The entity that have the right to access the sensors. The

subscriber pays for the usage of the sensors. The subscriber
can have multiple users associated.

User The entity that consumes the data provided by the sensors.

System
administrator

The person who is in charge of the well behavior of the
system.

Cloud provider The entity that is responsible for maintaining the cloud.

Sensor as a Service
company

The company that manages all the system.

Third party app A third party software that access the sensors via API

Sensor company The company that owns and manages the sensors.

8.3 GOALS

The goals express why the stakeholders will want this solution. Goals are expressed

using SMART criteria. SMART stands for Specific, Measurable, Assignable, Realistic and

Time-related.

 The business model has to be accurate, sustainable and provide a win-win for

customers and companies.

 The platform has to offer a reliable infrastructure. Avoid unwanted access, an

up time similar to other services on the Internet and perform well with

hundreds of users gathering data simultaneously.

 Design and develop a platform for resource sharing among companies and

subscribers.

34

 The user has to be able to access the data from a sensor without any technical

knowledge.

 Develop a functional system that can be presented as a “Projecte Final de

Grau” in April 2015.

8.4 DOMAIN PROPERTIES AND HYPOTHESIS

 The project is designed and developed without the participation of the stockholders. I

made assumptions simulating their behavior:

· Truthfulness: We designed the platform without taking into consideration aspects

involving the correctness of the given information. In a real environment, we should

provide the platform some tools to check the integrity of the data as well as to assure

the identity of the participants. Sensor data, billing information and user details are a

sensitive data that must be kept well secure, strictly follow the laws and provide the

users some way to erase all the data they have produced.

8.5 CONCEPTUAL SCHEMA

Figure 3: Conceptual schema

35

8.6 USE CASES

Figure 4: Use cases

Use case 1 Add Subscriber

Description The administrator of the platform inserts
a new subscriber to the system.

Actors Admin, Subscriber, Service Provider and
System

Trigger New client

Precondition 1. The subscriber signed the

contract with the provider

Postconditions 1. New subscriber is entered into

the system

Steps 1. The administrator enters the

information about the client

2. Platform validates and stores the

information

Exceptions If the information is not correct, the
system informs the administrator in
order to solve it.

36

Use case 2 Delete Subscriber
Description The administrator of the platform

removes a subscriber from the system.
Actors Admin, Subscriber, and System

Trigger Delete Client

Precondition 1. The subscriber wants to end the

contract

Postconditions 1. The subscriber is deleted from

the system and, therefore, all the

users associated with that

subscriber

Steps 1. The admin received the order to

delete the subscriber

2. The admin requests the deletion

of the subscriber

3. Platform validates and deletes

the subscriber

Exceptions If the information is not correct, the
system informs the administrator in
order to solve it.

Use case 3 Add Company

Description The administrator of the platform inserts
a new company to the system.

Actors Admin, Company, and System

Trigger New company

Precondition 1. The company signed the contract

with the provider

Postconditions 1. New company is entered into the

system

Steps 1. The administrator enters the

information about the company

2. Platform validates and stores the

information

Exceptions If the information is not correct, the
system informs the administrator in
order to solve it.

37

Use case 4 Remove Company
Description The administrator of the platform

removes a company from the system.
Actors Admin, Company, and System

Trigger Remove company

Precondition 1. The company wants to end the

contract with the provider

Postconditions 1. The company is removed from

the system

Steps 1. The admin received the order to

delete the company

2. The admin requests the deletion

of the company

3. Platform validates and deletes

the company

Exceptions If the information is not correct, the
system informs the administrator in
order to solve it.

Use case 5 Search sensors by location

Description A user wants to search the available
sensor within an area.

Actors User and System
Trigger Search sensors

Precondition 1. The user is logged in

2. The user has the required

privileges

Postconditions 1. A group of sensors close to the

specified area is showed

Steps 1. The user access the sensors tab

2. The user specifies the desired

area

3. The system validates the input

Exceptions

38

Use case 6 Search sensors by type
Description A user wants to search the available

sensor by its type
Actors User and System

Trigger Search sensors

Precondition 1. The user is logged in

2. The user has the required

privileges

Postconditions 1. A group of sensors of the

specified type is showed

Steps 2. The user access the sensors tab

3. The user specifies the desired

area

4. The system validates the input

Exceptions

Use case 7 Add user

Description The subscriber adds a new user.

Actors User, Subscriber, and System

Trigger New user
Precondition 1. The subscriber is logged in

Postconditions 1. A new user is created and stored.

Steps 1. The subscriber access the

administration section

2. The subscriber selects create a

new user

3. The subscriber introduces the

information related to the new

user (e.g. email, password)

4. The system validates the

information

Exceptions If the information entered is not correct,
the system informs the user in order to
solve it.

39

Use case 8 Delete user
Description A subscriber deletes a user account.

Actors User, Subscriber, and System

Trigger Delete user

Precondition 1. The subscriber is logged in

Postconditions 1. The user is deleted. It has no

longer the ability to login, but the

actions made by the user might

remain in the database.

Steps 1. The subscriber access the

administration section

2. The subscriber selects remove the

user account

3. The system asks for a

confirmation

4. The subscriber confirm

5. The system deletes the account

Exceptions

Use case 9 Change usage and payment parameters

Description A subscriber wants to change the
payment information

Actors Subscriber and System

Trigger Change payment attributes

Precondition 1. The subscriber is logged in

Postconditions 1. The payment information is

changed.

Steps 1. The subscriber access the

administration section

2. The subscriber selects change

payment information

3. The system asks for a

confirmation

4. The subscriber confirm

5. The system makes the changes

Exceptions

40

Use case 10 Obtain statics
Description The user wants to see statics related to

the sensors
Actors User and System

Trigger Obtain statics

Precondition 1. The user is logged in

2. The user has the required

privileges

Postconditions 1. The statics are showed

Steps 1. The user selects obtain statics

Exceptions

Use case 11 Set up notifications

Description The user can configure the notifications.
The types of notifications, the frequency,
the way of notifying and the importance.

Actors User and System

Trigger Set up notifications

Precondition 1. The user is logged in

2. The user has the privileges

Postconditions 1. The notifications setting has

changed

Steps 1. The user access the settings

section

2. The user marks change

notifications

3. The user specifies the new

configuration

4. The system validates the selection

Exceptions If the information entered is not correct,
the system informs the user in order to
solve it.

41

Use case 12 Obtain information about the system
Description The web page will have a help section

where are described the portioning
mode of the software. This information
can be written in a FAQ style, as a guide
or both.

Actors User and System

Trigger Get help

Precondition 1. The user is logged in

Postconditions 1. The user has read the software

guide

Steps 1. The user access the help section

2. The user navigates trough the

help section in order to obtain the

desired information

Exceptions

Use case 13 Add sensor to favorites

Description The user wants to add a sensor to the
favorite list

Actors User and System

Trigger Add sensor

Precondition 1. The user is logged in

2. The user has the required

privileges

Postconditions 1. The sensor is added to the list

Steps 1. The user selects a sensor to add

2. The system adds the sensor

Exceptions

42

Use case 14 Delete sensor to favorites
Description The user wants to delete a sensor to the

favorite list
Actors User and System

Trigger Delete sensor

Precondition 1. The user is logged in

2. The user has the required

privileges

3. The sensor is in the favorites list

Postconditions 1. The sensor is deleted to the list

Steps 1. The user selects a sensor to

delete

2. The system deletes the sensor

from the favorites list

Exceptions

8.7 REQUIREMENTS

A requirement is something that the product must do, or a property that the product

must have, and that is needed or wanted by the stakeholders.

Each requirement in this section should be:

 Correct

 Traceable (both forward and backward to prior/future artifacts)

 Unambiguous

 Verifiable (i.e., testable)

 Prioritized (with respect to the importance and/or stability)

 Complete

 Consistent

 Uniquely identifiable (usually via numbering)

In order to accomplish the prioritized condition and make the process of implementing

as clear as possible the requirements can be:

 Essential: Implies that the software will not be acceptable unless these

requirements are provided in an agreed manner.

 Conditional: Implies that these are requirements that would enhance the

software product, but would not make it unacceptable if they are absent.

43

 Optional: Implies a class of functions that are worthwhile, but depending on

the available resources they might not be implemented.

8.7.1 Functional Requirements

• Abstract. Implementation independent.
• Unambiguous. Can be interpreted in only one way.
• Traceable. Its source is known.
• Validatable. There are means to prove that the system satisfies the requirement.

Functional requirements are the fundamental or essential subject matter of the
product. They describe what the product has to do or what processing actions it is to
take.

Reference FR 1
Definition The users have to be able to search sensors

Description The users can search among all the available sensors the one they
desire

Stakeholder User

Degree of
necessity

Essential

Reference FR 2

Definition The users can visualize a sensor data

Description The users can visualize the data of a sensor by selections one of
them. The kind of data can vary. E.g., text, audio or video.

Stakeholder User
Degree of
necessity

Essential

Reference FR 3
Definition The users can manage favorite sensors

Description The users can add sensors to a favorite sensor pool

Stakeholder User
Degree of
necessity

Essential

Reference FR 4
Definition The sensor data is accessible via API

Description The data gathered from a sensor can be accessible via API to third
party apps.

Stakeholder Third party app

Degree of
necessity

Essential

44

Reference FR 5
Definition A subscriber can manage users belonging to itself

Description The subscribers can add users that depend on themselves. All of
these users will share the same sensor quota and billing

Stakeholder User, Subscriber

Degree of
necessity

Essential

Reference FR 6

Definition A subscriber can change its billing information

Description The subscriber can add or modify the way to pay for the services
from our company

Stakeholder Subscriber

Degree of
necessity

Essential

Reference FR 7
Definition The companies can manage its sensors

Description The companies can add/remove and change the prices for their
sensors

Stakeholder Company

Degree of
necessity

Essential

Reference FR 8

Definition The admin of the platform can add/remove companies and
subscribers

Description The admin of the platform “Sensor as a Service” manages the
subscribers and companies.

Stakeholder Company
Degree of
necessity

Essential

Reference FR 9
Definition The system can reallocate sensors.

Description If one sensor fails, the system offers to the user another similar
sensor.

Stakeholder User

Degree of
necessity

Essential

45

8.7.2 Non-Functional requirements

Non-functional requirements are requirements that specifies criteria that can be used

to judge the operation of a system, rather than specific behaviors.

8.7.2.1 Interface Requirements

USER INTERFACES

Reference UI1

Definition The design must be clear and functional.

Description The design has to permit a correct navigation, and the vocabulary
shall not lead to confusion. The web does not need to be
attractive, but it must be clear.

Stakeholder User
Assessment Any person that can use the an ordinary web page should be able

to interact with the product

Degree of
necessity

Essential

Reference UI2

Definition The software will be accessible in various languages.

Description The primary language of the web will be English. However, it is
recommended to offer it is Spanish and Catalan too.

Stakeholder User
Assessment Check the correctness of the translations

Degree of
necessity

Optional

Reference UI3

Definition The web page is displayed without errors in the most used web
browsers.

Description The web page follows the w3c standard and remains as designed
without problems in the most used web browser (e.g. Chrome,
Firefox, and Internet Explorer).

Stakeholder User

Assessment Navigate using the browsers
Degree of
necessity

Essential

46

Reference UI4
Definition The system is accessible via API.

Description Access the data throughout an API.

Stakeholder Third party app

Assessment An API wiki or doc is generated
Degree of
necessity

Optional

HARDWARE INTERFACES

Reference HI1

Definition All the sensors must have the same interface.

Description The backend has to be able to connect to a varied range of sensors
without knowing its internal structure nor implementation.

Stakeholder System

Assessment Connect to different sensors without any issue

Degree of
necessity

Essential

COMMUNICATIONS INTERFACES

Reference CI1

Definition The content retrieved may have different types.

Description The communication between the platform and the sensors should
permit flexibility. E.g., streaming, scheduled data.

Stakeholder User, Cloud Platform
Assessment Test different kinds of data retrieving

Degree of
necessity

Conditional

Reference CI2

Definition The system must support the most used connection protocols.
Description The sensors can send the information using a variety of

technologies. (E.g., 3g, GPRS, Wi-Fi).

Stakeholder Cloud Platform

Assessment Establish a connection using the available communication
technology

Degree of
necessity

Conditional

47

Reference CI3
Definition Maximize the battery of the sensors by means of the

communication.
Description If the sensor does not have a source energy stable, e. g. Battery,

solar energy, the system must retrieve the data at the best time,
using the less energy possible and maintaining the user experience.

Stakeholder User
Assessment To test different kinds of data.

Degree of
necessity

Optional

8.7.2.2 Operational Requirements

PERFORMANCE

Reference NFP1

Definition The system has to deliver the sensor information in real time.

Description The information of the sensor has to be accessible as fast as
possible. The time needed may vary depending on the hardware.

Stakeholder User, Cloud Platform

Assessment The access to a unique sensor should take less than five seconds

Degree of
necessity

Essential

Reference NFP2

Definition The system has to be scalable.
Description The architecture has to enable a fast growing. It means that the

system has to prepare for an exponential growing in users, sensors,
and queries.

Stakeholder Cloud Platform
Assessment Adding more data does not imply architectural changes

Degree of
necessity

Essential

8.7.2.3 Reachability

Reference R1

Definition The Cloud Platform has to reach all the available sensors.

Description For each query, the system has to deliver all the mapped sensors
that match that query.

Stakeholders User, Cloud Platform
Assessment Do a test assuring this requirement

Degree of
necessity

Essential

48

8.7.2.4 Availability

Reference A1

Definition The system has to be available all the time.
Description The cloud platform must be accessible at least 99,9% of the time.

Stakeholders Users, Cloud Platform

Assessment Get access without a registered account shall not be possible

Degree of
necessity

Essential

8.7.2.5 Security

Reference NFS1
Definition The system must deny access to unauthorized users.

Description The stakeholder will require a trusted system and be confidence
about the security and privacy of the data.

Stakeholders Users

Assessment Get access without a registered account shall not be possible.

Degree of
necessity

Essential

8.7.2.6 Maintainability

Reference NFM1

Definition The system must be restorable.

Description In order to prevent data loss, the system backs up the information
daily without any actions of the users neither the administrators.
Moreover, all the actions committed must be registered in a log
file.

Stakeholders System admin

Assessment The system is performing backups, which can be used to restore.

Degree of
necessity

Essential

8.7.2.7 Partition tolerance

Reference NFA1

Definition The cloud platform is partitionable.
Description The elements of the system can be allocated to several nodes.

Stakeholder System admin

Assessment The system allows splitting the data into various nodes.

Degree of
necessity

Essential

49

8.7.2.8 Legal requirements

Reference L1

Definition The system must follow the legislation and the requirements
marked by the administration.

Description Assure that the software respects the actual legislation and
primarily follows the LOPD.

Stakeholders Users
Assessment Analyze if the system follows the LOPD

Degree of
necessity

Essential

8.7.2.9 Database

Reference DB1

Definition The sensor database must be fast.
Description The queries must be answered immediately to provide a useful

product.
Stakeholder Cloud platform

Assessment Less than 0,5s is acceptable. Depending on the available hardware.

Degree of
necessity

Essential

Reference DB3

Definition The sensor database has to be highly available.

Description To assure a good service, the available rate has to be superior to
99%.

Stakeholder Cloud Platform

Assessment -

Degree of
necessity

Essential

Reference DB4

Definition The sensor database must be largely scalable.

Description The amount of users and sensors may vary within hours. The
system must be prepared to allow this changes.

Stakeholder Cloud platform

Assessment Add more data will not end to changes in the architecture.

Degree of
necessity

Essential

50

8.8 SATISFACTION ARGUMENT

Goal 1: The business model has to be accurate, sustainable and provide a win-win for

customers and companies.

This goal is achieved and explained in the section 6 of this document.

Goal 2: The platform has to offer a reliable infrastructure. Avoid unwanted access, an

up time similar to other services on the Internet and perform well with hundreds of

users gathering data simultaneously.

This goal is achieved by means of:

Requirement NFP1: “The system has to deliver the sensor information in real time.”

Requirement NFP2: “The system has to be scalable.”

Requirement A1: “The system has to be available all the time.”

Requirement NFS1: “The system must deny access to unauthorized users.”

Requirement DB3: “The sensor database has to be highly available.”

Requirement DB4: “The sensor database must be largely scalable.”

Goal 3: Design and develop a platform for resource sharing among companies and

subscribers.

This goal is achieved by means of:

Requirement FR1: “The users have to be able to search sensors.”

Requirement FR2: “The users can visualize a sensor data.”

Requirement FR3: “The users can manage favorite sensors.”

Requirement FR7: “The companies can manage its sensors.”

Requirement FR8: “The admin of the platform can add/remove companies and

subscribers.”

Goal 4: The user has to be able to access the data from a sensor without any technical

knowledge.

This goal is achieved by means of:

UI1: “The design must be clear and functional.”

UI3: “The web page is displayed without errors in the most used web browsers.”

51

HI1:” All the sensors must have the same interface.”

FR2: “The users can visualize a sensor data.”

Goal 5: Develop a functional system that can be presented as a “Projecte Final de

Grau” in April 2015.

This goal is achieved and explained in the section 5 of this document.

52

9 DESIGN

The system has been designed to be allocated on top of an existing Infrastructure as a

service (IaaS) provider. This project will not go into hardware requirements such a

firewall, hard disk drive nor network. The scope is to define and implement the software

capable for a provide sensors as a service.

Products that run on dedicated servers or Virtual Machines that support a hundred or

so users simultaneously accessing thousands of devices may not scale well. Even if

horizontal scaling is possible, inefficient use of resources can raise the cost of providing

SaaS services above the target.

Latency issues can cause poor performance on public clouds if proper optimization is

not done. Security must be fundamental to the architecture given the nature of shared

resources.

The figure 3 represents the structure of the system described divided into layers. Each

layer is explained in the followings sections.

Figure 5: System architecture

User interface

Sensor as a service logic

Database

Cloud Management

Communication

Physical sensor

53

9.1 USER INTERFACE

The Sensors as a Service platform will be accessible through a web page. The web

provides access to the pool of sensors, quotas, and news feed. One can login as a user

to consume date or as a company to manage the sensors and payment info. The web is

Restful. Also, the web is an API that delivers the information in JSON.

9.2 SENSOR AS A SERVICE LOGIC

In order to run the web and web server, we use Ruby on Rails [28]. Ruby [29] is a

dynamic, object oriented, open source programming language among many other

features. I chose Ruby because of the framework Ruby on Rails. Rails is a full stack web

server MVC, Model View Controller, and development platform for dynamically

created database backend websites. The term full stack means that rails do all the

process from getting the request and processing going to the database, modeling the

web and sending HTML, CSS, JavaScript content or error handling. Rails is a Ruby Gem

that implements full web server and dynamic DB driven website generator.

Ruby on Rails or RoR is based on convention over configuration and DRY (Don’t repeat

yourself). These aim to facilitate the programmer’s task as well as reduce the number

of bugs. RoR is a young framework but reputed. It has been used by Twitter, GitHub,

Soundcloud, and it is used as well for many new startups.

The application is model-driven written in Ruby. Grounded in the MVC and using gems

as external services.

A web interaction works as follow:

1. A user asks the web server for the sensors in an area.

2. The web server sends the request to the Cloud Management system.

3. The Cloud Manager replies

4. The user opens a sensor

5. The Cloud Manager stores the session

9.3 DATABASE

Based on the requirements, flexibility, an enormous amount of devices, fast access, and

retirement a NoSQL solution will fit. It allows a very flexible and scalable solution,

enabling us to specify with detail the implementation. On top of that, many of the NoSQL

54

solutions are free to use, and the source code is available which permits an easy

integration with our system.

Inside the NoSQL tag, there are several kinds of solutions for different purposes each

one, e.g. Document store, key-value, graph, object store.

A Graph database is designed for data whose relations are well represented as a chart.

Elements interconnected with an undetermined number of relations between them.

This structure fits perfectly with our solution.

Although all the key features that could offer a NoSQL solution, the focus of this project

is not to design a database. Therefore, and since our tests will not have thousands of

sensors we will stick to a Relational database management system for the purpose of

this project.

9.4 CLOUD MANAGEMENT

A cloud stack consists of following major components:

1. Hardware infrastructure

2. Operating system infrastructure

3. Cloud API layer that enables consumption and orchestration of underlying

cloud infrastructure

4. Cloud Management layer that provides governance, resource planning, and

financial planning.

5. Applications running on top of cloud infrastructure

Specify, designing and implementing all of these layers would require entire projects for

themselves. These projects focus on the Cloud Management layer and the application

running on top of it.

9.4.1 Cloud API layer

Cloud APIs allow software to request data and computations from one or more

services through a direct or indirect interface. Cloud application programming

interfaces specify how software applications interact with a cloud-based platform

where these applications can be deployed.

55

They offer ways by which the applications can request information from the platforms

and use their facilities. The API should be a platform not only independent but also

language independent.

There are dozens of Cloud APIs with or without infrastructure available. Many of them

are well known for the developer’s community such as Amazon EC2, Microsoft Azure

or Google computer engine. But not all of them fit in this project. The Cloud layer must

be:

- Open Source: To enable changes in the code, better understanding of what is

going on

- It does not require a large pool of hardware to use it

- Free to use the license

The following clouds might work:

- OpenStack by OpenStack Foundation

- CloudStack by Apache

The following points describes each solution in order to make the most accurate

choose.

9.4.1.1 Apache CloudStack [30] [31]:

CloudStack is open source cloud computing software developed to create, manage and

deploy cloud infrastructure. It was launched by Cloud.com and made generally available

in May of 2010 as free software under the GNU General Public License. In July 2011,

Citrix purchased Cloud.com that resulted in Citrix donating CloudStack to the Apache

Software Foundation (ASF), where it was accepted as part of the Apache Incubator.

Today CloudStack is a single top level ASF project built around a committee of

developers. Even though the project has a smaller community of committers than

OpenStack, it is a cohesive single project that is commercially backed by a primary

contributor, Citrix. Today over 50% of the Apache CloudStack code development is

produced by a team of Citrix developers, many of who came from the Cloud.com

acquisition. Not only is Citrix involved in the development of new features and bug fixes

for the CloudStack platform, but also Citrix produces a commercial distribution of

CloudStack called Citrix CloudPlatform. . Originally, CloudPlatform was a customized

distribution of the CloudStack code base, which contained a significant feature

divergence. As of the release of CloudPlatform 4.2 in September of 2013, all Citrix

customizations have been committed back to the Apache CloudStack project; further

justifying that Citrix is committed to the open source project and is continually working

on products and services utilizing the core platform. The goal of the Apache CloudStack

project is to continue to develop a stable cloud orchestration layer that is capable of

56

supporting various workloads. The cohesive project continually supports infrastructure,

hypervisors and varying platforms with a commitment to a robust upgrade path, quality

assurance, and regression.

9.4.1.2 OpenStack [32] [31]

OpenStack is an open source cloud computing platform for public and private cloud

environments. Jointly launched in July of 2010 by Rackspace Hosting and NASA, the

project intended to help organizations offer cloud-computing services running on

standard hardware. The early code for OpenStack came from NASA’s Nebula platform

and Rackspace’s Cloud Files platform. In 2011, developers of the Ubuntu Linux

distribution adopted OpenStack with an unsupported technology preview of the

OpenStack “Bexar” release for Ubuntu 11.04. Ubuntu’s sponsor Canonical then

introduced full support for OpenStack clouds, starting with OpenStack’s Cactus release.

In 2012, Red Hat announced a preview of their OpenStack distribution, beginning with

the “Essex” release and introduced commercial support in July 2013. During the same

time, NASA released an internal audit citing lack of technical progress and other factors

as the primary reason for dropping out as an active developer of the project. Currently,

OpenStack is comprised of ten sub-projects, each having their technical lead. The

community collaborates around a six-month, time-based cycle in which a new lead is

assigned to each sub-project, resulting in ever changing and distributed leadership. The

project is managed by the OpenStack Foundation, a non-profit corporate entity

established in September 2012 to promote OpenStack software and its community.

The following table made by Appcore [33] summarizes both systems:

57

 Table 15:Cloudstack vs OpenStack

Both systems have similar features. While CloudStack was designed as a singular

system that operates in a cohesive manner; OpenStack is a combination of different

project, and it is a bit harder to set up. However, both projects evolved well, and it is

tedious whether to choose one or the other.

I chose OpenStack because of its flexibility, and it can be used it with Ubuntu natively. I

also decide it because it has a larger community of developers and more

documentation.

58

Before going to the technical specification and the setup. Let’s explain OpenStack more

precisely.

Described by OpenStack Foundation:

“OpenStack aims to produce the ubiquitous Open Source Cloud computing platform

that will meet the needs of public and private clouds regardless of size, by being simple

to implement and massively scalable.”

OpenStack is open source software that delivers a framework of services for API

based infrastructure consumption. The "plug-in" architecture of OpenStack services

enables various vendors to integrate their infrastructure solutions to deliver an

OpenStack cloud.

OpenStack is a software layer that sits on top of the software infrastructure and

allows an API based consumption of infrastructure. OpenStack enables "self-

service" model in which application owners can directly request and provision the

compute, network, and storage resources needed to deploy their application.

The primary benefits of self-service are increased agility from applications owners

getting "on demand" access to the resources they need and reduced operating

expenses by eliminated manual + repetitive deployment tasks.

In a few points OpenStack is:

 Cloud computing project providing an IaaS

 Open Source infrastructure and application middleware for building private and

public clouds

 Cloud operating system/framework that controls large pools of compute,

storage, and networking resources throughout a data center

 Global community of technologists, developers, researchers, corporations and

cloud computing experts

 OpenStack started in 2010 as a joint of Nebula project from NASA and Swift

project from Rackspace. It is managed by the OpenStack Foundation, a non-profit

corporate entity and supported by more than 200 companies including AT&T,

AMD, Cisco, Dell, HP, IBM, Intel VMWare, RedHat and Yahoo [32]

 Lately, the releases came out every six months and are named after the city or

street near the meeting places. Also, the releases are sorted by name being

Austin the first, Bexar the second and so on until Juno. It was launched on 16th

October 2014

59

The four ‘O’ of OpenStack:

- Open Source

o All code is Apache 2.0 licensed

- Open Design

o Anyone can attend or propose new features or code

o Summits held two times per year

- Open Development

o All code available at https://github.com/openstack

- Open Community

o Official docs at http://docs.openstack.org

o Ask OpenStack at https://ask.openstack.org/en/questions/

OpenStack is a framework divided into multiple top-level projects. Each one has its

developers and design teams. Here is a list of the projects:

- Identity (Keystone)

- Compute (Nova)

- Networking (Neutron)

- Object Store (Swift)

- Block Storage (Cinder)

- Database Service (Trove)

- Image Service (Glance)

- Dashboard (Horizon)

- Metering Service (Telemetry/Ceilometer)

- Orchestration Service (Heat)

- Data Processing (Savanna)

Architecture:

- Has a well-defined public API, with the exception of Horizon (dashboard), which

is the web GUI; all the other projects have an RESTfull (JSON/HTTP) API

- Users of OpenStack can only talk to it via these APIs

- Service store state in the database

- Services use queue for orchestration

https://github.com/openstack
http://docs.openstack.org/
https://ask.openstack.org/en/questions/

60

Figure 6: OpenStack schema

9.5 COMMUNICATION

Analyze and evaluate which is the option that best performs for this project could be

itself another project [34] [35]. Therefore, I will not deal with the specification to be

used in this field. However, the software must be able to adapt to heterogeneous

connection protocol. The tricky part is the link of the sensors to the Internet. It could be

wired or wireless. As a wireless connection, the communication can be done using IEEE

802.11 or Wi-Fi, GSM, IEEE 802.16 (WiMAX), Bluetooth, Satellite or RFID. In the wired

group the IEEE 802.3 (Ethernet), fiber or digital subscriber line.

Communicate the platform with the users and the sensors can vary depending on the

needs. The sensor data communication protocol can be UPD or TCP and the format

JSON. For the user interface, the communications will happen under TPC and using

HTTP/S, and we will use the standard web formats e.g. HTML, CSS or JavaScript.

61

9.6 PHYSICAL SENSOR

As I discussed previously, each group of sensors will be an OpenStack “Compute”

instance. We could design the system as a group of sensors connected to a large

datacenter, and the group sends raw data to it. However, we wanted to create a truly

distributed sensor infrastructure where the sensors are autonomous and can work

without the main server. How can we achieve it? We can install a regular PC with

OpenStack on it using any Linux compatible distribution. It will work correctly, but it is

not the optimal solution. It is not because we are dealing with sensors such as

cameras, temperature sensing, noise detection and so forth. Therefore, we intend to

provide a realistic system where you can put thousands of sensors all around the city

without having to buy all this amount of underused PCs. The solution is to use a cheap,

small, power efficient computer instead. However, it has to be powerful enough. We

can use a mini-PC or a NUC [36] but it is not cheap enough. We found a more

convenient solution a Raspberry Pi [37]. It fits perfectly it is cheap, around 30$, tiny

8.5cm x 5.6 cm, light 45 grams and a maximum of 1 Watt. The drawback is the lack of

computing; just an ARM 700MHZ CPU with 512 MB of RAM may not be enough. A

newer version of raspberry pi2 b+ has launched with ARMv7 quadcore 900MHz and

1GB RAM.

The raspberry I used has installed Raspbian as Operating System, which is based on

Debian 7.0. Raspberry Pi has also installed Ruby on Rails to provide remote access to

the data. An OpenStack instance can be configured as well.

62

10 IMPLEMENTATION

The platform implemented differs from the one designed in one aspect. One of the

objectives of the project was to build a working solution; not only design it. However,

in order to develop this project, we must rent and configure an OpenStack instance

with at least three servers. Although I have implemented a module to connect to an

OpenStack platform. OpenStack project launched a free OpenStack sandbox [38]. It can

be used for testing and developing but not for production because the projects are

deleted every 24 hours. Therefore due to the impossibility to have one I simulated.

The following figure represents the diagram of the system developed.

63

Figure 7: Sensor As a Service diagram

64

Figure 8: Database schema

As mentioned in the design chapter the web server and the backend is running with

Ruby on Rails. RoR is an MVC. It allowed to write a modular and reusable code.

When a user, through the browser, sends a request to the web server it forwards to

the routes.rb which is a ruby file where the routes are specified. A route is a piece of

code that links the requested URL to its controller destination. Afterward, it forwards

to the dispatcher that sends the request to the appropriate controller and takes care

of reloading the app and check the dependencies. Then, if there is not any previous

login information or cookies, the dispatcher will load the enter controller. This

controllers takes care of the login process. If the login is successful, the user

information is stored locally (on the server) in a global variable called “Session” which

is managed by rails. We can access this variable at any time to gather the user data,

E.g., The id of the user. Once it is logged in, the homepage is rendered. This page

shows the news in the platform, E.g., New sensors available. At this point, the user can

navigate through all the tabs. Search to explore the sensors by means of a map. Statics

to gather the sensor utilization. Favorites to see all the sensors marked as a favorite

and Settings to change user preferences and information.

In order to gather the information from the sensor. Each sensor has a Ruby on Rails

65

web server installed in it. This seamless interaction provides an easy way to develop

maintaining all the requirements. When a user wants, some date from a sensor the

controller through the database connector asks for the direction of the sensor. With

the IP or the URL of the sensor, the controller asks the sensor connector for the data.

10.1 SOFTWARE USED

In order to develop this solution, I have used the next frameworks, modules or pieces

of software.

RubyMine 7.1: The IDE used to build the ruby on rails code

RubyGems 2.4.6: It is a package manager for the Ruby programming language that

provides a standard format for distributing Ruby programs and libraries

Ruby 2.2.0: The language that runs the solution

Rails gem 3.3.21: The gem framework that manages the website

Nokogiri gem1.5: it is required for Rails to parse HTML, XML or CSS

Mysql2 gem 0.3.18: It provides a connector to the Database

Bundler gem 1.8.3: It manages the dependencies

Geocoder gem 1.2.8: It provides useful methods concerning maps. I used to convert

addresses to coordinates

Gmaps4rails gem 2.1.2: It provides an encapsulation to work with maps

Rake gem 10.4.2: It builds and check dependencies from rakefiles (makefiles)

JSON gem 1.8.2: It allows to deal with JSON files

Fog gem 1.29: It is a complete library that provides a layer for cloud connections. It

allows to connect to Amazon EC2, Azure, and OpenStack.

10.2 VIEWS

This section shows how the web looks like.

66

Image 1: Homepage

The image 1 represents the home page. It is the place where the user can follow the

news inside the platform. It shows new sensors, changes in the quota or any new that

could be interesting for the user.

Image 2: List of favorite sensors

The image 2 corresponds to the favorites page. It shows a list of the sensors of the user

interest to quickly access them.

Image 3: Search sensors

67

The image 3 corresponds to the search page. The user can navigate in the city where

the sensors are. At the left sidebar, there are filters to eliminate the undesired sensors.

In this case, the filters are a different type of sensor. The image 4 is the result of a click

to the sensor.

Image 4: Sensor click

Image 5: Usage statics

The image 5 corresponds to the statics page. It shows the usage of all the sensors by

the user. It also shows the money the user will have to pay for the time he used that

particular sensor.

10.3 TESTING

Requirements elicitation is governed by Humphrey's requirements uncertainty

principle:

"For a new software system, the requirements will not be completely known until after

the users have used it."

To assure a good quality of the solution, it should pass a testing evaluation and a

usability test. Since the solution is not available for everyone, I will make the tests

trying to abstract myself from the internal details I know.

68

The test has six points: Functionality testing; Usability testing; Interface testing;

Compatibility testing; Performance testing and Security testing.

10.3.1 Functionality testing

Functionality testing stands for test all the links, database connections, forms, and

cookies.

Test all internal links


Test all outgoing links


Test if there are any orphan page


Check validation on each form field Checked Login form

Check default form field Checked Login form

Cookies The web does not use cookies

Validate HTML/CSS Found 2 error:
1)HTML5 recommends

http://www.w3.org/1999/xhtml
instead of /html

2) An “img” tag must have an
alt attribute

Check for data integrity and errors
while editing, deleting, modifying
the forms or do any DB related
functionality.



10.3.2 Usability testing

Test for Navigation All the web follows the same structure. Using the
same framework for visual items connects the
elements seamlessly, and the users can follow it
comfortably. The buttons have an icon that helps to
identify, quickly, the idea behind it. The structure of
the website is simple and clear. The downside is that
the web does not provide instructions or any guide
to help with the doubts they may have. It is also
recommended to have a sitemap.

Content checking I did not find any spelling mistake. The content is
meaningful filling the available space. The web does
not have dark colors or annoying colors nor
annoying fonts.

http://www.w3.org/1999/xhtml

69

10.3.3 Interface testing

Interface testing Checked if all the interactions between the servers
are executed properly. Errors are handled correctly. If
database or web server returns any error message for
any query, the application server catches and displays
these error messages appropriately to users. If the
transactions are interrupt, the operations are
interrupted but the user does not have to re login
because the session did not expire.

10.3.4 Compatibility testing

Browser compatibility The web renders correctly under Google Chrome 41;
Mozilla Firefox 35 and Safari 8.

OS Compatibility The web renders correctly under Microsoft Windows
7 and MAC OS 10.10.3.

Mobile browsing The web renders correctly(slowly) under Apple iPhone
6

10.3.5 Performance testing

This test cannot be done properly because the web runs in a local environment and

would not respond like a web server on the internet

10.3.6 Security testing

A security testing should be done by a third party organization that audits the software

searching for vulnerabilities. However, the software provided should at least avoid the

most common vulnerabilities. In order to achieve a secure enough product, several

tests will be performed.

A user cannot access a resource without
login. Even if the user knows the URL



Try some invalid inputs in input fields like
login username, password, and input
text boxes. Check the system reaction to
all invalid inputs.



Web directories or files should not be
accessible

The folders and the nonpublic files are
not accessible

All transactions, error messages, security
breach attempts should get logged in log
files somewhere on a web server.

Yes, Ruby on Rails stores all the
transactions done.

Test if SSL is used for security measures. The website has not implemented any
SSL mechanism

70

The major web errors or vulnerabilities have been addressed. However, if this web

goes public, there are some changes that must be done. First, the web server needs an

SSL certification to provide a secure connection.

71

11 API

The platform provides a REST API to obtain all the sensors, the information related to

them and also to gather the sensor data. To access it, the user must follow the

following specification: s,

1) /api/user&password/getSensors

2) /api/user&password/gatherSensorData/:idSensor

Image 6: API response

Image 6 refers to the answer to the first query, get all the sensors. The answer is in

JSON format. The first column corresponds to the id of the sensor; the second to the

company that owns it; the third column to the price per hour and the followings

correspond to the street number, street name and city where the sensor is allocated.

The second query answers in JSON too If the kind of data retrieved can be represented

in JSON.

72

12 RESULTS

12.1 CONCLUSIONS

While developing this project, I have faced several difficulties. The first was to establish

the aspects related to the methodology and way of work. Clearly, I failed in the

estimation of the amount of work and more precisely in the difficulty of it. I failed

because I did not finish the project within the initial schedule. None of the steps were

straightforward, but the part that challenged me the most was the learning. I had to

study many new concepts, frameworks and systems. For example I has to spare a lot of

time setting up and discovering how OpenStack works and eventually I did not use it as

I wanted. In addition, another inconvenient was to learn a new language and

framework. Ruby on Rails was an optimal framework and I enjoyed learning it.

However, it took much time than I thought.

Antoher mistake was that I was too ambitious. I should have set the boundaries more

strictly, but it was complicated due to the lack of experience in some of the fields the

project was involved.

On the other hand, I am thrilled to present this project. All the effort I have put on it. If

I look backwards I can see all the work done and I am satisfied.

12.2 FUTURE WORK

This project has established the core of sensors as a service. From this point, the

project can evolve into a product that can be used in reality. To do that, the ones

continuing the work should perform a more sophisticated analysis of the world.

Contact with investors and interested customers. The project is completed but not

enough to go live. It requires more compatibly with a huge range of sensors. It also

requires more options and functionalities.

 I think the project can also evolve into one more focused on the internet of things

which is a very interesting topic for the next few years.

73

13 GLOSSARY

VM: Virtual Machine

SaaS: Software as a Service

SRS: Software Requirements Specification

IaaS: Infrastructure as a service

FAQ: Frequently asked questions

API: Application Programming Interface

IEE: Institute of Electrical and Electronics Engineers

IoT: Internet of Things

RoR: Ruby on Rails

MVC: Model View Controller

JSON: JavaScript Object Notation

74

14 APPENDIX 1

14.1 OPENSTACK SET UP

OpenStack can be used in several ways. The easiest way is by the web trystack.org. As I

mentioned in the 8 section, the OpenStack foundation created this tool to practice

with OpenStack without the troubles of configuring it. To do it, I had to “like” the

Facebook page of trystack and wait a couple of days to be able to grant access to the

web. After doing the configurations and set up a compute instance I was able to

connect to the instance from the ruby on rails server. It was pleasant to discover that I

was able to do so. However, it was for discovering, it is not possible to work with it,

since all the instance are deleted after 24 hours.

Another way to have an OpenStack platform running is to rent it. There are services

that offer OpenStack as a service. Amazon EC2 and Rackspace are the most common

providers.

A third way to set it up is by installers. There is a couple of ways to do so. DevStack

which comes from OpenStack. It has a set of scripts that help with the tedious process

of configuring OpenStack. It even has a way to set it up on only one computer. Another

installer is RDO. RDO is a community of people using and deploying OpenStack on Red

Hat Enterprise Linux, Fedora and distributions derived from these.

Moreover, the hardest way to configure it is manually. From now on I will explain how

I did it.

I used several virtual machines. Each virtual machine (VM) has installed Ubuntu

14.04.1 LTS server 64 bits [39]. It is a command line Linux distribution optimized for

server purposes and will be supported for five years.

Each Virtual Machine has a role. The implementation of the cloud environment has

three VMs. A controller node, which has the DB and configurations; the compute node

that runs the operations and the network node to manage the connections. The

following sections represent the configuration to run OpenStack.

75

NETWORK CONFIGURATION

ALL NODES

 Add in /etc/hosts: # controller

 10.0.0.11 controller

 # network

 10.0.0.21 network

 # compute1

 10.0.0.31 compute1

 Delete in /etc/hosts:

 127.0.1.1. Ubuntu

sudo apt-get install ubuntu-cloud-keyring

echo "deb http://ubuntu-cloud.archive.canonical.com/ubuntu"

\"trusty-updates/juno main" > /etc/apt/sources.list.d/cloudarchive-

juno.list

CONTROLLER

sudo ifconfig eth0 10.0.0.11 netmask 255.255.255.0

sudo route add default gw 10.0.0.1 eth0

NETWORK

sudo ifconfig eth0 10.0.0.21 netmask 255.255.255.0

sudo route add default gw 10.0.0.1 eth0

sudo ifconfig eth0:0 10.0.1.21 netmask 255.255.255.0

COMPUTE

sudo ifconfig eth0 10.0.0.31 netmask 255.255.255.0

sudo route add default gw 10.0.0.1 eth0

sudo ifconfig eth0:0 10.0.1.31 netmask 255.255.255.0

76

DATABASE CONFIGURATION

Most OpenStack services use an SQL database to store information. The database

typically runs on the controller node. The procedures in this guide use MariaDB or

MySQL depending on the distribution. OpenStack services also support other SQL

databases including PostgreSQL.

CONTROLLER

sudo apt-get install mariadb-server python-mysqldb.0

Edit the /etc/mysql/my.cnf file and complete the following actions:

a. In the [mysqld] section, set the bind-address key to the

management IP address of the controller node to enable access by

other nodes via the management network:

1

2

3

[mysqld]

...

bind-address = 10.0.0.11

b. In the [mysqld] section, set the following keys to enable useful

options and the UTF-8 character set:

1

2

3

4

5

6

7

[mysqld]

...

default-storage-engine = innodb

innodb_file_per_table

collation-server = utf8_general_ci

init-connect = 'SET NAMES utf8'

character-set-server = utf8

sudo service mysql restart

sudo mysql_secure_installation

77

15 REFERENCES

[1] National Institute of Standards and Technology, "The NIST Definition of Cloud,"

2011. [Online]. Available: http://csrc.nist.gov/publications/nistpubs/800-

145/SP800-145.pdf. [Accessed 05 09 2014].

[2] J. McCarthy, "Architects of the Information Society, Thirty-Five Years of the

Laboratory for Computer Science at MIT," MIT Centennial, 1961.

[3] E. Schmidt, Search Engine Strategies Conference, Google inc., 2006.

[4] E. Ackerman and E. Guizzo, "5 Technologies That Will Shape the Web," IEEE

Spectrum, vol. 48, pp. 40-45, 2011.

[5] BBC Research, "Sensors: Technologies and Global Markets".

[6] Infosys Limited, "Pervasive Computing View Point," Infosys, Tech., 2011.

[7] R. Dobbs, J. Manyika, C. Roxburgh and S. Lund, "Big data: The next frontier for

innovation, competition, and productivity," McKinsey Global Institute, 2011.

[8] A. McAfee and E. Brynjolfsson, "Big Data: The Management Revolution," Harvard

Business Review, no. Big Data, pp. 61-68, 2012.

[9] Oxford dictionary, "Definition of sensor in English:," [Online]. Available:

http://www.oxforddictionaries.com/definition/english/sensor. [Accessed 1 10

2014].

[10] S. Patidar, D. Rane, and P. Jain, "A Survey Paper on Cloud," pp. 394-398, 2012.

[11] Oxagile Solutions, "Waterfall Software Development Model," Oxagile, 2014.

[Online]. Available: http://www.oxagile.com/company/blog/the-waterfall-

model/. [Accessed 06 09 2014].

[12] C. Larman and V. R. Basili, "Using Both Incremental and Iterative Development,"

The Journal of Defense Software Engineering, pp. 27-30, 2008.

[13] S. Kharytonov, "Waterfall, RUP and Agile: Which is Right for You?," 2009.

[Online]. Available:

78

http://www.ebizq.net/topics/dev_tools/features/11821.html?page=3. [Accessed

10 09 2014].

[14] K. MIKOLUK, "Agile Vs. Waterfall: Evaluating The Pros And Cons," 09 2013.

[Online]. Available: https://www.udemy.com/blog/agile-vs-waterfall/. [Accessed

10 09 2014].

[15] Dropbox, "Dropbox features," [Online]. Available:

https://www.dropbox.com/features. [Accessed 15 09 2014].

[16] GitHub, "GitHub features," [Online]. Available: https://github.com/features.

[Accessed 9 09 2014].

[17] Nissan Innovation Makes Tire Inflation Easy. [Film]. 2013.

[18] X. Chen, K. W. Nixon, H. Zhou, Y. Liu and Y. Chen, "FingerShadow: An OLED Power

Optimization based on Smartphone Touch Interactions," Microsoft Research,

University of Pittsburgh, Bejing, China and Pittsburgh, PA, USA.

[19] W. Tu, "Sensors as a Service on the Internet of Things," ARM Limited, 2014.

[20] M. Yuriyama and T. Kushida, "Physical Sensor Management with Virtualized

Sensors on Cloud Computing," IBM Research, Tokyo, 2010.

[21] A. Sarfraz, M. Chowdhury and J. Noll, "SenaaS: An Event-driven Sensor

Virtualization Approach for Internet of Things Cloud," University Graduate

Center, UNIK, Kjeller, Norway.

[22] Openiot, "Openiot Documentation," [Online]. Available:

https://github.com/OpenIotOrg/openiot/wiki/Documentation.

[23] ZigBee alliance, "ZigBee specifications," [Online]. Available:

http://www.zigbee.org/Specifications.aspx. [Accessed 5 10 2014].

[24] INE, "Encuesta Trimestral de Coste Laboral (ETCL)," 2014 Q2.

[25] Ajuntament Barcelona, "ORDENANÇA FISCAL REGULADORA DE L'IMPOST SOBRE

BÉNS IMMOBLES," Ordenança fiscal núm. 1.1, 25 03 2013.

[26] Ministerio de Hacienda, Ley del Impuesto sobre Sociedades, vol. 61, BOE, 2004.

79

[27] Arboliza, "Cómo se calcula Co2," [Online]. Available:

http://arboliza.es/compensar-co2/calculo-co2.html. [Accessed 05 10 2014].

[28] D. H. Hansson, "Ruby on Rails," [Online]. Available: http://rubyonrails.org/.

[Accessed 15 03 2015].

[29] R. community, "Ruby Programming language," [Online]. Available:

https://www.ruby-lang.org/en/. [Accessed 15 03 2015].

[30] Apache, "Open Source Cloud Computing," [Online]. Available:

http://cloudstack.apache.org/. [Accessed 10 01 2015].

[31] Appcore, CLOUDSTACK VS OPENSTACK, 2014.

[32] OpenStack, "Companies Supporting The OpenStack Foundation," [Online].

Available: http://www.openstack.org/foundation/companies/. [Accessed 01 12

2014].

[33] AppCore, "Cloud Automation Management Platform," [Online]. Available:

http://www.appcore.com/. [Accessed 15 01 2015].

[34] Cisco, "Internetworking Technology Handbook," [Online]. Available:

http://docwiki.cisco.com/wiki/Internetworking_Technology_Handbook.

[Accessed 20 10 2014].

[35] Microsoft, "The OSI Model's Seven Layers Defined and Functions Explained," 13

06 2014. [Online]. Available: http://support2.microsoft.com/kb/103884.

[Accessed 20 10 2014].

[36] Intel, "Mini PC: Intel NUC," [Online]. Available:

http://www.intel.com/content/www/us/en/nuc/overview.html. [Accessed 15 01

2013].

[37] R. P. Foundation, "Raspberry Pi," [Online]. Available:

https://www.raspberrypi.org/. [Accessed 04 12 2014].

[38] O. Community, "OpenStack SandBox. A free way to try OpenStack in your apps,"

[Online]. Available: http://trystack.org/. [Accessed 10 01 2015].

[39] C. Ltd., "Ubuntu 14.04.1 ReleaseNotes," [Online]. Available:

https://wiki.ubuntu.com/TrustyTahr/ReleaseNotes. [Accessed 02 12 2014].

80

[40] C. Larman, Applying UML and Patterns. An introduction to Object-Oriented

Analysis and Design, Prentice Hall, 2005.

