
A P P L I C A T I O N N O T E

Verifying the Quality of Your

Testbench with Code Coverage

w w w. m o d e l . c o m

The Importance of Testbench Verification

Testbenches have become an integral part of the design process, enabling you to verify that

your HDL model is sufficiently tested before implementing your design and helping you auto-

mate the design verification process. It is essential, therefore, that you have confidence your

testbench is thoroughly exercising your design. Collecting code coverage statistics during sim-

ulation helps to ensure the quality and thoroughness of your tests.

In the past, collecting coverage data with ModelSim required third party coverage tools that

had to be integrated via the PLI (Programming Language Interface) for Verilog or the FLI

(Foreign Language Interface) for VHDL. The use of such interfaces required the source code to

be instrumented so that facilities for collecting code coverage statistics could be added to the

compiled object. This created another step in the verification flow.

With ModelSim version 5.3, Mentor Graphics introduced integrated line coverage built into the

kernel of the simulator, giving you the best performance possible without the overhead of an

interface layer. In version 5.7, instance based statement and branch coverage were added.

Beginning in ModelSim 5.8, code coverage was enhanced even further to include expression,

condition and toggle coverage. With these integrated coverage collection capabilities,

ModelSim eliminates the need to maintain a separate design database and provides additional

tools for ensuring the quality of your testbench.

Instance Based Coverage

When line coverage was introduced in ModelSim 5.3, coverage statistics were based on the

source file. This meant that when a line of code was executed from two separate instances of

the same design unit, the coverage count was incremented twice. It was not possible to deduce

which instance caused a particular piece of code to be executed.

Beginning in ModelSim 5.8, instance based coverage was provided for all supported metric

types, making it easy to determine which statements within a particular instance have been

executed by a particular test. This capability is especially useful for analyzing designs that

contain multiple instances of the same design unit.

Figure 1 shows a design with multiple instances of fifocell. The structure view in the

Workspace pane of the Main window displays the results for each instance. The graph columns

provide an immediate visual indication of coverage results. By default, green indicates coverage

above 90 percent; red indicates coverage below 90 percent. In figure 1 it’s easy to see that all

statements and branches in instances celltx8 through celltx14 have been executed, whereas

coverage in celltx16 through celltx21 has not been so complete. This display makes it possible

for you to quickly determine which parts of your design are being thoroughly tested by your

testbench and which are not.

Verifying the Quality of Your Testbench with Code Coverage 1

Figure 1. A design with multiple instances of fifocell.

Statement Coverage

Statement coverage is a measure of the number of executable statements within the model that

have been executed during the simulation run. Executable statements are those that have a defi-

nite action during runtime and do not include comments, compile directives or declarations.

Statement coverage counts the execution of each statement on a line individually, even if there

are multiple statements on that line. Statement coverage statistics are recorded and displayed in

the Workspace and Instance Coverage panes the Main window as follows:

• Stmt count — the number of executable statements in each file

• Stmt hits — the number of executable statements that have been executed in the current

simulation

• Stmt misses — the number of executable statements that were not executed in the current

simulation

• Stmt % — the current ratio of Stmt hits to Stmt count,

• Stmt graph — a bar chart of Stmt % Statement coverage is a more robust metric than line

coverage because it is not affected by coding style. For example, line coverage would treat

the following piece of code as one executable line:

if RST = ‘0’ then LD <= ‘0’; elsif

CNT = “00” then LD <= ‘1’; else LD <=

‘0’; end if;

2 Verifying the Quality of Your Testbench with Code Coverage

If the same code were written in the following manner, however,

if RST = ‘0’ then

LD <= ‘0’;

elsif CNT = “00” then

LD <= ‘1’;

else

LD <= ‘0’;

end if;

line coverage would view it as five executable lines, making code analysis easier to understand.

It would also provide a better indication of testbench effectiveness.

With statement coverage, it does not matter how the code is written. Statistics are kept on each

statement, individually; making it possible to see which parts of this “if” statement have been

executed, even when all five statements are on the same line.

Branch Coverage

Branch coverage, sometimes referred to as decision coverage, counts the execution of expres-

sions and case statements that affect the control flow of HDL execution. Branch coverage sta-

tistics are recorded and displayed in the Workspace and Instance Coverage panes of the Main

window as follows:

• Branch count — the number of executable branches in each file

• Branch hits — the number of executable branches that have been executed in the current

simulation

• Branch misses — the number of executable branches that were not executed in the current

simulation

• Branch % — the current ratio of Branch hits to Branch count

• Branch graph — a bar chart of Branch % In the following example code, the branch can

be exercised in two ways.

if (z == 0) begin

...

else begin

...

end

Verifying the Quality of Your Testbench with Code Coverage 3

Branch coverage will report both true and false executions of the if statement.

Note that decision coverage still applies if the else statement doesn’t exist, as in:

if (z == 0) begin

...

end

In this case, the if statement can still be evaluated as both true and false. Branch coverage will

verify that both the explicit branch (z = 0) and the implicit branch (z != 0) are executed.

Branch coverage also applies to case statements, like the following:

case (z)

1: x = 0;

2: x = 10;

3: x = 20;

endcase

In this example, branch coverage will identify whether or not each of the three branches of the

case statement is taken. It should be noted that the same information could be obtained from

statement coverage, since each leg of the case statement is a separate statement. However, in

the example:

case (z)

1,2: x = 0;

3: x = 10;

endcase

statement execution coverage will consider the line 1,2: x = 0; covered if z is 1 or 2. Branch

coverage is needed to verify that z has been both 1 and 2 during simulation. The following is

another example that shows how branch coverage provides information that statement coverage

might miss.

IF address = address_bus THEN

choice := 1 ;

END IF ;

data := choice ;

If the testbench forced address to always equal address_bus, the statement coverage for this

fragment of HDL would be 100 percent, since every statement would be executed. However,

branch coverage would only be 50 percent, since the FALSE branch (corresponding to “not

equal to address_bus”) would not have been taken during simulation.

4 Verifying the Quality of Your Testbench with Code Coverage

Condition Coverage

Condition coverage is an extension of branch coverage. Condition coverage breaks down

branch conditions into the elements that make the result true or false. Condition coverage sta-

tistics are recorded and displayed in the Workspace and Instance Coverage panes of the Main

window as follows:

• Condition rows — the number of conditions in each file

• Condition hits — the number of times the conditions in a file that have been executed

• Condition misses — the number of conditions in a file that have not been executed

• Condition % — the current ratio of Condition hits to Condition rows

• Condition graph — a bar chart of Condition %

ModelSim Condition coverage eliminates unimportant conditions from the display so you don’t

waste time chasing down irrelevant conditions. This is sometimes referred to as “sensitized

condition coverage” or “focused condition coverage,” and is illustrated with the following

example.

PROCESS (ina, inb, inc, ind, datin)

BEGIN

if ina = ‘1’ or inb = ‘1’ or inc =

‘1’ or ind = ‘1’ then

datout <= datin;

ELSE

datout <= ‘1’;

END IF;

END PROCESS;

The if statement above has a condition made up of four inputs: ina, inb, inc, and ind. From

these four inputs, a truth table would have 16 different possibilities. We can see from the condi-

tion, however, that there are only five conditions of interest:

“ina” controlling the true condition

“inb” controlling the true condition

“inc” controlling the true condition

“ind” controlling the true condition

“ina” “inb” “inc” “ind” all controlling the false condition

You can view the details of a missed condition as a truth table in the Details pane of the Main

window. This pane allows the detailed analysis of missed coverage for any particular statement,

branch, condition, expression or signal transition (toggle). Figure 2 shows the focused condi-

tion coverage truth table for a missed condition in our example.

Verifying the Quality of Your Testbench with Code Coverage 5

The truth table contains only those entries that are important to the condition, along with a

count value to indicate how many times a particular condition has been ‘hit’ by your testbench

during the simulation run.

Expression Coverage

Expression coverage is the same as condition coverage but instead of covering branch decisions

it covers concurrent signal assignments. Other code coverage tools combine condition and

expression coverage in a single function, but this does not provide the flexibility to control each

independently. ModelSim treats them separately, giving you more control of the metrics during

simulation.

Expression coverage builds a focused truth table based on the inputs to a signal assignment using

the same technique as condition coverage. If, for example, we rewrite the condition coverage

example above as an expression it will be:

internal <= ina or inb or inc or ind

And the focused expression coverage truth table will look much like the focused truth table for

the condition, shown in Figure 2.

Toggle Coverage

Toggle coverage — the ability to count and collect changes of state on specified nodes — has

been a part of ModelSim for many years. ModelSim’s toggle coverage includes Verilog nets and

registers and VHDL signals of type bit, bit_vector, std_logic, and std_logic_vector. In addition,

version 5.8 also introduced a number of enhancements to toggle coverage functionality. First,

toggle coverage has been integrated as a metric into the coverage tool so that the use model

and reporting become the same as the other supported metrics. Second, the basic toggle coverage

has been enhanced to have two modes of operation — standard and extended. Standard toggle

coverage only counts low <-> high and 0 <-> 1 transitions. Extended toggle coverage counts

these two transitions plus the following four:

X or Z --> 1 or H

X or Z --> 0 or L

1 or H --> X or Z

0 or L --> X or Z

6 Verifying the Quality of Your Testbench with Code Coverage

Figure 2. Focused condition coverage truth table in the Details pane.

This extended coverage allows a more detailed view of testbench effectiveness and is especially

useful for examining coverage of tri-state signals. It helps to ensure, for example, that a bus has

toggled from high ‘Z’ to a ‘1’ or ‘0’, and a ‘1’ or ‘0’ back to a high ‘Z’.

The Signals window has been enhanced to show detailed toggle information, as shown in

Figure 3 below. As you can see, there is a column for each of the six transition types.

The last three columns show the percentage toggle figures for each displayed signal. The %01 column

shows the percent coverage of the ‘1’ or ‘H’ <--> ‘0’ or ‘L’ transitions. If a signal is a single bit

type and has made both transitions it is considered 100 percent covered. If it has only made one of

the transitions then it will be 50 percent covered. If the signal is a bus, each bit of the bus will be

considered in this percentage. For example, the address signal is a 4-bit bus and one of its bits has

not made the ‘1’ or ‘H’ <--> ‘0’ or ‘L’ transition, giving an 87.5 percent coverage.

The %FULL column shows the calculated percentage of all transitions that have occurred.

%FULL is calculated by dividing the number of transitions that have occurred by the total

number of possible transitions that could have occurred.

The %XZ column shows the calculated percentage of ‘Z’ or ‘X’ transitions that have occurred –

a useful measurement for tri-state signals. The calculated percentage is the number of ‘Z’ and

‘X’ transitions that have occurred during simulation divided by the total number of possible

transitions that could have occurred.

Verifying the Quality of Your Testbench with Code Coverage 7

Figure 3. Extended toggle coverage results displayed in the Signals window.

New User Interface

The ModelSim user interface is constructed to facilitate code coverage analysis of your testbench.

All panes in the Main window, including those specifically for displaying code coverage data —

Missed Coverage, Current Exclusions, Instance Coverage and Details — are dockable. You can

drag them to any position within the Main window, or tear them out to view them separately.

The structure (sim) tab within the Main window Workspace includes coverage data for each

instance, providing information about statement, branch, condition, expression, and toggle cov-

erage within the design. Each column can be selectively toggled on or off to suit your analysis.

The Files tab displayes coverage data on a file by file basis.

The Instance Coverage pane displays a flattened list of instances. The hierarchical block selected

in the structure tab, and a user definable filter setting, controls the content of this window. All

the instances that are children of the selected instance are displayed in this window as well. A

filter threshold can be applied to this list of instances, allowing only blocks with certain coverage

percentages above or below a specified threshold to be viewed. This filter can be found by either

right-clicking in the Instance Coverage pane and opening the Filter instance list dialog, or through

the Threshold setting in the Main window toolbar, as shown in Figure 4.

8 Verifying the Quality of Your Testbench with Code Coverage

It is also possible to sort the Instance Coverage pane by any column. For example, you can sort

for the number of missed branches by clicking in the ‘Missed Branches’ column title. This

causes the instance with the highest number of missed branches to be listed first — allowing

you to immediately identify instances that are not being exercised by your testbench.

The Missed Coverage pane includes a tab for each coverage metric — statement, branch,

condition, expression and toggle. Each tab includes a list of lines that contain missed coverage

for the selected metric. The lines displayed in these tabs are determined by the instance selected

in either the Workspace Structure (sim) tab or the Instance Coverage pane.

When you select any line in the Missed Coverage tabs, the details of the missed coverage are

displayed in the Details pane of the Main window. The format of the Details information

depends on the coverage metric selected. For Statement coverage, the Details pane will simply

show the selected line of code with a zero count. For Branch coverage, it will show the line of

code and the number of times the true and false paths have been taken. For Condition and

Expression coverage, it will display the focused truth table and the counts for each of the

entries, as we’ve shown above. And for Toggle coverage it will display the counts and percent-

age numbers for each transition type.

Figure 4. Two methods for setting the coverage threshold for the Workspace and
Instance Coverage displays.

Select any line in the Missed Statement, Branch, Condition or Expression tabs and that line

will be displayed and highlighted yellow in the Source window. The Source window includes a

Hits column for statement coverage and a BC column for branch coverage. A green checkmark

indicates coverage; a red ‘X’ indicates missed coverage. All lines that contain missed state-

ments, branches, conditions or expressions are highlighted pink. Hovering the mouse over

Verifying the Quality of Your Testbench with Code Coverage 9

these highlighted lines will cause the actual coverage counts (the number of times a statement

has been executed or the number of times a true or false branch has been taken) to be displayed

in the Hits and BC columns, as shown in Figure 5.

Coverage Exclusions

ModelSim allows you to exclude lines and files from code coverage statistics with popup

menus in the GUI, by inserting pragmas in your source code, or by creating an exclusion filter

file. To exclude files with popup menus in the GUI, right-click any file in the Main window

Workspace and select Coverage > Exclude Selected File. To exclude a specific line, rightclick

the line in the Missed Coverage pane and click the Exclude Selection button that appears. You

can also exclude lines and files in the Source window by right-clicking in the Hits column and

selecting Exclude Coverage Line xxx or Exclude Entire File.

ModelSim also supports the use of source code pragmas to selectively turn coverage off and on.

In Verilog, the pragmas are:

// coverage off

// coverage on

In VHDL, the pragmas are:

-- coverage off

-- coverage on

To exclude code, bracket the code with pragmas like this:

// coverage off

a = 1’b0;

// coverage on

Exclusion filter files specify files and line numbers that you wish to exclude from the coverage

statistics. You can create the filter file in any text editor or save the current filter in the Source

window by selecting File > Save >.

10 Verifying the Quality of Your Testbench with Code Coverage

Verifying the Quality of Your Testbench with Code Coverage 11

Figure 5. Coverage data in the Hits and BC columns of the Source window.

Exclusion File (Main window). To load the filter during a future analysis, select File > Open >

Exclusion File (Main window).

Coverage Control

Code Coverage is configured when you compile your design and enabled when you load it. You

specify the coverage metrics you want to collect with the vcom or vlog commands, or with the

Compile > Compile Options > Coverage (Main window) selection in the GUI. Then you

enable code coverage with the vsim -coverage command, or by selecting the Enable code cov-

erage option in the Simulate dialog box. If you do not specify coverage metrics during compile,

only statement coverage will be enabled when you invoke vsim -coverage. The other coverage

metrics must be explicitly selected with the -cover switch with vcom or vlog. The correct syntax is:

vcom -cover <stat>

or

vlog -cover <stat>

where <stat> is one or more of the following characters:

b - branch statistics

c - condition statistics

e - expression statistics

t - toggle statistics

x - extended toggle statistics

Note that both ‘x’ and ‘t’ cannot be used at the same time. In addition, when you compile with

coverage enabled, ModelSim disables certain optimizations, depending on which coverage metrics

you choose (see ModelSim User’s Manual for details). This produces more accurate coverage

statistics but may slow down your simulation.

New Coverage Utilities

ModelSim includes a coverage utility called vcover — a separate executable that can be run

from a shell or from the Modelsim> prompt. The vcover utility includes:

• a merge capability that allows multiple coverage reports to be merged together without

having to elaborate the design

• a statistics mode that prints the coverage summary for each file as well as the incremental

numbers from the base file

• a convert command that allows instance names to be modified

Merge

The follow command is used to merge three coverage reports — run1.dat, run2.dat, run3.dat
— into a single report, merged.dat, without requiring that the design be elaborated.

vcover merge -verbose merged.dat run1.dat

run2.dat run3.dat

The verbose output from the command is shown below. The base statistics from the first file to

be merged, run1.dat, are followed by the incremental statistics for each preceding file, then the

complete merge.

Establishing file run1.dat as the merge base

Coverage Report Totals BY INSTANCES:

Instances 101

Statements 4218, Hits 3350 Percent 79.4

Branches 2141, Hits 1834 Percent 85.7

Conditions 1150, Hits 976 Percent 84.9

Expressions 186, Hits 162 Percent 87.1

Toggle Nodes 1956 Toggled 1416 Percent 72.4

Merging file run2.dat

INCREMENTAL Coverage Report Totals BY

INSTANCES: Instances +0

Statements +0, Hits +152 Percent +3.604

Branches +0, Hits +31 Percent +1.448

Conditions +0, Hits +1 Percent +0.087

12 Verifying the Quality of Your Testbench with Code Coverage

Expressions +0, Hits +8 Percent +4.301

Toggle Nodes +0 Toggled +11 Percent +0.55

Merging file run3.dat

INCREMENTAL Coverage Report Totals BY

INSTANCES: Instances +0

Statements +0, Hits +4 Percent +0.095

Branches +0, Hits +5 Percent +0.234

Conditions +0, Hits +1 Percent +0.087

Expressions +0, Hits +0 Percent +0.000

Toggle Nodes +0 Toggled +201 Percent +10.27

Writing merged result to merged.dat

Coverage Report Totals BY INSTANCES:

Instances 101

Statements 4218, Hits 3506 Percent 83.1

Branches 2141, Hits 1870 Percent 87.3

Conditions 1150, Hits 978 Percent 85.0

Expressions 186, Hits 170 Percent 91.4

Toggle Nodes 1956 Toggled 1628 Percent

83.6

Statistics

The following command is used to print the statistics for multiple coverage runs. This allows

analysis of coverage results so that your testbench can be graded and optimised for the best

results from the minimum number of runs. Results are shown below.

vcover stats -verbose run1.dat run2.dat

Printing stats for file run1.dat:

Coverage Report Totals BY INSTANCES:

Instances 101

Statements 4218, Hits 3350 Percent 79.4

Branches 2141, Hits 1834 Percent 85.7

Conditions 1150, Hits 976 Percent 84.9

Expressions 186, Hits 162 Percent 87.1

Toggle Nodes 1956 Toggled 1416 Percent 72.4

Printing stats for file run2.dat:

Coverage Report Totals BY INSTANCES:

Instances 101

Statements 4218, Hits 2515 Percent 59.6

Branches 2141, Hits 1086 Percent 50.7

Conditions 1150, Hits 204 Percent 17.7

Expressions 186, Hits 93 Percent 50.0

Toggle Nodes 1956 Toggled 478 Percent 24.4

Verifying the Quality of Your Testbench with Code Coverage 13

Convert

The convert function is used to modify instance names within coverage reports. This allows the

merge command to be used on reports from different simulation environments. For example, a

chip might be simulated with two different testbenches named ‘DataTest’ and ‘RandomTest.’

The hierarchical names will be different only at the top level of each testbench. The convert
command is used to modify the instance names in one report to match those in the second so

they can be merged. If we want to merge the results into the ‘DataTest’ testbench, the following

commands would be used:

vcover convert -verbose -strip 1 -install

/DataTest convert.dat RandomTest.dat

This command will strip the 1st level hierarchical names from the instance paths in the

RandomTest.dat file and will insert /DataTest into the front of these path names. The output

of this command, the report convert.dat, can now be merged into the DataTest.dat results.

vcover merge -verbose merged.dat

convert.dat DataTest.dat

The merged.dat file can now be used to reload the ‘DataTest’ test environment. These commands

also make it possible to use the results from tests on low level blocks. The convert command

simply matches the instance names to allow the merging process.

Conclusion

With Code Coverage integrated directly into the simulator kernel, ModelSim gives you minimum

performance overhead while supplying the coverage metrics you need to analyse the effectiveness

of your test suites. This direct integration eliminates the need for third party tools and allows

comprehensive code coverage analysis to fit seamlessly into your design flow. The new graphic

user interface allows you to quickly identify and fix areas of missed coverage areas. And the new

vcover utility expands your coverage reporting abilities and allows you to compare the results

from different testbenches.

Corporate Headquarters
Mentor Graphics Corporation
8005 S.W. Boeckman Road
Wilsonville, Oregon 97070USA
Phone: 503-685-7000
North American Support Center
Phone: 800-547-4303
Fax: 800-684-1795

Pacific Rim
Mentor Graphics Taiwan
Room 1603, 16F,
International Trade Building
No. 333, Section 1, Keelung Road
Taipei, Taiwan, ROC
Phone: 886-2-27576020
Fax: 886-2-27576027

Europe
Mentor Graphics
Deutschland GmbH
Arnulfstrasse 201
80634 Munich
Germany
Phone: +49.89.57096.0
Fax: +49.89.57096.400

Silicon Valley
Mentor Graphics Corporation
1001 Ridder Park Drive
San Jose, California 95131 USA
Phone: 408-436-1500
Fax: 408-436-1501

Japan
Mentor Graphics Japan Co., Ltd.
Gotenyama Hills
7-35, Kita-Shinagawa 4-chome
Shinagawa-Ku, Tokyo 140
Japan
Phone: 81-3-5488-3030
Fax: 81-3-5488-3031

For more information, call us or visit: www.model.com

Copyright © 2004 Mentor Graphics Corporation. This document contains information that is proprietary to Mentor Graphics Corporation and may be duplicated in whole or in part by the original recipient

for internal business purposed only, provided that this entire notice appears in all copies. In accepting this document, the recipient agrees to make every reasonable effort to prevent the unauthorized use of

this information. Mentor Graphics is a registered trademark of Mentor Graphics Corporation. All other trademarks are the property of their respective owners.

C&A 7-04 TECH6430-w

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

