
www.finebook.ir

http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

Eclipse IDE
Pocket Guide

Ed Burnette

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

,TITLE.6518 Page 3 Thursday, June 29, 2006 12:29 PM

www.finebook.ir

http://www.finebook.ir/../

Eclipse IDE Pocket Guide
by Ed Burnette

Copyright © 2005 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Brett McLaughlin
Production Editor: Marlowe Shaeffer
Cover Designer: Ellie Volckhausen
Interior Designer: David Futato

Printing History:
August 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. The Pocket Guide series
designations, Eclipse IDE Pocket Guide, the images of ornate butterflyfish,
and related trade dress are trademarks of O’Reilly Media, Inc.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc., in the United States and other
countries. O’Reilly Media, Inc. is independent of Sun Microsystems, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

0-596-10065-5
[C] [3/06]

,COPYRIGHT.6397 Page iv Thursday, June 29, 2006 12:29 PM

www.finebook.ir

http://www.finebook.ir/../

v

Contents

Part I. Introduction

What Is Eclipse? 1

Conventions Used in This Book 2

System Requirements 2

Downloading Eclipse 3

Installing Eclipse 3
3, 2, 1, Launch! 4
Specify a Workspace 4

Exploring Eclipse 4

Getting Upgrades 5

Moving On 6

Part II. Workbench 101

Views 8

Editors 9

Menus 10

www.finebook.ir

http://www.finebook.ir/../

vi | Contents

Toolbars and Coolbars 12

Perspectives 13

Rearranging Views and Editors 14

Maximizing and Minimizing 16

Part III. Java Done Quick

Creating a Project 18

Creating a Package 20

Creating a Class 21

Entering Code 21

Running the Program 23

Part IV. Debugging

Running the Debugger 25

Setting Breakpoints 25

Single Stepping 28

Looking at Variables 28

Changing Code on the Fly 30

Part V. Unit Testing with JUnit

A Simple Factorial Demo 32

Creating Test Cases 33

www.finebook.ir

http://www.finebook.ir/../

Contents | vii

Running Tests 34

Test First 36

Part VI. Tips and Tricks

Code Assist 38

Templates 39

Automatic Typing 40

Refactoring 41

Hover Help 42

Hyperlinks 43

Quick Fixes 43

Searching 44

Scrapbook Pages 46

Java Build Path 47

Launch Configurations 48

Part VII. Views

Breakpoints View 50

Console View 52

Debug View 53

Declaration View 54

Display View 54

www.finebook.ir

http://www.finebook.ir/../

viii | Contents

Error Log View 55

Expressions View 56

Hierarchy View 58

Javadoc View 60

JUnit View 60

Navigator View 61

Outline View 62

Package Explorer View 62

Problems View 64

Search View 65

Tasks View 66

Variables View 67

Part VIII. Short Takes

CVS 68

Ant 69

Web Tools Platform 70

Testing and Performance 70

Visual Editor 71

C/C++ Development 71

AspectJ 71

www.finebook.ir

http://www.finebook.ir/../

Contents | ix

Plug-in Development 72

Rich Client Platform 73

Standard Widget Toolkit 73

Part IX. Help and Community

Online Help 75
Getting Help 75
Help Topics 76

Eclipse Web Site 76

Community Web Sites 78

Reporting Bugs 79
New Account 80
Searching 80
Adding an Entry 80

Newsgroups 81

Mailing Lists 82

Conclusion 82

Appendix. Commands 83

Index 113

www.finebook.ir

http://www.finebook.ir/../

www.finebook.ir

http://www.finebook.ir/../

1

PART I:PART I

Introduction

Welcome to the pocket guide for the Eclipse Integrated
Development Environment. This book is the ultimate “no
fluff” user’s manual for the Eclipse IDE, in particular, its Java
Development Toolkit (JDT). This book is designed to get
you up and running quickly in the environment even if
you’ve never used Eclipse before. Some Java™ programming
knowledge will be helpful when reading this guide, but even
if you’re new to Java, you can still find a good deal of useful
information within these pages. Let’s begin with an overview
of what Eclipse is and how to download and install it. If
you’re already using Eclipse, you can skip this section and
jump to Part II.

What Is Eclipse?
Eclipse is an IDE for “anything, and nothing at all,” meaning
that it can be used to develop software in any language, not
just Java. It started as a proprietary replacement for Visual Age
for Java from IBM, but was open sourced in November 2001.
Eclipse is now controlled by an independent nonprofit organi-
zation called the Eclipse Foundation. Since 2001, it has been
downloaded over 50 million times; it is now being used by
thousands of developers worldwide. It also has a sizable fol-
lowing in the university community, where it is used in classes
on programming and object-oriented design.

www.finebook.ir

http://www.finebook.ir/../

2 | Part I: Introduction

Conventions Used in This Book
Italic

Used for filenames, directory names, URLs, and tools
from Unix such as vi. Also used for emphasis and to
introduce new terms.

Constant width
Used for names of Java packages, methods, etc.; com-
mands; variables; and code excerpts.

Constant width bold
Used for keywords within code examples and for text
that the user should type literally.

System Requirements
Eclipse runs on today’s most popular operating systems,
including Windows XP, Linux, and Mac OS X. It requires Java
to run, so if you don’t already have Java installed on your
machine, you must first install a recent version. You can down-
load Java for Windows and Linux from http://java.sun.com;
look for the J2SE SDK (Software Development Kit) package
without a NetBeans™ bundle. Mac OS X has Java preinstalled.
See Table 1 for the minimum and recommended system
requirements.

Table 1. System requirements for Eclipse

Requirement Minimum Recommended

Java version 1.4.0 5.0 or greater

Memory 512 MB 1 GB or more

Free disk space 300 MB 1 GB or more

Processor speed 800 Mhz 1.5 Ghz or faster

www.finebook.ir

http://www.finebook.ir/../

Installing Eclipse | 3

In order to unpack Eclipse’s download package, you will
need a standard archive program. Some versions of Win-
dows have one built in; for other versions, you can use a pro-
gram such as WinZip (http://www.winzip.com). The other
platforms come with an archive program preinstalled.

TIP

In the interests of space and simplicity, the rest of this
book will focus on the Windows version of Eclipse. Oth-
er platforms will be very similar, although you may no-
tice slight platform-specific differences.

Downloading Eclipse
To download the Eclipse IDE, go to http://www.eclipse.org.
Click on “downloads” and then select the most recent stable
or release version of the Eclipse SDK for your platform. If
prompted for a mirror site, pick the one located closest to
you. If that one is slow or unavailable, simply return to the
download page and try a different mirror, or try the main
site.

TIP

You may see other download packages such as Runtime,
JDT, and RCP on the download page. You don’t need
those. Just get the one package called Eclipse SDK.

Installing Eclipse
First, install Java if you haven’t already. Then download the
Eclipse SDK to a temporary directory. Use your archive pro-
gram to unpack Eclipse into a permanent directory. There
are no setup programs and no registry values to deal with.

www.finebook.ir

http://www.finebook.ir/../

4 | Part I: Introduction

After you have unpacked the SDK, you should have a subdi-
rectory called eclipse, which in turn has directories in it such
as plugins and features. If you don’t see these, check the set-
tings on your archive program. A common mistake is to
unpack Eclipse in such a way that its directory structure is
not preserved. Eclipse won’t run unless you unpack it with
the exact directory paths that exist in the archive.

3, 2, 1, Launch!
You are now ready to launch Eclipse. Inside the eclipse direc-
tory, you’ll find a launcher program for the IDE called,
strangely enough, eclipse (or eclipse.exe). Invoke that pro-
gram to bring up the IDE.

TIP

On Windows, you may find it convenient to create a
desktop shortcut to launch Eclipse.

Specify a Workspace
The first time you start Eclipse, you will be prompted for the
location of your workspace. The workspace is the location
where your source code and other files and settings will be
stored on your workstation. Specify a permanent location—
somewhere not in your install directory—preferably a loca-
tion that will be backed up regularly.

Putting the workspace in a different place from where you
installed Eclipse makes upgrades easier. See the “Getting
Upgrades” section, later in Part I, for more information.

Exploring Eclipse
When Eclipse starts up, you will be greeted with the Wel-
come screen (see Figure 1). This screen provides an introduc-
tion for new users who don’t have the benefit of a pocket
guide to Eclipse; for now you can skip over it by closing the

www.finebook.ir

http://www.finebook.ir/../

Getting Upgrades | 5

Welcome view (click on the close icon—the × next to the
word “Welcome”). You can always come back to the Wel-
come screen later by selecting Welcome from the Help
menu.

Getting Upgrades
Eclipse includes an automatic update facility that can handle
point releases (i.e., bug-fix versions) without any work on
your part. For example, Eclipse would install an upgrade from
3.1.0 to 3.1.1 automatically. However, for anything more sub-
stantial, the best practice is to do a manual clean install.

TIP

A clean install is especially important if you want to use
beta versions of Eclipse (called Stable or Milestone builds
on the download page). Milestone builds are sometimes
buggy, so you may need to temporarily go back and run
your previous version.

Figure 1. The Welcome screen allows you to explore introductory
material, including examples and tutorials.

www.finebook.ir

http://www.finebook.ir/../

6 | Part I: Introduction

For example, let’s say you have been running Version 3.1 for
a while and now Version 3.2 has come out. You want to
upgrade right away because each new release contains a
number of important bug fixes and useful new features. Also,
if you have a problem with an older release and report it to
the developers, they will simply ask you to upgrade (see
“Reporting Bugs” in Part IX). So, you should upgrade, but
what’s the best way to do it?

First, rename your eclipse directory to something else, like
eclipse3.1. Then download the new SDK package and install
it normally, as if you had never installed Eclipse before. This
is called a clean install because you are not attempting to mix
new and old code together. Note that your workspace
doesn’t need to change at all, but you should back it up
before running the new version just in case. Now do you see
why I recommended you don’t keep your workspace in the
install directory?

TIP

Any additional plug-ins you have installed for Eclipse will
need to be reinstalled at this point unless you keep them
in an extension location separate from the Eclipse SDK.

Moving On
Congratulations—you’ve successfully downloaded, installed,
and started exploring Eclipse. In Part II, you’ll learn what all
the windows and buttons are for and how to set up the envi-
ronment just the way you like it. If you want to skip ahead
and start writing a Java program, jump to Part III.

www.finebook.ir

http://www.finebook.ir/../

7

PART II:PART II

Workbench 101

Eclipse’s main window, called the workbench, is built with a
few common user interface elements (see Figure 2). Learn
how to use them and you can get the most out of the IDE.
The two most important elements are views and editors. If
you’re already familiar with the Eclipse workbench, you can
skim this section or skip to Part III to start programming.

Figure 2. The Eclipse workbench is made up of views, editors, and
other elements.

1

1 Editor
2 Fast views

3 Menu bar
4 Tool bars

5 Perspectives
6 Views

2

3
4

4

5

6

6

www.finebook.ir

http://www.finebook.ir/../

8 | Part II: Workbench 101

Views
A view is a window that lets you examine something, such as
a list of files in your project. Eclipse comes with dozens of
different views; see Table 2 for a partial list. These views are
covered in more detail in Part VII.

To open a view, select Window ➝ Show View. The most
commonly used views are listed in that menu. To see the full
list, select Other....

Most views have a titlebar that includes the icon and name
for the view, a close icon, a toolbar, and an area for the con-
tent (see Figure 3 for an example showing the Outline view).
Note that if the view is too narrow, the toolbar will be
pushed to the next line. To discover what all the buttons do,
move your mouse over a button, and a little window called a
tool tip will appear that describes the item.

Table 2. Commonly used Eclipse views

View name Description

Package Explorer Shows all your projects, Java packages, and files.

Hierarchy Displays the class and interface relationships for the selected object.

Outline Displays the structure of the currently open file.

Problems Shows compiler errors and warnings in your code.

Console Displays the output of your program.

Javadoc Shows the description (from comments) of the selected object.

Declaration Shows the source code where the selected object is declared.

Figure 3. Views usually have titles, toolbars, and a content area. Let
the mouse pointer hover over an item to bring up a description.

www.finebook.ir

http://www.finebook.ir/../

Editors | 9

Multiple views can be stacked together in the same rectangu-
lar area. The titlebar will show a tab for each view, but only
one view can be active at a time. Click on a tab to bring its
view to the front. If the window is too narrow to show all the
titles, a chevron menu will appear (see Figure 4; the number
below the >> shows how many views are hidden). Click on
the chevron menu to list the hidden views.

Editors
An editor in Eclipse is just like any other editor—it lets you
modify and save files. What sets editors in Eclipse apart is
their built-in language-specific knowledge. In particular, the
Java editor completely understands Java syntax; as you type,
the editor can provide assistance such as underlining syntax
errors and suggesting valid method and variable names (see
Figure 5). Most of your time will be spent in the Java editor,
but there are also editors for text, properties, and other types
of files.

Editors share many characteristics with views. But unlike
views, editors don’t have toolbars, and you will usually have
more than one of the same type of editor open (for example,
several Java editors). Also, you can save or revert an editor’s
contents, but not a view’s. An asterisk in the editor’s titlebar
indicates that the editor has unsaved data. Select File ➝ Save
or press Ctrl+S to write your changes to disk.

Figure 4. Views can be stacked on top of one another. If space is
short, some may be hidden in a chevron menu.

www.finebook.ir

http://www.finebook.ir/../

10 | Part II: Workbench 101

Menus
Eclipse is filled with menus, yet it’s not always obvious how
to access them. So, let’s take a quick tour. The most promi-
nent one is the main menu across the top of the Eclipse win-
dow. Click on a menu item to activate it or press Alt and the
shortcut key for the menu (for example Alt+F for the File
menu).

Some views have view menus that open when you click on
the downward-pointing triangle icon near the upper right of
the view (see Figure 6 for an example).

Another menu is hidden in the titlebar under the icon to the
left of the title. Right-click on the icon to access the system
menu; this allows you to close the view or editor, move it
around, and so forth. The system menu is shown in Figure 7.

Figure 5. The Java editor provides typing assistance and immediate
error detection.

Figure 6. If you see a triangle in the toolbar, click on it for more
options.

www.finebook.ir

http://www.finebook.ir/../

Menus | 11

TIP

Most commands in Eclipse can be performed in several dif-
ferent ways. For example, to close a view you can either
use the system menu or click on the close icon. Use which-
ever way is most convenient for you.

Finally, you can right-click on any item in the content area to
bring up the context menu (see Figure 8). Notice the key-
board shortcuts listed to the right of the menu description.
These shortcuts can be used instead of the menu to execute a
particular command. For example, instead of right-clicking
on main and selecting Open Type Hierarchy, you can just
select main and press the F4 key.

TIP

Starting in Eclipse 3.1, you can press Ctrl+Shift+L to see
a list of the current key definitions. To change them, go
to Window ➝ Preferences ➝ General ➝ Keys. By using
key definitions and shortcuts, you can work in Eclipse
without touching the mouse at all.

Figure 7. Right-click on the icon to the left of the title to get the
system menu.

www.finebook.ir

http://www.finebook.ir/../

12 | Part II: Workbench 101

Toolbars and Coolbars
A toolbar is a set of buttons (and sometimes other controls)
that perform commonly used actions when you click on
them. Usually toolbars appear near the top of the window
that contains them. A collection of toolbars is called a cool-
bar (see Figure 9).

TIP

Most Eclipse documentation uses the term toolbar to re-
fer to both toolbars and coolbars, so the rest of this book
will do the same unless it’s necessary to make a special
distinction between the two.

In the “Views” section, you saw some examples of toolbars
that were part of views. The toolbar at the top of the Work-
bench window is called the main toolbar (seen back in

Figure 8. Right-click in the content area for the context menu.

Figure 9. A coolbar is made up of toolbars. You reorder the
individual toolbars by clicking and dragging the separators between
them.

www.finebook.ir

http://www.finebook.ir/../

Perspectives | 13

Figure 2). As you edit different files, the main toolbar will
change to show tools that apply to the current editor.

Perspectives
A perspective is a set of views, editors, and toolbars, along
with their arrangement on your desktop. Think of a perspec-
tive as a way of looking at your work that is optimized for a
specific kind of task, such as writing programs.

As you perform a task, you may rearrange windows, open
new views, and so on. Your arrangement is saved under the
current perspective. The next time you have to perform the
same kind of task, simply switch to that perspective, and
Eclipse will put everything back the way you left it.

To switch perspectives, select Window ➝ Open Perspective
or click on the Open Perspective icon (to the right of the
main toolbar). This will bring up a list of the most com-
monly used perspectives; select Other... to see the full list.

Eclipse comes with several perspectives already defined;
these are shown in Table 3.

Table 3. Built-in Eclipse perspectives

Perspective Purpose

Resource Arrange your files and projects.

Java Develop programs in the Java language.

Debug Diagnose and debug problems that occur at runtime.

Java Browsing Explore your code in a Smalltalk-like environment.

Java Type Hierarchy Explore your code based on class relationships.

Plug-in Development Create add-ins to Eclipse.

CVS Repository Exploring Browse a source code repository, including its files and
revision history.

Team Synchronizing Merge changes you’ve made with those of your
teammates.

www.finebook.ir

http://www.finebook.ir/../

14 | Part II: Workbench 101

Each perspective has a set of views associated with it that are
open by default. For example, the Java perspective starts
with the Package Explorer view open. If you don’t like the
default, close any views you don’t want and open others with
Window ➝ Show View.

TIP

Sometimes Eclipse will offer to switch perspectives for
you. For example, if you’re in the Resource perspective
and create a Java project, it will ask if you’d like to switch
to the Java perspective. Usually the best thing is to an-
swer Yes and have it remember your decision so it won’t
ask you again.

Perspectives are there for your convenience. Feel free to cus-
tomize them all you want. To restore a perspective to its fac-
tory default, select Window ➝ Reset Perspective. To save
your perspective under a different name, select Window ➝

Save Perspective As.... The new perspective will show up in
the Window ➝ Open Perspective ➝ Other... menu.

Rearranging Views and Editors
Views and editors can be shown side by side or stacked on
top of other views and editors. To move a view or editor,
simply click on its titlebar and drag it to a new location (see
Figure 10). The only restrictions are that editors have to stay
in their own rectangular area, and they can’t be mixed with
views. However, you can arrange the views around the edi-
tors, and you can even drag views outside of the main Eclipse
window (these are called tear-off views). You can also col-
lapse a view to an icon on the edge of the window (this is
called a fast view).

Pay close attention to the changing cursor as you drag a win-
dow; the cursor shape indicates where the window will end
up when you let go of the mouse button. Table 4 shows the
cursor shapes and what they mean.

www.finebook.ir

http://www.finebook.ir/../

Rearranging Views and Editors | 15

Figure 10. You can see how the Package Explorer is dragged from a
tab into the bottom of the window.

Table 4. Cursor shapes while dragging views and editors

Cursor shape Final position of the view/editor being dragged

Above the window under the cursor

Below the window under the cursor

To the left of the window under the cursor

To the right of the window under the cursor

On top of a stack of windows under the cursor

In the fast view area (it will slide out as needed or when manually
clicked)

Outside the main window

www.finebook.ir

http://www.finebook.ir/../

16 | Part II: Workbench 101

TIP

By dragging editors, you can show two files side by side.
Starting in Eclipse 3.1, you can also edit two portions of the
same file by using the Window ➝ New Editor command.

To change the relative size of side-by-side views or editors,
move the mouse cursor to the thin dividing line between two
of them. The cursor shape will change, indicating you can
move that divider by clicking it and dragging it to the desired
location.

Maximizing and Minimizing
Sometimes you need to focus temporarily on a single view or
editor. For example, you might want to hide all the views
and use the whole Eclipse window to look at one large file in
the editor. You could resize the editor manually by dragging
its edges, but an easier way is to maximize the editor.

Double-click on the view or editor’s titlebar (or click on the
maximize icon) to make it expand; double-click again (or use
the restore icon) to restore the window to its original size.
When a window is maximized, you won’t be able to see any
of the other views or editors outside of the current stack.

As an alternative, you can temporarily shrink the other stacks
of windows by clicking on the minimize icon (next to the
maximize icon at the top of the view or editor). This hides
the content area, showing only the titlebar. It works best on
horizontal views and editors.

www.finebook.ir

http://www.finebook.ir/../

Maximizing and Minimizing | 17

TIP

Remember, you can save your favorite window arrange-
ments as named perspectives.

You could spend hours exploring all the options to custom-
ize your Eclipse workbench, but that’s not what you’re here
for, right? Part III will get you started with Java development
in Eclipse.

www.finebook.ir

http://www.finebook.ir/../

18

PART III:PART III

Java Done Quick

Get your stopwatch ready because we’re going to create and
run some simple Java code as quickly as possible. Ready...
set...go!

Creating a Project
An Eclipse project is just a directory that holds your pro-
gram’s resources (source code, icons, and so forth). Usually
projects are subdirectories in your workspace (see the “Spec-
ify a Workspace” section in Part I). You can import an exist-
ing project, but for this exercise, we’ll make one from
scratch.

To create a project, select File ➝ New ➝ Project... and then
double-click Java Project. This opens the New Java Project
wizard (see Figure 11).

For “Project name,” type in something original like Hello.
Under “Project layout,” enable the “Create separate source
and output folders” option.

TIP

As a best practice, always use separate directories for the
source and output folders.

www.finebook.ir

http://www.finebook.ir/../

Creating a Project | 19

Click Finish to accept the default options and let Eclipse cre-
ate the project. If you see a dialog that says Confirm Perspec-
tive Switch, enable the “Remember my decision” option and
click Yes. Also, if you see a dialog about Java 5.0 compli-
ance, enable compliance for the entire workspace (not just
the project).

Figure 11. The New Java Project wizard configures a new directory
for your code.

www.finebook.ir

http://www.finebook.ir/../

20 | Part III: Java Done Quick

After a moment, you should see your new empty project in
the Package Explorer view (see Figure 12).

Creating a Package
A Java package is a standard way to organize your classes into
separate namespaces. Although you can create classes with-
out packages, doing so is considered bad programming prac-
tice. To create a new package, select File ➝ New ➝ Package
or click on the New Package icon in the main toolbar ().
Enter the package name as org.eclipseguide and click Fin-
ish. You can see the results in the Package Explorer, as shown
in Figure 13.

Figure 12. A new Java project is born.

Figure 13. The project has grown a package.

www.finebook.ir

http://www.finebook.ir/../

Entering Code | 21

TIP

If you looked at the project on disk, you would see the
Hello directory, a src directory under that, org under that,
and eclipseguide under that. A compact form is shown in
the Package Explorer as a convenience.

Creating a Class
With the org.eclipseguide package highlighted, select File ➝

New ➝ Class or click on the New Java Class icon ().
Enter the name of the class, starting with a capital letter. For
this example, enter Hello.

Under the section of the dialog that asks which method stubs
you would like to create, select the option to create public
static void main(String[] args).

Leave the rest of the options set to their default values and
click Finish. Eclipse will generate the code for the class for
you (this generated class is shown in Figure 14), and open
the Java editor with your new class in view.

TIP

Whenever Eclipse generates code, it inserts TODO com-
ments to indicate the places you need to edit. Every place
in the code that has a TODO comment is listed in the Tasks
view (see Part VII).

Entering Code
You could run the program now, but it wouldn’t be very
interesting. So, let’s add a few lines to print something out.
Start by deleting the generated comment that says:

// TODO Auto-generated method stub

www.finebook.ir

http://www.finebook.ir/../

22 | Part III: Java Done Quick

Then replace it with this code:

for (int i = 0; i < 10; i++) {
 System.out.println(
 "Hello, world " + i);
}

When you’re done, the Java editor should look similar to
Figure 15.

Figure 14. Now the package has a file in it. You can further expand
the file to see its classes.

Figure 15. This is 10 times better than the usual “Hello, world”
program.

www.finebook.ir

http://www.finebook.ir/../

Running the Program | 23

The editor looks innocent enough, but through its clever use
of colors and annotations, the window is quietly conveying a
great deal of information. A large number of options to con-
trol this information can be found under Window ➝ Prefer-
ences ➝ Java ➝ Editor.

TIP

Press Ctrl+Shift+F (or select Source ➝ Format) to refor-
mat your code and fix any indentation and spacing prob-
lems. Do this early and often. If you’d like, you can
customize the formatting rules in the Java preferences.

Running the Program
Press Ctrl+S (or select File ➝ Save) to write the code to disk
and compile it. In the Package Explorer, right-click on
Hello.java and select Run As ➝ Java Application. The pro-
gram will run, and the Console view will open to show the
output (see Figure 16).

Figure 16. Isn’t this exciting?

www.finebook.ir

http://www.finebook.ir/../

24 | Part III: Java Done Quick

That’s it! You’ve written, compiled, and run your first pro-
gram in Eclipse in just a few minutes. Now, try it again and
see if you can do it in under a minute. My record is 35 sec-
onds. Go ahead, I’ll wait.

TIP

After you have run the program once, you can press
Ctrl+F11 (Run ➝ Run Last Launched) or click on the
Run icon in the toolbar () to run it again.

Now that you’re ready to write the next killer app, what’s the
rest of the book for? Part IV will introduce you to your new
best pal, the Java debugger. If your programs never have any
bugs (ahem), you can skip ahead to Part V to learn about unit
testing or Part VI to pick up a few tips about using the IDE.

www.finebook.ir

http://www.finebook.ir/../

25

PART IV:PART IV

Debugging

Let’s face it: all but the most trivial programs have bugs in
them. Eclipse provides a powerful debugger to help you find
and eliminate those bugs quickly. This part of the book will
give you a head start in understanding how to use the Eclipse
debugger.

Running the Debugger
Running your program under the control of the debugger is
similar to running it normally. Right-click on the file contain-
ing your main method (Hello.java) and select Debug As ➝

Java Application. Or, if you have run or debugged the pro-
gram before, just press F11 (or select Run ➝ Debug Last
Launched), or click on the Debug button () in the main
toolbar.

Go ahead and try that now. What happened? The program
ran to completion and sent its output to the Console view
just as if you had run the class normally. You have to set a
breakpoint to actually take advantage of the debugger.

Setting Breakpoints
A breakpoint is a marker you place on a line of code where you
want the debugger to pause execution. To set one, double-
click in the gutter area to the left of the source line. For this

www.finebook.ir

http://www.finebook.ir/../

26 | Part IV: Debugging

example, we want to stop on the System.out.println() call, so
double-click in the gutter next to that line. A breakpoint indi-
cator will appear, as shown in Figure 17.

Now, press F11 and Eclipse will run your program again in
debug mode. The breakpoint indicator will change when the
class is loaded, and the debugger will stop at the line where
you added the breakpoint.

TIP

One of the nice things about breakpoints in Eclipse is that
they stay with the line even if the line number changes (e.g.,
due to code being added or removed above it).

When the breakpoint is reached and the program stops,
you’ll notice several things. First, Eclipse will switch to the
Debug perspective. If you see a dialog asking to confirm the
perspective switch, select “Remember my decision” and click
Yes.

TIP

Using one perspective for coding and another for debug-
ging is optional, but some people like being able to cus-
tomize their window arrangement for each task. You can
disable this switching in the Run/Debug preferences
(Window ➝ Preferences ➝ Run/Debug).

Figure 17. Set a breakpoint by double-clicking to the left of the
source line.

www.finebook.ir

http://www.finebook.ir/../

Setting Breakpoints | 27

Next, several new views will open—most importantly, the
Debug view (see Figure 18). This view lets you control all the
threads of execution of all the programs being debugged.
Finally, the line of code where you put the breakpoint will be
highlighted to indicate which line will be executed next.

To continue running after a breakpoint, click on the Resume
button in the Debug view’s toolbar () or press F8 (Run ➝

Resume). Execution will continue until the next breakpoint
is hit or the program terminates.

TIP

If your program is in a long-running loop, click on the
Suspend button () or select Run ➝ Suspend to make it
stop. Or, just add a new breakpoint at any time—the pro-
gram does not have to be stopped.

You can see a list of all your breakpoints in the Breakpoints
view. Here you can enable and disable breakpoints, make
them conditional on certain program values, or set exception
breakpoints (i.e., to stop when a Java exception is thrown).

Figure 18. The Debug view lets you control and monitor execution
of multiple programs and threads.

www.finebook.ir

http://www.finebook.ir/../

28 | Part IV: Debugging

Single Stepping
Like most debuggers, the one provided by the Eclipse IDE
lets you step line by line through your program with one of
two commands: step into (; F5; or Run ➝ Step Into) and
step over (; F6; or Run ➝ Step Over). The difference
between the two is apparent when the current line is a
method call. If you step into the current line, the debugger
will go to the first line of the method. If you step over the
current line, the debugger will run the method and stop on
the next line.

Try stepping now, by running until your breakpoint is hit
and then pressing F6 several times in a row. Watch the high-
light bar move around as the current line changes.

If you step into a method call and then change your mind,
execute the step return command (; F7; or Run ➝ Step
Return). This lets the program run until the current method
returns. The debugger will stop at the line following the line
that called the method.

Looking at Variables
The Eclipse IDE provides many different ways to examine
and modify your program state. For example, as you single
step, you may have noticed that the Variables window shows
the current value of all the local variables, parameters, and
fields that are currently visible (see Figure 19). You can
quickly identify which variables are changing because Eclipse
draws them in a different color. If any of the variables are
nonprimitives (objects or arrays), you can expand them to
look at the individual elements.

To change the value of a variable, first select it in the Vari-
ables view. This will make its current value appear in the bot-
tom half of the window, where you can change it. Save the
new value by pressing Ctrl+S (or right-click and select Assign
Value).

www.finebook.ir

http://www.finebook.ir/../

Looking at Variables | 29

TIP

When you are coding, try to use the smallest possible
scope for your local variables. For example, instead of de-
claring all your variables at the top of a function, declare
them inside the statement blocks (curly braces) where
they are actually used. Besides being a good program-
ming practice, this will limit the number of items dis-
played in the Variables view.

Another way to see the value of a particular variable is to
move your cursor over it in the source editor. After a short
pause, a tool tip window will appear with the value. See
Figure 20 for an example.

What if you need to see the value of a Java expression? No
problem: just use the mouse or keyboard to select the expres-
sion in the editor, then press Ctrl+Shift+D (or right-click and

Figure 19. The Variables view shows all the values in scope.
Changes since the last step or resume are highlighted in red.

Figure 20. Hover the mouse over a variable in the Java editor to see
its current value.

www.finebook.ir

http://www.finebook.ir/../

30 | Part IV: Debugging

select Display). Eclipse will evaluate the expression (includ-
ing any side effects) and show the results in a pop-up win-
dow (see Figure 21). The expression can be as simple or as
complicated as you like, as long as it’s valid.

For compound objects like class instances, you may want to
try the Inspect command (Ctrl+Shift+I, or right-click and
select Inspect) instead of Display. This will let you expand
items and collapse members as in the Variables view.

Changing Code on the Fly
Eclipse blurs the line between editing and debugging by
letting you modify a running program. You don’t have to
stop the program—just edit and save it. If possible, Eclipse
will compile just the class that was modified and insert it into
the running process. This handy feature is called hot code
replace.

TIP

If you modify a method that the program is currently exe-
cuting, the debugger will have to drop to the previous
frame and begin that method again from its first line. This
doesn’t work on the main() method because there is no
caller.

Figure 21. Select an expression and press Ctrl+Shift+D to evaluate it.

www.finebook.ir

http://www.finebook.ir/../

Changing Code on the Fly | 31

Some kinds of changes can be made on the fly and some can-
not. Simple things (like fixing an expression formula, chang-
ing comments, adding new local variables, adding new
statements to an existing method, etc.) should work fine. If
for some reason execution cannot continue, you will get an
error dialog with the option to continue without making the
change, terminate the program, or terminate and restart it
from the beginning.

TIP

Hot code replace requires special support from the Java
virtual machine that is not present in all versions of Java.
It’s known to work in Sun’s Java Version 1.4.2 and later,
but not all vendors support it. If your Java version does
not support it, you’ll get an error dialog when you try to
save.

The debugger has so many features that it’s impossible to
cover them all here. Part VI covers more advanced topics that
impact running and debugging your program, especially in
the “Launch Configurations” section. But in your first pass
through this book, you may want to continue with Part V,
which covers unit testing. Later, you can go to Part VII to
find out what all those buttons in the Debug and Breakpoint
views do.

The Eclipse online help is also a good resource for informa-
tion on running and debugging. See the following sections in
the User’s Guide (Help ➝ Help Contents ➝ Java Development
User Guide):

• Concepts ➝ Debugger

• Tasks ➝ Running and debugging

www.finebook.ir

http://www.finebook.ir/../

32

PART V:PART V

Unit Testing with JUnit

JUnit is a regression testing framework written by Kent Beck
and Erich Gamma. Since Erich is the project leader for
Eclipse’s Java toolkit, it’s only natural that JUnit is well inte-
grated into the IDE.

A Simple Factorial Demo
To try out unit testing in Eclipse, first create a project called
Factorial containing a class called Factorial. Inside that
class, create a factorial() method as follows:

public class Factorial {
public static double factorial(int x) {

if (x == 0)
return 1.0;

return x + factorial(x - 1);
 }
}

TIP

If you notice the nasty little error in this code, ignore it
for now. That’s part of the demonstration!

www.finebook.ir

http://www.finebook.ir/../

Creating Test Cases | 33

Creating Test Cases
To test this class, you’ll need to create a test case for it. A test
case is a class that extends the JUnit TestCase class and con-
tains test methods that exercise your code. To create a test
case, right-click on Factorial.java in the Package Explorer
and select New ➝ JUnit Test Case.

TIP

If you get a dialog offering to add the JUnit library to the
build path, select Yes.

A dialog window will come up with the name of the test case
(FactorialTest) already filled in, along with the name of the
class being tested. Click Next to show the Test Methods dia-
log, select the factorial(int) method, and click Finish to
generate the test case. Eclipse will then generate some code
for you, similar to the following:

public class FactorialTest extends TestCase {
public void testFactorial() {

 }
}

Now, all you need to do is supply the contents of the
testFactorial() method. JUnit provides a number of static
methods that you call in your tests to make assertions about
your program’s behavior. See Table 5 for a list.

Table 5. JUnit assertion methods

Method Description

assertEquals()
assertNotEquals()

See if two objects or primitives have the same value.

assertSame()
assertNotSame()

See if two objects are the same object.

assertTrue()
assertFalse()

Test a Boolean expression.

assertNull()
assertNotNull()

Test for a null object.

www.finebook.ir

http://www.finebook.ir/../

34 | Part V: Unit Testing with JUnit

To test the factorial() method, call the method with a few
sample values and make sure it returns the right results.
Now, insert a blank line and press Ctrl+Space (this brings up
the code assist feature, which is discussed in Part VI); you will
discover that JUnit supplies a version of assertEquals() that
takes three arguments. The first two are the values to com-
pare, the last is a “fuzz factor;” assertEquals() will fail if the
difference between the supplied values is greater than the
fuzz factor. Supply the value you expect the method to return
as the first parameter; use the method call itself as the sec-
ond. For example,

public void testFactorial() {
 assertEquals(1.0,
 Factorial.factorial(0), 0.0);
 assertEquals(1.0,
 Factorial.factorial(1), 0.0);
 assertEquals(120.0,
 Factorial.factorial(5), 0.0);
}

Feel free to insert a few more assertions in this method or
add additional test methods.

You can also override the setUp() and tearDown() methods,
respectively, to create and destroy any resources needed by
each test, such as a network connection or file handle.

TIP

All test methods must start with the word “test” so JUnit
can figure out which methods to run. JUnit will ignore
any methods in the test class that it doesn’t recognize.

Running Tests
To run the test case, right-click on FactorialTest.java and
select Run As ➝ JUnit Test. The JUnit view appears, and
your tests are off and running. In this case, a red progress bar

www.finebook.ir

http://www.finebook.ir/../

Running Tests | 35

and a special icon next to the view title indicate that some-
thing went wrong (see Figure 22).

If you double-click on the test class or method name in the
Failures list, Eclipse will open that test in the editor. Double-
click on a line in the Failure Trace to go to a specific line
number.

TIP

The best practice if a test fails is to set a breakpoint on the
failing line and then use the debugger to diagnose the
problem. Just select Debug instead of Run to run the
debugger.

When you examine the test, you can see that the factorial
function is not being calculated correctly, due to an error in
the formula. To correct the error, replace the + with a *:

return x * factorial(x - 1);

Figure 22. The JUnit view shows a summary of the last test run.

www.finebook.ir

http://www.finebook.ir/../

36 | Part V: Unit Testing with JUnit

Now, rerun your tests (Ctrl+F11). You shouldn’t see any fail-
ures; instead, you should see a green bar, indicating success.

Test First
Having a good suite of tests is important—so important, that
many developers advocate writing the tests for new code
before a single line of the code itself! This is called test driven
development, or TDD for short. Such tests represent the
requirements that your code must satisfy in order to be con-
sidered correct.

To see how Eclipse makes TDD simple, keep the unit test
you just created, but delete the Factorial.java file (select it in
the Package Explorer and press Delete). The editor for the
FactorialTest class will shown an error immediately because
the Factorial class is not defined anymore. This simulates
the state you would be in if you had written your test class
first.

Put the text cursor on the first line that has an error and press
Ctrl+1 (Edit ➝ Quick Fix). Select the “Create class ‘Factorial’”
option and press Enter. When the New Java Class dialog
appears, press Enter to accept the defaults.

Now, go back to the FactorialTest editor and note that the
compiler complains that there is no factorial(int) method.
Press Ctrl+1 to create one.

Unfortunately, the current version of Eclipse is not always
smart enough to figure out the right return type, so you may
need to change the generated return type to be a double. Use a
dummy return value (0.0) for now. At this point, Factorial.
java should look something like this:

public static double factorial(int i) {
return 0.0;

}

www.finebook.ir

http://www.finebook.ir/../

Test First | 37

TIP

Of course, this is not the right way to calculate a factori-
al, but all you want to do at this point is get the program
to compile again.

Now you have a test case, a little bit of code, and no errors—
so try running the tests. Unsurprisingly, they fail. At this
point in actual TDD, you would go back to the code being
tested and fix it so that it passes the tests, then add another
test, make that work, and repeat the process until done.

Compare this technique with what most people typically do.
They write a bunch of code first, then write a trivial little test
program to exercise that code (maybe something with a
main() method and a few println() statements). Once that
test is working, they throw the test away and assume their
class will never break again.

Don’t ever throw tests away! Nurture them, slowly add to
them, and run them often, preferably as part of an auto-
mated build and test system. Techniques even exist to create
unit tests for user interfaces.

TIP

When you get a bug report from your users, your first im-
pulse may be to fix the bug. Instead, stop and write a unit
test that fails because of the bug. Then, change the code
so the test works. This ensures your fix actually solves the
problem and helps improve your tests over time.

The JUnit view is covered in more detail in Part VII. If you
want to learn more about unit testing best practices, see:

http://www.junit.org
JUnit home page

http://www.testdriven.com
Resource for test driven development

www.finebook.ir

http://www.finebook.ir/../

38

PART VI:PART VI

Tips and Tricks

The Eclipse IDE has an incredibly rich set of features, but
many of them are hidden from view. With a little digging,
you can discover its secrets and get the most out of the envi-
ronment. This part of the book gets you started with several
useful but less visible features.

Code Assist
The Java editor is always paying attention to what you type,
ready to offer helpful suggestions through a feature called
code assist (also called content assist). To use it, go to the Java
editor in the Hello example and start a new statement in the
main() method. Begin typing the following:

System.

Pause after the period. A code assist window (similar to that
shown in Figure 23) will appear. The window shows you all
the valid possibilities at this point. Type the letter o and the
choices will narrow down to out. Press Enter to accept this
choice. Given the long names most Java programs use, this
can be a real time-saver.

Besides reducing typing, code assist is especially handy when
you are exploring unfamiliar territory—for example, making
calls to a library you haven’t used before. Code assist is acti-
vated automatically by certain keystrokes—like the period in
the previous example—but you can also invoke it at any time
by pressing Ctrl+Space (Edit ➝ Content Assist). This feature

www.finebook.ir

http://www.finebook.ir/../

Templates | 39

is fully configurable in the Java editor preferences (Window
➝ Preferences ➝ Java ➝ Editor).

Templates
Eclipse provides a shorthand way of entering text called tem-
plates. For example, in the Java editor, if you type for and
press Ctrl+Space, the code assist window will pop up as
before, but this time it will display a few templates that start
with the word “for” (see Figure 24).

Selecting the first one will cause code similar to this to
appear in the editor:

for (int i = 0; i < array.length; i++) {

}

Figure 23. Code assist tells you what comes next and displays any
Javadoc (if the source is available).

Figure 24. Editor templates are shorthand for entering boilerplate
text (e.g., for loops).

www.finebook.ir

http://www.finebook.ir/../

40 | Part VI: Tips and Tricks

The cursor highlights the first variable i. If you start typing,
all three occurrences of that variable will be modified. Press-
ing Tab will cause the variable array to be selected; pressing
Tab again will put the cursor on the blank line between the
braces so you can supply the body of the loop.

TIP

If you try this, you may see different variable names.
Eclipse guesses which variables to use based on the sur-
rounding code.

For a list of all predefined templates, and to create your own
or export them to an XML file, see Window ➝ Preferences ➝

Java ➝ Editor ➝ Templates.

Automatic Typing
Closely related to code assist is a feature called automatic
typing. If you’re following along with the earlier example
shown in Figure 23, the text cursor should be positioned
after System.out. Type .println((that is, period, println,
opening parenthesis). The Java editor will type the closing
parenthesis for you automatically. Now, type a double quote,
and the closing quote appears. Type in some text and then
press the Tab key. Tab advances to the next valid place for
input, which is after the closing quote. Hit Tab again, and
the cursor advances to the end. Type a semicolon to finish
the statement.

TIP

Code assist and automatic typing take a little getting used
to. At first you may be tempted to turn them off, but I
suggest you give it time and try to learn to work with
them. After a while, you’ll wonder how you ever got by
without the extra support.

www.finebook.ir

http://www.finebook.ir/../

Refactoring | 41

Refactoring
Refactoring means transforming code without changing its
functionality. Consider renaming, which is the simplest form
of refactoring. If you rename a local variable from rose to
daisy, it would smell as sweet.

Much has been written on refactoring, such as Refactoring:
Improving the Design of Existing Code (Addison Wesley).
Before Eclipse and similar tools were available, program-
mers had to do refactoring manually or with simple text sub-
stitutions. For example, in the vi editor, running the
command :1,$s/rose/daisy/g will replace “rose” with “daisy”
everywhere in the current file.

If you’ve ever tried this, you know it’s usually a bad idea.
Your simple search-and-replace operation can change more
than just the variable you intended, even with a clever substi-
tution string. Plus, if you need to change multiple files, you’ll
have to go to a scripting language such as Perl.

Here’s how it works in Eclipse. To rename a symbol (i.e., a
class, method, variable, etc.), select it in the editor and press
Alt+Shift+R (Refactor ➝ Rename). Type in the new name
and press Enter to perform the change. Done!

If you like, you can select the Preview button before perform-
ing the changes; this will show you what the modified source
will look like (see Figure 25). You can also undo the refactor-
ing (Ctrl+Z or Edit ➝ Undo) if you change your mind.

Here’s another handy refactoring supported by Eclipse: to
move a class from one package to another, simply go to the
Package Explorer view and drag the file to where you want it.
Eclipse will take care of changing the package statement in the
file and in all the other class files that refer to it. Neat, huh?

Eclipse implements over a dozen different types of refactor-
ings, and more are being added all the time. See the Java
Development User Guide (Window ➝ Help Contents ➝ Java

www.finebook.ir

http://www.finebook.ir/../

42 | Part VI: Tips and Tricks

Development User Guide) under Reference ➝ Refactoring for
more information.

Hover Help
You’ve seen that code assist is a good way to explore an
unfamiliar API. Another useful tool is hover help. To use
hover help, simply move the mouse cursor over a symbol you
want to know more about and pause for a moment. For
example, try hovering over println in System.out.println. A
little pop-up window will appear, giving you a short descrip-
tion of the method.

For best results, you need access to the source code of the
symbol you are examining. For Java library methods, the
source comes with the JDK (J2SE SDK) package. Eclipse can
usually figure out how to find this source code on its own,
but see Window ➝ Preferences ➝ Java ➝ Installed JREs to
configure the JDK’s location.

Figure 25. You can preview the changes that any of Eclipse’s
refactorings would make.

www.finebook.ir

http://www.finebook.ir/../

Quick Fixes | 43

If you are using code from a third-party JAR file, the source is
often provided in a separate file or a subdirectory. You can
tell Eclipse about this location by right-clicking on the JAR
file in the Package Explorer and selecting Properties ➝ Java
Source Attachment.

If you don’t have the source code, but you have the API doc-
umentation (Javadoc) in HTML form, select the symbol you
want information on and press Shift+F2 (Navigate ➝ Open
External Javadoc). To make this work, you have to configure
the Javadoc URL in the properties for the JAR file: right-click
on the JAR file and select Properties ➝ Javadoc Location.

Hyperlinks
Did you know there is a web browser built into the Java edi-
tor? Well, there is—sort of. The editor lets you navigate
around your program as if it were a web site. Hold down the
Ctrl key and move your mouse through your source code. An
underline will appear to indicate hyperlinked symbols. You
can leave the mouse cursor over the symbol to see its defini-
tion, or click on it to open the declaration in the editor.

Like a browser, Eclipse maintains a history of all the pages
you’ve visited. Use the Back command (; Alt+Left; or Nav-
igate ➝ Left) to go to the previous location, and use Forward
(; Alt+Right; or Navigate ➝ Right) to go to the next one.

Quick Fixes
Whenever you make a syntax error in your program,
Eclipse’s background compiler detects it immediately and
draws an error indicator (affectionately known as the red
squiggle) under the offending code. In addition to simply
detecting the problem, Eclipse can usually offer an auto-
matic program correction, called a quick fix.

www.finebook.ir

http://www.finebook.ir/../

44 | Part VI: Tips and Tricks

For example, try misspelling the System.out method println
as printline. Press Ctrl+1 (Edit ➝ Quick Fix) to see several
possible fixes. One of them will be Change to println(..).
Press the down arrow to see a preview of each proposed
change; press Enter to accept the one you want.

The Quick Fix command can also make suggestions for small
source transformations on lines that don’t have errors. For
example, if you have code like this:

if (!(hail || thunder))

and you select the text (!(hail || thunder) and press Ctrl+1,
Eclipse will suggest some possible transformations, such as
“Push negation down.” Choosing that particular option
would change the code to:

if (!hail && !thunder)

Searching
The Eclipse IDE provides dozens of different ways to locate
things. Eclipse breaks these up into two major categories:

Find
Look for something in the current file.

Search
Look for something in multiple files.

The Find command (Ctrl+F or Edit ➝ Find/Replace) is just a
run-of-the-mill text locator like you would see in any editor.
You can look for plain strings or full regular expressions, and
you can optionally substitute the text you find with other
text. The shortcut to find the next occurrence is Ctrl+K.

A handy variant on Find is incremental find, a feature bor-
rowed from the Emacs editor. Press Ctrl+J (Edit ➝ Incremen-
tal Find Next) and start typing the text you’re looking for.
The selection will move to the next occurrence as you type.

www.finebook.ir

http://www.finebook.ir/../

Searching | 45

Searches are much more interesting. To start with, Eclipse
supports locating strings and regular expressions in many
files at once. You can search the entire workspace, just the
current project, or any subset (called a working set) that you
define. To do this kind of search, select Search ➝ File....

Eclipse can also do a full language-aware search. Since
Eclipse has its own built-in Java compiler, it understands the
difference between, say, a method named fact and a field
named fact, or even between two methods that have the
same names but take different parameters, such as fact(int)
and fact(double). This kind of search is available by select-
ing Search ➝ Java....

These searches and more are accessible through the Search
dialog (; Ctrl+H; or Search ➝ Search). The most common
variations also have direct menus or shortcuts of their own.
For example, to find all references to a symbol, select the
symbol and press Ctrl+Shift+G (or Search ➝ References ➝

Workspace). To find the symbol’s declaration, press Ctrl+G
(Search ➝ Declarations ➝ Workspace). To find only those
places where the symbol is modified, try Search ➝ Write
Access ➝ Workspace.

TIP

Current versions of Eclipse don’t allow you to perform
searches on arbitrary files in the filesystem, but you can
use an advanced option under File ➝ New ➝ Folder to
link outside directories into your workspace and then
search them.

All search results will appear, naturally enough, in the Search
view. See Part VII for more details on that view.

www.finebook.ir

http://www.finebook.ir/../

46 | Part VI: Tips and Tricks

Scrapbook Pages
A scrapbook page is a way to create and test snippets of code
without all the trappings of normal Java code. In some ways,
it’s like working in a scripting language, but you have the full
expressiveness of Java in addition to being able to make calls
into any of your code or any of the system libraries.

To create a scrapbook page, select File ➝ New ➝ Other... ➝

Java ➝ Java Run/Debug ➝ Scrapbook Page. Enter the name
of the page—for example, test—and click Finish (or just
press Enter). A new editor page will open for test.jpage.

In the blank scrapbook page, try typing in an expression like
123/456, press Ctrl+A to select the expression, and press
Ctrl+Shift+D (Run ➝ Display) to run it and display the
result. (The answer in this case is (int) 0 because both num-
bers are integers and the result was truncated.) Note that the
result is selected, so you can copy it quickly (or press Back-
space to remove it from the page).

Next, try entering Math.PI and displaying its result. This
works because the scrapbook page already has all the system
libraries imported, including the Math class. If you need a par-
ticular import, you can bring up the context menu and select
Set Imports....

Let’s try something a little more complicated. Type in this
snippet of code:

double d = 3.14;
System.out.println(d);

Now select the snippet and press Ctrl+U (Run ➝ Execute) to
execute it. The output will appear in the Console window.
Execute is exactly like Display except that Execute doesn’t
show the return value (if any).

You can execute loops or even call methods in your regular
programs from the scrapbook page. This is useful for trying
out new ideas or just for simple debugging.

www.finebook.ir

http://www.finebook.ir/../

Java Build Path | 47

Java Build Path
If you’ve done any Java programming before, you’re familiar
with the Java classpath—a list of directories and JAR files
containing Java classes that make up the program. Usually
this is controlled by an environment variable (CLASSPATH) or a
command-line option (-cp).

In Eclipse, classpath details are a little more complicated.
The first thing to realize is that Eclipse doesn’t use the
CLASSPATH environment variable. It understands and controls
the location of all classes itself. Additionally, Eclipse makes a
distinction between runtime and build (compile) time. In
Eclipse terminology, classpath refers only to the runtime class
list, while build path refers to the compile-time list. These
two paths may be different, but, by default, they will both be
set to the list you specify in the build path.

To see the build path, right-click on your project and select
Properties ➝ Java Build Path. A dialog will appear, with the
tabs described in Table 6.

In addition to going through the Java Build Path dialog, you
can right-click on directories and JAR files in the Package

Table 6. Java Build Path tabs

Tab name Description

Source Tell the Java compiler where your source code is located. Each
source directory is the root of a package tree. You can also control
where generated output files (such as .class files) go.

Projects Make the current project depend on other projects. Classes in the
other projects will be recognized at build time and runtime. The
other projects do not have to be built into a JAR file before
referring to them in Eclipse; this cuts down on development time.

Libraries Pull in code that is not in Eclipse projects, such as JAR files. See
Table 7 for the kinds of locations you can access.

Order and Export If other projects are dependent on this one, expose (or don’t
expose) symbols in the current project to the other projects.

www.finebook.ir

http://www.finebook.ir/../

48 | Part VI: Tips and Tricks

Explorer view and select commands under the Build Path
menu to add and remove items from the build path.

The Libraries tab is very flexible about the locations it allows
you to specify for JARs and class files. Other features in
Eclipse use similar lists, so if you understand this tab, it will
help you understand those features as well. Table 7 explains
the buttons on the Libraries tab.

Launch Configurations
How do you specify command-line parameters to your pro-
gram or change the Java VM options that are used to invoke
your program? Every time you select Run As ➝ Java Applica-
tion on a new class that has a main() method, Eclipse cre-
ates a launch configuration for you. A launch configuration is
the set of all the options used to run your program.

To change those options, select Run ➝ Run... and locate
your configuration in the dialog. Click on the configuration
to see all the options in a series of tabbed pages on the right-
hand side of the window (the tabs are described in Table 8).
You can also create new configurations in this dialog.

Table 7. JAR and class locations in the Java Build Path

Button name Description

Add JARs . . . Specify JAR files in the workspace (this project or other
projects).

Add External JARs . . . Specify full pathnames for JAR files outside the workspace (not
recommended for team projects).

Add Variable . . . Use a symbolic variable name (like JRE_LIB or ECLIPSE_
HOME) to refer to a JAR file outside the workspace.

Add Library . . . Refer to a directory outside the workspace containing several
JAR files.

Add Class Folder . . . Refer to a workspace directory containing individual class files.

www.finebook.ir

http://www.finebook.ir/../

Launch Configurations | 49

Many more features of Eclipse are waiting to be discovered,
and new ones are added in each release. The “Tips and
Tricks” section of the online help (Help ➝ Tips and Tricks)
is a good place to look for the kinds of little nuggets that can
save you time or let you do something new. You can also find
a useful command and keyboard shortcut listing in the
Appendix.

Table 8. Launch configuration tabs

Tab name Description

Main Specify the project and the name of the Main class.

Arguments Set the program arguments, the Java VM arguments, and the working
directory in which to start the program.

JRE Specify the version of Java used to run the program (this can be
different than the one used to compile it).

Classpath Set the list of JARs and classes available at runtime.

Source Locate the source code inside or outside the workspace.

Environment Pass environment variables to the program.

Common Miscellaneous options.

www.finebook.ir

http://www.finebook.ir/../

50

PART VII:PART VII

Views

Eclipse has so many different views and toolbars that it’s easy
to get overwhelmed trying to decipher them all. Consider
this part of the book to be your own personal secret decoder
ring.

Breakpoints View
The Breakpoints view (in the Debug perspective) shows a list
of all the breakpoints you have set in your projects. Use it to
enable and disable breakpoints, edit their properties, and set
exception breakpoints (which trigger a stop when a Java
exception occurs). Table 9 lists the commands on the Break-
points view toolbar.

Table 9. Breakpoints view toolbar

Icon Description

Remove the selected breakpoint(s).

Remove all breakpoints in all projects.

Show/hide breakpoints not valid in the selected remote debug target
(toggle).

Edit the source code at the breakpoint.

Temporarily disable all breakpoints (toggle).

Expand the breakpoint tree.

www.finebook.ir

http://www.finebook.ir/../

Breakpoints View | 51

Double-click on a breakpoint to edit the code at that line. To
fine-tune when the breakpoint will be triggered, right-click
on the breakpoint and select Properties. Table 10 shows
some of the properties you can set. The exact options that
appear will vary depending on the breakpoint’s type.

In the Eclipse Java development environment, an expression
is anything you can put on the righthand side of a Java
assignment statement. This can include ordinary variables,
fields, method calls, arithmetic formulae, and so forth.

A conditional breakpoint is a breakpoint that doesn’t stop
every time. For example, if you’re debugging a crash that
occurs on the 100th time through a loop, you could put a
breakpoint at the top of the loop and use a conditional
expression like i == 99, or you could specify a hit count of
100—whichever is more convenient.

Collapse the breakpoint tree.

When the program stops, highlight the breakpoint that caused it to stop
(toggle).

Create a breakpoint for a Java exception.

Table 10. Breakpoint properties

Property Description

Enabled Indicates whether the breakpoint is currently in effect.

Hit Count Specifies how many times the breakpoint must be hit before the
programs stops.

Condition Stops only when the expression is true or changes value.

Suspend Policy Pauses the whole program or just a single thread.

Filtering Limits the breakpoint’s effect to the given thread(s).

Table 9. Breakpoints view toolbar (continued)

Icon Description

www.finebook.ir

http://www.finebook.ir/../

52 | Part VII: Views

Console View
The Console view displays the output of programs that are
run under the control of Eclipse. Use it to view standard out-
put or error output from your Java programs, or from Ant,
CVS, or any other external program launched from Eclipse.
You can also type into the Console view to provide standard
input.

The Console view is closely tied to the Debug view. It keeps
a separate page for each program listed in the Debug view,
whether or not the program is currently running. Table 11
shows the commands on the Console view’s toolbar.

TIP

If your program prints a stack traceback, the Console
view turns each line into a hyperlink. Click on a link to go
to the location indicated in the traceback.

Options for the Console view can be found under Window ➝

Preferences ➝ Run/Debug ➝ Console.

Table 11. Console view toolbar

Icon Description

Terminate the current program.

Remove all record of previously terminated programs.

Clear all the lines in the current console page.

Keep the view from scrolling as new lines are added to the end (toggle).

Prevent the view from automatically switching to other pages (toggle).

Switch to an existing console page.

Open a new console page (for example, to see CVS output).

www.finebook.ir

http://www.finebook.ir/../

Debug View | 53

Debug View
The Debug view (in the Debug perspective) lists all pro-
grams that were launched by Eclipse. Use it to pause pro-
gram execution, view tracebacks, and locate the cause of
deadlocks (more on this shortly). Table 12 shows the com-
mands on the Debug view’s toolbar.

Step filters prevent you from having to stop in classes,
packages, initializers, or constructors that you don’t find
interesting. The list of filters is configured in Window ➝

Preferences ➝ Java ➝ Debug ➝ Step Filtering.

One option in the Debug view menu deserves a special men-
tion: Show Monitors. Monitors are Java thread synchroniza-
tion points. Deadlocks occur when one thread is waiting on a
monitor that will never be released. When you turn on the
Show Monitors option, the Debug view will display a list of
monitors owned or waited on by each thread. Any dead-
locks will be highlighted.

Table 12. Debug view toolbar

Icon Description

Continue running a program or thread that was previously paused.

Pause the current program or thread.

Terminate the current program.

Disconnect from a remote debugger.

Remove all record of previously terminated programs.

Single step into method calls.

Single step over method calls.

Continue execution until the current method returns.

Rewind execution to the beginning of the selected stack frame (requires VM
support).

Enable/disable step filters (toggle).

www.finebook.ir

http://www.finebook.ir/../

54 | Part VII: Views

Declaration View
The Declaration view (in the Java perspective) shows the
Java source code that defined the current selection. Use this
view to see the declaration of types and members as you
move around your code, without having to switch editors.
The toolbar for the Declaration view contains the single icon
shown in Table 13.

TIP

The declaration can also be seen by holding down the
Ctrl key and hovering the mouse pointer over the type or
member in the Java editor.

Display View
The Display view (in the Debug perspective) shows expres-
sion results in an unstructured format. Use it as a temporary
work area in which to place expressions and calculate their
values. Table 14 shows the commands on the Display view’s
toolbar.

Table 13. Declaration view toolbar

Icon Description

Open an editor on the input source code.

Table 14. Display view toolbar

Icon Description

Inspect the selected expression.

Display the selected expression.

Evaluate the selected expression.

Erase everything in the Display view.

www.finebook.ir

http://www.finebook.ir/../

Error Log View | 55

There are four different ways to evaluate expressions in the
Eclipse debugger:

Inspect (Ctrl+Shift+I or Run ➝ Inspect)
Show the value of an expression in an expandable tree
format. Optionally, copy it into the Expressions view.
The value is never recalculated.

Display (Ctrl+Shift+D or Run ➝ Display)
Show the value of an expression in a simple string for-
mat. Optionally, copy it into the Display view. The value
is never recalculated.

Execute (Ctrl+U or Run ➝ Execute)
Evaluate the expression but don’t show its value.

Watch (Run ➝ Watch)
Copy an expression into the Expressions view. Its value
is recalculated every time you do a Step or Resume
command.

For example, in the Java editor, you could highlight an
expression such as array[i-1] and press Ctrl+Shift+D. A
pop-up window appears, showing the current value of that
array element. Press Ctrl+Shift+D again and the expression
is copied to the Display view.

If this view looks familiar to you, that’s because it’s essen-
tially an unnamed scrapbook page.

TIP

See the “Scrapbook Pages” section in Part V for more in-
formation on scrapbook pages.

Error Log View
The Error Log view is not included by default in any perspec-
tive, but you can open it with Window ➝ Show View ➝

Error Log. Use it to view internal Eclipse errors and stack

www.finebook.ir

http://www.finebook.ir/../

56 | Part VII: Views

dumps when reporting problems to the developers. It can
also display warnings and informational messages logged by
Eclipse plug-ins. Table 15 shows the commands on the Error
Log view’s toolbar.

TIP

See “Reporting Bugs” in Part IX for instructions on how
to report problems in Eclipse.

Expressions View
The Expressions view (in the Debug perspective) shows a list
of expressions and their values in the debugger. Use it to
examine program states persistently as you step through your
code, and to set breakpoints when fields are accessed or
modified. This view is similar to the Variables view
(described later in Part VII) except that the Expressions view
shows only expressions that you have explicitly added.
Table 16 describes the Expressions view’s toolbar.

Table 15. Error Log view toolbar

Icon Description

Export the error log to another file.

Import the error log from another file.

Clear the view without modifying the logfile.

Clear the view and erase the logfile.

Open the logfile in an external text editor.

Reload the view with the contents of the logfile.

Table 16. Expressions view toolbar

Icon Description

Show full type names (toggle).

Show logical structure (toggle).

www.finebook.ir

http://www.finebook.ir/../

Expressions View | 57

There are three ways of looking at any expression in the
Eclipse IDE; this is true for both the Expressions view and
the Variables view:

Literal mode
The fields, and nothing but the fields

Logical mode
The way you normally think about the object

Details pane
The string representation (as returned by the toString()
method)

Consider a java.lang.LinkedList object. If you look at it lit-
erally (as in Figure 26), you’ll see it contains some internal
data structures, such as the number of items and a reference
to the first item. But if you look at it logically (Figure 27), it
simply contains a list of objects.

Collapse all the expanded trees in the view.

Remove the current expression from the view.

Remove all expressions in the view.

Figure 26. Literal mode shows an object’s internal data structures.

Table 16. Expressions view toolbar (continued)

Icon Description

www.finebook.ir

http://www.finebook.ir/../

58 | Part VII: Views

Additionally, the Expressions and Variables views support an
optional text area called the Details pane. This pane shows
the string representation of the selected item (see Figure 28).
Use the view menu to arrange the panes horizontally or verti-
cally, or to disable the Details pane altogether.

TIP

You can create your own ways of looking at expressions
by defining new Logical Structures and Detail Formatters
in the debugger preferences (Window ➝ Preferences ➝

Java ➝ Debug).

Hierarchy View
The Hierarchy view (in the Java perspective) shows the
supertypes and subtypes for the selected Java object. Use it
to explore the type hierarchy, fields, and methods for a class

Figure 27. Logical mode shows what the object really means.

Figure 28. The Details pane shows an object’s string representation.

www.finebook.ir

http://www.finebook.ir/../

Hierarchy View | 59

or interface by selecting the type in the Java editor or Pack-
age Explorer view and pressing F4 (Navigate ➝ Open Type
Hierarchy).

The Hierarchy view has two panes, each with its own tool-
bar. The top pane is the Type Hierarchy tree (see Table 17),
which lists the object’s supertypes and subtypes. The
optional bottom pane is the Member list (Table 18). It shows
fields and methods. Double-click on any type or member to
edit its source code.

TIP

Press Ctrl+T in the Java editor to show the type hierar-
chy in a searchable pop-up window.

Table 17. Type Hierarchy toolbar

Icon Description

Show the type hierarchy from object down.

Show the supertype hierarchy from the current type up.

Show the subtype hierarchy from the current type down.

View a previous type in the history.

Table 18. Member list toolbar

Icon Description

Lock the member list and show inherited members in the Type Hierarchy
pane (toggle).

Show all inherited members (toggle).

Sort members by defining type (toggle).

Show/hide fields (toggle).

Show/hide statics (toggle).

Show/hide nonpublic members (toggle).

www.finebook.ir

http://www.finebook.ir/../

60 | Part VII: Views

Javadoc View
The Javadoc view (in the Java perspective) shows Java docu-
mentation from comments at the definition of the current
selection. Use it if you need a larger, permanent version of
the pop-up window you get when you hover the mouse
pointer over a type or member in the Java editor. The tool-
bar for the Javadoc view contains the single icon shown in
Table 19.

Like Hover Help, the Javadoc view requires access to the
source code.

TIP

See “Hover Help” in Part VI for more information.

JUnit View
The JUnit view (in the Java perspective) shows the progress
and results of JUnit tests. Use it to see what tests failed and
why (see Part V for instructions on how to run unit tests).

The JUnit view has two panes, each with its own toolbar.
The JUnit tests pane (see Table 20 for toolbar commands)
lists the tests that failed (or a hierarchy of all tests). When
you select a failed test in this pane, the Failure trace pane (see
Table 21 for toolbar commands) shows a traceback pinpoint-
ing where the failure occurred. Double-click on any test
name, class name, or traceback line to edit the source code at
that point.

Table 19. Javadoc view toolbar

Icon Description

Open the input source code.

www.finebook.ir

http://www.finebook.ir/../

Navigator View | 61

Use the JUnit preference page (Window ➝ Preferences ➝

Java ➝ JUnit) to configure the list of stack frames to filter out.

Navigator View
The Navigator view (in the Resource perspective) shows all
projects in the workspace as they exist on disk. Use it to see
the literal directories and files. Contrast this with the Pack-
age Explorer view, which shows a Java-centric representa-
tion. Table 22 describes the Navigator view’s toolbar.

Table 20. JUnit tests toolbar

Icon Description

Go to the next failed test.

Go to the previous failed test.

Stop the current test run.

Rerun all tests.

Rerun just the tests that failed.

Keep the test list from scrolling.

Table 21. Failure trace toolbar

Icon Description

Filter unwanted stack frames from failure tracebacks.

Compare the expected and actual values on a JUnit assertion (string values
only).

Table 22. Navigator view toolbar

Icon Description

Go back in the navigator history.

Go forward in the navigator history.

Go up to the parent directory.

Collapse all the expanded trees in this view.

Link selections with the editor.

www.finebook.ir

http://www.finebook.ir/../

62 | Part VII: Views

Right-click on a directory and select Go Into to focus on that
directory. Then you can use the Back, Forward, and Up tool-
bar buttons to move around in the tree.

Outline View
The Outline view (in the Java and Debug perspectives) shows
a tree representation of the resource being edited. Use it to
quickly find the major elements of your class and study the
overall API you have designed. In order for the outline to
appear, the current editor must support it. Table 23
describes the Outline view’s toolbar.

TIP

Press Ctrl+O in the Java editor to show the outline in a
searchable pop-up window.

Package Explorer View
The Package Explorer view (in the Java perspective) shows
all projects in the workspace using logical Java groupings.
Use it as your primary window into the world of your Java
source code. Table 24 shows the Package Explorer view’s
toolbar.

Table 23. Outline toolbar

Icon Description

Sort members alphabetically (toggle).

Show/hide fields (toggle).

Show/hide statics (toggle).

Show/hide nonpublic members (toggle).

Show/hide local types (toggle).

www.finebook.ir

http://www.finebook.ir/../

Package Explorer View | 63

The Package Explorer view is a much more powerful version
of the Navigator view, custom tailored for Java develop-
ment. The main difference is that the Package Explorer
understands Java source directories and packages. For exam-
ple, suppose your project has a package named a.b.c. You
will see the package a.b.c in the Package Explorer view,
while in the Navigator view, you will see the directory tree (a
containing b containing c).

Views such as the Package Explorer support thousands of icon
variations made from combining base icons (for simple objects
like packages and files) with decorator icons, also known as
decorations (for errors, warnings, accessibility, etc.). Tables 25
and 26 show a few of the common icons you should become
familiar with.

Table 24. Package Explorer toolbar

Icon Description

Go back in the Package Explorer history.

Go forward in the Package Explorer history.

Go up to the parent directory.

Collapse all the expanded trees in this view.

Link selections with the editor.

Table 25. Common base icons

Icon Description

Project

Source folder

Plain folder

Java library

Java package

Java file

Scrapbook page

Class file

www.finebook.ir

http://www.finebook.ir/../

64 | Part VII: Views

Problems View
The Problems view (in the Java perspective) shows all the
errors and warnings in the workspace. Double-click on a line
in this view to jump directly to the offending source line.
Table 27 describes the Problems view toolbar.

JAR file

Plain file

Java class

Java interface

Public method

Private method

Protected method

Public field

Private field

Protected field

Table 26. Common decorations

Icon Description

Error

Warning

Version controlled

Inherited

Deprecated

Abstract

Constructor

Final

Java related

Static

Table 25. Common base icons (continued)

Icon Description

www.finebook.ir

http://www.finebook.ir/../

Search View | 65

TIP

You’ll often want to use a filter to see just the problems
for the current project or perhaps just the currently select-
ed resource.

Right-click on a problem to see a context menu. One of the
options there is Quick Fix (Ctrl+1). Use this to quickly repair
common errors.

TIP

See “Quick Fixes” in Part VI for more information.

Search View
The Search view (in the Java perspective) shows the results of
any search operation. Use it to filter and select just the
matches you’re interested in. Table 28 describes the Search
view toolbar.

Table 27. Problems view toolbar

Icon Description

Delete the selected problem(s).

Filter out some problems.

Table 28. Search view toolbar

Icon Description

Go to next match.

Go to previous match.

Remove selected match(es) from the view.

Remove all matches from the view.

Expand the search tree.

Collapse the search tree.

www.finebook.ir

http://www.finebook.ir/../

66 | Part VII: Views

The Search view can show its results in either flat mode (a
plain listing) or hierarchical mode (an expandable tree). The
grouping actions in the toolbar are only available in hierar-
chical mode. Use the View menu to change modes.

Tasks View
The Tasks view (in the Java perspective) lists all the markers
placed in your source code. Markers are reminders that you
or Eclipse add to the code to indicate something that needs
your attention later. They can be added manually (Edit ➝

Add Bookmark... or Edit ➝ Add Task...), but more com-
monly the compiler adds them when it encounters a special
comment in your code like this:

// TODO: Revisit this later

The comment strings TODO, FIXME, and XXX are recognized by
default. Add any others that you commonly use in your code
to Window ➝ Preferences ➝ Java ➝ Compiler ➝ Task Tags.

Stop a running search.

Go back to a previous search in the history.

Group by project.

Group by package.

Group by file.

Group by type.

Table 28. Search view toolbar (continued)

Icon Description

www.finebook.ir

http://www.finebook.ir/../

Variables View | 67

Table 29 describes the Tasks view toolbar.

Variables View
The Variables view (in the Debug perspective) shows all the
parameters and local variables in scope during a debugging
session. Use this view to keep an eye on your program’s state
as you step through it. The Variables view toolbar is
described in Table 30.

TIP

If you’re currently stopped in a nonstatic method, the
first item in the Variables view will be this. Expand it to
see your instance variables.

Table 29. Tasks view toolbar

Icon Description

Create a new task.

Delete the selected task(s).

Filter out some tasks.

Table 30. Variables view toolbar

Icon Description

Show full type names (toggle).

Show logical structure (toggle).

Collapse all the expanded trees in the view.

www.finebook.ir

http://www.finebook.ir/../

68

PART VIII:PART VIII

Short Takes

This pocket guide wouldn’t fit in your pocket if it described
every nuance of Eclipse in detail. However, I want to briefly
mention a few more of Eclipse’s notable features in this part
of the book. Some of these are built into the Eclipse SDK;
some are plug-ins that you need to download and install
yourself.

TIP

The packaging of Eclipse is constantly evolving, so by the
time you read this, you may be able to find downloads
that combine parts of the Eclipse SDK with plug-ins for a
specific task—for example, web development.

In addition, you can find hundreds of plug-ins that extend
Eclipse by searching the community web sites listed in Part IX.

To find out more about any of these features, see the online
help topic or web sites listed in the following sections. Note
that when you install a plug-in, it will often add a new sec-
tion to the Help Contents that explains how to use it.

CVS
CVS is a popular source management system for projects and
teams of any size. You use a CVS repository to hold the evolv-
ing versions of your code, tools, scripts, documentation, and

www.finebook.ir

http://www.finebook.ir/../

Ant | 69

so forth. The Eclipse IDE comes with excellent CVS integra-
tion—which makes sense, as CVS is currently used in the
development of all Eclipse projects.

Use the CVS Repository Exploring perspective to see the con-
tents of a CVS repository. There you can define the server
location, and view or check out (make a local copy of) the
code. Eclipse provides a variety of options to keep your local
copy up to date with repository changes, including addi-
tional views in the Team Synchronizing perspective. A ter-
rific compare and merge utility (one of my favorite features in
Eclipse) makes handling conflicts easy.

A history of all changes for a specific file (resource) can be
seen in the CVS Resource History view. Double-click on a
line in this view to open an editor on that revision, or select
two revisions, right-click, and select the Compare command
to see their differences. Another useful CVS command is
Show Annotation. This lets you scroll through a particular
file and see who touched each line, when, and why.

Online help
Help ➝ Help Contents ➝ Workbench User Guide ➝

Concepts ➝ Team programming with CVS

Web sites
http://www.cvshome.org

http://dev.eclipse.org

Ant
Ant is the Java-based successor to the venerable make tool.
You can use Ant for automating almost any development
task, from compiling to testing to packaging and deploy-
ment. Eclipse can import and export Ant-based projects, edit
Ant files, and run Ant tasks manually or as part of a build
process. Next to the Java editor, the Ant editor is one of the
most advanced editors available in the IDE, with support for
code assist, outlining, and formatting.

www.finebook.ir

http://www.finebook.ir/../

70 | Part VIII: Short Takes

Online help
Help ➝ Help Contents ➝ Workbench User Guide ➝

Concepts ➝ External tools ➝ Ant support

Web sites
http://ant.apache.org

http://cruisecontrol.sourceforge.net

Web Tools Platform
Do you write web pages, edit XML, develop Java servlets, or
dream about EJB? Then the Web Tools Platform (WTP)
project is for you. This is a separate download that—when
installed—integrates into your Eclipse SDK installation.

There are two parts to the WTP: web standard tools (cover-
ing HTML, XML, XSD, etc.) and Java standard tools (for
JSPs, EJBs, and so forth). This project supports web service
development, server management, debugging code on the
server, and more.

Web site
http://www.eclipse.org/webtools

Testing and Performance
The Test and Performance Tools Platform (TPTP—who
makes up these acronyms?) provides tools and technologies
that bring together traditional profiling, monitoring, tracing,
and testing. For example, you can use it to correlate CPU
usage on one machine with events logged by another.

Web site
http://www.eclipse.org/tptp

www.finebook.ir

http://www.finebook.ir/../

AspectJ | 71

Visual Editor
The Visual Editor project lets you create graphical user inter-
faces for your programs. It supports round-tripping, which
means you can edit your interface in visual mode (using drag-
and-drop), switch to source mode to make a few changes,
switch back, and continue seamlessly.

Web site
http://www.eclipse.org/ve

C/C++ Development
Java isn’t the only language that the Eclipse IDE supports.
The C/C++ Development Toolkit (CDT) comes with every-
thing you need for C/C++ development except the tool chain
itself (i.e., the compiler, linker, and debugger). CDT works
with a variety of tools from various embedded systems ven-
dors; for ordinary desktop applications, you can download
and use the free gcc compiler and gdb debugger from the
GNU project.

Web sites
http://www.eclipse.org/cdt

http://www.gnu.org

AspectJ
The Eclipse project is the home of AspectJ, an aspect-oriented
extension to the Java language, along with the AspectJ Devel-
opment Toolkit (AJDT), which integrates the language into
the Eclipse IDE. AspectJ provides clean modularization of
crosscutting concerns such as error checking, monitoring,
and logging. A related project, the Concern Manipulation
Environment (CME), aims to bring some elements of aspect
programming to pure Java.

www.finebook.ir

http://www.finebook.ir/../

72 | Part VIII: Short Takes

Web sites
http://www.eclipse.org/aspectj

http://www.eclipse.org/cme

Plug-in Development
Under the covers, Eclipse is a completely modular system
with dozens—if not hundreds—of plug-ins working together
on top of a small dynamic runtime. Each plug-in defines
public extension points, which are like the sockets on a
power strip. Other plug-ins contribute extensions that, well,
plug into those sockets. Thus the system organically grows
functionality as more plug-ins are added. At the same time,
the runtime is scalable, so you never have to worry about
blowing a fuse.

The Plug-in Development Environment (PDE) bundled with
the Eclipse SDK lets you define your own plug-ins in order to
extend Eclipse. PDE supports defining and using extension
points, debugging your plug-ins, packaging, and more.

TIP

The source code for Eclipse is freely available; in fact, it’s
bundled with the SDK package you installed. This is a
great resource for learning plug-in programming. File ➝

Import ➝ External Plug-ins and Fragments brings parts of
the code into your workspace.

Online help
Help ➝ Help Contents ➝ Platform Plug-in Developer
Guide

Web sites
http://www.eclipse.org/articles

http://www.ibm.com/developerworks

www.finebook.ir

http://www.finebook.ir/../

Standard Widget Toolkit | 73

Rich Client Platform
Because of the flexible open source license under which
Eclipse is released, you can use Eclipse code and technolo-
gies in your own programs, even if they are not open source.
A subset of the Eclipse SDK called the Rich Client Platform
(RCP) provides basic functionality common to most desktop
applications, such as windowing and menu support, online
help, user preferences, and more. By building your own cus-
tom application on top of this framework, you can cut the
development time of your projects significantly.

Since Eclipse technology is all based on plug-ins, the PDE is
used to write RCP programs. You can brand your applica-
tions with custom icons, window titles, and a splash screen,
and you can deploy them via traditional zip files, profes-
sional installers, or even JNLP. A number of templates and
tutorials are available.

Online help
Help ➝ Help Contents ➝ Platform Plug-in Developer
Guide ➝ Building a Rich Client Platform application

Web sites
http://www.eclipse.org/rcp

http://www.eclipse.org/legal

http://www.eclipsepowered.org

Standard Widget Toolkit
The Eclipse user interface is written in Java using the Stan-
dard Widget Toolkit (SWT). SWT uses the native facilities of
your operating system to achieve high performance and fidel-
ity indistinguishable from that of C-based applications. You
can use the same toolkit for your own applications.

www.finebook.ir

http://www.finebook.ir/../

74 | Part VIII: Short Takes

SWT is one of the three main GUI toolkits supported by
Java. The other two are AWT and Swing. SWT provides lim-
ited interoperability with these, allowing you to host AWT
and Swing controls inside a SWT application. On Windows,
SWT can even host ActiveX and .NET controls. SWT is
unique in its ability to bring these worlds together.

A framework called JFace is often used with SWT to provide
higher-level concepts, such as viewers, actions, and wizards.
Both SWT and JFace are included with the Eclipse SDK and
RCP packages.

Online help
Help ➝ Help Contents ➝ Platform Plug-in Developer
Guide ➝ Standard Widget Toolkit

Web site
http://www.eclipse.org/swt

www.finebook.ir

http://www.finebook.ir/../

75

PART IX:PART IX

Help and Community

Welcome to the Eclipse community. Membership is free, and
you’ve already taken the first steps by installing the software
and reading this guide. To help you go further, online help,
web sites, articles, and other resources are available to assist
you, as are thousands of Eclipse enthusiasts from around the
world.

Online Help
Eclipse provides an extensible online help system with details
about the version of Eclipse you’re using and any plug-ins
you have installed. It can be searched and viewed in several
different ways.

Getting Help
The most common way to view online help is to select Help ➝

Help Contents. A separate Help window will open, showing
several help topics. Expand the topics to hone in on the
information you need, or enter a keyword in the Search field
at the top of the window.

Another way to get help is with dynamic help. To use
dynamic help, simply press F1 (or select Help ➝ Dynamic
Help) and an embedded Help view will appear. As your
focus changes to different views and editors, the Help con-
tent is updated to show help for what you are doing at the

www.finebook.ir

http://www.finebook.ir/../

76 | Part IX: Help and Community

moment. Select Help ➝ Search Help... to find help topics
relevant to the view you’re currently in.

Help Topics
If you install the Eclipse SDK as detailed in Part I, you will
find the following topics listed in the Help contents:

Workbench User Guide
Contains information on how to use the IDE in general,
independent of your programming language.

Java Development User Guide
Discusses how to use the Java language support (editors,
views, etc.) provided by Eclipse.

Platform Plug-in Developer Guide
Covers the concepts and programming interfaces used to
write Eclipse plug-ins.

JDT Plug-in Developer Guide
Covers writing plug-ins specifically for the Java Develop-
ment Tools.

PDE Guide
Describes how to use the plug-in development environ-
ment included in the Eclipse SDK.

TIP

Depending on your options, some of these topics may be
hidden. Click the Show All Topics button to see them all.

Eclipse Web Site
The official Eclipse web site, http://www.eclipse.org, is your
best source of information on Eclipse: the platform, the IDE,
and the community. The design of this site may change over
time, but as of this writing, the major sections are:

www.finebook.ir

http://www.finebook.ir/../

Eclipse Web Site | 77

About us
Learn about the Eclipse project, how it got started, who
is involved in it, how the governance works, legal ques-
tions, logo programs, and so forth.

Projects
Eclipse development is split into top-level projects, sub-
projects, and components. On the Projects page, you can
see how all this is organized. Drill down to get to FAQs,
documentation, source code, etc.

Download
This area should be familiar from Part I. It’s where you’ll
find the latest prebuilt versions of Eclipse.

Articles
The articles section is full of technical information for
developers using or extending Eclipse. Consider writing
an article yourself to add to the community knowledge
base.

Newsgroups
The main user forums are found here (see the “News-
groups” section, later in this chapter).

Community
This is where you’ll find out about conferences, user
groups, web sites, books, courses, free and commercial
plug-ins, awards, and much more.

Search
Locate any page at eclipse.org, including newsgroup and
mailing list archives.

Bugs
Find or report bugs and enhancement requests.

www.finebook.ir

http://www.finebook.ir/../

78 | Part IX: Help and Community

Community Web Sites
Many individuals and companies have created web sites to
address particular needs of the community. Here are a few of
the most popular ones. More can be found in the Commu-
nity Resources area of the eclipse.org web site.

EclipseZone (http://www.eclipsezone.com)
An online community by and for Eclipse users every-
where.

Planet Eclipse (http://planeteclipse.org)
Planet Eclipse is a window into the world, work, and
lives of Eclipse users and contributors.

Plug-ins Registry (http://eclipse-plugins.info)
This is a nonprofit registry of Eclipse plug-ins, created
and maintained by Eclipse users.

Eclipse Plugin Central (http://eclipseplugincentral.com)
This site offers a plug-in directory, reviews, ratings,
news, forums, and listings for products and services.

Eclipse Wiki (http://eclipse-wiki.info)
This user-editable web site has FAQs, tips, tricks, and
other useful information.

IBM AlphaWorks (http://alphaworks.ibm.com/eclipse)
Part of IBM’s emerging technologies web site, this is ded-
icated to Eclipse and WebSphere-related projects and
plug-ins.

IBM developerWorks (http://ibm.com/developerworks/
opensource)

developerWorks hosts a variety of tutorials, articles, and
related information on Eclipse and other open source
projects.

Apache (http://www.apache.org)
Apache software is used throughout Eclipse, and the two
projects collaborate in many areas.

www.finebook.ir

http://www.finebook.ir/../

Reporting Bugs | 79

Source Forge (http://sf.net)
A large and growing number of Eclipse plug-ins are being
developed in this open source nexus.

O’Reilly Open Source (http://opensource.oreilly.com)
This O’Reilly Resource Center provides a broad range of
references and links to publications about open source.

Reporting Bugs
The single most important way you can contribute to the
Eclipse community is to report every bug you find, so they
can be fixed. All software has bugs, but too often users do
not take the time to report them. Your ideas for enhance-
ments are also valuable.

Bug reports and enhancement requests are both stored at
eclipse.org in an open source tracking system called Bugzilla.
The only difference between the entries for the two is that all
enhancement requests are marked with a severity of
“enhancement” (in Bugzilla, “bug report” refers to both
types of entries).

TIP

Remember to always use the most recent milestone or
stable version of Eclipse you can find. Why? With a cur-
rent release, you shorten the time between when a bug
slips in and when you report that bug, making it much
easier to diagnose and fix the problem.

To report a bug or request an enhancement, first go to the
Eclipse home page (http://www.eclipse.org) and select the
“bugs” link. The first time you use Bugzilla, you’ll need to
create an account.

www.finebook.ir

http://www.finebook.ir/../

80 | Part IX: Help and Community

New Account
Although you can search the database without a Bugzilla
account, you’ll need one to add or modify any entries. Click
the “Create a Bugzilla account” link, enter your email
address and name, and click the “submit” button. The sys-
tem will create the account and send a confirmation by
email.

Searching
Before creating a new Bugzilla entry, take a moment to
search the database to see if someone else has beaten you to
it. From the main Bugs page, select the “Find a bug report”
link, then enter one or more words in either the Summary
field or the Comment field, and click Search.

If you find an entry that matches your problem or request,
add yourself to the cc list—a list of email addresses that get
copied on any modification to the entry. You may also wish
to vote for the issue in order to indicate your interest. Votes
don’t determine priority by themselves, but they sometimes
do factor in.

Adding an Entry
If you can’t find an existing Bugzilla entry, you’ll need to cre-
ate a new one. From the main Bugs page, select “Report a
new bug” or “Enter an enhancement/feature request.”

Next, you’ll be prompted for the project. If you’re using the
Eclipse SDK, the choice is simple: for anything relating specifi-
cally to Java development, pick JDT; otherwise, pick Platform.

On the next page, select a component. If you’re not sure,
click on the “help” link or just take a guess. Enter a one-line
description of the issue in the Summary field and a more
detailed description in the Description field. When reporting
a bug, supply the steps that someone else will need to follow
to reproduce the problem.

www.finebook.ir

http://www.finebook.ir/../

Newsgroups | 81

Often when there’s a bug in Eclipse, the system will record
an event in the Eclipse error log. This record contains impor-
tant information that can help the developers diagnose the
problem. Locate the event in the Error Log view (discussed in
Part VII) and paste it at the end of the Description field.
Click the Commit button to complete the report.

At the time of this writing, I’ve personally entered 367 bug
reports, including 106 enhancement requests; 268 of these
entries have been resolved. In addition, I’m cc’d on 437 bugs
and have commented on 659. While you might not become
that involved, I challenge you to play your part in improving
Eclipse.

Newsgroups
Eclipse user forums are hosted on eclipse.org using ordinary
newsgroups. All newsgroup content is protected by a pass-
word in order to control spam. To get the password, go to the
Eclipse home page and select the “newsgroups/user forum”
link; you should see a link to request a password. Submit
your information and the password will be mailed to you.

Although there is a web-based interface for the forums, the
best way to participate is to use a rich client news reader, such
as Thunderbird (http://www.mozilla.org/products/thunderbird).
Enter the news server name (news.eclipse.org), the userid, and
the password in the appropriate place for your reader.

Here are a few newsgroups that I recommend you start with:

eclipse.newcomer
Ask questions about downloading, installing, and get-
ting started with Eclipse in this newsgroup.

eclipse.platform
Come here to participate in technical discussions about
how to use or extend Eclipse.

www.finebook.ir

http://www.finebook.ir/../

82 | Part IX: Help and Community

eclipse.platform.jdt
This group is for technical discussions about how to use
the Java Development Tools.

eclipse.foundation
This forum is for general discussions pertaining to the
Eclipse Foundation and its communities and governance.

eclipse.commercial
This group is intended to allow commercial vendors to
post product releases and information about commercial
products based on Eclipse.

Mailing Lists
For the most part, mailing lists at eclipse.org are intended for
use by developers working on day-to-day development of
Eclipse itself. The development mailing lists are the way
design and implementation issues are discussed and deci-
sions voted on by the committers (developers who’ve earned
write access to the source repository).

Anyone can listen in, but questions and discussions about
using Eclipse and Eclipse-based tools or developing plug-ins
should be posted to one of the newsgroups listed previously.

Conclusion
Eclipse is not just an IDE for Java developers, though that’s
how most people are introduced to it. Eclipse technology is
used by everyone from office secretaries running custom RCP
applications to NASA scientists planning Mars Rover missions
(seriously!). From the hobbyist to the professional, from casual
users to committers, Eclipse appeals to all of us for different
reasons, but we’re all part of the community, and we all have
something important to contribute. See you online.

www.finebook.ir

http://www.finebook.ir/../

83

APPENDIX

Commands

Eclipse supports over 350 commands for all aspects of edit-
ing, running, and debugging programs. Most of these can be
found on a menu—or submenu—inside Eclipse, while some
are bound to keystrokes. Then there are the ones that are not
normally accessible at all. In order to run those, you must
first bind them to a key (Window ➝ Preferences ➝ General ➝

Keys).

TIP

Press Ctrl+Shift+L (Help ➝ Key Assist...) to see a quick
list of the currently defined keys.

This appendix lists most of the commands available in
Eclipse along with their key bindings and menu paths (if
any). Commands are organized into categories such as Edit
and File, just as you would see them listed in the Keys Prefer-
ences. Within each category, the commands are listed in
alphabetical order. The format used is:

Some commands can be accessed by two or more equivalent
key sequences. For example, the Copy command’s key bind-
ings are listed as “Ctrl+C | Ctrl+Insert.” The vertical bar
indicates that either Ctrl+C or Ctrl+Insert will work.

Command [Default key bindings]

Main menu path

www.finebook.ir

http://www.finebook.ir/../

84 | Commands

Edit Commands

Other bindings are actually composed of two keys pressed in
sequence. For example, the key binding for “Quick Assist -
Rename in file” is shown as “Ctrl+2, R.” The comma indi-
cates you should press Ctrl+2, release, and then press the R
key.

TIP

It sounds more complicated than it really is. If you press
the first key of a multikey sequence and pause, a window
will appear to remind you what to press next.

In the interest of space, only key bindings for the default con-
figuration on Windows are listed. Keys for other platforms
are similar, and you should be able to infer these for your-
self. An Emacs-like configuration is also selectable from the
Keys Preferences. Someone has even written a plug-in that
supports vi-style keystrokes (search for it on the plug-in sites
listed in the “Community Web Sites” section in Part IX).

Edit Commands

Add Bookmark [No key binding]

Edit ➝ Add Bookmark...

Add Task [No key binding]

Edit ➝ Add Task...

Content Assist [Ctrl+Space]

Edit ➝ Content Assist

Context Information [Ctrl+Shift+Space]

Edit ➝ Parameter Hints

Copy [Ctrl+C | Ctrl+Insert]

Edit ➝ Copy

www.finebook.ir

http://www.finebook.ir/../

Edit Commands | 85

Edit Commands

Cut [Ctrl+X | Shift+Delete]

Edit ➝ Cut

Delete [Delete]

Edit ➝ Delete

Find and Replace [Ctrl+F]

Edit ➝ Find/Replace...

Find Next [Ctrl+K]

Edit ➝ Find Next

Find Previous [Ctrl+Shift+K]

Edit ➝ Find Previous

Incremental Find [Ctrl+J]

Edit ➝ Incremental Find Next

Incremental Find Reverse [Ctrl+Shift+J]

Edit ➝ Incremental Find Previous

Paste [Ctrl+V | Shift+Insert]

Edit ➝ Paste

Quick Diff Toggle [Ctrl+Shift+Q]

(No menu)

Quick Fix [Ctrl+1]

Edit ➝ Quick Fix

Redo [Ctrl+Y]

Edit ➝ Redo

Restore Last Selection [Alt+Shift+Down]

Edit ➝ Expand Selection To ➝ Restore Last Selection

Revert Line [No key binding]

(No menu)

www.finebook.ir

http://www.finebook.ir/../

86 | Commands

Edit Commands

Revert Lines [No key binding]

(No menu)

Revert to Saved [No key binding]

File ➝ Revert

Select All [Ctrl+A]

Edit ➝ Select All

Select Enclosing Element [Alt+Shift+Up]

Edit ➝ Expand Selection To ➝ Enclosing Element

Select Next Element [Alt+Shift+Right]

Edit ➝ Expand Selection To ➝ Next Element

Select Previous Element [Alt+Shift+Left]

Edit ➝ Expand Selection To ➝ Previous Element

Shift Left [No key binding]

Source ➝ Shift Left

Shift Right [No key binding]

Source ➝ Shift Right

Show Line Numbers [No key binding]

(No menu)

Show Tooltip Description [F2]

Edit ➝ Show Tooltip Description

Toggle Insert Mode [Ctrl+Shift+Insert]

Edit ➝ Smart Insert Mode

Undo [Ctrl+Z]

Edit ➝ Undo

Word Completion [Alt+/]

Edit ➝ Word Completion

www.finebook.ir

http://www.finebook.ir/../

File Commands | 87

File Commands

File Commands

Close [Ctrl+F4 | Ctrl+W]

File ➝ Close

Close All [Ctrl+Shift+F4 | Ctrl+Shift+W]

File ➝ Close All

Convert Line Delimiters to Mac OS 9 [No key binding]

File ➝ Convert Line Delimiters To ➝ Mac OS 9

Convert Line Delimiters to Unix [No key binding]

File ➝ Convert Line Delimiters To ➝ Unix

Convert Line Delimiters to Windows [No key binding]

File ➝ Convert Line Delimiters To ➝ Windows

Exit [No key binding]

File ➝ Exit

Export [No key binding]

File ➝ Export...

Import [No key binding]

File ➝ Import...

Move [No key binding]

File ➝ Move...

New [Ctrl+N]

File ➝ New ➝ Other...

New menu [Alt+Shift+N]

File ➝ New

Open File . . . [No key binding]

File ➝ Open File...

www.finebook.ir

http://www.finebook.ir/../

88 | Commands

Help Commands

Open Workspace [No key binding]

File ➝ Switch Workspace...

Print [Ctrl+P]

File ➝ Print...

Properties [Alt+Enter]

File ➝ Properties

Refresh [F5]

File ➝ Refresh

Remove Trailing Whitespace [No key binding]

(No menu)

Rename [F2]

File ➝ Rename...

Revert [No key binding]

File ➝ Revert

Save [Ctrl+S]

File ➝ Save

Save All [Ctrl+Shift+S]

File ➝ Save All

Save As [No key binding]

File ➝ Save As...

Help Commands

About [No key binding]

Help ➝ About

Dynamic Help [F1]

Help ➝ Dynamic Help

www.finebook.ir

http://www.finebook.ir/../

Navigate Commands | 89

Navigate Commands

Help Contents [No key binding]

Help ➝ Help Contents

Help Search [No key binding]

Help ➝ Search Help...

Tips and Tricks [No key binding]

Help ➝ Tips and Tricks...

Welcome [No key binding]

Help ➝ Welcome...

Navigate Commands

Back [No key binding]

Navigate ➝ Go To ➝ Back

Backward History [Alt+Left]

Navigate ➝ Back

Forward [No key binding]

Navigate ➝ Go To ➝ Forward

Forward History [Alt+Right]

Navigate ➝ Forward

Go Into [No key binding]

Navigate ➝ Go Into

Go to Line [Ctrl+L]

Navigate ➝ Go to Line...

Go to Matching Bracket [Ctrl+Shift+P]

Navigate ➝ Go To ➝ Matching Bracket

Go to Next Member [Ctrl+Shift+Down]

Navigate ➝ Go To ➝ Next Member

www.finebook.ir

http://www.finebook.ir/../

90 | Commands

Navigate Commands

Go to Package [No key binding]

Navigate ➝ Go To ➝ Package...

Go to Previous Member [Ctrl+Shift+Up]

Navigate ➝ Go To ➝ Previous Member

Go to Resource [No key binding]

Navigate ➝ Go To ➝ Resource...

Go to Type [No key binding]

Navigate ➝ Go To ➝ Type...

Last Edit Location [Ctrl+Q]

Navigate ➝ Last Edit Location

Next [Ctrl+.]

Navigate ➝ Next

Open Call Hierarchy [Ctrl+Alt+H]

Navigate ➝ Open Call Hierarchy

Open Declaration [F3]

Navigate ➝ Open Declaration

Open External Javadoc [Shift+F2]

Navigate ➝ Open External Javadoc

Open Resource [Ctrl+Shift+R]

Navigate ➝ Open Resource...

Open Structure [Ctrl+F3]

(No menu)

Open Super Implementation [No key binding]

Navigate ➝ Open Super Implementation

Open Type [Ctrl+Shift+T]

Navigate ➝ Open Type...

www.finebook.ir

http://www.finebook.ir/../

Perspective Commands | 91

Perspective Commands

Open Type Hierarchy [F4]

Navigate ➝ Open Type Hierarchy

Open Type in Hierarchy [Ctrl+Shift+H]

Navigate ➝ Open Type in Hierarchy...

Previous [Ctrl+,]

Navigate ➝ Previous

Quick Hierarchy [Ctrl+T]

Navigate ➝ Quick Type Hierarchy

Quick Outline [Ctrl+O]

Navigate ➝ Quick Outline

Show in Menu [Alt+Shift+W]

Navigate ➝ Show In

Show in Package Explorer [No key binding]

Navigate ➝ Show In ➝ Package Explorer

Up [No key binding]

Navigate ➝ Go To ➝ Up One [Level

Perspective Commands

CVS Repository Exploring [No key binding]

Window ➝ Open Perspective ➝ Other... ➝ CVS Repository
Exploring

Debug [No key binding]

Window ➝ Open Perspective ➝ Debug

Java [No key binding]

Window ➝ Open Perspective ➝ Java

www.finebook.ir

http://www.finebook.ir/../

92 | Commands

Project Commands

Java Browsing [No key binding]

Window ➝ Open Perspective ➝ Java Browsing

Java Type Hierarchy [No key binding]

Window ➝ Open Perspective ➝ Other... ➝ Java Type Hierarchy

Team Synchronizing [No key binding]

Window ➝ Open Perspective ➝ Other... ➝ Team Synchronizing

Project Commands

Build All [Ctrl+B]

Project ➝ Build All

Build Clean [No key binding]

Project ➝ Clean...

Build Project [No key binding]

Project ➝ Build Project

Close Project [No key binding]

Project ➝ Close Project

Generate Javadoc [No key binding]

Project ➝ Generate Javadoc...

Open Project [No key binding]

Project ➝ Open Project

Properties [No key binding]

Project ➝ Properties

Rebuild All [No key binding]

(No menu)

www.finebook.ir

http://www.finebook.ir/../

Refactor Commands | 93

Refactor Commands

Rebuild Project [No key binding]

(No menu)

Repeat Working Set Build [No key binding]

(No menu)

Refactor Commands

Change Method Signature [Alt+Shift+C]

Refactor ➝ Change Method Signature...

Convert Anonymous Class to Nested [No key binding]

Refactor ➝ Convert Anonymous Class to Nested...

Convert Local Variable to Field [Alt+Shift+F]

Refactor ➝ Convert Local Variable to Field...

Encapsulate Field [No key binding]

Refactor ➝ Encapsulate Field...

Extract Constant [No key binding]

Refactor ➝ Extract Constant...

Extract Interface [No key binding]

Refactor ➝ Extract Interface...

Extract Local Variable [Alt+Shift+L]

Refactor ➝ Extract Local Variable...

Extract Method [Alt+Shift+M]

Refactor ➝ Extract Method...

Generalize Type [No key binding]

Refactor ➝ Generalize Type...

Infer Generic Type Arguments [No key binding]

Refactor ➝ Infer Generic Type Arguments...

www.finebook.ir

http://www.finebook.ir/../

94 | Commands

Run/Debug Commands

Inline [Alt+Shift+I]

Refactor ➝ Inline...

Introduce Factory [No key binding]

Refactor ➝ Introduce Factory...

Introduce Parameter [No key binding]

Refactor ➝ Introduce Parameter...

Move - Refactoring [Alt+Shift+V]

Refactor ➝ Move...

Move Member Type to New File [No key binding]

Refactor ➝ Move Member Type to New File...

Pull Up [No key binding]

Refactor ➝ Pull Up...

Push Down [No key binding]

Refactor ➝ Push Down...

Rename - Refactoring [Alt+Shift+R]

Refactor ➝ Rename...

Show Refactor Quick Menu [Alt+Shift+T]

(No menu)

Use Supertype Where Possible [No key binding]

Refactor ➝ Use Supertype Where Possible

Run/Debug Commands

Add Class Load Breakpoint [No key binding]

Run ➝ Add Class Load Breakpoint...

Add Java Exception Breakpoint [No key binding]

Run ➝ Add Java Exception Breakpoint...

www.finebook.ir

http://www.finebook.ir/../

Run/Debug Commands | 95

Run/Debug Commands

Debug Ant Build [Alt+Shift+D, Q]

Run ➝ Debug...

Debug Eclipse Application [Alt+Shift+D, E]

Run ➝ Debug...

Debug Java Applet [Alt+Shift+D, A]

Run ➝ Debug...

Debug Java Application [Alt+Shift+D, J]

Run ➝ Debug...

Debug JUnit Plug-in Test [Alt+Shift+D, P]

Run ➝ Debug...

Debug JUnit Test [Alt+Shift+D, T]

Run ➝ Debug...

Debug Last Launched [F11]

Run ➝ Debug Last Launched

Debug SWT Application [Alt+Shift+D, S]

Run ➝ Debug...

Debug . . . [No key binding]

Run ➝ Debug...

Display [Ctrl+Shift+D]

Run ➝ Display

EOF [Ctrl+Z]

(No menu)
(Console view only)

Execute [Ctrl+U]

Run ➝ Execute

www.finebook.ir

http://www.finebook.ir/../

96 | Commands

Run/Debug Commands

External Tools . . . [No key binding]

Run ➝ External Tools ➝ External Tools...

Inspect [Ctrl+Shift+I]

Run ➝ Inspect

Profile Last Launched [No key binding]

Run ➝ Profile Last Launched

Profile . . . [No key binding]

Run ➝ Profile...

Remove All Breakpoints [No key binding]

Run ➝ Remove All Breakpoints

Resume [F8]

Run ➝ Resume

Run Ant Build [Alt+Shift+X, Q]

Run ➝ Run...

Run Eclipse Application [Alt+Shift+X, E]

Run ➝ Run...

Run Java Applet [Alt+Shift+X, A]

Run ➝ Run...

Run Java Application [Alt+Shift+X, J]

Run ➝ Run...

Run JUnit Plug-in Test [Alt+Shift+X, P]

Run ➝ Run...

Run JUnit Test [Alt+Shift+X, T]

Run ➝ Run...

Run Last Launched [Ctrl+F11]

Run ➝ Run Last Launched

www.finebook.ir

http://www.finebook.ir/../

Run/Debug Commands | 97

Run/Debug Commands

Run Last Launched External Tool [No key binding]

(No menu)

Run SWT Application [Alt+Shift+X, S]

Run ➝ Run...

Run to Line [Ctrl+R]

Run ➝ Run to Line

Run . . . [No key binding]

Run ➝ Run...

Skip All Breakpoints [No key binding]

Run ➝ Skip All Breakpoints

Step Into [F5]

Run ➝ Step Into

Step Into Selection [Ctrl+F5]

Run ➝ Step Into Selection

Step Over [F6]

Run ➝ Step Over

Step Return [F7]

Run ➝ Step Return

Suspend [No key binding]

Run ➝ Suspend

Terminate [No key binding]

Run ➝ Terminate

Terminate and Relaunch [No key binding]

(No menu)

Toggle Line Breakpoint [Ctrl+Shift+B]

Run ➝ Toggle Line Breakpoint

www.finebook.ir

http://www.finebook.ir/../

98 | Commands

Search Commands

Toggle Method Breakpoint [No key binding]

Run ➝ Toggle Method Breakpoint

Toggle Step Filters [Shift+F5]

Run ➝ Use Step Filters

Toggle Watchpoint [No key binding]

Run ➝ Toggle Watchpoint

Search Commands

Declaration in Hierarchy [No key binding]

Search ➝ Declarations ➝ Hierarchy

Declaration in Project [No key binding]

Search ➝ Declarations ➝ Project

Declaration in Working Set [No key binding]

Search ➝ Declarations ➝ Working Set...

Declaration in Workspace [Ctrl+G]

Search ➝ Declarations ➝ Workspace

File Search [No key binding]

Search ➝ File...

Implementors in Project [No key binding]

Search ➝ Implementors ➝ Project

Implementors in Working Set [No key binding]

Search ➝ Implementors ➝ Working Set...

Implementors in Workspace [No key binding]

Search ➝ Implementors ➝ Workspace

Open Search Dialog [Ctrl+H]

Search ➝ Search...

www.finebook.ir

http://www.finebook.ir/../

Search Commands | 99

Search Commands

Read Access in Hierarchy [No key binding]

Search ➝ Read Access ➝ Hierarchy

Read Access in Project [No key binding]

Search ➝ Read Access ➝ Project

Read Access in Working Set [No key binding]

Search ➝ Read Access ➝ Working Set...

Read Access in Workspace [No key binding]

Search ➝ Read Access ➝ Workspace

References in Hierarchy [No key binding]

Search ➝ References ➝ Hierarchy

References in Project [No key binding]

Search ➝ References ➝ Project

References in Working Set [No key binding]

Search ➝ References ➝ Working Set...

References in Workspace [Ctrl+Shift+G]

Search ➝ References ➝ Workspace

Referring Tests [No key binding]

Search ➝ Referring Tests...

Search All Occurrences in File [No key binding]

Search ➝ Occurrences in File ➝ Identifier

Search Exception Occurrences in File [No key binding]

Search ➝ Occurrences in File ➝ Throwing Exception

Search Implement Occurrences in File [No key binding]

Search ➝ Occurrences in File ➝ Implementing Methods

Show Occurrences in File Quick Menu [Ctrl+Shift+U]

(No menu)

www.finebook.ir

http://www.finebook.ir/../

100 | Commands

Source Commands

Write Access in Hierarchy [No key binding]

Search ➝ Write Access ➝ Hierarchy

Write Access in Project [No key binding]

Search ➝ Write Access ➝ Project

Write Access in Working Set [No key binding]

Search ➝ Write Access ➝ Working Set...

Write Access in Workspace [No key binding]

Search ➝ Write Access ➝ Workspace

Source Commands

Add Block Comment [Ctrl+Shift+/]

Source ➝ Add Block Comment

Add Constructors from Superclass [No key binding]

Source ➝ Add Constructors from Superclass...

Add Import [Ctrl+Shift+M]

Source ➝ Add Import

Add Javadoc Comment [Alt+Shift+J]

Source ➝ Add Comment

Comment [No key binding]

(No menu)

Externalize Strings [No key binding]

Source ➝ Externalize Strings...

Find Strings to Externalize [No key binding]

Source ➝ Find Strings to Externalize...

Format [Ctrl+Shift+F]

Source ➝ Format

www.finebook.ir

http://www.finebook.ir/../

Source Commands | 101

Source Commands

Format Element [No key binding]

Source ➝ Format Element

Generate Constructor using Fields [No key binding]

Source ➝ Generate Constructor using Fields...

Generate Delegate Methods [No key binding]

Source ➝ Generate Delegate Methods...

Generate Getters and Setters [No key binding]

Source ➝ Generate Getters and Setters...

Indent Line [Ctrl+I]

Source ➝ Correct Indentation

Organize Imports [Ctrl+Shift+O]

Source ➝ Organize Imports

Override/Implement Methods [No key binding]

Source ➝ Override/Implement Methods...

Quick Assist - Assign parameter to field [No key binding]

(No menu)

Quick Assist - Assign to field [Ctrl+2, F]

(No menu)

Quick Assist - Assign to local variable [Ctrl+2, L]

(No menu)

Quick Assist - Rename in file [Ctrl+2, R]

(No menu)

Quick Assist - Replace statement with block [No key binding]

(No menu)

Quick Fix - Add cast [No key binding]

(No menu)

www.finebook.ir

http://www.finebook.ir/../

102 | Commands

Source Commands

Quick Fix - Add import [No key binding]

(No menu)

Quick Fix - Add non-NLS tag [No key binding]

(No menu)

Quick Fix - Add throws declaration [No key binding]

(No menu)

Quick Fix - Change to static access [No key binding]

(No menu)

Quick Fix - Qualify field access [No key binding]

(No menu)

Remove Block Comment [Ctrl+Shift+\]

Source ➝ Remove Block Comment

Remove Occurrence Annotations [Alt+Shift+U]

(No menu)

Show Source Quick Menu [Alt+Shift+S]

(No menu)

Sort Members [No key binding]

Source ➝ Sort Members

Surround with try/catch Block [No key binding]

Source ➝ Surround with try/catch Block

Toggle Comment [Ctrl+/ | Ctrl+7 | Ctrl+Shift+C]

Source ➝ Toggle Comment

Toggle Mark Occurrences [Alt+Shift+O]

(No menu)

Uncomment [No key binding]

(No menu)

www.finebook.ir

http://www.finebook.ir/../

Text-Editing Commands | 103

Text-Editing Commands

Text-Editing Commands

Clear Mark [No key binding]

(No menu)

Collapse [Ctrl+Numpad_Subtract]

(No menu)

Copy Lines [Ctrl+Alt+Down]

(No menu)

Cut Line [No key binding]

(No menu)

Cut to Beginning of Line [No key binding]

(No menu)

Cut to End of Line [No key binding]

(No menu)

Delete Line [Ctrl+D]

(No menu)

Delete Next [Delete]

(No menu)

Delete Next Word [Ctrl+Delete]

(No menu)

Delete Previous [No key binding]

(No menu)

Delete Previous Word [Ctrl+Backspace]

(No menu)

Delete to Beginning of Line [No key binding]

(No menu)

www.finebook.ir

http://www.finebook.ir/../

104 | Commands

Text-Editing Commands

Delete to End of Line [Ctrl+Shift+Delete]

(No menu)

Duplicate Lines [Ctrl+Alt+Up]

(No menu)

Expand [Ctrl+Numpad_Add]

(No menu)

Expand All [Ctrl+Numpad_Multiply]

(No menu)

Insert Line Above Current Line [Ctrl+Shift+Enter]

(No menu)

Insert Line Below Current Line [Shift+Enter]

(No menu)

Line Down [Down]

(No menu)

Line End [End]

(No menu)

Line Start [Home]

(No menu)

Line Up [Up]

(No menu)

Move Lines Down [Alt+Down]

(No menu)

Move Lines Up [Alt+Up]

(No menu)

Next Column [No key binding]

(No menu)

www.finebook.ir

http://www.finebook.ir/../

Text-Editing Commands | 105

Text-Editing Commands

Next Word [Ctrl+Right]

(No menu)

Page Down [Page Down]

(No menu)

Page Up [Page Up]

(No menu)

Previous Column [No key binding]

(No menu)

Previous Word [Ctrl+Left]

(No menu)

Scroll Line Down [Ctrl+Down]

(No menu)

Scroll Line Up [Ctrl+Up]

(No menu)

Select Line Down [Shift+Down]

(No menu)

Select Line End [Shift+End]

(No menu)

Select Line Start [Shift+Home]

(No menu)

Select Line Up [Shift+Up]

(No menu)

Select Next Column [No key binding]

(No menu)

Select Next Word [Ctrl+Shift+Right]

(No menu)

www.finebook.ir

http://www.finebook.ir/../

106 | Commands

Text-Editing Commands

Select Page Down [Shift+Page Down]

(No menu)

Select Page Up [Shift+Page Up]

(No menu)

Select Previous Column [No key binding]

(No menu)

Select Previous Word [Ctrl+Shift+Left]

(No menu)

Select Text End [Ctrl+Shift+End]

(No menu)

Select Text Start [Ctrl+Shift+Home]

(No menu)

Select Window End [No key binding]

(No menu)

Select Window Start [No key binding]

(No menu)

Set Mark [No key binding]

(No menu)

Swap Mark [No key binding]

(No menu)

Text End [Ctrl+End]

(No menu)

Text Start [Ctrl+Home]

(No menu)

To Lower Case [Ctrl+Shift+Y]

(No menu)

www.finebook.ir

http://www.finebook.ir/../

View Commands | 107

View Commands

To Upper Case [Ctrl+Shift+X]

(No menu)

Toggle Folding [Ctrl+Numpad_Divide]

(No menu)

Toggle Overwrite [Insert]

(No menu)

Window End [No key binding]

(No menu)

Window Start [No key binding]

(No menu)

View Commands

Ant [No key binding]

Window ➝ Show View ➝ Ant

Breakpoints [Alt+Shift+Q, B]

Window ➝ Show View ➝ Breakpoints

Cheat Sheets [Alt+Shift+Q, H]

Window ➝ Show View ➝ Other... ➝ Cheat Sheets ➝ Cheat
Sheets

Classic Search [No key binding]

Window ➝ Show View ➝ Other... ➝ Basic ➝ Classic Search

Console [Alt+Shift+Q, C]

Window ➝ Show View ➝ Console

CVS Annotate [No key binding]

Window ➝ Show View ➝ Other... ➝ CVS ➝ CVS Annotate

www.finebook.ir

http://www.finebook.ir/../

108 | Commands

View Commands

CVS Editors [No key binding]

Window ➝ Show View ➝ Other... ➝ CVS ➝ CVS Editors

CVS Repositories [No key binding]

Window ➝ Show View ➝ Other... ➝ CVS ➝ CVS Repositories

CVS Resource History [No key binding]

Window ➝ Show View ➝ Other... ➝ CVS ➝ CVS Resource
History

Debug [No key binding]

Window ➝ Show View ➝ Debug

Display [No key binding]

Window ➝ Show View ➝ Display

Error Log [No key binding]

Window ➝ Show View ➝ Error Log

Expressions [No key binding]

Window ➝ Show View ➝ Expressions

Java Call Hierarchy [No key binding]

Window ➝ Show View ➝ Other... ➝ Java... ➝ Call Hierarchy

Java Declaration [Alt+Shift+Q, D]

Window ➝ Show View ➝ Declaration

Java Members [No key binding]

Window ➝ Show View ➝ Other... ➝ Java Browsing ➝

Members

Java Package Explorer [Alt+Shift+Q, P]

Window ➝ Show View ➝ Package Explorer

Java Packages [No key binding]

Window ➝ Show View ➝ Other... ➝ Java Browsing ➝ Packages

www.finebook.ir

http://www.finebook.ir/../

View Commands | 109

View Commands

Java Projects [No key binding]

Window ➝ Show View ➝ Other... ➝ Java Browsing ➝

Projects

Java Type Hierarchy [Alt+Shift+Q, T]

Window ➝ Show View ➝ Hierarchy

Java Types [No key binding]

Window ➝ Show View ➝ Other... ➝ Java Browsing ➝ Types

Javadoc [Alt+Shift+Q, J]

Window ➝ Show View ➝ Javadoc

JUnit [No key binding]

Window ➝ Show View ➝ Other... ➝ Java ➝ JUnit

Memory [No key binding]

Window ➝ Show View ➝ Other... ➝ Debug ➝ Memory

Outline [Alt+Shift+Q, O]

Window ➝ Show View ➝ Outline

Plug-in Dependencies [No key binding]

Window ➝ Show View ➝ Other... ➝ PDE ➝ Plug-in Depen-
dencies

Plug-in Registry [No key binding]

Window ➝ Show View ➝ Other... ➝ PDE Runtime ➝ Registry

Plug-ins [No key binding]

Window ➝ Show View ➝ Other... ➝ PDE ➝ Plug-ins

Problems [Alt+Shift+Q, X]

Window ➝ Show View ➝ Problems

Registers [No key binding]

Window ➝ Show View ➝ Other... ➝ Debug ➝ Registers

www.finebook.ir

http://www.finebook.ir/../

110 | Commands

Window Commands

Search [Alt+Shift+Q, S]

Window ➝ Show View ➝ Search

Synchronize [Alt+Shift+Q, Y]

Window ➝ Show View ➝ Other... ➝ Team ➝ Synchronize

Variables [Alt+Shift+Q, V]

Window ➝ Show View ➝ Variables

Window Commands

Activate Editor [F12]

Window ➝ Navigation ➝ Activate Editor

Close All Perspectives [No key binding]

Window ➝ Close All Perspectives

Close Perspective [No key binding]

Window ➝ Close Perspective

Customize Perspective [No key binding]

Window ➝ Customize Perspective...

Hide Editors [No key binding]

(No menu)

Lock the Toolbars [No key binding]

(No menu)

Maximize Active View or Editor [Ctrl+M]

Window ➝ Navigation ➝ Maximize Active View or Editor

Minimize Active View or Editor [No key binding]

Window ➝ Navigation ➝ Minimize Active View or Editor

www.finebook.ir

http://www.finebook.ir/../

Window Commands | 111

Window Commands

New Editor [No key binding]

Window ➝ New Editor

New Window [No key binding]

Window ➝ New Window

Next Editor [Ctrl+F6]

Window ➝ Navigation ➝ Next Editor

Next Perspective [Ctrl+F8]

Window ➝ Navigation ➝ Next Perspective

Next View [Ctrl+F7]

Window ➝ Navigation ➝ Next View

Open Editor Drop Down [Ctrl+E]

Window ➝ Navigation ➝ Switch to Editor...

Pin Editor [No key binding]

(Available on editor system menu)

Preferences [No key binding]

Window ➝ Preferences...

Previous Editor [Ctrl+Shift+F6]

Window ➝ Navigation ➝ Previous Editor

Previous Perspective [Ctrl+Shift+F8]

Window ➝ Navigation ➝ Previous Perspective

Previous View [Ctrl+Shift+F7]

Window ➝ Navigation ➝ Previous View

Reset Perspective [No key binding]

Window ➝ Reset Perspective

www.finebook.ir

http://www.finebook.ir/../

112 | Commands

Window Commands

Save Perspective As [No key binding]

Window ➝ Save Perspective As...

Show Key Assist [Ctrl+Shift+L]

Help ➝ Key Assist...

Show Ruler Context Menu [Ctrl+F10]

(No menu)

Show Selected Element Only [No key binding]

(No menu)

Show System Menu [Alt+–]

Window ➝ Navigation ➝ Show System Menu

Show View Menu [Ctrl+F10]

Window ➝ Navigation ➝ Show View Menu

Switch to Editor [Ctrl+Shift+E]

Window ➝ Navigation ➝ Switch to Editor...

www.finebook.ir

http://www.finebook.ir/../

113

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

Chapter 1

Index

A
AJDT (AspectJ Development

Toolkit), 71
AlphaWorks web site (IBM), 78
Ant, using with Eclipse, 69
Apache web site, 78
AspectJ Development Toolkit

(AJDT), 71
assertion methods, 33
automatic typing, 40

B
base icons, 63
Beck, Kent, 32
breakpoints

Expressions view and, 56–58
setting, 25–27

Breakpoints view, 27, 50
bugs, reporting, 79–81
Bugzilla tracking system, 79
Build Path, Java, 47

C
C/C++ Development Toolkit

(CDT), 71

chevron menus, 9
classes, creating, 21
CLASSPATH environment

variable, 47
clean installs, 5
code

changing on the fly, 30
entering, 21–23

code assist feature, 34, 38
commands, 83–112
compiling code and running

programs, 23
Concern Manipulation

Environment (CME)
project, 71

conditional breakpoints, 51
Confirm Perspective Switch

dialog, 19
Console view, 8, 52
Content Assist command, 38
context menus, 11
coolbars in Eclipse, 12
cursor shapes, 14
CVS repositories, 69
CVS Repository Exploring

perspective, 13

www.finebook.ir

http://www.finebook.ir/../

114 | Index

CVS Resource History view, 69
CVS source management

system, 68

D
deadlocks and Show Monitors

option, 53
Debug perspective, 13, 26

Breakpoints view in, 50
Debug view in, 53
Display view in, 54
Expressions view in, 56–58
Outline view in, 62
Variables view in, 67

Debug view, 27, 53
debugging Eclipse, 25–31
Declaration view, 8, 54
decorator icons, 63
Detail Formatters, defining

new, 58
Details pane, looking at

expressions using, 57
developerWorks web site

(IBM), 78
Display command, 55
Display view, 54
documentation, showing, with

Javadoc view, 60
downloading Eclipse, 3
dynamic help, 75

E
Eclipse

commands, 83–112
debugging, 25–31
downloading, 3
installing, 3
official web site, 76
system requirements for, 2
upgrading, 5

Eclipse wiki web site, 78

EclipseZone web site, 78
eclipse.commercial

newsgroup, 82
eclipse.foundation

newsgroup, 82
eclipse.newcomer

newsgroup, 81
eclipse.platform newsgroup, 81
Edit commands, 84–86
editors in Eclipse, 9

maximizing/minimizing, 16
rearranging, 14–16

enhancements,
suggesting, 79–81

error indicators in code, 43
Error Log view, 55

reporting bugs and, 81
errors

Problems view and, 64
viewing internal errors, using

Error Log view, 55
exception breakpoints, 50

setting, 27
Execute command, 55
expressions

breakpoints and, 51
evaluating in debugger, 55

Expressions view, 56–58

F
Failure trace pane, 60
fast views, 14
File commands, 87
Find and Replace command, 44
flat mode, showing search results

in, 66
Format command, 23

G
Gamma, Erich, 32

www.finebook.ir

V413HAV
Typewritten Text
V413HAV

http://www.finebook.ir/../

Index | 115

H
Help commands, 88
help resources for

Eclipse, 75–82
help topics in Eclipse SDK, 76
Help window, 75
hierarchical mode, showing

search results in, 66
Hierarchy view, 8, 58
hot code replace feature, 30
Hover Help, 42

Javadoc view and, 60
hyperlinks, 43

I
IBM AlphaWorks web site, 78
IBM developerWorks web

site, 78
icon variations, 63
Incremental Find command, 44
Inspect command, 30, 55
installing Eclipse, 3

J
JAR files

Hover Help and, 43
Java Build Path and, 47

Java Browsing perspective, 13
Java Build Path, 47
Java Development User

Guide, 76
Java perspective, 13

Declaration view in, 54
Hierarchy view in, 58
Javadoc view in, 60
JUnit view in, 60
Outline view in, 62
Package Explorer view

in, 62–64
Problems view in, 64
Search view in, 65
Tasks view in, 66

Java Type Hierarchy
perspective, 13

Javadoc view, 8, 60
JDT Plug-in Developer

Guide, 76
JFace framework, used with

SWT, 74
JUnit, 32–37
JUnit view, 34, 60

K
key bindings for commands, 83

L
launch configurations, 48
launching Eclipse, 4
Literal mode, looking at

expressions using, 57
Logical mode, looking at

expressions using, 57
Logical Structures, defining

new, 58

M
mailing lists for Eclipse

development issues, 82
main menu, 10
main toolbar, 12
markers in source code, listing in

Tasks view, 66
maximizing views/editors, 16
Member list pane, 59
menus in Eclipse, 10
Milestone builds, 5
minimizing views/editors, 16
monitors and deadlocks, 53

N
Navigate commands, 89–91
Navigator view, 61
newsgroups about Eclipse, 81

www.finebook.ir

http://www.finebook.ir/../

116 | Index

O
O’Reilly Open Source web

site, 79
online help system, 31, 75
Outline view, 8, 62

P
Package Explorer view, 8, 62–64

creating packages, 20
Java Build Path and, 48

PDE (Plug-in Development
Environment), 72

PDE Guide, 76
Perspective commands, 91
perspectives in Eclipse, 13
Planet Eclipse web site, 78
Platform Plug-in Developer

Guide, 76
Plug-in Development

Environment (PDE), 72
Plug-in Development

perspective, 13
Plug-ins Registry web site, 78
Problems view, 8, 64
Project commands, 92
projects, creating, 18
properties of breakpoints, 51

Q
Quick Fix command, 36, 44

R
RCP (Rich Client Platform), 73
rearranging views/editors, 14–16
red squiggles (error indicators) in

code, 43
Refactor - Java commands, 93
refactoring, 41

reformatting code, 23
regression testing framework

(JUnit), 32–37
Resource perspective, 13

Navigator view in, 61
Rich Client Platform (RCP), 73
round-tripping, supported by

Visual Editor project, 71
Run Last Launched

command, 24
Run/Debug commands, 26,

94–98
running programs, 23

changing code on the fly, 30

S
scrapbook pages, 46

Display view and, 55
Search command, 45
Search commands, 98–100
Search view, 65
setUp(), 34
Show Monitors option in Debug

view menu, 53
Source commands, 100–102
Source Forge web site, 79
stable builds, 5
stack tracebacks and Console

views, 52
Standard Widget Toolkit

(SWT), 73
Step Into command, 28
Step Over command, 28
Step Return command, 28
subtypes/supertypes of objects,

showing, 58
syntax errors, quick fixes for, 43
system menus, 10
system requirements for

Eclipse, 2

www.finebook.ir

http://www.finebook.ir/../

Index | 117

T
Tasks view, 66
TDD (test driven

development), 36
Team Synchronizing

perspective, 13, 69
tearDown(), 34
tear-off views, 14
templates, entering text

using, 39
Test and Performance Tools

Platform (TPTP)
project, 70

test cases
creating, 33
running, 34–36

test driven development
(TDD), 36

Text editing
commands, 103–107

text, entering, using
templates, 39

Tips and Tricks command, 49
TODO comments, 21
toolbars in Eclipse, 12
tool tip windows, 8
TPTP (Test and Performance

Tools Platform)
project, 70

Type Hierarchy tree pane, 59

U
unit assertion methods, 33
unit testing with JUnit, 32–37
unpacking Eclipse, 3
upgrading Eclipse, 5
user forums about Eclipse, 81

V
values of variables, viewing, 28
Variables view, 28–30, 67
View commands, 107–110
view menus, 10
views in Eclipse, 8, 50–67

maximizing/minimizing, 16
rearranging, 14–16

Visual Editor project, 71

W
warnings and Problems view, 64
Watch command, 55
web sites

community resources, 78
official Eclipse site, 76

Web Tools Platform (WTP)
project, 70

Welcome screen, 4
Window commands, 110–112
Workbench User Guide, 76
workbench, overview of, 7–17
workspace, specifying, 4
WTP (Web Tools Platform)

project, 70

www.finebook.ir

http://www.finebook.ir/../

	Contents
	Introduction
	What Is Eclipse?
	Conventions Used in This Book
	System Requirements
	Downloading Eclipse
	Installing Eclipse
	3, 2, 1, Launch!
	Specify a Workspace

	Exploring Eclipse
	Getting Upgrades
	Moving On

	Workbench 101
	Views
	Editors
	Menus
	Toolbars and Coolbars
	Perspectives
	Rearranging Views and Editors
	Maximizing and Minimizing

	Java Done Quick
	Creating a Project
	Creating a Package
	Creating a Class
	Entering Code
	Running the Program

	Debugging
	Running the Debugger
	Setting Breakpoints
	Single Stepping
	Looking at Variables
	Changing Code on the Fly

	Unit Testing with JUnit
	A Simple Factorial Demo
	Creating Test Cases
	Running Tests
	Test First

	Tips and Tricks
	Code Assist
	Templates
	Automatic Typing
	Refactoring
	Hover Help
	Hyperlinks
	Quick Fixes
	Searching
	Scrapbook Pages
	Java Build Path
	Launch Configurations

	Views
	Breakpoints View
	Console View
	Debug View
	Declaration View
	Display View
	Error Log View
	Expressions View
	Hierarchy View
	Javadoc View
	JUnit View
	Navigator View
	Outline View
	Package Explorer View
	Problems View
	Search View
	Tasks View
	Variables View

	Short Takes
	CVS
	Ant
	Web Tools Platform
	Testing and Performance
	Visual Editor
	C/C++ Development
	AspectJ
	Plug-in Development
	Rich Client Platform
	Standard Widget Toolkit

	Help and Community
	Online Help
	Getting Help
	Help Topics

	Eclipse Web Site
	Community Web Sites
	Reporting Bugs
	New Account
	Searching
	Adding an Entry

	Newsgroups
	Mailing Lists
	Conclusion

	Commands
	Edit Commands
	File Commands
	Help Commands
	Navigate Commands
	Perspective Commands
	Project Commands
	Refactor Commands
	Run/Debug Commands
	Search Commands
	Source Commands
	Text-Editing Commands
	View Commands
	Window Commands

	Index

