

M50.PCI Stepping Motor Card

40 2310 000

Instruction Manual

Add-in PC Card for Controlling

3 Stepping Motors in Microstep Operation

1st Issue, Juni 2005
40 2310 701a
© LINOS Photonics

LINOS Photonics GmbH &Co.KG
Königsallee 23
D-37081 Göttingen, Germany
Phone +49 (0)5 51 69 35 0
Fax +49 (0)5 51 69 35 166
E-mail: sales@LINOS-Photonics.DE
http://www.linos.de

40 2310 2 M50.PCI Instructions

1 About This Technical Literature

A number of symbols are used in this technical hardware and software description to
give you quick guidance and to draw your attention to the essentials.

IMPORTANT NOTE
This symbol indicates important or additional information
about the M50.PCI stepping motor card or literature.

CAUTION
Indicates a hazard that can damage the M50.PCI stepping motor
card or the computer in which it is installed. Any resulting
hazards for people must be avoided.

DANGER
Risk of electrocution by high electrical voltage if touched.

The information in this document is subject to change without prior notice!

M50.PCI Instructions 3 40 2310

2 Important Information

2.1 Information on the Use of this PC Card

This card has been designed only for controlling 2-phase stepping motors and may not be modified in
any way. If any malfunction occurs, please be sure to contact our Service Department (for a list of
addresses, please refer to Chapter 14 on Service). LINOS shall not be liable for any direct, indirect or
consequential damage, particularly if such damage is caused by negligence, and no matter whether
such damage arises in connection with the warranty, a contract, an offence or a further legal theory.

The electrical equipment described (apparatuses, systems, installation and networks) is only intended
for use in industrial or scientific areas. Compliance with the legal requirements and directives
concerned is essential.

If used incorrectly, this electrical equipment may generate hazardous voltage or may have “live” parts
during operation. Removing the required covers or inadequate maintenance may severely endanger
or impair the health of individuals or cause material damage. Therefore, the person responsible for the
safety of the equipment must ensure that

• only qualified personnel are entrusted with working on or operating the equipment and
machinery;

• these persons always have the appropriate instruction manual and any additional product
literature as necessary for all operating steps and servicing and repair work, and that such
persons are obligated to observe these instructions and information at all times;

• work on this equipment and machinery or in their vicinity is prohibited for non-qualified
personnel.

Qualified personnel are persons who by virtue of their education, experience and training as well as
their knowledge of the pertinent standards, requirements, occupational and work safety regulations
and operating conditions have been authorized by the person responsible for the safety of the
installation or system to perform the work as required and can recognized and prevent any potential
hazards (see definitions for skilled labor according to VDE 105 or ICE 364).

This information is not exhaustive. If you have any questions or problems, please contact LINOS
Photonics GmbH & Co. KG.

The information on processes explained in this instruction manual and circuit details apply analogously
and must be reviewed before actually applying this information to your specific application.

LINOS Photonics GmbH & Co. KG shall not assume any guarantee for the suitability of the
procedures and suggested circuits for specific applications.

The information in this instruction manual describes the features of the product without expressly
assuring such characteristics.

We have carefully tested the equipment hardware and software as well as the product literature.
However, we do not make any warranty that they are free of errors.

The content of this document is the intellectual property of LINOS Photonics GmbH &Co. KG and is
subject to copyright protection laws. Reproduction of any of these materials is not permitted unless our
prior written consent is obtained.

Our products continuously undergo further development. We reserve the right to make changes
without prior notice. At the Internet address http://www.linos.com you will find information and, where
available, update possibilities.

40 2310 4 M50.PCI Instructions

2.2 Safety Instructions

• Please follow all safety instructions including the directions for the connected equipment.

• Read this instruction manual carefully. It will enable you to best use the M50.PCI stepping
motor card and prevent problems and damage.

• Always keep this instruction manual handy.

• When installing the M50.PCI stepping motor card in a PC, be sure to observe the rules
and regulations in force.

• Make sure that if you connect an external power supply, the maximum voltage of 48 volts
DC cannot be exceeded.

• Never expose the M50.PCI stepping motor card to direct sunlight, high humidity, dirt or
extreme temperatures.

• The M50.PCI stepping motor card may only be used in dry rooms that do not have any
risk posed by an explosive atmosphere.

• It is prohibited to use the M50.PCI stepping motor card outdoors.

• Ensure that the M50.PCI stepping motor card is sufficiently ventilated at all times.

• Check that the cable has the correct current-carrying capacity and that the appropriate
connectors are correctly wired and attached; to avoid wire breakage or a cable break,
install all cables so that they cannot cause any accidents.

• Unplug or plug in the cables only after the PC has been shut down and the power turned
off.

• The M50.PCI stepping motor card may only be operated in a range of 0-40°C and up to
80% relative humidity.

• Do not store the M50.PCI stepping motor card below 0°C (32°F) or above 70°C (158°F)
and only up to 80% relative humidity.

• Using the card in equipment on people, e.g. controlling a surgical robot, is strictly
forbidden.

• The M50.PCI stepping motor card is not a toy and may not be used as such.

These instructions are a component of the M50.PCI stepping motor card
and must be kept handy. If this card is given or sold to other persons,
these instructions as a component of the equipment must also be given to
these persons.

M50.PCI Instructions 5 40 2310

3 Contents

 Page

1 About This Technical Literature .. 3

2 Important Information... 4
2.1 Information on the Use of this PC Card ..4
2.2 Safety Instructions ..5

3 Contents .. 6

4 Part I: Overview... 8
4.1 Standard Equipment Supplied ..8
4.2 Brief Technical Overview..9

5 Part II: Installation of the M50.PCI
Stepping Motor Card.. 10
5.1 Hardware Installation: Installation in a PC ..10

5.1.1 Installation Steps: ...11
5.2 Software Installation ...13

5.2.1 Windows 98 ...13
5.2.2 Windows 2000/ Windows XP ..14
5.2.3 Function Test after Installation..15

5.3 Power Supply ...16
5.4 Electrical Current for the Motors ...16
5.5 Operating State LED ..17
5.6 Limit Switches...17
5.7 I/O Extension ..18
5.8 Accuracy and Resolution..18

6 Part III: M50 Software.. 19
6.1 Overview...19
6.2 About the 32-bit Software ...19

6.2.1 Testing and Initial Operation of the M50.PCI Stepping Motor
Card 19

6.3 Programming under Delphi...20
6.3.1 Programming Using VisualC...20
6.3.2 Programming Using LabView ...20

7 Part IV: M50 Function Library .. 21
7.1 Brief Overview ..21

40 2310 6 M50.PCI Instructions

8 Description of the Functions ... 25
8.1 Card Initialization ..25
8.2 Motor and Axis Settings..27
8.3 Switch Configuration...33
8.4 I/O Byte...37
8.5 Operating the Stepping Motors...39
8.6 System Settings..45
8.7 Demo Program ...49

9 Appendix A: Technical Specifications 50
9.1 System Data ...50
9.2 Performance Data ..51

10 Appendix B: Structure of the Stepping Motor Card 52

11 Appendix C: Pin Assignment.. 53
11.1 Motor Connector...53
11.2 I/O Extension: ...54
11.3 Limit Switch Wiring ...55

12 Appendix E: Software Default Settings..................................... 56

13 Disposal ... 57

14 Service ... 57

M50.PCI Instructions 7 40 2310

4 Part I: Overview

4.1 Standard Equipment Supplied
The following standard equipment is supplied when you order an M50.PCI stepping
motor card:

M50.PCI stepping motor card

 Connecting cable for external power supply

 8-bit I/O extension on a slot plate

 CD-ROM with software and instruction manual

 This instruction manual is on a CD-ROM

40 2310 8 M50.PCI Instructions

4.2 Brief Technical Overview

The following points will provide you with an overview of the functions and features of
the M50.PCI stepping motor card:

• Add-in PC card for controlling three stepping motors in microstep operation
without any additional hardware

• High dynamics and speed combined with high accuracy thanks to the most
advanced monolithic limit switch levels and sophisticated control software

• Future-proof and convenient with PCI bus

• 12V power supply by PC power supply unit or externally up to 48V/DC

• For bipolar 2-phase stepping motors, 2-12V in 4/5/6/8 wire technology

• Up to 2.5A phase current

• Connecting power 20W per axis

• Digital signal processor for generating acceleration ramps and pathway
curves (interpolation)

• Each axis is individually programmable: motor parameters, resolution,
system connection, etc.

• 6 inputs for limit switches, etc., user-configurable

• An additional 8-bit extension can be selected as input and output

• Several M50.PCI stepping motor cards can be operated simultaneously

• Extensive function library for 32-bit DLL

• Import files and examples in C++ , Delphi, LabView

M50.PCI Instructions 9 40 2310

5 Part II: Installation of the M50.PCI

5.1 Hardware Installation: Installation in a PC

CAUTION! DANGER!

Before opening the housing, perform the following steps!

POWER

 1. Turn off the computer power.

 2. Disconnect the power cable from the computer.

 3. Make sure that you are grounded while performing all steps.

40 2310 10 M50.PCI Instructions

5.1.1 Installation Steps: Steps:

Open the housing of your computer. Open the housing of your computer.

Select an available PCI port and remove the cover to
expose the socket.
Select an available PCI port and remove the cover to
expose the socket.

 intern

Position the red jumper (JP1) of M50.PCI according to the
type of power supply you wish to use. 'Intern' stands for
powering the card by your PC power supply unit and
'extern' means that you will be using an external power
source.

Position the red jumper (JP1) of M50.PCI according to the
type of power supply you wish to use. 'Intern' stands for
powering the card by your PC power supply unit and
'extern' means that you will be using an external power
source.

 (bis 48V)
 extern (12V)

Plug an available hard disk connector into the socket on the
rear side of the M50.PCI stepping motor card!
(Only if you are using internal power supply!)

Plug an available hard disk connector into the socket on the
rear side of the M50.PCI stepping motor card!
(Only if you are using internal power supply!)

M50.PCI Instructions 11 40 2310

Carefully plug the M50.PCI stepping motor card into the
socket and fasten it in place by using the screw taken from
the cover plate.

If you would like to use the additional 8 inputs/outputs,
fasten the I/O slotted plate supplied in an available position
on the rear panel of your PC.

Then connect the flat cable by plugging the blue connector
into the M50.PCI stepping motor card.

40 2310 12 M50.PCI Instructions

Close the housing of your
computer and plug the power cord
into an electrical outlet.

5.2 Software Installation
The CD-ROM supplied contains the following directories:

\M50-Install Contains the drivers required
\FirstTest Contains a simple demo program
\M50-Delphi Contains sources and examples for writing your own Delphi programs
\M50-VB Contains sources and examples for writing your own VB programs
\M50-VisualC Contains sources and examples for writing your own C++ programs
\M50-Labview Contains sources and examples for writing your own LabView programs
\M50-Manual Contains this instruction manual

The M50.PCI stepping motor card is supplied with driver software for Windows 98,
Windows 2000 und Windows XP. The drivers and instructions for installing the
M50.PCI stepping motor card are in the \Install directory on the CD-ROM supplied
with this card.

5.2.1 Windows 98

The following files are required for installation:

•LLT-Motor.inf Control instructions for installation
•PCI9050.sys Lowest operating system level for hardware
•PLXApi.dll Function library for PCI bridge

The first time Windows is booted after you have installed the M50.PCI
stepping motor card in your PC, the following hardware assistant message will
appear:

New hardware component found.
PCI bridge

Install the drivers supplied using LLT_Motor.inf on the CD-ROM by
following the prompts given by the hardware assistant.

Once installation has been successfully completed, you will find the entry "LLT-
STEPPER MOTOR CARD" in <Device Manager> of Windows <System Control>
under <Other Devices Detected>.

If you have installed several M50.PCI stepping motor cards, you will find this entry
several times as well.

M50.PCI Instructions 13 40 2310

5.2.2 Windows 2000/ Windows XP

The following files are required for installation:

•LLT-Motor.inf Control instructions for installation
•PCI9050.sys Lowest operating system level for hardware
•PLXApi.dll Function library for PCI bridge

The first time you boot the system after you have installed the M50.PCI stepping
motor card in your PC, the operating system will recognize M50-PCI as new
hardware and will show the following message:

Other PCI bridge device found:
PCI bridge

Now follow the instructions given by the installation assistant. When the assistant
prompts you to install a new driver, enter the directory pathname under which the
LT_Motor.inf file can be found.

 Directory:\...\Install\LLT_Motor.inf

3. If you enter the correct directory pathname, a message will appear to inform you
that an appropriate driver was found for the "LLT-STEPPER MOTOR CARD" device.
Click on <Finish> to complete installation.

Once installation has been successfully completed, you will find the entry "LLT-
STEPPER MOTOR CARD" in <Device Manager> of Windows <System Control>
under <Other Devices Detected>.

If you have installed several M50.PCI stepping motor cards, you will find this entry
several times as well.

If you are running Windows XP, a message informing you that the
driver failed the "XP-Logo-Test" will appear. This message can be
ignored as the test failure will not affect the reliable operation of the
M50.PCI stepping motor card or that of the other programs.

40 2310 14 M50.PCI Instructions

5.2.3 Function Test after Installation

1. Create the directory ...\M50.

2. Copy the directory \FirstTest\ on your CD-ROM to the newly created directory.

3. You can now run the M50_Demo1.exe program in the \FirstTest directory to
test the function of the M50.PCI stepping motor card.
The DspStatus must accept the value by showing <function ok> after the DSP
program has been downloaded (takes approx. 5 sec.).

The function libraries MX_Motor.dll, CC3260MT.dll and
STLPMT45.dll as well as the processor program M50DSP.IDM are
required every time an application program is started. Therefore, it is
recommended that you copy them to the directory from which you
start the application program.

M50.PCI Instructions 15 40 2310

5.3 Power Supply
To start up your equipment, you will need to select the power supply for the motors.
The M50.PCI stepping motor card can be operated on 12 V from your PC power
supply by plugging in the hard disk connector. For motors with a nominal voltage
rating higher than 8-10V, be sure to select external power supply. This also applies to
positioning systems that are to be operated at a higher velocity.

To power the card by an external power supply, plug in the two-pole connecting
cable supplied with the card. A power supply source with up to 48V DC maximum
can be connected. The higher the power supply, the higher the attainable velocity
and acceleration. The power supply source should generate an amperage of 1.5-
3.0A. We recommend using the external power supply 40 3222 000 to operate the
M50.PCI stepping motor card with LINOS x.act positioners.

You will need to change the position of the high-current jumper on the
M50.PCI stepping motor card depending on the type of power supply
you are using (see Chapter 5.1.1, Settings: Internal Supply).
Caution: The external power supply may not exceed 48V/DC!

5.4 Electrical Current for the Motors
The electrical current for the motors is set using the software installed (see
Set_Maximum_Current / Get_Maximum_Current). The maximum current you can
set for the motors is 2.5 A per phase.

To ensure accurate microstep division, the phase current selected may not be higher
than the nominal current of the motor. By contrast, a current setting that is too low will
not affect microstep division.

When the stepping motors are in an idle state, a much lower torque is generally
needed than when they are driving the positioner. To prevent the motors from losing
power or heating up unnecessarily, the software program lets you define the idle
current separately for each axis (see also Set_Power_Down).

The following example shows how the electrical motor power and power loss are
calculated:

 Coil resistance RPhase = 1.6 ohms and
 Nominal current IPhase = 1.5A
 Nominal voltage (DC) VPhase = RPh x IPh = 2.4V

The power loss in the switching controllers of the M50.PCI stepping motor card plays
a subordinate role when the motors are in the idle state.

40 2310 16 M50.PCI Instructions

5.5 Operating State LED
The rear panel of the M50.PCI stepping motor card has an LED to show the current
operating state. The table below lists the particular states that the LED indicates:

LED STATUS
Steady yellow glow DSP program has not yet been loaded
Flashes yellow Program loaded, card active, motor power supply too low
Flashes green Program loaded, card active, motor power supply ok (>11V)
Flashes red Program loaded, card active, motor power supply too high (>50V)
Steady red glow Excess temperature at an axis end position; motors stopped
Off Card de-activated

5.6 Limit Switches
Six inputs are available on the M50.PCI stepping motor card. Each of these can be
used to connect a limit switch, a reference limit switch or general inputs. Reference
limit switches and inputs are not independently evaluated by the axis control program
of the M50.PCI stepping motor card.

If an input is assigned as a positive limit switch to an axis, this axis will remain
stopped in the positive motion mode immediately after this input has been activated.
The axis can only move in the negative direction until the input is de-activated (the
position and sentence buffer of this axis remain unchanged and can be reset, if
necessary, by the application program).

Variables are available in the driver software to enable the particular operating state
of the limit switches to be defined as make contacts or break contacts as well as low
active and high active (see Chapter 8.3 Switch Configuration).

The CMOS level applies; in other words, input voltages <2.2 volts are evaluated as a
logical '0'; voltages greater than +3 volts, as a logical '1'. The inputs when inactive
are at +10V via internal pullup resistors. In their activated state, a current of 2.5mA
maximum flows. The inputs are short circuit proof and protected from overvoltage
and accidental interchanging of poles up to 12V.

To supply the electronic limit switches, an auxiliary supply of +10V, 100mA, is
available at the connector (suggested wiring: see

Appendix C).

M50.PCI Instructions 17 40 2310

5.7 I/O Extension
The M50.PCI stepping motor card has an I/O interface that provides 8 ports, which
can be used independently of one another as inputs or outputs. Configuration of each
pair of these ports as inputs or outputs is done by software (see Chapter 8.4).

The I/O interface also has a 5Vcc output (pin1), which can handle approx. 80-100mA
and has a self-resetting electronic fuse.

If the ports are defined as outputs, 3.5V/20-30mA will be available via 33ohms
relative to the Gnd (pin9) when these ports are in their active state. Thus,
LEDs/optocouplers or small relays can be directly controlled.

If the ports are defined as inputs, Vcc (Pin1) can be applied to the inputs via a
resistance of 200-1,000 ohms in order to activate these inputs. The contacts are
designed so that they cannot be damaged even if an external load resistor is not
used and they are directly connected to Vcc.

5.8 Accuracy and Resolution
The absolute resolution that can be obtained with the M50.PCI stepping motor card
depends on the stepping motor used. A mechanical error of the motor and the stages
also influence this resolution.

For a motor with a 1,500mA/phase current and 200 full steps per revolution, the
absolute position error is typically < ±3µm related to the transfer of motion to a linear
movement by a 2mm spindle.

The theoretical resolution of the M50.PCI stepping motor card is approx. 1/256 of a
full step. The electromagnetic resolution attainable under real conditions depends on
diverse factors; these include the ratio of the nominal torque to the torque under load,
the motor power supply, and the ratio of the nominal current of the motor to the
maximum current of the M50.PCI stepping motor card.

Under favorable conditions, a resolution of 1/100 of a full step can be achieved. In
the example above, this would correspond to a resolution of 0.5-1 µm.

40 2310 18 M50.PCI Instructions

6 Part III: M50 Software

6.1 Overview
The\Install directory on the CD-ROM supplied contains all the setup information for
installing the drivers for Win98, Windows 2000 and Windows XP.

You will find sample programs for Delphi5.0 and higher in the \M50-Delphi directory.
DEMO1 is a simple example written to introduce you to programming the M50.PCI
stepping motor card. DEMOTwoCards shows the programming for two M50.PCI
stepping motor cards using a total of 6 motors to be operated by these cards.

The function libraries MX_Motor.dll, CC3260MT.dll and STLPMT45.dll as
well as the M50.pas import file of the M50 functions belong to each program. The
M50dsp.idm execution program for the M50 processor is loaded and started each
time the program is initialized.

The import file and C++ examples for user programming in VisualC++ are in the \M50-
VisualC subdirectory.

The import file and examples for user programming in LabView are in the \M-50-
LabView subdirectory.

The import file and examples for user programming in VB are in the \M50-VB
subdirectory.

6.2 About the 32-bit Software

6.2.1 Testing and Initial Operation of the M50.PCI Stepping
Motor Card

The \M50-Delphi directory contains the compiled programs for immediate operation
of the M50.PCI stepping motor card on 32-bit operating systems (Win98/Win2000/ff):

M50_Demo1.exe Simple sample program for controlling three motors
MX_Motor.dll Dynamically linkable driver library with all card functions
CC3260MT.dll Dynamically integrated supplementary library
STLPMT45.dll Dynamically integrated supplementary library
M50dsp.idm Program for the microprocessor on the card

M50.PCI Instructions 19 40 2310

6.3 Programming under Delphi
The \M50-Delphi\M50-Demo1 subdirectory comprises all units and drivers that you
need for writing your own Delphi program or for extending the sample program. This
program has been written using Borland Delphi 5.0.

You can copy the files of this subdirectory as well as MX_Motor.dll, M50dsp.idm
in the ..\Delphi5\Projects\M50 directory to your hard disk and access these files
for your own programming.

These files are as follows:

M50.pas Import file for dll functions
M50_Demo1.dpr Project file for opening the M50_Demo1 project
M50_Demo1.dsk Saves your desktop for the M50_Demo1 project
Main.dfm Delphi Form Module for the sample program
Main.pas Main for the sample program
M50_Demo1.pas Source code for the sample program
MX_Motor.dll Driver library with all card functions
M50dsp.idm Program for the microprocessor on the card

6.3.1 Programming Using VisualC

The \M50-VisualC subdirectory combines all units and driversram. This program
was written using C++ Vers 6.0. that you need for writing your own C++ programs or
for extending the sample prog

6.3.2 Programming Using LabView

The \M50-LabView subdirectory combines all units and drivers that you need for
writing your own LabView programs or for extending the sample program. This
program was written using LabView 6.0.

40 2310 20 M50.PCI Instructions

7 Part IV: M50 Function Library

7.1 Brief Overview
 ------------- Card initialization --
 function Open_M50 (FilePath: TFilePath);
 function Close_M50;

 ------------- Motor and axis settings ----------------------------
 function Set_Maximum_Current (Motor, Current: INTEGER);
 function Get_Maximum_Current (Motor: INTEGER; VAR Current: INTEGER);
 function Enable_Motor (Motor: INTEGER);
 function Disable_Motor (Motor: INTEGER);
 function Set_Steps_per_Rev (Motor, Steps_per_Rev: INTEGER);
 function Get_Steps_per_Rev (Motor: INTEGER; VAR Steps_per_Rev: INTEGER);
 function Set_Rotary (Motor, Rotary: INTEGER);
 function Get_Rotary (Motor: INTEGER; VAR Rotary: INTEGER);
 function Set Gear (Motor: INTEGER; Gear: SINGLE);
 function Get_Gear (Motor: INTEGER; VAR Gear: SINGLE);
 function Set_Pitch (Motor: INTEGER; Pitch: SINGLE);
 function Get_Pitch (Motor: INTEGER; VAR Pitch: SINGLE);
 function Set_Feedrate (Motor: INTEGER; Feedrate: SINGLE);
 function Get_Feedrate (Motor: INTEGER; VAR Feedrate: SINGLE);
 function Set_Acceleration (Motor: INTEGER; Acceleration: SINGLE);
 function Get_Acceleration (Motor: INTEGER; VAR Acceleration: SINGLE);
 function Set_Power_Down (Motor, Power_Down: INTEGER);
 function Get_Power_Down (Motor: INTEGER, VAR Power_Down: INTEGER);

 ------------- Switch configuration --
 function Set_Pos_Limit_Switch (Motor, Limit_Switch: INTEGER);
 function Get_Pos_Limit_Switch (Motor: INTEGER; VAR Limit_Switch: INTEGER);
 function Set_Neg_Limit_Switch (Motor, Limit_Switch: INTEGER);
 function Get_Neg_Limit_Switch (Motor: INTEGER; VAR Limit_Switch: INTEGER);
 function Set_Pos_Limit_Polarity (Motor, Limit_Polarity: INTEGER);
 function Get_Pos_Limit_Polarity (Motor: INTEGER; VAR Limit_Polarity: INTEGER);
 function Set_Neg_Limit_Polarity (Motor, Neg_Limit_Polarity: INTEGER);
 function Get_Neg_Limit_Polarity (Motor: INTEGER; VAR Limit_Polarity: INTEGER);
 function Set_Reference_Switch (Motor, Reference_Switch: INTEGER);
 function Get_Reference_Switch (Motor: INTEGER; VAR Reference_Switch: INTEGER);
 function Set_Reference_Polarity (Motor, Reference_Polarity: INTEGER);
 function Get_Reference_Polarity (Motor: INTEGER; VAR Refernce_Polarity: INTEGER);

M50.PCI Instructions 21 40 2310

 --------------- I/O byte --
 function Set_ Byte_Direction (Byte_No: Integer; Direction: Word);
 function Set_Byte_Output (Byte_No: Integer; Output: Word);
 function Set_Reset_Byte_Output (Byte_No: Integer; Output: Word);
 function Byte_Input (Byte_No: Integer; Var Input: Word);

 --------------- Stepping motor operation -------------------------
 function Set_Goal (Motor: INTEGER; Position: SINGLE);
 function Get_Goal (Motor: INTEGER; VAR Position: SINGLE);
 function Set_Position (Motor: INTEGER, VAR Position: SINGLE);
 function Get_Position (Motor: INTEGER; VAR Position: SINGLE);
 function Go;
 function Stop;
 function Move (Motor: INTEGER);
 function Brake (Motor: INTEGER);
 function Moving (Motor: INTEGER);
 function All_Arrived;
 function End_Line;
 function Positive_Limit (Motor: INTEGER);
 function Negative_Limit (Motor: INTEGER);
 function Reference (Motor: INTEGER);
 function Input (Input_No: INTEGER);

 ------------- Motor power supply in V (M50 only) -----
 function Get_Motor_Voltage (Motor: INTEGER; VAR Voltage: SINGLE);

 ------------- Heat sink temperature in °C (M40 only) ------------
 function Get_Heatsink_Temperature (Motor: INTEGER; VAR Temperature:
 INTEGER);

 --------------System settings ------------------------------
 function Save_Configuration (FilePath: TFilePath);
 function Read_Configuration (FilePath: TFilePath);
*function Enable_Interpolation;
*function Disable_Interpolation;
*function Set_Interpolation_Feedrate (IntpolFeedrate: SINGLE);
 function Get_Interpolation_Feedrate (VAR IntpolFeedrate: SINGLE);
*function Set_Interpolation_Acceleration (IntpolAcceleration: SINGLE);
 function Get_Interpolation_ Acceleration (VAR IntpolAcceleration: SINGLE);
 function Number_of_Cards (Motor: Integer, Var Slot_Number: Integer);

The routines identified by an * can be called only if all axes are
stopped.

40 2310 22 M50.PCI Instructions

• Up to three stepping motors can be controlled by the M50.PCI stepping

motor card. A maximum of five stepping motor cards can be simultaneously
operated in one PC; i.e., up to 15 motors can be controlled by PC. The valid
range of values of the variable motor is: 1 ≤ motor ≤ 15. Motor numbers 1
to 3 are assigned to the M50.PCI stepping motor card with the lowest PCI
address; motor numbers 4 to 6 to the M50.PCI stepping motor card with the
next higher PCI address, etc.

• All functions are of the INTEGER type. If a function is properly carried out

when requested, the function value is = 0. If a function cannot be performed,
it take on a negative value as an error_code.

The following function values occur as error_codes:

 function_ok = 0;
 error_already_open = -1;
 error_not_open = -2;
 error_no_card = -3;
 error_invalid_motor_no = -4;
 error_opening_config_file = -5;
 error_dsp_program_not_found = -6;
 error_mx_dll_not_found = -7;
 error_no_config_file = -8;
 error_goal_not_accepted = -9;
 error_invalid_input_np = -10;
 error_no_driver = -11;
 error_driver_function_not_found = -12;
 error_mx_function_not_found = -13;
 error_mx_dll_not_loaded = -14;
 error_open_card = -15;
 error_send_dsp_program = -16;
 error_function_not_supported = -17;
 error_invalid_byte_no = -18;
 error_undervoltage = -19;
 error_overvoltage = -20;
 error_bridge_error = -21;
 error_incompatible_config_file = -22;
 error_no_valid_config_file = -23;

M50.PCI Instructions 23 40 2310

When the M50.PCI stepping motor card is initialized, <OPEN_M50>,
axes one to three are set to the default values:

 Maximum_Motor_Current[i] = 1400;[mA]
 Enable_Motor[i] = true;
 Steps_per_Rev[i] = 200;
 Rotary[i] = 0;
 Gear[i] = 1.0;
 Pitch[i] = 2.0; [mm/Rev]
 Feedrate[i] = 3.0; [mm/s]
 Acceleration[i] = 10.0; [mm/s2]
 Power_Down[i] = 50; [%]
 Pos_Limit_Switch[i] = 2*i;
 Neg_Limit_Switch[i] = 2*i-1;
 Reference_Switch[i] = $ffff;
 Pos_Limit_Polarity[i] = 0;
 Neg_Limit_Polarity[i] = 0;
 Reference_Polarity[i] = 0;
 Interpolation Mode[1] = 0;
 Interpolation_Feedrate = 3.0; [mm/s]
 Interpolation_Acceleration = 10.0; [mm/s2]

These defaults can be overwritten by your own user-definable motor and axis
settings or can be accepted from a data file using the <Read_Configuration>
command.

Each time you change the geometry data of an axis (Steps_per_Rev, Pitch, Rotary
and Gear), you will also need to redefine the velocity and acceleration of this axis
using <Set_Feedrate> and <Set_Acceleration>. In the interpolation mode, the
corresponding commands are <Set_Interpolation_Feedrate> and
<Set_Interpolation_Acceleration>.

Any changes to the default and configuration settings will not become effective until
you write the command <Go> or <MOVE>.

40 2310 24 M50.PCI Instructions

8 Description of the Functions

8.1 Card Initialization
Open_M50(FilePath: TfilePath): Integer;

 When initializing an application program, this function is used to read the

M50dsp.idm file from the FilePath directory and to load it into the
microprocessor on the M50.PCI stepping motor card. At the same time, the
memory area needed in the PC is dynamically allocated.

 If several M50.PCI stepping motor cards are installed in a PC, these are
automatically initialized by this function request command.

This function m u s t be requested upon each initialization.

Example:
procedure TMainForm.FormShow(transmitter: TObject);
begin
 (* Search in current directory: *)
 If Open_M50('M50dsp.idm')=0 Then Begin
 comment:= 'DSP-program successfully loaded'
 Exit;
 end;
 (* Search by entering entire pathname: *)
 If Open_M50('...\Borland\Delphi5\Projects\M50_Demo1\M50dsp.idm')=0
Then begin
 comment:= 'DSP-program successfully loaded'
 exit;
 end;
 comment:= 'No M50-card present or <M50dsp.idm> not found;
end;

Function values:
• function_OK = 0
• error_allready_open = -1
• error_not_open = -2
• error_no_card = -3
• error_dsp_program_not_found = -6
• error_no_driver = -11
• error_driver_function_not_found = -12
• error_open_card = -15
• error_send_dsp_program = -16

M50.PCI Instructions 25 40 2310

Close_M50: Integer;

Close_M50 switches off all motors, closes the DSP program on the M50.PCI
stepping motor card and releases the memory area occupied in the PC when the
function <Open_M50> was requested. This function should be requested each time
an M50 user program is closed!

Example:
 procedure TMainForm.FormClose(Sender:TObject; var Action: TCloseAction);
 begin
 Save_configuration('Demo1.cfg');
 Close_M40;
 end;

Function value: function_OK = 0 • error_not_open = -2

40 2310 26 M50.PCI Instructions

8.2 Motor and Axis Settings
Each time the geometry data of an axis is changed (Steps_per_Rev, Pitch, Rotary
und Gear), the speed and acceleration of this axis also have to be redefined using
<Set_Feedrate> and <Set_Acceleration>; in the interpolation mode, the
corresponding commands are <Set_Interpolation_Feedrate> and
<Set_Interpolation_Acceleration>. Changes to these settings will become effective
only after they are terminated in the program by <Go> or <MOVE>.

Set_Maximum_Current(Motor, Current: INTEGER): INTEGER;

This function determines the maximum phase current and thus the torque of the
motor. Normally, we select the value of the motor used for a particular axis.
The phase current is divided between the two coils of a phase depending on the
nominal position to be reached. The range of values is 0 - 2500mA.

Setting: current= 1400 [mA/phase].

Example:
 Set_Maximum_Current(1,2500); //set maximum current of motor1 to
 //2500mA/phase
 Set_Maximum_Current(2, 850); //set maximum current of motor2 to
 //850mA/phase

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor_no = -4

Get_Maximum_Current(Motor: INTEGER; VAR Current: INTEGER): INTEGER;

This function is used to read out the maximum phase current set using the
variable called -current-.

Example:
procedure TMainForm.CurrentEdit(Sender: TObject);
var
 Current : Integer;
begin
 Get_Maximum_Current(1,Current);
 CurrentEdit.Text:= 'Current of Motor1 =' + IntToStr(Current) + 'mA';
end;

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor_no = -4

M50.PCI Instructions 27 40 2310

Enable_Motor(Motor: INTEGER): INTEGER;

This routine activates axes that have been previously de-activated by the
<Disable_Motor>.

Setting: Enabled

Enable_Motor(1); (* axis1 is prepared to execute *)

 (* following moving commands *)

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor = -4

Disable_Motor(Motor: INTEGER): INTEGER;

The axis with the identifier known as Motor is excluded from all of the following
motion commands. The operating voltge remains switched on without any changes.

Setting: Enabled

Disable_Motor(1); (* axis1 is excluded from all *)
 (* following moving commands *)

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor = -4

Set_Steps_per_Rev(Motor, Steps_per_Rev: INTEGER): INTEGER;

This function defines the number of full steps (VS) per revolution of the type of motor
used. Setting the optimal microstep width is internally controlled (see Chapter 5.8).

Setting: steps_per_rev=200 [Full Steps]

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor = -4

Get_Steps_per_Rev(Motor: INTEGER; VAR steps_per_rev: INTEGER): INTEGER;

Reads out the steps_per_rev variable as the number of full steps per revolution of the
motor axis.

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor = -4

40 2310 28 M50.PCI Instructions

Set_Rotary(Motor, Rotary: INTEGER): INTEGER;

This command defines the “motor” system axis as a rotational axis (Rotary = 1) or
as a linear axis (Rotary = 0). (See also information on page 21.)

Setting: Rotary = 0

Set_Rotary (1 , 1); (* The system axis of motor 1 is *)

 (* defined as a rotational axis *)

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor = -4

Get_Rotary(Motor: INTEGER; Var Rotary: INTEGER): INTEGER;

The return value indicates whether the motor system axis is defined as a rotational
axis (Rotary = 1) or as a linear axis (Rotary = 0).

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor = -4

Set_Gear(Motor: INTEGER; Gear: SINGLE): INTEGER;

This command defines an increase or a reduction ratio of the motor system axis. (see
information on page 21).

Setting: Gear = 1.0 (no increase/reduction ratio).

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor = -4

Get_Gear(Motor: INTEGER; VAR Gear: SINGLE): INTEGER;

Returns Gear as an increase or a reduction ratio of the motor system axis.

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor = -4

Set_Pitch(Motor: INTEGER; Pitch: SINGLE): INTEGER;

Set_Pitch defines the linear movement of the motor system axis per axis revolution.
Select the pitch according to the spindle pitch. If motor is not a linear axis, but has
been defined as a rotary axis, (see Set_Rotary), the routine is not evaluated (see
also information on page 21).

Setting: Pitch = 2.0 [mm/revolution].

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_moto r= -4

M50.PCI Instructions 29 40 2310

Get_Pitch(Motor: INTEGER; VAR Pitch: SINGLE): INTEGER ;

This returns pitch as the measure of the linear advance per motor axis revolution
(=spindle pitch) in mm/revolution.

Example:
procedure TMainForm.PitchEdit(Sender: TObject);
var pitch: Integer;
begin
 Set_Pitch(5,2.25); (* Axis5 is a linear axis with a *)
 (* spindle-pitch of 2.25mm/rev *)
 Get_Pitch(5,pitch);
 PitchEdit.Text:='Pitch of Axis5= '+IntToStr(pitch)+'mm/rev';
end;

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor = -4

Set_Feedrate(Motor: INTEGER; Feedrate: SINGLE): INTEGER;

In the point-to-point mode, this defines the speed of the Motor system axis in mm/s
(linear axis) or π/2s (rotational axis). The range of values for the feed rate is
0.001mm/s-1000mm/s (0.1 full step/s – 100,000 full steps/s.)

(Point-to-point mode: The motors are activated independently of one another instead
of their speed being related to one another’s speed as in the interpolation mode; see
also Chpt. 2.5, <Enable_Interpolation>).

Setting: Feedrate = 3.0 [mm/s]
(corresponds to 300[full steps/s] for a 2mm pitch and 200 full

 steps/360º)

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor = -4

Get_Feedrate(Motor: INTEGER; VAR Feedrate: SINGLE): INTEGER;

With the feedrate variable, this command reads out the selected point-to-point speed
of the motor system axis in mm/s (linear axis) or in π/2s (rotational axis).

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor = -4

40 2310 30 M50.PCI Instructions

Set_Acceleration(Motor: INTEGER; Acceleration: SINGLE): INTEGER;

In the point-to-point mode, this command defines the acceleration of each motor axis
in mm/s2 (linear axis) or in π/2s2 (rotational axis). To ensure the computational
accuracy, acceleration is internally limited to a maximum of 800,000 full steps/s2.
This yields a maximum acceleration of 8000mm/s2 for 200 full steps/revolution and a
2 mm pitch.

Setting: Acceleration = 10 [mm/s2]

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor = -4

Get_Acceleration(Motor: INTEGER; Var Acceleration: SINGLE): INTEGER;

With the Acceleration variable, this command reads out the axis acceleration set in
the point-to-point mode. If the motor axes are defined as a linear axes, this is read
out in mm/s2 or, for rotational axes, in π/2 s2 .

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor = -4

M50.PCI Instructions 31 40 2310

Set_Power_Down(Motor, Power_Down: INTEGER): INTEGER;

This function defines the percentage by which the power of the motor axis is to be
reduced while the motor is stopped. Power_Down designates the reduction in
percent based on a maximum phase current, where the current between the coils is
then reduced proportionally depending on the particular position an axis has reached.

When stopped, the stepping motors need only the amount of power that enables a
sufficient stop torque to be generated in order to maintain the axes’ position reached.
In all cases in which the motor does not receive any external torque, for eaxmple,
when gears or spindles are used, the stop torque can be much lower than the travel
torque. To avoid unnecessary heat loss, Power_Down should be set to the lowest
value possible.

Setting: Power_Down = 50[%]

Set_Power_Down(1,40); //The power of motor 1 while stopped is reduced
 //to 40% of the Maximum_Current.

Set_Power_Down(5,25); //The power of motor 5 while stopped is reduced
 //to 25% of Maximum_Current

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor = -4

Important note! Be sure that there is sufficient stop torque for axes
that have external torque and force.

Get_Power_Down(Motor: INTEGER; VAR Power_Down): INTEGER;

With the Power_Down variable, this command returns the reduced motor power as a
percentage of the maximum phase current while motion is stopped.

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor = -4

40 2310 32 M50.PCI Instructions

8.3 Switch Configuration
Every M50.PCI stepping motor card has 6 inputs. These are addressed by the
integer values 1 to 6. Each input of an M50.PCI stepping motor card can be assigned
to any of the axes of this card.

For example, switch1 and switch2 can be assigned as limit switches to axis 1
("motor1"), and switch3 as a reference switch for this axis. Switch4 to switch6 are
then available for assignment to the remaining axes of this M50.PCI stepping motor
card or can be used as inputs for any other additional functions.

M50Card
PinNo

 M50-DLL
Value:Integer

M50.PAS
Const

Setting

Pin14 1 ‘switch1’ Neg Limit Switch
motor1

Pin15 2 ‘switch2’ Pos Limit Switch
motor1

Pin18 3 ‘switch3’ Neg Limit Switch
motor2

Pin19 4 ‘switch4’ Pos Limit Switch
motor2

Pin22 5 ‘switch5’ Neg Limit Switch
motor3

Pin23 6 ‘switch6’ Pos Limit Switch
motor3

Tab.1: M50 pin assignment (D-Sub, 25-pin) and DLL value

If several M50.PCI stepping motor cards are operated together, only the inputs of the
first card, switch1 to switch6, can be assigned to the axes of the first card motor1,
motor2 and motor3.

The inputs of the second card (switch1 to switch6) are assigned to the axes of the
second card defined by the identifiers motor4, motor5 and motor6, etc.

When not assigned, the inputs are set to “high” via pull-up
resistors.

If passive switches are used that are connected to GND, define
“low_active” as the input polarity.

If active switches are used, select the input polarity that corresponds to the particular
circuit utilized (see Set Polarity and Appendix C: Pin Assignment).

M50.PCI Instructions 33 40 2310

Set_Pos_Limit_Switch(Motor, Limit_Switch: INTEGER): INTEGER;

This command assigns the motor system axis to the Limit_Switch input as a positive
limit switch. If the input is assigned as a positive limit switch to an axis, this axis,
when performing positive movement, will immediately stop as soon as the assigned
input is activated. Until the input is de-activated, the axis can only be moved in the
negative direction of travel. The position of this axis and the target buffer remain
unchanged. The sentence buffer can be deleted, if necessary, using the <Brake>
command in order to continue the positioning movement.

Range of values for Limit_Switch: [1, .. ,6] (cf. Tab 1)

Settings: Limit_Switch = switch2 = 2 for motor1
 Limit_Switch = switch4 = 4 for motor2
 Limit_Switch = switch6 = 6 for motor3

Set_Pos_Limit_Switch(1 , 1) (* Motor1 with positive limit switch 1 *)
Set_Pos_Limit_Switch(2 , 3) (* Motor2 with positive limit switch 3 *)
Set_Pos_Limit_Switch(3 , 5) (* Motor3 with positive limit switch 5 *)

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor_no = -4

Get_Pos_Limit_Switch(Motor: INTEGER; VAR Limit_Switch): INTEGER;

With the Limit_Switch variable, this command specifies the values of the input that is
assigned as a positive limit switch to the motor system axis. If no positive limit switch
is defined, limit_switch receives the value=0.

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor_n o= -4

Set_Neg_Limit_Switch(Motor, Limit_Switch: INTEGER): INTEGER;

This command assigns the Limit_Switch as a negative limit switch to the motor
system axis (see also FUNCTION Set_Pos_Limit_Switch).

Range of values for Limit_Switch: [1, .. ,6].

Settings: Limit_Switch = switch1 = 1 for motor1
 Limit_Switch = switch3 = 3 for motor2
 Limit_Switch = switch5 = 5 for motor3

Set_Neg_Limit_Switch(1 , 2) (*Motor 1 with negative limit switch 2*)
Set_Neg_Limit_Switch(2 , 4) (*Motor 2 with negative limit switch 4*)
Set_Neg_Limit_Switch(3 , 6) (*Motor 3 with negative limit switch 6*)

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor_no = -4

40 2310 34 M50.PCI Instructions

Get_Neg_Limit_Switch(Motor: INTEGER, VAR Limit_Switch): INTEGER;

With the variable for the Limit_Switch, this command specifies the values of the input
that is assigned as a negative limit switch to the motor system axis. If no negative
limit switch is defined, limit_switch receives the value=0.

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor_no = -4

Set_Pos_Limit_Polarity(Motor, Limit_Polarity: INTEGER): INTEGER;

This command defines the polarity of the positive limit switch of the motor system
axis. When not active, the inputs are set to “high” via pull-up resistors. If passive
switches connected to GND are used, the polarity has to be defined as “low_active”
for this reason. If active switches are used, be sure to select the input polarity
corresponding to the type of circuit employed.

Limit_Polarity = low_active = 0 (setting)
Limit_Polarity = high_active = 1

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor_no = -4

Get_Pos_Limit_Polarity(Motor: INTEGER; VAR Limit_Polarity: INTEGER): INTEGER;

This command indicates the polarity of the positive limit switch for the motor system
axis.

Low_Active limit switch : Limit_Polarity = 0
High_Active limit switch: Limit_Polarity = 1

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor_no = -4

Set_Neg_Limit_Polarity(Motor, Limit_Polarity: INTEGER): INTEGER;

This command defines the polarity of the negative limit switch for the motor system
axis (see also FUNCTION Set_Pos_Limit_Polarity).

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor_no = -4

Get_Neg_Limit_Polarity(Motor: INTEGER; VAR Limit_Polarity: INTEGER): INTEGER;

This command indicates the polarity of the negative limit switch for the motor system
axis (see also FUNCTION Get_Pos_Limit_Polarity)

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor_no = -4

M50.PCI Instructions 35 40 2310

Set_Reference_Switch(Motor, Reference_Switch: INTEGER): INTEGER;

This command assigns the reference switch variable Refence_Switch to the motor
system axis. As a result, movement is not stopped when a positioning axis reaches
the reference switch end point.

Range of values for Reference_Switch: [1, .. ,6] (cf. Tab.2)
Setting: Reference_Switch= 0 (no reference switch assigned)

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor_no = -4

Get_Reference_Switch(Motor: INTEGER; VAR Reference_Switch: INTEGER): INTEGER;

The command returns the Reference_Switch variable that is assigned to the motor
system axis (see also FUNCTION Get_Pos_Limit_Polarity).

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor_no = -4

Set_Reference_Polarity(Motor, Reference_Polarity: INTEGER): INTEGER;

This command defines the polarity of the reference switch for the motor system axis
(see also FUNCTION Set_Pos_Limit_Polarity).

Setting: Reference_Polarity = 0 (Low_Active)

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor_no = -4

Get_Reference_Polarity(Motor: INTEGER; VAR Limit_Polarity: INTEGER): INTEGER;

With the Reference_Polarity variable, this command returns the polarity of the
reference switch assigned to the motor system axis (see also FUNCTION
Get_Pos_Limit_Polarity).

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor_no = -4

40 2310 36 M50.PCI Instructions

8.4 I/O Byte
Set_Byte_Direction(Byte_No: INTEGER; Direction: Word): INTEGER;

In addition to 6 inputs for the limit switches (on the motor connector), the M50.PCI
stepping motor card has an I/O extension with 8 bits, which can be connected using
the additional extension cable and slot plate supplied along with the card (see
Installation). If several M50.PCI stepping motor cards are installed in one PC, each
I/O byte is selected by Byte_No according to the card number.

Each of the 8 bits of the I/O extension can be defined as an input (default setting) or
an output. <Set_Byte_Direction> along with Direction defines which of the 8 bits is to
be evaluated as an output. These have binary codes. Both the inputs and outputs
are de-activated by "low".

Bit1 Value=1;
Bit2 Value=2;
Bit3 Value=4;
Bit4 Value=8;
Bit5 Value=16;
Bit6 Value=32;
Bit7 Value=64;
Bit8 Value=128;

Set_Byte_Direction(1, 1+2+4+8+16+32+64+128); //All 8 bits are

 //output

Function value: function_OK = 0 • error_not_open = -2 • error_function_not_supported= -17

error_invalid_byte_no= -18

Set_Byte_Output(Byte_No: INTEGER; Output: Word): INTEGER;

Use <Set_Byte_Output> to set a single or several bits for an I/O extension. The
Byte_No command specifies the byte number, i.e., the card number of this
extension.

Set_Byte_Output(1, 1); //Sets bit1 on the card to 1 "high"
Sleep(100);
Set_Byte_Output(1, 2+128); //Additionally sets bit2 and bit8 to "high"
Sleep(100);

Function value: function_OK = 0 • error_not_open = -2 • error_function_not_supported= -17

error_invalid_byte_no= -18

M50.PCI Instructions 37 40 2310

Set_Reset_Byte_Output(Byte_No: INTEGER; Output: Word): INTEGER;

This command is used to reset the previously activated outputs. Output has a binary
code (see also <set_byte_direction>). Use Byte_No to select the I/O extension byte,
which is, at the same time, equal to the number of the M50.PCI stepping motor
cards.

Var output : Word;

Set_Byte_Direction(1, 1+2+4+8+16+32+64+128); //Turns all 8 bits into
 //outputs
Set_Byte_Output(1, 1); //Sets bit1 on the card to 1 = "high"
Sleep(100);
Set_Byte_Output(1, 2); //Sets bit2 on the card to 1 = "high"
Sleep(100);
Set_Byte_Output(1, 4); //Sets bit3 on the card to 1 = "high"
Sleep(100);
Set_Byte_Output(1, 8); //Sets bit4 on the card to 1 = "high"
Sleep(100);
Set_Byte_Output(1, 16); //Sets bit5 on the card to 1 = "high"
Sleep(100);
Set_Byte_Output(1, 32); //Sets bit6 on the card to 1 = "high"
Sleep(100);
Set_Byte_Output(1, 64); //Sets bit7 on the card to 1 = "high"
Sleep(100);
Set_Byte_Output(1, 128); //Sets bit8 on the card to 1 = "high"
Sleep(400);
output:= 1 + 2 + 4 +8 +16 +32 +64 + 128
Reset_Byte_Output(1,output); //Reverses all 8 bits back to "low"

Function value: function_OK = 0 • error_not_open = -2 • error_function_not_supported= -17

error_invalid_byte_no= -18

Byte_Input(Byte_No: INTEGER; Var Input: Word): INTEGER;

The <Byte_Input> command is used to request the state of the inputs of the I/O
extension. Only the bits defined as inputs are addressed; the ones defined as outputs
are ignored. This function returns the state of the inputs using the Input variable. The
bits have binary codes and are evaluated as active when the bits are set to high.

procedure TMainForm.ByteInButtonClick(Sender: TObject);
Var BitValue : Word;
Begin
 ByteInButton.Down:= true;
 Set_Byte_Direction(1, 0+0+0+0+0+0+0+0);
 Repeat
 Byte_Input(1, BitValue);
 until BitValue < 0;}
 ByteInButton.Down:= false;
End;

Function value: function_OK = 0 • error_not_open = -2 • error_function_not_supported= -17

error_invalid_byte_no= -18

40 2310 38 M50.PCI Instructions

8.5 Operating the Stepping Motors
Set_Goal(Motor: INTEGER; Position: SINGLE): INTEGER;

Use <Set_Goal> to input the absolute target positions of the axis = motor in mm
(linear axis) or in the radian measure “rad” (rotational axis) in the sentence buffer of
this axis. The commands in the sentence buffer are carried out once the axis is
started by <Move> or once the entire system is started by <Go>. In the process, the
values stored in the sentence buffer are selected in sequence until the sentence
buffer is empty.

One or several new targets (“goals”) can also be input during positioner movement.
These targets are selected one after the other as soon as the previous target position
has been reached, without having to input the <Go> or <Move> command again.

Each time a new target position (goal) is entered, the previously defined values for
velocity and acceleration are also saved along with this new position in the sentence
buffer. The movement of each axis can be completely controlled by the command
sequence <Set_Feedrate>, <SetAcceleration> and <Set_Goal>.

Setting: Position = 0 [mm]

Example
procedure TMainForm.Timer1Timer(Sender: TObject);
var p : Single;
begin
Set_Goal(1, 10.00); // axis1 shall move to position 10.00mm
Set_Goal(2, 55.00); // axis2 shall move to position 55.00mm
Go; // axis1 and axis2 start to move
Get_Position(1,p);
If p > 9.00 Then begin // If axis1 reaches the position 9.00

 Set_Point_Feedrate(1,0.8);
Set_Goal(1, 8.35); // 8.35 is set as new goal for axis1
Set_Goal(2, 8.35); // 8.35 is set as new goal for axis2
Go; // with 'Go' the new goals are valid, axis1

end; // starts moving when position=10.00 is
 // reached, new speed=0.8 to position 8.35
 // while axis1 moves onwards to position 55

 // and then back to position 8.35

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor = -4
error_goal_not_accepted = -9

M50.PCI Instructions 39 40 2310

Get_Goal(Motor: INTEGER; VAR Goal: SINGLE): INTEGER;

The Goal command returns the current absolute target position (goal) for the motor
system axis in mm (linear axis) or in the radian measure (rotational axis). Once the
target position (goal) has been reached, it will remain stored until a new target
position is set.

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor= -4

Set_Position(Motor: INTEGER, VAR Position: SINGLE): INTEGER;

This command sets the current position of the motor system axis to the position
value. This function can also be performed while the axis is still moving.

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor = -4

Get_Position(Motor: INTEGER; VAR Position: SINGLE): INTEGER;

This command returns the position variable along with the current position of the
motor system axis.

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor = -4

Go: INTEGER;

Use the <Go> command to simultaneously start all axes. This is especially important
in the interpolation mode after you have entered the targets (goals) and movement
parameters for several axes. The axes will remain in motion until their particular
instructions in the sentence buffer have been completely performed.

You can also set <Go> while a motor is running, for example, in order to have the
position moved to a new target position immediately after the previously set target
has been reached, or to start the axes one after another (see also <Move> and
<Set_Goal>).

Function value: function_OK = 0 • error_not_open = -2 • error_undervoltage = -19
 error_overvoltage = -20 • error_bridge_error = -21

40 2310 40 M50.PCI Instructions

Stop: INTEGER;

<Stop> causes all axes to stop immediately at any time it is set. There is no brake
ramp so steps may be lost if the axis selected happens to be above the start/stop
frequency.

The values of the position counter remain saved; the sentence buffer for all axes is
cleared. As a result, this function is suitable for resetting all sentence buffers of the
entire system when the axes are stopped.

While the axes remain stopped, the power in the motors is reduced according to the
preset power-down parameter (see <Set_Power_Down>).

Function value: function_OK = 0 • error_not_open = -2

Steps may be lost when an axis is above the start/stop frequency;
this may result in loss of control of the motors. Stop clears the
sentence buffers for all axes.

Move(Motor: INTEGER): INTEGER;

<Move> starts the individual -Motor- axis. The position targets defined for this axis
are selected. Once started, an axis remains in motion until the instructions in its
sentence buffer have been completely executed. The remaining axes remain
unaffected by the <Move> command.

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor_no = -4
 error_undervoltage = -19 • error_overvoltage = -20 • error_bridge_error = -21

Brake(Motor: INTEGER): INTEGER;

You can use the <Brake> command to stop the -motor- axis at any time or at any
position. Braking is carried out with a ramp that is calculated from the currently valid
value of acceleration.

Function value: function_OK = 0 • error_not_open = -2 • error_invalid_motor_no = -4

All target positions (goals) in the sentence buffer for this axis are deleted.

M50.PCI Instructions 41 40 2310

Moving(Motor: INTEGER): INTEGER;

When an axis is stopped (idle state), the function value is '0'. As long as the 'Motor'
axis is moving, the function value remains set to '1'. If an axis moves incorrectly, the
Moving variable will take on the negative values as error codes.

Function value: false = 0 • true = 1 • error_not_open = -2 • error_invalid_motor_no = -4

All_Arrived: INTEGER;

This command checks whether all system axes are stopped. The function value
remains '0' as long as any of the axes is still moving or if not all the instructions in the
sentence buffers have been performed. All_arrived takes on the function value '1' if
all axes are stopped and all sentence buffers are empty. The function does not
evaluate whether or which of the axes have reached their target positions (goals).

Function value: false = 0 • true = 1 • error_not_open = -2

End_Line: INTEGER;

The interpolation mode also uses a sentence buffer. To enable the program of the
M50 processor to differentiate among the individual interpolation sets, <End_Line> is
used. This function defines the end of an interpolated movement.

Example:
Set_Goal(1,10);
Set_Goal(2,15);
Set_Goal(3, 1);
End_Line;
{Go}
Set_Goal(1,-10);
End_Line;
Go;

Function value: function_OK = 0 • error_not_open = -2

The axes move in an interpolated manner to 10/15/1 in the x/y/z coordinate system
and, right afterwards, to -10/15/1). As soon as the first End_Line command has been
carried out, the axes can be started by the <Go> command.

40 2310 42 M50.PCI Instructions

Positive_Limit(Motor: INTEGER): INTEGER;

Positive_Limit allows the state of the positive limit switches to be determined. Once a
limit switch has reached its defined end-point position, its function value changes
from 0 to 1. The range of values for MOTOR is 1 to 3 for the M50.PCI stepping motor
card, and 1 to 6 for two M50.PCI stepping motor cards, etc.

Example:
Procedure Home;
Begin
{+++++ Configuration: +++++}

 Set_Point_Feedrate(1,2.5); // fast speed
 Set_Pos_Limit_Switch(1,1); // axis1 switch1 for positive limit
 Set_Neg_Limit_Switch(1,2); // axis1 switch2 for negative limit
 Set_Reference_Switch(1,3); // axis1 switch3 for reference

 {+++++ Move to negative limit switch: +++++}
 Set_Goal(1,-500); // axis1 goal in negative direction
 Go; // Start moving

 {+++++ Fault Condition: +++++}
If (Negative_Limit(1)=1)and(Reference_Limit(1)=1) Then Begin
message:=‘FAULT: NEGATIVE LIMIT AND REFERENCE_LIMIT NOT SEPERATED‘;

 Stop;
 EXIT;
 End;

 {+++++ Move to Reference Switch: +++++}

If (Negative_Limit(1)=1)and(Reference_Limit(1)=0)Then Begin
 message:=‘NEGATIVE LIMIT REACHED, NOW SLOWLY TO REFEENCE...‘;
 Set_Point_Feedrate(1,0.25); // slow speed
 Set_Goal(1,+5000); // goal axis1 in positive direction
 Go; // Start moving

End;

 {+++++ Finish: +++++}
 If Reference_Limit(1)=1 Then Begin
 Stop;
 Reset_Position(1);
 message:=‘ REACHED REFERENCE = AXIS1-HOMEPOSITION‘;
 End;
End;

Function value: true=1 • false = 0 • error_not_open = -2 • error_invalid_motor = -4

M50.PCI Instructions 43 40 2310

Negative_Limit(Motor: INTEGER): INTEGER;

This command checks whether the end-point position of the negative limit switch has
been reached. The return value = 1 if the end-point position has been reached;
otherwise, it is = 0.

The range of values is 1 to 3 for one card, and 1 to 6 for two cards, etc.

Function value: true = 1 • false = 0 • error_not_open = -2 • error_invalid_motor = -4

Reference(Motor: INTEGER) : INTEGER;

This command checks whether the end-point position of the reference switch has
been reached. The return value = 1 if the end-point position has been reached;
otherwise, it is = 0.

The range of values is 1 to 3 for one card, and 1 to 6 for two cards, etc.

Function value: true = 1 • false = 0 • error_not_open = -2 • error_invalid_motor = -4

Input(Input_No: INTEGER): INTEGER;

Available inputs of the M50-PCI, which are not assigned to limit or reference
switches, can be used for any other purposes. The <Input> function evaluates all
inputs. The return value is = 1 if the input was activated; otherwise, it is = 0.

The range of values for -Input_No- is 1 to 6 for one card, and 1 to 12 for two cards,
etc.

Function value: true = 1 • false = 0 • error_not_open = -2 • error_invalid_input_no = -10

Get_Motor_Voltage (Motor: INTEGER; VAR Voltage: SINGLE): INTEGER;

The Get_Motor_Voltage function measures the voltage of the motor power supply
and saves it in volts in the “Voltage” variable.

Motor=1 (to motor=3) returns the motor power supply in volts for the first M50.PCI
stepping motor card (card1), and motor=4 (to motor=6) the power supply in volts for
the second M50.PCI stepping motor card (card2), etc.

Function value: function_OK= 0 • error_not_open= -2 • error_invalid_motor-no= -4
error_function_not_supported= -17

40 2310 44 M50.PCI Instructions

8.6 System Settings
Save_Configuration(FilePath : TFilePath): INTEGER;

The following settings of the initialization routines are saved for each of the 15 axes
possible in the FilePath file and can be loaded again, if necessary:

- Setting of the phase current in mA (Set_Maximum_Current)
- Axis activated/de-activated (Enable_Motor)
- Full steps per revolution of the motor axis (Set_Steps_per_Rev)
- Linear axis / Rotational axis (Set_Rotary)
- Gear transmission ratio (Set_Gear)
- Spindle pitch in mm per revolution (Set_Pitch)
- Speed in point-to-point mode (Set_Point_Feedrate)
- Acceleration (Set_Acceleration)
- Assignment of a positive limit switch (Set_Pos_Limit_Switch)
- Assignment of a negative limit switch (Set_Neg_Limit_Switch)
- Polarity of the positive limit switch (Set_Pos_Limit_Polarity)
- Polarity of the negative limit switch (Set_Neg_Limit_Polarity)
- Assignment of a reference switch (Set_Reference_Switch)
- Polarity of the reference switch (Set_Reference_Polarity)
- Power reduction during pauses in movement (Set_Power_Down)

The following system settings are saved once for each M50.PCI stepping motor card:

- Interpolation activated/de-activated Interpolation_enable
- Interpolation pathway speed Interpolation_Feedrate
- Interpolation pathway acceleration Interpolation_Acceleration

Example:
procedure TMainForm.FormClose(Sender: TObject; var

 Action:TCloseAction);
begin
 If Save_configuration('Demo1.cfg')=0 Then
 comment:=('Configuration saved')
 else comment:= ('Configuration not saved')
end;

Function value: function_OK = 0 • error_not_open = -2 • error_opening_config_file = -5

M50.PCI Instructions 45 40 2310

Read_Configuration(FilePath: TFilePath): INTEGER;

This command requests the settings saved by <Save_Configuration> from the
FilePath file.

If this routine or the various initialization routines are not requested, the (0) settings
are valid; i.e., all axes are completely switched off.

Function values: function_OK = 0 • error_not_open = -2 • error_no_config_file = -8
 error_incompatible_config_file = -22 • error_no_valid_config_file = -23

Enable_Interpolation: INTEGER;

This function selects the interpolation mode.

To control several axes of a system, you can choose “point-to-point mode” or the
“interpolation mode.” In the point-to-point mode, the system axes are controlled
independently of one another, and each axis moves at its own rate of acceleration
and speed (Acceleration and Feedrate).

In the interpolation mode, the speeds of the axes depend on one another. In this
mode, the axes of each particular M50.PCI stepping motor card are combined in a
Cartesian coordinate system; motors 1/2/3 correspond to the X/Y/Z axes.
The SET_Goal function specifies the X/Y/Z coordinates of a point to be reached. The
movement of each axis is controlled so that all axes simultaneously reach a target
position, where the speeds are calculated proportionally to the distance to be
covered.

Setting: Disabled

Example: see next page

The routine cannot be carried out if a motor is still running when this command is
called.

Function value: function_OK = 0 • error_not_open = -2

The maximum interpolation acceleration you select for a distance to
be covered should not be higher than that which can be reliably
attained by the axis with the lowest dynamics. Under certain
circumstances, you may need to determine this value by the trial
and error method.

40 2310 46 M50.PCI Instructions

Example:

Procedure TMainForm.FormCreate(Sender: TObject);
Var feedrate : INTEGER;

acceleration : INTEGER;
begin
If All_Arrived()=0 Then
If Enable_Interpolation=0 Then begin
Set_Interpolation_Feedrate(2.0); //Travel speed in mm/s
Set_Interpolation_Acceleration(10.0); //Travel acceleration in mm/s2

comment:=('Interpolation Modus activated');
end;
Set_Goal(1,15);
Set_Goal(2,15);
Set_Goal(3,15);
Go; //The axes move in a diagonal from the center point

//to a corner point of a square measuring 30 mm
end;

Disable_Interpolation: INTEGER;

This command changes from the interpolation mode back to the point-to-point mode.

The routine cannot be carried out if a motor is still running when the command is
called.

Function value: function_OK = 0 • error_not_open = -2

Set_Interpolation_Feedrate(IntpolFeedrate: SINGLE): INTEGER;

In the interpolation mode, this command defines the travel speed in mm/s (linear
axis) or in π/2s (rotational axis). The speeds of all system axes are internally
controlled so that all axes reach their respective target positions simultaneously (see
also Enable_Interpolation).

Setting: IntpolFeedrate = 3.0 (mm/s or π/2s)

The routine cannot be carried out if a motor is still running when this command is
called.

Function value: function_OK = 0 • error_not_open = -2

Get_Interpolation_Feedrate(VAR IntpolFeedrate: SINGLE): INTEGER;

In the interpolation mode, this command returns IntpolFeedrate as the travel speed in
mm/s (linear axis) or in π/2s (rotational axis).

Function value: function_OK = 0 • error_not_open = -2

M50.PCI Instructions 47 40 2310

Set_Interpolation_Acceleration(IntpolAcceleration: SINGLE): INTEGER;

This command defines the travel acceleration in mm/s2 (linear axis) or in π/2s2
(rotational axis) in the interpolation mode. The acceleration rates of all system axes
are internally controlled so that all axes reach their respective target positions
simultaneously (see also Enable_Interpolation).

Setting: IntpolAcceleration = 10.0 (mm/s2 bzw. π/2s2)

The routine cannot be carried out if a motor is still running when this command is
called.

Function value: function_OK = 0 • error_not_open = -2

Get_Interpolation_Acceleration(VAR IntpolAcceleration: SINGLE): INTEGER;

This command returns IntpolAcceleration as the travel acceleration in mm/ s2 (linear
axis) or in π/2s2 (rotational axis) in the interpolation mode.

Function value: function_OK = 0 • error_not_open = -2

Number_of_Cards (Motor: INTEGER, Var Slot_Number: INTEGER): INTEGER;

This command returns Slot_number, the slot number of the M50.PCI stepping motor
card that is assigned to the motor searched for.

If at least one card in the system is found, the function value < Number_of_Cards>
shows the number of the cards found; otherwise, an error code will be displayed.

Example
Var M50Cards: Integer;
.
.
M50Cards:= Number_of_Cards(1, Slot_Number); //Get slot number of motor1
if M50Cards > 0 then
 begin
 SlotCard1Edit.Text := IntToStr(Slot_Number);
 end;

M50Cards:= Number_of_Cards(4, Slot_Number); //Get slot number of
 //motor2 and return no.of
 //cards or error code

Function value: cards_found = < 0 ≤ 5 • error_not_open = -2 • error_invalid_motor_no = -4

40 2310 48 M50.PCI Instructions

8.7 Demo Program
The CD-ROM supplied contains the application program "M50_Demo1.exe". It is a
simple programming example for controlling a M50.PCI stepping motor card with
three motors.

User’s manual for M50_Demo1.exe

Once the program is initialized, a user interface appears on the screen. Using this
screen, you can initialize and control the M50.PCI stepping motor card by mouse
click or keyboard input.

Position : Shows the actual position in mm (system axis defined as a
linear axis) or in radian measure (system axis defined as a
rotational axis).

Goal : Here, a target position is input in mm (system axis defined as
a linear axis) or in radian measure (system axis defined as a
rotational axis).

Feedrate : Here, the system speed can be input in mm/s (linear axis) or
π/2s (rotational axis).

Neg Limit Switch : A negative limit switch can be assigned to each motor.
Movement in the negative direction is interrupted once the
end point of the limit switch is reached.

Pos Limit Switch : A positive limit switch can be assigned to each motor.
Movement in the positive direction is interrupted once the
end point of the limit switch is reached.

“Go” Button: Starts all motors simultaneously.

“Stop” Button: Stops all motors.

M50.PCI Instructions 49 40 2310

9 Appendix A: Technical Specifications

9.1 System Data
• PC plug-in card with integrated, pulse-controlled terminating stages for three

axes in microsteps

• Position controlling via signal processor

• All axes can be operated simultaneously or individually, either in the
interpolation or the point-to-point mode

• Two limit switches /reference switches per axis can be configured by software

as normally closed/normally open contacts

• Automatic power reduction of 0 to 100% when axes stop can be set by
software

• The power of the motors can be switched off by software

• Power supply 12V generated by the PC power supply unit can be selected by

the hard disk connector or externally up to 48V by jumper

• Windows plug and play capability

• The system can be extended up to five M50.PCI stepping motor cards, each
controlling three motors

• Demo program; source code in Delphi 5.0

• 32-bit driver for WINDOWS 95/98/2000/XP

40 2310 50 M50.PCI Instructions

9.2 Performance Data
• For 3 bipolar stepping motors with 4-, 5-, 6- or 8-wire technology

• Motor voltage from 2V to 12V

• 2.5A phase current maximum; can be selected independently by software for each

axis

• Microstep resolution 10-bit or 1.5 mA (corresp. to1/1000-microstep for 1.5-A motors)

Value ranges Max. Resolution Typical Unit
Position 84.5Mill 0.02 20000 full step
Speed (feed rate) 100000 0.001 2000 full steps/s
Acceleration 8000 0.1 10000 full steps/s2

• Step frequency:
The step frequency is controlled and monitored by a signal processor and can
therefore considerably exceed the start-stop frequency of a motor. For this
reason, the acceleration rates have to be carefully selected in order to prevent
premature blockage of the motor.

• Operating efficiency:

Up to 20-W power loss per motor in continuous operation; 3 motors, each with
1.6ΩV/2.5A power monitoring, and a temperature sensor monitors the operating
state in each high-level stage

If several M50.PCI stepping motor cards are operated off one PC power
supply, be sure that the total of all phase current ratings does not exceed
4.5A.

• 2 limit switch inputs per axis; can be selected as positive or negative by software

• 10V/100mA power supply for active limit switches

• Short-circuit or reverse battery protection on a short-term basis; overload

protection by temperature monitoring

• Power supply:

Internal 4-pin hard disk connector (such as Bürklin 71F972)
External 2-pin power connector, type: WECO 120A111/02 (such as Bürklin
47F1300)

• Motor connection:

25-contact D-Sub female connector

M50.PCI Instructions 51 40 2310

10 Appendix B: Structure of the M50.PCI

Fig. M50.PCI stepping motor card

8 7

1. Connector for motor and limit switches

2. Fuse holder, 3.15A quick-acting (fast-blow fuse)

3. Jumper for selecting the motor power supply, either internal (12-V hard disk) or

external up to 48V

4. I/O extension

5. Hard disk connector for internal motor power supply

6. Programming interface for PLD (can only be configured by the

manufacturer)

7. LED display for DSP

8. Connector for external power supply

40 2310 52 M50.PCI Instructions

11 Appendix C: Pin Assignment

11.1 Motor Connector
(25-contact D-Sub female connector)

Fig.: 25-contact D-Sub motor

connector showing pin assignment

D-Sub, 25 Signal name

1 Mot1B
2 Mot1A
3 Mot1B‘
4 Mot1A‘
5 Mot2B
6 Mot2A
7 Mot2B‘
8 Mot2A‘
9 Mot3B1

10 Mot3A1
11 Mot3B‘
12 Mot3A‘

13 +10V/100mA
14 END1+
15 END1-
16 GND
17 NC
18 END2+
19 END2-
20 GND

 A

A‘

B B‘

Fig. Example: Motor connection

21 NC
22 END3+
23 END3-
24 GND
25 NC

LIM1+

LIM1-

GND

S1

S2

Fig. Example: Limit switch conections

Pin assignment of the motor
 connector

M50.PCI Instructions 53 40 2310

11.2 I/O Extension:
(15-contact D-Sub female connector)

9

Fig.: Pin assignment for 15-contact D-Sub I/O
extension

D-Sub, 15 Signal
name

1 Vcc +5V
2 IO-0
3 IO-2
4 IO-4
5 IO-6
6 NC
7 NC
8 NC
9 GND

10 IO-1
11 IO-3
12 IO-5
13 IO-7
14 NC
15 NC

1

15 8

Table: I/O extension

40 2310 54 M50.PCI Instructions

11.3 Limit Switch Wiring

Wiring of passive and active limit switches

4k7

LS LS

Switch

Switch
Switch

Switch
Switch

13

+10

GND
Switch

3

2

 4

 5

6

7

8

9

10

11

12

25

23

24

22

21

20

19

18

17

16

15

14

 1

Fig. Example: wiring diagram of passive and active limit switches

M50.PCI Instructions 55 40 2310

12 Appendix E: Software Default Settings

M50-ConfigurationFile

Number of Cards : 1
Interpolation Mode, card 1 :0
Interpolation Feedrate, card 1 :3
Interpolation Acceleration, card 1 :10
Maximum Motor Current, motor 1 :1400
Maximum Motor Current, motor 2 :1400
Maximum Motor Current, motor 3 :1400
Enable Motor, motor 1 :1
Enable Motor, motor 2 :1
Enable Motor, motor 3 :1
Steps per Rev., motor 1 :200
Steps per Rev., motor 2 :200
Steps per Rev., motor 3 :200
Rotary axis, motor 1 :0
Rotary axis, motor 2 :0
Rotary axis, motor 3 :0
Gear, motor 1 :1
Gear, motor 2 :1
Gear, motor 3 :1
Pitch, motor 1 :2
Pitch, motor 2 :2
Pitch, motor 3 :2
Feedrate, motor 1 :3
Feedrate, motor 2 :3
Feedrate, motor 3 :3
Acceleration, motor 1 :10.0
Acceleration, motor 2 :10.0
Acceleration, motor 3 :10.0
Pos. Limit Switch, motor 1 :2
Pos. Limit Switch, motor 2 :4
Pos. Limit Switch, motor 3 :6
Neg. Limit Switch, motor 1 :1
Neg. Limit Switch, motor 2 :3
Neg. Limit Switch, motor 3 :5
Pos. Limit Polarity, motor 1 :0
Pos. Limit Polarity, motor 2 :0
Pos. Limit Polarity, motor 3 :0
Neg. Limit Polarity, motor 1 :0
Neg. Limit Polarity, motor 2 :0
Neg. Limit Polarity, motor 3 :0
Reference Switch, motor 1 :0
Reference Switch, motor 2 :0
Reference Switch, motor 3 :0
Reference Polarity, motor 1 :0
Reference Polarity, motor 2 :0
Reference Polarity, motor 3 :0
Power Down, motor 1 :50
Power Down, motor 2 :50
Power Down, motor 3 :50

40 2310 56 M50.PCI Instructions

13 Disposal

Warning! This LINOS product should NOT be thrown
into ordinary waste disposal bins. If this LINOS product
is not required any longer and you want to dispose of it,
then please send it to the specified address given below
for professional disposal. Thank you very much!

14 Service

For service or repair work, please contact:

 LINOS-Photonics GmbH & Co. KG
 Service Department
 Königsallee 23
 37081 Göttingen, Germany

Photonics LINOS
GmbH & Co. KG
Königsallee 23
D-37081 Goettingen
Germany

Phone++49 (0) 551 6935 0
Fax ++49 (0) 551 6935 166

LINOS Photonics Inc.
459 Fortune Boulevard
Milford MA 0 17 57 – 17 45

USA

Phone ++1 508 478 6200
Fax ++ 1 508 478 5980

LINOS-Photonics Ltd.
2 Drakes Mews
Crownhill, Milton Keynes
Buckinghamshire MK8 OER
Great Britain

Phone ++44 908 262525
Fax ++44 908 262526

M50.PCI Instructions 57 40 2310

	About This Technical Literature
	Important Information
	Information on the Use of this PC Card
	Safety Instructions

	Contents
	Part I: Overview
	Standard Equipment Supplied
	Brief Technical Overview

	Part II: Installation of the M50.PCI
	Hardware Installation: Installation in a PC
	Installation Steps:

	Software Installation
	Windows(98
	Windows(2000/ Windows(XP
	Function Test after Installation

	Power Supply
	Electrical Current for the Motors
	Operating State LED
	Limit Switches
	I/O Extension
	Accuracy and Resolution

	Part III: M50 Software
	Overview
	About the 32-bit Software
	Testing and Initial Operation of the M50.PCI Stepping Motor Card

	Programming under Delphi
	Programming Using VisualC
	Programming Using LabView

	Part IV: M50 Function Library
	Brief Overview

	Description of the Functions
	Card Initialization
	Motor and Axis Settings
	Switch Configuration
	I/O Byte
	Operating the Stepping Motors
	System Settings
	Demo Program

	Appendix A: Technical Specifications
	System Data
	Performance Data

	Appendix B: Structure of the M50.PCI
	Appendix C: Pin Assignment
	Motor Connector
	I/O Extension:
	Limit Switch Wiring

	Appendix E: Software Default Settings
	Disposal
	Service

