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          Preface 
 
With global network traffic (e.g., voice, mobile data, IPTV, etc.) predicted to increase 

substantially through this decade, network operators, network equipment providers, and 
embedded suppliers all share a great interest in ensuring optimal performance of network 

equipment before its deployment in an active network. 
Sharing this common interest has spawned in recent years the development of tools to 
optimize performance and improve security. One such solution is Deep Packet Inspection 

(DPI), which has emerged as a technology that can help mitigate network risks and 
improve operational performance. 

The purpose of this paper is to summarize how we have optimized DPI using techniques 
that enhance the operational performance of Regular Expressions and introduce a 
SNORT in Network Intrusion Detection mode to monitor the network traffic and analyze 

it against a defined rule set.  
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DEEP PACKET INSPECTION 

PERFORMANCE OPTIMIZATION 

COEN 233 – Computer Networks 
 

By 
 

Zhuangzhi Duo 
 

 Hari Khanal 
 

                                                         Geetha Srigiriraju 
 

1 Abstract 

Deep packet Inspection (DPI) is one the key component of a Network Intrusion 
Detection System (NIDS) and it compares packet content against a set of rules 
written in Regular Expressions. The techniques and processing costs involved in 
Deep Packet Inspection are extremely expensive.  

In this paper, we are using HMAC-SHA-1 algorithm to process payload before 
passing it into regular expressions. State-of-the-art system, Snort is being used to 
compare packet content to a set of rules. This will save a lot of states, thereby 
improving the processing costs and performance of the DPI system. 

 

2 Introduction 

DPI combines the functionality of an Intrusion Detection System (IDS) and an 

Intrusion Prevention System (IPS) with a traditional stateful firewall. This combination 

makes it possible to detect certain attacks that neither IDS/IPS nor the stateful 

firewall can catch on their own. Previously port-based traffic classification was 

employed which is now deemed imprecise due to the large amount of applications 

using non-standard ports in order to escape network limitations. Due to the dynamic 

nature of Internet applications these days, the most used technology for traffic 

classification is DPI. In case the application can tolerate some compromises in terms 

of accuracy (such as many measurement-based tasks) and in presence of normal 

traffic, the processing cost can be greatly reduced while improving the classification 

http://en.wikipedia.org/wiki/Intrusion_Prevention_System
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precision, making DPI suitable also for high-speed networks Deep Packet Inspection 

(DPI) systems have been increasingly performed on dedicated hardware, as an 

attempt to speed up the packet processing for high speed links. This is mainly 

caused by the current demand for CPU-intensive processing required by regular 

expression functions, which investigate the packet payload trying to match patterns 

of application signatures. The DPI is a core component for many systems plugged in 

the network including proxies, packet filters, sniffers, IDS, and IPS. Network 

components use DPI as an essential inspector where it is applied in different layers 

of the OSI model. Unlike the early beginnings of using DPI where it was applied in 

only one layer depending on the header (e.g., proxies and firewalls etc.), nowadays, 

layer-independent attacks force us to inspect attacks in all the layers. According on 

the intrusion detection literature, efforts to obtain fast implementations can be 

categorized into two main categories: (1) design of an efficient data structure with 

optimized memory access rate, and (2) design of high throughput algorithm to 

process intruder signature. To support increasingly complex services, regular 

expression (regex) and DFA (Deterministic Finite Automata) have been used to 

replace string by these systems due to its higher expressiveness and flexibility.  

In our project, we are proposing a Fast Deep Packet Inspection system to accelerate 

signature matching. One theoretical approach is that instead of directly dealing with 

regular expression interpreter, we find out a way to increase the performance 

exponentially by using Thompson NFA. And then we can convert the NFA to DFA for 

final pattern matching by using algorithm from Aho Ullman. Another approach in our 

practice is to use the snapshot and hashing algorithm to shorten the signature 

patterning duration time, which can be quantified in our system more straightforward. 

Since most of commercial IDS product is based off Snort, our proposal is to use 

Snort system as the baseline to compare the performance difference by using our 

fast DPI approach. By adding the enhancement mentioned above, we are looking 

forward to the performance optimization. 
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Section- 3 and Section-4 of our paper explains the related work we have researched 

and the DPI improvements suggestions we have proposed. 

 

3 Project Overview 

DPI is massively used in firewalls, IDS and other security related applications, which 

are known to have scalability issues because of their processing requirements. Most 

researched papers study regex matching as a topic in automata theory [6]. String 

matching techniques such as Wu-Manber [8] algorithms have been the foundation 

for many signature-based detection engines. Regular expressions increase the 

capability and maintainability of threat detection systems by increasing the flexibility 

of threat definitions. Schaelicke et al. [9] characterized the performance of the Snort 

software on general-purpose processors. They showed that their highest 

performance test system could only simultaneously handle 217 payload rules on a 

network running at a 100 Mbps rate. Cascarano et al [2] avoided optimizing solutions 

for corner cases that might be important for security applications. They failed to 

recognize encrypted /tunneled traffic and had extreme sensitiveness to the signature 

dataset. Wang et al [1] used a Length based matching (LBM) for accelerating regex 

matching. LBM had its limitations where probability of having to execute accurate 

matching was assumed to be low. Sailesh et al [4] introduce the concept of Content 

Addressed Delayed Input DFA (CD2FA) which provides compact representation of 

regular expressions. 

4 Solutions  

We are going to propose DPI performance improvement in terms of architecture and 
DPI engine optimization  

4.1 Architecture Solution 

Regarding architecture, we inherit snapshot-based classification concept and 
enhance this approach with the hashing solution. The idea is when the large file is 
transferred in the network, instead of buffering the whole file and parsing the 



7 

 

contents into DPI engine, we take first N bytes snapshot from file, and do CRC-32 
bits checksum, combining with first 8 significant leading bytes and 8 trailer bytes 
which is the length of hash data to generate the 20 bytes HMAC key.  

Fast DPI Key = Significant Leading Bytes + CRC-32 Checksum + Hash Size Trailer 

This HMAC fast DPI key will be used for two purposes. 

The first purpose is to feed this key into the HMAC-SHA1 function to generate the 
160 bits unique signature message digest (MD). This MD will become the input for 
DPI engine for fast IDS pattern match by computation of the MD for real traffic and 
direct comparison.  

MD = HMAC-SHA1(Hash Data, Fast DPI Key) 

Large File

HMAC_SHA-1 Key’ed 

Hashing Generator

Message 

Digest

(160 bites)

N Bytes 

Snapshot

DPI Engine

                                                          Hashed Signature Database

Decision

CRC-32 CheckSum

Significant 

Leading 

Bytes

Hash Size 

Trailer

 

Fig1. File Snapshot and Hashing for architecture optimization 
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The second purpose is when direct hashed signature matching does not succeed; 
the fast DPI key will be used as the hash index to accelerate the signature matching 
table lookup process. 

Fast DPI Key

Significant 

Leading 

Bytes

CRC-32 CheckSum
Hash Size 

Trailer

Hash Index

Hash Index

Hash Index

…...

Hash Index

REGEX 

Rule

REGEX 

Rule

REGEX 

Rule

REGEX 

Rule

REGEX 

Rule

REGEX 

Rule

REGEX 

Rule

REGEX 

Rule

 

Fig2. Fast DPI Key Hashing for architecture optimization 

Typically the IDS system signature is saved in the database in linear list as depicted 
in fig 3 below, the traversal time is proportional to the number of REGEX rules in the 
database.  

…...

REGEX Rule

REGEX Rule

REGEX Rule

REGEX Rule

 

Fig3. Original Signature Organization Diagram 
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By using the Fast DPI Key hashing index, we can dramatically reduce the traversal 
time from O(N) to O(1) if hashing collision does not occur.  

Theoretically, the N bytes payload requires O(2N) processing time in the worst case. 
By reducing the input sequence stream for DPI engine from N bytes to 160 bites (20 
bytes), we can save tremendous CPU cycles and resources such as RAM. The 
efficiency can be increased 2N – 20 times by only considering the input sequence 
length factor seemingly.  

If HMAC-SHA-1 MD signature can be matched directly from signature database, the 
performance can be increased N times. If MD signature cannot be matched directly, 
the Fast DPI Key Hashing index method will help performance increase by M times, 
where M is the number of buckets in signature hash table. 

 

4.2 DPI Engine Optimization Solution 

Regular expressions are a notation for describing sets of character strings. When a 
particular string is in the set described by a regular expression, we often say that the 
regular expression matches the string.  

Another way to describe sets of character strings is with finite automata. Finite 
automata are also known as state machines, and we will use “automaton” and 
“machine” interchangeably. The machine is called a deterministic finite automaton 
(DFA), if in any state each possible input character leads to at most one new state. 
The machine is not deterministic because it has multiple choices for the next state. 
Since the machine cannot peek ahead to see the rest of the string, it has no way to 
know which is the correct decision. In this situation, it turns out to be interesting to let 
the machine always guess correctly. Such machines are called non-deterministic 
finite automata (NFAs or NDFAs). 

Generally people will directly deal with the regular expression interpreter to parse the 
regular expression. However standard interpreters which have been implemented by 
many languages and widely spread seem very performance costly. In the other 
words, they have become the bottleneck of IDS system implementation. 

For example, Perl is a very popular interpreter, which is also adopted by Snort PCRE 
(Perl Compatible Regular Expressions). When it is used to match a 29-character 
string, it requires 60 seconds to process on the average using dual core 2.33GHz 
CPU. [10]This low efficiency drives us to find out the better practical way to do this 
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job. In our proposal, we have identified labeled Thompson NFA [11]which only 
requires 20 microseconds to match the same string. 

 

  

Fig4. Perl RE interpreter vs Thompson NFA 

The Thompson NFA implementation is a million times faster than Perl when running 
on a miniscule 29-character string. The trends will continue when string length 
grows. The Thompson NFA handles a 100-character string in under 200 
microseconds, while Perl would require over 1015 years! 

Regular expressions and NFAs turn out to be exactly equivalent in power: every 
regular expression has an equivalent NFA (they match the same strings) and vice 
versa. There are multiple ways to translate regular expressions into NFAs. The 
method we are going to adopt was first described by Thompson in his 1968 CACM 
paper.  

The NFA for a regular expression is built up from partial NFAs for each sub 
expression, with a different construction for each operator. The partial NFAs have no 
matching states: instead they have one or more dangling arrows, pointing to nothing. 
The construction process will finish by connecting these arrows to a matching state.  

Consider the regular expression which uses recursive backtracking approach, it 
requires O(2n) time. In contrast, Thompson's algorithm maintains state lists of length 
approximately n and processes the string, also of length n, for a total of O(n2) time.  

Once we get the regular expression converted to NFA, we can go further to convert 
the NFA to DFA by using “subset construction” algorithm [12]. We have noticed that 
DFAs are just a special case of NFAs. On the other hand the subset construction 
introduced above shows that for every NFA we can find a DFA which recognizes the 
same language. DFAs are more efficient to execute than NFAs, because DFAs are 
only ever in one state at a time: they never have a choice of multiple next states. Any 
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NFA can be converted into an equivalent DFA in which each DFA state corresponds 
to a list of NFA states. 

Regular Expressions

RE to NFA converter

NFA to DFA converter

 

Fig5. DPI Engine construction 

By building the DPI engine through the above conversions, we can increase the 

performance for general regular expression interpreter. Our experiment will focus on 

how much improvement we can obtain by using this optimization approach. 

5 Hypothesis 
 

Our proposal is based on two principles below: 

• Our proposal only deals with the typical deployment scenario with recognized 

protocols. In the actual experimental system, we only inspect the HTTP traffic. 

• Our proposal only deals with the typical traffic patterns and average cases. 

We are not evaluating the corner cases. 
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5.1 Positive Hypothesis 

Our hypothesis is that we can increase the efficiency of DPI using Thompson 

Nondeterministic Finite-state Automata (NFA) and Aho Ullman Algorithm 

5.2 Negative Hypothesis 

DPI will not work on high-end network router that processes data rate at tera bits per 

second. So, DPI cannot work in very high speed backbone network. 

 

6 Methodology 

We are going to use the Snort to build the basic IDS system. 

Snort® is an open source network intrusion prevention and detection system 

(IDS/IPS) developed by Sourcefire. Combining the benefits of signature, protocol, 

and anomaly-based inspection, Snort is the most widely deployed IDS/IPS 

technology worldwide. With millions of downloads and nearly 400,000 registered 

users, Snort has become the de facto standard for IPS. 

Snort can be configured as Network Intrusion Detection System (NIDS) mode. With 

the most complex and configurable configuration, this mode allows Snort to analyze 

network traffic for matches against a user-defined rule set and performs several 

actions based upon what it sees. 
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Fig6. Solution Methodology 

 

The following steps are to be executed for verification. 

Step 1. 

Before doing the IDS scanning testing in NIDS mode, we will prepare for the virus 

sample files and host them in the web server for HTTP downloading. In IDS system, 

we create the virus signature using Snort rule definition. 

Step 2. 
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Then we download the virus sample from the web server to IDS machine. The virus 

sample file should be scanned and analyzed by Snort NIDS. From generated log file 

and alert records, we can measure the performance for the basic Snort IDS system. 

Step 3. 

Then we feed the sample file into our DPI Engine. The snapshot of the sample file is 

used for HMAC-SHA-1 hashing to get the signature. Instead of hashing the whole 

file, we hash only the fixed first N bytes to compute hash much faster. The accuracy 

is still maintained in a certain level as well as perusing reducing hash computation 

time. 

Step 4. 

After receiving the result from Step 3, we can compare the performance data 

between original Snort system and our Fast DPI Engine to confirm if our proposal 

works or not and how much improvement we can gain from these solutions. 

Step 5. 

Optionally we can rebuild the IDS system using our DFA performance enhancement 

proposals. We can do snapshot and hashing for virus sample files to generate 

enhanced signature. And we can add Regular Expression to NFA conversion as well 

as NFA to DFA conversion into Snort modules. 

Step 6. 

Then we compare the signature against the signature stored in database server. For 

this project, we will use MySQL server running in Fedora 15 Linux machine. 

Furthermore, we will make it distributed system for scalability, and connect to 

MySQL server using IPv4 address. 

Step 7. 
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After repeating the same testing using the same virus sample files, we can get 

another set of performance data from log file and alert records. By comparing the 

performance data with step 2, we can confirm if our proposal works or not and how 

much improvement we can gain from these solutions. 

7 Implementation 
 

In our project, we are implementing the packet inspection as follows. 
 

Web Server

Snort

                                               Signature Database

DPI Engine

Server

User Command

H
T

T
P

Checksum as index for Snort to Pattern match

HMAC-SHA(File_Snapshot, H
eader+CheckSum+Length)

 Fig7. Fast DPI Engine Architecture 

A DPI server engine examines the packet payload as well as packet and frame 
headers. Using HMAC (Keyed Hash Message Authentication Code) and SHA-1 ( 
Secure Hash Algorithm, a 160 bit MD signature of the payload is generated. After 
looking up the signature database, we can find out if the IDS pattern has been 
matched or not in the packet being processed. 
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7.1 CRC-32(Cyclic Redundancy Check) and Fast DPI Key 

 
We use CRC-32 to generate the checksum for file snapshot. Then we take first 8 
leading significant bytes from payload and hash size as 8 bytes trailer to concatenate 
all these three elements together to form the Fast DPI Key. 
 
Fast DPI key can be used as hash key for HMAC-SHA-1 computation as well as 
hashing index for signature lookup. 
 

7.2 HMAC SHA-1(Keyed Hash Message Authentication Code) 

 
We use HMAC-SHA-1 to generate the MD signature of a file snapshot so that we 
can compare it against the signature stored in database. This will speed up the 
inspection process tremendously. 
 
Comparing 160-bit values can be done in a constant time. And only first N-byte of a 
file is used as a snapshot. We don’t even need to process the whole file. Resources 
like CPU cycle and RAM can be saved a lot for large input file. 
 
Let: 

 Size of the input data be N bytes 

 Snapshot if the input data be first K bytes instead of all N bytes 
o K bytes if (N > K) 
o Otherwise K = N bytes 

 CRC-32 checksum for K bytes of snapshot 

 Fast DPI Key = Leading Significant Bytes + CRC-32 + Hash Size 

 HMAC-SHA-1 hash of K-byte data with Fast DPI Key 
 
Then, HMAC-SHA-1 hash of K-byte input data is 160-bit (20 bytes). 
 
Note: In this project, we use K as 4096 bytes 
  
HMAC (Hash-based Message Authentication Code) is a specific construction for 
calculating a message authentication code (MAC) involving a cryptographic hash 
function in combination with a secret key. As with any MAC, it may be used to 
simultaneously verify both the data integrity and the authenticity of a message. Any 
cryptographic hash function, such as MD5 or SHA-1, may be used in the calculation 
of an HMAC; the resulting MAC algorithm is termed HMAC-MD5 or HMAC-SHA1 
accordingly. The cryptographic strength of the HMAC depends upon the 

http://en.wikipedia.org/wiki/Message_authentication_code
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_key
http://en.wikipedia.org/wiki/Data_integrity
http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Cleartext
http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/SHA-1


17 

 

cryptographic strength of the underlying hash function, the size of its hash output 
length in bits, and on the size and quality of the cryptographic key. An iterative hash 
function breaks up a message into blocks of a fixed size and iterates over them with 
a compression function. For example, MD5 and SHA-1 operate on 512-bit blocks. 
The size of the output of HMAC is the same as that of the underlying hash function 
(128 or 160 bits in the case of MD5 or SHA-1, respectively), although it can be 
truncated if desired. 

7.3 Perl and MySQL signatures: 

In the final stage, MySQL database server is to be used to store signatures in a 
table. These signatures will be used to check if the input data is a virus. If it is not 
virus, snort will further process data for inspection. 
 
We will use Perl script to generate 20-byte signature of K-byte, 4096 bytes or less, 
input data. Then, we connect to MySQL server using IPv4 address. If we find a 
match in database for the signature, the virus has been detected and no further 
processing is required. Otherwise, DPI engine will use Snort for pattern matching to 
inspect data further. 
 
#!/usr/bin/perl -l 
 

#PERL MODULE 
use DBI; 

use DBD::mysql; 
use String::CRC32;  

use LWP::Simple; 
use Digest::SHA1 qw(sha1 sha1_hex sha1_base64); 

 
my $nbytes = 4096; 

 
my $filename = $ARGV[0]; 

my $file = get($filename) or die "Failed to fetch file"; 
my $filesize = length($file); 

#my $filesize = -s $filename; 
print "\nFile size: ",$filesize,"\n"; 

 
my $input_val; 

if($filesize<nbytes){ 
 $input_val = $file; 

} 
else{ 

 $input_val = substr($file, 0, $nbytes); 
} 

 

http://en.wikipedia.org/wiki/Cryptographic_strength
http://en.wikipedia.org/wiki/One-way_compression_function
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my $input_size = length($input_val); 
print "Input value size: ",$input_size,"\n"; 

 
my $checksum = crc32($input_val); 

print "Checksum: ",$checksum,"\n"; 
 

my $digest = sha1($input_val); 
print "SHA hash value: ",$digest,"\n"; 

#print "SHA hash length: ",length($digest); 
 

#CONFIG VARIABLES 
my $platform = "mysql"; 

my $host = "24.23.138.64"; 
my $port = "3306"; 

my $database = "COEN"; 
my $tablename = "coen233"; 

my $user = "root"; 
my $pw = "hcippetoluan"; 

 
#DATA SOURCE NAME 

my $dsn = "dbi:mysql:$database:$host:3306"; 
 

#PERL MYSQL CONNECT 
my $DBIconnect = DBI->connect($dsn, root, hcippetoluan) or die "Unable to connect to 
mysql\n"; 

 
#DEFINE SEARCH QUERY 

my $myquery = "SELECT signature from coen233 where signature='$digest'"; 
my $query_handle = $DBIconnect->prepare($myquery); 

#EXECUTE QUERY 
$query_handle->execute(); 

 
if($query_handle->fetchrow_array){ 

 print "Virus detected with signature: $digest \n"; 
} 

 
else{ 

 #DEFINE MYSQL Query 
 $myquery = "INSERT INTO $tablename (counter, signature, name, ext) 

 VALUES (?, ?, ?, ?)"; 
 #VALUES (DEFAULT, $digest, DEFAULT, DEFAULT)"; 

 $query_handle = $DBIconnect->prepare($myquery); 
 

 #EXECUTE QUERY 
 $query_handle->execute(DEFAULT,"$digest", DEFAULT, DEFAULT) or die "SQL 

Error:$DBI::errstr\n"; 
} 
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Table 1. Perl script to connect to MySQL server for finding signature match 
 
 

QuickTime™ and a
 decompressor

are needed to see this picture.

 
 

Fig8. SHA-1 HMAC Generation 

7.4 SNORT 

 
The SNORT system processes the traffic of packets on multi stages as illustrated in  
Figure 9. 
 
SNORT rule may contain header and content fields where the header part  
checks the protocol, source and destination IP address and port, and the content  
part scans packets payload for one or more patterns. Rules with more than one 
pattern are called correlated rules. Furthermore, rules can also contain negation 
patterns, which mean negation of patterns stands for no occurrence of the pattern. 
The matching pattern may be in ASCII, HEX or mixed format. HEX parts are 
included between vertical bar symbols “j” as an example of a Snort rule is [14]:  
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alert tcp any any -> 198.165.200.24/32 111 (content: "idcj|3a3b|j"; msg: "mountd 
access";)  
 
 
 
 

 
 

 

 

 

Fig9. SNORT Process stages 
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8 Data Analysis 

8.1 Data Preparation 

 

In our prototype Fast DPI system, we prepared for the virus sample file COEN233-virus.zip, which 
is about 22,738 KB. In the Snort System, a dedicated Snort IDS rule is created as below to catch 
this virus pattern from HTTP download. 

 
alert tcp any 1025 -> any any (msg:"DPI Virus Pattern"; content:"|63 68 61 70 74 65 72 37 2E 
70 70 74 50 4B 01 02 14 20 14 20 02 20 08 20 66 60 2A 40 86 0D D5 93|"; sid:1000888) 

 

8.2 Snort System Setup 

 
Snort 2.9.2 is installed in Linux Fedora on top of openSSL, libcap, libdnet, DAQ (Data Acquisition 
API) and PCRE (Perl Compatible Regular Expression). 

 
Snort is launched in NIDS mode: 
Snort –dev –A full –c dpi-snort.conf > output 

 
Therefore we can capture all snort logs in output and raise alert to report the virus detection based 
on rule defined in dpi-snort.conf. 

 
The alert can be monitored in the runtime by 

Tail –f /var/log/snort/alert 
 

8.3 HTTP server Setup 

 
We use the webserver developed in P1 project to host the virus sample file on another host. Once 
the HTTP request comes from Snort machine, HTTP server will sends back this sample file for 

processing. 
 
[gduo@merlot P1]$ ./webserver 

Web Server is listening on merlot.sv.us.sonicwall.com,  Port: 1025 
 

8.4 IDS matching 

From snort machine, we start the HTTP download by issuing  
[gduo@tropicana project]$ wget http://merlot:1025/COEN233-virus.zip 

 
Then HTTP server responds with  

http://merlot:1025/COEN233-virus.zip
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====> Received HTTP Request: 
GET /COEN233-virus.zip HTTP/1.0 

User-Agent: Wget/1.10.2 (Red Hat modified) 
Accept: */* 
Host: merlot:1025 

Connection: Keep-Alive 
 

====> Sent HTTP Response Header: 
HTTP/1.1 200 OK 
Connection: close 

Date: Tue, 20 Mar 2012 00:47:54 GMT 
Server: Zhuangzhi-Duo-webserver/1.0 (Linux) 
Last-Modified: Mon, 19 Mar 2012 22:35:11 GMT 

Content-Length: 23283380 
Content-Type: text/html 
 

In Snort alert, the corresponding pattern match message will be raised:  
 
[**] [1:1000777:0] DPI Virus Pattern [**][Priority: 0]  

03/19-16:12:10.041270 A4:BA:DB:35:44:5D -> 00:18:8B:4F:9E:1A type:0x800 len:0x5EA 
10.202.2.77:1025 -> 10.202.2.209:56700 TCP TTL:64 TOS:0x0 ID:16134 IpLen:20 DgmLen:1500 

DF 
***A**** Seq: 0x44CC4D6B  Ack: 0x2164B14A  Win: 0x1920  TcpLen: 32 
TCP Options (3) => NOP NOP TS: 1486451307 3437924032 

 
From Snort log file output, we can trace down the packet activities  
 

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
03/19-16:07:06.185321 00:18:8B:4F:9E:1A -> A4:BA:DB:35:44:5D type:0x800 len:0xC9 

10.202.2.209:56699 -> 10.202.2.77:1025 TCP TTL:64 TOS:0x0 ID:54507 IpLen:20 DgmLen:187 
DF 

***AP*** Seq: 0x1E3154E2  Ack: 0x4189D36C  Win: 0x16D0  TcpLen: 32 
TCP Options (3) => NOP NOP TS: 3437920265 1486447451 
47 45 54 20 2F 43 4F 45 4E 32 33 33 2D 76 69 72  GET /COEN233-vir 

75 73 2E 7A 69 70 20 48 54 54 50 2F 31 2E 30 0D  us.zip HTTP/1.0.  
0A 55 73 65 72 2D 41 67 65 6E 74 3A 20 57 67 65  .User-Agent: Wge 
74 2F 31 2E 31 30 2E 32 20 28 52 65 64 20 48 61  t /1.10.2 (Red Ha 

74 20 6D 6F 64 69 66 69 65 64 29 0D 0A 41 63 63  t modified)..Acc  
65 70 74 3A 20 2A 2F 2A 0D 0A 48 6F 73 74 3A 20  ept: */*..Host:  
6D 65 72 6C 6F 74 3A 31 30 32 35 0D 0A 43 6F 6E  merlot:1025..Con 

6E 65 63 74 69 6F 6E 3A 20 4B 65 65 70 2D 41 6C  nection: Keep-Al 
69 76 65 0D 0A 0D 0A                             ive....  

 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
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8.5 Snort Performance Measurement 

In Snort packets log, the HTTP packet arrives at 03/19-16:07:06.185321. 

In Snort IDS alert, the virus is identified at 03/19-16:12:10.041270 
Therefore the Snort takes more than 5 seconds in this scenario. 

 
If we reconstruct the signature pattern to force Snort to parse the whole file, the result shows Snort 
takes about 1.5 minutes to complete the pattern matching. 

8.7 DPI Signature Creation 

DPI processor is used to generate the MD signature and save it into database before IDS 
processing. 

 
DPI-Engine/dpiProcess COEN233-virus.zip 4096 dpi_sig 

HMAC-SHA1 test succeeded 
DPI snapshot: 4096 Bytes 
result: 

4528671b 
DPI Hash Key Header:  
0000: 50 4b 03 04 14 20 02 20 ## ## ## ## ## ## ## ##  >PK... . ########< 

DPI Hash Key CheckSum:  
0000: 1b 67 28 45 ## ## ## ## ## ## ## ## ## ## ## ##  >.g(E############< 
DPI Hash Key Trailer:  

0000: 00 10 00 00 00 00 00 00 ## ## ## ## ## ## ## ##  >........########< 
DPI Signature Message Digest:  

0000: f6 a2 3f 4a f9 dd 72 02 6a ca 9f 59 b0 34 a9 bb  >..?J..r.j..Y.4..<  
0010: 4d 27 12 86 ## ## ## ## ## ## ## ## ## ## ## ##  >M'..############< 
[gduo@tropicana project]$ 

 

8.8 DPI Engine Processing 

We can feed the virus sample file into the DPI engine to do DPI processing to check the result.  

 
[gduo@tropicana project]$ DPI-Engine/dpiEngine COEN233-virus.zip 4096 dpi_sig 

HMAC-SHA1 test succeeded 
 
[1332205944] Start processing [1:SIG:0] for DPI content 

 
[1332205944] Complete processing [1:SIG:0] for DPI content 

 
        DPI Engine Signature by Computation:  
 

0000: f6 a2 3f 4a f9 dd 72 02 6a ca 9f 59 b0 34 a9 bb  >..?J..r.j..Y.4..< 
0010: 4d 27 12 86 ## ## ## ## ## ## ## ## ## ## ## ##  >M'..############< 

 
 
        DPI Engine Signature from DataBase:  
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0000: f6 a2 3f 4a f9 dd 72 02 6a ca 9f 59 b0 34 a9 bb  >..?J..r.j..Y.4..< 

0010: 4d 27 12 86 ## ## ## ## ## ## ## ## ## ## ## ##  >M'..############< 
 

 
        DPI Alert: Signature MATCH in file COEN233-virus.zip 

[gduo@tropicana project]$ 

 

8.9 Fast DPI Engine Performance Measurement 

We find out the DPI processing time is almost zero based on timestamp being printed out from the 
console. 
 

9 Conclusions 

9.1 Summary 

From the data we collected from the experiment, we can see the performance can 

be improved by using snapshot and hashing algorithm to optimize the DPI engine 

architecture. 

Snapshot can definitely make CPU cycle and RAM consumption more efficient. MD 

signature can exponentially reduce the signature lookup duration if matches. 

Theoretically if MD signature cannot match in the first place, the Fast DPI Key 

hashing index will contribute the performance increase based on great advantage of 

Hash table. 

On the other hand, the improvement can also be achieved from DPI engine 

optimization by converting regular expression into NFA, and then DFA in the theory. 

9.2 Future Studies 

In the future, we should complete the index hashing implementation in DPI engine to 

cover more scenarios. 

And we need to do more research on Snort System to be able to add new module to 

do Regex / NFA / DFA in very efficient way. 
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