
dBug User Manual

Jǐŕı Šimša

Computer Science Department

Carnegie Mellon University

Contents

1 Motivation 2

2 Overview 2

3 Implementation 3

4 Installation 3

5 Examples 4
5.1 Sequential Example – Interactive Mode . 4
5.2 Concurrent Example – Interactive Mode . 5
5.3 Concurrent Example – Batched Mode . 6
5.4 Concurrent Example – Deadlock . 9
5.5 Concurrent Example – Data Race . 10

A Supported Library Calls 12
A.1 POSIX Threads Barriers . 12
A.2 POSIX Threads Conditional Variables . 12
A.3 POSIX Threads Keys . 13
A.4 POSIX Threads Management . 13
A.5 POSIX Threads Mutexes . 13
A.6 POSIX Threads Read/Write Locks . 14
A.7 POSIX Threads Spin Locks . 14
A.8 Process Management . 15
A.9 Semaphores . 15
A.10 Memory Management . 16
A.11 Non-reentrant Functions . 16
A.12 Miscellaneous . 16

1

1 Motivation

When testing distributed and multi-threaded systems, their concurrent nature can cause a test to
execute in many different ways. For the sake of the argument, let us assume we have a concurrent
system with a fixed initial state and a test, which can execute in N possible ways from the initial
state. A common technique to address the non-deterministic execution of distributed and multi-
threaded systems is stress testing. Stress testing repeatedly executes the same test, hoping that
eventually all of the possible ways in which the test could have executed (and all of the possible
errors the test could have detected) are encountered.
In case there is an error in the system and the test has a chance of 1

P to execute in a way that
detects the error, stress testing is expected to discover the error in P iterations. In other words,
stress testing is good at catching likely errors, but might struggle to discover corner case errors that
occur with very low probability. Because the probability distribution of possible ways in which a
test executes can be non-uniform and architecture-dependent the value of P can be much higher
then N . In such situations, stress testing becomes a very inefficient way of searching for errors.
The dBug tool offers an alternative to stress testing of concurrent systems, which compensates
for the aforementioned inefficiency. The key idea behind dBug is to control the order in which
concurrent events in a distributed and multi-threaded system happen. The ability to order concur-
rent events provides dBug with a mechanism to systematically enumerate possible executions of a
test, one by one. By doing so, every possible execution becomes equally likely and dBug needs in
expectation at most N

2 iterations of a test to discover an error (in case it exists).

2 Overview

In order to control the order in which concurrent events happen, dBug uses an interposition layer
that sits between the system and the operating system and shared libraries as illustrated in Figure 1.
This interposition layer at run-time intercepts calls to select library calls1 used for coordination
and communication between threads of the system. Upon interception of a library call, the in-
terposition layer can delay the execution of the call for an arbitrary amount of time. Optionally,
the interposition layer can also decide to inject a fault by simulating an erroneous execution of the
library call.

Application

OS + Libraries

Application

OS + Libraries

dBug interposition

Figure 1: Interposition

Because of the distributed and multi-threaded nature of the system being tested, dBug uses one
instance of the interposition layer per process. In order to coordinate the activity of multiple
instances of the interposition layer, dBug also runs a process called the arbiter, which collects

1For the complete list of intercepted calls see Appendix A.

2

information from each instance of the interposition layer. The different instances of the interposition
layer and the arbiter form a simple client-server architecture as illustrated in Figure 2. The arbiter
acts as a centralized scheduler of the system and decides in what order the concurrent calls to
library routines should execute.

dBug

Original Distributed System

dBug arbiter

Thread 1

dBug client

Thread n

dBug client

. . .

dBug server

Figure 2: Client-Server Architecture

Finally, in order to systematically explore different executions of a test in a distributed and multi-
threaded system, dBug uses a process called the explorer, which repeatedly sets up the initial state
of the system, starts up the arbiter and provides it with a specific schedule to follow, and runs both
the system and the test on top of the interposition layer. When an execution of the test completes,
the explorer collects information from the arbiter. This information is used by the explorer to
gradually build a decision tree of all possible ways in which the arbiter can order concurrent events
of the system and the test. The decision tree is in turn used to generate arbiter schedules, which
guide future iterations of the test execution towards unexplored orderings of events.

3 Implementation

The interposition layer of dBug is implemented as a shared library libdbug.so. The shared library
is to be pre-loaded2 by a dynamic linker during execution of any binary that is to be controlled
by dBug. The arbiter is implemented as a binary executable arbiter. Finally, the explorer is
implemented as a Ruby script explorer.rb.

4 Installation

In order to use dBug you need to install:

1. Boost (http://www.boost.org/),

2. Ruby (http://www.ruby-lang.org/en/),

3. Ruby Gems (http://rubygems.org/),

2For details see LD PRELOAD in manpage for ld.so.

3

4. the RubyTree gem, and

5. Thrift (http://thrift.apache.org/).

Boost, Ruby, and Ruby Gems are available as a package for most distributions. For example, on
Ubuntu you can install these using:

$ sudo apt-get install libboost-dev libboost-doc ruby-full rubygems

$ sudo gem install rubytree

However, Thrift needs to be installed manually and it is best to follow the online tutorial3.
After you have successfully installed the above run the following commands from the dBug root
directory:

$ mkdir build; cd build;

$./configure --with-boost=$BOOST_PREFIX --with-thrift=$THRIFT_PREFIX

$ make

$ sudo make install

where $BOOST PREFIX and $THRIFT PREFIX is the prefix of the Boost and Thrift installation re-
spectively.

5 Examples

In the rest of the section we assume that $DBUG DIR refers to the dBug distribution directory, dBug
is installed on your machine and $DBUG PREFIX is the prefix of dBug installation.

5.1 Sequential Example – Interactive Mode

We start with an example which runs the arbiter in the interactive mode. In this mode, the user is
responsible for guiding the execution of the distributed and multi-threaded program. Conceptually,
running the arbiter in the interactive mode corresponds to running each process of the system in gdb,
which has breakpoints set for select coordination and communication library calls. The program
used in this example is listed below and can be found in $DBUG DIR/tutorial/example-1.c.

1 #include <assert.h>

2 #include <pthread.h>

3 #include <stdio.h>

4
5 int

6 main(int argc , char *argv [])

7 {

8 pthread_mutex_t mutex;

9
10 assert(pthread_mutex_init (&mutex ,NULL) == 0);

11 assert(pthread_mutex_lock (& mutex) == 0);

12 printf (" Critical section .\n");

13 assert(pthread_mutex_unlock (& mutex) == 0);

14 assert(pthread_mutex_destroy (& mutex) == 0);

15
16 return 0;

17 }

3http://wiki.apache.org/thrift/ThriftInstallation

4

First, compile the code above into its binary form example-1. Second, start up the arbiter by
running ”arbiter -m 1”. The option -m 1 tells the arbiter to run in the interactive mode. Third,
open a new terminal window and start the binary example-1 with the interposition library pre-
loaded by running ”LD PRELOAD=$DBUG PREFIX/lib/libdbug.so ./example-1”. Fourth, switch
back to the terminal window of the arbiter. You should see output similar to:

user@user -VirtualBox :~$ arbiter -m 1

[server.cc]:[...]: Strategy:

[server.cc]:[...]: Thread 1 registered.

[server.cc]:[...]: Thread 1 updated its process.

[util.cc]:[...]: Requests:

[util.cc]:[...]: Requests:

[util.cc]:[...]: Request 0:

[util.cc]:[...]: id:1

[util.cc]:[...]: func:pthread_mutex_init

[util.cc]:[...]: status:ENABLED

[util.cc]:[...]: command:RESOURCE_CREATE

The listing tells us that there is currently one pending call to function pthread mutex init issued
by thread 1. The status and command are not important for the sake of this example and will
be explained later. The interactive mode expects the user to repeatedly input an integer which
identifies the thread that the user wishes to proceed next. For instance, you can step through the
execution of our example by inputting 1 four times.

5.2 Concurrent Example – Interactive Mode

The next example still uses the interactive mode, but this time our example is concurrent. The pro-
gram used in this example is listed below and can be found in $DBUG DIR/tutorial/example-2.c.

1 #include <assert.h>

2 #include <pthread.h>

3 #include <stdio.h>

4
5 pthread_mutex_t mutex;

6
7 void *

8 thread(void *args)

9 {

10 assert(pthread_mutex_lock (& mutex) == 0);

11 printf (" Critical section slave.\n");

12 assert(pthread_mutex_unlock (& mutex) == 0);

13 return NULL;

14 }

15
16 int

17 main(int argc , char *argv [])

18 {

19 pthread_t tid;

20 assert(pthread_mutex_init (&mutex ,NULL) == 0);

21 assert(pthread_create (&tid ,NULL ,thread ,NULL) == 0);

22 assert(pthread_mutex_lock (& mutex) == 0);

23 printf (" Critical section master .\n");

24 assert(pthread_mutex_unlock (& mutex) == 0);

25 assert(pthread_join(tid , NULL) == 0);

5

26 assert(pthread_mutex_destroy (& mutex) == 0);

27
28 return 0;

29 }

First, compile the code above into its binary form example-2. Second, start up the arbiter by
running ”arbiter -m 1”. Third, open a new terminal window and start the binary example-2

with the interposition library using ”LD PRELOAD=$DBUG PREFIX/lib/libdbug.so ./example-2”.
Fourth, switch back to the terminal window of the arbiter and input 1 once. You should see output
similar to:

...

[util.cc]:[...]: Requests:

[util.cc]:[...]: Request 0:

[util.cc]:[...]: id:1

[util.cc]:[...]: func:pthread_mutex_lock

[util.cc]:[...]: status:ENABLED

[util.cc]:[...]: command:RESOURCE_ACCESS

[util.cc]:[...]: Request 1:

[util.cc]:[...]: id:2

[util.cc]:[...]: func:pthread_mutex_lock

[util.cc]:[...]: status:ENABLED

[util.cc]:[...]: command:RESOURCE_ACCESS

The listing tells us that there are currently two pending calls to function pthread mutex lock

issued by thread 1 and thread 2. If you input 1, you should see output similar to:

...

[util.cc]:[...]: Requests:

[util.cc]:[...]: Request 0:

[util.cc]:[...]: id:1

[util.cc]:[...]: func:pthread_mutex_unlock

[util.cc]:[...]: status:ENABLED

[util.cc]:[...]: command:RESOURCE_RELEASE

[util.cc]:[...]: Request 1:

[util.cc]:[...]: id:2

[util.cc]:[...]: func:pthread_mutex_lock

[util.cc]:[...]: status:DISABLED

[util.cc]:[...]: command:RESOURCE_ACCESS

The listing tells us that there are currently two pending calls. The first call is to function
pthread mutex unlock issued by thread 1 and the second call is to function pthread mutex lock

issued by thread 2. Also, notice that the status of the second call is disabled. This is because the
arbiter keeps track of shared resources that are being accessed and recognizes when a call such as
pthread mutex lock would block. If you try to input 2, the arbiter will warn you that the request
of the thread 2 cannot be executed. To step through the rest of the execution, input the sequence
1, 2, 2, 1, 1. Notice how the arbiter detects that the thread 2 cannot be joined by the thread 1 until
the thread 2 returns (or exits).

5.3 Concurrent Example – Batched Mode

In this example, we will reuse the code of the previous example. However, this time instead of step-
ping through the program interactively, we will use the explorer to automatically explore all possible
ways in which the example could have executed. In order to do this, go to the $DBUG DIR/tutorial/

6

directory and run ”explorer.rb --prefix $DBUG PREFIX example-2”. You should see output
similar to:

user@user -VirtualBox :~/ dbug$ ruby explorer.rb example -2

[EXPLORER] Iteration: 1, Elapsed: 0 s

[EXPLORER] Setting up initial state

[EXPLORER] Selecting a strategy

[EXPLORER] Empty strategy

[EXPLORER] Starting the arbiter

[EXPLORER] Waiting for the arbiter to start up...

[EXPLORER] Starting the test

[EXPLORER] Waiting for the test to finish

Critical section master.

Critical section slave.

[EXPLORER] Waiting for the arbiter to finish

[EXPLORER] Iteration: 2, Elapsed: 1 s

[EXPLORER] Setting up initial state

[EXPLORER] Selecting a strategy

[EXPLORER] Non -empty strategy

[EXPLORER] Starting the arbiter

[EXPLORER] Waiting for the arbiter to start up...

[EXPLORER] Starting the test

[EXPLORER] Waiting for the test to finish

Critical section slave.

Critical section master.

[EXPLORER] Waiting for the arbiter to finish

This means that the explorer explored two possible ways in which the binary example-2 could have
executed. When the explorer starts, it creates the dbug-logs directory. This directory is gradually
populated with information about the different executions of the test. Namely, for each iteration,
the dbug-logs directory contains the strategy (the strategy file) that the arbiter initially followed,
the history (the history-* file) of the execution the arbiter explored, and detailed logs of the arbiter
(the dbug-server file) and the interposition layer (divided into the dbug-interposition and
dbug-client files). For example, the strategy file for the second iteration of the above application
of the explorer looks as follows:

2

1 1

2 2

The first line identifies the number n of steps of the execution specified by the strategy. Each of
the following n lines then identifies the thread to be proceed and the total number pending calls at
that point.
The history file for the first iteration of the above application of explorer looks as follows:

1 1 1

1: pthread_mutex_init:RESOURCE_CREATE :1 0 0 0 0 0 0 0 0:1759016536:

1 2 2

1: pthread_mutex_lock:RESOURCE_ACCESS :2 0 0 0 0 0 0 0 0:1759016536:2:

2: pthread_mutex_lock:RESOURCE_ACCESS :1 1 0 0 0 0 0 0 0:1759016536:2:

1 1 2

1: pthread_mutex_unlock:RESOURCE_RELEASE :3 0 0 0 0 0 0 0 0:1759016536:

2: pthread_mutex_lock:RESOURCE_ACCESS :1 1 0 0 0 0 0 0 0:1759016536:2:

2 1 2

2: pthread_mutex_lock:RESOURCE_ACCESS :1 1 0 0 0 0 0 0 0:1759016536:2:

7

1: pthread_join:THREAD_JOIN :4 0 0 0 0 0 0 0 0:2:

2 1 2

2: pthread_mutex_unlock:RESOURCE_RELEASE :1 2 0 0 0 0 0 0 0:1759016536:

1: pthread_join:THREAD_JOIN :4 0 0 0 0 0 0 0 0:2:

1 1 1

1: pthread_join:THREAD_JOIN :4 0 0 0 0 0 0 0 0:2:

1 1 1

1: pthread_mutex_destroy:RESOURCE_DELETE :5 2 0 0 0 0 0 0 0:1759016536:

The first line identifies 1) the thread whose call was executed, 2) the number m of threads whose
call could have been executed, and 3) the number n of threads with a pending call. This line is
then followed with n lines – one per each pending call. Each of these lines starts with a thread ID,
followed by a name of the function call, and additional information, which will not be explained in
this example.
Also, besides the logs directory, the explorer creates the tree.dot file. This file can be processed
by the dot tool4 to produce a visualization of the decision tree that the explorer created; for
instance, by running ”dot -T pdf -o <output name> tree.dot”. The decision tree created by
the above application of the explorer is depicted in Figure 3. The gray nodes and edges correspond
to pending calls that cannot be completed from the current state of the system.

Figure 3: Decision Tree

4The dot tool is part of the graph visualization suite GraphViz by AT&T.

8

5.4 Concurrent Example – Deadlock

In this example, we introduce a deadlock into the previous program. We illustrate how the explorer
aids us in detecting this error and identifies the sequence of events that leads to the deadlock. The
program used in this example is listed below and can be found in $DBUG DIR/tutorial/example-3.c.

1 #include <assert.h>

2 #include <pthread.h>

3 #include <stdio.h>

4
5 pthread_mutex_t mutex1 , mutex2;

6
7 void *

8 thread(void *args)

9 {

10 assert(pthread_mutex_lock (& mutex1) == 0);

11 assert(pthread_mutex_lock (& mutex2) == 0);

12 printf (" Critical section slave.\n");

13 assert(pthread_mutex_unlock (& mutex2) == 0);

14 assert(pthread_mutex_unlock (& mutex1) == 0);

15 return NULL;

16 }

17
18 int

19 main(int argc , char *argv [])

20 {

21 pthread_t tid;

22 assert(pthread_mutex_init (&mutex1 ,NULL) == 0);

23 assert(pthread_mutex_init (&mutex2 ,NULL) == 0);

24 assert(pthread_create (&tid ,NULL ,thread ,NULL) == 0);

25 assert(pthread_mutex_lock (& mutex2) == 0);

26 assert(pthread_mutex_lock (& mutex1) == 0);

27 printf (" Critical section master .\n");

28 assert(pthread_mutex_unlock (& mutex1) == 0);

29 assert(pthread_mutex_unlock (& mutex2) == 0);

30 assert(pthread_join(tid , NULL) == 0);

31 assert(pthread_mutex_destroy (& mutex2) == 0);

32 assert(pthread_mutex_destroy (& mutex2) == 0);

33
34 return 0;

35 }

Similarly to the previous example, let us compile the code above into its binary form example-3

and run ”explorer.rb --prefix $DBUG PREFIX example-3”. The explorer explores a total of 6
iterations. In order to check whether any iteration encountered an error, one can use the following
command ”grep WARNING dbug-logs/dbug-server*”. In our case the command outputs a listing
similar to:

user@user -VirtualBox :~/ dbug$ grep WARNING dbug -logs/dbug -server*

logs/dbug -server -3:[...]: [WARNING] Encountered a concurrency error

logs/dbug -server -4:[...]: [WARNING] Encountered a concurrency error

The warning messages imply that during two iterations the arbiter encountered an error. In or-
der to investigate the error, one can look at the history file. In our example, the contents of
dbug-logs/history-3 look as follows:

9

1 1 1

1: pthread_mutex_init:RESOURCE_CREATE :1 0 0 0 0 0 0 0 0:2539669330:

1 1 1

1: pthread_mutex_init:RESOURCE_CREATE :2 0 0 0 0 0 0 0 0:2454919772:

2 2 2

2: pthread_mutex_lock:RESOURCE_ACCESS :2 1 0 0 0 0 0 0 0:2539669330:2:

1: pthread_mutex_lock:RESOURCE_ACCESS :3 0 0 0 0 0 0 0 0:2454919772:2:

1 2 2

1: pthread_mutex_lock:RESOURCE_ACCESS :3 0 0 0 0 0 0 0 0:2454919772:2:

2: pthread_mutex_lock:RESOURCE_ACCESS :2 2 0 0 0 0 0 0 0:2454919772:2:

-1 0 2

1: pthread_mutex_lock:RESOURCE_ACCESS :4 0 0 0 0 0 0 0 0:2539669330:2:

2: pthread_mutex_lock:RESOURCE_ACCESS :2 2 0 0 0 0 0 0 0:2454919772:2:

The last three lines identify the problem. At that point in the execution, no pending function
call can execute. In other words, the execution reached a deadlock. Inspecting the order in which
events happened tells us that this is the case when the thread 2 acquires the mutex1 and then the
thread 1 acquires the mutex2, creating a circular dependency.

5.5 Concurrent Example – Data Race

In this example, we modify the running example to introduce a data race and we illustrate how the
explorer aids us in detecting this error. The program used in this example is listed below and can
be found in $DBUG DIR/tutorial/example-4.c.

#include <assert.h>

#include <pthread.h>

#include <stdio.h>

#include <string.h>

void *

thread(void *args)

{

char text [4] = "1:2";

printf ("%s\n", strtok(text ,":"));

printf ("%s\n", strtok(NULL ,":"));

return NULL;

}

int

main(int argc , char *argv [])

{

pthread_t tid;

char text [4] = "1:2";

assert(pthread_create (&tid ,NULL ,thread ,NULL) == 0);

printf ("%s\n", strtok(text ,":"));

printf ("%s\n", strtok(NULL ,":"));

assert(pthread_join(tid , NULL) == 0);

return 0;

}

Similarly to the previous example, let us compile the code above into its binary form example-4

and run ”explorer.rb --prefix $DBUG PREFIX example-4”. The explorer explores a total of 2

10

iterations. In order to check whether any iteration encountered an error, one can again use the
command ”grep WARNING dbug-logs/dbug-server*”. In our case the command outputs a listing
similar to:

user@user -VirtualBox :~/ dbug$ grep WARNING logs/dbug -server*

logs/dbug -server -1:[...]: [WARNING] Concurrent non -reentrant function calls

logs/dbug -server -2:[...]: [WARNING] Concurrent non -reentrant function calls

The warning messages imply that during two iterations the arbiter encountered an error. In or-
der to investigate the error, one can look at the history file. In our example, the contents of
dbug-logs/history-1 look as follows:

-2 2 2

1: strtok:NONREENTRANT_FUNCTION :1 0 0 0 0 0 0 0 0:

2: strtok:NONREENTRANT_FUNCTION :0 1 0 0 0 0 0 0 0:

The three lines identify the problem. At that point in the execution, there are two pending function
calls to a function that is not guaranteed (by standard or implementation) to be reentrant. In other
words, there is a potential data race in the program.

11

Appendix

A Supported Library Calls

The following is a list of library calls that dBug intercepts. Some of these calls are intercepted
only for book-keeping purposes and the order in which they execute is not controlled by the cen-
tralized scheduler. For each call we include a short description of the activity that happens upon
intercepting the call. Your system and tests are free to use any other library calls. However,
the use of unsupported communication, coordination, or blocking primitives can have unexpected
consequences. In particular:

• If your system and its tests use unsupported communication and/or coordination primitives,
dBug will not explore all possible orders in which concurrent calls to these unsupported
primitives could execute. This can result in failing to discover data races that result from
ordering events at a finer granularity than that of dBug.

• If your system and its tests use unsupported blocking primitives, the use of dBug could result
in false deadlocks. For example, consider the following scenario. There are two threads A
and B running in a system. Thread A invokes a call intercepted by dBug, while thread B
invokes an unsupported blocking call. In order for the unsupported blocking call to return,
the execution of thread A needs to resume. However, this does not happen until the arbiter
receives a pending request from every thread of the system. Thus, there is now a circular
dependency as the thread A waits for the arbiter, who waits for the thread B, who waits for
the thread A.

A.1 POSIX Threads Barriers

Only the default values of barrier attributes are supported.

• pthread barrier init – Controlled by the arbiter. Upon servicing a pending call to this
routine, the arbiter creates an abstract barrier resource. This abstract resource allows arbiter
to determine when a call to pthread barrier wait would return.

• pthread barrier wait – Controlled by the arbiter. The pending calls to this routine are
postponed until the threshold specified in pthread barrier init is reached.

• pthread barrier destroy – Controlled by the arbiter. Upon servicing a pending call to this
routine, the arbiter deletes the corresponding abstract barrier resource.

A.2 POSIX Threads Conditional Variables

Only the default values of conditional variable attributes are supported.

• pthread cond init – Controlled by the arbiter. Upon servicing a pending call to this routine,
the arbiter creates an abstract conditional variable resource. This abstract resource allows
arbiter to determine when a call to pthread cond wait and pthread cond timedwait
would return.

• pthread cond wait – Controlled by the arbiter. The pending calls to this routine are
postponed until a matching signal orbroadcast event has been received.

12

• pthread cond timedwait – Controlled by the arbiter. The pending calls to this routine are
postponed until a matching signal orbroadcast event has been received or the arbiter decides
to let the call time out.

• pthread cond broadcast, pthread cond signal – Controlled by the arbiter. Upon ser-
vicing a pending call to this routine, the arbiter records this event with the corresponding
abstract conditional variable resource.

• pthread cond destroy – Controlled by the arbiter. Upon servicing a pending call to this
routine, the arbiter deletes the corresponding abstract conditional variable resource.

A.3 POSIX Threads Keys

• pthread key create – Bookkeeping only. Upon intercepting a call to this routine, the inter-
position layer creates an abstract key resource. This abstract resource allows the interposition
layer to determine if a call to pthread getspecific and pthread setspecific accesses an
existing key.

• pthread getspecific, pthread setspecific – Bookkeeping only. Upon intercepting a call
to this routine, the interposition layer checks if the corresponding key exists.

• pthread key delete – Bookkeeping only. Upon intercepting a call to this routine, the
interposition layer deletes the corresponding abstract key resource.

A.4 POSIX Threads Management

Only the default values of thread attributes are supported.

• pthread create – Bookkeeping only. The arbiter is notified about the creation of a new
thread.

• pthread detach, pthread exit – Bookkeeping only. The arbiter is notified about the thread
status change.

• pthread join – Controlled by the arbiter. The pending calls to this routine are postponed
until the appropriate thread becomes joinable. To this end, the arbiter collects information
about thread status changes by intercepting the above routines.

A.5 POSIX Threads Mutexes

Only the default values of mutex attributes are supported.

• pthread mutex init – Controlled by the arbiter. Upon servicing a pending call to this
routine, the arbiter creates an abstract mutex resource. This abstract resource allows arbiter
to keep track of ownership of the mutex.

• pthread mutex lock – Controlled by the arbiter. The pending calls to this routine are
postponed until the mutex becomes available.

• pthread mutex timedlock – Controlled by the arbiter. The pending calls to this routine
are postponed until the mutex becomes available or the arbiter decides to let the call time
out.

13

• pthread mutex trylock – Controlled by the arbiter. The pending calls to this routine
acquire the mutex if it is available or return failure otherwise.

• pthread mutex unlock – Controlled by the arbiter. The pending calls to this routine give
up the ownership of the mutex.

• pthread mutex destroy – Controlled by the arbiter. Upon servicing a pending call to this
routine, the arbiter deletes the corresponding abstract mutex resource.

A.6 POSIX Threads Read/Write Locks

Only the default values of read/write lock attributes are supported.

• pthread rwlock init – Controlled by the arbiter. Upon servicing a pending call to this
routine, the arbiter creates an abstract read/write lock resource. This abstract resource
allows arbiter to keep track of ownership of the lock.

• pthread rwlock rdlock – Controlled by the arbiter. The pending calls to this routine are
postponed until the lock can be shared with the calling thread.

• pthread rwlock timedrdlock – Controlled by the arbiter. The pending calls to this routine
are postponed until the lock can be shared with the calling thread or the arbiter decides to
let this call time out.

• pthread rwlock tryrdlock – Controlled by the arbiter. The pending calls to this routine
either acquire shared access to this lock if possible or return failure otherwise.

• pthread rwlock wrlock – Controlled by the arbiter. The pending calls to this routine are
postponed until the lock can be held exclusively by the calling thread.

• pthread rwlock timedwrlock Controlled by the arbiter. The pending calls to this routine
are postponed until the lock can be held exclusively by the calling thread or the arbiter decides
to let his call time out.

• pthread rwlock trywrlock – Controlled by the arbiter. The pending calls to this routine
either acquire exclusive access to this lock if possible or return failure otherwise.

• pthread rwlock unlock – Controlled by the arbiter. The pending calls to this routine give
up its access rights for the lock.

• pthread rwlock destroy – Controlled by the arbiter. Upon servicing a pending call to this
routine, the arbiter deletes the corresponding abstract read/write lock resource.

A.7 POSIX Threads Spin Locks

Only the default values of spin lock attributes are supported.

• pthread spin init – Controlled by the arbiter. Upon servicing a pending call to this routine,
the arbiter creates an abstract spin lock resource. This abstract resource allows arbiter to
keep track of ownership of the lock.

• pthread spin lock – Controlled by the arbiter. The pending calls to this routine are post-
poned until the lock becomes available.

14

• pthread spin trylock – Controlled by the arbiter. The pending calls to this routine acquire
the lock if it is available or return failure otherwise.

• pthread spin unlock – Controlled by the arbiter. The pending calls to this routine give up
the ownership of the mutex.

• pthread spin destroy – Controlled by the arbiter. Upon servicing a pending call to this
routine, the arbiter deletes the corresponding abstract spin lock resource.

A.8 Process Management

• execl, execlp, execle, execv, execvp, execve – Bookkeeping only. Arbiter is notified that
all threads running as part of the calling process terminate and a new thread is started.

• exit, Exit – Bookkeeping only. Normally, when a process is terminated, a destructor routine
of the interposition layer is called. The destructor routine notifies the arbiter that the calling
process terminated. However, a call to this routine bypasses this mechanism. Consequently,
upon intercepting a call to this routine, the destructor routine is triggered explicitly.

• fork – Bookkeeping only. The arbiter is notified about the creation of a new process.

• posix spawn, posix spawnp – Bookkeeping only. The arbiter is notified about the creation
of a new process.

• setpgid, setpgrp, setsid – Bookkeeping only. The arbiter is notified about the change of
process group ID.

• wait – Controlled by the arbiter. Because the wait call is potentially blocking, the arbiter
collects information from the running processes that allow the arbiter to determine when the
call can complete. This is achieved by having the interposition layer detect changes in process
status by intercepting certain function calls and signals and notifying the arbiter about these
events.

• waitpid – Controlled by the arbiter. On top of the needs of wait, the waitpid call requires
the arbiter to keep track of the process IDs and process group IDs for every process. Again,
this is achieved by having the interposition layer detect creation of new processes and changes
in process group membership and notifying the arbiter about these events.

A.9 Semaphores

Only the default values of semaphore attributes are supported.

• sem init, sem open – Controlled by the arbiter. Upon servicing a pending call to this
routine, the arbiter creates an abstract (un)named semaphore resource. This abstract resource
allows arbiter to match wait and post semaphore operations.

• sem post Controlled by the arbiter. Upon servicing a pending call to this routine, the arbiter
increases the value of the semaphore.

• sem wait Controlled by the arbiter. The pending calls to this routine are postponed until
the value of the semaphore is positive. Upon servicing a pending call to this routine, the
arbiter decreases the value of the semaphore.

15

• sem close, sem unlink – Controlled by the arbiter. Upon matching the last close operation
with an open operation, a pending unlink operation causes the arbiter deletes the correspond-
ing abstract named semaphore resource.

• sem destroy – Controlled by the arbiter. Upon servicing a pending call to this routine, the
arbiter deletes the corresponding abstract unnamed semaphore resource.

A.10 Memory Management

• calloc, free, malloc, realloc – Bookkeeping only. The interposition layer keeps track of
(re)allocated pointers. This is used to check that each allocated pointer is freed exactly once
and no other pointer is attempted to be freed5.

A.11 Non-reentrant Functions

Certain functions are not required to be reentrant by the POSIX standard. Consequently, the ar-
biter controls the order in which they execute and issues a warning if multiple threads of the same
process try to concurrently execute the same non-reentrant function. The list of non-reentrant
functions controlled by the arbiter includes: gethostbyname, gethostbyaddr, strtok, and
inet ntoa.

A.12 Miscellaneous

Certain library calls are used by dBug internally. In order to avoid introducing false positives,
dBug needs to intercept calls to the following list of functions: getaddrinfo, freeaddrinfo.

5For much more thorough testing of the use of dynamic memory we recommend using the Valgrind tool.

16

