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Chapter 1

Introduction

Soar has been developed to be an architecture for constructing general intelligent
systems. It has been in use since 1983, and has evolved through many different
versions. This manual documents the most current of these: Soar, version 8.6.

Our goals for Soar include that it is to be an architecture that can:

• be used to build systems that work on the full range of tasks expected of an
intelligent agent, from highly routine to extremely difficult, open-ended prob-
lems;

• represent and use appropriate forms of knowledge, such as procedural, declara-
tive, episodic, and possibly iconic;

• employ the full range of problem solving methods;

• interact with the outside world; and

• learn about all aspects of the tasks and its performance on those tasks.

In other words, our intention is for Soar to support all the capabilities required of a
general intelligent agent. Below are the major principles that are the cornerstones of
Soar’s design:

1. The number of distinct architectural mechanisms should be minimized. In Soar
there is a single representation of permanent knowledge (productions), a single
representation of temporary knowledge (objects with attributes and values),
a single mechanism for generating goals (automatic subgoaling), and a single
learning mechanism (chunking).

2. All decisions are made through the combination of relevant knowledge at run-
time. In Soar, every decision is based on the current interpretation of sensory
data and any relevant knowledge retrieved from permanent memory. Decisions
are never precompiled into uninterruptible sequences.

1



2 CHAPTER 1. INTRODUCTION

1.1 Using this Manual

We expect that novice Soar users will read the manual in the order it is presented:

Chapter 2 and Chapter 3 describe Soar from different perspectives: Chapter 2
describes the Soar architecture, but avoids issues of syntax, while Chapter
3 describes the syntax of Soar, including the specific conditions and actions
allowed in Soar productions.

Chapter 4 describes chunking, Soar’s learning mechanism. Not all users will make
use of chunking, but it is important to know that this capability exists.

Chapter 5 describes the Soar user interface — how the user interacts with Soar.
The chapter is a catalog of user-interface commands, grouped by functionality.
The most accurate and up-to-date information on the syntax of the Soar User
Interface is found online, on the Soar Wiki, at

http://winter.eecs.umich.edu/soarwiki.

Advanced users will refer most often to Chapter 5, flipping back to Chapters 2 and 3
to answer specific questions.

There are several appendices included with this manual:

Appendix A contains an example Soar program for a simple version of the blocks
world. This blocks-world program is used as an example throughout the manual.

Appendix B provides a grammar for Soar productions.

Appendix C describes the determination of o-support.

Appendix D provides a detailed explanation of the preference resolution process.

Appendix E provides an explanation of the Goal Dependency Set.

Additional Back Matter

The appendices are followed by an index; the last pages of this manual contain a
summary and index of the user-interface functions for quick reference.

Not Described in This Manual

Some of the more advanced features of Soar are not described in this manual, such as
how to interface with a simulator, or how to create Soar applications using multiple
interacting agents. A discussion of these topics is provided in a separate document,
the SML Quick Start Guide.
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For novice Soar users, try The Soar 8 Tutorial, which guides the reader through
several example tasks and exercises.

See Section 1.2 for information about obtaining Soar documentation.

1.2 Contacting the Soar Group

Resources on the Internet

The primary website for Soar is:

http://sitemaker.umich.edu/soar.

Look here for the latest downloads, documentation, and Soar-related announcements,
as well as links to information about specific Soar research projects and researchers
and a FAQ (list of frequently asked questions) about Soar.

For questions about Soar, you may write to the Soar e-mail list at:

soar-group@lists.sourceforge.net.

If you would like to be on this list yourself, visit:

http://lists.sourceforge.net/lists/listinfo/soar-group.

To report Soar bugs, to check whether a bug has been reported, or to check the status
of a previously reported bug, visit:

https://winter.eecs.umich.edu/soar-bugzilla/.

For Those Without Internet Access

If you cannot reach us on the internet, please write to us at the following address:

The Soar Group
Artificial Intelligence Laboratory
University of Michigan
1101 Beal Ave.
Ann Arbor, MI 48109-2110
USA
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1.3 A Note on Different Platforms and Operating

Systems

Soar runs on a wide variety of computers, including Unix (and Linux) machines,
Macintoshes running OSX, and PCs running the Windows XP (and probably 2000
and NT) operating system.

This manual documents Soar generally, although all references to files and directories
use Unix format conventions rather than Windows-style folders.



Chapter 2

The Soar Architecture

This chapter describes the Soar architecture. It covers all aspects of Soar except
for the specific syntax of Soar’s memories and descriptions of the Soar user-interface
commands.

This chapter gives an abstract description of Soar. It starts by giving an overview
of Soar and then goes into more detail for each of Soar’s main memories (working
memory, production memory, and preference memory) and processes (the decision
procedure, learning, and input and output).

2.1 An Overview of Soar

The design of Soar is based on the hypothesis that all deliberate goal -oriented behavior
can be cast as the selection and application of operators to a state. A state is a
representation of the current problem-solving situation; an operator transforms a
state (makes changes to the representation); and a goal is a desired outcome of the
problem-solving activity.

As Soar runs, it is continually trying to apply the current operator and select the
next operator (a state can have only one operator at a time), until the goal has been
achieved. The selection and application of operators is illustrated in Figure 2.1.

Soar has separate memories (and different representations) for descriptions of its cur-
rent situation and its long-term knowledge. In Soar, the current situation, including
data from sensors, results of intermediate inferences, active goals, and active opera-
tors is held in working memory. Working memory is organized as objects. Objects are
described in terms of their attributes ; the values of the attributes may correspond to
sub-objects, so the description of the state can have a hierarchical organization. (This
need not be a strict hierarchy; for example, there’s nothing to prevent two objects
from being “substructure” of each other.)

The long-term knowledge, which specifies how to respond to different situations in

5



6 CHAPTER 2. THE SOAR ARCHITECTURE

select apply select apply select apply

Soar execution

. . .

Figure 2.1: Soar is continually trying to select and apply operators.

working memory, can be thought of as the program for Soar. The Soar architecture
cannot solve any problems without the addition of long-term knowledge. (Note the
distinction between the “Soar architecture” and the “Soar program”: The former
refers to the system described in this manual, common to all users, and the latter
refers to knowledge added to the architecture.)

A Soar program contains the knowledge to be used for solving a specific task (or set
of tasks), including information about how to select and apply operators to transform
the states of the problem, and a means of recognizing that the goal has been achieved.

2.1.1 Problem-Solving Functions in Soar

All of Soar’s long-term knowledge is organized around the functions of operator selec-
tion and operator application, which are organized into four distinct types of knowl-
edge:

Knowledge to select an operator

1. Operator Proposal: Knowledge that an operator is appropriate for the
current situation.

2. Operator Comparison: Knowledge to compare candidate operators.

3. Operator Selection: Knowledge to select a single operator, based on the
comparisons.

Knowledge to apply an operator

4. Operator Application: Knowledge of how a specific operator modifies the
state.

In addition, there is a fifth type of knowledge in Soar that is indirectly connected to
both operator selection and operator application:

5. Knowledge of monotonic inferences that can be made about the state (state
elaboration).
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State elaborations indirectly affect operator selection and application by creating
new descriptions of the current situation that can cue the selection and application
of operators.

These problem-solving functions are the primitives for generating behavior in Soar.
Four of the functions require retrieving long-term knowledge that is relevant to the
current situation: elaborating the state, proposing candidate operators, comparing
the candidates, and applying the operator by modifying the state. These functions are
driven by the knowledge encoded in a Soar program. Soar represents that knowledge
as production rules. Production rules are similar to “if-then” statements in conven-
tional programming languages. (For example, a production might say something like
“if there are two blocks on the table, then suggest an operator to move one block
ontop of the other block”). The “if” part of the production is called its conditions
and the “then” part of the production is called its actions. When the conditions are
met in the current situation as defined by working memory, the production is matched
and it will fire, which means that its actions are executed, making changes to working
memory.

The other function, selecting the current operator, involves making a decision once
sufficient knowledge has been retrieved. This is performed by Soar’s decision proce-
dure, which is a fixed procedure that interprets preferences that have been created
by the retrieval functions. The knowledge-retrieval and decision-making functions
combine to form Soar’s decision cycle.

When the knowledge to perform the problem-solving functions is not directly available
in productions, Soar is unable to make progress and reaches an impasse. There are
three types of possible impasses in Soar:

1. An operator cannot be selected because none are proposed.

2. An operator cannot be selected because multiple operators are proposed and
the comparisons are insufficient to determine which one should be selected.

3. An operator has been selected, but there is insufficient knowledge to apply it.

In response to an impasse, the Soar architecture creates a substate in which operators
can be selected and applied to generate or deliberately retrieve the knowledge that was
not directly available; the goal in the substate is to resolve the impasse. For example,
in a substate, a Soar program may do a lookahead search to compare candidate
operators if comparison knowledge is not directly available. Impasses and substates
are described in more detail in Section 2.6.

2.1.2 An Example Task: The Blocks-World

We will use a task called the blocks-world as an example throughout this manual. In
the blocks-world task, the initial state has three blocks named A, B, and C on a table;
the operators move one block at a time to another location (on top of another block
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C

Goal

C

Initial State

A B

B

A

Figure 2.2: The initial state and goal of the “blocks-world” task.

or onto the table); and the goal is to build a tower with A on top, B in the middle,
and C on the bottom. The initial state and the goal are illustrated in Figure 2.2.

The Soar code for this task is included in Appendix A. You do not need to look at
the code at this point.

The operators in this task move a single block from its current location to a new
location; each operator is represented with the following information:

• the name of the block being moved
• the current location of the block (the “thing” it is on top of)
• the destination of the block (the “thing” it will be on top of)

The goal in this task is to stack the blocks so that C is on the table, with block B on
block C, and block A on top of block B.

2.1.3 Representation of States, Operators, and Goals

The initial state in our blocks-world task — before any operators have been proposed
or selected — is illustrated in Figure 2.3.

A state can have only one operator at a time, and the operator is represented as
substructure of the state. A state may also have as substructure a number of potential
operators that are in consideration; however, these suggested operators should not be
confused with the current operator.

Figure 2.4 illustrates working memory after the first operator has been selected. There
are six operators proposed, and only one of these is actually selected.

Goals are either represented explicitly as substructure of the state with general rules
that recognize when the goal is achieved, or are implicitly represented in the Soar
program by goal-specific rules that test the state for specific features and recognize
when the goal is achieved. The point is that sometimes a description of the goal will
be available in the state for focusing the problem solving, whereas other times it may
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B1
B1 is a block
B1 is named A
B1 is clear

B2
B2 is a block
B2 is named B
B2 is clear

B3
B3 is a block
B3 is named C
B3 is clear

T1
T1 is a table
T1 is named table
T1 is clearS1

S1 is a state
S1 has a problem−space blocks
S1 has a thing B1
S1 has a thing B2
S1 has a thing B3
S1 has a thing T1
S1 has an ontop O1
S1 has an ontop O2
S1 has an ontop O3
(S1 has no operator)

O1 has a top−block B1
O1 has a bottom−block T1O1

O2 O2 has a top−block B2
O2 has a bottom−block T1

O3 O3 has a top−block B3
O3 has a bottom−block T1

An Abstract View of Working Memory

Figure 2.3: An abstract illustration of the initial state of the blocks world as working
memory objects. At this stage of problem solving, no operators have been proposed or
selected.

not. Although representing a goal explicitly has many advantages, some goals are
difficult to explicitly represent on the state.

The goal in our blocks-world task is represented implicitly in the Soar program. A
single production rule monitors the state for completion of the goal and halts Soar
when the goal is achieved.

2.1.4 Proposing candidate operators

As a first step in selecting an operator, one or more candidate operators are proposed.
Operators are proposed by rules that test features of the current state. When the
blocks-world task is run, the Soar program will propose six distinct (but similar)
operators for the initial state as illustrated in Figure 2.5. These operators correspond
to the six different actions that are possible given the initial state.

2.1.5 Comparing candidate operators: Preferences

The second step Soar takes in selecting an operator is to evaluate or compare the
candidate operators. In Soar, this is done via rules that test the proposed operators
and the current state, and then create preferences. Preferences assert the relative
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B1
B1 is a block
B1 is named A
B1 is clear

B2
B2 is a block
B2 is named B
B2 is clear

B3
B3 is a block
B3 is named C
B3 is clear

T1
T1 is a table
T1 is named table
T1 is clearS1

O1 has a top−block B1
O1 has a bottom−block T1O1
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+O4

+O5

+O6

+O8

+O9

+O7

S1 is a state
S1 has a problem−space blocks
S1 has a thing B1
S1 has a thing B2
S1 has a thing B3
S1 has a thing T1
S1 has an ontop O1
S1 has an ontop O2
S1 has an ontop O3
S1 has operator O7
S1 has six proposed operators

O4 is named move−block
O4 has moving−block B2
O4 has destination B1
O5 is named move−block
O5 has moving−block B3
O5 has destination B1
O6 is named move−block
O6 has moving−block B1
O6 has destination B2

O8 is named move−block
O8 has moving−block B1
O8 has destination B3
O9 is named move−block
O9 has moving−block B2
O9 has destination B3

(links from operators to blocks
are omitted for simplicity)

An Abstract View of Working Memory

Figure 2.4: An abstract illustration of working memory in the blocks world after the first
operator has been selected.
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Figure 2.5: The six operators proposed for the initial state of the blocks world each move
one block to a new location.
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or absolute merits of the candidate operators. For example, a preference may say
that operator A is a “better” choice than operator B at this particular time, or a
preference may say that operator A is the “best” thing to do at this particular time.

2.1.6 Selecting a single operator

Soar attempts to select a single operator based on the preferences available for the
candidate operators. There are four different situations that may arise:

1. The available preferences unambiguously prefer a single operator.

2. The available preferences suggest multiple operators, and prefer a subset that
can be selected from randomly.

3. The available preferences suggest multiple operators,but neither case 1 or 2
above hold.

4. The available preferences do not suggest any operators.

In the first case, the preferred operator is selected. In the second case, one of the
subset is selected randomly. In the third and fourth cases, Soar has reached an
“impasse” in problem solving, and a new substate is created. Impasses are discussed
in Section 2.6.

In our blocks-world example, the second case holds, and Soar can select one of the
operators randomly.

2.1.7 Applying the operator

An operator applies by making changes to the state; the specific changes that are
appropriate depend on the operator and the current state.

There are two primary approaches to modifying the state: indirect and direct. Indirect
changes are used in Soar programs that interact with an external environment: The
Soar program sends motor commands to the external environment and monitors the
external environment for changes. The changes are reflected in an updated state
description, garnered from sensors. Soar may also make direct changes to the state;
these correspond to Soar doing problem solving “in its head”. Soar programs that do
not interact with an external environment can make only direct changes to the state.

Internal and external problem solving should not be viewed as mutually exclusive
activities in Soar. Soar programs that interact with an external environment will
generally have operators that make direct and indirect changes to the state: The
motor command is represented as substructure of the state and it is a command to
the environment. Also, a Soar program may maintain an internal model of how it
expects an external operator will modify the world; if so, the operator must update
the internal model (which is substructure of the state).
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When Soar is doing internal problem solving, it must know how to modify the state
descriptions appropriately when an operator is being applied. If it is solving the
problem in an external environment, it must know what possible motor commands it
can issue in order to affect its environment.

The example blocks-world task described here does not interact with an external
environment. Therefore, the Soar program directly makes changes to the state when
operators are applied. There are four changes that may need to be made when a
block is moved in our task:

1. The block that is being moved is no longer where it was (it is no longer “on
top” of the same thing).

2. The block that is being moved is now in a new location (it is “on top” of a new
thing).

3. The place that the block used to be is now clear.

4. The place that the block is moving to is no longer clear — unless it is the table,
which is always considered “clear”1.

The blocks-world task could also be implemented using an external simulator. In this
case, the Soar program does not update all the “on top” and “clear” relations; the
updated state description comes from the simulator.

2.1.8 Making inferences about the state

Making monotonic inferences about the state is the other role that Soar long-term
knowledge may fulfill. Such elaboration knowledge can simplify the encoding of op-
erators because entailments of a set of core features of a state do not have to be
explicitly included in application of the operator. In Soar, these inferences will be
automatically retracted when the situation changes such that the inference no longer
holds.

For instance, our example blocks-world task uses an elaboration to keep track of
whether or not a block is “clear”. The elaboration tests for the absence of a block
that is “on top” of a particular block; if there is no such “on top”, the block is “clear”.
When an operator application creates a new “on top”, the corresponding elaboration
retracts, and the block is no longer “clear”.

2.1.9 Problem Spaces

If we were to construct a Soar system that worked on a large number of different
types of problems, we would need to include large numbers of operators in our Soar
program. For a specific problem and a particular stage in problem solving, only a

1In this blocks-world task, the table always has room for another block, so it is represented as
always being “clear”.
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Figure 2.6: The problem space in the blocks-world includes all operators that move blocks
from one location to another and all possible configurations of the three blocks.

subset of all possible operators are actually relevant. For example, if our goal is to
count the blocks on the table, operators having to do with moving blocks are probably
not important, although they may still be “legal”. The operators that are relevant
to current problem-solving activity define the space of possible states that might be
considered in solving a problem, that is, they define the problem space.

Soar programs are implicitly organized in terms of problem spaces because the con-
ditions for proposing operators will restrict an operator to be considered only when
it is relevant. The complete problem space for the blocks world is show in Figure 2.6.
Typically, when Soar solves a problem in this problem space, it does not explicitly
generate all of the states, examine them, and then create a path. Instead, Soar is in a
specific state at a given time (represented in working memory), attempting to select
an operator that will move it to a new state. It uses whatever knowledge it has about
selecting operators given the current situation, and if its knowledge is sufficient, it
will move toward its goal. The same problem could be recast in Soar as a planning
problem, where the goal is to develop a plan to solve the problem, instead of just solv-
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ing the problem. In that case, a state in Soar would consist of a plan, which in turn
would have representations of Blocks World states and operators from the original
space. The operators would perform editing operations on the plan, such as adding
new Blocks World operators, simulating those operators, etc. In both formulations
of the problem, Soar is still applying operators to generate new states, it is just that
the states and operators have different content.

The remaining sections in this chapter describe the memories and processes of Soar:
working memory, production memory, preference memory, Soar’s execution cycle (the
decision procedure), learning, and how input and output fit in.

2.2 Working memory: The Current Situation

Soar represents the current problem-solving situation in its working memory. Thus,
working memory holds the current state and operator and is Soar’s “short-term”
knowledge, reflecting the current knowledge of the world and the status in problem
solving.

Working memory contains elements called working memory elements, or WME’s for
short. Each WME contains a very specific piece of information; for example, a WME
might say that “B1 is a block”. Several WME’s collectively may provide more infor-
mation about the same object, for example, “B1 is a block”, “B1 is named A”, “B1
is on the table”, etc. These WME’s are related because they are all contributing to
the description of something that is internally known to Soar as “B1”. B1 is called
an identifier ; the group of WME’s that share this identifier are referred to as an
object in working memory. Each WME describes a different attribute of the object,
for example, its name or type or location; each attribute has a value associated with
it, for example, the name is A, the type is block, and the position is on the table.
Therefore, each WME is an identifier-attribute-value triple, and all WME’s with the
same identifier are part of the same object.

Objects in working memory are linked to other objects: The value of one WME may
be an identifier of another object. For example, a WME might say that “B1 is ontop of
T1”, and another collection of WME’s might describe the object T1: “T1 is a table”,
“T1 is brown”, and “T1 is ontop of F1”. And still another collection of WME’s might
describe the object F1: “F1 is a floor”, etc. All objects in working memory must be
linked to a state, either directly or indirectly (through other objects). Objects that
are not linked to a state will be automatically removed from working memory by the
Soar architecture.

WME’s are also often called augmentations because they “augment” the object, pro-
viding more detail about it. While these two terms are somewhat redundant, WME
is a term that is used more often to refer to the contents of working memory, while
augmentation is a term that is used more often to refer to the description of an object.
Working memory is illustrated at an abstract level in Figure 2.3 on page 9.
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The attribute of an augmentation is usually a constant, such as name or type, because
in a sense, the attribute is just a label used to distinguish one link in working memory
from another.2

The value of an augmentation may be either a constant, such as red, or an identifier,
such as 06. When the value is an identifier, it refers to an object in working memory
that may have additional substructure. In semantic net terms, if a value is a constant,
then it is a terminal node with no links; if it is an identifier it is a nonterminal node.

One key concept of Soar is that working memory is a set, which means that there
can never be two elements in working memory at the same time that have the same
identifier-attribute-value triple (this is prevented by the architecture). However, it
is possible to have multiple working memory elements that have the same identifier
and attribute, but that each have different values. When this happens, we say the
attribute is a multi-valued attribute, which is often shortened to be multi-attribute.

An object is defined by its augmentations and not by its identifier. An identifier
is simply a label or pointer to the object. On subsequent runs of the same Soar
program, there may be an object with exactly the same augmentations, but a different
identifier, and the program will still reason about the object appropriately. Identifiers
are internal markers for Soar; they can appear in working memory, but they never
appear in a production.

There is no predefined relationship between objects in working memory and “real
objects” in the outside world. Objects in working memory may refer to real objects,
such as block A; features of an object, such as the color red or shape cube; a relation
between objects, such as ontop; classes of objects, such as blocks; etc. The actual
names of attributes and values have no meaning to the Soar architecture (aside from
a few WME’s created by the architecture itself). For example, Soar doesn’t care
whether the things in the blocks world are called “blocks” or “cubes” or “chandeliers”.
It is up to the Soar programmer to pick suitable labels and to use them consistently.

The elements in working memory arise from one of four sources:

1. The actions of productions create most working memory elements.

2. The decision procedure automatically creates some special state augmentations
(type, superstate, impasse, ...) whenever a state is created. States are created
during initialization (the first state) or because of an impasse (a substate).

3. The decision procedure creates the operator augmentation of the state based
on preferences. This records the selection of the current operator.

4. External I/O systems create working memory elements on the input-link for
sensory data.

The elements in working memory are removed in six different ways:

1. The decision procedure automatically removes all state augmentations it creates
when the impasse that led to their creation is resolved.

2In order to allow these links to have some substructure, the attribute name may be an identifier,
which means that the attribute may itself have attributes and values, as specified by additional
working memory elements.
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2. The decision procedure removes the operator augmentation of the state when
that operator is no longer selected as the current operator.

3. Production actions that use reject preferences remove working memory ele-
ments that were created by other productions.

4. The architecture automatically removes i-supported WMEs when the produc-
tions that created them no longer match.

5. The I/O system removes sensory data from the input-link when it is no longer
valid.

6. The architecture automatically removes WME’s that are no longer linked to a
state (because some other WME has been removed).

For the most part, the user is free to use any attributes and values that are appropriate
for the task. However, states have special augmentations that cannot be directly
created, removed, or modified by rules. These include the augmentations created
when a state is created, and the state’s operator augmentation that signifies the
current operator (and is created based on preferences). The specific attributes that
the Soar architecture automatically creates are listed in Section 3.4. Productions may
create any other attributes for states.

Preferences are held in a separate preference memory where they cannot be tested
by productions; however, acceptable preferences are held in both preference memory
and in working memory. By making the acceptable preferences available in working
memory, the acceptable preferences can be tested for in productions allowing the
candidates operators to be compared before they are selected.

2.3 Production Memory: Long-term Knowledge

Soar represents long-term knowledge as productions that are stored in production
memory, illustrated in Figure 2.7. Each production has a set of conditions and a set
of actions. If the conditions of a production match working memory, the production
fires, and the actions are performed.

2.3.1 The structure of a production

In the simplest form of a production, conditions and actions refer directly to the
presence (or absence) of objects in working memory. For example, a production
might say:

CONDITIONS: block A is clear

block B is clear

ACTIONS: suggest an operator to move block A ontop of block B

This is not the literal syntax of productions, but a simplification. The actual syntax
is presented in Chapter 3.
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An Abstract View of Production Memory

Figure 2.7: An abstract view of production memory. The productions are not related to
one another.

The conditions of a production may also specify the absence of patterns in working
memory. For example, the conditions could also specify that “block A is not red”
or “there are no red blocks on the table”. But since these are not needed for our
example production, there are no examples of negated conditions for now.

The order of the conditions of a production do not matter to Soar except that the
first condition must directly test the state. Internally, Soar will reorder the conditions
so that the matching process can be more efficient. This is a mechanical detail that
need not concern most users. However, you may print your productions to the screen
or save them in a file; if they are not in the order that you expected them to be, it is
likely that the conditions have been reordered by Soar.

2.3.1.1 Variables in productions and multiple instantiations

In the example production above, the names of the blocks are “hardcoded”, that
is, they are named specifically. In Soar productions, variables are used so that a
production can apply to a wider range of situations.

The variables are bound to specific symbols in working memory elements by Soar’s
matching process. A production along with a specific and consistent set of variable
bindings is called an instantiation. A production instantiation is consistent only if
every occurrence of a variable is bound to the same value. Since the same production
may match multiple times, each with different variable bindings, several instantiations



18 CHAPTER 2. THE SOAR ARCHITECTURE

of the same production may match at the same time and, therefore, fire at the same
time. If blocks A and B are clear, the first production (without variables) will suggest
one operator. However, if a production was created that used variables to test the
names, this second production will be instantiated twice and therefore suggest two
operators: one operator to move block A ontop of block B and a second operator to
move block B ontop of block A.

Because the identifiers of objects are determined at runtime, literal identifiers cannot
appear in productions. Since identifiers occur in every working memory element,
variables must be used to test for identifiers, and using the same variables across
multiple occurrences is what links conditions together.

Just as the elements of working memory must be linked to a state in working memory,
so must the objects referred to in a production’s conditions. That is, one condition
must test a state object and all other conditions must test that same state or objects
that are linked to that state.

2.3.2 Architectural roles of productions

Soar productions can fulfill four different roles: the three knowledge-retrieval problem-
solving functions, and the state elaboration function, all described on page 6:

1. Operator proposal
2. Operator comparison
3. (Operator selection is not an act of knowledge retrieval)
4. Operator application
5. State elaboration

A single production should not fulfill more than one of these roles (except for propos-
ing an operator and creating an absolute preference for it). Although productions
are not declared to be of one type or the other, Soar examines the structure of each
production and classifies the rules automatically based on whether they propose and
compare operators, apply operators, or elaborate the state.

2.3.3 Production Actions and Persistence

Generally, actions of a production either create preferences for operator selection,
or create/remove working memory elements. For operator proposal and compari-
son, a production creates preferences for operator selection. These preferences should
persist only as long as the production instantiation that created them continues to
match. When the production instantiation no longer matches, the situation has
changed, making the preference no longer relevant. Soar automatically removes the
preferences in such cases. These preferences are said to have I-support (for “instan-
tiation support”). Similarly, state elaborations are simple inferences that are valid
only so long as the production matches. Working memory elements created as state
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elaborations also have I-support and remain in working memory only as long as the
production instantiation that created them continues to match working memory. For
example, the set of relevant operators changes as the state changes, thus the proposal
of operators is done with I-supported preferences. This way, the operator proposals
will be retracted when they no longer apply to the current situation.

However, the actions of productions that apply an operator, either by adding or
removing elements from working memory, need to persist even after the operator is no
longer selected and operator application production instantiation no longer matches.
For example, in placing a block on another block, a condition is that the second block
be clear. However, the action of placing the first block removes the fact that the
second block is clear, so the condition will no longer be satisfied.

Thus, operator application productions do not retract their actions, even if they no
longer match working memory. This is called O-support (for “operator support”).
Working memory elements that participate in the application of operators are main-
tained throughout the existence of the state in which the operator is applied, unless
explicitly removed (or if they become unlinked). Working memory elements are re-
moved by a reject action of a operator-application rule.

Whether a working memory element receives O-support or I-support is determined
by the structure of the production instantiation that creates the working memory
element. O-support is given only to working memory elements created by operator-
application productions.

An operator-application production tests the current operator of a state and modifies
the state. Thus, a working memory element receives O-support if it is for an aug-
mentation of the current state or substructure of the state, and the conditions of the
instantiation that created it test augmentations of the current operator.

When productions are matched, all productions that have their conditions met fire
creating or removing working memory elements. Also, working memory elements and
preferences that lose I-support are removed from working memory. Thus, several
new working memory elements and preferences may be created, and several existing
working memory elements and preferences may be removed at the same time. (Of
course, all this doesn’t happen literally at the same time, but the order of firings and
retractions is unimportant, and happens in parallel from a functional perspective.)

2.4 Preference memory: Selection Knowledge

The selection of the current operator is determined by the preferences in preference
memory. Preferences are suggestions or imperatives about the current operator, or
information about how suggested operators compare to other operators. Preferences
refer to operators by using the identifier of a working memory element that stands for
the operator. After preferences have been created for a state, the decision procedures
evaluates them to select the current operator for that state.
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For an operator to be selected, there will be at least one preference for it, specifically,
a preference to say that the value is a candidate for the operator attribute of a state
(this is done with either an “acceptable” or “require” preference). There may also
be others, for example to say that the value is “best”.

The different preferences available and the semantics of preferences are explained in
Section 2.4.1. Preferences remain in preference memory until removed for one of the
reasons previously discussed in Section 2.3.3.

2.4.1 Preference semantics

This section describes the semantics of each type of preference. More details on the
preference resolution process are provided in Appendix D.

Only a single value can be selected as the current operator, that is, all values are
mutually exclusive. In addition, there is no implicit transitivity in the semantics of
preferences. If A is indifferent to B, and B is indifferent to C, A and C will not be
indifferent to one another unless there is a preference that A is indifferent to C (or C
and A are both indifferent to all competing values).

Acceptable (+) An acceptable preference states that a value is a candidate for
selection. All values, except those with require preferences, must have an
acceptable preference in order to be selected. If there is only one value with
an acceptable preference (and none with a require preference), that value will
be selected as long as it does not also have a reject or a prohibit preference.

Reject (−) A reject preference states that the value is not a candidate for selection.

Better (>), Worse (<) A better or worse preference states, for the two values
involved, that one value should not be selected if the other value is a candidate.
Better and worse allow for the creation of a partial ordering between candidate
values. Better and worse are simple inverses of each other, so that A better
than B is equivalent to B worse than A.

Best (>) A best preference states that the value may be better than any compet-
ing value (unless there are other competing values that are also “best”). If
a value is best (and not rejected, prohibited, or worse than another), it
will be selected over any other value that is not also best (or required). If
two such values are best, then any remaining preferences for those candidates
(worst, indifferent) will be examined to determine the selection. Note that
if a value (that is not rejected or prohibited) is better than a best value,
the better value will be selected. (This result is counter-intuitive, but allows
explicit knowledge about the relative worth of two values to dominate knowl-
edge of only a single value. A require preference should be used when a value
must be selected for the goal to be achieved.)

Worst (<) A worst preference states that the value should be selected only if there
are no alternatives. It allows for a simple type of default specification. The
semantics of the worst preference are similar to those for the best preference.
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Indifferent (=) An indifferent preference states that there is positive knowledge
that it does not matter which value is selected. This may be a binary preference,
to say that two values are mutually indifferent, or a unary preference, to say
that a single value is as good or as bad a choice as other expected alternatives.

When indifferent preferences are used to signal that it does not matter which
operator is selected, by default, Soar chooses randomly from among the alter-
natives. (The indifferent-selection function can be used to change this
behavior as described on page 124 in Chapter 5.)

Numeric-Indifferent (= number) A numeric-indifferent preference is used to
bias the random selection from mutually indifferent values. This preference in-
cludes a unary indifferent preference, so an operator with a numeric-indifferent
preference will not force a tie impasse. Additionally, the preference weights the
operator’s probability of being selected according to the number given. For
instance, given the preferences

(<s> ^operator <o1> = 40)

(<s> ^operator <o2> = 10)

the operator bound to <o1> would be more likely to be selected, whereas

(<s> ^operator <o1> =)

(<s> ^operator <o2> =)

would give equal probability to the two choices. There are two schemes for com-
bining multiple numeric-indifferent preferences and performing the probabilistic
selection; details are given in the description of the numeric-indifferent-mode
command on page 131.

Require (!) A require preference states that the value must be selected if the goal
is to be achieved.

Prohibit (∼) A prohibit preference states that the value cannot be selected if the
goal is to be achieved. If a value has a prohibit preference, it will not be
selected for a value of an augmentation, independent of the other preferences.

If there is an acceptable preference for a value of an operator, and there are no other
competing values, that operator will be selected. If there are multiple acceptable

preferences for the same state but with different values, the preferences must be
evaluated to determine which candidate is selected.

If the preferences can be evaluated without conflict, the appropriate operator aug-
mentation of the state will be added to working memory. This can happen when
they all suggest the same operator or when one operator is preferable to the others
that have been suggested. When the preferences conflict, Soar reaches an impasse,
as described in Section 2.6.

Preferences can be confusing; for example, there can be two suggested values that are
both “best” (which again will lead to an impasse unless additional preferences resolve
this conflict); or there may be one preference to say that value A is better than value
B and a second preference to say that value B is better than value A.
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2.5 Soar’s Execution Cycle: Without Substates

The execution of a Soar program proceeds through a number of cycles. Each cycle
has five phases:

1. Input: New sensory data comes into working memory.

2. Proposal: Productions fire (and retract) to interpret new data (state elabo-
ration), propose operators for the current situation (operator proposal), and
compare proposed operators (operator comparison). All of the actions of these
productions are I-supported. All matched productions fire in parallel (and all
retractions occur in parallel), and matching and firing continues until there are
no more additional complete matches or retractions of productions (quiescence).

3. Decision: A new operator is selected, or an impasse is detected and a new state
is created.

4. Application: Productions fire to apply the operator (operator application). The
actions of these productions will be O-supported. Because of changes from
operator application productions, other productions with I-supported actions
may also match or retract. Just as during proposal, productions fire and retract
in parallel until quiescence.

5. Output: Output commands are sent to the external environment.

The cycles continue until the halt action is issued from the Soar program (as the
action of a production) or until Soar is interrupted by the user.

During the processing of these phases, it is possible that the preferences that resulted
in the selection of the current operator could change. Whenever operator preferences
change, the preferences are re-evaluated and if a different operator selection would
be made, then the current operator augmentation of the state is immediately re-
moved. However, a new operator is not selected until the next decision phase, when
all knowledge has had a chance to be retrieved.

2.6 Impasses and Substates

When the decision procedure is applied to evaluate preferences and determine the
operator augmentation of the state, it is possible that the preferences are either
incomplete or inconsistent. The preferences can be incomplete in that no acceptable

operators are suggested, or that there are insufficient preferences to distinguish among
acceptable operators. The preferences can be inconsistent if, for instance, operator A
is preferred to operator B, and operator B is preferred to operator A. Since preferences
are generated independently, from different production instantiations, there is no
guarantee that they will be consistent.
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Figure 2.8: A detailed illustration of Soar’s decision cycle: out of date

2.6.1 Impasse Types

There are four types of impasses that can arise from the preference scheme.

Tie impasse — A tie impasse arises if the preferences do not distinguish between
two or more operators with acceptable preferences. If two operators both have
best or worst preferences, they will tie unless additional preferences distinguish
between them.
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Soar

while (HALT not true) Cycle;

Cycle

InputPhase;

ProposalPhase;

DecisionPhase;

ApplicationPhase;

OutputPhase;

ProposalPhase

while (some I-supported productions are waiting to fire or retract)

FireNewlyMatchedProductions;

RetractNewlyUnmatchedProductions;

DecisionPhase

for (each state in the stack,

starting with the top-level state)

until (a new decision is reached)

EvaluateOperatorPreferences; /* for the state being considered */

if (one operator preferred after preference evaluation)

SelectNewOperator;

else /* could be no operator available or */

CreateNewSubstate; /* unable to decide between more than one */

ApplicationPhase

while (some productions are waiting to fire or retract)

FireNewlyMatchedProductions;

RetractNewlyUnmatchedProductions;

Figure 2.9: A simplified version of the Soar algorithm.

Conflict impasse — A conflict impasse arises if at least two values have conflicting
better or worse preferences (such as A is better than B and B is better than A)
for an operator, and neither one is rejected, prohibited, or required.

Constraint-failure impasse — A constraint-failure impasse arises if there is more
than one required value for an operator, or if a value has both a require and
a prohibit preference. These preferences represent constraints on the legal
selections that can be made for a decision and if they conflict, no progress can
be made from the current situation and the impasse cannot be resolved by
additional preferences.

No-change impasse — A no-change impasse arises if a new operator is not selected
during the decision procedure. There are two types of no-change impasses: state
no-change and operator no-change:
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State no-change impasse — A state no-change impasse occurs when there
are no acceptable (or require) preferences to suggest operators for the
current state (or all the acceptable values have also been rejected). The
decision procedure cannot select a new operator.

Operator no-change impasse — An operator no-change impasse occurs when
either a new operator is selected for the current state but no additional
productions match during the application phase, or a new operator is not
selected during the next decision phase.

There can be only one type of impasse at a given level of subgoaling at a time. Given
the semantics of the preferences, it is possible to have a tie or conflict impasse and
a constraint-failure impasse at the same time. In these cases, Soar detects only the
constraint-failure impasse.

The impasse is detected during the selection of the operator, but happens because
one of the other four problem-solving functions was incomplete.

2.6.2 Creating New States

Soar handles these inconsistencies by creating a new state in which the goal of the
problem solving is to resolve the impasse. Thus, in the substate, operators will be
selected and applied in an attempt either to discover which of the tied operators
should be selected, or to apply the selected operator piece by piece. The substate is
often called a subgoal because it exists to resolve the impasse, but is sometimes called
a substate because the representation of the subgoal in Soar is as a state.

The initial state in the subgoal contains a complete description of the cause of the
impasse, such as the operators that could not be decided among (or that there were
no operators proposed) and the state that the impasse arose in. From the perspective
of the new state, the latter is called the superstate. Thus, the superstate is part of the
substructure of each state, represented by the Soar architecture using the superstate
attribute. (The initial state, created in the 0th decision cycle, contains a superstate

attribute with the value of nil — the top-level state has no superstate.)

The knowledge to resolve the impasse may be retrieved by any type of problem solving,
from searching to discover the implications of different decisions, to asking an outside
agent for advice. There is no a priori restriction on the processing, except that it
involves applying operators to states.

In the substate, operators can be selected and applied as Soar attempts to solve
the subgoal. (The operators proposed for solving the subgoal may be similar to the
operators in the superstate, or they may be entirely different.) While problem solving
in the subgoal, additional impasses may be encountered, leading to new subgoals.
Thus, it is possible for Soar to have a stack of subgoals, represented as states: Each
state has a single superstate (except the initial state) and each state may have at
most one substate. Newly created subgoals are considered to be added to the bottom
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of the stack; the first state is therefore called the top-level state.3 See Figure 2.10 for
a simplified illustrations of a subgoal stack.

Soar continually attempts to retrieve knowledge relevant to all goals in the subgoal
stack, although problem-solving activity will tend to focus on the most recently cre-
ated state. However, problem solving is active at all levels, and productions that
match at any level will fire.

2.6.3 Results

In order to resolve impasses, subgoals must generate results that allow the problem
solving at higher levels to proceed. The results of a subgoal are the working memory
elements and preferences that were created in the substate, and that are also linked
directly or indirectly to a superstate (any superstate in the stack). A preference or
working memory element is said to be created in a state if the production that created
it tested that state and this is the most recent state that the production tested. Thus,
if a production tests multiple states, the preferences and working memory elements in
its actions are considered to be created in the most recent of those states (and is not
considered to have been created in the other states). The architecture automatically
detects if a preference or working memory elmenet created in a substate is also linked
to a superstate.

These working memory elements and preferences will not be removed when the im-
passe is resolved because they are still linked to a superstate, and therefore, they
are called the results of the subgoal. A result has either I-support or O-support; the
determination of support is described below.

A working memory element or preference will be a result if its identifier is already
linked to a superstate. A working memory element or preference can also become a
result indirectly if, after it is created and it is still in working memory or preference
memory, its identifier becomes linked to a superstate through the creation of another
result. For example, if the problem solving in a state constructs an operator for a
superstate, it may wait until the operator structure is complete before creating an
acceptable preference for the operator in the superstate. The acceptable preference
is a result because it was created in the state and is linked to the superstate (and,
through the superstate, is linked to the top-level state). The substructures of the
operator then become results because the operator’s identifier is now linked to the
superstate.

3The original state is the “top” of the stack because as Soar runs, this state (created first), will
be at the top of the computer screen, and substates will appear on the screen below the top-level
state.
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Justifications: Determination of support for results

Some results receive I-support, while others receive O-support. The type of support
received by a result is determined by the function it plays in the superstate, and not
the function it played in the state in which it was created. For example, a result
might be created through operator application in the state that created it; however,
it might only be a state elaboration in the superstate. The first function would lead
to O-support, but the second would lead to I-support.

In order for the architecture to determine whether a result receives I-support or O-
support, Soar must first determine the function that the working memory element or
preference plays (that is, whether the result should be considered an operator appli-
cation or not). To do this, Soar creates a temporary production, called a justification.
The justification summarizes the processing in the substate that led to the result:

The conditions of a justification are those working memory elements that exist in
the superstate (and above) that were necessary for producing the result. This
is determined by collecting all of the working memory elements tested by the
productions that fired in the subgoal that led to the creation of the result, and
then removing those conditions that test working memory elements created in
the subgoal.

The action of the justification is the result of the subgoal.

Soar determines I-support or O-support for the justification just as it would for any
other production, as described in Section 2.3.3. If the justification is an operator
application, the result will receive O-support. Otherwise, the result gets I-support
from the justification. If such a result loses I-support from the justification, it will
be retracted if there is no other support. Justification are not added to production
memory, but are otherwise treated as an instantiated productions that have already
fired.

Justifications include any negated conditions that were in the original productions
that participated in producing the results, and that test for the absence of superstate
working memory elements. Negated conditions that test for the absence of working
memory elements that are local to the substate are not included, which can lead to
overgeneralization in the justification (see Section 4.6 on page 80 for details).

2.6.4 Removal of Substates: Impasse Resolution

Problem solving in substates is an important part of what Soar does, and an operator
impasse does not necessarily indicate a problem in the Soar program. They are a
way to decompose a complex problem into smaller parts and they provide a context
for a program to deliberate about which operator to select. Operator impasses are
necessary, for example, for Soar to do any learning about problem solving (as will
be discussed in Chapter 4). This section describes how impasses may be resolved
during the execution of a Soar program, how they may be eliminated during execution
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without being resolved, and some tips on how to modify a Soar program to prevent
a specific impasse from occurring in the first place.

Resolving Impasses

An impasse is resolved when processing in a subgoal creates results that lead to the
selection of a new operator for the state where the impasse arose. When an operator
impasse is resolved, Soar has an opportunity to learn, and the substate (and all its
substructure) is removed from working memory.

Here are possible approaches for resolving specific types of impasses are listed below:

Tie impasse — A tie impasse can be resolved by productions that create pref-
erences that prefer one option (better, best, require), eliminate alterna-
tives (worse, worst, reject, prohibit), or make all of the objects indifferent
(indifferent).

Conflict impasse — A conflict impasse can be resolved by productions that cre-
ate preferences to require one option (require), or eliminate the alternatives
(reject, prohibit).

Constraint-failure impasse — A constraint-failure impasse cannot be resolved by
additional preferences, but may be prevented by changing productions so that
they create fewer require or prohibit preferences.

State no-change impasse — A state no-change impasse can be resolved by pro-
ductions that create acceptable or require preferences for operators.

Operator no-change impasse — An operator no-change impasse can be resolved
by productions that apply the operator, changing the state so the operator
proposal no longer matches or other operators are proposed and preferred.

Eliminating Impasses

An impasse is resolved when results are created that allow progress to be made in
the state where the impasse arose. In Soar, an impasse can be eliminated (but not
resolved) when a higher level impasse is resolved, eliminated, or regenerated. In these
cases, the impasse becomes irrelevant because higher-level processing can proceed. An
impasse can also become irrelevant if input from the outside world changes working
memory which in turn causes productions to fire that make it possible to select an
operator. In all these cases, the impasse is eliminated, but not “resolved”, and Soar
does not learn in this situation.

Regenerating Impasses

An impasse is regenerated when the problem solving in the subgoal becomes inconsis-
tent with the current situation. During problem solving in a subgoal, Soar monitors
which aspect of the surrounding situation (the working memory elements that exist in
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superstates) the problem solving in the subgoal has depended upon. If those aspects
of the surronding situation change, either because of changes in input or because of
results, the problem solving in the subgoal is inconsistent, and the state created in
response to the original impasse is removed and a new state is created. Problem
solving will now continue from this new state. The impasse is not “resolved”, and
Soar does not learn in this situation.

The reason for regeneration is to guarantee that the working memory elements and
preferences created in a substate are consistent with higher level states. As stated
above, inconsistency can arise when a higher level state changes either as a result of
changes in what is sensed in the external environment, or from results produced in
the subgoal. The problem with inconsistency is that once inconsistency arises, the
problem being solved in the subgoal may no longer be the problem that actually needs
to be solved. Luckily, not all changes to a superstate lead to inconsistency.

In order to detect inconsistencies, Soar maintains a dependency set for every sub-
goal/substate. The dependency set consists of all working memory elements that
were tested in the conditions of productions that created O-supported working mem-
ory elements that are directly or indirectly linked to the substate. Thus, whenever
such an O-supported working memory element is created, Soar records which work-
ing memory elements that exist in a superstate were tested, directly or indirectly in
creating that working memory element. dependency-set Whenever any of the work-
ing memory elements in the dependency set of a substate change, the substate is
regenerated.

Note that the creation of I-supported structures in a subgoal does not increase the
dependency set, nor do O-supported results. Thus, only subgoals that involve the
creation of internal O-support working memory elements risk regeneration, and then
only when the basis for the creation of those elements changes.

Substate Removal

Whenever a substate is removed, all working memory elements and preferences that
were created in the substate that are not results are removed from working memory.
In Figure 2.10, state S3 will be removed from working memory when the impasse that
created it is resolved, that is, when sufficient preferences have been generated so that
one of the operators for state S2 can be selected. When state S3 is removed, operator
O9 will also be removed, as will the acceptable preferences for O7, O8, and O9, and
the impasse, attribute, and choices augmentations of state S3. These working
memory elements are removed because they are no longer linked to the subgoal stack.
The acceptable preferences for operators O4, O5, and O6 remain in working memory.
They were linked to state S3, but since they are also linked to state S2, they will stay
in working memory until S2 is removed (or until they are retracted or rejected).
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2.6.5 Soar’s Cycle: With Substates

When there are multiple substates, Soar’s cycle remains basically the same but has
a few minor changes.

The first change is that during the decision procedure, Soar will detect impasses and
create new substates. For example, following the proposal phase, the decision phase
will detect if a decision cannot be made given the current preferences. If an impasse
arises, a new substate is created and added to working memory.

The second change when there are multiple substates is that at each phase, Soar
goes through the substates, from oldest (highest) to newest (lowest), completing any
necessary processing at that level for that phase before doing any processing in the
next substate. When firing productions for the proposal or application phases, Soar
processes the firing (and retraction) of rules, starting from those matching the oldest
substate to the newest. Whenever a production fires or retracts, changes are made
to working memory and preference memory, possibly changing which productions
will match at the lower levels (productions firing within a given level are fired in
parallel – simulated). Productions firings at higher levels can resolve impasses and
thus eliminate lower states before the productions at the lower level ever fire. Thus,
whenever a level in the state stack is reached, all production activity is guaranteed
to be consistent with any processing that has occurred at higher levels.

2.7 Learning

When an operator impasse is resolved, it means that Soar has, through problem
solving, gained access to knowledge that was not readily available before. Therefore,
when an impasse is resolved, Soar has an opportunity to learn, by summarizing and
generalizing the processing in the substate.

Soar’s learning mechanism is called chunking ; it attempts to create a new production,
called a chunk. The conditions of the chunk are the elements of the state that (through
some chain of production firings) allowed the impasse to be resolved; the action of the
production is the working memory element or preference that resolved the impasse
(the result of the impasse). The conditions and action are variablized so that this new
production may match in a similar situation in the future and prevent an impasse
from arising.

Chunks are very similar to justifications in that they are both formed via the back-
tracing process and both create a result in their actions. However, there are some
important distinctions:

1. Chunks are productions and are added to production memory. Justifications
do not appear in production memory.

2. Justifications disappear as soon as the working memory element or preference
they provide support for is removed.
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3. Chunks contain variables so that they may match working memory in other
situations; justifications are similar to an instantiated chunk.

2.8 Input and Output

Many Soar users will want their programs to interact with a real or simulated envi-
ronment. For example, Soar programs may control a robot, receiving sensory inputs
and sending command outputs. Soar programs may also interact with simulated envi-
ronments, such as a flight simulator. Input is viewed as Soar’s perception and output
is viewed as Soar’s motor abilities.

When Soar interacts with an external environment, it must make use of mechanisms
that allow it to receive input from that environment and to effect changes in that
environment; the mechanisms provided in Soar are called input functions and output
functions.

Input functions add and delete elements from working memory in response to
changes in the external environment.

Output functions attempt to effect changes in the external environment.

Input is processed at the beginning of each execution cycle and output occurs at the
end of each execution cycle.

For instructions on how to use input and output functions with Soar, refer to the
SML Quick Start Guide.



Chapter 3

The Syntax of Soar Programs

This chapter describes in detail the syntax of elements in working memory, preference
memory, and production memory, and how impasses and I/O are represented in
working memory and in productions. Working memory elements and preferences are
created as Soar runs, while productions are created by the user or through chunking.
The bulk of this chapter explains the syntax for writing productions.

The first section of this chapter describes the structure of working memory elements in
Soar; the second section describes the structure of preferences; and the third section
describes the structure of productions. The fourth section describes the structure
of impasses. An overview of how input and output appear in working memory is
presented in the fifth section; the full discussion of Soar I/O can be found in the SML
Quick Start Guide.

This chapter assumes that you understand the operating principles of Soar, as pre-
sented in Chapter 2.

3.1 Working Memory

Working memory contains working memory elements (WME’s). As described in
Section 2.2, WME’s can be created by the actions of productions, the evaluation of
preferences, the Soar architecture, and via the input/output system.

A WME is a list consisting of three symbols: an identifier, an attribute, and a value,
where the entire WME is enclosed in parentheses and the attribute is preceded by an
up-arrow (∧). A template for a working memory element is:

(identifier ^attribute value)

The identifier is an internal symbol, generated by the Soar architecture as it runs. The
attribute and value can be either identifiers or constants; if they are identifiers, there
are other working memory elements that have that identifier in their first position.
As the previous sentences demonstrate, identifier is used to refer both to the first

33
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position of a working memory element, as well as to the symbols that occupy that
position.

3.1.1 Symbols

Soar distinguishes between two types of working memory symbols: identifiers and
constants.

Identifiers: An identifier is a unique symbol, created at runtime when a new object
is added to working memory. The names of identifiers are created by Soar, and consist
of a single uppercase letter followed by a string of digits, such as G37 or O22.

(The Soar user interface will also allow users to specify identifiers using lowercase
letters, for example, when using the print command. But internally, they are actually
uppercase letters.)

Constants: There are three types of constants: integers, floating-point, and sym-
bolic constants:

• Integer constants (numbers). The range of values depends on the machine and
implementation you’re using, but it is at least [-2 billion..2 billion].

• Floating-point constants (numbers). The range depends on the machine and
implementation you’re using.

• Symbolic constants. These are symbols with arbitrary names. A constant can
use any combination of letters, digits, or $%&*+-/:<=>?_ Other characters (such
as blank spaces) can be included by surrounding the complete constant name
with vertical bars: |This is a constant|. (The vertical bars aren’t part of
the name; they’re just notation.) A vertical bar can be included by prefacing it
with a backslash inside surrounding vertical bars: |Odd-symbol\|name|

Identifiers should not be confused with constants, although they may “look the same”;
identifiers are generated (by the Soar architecture) at runtime and will not necessarily
be the same for repeated runs of the same program. Constants are specified in the
Soar program and will be the same for repeated runs.

Even when a constant “looks like” an identifier, it will not act like an identifier in
terms of matching. A constant is printed surrounded by vertical bars whenever there
is a possibility of confusing it with an identifier: |G37| is a constant while G37 is an
identifier. To avoid possible confusion, you should not use letter-number combinations
as constants or for production names.

3.1.2 Objects

Recall from Section 2.2 that all WME’s that share an identifier are collectively called
an object in working memory. The individual working memory elements that make
up an object are often called augmentations, because they augment the object. A
template for an object in working memory is:



3.1. WORKING MEMORY 35

(identifier ^attribute-1 value-1 ^attribute-2 value-2

^attribute-3 value-3... ^attribute-n value-n)

For example, if you run Soar with the example blocks-world program described in
Appendix A, after one elaboration cycle, you can look at the top-level state by using
the print command:

soar> print s1

(S1 ^io I1 ^ontop O2 ^ontop O3 ^ontop O1 ^problem-space blocks

^superstate nil ^thing B3 ^thing T1 ^thing B1 ^thing B2

^type state)

The attributes of an object are printed in alphabetical order to make it easier to find
a specific attribute.

Working memory is a set, so that at any time, there are never duplicate versions
of working memory elements. However, it is possible for several working memory
elements to share the same identifier and attribute but have different values. Such
attributes are called multi-valued attributes or multi-attributes. For example, state
S1, above, has two attributes that are multi-valued: thing and ontop.

3.1.3 Timetags

When a working memory element is created, Soar assigns it a unique integer timetag.
The timetag is a part of the working memory element, and therefore, WME’s are
actually quadruples, rather than triples. However, the timetags are not represented
in working memory and cannot be matched by productions. The timetags are used to
distinguish between multiple occurrences of the same WME. As preferences change
and elements are added and deleted from working memory, it is possible for a WME
to be created, removed, and created again. The second creation of the WME — which
bears the same identifier, attribute, and value as the first WME — is different, and
therefore is assigned a different timetag. This is important because a production will
fire only once for a given instantiation, and the instantiation is determined by the
timetags that match the production and not by the identifier-attribute-value triples.

To look at the timetags of WMEs, the wmes command can be used:

soar> wmes s1

(3: S1 ^io I1)

(10: S1 ^ontop O2)

(9: S1 ^ontop O3)

(11: S1 ^ontop O1)

(4: S1 ^problem-space blocks)

(2: S1 ^superstate nil)

(6: S1 ^thing B3)

(5: S1 ^thing T1)
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(8: S1 ^thing B1)

(7: S1 ^thing B2)

(1: S1 ^type state)

This shows all the individual augmentations of S1, each is preceded by an integer
timetag.

3.1.4 Acceptable preferences in working memory

The acceptable preferences for the operator augmentations of states appear in working
memory as identifier-attribute-value-preference quadruples. No other preferences ap-
pear in working memory. A template for an acceptable preference in working memory
is:

(identifier ^operator value +)

For example, if you run Soar with the example blocks-world program described in
Appendix A, after the first operator has been selected, you can again look at the
top-level state using the wmes command:

soar> wmes s1

(3: S1 ^io I1)

(9: S1 ^ontop O3)

(10: S1 ^ontop O2)

(11: S1 ^ontop O1)

(48: S1 ^operator O4 +)

(49: S1 ^operator O5 +)

(50: S1 ^operator O6 +)

(51: S1 ^operator O7 +)

(54: S1 ^operator O7)

(52: S1 ^operator O8 +)

(53: S1 ^operator O9 +)

(4: S1 ^problem-space blocks)

(2: S1 ^superstate nil)

(5: S1 ^thing T1)

(8: S1 ^thing B1)

(6: S1 ^thing B3)

(7: S1 ^thing B2)

(1: S1 ^type state)

The state S1 has six augmentations of acceptable preferences for different operators
(O4 through O9). These have plus signs following the value to denote that they are
acceptable preferences. The state has exactly one operator, O7. This state corresponds
to the illustration of working memory in Figure 2.4.
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Figure 3.1: A semantic net illustration of four objects in working memory.

3.1.5 Working Memory as a Graph

Not only is working memory a set, it is also a graph structure where the identifiers
are nodes, attributes are links, and constants are terminal nodes. Working memory
is not an arbitrary graph, but a graph rooted in the states. Therefore, all WMEs are
linked either directly or indirectly to a state. The impact of this constraint is that
all WMEs created by actions are linked to WMEs tested in the conditions. The link
is one-way, from the identifier to the value. Less commonly, the attribute of a WME
may be an identifier.

Figure 3.1 illustrates four objects in working memory; the object with identifier X44
has been linked to the object with identifier O43, using the attribute as the link,
rather than the value. The objects in working memory illustrated by this figure are:

(O43 ^isa apple ^color red ^inside O53 ^size small ^X44 200)

(O87 ^isa ball ^color red ^inside O53 ^size big)

(O53 ^isa box ^size large ^color orange ^contains O43 O87)

(X44 ^unit grams ^property mass)

In this example, object O43 and object O87 are both linked to object O53 through (O53
∧contains O43) and (O53 ∧contains O87), respectively (the contains attribute is
a multi-valued attribute). Likewise, object O53 is linked to object O43 through (O43
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∧inside O53) and linked to object O87 through (O87 ∧inside O53). Object X44 is
linked to object O43 through (O43 ∧X44 200).

Links are transitive so that X44 is linked to O53 (because O43 is linked to O53 and
X44 is linked to O43). However, since links are not symmetric, O53 is not linked to
X44.

3.2 Preference Memory

Preferences are created by production firings and express the relative or absolute mer-
its for selecting an operator for a state. When preferences express an absolute rating,
they are identifier-attribute-value-preference quadruples; when preferences express
relative ratings, they are identifier-attribute-value-preference-value quintuples

For example,

(S1 ^operator O3 +)

is a preference that asserts that operator O3 is an acceptable operator for state S1,
while

(S1 ^operator O3 > O4)

is a preference that asserts that operator O3 is a better choice for the operator of
state S1 than operator O4.

The semantics of preferences and how they are processed were described in Section
2.4, which also described each of the eleven different types of preferences. Multiple
production instantiations may create identical preferences. Unlike working memory,
preference memory is not a set: Duplicate preferences are allowed in preference mem-
ory.

3.3 Production Memory

Production memory contains productions, which can be loaded in by a user (typed in
while Soar is running or sourced from a file) or generated by chunking while Soar is
running. Productions (both user-defined productions and chunks) may be examined
using the print command, described in Section 5.2.7 on page 102.

Each production has three required components: a name, a set of conditions (also
called the left-hand side, or LHS), and a set of actions (also called the right-hand
side, or RHS). There are also two optional components: a documentation string and
a type.

Syntactically, each production consists of the symbol sp, followed by: an opening curly
brace, {; the production’s name; the documentation string (optional); the production
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sp {blocks-world*propose*move-block

(state <s> ^problem-space blocks

^thing <thing1> {<> <thing1> <thing2>}

^ontop <ontop>)

(<thing1> ^type block ^clear yes)

(<thing2> ^clear yes)

(<ontop> ^top-block <thing1>

^bottom-block <> <thing2>)

-->

(<s> ^operator <o> +)

(<o> ^name move-block

^moving-block <thing1>

^destination <thing2>)}

Figure 3.2: An example production from the example blocks-world task.

type (optional); comments (optional); the production’s conditions; the symbol -->
(literally: dash-dash-greaterthan); the production’s actions; and a closing curly brace,
}. Each element of a production is separated by white space. Indentation and linefeeds
are used by convention, but are not necessary.

sp {production-name

Documentation string

:type

CONDITIONS

-->

ACTIONS

}

An example production, named “blocks-world*propose*move-block”, is shown in
Figure 3.2. This production proposes operators named move-block that move blocks
from one location to another. The details of this production will be described in the
following sections.

Conventions for indenting productions

Productions in this manual are formatted using conventions designed to improve their
readability. These conventions are not part of the required syntax. First, the name of
the production immediately follows the first curly bracket after the sp. All conditions
are aligned with the first letter after the first curly brace, and attributes of an object
are all aligned The arrow is indented to align with the conditions and actions and the
closing curly brace follows the last action.
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3.3.1 Production Names

The name of the production is an almost arbitrary constant. (See Section 3.1.1
for a description of constants.) By convention, the name describes the role of the
production, but functionally, the name is just a label primarily for the use of the
programmer.

A production name should never be a single letter followed by numbers, which is the
format of identifiers.

The convention for naming productions is to separate important elements with aster-
isks; the important elements that tend to appear in the name are:

1. The name of the task or goal (e.g., blocks-world).
2. The name of the architectural function (e.g., propose).
3. The name of the operator (or other object) at issue. (e.g., move-block)
4. Any other relevant details.

This name convention enables one to have a good idea of the function of a production
just by examining its name. This can help, for example, when you are watching Soar
run and looking at the specific productions that are firing and retracting. Since Soar
uses white space to delimit components of a production, if whitespace inadvertently
occurs in the production name, Soar will complain that an open parenthesis was
expected to start the first condition.

3.3.2 Documentation string (optional)

A production may contain an optional documentation string. The syntax for a docu-
mentation string is that it is enclosed in double quotes and appears after the name of
the production and before the first condition (and may carry over to multiple lines).
The documentation string allows the inclusion of internal documentation about the
production; it will be printed out when the production is printed using the print

command.

3.3.3 Production type (optional)

A production may also include an optional production type, which may specify that
the production should be considered a default production (:default) or a chunk
(:chunk), or may specify that a production should be given O- support (:o-support)
or I-support (:i-support). Users are discouraged from using these types. These types
are described in Section 5.1.6, which begins on Page 90.

There is one additional flag (:interrupt) which can be placed at this location in
a production. However this flag does not specify a production type, but is a signal
that the production should be marked for special debugging capabilities. For more
information, see Section 5.1.6 on Page 90.
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3.3.4 Comments (optional)

Productions may contain comments, which are not stored in Soar when the production
is loaded, and are therefore not printed out by the print command. A comment is
begun with a pound sign character # and ends at the end of the line. Thus, everything
following the # is not considered part of the production, and comments that run across
multiple lines must each begin with a #.

For example:

sp {blocks-world*propose*move-block

(state <s> ^problem-space blocks

^thing <thing1> {<> <thing1> <thing2>}

^ontop <ontop>)

(<thing1> ^type block ^clear yes)

(<thing2> ^clear yes)

# (<ontop> ^top-block <thing1>

# ^bottom-block <> <thing2>)

-->

(<s> ^operator <o> +)

(<o> ^name move-block # you can also use in-line comments

^moving-block <thing1>

^destination <thing2>)}

When commenting out conditions or actions, be sure that all parentheses remain
balanced outside the comment.

External comments

Comments may also appear in a file with Soar productions, outside the curly braces
of the sp command. Comments must either start a new line with a # or start with
;#. In both cases, the comment runs to the end of the line.

# imagine that this is part of a "Soar program" that contains

# Soar productions as well as some other code.

source blocks.soar ;# this is also a comment

3.3.5 The condition side of productions (or LHS)

The condition side of a production, also called the left-hand side (or LHS) of the
production, is a pattern for matching one or more WMEs. When all of the conditions
of a production match elements in working memory, the production is said to be
instantiated, and is ready to perform its action.

The following subsections describe the condition side of a production, including predi-
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cates, disjunctions, conjunctions, negations, acceptable preferences for operators, and
a few advanced topics.

3.3.5.1 Conditions

The condition side of a production consists of a set of conditions. Each condition tests
for the existence or absence (explained later in Section 3.3.5.6) of working memory
elements. Each condition consists of a open parenthesis, followed by a test for the
identifier, and the tests for augmentations of that identifier, in terms of attributes and
values. The condition is terminated with a close parenthesis. Thus, a single condition
might test properties of a single working memory element, or properties of multiple
working memory elements that constitute an object.

(identifier-test ^attribute1-test value1-test

^attribute2-test value2-test

^attribute3-test value3-test

...)

The first condition in a production must match against a state in working memory.
Thus, the first condition must begin with the additional symbol “state”. All other
conditions and actions must be linked directly or indirectly to this condition. This
linkage may be direct to the state, or it may be indirect, through objects specified in
the conditions. If the identifiers of the actions are not linked to the state, a warning is
printed when the production is parsed, and the production is not stored in production
memory. In the actions of the example production shown in Figure 3.2, the operator
preference is directly linked to the state and the remaining actions are linked indirectly
via the operator preference.

Although all of the attribute tests in the template above are followed by value tests,
it is possible to test for only the existence of an attribute and not test any specific
value by just including the attribute and no value. Another exception to the above
template is operator preferences, which have the following structure where a plus sign
follows the value test.

(state-identifier-test ^operator value1-test +

...)

In the remainder of this section, we describe the different tests that can be used
for identifiers, attributes, and values. The simplest of these is a constant, where
the constant specified in the attribute or value must match the same constant in a
working memory element.

3.3.5.2 Variables in productions

Variables match against constants in working memory elements in the identifier, at-
tribute, or value positions. Variables can be further constrained by additional tests
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(described in later sections) or by multiple occurrences in conditions. If a variable oc-
curs more than once in the condition of a production, the production will match only
if the variables match the same identifier or constant. However, there is no restriction
that prevents different variables from binding to the same identifier or constant.

Because identifiers are generated by Soar at run time, it impossible to include tests for
specific identifiers in conditions. Therefore, variables are used in conditions whenever
an identifier is to be matched.

Variables also provide a mechanism for passing identifiers and constants which match
in conditions to the action side of a rule.

Syntactically, a variable is a symbol that begins with a left angle-bracket (i.e., <), ends
with a right angle-bracket (i.e., >), and contains at least one alphanumeric symbol in
between.

In the example production in Figure 3.2, there are seven variables: <s>, <clear1>,
<clear2>, <ontop>, <block1>, <block2>, and <o>.

The following table gives examples of legal and illegal variable names.

Legal variables Illegal variables
<s> <>

<1> <1

<variable1> variable>

<abc1> <a b>

3.3.5.3 Predicates for values

A test for an identifier, attribute, or value in a condition (whether constant or variable)
can be modified by a preceding predicate. There are six predicates that can be used:
<>, <=>, <, <=, >=, >.

Predicate Semantics of Predicate
<> Not equal. Matches anything except the value immediately

following it.
<=> Same type. Matches any symbol that is the same type (identifier,

integer, floating-point, non-numeric constant) as the value
immediately following it.

< Numerically less than the value immediately following it.
<= Numerically less than or equal to the value immediately

following it.
>= Numerically greater than or equal to the value immediately

following it.
> Numerically greater than the value immediately following it.

The following table shows examples of legal and illegal predicates:
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Legal predicates Illegal predicates
> <valuex> > > <valuey>

< 1 1 >

<=> <y> = 10

Example Production

sp {propose-operator*to-show-example-predicate

(state <s> ^car <c>)

(<c> ^style convertible ^color <> rust)

-->

(<s> ^operator <o> +)

(<o> ^name drive-car ^car <c>) }

In this production, there must be a “color” attribute for the working memory object
that matches <c>, and the value of that attribute must not be “rust”.

3.3.5.4 Disjunctions of values

A test for an identifier, attribute, or value may also be for a disjunction of constants.
With a disjunction, there will be a match if any one of the constants is found in
a working memory element (and the other parts of the working memory element
matches). Variables and predicates may not be used within disjunctive tests.

Syntactically, a disjunctive test is specified with double angle brackets (i.e., << and
>>). There must be spaces separating the brackets from the constants.

The following table provides examples of legal and illegal disjunctions:

Legal disjunctions Illegal disjunctions
<< A B C 45 I17 >> << <A> A >>

<< 5 10 >> << < 5 > 10 >>

<< good-morning good-evening >> <<A B C >>

Example Production

For example, the third condition of the following production contains a disjunction
that restricts the color of the table to red or blue:

sp {blocks*example-production-conditions

(state ^operator <o> + ^table <t>)

(<o> ^name move-block)

(<t> ^type table ^color << red blue >> )

-->
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... }

Note

Disjunctions of complete conditions are not allowed in Soar. Multiple (similar) pro-
ductions fulfill this role.

3.3.5.5 Conjunctions of values

A test for an identifier, attribute, or value in a condition may include a conjunction
of tests, all of which must hold for there to be a match.

Syntactically, conjuncts are contained within curly braces (i.e., { and }). The follow-
ing table shows some examples of legal and illegal conjunctive tests:

Legal conjunctions Illegal conjunctions
{ <= <a> >= <b> } { <x> < <a> + <b> }
{ <x> > <y> } { > > <b> }
{ <> <x> <y> }
{ << A B C >> <x> }
{ <=> <x> > <y> << 1 2 3 4 >> <z> }

Because those examples are a bit difficult to interpret, let’s go over the legal examples
one by one to understand what each is doing.

In the first example, the value must be less than or equal to the value bound to
variable <a> and greater than or equal to the value bound to variable <b>.

In the second example, the value is bound to the variable <x>, which must also be
greater than the value bound to variable <y>.

In the third example, the value must not be equal to the value bound to variable
<x> and should be bound to variable <y>. Note the importance of order when using
conjunctions with predicates: in the second example, the predicate modifies <y>, but
in the third example, the predicate modifies <x>.

In the fourth example, the value must be one of A, B, or C, and the second conjunctive
test binds the value to variable <x>.

In the fifth example, there are four conjunctive tests. First, the value must be the
same type as the value bound to variable <x>. Second, the value must be greater
than the value bound to variable <y>. Third, the value must be equal to 1, 2, 3, or
4. Finally, the value should be bound to variable <z>.

In Figure 3.2, a conjunctive test is used for the thing attribute in the first condition.
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3.3.5.6 Negated conditions

In addition to the positive tests for elements in working memory, conditions can also
test for the absence of patterns. A negated condition will be matched only if there does
not exist a working memory element consistent with its tests and variable bindings.
Thus, it is a test for the absence of a working memory element.

Syntactically, a negated condition is specified by preceding a condition with a dash
(i.e., “-”).

For example, the following condition tests the absence of a working memory element
of the object bound to <p1> ∧type father.

-(<p1> ^type father)

A negation can be used within an object with many attribute-value pairs by having
it precede a specific attribute:

(<p1> ^name john -^type father ^spouse <p2>)

In that example, the condition would match if there is a working memory element
that matches (<p1> ∧name john) and another that matches (<p1> ∧spouse <p2>),
but is no working memory element that matches (<p1> ∧type father) (when p1 is
bound to the same identifier).

On the other hand, the condition:

-(<p1> ^name john ^type father ^spouse <p2>)

would match only if there is no object in working memory that matches all three
attribute-value tests.

Example Production

sp {default*evaluate-object

(state <ss> ^operator <so>)

(<so> ^type evaluation

^superproblem-space <p>)

-(<p> ^default-state-copy no)

-->

(<so> ^default-state-copy yes) }

Notes

One use of negated conditions to avoid is testing for the absence of the working
memory element that a production creates with I-support; this would lead to an



3.3. PRODUCTION MEMORY 47

“infinite loop” in your Soar program, as Soar would repeatedly fire and retract the
production.

3.3.5.7 Negated conjunctions of conditions

Conditions can be grouped into conjunctive sets by surrounding the set of conditions
with { and }. The production compiler groups the test in these conditions together.
This grouping allows for negated tests of more than one working memory element at
a time. In the example below, the state is tested to ensure that it does not have an
object on the table.

sp {blocks*negated-conjunction-example

(state <s> ^name top-state)

-{(<s> ^ontop <on>)

(<on> ^bottom-object <bo>)

(<bo> ^type table)}

-->

(<s> ^nothing-ontop-table true) }

When using negated conjunctions of conditions, the production has nested curly
braces. One set of curly braces delimits the production, while the other set delimits
the conditions to be conjunctively negated.

If only the last condition, (<bo> ∧type table) were negated, the production would
match only if the state had an ontop relation, and the ontop relation had a bottom-
object, but the bottom object wasn’t a table. Using the negated conjunction, the
production will also match when the state has no ontop augmentation or when it has
an ontop augmentation that doesn’t have a bottom-object augmentation.

The semantics of negated conjunctions can be thought of in terms of mathematical
logic, where the negation of (A ∧B ∧ C):

¬(A ∧B ∧ C)

can be rewritten as:

(¬A) ∨ (¬B) ∨ (¬C)

That is, “not (A and B and C)” becomes “(not A) or (not B) or (not C)”.

3.3.5.8 Multi-valued attributes

An object in working memory may have multiple augmentations that specify the
same attribute with different values; these are called multi-valued attributes, or multi-
attributes for short. To shorten the specification of a condition, tests for multi-valued
attributes can be shortened so that the value tests are together.

For example, the condition:
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(<p1> ^type father ^child sally ^child sue)

could also be written as:

(<p1> ^type father ^child sally sue)

Multi-valued attributes and variables

When variables are used with multi-valued attributes, remember that variable bind-
ings are not unique unless explicitly forced to be so. For example, to test that an
object has two values for attribute child, the variables in the following condition can
match to the same value.

(<p1> ^type father ^child <c1> <c2>)

To do tests for multi-valued attributes with variables correctly, conjunctive tests must
be used, as in:

(<p1> ^type father ^child <c1> {<> <c1> <c2>})

The conjunctive test {<> <c1> <c2>} ensures that <c2> will bind to a different
value than <c1> binds to.

Negated conditions and multi-valued attributes

A negation can also precede an attribute with multiple values. In this case it tests
for the absence of the conjunction of the values. For example

(<p1> ^name john -^child oprah uma)

is the same as

(<p1> ^name john)

-{(<p1> ^child oprah)

(<p1> ^child uma)}

and the match is possible if either (<p1> ∧child oprah) or (<p1> ∧child uma)

cannot be found in working memory with the binding for <p1> (but not if both are
present).

3.3.5.9 Acceptable preferences for operators

The only preferences that can appear in working memory are acceptable preferences
for operators, and therefore, the only preferences that may appear in the conditions
of a production are acceptable preferences for operators.
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Acceptable preferences for operators can be matched in a condition by testing for a
“+” following the value. This allows a production to test the existence of a candidate
operator and its properties, and possibly create a preference for it, before it is selected.

In the example below, ∧operator <o> + matches the acceptable preference for the
operator augmentation of the state. This does not test that operator <o> has been
selected as the current operator.

sp {blocks*example-production-conditions

(state ^operator <o> + ^table <t>)

(<o> ^name move-block)

-->

... }

In the example below, the production tests the state for acceptable preferences for
two different operators (and also tests that these operators move different blocks):

sp {blocks*example-production-conditions

(state ^operator <o1> + <o2> + ^table <t>)

(<o1> ^name move-block ^moving-block <m1> ^destination <d1>)

(<o2> ^name move-block ^moving-block {<m2> <> <m1>}

^destination <d2>)

-->

... }

3.3.5.10 Attribute tests

The previous examples applied all of the different test to the values of working memory
elements. All of the tests that can be used for values can also be used for attributes
and identifiers (except those including constants).

Variables in attributes

Variables may be used with attributes, as in:

sp {blocks*example-production-conditions

(state <s> ^operator <o> +

^thing <t> {<> <t> <t2>} )

(operator <o> ^name group

^by-attribute <a>

^moving-block <t>

^destination <t2>)

(<t> ^type block ^<a> <x>)

(<t2> ^type block ^<a> <x>)

-->

(<s> ^operator <o> >) }
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This production tests that there is acceptable operator that is trying to group blocks
according to some attribute, <a>, and that block <t> and <t2> both have this at-
tribute (whatever it is), and have the same value for the attribute.

Predicates in attributes

Predicates may be used with attributes, as in:

sp {blocks*example-production-conditions

(state ^operator <o> + ^table <t>)

(<t> ^<> type table)

-->

... }

which tests that the object with its identifier bound to <t> must have an attribute
whose value is table, but the name of this attribute is not type.

Disjunctions of attributes

Disjunctions may also be used with attributes, as in:

sp {blocks*example-production-conditions

(state ^operator <o> + ^table <t>)

(<t> ^<< type name>> table)

-->

... }

which tests that the object with its identifier bound to <t> must have either an
attribute type whose value is table or an attribute name whose value is table.

Conjunctive tests for attributes

Section 3.3.5.5 illustrated the use of conjunctions for the values in conditions. Con-
junctive tests may also be used with attributes, as in:

sp {blocks*example-production-conditions

(state ^operator <o> + ^table <t>)

(<t> ^{<ta> <> name} table)

-->

... }

which tests that the object with its identifier bound to <t> must have an attribute
whose value is table, and the name of this attribute is not name, and the name of
this attribute (whatever it is) is bound to the variable <ta>.
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When attribute predicates or attribute disjunctions are used with multi-valued at-
tributes, the production is rewritten internally to use a conjunctive test for the at-
tribute; the conjunctive test includes a variable used to bind to the attribute name.
Thus,

(<p1> ^type father ^ <> name sue sally)

is interpreted to mean:

(<p1> ^type father ^ {<> name <a*1>} sue ^ <a*1> sally)

3.3.5.11 Attribute-path notation

Often, variables appear in the conditions of productions only to link the value of one
attribute with the identifier of another attribute. Attribute-path notation provides a
shorthand so that these intermediate variables do not need to be included.

Syntactically, path notation lists a sequence of attributes separated by dots (.), after
the ∧ in a condition.

For example, using attribute path notation, the production:

sp {blocks-world*monitor*move-block

(state <s> ^operator <o>)

(<o> ^name move-block

^moving-block <block1>

^destination <block2>)

(<block1> ^name <block1-name>)

(<block2> ^name <block2-name>)

-->

(write (crlf) |Moving Block: | <block1-name>

| to: | <block2-name> ) }

could be written as:

sp {blocks-world*monitor*move-block

(state <s> ^operator <o>)

(<o> ^name move-block

^moving-block.name <block1-name>

^destination.name <block2-name>)

-->

(write (crlf) |Moving Block: | <block1-name>

| to: | <block2-name> ) }

Attribute-path notation yields shorter productions that are easier to write, less prone
to errors, and easier to understand.

When attribute-path notation is used, Soar internally expands the conditions into
the multiple Soar objects, creating its own variables as needed. Therefore, when you
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print a production (using the print command), the production will not be represented
using attribute-path notation.

Negations and attribute path notation

A negation may be used with attribute path notation, in which case it amounts to a
negated conjunction. For example, the production:

sp {blocks*negated-conjunction-example

(state <s> ^name top-state)

-{(<s> ^ontop <on>)

(<on> ^bottom-object <bo>)

(<bo> ^type table)}

-->

(<s> ^nothing-ontop-table true) }

could be rewritten as:

sp {blocks*negated-conjunction-example

(state <s> ^name top-state -^ontop.bottom-object.type table)

-->

(<s> ^nothing-ontop-table true) }

Multi-valued attributes and attribute path notation

Attribute path notation may also be used with multi-valued attributes, such as:

sp {blocks-world*propose*move-block

(state <s> ^problem-space blocks

^clear.block <block1> { <> <block1> <block2> }

^ontop <ontop>)

(<block1> ^type block)

(<ontop> ^top-block <block1>

^bottom-block <> <block2>)

-->

(<s> ^operator <o> +)

(<o> ^name move-block +

^moving-block <block1> +

^destination <block2> +) }

Multi-attributes and attribute-path notation

Note: It would not be advisable to write the production in Figure 3.2 using attribute-
path notation as follows:

sp {blocks-world*propose*move-block*dont-do-this
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(state <s> ^problem-space blocks

^clear.block <block1>

^clear.block { <> <block1> <block2> }

^ontop.top-block <block1>

^ontop.bottom-block <> <block2>)

(<block1> ^type block)

-->

...

}

This is not advisable because it corresponds to a different set of conditions than those
in the original production (the top-block and bottom-block need not correspond
to the same ontop relation). To check this, we could print the original production at
the Soar prompt:

soar> print blocks-world*propose*move-block*dont-do-this

sp {blocks-world*propose*move-block*dont-do-this

(state <s> ^problem-space blocks ^thing <thing2>

^thing { <> <thing2> <thing1> } ^ontop <o*1> ^ontop <o*2>)

(<thing2> ^clear yes)

(<thing1> ^clear yes ^type block)

(<o*1> ^top-block <thing1>)

(<o*2> ^bottom-block { <> <thing2> <b*1> })

-->

(<s> ^operator <o> +)

(<o> ^name move-block

^moving-block <thing1>

^destination <thing2>) }

Soar has expanded the production into the longer form, and created two distinctive
variables, <o*1> and <o*2> to represent the ontop attribute. These two variables
will not necessarily bind to the same identifiers in working memory.

Negated multi-valued attributes and attribute-path notation

Negations of multi-valued attributes can be combined with attribute-path notation.
However; it is very easy to make mistakes when using negated multi-valued attributes
with attribute-path notation. Although it is possible to do it correctly, we strongly
discourage its use.

For example,

sp {blocks*negated-conjunction-example

(state <s> ^name top-state -^ontop.bottom-object.name table A)

-->

(<s> ^nothing-ontop-A-or-table true) }
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gets expanded to:

sp {blocks*negated-conjunction-example

(state <s> ^name top-state)

-{(<s> ^ontop <o*1>)

(<o*1> ^bottom-object <b*1>)

(<b*1> ^name A)

(<b*1> ^name table)}

-->

(<s> ^nothing-ontop-A-or-table true) }

This example does not refer to two different blocks with different names. It tests
that there is not an ontop relation with a bottom-block that is named A and named
table. Thus, this production probably should have been written as:

sp {blocks*negated-conjunction-example

(state <s> ^name top-state

-^ontop.bottom-object.name table

-^ontop.bottom-object.name A)

-->

(<s> ^nothing-ontop-A-or-table true) }

which expands to:

sp {blocks*negated-conjunction-example

(state <s> ^name top-state)

-{(<s> ^ontop <o*2>)

(<o*2> ^bottom-object <b*2>)

(<b*2> ^name a)}

-{(<s> ^ontop <o*1>)

(<o*1> ^bottom-object <b*1>)

(<b*1> ^name table)}

-->

(<s> ^nothing-ontop-a-or-table true +) }

Notes on attribute-path notation

• Attributes specified in attribute-path notation may not start with a digit. For
example, if you type ∧foo.3.bar, Soar thinks the .3 is a floating-point number.
(Attributes that don’t appear in path notation can begin with a number.)

• Attribute-path notation may be used to any depth.

• Attribute-path notation may be combined with structured values, described in
Section 3.3.5.12.
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3.3.5.12 Structured-value notation

Another convenience that eliminates the use of intermediate variables is structured-
value notation.

Syntactically, the attributes and values of a condition may be written where a variable
would normally be written. The attribute-value structure is delimited by parentheses.

Using structured-value notation, the production in Figure 3.2 (on page 39) may also
be written as:

sp {blocks-world*propose*move-block

(state <s> ^problem-space blocks

^thing <thing1> {<> <thing1> <thing2>}

^ontop (^top-block <thing1>

^bottom-block <> <thing2>))

(<thing1> ^type block ^clear yes)

(<thing2> ^clear yes)

-->

(<s> ^operator <o> +)

(<o> ^name move-block

^moving-block <thing1>

^destination <thing2>) }

Thus, several conditions may be “collapsed” into a single condition.

Using variables within structured-value notation

Variables are allowed within the parentheses of structured-value notation to specify
an identifier to be matched elsewhere in the production. For example, the variable
<ontop> could be added to the conditions (although it are not referenced again, so
this is not helpful in this instance):

sp {blocks-world*propose*move-block

(state <s> ^problem-space blocks

^thing <thing1> {<> <thing1> <thing2>}

^ontop (<ontop>

^top-block <thing1>

^bottom-block <> <thing2>))

(<thing1> ^type block ^clear yes)

(<thing2> ^clear yes)

-->

(<s> ^operator <o> +)

(<o> ^name move-block

^moving-block <thing1>

^destination <thing2>) }
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Structured values may be nested to any depth. Thus, it is possible to write our
example production using a single condition with multiple structured values:

sp {blocks-world*propose*move-block

(state <s> ^problem-space blocks

^thing <thing1>

({<> <thing1> <thing2>}

^clear yes)

^ontop (^top-block

(<thing1>

^type block

^clear yes)

^bottom-block <> <thing2>) )

-->

(<s> ^operator <o> +)

(<o> ^name move-block

^moving-block <thing1>

^destination <thing2>) }

Notes on structured-value notation

• Attribute-path notation and structured-value notation are orthogonal and can
be combined in any way. A structured value can contain an attribute path, or
a structure can be given as the value for an attribute path.

• Structured-value notation may also be combined with negations and with multi-
attributes.

• Structured-value notation may not be used in the actions of productions.

3.3.6 The action side of productions (or RHS)

The action side of a production, also called the right-hand side (or RHS) of the
production, consists of individual actions that can:

• Add new elements to working memory.

• Remove elements from working memory.

• Create preferences.

• Perform other actions

When the conditions of a production match working memory, the production is said to
be instantiated, and the production will fire during the next elaboration cycle. Firing
the production involves performing the actions using the same variable bindings that
formed the instantiation.
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3.3.6.1 Variables in Actions

Variables can be used in actions. A variable that appeared in the condition side will
be replaced with the value that is was bound to in the condition. A variable that
appears only in the action side will be bound to a new identifier that begins with
the first letter of that variable (e.g., <o> might be bound to o234). This symbol
is guaranteed to be unique and it will be used for all occurrences of the variable in
the action side, appearing in all working memory elements and preferences that are
created by the production action.

3.3.6.2 Creating Working Memory Elements

An element is created in working memory by specifying it as an action. Multiple
augmentations of an object can be combined into a single action, using the same
syntax as in conditions, including path notation and multi-valued attributes.

-->

(<s> ^block.color red

^thing <t1> <t2>) }

The action above is expanded to be:

-->

(<s> ^block <*b>)

(<*b> ^color red)

(<s> ^thing <t1>)

(<s> ^thing <t2>) }

This will add four elements to working memory with the variables replaced with
whatever values they were bound to on the condition side.

Since Soar is case sensitive, different combinations of upper- and lowercase letters
represent different constants. For example, “red”, “Red”, and “RED” are all distinct
symbols in Soar. In many cases, it is prudent to choose one of uppercase or lowercase
and write all constants in that case to avoid confusion (and bugs).

The constants that are used for attributes and values have a few restrictions on them:

1. There are a number of architecturally created augmentations for state and im-
passe objects; see Section 3.4 for a listing of these special augmentations. User-
defined productions can not create or remove augmentations of states that use
these attribute names.

2. Attribute names should not begin with a number if these attributes will be used
in attribute-path notation.
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3.3.6.3 Removing Working Memory Elements

A element is explicitly removed from working memory by following the value with a
dash: -, also called a reject.

-->

(<s> ^block <b> -)}

If the removal of a working memory element removes the only link between the state
and working memory elements that had the value of the removed element as an iden-
tifier, those working memory elements will be removed. This is applied recursively,
so that all item that become unlinked are removed.

The reject should be used with an action that will be o-supported. If reject is at-
tempted with I-support, the working memory element will reappear if the reject loses
I-support and the element still has support.

3.3.6.4 The syntax of preferences

Below are the eleven types of preferences as they can appear in the actions of a
production for the selection of operators:

RHS preferences Semantics
(id ∧operator value) acceptable
(id ∧operator value +) acceptable
(id ∧operator value !) require
(id ∧operator value ∼) prohibit
(id ∧operator value -) reject
(id ∧operator value > value2) better
(id ∧operator value < value2) worse
(id ∧operator value >) best
(id ∧operator value <) worst
(id ∧operator value =) unary indifferent
(id ∧operator value = value2) binary indifferent
(id ∧operator value = number) numeric indifferent

The identifier and value will always be variables, such as (<s1> ∧operator <o1> >

<o2>).

The preference notation appears similar to the predicate tests that appear on the
left-hand side of productions, but has very different meaning. Predicates cannot be
used on the right-hand side of a production and you cannot restrict the bindings of
variables on the right-hand side of a production. (Such restrictions can happen only
in the conditions.)

Also notice that the + symbol is optional when specifying acceptable preferences in
the actions of a production, although using this symbol will make the semantics of
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your productions clearer in many instances. The + symbol will always appear when
you inspect preference memory (with the preferences command).

Productions are never needed to delete preferences because preferences will be re-
tracted when the production no longer matches. Preferences should never be created
by operator application rules, and they should always be created by rules that will
give only I-support to their actions.

3.3.6.5 Shorthand notations for preference creation

There are a few shorthand notations allowed for the creation of operator preferences
on the right-hand side of productions.

Acceptable preferences do not need to be specified with a + symbol. (<s> ∧operator

<op1>) is assumed to mean (<s> ∧operator <op1> +).

Ambiguity can easily arise when using a preference that can be either binary or
unary: > < =. The default assumption is that if a value follows the preference, then
the preference is binary. It will be unary if a carat (up-arrow), a closing parenthesis,
another preference, or a comma follows it.

Below are four examples of legal, although unrealistic, actions that have the same
effect.

(<s> ^operator <o1> <o2> + <o2> < <o1> <o3> =, <o4>)

(<s> ^operator <o1> + <o2> +

<o2> < <o1> <o3> =, <o4> +)

(<s> ^operator <o1> <o2> <o2> < <o1> <o4> <o3> =)

(<s> ^operator <o1> ^operator <o2>

^operator <o2> < <o1> ^operator <o4> <o3> =)

Any one of those actions could be expanded to the following list of preferences:

(<s> ^operator <o1> +)

(<s> ^operator <o2> +)

(<s> ^operator <o2> < <o1>)

(<s> ^operator <o3> =)

(<s> ^operator <o4> +)

Note that structured-value notation may not be used in the actions of productions.

3.3.6.6 Righthand-side Functions

The fourth type of action that can occur in productions is called a righthand-side
function. Righthand-side functions allow productions to create side effects other than
changing working memory. The RHS functions are described below, organized by the
type of side effect they have.
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3.3.6.7 Stopping and pausing Soar

halt — Terminates Soar’s execution and returns to the user prompt. A halt action
irreversibly terminates the running of a Soar program. It should not be used if
Soar is to be restarted (see the interrupt RHS action below.)

sp {

...

-->

(halt) }

interrupt — Executing this function causes Soar to stop at the end of the current
phase, and return to the user prompt. This is similar to halt, but does not
terminate the run. The run may be continued by issuing a run command from
the user interface. The interrupt RHS function has the same effect as typing
stop-soar at the prompt, except that there is more control because it takes
effect exactly at the end of the phase that fires the production.

sp {

...

-->

(interrupt) }

Soar execution may also be stopped immediately before a production fires, using
the :interrupt directive. This functionality is called a matchtime interrupt and
is very useful for debugging. See Section 5.1.6 on Page 90 for more information.

sp {production*name

:interrupt

...

-->

...

}

3.3.6.8 Text input and output

The function write is provided as a production action to do simple output of text in
Soar. Soar applications that do extensive input and output of text should use Soar
Markup Language (SML). To learn about SML, read the ”SML Quick Start Guide”
which should be located in the ”Documentation” folder of your Soar install.

write — This function writes its arguments to the standard output. It does not
automatically insert blanks, linefeeds, or carriage returns. For example, if <o>
is bound to 4, then
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sp {

...

-->

(write <o> <o> <o> | x| <o> | | <o>) }

prints

444 x4 4

crlf — Short for “carriage return, line feed”, this function can be called only
within write. It forces a new line at its position in the write action.

sp {

...

-->

(write <x> (crlf) <y>) }

3.3.6.9 Mathematical functions

The expressions described in this section can be nested to any depth. For all of the
functions in this section, missing or non-numeric arguments result in an error.

+, -, *, / — These symbols provide prefix notation mathematical functions.
These symbols work similarly to C functions. They will take either integer or
real-number arguments. The first three functions return an integer when all
arguments are integers and otherwise return a real number, and the last two
functions always return a real number. The - symbol is also a unary function
which, given a single argument, returns the product of the argument and -1.

sp {

...

-->

(<s> ^sum (+ <x> <y>)

^product-sum (* (+ <v> <w>) (+ <x> <y>))

^big-sum (+ <x> <y> <z> 402)

^negative-x (- <x>))

}

div, mod — These symbols provide prefix notation binary mathematical func-
tions (they each take two arguments). These symbols work similarly to C func-
tions: They will take only integer arguments (using reals results in an error)
and return an integer: div takes two integers and returns their integer quotient;
mod returns their remainder.
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sp {

...

-->

(<s> ^quotient (div <x> <y>)

^remainder (mod <x> <y>)) }

abs, atan2, sqrt, sin, cos — These symbols provide prefix notation unary
mathematical functions (they each take one argument). These symbols work
similarly to C functions: They will take either integer or real-number arguments.
The first function (abs) returns an integer when its argument is an integer and
otherwise returns a real number, and the last four functions always return a
real number. atan2 returns as a float in radians, the arctangent of (first arg /
second arg). sin and cos take as arguments the angle in radians.

sp {

...

-->

(<s> ^abs-value (abs <x>)

^sqrt (sqrt <x>)) }

int — Converts a single symbol to an integer constant. This function expects ei-
ther an integer constant, symbolic constant, or floating point constant. The
symbolic constant must be a string which can be interpreted as a single inte-
ger. The floating point constant is truncated to only the integer portion. This
function essentially operates as a type casting function.

For example, the expression 2 + sqrt(6) could be printed as an integer using
the following:

sp {

...

-->

(write (+ 2 (int sqrt(6))) ) }

float — Converts a single symbol to a floating point constant. This function
expects either an integer constant, symbolic constant, or floating point constant.
The symbolic constant must be a string which can be interpreted as a single
floating point number. This function essentially operates as a type casting
function.

For example, if you wanted to print out an integer expression as a floating-point
number, you could do the following:

sp {

...

-->

(write (float (+ 2 3))) }
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3.3.6.10 Generating and manipulating symbols

A new symbol (an identifier) is generated on the right-hand side of a production
whenever a previously unbound variable is used. This section describes other ways of
generating and manipulating symbols on the right-hand side.

timestamp — This function returns a symbol whose print name is a representation
of the current date and time.

For example:

sp {

...

-->

(write (timestamp)) }

When this production fires, it will print out a representation of the current date
and time, such as:

soar> run 1 e

8/1/96-15:22:49

make-constant-symbol — This function returns a new constant symbol guar-
anteed to be different from all symbols currently present in the system. With
no arguments, it returns a symbol whose name starts with “constant”. With
one or more arguments, it takes those argument symbols, concatenates them,
and uses that as the prefix for the new symbol. (It may also append a number
to the resulting symbol, if a symbol with that prefix as its name already exists.)

sp {

...

-->

(<s> ^new-symbol (make-constant-symbol)) }

When this production fires, it will create an augmentation in working memory
such as:

(S1 ^new-symbol constant5)

The production:

sp {

...

-->

(<s> ^new-symbol (make-constant-symbol <s> )) }
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will create an augmentation in working memory such as:

(S1 ^new-symbol |S14|)

when it fires. The vertical bars denote that the symbol is a constant, rather
than an identifier; in this example, the number 4 has been appended to the
symbol S1.

This can be particularly useful when used in conjunction with the timestamp

function; by using timestamp as an argument to make-constant-symbol, you
can get a new symbol that is guaranteed to be unique. For example:

sp {

...

-->

(<s> ^new-symbol (make-constant-symbol (timestamp))) }

When this production fires, it will create an augmentation in working memory
such as:

(S1 ^new-symbol 8/1/96-15:22:49)

capitalize-symbol — Given a symbol, this function returns a new symbol
with the first character capitalized. This function is provided primarily for text
output, for example, to allow the first word in a sentence to be capitalized.

(capitalize-symbol foo)

3.3.6.11 User-defined functions and interface commands as RHS actions

Any function which has a certain function signature may be registered with the Kernel
and called as a RHS function. The function must have the following signature:

std::string MyFunction(smlRhsEventId id, void* pUserData, Agent* pAgent,

char const* pFunctionName, char const* pArgument);

The Tcl and Java interfaces have similar function signatures. Any arguments passed
to the function on the RHS of a production are concatenated and passed to the
function in the pArgument argument.

Such a function can be registered with the kernel via the client interface by calling:

Kernel::AddRhsFunction(char const* pRhsFunctionName, RhsEventHandler

handler, void* pUserData);

The exec and cmd functions are used to call user-defined functions and interface
commands on the RHS of a production.
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exec — Used to call user-defined registered functions. Any arguments are con-
catenated without spaces. For example, if <o> is bound to x, then

sp {

...

-->

(exec MakeANote <o> 1) }

will call the user-defined MakeANote function with the argument ”x1”.

The return value of the function, if any, may be placed in working memory or
passed to another RHS function. For example, the log of a number <x> could
be printed this way:

sp {

...

-->

(write |The log of | <x> | is: | (exec log(<x>))|) }

where ”log” is a registered user-defined function.

cmd — Used to call built-in Soar commands. Spaces are inserted between concate-
nated arguments. For example, the production

sp {

...

-->

(write (cmd print --depth 2 <s>)) }

will have the effect of printing the object bound to <s> to depth 2.

3.3.6.12 Controlling learning

Soar’s learning mechanism, called Chunking, is described in Chapter 4.

The following two functions are provided as RHS actions to assist in development of
Soar programs; they are not intended to correspond to any theory of learning in Soar.
This functionality is provided as a development tool, so that learning may be turned
off in specific problem spaces, preventing otherwise buggy behavior.

The dont-learn and force-learn RHS actions are to be used with specific settings
for the learn command (see page 125.) Using the learn command, learning may
be set to one of on, off, except, or only; learning must be set to except for the
dont-learn RHS action to have any effect and learning must be set to only for the
force-learn RHS action to have any effect.
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dont-learn — When learning is set to except, by default chunks can be formed
in all states; the dont-learn RHS action will cause learning to be turned off
for the specified state.

sp {turn-learning-off

(state <s> ^feature 1 ^feature 2 -^feature 3)

-->

(dont-learn <s>) }

The dont-learn RHS action applies when learn is set to -except, and has no
effect when other settings for learn are used.

force-learn — When learning is set to only, by default chunks are not formed
in any state; the force-learn RHS action will cause learning to be turned on
for the specified state.

sp {turn-learning-on

(state <s> ^feature 1 ^feature 2 -^feature 3)

-->

(force-learn <s>) }

The force-learn RHS action applies when learn is set to -only, and has no
effect when other settings for learn are used.

3.4 Impasses in Working Memory and in Produc-

tions

When the preferences in preference memory cannot be resolved unambiguously, Soar
reaches an impasse, as described in Section 2.6:

• When Soar is unable to select a new operator (in the decision cycle), it is said
to reach an operator impasse.

All impasses appear as states in working memory, where they can be tested by pro-
ductions. This section describes the structure of state objects in working memory.

3.4.1 Impasses in working memory

There are four types of impasses.

Below is a short description of the four types of impasses. (This was described in
more detail in Section 2.6 on page 22.)

1. tie: when there is a collection of equally eligible operators competing for the
value of a particular attribute;
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2. conflict : when two or more objects are better than each other, and they are not
dominated by a third operator;

3. constraint-failure: when there are conflicting necessity preferences;

4. no-change: when the proposal phase runs to quiescence without suggesting a
new operator.

The list below gives the seven augmentations that the architecture creates on the
substate generated when an impasse is reached, and the values that each augmentation
can contain:
∧type state

∧impasse Contains the impasse type: tie, conflict, constraint-failure, or no-change.
∧choices Either multiple (for tie and conflict impasses), constraint-failure (for

constraint-failure impasses), or none (for no-change impasses).
∧superstate Contains the identifier of the state in which the impasse arose.
∧attribute For multi-choice and constraint-failure impasses, this contains operator.

For no-change impasses, this contains the attribute of the last decision with a
value (state or operator).

∧item For multi-choice and constraint-failure impasses, this contains all values in-
volved in the tie, conflict, or constraint-failure. If the set of items that tie
or conflict changes during the impasse, the architecture removes or adds the
appropriate item augmentations without terminating the existing impasse.

∧quiescence States are the only objects with quiescence t, which is an explicit
statement that quiescence (exhaustion of the elaboration cycle) was reached in
the superstate. If problem solving in the subgoal is contingent on quiescence
having been reached, the substate should test this flag. The side-effect is that
no chunk will be built if it depended on that test. See Section 4.1 on page 75
for details. This attribute can be ignored when learning is turned off.

Knowing the names of these architecturally defined attributes and their possible val-
ues will help you to write productions that test for the presence of specific types of
impasses so that you can attempt to resolve the impasse in a manner appropriate to
your program. Many of the default productions in the demos/defaults directory of
the Soar distribution provide means for resolving certain types of impasses. You may
wish to make use of some of all of these productions or merely use them as guides for
writing your own set of productions to respond to impasses.

Examples

The following is an example of a substate that is created for a tie among three
operators:

(S12 ^type state ^impasse tie ^choices multiple ^attribute operator

^superstate S3 ^item O9 O10 O11 ^quiescence t)
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The following is an example of a substate that is created for a no-change impasse to
apply an operator:

(S12 ^type state ^impasse no-change ^choices none ^attribute operator

^superstate S3 ^quiescence t)

(S3 ^operator O2)

3.4.2 Testing for impasses in productions

Since states appear in working memory, they may also be tested for in the conditions
of productions.

For example, the following production tests for a constraint-failure impasse on the
top-level state.

sp {default*top-goal*halt*operator*failure

"Halt if no operator can be selected for the top goal."

:default

(state <s> ^superstate nil)

(state <ss> ^impasse constraint-failure ^superstate <s>)

-->

(write (crlf) |No operator can be selected for top goal.| )

(write (crlf) |Soar must halt.| )

(halt) }

3.5 Soar I/O: Input and Output in Soar

Many Soar users will want their programs to interact with a real or simulated envi-
ronment. For example, Soar programs could control a robot, receiving sensory inputs
and sending command outputs. Soar programs might also interact with simulated
environments, such as a flight simulator. The mechanisms by which Soar receives
inputs and sends outputs to an external process is called Soar I/O.

This section describes how input and output are represented in working memory and
in productions. The details of creating and registering the input and output functions
for Soar are beyond the scope of this manual, but they are described in the SML Quick
Start Guide. This section is provided for the sake of Soar users who will be making
use of a program that has already been implemented, or for those who would simply
like to understand how I/O is implemented in Soar.
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3.5.1 Overview of Soar I/O

When Soar interacts with an external environment, it must make use of mechanisms
that allow it to receive input from that environment and to effect changes in that
environment. An external environment may be the real world or a simulation; input
is usually viewed as Soar’s perception and output is viewed as Soar’s motor abilities.

Soar I/O is accomplished via input functions and output functions. Input functions
are called at the start of every execution cycle, and add elements directly to specific
input structures in working memory. These changes to working memory may change
the set of productions that will fire or retract. Output functions are called at the end
of every execution cycle and are processed in response to changes to specific output
structures in working memory. An output function is called only if changes have been
made to the output-link structures in working memory.

The structures for manipulating input and output in Soar are linked to a predefined
attribute of the top-level state, called the io attribute. The io attribute has sub-
structure to represent sensor inputs from the environment called input links ; because
these are represented in working memory, Soar productions can match against input
links to respond to an external situation. Likewise, the io attribute has substruc-
ture to represent motor commands, called output links. Functions that execute motor
commands in the environment use the values on the output links to determine when
and how they should execute an action. Generally, input functions create and remove
elements on the input link to update Soar’s perception of the environment. Output
functions respond to values of working memory elements that appear on Soar’s output
link strucure.

3.5.2 Input and output in working memory

All input and output is represented in working memory as substructure of the io

attribute of the top-level state. By default, the architecture creates an input-link

attribute of the io object and an output-link attribute of the io object. The values
of the input-link and output-link attributes are identifiers whose augmentations
are the complete set of input and output working memory elements, respectively.
Some Soar systems may benefit from having multiple input and output links, or
that use names which are more descriptive of the input or output function, such
as vision-input-link, text-input-link, or motor-output-link. In addition to
providing the default io substructure, the architecture allows users to create multiple
input and output links via productions and I/O functions. Any identifiers for io

substructure created by the user will be assigned at run time and are not guaranteed
to be the same from run to run. Therefore users should always employ variables when
referring to input and output links in productions.

Suppose a blocks-world task is implemented using a robot to move actual blocks
around, with a camera creating input to Soar and a robotic arm executing command
outputs. The camera image might be analyzed by a separate vision program; this
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Figure 3.3: An example portion of the input link for the blocks-world task.

program could have as its output the locations of blocks on an xy plane. The Soar
input function could take the output from the vision program and create the following
working memory elements on the input link (all identifiers are assigned at runtime;
this is just an example of possible bindings):

(S1 ^io I1) [A]

(I1 ^input-link I2) [A]

(I2 ^block B1)

(I2 ^block B2)

(I2 ^block B3)

(B1 ^x-location 1)

(B1 ^y-location 0)

(B1 ^color red)

(B2 ^x-location 2)

(B2 ^y-location 0)

(B2 ^color blue)

(B3 ^x-location 3)

(B3 ^y-location 0)

(B3 ^color yellow)

The ’[A]’ notation in the example is used to indicate the working memory elements
that are created by the architecture and not by the input function. This configuration
of blocks corresponds to all blocks on the table, as illustrated in the initial state in
Figure 2.2.
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Figure 3.4: An example portion of the output link for the blocks-world task.

Then, during the Apply Phase of the execution cycle, Soar productions could respond
to an operator, such as “move the red block ontop of the blue block” by creating a
structure on the output link, such as:

(S1 ^io I1) [A]

(I1 ^output-link I3) [A]

(I3 ^name move-block)

(I3 ^moving-block B1)

(I3 ^x-destination 2)

(I3 ^y-destination 1)

(B1 ^x-location 1)

(B1 ^y-location 0)

(B1 ^color red)

The ’[A]’ notation is used to indicate the working memory elements that are created
by the architecture and not by productions. An output function would look for
specific structure in this output link and translate this into the format required by
the external program that controls the robotic arm. Movement by the robotic arm
would lead to changes in the vision system, which would later be reported on the
input-link.

Input and output are viewed from Soar’s perspective. An input function adds or
deletes augmentations of the input-link providing Soar with information about some
occurrence external to Soar. An output function responds to substructure of the
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output-link produced by production firings, and causes some occurrence external
to Soar. Input and output occur through the io attribute of the top-level state
exclusively.

Structures placed on the input-link by an input function remain there until removed
by an input function. During this time, the structure continues to provide support
for any production that has matched against it. The structure does not cause the
production to rematch and fire again on each cycle as long as it remains in working
memory; to get the production to refire, the structure must be removed and added
again.

3.5.3 Input and output in production memory

Productions involved in input will test for specific attributes and values on the input-
link, while productions involved in output will create preferences for specific attributes
and values on the output link. For example, a simplified production that responds to
the vision input for the blocks task might look like this:

sp {blocks-world*elaborate*input

(state <s> ^io.input-link <in>)

(<in> ^block <ib1>)

(<ib1> ^x-location <x1> ^y-location <y1>)

(<in> ^block {<ib2> <> <ib1>})

(<ib2> ^x-location <x1> ^y-location {<y2> > <y1>})

-->

(<s> ^block <b1>)

(<s> ^block <b2>)

(<b1> ^x-location <x1> ^y-location <y1> ^clear no)

(<b2> ^x-location <x1> ^y-location <y2> ^above <b1>)

}

This production “copies” two blocks and their locations directly to the top-level state.
It also adds information about the relationship between the two blocks. The variables
used for the blocks on the RHS of the production are deliberately different from the
variable name used for the block on the input-link in the LHS of the production. If
the variable were the same, the production would create a link into the structure of
the input-link, rather than copy the information. The attributes x-location and
y-location are assumed to be values and not identifiers, so the same variable names
may be used to do the copying.

A production that creates wmes on the output-link for the blocks task might look
like this:

sp {blocks-world*apply*move-block*send-output-command

(state <s> ^operator <o> ^io.output-link <out>)

(<o> ^name move-block ^moving-block <b1> ^destination <b2>)
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(<b1> ^x-location <x1> ^y-location <y1>)

(<b2> ^x-location <x2> ^y-location <y2>)

-->

(<out> ^move-block <b1>

^x-destination <x2> ^y-destination (+ <y2> 1))

}

This production would create substructure on the output-link that the output func-
tion could interpret as being a command to move the block to a new location.
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Chapter 4

Learning

Chunking is Soar’s learning mechanism, the sole learning mechanism in Soar. Chunk-
ing creates productions, called chunks, that summarize the processing required to
produce the results of subgoals. When a chunk is built, it is added to production
memory, where it will be matched in similar situations, avoiding the need for the sub-
goal. Chunks are created only when results are formed in subgoals; since most Soar
programs are continuously subgoaling and returning results to higher-level states,
chunks are typically created continuously as Soar runs.

This chapter begins with a discussion of when chunks are built (Section 4.1 below),
followed by a detailed discussion of how Soar determines a chunk’s conditions and
actions (Section 4.2). Sections 4.3 through 4.4 examine the construction of chunks in
further detail. Section 4.5 explains how and why chunks are prevented from match-
ing with the WME’s that led to their creation. Section 4.6 reviews the problem of
overgeneral chunks.

4.1 Chunk Creation

Several factors govern when chunks are built. Soar chunks the results of every subgoal,
unless one of the following conditions is true:

1. Learning is off. (See Section 5.4.4 on page 125 for details of learn used to
turn learning off.)

Learning can be set to on or off. When learn is on chunks are built. When
learn is off, chunks are not built.

2. Learning is set to bottom-up and a chunk has already been built for a subgoal
of the state that generated the results. (See Section 5.4.4 on page 125 for details
of learn used to set learning to bottom-up.)

With bottom-up learning, chunks are learned only in states in which no subgoal
has yet generated a chunk. In this mode, chunks are learned only for the “bot-
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tom” of the subgoal hierarchy and not the intermediate levels. With experience,
the subgoals at the bottom will be replaced by the chunks, allowing higher level
subgoals to be chunked.1

3. The chunk duplicates a production or chunk already in production memory. In
some rare cases, a duplicate production will not be detected because the order
of the conditions or actions is not the same as an existing production.

4. The augmentation, ∧quiescence t, of the substate that produced the result is
backtraced through.

This mechanism is motivated by the chunking from exhaustion problem, where
the results of a subgoal are dependent on the exhaustion of alternatives (see
Section 4.6 on page 80). If this substate augmentation is encountered when
determining the conditions of a chunk, then no chunk will be built for the
currently considered action. This is recursive, so that if an un-chunked result
is relevant to a second result, no chunk will be built for the second result. This
does not prevent the creation of a chunk that would include ∧quiescence t as
a condition.

5. Learning has been temporarily turned off via a call to the dont-learn produc-
tion action (described on page 65 in Section 3.3.6.12).

This capability is provided for debugging and system development, and it is not
part of the theory of Soar.

If a result is to be chunked, Soar builds the chunk as soon as the result is created,
rather than waiting until subgoal termination.

4.2 Determining Conditions and Actions

Chunking is an experience-based learning mechanism that summarizes as productions
the problem solving that occurs within a state. In order to maintain a history of the
processing to be used for chunking, Soar builds a trace of the productions that fire
in the subgoals. This section describes how the relevant actions are determined, how
information is stored in a trace, and finally, how the trace and the actions together
determine the conditions for the chunk.

In order for the chunk to apply at the appropriate time, its conditions must test
exactly those working memory elements that were necessary to produce the results
of the subgoal. Soar computes a chunk’s conditions based on the productions that
fire in the subgoal, beginning with the results of the subgoal, and then backtracing
through the productions that created each result. It recursively backtraces through
the working memory elements that matched the conditions of the productions, finding

1For some tasks, bottom-up chunking facilitates modelling power-law speedups, although its
long-term theoretical status is problematic.
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the actions that led to the WME’s creation, etc., until conditions are found that test
elements that are linked to a superstate.

4.2.1 Determining a chunk’s actions

A chunk’s actions are built from the results of a subgoal. A result is any working
memory element created in the substate that is linked to a superstate. A working
memory element is linked if its identifier is either the value of a superstate WME, or
the value of an augmentation for an object that is linked to a superstate.

The results produced by a single production firing are the basis for creating the actions
of a chunk. A new result can lead to other results by linking a superstate to a WME
in the substate. This WME may in turn link other WMEs in the substate to the
superstate, making them results. Therefore, the creation of a single WME that is
linked to a superstate can lead to the creation of a large number of results. All of the
newly created results become the basis of the chunk’s actions.

4.2.2 Tracing the creation and reference of working memory
elements

Soar automatically maintains information on the creation of each working memory
element in every state. When a production fires, a trace of the production is saved
with the appropriate state. A trace is a list of the working memory elements matched
by the production’s conditions, together with the actions created by the production.
The appropriate state is the most recently created state (i.e., the state lowest in the
subgoal hierarchy) that occurs in the production’s matched working memory elements.

Recall that when a subgoal is created, the ∧item augmentation lists all values that lead
to the impasse. Chunking is complicated by the fact that the ∧item augmentation
of the substate is created by the architecture and not by productions. Backtracing
cannot determine the cause of these substate augmentations in the same way as other
working memory elements. To overcome this, Soar maps these augmentations onto
the acceptable preferences for the operators in the ∧item augmentations.

Negated conditions

Negated conditions are included in a trace in the following way: when a production
fires, its negated conditions are fully instantiated with its variables’ appropriate val-
ues. This instantiation is based on the working memory elements that matched the
production’s positive conditions. If the variable is not used in any positive conditions,
such as in a conjunctive negation, a dummy variable is used that will later become a
variable in a chunk.
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If the identifier used to instantiate a negated condition’s identifier field is linked to
the superstate, then the instantiated negated condition is added to the trace as a
negated condition. In all other cases, the negated condition is ignored because the
system cannot determine why a working memory element was not produced in the
subgoal and thus allowed the production to fire. Ignoring these negations of conditions
internal to the subgoal may lead to overgeneralization in chunking (see Section 4.6
on page 80).

4.2.3 Determining a chunk’s conditions

The conditions of a chunk are determined by a dependency analysis of production
traces — a process called backtracing. For each instantiated production that creates a
subgoal result, backtracing examines the production trace to determine which working
memory elements were matched. If a matched working memory element is linked to a
superstate, it is included in the chunk’s conditions. If it is not linked to a superstate,
then backtracing recursively examines the trace of the production that created the
working memory element. Thus, backtracing begins with a subgoal result, traces
backwards through all working memory elements that were used to produce that
result, and collects all of the working memory elements that are linked to a superstate.
This method ignores when the working memory elements were created, thus allowing
the conditions of one chunk to test the results of a chunk learned earlier in the subgoal.
The user can observe the backtracing process by setting setting backtracing on, using
the watch command: watch backtracing -on (see Section 5.3.7 on page 113). This
prints out a trace of the conditions as they are collected.

Certain productions do not participate in backtracing. If a production creates only
a reject preference or a desirability preference (better, worse, indifferent, or
parallel), then neither the preference nor the objects that led to its creation will
be included in the chunk. (The exception to this is that if the desirability or reject
preference is a result of a subgoal, it will be in the chunk’s actions.) Desirability
and reject preferences should be used only as search control for choosing between
legal alternatives and should not be used to guarantee the correctness of the problem
solving. The argument is that such preferences should affect only the efficiency and
not the correctness of problem solving, and therefore are not necessary to produce
the results. Necessity preferences (require or prohibit) should be used to enforce
the correctness of problem solving; the productions that create these preferences will
be included in backtracing.

Given that results can be created at any point during a subgoal, it is possible for one
result to be relevant to another result. Whether or not the first result is included in
the chunk for the second result depends on the links that were used to match the first
result in the subgoal. If the elements are linked to the superstate, they are included as
conditions. If the elements are not linked to the superstate, then the result is traced
through. In some cases, there may be more than one set of links, so it is possible for
a result to be both backtraced through, and included as a condition.
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4.3 Variablizing Identifiers

Chunks are constructed by examining the traces, which include working memory ele-
ments and operator preferences. To achieve any useful generality in chunks, identifiers
of actual objects must be replaced by variables when the chunk is created; otherwise
chunks will only ever fire when the exact same objects are matched. However, a
constant value is never variablized; the actual value always appears directly in the
chunk.

When a chunk is built, all occurrences of the same identifier are replaced with the
same variable. This can lead to an overspecific chunk, when two variables are forced
to be the same in the chunk, even though distinct variables in the original productions
just happened to match the same identifier.

A chunk’s conditions are also constrained by any not-equal (<>) tests for pairs of
indentifiers used in the conditions of productions that are included in the chunk.
These tests are saved in the production traces and then added in to the chunk.

4.4 Ordering Conditions

Since the efficiency of the Rete matcher depends heavily upon the order of a produc-
tion’s conditions, the chunking mechanism attempts to write the chunk’s conditions
in the most favorable order. At each stage, the condition-ordering algorithm tries
to determine which eligible condition, if placed next, will lead to the fewest number
of partial instantiations when the chunk is matched. A condition that matches an
object with a multi-valued attribute will lead to multiple partial instantiations, so it
is generally more efficient to place these conditions later in the ordering.

This is the same process that internally reorders the conditions in user-defined pro-
ductions, as mentioned briefly in Section 2.3.1.

4.5 Inhibition of Chunks

When a chunk is built, it may be able to match immediately with the same working
memory elements that participated in its creation. If the production’s actions include
preferences for new operators, the production would immediately fire and create a
preference for a new operator, which duplicates the operator preference that was the
original result of the subgoal. To prevent this, inhibition is used. This means that
each production that is built during chunking is considered to have already fired
with the instantiation of the exact set of working memory elements used to create it.
This does not prevent a newly learned chunk from matching other working memory
elements that are present and firing with those values.
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4.6 Problems that May Arise with Chunking

One of the weaknesses of Soar is that chunking can create overgeneral productions
that apply in inappropriate situations, or overspecific productions that will never fire.
These problems arise when chunking cannot accurately summarize the processing
that led to the creation of a result. Below is a description of three known problems
in chunking.

4.6.1 Using search control to determine correctness

Overgeneral chunks can be created if a result of problem solving in a subgoal is
dependent on search-control knowledge. Recall that desirability preferences, such as
better, best, and worst, are not included in the traces of problem solving used in
chunking (Section 4.2 on page 76). In theory, these preferences do not affect the
validity of search. In practice, however, a Soar program can be written so that search
control does affect the correctness of search. Here are two examples:

1. Some of the tests for correctness of a result are included in productions that pre-
fer operators that will produce correct results. The system will work correctly
only when those productions are loaded.

2. An operator is given a worst preference, indicating that it should be used only
when all other options have been exhausted. Because of the semantics of worst,
this operator will be selected after all other operators; however, if this operator
then produces a result that is dependent on the operator occurring after all
others, this fact will not be captured in the conditions of the chunk.

In both of these cases, part of the test for producing a result is implicit in search
control productions. This move allows the explicit state test to be simpler because
any state to which the test is applied is guaranteed to satisfy some of the requirements
for success. However, chunks created in such a problem space will be overgeneral
because the implicit parts of the state test do not appear as conditions.

Solution: To avoid this problem, necessity preferences (require and prohibit)
should be used whenever a control decision is being made that also incorporates goal-
attainment knowledge. The necessity preferences are included in the backtrace by
chunking, thereby avoiding overgenerality.

4.6.2 Testing for local negated conditions

Overgeneral chunks can be created when negated conditions test for the absence
of a working memory element that, if it existed, would be local to the substate.
Chunking has no mechanism for determining why a given working memory element
does not exist, and thus a condition that occurred in a production in the subgoal is
not included in the chunk. For example, if a production tests for the absence of a local
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flag, and that flag is copied down to the substate from a superstate, then the chunk
should include a test that the flag in the superstate does not exist. Unfortunately,
it is computationally expensive to determine why a given working memory element
does not exist. Chunking only includes negated tests if they test for the absence of
superstate working memory elements.

Solution: To avoid using negated conditions for local data, the local data can be
made a result by attaching it to the superstate. This increases the number of chunks
learned, but a negated condition for the superstate can be used that leads to correct
chunks.

4.6.3 Testing for the substate

Overgeneral chunks can be created if a result of a subgoal is dependent on the creation
of an impasse within the substate. For example, processing in a subgoal may consist of
exhaustively applying all the operators in the problem space. If so, then a convenient
way to recognize that all operators have applied and processing is complete is to wait
for a state no-change impasse to occur. When the impasse occurs, a production can
test for the resulting substate and create a result for the original subgoal. This form
of state test builds overgeneral chunks because no pre-existing structure is relevant to
the result that terminates the subgoal. The result is dependent only on the existence
of the substate within a substate.

Solution: The current solution to this problem is to allow the problem solving to
signal the architecture that the test for a substate is being made. The signal used
by Soar is a test for the ∧quiescence t augmentation of the subgoal. The chunking
mechanism recognizes this test and does not build a chunk when it is found in a
backtrace of a subgoal. The history of this test is maintained, so that if the result
of the substate is then used to produce further results for a superstate, no higher
chunks will be built. However, if the result is used as search control (it is a desirability
preference), then it does not prevent the creation of chunks because the original result
is not included in the backtrace. If the ∧quiescence t being tested is connected to
a superstate, it will not inhibit chunking and it will be included in the conditions of
the chunk.
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Chapter 5

The Soar User Interface

This chapter describes the set of user interface commands for Soar. All commands
and examples are presented as if they are being entered at the Soar command prompt.

This chapter is organized into 7 sections:

1. Basic Commands for Running Soar

2. Examining Memory

3. Configuring Trace Information and Debugging

4. Configuring Soar’s Run-Time Parameters

5. File System I/O Commands

6. Soar I/O commands

7. Miscellaneous Commands

Each section begins with a summary description of the commands covered in that
section, including the role of the command and its importance to the user. Commands
are then described fully, in alphabetical order. The most accurate and up-to-date
information on the syntax of the Soar User Interface is found online, on the Soar
Wiki, at

http://winter.eecs.umich.edu/soarwiki/Soar_Command_Line_Interface}.

Throughout this chapter, each function description includes a specification of its
syntax and an example of its use.

For a concise overview of the Soar interface functions, see the Function Summary and
Index on page 185. This index is intended to be a quick reference into the commands
described in this chapter.
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Notation

The notation used to denote the syntax for each user-interface command follows some
general conventions:

• The command name itself is given in a bold font.

• Optional command arguments are enclosed within square brackets, [ and ].

• A vertical bar, |, separates alternatives.

• Curly braces, {}, are used to group arguments when at least one argument from
the set is required.

• The commandline prompt that is printed by Soar, is normally the agent name,
followed by ’>’. In the examples in this manual, we use “soar>”.

• Comments in the examples are preceded by a ’#’, and in-line comments are
preceded by ’;#’.

For many commands, there is some flexibility in the order in which the arguments may
be given. (See the online help for each command for more information.) We have
not incorporated this flexible ordering into the syntax specified for each command
because doing so complicates the specification of the command. When the order of
arguments will affect the output produced by a command, the reader will be alerted.

5.1 Basic Commands for Running Soar

This section describes the commands used to start, run and stop a Soar program;
to invoke on-line help information; and to create and delete Soar productions. The
specific commands described in this section are:

Summary

excise - Delete Soar productions from production memory.

help - Provide formatted, on-line information about Soar commands.

init-soar - Reinitialize Soar so a program can be rerun from scratch.

quit - Close log file, terminate Soar, and return user to the operating
system.

run - Begin Soar’s execution cycle. cd

sp - Create a production and add it to production memory.

stop-soar - Interrupt a running Soar program.

These commands are all frequently used anytime Soar is run.
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5.1.1 excise

Delete Soar productions from production memory.

Synopsis

excise production_name [production_name ...]

excise -[acdtu]

Options

-a, --all Remove all productions from memory and perform an init-soar com-
mand

-c, --chunks Remove all chunks (learned productions) and justifications from
memory

-d, --default Remove all default productions (:default) from memory
-t, --task Remove chunks, justifications, and user productions from memory
-u, --user Remove all user productions (but not chunks or default rules) from

memory
production name Remove the specific production with this name.

Description

This command removes productions from Soar’s memory. The command must be
called with either a specific production name or with a flag that indicates a particular
group of productions to be removed. Using the flag -a or –all also causes an init-soar.

Examples

This command removes the production my*first*production and all chunks:

excise my*first*production --chunks

This removes all productions and does an init-soar:

excise --all

Default Aliases

Alias Maps to
ex excise
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See Also

init-soar

5.1.2 help

Provide formatted usage information about Soar commands.

Synopsis

help [command_name]

Options

command name Print usage syntax for the command.

Description

This command prints formatted help for the given command name.

Examples

To see the syntax for the excise command:

help excise

To see what commands help is available for:

help

Default Aliases

Alias Maps to
? help
h help
man help

5.1.3 init-soar

Empties working memory and resets run-time statistics.
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Synopsis

init-soar

Options

No options.

Description

The init-soar command initializes Soar. It removes all elements from working mem-
ory, wiping out the goal stack, and resets all runtime statistics. The firing counts
for all productions are reset to zero. The init-soar command allows a Soar program
that has been halted to be reset and start its execution from the beginning. init-soar
does not remove any productions from production memory; to do this, use the excise
command. Note however, that all justifications will be removed because they will no
longer be supported.

Default Aliases

Alias Maps to
init init-soar
is init-soar

See Also

excise

5.1.4 quit

Close log file, terminate Soar, and return user to the operating system.

Synopsis

quit

Options

No options.
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Description

This command stops the run, quits the log and closes Soar.

Default Aliases

Alias Maps to
exit quit

5.1.5 run

Begin Soar’s execution cycle.

Synopsis

run [f|count]

run -[d|e|o|p][s][un] [f|count]

run -[d|e|o|p][un] count [-i <e|p|d|o>]

Options

-d, --decision Run Soar for count decision cycles.
-e, --elaboration Run Soar for count elaboration cycles.
-o, --output Run Soar until the nth time output is generated by the agent. Lim-

ited by the value of max-nil-output-cycles.
-p, --phase Run Soar by phases. A phase is either an input phase, proposal

phase, decision phase, apply phase, or output phase.
-s, --self If other agents exist within the kernel, do not run them at this time.
-u, --update Sets a flag in the update event callback requesting that an environ-

ment updates. This is the default if –self is not specified.
-n, --noupdate Sets a flag in the update event callback requesting that an environ-

ment does not update. This is the default if –self is specified.
f, forever Run until halted by problem-solving completion or until stopped

by an interrupt.
count A single integer which specifies the number of cycles to run Soar.
-i, --interleave Support round robin execution across agents at a finer grain than

the run-size parameter. e = elaboration, p = phase, d = decision,
o = output

Deprecated Options

These may be reimplemented in the future.
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--operator Run Soar until the nth time an operator is selected.
--state Run Soar until the nth time a state is selected.

Description

The run command starts the Soar execution cycle or continues any execution that
was temporarily stopped. The default behavior of run , with no arguments, is to
cause Soar to execute until it is halted or interrupted by an action of a production, or
until an external interrupt is issued by the user. The run command can also specify
that Soar should run only for a specific number of Soar cycles or phases (which may
also be prematurely stopped by a production action or the stop-soar command). This
is helpful for debugging sessions, where users may want to pay careful attention to
the specific productions that are firing and retracting.

The run command takes optional arguments: an integer, count , which specifies how
many units to run; and a units flag indicating what steps or increments to use. If
count is specified, but no units are specified, then Soar is run by decision cycles. If
units are specified, but count is unpecified, then count defaults to ’1’. The argument
forever (can be shortened to f) is a keyword used instead of an integer count and
indicates Soar should be run indefinitely, until halted by problem-solving completion,
or stopped by an interrupt.

If there are multiple Soar agents that exist in the same Soar process, then issuing a run
command in any agent will cause all agents to run with the same set of parameters,
unless the flag --self is specified, in which case only that agent will execute.

If an environment is registered for the kernel’s update event, then when the event
it triggered, the environment will get information about how the run was executed.
If a run was executed with the --update option, then then event sends a flag re-
questing that the environment actually update itself. If a run was executed with the
--noupdate option, then the event sends a flag requesting that the environment not
update itself. The --update option is the default when run is specified without the
--self option is not specified. If the --self option is specified, then the --noupdate
option is on by default. It is up to the environment to check for these flags and honor
them.

Some use cases include:

run --self runs one agent but not the environment
run --self --update runs one agent and the environment
run runs all agents and the environment
run --noupdate runs all agents but not the environment

Setting an interleave size When there are multiple agents running within the
same process, it may be useful to keep agents more closely aligned in their execution
cycle than the run increment (–elaboration, –phases, –decisions, –output) specifies.
For instance, it may be necessary to keep agents in “lock step” at the phase level,
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eventhough the run command issued is for 5 decisions. Some use cases include:

run -d 5 -inteleave p run the agent one phase and then move to the next
agent, looping over agents until they have run for 5 de-
cision cycles

run -o 3 -interleave d run the agent one decision cycle and then move to the
next agent. When an agent generates output for the 3rd
time, it no longer runs even if other agents continue.

The interleave parameter must always be equal to or smaller than the specified run
parameter. This option is not currently compatible with the forever option.

Note If Soar has been stopped due to a halt action, an init-soar command must
be issued before Soar can be restarted with the run command.

Default Aliases

Alias Maps to
d run -d 1
e run -e 1
step run 1

5.1.6 sp

Define a Soar production.

Synopsis

sp {production_body}

Options

production body A Soar production.

Description

The sp command creates a new production and loads it into production memory.
production body is a single argument parsed by the Soar kernel, so it should be en-
closed in curly braces to avoid being parsed by other scripting languages that might
be in the same proces. The overall syntax of a rule is as follows:

name

["documentation-string"]
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[FLAG*]

LHS

-->

RHS

The first element of a rule is its name. Conventions for names are given in Section
3.3. If given, the documentation-string must be enclosed in double quotes. Optional
flags define the type of rule and the form of support its right-hand side assertions will
receive. The specific flags are listed in a separate section below. The LHS defines the
left-hand side of the production and specifies the conditions under which the rule can
be fired. Its syntax is given in detail in a subsequent section. The –> symbol serves
to separate the LHS and RHS portions. The RHS defines the right-hand side of the
production and specifies the assertions to be made and the actions to be performed
when the rule fires. The syntax of the allowable right-hand side actions are given in
a later section. Section 3.3 gives an elaborate discussion of the design and coding of
productions.

If the name of the new production is the same as an existing one, the old production
will be overwritten (excised).

RULE FLAGS
The optional FLAGs are given below. Note that these switches are preceeded by a
colon instead of a dash – this is a Soar parser convention.

:o-support specifies that all the RHS actions are to be given

o-support when the production fires

:no-support specifies that all the RHS actions are only to be given

i-support when the production fires

:default specifies that this production is a default production

(this matters for excise -task and watch task)

:chunk specifies that this production is a chunk

(this matters for learn trace)

:interrupt specifies that Soar should stop running when this

production matches but before it fires

(this is a useful debugging tool)

Multiple flags may be used, but not both of o-support and no-support . Although
you could force your productions to provide O-support or I-support by using these
commands — regardless of the structure of the conditions and actions of the produc-
tion — this is not proper coding style. The o-support and no-support flags are
included to help with debugging, but should not be used in a standard Soar program.

Examples

sp {blocks*create-problem-space

"This creates the top-level space"

(state <s1> ^superstate nil)
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-->

(<s1> ^name solve-blocks-world ^problem-space <p1>)

(<p1> ^name blocks-world)

}

See Also

excise learn watch

5.1.7 stop-soar

Pause Soar.

Synopsis

stop-soar [-s] [reason string]

Options

-s, --self Stop only the soar agent where the command is issued. All other
agents continue running as previously specified.

reason string An optional string which will be printed when Soar is stopped,
to indicate why it was stopped. If left blank, no message will be
printed when Soar is stopped.

Description

The stop-soar command stops any running Soar agents. It sets a flag in the Soar
kernel so that Soar will stop running at a “safe” point and return control to the user.
This command is usually not issued at the command line prompt - a more common
use of this command would be, for instance, as a side-effect of pressing a button on
a Graphical User Interface (GUI).

Default Aliases

Alias Maps to
interrupt stop-soar
ss stop-soar
stop stop-soar



5.2. EXAMINING MEMORY 93

See Also

run

Warnings

If the graphical interface doesn’t periodically do an “update” of flush the pending
I/O, then it may not be possible to interrupt a Soar agent from the command line.

5.2 Examining Memory

This section describes the commands used to inspect production memory, working
memory, and preference memory; to see what productions will match and fire in
the next Propose or Apply phase; and to examine the goal dependency set. These
commands are particularly useful when running or debugging Soar, as they let users
see what Soar is “thinking.” The specific commands described in this section are:

Summary

default-wme-depth - Set the level of detail used to print WME’s.

gds-print - Print the WMEs in the goal dependency set for each goal.

internal-symbols - Print information about the Soar symbol table.

matches - Print information about the match set and partial matches.

memories - Print memory usage for production matches.

preferences - Examine items in preference memory.

print - Print items in working memory or production memory.

production-find - Find productions that contain a given pattern.

Of these commands, print is the most often used (and the most complex) followed
by matches and memories. preferences is used to examine which candidate op-
erators have been proposed. production-find is especially useful when the number
of productions loaded is high. gds-print is useful for examining the goal dependecy
set when subgoals seem to be disappearing unexpectedly. default-wme-depth is
related to the print command. internal-symbols is not often used but is helpful
when debugging Soar extensions or trying to locate memory leaks.

5.2.1 default-wme-depth

Set the level of detail used to print WMEâs.
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Synopsis

default-wme-depth [depth]

Options

depth A non-negative integer.

Description

The default-wme-depth command reflects the default depth used when working
memory elements are printed (using the print command or wmes alias). The default
value is 1. When the command is issued with no arguments, default-wme-depth
returns the current value of the default depth. When followed by an integer value,
default-wme-depth sets the default depth to the specified value. This default depth
can be overridden on any particular call to the print or wmes command by explicitly
using the –depth flag, e.g.,print –depth 10 args .

By default, the print command prints objects in working memory, not just the indi-
vidual working memory element. To limit the output to individual working memory
elements, the –internal flag must also be specified in the print command. Thus
when the print depth is 0 , by default Soar prints the entire object, which is the
same behavior as when the print depth is 1 . But if –internal is also specified, then
a depth of 0 prints just the individual WME, while a depth of 1 prints all WMEs
which share that same identifier. This is true when printing timetags, identifiers or
WME patterns.

When the depth is greater than 1 , the identifier links from the specified WME’s
will be followed, so that additional substructure is printed. For example, a depth of
2 means that the object specified by the identifier, wme-pattern, or timetag will be
printed, along with all other objects whose identifiers appear as values of the first
object. This may result in multiple copies of the same object being printed out. If
–internal is also specified, then individuals WMEs and their timetags will be printed
instead of the full objects.

Default Aliases

Alias Maps to
set-default-depth default-wme-depth

See Also

print
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5.2.2 gds-print

Print the WMEs in the goal dependency set for each goal.

Synopsis

gds-print

Options

No options.

Description

The Goal Dependency Set (GDS) is described in Appendix E. This command is a
debugging command for examining the GDS for each goal in the stack. First it
steps through all the working memory elements in the rete, looking for any that are
included in any goal dependency set, and prints each one. Then it also lists each goal
in the stack and prints the wmes in the goal dependency set for that particular goal.
This command is useful when trying to determine why subgoals are disappearing
unexpectedly: often something has changed in the goal dependency set, causing a
subgoal to be regenerated prior to producing a result.

Warnings

gds-print is horribly inefficient and should not generally be used except when some-
thing is going wrong and you need to examine the Goal Dependency Set.

Default Aliases

Alias Maps to
gds print gds-print

5.2.3 internal-symbols

Print information about the Soar symbol table.

Synopsis

internal-symbols
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Options

No options.

Description

The internal-symbols command prints information about the Soar symbol table.
Such information is typically only useful for users attempting to debug Soar by lo-
cating memory leaks or examining I/O structure.

Example

soar> internal-symbols

--- Symbolic Constants: ---

operator

accept

evaluate-object

problem-space

sqrt

interrupt

mod

goal

io

(...additional symbols deleted for brevity...)

--- Integer Constants: ---

--- Floating-Point Constants: ---

--- Identifiers: ---

--- Variables: ---

<o>

<sso>

<to>

<ss>

<ts>

<so>

<sss>

5.2.4 matches

Prints information about partial matches and the match set.
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Synopsis

matches [-nctw] production_name

matches -[a|r] [-nctw]

Options

production name Print partial match information for the named produc-
tion.

-n, --names, -c, --count For the match set, print only the names of the produc-
tions that are about to fire or retract (the default). If
printing partial matches for a production, just list the
partial match counts.

-t, --timetags Also print the timetags of the wmes at the first failing
condition

-w, --wmes Also print the full wmes, not just the timetags, at the
first failing condition.

-a, --assertions List only productions about to fire.
-r, --retractions List only productions about to retract.

Description

The matches command prints a list of productions that have instantiations in the
match set, i.e., those productions that will retract or fire in the next Propose or Apply
phase. It also will print partial match information for a single, named production.

Printing the match set

When printing the match set (i.e., no production name is specified), the default action
prints only the names of the productions which are about to fire or retract. If there
are multiple instantiations of a production, the total number of instantiations of that
production is printed after the production name, unless –timetags or –wmes are
specified, in which case each instantiation is printed on a separate line. When printing
the match set, the –assertions and –retractions arguments may be specified to
restrict the output to print only the assertions or retractions.

Printing partial matches for productions

In addition to printing the current match set, the matches command can be used
to print information about partial matches for a named production. In this case, the
conditions of the production are listed, each preceded by the number of currently
active matches for that condition. If a condition is negated, it is preceded by a
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minus sign - . The pointer >>>> before a condition indicates that this is the first
condition that failed to match. When printing partial matches, the default action is
to print only the counts of the number of WME’s that match, and is a handy tool
for determining which condition failed to match for a production that you thought
should have fired. At levels –timetags and –wmes the matches command displays
the WME’s immediately after the first condition that failed to match — temporarily
interrupting the printing of the production conditions themselves.

Notes

When printing partial match information, some of the matches displayed by this
command may have already fired, depending on when in the execution cycle this
command is called. To check for the matches that are about to fire, use the matches
command without a named production. In Soar 8, the execution cycle (decision
cycle) is input, propose, decide, apply output; it no longer stops for user input after
the decision phase when running by decision cycles (run -d 1 ). If a user wishes to
print the match set immediately after the decision phase and before the apply phase,
then the user must run Soar by phases (run -p 1 ).

Examples

This example prints the productions which are about to fire and the wmes that match
the productions on their left-hand sides:

matches --assertions --wmes

This example prints the wme timetags for a single production.

matches -t my*first*production

5.2.5 memories

Print memory usage for partial matches.

Synopsis

memories [-cdju] [n]

memories production_name
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Options

-c, --chunks Print memory usage of chunks.
-d, --default Print memory usage of default productions.
-j, --justifications Print memory usage of justifications.
-u, --user Print memory usage of user-defined productions.

production name Print memory usage for a specific production.
n Number of productions to print, sorted by those that

use the most memory.

Description

The memories command prints out the internal memory usage for full and partial
matches of production instantiations, with the productions using the most memory
printed first. With no arguments, the memories command prints memory usage for
all productions. If a production name is specified, memory usage will be printed
only for that production. If a positive integer n is given, only n productions will be
printed: the n productions that use the most memory. Output may be restricted to
print memory usage for particular types of productions using the command options.
Memory usage is recorded according to the tokens that are allocated in the rete
network for the given production(s). This number is a function of the number of
elements in working memory that match each production. Therefore, this command
will not provide useful information at the beginning of a Soar run (when working
memory is empty) and should be called in the middle (or at the end) of a Soar
run. The memories command is used to find the productions that are using the
most memory and, therefore, may be taking the longest time to match (this is only a
heuristic). By identifying these productions, you may be able to rewrite your program
so that it will run more quickly. Note that memory usage is just a heuristic measure of
the match time: A production might not use much memory relative to others but may
still be time-consuming to match, and excising a production that uses a large number
of tokens may not speed up your program, because the Rete matcher shares common
structure among different productions. As a rule of thumb, numbers less than 100
mean that the production is using a small amount of memory, numbers above 1000
mean that the production is using a large amount of memory, and numbers above
10,000 mean that the production is using a very large amount of memory.

See Also

matches

5.2.6 preferences

Examine details about the preferences that support the specified id and attribute .
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Synopsis

preferences [-0123nNtwo] [[id] [[^]attribute]]

Options

-0, -n, --none Print just the preferences themselves
-1, -N, --names Print the preferences and the names of the productions

that generated them
-2, -t, --timetags Print the information for the –names option above plus

the timetags of the wmes matched by the indicated pro-
ductions

-3, -w, --wmes Print the information for the –timetags option above
plus the entire wme.

-o, --object Print the support for all the wmes that comprise the
object (the specified ID).

id Must be an existing Soar object identifier.
attribute Must be an existing ˆattribute of the specified identifier.

Description

The preferences command prints all the preferences for the given object id and
attribute. If id and attribute are not specified, they default to the current state
and the current operator. The ’ˆ’ is optional when specifying the attribute. The
optional arguments indicates the level of detail to print about each preference. This
command is useful for examining which candidate operators have been proposed and
what relationships, if any, exist among them. If a preference has O-support, the
string, “:O” will also be printed. When only the ID is specified on the commandline,
if the ID is a state, Soar uses the default attribute ˆoperator. If the ID is not a state,
Soar prints the support information for all WMEs whose <value> is the ID. When
an ID and the –object flag are specified, Soar prints the preferences / wme support
for all WMEs comprising the specified ID.

Note

For the time being, numeric-indifferent preferences are listed under the heading
“binary indifferents:”.

Examples

This example prints the preferences on (S1 ˆoperator) and the production names
which created the preferences:
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soar> preferences S1 operator --names

Preferences for S1 ^operator:

acceptables:

O2 (fill) +

From waterjug*propose*fill

O3 (fill) +

From waterjug*propose*fill

unary indifferents:

O2 (fill) =

From waterjug*propose*fill

O3 (fill) =

From waterjug*propose*fill

If the current state is S1, then the above syntax is equivalent to:

preferences -n

This example shows the support for the WMEs with the ˆjug attribute:

soar> preferences s1 jug

Preferences for S1 ^jug:

acceptables:

(S1 ^jug I4) :O

(S1 ^jug J1) :O

This example shows the support for the WMEs with <value> = J1, and the produc-
tions that generated them

soar> pref J1 -1

Support for (31: O3 ^jug J1)

(O3 ^jug J1)

From water-jug*propose*fill

Support for (11: S1 ^jug J1)

(S1 ^jug J1) :O

From water-jug*apply*initialize-water-jug-look-ahead

This example shows the support for all WMEs that make up the object S1:

soar> pref -o s1

Support for S1 ^problem-space:

(S1 ^problem-space P1)

Support for S1 ^name:

(S1 ^name water-jug) :O

Support for S1 ^jug:

(S1 ^jug I4) :O

(S1 ^jug J1) :O

Support for S1 ^desired:

(S1 ^desired D1) :O
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Support for S1 ^superstate-set:

(S1 ^superstate-set nil)

Preferences for S1 ^operator:

acceptables:

O2 (fill) +

O3 (fill) +

Arch-created wmes for S1:

(2: S1 ^superstate nil)

(1: S1 ^type state)

Input (IO) wmes for S1:

(3: S1 ^io I1)

See Also

5.2.7 print

Print items in working memory or production memory.

Synopsis

print [-fFin] production_name

print -[a|c|D|j|u][fFin]

print [-i] [-d <depth>] identifier | timetag | pattern

print -s[oS]
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Options

Printing items in production memory

-a, --all print the names of all productions currently loaded
-c, --chunks print the names of all chunks currently loaded
-D, --defaults print the names of all default productions currently

loaded
-f, --full When printing productions, print the whole production.

This is the default when printing a named production.
-F, --filename also prints the name of the file that contains the pro-

duction.
-i, --internal items should be printed in their internal form. For

productions, this means leaving conditions in their re-
ordered (rete net) form.

-j, --justifications print the names of all justifications currently loaded.
-n, --name When printing productions, print only the name and not

the whole production. This is the default when printing
any category of productions, as opposed to a named
production.

-u, --user print the names of all user productions currently loaded
production name print the production named production-name

Printing items in working memory

-d, --depth n This option overrides the default printing depth (see the default-
wme-depth command for more detail).

-i, --internal items should be printed in their internal form. For working memory,
this means printing the individual elements with their timetags,
rather than the objects.

-v, --varprint Print identifiers enclosed in angle brackets.
identifier print the object identifier. identifier must be a valid Soar symbol

such as S1
pattern print the object whose working memory elements matching the

given pattern. See Description for more information on printing
objects matching a specific pattern.

timetag print the object in working memory with the given timetag
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Printing the current subgoal stack

-s, --stack Specifies that the Soar goal stack should be printed. By
default this includes both states and operators.

-o, --operators When printing the stack, print only operators.
-S, --states When printing the stack, print only states.

Description

The print command is used to print items from production memory or working
memory. It can take several kinds of arguments. When printing items from working
memory, the Soar objects are printed unless the –internal flag is used, in which case
the wmes themselves are printed.

(identifier ^attribute value [+])

The pattern is surrounded by parentheses. The identifier , attribute , and value must
be valid Soar symbols or the wildcard symbol * which matches all occurences. The
optional + symbol restricts pattern matches to acceptable preferences.

Examples

Print the working memory elements (and their timetags) which have the identifier s1
as object and v2 as value:

print --internal (s1 ^* v2)

Print the Soar stack which includes states and operators:

print --stack

Print the named production in its RETE form:

print -if prodname

Print the names of all user productions currently loaded:

print -u

Default Aliases

Alias Maps to
p print
pc print –chunks
wmes print -i



5.2. EXAMINING MEMORY 105

See Also

default-wme-depth predefined-aliases

5.2.8 production-find

Synopsis

production-find [-lrs[n|c]] pattern

Options

-c, --chunks Look only for chunks that match the pattern.
-l, --lhs Match pattern only against the conditions (left-hand

side) of productions (default).
-n, --nochunks Disregard chunks when looking for the pattern.
-r, --rhs Match pattern against the actions (right-hand side) of

productions.
-s, --show-bindings Show the bindings associated with a wildcard pattern.
pattern Any pattern that can appear in productions.

Description

The production-find command is used to find productions in production memory that
include conditions or actions that match a given pattern. The pattern given specifies
one or more condition elements on the left hand side of productions (or negated
conditions), or one or more actions on the right-hand side of productions. Any pattern
that can appear in productions can be used in this command. In addition, the asterisk
symbol, *, can be used as a wildcard for an attribute or value. It is important to note
that the whole pattern, including the parenthesis, must be enclosed in curly braces
for it to be parsed properly.

The variable names used in a call to production-find do not have to match the variable
names used in the productions being retrieved.

The production-find command can also be restricted to apply to only certain types
of productions, or to look only at the conditions or only at the actions of productions
by using the flags.

Examples

Find productions that test that some object gumby has an attribute alive with value
t . In addition, limit the rules to only those that test an operator named foo :
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production-find (<state> ^gumby <gv> ^operator.name foo)(<gv> ^alive t)

Note that in the above command, <state> does not have to match the exact variable
name used in the production. Find productions that propose the operator foo:

production-find --rhs (<x> ^operator <op> +)(<op> ^name foo)

Find chunks that test the attribute ˆpokey:

production-find --chunks (<x> ^pokey *)

Examples using the water-jugs demo:

source demos/water-jug/water-jug.soar

production-find (<s> ^name *)(<j> ^volume *)

production-find (<s> ^name *)(<j> ^volume 3)

production-find --rhs (<j> ^* <volume>)

See Also

sp

5.3 Configuring Trace Information and Debugging

This section describes the commands used primarily for debugging or to configure the
trace output printed by Soar as it runs. Users may: specify the content of the runtime
trace output; ask that they be alerted when specific productions fire and retract; or
request details on Soar’s performance.

The specific commands described in this section are:

Summary

chunk-name-format - Specify format of the name to use for new chunks.

firing-counts - Print the number of times productions have fired.

pwatch - Trace firings and retractions of specific productions.

stats - Print information on Soar’s runtime statistics.

verbose - Control detailed information printed as Soar runs.

warnings - Toggle whether or not warnings are printed.

watch - Control the information printed as Soar runs.

watch-wmes - Print information about wmes that match a certain pat-
tern as they are added and removed
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Of these commands, watch is the most often used (and the most complex). pwatch is
related to watch, but applies only to specific, named productions. firing-counts and
stats are useful for understanding how much work Soar is doing. chunk-name-format
is less-frequently used, but allows for detailed control of Soar’s chunk naming.

5.3.1 chunk-name-format

Specify format of the name to use for new chunks.

Synopsis

chunk-name-format [-sl] -p [<prefix>]

chunk-name-format [-sl] -c [<count>]

Options

-s, –short Use the short format for naming chunks
-l, –long Use the long format for naming chunks (default)
-p, –prefix [<prefix>] If <prefix> is given, use <prefix> as the prefix for nam-

ing chunks. Otherwise, return the current prefix . (de-
faults to ”chunk”)

-c, –count [<count>] If <count> is given, set the chunk counter for naming
chunks to <count>. Otherwise, return the current value
of the chunk counter.

Description

The short format for naming newly-created chunks is:

prefixChunknum.

The long (default) format for naming chunks is:

prefix-Chunknum*ddc*impassetype*dcChunknum

where:

prefix is a user-definable prefix string; prefix defaults to ”chunk” when unspecified
by the user. It may not contain the character *.

Chunknum is <count> for the first chunk created, <count>+1 for the second chunk
created, etc.

dc is the number of the decision cycle in which the chunk was formed,

impassetype is one of [tie | conflict | cfailure | snochange | opnochange],
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dcChunknum is the number of the chunk within that specific decision cycle.

5.3.2 firing-counts

Print the number of times each production has fired.

Synopsis

firing-counts [n]

firing-counts production_names

Options

If given, an option can take one of two forms – an integer or a list of production names:
n List the top n productions. If n is 0, only the productions

which haven’t fired are listed
production name For each production in production names, print how many

times the production has fired

Description

The firing-counts command prints the number of times each production has fired;
production names are given from most requently fired to least frequently fired. With
no arguments, it lists all productions. If an integer argument, n , is given, only the
top n productions are listed. If n is zero (0), only the productions that haven’t fired
at all are listed. If one or more production names are given as arguments, only firing
counts for these productions are printed.

Note that firing counts are reset by a call to init-soar.

Examples

This example prints the 10 productions which have fired the most times along with
their firing counts:

firing-counts 10

This example prints the firing counts of productions my*first*production and my*second*production:

firing-counts my*first*production my*second*production
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Warnings

Firing-counts are reset to zero after an init-soar. NB: This command is slow, because
the sorting takes time O(n*log n)

Default Aliases

Alias Maps to
fc firing-counts

See Also

init-soar

5.3.3 pwatch

Trace firings and retractions of specific productions.

Synopsis

pwatch [-d|e] [production name]

Options

-d, --disable, --off Turn production watching off for the specified produc-
tion. If no production is specified, turn production
watching off for all productions.

-e, --enable, --on Turn production watching on for the specified produc-
tion. The use of this flag is optional, so this is pwatch’s
default behavior. If no production is specified, all pro-
ductions currently being watched are listed.

production name The name of the production to watch.

Description

The pwatch command enables and disables the tracing of the firings and retractions
of individual productions. This is a companion command to watch , which cannot
specify individual productions by name.

With no arguments, pwatch lists the productions currently being traced. With one
production-name argument, pwatch enables tracing the production; –enable can be
explicitly stated, but it is the default action.
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If –disable is specified followed by a production-name, tracing is turned off for the
production. When no production-name is specified, pwatch –enable lists all produc-
tions currently being traced, and pwatch –disable disables tracing of all productions.

Note that pwatch now only takes one production per command. Use multiple times
to watch multiple functions.

Default Aliases

Alias Maps to
pw pwatch

See Also

watch

5.3.4 stats

Print information on Soar’s runtime statistics.

Synopsis

Structured Output

stats

Raw Output

stats [-s|-m|-r]

Options

-m, --memory report usage for Soar’s memory pools
-r, --rete report statistics about the rete structure
-s, --system report the system (agent) statistics. This is the default

if no args are specified.

Description

This command prints Soar internal statistics. The argument indicates the component
of interest.
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With the –system flag, the stats command lists a summary of run statistics, includ-
ing the following:

Version — The Soar version number, hostname, and date of the run.

Number of productions — The total number of productions loaded in
the system, including all chunks built during problem solving and all
default productions.

Timing Information — Might be quite detailed depending on the flags
set at compile time.

Decision Cycles — The total number of decisions in the run and the
average time-per-decision-cycle in milliseconds.

Elaboration cycles — The total number of elaboration cycles that were
executed during the run, the everage number of elaboration cycles
per decision cycle, and the average time-per-elaboration-cycle in mil-
liseconds. This is not the total number of production firings, as pro-
ductions can fire in parallel.

Production Firings — The total number of productions that were fired.

Working Memory Changes — This is the total number of changes
to working memory. This includes all additions and deletions from
working memory. Also prints the average match time.

Working Memory Size — This gives the current, mean and maximum
number of working memory elements.

The optional stats argument --memory provides information about memory usage
and Soar’s memory pools, which are used to allocate space for the various data struc-
tures used in Soar.

The optional stats argument --rete provides information about node usage in the
Rete net, the large data structure used for efficient matching in Soar.

Default Aliases

Alias Maps to
st stats

See Also

timers

A Note on Timers

The current implementation of Soar uses a number of timers to provide time-based
statistics for use in the stats command calculations. These timers are:
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total CPU time

total kernel time

phase kernel time (per phase)

phase callbacks time (per phase)

input function time

output function time

Total CPU time is calculated from the time a decision cycle (or number of decision
cycles) is initiated until stopped. Kernel time is the time spent in core Soar functions.
In this case, kernel time is defined as the all functions other than the execution of
callbacks and the input and output functions. The total kernel timer is only stopped
for these functions. The phase timers (for the kernel and callbacks) track the execution
time for individual phases of the decision cycle (i.e., input phase, preference phase,
working memory phase, output phase, and decision phase). Because there is overhead
associated with turning these timers on and off, the actual kernel time will always
be greater than the derived kernel time (i.e., the sum of all the phase kernel timers).
Similarly, the total CPU time will always be greater than the derived total (the
sum of the other timers) because the overhead of turning these timers on and off is
included in the total CPU time. In general, the times reported by the single timers
should always be greater than than the corresponding derived time. Additionally, as
execution time increases, the difference between these two values will also increase.
For those concerned about the performance cost of the timers, all the run time timing
calculations can be compiled out of the code by defining NO TIMING STUFF (in
soarkernel.h) before compilation.

5.3.5 verbose

Control detailed information printed as Soar runs.

Synopsis

verbose [-ed]

Options

-d, --disable, --off Turn verbosity off.
-e, --enable, --on Turn verbosity on.

Description

Invoke with no arguments to query current setting.
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5.3.6 warnings

Synopsis

warnings -[e|d]

Options

-e, --enable, --on Default. Print all warning messages from the kernel.
-d, --disable, --off Disable all, except most critical, warning messages.

Description

Enables and disables the printing of warning messages. If an argument is specified,
then the warnings are set to that state. If no argument is given, then the current
warnings status is printed. At startup, warnings are initially enabled. If warnings are
disabled using this command, then some warnings may still be printed, since some
are considered too important to ignore.

The warnings that are printed apply to the syntax of the productions, to notify
the user when they are not in the correct syntax. When a lefthand side error is
discovered (such as conditions that are not linked to a common state or impasse
object), the production is generally loaded into production memory anyway, although
this production may never match or may seriously slow down the matching process.
In this case, a warning would be printed only if warnings were –on . Righthand
side errors, such as preferences that are not linked to the state, usually result in the
production not being loaded, and a warning regardless of the warnings setting.

5.3.7 watch

Control the run-time tracing of Soar.

Synopsis

watch

watch [--level] [0|1|2|3|4|5]

watch -N

watch -[dpPwrDujcbi] [<remove>] -[n|t|f]

watch --learning [<print|noprint|fullprint>]
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Options

When appropriate, a specific option may be turned off using the remove argument.
This argument has a numeric alias; you can use 0 for remove . A mix of formats is
acceptable, even in the same command line.

Basic Watch Settings

Option Flag Argument
to Option

Description

-l, --level 0 to 5 (see
Watch
Levels
below)

This flag is optional but recommended. Set
a specific watch level using an integer 0 to 5,
this is an inclusive operation

-N, --none No argu-
ment

Turns off all printing about Soar’s internals,
equivalent to –level 0

-d, --decisions remove
(optional)

Controls whether state and operator deci-
sions are printed as they are made

-p, --phases remove
(optional)

Controls whether decisions cycle phase
names are printed as Soar executes

-P, --productions remove
(optional)

Controls whether the names of productions
are printed as they fire and retract, equiva-
lent to -Dujc

-w, --wmes remove
(optional)

Controls the printing of working memory ele-
ments that are added and deleted as produc-
tions are fired and retracted (Including wme
changes to GDS)

-r, --preferences remove
(optional)

Controls whether the preferences generated
by the traced productions are printed when
those productions fire or retract

Watch Levels

Use of the –level (-l) flag is optional but recommended.

0 watch nothing; equivalent to âN
1 watch decisions; equivalent to -d
2 watch phases and decisions; equivalent to -dp
3 watch productions, phases, and decisions; equivalent to -dpP
4 watch wmes, productions, phases, and decisions; equivalent to -

dpPw
5 watch preferences, wmes, productions, phases, and decisions; equiv-

alent to -dpPwr

It is important to note that watch level 0 turns off ALL watch options, including
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backtracing, indifferent selection and learning. However, the other watch levels do
not change these settings. That is, if any of these settings is changed from its default,
it will retain its new setting until it is either explicitly changed again or the watch
level is set to 0.

Watching Productions

By default, the names of the productions are printed as each production fires and
retracts (at watch levels 3 and higher). However, it may be more helpful to watch
only a specific type of production. The tracing of firings and retractions of productions
can be limited to only certain types by the use of the following flags:

Option Flag Argument to Op-
tion

Description

-D, --default remove (op-
tional)

Control only default-productions as
they fire and retract

-u, --user remove (op-
tional)

Control only user-productions as they
fire and retract

-c, --chunks remove (op-
tional)

Control only chunks as they fire and
retract

-j, --justifications remove (op-
tional)

Control only justifications as they fire
and retract

Note: The pwatch command is used to watch individual productions specified by
name rather than watch a type of productions, such as –user.

Additionally, when watching productions, users may set the level of detail to be
displayed for WMEs that are added or retracted as productions fire and retract.
Note that detailed information about WMEs will be printed only for productions
that are being watched.

Option Flag Argument to Option Description
-n, --nowmes No argument When watching productions, do not print

any information about matching wmes
-t, --timetags No argument When watching productions, print only the

timetags for matching wmes
-f, --fullwmes No argument When watching productions, print the full

matching wmes

Watching Learning

Option Flag Argument to Option Description
-L, --learning noprint, print, or fullprint

(see table below)
Controls the printing of
chunks/justifications as they
are created
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As Soar is running, it may create justifications and chunks which are added to pro-
duction memory. The watch command allows users to monitor when chunks and
justifications are created by specifying one of the following arguments to the watch
–learning command:

Argument Alias Effect
noprint 0 Print nothing about new chunks or justifica-

tions (default)
print 1 Print the names of new chunks and justifica-

tions when created
fullprint 2 Print entire chunks and justifications when

created

Watching other Functions

Option Flag Argument
to Option

Description

-b, --backtracing remove
(optional)

Controls the printing of backtracing in-
formation when a chunk or justification
is created

-i, --indifferent-selection remove
(optional)

Controls the printing of the scores for
tied operators in random indifferent se-
lection mode

Description

The watch command controls the amount of information that is printed out as Soar
runs. The basic functionality of this command is to trace various levels of information
about Soar’s internal workings. The higher the level , the more information is printed
as Soar runs. At the lowest setting, 0 — –none , nothing is printed. The levels are
cumulative, so that each successive level prints the information from the previous
level as well as some additional information. The default setting for the watch level
is 1 , (or –decisions ). Each level can be indicated with either a number or a series
of flags as follows:

0 or --none

1 or --decisions

2 or --decisions --phases

3 or --decisions --phases --productions

4 or --decisions --phases --productions --wmes

5 or --decisions --phases --productions --wmes --preferences

The numerical arguments inclusively turn on all levels up to the number specified. To
use numerical arguments to turn off a level, specify a number which is less than the
level to be turned off. For instance, to turn off watching of productions, specify “watch
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–level 2” (or 1 or 0). Numerical arguments are provided for shorthand convenience.
For more detailed control over the watch settings, the named arguments should be
used.

With no arguments, this command prints information about the current watch sta-
tus, i.e., the values of each parameter.

For the named arguments, including the named argument turns on only that setting.
To turn off a specific setting, follow the named argument with remove or 0 .

The named argument --productions is shorthand for the four arguments --default,
–user, --justifications, and --chunks.

Examples

The most common uses of watch are by using the numeric arguments which indicate
watch levels. To turn off all printing of Soar internals, do any one of the following
(not all possibilities listed):

watch --level 0

watch -l 0

watch -N

Although the --level flag is optional, its use is better form (especially for complex
arg lists):

watch --level 5 \emph{(... OK)}

watch 5 \emph{(... OK, but try to avoid)}

Be careful of where the level is on the command line, for example, if you want level
2 and preferences:

watch -r -l 2 (... Incorrect: -r flag ignored, level 2 parsed after it and overrides the setting)

watch -r 2 (... Syntax error: 0 or remove expected as optional argument to -r)

watch -r -l 2 (... Incorrect: -r flag ignored, level 2 parsed after it and overrides the setting)

watch 2 -r (... OK, but try to avoid)

watch -l 2 -r (... OK)

To turn on printing of decisions, phases and productions, do any one of the following
(not all possibilities listed):

watch --level 3

watch -l 3

watch --decisions --phases --productions

watch -d -p -P

Individual options can be changed as well. To turn on printing of decisions and wmes,
but not phases and productions, do any one of the following (not all possibilities
listed):
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watch --level 1 --wmes

watch -l 1 -w

watch --decisions --wmes

watch -d --wmes

watch -w --decisions

watch -w -d

To turn on printing of decisions, productions and wmes, and turns phases off, do any
one of the following (not all possibilities listed):

watch --level 4 --phases remove

watch -l 4 -p remove

watch -l 4 -p 0

watch -d -P -w -p remove

To watch the firing and retraction of decisions and only user productions, do any one
of the following (not all possibilities listed):

watch -l 1 -u

watch -d -u

To watch decisions, phases and all productions except user productions and justifica-
tions, and to see full wmes, do any one of the following (not all possibilities listed):

watch --decisions --phases --productions --user remove --justifications \\

remove --fullwmes

watch -d -p -P -f -u remove -j 0

watch -f -l 3 -u 0 -j 0

Default Aliases

Alias Maps to
w watch

See Also

pwatch print run watch-wmes

5.3.8 watch-wmes

Synopsis

watch-wmes -[a|r] -t <type> pattern

watch-wmes -[l|R] [-t <type>]
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Options

-a, --add-filter Add a filter to print wmes that meet the type and pat-
tern criteria.

-r, --remove-filter Delete filters for printing wmes that match the type and
pattern criteria.

-l, --list-filter List the filters of this type currently in use. Does not
use the pattern argument.

-R, --reset-filter Delete all filters of this type. Does not use pattern arg.
-t, --type Follow with a type of wme filter, see below.

Pattern The pattern is an id-attribute-value triplet:

id attribute value

Note that * can be used in place of the id, attribute or value as a wildcard that
maches any string. Note that braces are not used anymore.

Types When using the -t flag, it must be followed by one of the following:

adds Print info when a wme is added.
removes Print info when a wme is retracted.
both Print info when a wme is added or retracted.

When issuing a -R or -l, the -t flag is optional. Its absence is equivalent to -t both.

Description

This commands allows users to improve state tracing by issuing filter-options that
are applied when watching wmes. Users can selectively define which object-attribute-
value triplets are monitored and whether they are monitored for addition, removal or
both, as they go in and out of working memory.

Note: The functionality of watch-wmes resided in the watch command prior to
Soar 8.6.

Examples

Users can watch an attribute of a particular object (as long as that object already
exists):

soar> watch-wmes --add-filter -t both D1 speed *

or print WMEs that retract in a specific state (provided the state already exists):

soar> watch-wmes --add-filter -t removes S3 * *
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or watch any relationship between objects:

soar> watch-wmes --add-filter -t both * ontop *

5.4 Configuring Soar’s Runtime Parameters

This section describes the commands that control Soar’s Runtime Parameters. Many
of these commands provide options that simplify or restrict runtime behavior to en-
able easier and more localized debugging. Others allow users to select alternative
algorithms or methodologies. Users can configure Soar’s learning mechanism; exam-
ine the backtracing information that supports chunks and justifications; provide hints
that could improve the efficiency of the Rete matcher; limit runaway chunking and
production firing; choose an alternative algorithm for determining whether a work-
ing memory element receives O-support; and configure options for selecting between
mutually indifferent operators.

The specific commands described in this section are:

Summary

attribute-preferences-mode For Soar 7 mode, controls handling of
preferences for non-context slots.

explain-backtraces - Print information about chunk and justification
backtraces.

indifferent-selection - Controls indifferent preference arbitration.

learn - Set the parameters for chunking, Soar’s learning mechanism.

max-chunks - Limit the number of chunks created during a decision
cycle.

max-elaborations - Limit the maximum number of elaboration cycles
in a given phase.

max-memory-usage - Set the number of bytes that when exceeded by
an agent, will trigger the memory usage exceeded event.

max-nil-output-cycles - Limit the maximum number of decision cycles
executed without producing output.

multi-attributes - Declare multi-attributes so as to increase Rete match-
ing efficiency.

numeric-indifferent-mode - Select method for combining numeric pref-
erences.

o-support-mode - Choose experimental variations of o-support.

save-backtraces - Save trace information to explain chunks and justifi-
cations.
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set-stop-phase - Controls the phase where agents stop when running by
decision.

soar8 - Toggle between Soar 8 methodology and Soar 7 methodology.

timers - Toggle on or off the internal timers used to profile Soar.

waitsnc - Generate a wait state rather than a state-no-change impasse.

5.4.1 attribute-preferences-mode

For Soar 7, this command sets and prints the attributes preferences mode to control
the handling of preferences (other than acceptable and reject preferences) for non-
context slots.

Synopsis

attribute-preferences-mode [0|1|2]

Options

0 Handle preferences the normal (Soar 6) way.
1 Handle preferences the normal (Soar 6) way, but print a warning message

whenever a preference other than + or - is created for a noncontext slot.
2 When a preference other than + or - created for a non-context slot, print

an error message and ignore (discard) that preference. For non-context slots,
the set of values installed in working memory is always equal to the set of
acceptable values minus the set of rejected values.

Description

For Soar 7, this command sets and prints the attributes preferences mode to control
the handling of preferences (other than acceptable and reject preferences) for non-
context slots. The command issued with no arguments, returns the current mode.

This command is obsolete for Soar 8. In Soar 8, the code automatically operates as
if attribute-preferences-mode = 2.

5.4.2 explain-backtraces

Print information about chunk and justification backtraces.
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Synopsis

explain-backtraces -f prod_name

explain-backtraces [-c <n>] prod_name

Options

(no args) List all productions that can be “explained”
prod name List all conditions and grounds for the chunk or justification.
-c, --condition Explain why condition number n is in the chunk or justification.

Description

This command provides some interpretation of backtraces generated during chunking.
The two most useful variants are:

explain-backtraces prodname

explain-backtraces -c n prodname

The first variant prints a numbered list of all the conditions for the named chunk or
justification, and the ground which resulted in inclusion in the chunk/justification.
A ground is a working memory element (WME) which was tested in the super-
goal. Just knowing which WME was tested may be enough to explain why the
chunk/justification exists. If not, the second variant, explain-backtraces -c n
prodname, where n is the condition of interest, can be used to obtain a list of
the productions which fired to obtain this condition in the chunk/justification (and
the crucial WMEs tested along the way).

save-backtraces mode must be on when a chunk or justification is created or no
explanation will be available. Calling explain-backtraces with no argument prints
a list of all chunks and justifications for which backtracing information is available.

Examples

Examining the chunk chunk-65*d13*tie*2 generated in a water-jug task:

soar> explain-backtraces chunk-65*d13*tie*2

(sp chunk-65*d13*tie*2

(state <s2> ^name water-jug ^jug <n4> ^jug <n3>)

(state <s1> ^name water-jug ^desired <d1> ^operator <o1> + ^jug <n1>

^jug <n2>)

(<s2> ^desired <d1>)

(<o1> ^name pour ^into <n1> ^jug <n2>)

(<n1> ^volume 3 ^contents 0)

(<s1> ^problem-space <p1>)
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(<p1> ^name water-jug)

(<n4> ^volume 3 ^contents 3)

(<n3> ^volume 5 ^contents 0)

(<n2> ^volume 5 ^contents 3)

-->

(<s3> ^operator <o1> -))

1: (state <s2> ^name water-jug) Ground: (S3 ^name water-jug)

2: (state <s1> ^name water-jug) Ground: (S5 ^name water-jug)

3: (<s1> ^desired <d1>) Ground: (S5 ^desired D1)

4: (<s2> ^desired <d1>) Ground: (S3 ^desired D1)

5: (<s1> ^operator <o1> +) Ground: (S5 ^operator O18 +)

6: (<o1> ^name pour) Ground: (O18 ^name pour)

7: (<o1> ^into <n1>) Ground: (O18 ^into N3)

8: (<n1> ^volume 3) Ground: (N3 ^volume 3)

9: (<n1> ^contents 0) Ground: (N3 ^contents 0)

10: (<s1> ^jug <n1>) Ground: (S5 ^jug N3)

11: (<s1> ^problem-space <p1>) Ground: (S5 ^problem-space P3)

12: (<p1> ^name water-jug) Ground: (P3 ^name water-jug)

13: (<s2> ^jug <n4>) Ground: (S3 ^jug N1)

14: (<n4> ^volume 3) Ground: (N1 ^volume 3)

15: (<n4> ^contents 3) Ground: (N1 ^contents 3)

16: (<s2> ^jug <n3>) Ground: (S3 ^jug N2)

17: (<n3> ^volume 5) Ground: (N2 ^volume 5)

18: (<n3> ^contents 0) Ground: (N2 ^contents 0)

19: (<s1> ^jug <n2>) Ground: (S5 ^jug N4)

20: (<n2> ^volume 5) Ground: (N4 ^volume 5)

21: (<n2> ^contents 3) Ground: (N4 ^contents 3)

22: (<o1> ^jug <n2>) Ground: (O18 ^jug N4)

Further examining condition 21:

soar> explain-backtraces -c 21 chunk-65*d13*tie*2

Explanation of why condition (N4 ^contents 3) was included in

chunk-65*d13*tie*2

Production chunk-64*d13*opnochange*1 matched

(N4 ^contents 3) which caused

production selection*select*failure-evaluation-becomes-reject-preference

to match (E3 ^symbolic-value failure) which caused

A result to be generated.

Default Aliases

Alias Maps to
eb explain-backtraces
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See Also

save-backtraces

5.4.3 indifferent-selection

Controls indifferent preference arbitration.

Synopsis

indifferent-selection [-aflr]

Options

-a, --ask Ask the user to choose. Not implemented.
-f, --first Select the first indifferent object from Soar’s internal list.
-l, --last Select the last indifferent object from Soar’s internal list.
-r, --random Select randomly (default).

Description

The indifferent-selection command allows the user to set which option should be
used to select between operator proposals that are mutally indifferent in preference
memory.

The default option is –random which chooses an operator at random from the set
of mutually indifferent proposals, with the selection biased by any existing numeric
preferences. For repeatable results, the user may choose the –first or –last option.
“First” refers to the list of operator augmentations internal to Soar; the ordering of
the augmentations is arbitrary but deterministic, so that if you run Soar repeatedly,
–first will always make the same decision. Similarly, –last chooses the last of the
tied objects from the internal list. For complete control over the decision process,
the –ask option prompts the user to select the next operator from a list of the tied
operators.

If no argument is provided, indifferent-selection will display the current setting.

Default Aliases

Alias Maps to
inds indifferent-selection
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See Also

numeric-indifference-mode

5.4.4 learn

Set the parameters for chunking, Soar’s learning mechanism.

Synopsis

learn [-l]

learn -[d|E|o]

learn -e [ab]

Options

-e, --enable, --on Turn chunking on. Can be modified by -a or -b.
-d, --disable, --off Turn all chunking off. (default)
-E, --except Learning is on, except as specified by RHS dont-learn

actions.
-o, --only Chunking is on only as specified by RHS force-learn

actions.
-l, --list Prints listings of dont-learn and force-learn states.
-a, --all-levels Build chunks whenever a subgoal returns a result.

Learning must be –enabled.
-b, --bottom-up Build chunks only for subgoals that have not yet had any

subgoals with chunks built. Learning must be –enabled.

Description

The learn command controls the parameters for chunking (Soar’s learning mecha-
nism). With no arguments, this command prints out the current learning environ-
ment status. If arguments are provided, they will alter the learning environment as
described in the options and arguments table. The watch command can be used to
provide various levels of detail when productions are learned. Learning is disabled
by default.

With the –on flag, chunking is on all the time. With the –except flag, chunking is
on, but Soar will not create chunks for states that have had RHS dont-learn actions
executed in them. With the –only flag, chunking is off, but Soar will create chunks
for only those states that have had RHS force-learn actions executed in them. With
the –off flag, chunking is off all the time.
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The –only flag and its companion force-learn RHS action allow Soar developers to
turn learning on in a particular problem space, so that they can focus on debugging
the learning problems in that particular problem space without having to address
the problems elsewhere in their programs at the same time. Similarly, the –except
flag and its companion dont-learn RHS action allow developers to temporarily turn
learning off for debugging purposes. These facilities are provided as debugging tools,
and do not correspond to any theory of learning in Soar.

The –all-levels and –bottom-up flags are orthogonal to the –on, –except, –only,
and –off flags, and so, may be used in combination with them. With bottom-up
learning, chunks are learned only in states in which no subgoal has yet generated
a chunk. In this mode, chunks are learned only for the “bottom” of the subgoal
hierarchy and not the intermediate levels. With experience, the subgoals at the
bottom will be replaced by the chunks, allowing higher level subgoals to be chunked.

Learning can be turned on or off at any point during a run.

Examples

To enable learning only at the lowest subgoal level:

learn -e b

To see all the force-learn and dont-learn states registered by RHS actions

learn -l

Default Aliases

Alias Maps to
l learn

See Also

watch explain-backtraces save-backtraces

5.4.5 max-chunks

Limit the number of chunks created during a decision cycle.

Synopsis

max-chunks [n]



5.4. CONFIGURING SOAR’S RUNTIME PARAMETERS 127

Options

n Maximum number of chunks allowed during a decision cycle.

Description

The max-chunks command is used to limit the maximum number of chunks that may
be created during a decision cycle. The initial value of this variable is 50; allowable
settings are any integer greater than 0.

The chunking process will end after max-chunks chunks have been created, even
if there are more results that have not been backtraced through to create chunks, and
Soar will proceed to the next phase. A warning message is printed to notify the user
that the limit has been reached.

This limit is included in Soar to prevent getting stuck in an infinite loop during the
chunking process. This could conceivably happen because newly-built chunks may
match immediately and are fired immediately when this happens; this can in turn lead
to additional chunks being formed, etc. If you see this warning, something is seriously
wrong; Soar is unable to guarantee consistency of its internal structures. You should
not continue execution of the Soar program in this situation; stop and determine
whether your program needs to build more chunks or whether you’ve discovered a
bug (in your program or in Soar itself).

5.4.6 max-elaborations

Limit the maximum number of elaboration cycles in a given phase. Print a warning
message if the limit is reached during a run.

Synopsis

max-elaborations [n]

Options

n Maximum allowed elaboration cycles, must be a positive integer.

Description

This command sets and prints the maximum number of elaboration cycles allowed.
If n is given, it must be a positive integer and is used to reset the number of allowed
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elaboration cycles. The default value is 100. max-elaborations with no arguments
prints the current value.

max-elaborations controls the maximum number of elaborations allowed in a single
decision cycle. The elaboration phase will end after max-elaboration cycles have
completed, even if there are more productions eligible to fire or retract; and Soar will
proceed to the next phase after a warning message is printed to notify the user. This
limits the total number of cycles of parallel production firing but does not limit the
total number of productions that can fire during elaboration.

This limit is included in Soar to prevent getting stuck in infinite loops (such as a
production that repeatedly fires in one elaboration cycle and retracts in the next);
if you see the warning message, it may be a signal that you have a bug your code.
However some Soar programs are designed to require a large number of elaboration
cycles, so rather than a bug, you may need to increase the value of max-elaborations.

In Soar8, max-elaborations is checked during both the Propose Phase and the Apply
Phase. If Soar8 runs more than the max-elaborations limit in either of these phases,
Soar8 proceeds to the next phase (either Decision or Output) even if quiescence has
not been reached.

Examples

The command issued with no arguments, returns the max elaborations allowed:

max-elaborations

to set the maximum number of elaborations in one phase to 50:

max-elaborations 50

5.4.7 max-memory-usage

Set the number of bytes that when exceeded by an agent, will trigger the memory
usage exceeded event.

Synopsis

max-memory-usage [n]

Options

n Size of limit in bytes.
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Description

The max-memory-usage command is used to trigger the memory usage exceeded
event. The initial value of this is 100MB (100,000,000); allowable settings are any
integer greater than 0. The code supporting this event is commented out by default
in the release build. The test can be computationally expensive and is needed only
for specific embedded applications. Users may enable the test and event generation
by uncommenting code in SoarKernel/src/mem.cpp.

Using the command with no arguments displays the current limit.

5.4.8 max-nil-output-cycles

Limit the maximum number of decision cycles that are executed without producing
output when run is invoked with run-til-output args.

Synopsis

max-nil-output-cycles [n]

Options

n Maximum number of consecutive output cycles allowed without
producing output. Must be a positive integer.

Description

This command sets and prints the maximum number of nil output cycles (output cy-
cles that put nothing on the output link) allowed when running using run-til-output
(run –output). If n is not given, this command prints the current number of nil-
output-cycles allowed. If n is given, it must be a positive integer and is used to reset
the maximum number of allowed nil output cycles.

max-nil-output-cycles controls the maximum number of output cycles that gen-
erate no output allowed when a run –out command is issued. After this limit has
been reached, Soar stops. The default initial setting of n is 15.

Examples

The command issued with no arguments, returns the max empty output cycles al-
lowed:
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max-nil-output-cycles

to set the maximum number of empty output cycles in one phase to 25:

max-nil-output-cycles 25

See Also

run

5.4.9 multi-attributes

Declare a symbol to be multi-attributed.

Synopsis

multi-attributes [symbol [n]]

Options

symbol Any Soar attribute.
n Integer > 1, estimate of degree of simultaneous values for attribute.

Description

This command declares the given symbol to be an attribute which can take on multiple
values. The optional n is an integer (>1) indicating an upper limit on the number
of expected values that will appear for an attribute. If n is not specified, the value
10 is used for each declared multi-attribute. More informed values will tend to result
in greater efficiency. This command is used only to provide hints to the production
condition reorderer so it can produce better condition orderings. Better orderings
enable the rete network to run faster. This command has no effect on the actual
contents of working memory and most users needn’t use this at all.

Note that multi-attributes declarations must be made before productions are loaded
into soar or this command will have no effect.

Examples

Declare the symbol “thing” to be an attribute likely to take more than 1 but no more
than 4 values:

multi-attributes thing 4
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5.4.10 numeric-indifferent-mode

Select method for combining numeric preferences.

Synopsis

numeric-indifferent-mode [-as]

Options

-a, --avg, --average Use average mode (default).
-s, --sum Use sum mode.

Description

The numeric-indifferent-mode command is used to select the method for combining
numeric preferences. This command is only meaningful in indifferent-selection

--random mode.

The default procedure is --avg (average) which assigns a final value to an operator
according to the rule:

• If the operator has at least one numeric preference, assign it the value that is
the average of all of its numeric preferences.

• If the operator has no numeric preferences (but has been included in the indif-
ferent selection through some combination of non-numeric preferences), assign
it the value 50.

The intended range of numeric-preference values for --avg mode is 0-100. The other
combination option --sum assigns a final value according to the rule:

• Add together any numeric preferences for the operator (defaulting to 0 if there
are none).

• Assign the operator the value eˆ{PreferenceSum / AgentTemperature}, where
AgentTemperature is a compile-time constant currently set at 25.0.

Any real-numbered preference may be used in --sum mode.

Once a value has been computed for each operator, the next operator is selected
probabilistically, with each candidate operator’s chance weighted by its computed
value.
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5.4.11 o-support-mode

Choose experimental variations of o-support.

Synopsis

o-support-mode [0|1|2|3|4]

Options

0 Mode 0 is the base mode. O-support is calculated based on the structure of
working memory that is tested and modified. Testing an operator or oper-
ator acceptable preference results in state or operator augmentations being
o-supported. The support computation is very complex (see soar manual).

1 Not available through gSKI.
2 Mode 2 is the same as mode 0 except that all support is calculated the pro-

duction structure, not from working memory structure. Augmentations of
operators are still o-supported.

3 Mode 3 is the same as mode 2 except that operator elaborations (adding
attributes to operators) now get i-support even though you have to test the
operator to elaborate an operator.

4 Mode 4 is the default.

Description

The o-support-mode command is used to control the way that o-support is deter-
mined for preferences. Only o-support modes 3 & 4 can be considered current to
Soar8, and o-support mode 4 should be considered an improved version of mode 3.
The default o-support mode is mode 4.

In o-support modes 3 & 4, support is given production by production; that is, all
preferences generated by the RHS of a single instantiated production will have the
same support. The difference between the two modes is in how they handle pro-
ductions with both operator and non-operator augmentations on the RHS. For more
information on o-support calculations, see the relevant appendix in the Soar manual.

Running o-support-mode with no arguments prints out the current o-support-mode.

5.4.12 save-backtraces

Save trace information to explain chunks and justifications.
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Synopsis

save-backtraces [-ed]

Options

-e, --enable, --on Turn explain sysparam on.
-d, --disable, --off Turn explain sysparam off.

Description

The save-backtraces variable is a toggle that controls whether or not backtracing
information (from chunks and justifications) is saved.

When save-backtraces is set to off , backtracing information is not saved and expla-
nations of the chunks and justifications that are formed can not be retrieved. When
save-backtraces is set to on, backtracing information can be retrieved by using the
explain-backtraces command. Saving backtracing information may slow down the
execution of your Soar program, but it can be a very useful tool in understanding
how chunks are formed.

See Also

explain-backtraces

5.4.13 set-stop-phase

Controls the phase where agents stop when running by decision.

Synopsis

set-stop-phase -[ABadiop]

Options

Options -A and -B are optional and mutually exclusive. If not specified, the default
is -B. Only one of -a, -d, -i, -o, -p must be selected. With no options, reports the
current stop phase.
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-A, --after Stop after specified phase.
-B, --before Stop before specified phase (the default).
-a, --apply Select the apply phase.
-d, --decision Select the decision phase.
-i, --input Select the input phase.
-o, --output Select the output phase.
-p, --proposal Select the proposal phase.

Description

When running by decision cycle it can be helpful to have agents stop at a particular
point in its execution cycle. This command allows the user to control which phase
Soar stops in. The precise definition is that running for <n> decisions and stopping
before phase <ph> means to run until the decision cycle counter has increased by
<n> and then stop when the next phase is <ph>. The phase sequence (as of this
writing) is: input, proposal, decision, apply, output. Stopping after one phase is
exactly equivalent to stopping before the next phase.

On initialization Soar defaults to stopping before the input phase (or after the output
phase, however you like to think of it).

Setting the stop phase applies to all agents.

Examples

set-stop-phase -Bi // stop before input phase

set-stop-phase -Ad // stop after decision phase (before apply phase)

set-stop-phase -d // stop before decision phase

set-stop-phase --after --output // stop after output phase

set-stop-phase // reports the current stop phase

5.4.14 soar8

Toggle between Soar 8 methodology and Soar 7 methodology.

Synopsis

soar8 [-ed]



5.4. CONFIGURING SOAR’S RUNTIME PARAMETERS 135

Options

-e, --enable, --on Use Soar 8 methodology. (Default)
-d, --disable, --off Use Soar 7 methodology.

Description

The soar8 command allows users to revert to Soar 7 methodology in order to run
older Soar programs. Both production memory and working memory must be empty
to toggle between Soar 7 and Soar 8 mode. The soar8 command with no arguments
returns the current mode, the default is Soar 8. Users can toggle between modes
ONLY when production memory and working memory are both empty. This means
that users must either change the mode at startup before any productions are loaded,
or must first issue “excise --all” (which does an “init-soar” as well) before changing
modes. Note that there are differences in the preference mechanism and in operator
termination (among other things) between Soar 8 and Soar 7. Users should read the
Soar 8.2 Release Notes for more details.

Warnings

Production memory and working memory must be empty to switch between modes.

5.4.15 timers

Toggle on or off the internal timers used to profile Soar.

Synopsis

timers [-ed]

Options

-d, --disable, --off Disable all timers.
-e, --enable, --on Enable timers as compiled.

Description

This command is used to control the timers that collect internal profiling information
while Soar is running. With no arguments, this command prints out the current timer
status. Timers are ENABLED by default. The default compilation flags for soar
enable the basic timers and disable the detailed timers. The timers command can
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only enable or disable timers that have already been enabled with compiler directives.
See the stats command for more info on the Soar timing system.

See Also

stats

5.4.16 waitsnc

Synopsis

wait -[e|d]

Options

-e, --enable, --on Turns a state-no-change into a wait state.
-d, --disable, --off Default. A state-no-change generates an impasse.

Description

In some systems, espcially those that model expert (fully chunked) knowledge, a
state-no-change may represent a wait state rather than an impasse. The waitsnc
command allows the user to switch to a mode where a state-no-change that would
normally generate an impasse (and subgoaling), instead generates a wait state. At a
wait state, the decision cycle will repeat (and the decision cycle count is incremented)
but no state-no-change impasse (and therefore no substate) will be generated.

When issued with no arguments, waitsnc returns its current setting.

5.5 File System I/O Commands

This section describes commands which interact in one way or another with operating
system input and output, or file I/O. Users can save/retrieve information to/from
files, redirect the information printed by Soar as it runs, and save and load the binary
representation of productions. The specific commands described in this section are:

Summary

cd - Change directory.

clog - Record all user-interface input and output to a file. (was log)
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command-to-file - Dump the printed output and results of a command
to a file.

dirs - List the directory stack.

echo - Print a string to the current output device.

ls - List the contents of the current working directory.

popd - Pop the current working directory off the stack and change to the
next directory on the stack.

pushd - Push a directory onto the directory stack, changing to it.

pwd - Print the current working directory.

rete-net - Save the current Rete net, or restore a previous one.

set-library-location - Set the top level directory containing demos/help/etc.

source - Load and evaluate the contents of a file.

The source command is used for nearly every Soar program. The directory func-
tions are important to understand so that users can navigate directories/folders to
load/save the files of interest. Soar applications that include a graphical interface or
other simulation environment will often require the use of echo .

5.5.1 cd

Change directory.

Synopsis

cd [directory]

Options

directory The directory to change to, can be relative or full path.

Description

Change the current working directory. If run with no arguments, returns to the
directory that the command line interface was started in, often referred to as the
home directory.
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Examples

To move to the relative directory named ../home/soar/agents

cd ../home/soar/agents

Default Aliases

Alias Maps to
chdir cd

See Also

dirs ls pushd popd source

5.5.2 clog

Record all user-interface input and output to a file.

Synopsis

clog [-Ae] filename

clog -a string

clog [cdoq]

Options

filename Open filename and begin logging.
-c, --close,

-o, --off, -d,

--disable

Stop logging, close the file.

-a, --add string Add the given string to the open log
file.

-q, --query Returns open if logging is active or
closed if logging is not active.

-A, --append, -e,

--existing

Opens existing log file named filename
and logging is added at the end of the
file.
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Description

The clog command allows users to save all user-interface input and output to a file.
When Soar is logging to a file, everything typed by the user and everything printed
by Soar is written to the file (in addition to the screen).

Invoke clog with no arguments (or with -q ) to query the current logging status.
Pass a filename to start logging to that file (relative to the command line interface’s
home directory . Use the close option to stop logging.

Examples

To initiate logging and place the record in foo.log:

clog foo.log

To append log data to an existing foo.log file:

clog -A foo.log

To terminate logging and close the open log file:

clog -c

See Also

command-to-file

Known Issues

Does not log everything when structured output is selected.

5.5.3 command-to-file

Dump the printed output and results of a command to a file.

Synopsis

command-to-file [-a] filename command [args]
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Options

-a, --append Append if file exists.
filename The file to log the results of the command to
command The command to log
args Arguments for command

Description

This command logs a single command. It is almost equivalent to opening a log using
clog, running the command, then closing the log, the only difference is that input
isn’t recorded.

Running this command while a log is open is an error. There is currently not support
for multiple logs in the command line interface, and this would be an instance of
multiple logs.

This command echos output both to the screen and to a file, just like clog.

See also

clog

5.5.4 dirs

List the directory stack

Synopsis

dirs

Options

No options.

Description

This command lists the directory stack. Agents can move through a directory struc-
ture by pushing and popping directory names. The dirs command returns the stack.

The command pushd places a new “agent current directory” on top of the directory
stack and cd’s to it. The command popd removes the directory at the top of the
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directory stack and cd’s to the previous directory which now appears at the top of
the stack.

See Also

cd ls pushd popd source

5.5.5 echo

Print a string to the current output device.

Synopsis

echo string

Options

string The string to print.

Description

This command echos the args to the current output stream. This is normally stdout
but can be set to a variety of channels. If an arg is --nonewline then no newline is
printed at the end of the printed strings. Otherwise a newline is printed after printing
all the given args. Echo is the easiest way to add user comments or identification
strings in a log file.

Examples

This example will add these comments to the screen and any open log file.

echo This is the first run with disks = 12

See Also

clog

5.5.6 ls

List the contents of the current working directory.
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Synopsis

ls

Options

No options.

Description

List the contents of the working directory.

Default Aliases

Alias Maps to
dir ls

See Also

cd dirs pushd popd source

5.5.7 popd

Pop the current working directory off the stack and change to the next directory on
the stack. Can be relative pathname or fully specified path.

Synopsis

popd

Options

No options.

Description

This command pops a directory off of the directory stack and cd’s to it. See the dirs
command for an explanation of the directory stack.
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See Also

cd dirs ls pushd source

5.5.8 pushd

Push a directory onto the directory stack, changing to it.

Synopsis

pushd directory

Options

directory Directory to change to, saving the current directory on to the stack.

Description

Maintain a stack of working directories and push the directory on to the stack. Can
be relative path name or fully specified.

See Also

cd dirs ls popd source

5.5.9 pwd

Print the current working directory.

Synopsis

pwd

Options

No options.
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Description

Prints the current working directory of Soar.

Default Aliases

Alias Maps to
topd pwd

5.5.10 rete-net

Save the current Rete net, or restore a previous one.

Synopsis

rete-net -s|l filename

Options

-s, --save Save the Rete net in the named file. Cannot be
saved when there are justifications present. Use
excise -j

-l, -r, --load, --restore Load the named file into the Rete network. work-
ing memory and production memory must both be
empty. Use excise -a

filename The name of the file to save or load.

Description

The rete-net command saves the current Rete net to a file or restores a Rete net
previously saved. The Rete net is Soar’s internal representation of production and
working memory; the conditions of productions are reordered and common substruc-
tures are shared across different productions. This command provides a fast method
of saving and loading productions since a special format is used and no parsing is
necessary. Rete-net files are portable across platforms that support Soar.

Normally users wish to save only production memory. Note that justifications cannot
be present when saving the Rete net. Issuing an init-soar before saving a Rete net
will remove all justifications and working memory elements.
If the filename contains a suffix of “.Z”, then the file is compressed automatically
when it is saved and uncompressed when it is loaded. Compressed files may not be
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portable to another platform if that platform does not support the same uncompress
utility.

Default Aliases

Alias Maps to
rn rete-net

See Also

excise init-soar

5.5.11 set-library-location

Set the top level directory containing demos/help/etc.

Synopsis

set-library-location [directory]

Options

directory The new desired library location.

Description

Invoke with no arguments to query what the current library location is. The library
location should contain at least the help/ subdirectory and the command-names file
for help to work.

See Also

help

5.5.12 source

Load and evaluate the contents of a file.
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Synopsis

source -[adv] filename

Options

filename The file of Soar productions and commands to load.
-a, --all Enable a summary for each file sourced
-d, --disable Disable all summaries
-v, --verbose Print excised production names

Description

Load and evaluate the contents of a file. The filename can be a relative path or a fully
qualified path. source will generate an implicit push to the new directory, execute
the command, and then pop back to the current working directory from which the
command was issued.

After the source completes, the number of productions sourced and excised is printed:

agent> source demos/mac/mac.soar

******************

Total: 18 productions sourced.

Source finished.

agent> source demos/mac/mac.soar

#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*

Total: 18 productions sourced. 18 productions excised.

Source finished.

This can be disabled by using the -d flag:

agent> source demos/mac/mac.soar -d

******************

Source finished.

agent> source demos/mac/mac.soar -d

#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*

Source finished.

A list of excised productions is available using the -v flag:

agent> source demos/mac/mac.soar -v

#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*

Total: 18 productions sourced. 18 productions excised.

Excised productions:

mac*detect*state*success

mac*evaluate*state*failure*more*cannibals

monitor*move-boat
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monitor*state*left

...

A separate summary for each file sourced can be enabled using the -a flag:

agent> source demos/mac/mac.soar -a

_firstload.soar: 0 productions sourced.

all_source.soar: 0 productions sourced.

**

goal-test.soar: 2 productions sourced.

***

monitor.soar: 3 productions sourced.

****

search-control.soar: 4 productions sourced.

top-state.soar: 0 productions sourced.

elaborations_source.soar: 0 productions sourced.

_readme.soar: 0 productions sourced.

**

initialize-mac.soar: 2 productions sourced.

*******

move-boat.soar: 7 productions sourced.

mac_source.soar: 0 productions sourced.

mac.soar: 0 productions sourced.

Total: 18 productions sourced.

Source finished.

Combining the -a and -v flag adds excised production names to the output for each
file.

See Also

cd dirs ls pushd popd

5.6 Soar I/O Commands

This section describes the commands used to manage Soar’s Input/Output (I/O) sys-
tem, which provides a mechanism for allowing Soar to interact with external systems,
such as a computer game environment or a robot.

Soar I/O functions make calls to add-wme and remove-wme to add and remove ele-
ments to the io structure of Soar’s working memory.

The specific commands described in this section are:

Summary



148 CHAPTER 5. THE SOAR USER INTERFACE

add-wme - Manually add an element to working memory.

remove-wme - Manually remove an element from working memory.

These commands are used mainly when Soar needs to interact with an external en-
vironment. Users might take advantage of these commands when debugging agents,
but care should be used in adding and removing wmes this way as they do not fall
under Soar’s truth maintenance system.

5.6.1 add-wme

Manually add an element to working memory.

Synopsis

add-wme id [^]attribute value [+]

Options

id Must be an existing identifier.
^ Leading ˆ on attribute is optional.
attribute Attribute can be any Soar symbol. Use * to have Soar create a new

identifier.
value Value can be any soar symbol. Use * to have Soar create a new

identifier.
+ If the optional preference is specified, its value must be + (accept-

able).

Description

Manually add an element to working memory. add-wme is often used by an input
function to update Soar’s information about the state of the external world.

add-wme adds a new wme with the given id, attribute, value and optional preference.
The given id must be an existing identifier. The attribute and value fields can be any
Soar symbol. If * is given in the attribute or value field, Soar creates a new identifier
(symbol) for that field. If the preference is given, it can only have the value + to
indicate that an acceptable preference should be created for this wme.

Note that because the id must already exist in working memory, the WME that you
are adding will be attached (directly or indirectly) to the top-level state. As with
other WME’s, any WME added via a call to add-wme will automatically be removed
from working memory once it is no longer attached to the top-level state.
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Examples

This example adds the attribute/value pair “message-status received” to the identifier
(symbol) S1:

add-wme S1 ^message-status received

This example adds an attribute/value pair with an acceptable preference to the iden-
tifier (symbol) Z2. The attribute is “message” and the value is a unique identifier
generated by Soar. Note that since the ˆ is optional, it has been left off in this case.

add-wme Z2 message * +

Default Aliases

Alias Maps to
aw add-wme

Warnings

Be careful how you use this command. It may have weird side effects (possibly even
including system crashes). For example, the chunker can’t backtrace through wmes
created via add-wme , nor will such wmes ever be removed thru Soar’s garbage collec-
tion. Manually removing context/impasse wmes may have unexpected side effects.

See Also

remove-wme

5.6.2 remove-wme

Manually remove an element from working memory.

Synopsis

remove-wme timetag

Options

timetag A positive integer matching the timetag of an existing working
memory element.
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Description

The remove-wme command removes the working memory element with the given
timetag. This command is provided primarily for use in Soar input functions; al-
though there is no programming enforcement, remove-wme should only be called
from registered input functions to delete working memory elements on Soar’s input
link.

Beware of weird side effects, including system crashes.

Default Aliases

Alias Maps to
rw remove-wme

See Also

add-wme

Warnings

remove-wme should never be called from the RHS: if you try to match a wme on the
LHS of a production, and then remove the matched wme on the RHS, Soar will crash.

If used other than by input and output functions interfaced with Soar, this command
may have weird side effects (possibly even including system crashes). Removing
input wmes or context/impasse wmes may have unexpected side effects. You’ve been
warned.

5.7 Miscellaneous

The specific commands described in this section are:

Summary

alias - Define a new alias, or command, using existing commands and
arguments.

edit-production - Fire event to Move focus in an open editor to this
production.

input-period - For Soar7-mode, controls the rate of input to the Soar
agent.
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soarnews - Prints information about the current release.

srand - Seed the random number generator.

time - Uses a default system clock timer to record the wall time required
while executing a command.

version - Returns version number of Soar kernel.

5.7.1 alias

Define a new alias, or command, using existing commands and arguments.

Synopsis

alias name [cmd <args>]

alias

Options

No options.

Description

This command defines new aliases by creating Soar procedures with the given name.
The new procedure can then take an arbitrary number of arguments which are post-
pended to the given definition and then that entire string is executed as a command.
The definition must be a single command, multiple commands are not allowed. The
alias procedure checks to see if the name already exists, and does not destroy existing
procedures or aliases by the same name. Existing aliases can be removed by using
the unalias command. With no arguments, alias returns the list of defined aliases.
With only the name given, alias returns the current definition.

Examples

The alias wmes is defined as:

alias wmes print -i

If the user executes a command such as:

wmes {(* ^superstate nil)}

it is as if the user had typed this command:



152 CHAPTER 5. THE SOAR USER INTERFACE

print -i {(* ^superstate nil)}

To check what a specific alias is defined as, you would type

alias wmes

Default Aliases

Alias Maps to
a alias

See Also

unalias

5.7.2 edit-production

Move focus in an editor to this production.

Synopsis

edit-production production_name

Options

production name The name of the production to edit.

Description

If an editor (currently limited to Visual Soar) is open and connected to Soar, this
command causes the editor to open the file containing this production and move the
cursor to the start of the production. If there is no editor connected to Soar, the
command does nothing. In order to connect Visual Soar to Soar, launch Visual Soar
and choose Connect from the Soar Runtime menu. Then open the Visual Soar project
that you’re working on. At that point, you’re set up and edit-production will start
to work.

Examples

edit-production my*production*name
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See Also

sp

5.7.3 input-period

For Soar7-mode, controls the rate of input to the Soar agent.

Synopsis

input-period [period]

]

Options

period A non-negative integer.

Description

This command is obsolete for Soar8. In Soar8, input is done at the start of every
decision cycle.

For Soar7-mode, the input-period command controls the rate of input to the Soar
agent. If period is not specified, this command prints the current input period. If
period is specified, it must be a non-negative integer and is used to reset the input
period. A period of 0 sets input to occur every elaboration cycle. A positive value for
period sets Soar to accept input only every nth period decision cycles. The default
initial setting of the input-period parameter is 0.

Example

input-period 5

Input is accepted only every 5th decision cycle by the Soar agent. Soar 7 ONLY.

5.7.4 srand

Seed the random number generator.
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Synopsis

srand [seed]

Options

seed Random number generator seed.

Description

Seeds the random number generator with the passed seed. Calling srand without
providing a seed will seed the generator based on the contents of /dev/urandom (if
available) or else based on time() and clock() values.

Examples

srand 0

5.7.5 soarnews

Prints information about the current release.

Synopsis

soarnews

Default Aliases

Alias Maps to
sn soarnews

5.7.6 time

Use a default system clock timer to record the wall time required while executing a
command.

Synopsis

time command [arguments]
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Options

command The command to execute.
arguments Optional command arguments.

5.7.7 unalias

Undefine an existing alias

Synopsis

unalias name

Options

No options.

Description

This command undefines a previously created alias. This command takes exactly one
argument: the name of the alias to remove. Use the alias command by itself to list
all defined aliases.

Examples

unalias varprint

Default Aliases

Alias Maps to
un unalias height

See Also

alias
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5.7.8 version

Synopsis

version

Options

No options

Description

This command gives version information about the current Soar kernel. It returns
the version number itself, which can then be stored by the agent or the application.
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The Blocks-World Program

###############################################################################
###
### File : blocks.soar
### Original author(s): John E. Laird <laird@eecs.umich.edu>
### Organization : University of Michigan AI Lab
### Created on : 15 Mar 1995, 13:53:46
### Last Modified By : Clare Bates Congdon <congdon@eecs.umich.edu>
### Last Modified On : 17 Jul 1996, 16:35:14
### Soar Version : 7
###
### Description : A new, simpler implementation of the blocks world
### with just three blocks being moved at random.
###
### Notes:
### CBC, 6/27: Converted to Tcl syntax
### CBC, 6/27: Added extensive comments
###############################################################################

###############################################################################
# Create the initial state with blocks A, B, and C on the table.
#
# This is the first production that will fire; Soar creates the initial state
# as an architectural function (in the ’zeroth’ decision cycle), which will
# match against this production.
# This production does a lot of work because it is creating (preferences for)
# all the structure for the initial state:
# 1. The state has a problem-space named ’blocks’. The problem-space limits
# the operators that will be selected for a task. In this simple problem,
# it isn’t really necessary (there is only one operator), but it’s a
# programming convention that you should get used to.
# 2. The state has four ’things’ -- three blocks and the table.
# 3. The state has three ’ontop’ relations
# 4. Each of the things has substructure: their type and their names. Note that
# the fourth thing is actually a ’table’.
# 5. Each of the ontop relations has substructure: the top thing and the
# bottom thing.
# Finally, the production writes a message for the user.
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#
# Note that this production will fire exactly once and will never retract.

sp {blocks-world*elaborate*initial-state
(state <s> ^superstate nil)

-->
(<s> ^problem-space blocks

^thing <block-A> <block-B> <block-C> <table>
^ontop <ontop-A> <ontop-B> <ontop-C>)

(<block-A> ^type block ^name A)
(<block-B> ^type block ^name B)
(<block-C> ^type block ^name C)
(<table> ^type table ^name TABLE)
(<ontop-A> ^top-block <block-A> ^bottom-block <table>)
(<ontop-B> ^top-block <block-B> ^bottom-block <table>)
(<ontop-C> ^top-block <block-C> ^bottom-block <table>)
(write (crlf) |Initial state has A, B, and C on the table.|)}

###############################################################################
# State elaborations - keep track of which objects are clear
# There are two productions - one for blocks and one for the table.
###############################################################################

###############################################################################
# Assert table always clear
#
# The conditions establish that:
# 1. The state has a problem-space named ’blocks’.
# 2. The state has a thing of type table.
# The action:
# 1. creates an acceptable preference for an attribute-value pair asserting
# the table is clear.
#
# This production will also fire once and never retract.

sp {elaborate*table*clear
(state <s> ^problem-space blocks

^thing <table>)
(<table> ^type table)

-->
(<table> ^clear yes)}

###############################################################################
# Calculate whether a block is clear
#
# The conditions establish that:
# 1. The state has a problem-space named ’blocks’.
# 2. The state has a thing of type block.
# 3. There is no ’ontop’ relation having the block as its ’bottom-block’.
# The action:
# 1. create an acceptable preference for an attribute-value pair asserting
# the block is clear.
#
# This production will retract whenever an ’ontop’ relation for the given block
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# is created. Since the (<block> ^clear yes) wme only has i-support, it will
# be removed from working memory automatically when the production retracts.

sp {elaborate*block*clear
(state <s> ^problem-space blocks

^thing <block>)
(<block> ^type block)
-(<ontop> ^bottom-block <block>)

-->
(<block> ^clear yes)}

###############################################################################
# Suggest MOVE-BLOCK operators
#
# This production proposes operators that move one block ontop of another block.
# The conditions establish that:
# 1. The state has a problem-space named ’blocks’
# 2. The block moved and the block moved TO must be both be clear.
# 3. The block moved is different from the block moved to.
# 4. The block moved must be type block.
# 5. The block moved must not already be ontop the block being moved to.
# The actions:
# 1. create an acceptable preference for an operator.
# 2. create acceptable preferences for the substructure of the operator (its
# name, its ’moving-block’ and the ’destination).

sp {blocks-world*propose*move-block
(state <s> ^problem-space blocks

^thing <thing1> {<> <thing1> <thing2>}
^ontop <ontop>)

(<thing1> ^type block ^clear yes)
(<thing2> ^clear yes)
(<ontop> ^top-block <thing1>

^bottom-block <> <thing2>)
-->

(<s> ^operator <o> +)
(<o> ^name move-block

^moving-block <thing1>
^destination <thing2>)}

###############################################################################
# Make all acceptable move-block operators also indifferent
#
# The conditions establish that:
# 1. the state has an acceptable preference for an operator
# 2. the operator is named move-block
# The actions:
# 1. create an indifferent prefererence for the operator

sp {blocks-world*compare*move-block*indifferent
(state <s> ^operator <o> +)
(<o> ^name move-block)

-->
(<s> ^operator <o> =)}
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###############################################################################
# Apply a MOVE-BLOCK operator
#
# There are two productions that are part of applying the operator.
# Both will fire in parallel.
###############################################################################

###############################################################################
# Apply a MOVE-BLOCK operator
# (the block is no longer ontop of the thing it used to be ontop of)
#
# This production is part of the application of a move-block operator.
# The conditions establish that:
# 1. An operator has been selected for the current state
# a. the operator is named move-block
# b. the operator has a ’moving-block’ and a ’destination’
# 2. The state has an ontop relation
# a. the ontop relation has a ’top-block’ that is the same as the
# ’moving-block’ of the operator
# b. the ontop relation has a ’bottom-block’ that is different from the
# ’destination’ of the operator
# The actions:
# 1. create a reject preference for the ontop relation

sp {blocks-world*apply*move-block*remove-old-ontop
(state <s> ^operator <o>

^ontop <ontop>)
(<o> ^name move-block

^moving-block <block1>
^destination <block2>)

(<ontop> ^top-block <block1>
^bottom-block { <> <block2> <block3> })

-->
(<s> ^ontop <ontop> -)}

###############################################################################
# Apply a MOVE-BLOCK operator
# (the block is now ontop of the destination)
#
# This production is part of the application of a move-block operator.
# The conditions establish that:
# 1. An operator has been selected for the current state
# a. the operator is named move-block
# b. the operator has a ’moving-block’ and a ’destination’
# The actions:
# 1. create an acceptable preference for a new ontop relation
# 2. create (acceptable preferences for) the substructure of the ontop
# relation: the top block and the bottom block

sp {blocks-world*apply*move-block*add-new-ontop
(state <s> ^operator <o>)
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(<o> ^name move-block
^moving-block <block1>
^destination <block2>)

-->
(<s> ^ontop <ontop>)
(<ontop> ^top-block <block1>

^bottom-block <block2>)}

###############################################################################
###############################################################################
# Detect that the goal has been achieved
#
# The conditions establish that:
# 1. The state has a problem-space named ’blocks’
# 2. The state has three ontop relations
# a. a block named A is ontop a block named B
# b. a block named B is ontop a block named C
# c. a block named C is ontop a block named TABLE
# The actions:
# 1. print a message for the user that the A,B,C tower has been built
# 2. halt Soar

sp {blocks-world*detect*goal
(state <s> ^problem-space blocks

^ontop <AB>
{ <> <AB> <BC>}
{ <> <AB> <> <BC> <CT> } )

(<AB> ^top-block <A> ^bottom-block <B>)
(<BC> ^top-block <B> ^bottom-block <C>)
(<CT> ^top-block <C> ^bottom-block <T>)
(<A> ^type block ^name A)
(<B> ^type block ^name B)
(<C> ^type block ^name C)
(<T> ^type table ^name TABLE)

-->
(write (crlf) |Achieved A, B, C|)
(halt)}

###############################################################################
###############################################################################
# Monitor the state: Print a message every time a block is moved
#
# The conditions establish that:
# 1. An operator has been selected for the current state
# a. the operator is named move-block
# b. the operator has a ’moving-block’ and a ’destination’
# 2. each block has a name
# The actions:
# 1. print a message for the user that the block has been moved to the
# destination.

sp {blocks-world*monitor*move-block
(state <s> ^operator <o>)
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(<o> ^name move-block
^moving-block <block1>
^destination <block2>)

(<block1> ^name <block1-name>)
(<block2> ^name <block2-name>)

-->
(write (crlf) |Moving Block: | <block1-name>

| to: | <block2-name> ) }
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Grammars for production syntax

This appendix contains the BNF grammars for the conditions and actions of produc-
tions. (BNF stands for Backus-Naur form or Backus normal form; consult a computer
science book on theory, programming languages, or compilers for more information.
However, if you don’t already know what a BNF grammar is, it’s unlikely that you
have any need for this appendix.)

This information is provided for advanced Soar users, for example, those who need
to write their own parsers.

B.1 Grammar of Soar productions

A grammar for Soar productions is:

<soar-production> ::= sp "{" <production-name> [<documentation>] [<flags>]

<condition-side> --> <action-side> "}"

<documentation> ::= """ [<string>] """

<flags> ::= ":" (o-support | i-support | chunk | default)

B.1.1 Grammar for Condition Side

Below is a grammar for the condition sides of productions:

<condition-side> ::= <state-imp-cond> <cond>*

<state-imp-cond> ::= "(" (state | impasse) [<id_test>]

<attr_value_tests>+ ")"

<cond> ::= <positive_cond> | "-" <positive_cond>

<positive_cond> ::= <conds_for_one_id> | "{" <cond>+ "}"

<conds_for_one_id> ::= "(" [(state|impasse)] <id_test>

<attr_value_tests>+ ")"

<id_test> ::= <test>
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<attr_value_tests> ::= ["-"] "^" <attr_test> ("." <attr_test>)*

<value_test>*

<attr_test> ::= <test>

<value_test> ::= <test> ["+"] | <conds_for_one_id> ["+"]

<test> ::= <conjunctive_test> | <simple_test>

<conjunctive_test> ::= "{" <simple_test>+ "}"

<simple_test> ::= <disjunction_test> | <relational_test>

<disjunction_test> ::= "<<" <constant>+ ">>"

<relational_test> ::= [<relation>] <single_test>

<relation> ::= "<>" | "<" | ">" | "<=" | ">=" | "=" | "<=>"

<single_test> ::= <variable> | <constant>

<variable> ::= "<" <sym_constant> ">"

<constant> ::= <sym_constant> | <int_constant> | <float_constant>

Notes on the Condition Side

• In an <id test>, only a <variable> may be used in a <single test>.

B.1.2 Grammar for Action Side

Below is a grammar for the action sides of productions:

<rhs> ::= <rhs_action>*

<rhs_action> ::= "(" <variable> <attr_value_make>+ ")"

| <func_call>

<func_call> ::= "(" <func_name> <rhs_value>* ")"

<func_name> ::= <sym_constant> | "+" | "-" | "*" | "/"

<rhs_value> ::= <constant> | <func_call> | <variable>

<attr_value_make> ::= "^" <variable_or_sym_constant>

("." <variable_or_sym_constant>)* <value_make>+

<variable_or_sym_constant> ::= <variable> | <sym_constant>

<value_make> ::= <rhs_value> <preference_specifier>*

<preference-specifier> ::= <unary-preference> [","]

| <unary-or-binary-preference> [","]

| <unary-or-binary-preference> <rhs_value> [","]

<unary-pref> ::= "+" | "-" | "!" | "~" | "@"

<unary-or-binary-pref> ::= ">" | "=" | "<" | "&"
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The Calculation of O-Support

This appendix provides a description of when a preference is given O-support by an
instantiation (a preference that is not given O-support will have I-support). Soar
has four possible procedures for deciding support, which can be selected among with
the o-support-mode command (see page 132). However, only o-support modes 3 & 4
can be considered current to Soar 8, and o-support mode 4 should be considered an
improved version of mode 3. The default o-support mode is mode 4.

In O-support modes 3 & 4, support is given production by production; that is, all
preferences generated by the RHS of a single instantiated production will have the
same support.

In both modes, a production must meet the following two requirements to create
o-supported preferences:

1. The RHS has no operator proposals, i.e. nothing of the form

(<s> ^operator <o> +)

2. The LHS has a condition that tests the current operator, i.e. something of the
form 1

(<s> ^operator <o>)

In condition 1, the variable <s> must be bound to a state identifier. In condition 2,
the variable <s> must be bound to the lowest state identifier. That is to say, each
(positive) condition on the LHS takes the form (id ∧attr value), some of these id’s
match state identifiers, and the system looks for the deepest matched state identifier.
The tested current operator must be on this state. For example, in the production-

1Sometimes, o-support mode 3 does not notice that this condition is true. This is a bug, which
is unlikely to be fixed, since users are encouraged to use mode 4.
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sp {elaborate*state*operator*name

(state <s> ^superstate <s1>)

(<s1> ^operator <o>)

(<o> ^name <name>)

-->

(<s> ^name something)}

the RHS action gets i-support. Of course, the state bound to <s> is destroyed when
(<s1> ∧operator <o>) retracts, so o-support would make little difference. On the
other hand, the production-

sp {operator*superstate*application

(state <s> ^superstate <s1>)

(<s> ^operator <o>)

(<o> ^name <name>)

-->

(<s1> ^sub-operator-name <name>)}

gives o-support to its RHS action, which remains after the substate bound to <s> is
destroyed.

There is a third condition that determines support, and it is in this condition that
modes 3 & 4 differ. An extension of condition 1 is that operator augmentations should
always receive i-support. Soar has been written to recognize augmentations directly
off the operator (ie, (<o> ∧augmentation value)), and to attempt to give them i-
support. However, there was some confusion about what to do about a production
that simultaneously tests an operator, doesn’t propose an operator, adds an operator
augmentation, and adds a non-operator augmentation, such as-

sp {operator*augmentation*application

(state <s> ^task test-support

^operator <o>)

-->

(<o> ^new augmentation)

(<s> ^new augmentation)}

In o-support mode 3, both RHS actions receive o-support; in o-support mode 4, both
receive i-support. In either case, Soar will print a warning on firing this production,
because this is considered bad coding style.
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The Resolution of Operator
Preferences

During the decision phase, operator preferences are evaluated in a sequence of eight
steps, in an effort to select a single operator. Each step handles a specific type of
preference, as illustrated in Figure D.1. (The figure should be read starting at the
top where all the operator preferences are collected and passed into the procedure.
At each step, the procedure either exits through a arrow to the right, or passes to the
next step through an arrow to the left.)

Input to the procedure are the set of current operator preferences, and the output
consists of:

1. a subset of the candidate operators, either the empty set, a set consisting of a
single, winning candidate, or a larger set of candidates that may be conflicting,
tied, or indifferent.

2. an impasse-type, possibly NONE IMPASSE TYPE.

The procedure has several potential exit points. Some occur when the procedure
has detected a particular type of impasse. The others occur when the number of
candidates has been reduced to one (necessarily the winner) or zero (a no-change
impasse).

Each step in Figure D.1 is described below:

RequireTest (!) This test checks for required candidates in preference memory and
also constraint-failure impasses involving require preferences (see Section 2.6 on
page 22).

• If there is exactly one candidate operator with a require preference and
that candidate does not have a prohibit preference, then that candidate is
the winner and preference semantics terminates.
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All operator
preferences 

RejectFilter

BetterWorseFilter

BestFilter

winner returned

tie impasse

constraintfailure
impasse

all acceptable
 candidates are
 passed on

all nonprohibited
 candidates are
 passed on

one operator both better 
and worse than another

none selected
(nochange impasse)

required is also prohibited

multiple required operators

one required operator

remaining candidates are
 NOT mutually indifferent

two operators worse 
than each other

Preference resolution:
all operator preferences are input
   to the resolution procedure
each step may add or remove some
   operator candidates
only some steps may exit

all nonrejected
 candidates are
 passed on

all nonworst
 candidates are
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pass along only
candidates that are
best; if none, pass
on all candidates

pass along only
 candidates that
 are better; if none,
pass on those that 
  are not worse
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chosen based on 
userselect setting

remaining candidates are
ALL mutually indifferent

else

RequireTest

AcceptableCollect

ProhibitFilter

WorstFilter

IndifferentTest

two operators better
than each other conflict

impasse

winner returned
one candidate remaining

no candidates remaining

none selected
(nochange impasse)

winner returned
one candidate remaining

no candidates remaining

Outcome of
preference
resolution

Figure D.1: An illustration of the preference resolution process. There are eight steps;
only five of these provide exits from the resolution process.

• Otherwise — If there is more than one required candidate, then a constraint-
failure impasse is recognized and preference semantics terminates by re-
turning the set of required candidates.

• Otherwise — If there exists a required candidate that is also prohibited, a
constraint-failure impasse with the required/prohibited value is recognized
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and preference semantics terminates.

• Otherwise — The candidates are passed to AcceptableCollect.

AcceptableCollect (+) This operation builds a list of operators for which there is
an acceptable preference in preference memory. This list of candidate operators
is passed to the ProhibitFilter.

ProhibitFilter (∼) This filter removes the candidates that have prohibit prefer-
ences in memory. The rest of the candidates are passed to the RejectFilter.

RejectFilter (−) This filter removes the candidates that have reject preferences in
memory.

• At this point, if the set of remaining candidates is either empty or has one
member, preference semantics terminates and this set is returned.

• Otherwise, the remaining candidates are passed to the BetterWorseFilter.

BetterWorseFilter (>), (<) This filter checks for better worse conflicts, and oth-
erwise filters out candidates based on better and worse preferences.

• A better/worse conflict occurs when one candidate has both better and
worse preferences with respect to another operator (i.e., A < B & B <
A). Since preferences are not transitive, the situation A < B < C < A is
not a conflict. If there are better/worse conflicts, preference semantics ter-
minates by declaring a conflict impasse and returning the set of conflicted
items.

• Otherwise — Filter out of the candidates the ones that have another can-
didate that is better, or are worse than another candidate. The resulting
candidates are passed to the BestFilter.

BestFilter (>) If some remaining candidate has a best preference, this filter re-
moves any candidates that do not have a best preference. If there are no best
preferences for any of the current candidates, the filter has no effect. The re-
maining candidates are passed to the WorstFilter.

WorstFilter (<) If all remaining candidates have worst preferences, this filter has
no effect. Otherwise, the filter removes any candidates that have a worst pref-
erence.

• Once again, if the set of remaining candidates is either empty or has one
member, preference semantics terminates and this set is returned.

• Otherwise, the remaining candidates are passed to the IndifferentTest.

IndifferentTest (=) This operation traverses the remaining candidates and marks
each candidate for which one of the following is true:
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• the candidate has a unary indifferent preference

• the candidate has a numeric indifferent preference

• the candidate is binary indifferent to all of the remaining candidate oper-
ators

If some candidate is left unmarked, then the procedure signals a tie impasse
and returns the complete set of candidates that passed into the IndifferentTest.
Otherwise, the candidates are mutually indifferent, in which case an operator
is chosen according to the method set by the indifferent-selection command,
described on page 124.



Appendix E

A Goal Dependency Set Primer1

This document briefly describes the Goal Dependency Set (GDS), which was intro-
duced with Soar 8. There are three sections: a brief discussion of the motivation
for the GDS, a discussion of the consequences of the GDS from a behavior devel-
oper/modeler’s point of view, and some details on the kernel implementation of the
GDS, for anyone working at the architecture level. This document is by no means
complete, but introduces the GDS in Soar-specific terms.

Why the GDS was needed

As a symbol system, Soar attempts to approximate the knowledge level but will
necessarily always fall short . We can informally think of the way in which Soar falls
short of the knowledge level as its peculiar “psychology.” Those interested in using
Soar to model human psychology would like Soar’s “psychology” to approximate
human psychology. Those using Soar to create agent systems would like to make
Soar’s processing approximate the knowledge level as closely as possible. However,
Soar 7 had a number of symbol-level “quirks” that appeared inconsistent with human
psychology and that made building large-scale, knowledge-based systems in Soar more
difficult than necessary. Bob Wray’s thesis (1998) addressed many of these symbol-
level problems in Soar, among them logical inconsistency in symbol manipulations,
non-contemporaneous constraints in chunks , race conditions in rule firings and in
the decision process, and contention between original task knowledge and learned
knowledge .

The Goal Dependency Set implements a solution to logical inconsistencies between
persistent (o-supported) working memory elements (WMEs) in a substate and its
“context”. The context consists of all the WMEs in any superstates above the local
goal/state2. In Soar, any action (application) of an operator receives an o-support

1A preliminary draft by Robert Wray, contact at wrayre@acm.org.
2This report will use “state,” not “goal.” At the kernel level, states are still called “goals” and

“goal” is often still used to refer to states. As a result, a confusion in terminology results, with “Goal
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preference. This preference makes the resulting WME persistent: it will remain in
memory until explicitly removed (or until its local state is removed), regardless of
whether it continues to be justified.

Persistent WMEs are pervasive in Soar, because operators are the main unit of prob-
lem solving. Persistence is necessary for taking any non-monotonic step in a problem
space. However, persistent WMEs also are dependent on WMEs in the superstate
context. The problem in Soar 7, especially when trying to create large-scale systems
like TacAir-Soar , is that the knowledge developer must always think about which
dependencies can be “ignored” and which need to result in a reconsideration of the
persistent WME. For example, imagine an exploration robot that makes a persistent
decision to travel to some distant destination based, in part, on its power reserves.
Now suppose that the agent notices that its power reserves have failed. If this change
is not communicated to the state where the travel decision was made, the agent will
continue to act as if its full power reserves were still available.

Of course, for this specific example, the knowledge designer can encode some knowl-
edge to react to this inconsistency. The fundamental problem is that the knowledge
designer has to consider all possible interactions between all o-supported WMEs and
all contexts. Soar systems often use the architecture’s impasse mechanism to realize
a form of decomposition. These potential interactions mean that the knowledge de-
veloper cannot focus on individual problem spaces when creating knowledge, which
makes knowledge development more difficult. Further, in all but the simplest systems,
the knowledge designer will miss some potential interactions. The result is agents are
that were unnecessarily brittle, failing in difficult-to-understand, difficult-to-duplicate
ways.

The GDS also solves the the problem of non-contemporaneous constraints in chunks.
A non-contemporaneous constraint refers to two or more conditions that never co-
occur simultaneously. An example might be a driving robot that learned a rule that
attempted to match “red light” and “green light” simultaneously. Obviously, for
functioning traffic lights, this rule would never fire. By ensuring that local persistent
elements are always consistent with the higher-level context, non-contemporaneous
constraints in chunks are guaranteed not to happen.

The GDS captures context dependencies during processing, meaning the architecture
will identify and respond to inconsistencies automatically. The knowledge designer
then does not have to consider potential inconsistencies between local, o-supported
WMEs and the context. The following sections describe further how the GDS works
and how to use the GDS in behavior systems, as well as how the GDS is implemented
in the Soar kernel.

Dependency Set” a specific example, even though “goals” have not been an explicit, behavior-level
Soar construct since Soar 6
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A A’
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As A’

I-Supported Feature

O-Supported Feature

s

Figure E.1: Simplified Representation of the context dependencies (above the line),
local os-upported WMEs (below the line), and the generation of a result. In Soar 7,
this situation led to non-contemporaneous constraints in the chunk that generates 3.

Behavior-level view of the Goal Dependency Set

This section discusses what the GDS does, and how that impacts production knowl-
edge design and implementation.

Operation of the Goal Dependency Set

Whenever a feature is created (added to working memory) in the Soar 7 architecture,
that feature will persist for some time. The persistence of features may differ with
respect to how long the features remain in memory, and more importantly, what
circumstances cause the feature to be removed. The Soar 7 architecture utilizes three
primary types of persistence: i-support, o-support, and c-support.

The weakest persistence is instantiation support. An i-supported feature exists in
memory only as long as the production which lead to the feature’s creation remains
instantiated. Thus, the WME depends upon this production instantiation (and, more
specifically, the features the instantiation tests). When one of the conditions in the
production instantiation no longer matches, the instantiation is retracted, resulting
in the loss of the acceptable preference for the WME.3 I-support is illustrated in
Figure E.1. A copy of A in the subgoal, As, is retracted automatically when A

3Importantly, in a technical sense, the WME is only retracted when it loses instantiation support,
not when the creating production is retracting. For example, a WME could receive i-support from
several different instantiations and the retraction of one would not lead to the retraction of the
WME. However, the the following generally discusses direct dependency unmediated by preferences,
ignoring this complication for clarity.
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changes to A’. The substate WME persists only as long as it remains justified by A.
This justification is called “instantiation support” (I-support) in Soar (and should
not be confused with result justifications.)

In the broadest sense, we can say that some feature <b> is “dependent” upon another
element <a> if <a> was used in the creation of <b>, i.e., if <a> was tested in the
production instantiation that created <b>. Further, a dependent change with respect
to feature <b> is a change to any of its instantiating features. In Figure E.1, the
change from A to A’ is a dependent change for feature 1 because A was used to
create 1.

In Soar 7, some features are insensitive to dependent changes. These features are often
referred to as “persistent WMEs” because, unlike i-supported WMEs, they remain
in memory until explicitly removed. There are two different types of this stronger
persistence: o-support and c-support.

Any feature created by the action of an operator receives “operator support.” An
o-supported feature remains in memory until explicitly rejected (or until the super-
structure to which it is attached is removed). Removal is architecturally independent
of the WME’s instantiating conditions.

Context-support affects the persistence of an operator itself, rather than its effects.
Once a unique operator has been chosen by the decision procedure, the choice persists
until explicitly re-decided (via a reconsider preference). C-support ensures that the
WME for a selected operator remains available even if the production that proposed
the operator is no longer instantiated. Soar 8 eliminates c-support, so that operators
now persist only as long as they receive instantiation support. This change was
integral to the overall solution Soar 8 provides, but is distinct from the GDS.

The GDS provides a solution to the first problem. When A changes, the persistent
WME 1 may be no longer consistent with its context (e.g., A’). The specific solution
is inspired by the chunking algorithm. In Soar 8, whenever an o-supported WME
is created in the local state, the superstate dependencies of that new feature are
determined and added to the goal dependency set (GDS) of that state. Conceptu-
ally speaking, whenever a working memory change occurs, the dependency sets for
every state in the context hierarchy are compared to working memory changes.4 If
a removed element is found in a GDS, the state is removed from memory (along
with all existing substructure). The dependency set includes only dependencies for
o-supported features. For example, in Figure E.2, at time t0, because only i-supported
features have been created in the subgoal, the dependency set is empty.

Three types of features can be tested in the creation of an o-supported feature. Each
requires a slightly different type of update to the dependency set.

Elements in the superstate: WMEs in the superstate are added directly to the
goal’s dependency set. In Figure E.2, the persistent subgoal item 3 is dependent

4The implementation is slightly different, trading additional memory overhead to avoid scanning
all the goal dependency sets after each WM change. See the next section.
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t0 Dependency Set:
t0 = Æ
t1 = (A, D)
t2 = (A, B, C, D)
t3 = (A, B, C, D)

D´

Figure E.2: The Dependency Set in Soar 8.

upon A and D. These superstate WMEs are added to the subgoal’s dependency
set when 3 is added to working memory at time t1. It does not matter that A
is i-supported and D o-supported.5

Local I-Supported Features: Local i-supported features are not added to the goal
dependency set. Instead, the superstate WMEs that led to the creation of the i-
supported feature are determined and added to the GDS. In the example, when
4 is created, A, B and C must be added to the dependency set because they
are the superstate features that led to 1, which in turn led to 2 and finally 4.
However, because item A was previously added to the dependency set at t1, it
is unnecessary to add it again.

Local O-Supported Features: The dependencies of a local o-supported feature
have already been added to the state’s GDS. Thus, tests of local o-supported
WMEs do not require additions to the dependency set. In Figure E.2, the
creation of element 5 does not change the dependency set because it is dependent
only upon persistent items 3 and 4, whose features had been previously added
to the GDS.

In Soar 8, any change to the current dependency set will cause the retraction of all
subgoal structure. Thus, any time after time t1, either the D to D’ or A to A’
transition would cause the removal of the entire subgoal. The E to E’ transition
causes no retraction because E is not in the goal’s dependency set.

5In addition, superstate WMEs can also include context slot preferences, which are represented
in the architecture as working memory elements.
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The role of the GDS in agent design

The GDS places some design time constraints on operator implementation. These
constraints are:

• Operator actions that are used to remember a previous state/situation should
be asserted in the top state

• All operator elaborations should be i-supported

• Any operator with local actions should be designed to be re-entrant

This section describes these issues.

Soar says any operator effect is o-supported, regardless of whether that assertion
is entailed by the current situation, or whether it reflects an assumption about it.
The GDS adds additional (needed) constraint. Because any context dependencies for
subgoal, o-supported assertions will be added to the GDS, the developer must decide
if an o-supported element should be represented in a substate or the top state.

This decision is straightforward if the functional role of the persistent element is
considered. Four important capabilities that require persistence are:

1. Reasoning hypothetically: Some assertions may need to reflect hypothet-
ical states. Such assertions are “assumptions” because a hypothetical inference
cannot always be grounded in the current context. In other problem solvers
with truth maintenance, only assumptions are persistent.

2. Reasoning non-monotonically: Sometimes the result of an inference
changes one of the assertions on which the inference is dependent. As an ex-
ample, consider the task of counting. Each newly counted item replaces the old
value of the count.

3. Remembering: Agents oftentimes need to remember an external situation
or stimulus, even when that perception is no longer available.

4. Avoiding Expensive Computations: In some situations, an agent may
have the information needed to assert some belief in a new world state but the
expense of performing the computation necessary for the assertion, given what
is already known, makes the computation avoidable. For example, in dynamic,
complex domains, determining when to make an expensive calculation is often
formulated as an explicit agent task .

When remembering or avoiding an expensive computation, the agent/designer is mak-
ing a commitment to retain something even though it might not be supported in the
current context. In Soar 8, these WMEs should be asserted in the top state. For
many Soar systems, especially those focused on execution in a dynamic environment,
most o-supported elements will need to be stored on the top state.
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For any kind of local, non-monotonic reasoning about the context (counting, projec-
tion planning), features should be stored locally. When a dependent context change
occurs, the GDS interrupts the processing by removing the state. While this may
seem like a severe over-reaction, formal and empirical analysis have suggested that
this solution is less computationally expensive than attempting to identify the specific
dependent assumption .

Operator Elaborations

Operator elaborations (i.e., placing some information on an operator WME) should be
i-supported when using Soar 8, since this information is, by definition, temporary/not
persistent (because it’s located on the non-persistent operator). However, the kernel
itself hasn’t kept up with this change. Prior to Soar 8.5, Soar’s o-support modes
computed operator elaborations as o-supported, resulting in the context conditions
being added to the GDS. This often leads to unwanted/unnecessary retractions. If
you are using a version prior to Soar 8, you should declare any operator elaborations
i-supported (i.e., using :i-support).

Kernel-level view of the Goal Dependency Set

The actual implementation of the GDS in the Soar kernel is slightly more complex
than the conceptual description of the previous section (but not significantly so).

Elements are added the GDS via elaborate gds(), a procedure in decide.c that mimics
the chunking backtrace function. The algorithm is shown in Figure E.3. When an o-
supported preference is asserted, elaborate gds() is called. Conditions in a production
instantiation that are located in a higher context can be added directly to the GDS
(1). For local conditions, elaborate gds() first checks whether the tested WME is
o-supported, or if it has been previously been back traced through (2). If either of
these are true, the WME can be ignored because it’s dependencies have been added
to the GDS previously. If not, elaborate gds() is called recursively, to find the context
dependencies for the local, contributing WME, c (3).

When WME changes occur, each goal/state must be checked to determine if the
WME appeared on that goal’s GDS. Because WME changes occur in nearly every
Soar elaboration cycle, we chose to extend the WME data structure to avoid this
scanning. Figure E.4 illustrates the relationship. Each GDS consists of a pointer to
its goal and a pointer to a WME DLL list. The gds next and gds prev pointers on
WME define the GDS WMEs for a particular GDS and the GDS pointer provides a
link back from each GDS WME to the GDS data structure.

When a WME is removed, the GDS pointer can be checked to determine immediately
if the goal should be removed. No scanning is necessary.
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PROC create new assertion(. . .)
Whenever a new o-supported element is asserted, the GDS is updated
to include any new context dependencies.
. . .
Ainst ← instantiation that asserted acceptable preference for A
IF A is an o-supported WME

G is the goal/state in which A is asserted
GGDS ← append(GGDS, elaborate GDS(A))

. . .
END

PROC elaborate GDS(assertion A)
S ← {NIL}
FOR Each assertion c in Ainst, the instantiation supporting A

©1 IF {GoalLevel(c) closer to top state than GoalLevel(A)}
append(c, S) (append context dependency to GDS)

©2 ELSEIF {GoalLevel(c) same as GoalLevel(A) AND
c is NOT an o-supported WME AND
c has not previously been inspected }

©3 S ← append(S, elaborate GDS(c))
(compute GDS dependencies for c and add to goal’s GDS)

©4 cinspected ← true
(c’s context dependencies have been added to the GDS;

no need to consider it again for this GDS)
return S, the list of new dependencies in the GDS

END

PROC GoalLevel(assertion A)
Return the goal level associated with assertion A

Figure E.3: The algorithm for determining members of the GDS.

INSERT DIAGRAM HERE

Figure E.4: The GDS and WME data structures
.

Other implementation issues

• Allocating memory for the GDS
The GDS memory is created for each goal when the goal is created. The GDS
is deallocated when the goal is removed. A NIL WME pointer for the GDS
indicates a goal has no WMEs in its GDS.

• Updating a WME GDS pointer
A WME should appear in only the GDS of the highest goal for which it is
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dependent. If a WME is determined to already be in a GDS lower than the
current goal, its GDS pointer is updated to the higher goal, it is removed from
the gds WME DLL of the lower goal, and added to the higher one. If there are
no other WMEs on the gds WME DLL of the lower goal, its WME pointer is set
to NIL (the GDS itself is retained, because we don’t want to have to reallocate
memory for the GDS if we need to add to it later.)
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!, 58, 167
&, 58
+, 48, 58, 168
-, 46, 58, 168
., 51
<, 43, 58, 168
<< >>, 44, 50
<=, 43
<=>, 43
<>, 43
=, 43, 58, 169
>, see best preference, 43, 58, 168
>=, 43
@, 58
∧(carat symbol), 33
~, 58, 168

, 30

acceptable preference, 48, 168
action side of production, 56
action-side grammar, 164
add-wme, 148
alias, 151
arithmetic operations, 61
attribute, 8, 14, 33, 34

multi-valued attribute, 35
attribute-preferences-mode, 121
augmentation, see working memory element

backtracing, 77, 78
best preference, see best preference, 168
better preference, 168
bottom-up chunking, 76

capitalize-symbol, 64
carriage return, line feed, 61
cd, 137
chunk, 31

overgeneral, 28
chunk-name-format, 107
chunking, see learning, 75

actions, 77
bottom-up, 76
conditions, 78, 79
creation, 75
determining actions, 77
determining conditions, 78
duplicate chunks, 76
incorrect chunks, 80
negated conditions, 77, 81
ordering conditions, 79
overgeneral, 80
refractory inhibition, 79
variablization, 79
when active, 75

clog, 138
cmd, 65
command-to-file, 139
comments, 41
compute, 61
condition

acceptable preference , 48
condition side, 41
condition-side grammar, 163
Conditions, 42
conflict impasse, 24, 67
conjunctive

conditions, 45
negation, 47

constant, 34, 164
constraint-failure impasse, 24, 67, 167
crlf, 61

decision
cycles, 111
procedure, 20, 66, 167

decision cycle, 7, 22
pseudo code, 24

decision procedure, 7, 22
default-wme-depth, 93
desirability preference, 78, 80
dirs, 140

181
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disjunction of constants, 44
disjunctions of attributes, 50
dont-learn, 65
dot notation, 51

echo, 141
edit-production, 152
elaboration

cycles, 111
phase, 67

excise, 85
exec, 64
exhaustion, 67, 76, 81
explain-backtraces, 121

firing-counts, 108
float, 62
floating-point constants, 34
floating-point number, 61
force-learn, 66

GDS, 171
gds-print, 95
goal

examples, 67
representation, 8
result, see result
stack, 25
subgoal, 22, 25, 31
termination, 28, 67

grammar, 163
grammar, action side, 164
grammar, condition side, 163

halt, 60
help, 86

I-support, 18
of result, 28

i-support, 165
I/O, 11, 32, 68

input functions, 69
input links, 69
io attribute, 69
output functions, 69
output links, 69

identifier, 14, 33, 34, 37
variablization of, 79

impasse, 7, 22, 66
conflict, 23, 24

constraint-failure, 23, 24
elimination, 28
examples, 67
no-change, 23, 25
operator no-change, 25
resolution, 28, 67
state no-change, 25
tie, 23, 24
types, 67

incorrect chunks, 80
indifferent-selection, 20, 124
init-soar, 86
input-period, 153
int, 62
integer, 34
interface, 83
internal-symbols, 95
interrupt, 60
item (attribute), 67

justification, 28
creation, 28
overgeneral, 28

learn, 75, 125
learning, 31, 75

overgeneral, 28
LHS of production, 41
link, 14, 37
linked

chunk action, 77
Linux, 4
ls, 141

Macintosh, 4
make-constant-symbol, 63
matcher, 79
matches, 96
max-chunks, 126
max-elaborations, 127
max-memory-usage, 128
max-nil-output-cycles, 129
memories, 98
motor commands, see I/O
multi-attribute, see multi-valued attribute
multi-attributes, 130
multi-valued attribute, 15, 47, 79

necessity preference, 80
negated



INDEX 183

conditions, 46, 81
conjunctions, 47

negated conditions, 77
no-change impasse, 25, 67
not equal test, 43
numeric comparisons, 43
numeric-indifferent-mode, 131

O-support, 18
of result, 28
reject, 19

o-support, 165
o-support-mode, 132
object, 36, 37
Operating System, 4
operator

application, 11
comparison, 9
proposal, 9
representation, 8
selection, 11
support, 18

operator no-change impasse, 25
ordering chunk conditions, 79
overgeneral chunk, 78, 80

path notation, 51
persistence, 18, 20, 165
Personal Computer, 4
popd, 142
predicates, 43
preference, 19, 36, 58

acceptable, 20, 21, 36, 168
acceptable as condition, 48
best, 20, 168
better, 20, 168
indifferent, 20
numeric-indifferent, 21
persistence, see persistence
prohibit, 21, 78, 80, 168
reject, 20, 168
require, 21, 78, 80, 167
semantics, 20
syntax, 38
worse, 20, 168
worst, 20, 169

preference memory, 19
syntax, 38

preferences, 99, 167

print, 102
problem solving

external, 11
functions, 6
internal, 11

problem space, 12
representation, 8

production, 7, 16
condition, 41
firing, 16
instantiation, 17
LHS, 41
match, 7
RHS, 56
roles, 18
structured values, 55
syntax, 38

production actions, 18
production memory, 16

syntax, 38
production-find, 105
prohibit preference, 78, 80, 168
pushd, 143
pwatch, 109
pwd, 143

quiescence, 22
quiescence t (augmentation), 67, 76, 81
quit, 87

refractory inhibition of chunks, 79
reject preference, 168
remove-wme, 149
require preference, 78, 80, 167
result, 22, 27, 75–77
rete-net, 144
RHS of production, 56
run, 88

save-backtraces, 132
set-library-location, 145
set-stop-phase, 133
soar8, 134
soarnews, 154
source, 145
sp, 90
srand, 153
stack, see goal
state, 16

representation, 8
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state no-change impasse, 25
stats, 110
stop-soar, 92
structured value notation, 55
subgoal, 25, see goal, 66, 75

augmentations, 67
result, 76
termination, 67

subgoal result, 77
superstate, 67
support, 165
symbol, 34
symbolic constant, 34

tie impasse, 24, 67
time, 154
timers, 135
timestamp, 63
timetag, 35
top-state

for I/O, 72
trace

memory, 77
type comparisons, 43

unalias, 155
Unix, 4

value, 14, 33, 34
structured notation, 55

variable, 164
action side, 57

variables, 42
variablization, 79
verbose, 112
version, 156

waitsnc, 136
warnings, 113
watch, 113
watch-wmes, 118
Windows, 4
WME, see working memory element
working memory, 14, 14

acceptable preference, 36
object, 14
size, 111
syntax, 33
trace, 77

working memory element, 14

syntax, 33
timetag, see timetag

worse preference, 168
worst preference, 169
write, 60
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Summary of Soar Aliases and Functions

Predefined Aliases

There are a number of Soar “commands” that are shorthand for other Soar commands:

Alias Summary Page
? Alias for help. 86
a Alias for alias 151
aw Alias for add-wme 148
chdir Alias for cd. 137
d Alias for run -d 1; runs by decision cycles. 88
dir Alias for ls. 141
e Alias for run -e 1; runs by elaboration cycles. 88
eb Alias for explain-backtraces. 121
ex Alias for excise. 85
exit Alias for quit. 87
fc Alias for firing-counts. 108
gds print Alias for gds-print. 95
h Alias for help. 86
inds Alias for indifferent-selection. 124
init Alias for init-soar. 86
interrupt Alias for stop-soar. 92
is Alias for init-soar. 86
l Alias for learn. 125
man Alias for help. 86
p Alias for the print command. 102
pc Alias for print --chunks. 102
pr Alias for preferences. 99
pw Alias for pwatch. 109
rn Alias for rete-net. 144
rw Alias for remove-wme. 149
set-default-depth Alias for default-wme-depth. 93
sn Alias for soarnews. 154
ss Alias for stop-soar. 92
st Alias for stats. 110
step Alias for run 1. 88
stop Alias for stop-soar. 92
topd Alias for pwd. 143
un Alias for alias -d. 151
unalias Alias for alias -d. 151
w Alias for watch. 113
wmes Alias for print -i. 102
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Summary of Soar Functions

The following table lists the commands in Soar. See the referenced page number for a
complete description of each command.

Command Summary Page
add-wme Manually add an element to working memory. 148
alias Define a new command using existing com-

mands and arguments.
151

attribute-preferences-mode For Soar 7, controls the handling of preferences
for non-context slots.

121

cd Change directory. 137
chunk-name-format Specify format of the name to use for new

chunks.
107

clog Record all user-interface input and output to a
file.

138

default-wme-depth Set the level of detail used to print WMEs. 93
dirs List the directory stack. 140
echo Print a string to the current output device. 141
excise Delete Soar productions from production mem-

ory.
85

explain-backtraces Print information about chunk and justification
backtraces.

121

firing-counts Print the number of times each production has
fired.

108

gds-print Print the WMEs in the goal dependency set for
each goal.

95

help Provide formatted, on-line information about
Soar commands.

86

indifferent-selection Controls indifferent preference arbitration. 124
init-soar Reinitialize Soar so a program can be rerun from

scratch.
86

internal-symbols Print information about the Soar symbol table. 95
learn Set the parameters for chunking, Soar’s learning

mechanism.
125

ls List the contents of the current working direc-
tory.

141

matches Print information about the match set and par-
tial matches.

96

max-chunks Limit the number of chunks created during a
decision cycle.

126

max-elaborations Limit the maximum number of elaboration cy-
cles.

127

max-nil-output-cycles Limit the maximum number of decision cycles. 129
memories Print memory usage for production matches. 98
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Command Summary Page
multi-attributes Declare multi-attributes so as to increase Rete

matching efficiency.
130

numeric-indifferent-mode Select method for combining numeric prefer-
ences.

131

o-support-mode Choose experimental variations of o-support. 132
popd Pop a directory off of the directory stack, chang-

ing to it.
142

preferences Examine items in preference memory. 99
print Print items in working memory or production

memory.
102

production-find Find productions that contain a given pattern. 105
pushd Push a directory onto the directory stack, chang-

ing to it.
143

pwatch Trace firings and retractions of specific produc-
tions.

109

pwd Print the current working directory. 143
quit Close log file, terminate Soar, and return user

to the operating system.
87

remove-wme Manually remove an element from working
memory.

149

rete-net Save the current Rete net, or restore a previous
one.

144

run Begin Soar’s execution cycle. 88
save-backtraces Save trace information to explain chunks and

justifications.
132

set-library-location Set the top level directory containing de-
mos/help/etc.

145

soar8 Toggle between Soar 8 methodology and Soar 7
methodology.

134

soarnews Print information about the current release of
Soar.

154

source Load and evaluate the contents of a file. 145
sp Create a production and add it to production

memory.
90

stats Print information on Soar’s runtime statistics. 110
stop-soar Interrupt a running Soar program. 92
time Use the system clock to record the time required

to execute the next command.
154

timers Toggle on or off the internal timers used to pro-
file Soar.

135

version Print the version information for the Soar kernel. 156
waitsnc Generate a wait state rather than a state-no-

change impasse.
136

warnings Toggle whether or not warnings are printed. 113
watch Control the information printed as Soar runs. 113
watch-wmes Trace WMEs matching specific patterns. 118
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