LabTalk Scripting Guide

Contents last updated August 2013. For the most up-to-date documentation, including detailed
examples, visit: www.OriginLab.com/doc/LabTalk.

Copyright © 2013 by OriginLab Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in
any form or by any means without the written permission of OriginLab Corporation.

OriginLab, Origin, and LabTalk are either registered trademarks or trademarks of OriginLab
Corporation. Other product and company names mentioned herein may be the trademarks of
their respective owners.

OriginLab Corporation
One Roundhouse Plaza
Northampton, MA 01060
USA

(413) 586-2013

(800) 969-7720

Fax (413) 585-0126
www.OriginLab.com

Table of Contents

{11 e o 11 Tex 1 Lo o PR 1
Getting Started with LabTalk............cooommii e 3
2200 T 1= o AT o o 3
2.2 Using = to Get QUICK OULPULeeiiiiiiiee e e 4
2.3 Other Ways to EXECULE SCrIPEoiiiiiiiiii e 5
2.3.1 Custom ROUEINE BUIONeiiiiiiiieiiiiii e e e 5
2.3.2 CUSIOM MENU EM ..ot et eb e e e eae e et e e e e 5
2.3.3 BULON N @ Graphoooiiiiieeee e e 6
DS Ty o A =0 Yo [6
2.5 Where 10 GO fTom HEIEYo e 8
Resources for Learning LabTalKcccccciiiiiiiiimimnnisesene s 9
I Tt IO o111 g L= I T Yot U T T=T o1 = 1] o TS 9
3.2 SCIIPL EXAMIPIES....eeeiiiieie et a e e e e e e e e e 9
3.3 X-Function Script EXamMPIEScoeoiiiiiiiii et 9
3.4 LabTalk FOrUMot e e e e e e e e e e e e e e e 9
3.5 Training and CONSUIING........ccoiuiiiiiiie e 9
Language Fundamentals..............ccoinninncnn 11
4.1 General Language FEatUIES..........uuuiiiiiiiiiiiiiiie ettt e e e 11
411 Data Types and Variables............ccooiiiiiiiiii it a e e 11
4.1.2 Programming SYNTAX........oooiuueiiiieee ettt e e e e e e e e e e e nae e e e e e e e annas 22
o B @ [011 -1 (o] £ RO PP UPURPOE 28
4.1.4 Conditional and LOOP STrUCIUIEScc.uiiiiiiiiiiiic e 35
S R T /= o7 (o 1< USSP 40
g T G T U 3T (o o L PP 42
4.2 Special Language FeatUres...........uuiiiiiiiiiiiiiiiiie ettt e e e 49
421 RaNge NOTAtIONuiiiiiiii e e e e e e e e e e e e st a e e e e e e aanes 49
4.2.2 Substitution NOtatIONooi e e e e e 61
4.2.3 LabTalKk ObJECESeuiiiiiie ettt e e et e e e e e e et e e e e e e setbn e e e e e e e aannes 72
o N @ 4T |1 N @ o] (=Y o1 T PO PP PURPNt 75
TS (1 0 To TR Yo (53 Y £ RSO UPURPN 76
4.2.6 X-FUunctions INtrodUCHIONcoiiiiiiii e 81
4.3 LabTalk Script PreCedENCEouviiiiiieiiiieee et a e e 81
Calling X-Functions and Origin C Functionscccccciiiiiiinemnnnccnneens 83
T I G ¥ Tex (o o - T PO P UPPR PR 83

LabTalk Scripting Guide

5.1.1 X-FUNCHONS OVEIVIEW.......eeiiiiiiiie ettt e e e 83
5.1.2 X-Function Input @and OULPUL.........ccuiiiiiiii e 85
5.1.3 X-Function EXecution OPLONSccciiiiiiiiiiiiiie et ee s 88
5.1.4 X-Function Exception Handling............cooooiuiiiiiii it 91

I O 4 To 1o I O ol U g T o] = TP PPRI 92
5.2.1 Loading and Compiling Origin C FUNCLIONS..........ccccuiiiiiiieiiicieiee e 92
5.2.2 Passing Variables To and From Origin C FUNCLONScceiiiiiiiiiiieeeeee e 93
5.2.3 Updating an Existing Origin C Filec..uviiiiiiiiiiie et 94
5.2.4 UsiNg Origin C FUNCHONS ..ottt 95

6 Running and Debugging LabTalk Scripts......ccccccceceeeiiiiimmmiccccin e 97
6.1 RUNNING SCIPES...uiiiiiiiiiiiiiii et e e e e e e e e e e e e s e s e e e e e e e e e seensnraaeaaaeeas 97
6.1.1 From Script and Command WINAOWcouieiiiiiiiiiiiiee et 98
B.1.2 FrOM FilES ...ttt e e et e e e e e et e e e e e e e e e e nnnneeeeans 99
6.1.3 From Set Values Dialog........coocuiiiiiieei ittt 106
6.1.4 From WOorkSheet SCriPt.......ccoiiiiiiiiiie et 108
6.1.5 From SCript PAnelcoouiiiiiiii e 108
6.1.6 From Graphical ObjJECEScccuuiiiiiie e 108
6.1.7 ProjeCtEVENTS SCrPL......cooiiiiiiiie e 110
6.1.8 From IMport WIzZardt e e e 111
6.1.9 From NONlNEar FIEEr.........ooiiiiiiee e 112
6.1.10 From an External AppliCationcoooiiiiiiiiie e 113

L0 T B o o3 T o] o =T = PR RPS 114
L0 7 © T o 1N T4 =Y USSP 119
6.1.13 ON Starting OFigiNooeiiieeii et e e er e e 120
6.1.14 From a Custom Menu Mcooiiiiii i 122
6.1.15 From a Toolbar BUON ..o e e eee s 122

6.2 DebUGQING SCIIPES....eeiiiiiiiie it 125
6.2.1 Interactive EXECULION.......cooi e e e e e 125
(S22 B I=1 o1 To [o | o To [e To - F PR PRSP 126
(oI B = (o ol o F= o |1 To TR PSP UUPT PP 133

AR = 1 4T TN 3 e Yo =X | oV O 135
7.1 String Variables and String Registers...........occoiiiiiiiiie e 135
A S (41T Y 2= T4 = o 1= RS SPS 135
71.2 StNG REGISIEIS et e e e e e ee s 136

7.2 StNG PrOCESSING ...ciii ittt e ettt e e e e e e e e e e e e s e st e e e e e e s e annraaeaaaeeas 136
7.3 Converting Strings t0 NUMDErS.........coooiiiiii e 138
7.3.1 Converting String t0 NUMETIC.........oiiiiiiiiiiiiie e 139

7.4 Converting NUMbers t0 SIHNGS......c.uiiiiiiiii e 139

Table of Contents

7.4.1 Converting NUMEHC t0 STHNGcoiiiiiiiiiiie e 139
7.4.2 Significant Digits, Decimal Places, and Numeric Formatccccooiiiiiiieenies 140

7.5 SHNG AITAYS .ot e ettt e e e ra et e e e a et e e e bbe e e e e bbe e e e eanee 141
8 Workbooks Worksheets and Worksheet Columns...........ccoeviivivinnnnnnnennnnnnnn 143
S TRt R AT oo o To o S 143
8.1.1 Basic WOrkbook OPerationccuuiiiiieiiiiiiiiei ettt e e e e e e 143
8.1.2 Workbook Manipulation...........c..ooiiiiiiiiirie et e e e e et e e e e e e e eaaes 147

8.2 WOIKSNEELS ... 149
8.2.1 Basic Worksheet Operationccuuviiiiiiiiiiiiece e 149
8.2.2 Worksheet Data Manipulationoooiiiiiiii e 152
8.2.3 Converting Worksheet t0 MatriX............c.cooiiiiiiiiiiie e 159
8.2.4 Virtual MatriX ...t e e e e e a e e e e e annas 160

8.3 WOrksheet COIUMNSccoiuiiiiiiiiie ettt et e e e sreeeeeanee 161
8.3.1 Basic Worksheet Column Operationccoocueeeiiiiiiiiiiiii et 161
8.3.2 Worksheet Column Data Manipulation.............ccccooiiiiiiiiiiiin e 168
8.3.3 Date and Time Data.......cccuiuiiiiiiieeiee e e 170

9 Matrix Books Matrix Sheets and Matrix Objects..........cccceeeecceiiiiirereccencennn, 175
9.1 Basic Matrix BOOK Operationccueeiiiiiiiiiiiie et 175
9.1.1 WOorkbooK-like OPerationS...........ccoecuuiiiiiie et e e et raee e e e e e e eaaes 175
9.1.2 Show Image ThUumMDbBNAIIS.........coiiiiiiiiiiie e e e e e e 176

9.2 MALriX SNEELS......eiiiiiiie e e 176
9.2.1 Basic Matrix Sheet Operationoeeiiiiiiiiiiiiii e 177
9.2.2 Matrix Sheet Data Manipulation ..o 178

9.3 MaALriX ODJECESeeiiiiiiie et e 178
9.3.1 Basic Matrix Object OPerationccoecuiiiiiiiiee et 179
9.3.2 Matrix Object Data Manipulationccoociiiiiiiei i 181
9.3.3 Converting Matrix t0 WOrKSheet............cooooiiiiiiiiiiie e 184

L0 C = T o 113 ' O 187
10.1 Creating Graphsuuiiiiiie e a e e e e e e e 187
10.1.1 Creating a Graph with the PLOTXY X-FUuncCtion...........ccccvviiiiiiiiiiiiiieee e 187
10.1.2 Create Graph Groups with the PLOTGROUP X-FUunction............c.coceeveiiiiniiecennnneen. 189
10.1.3 Create 3D Graphs with Worksheet -p Command............ccccoeviiiviinieeiiiii e 190
10.1.4 Create 3D Graph and Contour Graphs from Virtual MatriXccccccoeeviiiiiieeeeenins 191

10.2 FOrmatting GraphS........cueeiii oo e e e a e e e e eanrees 191
10.2.1 Graph WINAOWoviiiiiii ittt e e e e et e e e e e e e st e e e e e e s eetbeaaeaaeeeannnes 191
10.2.2 Page ProPerti€Seeiiiiiiiiiiii ettt ettt e e e e e e e e e e e nae e e e e e e e e annes 192
10.2.3 LaYer PrOPerti€S.ueeiiie ittt et e e e e e s e e e e e e e ntaaaeeaa e e e enees 192
10.2.4 AXIS PrOPEITIESuuviiiiie e e ettt e ettt e e ettt e e e e e e et e e e e e e st e e eaaeeesetraaaeaaeeeaanne 193

LabTalk Scripting Guide

10.2.5 Data Plot Properties...........coiiiiiiiiiiiiii ettt e e e e e e e e e annes 194
10.2.6 Legend and Labelooouiiiiiiiii e 195

T10.3 MANAGING LAYETS ...coiiiiiiieiie ettt sttt e e sanee s 195
10.3.1 Creating @ panel Plot...........eeiiiiiiee e 195
10.3.2 Adding Layers to @ Graph WIiNAOWcccuviiiiieiiiiiiieeiee et e e 196
10.3.3 Arranging the [QYErS...........eoiiiiiiiiiiiiiiie et e e e e e e e e e e e e e e eannes 196
10.3.4 MOVING @ QYT ...ttt ettt e e 197
10.3.5 SWaAP TWO JQYEIS...coiiiiiieeeiie ettt e e e e e e e e et e e e e e e e nnees 197
10.3.6 AlIGNING TAYEISeiiiiiiiii ettt e et e e 197
10.3.7 LiNKING LAYETS......oiiiiiiiiieiiiiee ettt ettt e et e e e s nenee e 198
10.3.8 Setting Layer UNitouiiiiiiiii ettt e e e e e e e e e e e ennnnes 198

10.4 Creating and Accessing Graphical Objectscccceveiiiiiiiiiiiie e 198
10.4.1 Creating ODJECESiiii it e e a e e e e a e e e e anaes 198
10.4.2 WOrking 0N ODJECES.......ciiiiiiiiiitiie ettt 201
10.4.3 Deleting @an ODbjJECTuuiiiiiiei e 202

11 IMPOrtiNg..... i ———————————————— 203
T IMPOrting Dataoooiiiiiii e 205
11.1.1 Import an ASCII Data File Into a Worksheet or Matrixcccccoviiiiiniiiiniicciieeee 205
11.1.2 Import ASCII Data with Options Specifiedcooociiiiiiiiiiii e 205
11.1.3 Import Multiple Data Filesoooiiiiii e 205
11.1.4 Import an ASCII File to Worksheet and Convert to MatriXccocceevciiiiniiccinienene 206
11.1.5 Related: the Open CommaNndcoioiiiiiiiiiiie e e 206
11.1.6 Import with Themes and Filters............oooiiiii e 207
11.1.7 IMport from @ Databaseccoiiiiiiiiiiec e 207

T1.2 IMPOrtiNg IMAGES ...cooieiiiee et st anee s 209
11.2.1 Import Image to Matrix and Convert to Data...........ccccovveieieiiiiiiiiiieee e 209
11.2.2 Import Single Image t0 MatriXooiiiiiiiiiiii e 209
11.2.3 Import Multiple Images to MatriX BOOK............cceiiiiiiiiiniiiieieee e 210
11.2.4 Import Image to Graph Layer...........oooiiiiiiiiiiiiiee ettt e e 210

72 =5 4o Yo 41 Vo O 211
12.1 EXpOrting WOTrKSNEEtS ... 211
1211 EXPOrt @ WOrkShEetot e e 211

A = oo T4 11T I €1 =T o] o 1= 213
12.2.1 Export a Graph with Specific Width and Resolution (DPI)cccccveiiiiiiniiicieeee 213
12.2.2 Exporting All Graphs in the Project...........cccviiiiiiiiiiieee e 213
12.2.3 Exporting Graph with Path and File Name............ccccooiiiiii e 214

12.3 EXPOrtiNg MatrICES ...t 214
12.3.1 Exporting @ Non-Image MatriX ... 214

vi

Table of Contents

12.3.2 Exporting an IMage MatriXcccuiiiiiiieiiee et 215

L =y d oo Ty 1] o TRV AT =T o T T 215
12.4.1 Create a Video Wrter ODJECEcco i 215
12.4.2 Write Graph(s) in a Video Writer ODbjJEcCt...........cccviiiiiiiiiiiie e 216
12.4.3 Release a Video Writer ODJECE...........uviiiiiiieiieiee e 217

13 The Origin Project.......... s 219
13.1 Managing the ProjECt..........o e s 219
13.1.1 The DOCUMENT COMMANG.....cc.eiiiiiiaiiieiiiieiie ettt 219
13.1.2 Project EXplorer X-FUNCHONScccuuiiiiei it e e e e e 221

13.2 ACCeSSING MEetadatauuveiiiiiiiiiiiiiiiiiiieei ettt e e eee e eeeeeeeeeeeeereereaeaee 222
13.2.1 Column Label ROWScooiiiiiiiiiiie et ettt as 222
13.2.2 Even Sampling INtervalcoooiiiiiiii e 223

(B T (== PP UPRRPTN 225

13.3 LoOPING OVEr ODJECEScoiiiiiiiiiiiiie e e 228
13.3.1 Looping over Objects iN @ Project ... 228
13.3.2 Perform Peak Analysis on All Layers in Graphccccovviiiiiiiiiiiiiiee e 232

14 Analysis and Applications ... 235
B 3 Y= 1 1= o = o S 235
14.1.1 Average MUIIPIE CUIVESooiiiiiiiieeeiie et e e e e earar e e e e e e eaees 235
14.1.2 Differentiationooo i e 236
14.1.3 INEEGIAtION ..t 237

L A [01 (=14 o Yo] =1 o] IO O UPPUPRN 237

T4.2 SHAtISHICS .oeieiiiiiie et anneeas 243
14.2.1 DesCriptive StatiStiCS........cccuiiiiiie e 243
14.2.2 HypOthesis TeSHNG ...coiiiiiiiiiiiii ettt e e e e e e e e e s e e e e e e enees 245
14.2.3 NONPAramMetric TESES.......ciiiiiiii e 248
14.2.4 SUNVIVAl ANAIYSISoeeiiie ittt e e e e et e e e e e e st e e e e e e e seaaeaeeaaeeeannes 249

L O | Y= 1] o RPN 252
14.3.1 Linear, Polynomial and Multiple ReEgressionccoccviiiieiiiiiiiiiiiiee e 252
14.3.2 NON-lNEAr FItliNgG.....eiiiiieiee e 254

14.4 SigNal PrOCESSINGuuiiiiiiee ittt e e e e e e e e e e e e e e e st raeeeaeeesennnrens 256
ot IS 4 To Yo a1 1 o PP UPRRRR 256
14.4.2 FFT and FilteriNg......cooooiiiiiiiie ettt 257

14.5 Peaks and BaseliNe.........cooo oot 258
14.5.1 X-Functions FOr Peak ANalysiscceeiiiiiiiiiiiii e 258
14.5.2 Creating @ BaSEIINE........ccccuuiiiiiie et a e 259
14.5.3 FiNAING PEAKS ...ttt 259
14.5.4 Integrating and Fitting PEaKScc.uviiiiiiiiiieeee e 259

LabTalk Scripting Guide

14.6 IMAGE PrOCESSING ...coiuiiiiiiiiiiie ittt et e e snnee s 260
14.6.1 Rotate and Make Image COMPACLccceeiiiiiiiiiiiie e 260

14.6.2 EdQe DEeECHONcoiiiiieeeee et e e 262

14.6.3 Apply Rainbow Palette to Gray IMageoceviiiiiiiiniie e 263

14.6.4 Converting IMage t0 Data..........cccuiiiiiiei e 264

15 User INteraction ... s e 265
15.1 Getting Numeric and String INPULoiiiiiiiii e 265
15.1.1 Get @ YES/NO RESPONSEccciiiiiiiiiiiie ettt 265

15.1.2 Gt @ SHNG. ...t e e e e e e e e e e e e e e e s et aaeaaae e e nnaes 266

15.1.3 Get MUIIPIE VAIUES........ooieiiiieie e 266

15.2 Getting Points from Graphcooooiiiiiiiiiiie e 269
15.2.1 SCrEEN REAUENcoi ittt e e e e et e e e e e e e nneaeeeaaeeeeannnees 269

15.2.2 Data REATEN ..ottt e e e e et e e e e e e e e e e e e e e e nneee 270

15.2.3 Data SEIECIONeieeieiie ettt ettt e e ean 271

15.3 Bringing UpP @ DHalogccceeiiiiiiiiieieieeeeee ettt 274

16 Working with EXcel.........cccoiiiiiiiii 277
17 Automation and Batch Processingccccceeeceiiiiiriiiccecccss s esessecessss s e e eeeeeees 279
17.1 AnalysisS TemMPIAIESooiiiiiiii e 279
17.2 Using Set Column Values to Create an Analysis Templatecccccccvvveeeieeeeicnnnen. 280
17.3 BatCh ProCESSINGcoeiiiiiiiiiiieeeeeeeeeeeee ettt ettt ettt ettt a e e e e e e e e ae s 280
17.3.1 Processing Each Dataset in @ LOOPcccuviiiiieiiiiiiiieiee e 280

17.3.2 Using Analysis Template in @ LOOP.......coccueiiiiiiiiiiiiie et 281

17.3.3 Using Batch Processing X-FUNCHONS............oociiiiiiiiii e 282

18 Function Reference........cccoccoriiiiiiiiinirrrrrrrrrrrrrrrrrrsr s 285
18.1 LabTalk-Supported FUNCHONS.......oooiiiee e 285
18.1.1 Statistical FUNCHONSeeiiiiii e e a e 286

18.1.2 Mathematical FUNCHONScoouiiiiii e 290

18.1.3 Origin Worksheet and Dataset FUNCLIONSccoocciiiiiiiiiiiiee e 296

18.1.4 INOLES ON USE ...ttt e e e e e e ettt e e e e e e e nanaeeaaaeeaeannnens 302

18.2 LabTalk-Supported X-FUNCHONS ... 302
18.2.1 Data EXPIOrationooiiiiiiiiiiie et 302

18.2.2 Data Manipulationuueiiiiiii e a e 303

18.2.3 Database ACCESSccoiiiiiiiiii ettt e e e e e e e e e e e e e e e e e e e anneee 309

(T S T Vo USROS 310

18.2.5 Graph Manipulation.............oooiiiiiiiiiiii e e e 311

18.2.6 IMAGE ...ttt e 312

18.2.7 IMPOrt @nd EXPOIt ..ottt e e e e e e e e e e et e e e e e e e ennnres 315

viii

Table of Contents

18.2.8 MathemMatiCS.oeiiiiiieiii et 318
18.2.9 SigNal PrOCESSING ...veiiieiiee ittt ettt et e e s 319
18.2.10 SPECIIOSCOPYiiiiiiiiie e e ettt et ettt e e e e s et e e e e e e e et e e e eaeeessantbaaeeaaeessassaaeeaaeesaanses 321
182,171 SHALISHICS .. eee it s 321
18212 UHIlIbY oottt e et e e et e e e et e e e et e e e e e bae e e e tae e e enneeeennneeenn 323
... 327

1 Introduction

In this guide we introduce LabTalk, the scripting language in Origin. LabTalk is designed for
users who wish to write and execute scripts to perform analysis and graphing of their data. The
purpose of this guide is to help users who are generally familiar with programming in a scripting
language to take advantage of the scripting capabilities in Origin. We provide sufficient detail
for a user with basic knowledge of Origin to begin tailoring the software to meet their unique
needs.

The guide starts with a quick introduction to LabTalk, followed by a chapter on language
fundamentals, and a chapter outlining various ways to organize and execute scripts within the
Origin environment. The remaining chapters are organized by various functional areas of
Origin, such as importing, graphing, data analysis, user interaction, and automation.

A few reference tables are included at the end. However this guide is not a full language
reference. The full LabTalk language reference documentation is accessible from the Help
menu in Origin. New features are continually introduced to LabTalk with successive versions of
Origin. These are typically marked with a version number stamp (i.e., 8.1, typically in a bold
and/or red-colored font) in the language reference help file.

This guide should be used in conjunction with other resources for learning LabTalk, which are
listed in the Resources for Learning LabTalk chapter.
' This guide provides several script examples. To try these examples you can
either type in the script, or you can simply copy and paste the script from the
soft file version of this guide accessible from the Help menu.

2 Getting Started with LabTalk

2.1 Hello World

We begin with a classic example to show you how to execute LabTalk script.

1.

2.

3.

Open Origin, and from the Window menu, select the Script Window option. The
Script Window will open.

In this window, type the following text and then press Enter:

type "Hello World"

Here we used LabTalk command type. Commands can be abbreviated down to 2
characters, try:

ty "Hello World"

Origin will output the text Hello World directly beneath your command.

v

Note that when you press Enter, Origin adds a semicolon, ;, at the end of the
line and also executes that line of script.

To repeat the execution of a line of script, place the cursor anywhere within the
line and press Enter. If you place the cursor at the end of the line, you need to
remove the ; before pressing Enter to execute that line of script.

Now let us see how to execute multiple lines of script from the script window:

1.
2.

With a workbook window active in Origin, open the Script Window
Type the following lines of script in the script window. At the end of each line, press

Enter after typing the ;. This will prevent execution of the line. We will later execute
all lines together.

type "The current workbook is %h";
type "This book has $(page.nlayers) sheet(s)";

type "There are $(wks.ncols) columns in the active sheet";

Using the mouse, drag and select all lines of script. If using keyboard, place the
cursor at the beginning of the script, then hold down the Shift key, and use the arrow
keys to highlight all lines.

Press Enter to execute all selected lines of script. Depending on the workbook that
was active, the output in the script window will be similar to the following text:

The current workbook is Bookl

2.2 Using = to Get Quick Output

This book has 1 sheet (s)

There are 2 columns in the active sheet

In the above example, we used the %H String Register that holds the currently active window
name (which could be a workbook, a matrix, or a graph). We then used the page and wks
LabTalk Objects to get the number of sheets in the book and the number of columns in the
sheet. The $() is a substitution notations which tells Origin to evaluate the expression within the
() and return its value.
' If you are typing in multiple lines of script in the Script Window, you can add a ;
at the end of a line and then press Enter to avoid execution of the line. This
allows you to type in multiple lines without executing each line. You can then
select all lines and press Enter to execute them all.

2.2 Using = to Get Quick Output

The script window can be used as a calculator to return results interactively. Type the following
script in the script window and press Enter:

3+ 5=
Origin computes the result and displays it in the next line:
3+5=8

The = character is typically used as an assignment operator, with a left- and right-hand side.
When the right-hand side is missing, the interpreter will evaluate the expression on the left of
the = character and print the result in the script window.
In the following example, we introduce the concept of variables in LabTalk. Entering the
following assignment statement in the script window:

double A = 2
creates a variable A and initializes its value to 2. Then you can perform some arithmetic on
variable A, such as multiplying by Pl (a constant defined in Origin,) and assign the result
back to A:

A = A*PI
To display the current value of A, type:
A =

Press Enter and Origin responds with:
A = 6.2831853071796

In addition, there are List command to view a list of variables and their values. Type the
following command and press Enter:

list
Origin will open the LabTalk Variables and Functions dialog that lists all variables.
You can also get a dump of a specific type of variables, for example

list v

4 Getting Started with LabTalk

2.3.1 Custom Routine Button

to list the numeric variables.

2.3 Other Ways to Execute Script

In previous examples, you saw how to execute script from the Script Window. Origin provides
several other ways to organize and execute LabTalk script. These are outlined in detail in the
Running and Debugging LabTalk Scripts chapter. Here we take a quick look at a few of the
methods to execute script: (1) from the Custom Routine toolbar button, (2) from a custom
menu item, and (3) from a button in a graph page.

2.3.1 Custom Routine Button

Origin provides a convenient way to save script and run it with the push of a toolbar button.
1. While holding down Ctrl+Shift on your keyboard, press the Custom Routine button

('535') located in the Standard Toolbar.
2. This opens Code Builder, Origin's native script editor. The file being edited is called
Custom.ogs. The code has one section, [Main], and contains one line of script:

[Main]
type -b $General.Userbutton;

3. Replace that line with the following:

[Main]
type -b "Hello World";

4. Then press the Save () button in the Code Builder window.

5. Now go back to the Origin application window and click the '535' button.

Origin will again output the text Hello World, but this time, because of the -b switch used with
the type command, the text will be presented in a pop-up window.

2.3.2 Custom Menu Item

LabTalk script can be executed from a custom menu item.

1. Select the menu item Tools: Custom Menu Organizer... to open the Custom Menu
Organizer dialog.

2. Make the Add Custom Menu tab active. Then right-click inside the left panel and
select New Main Popup from the context menu.

3. Inthe right panel, enter a name for Popup Text, such as My Menu. then click
outside of the edit box.

Getting Started with LabTalk 5

2.4 Script Example

4. Select My Menu from the left panel, and then right click on it, and select Add Item
from the context menu.

5. In the right panel, change the Item Text to Hello World, then add the following script
to the LabTalk Script text box:

type -b "Hello World";

6. Click the Close button, and in the window that pops up, press Yes to save the menu
changes as Default menu. In the file dialog that opens, press Save to save the file
with the default name to the default folder (User Files Folder).

7. A new menu named My Menu should now appear in the menu bar, to the left of the
Window menu. Click on this new menu item, and then click on the Hello World
entry in the drop-down. A Hello World dialog will pop up.

2.3.3 Buttonin a Graph

Origin also provides the ability to add a button to a graph or worksheet, and then execute
LabTalk script by pushing that button. This allows for script to be saved with a specific project
or window.

1. Press the New Graph button () located in the Standard Toolbar to create a new
graph.

2. Press the Text Tool button (T) in the Tools Toolbar, and then click on the newly
created graph and type the text My Button. Then click outside the text to finish editing
the text.

3. Right click on the text to bring up the context menu, and then select Programming
Control to open the Programming Control dialog.

4. Inthe dialog, select Button Up from the Script, Run After: drop-down list, and then
type the following script in the edit box:

type -b "Hello World";

5. Click OK to close the dialog. Now the text label becomes a button. Click the button. A
Hello World dialog will pop up.

2.4 Script Example

We now present a script example that walks you through a particular scenario of importing and
processing data, and then saving the project. This example uses several LabTalk language
features such as Commands, Objects, and X-Functions. You will learn more details about
these language features in subsequent chapters.

6 Getting Started with LabTalk

2.3.3 Button in a Graph

NOTE: We will use the Script Window to execute these statements. To execute a single line
of code, make sure that you leave out the ; at the end before pressing Enter. For multiple lines
of code, at the end of each line, press Enter after the ; to continue entering the next line. After
you have typed in all lines, select them all and then press Enter to execute.
Let's start with a new project using the doc command and the -n switch. If the current project
needs saving, this command will prompt user to save.

doc -n
Now let's import a data file from the Samples folder. We will first use the digfile X-function to
locate the desired file:

dlgfile gr:=ASCII
Then select the file $15-125-03.dat from the \Samples\Import and Export sub folder located
in your Origin installation folder, and click Open.
The above process will load the file path and name into a variable named fname$. You can
examine the value of this variable by typing:

fnames$=
Now let's import this files into the active workbook. We will use the impasc X-Function with
options to control naming, so that the file name does not get assigned to the workbook:

impasc Options.Names.FNameToBk:=0
Now we want to perform some data processing of the Position column. We first define a range
variable to point to this column.:

range rpos = "Position"
Since the column we select is also the 4th column in the current worksheet, we can also use
index number to specify it.

range rpos = 4
You can check what range variables are currently defined, using this command:

list a
We now normalize the column so that the values go from 0 to 100. To check what X-Functions
are available for normalization, we can use the command:

1x *norm*
The above command will dump X-Functions where the name contains norm. There are several
X-Functions for normalizing data. For our current purpose we will use the rnormalize X-
Function.
To get help on the syntax for this particular X-Function, you can type:

rnormalize -h
to dump the information, or type:

help rnormalize
to open the help file.
Let us now normalize the position column:

rnormalize irng:=rpos method:=rangel00 orng:=<input>

The normalized data will be placed in the same column, replacing the original data, as we set
the output range variable orng to be <input>.

Getting Started with LabTalk 7

2.5 Where to Go from Here?

When using X-Functions, you can leave out the variable names, if they are specified in the
correct order. The above line of code can therefore be written as:
rnormalize rpos rangel00 orng:=<input>

The reason we still specified the name orng is because there are other variables that precede
this particular variable, which are not relevant to our current calculation and were therefore not
included in the command.

Now let's do some changes to the folder in the project. There are several X-Functions for
managing project folders, and we will use some of them:

// Get the name of the current worksheet

string name$ = wks.name$;

// go to root folder

pe cd ..;

// rename Folderl to be the same as worksheet

pe_rename Folderl name$;

Now let's list all the sub folders and workbooks under the root folder:

pe dir
Finally, let's save the Origin Project to the User Files Folder. The location of the user files folder
is stored in the string register %Y. You can examine where your User Files Folder is by
checking this variable:

5Y =
Now let's use the save command to save our project to User Files Folder, with the name
MyProject.opj.

save $yMyProject
In the above command %Y will be replaced with the User Files Folder path, and thus our
project will be saved in the correct location.

2.5 Where to Go from Here?

The answer to this question is the subject of the rest of the LabTalk Scripting Guide. The
examples above only scratch the surface, but have hopefully provided enough information for
you to get a quick start and excited to learn more. The next chapter lists various resources
available for learning LabTalk.

8 Getting Started with LabTalk

3 Resources for Learning LabTalk

Additional resources are available for learning LabTalk.

3.1 Online Documentation

Most up-to-date documentation for LabTalk, including updates to this guide, can be found
online at this location: http://www.originlab.com/doc/labtalk

3.2 Script Examples

Various Script Examples are shipped with Origin. These are accessible from the Help menu,
and are contained in the sub folder: <Origin Installation Folder>\Samples\LabTalk Script
Examples\.

3.3 X-Function Script Examples

Press the F11 key in Origin to open the XF Script Dialog. This dialog provides many script
examples specific to calling X-Functions, organized in various categories such as Import,
Fitting, Signal Processing, and Spectroscopy.

3.4 LabTalk Forum

Post your question on the LabTalk forum. Go to: http://www.originlab.com/forum and then
select the LabTalk Forum. Our forums are monitored by our technical staff, plus you may get
ideas and answers from other power users as well.

3.5 Training and Consulting

OriginLab and our distributors worldwide offer Training and Consulting services to help you
with advanced customization using LabTalk. Please contact us for further details.

4 Language Fundamentals

In this chapter, we introduce various aspects of the LabTalk language structure. In the first
section you will learn about general language features such as data types, variables,
operators, conditional and loop structures, macros and functions. The second section covers
features that are unique to LabTalk, such as range and substitution notation, objects, methods
and properties, and accessing X-Functions.

4.1 General Language Features

These pages contain information on implementing general features of the LabTalk scripting
language. You will find these types of features in almost every programming language.

4.1.1 Data Types and Variables

LabTalk Data Types
LabTalk supports 9 data types:

Type Comment
Double Double-precision floating-point number
Integer Integers
Constant Numeric data type that value cannot be changed once declared
Dataset Array of numeric values
String Sequences of characters

StringArray Array of strings
Range Refers to a specific region of Origin object (workbook, worksheet, etc.)

Tree Emulates data with a set of branches and leaves

11

4.1 General Language Features

Graphic Objects like labels, arrows, lines, and other user-created graphic
Object elements
Numeric

LabTalk supports three numeric data types: double, int, and const.

1. Double: double-precision floating-point number; this is the default variable type in
Origin.
2. Integer: integers (int) are stored as double in LabTalk; truncation is performed during
assignment.
3. Constant: constants (const) are a third numeric data type in LabTalk. Once
declared, the value of a constant cannot be changed.
// Declare a new variable of type double:
double dd = 4.5678;
// Declare a new integer variable:
int vv = 10;
// Declare a new constant:
const em = 0.5772157;
Note: LabTalk does not have a complex datatype. You can use a complex number in a
LabTalk expression only in the case where you are adding or subtracting. LabTalk will simply
ignore the imaginary part and return only the real part. (The real part would be wrong in the
case of multiplication or division.) Use Origin C if you need the complex datatype. Columns in
Workbooks can be defined as Numeric with DataType of complex, in which case +, -, *, / all
work as expected.

// Only valid for addition or subtraction:

realresult = (3-131) - (7+21);
realresult=;
// realresult = -4

Dataset

The Dataset data type is designed to hold an array of numeric values.

Temporary Loose Dataset

When you declare a dataset variable it is stored internally as a local, temporary loose dataset.
Temporary means it will not be saved with the Origin project; loose means it is not affiliated
with a particular worksheet. Temporary loose datasets are used for computation only, and
cannot be used for plotting.
The following brief example demonstrates the use of this data type (Dataset Method and $
Substitution Notation are used in this example):

// Declare a dataset 'aa' with values from 1-10,

// with an increment of 0.2:

dataset aa={1:0.2:10};

12 Language Fundamentals

4.1.1 Data Types and Variables

// Declare integer 'nSize',
// and assign to it the length of the new array:

int nSize = aa.GetSize();

// Output the number of values in 'aa' to the Script Window:

type "aa has $(nSize) values";

Project Level Loose Dataset

When you create a dataset by vector assignment (without declaration) or by using the Create
(Command) it becomes a project level loose dataset, which can be used for computation or
plotting.
Create a project-level loose dataset by assignment,

bb = {10:2:100)
Or by using the Create command:

create % (strWks$) -wdn 10 aa bb;
For more on project-level and local-level variables see the section below on Scope of
Variables.

For more on working with Datasets, see Datasets.
For more on working with %(), see Substitution Notation.

String
LabTalk supports string handling in two ways: string variables and string registers.

String Variables

String variables may be created by declaration and assignment or by assignment alone
(depending on the desired variable scope), and are denoted in LabTalk by a name comprised
of continuous characters (see Naming Rules below) followed by a $-sign (i.e., stringName$):

// Create a string with local/session scope by declaration and assignment

// Creates a string named "greeting",
// and assigns to it the value "Hello":

string greeting$ = "Hello";

// $ termination is optional in declaration, mandatory for assignment
string FirstName, LastName;
FirstName$ = Isaac;

LastName$ = Newton;

// Create a project string by assignment without declaration:
greeting2$ = "World";//global scope and saved with OPJ

// string variable can make use of string class methods
string str$ = Johann Sebastian Bach;

str.Find('Sebastian')=;

Language Fundamentals 13

4.1 General Language Features

For more information on working with string variables, see the String Processing section.

String Registers

Strings may be stored in String registers, denoted by a leading %-sign followed by a letter of
the alphabet (i.e., %A-%Z). String Registers are always global in scope.

/* Assign to the string register %A the string "Hello World": */

%A = "Hello World";

' For current versions of Origin, we encourage the use of string variables for
working with strings, as they are supported by several useful built-in methods;
for more, see String(Object). If, however, you are already using string registers,
see String Registers for complete documentation on their use.

StringArray

The StringArray data type handles arrays of strings in the same way that the Datasets data
type handles arrays of numbers. Like the String data type, StringArray is supported by several
built-in methods; for more, see StringArray (Object).

The following example demonstrates the use of StringArray:

" "

// Declare string array named "aa",

// and use built-in methods Add, and GetSize:

StringArray aa; // aa is an empty string array
aa.Add ("Boston") ; // aa now has one element: "Boston"
aa.Add ("New York"); // aa has a second element: "New York"

/* Prints "aa has 2 strings in it:" then each string. */
type "aa has $(aa.GetSize()) strings in it:";
loop(ii,1,aa.GetSize())
{

ty aa.GetAt (ii)$;

Range

The range data type allows functional access to many data-related Origin objects, referring to a
specific region in a workbook, worksheet, graph, layer, or window.

The general syntax is:

range rangeName = [WindowName]LayerNameOrindex!DataRange[subRange]

which can be made specific to data in a workbook, matrix, or graph:

range rangeName =
[BookName]SheetNameOrindex!ColumnNameOrindex[RowBegin:RowEnd]

14 Language Fundamentals

4.1.1 Data Types and Variables

range rangeName =
[MatrixBookName]MatrixSheetNameOrindex! MatrixObjectNameOrindex[CellBegin:CellE
nd]

range rangeName =[GraphName]LayerNameOrindex!DataPlotindex[RowBegin:RowEnd]
The special syntax [??] is used to create a range variable to access a loose dataset.

For example:
// Access Column 3 on Bookl, Sheet2:
range cc = [Bookl]Sheet2!Col (3);

// Access second curve on Graphl, layerl:

range 11 = [Graphl]Layerl!2;

// Access second matrix object on MBookl, MSheetl:
range mm = [MBookl]MSheetl!2;

// Access loose dataset tmpdata a:

range xx = [??]!tmpdata a;

Notes:

e CellRange can be a single cell, (part of) a row or column, a group of cells, or a non-
contiguous selection of cells.

o Worksheets, Matrix Sheets, and Graph Layers can each be referenced by name or
index.

¢ You can define a range variable to represent an origin object, or use range directly
as an X-Function argument.

¢ Many more details on the range data type and uses of range variables can be
found in the Range Notation.

Tree

LabTalk supports the standard tree data type, which emulates a tree structure with a set of
branches and leaves. The branches contain leaves, and the leaves contain data. Both
branches and leaves are called nodes.

Leaf: A node that has no children, so it can contain a value
Branch: A node that has child nodes and does not contain a value
A leaf node may contain a variable that is of numeric, string, or dataset (vector) type.

Trees are commonly used in Origin to set and store parameters. For example, when a dataset
is imported into the Origin workspace, a tree called options holds the parameters which
determine how the import is performed.

Specifically, the following commands import ASCII data from a file called "SampleData.dat",
and set values in the options tree to control the way the import is handled. Setting the
ImpMode leaf to a value of 4 tells Origin to import the data to a new worksheet. Setting the
NumCols leaf (on the Cols branch) to a value of 3 tells Origin to only import the first three
columns of the SampleData.dat file.

string str$ = system.path.program$ + "Samples\Graphing\Group.dat";

impasc fname:=str$

/* Start with new sheet */

Language Fundamentals 15

4.1 General Language Features

options.ImpMode:=4
/* Only import the first three columns */

options.Cols.NumCols:=3;

Declare a tree variable named aa:
// Declare an empty tree
tree aa;
// Tree nodes are added automatically during assignment:
aa.bb.cc=1;
aa.bb.dd$="some string";

// Declare a new tree 'trb' and assign to it data from tree 'aa':

tree trb = aa;

The tree data type is often used in X-Functions as both an input and output data structure. For
example:
// Put import file info into 'trInfo'.
impinfo t:=trInfo;
Tree nodes can be strings. The following example shows how to copy a treenode with string
data to worksheet columns:
//Import the data file into worksheet
newbook;
string fn$=system.path.program$ + "\samples\statistics\automobile.dat";
impasc fname:=fn$;
tree tr;
//Perform statistics on a column and save results to a tree variable
discfregs irng:=2 rd:=tr;
// Assign strings to worksheet column.
newsheet name:=Result;
col(l) = tr.freqcountl.datal;
col (2) = tr.freqgcountl.countl;
Tree nodes can also be vectors. Prior to Origin 8.1 SR1 the only way to access a vector in a
Tree variable was to make a direct assignment, as shown in the example code below:
tree tr;
// If you assign a dataset to a tree node,
// it will be a vector node automatically:
tr.a=data(1,10);
// A vector treenode can be assigned to a column:
col(l)=tr.a;
// A vector treenode can be assigned to a loose dataset, which is
// convenient since a tree node cannot be used for direct calculations
dataset temp=tr.a;
// Perform calculation on the loose dataset:
col (2)=temp*2;
You can access elements of a vector tree node directly, with statements such as:

16 Language Fundamentals

4.1.1 Data Types and Variables

// Following the example immediately above,
col(3)[1l] = tr.al3];
that assigns the third element of vector tr.a to the first row of column 3 in the current
worksheet.
You can also output analysis results to a tree variable, like the example below.
newbook;
//Import the data file into worksheet
string fn$=system.path.program$ + "\samples\Signal Processing\fftfilterl.dat";
impasc fname:=fn$;
tree mytr;
//Perform FFT and save results to a tree variable
fftl ix:=col (2) rd:=mytr;
page.active=1;
col(3) = mytr.fft.real;
col(4) = mytr.fft.imag;
More information on trees can be found in the chapter on Origin Projects,Accessing Metadata
section.

Graphic Objects

The new LabTalk variable type GObject allows the control of graphic objects in any book/layer.
The general syntax is:

GObject name = [GraphPageName]LayerIindex!ObjectName;

GObject name = [GraphPageName]LayerName!ObjectName;

GObject name = LayerName!ObjectName; // active graph

GObject name = Layerindex!ObjectName; // active graph

GObject name = ObjectName; // active layer

You can declare GObiject variables for both existing objects as well as for not-yet created
objects.

For example:
GObject myLine = linel;
draw -n myLine -1 {1,2,3,4};
win -t plot;
myLine.X+=2;
/* Even though myLine is in a different graph

that is not active, you can still control it! */

For a full description of Graphic Objects and their properties and methods, please see Graphic
Objects.

Variables

A variable is simply an instance of a particular data type. Every variable has a name, or
identifier, which is used to assign data to it, or access data from it. The assignment operator is

Language Fundamentals 17

4.1 General Language Features

the equal sign (=), and it is used to simultaneously create a variable (if it does not already exist)
and assign a value to it.

Variable Naming Rules
Variable, dataset, command, and macro names are referred to generally as identifiers. When
assigning identifiers in LabTalk:
e Use any combination of letters and numbers, but note that:
o the identifier cannot be more than 25 characters in length.
o the first character cannot be a number.

o the underscore character "_" has a special meaning in dataset names and
should be avoided.

o Use the Exist (Function) to check if an identifier is being used to name a window,
macro, tool, dataset, or variable.

¢ Note that several common identifiers are reserved for system use by Origin, please
see System Variables for a complete list.

Handling Variable Name Conflicts

The @ppvV system variable controls how Origin handles naming conflicts between project,
session, and local variables. Like all system variables, @ppv can be changed from script
anytime and takes immediate effect.

Variable Description

This is the DEFAULT option and allows both session variables and local
@ppv=0 | variables to use existing project variable names. In the event of a conflict,
session or local variables are used.

This option makes declaring a session variable with the same name as an
existing project variable illegal. Upon loading a new project, session
variables with a name conflict will be disabled until the project is closed or
the project variable with the same name is deleted.

@ppv=1

This option makes declaring a local variable with the same name as an
existing project variable illegal. Upon loading of new project, local variables
with a name conflict will be disabled until the project is closed or the project
variable with the same name is deleted.

@ppv=2

This is the combination of @ppv=1 and @ppv=2. In this case, all session
and local variables will not be allowed to use project variable names. If a
new project is loaded, existing session or local variables of the same name
will be disabled.

@ppv=3

18 Language Fundamentals

4.1.1 Data Types and Variables

Listing and Deleting Variables

Use the LabTalk commands list and del for listing variables and deleting variables,
respectively.
/* Use the LabTalk command "list" with various options to list

variables; the list will print in the Script Window by default: */

list a; // List all the session variables

list v; // List all project and session variables

list vs; // List all project and session string variables
list vt; // List all project and session tree variables

// Use the LabTalk command "del" to delete variables:

del -al <variableName>; // Delete specific local or session variable

del -al *; // Delete all the local and session variables

// There is also a viewer for LabTalk variables:

// "ed" command can also open the viewer

list; // Open the LabTalk Variables Viewer
Please see the List (Command), and Del (Command) (in Language Reference: Command
Reference) for all listing and deleting options.
If no options are specified, running either the List or Edit command will open the LabTalk
Variables and Functions dialog and list all variables and functions.

Scope of Variables

The scope of a variable determines which portions of the Origin project can see and be seen
by that variable. With the exception of the string, double (numeric), and dataset data types,
LabTalk variables must be declared. The way a variable is declared determines its scope.
Variables created without declaration (double, string, and dataset only!) are assigned the
Project/Global scope. Declared variables are given Local or Session scope. Scope in LabTalk
consists of three (nested) levels of visibility:

e Project variables
e Session variables
e Local variables

Project (Global) Variables

e Project variables, also called Global variables, are saved with the Origin Project
(*.OPJ). Project variables or Global variables are said to have Project scope or
Global scope.

Language Fundamentals 19

4.1 General Language Features

e Project variables are automatically created without declarations for variables of type
double, string, and dataset as in:
// Define a project (global scope) variable of type double:
myvar = 3.5;
// Define a loose dataset (global scope):

temp = {1,2,3,4,5};
// Define a project (global scope) variable of type string:
str$ = "Hello";

e All other variable types must be declared, which makes their default scope either
Session or Local. For these you can force Global scope using the @global system
variable (below).

Session Variables

e Session variables are not saved with the Origin Project, and are available in the
current Origin session across projects. Thus, once a session variable has been
defined, they exist until the Origin application is terminated or the variable is deleted.

e When both a session variable and project variable share the same name, the
session variable takes precedence.

e Session variables are defined with variable declarations, such as:

// Defines a variable of type double:
double varl = 4.5;
// Define loose dataset:
dataset mytemp = {1,2,3,4,5};
It is possible to have a project variable and session variable share the same name. In such a
case, the session variable takes precedence. See the script example below:
aa = 10;
type "First, aa 1s a project variable equal to $(aa)";
double aa = 20;
type "Then aa is a session variable equal to $(aa)";
del -al aa;
type "Now aa 1s project variable equal to $(aa)";
And the output is:
First, aa is a project variable equal to 10
Then aa is a session variable equal to 20
Now aa is project variable equal to 10

Local Variables

Local variables exist only within the current scope of a particular script.
Script-level scope exists for scripts:

e enclosed in curly braces {},

e in separate *.OGS files or individual sections of *.OGS files,

¢ inside the Column/Matrix Values Dialog, or

20 Language Fundamentals

4.1.1 Data Types and Variables

e behind a custom button (Button Script).

Local variables are declared and assigned values in the same way as session variables:
loop (i, 1,10){
double a = 3.5;
const e = 2.718;
// some other lines of script...
}
// "a" and "e" exist only inside the code enclosed by {}
It is possible to have local variables with the same name as session variables or project
variables. In this case, the local variable takes precedence over the session or project variable
of the same name, within the scope of the script. For example, if you run the following script
(Please refer to Run LabTalk Script From Files for details on how to run such script):
[Main]
double aa = 10;
type "In the main section, aa equals $(aa)";
run.section(, sectionl);

run.section(, section2);

[sectionl]
double aa = 20;

type "In sectionl, aa equals $(aa)";

[section2]

type "In Section 2, aa equals $(aa)";
Origin will output:

In the main section, aa equals 10

In sectionl, aa equals 20

In Section 2, aa equals 10

Forcing Global Scope

At times you may want to define variables or functions in a *.OGS file, but then be able to use
them from the Script Window (they would, by default, exist only while the *.OGS file was being
run). To do so, you need to use the @global system variable, which when given a value of 1,
forces all variables to have global or project level scope (its default value is 0). For Example:

[Main]

@global = 1;

// the following declarations become global

range a = 1, b= 2;

if(a[2] > 0)

{

// begin a local scope

range ¢ = 3; // this declaration is still global

Language Fundamentals 21

4.1 General Language Features

Upon exiting the *.0GS, the @global variable is automatically restored to its default value, 0.
Note that one can also control a block of code by placing @global at the beginning and end
such as:
Qglobal=1;
double alpha=1.2;
double beta=2.3;
Function double myPeak (double x, double x0)
{
double y = 10*exp (- (x-x0)"2/4);
return y;

}
Qglobal=0;
double gamma=3.45;

In the above case variables alpha, beta, and the user-defined function myPeak will have global
scope, where as the variable gamma will not.

41.2 Programming Syntax

Programming Syntax

A LabTalk script is a single block of code that is received by the LabTalk interpreter. A LabTalk
script is composed of one or more complete programming statements, each of which performs
an action.

Each statement in a script should end with a semicolon, which separates it from other
statements. However, single statements typed into the Script window for execution should not
end with a semicolon.

Each statement in a script is composed of words. Words are any group of text separated by
white space. Text enclosed in parentheses is treated as a single word, regardless of white
space. For example:

type This is a statement; // Single LabTalk statement

ty sl; ty s2; ty s3; // Three statements
Parentheses are used to create long words containing white space. For example, in the script:

menu 3 (Long Menu Name) ;

the open parenthesis signifies the beginning of a single word, and the close parenthesis
signifies the end of the word.

Statement Types

LabTalk supports five types of statements:
e Assignment Statements
e Macro Statements

22 Language Fundamentals

4.1.2 Programming Syntax

¢ Command Statements
e Arithmetic Statement
e Function Statements

Assignment Statements

The assignment statement takes the general form:
LHS = expression ;

expression (RHS, right-hand side) is evaluated and put into LHS (left-hand side). If LHS does
not exist, it is created if possible, otherwise an error will be reported.

When a new data object is created with an assignment statement, the object created is:
e A string variable if LHS ends with a $ as in stringVar$ = "Hello."
¢ A numeric variable if expression evaluates to a scalar.
e A dataset if expression evaluates to a range.
When new values are assigned to an existing data object, the following conventions apply:

e |If LHS is a dataset and expression is a scalar, every value in LHS is set equal to
expression.

e If LHS is a numeric variable, then expression must evaluate into a scalar. If
expression evaludate into a dataset, LHS retrieves the first element of the dataset.

e If both LHS and expression represent datasets, each value in LHS is set equal to the
corresponding value in expression.

e If LHS is a string, then expression is assumed to be a string expression.

e Ifthe LHS is the object.property notation, with or without $ at the end, then this
notation is used to set object properties, such as the number of columns in a
worksheet, like wks.ncols=3;

Examples of Assignment Statements
Assign the variable B equal to 2.

B = 2;
Assign Test equal to B raised to the third power.
Test = B"3;

Assign %A equal to Austin TX.
SA = Austin TX;
Assign every value in Book1_B to 4.
Bookl B = 4;
Assign each value in Book2_B to the corresponding position in Book1_B.
Bookl B = Book2 B;
Sets the row heading width for the Book1 worksheet to 100, using the worksheet object's rhw
property. The doc -uw command refreshes the window.
Bookl!wks.rhw = 100; doc -uw;

Language Fundamentals 23

4.1 General Language Features

The calculation is carried out for the values at the corresponding index numbers in more and
yetmore. The result is put into myData at the same index number.
myData = 3 * more + yetmore;
Note: If a string register to the left of the assignment operator is enclosed in parentheses, the
string register is substitution processed before assignment. For example:
%B = DataSet;
(3B) = 2 * $B;
The values in DataSet are multiplied by 2 and put back into DataSet. %B still holds the string
"DataSet".
Similar to string registers, the assignment statement is also used for string variables, like:
fname$=fdlg.path$+"test.csv";
In this case, the expression is a string expression which can be string literals, string variables,
or a concatenation of multiple strings with the + character.

Macro Statements

Macros provide a way to alias a script, that is, to associate a given script with a specific name.
This name can then be used as a command that invokes the script.

For more information on macros, see Macros

Command Statements

The third statement type is the command statement. LabTalk offers commands to control or
modify most program functions.

Each command statement begins with the command itself, which is a unique identifier that can
be abbreviated to as little as two letters (as long as the abbreviation remains unique, which is
true in most cases). Most commands can take options (also known as switches), which are
single letters that modify the operation of the command. Options are always preceded by the
dash "-" character. Commands can also take arguments. Arguments are either a script or a
data object. In many cases, options can also take their own arguments.

Command statements take the general form:
command [option] [argument(s)];
The brackets [] indicate that the enclosed component is optional; not all commands take both

options and arguments. The brackets are not typed with the command statement (they merely
denote an optional component).
Methods (Object) are another form of command statement. They execute immediate actions
relating to the named object. Object method statements use the following syntax:
ObjectName.Method ([options]) ;
For example:
The following script adds a column named new to the active worksheet and refreshes the
window:
wks.addcol (new) ;
doc -uw;

The following examples illustrate different forms of command statements:

24 Language Fundamentals

4.1.2 Programming Syntax

Integrate the dataset myData from zero.
integ myData;
Adding the -r option and its argument, baseline, causes myData to be integrated from a
reference curve named baseline.
integ -r baseline myData;
The repeat command takes two arguments to execute:
1. the number of times to execute, and
2. ascript, which indicates the instruction to repeat.

This command statement prints "Hello World" in a dialog box three times.
repeat 3 {type -b "Hello World"}

Arithmetic Statement

The arithmetic statement takes the general form:
dataObjectl operator dataObject2;

where
e (dataObject1 is a dataset or a numeric variable.
o dataObject? is a dataset, variable, or a constant.
e operatorcanbe +, -, *, /, or A
The result of the calculation is put into dataObject1. Note that dataObject? cannot be a
function. For example, col(3) + 25 is an illegal usage of this statement form.
The following examples illustrate different forms of arithmetic statements:
If myData is a dataset, this divides each value in myData by 10.
myData / 10;
Subtract otherData from myData, and put the result into myData. Both datasets must be Y or
Z datasets (see Note).
myData - otherData;
If A is a variable, increment A by 1. If A is a dataset, increment each value in A by 1.
A+ 1;

Note: There is a difference between using datasets in arithmetic statements versus using
datasets in assignment statements. For example, data1_b + data2_b is computed quite
differently from data1_b = data1_b + data2_b. The latter case yields the true point-by-point
sum without regard to the two datasets' respective X-values. The former statement, data1_b +
data2_b, adds the two data sets as if each were a curve in the XY-plane. If therefore, data1_b
and data2_b have different associated X-values, one of the two series will require
interpolation. In this event, Origin interpolates based on the first dataset's (data1_b in this
case) X-values.

Function Statements

The function statement begins with the characteristics of a function -- an identifier -- followed
by a quantity, enclosed by parentheses, upon which the function acts.

An example of a function statement is:

Language Fundamentals 25

4.1 General Language Features

sum (dataset) ;

For more on functions in LabTalk, see Functions.

Using Semicolons in LabTalk

Separate Statements with a Semicolon

Like the C programming language, LabTalk uses semicolons to separate statements. In
general, every statement should end with a semicolon. However, the following rules clarify
semicolon usage:
¢ Do not use a semicolon when executing a single statement script in the Script
window.

o An example of the proper syntax is: type "hello" (ENTER).

o The interpreter automatically places a semicolon after the statement to
indicate that it has been executed.

e Statements ending with {} block can skip the semicolon.
e The last statement in a { } block can also skip the semicolon.

In the following example, please note the differences between the three type command:
if (m>2) {type "hello";} else {type "goodbye"}
type "the end";
The above can also be written as:
if (m>2) {type "hello"} else {type "goodbye"}
type "the end";
or
if (m>2) {type "hello"} else {type "goodbye"};
type "the end";

Leading Semicolon for Delayed Execution

You can place a ;' in front of a script to delay its execution. This is often needed when you
need to run a script inside a button that will delete the button itself, like to issue window closing
or new project commands. For example, placing the following script inside a button will
possibly lead to a crash

// button to close this window

type "closing this window";

win -cn %H;
To fix this, the script should be written as

// button to close this window

type "closing this window";

;win -cn $H;
The leading ;' will place all scripts following it to be delayed when executed. Sometimes you
may want a specific group of statements delayed, then you can put them inside {script} with a
leading "', for example:

// button to close this window

26 Language Fundamentals

4.1.2 Programming Syntax

type "closing this window";
;{type "from delayed execution";win -cn %H;}

type "actual window closing code will be executed after this";

Extending a Statement over Multiple Lines

There are times when, for the sake of readability, you want to extend a single statement over
more than one line. One way to do this is with braces {}. When an "open brace", {, is
encountered in a script file, Origin searches for a "closed brace" , }, and executes the entire
block of text as one statement. For example, the following macro statement:
def openDialog {layer -s 1; axis x;};
can also be written:
def openDialog {
layer -s 1;
axis x;
}i
Both scripts are executed as a single statement, even though the second statement spans
multiple lines.
Note: There is a limit to the length of script that can be included between a set of braces {}.
The scripts between the {} are translated internally and the translated scripts must be less than
1140 bytes (after substitution). In place of long blocks of LabTalk code, programmers can use
LabTalk macros or the run.section() and run.file() object methods. To learn more, see Passing
Arguments.

Comments

LabTalk script accepts two comment formats:
Use the "//" character to ignore all text from // to the end of the line. For example:
type "Hello World"; //Place comment text here.

Use the combination of "/*" and "*/" character pairs to begin and end, respectively, any block of
code or text that you do not want executed. For example:
type Hello /* Place comment text here,
or a line of code:
and even more ... */
World;

Note: Use the "#!" characters to begin debugging lines of script. The lines are only executed if
system.debug = 1.

Order of Evaluation in Statements

When a script is executed, it is sent to the LabTalk interpreter and evaluated as follows:
The script is broken down into its component statements

Statements are identified by type using the following recognition order: assignment, macro,
command, arithmetic, and function. The interpreter first looks for an exposed (not hidden in

Language Fundamentals 27

4.1 General Language Features

parentheses or quotation marks) assignment operator. If none is found, it looks to see if the
first word is a macro name. It then checks if the first word is a command name. The interpreter
then looks for an arithmetic operation, and finally, the interpreter checks whether the statement
is a function.

The recognition order can have significant effect on script functions. For example, the following
assignment statement:
type = 1;

assigns the value 1 to the variable type. This occurs even though type is (also) a LabTalk

command, since assignments come before commands in recognition order. However, since

commands precede arithmetic expressions in recognition order, in the following statement:
type + 1;

the command is carried out first, and the string, + 1, prints out.
The statements are executed in the order received, using the following evaluation priority

o Assignment statements: String variables to the left of the assignment operator are
not expressed unless enclosed by parentheses. Otherwise, all string variables are
expressed, and all special notation (%() and $()) is substitution processed.

e Macro statements: Macro arguments are substitution processed and passed.

¢ Command statements: If a command is a raw string, it is not sent to the substitution
processor. Otherwise, all special notation is substitution processed.

o Arithmetic statements: All expressions are substitution processed and expressed.

41.3 Operators

Introduction

LabTalk supports assignment, arithmetic, logical, relational, and conditional operators:

Arithmetic Operators + - A &

String Concatenation +

Assignment Operators = 4= = *= [= A=

Logical and Relational Operators > >= < <= = I= && |
Conditional Operator ?:

These operations can be performed on scalars and in many cases they can also be performed
on vectors (datasets). Origin also provides a variety of built-in numeric, trigonometric, and
statistical functions which can act on datasets.

28 Language Fundamentals

4.1.3 Operators

When evaluating an expression, Origin observes the following precedence rules:

Exposed assignment operators (not within brackets) are evaluated.

Operations within brackets are evaluated before those outside brackets.
Multiplication and division are performed before addition and subtraction.

The (>, >=, <, <=) relational operators are evaluated, then the (== and !=) operators.
The logical operators || is prior to &&.

Conditional expressions (?:) are evaluated.

ok wbd=~

Arithmetic Operators

Origin recognizes the following arithmetic operators:

Operator Use
+ Addition
- Subtraction
* Multiplication
/ Division
A Exponentiate (XY raises X to the Yth power) (see note below)
& Bitwise And operator. Acts on the binary bits of a number.

| Bitwise Or operator. Acts on the binary bits of a number.

Note: For 0 raised to the power n (0*n), if n > 0, O is returned. If n < 0, a missing value is
returned. If n = 0, then 1 is returned (if @ZZ = 1) or a missing value is returned (if @ZZ = 0).
These operations can be performed on scalars and on vectors (datasets). For more information
on scalar and vector calculations, see Performing Calculations below.
The following example illustrates the use of the exponentiate operator: Enter the following
script in the Command window:

1.3 ~ 4.7 =
After pressing ENTER, 3.43189 is printed in the Command window. The next example
illustrates the use of the bitwise and operator. Enter the following script in the Command
window:

if (27841 == 9)

{type "Yes!"}
After pressing ENTER, Yes! is displayed in the Command window.
Note: 27&41 == 9 because

27 = 0000000000011011

Language Fundamentals 29

4.1 General Language Features

41 = 0000000000101001
with bitwise & yields:
0000000000001001 (which is equal to 9)

Note: Multiplication must be explicitly included in an expression. For example, 2*X must be
used instead of 2X to indicate the multiplication of the variable X by the constant 2.

Define a constant

We can also define global constants in the ORGSYS.CNF file:
const pi = 3.141592653589793

A Note about Logarithmic Conversion

e To convert a dataset to a logarithmic scale, use the following syntax:
col(c) = log(col(c));

e To convert a dataset back to a linear scale, use the following syntax:
col(c) = 10”(col(c));

String Concatenation

Very often you need to concatenate two or more strings of either the string variable or string
register type. All of the code segments in this section return the string "Hello World."

The string concatenation operator is the plus-sign (+), and can be used to concatenate two
strings:

aa$ ="Hello";

bb$="World";

cc$=aa$+" "+bb$;

ccs$=;
To concatenate two string registers, you can simply place them together:

%$J="Hello";

Sk="World";

sL=;
If you need to work with both a string variable and a string register, follow these examples
utilizing %() substitution:
aa$ ="Hello";
$K="World";
dds$=% (aa$) S%K;
dds=;
dd$=%K;
dd$=aas$+" "+dd$S;
dds=;
$M=% (aa$) SK;
M=

30 Language Fundamentals

4.1.3 Operators

Assignment Operators
Origin recognizes the following assignment operators:

Operator Use
= Simple assignment.
+= Addition assignment.

-= Subtraction assignment.

*= Multiplication assignment.
/= Division assignment.
A= Exponential assignment.

These operations can be performed on scalars and on vectors (datasets). For more information
on scalar and vector calculations, see Performing Calculations in this topic.

The following example illustrates the use of the -= operator.
In this example, 5 is subtracted from the value of A and the result is assigned to A:
A -=5;

In the next example, each value in Data1_B is divided by the corresponding value in Book1_A,
and the resulting values are assigned to Book1_B.
Bookl B /= Bookl A;

In addition to these assignment operators, LabTalk also supports the increment and decrement
operators for scalar calculations (not vector).

Operator Use
++ Add 1 to the variable contents and assign to the variable.

-- Subtract 1 from the variable contents and assign to the variable.

The following for loop expression illustrates a common use of the increment operator ++. The
script prints the data stored in the second column of the current worksheet to the Command
window:
for (ii = 1; ii <= wks.maxrows; ii++)
{type ($(col(2)[iil)); }

Logical and Relational Operators

Origin recognizes the following logical and relational operators:

Language Fundamentals 31

4.1 General Language Features

Operator Use
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to
== Equal to
I= Not equal to
&& And
I Or

An expression involving logical or relational operators evaluates to either true (non-zero) or
false (zero). Logical operators are almost always found in the context of Conditional and Loop
Structures.

Numeric Comparison

The most common comparison is between two numeric values. Generally, at least one is a
variable. For instance:

if aa<3 type "aa<3";
Or, both items being compared can be variables:

if aa<=bb type "aa<=bb";
It is also possible, using parentheses, to make multiple comparisons in the same logical
statement:

if (aa<3 && aa<bb) type "aa is lower";

String Comparison

You can use the == and != operators to compare two strings. String comparison (rather than
numeric comparison) is indicated by open and close double quotations (" ") either before, or
after, the operator. The following script determines if the %A string is empty:

if (%A == ""){type "empty"};

The following examples illustrates the use of the == operator:

x = 1; // variable x is set to 1
%a = x; // string a is set to "x"
if (%a == 1);

type "yes";
else

32 Language Fundamentals

4.1.3 Operators

type "no";

The result will be yes, because Origin looks for the value of %a (the value of x), which is 1. In
the following script:

x = 1; // variable x is set to 1
%a = x; // string a is set to "x"
if ("%$a" == 1)

type "yes";
else

type "no";

The result will be no, because Origin finds the quotation marks around %a, and therefore treats
it as a string, which has a character x, rather than the value 1.

Conditional Operator (?:)

The ternary operator or conditional operator (?:) can be used in the form:
Expression1 ? Expression2 : Expression3

This expression first evaluates Expression. If Expression1 is true (non-zero), Expression2 is
evaluated. The value of Expression2 becomes the value for the conditional expression. If
Expression1 is false (zero), then Expression3 is evaluated and Expression3 becomes the value
for the entire conditional expression. Note that Expressions1 and Expressions2 can
themselves be conditional operators. The following example assigns the value which is greater
(m or n), to variable:

m= 2;

n = 3;

variable = (m>n?m:n);

variable =
LabTalk returns: variable = 3
In this example, the script replaces all column A values between 5.5 and 5.9 with 5.6:

col(A) = col(A)>5.5&&c0l (A)<5.9?25.6:col (A);
Note: A Threshold Replace function treplace(dataset, value1, value2 [, condition]) is also
available for reviewing values in a dataset and replacing them with other values based on a
condition. In the treplace(dataset, value1, value2 [, condition]) function, each value in the
dataset is compared to value1 according to the condition. When the comparison is true, the
value may be replaced with Value2 or -Value2 depending on the value of condition. When the
comparison is false, the value is retained or replaced with a missing value depending on the
value of condition. The treplace() function is much faster than the ternary operator.

Performing Calculations

You can use LabTalk to perform both
e scalar calculations (mathematical operations on a single variable), and
e vector calculations (mathematical operations on entire datasets).

Language Fundamentals 33

4.1 General Language Features

Scalar Calculations

You can use LabTalk to express a calculation and store the result in a numeric variable. For
example, consider the following script:

inputval = 21;

myResult = 4 * 32 * inputVal;
The second line of this example performs a calculation and creates the variable, myResult. The
value of the calculation is stored in myResult.

When a variable is used as an operand, and will store a result, shorthand notation can be
used. For example, the following script:

B =B * 3;
could also be written:

B *= 3;
In this example, multiplication is performed with the result assigned to the variable B. Similarly,
you can use +=, -=, /=, and *=. Using shorthand notation produces script that executes faster.

Vector Calculations

In addition to performing calculations and storing the result in a variable (scalar calculation),
you can use LabTalk to perform calculations on entire datasets as well.

Vector calculations can be performed in one of two ways: (1) strictly row-by-row, or (2) using
linear interpolation.

Row-by-Row Calculations

Vector calculations are always performed row-by-row when you use the two general notations:
datasetB = scalarOrConstant <operator> datasetA;

datasetC = datasetA <operator> datasetB;

This is the case even if the datasets have a different numbers of elements. Suppose there are
three empty columns in your worksheet: A, B, and C. Run the following script:

col(a) = {1, 2, 3};

col(b) = {4, 5};

col(c) = col(a) + col(b);
The result in column C will be {5, 7, --}. That is, Origin outputs a missing value for rows in
which one or both datasets do not contain a value.
Vector calculations can also involve a scalar. In the above example, type:

col(c) = 2 * col(a);
Column A is multiplied by 2 and the results are put into the corresponding rows of column C.
Instead, execute the following script (assuming newData does not previously exist):

newData = 3 * Bookl A;

A temporary dataset called newData is created and assigned the result of the vector operation.

Calculations Using Interpolation

Origin supports interpolation through range notation and X-Functions such as interp1 and
interp1xy. Please refer to Interpolation for more details.

34 Language Fundamentals

4.1.4 Conditional and Loop Structures

41.4 Conditional and Loop Structures

The structure of the LabTalk language is similar to C. LabTalk supports:
e Loops, which allow the program to repetitively perform a set of actions.

e Decision structures, which allow the program to perform different sets of actions
depending on the circumstances.

Loop Structures

All LabTalk loops take a script as an argument. These scripts are executed repetitively under
specified circumstances. LabTalk provides four loop commands:

Command Syntax
repeat repeat value {script};
loop loop (variable, startVal, endVal) {script};
doc -e doc -e object {script};
for for (expression1; expression2; expression3) {script};

The LabTalk for-loop is similar to the for loop in other languages. The repeat, loop, and doc -e
loops are less familiar, but are easy to use.

Repeat
The repeat loop is used when a set of actions must be repeated without any alterations.
Syntax: repeat value {script};

Execute script the number of times specified by value, or until an error occurs, or until the
break command is executed.

For example, the following script types the string three times:
repeat 3 { type "line of output"; };

Loop
The loop loop is used when a single variable is being incremented with each successive loop.
Syntax: loop (variable, startVal, endVal) {script};

A simple increment loop structure. Initializes variable with the value of starVal. Executes script.
Increments variable and tests if it is greater than endVal. If it is not, executes script and
continues to loop.

For example, the following script outputs numbers from 1 to 4:

Language Fundamentals 35

4.1 General Language Features

loop (ii, 1, 4) {type "$(ii)";};
Note: The loop command provides faster looping through a block of script than does the for

command. The enhanced speed is a result of not having to parse out a LabTalk expression for
the condition required to stop the loop.

Doc -e

The doc -e loop is used when a script is being executed to affect objects of a specific type,
such as graph windows. The doc -e loop tells Origin to execute the script for each instance of
the specified object type.

Syntax: doc -e object {script};
The different object types are listed in the document command.

For example, the following script prints the windows title of all graph windows in the project:
doc -e P {%H=}

For

The for loop is used for all other situations.
Syntax: for (expression1; expression2; expression3) {script};

In the for statement, expression1 is evaluated. This specifies initialization for the loop. Second,
expression?2 is evaluated and if true (non-zero), the script is executed. Third, expression3,
often incrementing of a counter, is executed. The process repeats at the second step. The loop
terminates when expression2 is found to be false (zero). Any expression can consist of multiple
statements, each separated by a comma.

For example, the following script output numbers from 1 to 4:
for (ii=1; ii<=4; ii++)
{
type "$(ii)";
}
Note: The loop command provides faster looping through a block of script.

Decision Structures
Decision structures allow the program to perform different sets of actions depending on the
circumstances. LabTalk provides three decision-making structures: if, if-else, and switch.

e The if command is used when a script should be executed in a particular situation.

e The if-else command is used when one script must be executed if a condition is true
(non-zero), while another script is executed if the condition is false (zero).

e The switch command is used when more than two possibilities are included in a
script.

If, If-Else

Syntax:
1. if (testCondition) sentence1; [else sentence2;]

36 Language Fundamentals

4.1.4 Conditional and Loop Structures

2. if (testCondition) {script1} [else {script2}]

Evaluate testCondition and if true, execute script1. Expressions without conditional operators
are considered true if the result of the expression is non-zero.
If the optional else is present and festCondition is false (zero), then execute script2. There
should be a space after the else. Strings should be quoted and string comparisons are not
case sensitive.
Single statement script arguments should end with a semicolon. Multiple statement script
arguments must be surrounded by braces {}. Each statement within the braces should end with
a semicolon. It is not necessary to follow the final brace of a script with a semicolon.
For example, the following script opens a message box displaying "Yes!":

M = test;

if (%M == "TEST") type -b "Yes!";

else type -b "No!";
The next script finds the first point in column A that is greater than -1.95:

newbook;
col(l)=data(-2,2,0.01);
val = -1.95;

get col (A) -e numpoints;
for(ii = 1 ; ii <= numpoints ; ii++)
{
// This will terminate the loop early if true
if (Col(A)[1i] > val) break;
}
if (ii > numpoints - 1)
ty -b No number exceeds $(val);
else
type -b The index number of first value > $(val) is $(ii)

The value is $(col(a) [ii]);

It is possible to test more than one condition with a single if statement, for instance:
if(a>1 && a<3) b+=1; // If true, increment b by 1

The && (logical And) operator is one of several logical operators supported in LabTalk.

Switch

The switch command is used when more than two possibilities are included in a script. For
example, the following script returns b:
ii=2;
switch (ii)
{
case 1:
type "a";
break;
case 2:

type "b";

Language Fundamentals 37

4.1 General Language Features

break;
case 3:

type

break;
default:

type "none";

PN
c;

break;

}

Break and Progress Bars

LabTalk provides a break command. When executed, this causes an exit from the loop and,
optionally, the script. This is often used with a decision structure inside a loop. It is used to
protect against conditions which would invalidate the loop test conditions. The break command
can be used to display a progress status dialog box (progress bar) to show the current
progress through the loop.

Exit

The exit command prompts an exit from Origin unless a flag is previously set to prevent the
exit.

Continue

The continue command can be used within loops. When executed, the remainder of the loop is
ignored and the interpreter jumps to the next iteration of the loop. This is often used with a
decision structure inside a loop and can exclude illegal values from being processed by the
loop script.
For example, in the following for loop, continue skips the type statement when ii is less than
zero.

for (ii = -10; ii <= 10; ii += 2)

{

if (i1 < 0)

continue;

type "$(sqgrt(ii))";
}

Sections in a Script File

In addition to entering the script in the Label Control dialog, you can also save it as an Origin
Script (OGS) file. An Origin script file is an ASCII text file which consists of a series of one or
more LabTalk statements. Often, you can divide the statements into sections. A section is
declared by a section name surrounded by square brackets on its own line of text:

[SectionName]

Scripts under a section declaration belong to that section until another section declaration is
met. A framework for a script with sections will look like the following:

38 Language Fundamentals

4.1.4 Conditional and Loop Structures

Scripts;
iSection 1]
Scripts;
iééction 2]
Scripts;

Scripts will be run in sequence until a new section flag is encountered, a return statement is
executed or an error occurs. To run a script in sections, you should use the

run.section(FileName, SectionName)

command. When filename is not included, the current running script file is assumed, for
example:

run.section(, Init)
The following script illustrates how to call sections in an OGS file:

type "Hello, we will run section 2";

run.section(, section2);

[sectionl]

type "This is section 1, End the script.";

[section2]

type "This is section 2, run section 1.";

run.section(, sectionl);
To run the script, you can save it to your Origin user folder as test.ogs, and type the following
in the command window:

run.section (test);
If code in a section could cause an error condition which would prematurely terminate a
section, you can use a variable to test for that case, as in:

[Test]

SectionPassed = 0;

// Here is where code that could fail can be run

SectionPassed = 1;

If the code failed, then SectionPassed will still have a value of 0. If the code succeeded, then
SectionPassed will have a value of 1.

Language Fundamentals 39

4.1 General Language Features

4.1.5 Macros

Definition of the Macros

The command syntax,
define macroName {script}

defines a macro called macroName, and associates it with the given script. MacroName can
then be used like a command, and invokes the given script.
For example, the following script defines a macro that uses a loop to print a text string three
times.

def hello

{

loop (ii, 1, 3)
{ type "$(ii). Hello World"; }

}i
Once the hello macro is defined, typing the word hello in the Script window results in the
printout:

1. Hello World

2. Hello World

3. Hello World
Once a macro is defined, you can also see the script associated with it by typing

define macroName;

Passing Arguments to Macros

Macros can take up to five arguments. The %1-%5 syntax is used within the macro to access
the value of each argument. A macro can accept a number, string, variable, dataset, function,
or script as an argument. Passing arguments to a macro is similar to passing arguments to a
script.

If arguments are passed to a macro, the macro can report the number of arguments using the
macro.nArg object property.

For example, the following script defines a macro named myDouble that expects a single
numeric argument. The given argument is then multiplied by 2, and the result is printed.
def myDouble { type "S$(%1 * 2)"; };
If you define this macro and then type the following in the Script window:
myDouble 5
Origin outputs the result to the Script Window:
10
You could modify this macro to take two arguments:
def myDouble { type "$(%1 * %2)"; };
Now, if you type the following in the Script window:
myDouble 5 4

40 Language Fundamentals

4.1.5 Macros

Origin outputs:
20

Macro Property

The macro object contains one property which stores the number of arguments passed to the
macro.

Property Access Description
Macro.nArg Read qnly, This property stores the number of arguments passed
numeric to the macro.
For example:

The following script defines a macro called TypeArgs. If three arguments are passed to the
TypeArgs macro, the macro types the three arguments to the Script window.
Def TypeArgs
{
if (macro.narg != 3)
{

type "Error! You must pass 3 arguments!";
else

type "The first argument passed was %1.";
type "The second argument passed was %2.";

type "The third argument passed was %3.";

}i
If you define the TypeArgs macro as in the example, and then type the following in the Script
window:

TypeArgs One;
Origin returns the following to the Script window:

Error! You must pass 3 arguments!
If you define the TypeArgs macro as in the example, and then type the following in the Script
window:

TypeArgs One Two Three;
Origin returns the following to the Script window:

The first argument passed was One.

The second argument passed was Two.

The third argument passed was Three.

Language Fundamentals 41

4.1 General Language Features

4.1.6 Functions

Functions are the core of almost every programming language; the following introduces
function syntax and use in LabTalk.

Built-In Functions

LabTalk supports many operations through built-in functions, a listing and description of each
can be found in Function Reference. Functions are called with the following syntax:
outputVariable = FunctionName(Arg1, Arg2, ..., Arg N);
Below are a few examples of built-in functions in use.
The Count (Function) returns an integer count of the number of elements in a vector.

// Return the number of elements in Column A of the active worksheet:

int cc = count(col(A));
The Ave (Function) performs a group average on a dataset, returning the result as a range
variable.

range ra = [Bookl]Sheetl!Col(A);

range rb = [Bookl]Sheetl!Col (B);

// Return the group-averaged values:

rb = ave(ra, 5); // 5 = group size
The Sin (Function) returns the sin of the input angle as type double (the units of the input
angle are determined by the value of system.math.angularunits):

system.math.angularunits=1; // 1 = input in degrees

double dd = sin(45); // BANS: DD = 0.7071

User-Defined Functions

Support for multi-argument user-defined functions has been supported in LabTalk since Origin
8.1. The syntax for user-defined functions is:

function dataType funcName(Arg1, Arg2, ..., ArgN) {script;}
Minimum Origin Version Required: 8.6 SR0
Note:

1. The function name should be less than 42 characters.

2. Both arguments and return values support string, double, int, dataset, and tree
data types. The default argument type is double. The default return type is int.

3. By default, arguments of user-defined functions are passed by value, meaning that
argument values inside the function are NOT available outside of the function.
However, passing arguments by reference, in which changes in argument values
inside the function WILL be available outside of the function, is possible with the
keyword REF.

Here are some simple cases of numeric functions:

// This function calculates the cube root of a number

42 Language Fundamentals

4.1.6 Functions

function double dCubeRoot (double dval)
{
double xVal;
if (dval<0) xVal = -exp (ln(-dval)/3);
else xVal = exp(ln(dval)/3);
return xVal;
}
// As shown here
dcuberoot (-8) =;
The function below calculates the geometric mean of a dataset:
function double dGeoMean (dataset ds)
{
double dG = ds[1];
for(int ii = 2 ; ii <= ds.GetSize () ; 1ii++)
dG *= ds[ii]; // All values in dataset multiplied together
return exp (1ln(dG) /ds.GetSize());
}
// Argument is anything returning a datset
dGeoMean (col ("Raw Data"))=;
This example defines a function that accepts a range argument and returns the mean of the
data in that range:
// Calculate the mean of a range
function double dsmean (range ra)
{
stats ra;
return stats.mean;
}
// Pass a range that specifies all columns
// in the first sheet of the active book:
range rAll = 1! (l:end);
dsMean (rAll)=;
This example defines a function that counts the occurrences of a particular weekday in a Date
dataset:
function int iCountDays (dataset ds, int iDay)
{
int iCount = 0;
for(int ii = 1 ; ii <= ds.GetSize() ; ii++)

{

if (weekday(ds[ii], 1) == iDay) iCount++;
}
return iCount;
}
// Here we count Fridays
ivVal = iCountDays(col(l),6); // 6 is Friday in weekday(data, 1) sense

Language Fundamentals 43

4.1 General Language Features

ival=;
Functions can also return datasets ..
// Get only negative values from a dataset
function dataset dsSub(dataset dsl)
{
dataset ds2;
int iRow = 1;
for(int ii = 1 ; ii <= dsl.GetSize() ; ii++)
{
if (dsl[ii] < 0)
{
ds2[iRow] = dsl[ii];
iRow++;

}
return ds2;
}
// Assign all negative values in column 1 to column 2
col(2) = dsSub(col(1l));
or strings ..
// Get all values in a dataset where a substring occurs
function string strFind(dataset ds, string strVal)
{
string strTest, strResult;
for(int ii = 1 ; ii <= ds.GetSize() ; ii++)
{
strTest$ = ds[ii]$;
if (strTest.Find(strval$) > 0)
{
strResult$ = % (strResult$) % (CRLF) % (strTest$);

}
return strResult$;
}
// Gather all instances in column 3 where "hadron" occurs
string MyResults$ = strFind(col (3),"hadron")$; // Note ending 'S'
MyResults$=;

Passing Arguments by Reference

This example demonstrates a function that returns a tree node value as an int (one element of
a tree variable). In addition, passing by reference is illustrated using the REF keyword.
// Function definition:
Function int GetMinMax (range rr, ref double min, ref double max) {
stats rr;

44 Language Fundamentals

4.1.6 Functions

//after running the stats XF, a LabTalk tree variable with the
//same name is created/updated

min = stats.min;

max = stats.max;

return stats.N;

// Call function GetMinMax to find min max for an entire worksheet:
double yl,y2;
int nn = getminmax(l:end,vyl, vy2);
type "Worksheet has $(nn) points, min=$(yl), max=$(y2)";
A more detailed example using tree variables in LabTalk functions and passing variables by
reference, is available in our online Wiki.
Another example of passing string argument by reference is given below that shows that the $
termination should not be used in the function call:
//return range string of the 1lst sheet
//actual new book shortname will be returned by Name$
Function string GetNewBook (int nSheets, ref string Name$)
{
newbook sheet:= nSheets result:=Name$;
string strRange$ = "[% (Name$)]1!";
return strRange$;
}
When calling the above function, it is very important that the Name$ argument should not have
the $, as shown below:
string strName$;
string strR$ = GetNewBook (1, strName)$;
strName$=;
strR$=;

Dataset Functions

Origin also supports defining mathematical functions that accept arguments of type double and
return type double. The general syntax for such functions is:
funcName(X) = expressioninvolvingX.
We call these dataset functions because when they are defined, a dataset by that name is
created. This dataset, associated with the function, is then saved as part of the Origin project.
Once defined, a dataset function can be referred to by name and used as you would a built-in
LabTalk function.
For example, enter the following script in the Script window to define a function named Salary:
Salary(x) = 52 * x
Once defined, the function may be called anytime as in,
Salary(100)=

Language Fundamentals 45

4.1 General Language Features

which yields the result Salary(100)=5200. In this case, the resulting dataset has only one
element. But if a vector (or dataset) were passed as an input argument, the output would be a
dataset containing the same number of elements as the input.

As with other datasets, user-defined dataset functions are listed in dialogs such as Plot Setup
(and can be plotted like any other dataset), and in the Available Data list in dialogs such as
Layer n.

If a 2D graph layer is the active layer when a function is defined, then a dataset of 100 points is
created using the X axis scale as the X range and the function dataset is automatically added
to the plot layer.

The Function Graph Template (FUNCTION.OTP, accessible from the Standard Toolbar or
the File: New menu) also creates and plots dataset functions.

Origin's Function Plots feature allows new dataset functions to be easily created from any
combination of built-in and user-defined functions. In addition, the newly created function is
immediately plotted for your reference.

Access this feature in either of two ways:

1. Click on the New Function button in the Standard toolbar,

2. From the Origin drop-down menus, select File: New and select Function from the
list of choices, and click OK.

From there, in the Function tab of the Plot Details dialog that opens, enter the function
definition, such as, F1(x) = 5*sin(x)+1 and press OK. The function will be plotted in the graph.

You may define another function by clicking on the New Function button in the graph and
adding another function in Plot Details. Press OK, and the new function plot will be added to
the graph. Repeat if more functions are desired.

Fitting Functions

In addition to supporting many common functions, Origin also allows you to create your own
fitting functions to be used in non-linear curve fitting. User-defined fitting functions can also be
used to generate new datasets, but calling them requires a special syntax:

nlf_FitFuncName(ds, p1, p2, ..., pn)

where the fitting function is named FitFuncName, ds is a dataset to be used as the
independent variable, and p7--pn are the parameters of the fitting function.

As a simple example, if you defined a simple straight-line fitting function called MyLine that
expected a y-intercept and slope as input parameters (in that order), and you wanted column C
in the active worksheet to be the independent variable (X), and column D to be used for the
function output, enter:

// Intercept = 0, Slope = 4

Col (D) = nlf MyLine(Col(C), 0, 4)

46 Language Fundamentals

4.1.6 Functions

Scope of Functions

User-defined functions have a scope (like variables) that can be controlled. For more on scope
see Data Types and Variables. Please note that there are no project functions or global
functions, that is different from scope of variable.

' Similar to Session Variables, the scope of a function can be expanded for
general use throughout the current Origin session across projects by preceding
the function definition with the assignment @global=1.

You can associate functions with a project by defining them in the project's ProjectEvents.OGS
file, using the @Global=1 to promote them to session level.

To create a user-defined function for use across sessions, add commands in MACROS.CNF to
run the function definition .OGS files.

User-defined functions can be accessed from anywhere in the Origin project where LabTalk
script is supported, provided the scope of definition is applicable to such usage. Thus for
example, a function defined with preceding assignment @global=1 that returns type double or
dataset, can be used in the Set Values dialog Column Formula panel.

With preceding assignment @global=1, the function can be called anywhere.
[Main]
@global=1l; // promote the following function to session level
function double dGeoMean (dataset ds)
{
double dG = ds[1];
for(int ii = 2 ; ii <= ds.GetSize() ; 1ii++)
dG *= ds[ii]; // All values in dataset multiplied together
return exp (1ln(dG) /ds.GetSize());
}
// can call the function in [main] section
dGeoMean (col (1))=;
[sectionl]
// the function can be called in this section too
dGeoMean (col (1))=;
If the function is defined in a section of a *.ogs file without @global=1, then it can only be
called in its own section.
[Main]
function double dGeoMean (dataset ds)
{
double dG = ds[1];
for(int ii = 2 ; ii <= ds.GetSize () ; 1ii++)
dG *= ds[ii]; // All values in dataset multiplied together
return exp (1ln(dG) /ds.GetSize());
}

// can call the function in [main] section

Language Fundamentals 47

4.1 General Language Features

dGeoMean (col (1)) =;
[sectionl]

// the function can NOT be called in this section

dGeoMean (col(1))=; // an error: Unknown function
If the function is defined in a block without @global=1, it can not be called outside this block.
[Main]

{ // define the function between braces
function double dGeoMean (dataset ds)
{
double dG = ds[1];
for(int ii = 2 ; ii <= ds.GetSize () ; 1ii++)
dG *= ds[ii]; // All values in dataset multiplied together
return exp (1ln(dG) /ds.GetSize());

// can Not call the function outside the braces
dGeoMean (col(1l))=; // an error: Unknown function

Tutorial: Using Multiple Function Features

The following mini tutorial shows how to add a user-defined function at the Origin project level
and then use that function to create function plots.

1. Start a new Project and use View: Code Builder menu item to open
Code Builder.
2. Expand the Project branch on the left panel tree and double-click to

open the ProjectEvents.OGS file. This file exists by default in any
new Project.

3. Under the [AfterOpenDoc] section, add the following lines of code:
@global=1;
Function double myPeak(double x, double x0)

{
double y = 10*exp(-(x-x0)*2/4);
return y;

}

4. Save the file and close Code Builder.
5. In Origin, save the Project to a desired folder location. The OGS file is

saved with the Project, so the user-defined function is available for
use in the Project.

6. Open the just saved project again. This will trigger the
[AfterOpenDoc] section to be executed and thus our myPeak
function to be defined.

7. Click on the New Function button in the Standard toolbar

48 Language Fundamentals

4.2.1 Range Notation

8. In the Function tab of Plot Details dialog that opens, enter the
function definition:
F1(x) = myPeak(x, 3)
and press OK. The function will be plotted in the graph.

9. Click on the New Function button in the graph and add another
function in Plot Details using the expression:
F2(x) = myPeak(x, 4)
and press OK.

10. The second function plot will be added to the graph.

11. Now save the Project again and re-open it. The two function plots will
still be available, as they refer to the user-defined function saved with
the Project.

12. You can assure yourself that the above really works by first exiting
Origin, reopening Origin, and running the project again, checking that
the myPeak function is defined upon loading the project.

4.2 Special Language Features

These pages contain information on implementing advanced features of the LabTalk scripting
language. Some of the concepts and features in this section are unique to Origin.

421 Range Notation

Introduction to Range

Inside your Origin Project, data exists in four primary places: in the columns of a worksheet, in
a matrix, in a loose dataset, or in a graph. In any of these forms, the range data type allows
you to access your data easily in a standard way.

Once a range variable is created, you can work with the range data directly; reading and
writing to the range. Examples below demonstrate the creation and use of many types of range
variables.

Before Origin Version 8.0, data were accessed via datasets as well as cell(), col(), and wcol()
functions. The cell(), col(), and wcol() functions are still very effective for data access, provided
that you are working with the active sheet in the active book. The Range notation essentially
expanded upon these functions to provide general access to any book, sheet, or plot inside an
Origin Project.

Note : Not all X-Functions can handle complexities of ranges such as multiple columns or

noncontiguous data. Where logic or documentation does not indicate support, a little
experimentation is in order.

Language Fundamentals 49

4.2 Special Language Features

Note : Data inside a graph are in the form of Data Plots and they are essentially references to
columns, matrix or loose datasets. There is no actual data stored in graphs.

Declaration and Syntax

Similar to other data types, you can declare a Range variable using the following syntax:
range [-option] RangeName = RangeString

The left-hand side of the range assignment is uniform for all types of range assignments. Note
that the square brackets indicate that the option switch is an optional parameter. At the present
(8.1), option switches only apply when assigning a range from a graph. Range names follow
Origin variable naming rules; please note that system variable names should be avoided.

The right-hand side of the range assignment, RangeString, changes depending on what type
of object the range points to. Individual Range Strings are defined in the sections below on
Types of Range Data.

Range notation is used exclusively to define range variables. It cannot be used
as a general notation for data access on either side of an expression.

Accessing Origin Objects

A range variable can be assigned to the following types of Origin Objects:

e column
e worksheet
e page

e graph layer
e |oose dataset

Once assigned, the range will represent that object so that you can access the object
properties and methods using the range variable.

A range may consist of some subset or some combination of standard Origin Objects.
Examples include:

e column subrange
e block of cells

e XY range

o XYZrange

e composite range

Types of Range Data
Worksheet Data

For worksheet data, RangeString takes the form:

50 Language Fundamentals

4.2.1 Range Notation

[WorkBookName]SheetNameOrindex! ColumnNameOrindex[CelliIndex]
where ColumnName can be either the Long Name or the Short Name of the column.

In any RangeString, a span of continuous sheets, columns, or rows can be specified by
providing pairs of sheet, column, or row indices (respectively), separated by a colon, as in
index1:index2. The keyword end can replace index2 to indicate that Origin should pick up all
of the indicated objects. For example:

range rs = [Bookl]4:end! // Get sheets 4 through last

range rd = [Book2]Sheet3!5:10; // Get columns 5 through 10
In the case of rows the indices must be surrounded by square brackets, so a full range
assignment statement for several rows of a worksheet column looks like:

range rcl = [Bookl]Sheet2!Col (3)[10:end]; // Get rows 10 through last

range rc2 = [Bookl]Sheet2!Col (3)[10:20]; // Get rows 10 through 20
The old way of accessing cell contents, via the Cell function is still supported.

If you wish to access column label rows using range, please see Accessing Metadata and the
Column Label Row Reference Table.

Column
When declaring a range variable for a column on the active worksheet, the book and sheet part
can be dropped, such as:

range rc = Col(3)
You can further simplify the notation, as long as the actual column can be identified, as shown
below:

range aa=1l; // col(l) of the active worksheet
range bb=B; // col(B) of the active worksheet
range cc="Test A"; // col with Long Name ("Test A"), active worksheet

Multiple range variables can be declared on the same line, separated by comma. The above
example could also have been written as:
range aa = 1, bb = B, cc = "Test A";
Or if you need to refer to a different book sheet, and all in the same sheet, then the book sheet
portion can be combined as follows:
range [Book2]Sheet3 aa=1, bb=B, cc="Test A";
Because Origin does not force a column's Long Name to be unique (i.e., multiple columns in a
worksheet can have the same Long Name), the Short Name and Long Name may be specified
together to be more precise:
range dd = D"Test 4"; // Assign Col (D), Long Name 'Test 4', to a range
Once you have a column range, use it to access and change the parameters of a column:
range rColumn = [Bookl1]1!2; // Range is a Column
rColumn.digitMode = 1; // Use Set Decimal Places for display
rColumn.digits = 2; // Use 2 decimal places
Or perform computations:
// Point to column 1 of sheets 1, 2, and 3 of the active workbook:
range aa = 1ll!col(1l);

range bb = 2!col(1);

Language Fundamentals 51

4.2 Special Language Features

range cc = 3!col(1l);
cc = aatbb;

When performing arithmetic on data in different sheets, you need to use range
variables. Direct references to range strings are not yet supported. For
example, the script Sheet3!col(1) = Sheet1!col(1) + Sheet2!col(1); will not
work! If you really need to write in a single line without having to declare range
variables, then use Dataset Substitution.

Page and Sheet
Besides a single column of data, a range can be used to access any portion of a page object:

Use a range variable to access an entire workbook:
// 'rPage' points to the workbook named 'Bookl'
range rPage = [Bookl];

// Set the Long Name of 'Bookl' to "My Analysis Worksheets"
rPage.LongName$ = My Analysis Worksheets;

Use a range variable to access a worksheet:

range rSheet = [Bookl]Sheetl!; // Range is a Worksheet (WKS object)
rSheet.name$ = "Statistics"; // Rename Sheetl to "Statistics".
rSheet .AddCol (StdDev) ; // Add a column named StdDev

Column Subrange

Use a range variable to address a column subrange, such as
// A subrange of col(a) in bookl sheet2
range cc = [bookl]sheet2!col(a) [3:10];
Or if the desired workbook and worksheet are active, the shortened notation can be used:
// A subrange of col(a) in bookl sheet2
range cc = col(a) [3:10];
Using range variables, you can perform computation or other operations on part of a column.
For example:
range r1=1[5:10];
range r2=2[1:6];
rl = r2; // copy values in row 1 to 6 of column 2 to rows 5 to 10 of column 1
rl[l]=;
// this should output value in row 5 of column 1, which equates to row 1 of column 2

Block of Cells

Use a range to access a single cell or block of cells (may span many rows and columns) as in:
range aa = 1[2]; // cell(2,1), row2 of col(l)
range bb = 1[1]:3[10]; // cell(l,1) to cell(10,3)
Note: A range variable representing a block of cells can be used as an X-Function argument
only, direct calculations are not supported.

52 Language Fundamentals

4.2.1 Range Notation

Matrix Data

For matrix data, the RangeString is
[MatrixBookName]MatrixSheetNameOrindex! MatrixObject
Variable assignment can be made using the follow syntax:
// Second matrix object on MBookl, MSheetl
range mm = [MBookl]MSheetl!2;
Access the cell contents of a matrix range using the notation RangeName[row, col]. For
example:
range mm=[MBookl]1l!1l;
mm[2,3]=10;
If the matrix contains complex numbers, the string representing the complex number can be
accessed as below:
string str$;
str$ = mm(3,4]$;

Graph Data

For graph data, the RangeString is
[GraphWindowName]LayerNameOrindex!DataPlot

An example assignment looks like
range 11 = [Graphl]Layerl!2; // Second curve on Graphl, Layerl

Option Switches -w, -wx, -wy and -wz
For graph windows, you can use range -w and range -wx, range -wy, range -wz options to get
the worksheet column range of a plotted dataset.

range -w always gets the worksheet range of the most dependent variable - which is the Y
value for 2D plots and the Z value or matrix object for 3D plots. And since Origin 9.0 SRO,
multiple ranges are supported for range -w.
range -wx, range -wy, and range -wz will get the worksheet range of the corresponding X, Y
and Z values, respectively.
range -wx, range -wz Require Version: 9.0 SR0

// Make a graph window the active window ...

// Get the worksheet range of the Y values of first dataplot:

range -w rW = 1;

// Get the worksheet range of the corresponding X-values:

range -wx rWx = 1;

//Get the worksheet range of the corresponding Y-values:

range -wy rWy = 1;

//Get the worksheet range of the corresponding Z-values:

range -wz rWz = 1;

Language Fundamentals 53

4.2 Special Language Features

// Get the graph range of the first dataplot:

range rG = 1;

// Get the current selection (%C); will resolve data between markers.

range -w rC = %C;

Note that in the script above, rW = [Book1]Sheet1!B while rG = [Graph1]1!1.

Data Selector Ranges on a Graph

You can use the Data Selector tool to select one or more ranges on a graph and to refer to
them from LabTalk. For a single selected range, you can use the MKS1, MKS2 system
variables. Starting with version 8.0 SR6, a new X-Function, get_plot_sel, has been added to
get the selected ranges into a string that you can then parse. The following example shows
how to select each range on the current graph:
string strRange;
get plot sel str:=strRange;
StringArray sa;
sa.Append (strRange$,"|"); // Tokenize it
int nNumRanges = sa.GetSize();
if (nNumRanges == 0)
{
type "there is nothing selected";
return;
}
type "Total of $(nNumRanges) ranges selected for %C";
for(int ii = 1; ii <= nNumRanges; ii++)
{
range -w xy = sa.GetAt (ii)s$;
string strWks$ = "Temp$S (ii)";
create % (strWks$) -wdn 10 aa bb;
range fitxy = [??]! (% (strWks$) aa, %(strWks$) bb);
fitlr iy:=xy oy:=fitxy;
plotxy fitxy p:=200 o:=<active> c:=color(red) rescale:=0 legend:=0;
type "$(xy) fit linear gives slope=$(fitlr.b)";
}
// clear all the data markers when done

mark -r;

Additional documentation is available for the the Create (Command) (for creating loose
datasets), the [??] range notation (for creating a range from a loose dataset), the fitlr X-
Function, and the StringArray (Object) (specifically, the Append method, which was introduced
in Origin 8.0 SR6).

54 Language Fundamentals

4.2.1 Range Notation

Loose Dataset

Loose Datasets are similar to columns in a worksheet but they don't have the overhead of the
book-sheet-column organization. They are typically created with the create command, or
automatically created from an assignment statement without Dataset declaration.

The RangeString for a loose dataset is:
[??]'LooseDatasetName
Assignment can be performed using the syntax:

range xx = [??]!tmpdata a; // Loose dataset 'tmpdata a'
To show how this works, we use the plotxy X-Function to plot a graph of a loose dataset.
// Create 2 loose datasets
create tmpdata -wd 50 a b;
tmpdata a=data (50,1,-1);
tmpdata b=normal (50) ;
// Declare the range and explicitly point to the loose dataset
range aa=[?7?]! (tmpdata a, tmpdata b);
// Make a scatter graph with it:
plotxy aa;
Please read more about Using Ranges in X-Functions.
' Loose datasets belong to a project, so they are different from a Dataset
Q variable, which is declared, and has either session or local scope. Dataset
variables are also internally loose datasets but they are limited to use in
calculations only; they cannot be used in making plots, for example.

Methods of Range
Once a range variable is created, the following methods can be used by this range

Method Description

Return the size of the range. This method works for a dataset
range, such as column, matrix object, graph plot, block of cells,
loose dataset, etc. Note that, for a block of cells, it only returns the
size of the first sub column specified in the range declaration.

range.getSize()

Set the size of the range. This method works for a dataset range,
such as column, matrix object, graph plot, block of cells, loose
dataset, etc. If the range is block of cells, it only set the size for the
first sub column specified in the range declaration.

range.setSize()

If the range has an attached layer (graph layer, worksheet, or matrix

range.getLayer
ged yer() layer), this method will return the uid of the layer, to get the name of

Language Fundamentals 55

4.2 Special Language Features

the layer, you need the $ sign after the method, such as
"rng.getLayer()$ =".

If the range has an attached page (graph page, workbook, or
matrixbook), this method will return the uid of the page, to get the
name of the page, you need the $ sign after the method, such as
"rng.getPage()$ =".

range.getPage()

This method works for a dataset range, such as column, matrix
object, graph plot, block of cells, loose dataset, etc. It will reverse
the data order of the range. If the range is block of cells, it only
reverses the data order of the first sub column specified in the
range declaration. The X-Function, colReverse, will do the same
thing.

range.reverse()

Unique Uses of Range

Manipulating Range Data

A column range can be used to manipulate data directly. One major advantage of using a
range rather than the direct column name, is that you do not need to be concerned with which
page or layer is active.
For example:

// Declare two range variables, vl and v2:

range [Bookl]Sheetl rl=Col (A), r2=Col (B);

// Same as col (A)=data(l,30) if [bookl]sheetl is active:
rl = data(1,30);

r2 = uniform(30);

// Plot creates new window so [Bookl]Sheetl is NOT active:

plotxy 2;

sec -p 1.5; // Delay

r2/=4; // But our range still works; col (A)/=4 does NOT!

sec -p 1.5; // Delay

r2+=.4;

sec -p 1.5; // Delay

r1=10+rl/3;
Direct calculations on a column range variable that addresses a range of cells is supported.
For example:

range aa = Col(A)[10:19]; // Row 10 to 19 of column A

aa += 10; // All elements in aa increase by 10

Support for sub ranges in a column has expanded.

56 Language Fundamentals

4.2.1 Range Notation

// Range consisting of column 1, rows 7 to 13 and column 2, rows 3 to 4
// Note use of parentheses and comma separator:

range rs = (1[7:13], 2[3:41);

del rs; // Supported since 8.0 SR6

// Copying between sub ranges

range rl = 1[85:100];

range r2 = 2;

// Copy rl to top of column 2

r2 = rl; // Supported in 8.1

// 8.1 also complete or incomplete copying to sub range
range r2 = 2[17:22];

r2 = rl; // Only copies 6 values from rl

range r2 = 3[50:200];

r2 = rl; // Copies only up to row 65 since source has only 16 values

Dynamic Range Assignment

Sometimes it is beneficial to be able to create a new range in an automated way, at runtime,
using a variable column number, or the name of another range variable.

Define a New Range Using an Expression for Column Index
The wecol() function is used to allow runtime resolution of actual column index, as in

int nn = 2;

range aa=wcol (2*nn +1);

Define a New Range Using an Existing Range

The following lines of script demonstrate how to create one range based on another using the
%() substitution notation and wks (object) methods. When the %() substitution is used on a
range variable, it always resolves it to a [Book]Sheet! string, regardless of the type:

range rwks = sheet3!;

range rl= % (rwks)col(a);
in this case, the new range r7 will resolve to Sheet3!Col(A).
This method of constructing new range based on existing range is very useful because it
allows code centralization to first declare a worksheet range and then to use it to declare
column ranges. Lets now use the rwks variable to add a column to Sheet 3:

rwks.addcol () ;
And now define another range that resolves to the last (rightmost) column of range rwks; that
is, it will point to the newly made column:

range r2 = % (rwks)wcol(% (rwks)wks.ncols);
With the range assignments in place it is easy to perform calculations and assignments, such
as:

r2=r1/10;
which divides the data in range r1 by 10 and places the result in the column associated with
range r2.

Language Fundamentals 57

4.2 Special Language Features

X-Function Argument

Many X-functions use ranges as arguments. For example, the stats X-Function takes a vector
as input and calculates descriptive statistics on the specified range. So you can type:

stats [Bookl]Sheet2! (l:end); // stats on the second sheet of bookl

stats Col(2); // stats on column 2 of active worksheet

// stats on block of cells, col 1-2, row 5-10

stats 1[5]:2[10];
Or you can use a range variable to do the same type of operation:

/* Defines a range variable for col(2) of 1lst and 2nd sheet,

rows 3-5, and runs the stats XF on that range: */

range aa = (1,2)!col(2)[3:5]; stats aa;
The input vector argument for this X-Function is then specified by a range variable.
Some X-Functions use a special type of range called XYRange, which is essentially a
composite range containing X and Y as well as error bar ranges.
The general syntax for an XYRange is

(rangeX, rangeyY)
but you can also skip the rangeX portion and use the standard range notation to specify an
XYRange, in which case the default X data is assumed.
The following two notations are identical for XYRange,

(, rangeY)

rangeY
For example, the integ1 X-Function takes both input and output XYRange,

// integrate col(l) as X and col(2) as Y,

// and put integral curve into columns 3 as X and 4 as Y

integl iy:=(1,2) oy:=(3,4);

// same as above except result integral curve output to col(3) as Y,
// and sharing input's X of col(1l):
integl iy:=2 oy:=3;

Listing, Deleting, and Converting Range Variables

Listing Range Variables

Use the list LabTalk command to print a list of names and their defined bodies of all session
variables including the range variables. For example:
list a; // List all session variables

If you issue this command in the Command Window, it prints a list such as:

Session:

1 MYRANGE [bookl]sheetl!col (b)
2 MYSTR "abc"
3 PI 3.1415926535898

58 Language Fundamentals

4.2.1 Range Notation

As of Origin 8.1, more switches have been added (given below) to list particular session
variables:

Option What Gets Listed Option What Gets Listed

a All session variables aa String arrays (session)

ac Constants (session) af Local Function (session)

afc LocaI_Function Full Content afp LocaI.Function Prototype
(session) (session)

ag Graphic objects (session) ar Range variables (session)

as String variables (session) at Tree variables (session)

av Numeric variables (session) -- --

Deleting Range Variables

To delete a range variable, use the del LabTalk command with the -ra switch. For example:
range aa=1l; // aa = Col(l
range ab=2; // ab = Col(2
range ac=3; // ac = Col (3
range bb=4; // bb = Col (4

list a; // list all session variables; will include aa, ab, ac, bb

) of the active worksheet
) of the active worksheet
) of the active worksheet

) of the active worksheet
del -ra a*; // delete all range variables beginning with the letter "a"

// The last command will delete aa, ab, and ac.

The table below lists options for deleting variables.

Option What Gets Deleted/Cleared Option What Gets Deleted/Cleared

ra Any Local/Session variable al same as -ra

rar Range variable ras String variable

rav Numeric variable rac Constant

rat Tree variable raa String array

rag Graphic object raf Local/Session Function

Language Fundamentals 59

4.2 Special Language Features

Converting Range to UID

Each Origin Object has a short name, long name, and universal identifier (UID). You can
convert between range variables and their UIDs as well as obtain the names of pages and
layers using the functions range2uid, uid2name, and uid2range. See LabTalk Objects for
examples of use.

Special Notations for Range
XY and XYZ Range

Designed as inputs to particular X-Functions, an XY Range is an ordered pair designating two
worksheet columns as XY data. Similarly, an (XYZ Range) is an ordered triple containing three
worksheet columns representing XYZ data.

For instance, the fitpoly X-Function takes an XY range for both input and output:
// Fit a 2nd order polynomial to the XY data in columns 1 and 2;
// Put the coefficients into column 3 and the XY fit data in cols 4 and 5:
fitpoly iy:=(1,2) polyorder:=2 coef:=3 oy:=(4,5);

XY Range using # and ? for X

There are two special characters '?' and '#' introduced in (8.0 SR3) for range as an X-Function
argument. '?" indicates that the range is forced to use worksheet designation, and will fail if the
range designation does not satisfy the requirement. '# means that the range ignores
designations and uses row number as the X designation. However, if the Y column has even
sampling information, that sampling information will be used to provide X.

For example:
plotxy (2, 5); // 1f col(5) happens to be X column call fails
plotxy (#, 3); // plot col(3) as Y and use row number as X

These notations are particularly handy in the plotxy X-Function, as demonstrated here:
// Plot all columns in worksheet using their column designations:

plotxy (?,1l:end);

Tag Notations in Range Output

Many X-Functions have an output range that can be modified with tags, including template,
name, and index. Here is an example that can be used by the Discrete Frequency X-Function,
discfreqs

discfregs irng:=1 freqg:=1 rd:="[Result]<new template:=table.otw index:=3>";
The output is directed to a Workbook named Result by loading a template named
TABLE.OTW as the third sheet in the Result book.

Support of tag notation depends on the particular X-Function, so verify tag notation is
supported before including in production code.

60 Language Fundamentals

4.2.2 Substitution Notation

Composite Range

A Composite Range is a range consisting of multiple subranges. You can construct composite
ranges using the following syntax:
// Basic combination of three ranges:

(rangel, range2, range3)

// Common column ranges from multiple sheets:

(sheetl, sheet2, sheet3) !rangel

// Common column ranges from a range of sheets

(sheetl:sheetn) ! rangel

To show how this works, we will use the wcellcolor X-Function to show range and plotxy to
show XYRange. Assuming we are working on the active book/sheet, with at least four columns
filled with numeric data:

// color several different blocks with blue color

wcellcolor (1[1]1:2[3], 1[51:2[5], 2[7]) color (blue);

// set font color as red on some of them
wcellcolor (1([3]1:4[5], 2[6]:3[7]) color(red) font;

To try plotxy, we will put some numbers into the first sheet, add a new sheet, and put more
numbers into the second sheet.

// plot A(X)B(Y) from both sheets into the same graph.

plotxy (1:2)!(1,2);

// Activate workbook again and add more sheets and fill them with data.
// Plot A(X)B(Y) from all sheets between row2 and rowlO:
plotxy (l:end)!(1,2)[2:10];

Note: There exists an inherent ambiguity between a composite range, composed of ranges r1
and r2 as in (r1,r2), and an XY range composed of columns named r1 and r2, i.e., (r1,r2).
Therefore, it is important that one keep in mind what type of object is assigned to a given range
variable!

4.2.2 Substitution Notation

Introduction

When a script is executed, it is sent to the LabTalk interpreter. Among other tasks, the
interpreter searches for special substitution notations, which are identified by their initial
characters, % or $. When a substitution notation is found, the interpreter replaces the original
string with another string, as described in the following section. The value of the substituted
string is unknown until the statement is actually executed. Thus, this procedure is called a run-
time string substitution.

There are three types of substitutions described below:

Language Fundamentals 61

4.2 Special Language Features

e String register substitution, %A - %Z

e %() Substitution, a powerful notation to resolve %(str), %(range), worksheet info
and column dataset names, worksheet cells, legend and etc.

e $() Substitution, where $(expression) resolves the numeric expression and formats
the result as a string

%A - %Z

Using a string register is the simplest form of substitution. String registers are substituted by
their contents during script execution, for example

FDLOG.Open (3) ; // put file name into %A from dialog

$B=FDLOG.path$; // file path put into %B

doc -open %$B%A; // %$B%A forms the full path file name
String registers are used more often in older scripts, before the introduction of string variables
(Origin 8), which allows for more reliable codes. To resolve string variables, %() substitution is
used, and is discussed in the next section.

%() Substitution

String Expression Substitution

While LabTalk commands often accept numeric expressions as arguments, none accept a
string expression. So if a string is needed as an argument, you have to pass in a string variable
or a string expression using the %() substitution to resolve run-time values. The simplest form
of a string expression is a single string variable, like in the example below:

string str$ = "Book2";

[

win -o %$(str$) {wks.ncols=;}

Keyword Substitution

The %() substitution notation is also used to insert non-printing characters (also called control
characters), such as tabs or carriage returns into strings. Use LabTalk keywords to access
these non-printing characters. For example,

// Insert a carriage-return, line-feed (CRLF) into a string:

string ss$ = "Hello% (CRLF)Goodbye";

5s58=; // BANS: 'Hello', 'Goodbye' printed on separate lines

// Or use % () substitution to display the string variable:
type % (ss$);

Worksheet Column and Cell Substitution

The following notation allows you to access worksheet cells as a string as well as to get the
column dataset name from any workbook sheet. Before Origin 8, each book had only one
sheet so you could refer to its content with the book name only. Since Origin 8 supports

62 Language Fundamentals

4.2.2 Substitution Notation

multiple worksheets, we recommend that you use [workbookname]sheetname to refer to a
specific sheet, unless you are certain that the workbook contains only one sheet.

To return individual cell contents, use the following syntax:
e This notation references the active sheet in the named book
%(workbookName, column, row)
e New Origin 8 notation that specifies book and sheet
%([workbookname]sheetname, column, row[,format])
For example, if the third cell in the fourth column in the active worksheet of Book1 contains the
value 25, then entering the following statement in the Script window will set A to 25 and put
double that value in another sheet in Book1.
A = % (Bookl, 4, 3);
% ([Bookl]Results, 1, 4) = 2 * A;
To return the contents of a text cell, use a string variable:
string strvVar$ = % (Bookl, 2, 5); // Note : No end '$' needed here

strvar$ = ;

Before 8.1, you must use column and row index and numeric cell will always return full
precision. Origin 8.1 has added support for column to allow both index and name, and row will
also support Label Row Characters such as L for longname. There is also an optional format
argument that you can use to further specify numberic cell format when converting to string.
Assuming Book?2, sheet3 col(Signal)[3] has a numeric value of 12.3456789, then

//format string C to use current column format

type "Col (Signal) [3] displayed value is % ([Book2]Sheet3,Signal,3,C)";

A=% ([Book2] Sheet3,Signal,3);//full precision if format not specified

A=;// shows 12.3456789

type "Showing 2 decimal places:% ([Book2]Sheet3,Signal,3,.2)";

To return a dataset name, use the following syntax:
o Older notation for active sheet of named book
%(workbookName, column)
¢ New Origin 8 book sheet notation
%([workbookName]sheetName, column)
e You can also use index
%([workbookName]Sheetindex, column)
where column must be an index prior to Origin 8.1 which added support for column name.

For example:
%A = % (%H, 2); // Column 2 of active sheet of active book

type %A;

%$B = % ([Bookl]Sheet3,2); // Column 2 of Bookl, Sheet3

type %B;

Language Fundamentals 63

4.2 Special Language Features

In the above example, the name of the dataset in column 2 in the active worksheet is
substituted for the expression on the right, and then assigned to %A and %B. In the second
case, if the named book or sheet does not exist, no error occurs but the substitution will be
invalid.

Note: You can use parentheses to force assignment to be performed on the dataset whose
name is contained in a string register variable instead of performing the assignment on the
string register variable itself.

%A = % (Bookl,2); // Get column 2 dataset name
type %A; // Types the name of the dataset
(%A) = %$(Bookl,1); // Copy column 1 data to column 2

Calculation Involving Datasets from Another Sheet

The ability to get a dataset name from any book or sheet (Dataset Substitution) can be very
useful in doing calculations involving columns in different sheets, like:
// Sum col(l) from sheet2 and 3 and place the result into col(l) of the active sheet
col (1)=%([%H]sheet2, 1) + %([%H]sheet3, 1);

// subtract by col "signal" in the 1lst sheet of book2 and
// put result into the active book's sheet3, "calibrated" col
% ([$H]sheet3, "calibrated")=col (signal) - % ([Book2]1,signal);

The column name should be quoted if using long name. If not quoted, then Origin will first
assume short name, if not found, then it will try using long name. So in the example above,
% ([%$H]sheet3, "calibrated")

will force a long name search, while
% ([Book2]1,signal)

will use long name only if there is no column with such a short name.

Worksheet Information Substitution

Similar to worksheet column and cell access with substitution notation, the @ Substitution
(worksheet info substitution) make uses of the @ character to differentiate from a column index
or name in the 2nd argument to specify various options to provide access to worksheet info
and meta data.

Prior to Origin 8, the following syntax is used and is still supported for the active sheet:
%(workbookName, @option, columnNumber)

It is recommended that you use the newer notation introduced in Origin 8:
%([workbookNamelworksheetName, @option, columnNumber)

Here, option can be one of the following:

Option Return Value

Returns the total number of worksheet columns. ColumnNumber can be
omitted.

a#

64 Language Fundamentals

4.2.2 Substitution Notation

@c

@DZ

@E#

@H#

@PC
@PC1
@PL
@PN
@SN
@SC

@OoY

@OYX

@OYY

Returns the column name.

Remove trailing zeros when Set Decimal Places or Significant Digits is
chosen in the Numeric Display drop down list of the Worksheet Column
Format dialog box.

0 = display trailing zeros. 1 = remove trailing zeros for Set Decimal Places =. 2
= remove trailing zeros for Significant Digits =. 3 = remove for both.

If columnNumber = 1, returns the number of Y error columns in the worksheet.
If columnNumber = 2, returns the number of Y error columns in the current
selection range. If columnNumber is omitted, columnNumber is assumed to be
1.

If columnNumber = 1, returns the number of X error columns in the
worksheet. If columnNumber = 2, returns the number of X error columns in the
current selection range. If columnNumber is omitted, columnNumber is
assumed to be 1.

Page Comments

Page Comments, 1st line only
Page Long Name

Page short Name

Sheet Name

Sheet Comments

Returns the offset from the left-most selected Y column to the columnNumber
column in the current selection.

Returns the offset from the left-most selected Y column to the columnNumber
Y column counting on Y columns in the current selection.

Returns the offset from the left-most selected Y column to the columnNumber
X column counting on X columns in the current selection.

Language Fundamentals 65

4.2 Special Language Features

@T

@Ww

@X

@Xn

@Y

@Y#

@y+

@vYS

@Z#

Returns the column type. 1 =Y, 2 = disregarded, 3 =Y error,4 =X ,5 =
label, 6 = Z, and 7 = X error.

Returns information stored at the Book or Sheet level as well as imported file
information. Refer to the table below for the @W group of variables.

Returns the index number of the worksheet's first X column. Columns are
enumerated from left to right, starting from 1. Use the syntax:
%(worksheetName, @X);

Returns the column short name of the worksheet's first X column. Use the
syntax: %(worksheetName, @Xn);

Returns the offset from the left-most selected column to the columnNumber
column in the current selection.

Returns the column number of the first Y column to the left. Returns
columnNumber if the column is a Y column, or returns 0 when the Y column
doesn't exist. Use the syntax: %(worksheetName, @Y-, ColumnNumber);

If columnNumber = 1, returns the number of Y columns in the worksheet. If
columnNumber = 2, returns the number of Y columns in the current selection
range. If columnNumber is omitted, columnNumber is assumed to be 1.

Returns the column number of the first Y column to the right. Returns
columnNumber if the column is a Y column, or returns 0 when the Y column
doesn't exist. Use the syntax: %(worksheetName, @Y+, ColumnNumber);

Returns the number of the first selected Y column to the right of (and
including) the columnNumber column.

If columnNumber = 1, returns the number of Z columns in the worksheet. If
columnNumber = 2, returns the number of Z columns in the current selection
range. If columnNumber is omitted, columnNumber is assumed to be 1.

The options in this table are sometimes identified as @ options or @ variables.

Information Storage and Imported File Information

The @W variables access metadata stored within Origin workbooks, worksheets, and columns,
as well as information stored about imported files.

Use a similar syntax as above, replacing column number with variable or node information:

66

Language Fundamentals

4.2.2 Substitution Notation
%([workbookName]worksheetName!columnName, @option, varOrNodeName)

Option Return Value

Returns the information in varOrNodeName; the variable is understood to be
@W located at the workbook level, which can be seen in workbook Origanizer.
When it is used, there is no need to specify worksheetName!ColumnName.

Returns the information in varOrNodeName; the variable is understood to be
@WL located at workbook level, which can be seen in workbook Origanizer. It refers
to the workbook long name.

Returns the information in varOrNodeName for the nth imported file. The

@WFn variable can be seen in the workbook Organizer.

Returns the information in varOrNodeName; the variable is understood to be
@WS located at the worksheet level, which can be seen in workbook Organizer.
When it is used, there is no need to specify ColumnName.

Returns the information in varOrNodeName; the variable is understood to be
@WM | located at worksheet level, which can be seen in workbook Organizer. It refers
to the worksheet comment.

Returns the information in varOrNodeName; the variable is understood to be
@WC | located at the column level, which can be seen in the Column Properties
dialog.

Examples of @ Substitution

This script returns the column name of the first column in the current selection range (for
information on the selc1 numeric system variable, see System Variables):
$N = $(%H, @Qcol, selcl); %N =;
The following line returns the active page's long name to a string variable:
string PageName$ = % (%H, QPL);
The script below returns the column type for the fourth column in Book 2, Sheet 3:
string colType$ = % ([Book2]Sheet3, @T, 4);
colType$=;
An import filter can create a tree structure of information about the imported file that gets stored
with the workbook. Here, for a multifile import, we return the number of points in the 3rd
dataset imported into the current book:
%z=% (%H, @WF3,variables.header.noofpoints) ;

Language Fundamentals 67

4.2 Special Language Features

o

A=
If the currently active worksheet window has six columns (XYYYYY) and columns 2, 4, and 5
are selected, then the following script shows the number of the first selected Y column to the
right of (and including) the column whose index is equal to columnNumber (the third
argument):

loop(ii,1,6)

{

type -1 %(%H, @YS, ii),;

}

type;
This outputs:
2,2,4,4,5,0,

Legend Substitution

Graph legends also employ the %() substitution notation. The first argument must be an
integer to differentiate it from other %() notations, where the first argument is a worksheet
specifier. The legend substitution syntax is:

%(n[, @option])
where n is the index of the desired data plot in the current layer. The variable n might be
followed by more options, typically plot designation character (X, Y or Z) associated with the
data plot, which when not specified will be assumed to be Y. The @option parameter is an
optional argument that controls the legend contents. For example:

// In the legend of the current graph layer ...

// display the Long Name for the first dependent dataset.

legend.text$ = % (1Y, QLL)

// Equivalent command (where, Y, the default, is understood) :

legend.text$ = % (1, @QLL)
Alternatively, to display the Short Name for the second independent (i.e., X) dataset in the
legend use:

legend.text$ = % (2X, QLS)
The complete list of @options is found in the @ text-label options.

Note: This style of legend modification is limited in that it only changes a single legend entry,
but the syntax is good to understand, as it can be used in the Plot Details dialog.

I
The legendupdate X-Function provides an easier and more comprehensive way
to modify or redraw a legend from Script!

68 Language Fundamentals

4.2.2 Substitution Notation

$() Substitution

The $() notation is used for numeric to string conversion. This notation evaluates the given
expression at run-time, converts the result to a numeric string, and then substitutes the string
for itself.

The notation has the following form:
$(expression [, format])

where expression can be any mathematical expression, but typically a single number or
variable, and format can be either an Origin output format or a C-language format.

Default Format

The square brackets indicate that format is an optional argument for the $() substitution
notation. If format is excluded Origin will carry expression to the number of decimal digits or
significant figures specified by the @SD system variable (which default value is 14). For

example:
double aa = 3.14159265358979323846;
type $(aa); // BNS: 3.1415926535898

Origin Formats

Minimum Origin Version Required: 8.5.1 SR0O
Origin has several native options to format your output.

Format Description
*n Display n significant digits
n Display n significant digits, truncating trailing zeros
S*n Display n significant digits, in scientific notation
E*n Display n significant digits, in engineering format
.n Display n decimal places
S.n Display n decimal places, in scientific notation
E.n Display n decimal places, in engineering format

Dc Display date in the format customized by the c string.

Language Fundamentals 69

4.2 Special Language Features

Display date in format n from the Display drop down list of the Column

Dn Properties dialog box

Tc Display time in the format customized by the ¢ string.

Tn Display Fime !n format n from the Display drop down list of the Column
Properties dialog box

#n Display an integer to n places, zero padding where necessary

This block of script demonstrates several examples of Origin formats:
xx = 1.23456;
type "xx = $(xx, *2)"; // ANS: 1.2
type "xx = $(xx, .2)"; // BANS: 1.23

yy = 1.10001;
type "yy = S(yy, *4)"; // ANS: 1.100
type "yy = S$(yy, *4*)"; // ANS: 1.1

zz = 203465987;
type "zz = $(zz, E*3)"; // ANS: 203M

type "zz = $(zz, S*3)"; // ANS: 2.03E+08

type "$(date(7/20/2009), D1)"; // ANS: Monday, July 20, 2009

type "$(date(7/20/2009), Dyyyy'-'MM'-'dd)"; // ANS: 2009-07-20
type "S$(time(14:31:04), T4)"; // ANS: 02 PM

type "$(time(14:31:04), Thh'.'mm'.'ss)"; // ANS: 02.31.04

type "$ (45, #5)"; // ANS: 00045

Note: For dates and times n starts from zero.

C-Language Formats

The format portion of the $() notation also supports C-language formatting statements.

Option Un/Signed Output Input Range

Integer values (of decimal or integer

d,i SIGNED
value)

-2731 -- 231 -1

70 Language Fundamentals

4.2.2 Substitution Notation

f,e E, g, Decimal, scientific, decimal-or- +/-1€290 -- +/-1e-
G SIGNED | < cientific 290

Octal, Integer, hexadecimal,

o,u,x, X | UNSIGNED | \ev A DECIMAL

-2731--2"32 -1

Note: In the last category, negative values will be expressed as two's complement.

Here are a few examples of C codes in use in LabTalk:
double nn = -247.56;
type "Value: $(nn,%d)"; // BNS: -247

double nn = 1.23456e5;
type "Values: $(nn, %9.4f), $(nn, %$9.4E), $(nn, %9)";
// ANS: 123456.0000, 1.2346E+005, 123456

double nn = 1.23456e6;
type "Values: $(nn, %9.4f), $(nn, %$9.4E), $(nn, %9)";
// BNS: 123456.0000, 1.2346E+006, 1.23456e+006

double nn = 65551;
type "Values: $(nn, %o), $(nn, %u), $(nn, $X)";
// ANS: 200017, 65551, 1000F

Combining Origin and C-language Formats

Origin supports the use of formats E and S along with C-language format specifiers. For
example:
xx = leé6;

type "xx = $(xx, E%4.2f)"; // ANS: 1.00M

Displaying Negative Values

The command parsing for the type command (and others) looks for the - character as an
option switch indicator. If you assign a negative value to the variable K and try to use the type
command to express that value, you must protect the - by enclosing the substitution in quotes
or parentheses. For example:

K = -5;

type "$(K)"; // This works

type ($(K)); // as does this

type $(K); // but this fails since type command has no -5 option

Dynamic Variable Naming and Creation

Note that in assignment statements, the $() notation is substitution-processed and resolved to
a value regardless of which side of the assignment operator it is located.

This script creates a variable A with the value 2.

Language Fundamentals 7

4.2 Special Language Features

A= 2;
Then we can create a variable A2 with the value 3 with this notation:
AS$ (A) = 3;

You can verify it by entering A$(A) = or A2 = in the Script window.

For more examples of $() substitution, see Numeric to String conversion.

%n Macro and Script Arguments

Substitutions of the form %n, where n is an integer 1-5 (up to five arguments can be passed to
a macro or a script), are used for arguments passed into macros or sections of script.

In the following example, the script defines a macro that takes two arguments (%1 and %2),
adds them, and outputs the sum to a dialog box:

def add {type -b " (%1 + %2) = $(%1 + %2)"}
Once defined, the macro can be run by typing:
add -13 27;
The output string reads:
(-13+27)=14

since the expression $(%1 + %2) resolves to 14.

4.2.3 LabTalk Objects

LabTalk script programming provides access to various objects and their properties. These
objects include components of the Origin project that are visible in the graphical interface, such
as worksheets columns and data plots in graphs. Such objects are referred to as Origin
Objects, and are the subject of the next section, Origin Objects.

The collection of objects also includes other objects that are not visible in the interface, such as
the INI object or the System object. The entire set of objects accessible from LabTalk script is
found in Alphabetical Listing of Objects.

In general, every object has properties that describe it, and methods that operate on it. What
those properties and methods are depend on the particular object. For instance, a data column
will have different properties than a graph, and the operations you perform on each will be
different as well. In either case, we need a general syntax for accessing an object's properties
and calling it's methods. These are summarized below.

Also, because objects can be renamed, and objects of different scope may even share a
name, object names can at times be ambiguous identifiers. For that reason, each object is
assigned a unique universal identifier (UID) by Origin and functions are provided to go back
and forth between an object's name and it's UID.

72 Language Fundamentals

4.2.3 LabTalk Objects

Properties

A property either sets or returns a number or a text string associated with an object with the
following syntax:
objName.property (For numeric properties)
objName.property$ (For text properties)
Where objName is the name of the object; property is a valid property for the type of object.
When accessing text objects, you should add the $ symbol after property.
For example, you can set object properties in the following way:
// Set the number of columns on the active worksheet to 10
wks.ncols = 10;
// Rename the active worksheet 'MySheet'
wks.name$ = MySheet;
Or you can get property values:
pn$ = page.name$; // Get that active page name

layer.x.from = ; // Get and display the start value of the x-axis

Methods

Methods are a form of immediate command. When executed, they carry out a function related
to the object and return a value. Object methods use the following syntax:
objName.method(arguments)

Where objName is the name of the object; method is a valid method for the type of object; and
arguments determine how the method functions. Some arguments are optional and some
methods do not require any arguments. However, the parentheses "()" must be included in
every object method statement, even if their contents are empty.
For example, the following code uses the section method of the run object to call the Main
section within a script named computeCircle, and passes it three arguments:

double RR = 4.5;

string PA$ = "Perimeter and Area";

run.section (computeCircle, Main, PAS$ 3.14 R);

Object Name and Universal Identifier (UID)

Each object has a short name, a long name, and most objects also have a universal identifier
(UID). Both the short name and long name can be changed, but an object's UID will stay the

same within a project (also known as an OPJ file). An object's UID can change if you append
one project to another one, at which time all object UID's will go through a refresh process to
ensure the uniquness of each object in the newly combined project.

Since many LabTalk functions require the name of an object as argument, and since an object
can be renamed, the following functions are provided to convert between the two:

e nVal = range2uid(rangeName$)
e str$ = uid2name(nVal)$

Language Fundamentals 73

4.2 Special Language Features

e str$ = uid2range(nVal)$

A related function is NameOf(range$) with the general syntax:
e str$ = nameof(rangeName$)

Its use is demonstrated in the following example:

// Establish a range variable for column 1 (in Bookl, Sheetl)

range ra=[Bookl]1l!1l;

// Get the internal name associated with that range

string na$ = NameOf (ra)$;

// na$ will be 'Bookl A'

na$ =;

// Get the UID given the internal name

int nDataSetUID = range2uid(na$);
Besides a range name, the UID can be recovered from the names of columns, sheets, or
books themselves:

// Return the UID of column 2

int nColUID = range2uid(col(2));

// Return the UID of a sheet or layer

int nLayerUID = range2uid([book2]Sheet3!);

// Return the UID of the active sheet or layer

nLayerUID =range2uid(!);

// Return the UID of sheet3 of the active workbook

nLayerUID =range2uid (sheet3!);

// Return the UID of the column with index 'jj' within a specific sheet

nColUID = range2uid([Bookl]sheet2!wcol(jj));
Additionally, the range2uid function works with the system variable %C, which holds the name
of the active data plot or data column:

// Return the UID of the active data plot or selected column

nDataSetUID = range2uid (%C);

Getting Page and Layer from a Range Variable

Given a range variable, you can get its corresponding Page and Layer UID. The following code
shows how to make a hidden plot from XY data in the current sheet and to obtain the hidden
plot's graph page name:

plotxy (1,2) ogl:=<new show:=0>; // plot A(x)B(y) to a new hidden plot

range aa=plotxy.ogl$;

int uid=aa.GetPage () ;

string str$=uid2Name (uid) $;

type "Result graph name is % (str$)";

Getting Book And Sheet from a Plot

You can also get a data plot's related workbook and worksheet as range variables. The
following code (requires Origin 8 SR2) shows how to get the Active plot (%C) as a column

74 Language Fundamentals

4.2.4 Origin Objects

range and then retrieve from it the corresponding worksheet and book variables allowing
complete access to the plot data:

// col range for active plot, -w switch default to get the Y column

range -w aa=%C;

// wks range for the sheet the column belongs to
range ss = uid2range (aa.GetLayer())$;

// show sheet name

sSs.names$=;

// book range from that col

range bb = uid2range (aa.GetPage())$;

// show book name

bb.nameS$=;

There is also a simpler way to directly use the range string return from GetLayer and GetPage
in string form:

// col range for active plot, -w switch default to get the Y column

range -w aa=%C;

// sheet range string for the sheet the column belongs to

range ss = aa.GetLayer()$;

// show sheet name

ss.name$=;

// book range string from that col

range bb = aa.GetPage () $;

// show book name

bb.nameS$=;
When you create a range mapped to a page, the range variable has the properties of a PAGE
(Object).
When you create a range mapped to a graph layer, the range variable has the properties of a
LAYER (Object).
When you create a range mapped to a workbook layer (a worksheet or matrix sheet), the range
variable has the properties of a WKS (Object).

4.2.4 Origin Objects

Then there is a set of LabTalk Objects that is so integral to scripting in Origin that we give them
a separate name: Origin Objects. These objects are visible in the graphical interface, and will
be saved in an Origin project file (.OPJ). Origin Objects are the primary components of your
Origin Project. They are the following:

1. Page (Workbook/Graph Window/Matrix Book) Object

2. Worksheet Object
3. Column Object

4. Layer Object

5. Matrix Object

Language Fundamentals 75

4.2 Special Language Features

6. Dataset Object
7. Graphic Object
Except loose datasets, Origin objects can be organized into three hierarchies:
Workbook -> Worksheet -> Column
Matrix Book -> Matrix Sheet -> Matrix Object
Graph Window -> Layer -> Dataplot

In the sections that follow, tables list object methods and examples demonstrate the use of
these objects in script.

4.2.5 String registers

Introduction

String Registers are one means of handling string data in Origin. Before Version 8.0, they were
the only way and, as such, current versions of Origin continue to support the use of string
registers. However, users are now encouraged to migrate their string processing routines
toward the use of proper string variables, see String Processing for comparative use.

String register names are comprised of a %-character followed by a single alphabetic character
(a letter from A to Z). Therefore, there are 26 string registers, i.e., %A--%Z, and each can hold
266 characters (except %Z, which can hold up to 6290 characters).

String registers are of global (session) scope; this means that they can be
changed by any script at any time. Sometimes this is useful, other times it is
dangerous, as one script could change the value in a string register that is being
used by another script with erroneous and confusing results.

their use could result in errors in your script. They are grouped in the
ranges %C--%l, and %X--%Z. All of the reserved string registers are
summarized in the table below.

Ten (10) of the 26 string registers are reserved for use as system variables, and

String Registers as System Variables

String registers hold up to 260 characters. String register names are comprised of a %-
character followed by a single alphabetic character (a letter from A to Z); for this reason, string
registers are also known as % variables. Of the 26 possible string registers, the following are
reserved as system variables that have a special meaning, and they should not be reassigned
in your scripts. It is often helpful, however, to have access to (or operate on) the values they
store.

76 Language Fundamentals

4.2.5 String registers

String
Variable

%C
%D
%E
%F
%G
%H
%l

%X

%Y

%Z

Description

The name of the current active dataset.

Current Working Directory, as set by the cd command. (New in Origin 8)
The name of the window containing the latest worksheet selection.

The name of the dataset currently in the fitting session.

The current project name.

The current active window title.

The current baseline dataset.

The path of the current project.

The full path name to the User Files folder, where the user .INI files as well
as other user-customizable files are located. %Y can be different for each
user depending on the location they selected when Origin was started for
the first time.

Prior to Origin 7.5, the path to the various user .INI files was the same as it
was to the Origin .EXE. Beginning with Origin 7.5, we added multi-user-on-
single-workstation support by creating a separate "User Files" folder.
To get the Origin .EXE path(program path), use the following LabTalk
statement:

%a = system.path.program$
In Origin C, pass the appropriate argument to the GetAppPath() function
(to return the INI path or the EXE path).

A long string for temporary storage. (maximumn 6290 characters)

String registers containing system variables can be used anywhere a name can be used, as in
the following example:

// Deletes the current active dataset:

del 3%C;

Language Fundamentals

77

4.2 Special Language Features

String Registers as String Variables

Except the system variable string registers, you can use string registers as string variables,
demonstrated in the following examples:

Assigning Values to a String Variable

Entering the following assignment statement in the Script window:
%A = John
defines the contents of the string variable %A to be John.
String variables can also be used in substitution notation. Using substitution notation, enter the
following assignment statement in the Script window:
%$B = $A F Smith
This sets %B equal to John F Smith. Thus, the string variable to the right of the assignment

operator is expressed, and the result is assigned to the identifier on the left of the assignment
operator.

As with numeric variables, if you enter the following assignment statement in the Script
window:
3B =
Origin returns the value of the variable:
John F Smith

Expressing the Variable Before Assignment

By using parentheses, the string variable on the left of the assignment operator can be
expressed before the assignment is made. For example, enter the following assignment
statement in the Script window:

%B = Bookl A
This statement assigns the string register %B the value Book1_A. If Book1_A is a dataset

name, then entering the following assignment statement in the Script window:
(B) = 2*%B

results in the dataset being multiplied by 2. String register %B, however, still contains the string
Book1_A.

String Comparison

When comparing string registers, use the "equal to" operator (==).

o If string registers are surrounded by quotation marks (as in, "%a"), Origin literally
compares the string characters that make up each variable name. For example:

aaa = 4;

bbb = 4;

A = aaa;

$B = bbb;

if ("SA" == "$B")
type "YES";

78 Language Fundamentals

4.2.5 String registers

else
type "NO";
The result will be NO, because in this case aaa != bbb.

o If string registers are not surrounded by quotation marks (as in, %a), Origin
compares the values of the variables stored in the string registers. For example:

aaa = 4;

else
type "NO"

The result will be YES, because in this case the values of the strings (rather than the
characters) are compared, and aaa == bbb == 4.

Substring Notation

Substring notation returns the specified portion of a string. The general form of this notation is:
%[string, argument];
where string contains the string itself, and argument specifies which portion of the string to
return.
For the examples that follow, enter this assignment statement in the Script window:

%A = "Results from Data2 Test"

The following examples illustrate the use of argument in substring notation:

To do this: Enter this script: Returr.i
value:

Search for a character and return all = Gl D] = Results from
text to the left of the character. T = Data2
Search for a character and return all T " 1], ep =
text to the right of the character. e Test
Return all text to the left of the = e O ¢ = Results
specified character position.
Return all text between two specified 45 = $[%A, 14:18]; B = Data2
character positions (inclusive).
Return the #n token, counting from the 4B = %[%A, #2]; 9B = from<

left.

Language Fundamentals 79

4.2 Special Language Features

o

Return the length of the string. ii = $[%A]; ii = i =23

Other examples of substring notation:

To do this: Enter this script: Return value:
$A = 123342
456;
Return the ith token for (ii = 1; ii <= Places the value 123 in
separated by a specified 37 iit+) Book1_a[1], 342 in
separator (in this case, a { Book1_a[2], and 456 in
tab) Bookl A[ii] = Book1_a[3].

S[%A, #ii,\t]
}

’

Places the second line of the
. - %Z string into %A. To verify
Return the @n line second tine'; this, type %A = in the Script

A = %[%Z, @2]; .
window.

%$Z = "First line

Note:

When using quotation marks in substring or substitution notation:
e Space characters are not ignored.
e String length notation includes space characters.

For example, to set %A equal to 5 and find the length of %A, type the following in the Script
window and press Enter:

sA = mo5 o,
ii = $[%A];
ii = ;

Origin returns: ii = 3.

A Note on Tokens

A token can be a word surrounded by white space (spaces or TABS), or a group of words
enclosed in any kind of brackets. For example, if:
%A = These (are all) "different tokens"

then entering the following in the Script window:

Scripts Returns
$B = %[%A, #1]; %B= These

%B = %[%A, #2]; %B= are all

80 Language Fundamentals

4.2.6 X-Functions Introduction

oo
[oe]
I
o

$[%A, #3]; %B= different tokens

4.2.6 X-Functions Introduction

The X-Function is a new feature, introduced in Origin 8, that provides a framework for building
Origin tools. Most X-Functions can be accessed from LabTalk script to perform tasks like
object manipulation or data analysis.
The general syntax for issuing an X-Function command from script is as follows, where square-
brackets [] indicate optional statements:
xfname [-options] arg1:=value arg2:=value ... argN:=value;
Note that when running X-Functions, Origin uses a combined colon-equal symbol, ":=", to
assign argument values. For example, to perform a simple linear fit, the fitlr X-Function is used:
// Data to be fit, Col(A) and Col (B) of the active worksheet,
// is assigned, using :=, to the input variable 'iy'
fitlr iy:=(col(a), col(b));
Also note that, while most X-Functions have optional arguments, it is often possible to call an
X-Function with no arguments, in which case Origin uses default values and settings. For
example, to create a new workbook, call the newbook X-Function:
newbook;
Since X-Functions are easy and useful to run, we will use many of them in the following script
examples. Details on the options (including getting help, opening the dialog and creating auto-

update output) and arguments for running X-Functions are discussed in the Calling X-
Functions and Origin C Functions section.

4.3 LabTalk Script Precedence

Now that we know that there are several objects, like Macros, Origin C functions, X-Functions,
OGS files, etc. So, we should be careful to avoid naming conflicts between these objects,
which could cause confusion and lead to incorrect results. If duplicate names are unavoidable,
LabTalk will run objects according to set of precedence rules. The following list of LabTalk
objects are arranged top to bottom in descending precedence.

1. Macros

OGS Files

X-Functions

LT object methods, like run.file(FileName)
LT callable Origin C functions

LT commands (can be abbreviated)

IS N

Language Fundamentals 81

5 Calling X-Functions and Origin C Functions

5.1 X-Functions

X-Functions are a primary tool for executing tasks and tapping into Origin features from your
LabTalk scripts. The following sections outline the details that will help you recognize,
understand, and utilize X-Functions in LabTalk.

5.1.1 X-Functions Overview

X-Functions provide a uniform way to access nearly all of Origin's capabilities from your
LabTalk scripts. The best way to get started using X-Functions is to follow the many examples
that use them, and then browse the lists of X-Functions accessible from script provided in the
LabTalk-Supported X-Functions section.

Syntax

You can recognize X-Functions in script examples from their unique syntax:

xFunctionName input:=<range> argument:=<name/value> output:=<range> -switch;
General Notes:

e X-Functions can have multiple inputs, outputs, and arguments.
e X-Functions can be called with any subset of their possible argument list supplied.
e If not supplied a value, each required argument has a default value that is used.
e Each X-Function has a different set of input and output arguments.
Notes on X-Function Argument Order:

e By default, X-Functions expect their input and output arguments to appear in a
particular order.

e Expected argument order can be found in the help file for each individual X-Function
or from the Script window by entering XFunctionName -h.

e If the arguments are supplied in the order specified by Origin, there is no need to
type out the argument names.

o If the argument names are explicitly typed, arguments can be supplied in any order.

o It allows to omit parts of argument names at the first few positions in the order
specified by Origin, then from the first one with argument name, the followings must
also type out the argument name, but can be supplied in any order.

83

5.1 X-Functions

e The argument name can be shorten by trimming some characters from behind of the
argument name, but the shorten name needs to be unique.

The following examples use the fitpoly X-Function to illustrate these points.

Examples

The fitpoly X-Function has the following specific syntax, giving the order in which Origin
expects the arguments:
fitpoly iy:=(inputX,inputY) polyorder:=n coef:=columnNumber oy:=(outputX,outputY)
N:=numberOfPoints;
If given in the specified order, the X-Function call,

// need to specify 0 for Fit Intercept and Fit Intercept At

// for the proper order

fitpoly (1,2) 4 0 0 3 (4,5) 100;
tells Origin to fit a 4th order polynomial with 100 points to the X-Y data in columns 1 and 2 of

the active worksheet, putting the coefficients of the polynomial in column 3, and the X-Y pairs
for the fit in columns 4 and 5 of the active worksheet.

In contrast, the command with all options typed out is a bit longer but performs the same
operation:

fitpoly iy:=(1,2) polyorder:=4 coef:=3 oy:=(4,5) N:=100;
In return for typing out the input and output argument names, LabTalk will accept them in any
order, and still yield the expected result:

fitpoly coef:=3 N:=100 polyorder:=4 oy:=(4,5) iy:=(1,2);
Another way is to omit just some argument names, then followed by other arguments with
names in any order, like below script, which gets the same result as above.

fitpoly (1,2) 4 oy:=(4,5) N:=100 coef:=3;
And it allows to shorten the argument name if the shorten name is unique in the argument list,
such as

fitpoly iy:=(1,2) poly:=4 co:=3 o0:=(4,5) N:=100;
poly is short for polyorder, and co for coef, and o for oy. If using the following script, there
will be an error.

fitpoly 1i:=(1,2) poly:=4 co:=3 o0:=(4,5) N:=100;
Because there are two argument names (iy and intercept) begin with letter i. Here Origin
cannot tell which argument i is standard for, that is to say i is not unique.
Also, the inputs and outputs can be placed on separate lines from each other and in any order,
as long as they are explicitly typed out.

fitpoly

coef:=3

N:=100

polyorder:=4

oy:=(4,5)

ly 3= (i, 2) 2

84 Calling X-Functions and Origin C Functions

5.1.2 X-Function Input and Output

Notice that the semicolon ending the X-Function call comes only after the last parameter
associated with that X-Function.

Option Switches

Option switches such as -h or -d allow you to access alternate modes of executing X-functions
from your scripts. They can be used with or without other arguments. The option switch (and its
value, where applicable) can be placed anywhere in the argument list. This table summarizes
the primary X-Function option switches:

Name Function
-h Prints the contents of the help file to the Script window.
-d Brings up a graphical user interface dialog to input parameters.
] Runs in silent mode; results not sent to Results log.

-t <themeName> Uses a pre-set theme.

-r <value> Sets the output to automatically recalculate if input changes.

For more on option switches, see the section X-Function Execution Options.

Generate Script from Dialog Settings

The easiest way to call an X-Function is with the -d option and then configures its settings
using the graphical user interface (GUI).

In the GUI, once the dialog settings are done, you can generate the corresponding LabTalk
script for the configuration by selecting the Generate Script item in the dialog theme fly-out
menu. Then a script which matches the current GUI settings will be output to script window and
you can copy and paste it into a batch OGS file or some other project for use.

5.1.2 X-Function Input and Output

X-Function Variables

X-Functions accept LabTalk variable types (except StringArray) as arguments. In addition to
LabTalk variables, X-Functions also use special variable types for more complicated data
structures.

These special variable types work only as arguments to X-Functions, and are listed in the table
below (Please see the Special Keywords for Range section below for more details about
available key words.):

Calling X-Functions and Origin C Functions 85

5.1 X-Functions

Variable
Type

XYRange

XYZRange

ReportTree

ReportData

Description

A combination of X, Y, and
optional Y Error Bar data

A combination of X, Y, and Z
data

A Tree based object for a
Hierarchical Report

Must be associated with a
worksheet range or a
LabTalk Tree variable

A Tree based object for a
collection of vectors

Must be associated with a
worksheet range or a
LabTalk Tree variable. Unlike
ReportTree, ReportData
outputs to a regular
worksheet and thus can be
used to append to the end of
existing data in a worksheet.
All the columns in a
ReportData object must be
grouped together.

Sample Constructions

S

PN~

(1,2)

<new>

(1,2:end)
(<input>,<new>)

[book2]sheet3!<ne
w>

(1,2,3)
<new>

[book2]sheet3!(1,<
new>,<new>)

<new>
[<input>]<new>
[book2]sheet3

<new>
[<input>]<new>
[book2]sheet3

[<input>]<input>!<
new>

Comment

For graph,
use index
directly to
indicate
plot range
(1.2)
means 1st
and 2nd
plots on
graph

To understand these variable types better, please refer to the real examples in the ReportData
Output section below, which have shown some concrete usages.

86

Calling X-Functions and Origin C Functions

5.1.2 X-Function Input and Output

Special Keywords for Range

<new>
Adding/Creating a new object
<active>
Use the active object
<input>
Same as the input range in the same X-Function
<same>
Same as the previous variable in the X-Function
<optional>
Indicate the object is optional in input or output
<none>
No object will be created

ReportData Output

Many X-Functions generate multiple output vectors in the form of a ReportData object.
Typically, a ReportData object is associated with a worksheet, such as the Fit Curves output
from the NLFit X-Function. Consider, for example, the output from the fft1 X-Function:

// Send ReportData output to Book2, Sheet3.

fftl rd:=[book2]sheet3!;

// Send ReportData output to a new sheet in Book2.

fftl rd:=[book2]<new>!;

// Send ReportData output to Column 4 in the active workbook/sheet.

fftl rd:=[<active>]<active>!Col (4);

// Send ReportData output to a new sheet in the active workbook.

fftl rd:=[<active>]<new>!;

// Send ReportData output to a tree variable named trl;

// If 'trl' does not exist, it will be created.

fftl rd:=trl;

Sending ReportData to Tree Variable

Often, you may need the ReportData output only as an intermediate variable and thus may
prefer not to involve the overhead of a worksheet to hold such data temporarily.

One alternative then is to store the datasets that make up the Report Data object using a Tree
variable, which already supports bundling of multiple vectors, including support for additional
attributes for such vectors.

The output range specification for a worksheet is usually in one of the following forms:
[Book]Sheet!, <new>, or <active>. If the output string does not have one of these usual book-
sheet specifications, then the output is automatically considered to be a LabTalk Tree name.

Calling X-Functions and Origin C Functions 87

5.1 X-Functions

The following is an example featuring the avecurves X-Function. In this example, the resulting
ReportData object is first output to a tree variable, and then one vector from that tree is placed
at a specific column-location within the same sheet that houses the input data. ReportData
output typically defaults to a new sheet.

int nn = 10;

col(l)=data(1l,20); //fill some data

loop (i, 3,nn) {wcol (i)=normal (20);};

range ay=col (2); //for 'avecurves' Y-output

Tree tr; // output Tree

avecurves (1,3:end) rd:=tr;

// Assign tree node (vector) 'aveY' to the range 'ay'.

// Use 'tr.=' to see the tree structure.

ay=tr.Result.aveY;

ay[L]$="Ave Y"; // set its LongName

// Plot the raw data as scatter-plot using the default-X.

plotxy (?,3:end) p:=201;

// Add the data in range 'ay' to the same as line-plot.

plotxy ay o:=<active> p:=200;

Sending ReportData Directly to a Specific Book/Sheet/Column Location

If you are happy with simply putting the result from the X-Function into the input sheet as new
columns, then you can also do the following:

avecurves (1,2:5) rd:=[<input>]<input>!<new>;
Or if you would like to specify a particular column of the input sheet in which to put the
ReportData output, you may specify that as well:

avecurves (1,2:5) rd:=[<input>]<input>!Col (3);
Subsequent access to the data is more complicated, as you will need to write additional code
to find these new columns.

(columns) of data depending on the specific X-Function being used. If you are
sending the results to an existing sheet, be careful not to overwrite existing data
with the ReportData columns that are generated.

o Realize that output of the ReportData type will contain different amounts

5.1.3 X-Function Execution Options

X-Function Option Switches

The following option switches are useful when accessing X-Functions from script:

88 Calling X-Functions and Origin C Functions

5.1.3 X-Function Execution Options

Switch Full Name

-dc
IsCancel

-h -help

-recalculate
1

-recalculate
2

-S -silent

Function

Copy column format of the input range, and apply it to
the output range.

Brings up a dialog to select X-Function parameters.

Variation of dialog; Brings up the X-Function dialog as a
panel in the current workbook.

Variation of dialog; Brings up a dialog to select X-
Function parameters. Set IsCancel to 0 if click the OK
button, set to 1 if click the Cancel button. When clicking
the Cancel button, no error message like #User Abort!
dumps to Script Window and the script after X-Function
can be executed.

Prints the contents of the help file to the Script window.
Loads and compiles the X-Function without doing
anything else. If the X-Function has already been
compiled and loaded, it will do nothing.

Variation of -h; Prints only the Script Usage Examples.

Variation of -h; Prints only the Treenode information, if
any exists.

Variation of -h; Prints only the Variable list.

Variation of -h; Prints only the related X-Function
information.

Sets the output to automatically recalculate if input
changes.

Sets the output to recalculate only when manually
prompted to do so.

Runs in silent mode; results are not sent to Results log.

Variation of -s; suppresses error messages and Results

Calling X-Functions and Origin C Functions

89

5.1 X-Functions

log output.

Variation of -s; suppresses error messages, does not

-se - suppress Results log output.

-sl -silent Same as -s.

-ss _ Vgriation of -s; suppresses info messages to the script
window.

-t <Name> -theme Uses the designated preset theme.

Recalculate is not supported when <input> is used an an <output>.
For options with an existing Full Name, either the shortened switch name or the full name may
be used in script. For instance, for the X-Function smooth,
smooth -h
is the same as
smooth -help

Examples

Using a Theme

Use the theme named FivePtAdjAve to perform a smoothing operation on the XY data in
columns 1 and 2 of the active worksheet.

smooth (1,2) -t FivePtAdjAve
Note: A path does not need to be specified for the theme file since Origin automatically saves
and retrieves your themes. Themes saved in one project (*.OPJ) will be available for use in
other projects as well.

Setting Recalculate Mode

Set the output column of the freqcounts X-Function to automatically recalculate when data in
the input column changes.
fregcounts irng:=col(l) min:=0 max:=50 stepby:=increment inc:=5
end:=0 count:=1 center:=1 cumulcount:=0 rd:=col(4) -r 1;

// Set Recalculate to Auto with '-r 1'.

Open X-Function Dialog

While running an X-Function from script it may be desirable to open the dialog to interactively
supply input. In this simple example, we perform a smoothing operation using a percentile filter
(method:=2) and specifying a moving window width of 25 data points. Additionally, we open the
dialog (-d) associated with the smooth X-Function allowing the selection of input and output
data, among other options.

90 Calling X-Functions and Origin C Functions

5.1.4 X-Function Exception Handling

smooth method:=2 npts:=25 -d

Copy Format from Input to Output

Use an FFT filter with the -cf option switch to format the output data to match that of the input
data:

// Import a *.wav file; imported *.wav data format is short(2).

fname$ = system.path.program$ + "Samples\Signal Processing\sample.wav";

newbook s:=0; newsheet col:=1; impWav options.SparkLines:=0;

string bkn$=%H;

// By default, all analysis results are output as datatype double.
// -cf is used here to make sure the output data to be short (2)
fft filters -cf [bkn$]ll!col(l) cutoff:=2000

oy:=(<input>, <new name:="Lowpass Sound Frequency">);

5.1.4 X-Function Exception Handling

The example below illustrates trapping an X-Function error with LabTalk, so that an X-Function
call that is likely to generate an error does not break your entire script.

For X-Functions that do not return an error code, two functions exist to check for errors in the
last executed X-Function: xf_get_last_error_code() and xf_get_last_error_message()$.
These functions should be used in situations where the potential exists that a particular X-
Function could fail.
In this example, the user is given the option of selecting a file for import, but if that import fails
(e.g. user picked file type inappropriate for the import) we need to handle the remaining code.
dlgfile gr:=*.txt; // Get the file name and path from user
impasc -se; // Need to use -se switch for execution to continue, see note below
if(0 != xf get last error code())
{
strError$ = "XFunction Failed: " + xf get last error message()$;
type strErrors$;
break 1; // Stop execution
}
// Data import probably succeeded, so our script can continue
type continuing...;
Note the use of the general X-Function option -se to suppress error messages. You can also
use -sl to suppress error logging and -sb to suppress both. It is necessary to use one of these
options in order for script execution to continue to the next line when the X-Function call fails.

Calling X-Functions and Origin C Functions 91

5.2 Origin C Functions

Looping Over to Find Peaks

In the following example, we loop over all columns in a worksheet to find peaks. If no peak is
found in a particular column, the script continues with the rest of the columns. It is assumed
here that a worksheet with suitable data is active.
for (int ii=2; ii<=wks.ncols; 1i++)
{
// Find peak in current column, suppress error message from XF
Dataset mypeaks;

pkfind $(ii) ocenter:=mypeaks -se; // Need to use -se for execution to continue

// Check to see if XF failed
if(0 != xf get last error code())
{
type "Failed on column $(ii): %(xf get last error message()$)";
}

else

{

type Found $ (mypeaks.getsize()) peaks in column $(ii);

5.2 Origin C Functions

The following subsections detail how to call Origin C functions from your LabTalk scripts.

5.2.1 Loading and Compiling Origin C Functions

Loading and Compiling Origin C Function or Workspace

Before you call your Origin C function from Origin, your function must be compiled and linked in
the current Origin session. To programmatically compile and link a source file, or to
programmatically build a workspace from a LabTalk script use the run.loadOC method of the
LabTalk run object.

err = run.LoadOC("myFile", [option]);

Example

Use option to scan the .h files in the OC file being loaded, and all other dependent OC files are
also loaded automatically:

// Load and compile Origin C function in the file iw filter.c

// with the option=16, so to also load all dependent Orign C

// files by scanning for .h files included in iw filter.c

92 Calling X-Functions and Origin C Functions

5.2.2 Passing Variables To and From Origin C Functions

if (run.LoadOC (OriginLab\iw filter.c, 16) != 0)
{
type "Failed to load iw_filter.c!";
return 0;
}
Now, open Code Builder by menu View: Code Builder, and in the Workspace panel (if not
see this panel, open by View: Workspace menu item in Code Builder) of Code Builder, you
can see the iw_filter.c file is under the Temporary folder.

Adding Origin C Source Files to System Folder

Once a file has been opened in Code Builder, one can simply drag and drop the file to the
System branch of the Code Builder workspace. This will then ensure that the file will be loaded
and compiled in each new Origin session. For more details, please refer to Code Builder
documentation.

You can programmatically add a source file to the system folder so that it will be available
anytime Origin is run.
run.addOC (C:\Program Files\Originlab\Source Code\MyFunctions.c);

This can be useful when distributing tools to users or making permanently available functions
that have been designed to work with Set Column Values.

Adding Origin C Files to Project (OPJ)

Origin C files (or files with any extension/type) can also be appended to the Origin project
(OPJ) file itself. The file will then be saved with the OPJ and extracted when the project is
opened. In case of Origin C files, the file is then also compiled and linked, and functions within
the file are available for access. To append a file to the project, simply drag and drop the file to
the Project branch of Code Builder or right-click on Project branch and add the file. For more
details, please refer to Code Builder documentation.

5.2.2 Passing Variables To and From Origin C Functions

When calling a function of any type it is often necessary to pass variables to that function and
likewise receive variables output by the function. The following summarizes the syntax and
characteristics of passing LabTalk variables to Origin C functions.

Sytnax for calling Origin C Function from LabTalk

Origin C functions are called from LabTalk with sytnax such as:
// separate parameters by commas (,) if more than one

int iret = myfunc(parl, par2....);

// no need for parentheses and comma if there is no assignment

myfunc parl;

Calling X-Functions and Origin C Functions 93

5.2 Origin C Functions

// function returns no value, and no parameter, parentheses optional

myfunc;

Variable Types Supported for Passing To and From LabTalk

The following table lists Origin C variable types that can be passed to and from LabTalk when
calling an Origin C Function:

V?rr;:lzle Argument to OC Function Return from OC Function
double Yes Yes
int Yes Yes
bool (true or No, pass int instead, O for false, and No, return int instead, O for
false) other integer for true. false, 1 for true.
string Yes Yes
int, double Yes Yes
array
string array Yes, but cannot pass by reference Yes
Note:
1. The maximum number of arguments that Origin C function can have to call from
LabTalk is 80.

2. LabTalk variables can be passed to Origin C numeric function by reference.

5.2.3 Updating an Existing Origin C File

Introduction

There are cases where a group leader or a developer wants to release a new version of an
Origin C file to other Origin users. In such cases, if the end users have already installed an
older version of the Origin C file, they will have a corresponding .OCB file in their User Files
Folder (UFF). It is possible that the time stamp of the new Origin C file is older than the time
stamp of the .OCB file. When this happens Origin will think the .OCB file is already updated
and will not recompile the new Origin C file. To avoid this possible scenario it is best to delete
the .OCB file when the new Origin C file is installed. Once deleted, Origin will be forced to
remake the .OCB file and will do so by compiling the new Origin C file.

94 Calling X-Functions and Origin C Functions

5.2.4 Using Origin C Functions

Manually Deleting OCB Files

The OCB file corresponding to the Origin C file in question, can be manually deleted from the

OCTEMP folder in the Users Files Folder on the end user's computer. Depending on the

location of the Origin C file, it is possible for the OCB file to be in nested subfolders within the

OCTemp folder. Once located, the end user can delete the OCB file and rebuild their
workspace to create an updated OCB file.

Programmatically Deleting OCB Files

A group leader or developer can programmatically delete the corresponding OCB files using

LabTalk's Delete command with the OCB option. This is very useful when distributing Origin C

files in an Origin package and it is not acceptable to have the end user manually delete the

.OCB files.

Below are some examples of how to call LabTalk's Delete command with the OCB option:
del -ocb filepathnamel.c

del -ocb filepathnamel.ocw

del -ocb filepathnamel.c filepathname2.c // delete multiple files
del -ocb $%$YOCTEMP\filename.c // use %Y to get to the Users Files Folder

5.2.4 Using Origin C Functions

To extend the functions, you can also define an Origin C function (see Creating and Using
Origin C Code for details) which returns a single value, and call the function from command
window. For example,

1.
2.

Open Code Builder by menu View: Code Builder.

In Code Builder, create a new *.c file by menu File: New. In the New File dialog,
give a file name, MyFuncs for example, and click OK.

Start a new line at the end of this new file, and add the following code.

double MyFunc (double x)
{

return sin(x) + cos(x);

}

Click menu item Build: Build to compile and link the file.

If no error, the function defined above is now available in LabTalk. Run the following

script in the Command Window.

newbook; // create a new workbook

col(A) = data(l, 32); // fill row number

col (B) = MyFunc(col(A)); // call the Origin C function, result is put to
column B

Calling X-Functions and Origin C Functions

95

6 Running and Debugging LabTalk Scripts

Origin provides several options for executing and storing LabTalk scripts. The first part of this
chapter profiles these options. The second part of the chapter outlines the script debugging
features supported by Origin.

6.1 Running Scripts

The following section documents 11 ways to execute and/or store LabTalk scripts. But first, it is
important to note the relationship between scripts and the objects they work on.
Active Window Default
When working on an Origin Object, like a workbook or graph page, a script always operates on
the active window by default. If the window is inactive, you may use win -a to activate it.
win -a book2; // Activate the window named book2
col(b) = {1:10}; // Fill 1 to 10 on column B of book2
However, working on active windows with win -a may not be stable. In the execution sequence
of the script, switching active windows or layers may have delay and may lead to unpredictable
outcome.
It is preferable to always use win -0 winName {script} to enclose the script, then Origin will
temporarily set the window you specified as the active window (internally) and execute the
enclosed script exclusively on that window. For example, the following code will create a new
project, fill the default book with some data, and make a plot and then go back to add a new
sheet into that book and make a second plot with the data from the second sheet:
doc -s;doc -n;//new project with default worksheet
string bk$=%H;//save its book short name
//fill some data and make new plot
wks.ncols=2;col (1)=data(1l,10);col (2)=normal (10) ;
plotxy (1,2) o:=<new>;
//now the newly created graph is the active window
//but we want to run some script on the original workbook
win -o bk$ {
newsheet xy:="XYY";
col(l)=data(0,1,0.1);col(2)=col(1l)*2;col(3)=col(1l)*3;
plotxy (1,2:3) plot:=200 o:=<new>;
}
Please note that win -o is the only LabTalk command that allows a string variable to be used.
As seen above, we did not have to write

97

6.1 Running Scripts

win -o % (bk$)

as this particular command is used so often that it has been modified since Origin 8.0 to allow
string variables. In all other places you must use the %() substitution notation if a string
variable is used as an argument to a LabTalk command.

Where to Run LabTalk Scripts

While there are many places in Origin that scripts can be stored and run, they are not all
equally likely. The following sub-sections have been arranged in an assumed order of
prevalence based on typical use.

The first two, on (1) Running Scripts from the Script and Command Windows and (2) Running

Scripts from Files, will be used much more often than the others for those who primarily script.
If you only read two sub-sections in this chapter, it should be those. The others can be read on
an as-needed basis.

6.1.1 From Script and Command Window

Two Windows exist for direct execution of LabTalk: the (older) Script Window and the (newer)
Command Window. Each window can execute single or multiple lines of script. The Command
Window has a prompt and will execute all code entered at the prompt.

The Script Window has only a cursor and will execute highlighted code or code at the current
cursor position when you press Enter. Both windows accept Ctrl+Enter without executing.
When using Ctrl+Enter to add additional lines, you must include a semicolon ; at the end of a
statement.

The Command Window includes Intellisense for auto-completion of X-Functions, a command
history and recall of line history (Up and Down Arrows) while the Script Window does not. The
Script Window allows for easier editing of multiline commands and longer scripts.
Below is an example script that expects a worksheet with data in the form of one X column and
multiple Y columns. The code finds the highest and lowest Y values from all the Y data, then
normalizes all the Y's to that range.
// Find the lowest minimum and the highest maximun
double absMin = 1E300;
double absMax = -1E300;
loop (ii,2,wks.ncols)
{
stats $(ii);
if (absMin > stats.min) absMin = stats.min;

if (absMax < stats.max) absMax = stats.max;
}
// Now normalize each column to that range
loop (ii,2,wks.ncols)
{
stats $(ii);
wcol (ii) -=stats.min; // shift to minimum of zero

wcol (ii) /=(stats.max - stats.min); // Normalize to 1

98 Running and Debugging LabTalk Scripts

6.1.2 From Files

wcol (11) *= (absMax - absMin) ; // Normalize to range
wcol (1i) +=absMin; // Shift to minimum
}

To execute in the Script Window, paste the code, then select all the code with the cursor
(selected text will be highlighted), and press Enter.

To execute the script in the Command Window, paste the code then press Enter. Note that if
there were a mistake in the code, you would have it all available for editing in the Script
Window, whereas the Command Window history is not editable and the line history does not
recall the entire script.

' Origin also has a native script editor, Code Builder, which is designed for editing
Q and debugging both LabTalk and Origin C code. To access Code Builder, enter

i
ed.open() into the script or command window, or select the bt button from the
Standard Toolbar.

6.1.2 From Files

LabTalk script usually requires an Origin Object and are thus restricted to an open project.
Scripts can also be saved to a file on disk to be called from any project. Script files can be
called with up to five arguments. This section outlines the use of LabTalk scripts saved to a file.

Creating and Saving Script Files
LabTalk scripts can be created and saved from any text editor, including Origin's Code Builder.

E5]
To access Code Builder, select the b icon from the Standard Toolbar. Create a new
document of type LabTalk Script File and type or paste your code into the editor window and
then save with a desired filename and path (use the default OGS file extension).

The OGS File Extension

LabTalk scripts can be saved to files and given any extension, but for maximum flexibility they
are given the OGS file extension, and are therefore also known as OGS files. You may save
script files to any accessible folder in your file system, but specific locations may provide
additional advantages. If an OGS file is located in your User Files Folder, you will not have to
provide a path when running your script.

' An OGS file can also be attached to the Origin Project (OPJ) rather than saving
it to disk. The file can be added to the Project node in Code Builder and will
then be saved with the project. Drag the filename from the User folder and drop
into the Project folder. Script sections in such attached OGS files can be called
using the run.section() object method similar to calling sections in a file saved
on disk. Only the file name needs to be specified, as Origin will first look for the

Running and Debugging LabTalk Scripts 99

6.1 Running Scripts

file in the project itself and execute the code if flename and section are found
as attachments to the project.

Sections in an OGS File

Script execution is easier to follow and debug when the code is written in a modular way. To
support modular scripting, LabTalk script files can be divided into sections, which are declared
by placing the desired section name in square brackets [] on its own line:
[SectionName]

Lines of script under the section declaration belong to that section. Execution of LabTalk in a
section ends when another section declaration is met, when a return statement is executed or
when a Command Error occurs. The framework of a typical multi-section OGS file might look
like the following:

[Main]

// Script Lines

ty In section Main;

[Section 1]
// Script Lines
ty In section 1;

[Section 2]
// Script Lines

ty In section 2;

Note here that ty issues the type command, which is possible since no other commands in
Origin begin with the letters 'ty'".

Running an OGS File

You can use the run object to execute script files or in certain circumstances LabTalk will
interpret your file name as a command object. To use a file as a command object, the file
extension must be OGS. See the Note below for additional information.

Compare the following call formats:
run.section(OGSFileName, SectionName[,arg1 arg2 ... arg5])
run.file(OGSFileName[arg1 arg2 ... arg5])
OGSFileName.SectionName [arg1 arg?2 ... arg5]
OGSFileName [arg1 arg2 ... arg5]

Specifically, if you save a file called test.ogs to your Origin User Files folder:

// Runs [Main] section of test.ogs using command syntax, else runs
// unsectioned code at the beginning of the file, else does nothing.
test;

100 Running and Debugging LabTalk Scripts

6.1.2 From Files

// Runs only sectionl of test.ogs using command syntax:

test.sectionl;

// Runs only sectionl of test.ogs with run.section() syntax:

run.section (test, sectionl)

Note: After saving the OGS file, you need to run the e¢d X-Function (ca 1;) to change to the
folder where the file was saved or use dir to list files in the current working folder - if that is
where the file is. Otherwise, Origin does not detect the file and will not see it as a runnable
command.

After Origin recognizes an OGS filename as an object, run the OGS file by entering its name or
name.sectionname into the Script Window or Command Window. If either the file name or
section name contains a space quotes must surround both. For example:

// Run a LabTalk Script named 'My Script.ogs' located in the folder

//'D:\OgsFiles"'.

// Change the current directory to 'D:\OgsFiles'

cd D:\OgsFiles; // This causes Origin to scan that folder for OGS files

// This runs the code in section 'Beta Test' of 'My Scripts.ogs'

// passing three arguments separated by spaces (protected by quotes where needed)

"My Scripts.Beta Test" "Redundant Test" 5 "Output Averages";

There are many examples in Origin's Samples\LabTalk Script Examples folder which can be
accessed by executing:
cd 2;

Passing Arguments in Scripts

When you use the run.section() object method to call a script file (or one of its sections) or a
macro, you can pass arguments with the call. Arguments can be literal text, numbers, numeric
variables, or string variables.

When passing arguments to script file sections or to macros:

e The section call or the macro call must include a space between each argument
being passed. When using run.section, a comma must separate the section name
from the first argument only.

o When you pass literal text or string variables as arguments, each argument must be
surrounded by quotation marks (in case the argument contains more than one word,
or is a negative value). Passing numbers or numeric variables doesn't require
quotation mark protection, except when passing negative values.

e You can pass up to five arguments, separated by Space, to script file sections or
macros. In the script file section or macro definition, argument placeholders receive
the passed arguments. These placeholders are %1, %2, %3, %4, and %5. The
placeholder for the first passed argument is %1, the second is %2, etc. These
placeholders work like string variables in that they are substituted prior to execution

Running and Debugging LabTalk Scripts 101

6.1 Running Scripts

of the command in which they are embedded. The number of arguments passed is
contained in macro.narg.
As an example of passing literal text as an argument that is received by %1, %2, etc., Suppose
a TEST.OGS file includes the following section:
[output]
type "$1 %2 %3";
and you execute the following script:
run.section(test.ogs, output, "Hello World" from LabTalk);

Here, %1 holds "Hello World", %2 holds "from", and %3 holds "LabTalk". After string
substitution, Origin outputs
Hello World from LabTalk

to the Script window. If you had omitted the quotation marks from the script file section call,
then %1 would hold "Hello", %2 would hold "World", and %3 would hold "from". Origin would
then output

Hello World from

Passing Numeric Variables by Reference

Passing numeric variable arguments by reference allows the code in the script file section or
macro to change the value of the variable.

For example, suppose your application used the variable LastRow to hold the row number of
the last row in column B that contains a value. Furthermore, suppose that the current value of
LastRow is 10. If you pass the variable LastRow to a script file section whose code appends
five values to column B (starting at the current last row), after appending the values, the script
file section could increment the value of the LastRow variable so that the updated value of
LastRow is 15.

See example:
If a TEST.OGS file includes the following section:
[adddata]
loop (n, 1, 5)
{
%1[%2 + n] = 100;
bi
%2 = %2 4+ (n - 1);

return 0;
And you execute the following script:
col (b) = data(l, 10); // £ill datal b with values

get col(b) -e lastrow; // store last row of values in lastrow
run.section (test.ogs, adddata, col(b) lastrow);

lastrow = ;

Then LastRow is passed by reference and then updated to hold the value 15.

102 Running and Debugging LabTalk Scripts

6.1.2 From Files

Passing Numeric Variables by Value

Passing numeric variable arguments by value is accomplished by using the $() substitution
notation. This notation forces the interpreter to evaluate the argument before sending it to the
script file section or macro. This technique is useful for sending the value of a calculation for
future use. If the calculation were sent by reference, the entire expression would require
calculation each time it was interpreted.
In the following script file example, numeric variable var is passed by reference and by
value. %1 will hold the argument that is passed by reference and %2 will hold the argument
that is passed by value. Additionally, a string variable (%A) consisting of two words is sent by
value as a single argument to %3.
[typing]
type -b "The value of %1 = %2 %3";
return 0;
Save the section to Test. OGS and run the following script on command window:
var = 22;
%A = "degrees Celsius";

run.section(test.ogs, typing, var $(var) "SA");

Then a dialog box pop-up and says: "The value of var = 22 degrees Celsius".

Guidelines for Naming OGS Files and Sections

Naming rules for OGS script files differ based on how they will be called. The section above
discusses the two primary methods: calling using the run.section() method or calling directly
from the Script or Command window (the command method).

When Using the Run.section() Method

e There is no restriction on the length or type of characters used to name the OGS file.
e Specifying the filename extension is optional for files with the OGS extension.

e When using run.section() inside an OGS file to call another section of that same
OGS file, the filename may be omitted, for instance:
[main]

run.section(, calculate);

[calculate]

cc = aa + bb;

When Using the Command Method

e The name of the OGS file must conform to the restrictions on command names: 25
characters or fewer, must not begin with a number or special character, must not
contain spaces or underscore characters.

e The filename extension must be OGS and must not be specified.

Running and Debugging LabTalk Scripts 103

6.1 Running Scripts

Section Name Rules (When Using Either Method)

¢ When SectionName is omitted,
1. Origin looks for a section named main and executes it if found

2. If no main section is found, but code exists at the beginning of the file
without a section name, then that code is executed

3. Otherwise Origin does nothing and does not report an error

I
Do not give an OGS file the same name as an existing Origin function or X-
Function!

Setting the Path

In Origin 7.5, script files (*.OGS) could be run from both the Origin System and User Files
folders, and these are the current working directory by default. If your script file resides there,
there is no need to change the path. If the script file was not located in either of these two
folders, the full path needed to be specified in the run.section() object method. Since Origin 8,
the idea of the Current Working Folder (CWF) was introduced, allowing you to run your own
script files and X-Functions located in the CWF you have specified.

Per MS-DOS convention, Origin uses the cd X-Function to display the CWF:
// Entering this command displays the current working folder
// in the Script Window.
cd

and unless it has been changed, the output is similar to:
current working directory:

C:\Documents and Settings\User\My Documents\OriginLab\Origin8.1\User Files\

However, if you write many scripts, you will want to organize them into folders, and call these
scripts from where they reside. Also, Origin provides sample scripts that you may want to run
from their respective directories.

In the case or run.section() scripts can reside in subfolders of the User Files Folder and you
can use relative referencing such as:

run.section (subfolderl\scriptA,main); // ScriptA.ogs is in subfolderl

run.section (subfolder2\scriptA,main); // ScriptA.ogs is in subfolder?2
You can set the Current Working Folder from script. For example, to run an OGS file named
ave_curves.ogs, located in the Origin system sub-folder Samples\LabTalk Script Examples,
enter the following:

// Create a string variable to hold the complete path to the desired

//script file

// by appending folder path to Origin system path:

path$ = system.path.program$ + "Samples\LabTalk Script Examples\";

// Make the desired path the current directory.

cd path$;

104 Running and Debugging LabTalk Scripts

6.1.2 From Files

// Call the function

ave curves;

You can create a set of pre-defined paths. The cdset X-Function is used to list all the pre-
defined paths and add/change the CWF. By typing

// The 'cdset' command displays pre-defined paths

//in the Script Window.

cdset

you should see three paths like below if you have not changed them yet.
1 = C:\Documents and Settings\User\My Documents\OriginLab\Origin8.1\User Files\
2 = C:\Program Files\OriginLab\Origin8l\Samples\LabTalk Script Examples\
3 = C:\Program Files\OriginLab\Origin81\

If you want to set the second path above to be the CWF, just type:
// Changes the CWF to the folder path specified
// by pre-defined path #2.
cd 2

To add a new path to pre-defined folder set, first change to the new path, making it the CWF,
then add it to the set by using cdset X-Function with the specified index. For example:

cd D:\Files\Filetype\Script; // Set this new path as CWF

// Add this path to pre-defined folder list, to the 4th postion (index 4)

// If there already is a path with index 4, it will be over-written

cdset 4;

// If the CWF is changed manually, it can now be reset to

// 'D:\Files\Filetype\Script\' by entering 'cd 4°'.

Q A few tips for working with the cdset command:

e Folder paths added to the pre-defined set in one project are saved for
use with other projects.

e To see the current paths displayed to the Script Window, enter 'cdset’
by itself on a line in the Script Window.

e Up to 9 pre-defined paths are supported.
¢ Indices can be assigned out of order.

e A new path, assigned to an index for which a current path exists, will
overwrite the current path.

As the three default pre-defined paths show above, the second one contains several sample
script files (with the OGS extension). Similar to DOS, you can go to this folder by cd 2, then
see the valid OGS using the dir X-Function, and then run any available script file in this folder,
such as:

// Set 2nd folder as the CWF

cd 2;

// List all ogs and X-Function in the CWF

dir;

// Run a script file

Running and Debugging LabTalk Scripts 105

6.1 Running Scripts

// Note that the file extension is not needed when calling it
autofit;
You can also load the script file in the CWF into Code Builder by using ed.open() method. Such
as.
// In this case, the OGS extension on the filename is required!
ed.open (pick bad data.ogs)

Running LabTalk from Origin C

Besides running .OGS files directly, LabTalk commands and scripts can also be run from
Origin C. For more information, please refer to LabTalk Interface global function of Origin C
help document.

6.1.3 From Set Values Dialog

The Set Values Dialog is useful when calculations on a column of data are based on functions
that may include references to other datasets.

The column designated by Set Values is filled with the result of an expression that you enter
(the expression returns a dataset). The expression can be made to update automatically
(Auto), when requested by the user (Manual), or not at all (None).

For more complex calculations, where a single expression is not adequate, a Before Formula
Scripts panel in the dialog can include any LabTalk script.

Auto and Manual updates create lock icons, ®uand @urespectively, at the top of the column. A
green lock indicates updated data; A yellow lock ®uindicates pending update; A red lock
indicates broken functionality.

In cases where the code is self-referencial (i.e. the column to be set is included in the
calculation) the Auto and Manual options are reset to None.

Below are two examples of script specifically for the Set Values Dialog. Typically short scripts
are entered in this dialog.

Expression using another column

While limited to expressions (the right side of an equation) as in:
// In column 3
// Scale a column - useful for fitting where very large
//or very small numbers are problematic
col (2)*1le6;

the conditional expression can be useful in some situations:
// Set negative values to zero
col (2)<0?0:co0l(2);

Using Before Formula Scripts Section

In the Before Formula Scripts section of the Set Column Values dialog, a script can be
entered that will be executed by Origin just before the formula itself is executed. This feature is

106 Running and Debugging LabTalk Scripts

6.1.3 From Set Values Dialog

useful for carrying out operations that properly setup the formula itself. The following example
demonstrates the use of such a script:
// In column BaseNormal

// In the expression section ..

BN

// In the Before Formula Scripts section ..
range raR = col (Reading) ; // The signal
range raB = col (Baseline); // The Baseline

dataset BN;

BN = raR - raB; // Subtract the baseline from the signal
stats BN; // Get statistics of the result
BN /= (stats.max / 100); // Normalize to maximum value of 100

The following image is a screenshot of the code above entered into the Set Column Values
dialog:

B Set Values - [Book1]Sheet1!Col(B) M=
Formula weolf1) Colfa) Flx) Variables Options

o [1]: Hnm|<amu> |TD|<amD>

CallB) =
EH]

Recalculate ﬁ [(] l [Eancell [.-'.‘-.ppl_l,l] ﬂ

| Before Formula Scripks |

range rak
range rakb
data=et BN:

EN = raR - raB:

ztat= BH;

BN = (=tat= . max .~ 100):

col (Eeading)
col (Baseline) ;

[
|

Running and Debugging LabTalk Scripts 107

6.1 Running Scripts

6.1.4 From Worksheet Script

The Worksheet Script dialog is mostly provided for backward compatibility with older versions
of Origin that did not have the Auto Update feature in the Set Values dialog and/or did not
have import filters where scripts could be set to run after import.

Scripts can be saved in a Worksheet (so workbooks have separate Worksheet Scripts for each
sheet) and set to run after either importing into this Worksheet and/or changes in a particular
dataset (even one not in this Worksheet).
Here is a script that is attached to Sheet3 which is set to run on Import (into Sheet3) or when
the A column of Sheet2 changes.

range ral = Sheetl!l;

range ra2 = Sheetl!2;

range ra3 = Sheet2!A; // Our 'Change in Range' column
range rad = 3!2; // Import could change the sheet name ..
range ra5 = 3!3; // .. so we use numeric sheet references

ra5 = ra3 * ra2 / ral * ra4;

6.1.5 From Script Panel

The Script Panel (accessed via the context menu of a Workbook's title bar) is a hybrid of the
Script Window and Command Window.

e Like the Script Window, it can hold multiple lines and you can highlight select lines
and press Enter to execute.

e Like the Command Window, there is a history of what has been executed.
e Unlike the Script window, whose content is not saved when Origin closes, these
scripts are saved in the project.

// Scale column 2 by 10
col(2)*=10;

// Shift minimum value of 'mV' column to zero
stats col (mV);
col (mV) -=stats.min;

// Set column 3 to column 2 normalized to 1
stats 2;
col(3) = col(2)/stats.max;

6.1.6 From Graphical Objects

Graphic Objects (text, lines and shapes) can be tied to events and contain script that runs on
those events. Since graphical objects are attached to a page, they are saved in Templates,
Window files and Project files.

108 Running and Debugging LabTalk Scripts

6.1.6 From Graphical Objects

Buttons

Some of your scripts may be used so often that you would like to automate their execution by
assigning one or more of them to a button on the Origin project's graphical-user interface
(GUI). To do so, follow the steps below:

From a new open Origin project:

1. Select the text tool from the tool menu on the left side of the project window --> T

2. Now click in the open space to the right of the two empty columns of the blank
worksheet in the Book1 window. This will open a text box. Type "Hello" in the text
box and press enter--you have now created a label for the button.

3. Now hold down the ALT key while double-clicking on the text that you just created. A
window called Programming Control will appear.

4. In the lower text box of the Programming Control window, again type our script text
exactly:

type -b "Hello World";

5. Also in the Programming Control window, in the Script, Run After box, select
Button Up, and click OK.

6. You have now created a button that, when pressed, executes your script and prints
"Hello World" in a pop-up window.

Unlike a text script which exists only in the Classic Script Window, this button and the script it
runs will be saved when you save your Origin project.

Lines

Here is a script that creates a vertical line on a graph that can be moved to report the
interpolated value of your data at the X position represented by the line:

// Create a vertical line on our graph

draw -n MyCursor -1 -v $(x1+(x2-x1)/2);

MyCursor .HMOVE = 1; // Allow horizontal movement
MyCursor.color = color (orange); // Change color to orange
MyCursor.linewidth = 3; // Make line thicker

// Add a label to the graph

label -sl -a $(MyCursor.x) $(Y2+0.05*(Y2-Y1)) -n MyLabel $(%C (MyCursor.x));

// Assign a script to the line ..
MyCursor.script$="MyLabel.x = MyCursor.x;

MyLabel.y = Y2 + MyLabel.dy;

doc -uw;";

// .. and make the script run after the line is moved

MyCursor.Script = 2;

Running and Debugging LabTalk Scripts 109

6.1 Running Scripts

Other Objects

Any Graphical Object (text, lines and shapes) can have an attached script that runs when an
event occurs.

In this example, a rectangle (named RECT) on a graph is set to have a script run when the
rectangle is either Moved or Sized.
1. Use the Rectangle tool on the Tools toolbar to draw a rectangle on a graph.
2. Use the Back(data) tool on the Object Edit toolbar to push the rectangle behind the
data.
3. Hold down the Alt key and double-click on the rectangle to open Programming
Control.
4. Enter the following script:
$B = 3C;
%A = xo0f (%B);
dataset dsRect;
dsRect = ((%A >= rect.xl) && (%A <= rect.x2) &&
(%B >= rect.y3) && (%B <= rect.yl))?%B:0/0;
stats dsRect;
delete dsRect;

type -a Mean of $(stats.mean);

5. Choose the Moved or Sized event in the Script, Run After drop down list.
6. Click OK.

When you Move or Resize this rectangle, the script calculates the mean of all the points within
the rectangle and types the result to the Script Window.

6.1.7 ProjectEvents Script

You may want to define functions, perform routine tasks, or execute a set of commands, upon
opening, closing, or saving your Origin project. In Origin 8.1 a file named ProjectEvents.ogs is
attached to the Origin Project (OPJ) by default.

A template version of this file is shipped with Origin and is located in the EXE folder. This
template file is attached to each new project. The file can be viewed and edited by opening
Code Builder and expanding the Project node in the left panel.

Sections of ProjectEvents.ogs

The ProjectEvents.ogs file, by default, contains three sections that correspond to three
distinct events associated with the project:

1. AfterOpenDoc: This section will be executed immediately after the project is opened
2. BeforeCloseDoc: This section will be executed before the project is closed
3. BeforeSaveDoc: This section will be executed before the project is saved

110 Running and Debugging LabTalk Scripts

6.1.8 From Import Wizard

Utilizing ProjectEvents.ogs

In order for this file and its contents to have an effect, a user needs to edit the file and save it in
Code Builder, and then save the project. The next time the project is opened, the script code
contained in this attached OGS file will be executed upon the specified event (given by the pre-
defined section name).

For example, if a user defines a new function in the [AfterOpenDoc] section of
ProjectEvents.ogs, saves it (in Code Builder), and then saves the project in Origin, that
function will be available (if defined to be global) for use any time the project is re-opened. To
make the function available in the current session place the cursor (in Code Builder) on the
section name to execute, select the Debug drop-down menu, and select the Execute Current
Section option. Then in the Origin Script Window, issuing the list a command will confirm that
the new function appears and is available for use in the project.

A brief tutorial in the Functions demonstrates the value of ProjectEvents.ogs when used in
conjunction with LabTalk's dataset-based functions.

Q You can add your own sections to this OGS file to save custom routines or

project-specific script code. Such sections will not be event-driven, but can be
accessed by name from any place that LabTalk script can be executed. For
example, if you add a section to this file named [MyScript], the code in that
section can be executed after opening the project by issuing this command from
the script window:

run.section(projectevents,myscript);

A ProjectEvents.ogs script can also be made to run by opening the associated Origin Project
(OPJ) from a command console external to Origin.

6.1.8 From Import Wizard

The Import Wizard can be used to import ASCII, Binary or custom file formats (when using a
custom program written in Origin C). The Wizard can save a filter in select locations and can
include script that runs after the import occurs. Once created, the filter can be used to import
data and automatically execute script. This same functionality applies when you drag a file
from Explorer and drop onto Origin if Filter Manager has support for the file type.

For example,
e Start the Import Wizard

e Browse to the Origin Samples\Spectroscopy folder and choose Peaks with
Base.DAT

e Click Add, then click OK

e Click Next six times to get to the Save Filters page

e Check Save Filter checkbox

e Enter an appropriate Filter file name, such as Subtract Base and Find Peaks

Running and Debugging LabTalk Scripts 111

6.1 Running Scripts

e Check Specify advanced filter options checkbox

e Click Next

e Paste the following into the text box:
range raTime = 1; // Get the Time column as a range
range ralmp = 2; // Get the Amp column as a range
range raBase = 3; // Get the Base column as a range
wks.addcol (Subtracted) ; // Create a column called Subtracted
range raSubtracted = 4; // Get the Subtracted column as a range

raSubtracted = raAmp - raBase; // Subtract Base from Amp

pkFind iy:=(1,4); // Find peaks in the Subtracted data
range raPeaks = 5; // Get the peak index column as a range
for(idx = 1; idx <= raPeaks.GetSize () ; idx++)

{
pkidx = raPeaks[idx];
ty Peak found at $(raTime[pkidx]) with height of $(raSubtracted[pkidx]);

o Click Finish
This is what happens:
e The filter is saved
e The import runs using this filter

o After the import, the script runs which creates the subtracted data and the pkFind
function locates peak indices. Results are typed to the Script Window.

6.1.9 From Nonlinear Fitter

The Nonlinear Fitter has a Script After Fitting section on the Code page of the NLFit dialog.
This can be useful if you want to always do something immediately after a fit. As an example,
you could access the fit parameter values to do further calculations or accumulate results for
further analysis.
In this example, the Script After Fitting section adds the name of the fit dataset and the
calculated peak center to a Workbook named GaussResults:
// This creates a new book only the first time
if (exist (GaussResults) !=2)
{
newbook name:=GaussResults sheet:=1 option:=1 chkname:=1;
GaussResults!wks.coll.name$= Dataset;

GaussResults!wks.col2.nameS$= PeakCenter;

// Get the tree from the last Report Sheet (this fit)
getresults iw:=_REPORTS;

112 Running and Debugging LabTalk Scripts

6.1.10 From an External Application

// Assign ranges to the two columns in 'GaussResults'
range ral = [GaussResults]1l!1;

range ra2 = [GaussResults]1l!2;

// Get the current row size and increment by 1
size = ral.GetSize();

size++;

// Write the Input data range in first column
ral[size]$ = ResultsTree.Input.R2.C2$;
// and the Peak Center value in the second

ra2[size] = ResultsTree.Parameters.xc.Value;

6.1.10 From an External Application

External applications can communicate with Origin as a COM Server. Origin's COM Object
exposes various classes with properties and methods to other applications. For complete

control, Origin has the Execute method which allows any LabTalk - including LabTalk callable

X-Functions and OriginC function - to be executed. In this example (using Visual Basic
Syntax), we start Origin, import some data, do a Gauss fit and report the peak center :
' Start Origin
Dim oa
Set oa = GetObject("", "Origin.Application")
'oa.Execute ("doc -m 1") ' Uncomment if you want to see Origin
Dim strCmd, strVar As String
Dim dVar As Double

Wait for Origin to finish startup compile

' (30 seconds is specified here,

but function may return in less than 1 second)
oa.Execute ("sec -poc 30")

'Project is empty so create a workbook and import some data

oa.Execute ("newbook")

strVar = oa.LTStr ("SYSTEM.PATH.PROGRAMS") +
"Samples\Curve Fitting\Gaussian.DAT"

oa.Execute ("string fname") ' Declare string in Origin
oa.LTStr ("fname$") = strVar ' Set its value
oa.Execute ("impasc") ' Import

' Do a nonlinear fit (Gauss)

strCmd = "nlbegin 2 Gauss;nlfit;nlend;"
oa.Execute (strCmd)

' Get peak center

dVar = oa.LTVar ("nlt.xc")

Running and Debugging LabTalk Scripts

6.1 Running Scripts

strVar = "Peak Center at " + CStr (dVar)
bRet = MsgBox (strVar, vbOKOnly, "Gauss Fit")

oa.Exit
Set oa = Nothing
End

There are more detailed examples of COM Client Applications in the Samples\Automation
Server folder.

6.1.11 From Console

When Origin is started from the command-line of an external console (such as Windows cmd
window), it reads any command beyond the Origin.exe call to check if any optional arguments
have been specified.

Syntax of Command Line Arguments

All command line arguments are optional. The syntax for passing arguments to Origin is:
Origin.exe [-switch arg] [origin_file_name] [labtalk_scripts]

e -switch arg
Multiple switches can be passed. Most switches follow the above notation except -r, -
rO and -rs, which use LabTalk scripts as arguments and execute the scripts after
Origin C startup compile. See the Switches table and examples below for available
switches and their function.

e origin_file_name
This file name must refer to an Origin project file or an Origin window file. A path may
be included and the file extension must be specified.

o |abtalk_scripts
Optional script to run after the OPJ is open. This is useful when the script is very

long.
Switches
Switch | Argument Function
Specifies a configuration file to add to the list specified in the INI
file.
-A enf file Configuration files can include any LabTalk command, but

typically contain menu commands and macro definitions. You
can not specify a path nor should you include a file extension.
The file must be in the Origin Folder and must have a CNF

114 Running and Debugging LabTalk Scripts

6.1.11 From Console

<none>

cnf file

<none>

<none>

ini file

level
<none>

ocw file

full path

extension. For example:

C:\Program Files\OriginLab\Origin8\Origin8.exe -a
myconfig

Note: When passing the .cnf file on the command line using -a
switch, Origin C may not finish startup compiling, and the
licensing has probably not been processed by the time the .cnf
file is processed. So, when you want to include X-Functions in
your .cnf file, it's better to use -r or -rs switch instead of -a.

Run script following OPJ path-name after the OPJ is open
similar to -R but before the OPJ's attached ProjectEvents.ogs,
such that you can use this option to pass in variables to
ProjectEvents.ogs. This option also have the advantage of using
all the command line string at the end so it does not need to be
put into parenthesis as is needed by -R. (8.1)

Specifies a new configuration file to override the specification in
the INI file.

Configuration files can include any LabTalk command, but
typically contain menu commands and macro definitions.

Hide the Origin application. Script Window will still show if it is
open by internal control.

Same as -h, but in addition to also prevent Script Window to
open. This is important for scheduled tasks to run reliably.(9.0
SR1)

Specifies an initialization file to use in place of ORIGIN.INI. In
general this switch should precede other switches if more than
one switch is used.

Specifies at which menu level to start Origin at.
Run the Origin application as minimized. (8.1)
Load the Origin C workspace file.

Directs the network version of Origin to look for client-specific
files in the specified path.

Running and Debugging LabTalk Scripts 115

6.1 Running Scripts

-R (script)

-RO (script)

-RS scripts

-SLOG | file name

-TL file name

-T™M otm file

-TG otp file
-TP otp file
-TW otw file
-W <none>
Examples

Run the LabTalk script after any specified OPJ has been loaded.
Note: This script will execute after Origin C startup compile.

Run the LabTalk script before any specified OPJ has been
loaded.

Note: This script will execute after Origin C startup compile.

Similar to -R but without having OPJ specified. All the remaining
string from the command line will be used as LabTalk script and
run after Origin C startup compile has finished. (8.1)

Change script window output to a file. If no path is provided, then
the file will be in the user file folder. If no file name is specified
and another switch follows, like -slog -hs, then Script_Log.txt
will be created in the user file folder.(9.0 SR1)

Specifies the default page template.

Specifies the default matrix template.

Specifies the default graph template. Same as -TP.

Specifies the default graph template. Same as -TG.

Specifies the default worksheet template.

Directs the network version of Origin to look for client-specific
files in the Start In folder or Working directory.

Loading an Origin Project File

The following is an example of a DOS *.bat file. First it changes the current directory to the
Origin exe directory. It then calls Origin and passes the following command line arguments:
o -r0 (type -b "opj will open next")
Uses -r0 to run script before the Origin project is loaded.

e -r(type -b "OPJ is now loaded")
Uses -r to run script after the Origin project is loaded.

116

Running and Debugging LabTalk Scripts

6.1.11 From Console

o c:\mypath\test.opj
Gives the name of the Origin project to open.
Please note that these -r, -r0, -rs, -b switches will wait for Origin C startup compiling to finish
and thus you can use X-Functions in such script, as in:
cd "C:\Program Files\OriginLab\Origin8" origin8.exe -r0 (type -b "opj will open
next") -r (type -b "OPJ is now loaded") c:\mypath\test.opj
For more complicated scripts, you will be better off putting them into an OGS file, and then
running that OGS file from the command line.

The following example will run the script code in the main section of the startup.ogs file
located in the User Files Folder. When the file name given to the run.section method does not
contain a path, LabTalk assumes the file is in the User Files Folder. The following command
line argument illustrates use of the run.section object method:

C:\Program Files\OriginLab\Origin8\Origin8.exe -rs run.section(startup.ogs, main)
A simple startup.ogs file to demonstrate the above example can be:

[main]

type -b "hello, from startup.ogs";

Run OPJ-Based Custom Program with Command-Line Control

The ProjectEvents.ogs script attached to an OPJ file can be used to create an OPJ-centered
task-processing tool. In the following example, an OPJ can be used to run a program either by
opening the OPJ directly, or by calling it from a command line console external to Origin. In
addition, we can set a project variable in the command line to indicate whether the OPJ was
opened by a user from the Origin GUI or as part of a command-line argument.
We will create an OPJ with the following ProjectEvents.ogs code:
[AfterOpenDoc]
Function doTask ()
{
type -a "Doing some task...";
// code to do things
type "Done!";
}
//%2 = 2 for command line, but also for dble-click OPJ
// so we better control it exactly with this variable
CheckVar FromCmdLine 0;
if (FromCmdLine)
{
type -b "Coming from command line";
doTask () ;
sec -p 2;//wait a little before closing
exit;
}
else

{

Running and Debugging LabTalk Scripts 117

6.1 Running Scripts

type -N "Do you want to do the task now?";
doTask () ;
}
To run this OPJ (call it test) from a command line, use the -B switch to ensure the
FromCmdLine variable is defined before [AfterOpenDoc] is executed:

<exepath>0rigin81.exe -b <opjpath>test.opj FromCmdLine=1

Batch Processing with Summary Report in Origin

The following example demonstrates starting Origin from a command line shell (i.e., Windows
cmd) by entering a long script string containing the -rs switch.

The script performs several actions:
1. Sets up a string variable (fname$) with multiple file names,

2. Calls an X-Function (batchprocess) to perform batch processing using an existing
analysis template,

3. Calls an X-Function (expasc) to Export the result to a CSV file (c:\test\my
batch\output.csv),

4. Suppresses a prompt to save the Origin Project (OPJ) file (doc -s), and
5. Exits the Origin application.

To begin, issue this command at an external, system-level command prompt (such as
Windows emd), replacing the Origin installation path given with the one on your computer or
network:

C:\Program Files\OriginLab\OriginPro81\Origin81.exe -m -rs
template$="C:\Program Files\OriginLab\OriginPro81\Samples\Curve
Fitting\autofit.ogw"; fname$="C:\Program
Files\OriginLab\OriginPro81\Samples\Curve Fitting\step01.dat%(CRLF)C:\Program
Files\OriginLab\OriginPro81\Samples\Curve Fitting\step02.dat%(CRLF)C:\Program
Files\OriginLab\OriginPro81\Samples\Curve Fitting\step03.dat%(CRLF)C:\Program
Files\OriginLab\OriginPro81\Samples\Curve Fitting\step04.dat%(CRLF)C:\Program
Files\OriginLab\OriginPro81\Samples\Curve Fitting\step05.dat%(CRLF)C:\Program
Files\OriginLab\OriginPro81\Samples\Curve Fitting\step06.dat"; batchprocess
batch:=template name:=template$ fill:="Data" append.:="Summary" ow:=[Summary
Book]"Summary Sheet"l; expasc iw:=[Summary Book]"Summary Sheet"! type:=csv
path:="c:\test\my batch output.csv"; doc -s; exit;

Batch Processing with Summary Report in External Excel File
This example demonstrates using an external Excel file to generate a Summary Report using
Batch Processing.
In one single continuous command line, the following is performed:
1. Origin is launched and an existing Origin Project file (OPJ) is loaded which contains
o an Origin workbook to be used as Analysis Template, and
o an externally linked Excel file to be used as the report book.

118 Running and Debugging LabTalk Scripts

6.1.12 On A Timer

2. All files matching a particular wild card specification (in this case, file names
beginning with T having the *.csv extension) are found.

3. The batchProcess X-Function is called to perform batch processing of the files.

4. The Excel window will contain the summary report at the end of the batch processing
operation. This window, linked to the external Excel file, is saved and the Origin
project is closed without saving.

5. You can directly open the Excel file from the \Samples\Batch Processing subfolder
to view the results.

To begin, issue this command at an external, system-level command prompt (such as
Windows cmd), replacing the Origin installation path given with the one on your computer or
network:

C:\Program Files\OriginLab\OriginPro81\Origin81.exe -rs string
path$=system.path.program$+"Samples\Batch Processing\";string
opj$=path$+"Batch Processing with Summary Report in External Excel
File.opj";doc -0 %(opj$);findfiles ext:="T*.csv";win -a Book1;batchProcess batch:=0
fill:="Raw Data" append:="My Results" ow:="[Book2]Sheet1!" number:=7
label:=1;win -0 Book?2 {save -i}; doc -s; exit;

Additional information on batch processing from script (using both Loops and X-Functions) is
available in a separate Batch Processing chapter.

6.1.12 On A Timer

The Timer (Command) executes the TimerProc macro, and the combination can be used to
run a script every n seconds.

The following example shows a timer procedure that runs every 2 seconds to check if a data
file on disk has been modified, and it is then re-imported if new.

In order to run this scipt example, perform the following steps first:

other desired name and location

2. Start a new project and import the file into a new book with default
ascii settings. The book short name changes to mydata

3. Create a line+symbol plot of the data, and set the graph x and y axis
rescale property to auto so that graph updates when new data is
added

4. Keep the graph as the active window

5. Save the script below to the [AfterOpenDoc] section of the
ProjectEvents.OGS file attached to the project.

6. Add the following command to the [BeforeCloseDoc] section of
ProjectEvents.OGS:

é 1. Create a simple two-column ascii file c:\temp\mydata.dat or any

Running and Debugging LabTalk Scripts 119

6.1 Running Scripts

timer -k;

7. Save the Origin Project, close, and then re-open the project. Now any
time the project is opened, the timer will start, and when the project is
closed the timer will stop executing.

8. Go to the data file on disk and edit and add a few more data points

9. The timer procedure will trigger a re-import and the graph will update
with the additional new data

// Set up the TimerProc macro

def TimerProc {
// Check if file exists, and quit if it does not
string str$="c:\temp\mydata.dat";
1f (0 == exist(str$)) return;

// Get date/time of file on disk
double dtDisk = exist(str$,5);

// Run script on data book
// Assuming here that book short name is mydata
win -o mydata {
// Get date/time of last import
double dtLast = page.info.system.import.filedate;

// 1If file on disk is newer, then re-import the file
if(dtDisk > dtLast) reimport;

// Set TimerProc to be executed every 2 seconds

timer 2;

' The Samples\LabTalk Script Examples subfolder has a sample Origin Project
Q named Reimport File Using Timer.OPJ which has script similar to above set

up. You can open this OPJ to view the script and try this feature.

6.1.13 On Starting Origin

When the Origin application is launched, there are multiple events that are triggered. Your
LabTalk script can be set to execute with each event using the OEvents.OGS file.

120 Running and Debugging LabTalk Scripts

6.1.13 On Starting Origin

For example, after all Origin C functions have been compiled on startup, you may want your
custom script to execute. The following example demonstrates adding user-defined LabTalk
functions on starting Origin. These functions will then be available in every Origin session.

1. Create a new .OGS file, say MyLTFuncs.OGS, in your Origin User File Folder, with
the following script:

[DefFuncs]
@global = 1;
function int myswap (ref double a, ref double b)
{
double temp = a;

a = b;
b = temp;
return 0;

}

2. Copy the OEvents.OGS file from the Origin EXE folder to your User Files Folder.
Alternatively, when opening the file from the EXE folder just make sure to then save
it to your User Files Folder.

Note: Please copy and then edit all system .OGS files, .CNF files, etc. in your
User File Folder.

3. This OEvents.OGS file includes several sections that indicate when to run the script,
such as, [AfterCompileSystem], [BeforeOpenDoc], and [OnEXxitOrigin].

4. In the section named [AfterCompileSystem], add the following script:

// Run my LabTalk function definition script file

run.section (MyLTFuncs, DefFuncs);

5. To run sections in OEvents.OGS, you also need to edit the Origin.ini file in your User
File Folder. Close Origin if running, and then edit Origin.ini and uncomment
(remove ;) in the line under "OEvents" section, so that it is as below:

Ogsl = OEvents
; Ogs2 = OEvents
; Origin can trigger multiple system events

; Uncomment this line and implement event handlers in OEvents.ogs

Note: More than one event handler file may exist in Origin.ini and the name is not
restricted to OEvents.OGS.

6. Start a new Origin session, and run the following testing script to check that your
user-defined function is now working:

double a = 1.1;
double b = 2.2;

Running and Debugging LabTalk Scripts 121

6.1 Running Scripts

ty "At the beginning, a = $(a), and b = $(b)";
myswap (a, b);
ty "After swap, a = $(a), and b = $(b)";

Note1: If you need to call Origin C functions from your custom script associated with
events, you need to ensure that the Origin C file is compiled and the functions are
available for script access. See Loading and Compiling Origin C Function for details.

Note2: Since the events are indirectly determined by the ORIGIN.INI file you can create
custom environments by creating multiple INI files. You can launch Origin using a custom
INI file by specifying on the command line as in the CMD console or in a Shortcut. See
Script From Console

6.1.14 From a Custom Menu Item

LabTalk script can be assigned to custom menu items. The Custom Menu Organizer dialog
accessible from the Tools main menu in Origin provides easy access to add and edit main
menu items. The Add Custom Menu tab of this dialog can be used to add a new main menu
entry and then populate it with sub menu items including pop-up menus and separators. Once
a menu item has been added, LabTalk script can be assigned for that item. The menu items
can be made available for all window types or a specific window type.

The custom menu configuration can then be saved and multiple configuration files can be
created and then loaded separately using the Format: Menu main menu. For further
information please view the help file page for the Custom Menu Organizer dialog.

6.1.15 From a Toolbar Button

LabTalk script files can also be run from buttons on the Origin toolbar. In Getting Started with
LabTalk chapter, we have introduced how to run Custom Routine from a toolbar button, here
we will introduce more details. Three files enable this to happen:

1. A bitmap file that defines the appearance of the button. Use one of the set of buttons
provided in Origin or create your own.

2. A LabTalk script file that will be executed when the user clicks the button.

3. An INI file that stores information about the button or button group. Origin creates the
INI file for you, when you follow the procedure below.

We will assume for now that you have a bitmap image file (BMP) that will define the button
itself (if you are interested in creating one, example steps are given below).

d
First, use CodeBuilder (select b on the Origin Standard Toolbar to open) or other text editor,
to develop your LabTalk script (OGS) file. Save the file with the OGS extension. You may

122 Running and Debugging LabTalk Scripts

6.1.15 From a Toolbar Button

divide a single script file into several sections, and associate each section with a different
toolbar button.

Putting a Button on an Origin Toolbar

To put the button on an Origin toolbar, use this procedure:
1. In Origin, select View:Toolbars to open the Customize Toolbar dialog.
Make the Button Groups Tab active.
Click the New button in the Button Group to open the Create Button Group dialog.
Enter a new Group Name.
Enter the Number of Buttons for this new Group.

Click the Browse button to locate your bitmap file. This file should be in your User
directory.

Click OK.

8. The Save As dialog will open. Enter the same name as that of your bitmap file. Click
OK to save the INI file. You will now see that your group has been added to the
Groups list and your button(s) is now visible.

When creating a custom button group for export to an OPX file, consider saving your button
group's initialization file, bitmap file(s), script file(s), and any other support files to a user-
created subfolder in your User Files folder. When another Origin user installs your OPX file,
your custom subfolder will automatically be created in the user's User Files folder, and this
subfolder will contain the files for the custom button group. This allows you to keep your
custom files separate from other Origin files.

o0k wDd

N

Match the Button with a LabTalk Script (OGS) File

Click on the button to select it.

Click the Settings button, to open the Button Settings dialog.

Click the Browse button to locate your OGS file.

Enter the Section Name of the OGS file and any arguments in the Argument List.
Enter something descriptive in the Tool Tip Text text box.

Enter a status bar message in the Status Bar text box.

Click OK.

Repeat these steps for each of the buttons in your Button Group.

Drag the first button out onto your Origin workspace. A toolbar is created. You can
now drag all other buttons onto this toolbar.

© XN ORON =

Custom Buttons Available in Origin

The following dialog can be accessed from the View: Toolbars menu option in Origin. On the
Button Groups tab, scroll down to select the User Defined group:

Running and Debugging LabTalk Scripts 123

6.1 Running Scripts

Customize Toolbar

Taalbars | Button Groups |

Groups: Buttans

Tools] tc | 9 et Run Flat Fit
Object Edit B[1 ? mestrun i

Arrow FFT
Style

Farmat

Autallpdate

Fegional Data Selector
Reqional M azk,

Border Format

Drata Reader

Harizontal Alighment
Wertical Alignmett
Databaze Access

|1zer Defined

[

|

Select a group, then click a button to zee itz dezcription. Drag the button to

any toolbar.
Button
Add...
Button Group
M ame: | Idzer Defined |
Bitmap: |I::"-.Dn:u:uments and Settingzhwincentydy Dn:n::u| [Browse.]
[e, .] [Add...] [Delete] [Export...]

Cloze

Drag any of these buttons onto the Origin toolbar to begin using them. Use the procedure
outlined above to associate a script with a given button.

Creating a Bitmap File for a New Button

To create a bitmap file, using any program that allows you to edit and save a bitmap image
(BMP) such as Window's Paint. The following steps will help you get started:

124 Running and Debugging LabTalk Scripts

6.2.1 Interactive Execution

1. Using the bitmap for the built-in user defined toolbar is a good place to begin. In
Windows Paint, select File:Open, browse to your User Files folder and select
Userdef.bmp.

2. Set the image size. Select Image:Attributes. The height needs to remain at 16 and
should not be changed. Each button is 16 pixels high by 16 pixels wide. If your
toolbar will be only 2 buttons then change the width to 32. The width is always 16
times the number of buttons, with a maximum of 10 buttons or a width of 160.

3. Select View:Zoom:Custom:800%. The image is now large enough to work with.

4. Select View:Zoom:Show Grid. You can now color each pixel. The fun begins -
create a look for each button.

5. Select File:Save As, enter a new File name but leave the Save as type to 16 Color
Bitmap.

6.2 Debugging Scripts

This section covers means of debugging your LabTalk scripts. The first part introduces
interactive execution of script. The second presents several debugging tools, including Origin's
native script editor, Code Builder. And the third covers the error handling.

6.2.1 Interactive Execution

You can execute LabTalk commands or X-functions line-by-line (or a selection of multiple lines)
to execute step-by-step. The advantage of this procedure is that you can verify the result of the
issued command, and according to the result or error, you can act appropriately.

To execute LabTalk commands interactively, you can enter them in the following places:
e Classic Script Window
e Command Window in Origin's main window
e Command & Results Windows in Code Builder

The characteristics and the advantages of each window are as follows:

Classic Script Window
This window can be open from the Window main menu. This is the most flexible place for
advanced users to execute LabTalk scripts. Enter key will execute

1. the current line if cursor has no selection

2. the selected block if there is a selection

You can use Ctrl+Enter to add a line without executing. There is also a Script Execution
option on the Edit menu to toggle between editing and interactive execution.

Running and Debugging LabTalk Scripts 125

6.2 Debugging Scripts

Command Window in Origin's Main Window

You can enter a LabTalk command at the command prompt in the Command Window. The
result would be printed immediately after the entered command line. Command Window has
various convenient features such as command history panel, auto-completion, roll back
support to utilize previously executed commands, to execute a block of previously executed
commands, to save previously executed commands in an OGS file, etc. You cannot edit
multiline scripts within the Command Window.

To learn how to use the Command window, see The Origin Command Window chapter in the
Origin help file.

Command & Results Windows in Code Builder

Code Builder is Origin's integrated development environment useful in debugging LabTalk
scripts as well as Origin C code, X-Function code, etc. In Code Builder, use various convenient
debugging tools like setting up break points, step-by-step execution, inspection of the values of
variables, etc.

To learn how to use the Code Builder, see the Code Builder User's Guide in the Programming
help file.

6.2.2 Debugging Tools

Origin provides various tools to help you to develop and debug your LabTalk scripts.

Code Builder (Origin feature)

Code Builder is Origin's integrated development environment to debug LabTalk scripts, Origin
C code, X-Function code and fitting functions coded in Origin C. In Code Builder, use various
convenient debugging tools like setting up break points, step-by-step execution and inspection
of variable values. Code Builder can be opened by the ed.open() method.

To learn how to use the Code Builder, see the Code Builder User's Guide in the
Programming help file.

Here is an example showing how to debug LabTalk script in Code Builder.
1. Open an OGS file by running the following script.

// Open an ogs file in Code Builder

file$ = system.path.program$ + "Samples\LabTalk Script
Examples\ave traces.ogs";

ed.open (% (file$)) ;

2. Set a break point on line 22 in the open file, by clicking on the margin to the left of
this line:

fname$ = system.path.program$ + "Samples\Data
Manipulation\not monotonic_multicurve.dat";

The break point will look like this:

126 Running and Debugging LabTalk Scripts

6.2.2 Debugging Tools

Sitest to make sure OriginPro is installed

if (system.productsl '= 1)

{
type "Thiz feature is only availahle in OriginPro &.7;
break:

}

/¢ Put the path of sample data into fname string wariable which iz the default used by impd3C
J fnames = systew.path.program$ + "Jamples'Data Manipulation'not monotonic _multicurve.dat”:

newbook: s/ Create a new book

impd3C: /¢ import the file using all defaults

string bkn§ = 3H:; // sawe the book name as plotting will create new window to change %H
plotey [bEnglli(l,2), (3,41, (5.6), (7,8)) plot:=200;

3. Place the cursor on line 12 - the [Main] section - then select menu Debug: Execute
Current Section. The [Main] section code will run and stop at the line with the break

point.
fSitest to make sure OriginPro is installed
if [(system.productsl '= 1)

{

type "This feature is only awailable in OriginPro 5.7;
break:
}

f4 Put the path of sawmple data into fname string wariable which is the default used by impdSC
o) fname$ = system.path.program$ + "SawplesziData Manipulationinot_monotonic_multicurwe.dat”:

newbock:// Create a new book

implA&C: ¢/ import the file using all defaults

string bkng = sH: // sawe the book name as plotting will create new window to change %H
plotxy [bkn$]!((1,2), (3,41, (5,86), (7,8)) ploc:=200;

4. Now press F10 to execute the remaining script line by line. Code Builder provides
the Watch window to view the value of a variable during debugging. For example,
after pressing F10 once, open the Watch window by menu item View: Watch if it is
not opened yet. Then type fname$ in the left cell of the table in this window, the
value will show in the right cell of the same row.

.'.'-:

{'fﬁame$ ""C:\Program FileshOriginl ab\Origindh5 ampleshD ata Manipulationdnot_monotonic_multicuree, dat'’

1 —_— —
=] output | gCall Stack %Find Results @Watclj:/l\-

5. To execute the remaining script, press F5. It will complete unless encountering
another break point.

Running and Debugging LabTalk Scripts 127

6.2 Debugging Scripts

Ed (object)

The Ed (object) provides script access to Code Builder, a dedicated editor for LabTalk script
and Origin C code.

The ed object methods are:

Method Brief Description
ed.open() Open the Code Builder window.
ed.open(fileName) Open the specified file in the Code Builder window.

Open the specified OGS file at the specified section in the
Code Builder window. (Defaults to file beginning if section
not found.)

ed.open(fileName,
sectionName)

Open the Code Builder

ed.open ()

Open a Specific File in Code Builder

The following command opens the file myscript.ogs
ed.open (E:\myfolder\myscript.ogs)

Open a File on a Pre-Saved Path

Use the cd X-Function to first switch to the particular folder:
cd 2;

ed.open (autofit.ogs);

LabTalk Variables and Functions Dialog

The list command with no options as well as the ed command (different than the ed object)
opens the LabTalk Variables dialog, which is a table of attributes for all variables in the current
project. The attributes are variable name, value, type, subtype, property, plot information, and
description.

This is a useful tool for script programmers as the current values and properties of variables

can be viewed in real time. Additionally, variables can be sorted by any of their attributes,
alphabetically in the case of text descriptors, numerically in the case of numeric values.

Check boxes exist on the right-hand side of the dialog that allow you to see any subset of the
entire variable list.

128 Running and Debugging LabTalk Scripts

6.2.2 Debugging Tools

B | abTalk ¥ariables and Functions 5
Delet
I arne Walle Data Type “Wariable Type | PlotInfo | crip =T |
EE 354 Double Session Update |
Pl 31418926535898 | Conat S ezzion
GETMINMAX Funiction Session | Oose |
FF <1=100; LoogeDataSet | Project I System
A [ataR ange Sezzion 4
¥ Project
¥ Session
¥ Mumeric
Iw Sting

IV Function

V¥ Loose Dataset
v Tree

¥ Fange

v Macro

i2

i | 11T] l|

Echo (system variable)

To debug and trace, this system variable, Echo prints scripts or error messages to the
Command window (or Script window when entered there). To enable echo, type:

echo = Number
in the Script window (where Number is one of the following):

Number Description

1 Display commands that generate an error;

2 Display scripts that have been sent to the queue for delayed execution;
4 Display scripts that involve commands;

8 Display scripts that involve assignments;

16 Display macros.

Running and Debugging LabTalk Scripts 129

6.2 Debugging Scripts

These values are bits that can be combined to produce cumulative effects. For example, echo
=12 displays both command and assignment scripts. Echo = 7 (includes echo = 1, echo = 2,
and echo = 4) is useful for following script execution during menu command selection. To
disable echo, type echo = 0 in the Script window

#!script (special syntax)

Embed debugging statements in your script using this notation. The # character tells the
LabTalk interpreter to ignore the text until the end of the line. However, when followed by the !
character, the script is executed if the @B system variable (or System.Debug object property)
is set to 1. The following example illustrates this option:

@B = 1;

range rr = [Bookl]Sheetl!col (A); // Range to column A

for (ii=1; 1i<=10; ii+=1) {

#!ii=; rr[ii]l=; // Embedded debugging script

rr[ii]+=ii*10;

#!type -a This line will not execute

The script sets @B equal to 1 to allow #! lines to execute. By setting @B to 0, the last line will
not execute.

{script} (special syntax)

An error in your LabTalk code will cause the code to stop at the point of the error and not
execute any statements after the error. In cases where you would like the script to continue
executing in such cases, you can use curly braces to define where error handling should begin
and resume. For instance, in the following script,

type Start;

impasc fname:=BadFileName;

type End;
the word Start will print to the Script Window, but if BadFileName cannot be found, the script
will stop executing at that point, and the word End will not print.
If, however, you surround the line in question with curly braces (i.e., {}), as in,

type Start;

{

impasc fname:=BadFileName;

}

type End;
then End will print whether or not BadFileName is properly imported.

You can catch this condition with a variable:
flag = 1;
{

impasc fname:=MyFile;

130 Running and Debugging LabTalk Scripts

6.2.2 Debugging Tools

flag = 0;
}
if(flag)
type Error ocurred;
else
type OK;
A similar situation occurs when a section in an OGS file fails. Code will silently return to the
calling context. Use the above variable method to identify that code failed. In this case, the
brackets are not needed:
[Called Section]
flag = 1;
BadCommand; // This line errors and silently returns

flag = 0; // flag (which must be global variable) is 1, then above code failed.

@B(system variable), System.Debug (object property)

@B system variable controls the Debug mode to execute the LabTalk statements that begin
with #! ;

1 = enable

0 = disable

It is equivalent to System.Debug object property. which

@OC (system variable)

@OC system variable controls whether or not you can call Origin C functions from LabTalk.

Running and Debugging LabTalk Scripts 131

6.2 Debugging Scripts

Value Description
@OC = 1 (default) Origin C functions CAN be called
@0C=0 Origin C functions CANNOT be called

@V(system variable), System.Version(object property)

@YV indicates the Origin version number. @V and System.Version object property are
equivalent.

@VDF (system variable)

If you set @VDF = 1, when you open a project file (.OPJ), Origin will report the Origin version
in which the file was saved.

VarName= (command)

This command examines the value of any variable. Embed this in your script to display
intermediate variable values in the Script window during script execution.

Example 1

The following command prints out the value of myHight variable:
myHight=

LabTalk:List (command)

The list command is used to examine your system environment. For example, the list s
command displays all datasets (including temporary datasets) in the project.

ErrorProc (macro)

Macro type: Special event The ErrorProc macro is triggered .when the LabTalk interpreter
detects a #Command Error. .when you click the Cancel button in any dialog box. .when you
click the No button in dialog boxes that do not have a Cancel button. The ErrorProc macro is
deleted immediately after it is triggered and executed. The ErrorProc macro is useful for error

trapping.

NotReady (macro)

This macro displays the message "This operation is still under development..." in a dialog box
with an OK button.

132 Running and Debugging LabTalk Scripts

6.2.3 Error Handling

Type <ogsFileName> (command)

This variant of the type command prints out the contents of a specified script file (.OGS) in the
current directory to the Command (or Script) window. Note that the file extension .OGS in
ogsFileName may be omitted. The file name cannot include a path and must be in the working
directory.

Examples:

The following script prints the contents of D: \temp\mytemp1.ogs and C:\myogs\hello.ogs.
cd D:\Temp;
type mytempl.ogs; // Extension included
cd C:\temp;
type hello; // Extension omitted

Log to a File

To output the log information to a file, the type command is available. type -gb will specify the
log file to output to, and begin the output routine. Then type -ge will end the routine and stop
logging to the file. For example:

type -gb %$Ylog.txt; // Start typing text to a file, log.txt, if not exist, create

it

type aa; // Write aa

type bb; // Write bb

type cc; // Write cc

type -ge; // End writing
This can be particularly useful when your script is creating a large volume of output to the
Script Window since it has only a 30000 byte buffer.

6.2.3 Error Handling

LabTalk scripts may be interrupted if an error has been thrown. But there are times when you
want to continue the execution of the script even if an error is encountered. In this situation,
Origin allows you to use a pair of curly braces ("{" and “}”) to enclose a part of the script that
might generate an error. When Origin encounters an error within the section the remaining
script up to the "}" is skipped and execution resumes outside the curly braces. In this sense,
braces and run.section() commands have the same behavior.

The following is a simple example to show how to handle possible errors. Please note that
before executing the scripts in the Script Window, you should create a new worksheet and
make sure that column C does not exist.

// Script without error handling

type "Start the section";

stats col (c);

stats.max=;

type "Finished the section";

Running and Debugging LabTalk Scripts 133

6.2 Debugging Scripts

The line of code, stats col (c) ;, Will throw an error, because Column C does not exist. Then,
the script will terminate and only output:
Start the section

Failed to resolve range string, VarName = ix, VarValue = col (c)

Now we will introduce braces to use error handling. We can add a variable to indicate if an
error occurred and make use of a System Variable to temporarily shut off Origin error
messages:
// Script with error handling
type "Start the section";
int iINOE = @NOE; // Save current Origin error message output flag
// The section that will generate an error
{
@NOE = 0; // Shut off Origin error messages
vErr = 1; // Set our error variable to true (1)
stats col(c); // This is the code which could produce an error
stats.max=; // Execution will continue only if no error occurs
vErr = 0; // If NO error then our variable gets set to false (0)
}
@NOE = iNOE; // Restore Origin error messages
if (vErr) ty An error occurred. Continuing ...;

type "Finished the section";

The output will become
Start the section
An error occurred. Continuing ...

Finished the section

After the error on the stats col(c) line, code execution continues outside the closing brace (})
and we can trap our error and process as needed. You can comment out the lines related to
@NOE if you want the Message Log to retain a record of all errors that occurred.

134 Running and Debugging LabTalk Scripts

7 String Processing

This chapter introduces you to working with strings, including string variables, registers and
arrays, converting numbers to strings, strings to numbers, and various methods available for
string processing.

7.1 String Variables and String Registers

In Origin, string processing is supported in two ways: with string variables, and with string
registers. In general, we encourage the use of string variables as they are more intuitive (i.e.,
more like strings in other programming languages) and are supported by many pre-defined
string methods; both of which are advantages over string registers.

7.1.1 String Variables

A string variable is created by declaration and/or assignment, and its name is always followed
by a $-sign. For example:

// Creates by declaration a variable named 'aa' of the string type;

//'aa' is empty (i.e., "")

string aa$;

// Assigns to 'aa' a character sequence

aa$ = "Happy";

// Creates and assigns a value to string variable 'bb',
//all on the same line
string bb$ = "Yes";

// Creates and assigns a value to string variable 'cc' with no declaration

// (see note below)

cc$ = "Global";
Note: Because string variable cc was not declared, it is given Global (or Project) scope, which
means all routines, functions, or otherwise can see it. Declared variables aa and bb are given
Local (or Session) scope. For more on scope, see Variables and Scope.

135

7.2 String Processing

7.1.2 String Registers

Prior to Version 8.0, Origin supported string processing with string registers. As such, they
continue to be supported by more recent versions, and you may see them used in script
programming examples. There are 26 string registers, corresponding to the 26 letters of the
English alphabet, each preceeded by a %-sign, i.e., %A--%Z. They can be assigned a
character sequence just like string variables, the differences are in the way they are handled
and interpreted, as the examples below illustrate. As a warning, several of the 26 string
registers are reserved for system use, most notably, the ranges %C--%l, and %X--%Z. For
complete documentation on their use, see String Registers.

7.2 String Processing

Using String Methods

These examples show multiple ways to get a substring (in this case a file name) from a longer
string (a full file path). In the last of these, we demonstrate how to concatenate two strings.

Find substring, using getFileName()

In this example, a string method designed for a very specific but commonly needed task is
invoked.

// Use the built-in string method, GetFileName () :

string fname$="C:\Program Files\Origin 8\Samples\Import\S15-125-03.dat";

string strl$ = fname.GetFileName ()$;

strls=;

Find substring, using reverseFind(), mid() methods

This time, a combination of string methods is used:
// Use the functions ReverseFind and Mid to extract the file name:
string fname$="C:\Program Files\Origin 8\Samples\Import\S15-125-03.dat";
// Find the position of the last '\' by searching from the right.
int nn=fname.ReverseFind ('\"');
// Get the substring starting after that position and going to the end.
string str2$=fname.Mid(nn+1)$;
// Type the file name to the Script Window.
str2s$=;

Find substring, token-based

Here, another variation of generic finding methods is chosen to complete the task.

// Use a token-based method to extract the file name:

136 String Processing

7.1.2 String Registers

string fname$="C:\Program Files\Origin 8\Samples\Import\S15-125-03.dat";
// Get the number of tokens, demarcated by '\' characters.

int nn=fname.GetNumTokens ('\"');

// Get the last token.

string str3$ = fname.GetToken (nn, '\')$;

// Output the value of that token to the Script Window.

str3s=;

String Concatenation

You can concatenate strings by using the '+' operator. As shown below:
string aa$="reading";
string bb$="he likes " + aa$ + " books";
type "He said " + bb$;

You may also use the insert string method to concatenate two strings:
string aa$ = "Happy":
string bb$ = " Go Lucky";
// insert the string 'aa' into string 'bb' at position 1
bb.insert (1,aa$);
bbs$=;

For a complete listing and description of supported string methods, please see String (Object).

Using String Registers

String Registers are simpler to use and quite powerful, but more difficult to read when
compared with string variables and their methods. Also, they are global (session scope) and
you will have less control on their contents being modified by another program.

// Concatenate two strings using string registers

SA="Left";

%$B="Handed";
N="%A %B";
N

o° oo

// "Left Handed"
// Extract the file name substring from the longer file path string:
$N="C:\Program Files\Origin 8\Samples\Import\S15-125-03.dat";

for (done=0;done==0;)

}
$N=;

String Processing 137

7.3 Converting Strings to Numbers

Extracting Numbers from a String

This example shows multiple ways to extract numbers from a string:
// String variables support many methods
string fname$="S15-125-03.dat";

int nn=fname.Find('S"');
string strl$ = fname.Mid(nn+l, 2)$;
type "lst number = $(strl$)";

string str2$ = fname.Between("-", "-")S$;
type "2nd number = $(str2$)";

int nn = fname.ReverseFind('-");
int oo = fname.ReverseFind('.') ;
string str3$ = fname.Mid(nn + 1, oo - nn - 1)$;

type "3rd number = % (str3$)";
type $(%(str2$) - % (strl$) * $(str3$));

// Using string Registers, we can use substring notation
$M = "S15-125-03.dat";

SN = %[%M,2:3]; // Specify start and end
type "lst number = $N";

$N = %[%M,>'S']; // Find string after 'S'

SN = $[%N,'-']l; // Find remaining before '-'

type "lst number = $N";
%0 = %$[%M, #2,\x2D]; // Find second token delimited by '-' (hexadecimal 2D)
type "2nd number = $0";

$P = %[%M,'.']; // trim extension
%P = %[%P,>'-'1; // after first '-'
$P = $[%P,>'-']; // after second '-'

type "3rd number = $P";
type $(%0 - SN * %P);

7.3 Converting Strings to Numbers

The next few examples demonstrate converting a string of numeric characters to an actual
number.

138 String Processing

7.3.1 Converting String to Numeric

7.3.1 Converting String to Numeric

Using Substitution Notation

To convert a variable of type string to a variable of type numeric (double, int, const), consider
the following simple example:

// myString contains the characters 456 as a string

string myString$ = "456";

// myStringNum now contains the integer value 456

int myStringNum = % (myString$);
The syntax %(string$) is one of two substitution notations supported in LabTalk. The other,
$(num), is used to convert in the opposite direction; from numeric to string.

Using String Registers

This example demonstrates how to convert a string held in a string register to a numeric value.
// Similar to above, but performed using string registers:
string myString$ = "456";
// Assignment without quotes will evaluate the right-hand-side
%A = myString$;
// %A will be substituted, then right-hand-side evaluated
int aa = %A;
// 'aa' can be operated on by other integers
int bb = aa + 100;
bb=; // ANS: 556

7.4 Converting Numbers to Strings

The following examples demonstrate conversion of numeric variables to string, including
notation to format the number of digits and decimal places.

7.41 Converting Numeric to String

Using Substitution Notation

To convert a variable of a numeric type (double, int, or const) to a variable of string type,
consider the following simple example:

// myNum contains the integer value 456

int myNum = 456;

// myNumString now contains the characters 456 as a string

string myNumString$ = $ (myNum) ;

String Processing 139

7.4 Converting Numbers to Strings

The syntax $(num) is one of two substitution notations supported in LabTalk. The other,
%(string$), is used to convert in the opposite direction, from string to numeric, substituting a
string variable with its content.
Formatting can also be specified during the type conversion:

$ (number [, format]) // braces indicate that the format is optional
Format follows the C-programming format-specifier conventions, which can be found in any C-
language reference, for example:

string myNumString2$ = $("3.14159",%3d);

myNumString2$= // "3"

string myNumString2$ = $("3.14159",%3.2f);
myNumString2$= // "3.14"

string myNumString2$ = $("3141.59",%6.4e);
myNumString2$= // "3.1416e+003"

For further information on this type of formatting, please see $() Substitution.

Using the Format Function

Another way to convert a numeric variable to a string variable uses the format function:
// call format, specifying 3 significant figures
string yy$=Format (2.01232, "*3")$;
// "2.01"
yy$=;
For full documentation of the format function see Format (Function)

7.4.2 Significant Digits, Decimal Places, and Numeric Format

LabTalk has native format specifiers that, used as part of LabTalk's Substitution Notation
provide a simple means to format a number.

Use the * notation to set significant digits

x = 1.23456;

type "x = $(x, *2)";
In this example, x is followed by *2, which sets x to display two significant digits. So the output
result is:

x =1.2
Additionally, putting a * before ")" will cause the zeros just before the power of ten to be
truncated. For instance,

y = 1.10001;

type "y = S(y, *4*)";
In this example, the output result is:

140 String Processing

7.4.2 Significant Digits, Decimal Places, and Numeric Format

y=1.1
The result has only 2 siginificant digits, because y is followed by *4* instead of *4.

Use the . notation to set decimal places

x = 1.23456;

type "x = $(x, .2)";
In this example, x is followed by .2, which sets x to display two decimal places. So the output
result is:

x = 1.23

Use E notation to change the variable to engineering format

The E notation follows the variable it modifies, like the * notation. For example,

x = leb6;

type "x = $(x, E%4.2f)";
where % indicates the start of the substitution notation, 4 specifies the total number of digits, .2
specifies 2 decimal places, and f is an indicator for floating notation. So the output is:

x = 1.00M

Use the $(x, S*n) notation to convert from engineering to scientific
notation

In this syntax, n specifies the total number of digits.
x = 1.23456;
type "x = $(x,S*3)";

And Origin returns:
x = 1.23E0

7.5 String Arrays

This example shows how to create a string array, add elements to it, sort, and list the contents
of the array.

// Import an existing sample file

newbook;

fpath$ = "Samples\Data Manipulation\US Metropolitan Area Population.dat"

string fname$ = system.path.program$ + fpath$;

impasc;

// Loop over last column and find all states
range rMetro=4;
stringarray saStates;

String Processing 141

7.5 String Arrays

for(int ir=1; ir<=rMetro.GetSize(); ir++)
{
string strCell$ = rMetro[ir]$;
string strState$ = strCell.GetToken(2,',')S$;
// Find instances of '-' in name
int nn = strState.GetNumTokens ("-");
// Add to States string array
for(int ii=1; ii<=nn; ii++)
{
string str$ = strState.GetToken(ii, '-')$;
// Add if not already present
int nFind = saStates.Find(str$);
if(nFind < 1)
saStates.Add (str$) ;

// Sort States string array and print out

saStates.Sort () ;

for (int ii=1; ii<=saStates.GetSize(); 1ii++)
saStates.GetAt (ii) $=;

142 String Processing

8 Workbooks Worksheets and Worksheet
Columns

In this chapter we cover the Workbook -> Worksheet -> Column hierarchy, and how to access
these objects from script. The concept of treating data in a worksheet as a virtual matrix is also
covered.

8.1 Workbooks

8.1.1 Basic Workbook Operation

You can manipulate workbooks with the Page object and Window command. You can also use
Data Manipulation X-Functions. With these tools, you can create new worksbooks, duplicate
workbooks, save workbook as template, etc. Some practical examples are provided below.

Create New Workbook

The newbook X-Function can be used to create new workbook. With the arguments of this X-
Function, you can specify the newly created workbook with Long Name, number of sheets,
template to use, whether hidden, etc.

//Create a new workbook with the Long Name "MyResultBook"

newbook MyResultBook;

// Create a new workbook with 3 worksheets
// and use "MyData" as Long Name and short name
newbook name:="MyData" sheet:=3 option:=lsname;

// Create a new hidden workbook

// and the workbook name is stored in myBkName$ variable
newbook hidden:=1 result:=myBkName$;

// Output workbook name

myBkName$ = ;

// By default, the built-in template "Origin" is used to

// create the new workbook, you can also use a specified template
// Create a new workbook with the XYZ template

newbook template:=XYZ;

143

8.1 Workbooks

Also, the command win -ti is capable of creating a minimized new workbook from a template
file.

// Create a new wookbook from the FFT template

// and Long Name and short name to be MyFFT, then minimize it

win -ti wks FFT MyFFT;

Open Workbook

If the workbook with data is saved (as extension of ogw), it can be opened by the doc -0
command.

// The path of the workbook to open

string strName$ = system.path.program$;

strName$ += "Samples\Graphing\Automobile Data.ogw";

// Open the workbook

[}

doc -o % (strName$) ;

Save Workbook

Origin allows you to save a workbook with data to a file (*.ogw), or as a template without data
(*.otw), and for the workbook with analysis, it is able to be saved as an analysis template
(*.ogw).

1. The command save -i is able to save the active workbook with data to an ogw file.

// Create a new workbook

newbook;

// Fill some data to col(l)

col(l) = uniform(32);

// Save this workbook with data to MyData.ogw under User Files Folder

save -1 %$YMyData.ogw;
2. The X-Function template_saveas is used to save workbook as a template.

// Create a new workbook with 3 sheets

newbook sheet:=3;

// Save this workbook as a template named My3SheetsBook
// in User Files Folder (default)

template saveas template:=My3SheetsBook;

3. To save a workbook with analysis, the command save -ik can be used.

// Create a project
string strOpj$ = system.path.program$ + "Samples\Analysis.opj";
doc -o % (stroOpj$);

// Activate the workbook to be saved as analysis template

win -a BooklJ;

144 Workbooks Worksheets and Worksheet Columns

8.1.1 Basic Workbook Operation

// Save this workbook as an analysis template
// name MyAnalysis.ogw under User Files Folder

save —-ik %YMyAnalysis.ogw;

Close Workbook

To close workbook, just click the Close button in the top right corner of the workbook. And this
behovior is done by command win -ca, and a dialog pops up to prompt user to delete or hide
the workbook.

// Create a workbook, and name is stored in MyBook$ variable

newbook result:=MyBook$;

// Simulate the Close button clicking

win -ca % (MyBook$);
To close the workbook directly without prompting, and delete all the data, you can use
command win -cd. And this is the same with Delete Workbook below.

// Create a new workbook for closing

newbook;

// close this workbook without prompting, and delete all the data

win -cd $H;

Show or Hide Workbook

There are three switches, -ch, -h, and -hc, in win command for showing or hiding workbook.
// Create 3 workbooks for hiding
newbook name:=MyBookl option:=lsname; // first workbook, MyBookl
newbook name:=MyBook2 option:=lsname; // second workbook, MyBook2

newbook name:=MyBook3 option:=lsname; // third workbook, MyBook3;

// Use -ch to hide the active workbook, MyBook3
// And the View Mode in Project Explorer is Hidden

win -ch 1;

// Use -hc to hide the first workbook (not the active one), MyBookl
// And the View Mode in Project Explorer is Hidden
win -hc 1 MyBookl;

// Use -h to hide the second workbook (active workbook), MyBook2
// The View Mode in Project Explorer is still Normal

win -h 1;

// Actually, MyBook2 is still the active workbook
// It is able to show it by:

Workbooks Worksheets and Worksheet Columns 145

8.1 Workbooks

win -h 0;

// To show MyBookl and MyBook3, need to use the -hc switch to specify
// the workbook name

win -hc 0 MyBookl;

win -hc 0 MyBook3;

Name and Label Workbook

For a workbook, there will be short name, Long Name, and Comments. You can rename (short
name) a workbook with win -r command, and use the page object to control Long Name and
Comments, including how to show the workbook title (short name, Long Name, or both).

// Create a new workbook with name of "Data",

// and show both in workbook title

// both short name and Long Name are the same

// workbook title only shows short name

newbook name:=Data option:=lsname;

// Rename the workbook to "RawData"

win -r Data RawData;

// Change Long Name to be "FFT Data"
page.longname$ = "FFT Data";
// Add Comments, "lst group data for fft"

page.comments$ = "lst group data for fft";

// Let the workbook title shows Long Name only
page.title = 1; // 1 = Long Name, 2 = short name, 3 = both

Activate Workbook

To activate a workbook, the command win -a can be used.
// The path of project to be opened
string strOpj$ = system.path.program$;
strOpj$ += "Samples\Curve Fitting\Intro to Nonlinear Curve Fit Tool.opj";
// Open the project
doc -o % (strOpj$);

// Activate workbook, Bookl, in the second subfolder of the project

win -a Bookl;

// It also can put the workbook name into a variable
// Variable for the name of workbook, Gaussian, in the project
string strGau$ = Gaussian;

// Activate the Gaussian workbook in the first subfolder

146 Workbooks Worksheets and Worksheet Columns

8.1.2 Workbook Manipulation

[

win -a %(strGau$);
Most Origin commands operate on the active window, so you may be tempted to use win -a to
activate a workbook and then run script after it to assume the active workbook. This will work in
simple codes but for longer script, there might be timing issues and we recommend that you
use window -o winName {script} instead. See A Note about Object that a Script Operates upon
for more detail explanation.

Delete Workbook

To delete a workbook, you can use the win -c command, and this command will delete the
workbook directly without prompts.
// The path of project to be opened
string strOpj$ = system.path.program$ + "Samples\Curve Fitting\2D Bin and Fit.opj";
// Open the project
doc -o % (stroOpj$);
// Delete workbook, Bookl, from the project

win -c Bookl;

// To delete an active workbook, the workbook name can be omitted
// Or using %H to refer to the workbook name

win -a MatrixFitl; // Activate the workbook MatrixFitl

win -c; // Delete the workbook

// Or using this one

// win -c $%H;

// It also allows to delete a workbook whose name is stored in a variable
// Create a new workbook using newbook X-Function

// And the name of this workbook is stored in string variable ToDel$
newbook result:=ToDel$;

// delete the workbook created just now

win -c % (ToDel$) ;

8.1.2 Workbook Manipulation

Origin provides the capabilities for workbook manipulation by using LabTalk script, such as
duplicating, merging, splitting, etc.

Duplicate Workbook

To duplicate active workbook, the win -d command is used. It allows to specify a name for the
duplicated workbook, and the new workbook is activated after duplicated. The command win -
da is doing the similar thing, however, it keeps the active workbook active after duplicated.

// Open a project

string strOpj$ = system.path.program$;

Workbooks Worksheets and Worksheet Columns 147

8.1 Workbooks

strOpj$ += "Samples\LabTalk Script Examples\Loop wks.opj";

[}

doc -o % (stropj$);

// Activate the workbook S2Freql
win -a S2Freql;

// Duplicate this workbook, and name it "MyCopy"
// And this new workbook will be activated
win -d MyCopy;

// Duplicate the MyCopy workbook, and name it "MyCopy2"
// But keep MyCopy still activated
win -da MyCopy2;

Merge Workbooks

To merge multiple workbooks into one new workbook, the X-Function, merge_book, is
available.

// Open a project

string strOpj$ = system.path.program$;

strOpj$ += "Samples\LabTalk Script Examples\Loop wks.opj";

[

doc -o % (stroOpj$);

// Activate Samplel folder
pe_cd /Samplel;

// Merge two workbooks (S1Freqgl and S1Freq2) in two subfolders
// User the source workbook name for the worksheet name in the merged workbook

merge_book fld:=recursive rename:=sname;

// Activate Sample2 folder
pe_cd /Sample2;

// Merge two workbooks (S2Freqgl and S2Freg2) in two subfolders
// User the source workbook name for the worksheet name in the merged workbook

merge book fld:=recursive rename:=sname;

// Activeate the root folder
pe cd /;

// Two new workbooks are created from the above script
// The names of these two workbooks begin with "mergebook"

// Now, merge these two workbooks into a new workbooks

148 Workbooks Worksheets and Worksheet Columns

8.2.1 Basic Worksheet Operation

// The worksheets in the final result workbook will name
// by using the original worksheet name

merge book fld:=project single:=0 match:=wkbshort key:="mergebook*" rename:=wksname;

Split Workbook

The example above is merging multiple workbooks into one workbook. It is also able to split a
workbook into multiple workbooks, which contain single worksheet. The wsplit_book X-
Function is designed for this purpose.

// Open a project

string strOpj$ = system.path.program$;

strOpj$ += "Samples\Automation Server\Basic Stats on Data.opj";

[

doc -o % (strOpj$);
// There are three worksheets in the active workbook, RawData
// Now split this workbook into three workbooks

// And each workbook will contain one worksheet from the original workbook

wsplit book fld:=active;

8.2 Worksheets

8.2.1 Basic Worksheet Operation

The basic worksheet operations include adding worksheet to workbook, activating a worksheet,
getting and setting worksheet properties, deleting worksheet, etc. And these operations can be
done by using Page and Wks objects, together with some Data Manipulation X-Functions.
Some practical examples are provided below.

Add New Worksheet

The newsheet X-Function can be used to add new worksheets to a workbook.
// Create a new workbook with 3 worksheets,
// and use "mydata" as long name and short name
newbook name:="mydata" sheet:=3 option:=lsname;
// Add a worksheet named "source" with 4 columns to current workbook

newsheet name:=source cols:=4;

Activate a Worksheet

Workbook is an Origin object that contains worksheets which then contain columns.
Worksheets in a workbook are internally layers in a page. In other words, a worksheet is
derived from a layer object and a workbook derived from a page object. The active layer in a

Workbooks Worksheets and Worksheet Columns 149

8.2 Worksheets

page is represented by the page.active or page.active$ property, and thus it is used to active a
worksheet.
// Create a new workbook with 4 worksheets

newbook sheet:=4;

page.active = 2; // Active worksheet by index

page.active$ = sheet3; // Active worksheet by name

Modify Worksheet Properties

Using Worksheet Object

When a worksheet is active, you can type wks.= and press Enter to list all worksheet
properties. Most of these properties are writable so you can modify it directly. For example:

// Rename the active worksheet

wks.name$ = Raw Data

// Set the number of columns to 4

wks.ncols = 4

// Modify the column width to 8 character

wks.colwidth = 8

// Show the first user-defined parameter on worksheet header

wks.userparaml = 1

Two properties, wks.maxRows and wks.nRows are similar. The former one find the largest row
index that has value in the worksheet, while the later set or read the number of rows in the
worksheet. You can see the different in the following script.

newbook; // Create a new workbook

col(b) = {1:10}; // Set column B with 1-10 for the first ten rows

wks.maxRows = ;

wks.nRows = ;
Origin outputs 10 for wks.maxRows; while outputs 32 for wks.nRows.

If the worksheet is not the active one, you can specify the full worksheet name (including
workbook name) before wks object, the syntax is

[WorkbookName]WorksheetNameOrindex!wks

Or you can use the range of the worksheet. For example
// Open a project
string strOpj$ = system.path.program$;
strOpj$ += "Samples\Automation Server\Basic Stats on Data.opj";
doc -o % (stroOpj$);

wks.nCols = ; // Output number of columns in the active worksheet
// Output number of columns in the worksheet [RawData]Data!
[RawData]Data!wks.nCols = ;

// Output the name of the first worksheet in RawData workbook

[RawData]l!wks.name$ = ;

150 Workbooks Worksheets and Worksheet Columns

8.2.1 Basic Worksheet Operation

// Use range
range rWks = [RawData]Data!; // Range for the Data worksheet in RawData workbook

rWks.userparaml = 1; // Show the first user-defined parameter in worksheet

Using X-Functions

Besides wks object, you can also use X-Functions to modify worksheet properties. These X-

Function names are usually with the starting letter "w". Such as wcolwidth, wcellformat and

wclear, etc. So we can also resize the column with as below without using wks.colwidth:
wcolwidth 2 10; // Set the 2nd column width to 10

Delete Worksheet

The layer -d command can be used to delete a worksheet or graph layer.
// Create a new workbook with 6 worksheets

// Workbook name is stored into MyBook$

// And the first worksheet will be the active one

newbook sheet:=6 result:=MyBook$;

// Add a new worksheet with name of "My Sheet"

newsheet name:="My Sheet";

page.active = 1; // Activate the first worksheet
layer -d; // Delete the active worksheet

// Delete a worksheet by index
// Delete the third worksheet (or layer) in the active workbook (or graph)
layer -d 3;

// Delete a worksheet by name
layer -d "Sheetb5";

// Delete a specified worksheet by range
range rs = [%(MyBook$)]"My Sheet"!; // Define a range to a specified worksheet
layer -d rs;

// Delete a worksheet whose name is stored in a string variable
string strSheet$ = "Sheet3";
layer -d % (strSheet$);

To delete a worksheet whose name is stored in a string variable, there are some special string
variables for some special worksheets, for example:

//__report$ holds the name of the last report sheet Origin created

layer -d %(__ report$);
The variable __report$ is an example of a system-created string variable that records the last-
used instance of a particular object. A list of such variables can be found in Reference Tables.

Workbooks Worksheets and Worksheet Columns 151

8.2 Worksheets

8.2.2 Worksheet Data Manipulation

In this section we present examples of X-Functions for basic data processing. For direct
access to worksheet data, see Range Notation.

Copy Worksheet Data
Copy a Worksheet

The wcopy X-Function is used to create a copy worksheet of the specified worksheet.

The following example duplicates the current worksheet, creating a new workbook with the
copied worksheet:

wcopy 1! [<new>]1!;

Copy a Range of Cells

The wrcopy X-Function is used to copy a range of cells from one worksheet to another. It also
allows you to specify a source row to be used as the Long Names in the destination worksheet.

The following script copies rows from 5 to 9 of [book1]sheet1! to a worksheet named
CopiedValues in Book1 (if the worksheet does not exist it will be created), and assigns the
values in row 4 from [book1]sheet1! to the long name of the destination worksheet,
[book1]CopiedValues!

wrcopy iw:=[bookl]sheetl! rl:=5 r2:=10 name:=4 ow:=CopiedValues!;

To copy column and matrix object, please refer to Copy Column and Copy Matrix Data
respectively.

Reduce Worksheet Data

Origin has several data reducing X-Functions like reduce_ex, reducedup, reducerows and
reducexy. These X-Functions provide different ways of creating a smaller dataset from a larger
one. Which one you choose will depend on what type of input data you have, and what type of
output data you want.

Examples

The following script will create a new X and Y column where the Y will be the mean value for
each of the duplicate X values.
reducedup col (B);

The following script will reduce the active selection (which can be multiple columns or an entire
worksheet, independent of X or Y plotting designation) by a factor of 3. It will remove rows 2
and 3 and then rows 5 and 6, leaving rows 1 and 4, etc. By default, the reduced values will go
to a new worksheet.

reducerows npts:=3;

152 Workbooks Worksheets and Worksheet Columns

8.2.2 Worksheet Data Manipulation

The following script will average every n numbers (5 in the example below) in column A and
output the average of each group to column B. It is the same as the ave LabTalk function,
which would be written as col(b)=ave(col(a),5):

reducerows irng:=col (A) npts:=5 method:=ave rd:=col(b);

Extract Worksheet Data

Partial data from a worksheet can be extracted using conditions involving the data columns,
using the wxt X-function.

// Import a sample data file

newbook;

string fname$ = system.path.program$ + "samples\statistics\automobile.dat";

impasc;

// Define range using some of the columns

range rYear=1l, rMake=2, rHP=3;

type "Number of rows in raw data sheet= $(rYear.GetSize())";

// Define a condition string and extract data

// to a new named sheet in the same book

string strCond$="rYear >= 1996 and rHP<70 and rHP>60 and rMake[i]$=Honda";

wxt test:=strCond$ ow:="Extracted Rows"! num:=nExtRows;

type "Number of rows extracted = $(nExtRows)";

Output To New Workbook

You can also direct the output to a new workbook, instead of a new worksheet in the existing
workbook, by changing the following line:

wxt test:=strCond$ ow:=[<new name:="Result">]"Extracted"! num:=nExtRows;

As you can see, the only difference from the earlier code is that we have added the workbook
part of the range notation for the ow variable, with the <new> keyword. (show links and
indexing to <new> modifiers, options, like template, name, etc)

Use Wildcard Search

LabTalk uses * and ? characters for wildcard in string comparison. You can try changing the
strCond as follows:
string strCond$ = "rYear >= 1996 and rHP<70 and rHP>60 and rMake[i]$=*o*";

to see all the other makes of cars with the letter o.

Delete Worksheet Data

Deleting the Nth row can be accomplished with the reducerows X-Function, described above.

This example demonstrates deleting every Nth column in a worksheet using a for-loop:
int ndel = 3; // change this number as needed;

Workbooks Worksheets and Worksheet Columns 153

8.2 Worksheets

int ncols = wks.ncols;
int nlast = ncols - mod(ncols, ndel);
// Need to delete from the right to the left
for(int ii = nlast; ii > 0; ii -= ndel)
{
delete wcol ($(ii));

Sort Worksheet

The following example shows how to perform nested sorting of data in a worksheet using the
wsort X-Function:

// Start a new book and import a sample file

newbook;

string fname$ = system.path.program$ + "Samples\Statistics\automobile.dat";

impasc;

// Set up vectors to specify nesting of columns and order of sorting;

// Sort nested: primary col 2, then col 1, then col 3:

dataset dsCols = {2, 1, 3};

// Sort col2 ascending, col 1 ascending, col 3 descending:
dataset dsOrder = {1, 1, 0};

wsort nestcols:=dsCols order:=dsOrder;

Split Worksheet

Origin provides the X-Function, wsplit, for the purpose of splitting one worksheet's columns into
multiple worksheets.
The example below is going to import multiple CSV files, and then get the Amplitude data from
all the data file into a worksheet, and then convert this worksheet to matrix to make a contour
plot.

// Create a new workbook

newbook;

// Find all csv files in the specified folder
string strPath$ = system.path.program$ + "Samples\Batch Processing\";

findfiles path:=strPath$ fname:=csvFiles$ ext:=csv;

// Import all found csv files into one worksheet

impCSV fname:=csvFiles$ // All found csv files
options.Mode:=1 // From second file, start new column
options.names.FNameToSht:=0 // Not rename worksheet

options.names.FNameToBk:=0 // Not rename workbook

154 Workbooks Worksheets and Worksheet Columns

8.2.2 Worksheet Data Manipulation

options.HeaderLines.SubHeaderLines:=2 // Two subheader lines
options.HeaderLines.LongNames:=1 // First subheader line is LongName

options.HeaderLines.Units:=2; // Second subheader line is Units

// Split the worksheet according to the Long Name
// The columns with the same Long Name will be in the same result worksheet
// All the result worksheets will be in the same new workbook

wsplit mode:=label label:=L;

// Activate the Amplitude worksheet
page.active$ = Amplitude;

// Convert the Amplitude worksheet to matrix directly

w2m;

// Make a contour for the amplitude

worksheet -p 226 contour;

Unstack/Stack Categorical Data

Unstack Worksheet Columns

At times unstacking categorical data is desirable for analysis and/or plotting purposes. The
wunstackcol X-Function is the most convenient way to perform this task from script.
In this example, categorical data is imported, and we want to unstack the data by a particular
category, which we specify with the input range irng2. The data to be displayed (by category)
is referenced by input range irng1. In this example, the column ranges are input directly, but
range variables can also be used.

// Import automobile data

newbook;

string fpath$ = "\Samples\Statistics\Automobile.dat";

string fname$ = system.path.program$ + fpath$;

impasc;

// Unstack all other columns using automobile Make, stored in col 2
// Place "Make" in Comments row of output sheet

wunstackcol irngl:=(1, 3:7) irng2:=2 label:="Comments";

The result is a new worksheet with the unstacked data.

Stack Worksheet Columns

Staking categorical data is something like reverse operation of unstacking categorical data. In
the original dataset, samples belong to different groups is stored in different columns. After
stacking, the samples will be in different rows in the same column, with an additional column in

Workbooks Worksheets and Worksheet Columns 155

8.2 Worksheets

the worksheet providing the group information. You can use wstackcol to stack worksheet
columns.

In the following example, we open a workbook with categorical data first. And then with the first
worksheet activated, and stack column B, C, and D by rows, including another column to be A.
// Open a workbook
string strBook$ = system.path.program$;
strBook$ += "Samples\Statistics\Body.ogw";

doc -o % (strBook$);

// Stack column B, C, D in Male worksheet
// Include column A as another column
// Method is By Rows

wstackcol irng:=(2:4) tr.identifiers:={L} include:=1 method:=1;

The result is a new worksheet in the same workbook with the stacked data.

Pivot Table

The wpivot X-Function is available for the purpose of quickly summarizing the data, so to
analyze, compare, and detect the relationships in the data. That is an easy way to present data
information.

// Create a new workbook

// And import a data file

newbook;

fname$ = system.path.program$ + "Samples\Statistics\HouseholdCareSamples.xls";

impExcel lname:=1;

// Make sure "HQ Family Mart" worksheet is activate
// And make a copy of this worksheet

page.active$ = "HQ Family Mart";

wcopy ow:=[<new>]"HQ Family Mart"!;

// Pivot table, row source is Make

// Column source is Brand, and data is Number in shelf
// The result will show the number of products in shelf
// for different brands and different makes

wpivot row:=col (D) col:=col (F) data:=col (K)

method:=sum total:=1 sort total:=no sum:=1;

// Activate the source data worksheet

page.active$ = "HQ Family Mart";

// Pivot table, row source, column source and data column are the same
// For the smaller values, it will combine them across columns
// by 10% of the total

156 Workbooks Worksheets and Worksheet Columns

8.2.2 Worksheet Data Manipulation

// In the result worksheet, the column info. is put to user-defined parameter rows

// The row name is the name of column's Long Name in source worksheet
wpivot row:=col (D)
col:=col (F)
data:=col (K)
method:=sum total:=1 sort total:=no sum:=1
dir:=col threshold:=10 // Combine smaller values across column, by 10%
// Put column info (from column's Long Name) to user-defined parameters row

pos:=udl udlabel:=L;

Worksheet Filter

Worksheet Filter (Data Filter) in Origin is column-based filter to reduce rows of worksheet data
by using the specified condition, so to hide the undesired rows for relevant data analysis and
graphing. Three data formats are supported: numeric, text and date/time. In LabTalk, you can
use the wks.col (wks.col filter, wks.col filter$, wks.col.filterenabled, wks.col filterprescript$, and
wks.col.filterx$) object to handle the data filter. And to run/re-apply the filter, use the
wks.runfilter() method.

// Create a new workbook, and import the data

newbook;

string fname$ = system.path.program$ + "Samples\Statistics\Automobile.dat";

impasc;

// Set data filter for column 1, numeric type

wks.coll.filter = 1; // Add filter

wks.coll.filterx$ = year; // Set the variable "year" to represent column 1
// Set filter condition, between 1995 and 2000

wks.coll.filter$ = "year.between(1995,2000)";

// Set data filter for column 2, text type

wks.col2.filter = 1; // Add filter

wks.col2.filterx$ = make; // Set the variable "make" to represent column 2
// Set before query script

wks.col2.filterprescript$ = "string strFavorite$ = GMC";

wks.col2.filter$ = "make = strFavorite$"; // Set filter query string

// Run the worksheet filter

wks.runfilter();

// Disable the filter in column 1
wks.coll.filterenabled = 0;

// Re-apply the worksheet filter

wks.runfilter () ;

To detect whether there is filter in a worksheet, you can use the wks.hasfilter() method.
Workbooks Worksheets and Worksheet Columns 157

8.2 Worksheets

// If the active worksheet has filter, return 1, otherwise, return 0
wks.hasfilter () = ;

Insert Links into Worksheet Cells

Origin provides several cell linking syntax for adding links into worksheet cell, so to easily
access or display the linked resource. Available cell linking syntax are included in the following
table.

Syntax Description Example

Insert a link to another cell, given by
cell:/ICellName | CellName, so to display its contents in the
current worksheet cell.

cell://[Book2]Sheet2
ICol(B)[3]

Insert a link to a range, given by

RangeName, which can be book, sheet,

column, etc. The contents in the current

worksheet cell will show as a link, if clicked, range://[Book2]Shee
the corresponding range will be activated. If t2!1Col(B)[3]

the option DisplayedText is included, the

displayed text in the cell is this text, but not

the range.

range://RangeN
ame
[DisplayedText]

Insert a link to a graph, given by

GraphName, so the graph will be displayed

in the current worksheet cell. If double-click graph://Graph1
on this cell, the corresponding graph window

will be activated.

graph://GraphN
ame

Insert a link to a matrix object, given by
MatrixObjectName, so the matrix object will
matrix://Matrix be displayed in the current worksheet cell, matrix://[MBook1]M
ObjectName as an image. If double-click on this cell, the Sheet1!2
corresponding matrix window will be
activated.

Insert a link to a Notes window, given by
notes://[NotesW | NotesWindowName. The contents in this cell

indowName will show as a link, if clicked, the notes://Notes
[DisplayedText] | corresponding Notes window will be
activated.

158 Workbooks Worksheets and Worksheet Columns

8.2.3 Converting Worksheet to Matrix

var:/[LabTalkVa | Insert a link to a LabTalk variable, and the

riableName value of this variable will show in this cell. var//MyVar

str://LabTalkStr | Insert a link to a LabTalk string variable, and

ingVariable this string will show in this cell. str://MyBook$

Insert a live URL into worksheet cells. The
link will become active when finishing
editing, and the corresponding page will be
opened in a web browser if clicked. If the
option DisplayedText is included, the
displayed text in the cell is this text, but not
the URL.

http://URL
[DisplayedText]

http://www.originlab.
com

help://HelpPag | If the option DisplayedText is included, the help://TUTORIAL.C
e displayed text in the cell is this text, but not HM/Tutorial/lmport_
[DisplayedText] | the help link. Wizard.html

Insert a link to an image file, given by
file://FilePath FilePath. And the linked image will display in | file://D:\Flower.jpg
the current cell.

8.2.3 Converting Worksheet to Matrix

You may need to re-organize your data by converting from worksheet to matrix, or vice versa,
for certain analysis or graphing needs. This page provides information and examples of
converting worksheet to matrix, and please refer to Converting Matrix to Worksheet for the
"vice versa" case.

Worksheet to Matrix

Data contained in a worksheet can be converted to a matrix using a set of Gridding X-
Functions.

The w2m X-Function converts matrix-like worksheet data directly into a matrix. Data in source
worksheet can contain the X or Y coordinate values in the first column, first row, or a header
row. However, because the coordinates in a matrix should be uniform spaced, you should have
uniformly spaced X/Y values in the source worksheet.

If your X/Y coordinate values are not uniform spaced, you should use the Virtual Matrix feature
instead of converting to a matrix.

The following example show how to perform direct worksheet to matrix conversion:

Workbooks Worksheets and Worksheet Columns 159

8.2 Worksheets

// Create a new workbook

newbook;

// Import sample data

string fname$ = system.path.program$ +

"\samples\Matrix Conversion and Gridding\DirectXY.dat";

impasc;

// Covert worksheet to matrix, first row will be X and first column will be Y

w2m xy:=xcol xlabel:=rowl ycol:=1;

// Show X/Y values in the matrix window

page.cntrl = 2;
When your worksheet data is organized in XYZ column form, you should use Gridding to
convert such data into a matrix. Many gridding methods are available, which will interpolate
your source data and generate a uniformly spaced array of values with the X and Y dimensions
specified by you.
The following example converts XYZ worksheet data by Renka-Cline gridding method, and
then creates a 3D graph from the new matrix.

// Create a new workbook without sheets

newbook;

// Import sample data

string fname$ = system.path.program$ +

"\samples\Matrix Conversion and Gridding\XYZ Random Gaussian.dat";

impasc;

// Convert worksheet data into a 20 x 20 matrix by Renka-Cline gridding method

xyz_renka 3 20 20;

// Plot a 3D color map graph

worksheet -p 242 cmap;

8.2.4 Virtual Matrix

Data arranged in a group of worksheet cells can be treated as a matrix and various plots such
as 3D Surface, 3D Bars, and Contour can be created from such data. This feature is referred to
as Virtual Matrix. The X and Y coordinate values can be optionally contained in the block of
data in the first column and row, or also in a header row of the worksheet.

Whereas Matrix objects in Origin only support linear mapping of X and Y coordinates, a virtual

matrix supports nonlinear or unevenly spaced coordinates for X and Y.

The virtual matrix is defined when data in the worksheet is used to create a plot. The plotvm X-

Function should be used to create plots.

The following example shows how to use the plot_vm X-Function:
// Create a new workbook and import sample data
newbook;
string fname$=system.path.program$ + "Samples\Graphing\VSurface 1.dat";
impasc;

// Treat entire sheet as a Virtual Matrix and create a colormap surface plot

160 Workbooks Worksheets and Worksheet Columns

8.3.1 Basic Worksheet Column Operation

plotvm irng:=1! format:=xacross rowpos:=selrowl colpos:=selcoll
ztitle:="VSurface 1" type:=242 ogl:=<new template:=cmap>;

// Change X axis scale to log

layer.x.type=2;

8.3 Worksheet Columns

8.3.1 Basic Worksheet Column Operation

To perform operation on worksheet column, in most situation, you can use wks.col object, or
the Range Notation to the column object.

Add or Insert Column

To add a column to the end of the worksheet, you can use the wks.addCol() method, which will
add a column with the specified name, if the specified name is used or ignored, a generic
name is chosen for the newly added column.

// Create a new workbook

newbook;

// Add a new column to the end, with name of Result
wks.addCol (Result) ;

The method above is only able to add one column to the end at a time. If you are going to add
a multiple columns, you can add columns by setting the number of columns in the worksheet
with the wks.nCols property. For example, the script below will add 3 columns to the end of the
active worksheet with the generic names (Note: it is not able to specify the names in this way,
please refer to Rename and Label Column section below).

// Create a new workbook

newbook;

// Add 3 columns to the end of worksheet

wks.nCols = wks.nCols + 3;

Besides adding columns to the end of the worksheet, it is also capable of inserting numbers of
columns before the current column. First of all, it needs to specify which column (by 1-based
index) is the current column using wks.col property, and then using wks.insert() method to
insert column(s) before the current column. In the method, you need to specify a list of column
names separated by space.

// Create a new workbook

newbook;

// Set column 2 to be the current column

wks.col = 2;

Workbooks Worksheets and Worksheet Columns 161

8.3 Worksheet Columns

// Insert 3 column before column 2, with the specify column names
wks.insert (DataX DataY Result);

Move Column

The colmove X-Function allows you to move column(s) of data within a worksheet. It accepts
an explicitly stated range (as opposed to a range variable), and the type of move operation as
inputs.

// Make the first column the last (left to right) in the worksheet:

colmove rng:=col (1) operation:=last;

// Move columns 2-4 to the leftmost position in the worksheet:
colmove rng:=Col (2) :Col (4) operation:=first;

Rename and Label Column

To rename (short name) a column, Origin provides the wks.col object with the name$ property.
Also, the Column Label Row Characters, G, is able to rename column short name.
// Create a new workbook

newbook;

// Rename column 1 to DataX

wks.coll.name$ = DataX;

// Rename column 2 to DataY by using range
range rY = 2; // range to column 2

rY.name$ = DataY;

// Add a new column

wks.addCol () ;
// Rename it with "G"
col(3)[G]$ = "Result";

The Column Label Row Characters are the convenient way to access the column labels,
including Long Name, Units, Comments, Column Parameters, User-Defined Parameters, etc.
// Create a new workbook

newbook result:=BkName$;

// Show the following label rows:

// Long Name, Units, Comments, lst Column Parameter
// and 1lst User-Defined Parameter

wks.labels (LUCP1D1) ;

// Ranges to column 1 and 2
range rl = [%(BkName$)]1!1;
range r2 = [%(BkName$)]1!2;

162 Workbooks Worksheets and Worksheet Columns

8.3.1 Basic Worksheet Column Operation

// Set Long Name by using col
col(l) [L]$ = Time;

col(2)[L]$ = Voltage;

// Set Units by using range
rl[U]$ = Sec;

r2[U]$ = V;

// Set Comments by using range
rl1[C]$ = Samplel;

r2[C]$ = Samplel;

// Set Column Parameters by using range
rl1[P1]$ = "Machinel";

r2[P1]$ = "Machinel";

// Rename the 1lst User-Defined Parameter

wks.UserParaml$ = Current;

// Set Current label row
rl[Current]$ = 1mA;
r2 [Current]$ = 1mA;

Hide/Unhide Column

To hide/unhide column(s), you can use the colHide X-Function.
// Create a new workbook

newbook;

// Set worksheet column number to 6

wks.nCols = 6;

// Hide the second column
colHide 2 hide;

// Hide the 3rd and 5th columns
colHide (3, 5) hide;

To show (unhide) column(s), it just changes the second argument from hide to unhide.

Swap Column

The colSwap X-Function is used to swap two specified columns.
// Create a new workbook

newbook;

// Swap the position of the 1st and 2nd columns
colSwap (1, 2);

Workbooks Worksheets and Worksheet Columns 163

8.3 Worksheet Columns

The specified two columns is not needed to be adjacent.
// Create a new workbook

newbook;

// Set number of columns to be 6

wks.ncols = 6;

// Swap the 2nd and 4th columns
colswap (2, 4);

Modify Column Formats

Plot Designation

Plot designation for a column determines how the selected data will be handled by default for
plotting and data analysis. Plot designation includes X, Y, Z, Z Error, Y Error, Label, etc. And
you can change it by using wks.col.type.

// Import data

newbook;

string fname$ = system.path.program$;

fname$ += "Samples\Matrix Conversion and Gridding\XYZ Random Gaussian.dat";

impasc;

// Set column designation (column type)
wks.col = 3; // Set column 3 to be current column
wks.col.type = 6; // Z

// Select the 3rd column (Z column)
worksheet -s 3 1 3 -1;
// Make a color map surface with the template based on OpenGL

worksheet -p 103 glcmap;

Column Width

To set column width, the wcolwidth X-Function is available, or use wks.col.width.
// Open a workbook
string strPath$ = system.path.program$;
strPath$ += "Samples\Graphing\Automobile Data.ogw";
doc -o $%$(strPath$);

// To make column 2 show all the numbers but not ###
// Set width of column 2 to 6 characters
wcolwidth irng:=col (2) width:=6;

164 Workbooks Worksheets and Worksheet Columns

8.3.1 Basic Worksheet Column Operation

Data Format and Display

Setting a correct data format for a column helps to display the data in the column correctly,
also helps to perform operations, such plotting, data analysis, etc. properly. There are many
data format available for a column, such as Numeric, Text, Date, Time, Month, Day of Week,
etc. To set format, please use wks.col object's format property.

// Import data

newbook;

string fname$ = system.path.program$;

fname$ += "Samples\Signal Processing\Average Sunspot.dat";

impasc;

// Set column 2 to Numeric (current is Text & Numeric)

wks.col2.format = 1; // Numeric = 1

// Enable digit mode to be "Set Decimal Places"
// and set number of decimal places to 2
wks.col2.digitMode = 1; // Set Decimal Places
wks.col2.digits = 2; // Two decimal places
The following examples are showing the corresponding settings for different format.

1. Numeric

// Import data

newbook;

string fname$ = system.path.program$;

fname$ += "Samples\Curve Fitting\Enzyme.dat";

impasc;

// Set column 2 to Numeric (current is Text & Numeric)
wks.col2.format = 1; // Numeric =1

// Set display format with comma

wks.col2.subformat = 4; // Display as Decimal: 1,000
// Data type to be short int

wks.col2.numerictype = 3;

// Do the same for column 3

wks.col3.format = 1; // Numeric =1

// Set display format with comma

wks.col3.subformat = 4; // Display as Decimal: 1,000
// Data type to be short int

wks.col3.numerictype = 3;

2. Date

For Date and Time format, if the data stored in a column is not Julian day numbers
(looks like Date and Time format, actually is text), we cannot set the format as Date

Workbooks Worksheets and Worksheet Columns 165

8.3 Worksheet Columns

or Time directly, or the look-like-Date-and-Time-format text will become missing
value or something incorrect. To avoid this issue, Origin provides the
wks.col.setformat() method.

// Import data

newbook;

string fname$ = system.path.programs$;

fname$ += "Samples\Import and Export\Custom Date and Time.dat";

impasc;

// Set format of column 1 to be Date

// with a custom display format, which is like

// the current text display in the column
wks.coll.setformat (4, 22, dd'.'MM'.'yyyy HH':'mm':'ss'.'##);
// Set a familiar display format yyyy/MM/dd HH:mm:ss

wks.coll.subformat = 11;

3. Time
Please refer to the description about Date above.

// Import data

newbook;

string fname$ = system.path.program$;

fname$ += "Samples\Import and Export\IRIG Time.dat";

impasc;

// Set format of column 1 to be Time
wks.coll.format = 3; // Time = 3
// Display IRIG Time format DDD:HH:mm:ss.##

wks.coll.subformat = 16;

4. Month

// Set column 1 format as Month
// And show the whole name of month
wks.coll.format = 5; // Month = 5

wks.coll.subformat = 2; // Show the whole month's name

5. Day of Week

// Set column 1 format as Day of Week

// And show only the first letter of each day of week

wks.coll.format = 6; // Day of Week = 6

wks.coll.subformat = 3; // Show the first letter of each day of week

166 Workbooks Worksheets and Worksheet Columns

8.3.2 Worksheet Column Data Manipulation

Add Sparkline to Column

The sparklines X-Function is used to add sparklines to the specified columns in the worksheet.
// Open a workbook
string strPath$ = system.path.program$;
strPath$ += "Samples\Graphing\Automobile Data.ogw";
doc -o % (strPath$);

// Turn on sparklines for all columns except the ones with "Year" Long Name
for(ii = 2; ii <= wks.nCols; ii+=5)
{

sparklines sel:=0 cl:=ii c2:=1i+3;

Delete Column

The delete command is capable of removing a column from worksheet.
// Create a workbook

newbook;

// Delete column B
delete col (B);

// Add a new worksheet with 4 columns

newsheet cols:=4;

// Delete column 3 by using range
range rr = 3; // column 3 in the newly added worksheet

delete rr;

If the column(s) you want to delete is (are) at the end of the worksheet, you can just set the
number of worksheet columns to delete it (them), by using wks.nCols.

// Open a workbook

string strPath$ = system.path.program$;

strPath$ += "Samples\Graphing\Automobile Data.ogw";

doc -o $%$(strPath$);

// Delete last 20 columns from the opened worksheet

wks.nCols = wks.nCols-20;

Workbooks Worksheets and Worksheet Columns 167

8.3 Worksheet Columns

8.3.2 Worksheet Column Data Manipulation

Basic Operation

Once you have loaded or created some numeric data, here are some script examples of things
you may want to do.

Basic Arithmetic

Most often data is stored in columns and you want to perform various operations on that data
in a row-wise fashion. You can do this in two ways in your LabTalk scripts: (1) through direct
statements with operators or (2) using ranges. For example, you want to add the value in each
row of column A to its corresponding value in column B, and put the resulting values in column
C:

Col(C) = Col(A) + Col(B): // Add
Col (D) = Col(A) * Col(B); // Multiply
Col(E) = Col(A) / Col(B); // Divide

The - and ” operators work the just as above for subtraction and exponentiation respectively.

You can also perform the same operations on columns from different sheets with range
variables:

// Point to column 1 of sheets 1, 2 and 3

range aa = 1ll!col(1l);

range bb = 2!col(1);

range cc = 3!col(1l);

cc = aatbb;

cc = aa"bb;

cc = aa/bb;

variables. Direct references to range strings are not supported. For example,

o When performing arithmetic on data in different sheets, you need to use range
the script Sheet3!col(1) = Sheet1!col(1) + Sheet2!col(1); will not work!

Functions

In addition to standard operators, LabTalk supports many common functions for working with
your data, from trigonometric functions like sin and cos to Bessel functions to functions that
generate statistical distributions like uniform and Poisson. All LabTalk functions work with
single-number arguments of course, but many are also "vectorized" in that they work on
worksheet columns, loose datasets, and matrices as well. Take the trigonometric function sin
for example:

// Find the sine of a number:

double xx = sin(0.3572)

// Find the sine of a column of data (row-wise):

Col (B) = sin(Col (A))

// Find the sine of a matrix of data (element-wise):

168 Workbooks Worksheets and Worksheet Columns

8.3.2 Worksheet Column Data Manipulation

[MBook2] = sin ([MBookl]
As an example of a function whose primary job is to generate data consider the uniform
function, which in one form takes as input N, the number of values to create, and then
generates N uniformly distributed random numbers between 0 and 1:

/* Fill the first 20 rows of Column B

with uniformly distributed random numbers: */

Col (B) = uniform(20);

For a complete list of functions supported by LabTalk see Alphabetic Listing of Functions.

Set Formula for Column

In the Origin GUI, the Set Column Values dialog can be used to generate or transform data in
worksheet columns using a specified formula. Such transformation can also be performed in
LabTalk by using the csetvalue X-Function. Here are some examples on how to set column
value using LabTalk.

newbook;

wks.ncols = 3;

// Fill column 1 with random numbers

csetvalue formula:="rnd ()" col:=1;

// Transform data in column 1 to integer number between 0 ~ 100
csetvalue formula:="int (col(1l)*100)" col:=2;

// Specify Before Formula Script when setting column value

// and set recalculate mode to Manual

csetvalue formula:="mm - col(2)" col:=3 script:="int mm = max(col(2))"
recalculate:=2;

string str$ = [%h]% (page.active$)!;

newsheet cols:=1;

// Use range variables to refer to a column in another sheet

csetvalue f:="rl/r2" c:=1 s:="range rl=%(str$)2; range r2=%(str$)3;" r:=1;

Copy Column

The colcopy X-Function copies column(s) of data including column label rows and column
format such as date or text and numeric.
The following example copies columns two through four of the active worksheet to columns
one through three of sheet1 in book2:

// Both the data and format as well as each column long name,

// units and comments gets copied:

colcopy irng:=(2:4) orng:=[book2]sheetl! (1:3) data:=1

format:=1 lname:=1 units:=1 comments:=1;

Workbooks Worksheets and Worksheet Columns 169

8.3 Worksheet Columns

Sort Column

To sort a specified column, you can use wsort X-Function. And when using this X-Function to
sort just one column, the arguments ¢1 and ¢2 should be the same column in worksheet, and
the bycol also needs to be the same as ¢1.

// Create a new workbook

newbook;

// Fill first column with row number, and second column with uniform random number
col(l) = {1:32};
col(2) = uniform(32);

// Sort column 2 descending

wsort cl:=2 c2:=2 bycol:=2 descending:=1;

Reverse Column

The X-Function colreverse is available for reversing column.
// Create a new workbook

newbook;

// Fill first column with row number, and second column with uniform random number
col(l) = {1:32};
col(2) = uniform(32);

// Reverse column 1 by using index

colreverse rng:=1; // colreverse rng:=col(A); // this also works

// Reverse column 2 by using range variable
range rr = 2;

colreverse rng:=rr;

8.3.3 Date and Time Data

While the various string formats used for displaying date and time information are useful in
conveying information to users, a mathematical basis for these values is needed to provide
Origin with plotting and analysis of these values. Origin uses a modification of the Astronomical
Julian Date system to store dates and time. In this system, time zero is 12 noon on January 1,
4713 BCE. The integer part of the number represents the number of days since time zero and
the fractional part is the fraction of a 24 hour day. Origin offsets this value by subtracting 12
hours (0.50 days) to put day transitions at midnight, rather than noon.

The next few examples are dedicated to dealing with date and time data in your LabTalk
scripts.

170 Workbooks Worksheets and Worksheet Columns

8.3.3 Date and Time Data

Note : Text that appears to be Date or Time may in fact be Text or Text & Numeric which
would not be treated as a numeric value by Origin. Use the Column Properties dialog (double-
click a column name or select a column and choose Format : Column) to convert a Text or
Text & Numeric column to Date or Time Format. The Display format should match the text
format in your column when converting.

Dates and Times

As an example, say you have Date data in Column 1 of your active sheet and Time data in
Column 2. You would like to store the combined date-time as a single column.
/* Since both date and time have a mathematical basis,
they can be added: */
Col(3) = Col(l) + Col(2);

// By default, the new column will display as a number of days
/* Use format and subformat methods to set

the date/time display of your choice: */

// Format #4 is the date format
wks.col3.format = 4;
// Subformat #11 is MM/dd/yyyy hh:mm:ss

wks.col3.subformat = 11;

The column number above was hard-coded into the format statement; if instead you had the

column number as a variable named cn, you could replace the number 3 with $(cn) as in

wks.col$(cn).format = 4. For other format and subformat options, see LabTalk Language

Reference: Object Reference: Wks.col (object).

If our date and time column are just text with a MM/dd/yyyy format in Column 1 and

hh:mm:ss format in Column 2, the same operation is possible with a few more lines of code:
// Get the number of rows to loop over.

int nn = wks.coll.nrows;

loop(ii,1,nn) {
string dd$ = Col(1l) [1i]$;
string tt$ = Col(2) [111$;

// Store the combined date-time string just as text

Col(3)[11i]$ = dd$ + " " + tt$;
// Date function converts the date-time string to a numeric date value
Col (4) [11] = date(%(dd$) % (tt$));

bi
// Now we can convert column 4 to a true Date column
wks.col4.format = 4; // Convert to a Date column

wks.col4.subformat = 11; // Display as M/d/yyyy hh:mm:ss

Workbooks Worksheets and Worksheet Columns 171

8.3 Worksheet Columns

Here, an intermediate column has been formed to hold the combined date-time as a string,
with the resulting date-time (numeric) value stored in a fourth column. While they appear to be
the same text, column C is literally just text and column D is a true Date.

Given this mathematical system, you can calculate the difference between two Date values
which will result in a Time value (the number of days, hours and minutes between the two
dates) and you can add a Time value to a Date value to calculate a new Date value. You can
also add Time data to Time data and get valid Time data, but you cannot add Date data to
Date data.

Formatting for Output

Available Formats

Use the D notation to convert a numeric date value into a date-time string using one of Origin's
built-in Date subformats:
type "$(@D, D10)";
returns the current date and time (stored in the system variable @D) as a readable string:
7/20/2009 10:30:48
The D10 option corresponds to the MM/dd/yyyy hh:mm:ss format. Many other output formats
are available by changing the number after the D character, which is the index entry (from 0) in
the Date Format drop down list of the Worksheet Column Format dialog box, in the line of
script above. The first entry (index = 0) is the Windows Short Date format, while the second is
the Windows Long Date format.
Note : The D must be uppercase. When setting a worksheet subformat as in
wks.col3.subformat = #, these values are indexed from 1.
For instance
type "$(date(7/20/2009), D1)";
produces, using U.S. Regional settings,
Monday, July 20, 2009
Similarly, for time values alone, there is an analagous T notation, to format output:
type "S$(time (12:04:14), T5)"; // ANS: 12:04 PM
Formatting dates and times in this way uses one specific form of the more general $()
Substitution notation.

Custom Formats

There are three custom date and time formats - two of which are script editable properties and
one which is editable in the Column Properties dialog or using a worksheet column object
method.

1. system.date.customformatn$
2. wks.col.SetFormat object method.

Both methods use date-time specifiers, such as yyyy'."MM'.'dd, to designate the custom
format. Please observe that:

172 Workbooks Worksheets and Worksheet Columns

8.3.3 Date and Time Data

e The text portions (non-space delimiters) of the date-time specifier can be changed as
required, but must be surrounded by single quotes.

e The specifier tokens themselves (i.e., yyyy, HH, etc.) are case sensitive and need to
be used exactly as shown— all possible specifier tokens can be found in the
Reference Tables: Date and Time Format Specifiers.

e The first two formats store their descriptions in local file storage and as such may
appear different in other login accounts. The third format stores its description in the
column itself.

Dnn notation

Origin has reserved D19 to D21 (subformats 20 to 22, since the integer after D starts its count
from 0) for these custom date displays. The options D19 and D20 are controlled by system
variables system.date.customformat1$ and system.date.customformat2$, respectively. To
use this option for output, follow the example below:
system.date.customformatl$ = MMM dd hh'.'mm tt;
type "$ (Date(7/25/09 14:47:21),D19)"; // Output: Jul 25 02.47 PM

system.date.customformat2$ = yy','MM','dd H'.'mm'.'ss"'." "####;
type "$(Date(7/27/09 8:22:37.75234),D20)"; // Output: 09,07,27 8.22.37.7523

Wks.Col.SetFormat object method

To specify a custom date display for a date column which is stored in the worksheet column,
use the Wks.Col.SetFormat object method. When entering the custom date format specifier, be
sure to surround any non-date characters with single quotes. Also note that this object method
works on columns of the active worksheet only.
In the following example, column 4 of the active worksheet is set to display a custom date/time
format:

// wks.format=4 (date), wks.subformat=22 (custom)

wks.cold.SetFormat (4, 22, yyyy'-'MM'-'dd HH':'mm':'ss'.'###);

doc -uw; // Refresh the worksheet to show the change

Workbooks Worksheets and Worksheet Columns 173

9 Matrix Books Matrix Sheets and Matrix
Objects

Similar to workbooks and worksheets, matrices in Origin also employ a data organizing
hierarchy: Matrix Book -> Matrix Sheet -> Matrix Object. Therefore, objects like Page and Wks
encompass matrix books and matrix sheets as well as workbooks and worksheets. In addition,
Origin provides many X-Functions for handling matrix data.

9.1 Basic Matrix Book Operation

Matrix book has the same data structure level with workbook in Origin, both are windows. So,
you can manipulate matrix books with the Page object and Window command, which is similar
to workbook.

9.1.1 Workbook-like Operations

Both matrix book and workbook are windows, and they share lots of similar operations, even
using the same LabTalk script. So, the differences will be pointed out below, and if the same
script is used, please refer to Basic Workbook Operation.
1. Create New Matrix Book
When using X-Function newbook to create new matrix book, the argument mat must
be 1. Here is the similar example to the one for workbook.

//Create a new matrix book with the Long Name "MyMatrixBook"

newbook mat:=1 name:=MyMatrixBook;

// Create a new matrix book with 3 matrix sheets
// and use "Images" as Long Name and short name

newbook mat:=1 name:=Images sheet:=3 option:=lsname;

// Create a new hidden matrix book

// and the matrix book name is stored in myBkName$ variable
newbook mat:=1 hidden:=1 result:=myBkName$;

// Output matrix book name

myBkName$ = ;

175

9.2 Matrix Sheets

2. Open Matrix Book
Use the same command, doc -0, as opening workbook, to open matrix book. The
difference is that the extension of a matrix book is ogm.

3. Save Matrix Book
Origin's matrix book with data is with the extension of ogm, and template without
data is otm. To save matrix book to ogm file and otm file, the save -i command and
template_saveas X-Function will be used respectively, that is also the same with
workbook. However, matrix book is not able to be saved as an analysis template.

4. Close Matrix Book
This is the same as workbook, see commands win -ca and win -cd.

5. Show or Hide Matrix Book
This is the same as workbook, see switches -ch, -h, and -hc in win command.

6. Name and Label Matrix Book
This is the same as workbook, see win -r command, and page object.

7. Activate Matrix Book
This is the same as workbook, see win -a command. The command window -0
winName {script} can be used to run the specified script for the named matrix book.
See the opening pages of the Running Scripts chapter for a more detailed
explanation.

8. Delete Matrix Book
This is the same as workbook, see win -c command.

9.1.2 Show Image Thumbnails

To show or hide image thumbnails, the command matrix -it is available.
// Create a new matrix book
newbook mat:=1;
// Import an image
string strImg$ = system.path.program$;
strImg$ += "Samples\Image Processing and Analysis\bamboo.jpg";

impImage fname:=strImg$;

// Hide image thumbnails

matrix -it 0;

9.2 Matrix Sheets

Matrix sheet has the same data structure level as Worksheet in Origin. So they have a lot of
common properties.

176 Matrix Books Matrix Sheets and Matrix Objects

9.2.1 Basic Matrix Sheet Operation

9.2.1 Basic Matrix Sheet Operation

Examples in this section are similar to those found in the Basic Worksheet Operation section,
because many object properties and X-Functions apply to both Worksheets and Matrix Sheets.
Note, however, that not all properties of the wks object apply to a matrix sheet, and one should
verify before using a property in production code.

Add New Matrix Sheet

The newsheet X-Function with the mat:=1 option can be used to add new matrix sheets to
matrix book.

// Create a new matrix book with 3 matrix sheets,

// and use "myMatrix" as long name and short name

newbook name:="myMatrix" sheet:=3 option:=lsname mat:=1;

// Add a 100*100 matrix sheet named "newMatrix" to current matrix book

newsheet name:=newMatrix cols:=100 rows:=100 mat:=1;

Activate a Matrix Sheet

Similar to worksheets, matrix sheets are also layers in a page, and page.active and
page.active$ properties can access matrix sheets. For example:
// Create a new matrix book with 3 matrix sheets

newbook sheet:=3 mat:=1;

page.active = 2; // Activate a matrix sheet by layer number

page.active$ = MSheet3; // Activate a matrix sheet by name

Modify Matrix Sheet Properties

To modify matrix properties, use the wks object, which works on matrix sheets as well as
worksheets. For example:

// Rename the matrix sheet

wks.name$ = "New Matrix";

// Modify the column width

wks.colwidth = 8;

Set Dimensions
Both the wks object and the mdim X-Function can be used to set matrix dimensions:

// Use the wks object to set dimension

wks.ncols = 100;

wks.nrows = 200;

// Use the mdim X-Function to set dimension

mdim cols:=100 rows:=100;
For the case of multiple matrix objects contained in the same matrix sheet, note that all of the
matrix objects must have the same dimensions.

Matrix Books Matrix Sheets and Matrix Objects 177

9.3 Matrix Objects

Set XY Mapping

Matrices have numbered columns and rows which are mapped to linearly spaced X and Y
values. In LabTalk, you can use the mdim X-Function to set the mapping.

// XY mapping of matrix sheet

mdim cols:=100 rows:=100 x1:=2 x2:=4 yl:=4 y2:=9;

Delete Matrix Sheet

Use the layer -d commands to delete matrix sheet. For example:

layer -d; // delete the active layer, can be worksheet, matrix sheet or graph layer

layer -d 3; // by index, delete third matrix sheet in active matrix book
layer -d msheetl; // delete matrix sheet by name

range rs = [mbookl]msheet3!;

layer -d rs; // delete matrix sheet by range

// the matrix book name stored in a string variable

string str$ = msheet2;

layer -d % (str$);

9.2.2 Matrix Sheet Data Manipulation

Conversion Between Matrix Sheets and Matrix Objects

In Origin, a matrix sheet can hold multiple matrix objects. Use the mo2s X-Function to split
multiple matrix objects into separate matrix sheets.
Use the ms20 X-Function to combine multiple matrix sheets into one (provided all matrices
share the same dimensions).

// Merge matrix sheet 2, 3, and 4

ms20 imp:=MBookl sheets:="2,3,4" oms:=Merge;

// Split matrix objects in MSheetl into new sheets

mo2s ims:=MSheetl omp:=<new>;

9.3 Matrix Objects

Matrix object is the basic unit for storing matrix data, and its container is matrix sheet, that
relationship is like column and worksheet. The following pages will show the practical
examples on the operation of matrix object.

178 Matrix Books Matrix Sheets and Matrix Objects

9.3.1 Basic Matrix Object Operation

9.3.1 Basic Matrix Object Operation

A matrix sheet can have multiple matrix objects, which share the same dimensions. A matrix
object is analogous to a worksheet column and can be added or deleted, etc. The following
sections provide some practical examples on the basic operations of matrix object.

Add or Insert Matrix Object

It allows to set the number of matrix objects in the matrix sheet by using wks.nmats, so to add

matrix objects. Also, the method wks.addcol() can be used to add a matrix object.

// Set the number of matrix objects in the matrix sheet to 5
wks.nmats = 5;

// Add a new matrix object to a matrix sheet

wks.addCol () ;

// Add a named matrix object to a matrix sheet

wks.addCol (Channel2) ;

By default, the 1st matrix object in matrix sheet is the current matrix object, you can use the

wks.col property. And the method wks.insert() will insert matrix object before the current matrix

object.
// Create a new matrix book, and show image thumbnails
newbook mat:=1;

matrix -it 1;

// Insert a matrix object before the 1lst one in the active matrix sheet

wks.insert () ;

// Set the 2nd matrix object to be the current one

wks.col = 2;

// Insert a matrix object before the 2nd one

wks.insert () ;

Activate Matrix Object

To activate a matrix object in the active matrix sheet, the wks.active is available.

// Create a new matrix book

newbook mat:=1;

// Add two more matrix objects to the active matrix sheet
wks.addCol () ;
wks.addCol () ;

// Show image thumbnails

matrix -it 1;

Matrix Books Matrix Sheets and Matrix Objects

179

9.3 Matrix Objects

// Activate the second matrix object

wks.active = 2;

Switch Between Image Mode and Data Mode

The matrix command has provided the option for switching between image mode and data
mode of the matrix object. Only the active matrix object appears in the matrix sheet.
matrix -ii 1; // Show image mode

matrix -ii 0; // Show data mode

Set Labels

For each matrix object, you can set Long Name, Comments, and Units, by using Range
Notation, which is a matrix object.
// Create a new matrix book

newbook mat:=1;

// Set number of matrix object of 1lst matrix sheet to be 3

wks.nMats = 3;

// Show image thumbnails

matrix -it 1;

// Activate lst matrix object

wks.active = 1;

// Set Long Name, Units, and Comments

range rx = 1; // lst matrix object of the active matrix sheet
rx.lname$ = X; // Long Name = X

rx.unit$ = cm; // Unit = cm

rx.comment$ = "X Direction"; // Comment = "X Direction"

// Do the same thing for matrix object 2 and 3
wks.active = 2;

range ry = 2;

ry.label$ = Y; // Long Name can also be set in this way
ry.unit$ = cm;

ry.comment$ = "Y Direction";

wks.active = 3;

range rz = 3;
rz.label$ = Z;
rz.unit$ = Pa;

rz.comment$ = Pressure;

180 Matrix Books Matrix Sheets and Matrix Objects

9.3.2 Matrix Object Data Manipulation

Delete Matrix Object

To delete a matrix object, you can use the delete command.
// Delete a matrix object by range
range rs=[mbookl]msheetl!l; // The first matrix object
del rs;
// or delete a matrix object by name
range rs=[mbookl]msheetl!Channel?2; // The object named Channel?2
del rs;

9.3.2 Matrix Object Data Manipulation

In addition to the matrix command, Origin provides X-Functions for performing specific
operations on matrix object data. In this section we present examples of X-Functions that
available used to work with matrix object data.

Set Values in Matrix Object

Matrix cell values can be set either using the matrix -v command or the msetvalue X-Function.
The matrix -v command works only on an active matrix object, whereas the X-Function can set
values in any matrix sheet.
This example shows how to set matrix values and then turn on display of image thumbnails in
the matrix window.
// Create a matrix book
newbook mat:=1;
int nmats = 10;
range msheet=1!;
// Set the number of matrix objects
msheet.Nmats = nmats;
// Set value to the first matrix object
matrix -v x+ty;
range mm=1; mm.label$="x+y";
double £ff=0;
// Loop over other objects
loop (i, 2, nmats-1) {
msheet.active = i;
ff = (i-1)/ (nmats-2);
// Set values
matrix -v (5/ff)*sin(x) + ff*20*cos(y);
// Set LongName
range aa=$(i);
aa.label$="$(5/ff,*3) *sin(x) + $(££*20)*cos(y)";
}

// Fill last one with random values

Matrix Books Matrix Sheets and Matrix Objects 181

9.3 Matrix Objects

msheet.active = nmats;

matrix -v rnd();

range mm=$ (nmats); mm.label$="random";
// Display thumbnail images in window

matrix -it;

Copy Matrix Data

The mcopy X-Function is used to copy matrix data.
// Copy data from mbookl into another matrix, mbook2.

mcopy im:=mbookl om:=mbook2; // This command auto-redimensions the target

Conversion between Matrix Object and Vector

Two X-Functions, m2v and v2m, are available for converting matrix data into a vector, and
vector data into a matrix, respectively. Origin uses row-major ordering for storing a matrix, but
both functions allow for column-major ordering to be specified as well.

// Copy the whole matrix, column by column, into a worksheet column

m2v method:=m2v direction:=col;

// Copy data from col(l) into specified matrix object

v2m ix:=col (1) method:=v2row om:=[Mbookl]1!'1;

Conversion between Numeric Data and Image Data

In Origin, matrices can contain image data (i.e., RGB) or numeric data (i.e., integer). The
following functions are available to convert between the two formats.

// Convert a grayscale image to a numeric data matrix

img2m img:=mat (1) om:=mat (2) type:=byte;

// Convert a numeric matrix to a grayscale image

m2img bits:=16;

Manipulate Matrix Object with Complex Values

X-Functions for manipulating a matrix with complex values include map2c, mc2ap, mri2c, and
mc2ri. These X-Functions can merge two matrices (amplitude and phase, or real and
imaginary) into one complex matrix, or split a complex matrix into amplitude/phase or
real/imaginary components.

// Combine Amplitude and Phase into Complex

map2c am:=mat (1) pm:=mat (2) cm:=mat (3);

// Combine Real and imaginary in different matrices to complex in new matrix

mri2c rm:=[MBookl]MSheetl!mat (l) im:=[MBook2]MSheetl!mat(l) cm:=<new>;

// Convert complex numbers to two new matrix with amplitude and phase respectively

mc2ap cm:=mat (1) am:=<new> pm:=<new>;

// Convert complex numbers to two matrix objects with real part and imaginary part

mc2ri cm:=[MBookl]MSheetl!Complex rm:=[Split]Real im:=[Split]Imaginary;

182 Matrix Books Matrix Sheets and Matrix Objects

9.3.2 Matrix Object Data Manipulation

Transform Matrix Object Data

Use the following X-Functions to physically alter the dimensions or contents of a matrix. In the
transformations below, except the flipping matrix object, others may change the dimensions of
its matrix sheet, which will make the change on other matrix objects in this matrix sheet.

Crop or extract from Data or Image Matrix

When a matrix contains an image in a matrix, the X-Function mcrop can be used to extract or
crop to a rectangular region of the matrix.

// Crop an image matrix to 50 by 25 beginning from 10 pixels

// from the left and 20 pixels from the top.

mcrop x:=10 y:=20 w:=50 h:=25 im:=<active> om:=<input>; // <input> will crop

// Extract the central part of an image matrix to a new image matrix

// Matrix window must be active

matrix -pg DIM px py;

dx = nint (px/3);

dy = nint (py/3);

mcrop x:=dx y:=dy h:=dy w:=dx om:=<new>; // <new> will extract

Expand Data Matrix

The X-Function mexpand can expand a data matrix using specified column and row factors.
Biquadratic interpolation is used to calculate the values for the new cells.
// Expand the active matrix with both factor of 2

mexpand cols:=2 rows:=2;

Flip Data or Image Matrix

The X-Function mflip can flip a matrix horizontally or vertically to produce its mirror matrix.
// Flip a matrix vertically
mflip flip:=vertical;

// Can also use the "matrix" command
matrix -c h; // horizontally

matrix -c v; // vertically

Rotate Data or Image Matrix

With the X-Function mrotate90, you can rotate a matrix 90/180 degrees clockwise or
counterclockwise.

// Rotate the matrix 90 degrees clockwize

mrotate90 degree:=cw90;

// Can also use the "matrix" command to rotate matrix 90 degrees

matrix -c r;

Matrix Books Matrix Sheets and Matrix Objects 183

9.3 Matrix Objects

Shrink Data Matrix

The X-Function mshrink can shrink a data matrix by specified row and column factors.
// Shrink the active matrix by column factor of 2, and row factor of 1

mshrink cols:=2 rows:=1;

Transpose Data Matrix

The X-Function mtranspose can be used to transpose a matrix.
// Transpose the second matrix object of [MBookl]MSheetl!
mtranspose im:=[MBookl]MSheetl!2;

// Can also use the "matrix" command to transpose a matrix

matrix -t;

Split RGB Image into Separate Channels

The imgRGBsplit X-Functions splits color images into separate R, G, B channels. For example:
// Split channels creating separate matrices for red, green and blue
imgRGBsplit img:=mat (l) r:=mat(2) g:=mat(3) b:=mat (4) colorize:=0;
// Split channels and apply red, green, blue palettes to the result matrices
imgRGBsplit img:=mat(l) r:=mat(2) g:=mat(3) b:=mat (4) colorize:=1;

Please see Image Processing X-Functions for further information on image handling.

9.3.3 Converting Matrix to Worksheet

You may need to re-organize your data by converting from matrix to worksheet, or vice versa,
for certain analysis or graphing needs. This page provides information and examples of
converting matrix to worksheet, and please refer to Converting Worksheet to Matrix for the
"vice versa" case.

Matrix to Worksheet

Data in a matrix can also be converted to a worksheet by using the m2w X-Function. This X-
Function can directly convert data into worksheet, with or without X/Y mapping, or convert data
by rearranging the values into XYZ columns in the worksheet.

The following example shows how to convert matrix into worksheet, and plot graphs using
different methods according the form of the worksheet data.

// Create a new matrix book

win -t matrix;

// Set matrix dimension and X/Y values

mdim cols:=21 rows:=21 x1:=0 x2:=10 yl:=0 y2:=100;

// Show matrix X/Y values

page.cntrl = 2;

// Set matrix Z values

184 Matrix Books Matrix Sheets and Matrix Objects

9.3.3 Converting Matrix to Worksheet

msetvalue formula:="nlf Gauss2D(x, y, 0, 1, 5, 2, 50, 20)";

// Hold the matrix window name

$P = %H;

// Covert matrix to worksheet by Dierct method

m2w ycol:=1 xlabel:=rowl;

// Plot graph from worksheet using Virtual Matrix

plot vm irng:=1! xy:=xacross ztitle:=MyGraph type:=242 ogl:=<new template:=cmap>;

// Convert matrix to XYZ worksheet data

sec -p 2;

win -a %P;

m2w im:=!1 method:=xyz;

// Plot a 3D Scatter

worksheet -s 3;

worksheet -p 240 3D;
If the matrix data is converted directly to worksheet cells, you can then plot such worksheet
data using the Virtual Matrix feature.

Matrix Books Matrix Sheets and Matrix Objects 185

10 Graphing

Origin's breadth and depth in graphing support capabilities are well known. The power and
flexibility of Origin's graphing features are accessed as easily from script as from our graphical
user interface. The following sections provide examples of creating and editing graphs from
LabTalk scripts.

10.1 Creating Graphs

Creating graphs is probably the most commonly performed operation in Origin. This section
gives examples of two X-Functions that allow you to create graphs directly from LabTalk
scripts: plotxy and plotgroup. Once a plot is created, you can use object properties, like page,
layer, axis objects, and set command to format the graph.

10.1.1 Creating a Graph with the PLOTXY X-Function

plotxy is an X-Function used for general purpose plotting. It is used to create a new graph
window, plot into a graph template, or plot into a new graph layer. It has a syntax common to
all X-Functions:

plotxy option1:=optionValue option2:=optionValue ... optionN:=optionValue

All possible options and values are summarized in the X-Function help for plotxy. Since it is
somewhat non-intuitive, the plot option and its most common values are summarized here:

plot:= Plot Type
200 Line
201 Scatter
202 Line+symbol
203 column

All of the possible values for the plot option can be found in the Plot Type IDs.

187

10.1 Creating Graphs

Plotting X Y data
Input XYRange referencing the X and Y

The following example plots the first two columns of data in the active worksheet, where the
first column will be plotted as X and the second column as Y, as a line plot.
plotxy iy:=(1,2) plot:=200;

Input XYRange referencing just the Y

The following example plots the second column of data in the active worksheet, as Y against
its associated X, as a line plot. When you do not explicitly specify the X, Origin will use the the
X-column that is associated with that Y-column in the worksheet, or if there is no associated X-
column, then an <auto> X will be used. By default, <auto> X is row number.

plotxy iy:=2 plot:=200;

Plotting X YY data

The following example plots the first three columns of data from Book1, Sheet1, where the first
column will be plotted as X and the second and third columns as Y, as a grouped scatter plot.
plotxy iy:=[Bookl]Sheetl! (1,2:3) plot:=201;

Plotting XY XY data

The following example plots the first four columns of data in the active worksheet, where the
first column will be plotted as X against the second column as Y and the third column as X
against the fourth column as Y, as a grouped line+symbol plot.

plotxy iy:=((1,2), (3,4)) plot:=202;

Plotting using worksheet column designations

The following example plots all columns in the active worksheet, using the worksheet column
plotting designations, as a column plot. '?' indicates to use the worksheet designations; '1:end’
indicates to plot all the columns.

plotxy iy:=(?,1l:end) plot:=203;

Plotting a subset of a column

The following example plots rows 1-12 of all columns in the active worksheet, as a grouped line
plot.
plotxy iy:=(1,2:end) [1:12] plot:=200;

Plotting into a graph template

The following example plots the first column as theta(X) and the second column as r(Y) in the
active worksheet, into the polar plot graph template, and the graph window is named
MyPolarGraph.

188 Graphing

10.1.2 Create Graph Groups with the PLOTGROUP X-Function
plotxy (1,2) plot:=192 ogl:=[<new template:=polar name:=MyPolarGraph>];

Plotting into an existing graph layer

The following example plots columns 10-20 in the active worksheet, using column plotting
designations, into the second layer of Graph1. These columns can all be Y columns and they
will still plot against the associated X column in the worksheet.

plotxy iy:=(?,10:20) ogl:=[Graphl]l2!;

Creating a new graph layer

The following example adds a new Bottom-X Left-Y layer to the active graph window, plotting

the first column as X and the third column as Y from Book1, Sheet2, as a line plot. When a

graph window is active and the output graph layer is not specified, a new layer is created.
plotxy iy:=[Bookl]Sheet2! (1,3) plot:=200;

Creating a Double-Y Graph

// Import data file

string fpath$ = "Samples\Import and Export\S15-125-03.dat";
string fname$ = system.path.program$ + fpath$;

impASC;

// Remember Book and Sheet names
string bkname$ = page.name$;

string shname$ = layer.name$;

// Plot the first and second columns as X and Y
// The worksheet is active, so can just specify column range
plotxy iy:=(1,2) plot:=202 ogl:=[<new template:=doubleY>];

// Plot the first and third columns as X and Y into the second layer

// Now that the graph window is the active window, need to specify Book
//and Sheet

plotxy iy:=[bkname$]shnames$! (1,3) plot:=202 ogl:=2;

10.1.2 Create Graph Groups with the PLOTGROUP X-Function

According to the grouping variables (datasets), plotgroup X-Function creates grouped plots for
page, layer or dataplot. To work properly, the worksheet should be sorted by the graph group
data first, then the layer group data and finally the dataplot group data.
This example shows how to plot by group.

// Establish a path to the sample data

fn$ = system.path.program$ + "Samples\Statistics\body.dat";

Graphing 189

10.1 Creating Graphs

newbook;
impASC fn$; // Import into new workbook

// Sort worksheet--Sorting is very important!

wsort bycol:=3;

// Plot by group

plotgroup iy:=(4,5) pgrp:=Col(3);
This next example creates graph windows based on one group and graph layers based on a
second group:

// Bring in Sample data

fn$ = system.path.program$ + "Samples\Graphing\Categorical Data.dat";

newbook;

impASC fn$;

// Sort

dataset sortcol = {4,3}; // sort by drug, then gender
dataset sortord = {1,1}; // both ascending sort

wsort nest:=sortcol ord:=sortord;

// Plot each drug in a separate graph with gender separated by layer

plotgroup iy:=(2,1) pgrp:=col (drug) lgrp:=col (gender);
Note : Each group variable is optional. For example, you could use one group variable to
organize data into layers by omitting Page Group and Data Group. The same sort order is
important for whichever options you do use.

10.1.3 Create 3D Graphs with Worksheet -p Command

To create 3D Graphs, use the Worksheet (command) (-p switch).
First, create a simple 3D scatter plot:

// Create a new book
newbook r:=bkn$;
// Run script on bkn$
win -o bkn$ {
// Import sample data
string fname$ = system.path.program$ +
"\samples\Matrix Conversion and Gridding" +
"\XYZ Random Gaussian.dat";
impasc;
// Save new book name
bkn$ = $H;
// Change column type to Z
wks.col3.type = 6;
// Select column 3
worksheet -s 3;

190 Graphing

10.1.4 Create 3D Graph and Contour Graphs from Virtual Matrix

// Plot a 3D scatter graph by template named "3d"
worksheet -p 240 3d;

bi
You can also create 3D color map or 3D mesh graph. 3D graphs can be plotted either from
worksheet or matrix. And you may need to do gridding before plotting.
We can run the following script after above example and create a 3D wire frame plot from
matrix:
win -o bkn$ {
// Gridding by Shepard method
xyz shep 3;
// Plot 3D wire frame graph;
worksheet -p 242 wirefrm;

bi

10.1.4 Create 3D Graph and Contour Graphs from Virtual
Matrix

Origin can also create 3D graphs, such as 3D color map, contour, or 3D mesh, etc., from
worksheet by the plotvm X-Function. This function creates a virtual matrix, and then plot from
such matrix. For example:

// Create a new workbook and import sample data

newbook;

string fname$=system.path.program$ + "Samples\Graphing\VSurface 1l.dat";

impasc;

// Treat entire sheet as a Virtual Matrix and create a colormap surface plot

plotvm irng:=1! format:=xacross rowpos:=selrowl colpos:=selcoll

ztitle:="VSurface 1" type:=242 ogl:=<new template:=cmap>;
// Change X axis scale to log
// Nonlinear axis type supported for 3D graphs created from virtual matrix

LAYER.X.type=2;

10.2 Formatting Graphs

10.2.1 Graph Window

A graph window is comprised of a visual page, with an associated Page (Object). Each graph
page contains at least one visual layer, with an associated layer object. The graph layer
contains a set of X Y axes with associated layer.x and layer.y objects, which are sub-objects
of the layer object.

Graphing 191

10.2 Formatting Graphs

I
When you have a range variable mapped to a graph page or graph layer, you
can use that variable name in place of the word page or layer.

10.2.2 Page Properties

The page object is used to access and modify properties of the active graph window. To output
a list of all properties of this object:
page.=
The list will contain both numeric and text properties. When setting a text (string) property
value, the $ follows the property name.
To change the Short name of the active window:
page.name$="Graph3";
To change the Long name of the active window:
page.longname$="This name can contain spaces";
You can also change Graph properties or attributes using a range variable instead of the page
object. The advantage is that using a range variable works whether or not the desired graph is
active.
The example below sets the active graph layer to layer 2, using a range variable to point to the
desired graph by name. Once declared, the range variable can be used in place of page:
//Create a Range variable that points to your graph
range rGraph = [Graph3];
//The range now has properties of the page object

rGraph.active=2;

10.2.3 Layer Properties

The layer object is used to access and modify properties of the graph layer.
To set the graph layer dimensions:

//Set the layer area units to cm
layer.unit=3;

//Set the Width

layer.width=5;

//Set the Height

layer.height=5;

192 Graphing

10.2.4 Axis Properties

Fill the Layer Background Color

The laycolor X-Function is used to fill the layer background color. The value you pass to the
function for color, corresponds to Origin's color list as seen in the Plot Details dialog (1=black,
2=red, 3=green, etc).
To fill the background color of layer 1 as green:

laycolor layer:=1 color:=3;

Set Speed Mode Properties

The speedmode X-Function is used to set layer speed mode properties.

Update the Legend

The legendupdate X-Function is used to update or reconstruct the graph legend on the
page/layer.

10.2.4 Axis Properties

The layer.x and layer.y sub-object of the layer object is used to modify properties of the axes.

To modify the X scale of the active layer:

//Set the scale to Logl0

layer.x.type = 2;

//Set the start value

layer.x.from = .001;

//Set the end value

layer.x.to = 1000;

//Set the increment value

layer.x.inc = 2;

' If you wish to work with the Y scale, then simply change the x in the above

script to a y. If you wish to work with a layer that is not active, you can specify

Q the layer index, layerN.x.from. Example: layer3.y.from = 0;

The Axis command can also be used to access the settings in the Axis dialog.
To change the X Axis Tick Labels to use the values from column C, given a plot of col(B) vs.
col(A) with text in col(C), from Sheet1 of Book1:

range aa = [Bookl]Sheetl!col(C);

axis -ps X T aa;

Graphing 193

10.2 Formatting Graphs

10.2.5 Data Plot Properties

The Set (Command) is used to change the attributes of a data plot. The following example

shows how the Set command works by changing the properties of the same dataplot several

times. In the script, we use sec command to pause one second before changing plot styles.
// Make up some data

newbook;
col(a) = {1:5};
col(b) = col(a);

// Create a scatter plot
plotxy col(b);

// Set symbol size

// %C is the active dataset

sec -p 1;

set %C -z 20;

// Set symbol shape

sec -p 1;

set %C -k 3;

// Set symbol color

sec -p 1;

set %C -c color (blue);

// Connect the symbols

sec -p 1;

set %C -1 1;

// Change plot line color

sec -p 1;

set %C -cl color (red);

// Set line width to 4 points

sec -p 1;

set %C -w 2000;

// Change solid line to dash

sec -p 1;

set $C -d 1;
Here is another example which plots into a template, DoubleY, with two layers, and then sets
dataplot style for the dataplot in the second layer:

// Importing data

newbook;

string fn$=system.path.program$ + "Samples\Curve Fitting\Enzyme.dat";

impasc fname:=fn$;

//declare active worksheet range

range rr = !;

//plot into a template

plotxy iy:=(1,2) plot:=200 ogl:=[<new template:=DoubleY>];

194 Graphing

10.2.6 Legend and Label

//plot into second layer of active graph, which is graph created from line above

plotxy iy:=%(rr) (1,3) plot:=200 ogl:=2!;
//declare range for first dataplot in layer 2
range r2 = 2!1;

//set line to dash

set r2 -d 1;

10.2.6 Legend and Label

Formatting the Legend and Label are discussed on Creating and Accessing Graphical Objects.

10.3 Managing Layers

10.3.1 Creating a panel plot

The newpanel X-Function creates a new graph with an n x m layer arrangement.

Creating a 6 panel graph

The following example will create a new graph window with 6 layers, arranged as 2 columns
and 3 rows. This function can be run independent of what window is active.

newpanel col:=2 row:=3;

' Remember that when using X-Functions you do not always need to use the
variable name when assigning values; however, being explicit with col:= and
row:= may make your code more readable. To save yourself some typing, in
place of the code above, you can use the following:

newpanel 2 3;

Creating and plotting into a 6 panel graph

The following example will import some data into a new workbook, create a new graph window
with 6 layers, arranged as 2 columns and 3 rows, and loop through each layer (panel), plotting
the imported data.

// Create a new workbook

newbook;

// Import a file
path$ = system.path.program$ + "Samples\Graphing\";
fname$ = path$ + "waterfall2.dat";

impasc;

Graphing 195

10.3 Managing Layers

// Save the workbook name as newpanel will change $%H

string bkname$=%H;

// Create a 2*3 panel
newpanel 2 3;

// Plot the data
for (ii=2; 1i<8; ii++)
{
plotxy iy:=[bkname$]l!wcol (ii) plot:=200 ogl:=$(ii-1);

10.3.2 Adding Layers to a Graph Window

The layadd X-Function creates/adds a new layer to a graph window. This function is the
equivalent of the Graph:New Layer(Axes) menu.

Q Programmatically adding a layer to a graph is not common. It is recommended

to create a graph template ahead of time and then use the plotxy X-Function to
plot into your graph template.

The following example will add an independent right Y axis scale. A new layer is added,

displaying only the right Y axis. It is linked in dimension and the X axis is linked to the current

active layer at the time the layer is added. The new added layer becomes the active layer.
layadd type:=rightY;

10.3.3 Arranging the layers

The layarrange X-Function is used to arrange the layers on the graph page.

Q Programmatically arranging layers on a graph is not common. It is

recommended to create a graph template ahead of time and then use the
plotxy X-Function to plot into your graph template.

The following example will arrange the existing layers on the active graph into two rows by
three columns. If the active graph does not already have 6 layers, it will not add any new
layers. It arranges only the layers that exist.

layarrange row:=2 col:=3;

196 Graphing

10.3.4 Moving a layer

10.3.4 Moving a layer

The laysetpos X-Function is used to set the position of one or more layers in the graph,
relative to the page.
The following example will left align all layers in the active graph window, setting their position
to be 15% from the left-hand side of the page.

laysetpos layer:="1:0" left:=15;

10.3.5 Swap two layers

The layswap X-Function is used to swap the location/position of two graph layers. You can
reference the layers by name or number.
The following example will swap the position on the page of layers indexed 1 and 2.
layswap igll:=1 igl2:=2;
The following example will swap the position on the page of layers named Layer1 and Layer2.
layswap igll:=Layerl igl2:=Layer2;

' Layers can be renamed from both the Layer Management tool as well as the
Plot Details dialog. In the Layer Management tool, you can double-click on the
Name in the Layer Selection list, to rename. In the left-hand navigation panel of
the Plot Details dialog, you can slow double-click a layer name to rename.
To rename from LabTalk, use layern.name$ where n is the layer index. For
example, to rename layer index 1 to Power, use the following:
layer1.name$="Power";

10.3.6 Aligning layers

The layalign X-Function is used to align one or more layers relative to a source/reference

layer.

The following example will bottom align layer 2 with layer 1 in the active graph window.
layalign igl:=1 destlayer:=2 direction:=bottom;

The following example will left align layers 2, 3 and 4 with layer 1 in the active graph window.
layalign igl:=1 destlayer:=2:4 direction:=left;

The following example will left align all layers in Graph3 with respect to layer 1. The 2:0

notation means for all layers, starting with layer 2 and ending with the last layer in the graph.
layalign igp:=graph3 igl:=1 destlayer:=2:0 direction:=left;

Graphing 197

10.4 Creating and Accessing Graphical Objects

10.3.7 Linking Layers

The laylink X-Function is used for linking layers to one another. It is used to link axes scales
as well as layer area/position.
The following example will link all X axes in all layers in the active graph to the X axis of layer
1. The Units will be set to % of Linked Layer.

laylink igl:=1 destlayers:=2:0 XAxis:=1;

10.3.8 Setting Layer Unit

The laysetunit X-Function is used to set the unit for the layer area of one or more layers.

10.4 Creating and Accessing Graphical Objects

Graphical Objects could be many types, Line, Polyline, Rectangle, Cycle, Polygon, Arrow,
Text, Image, etc. Once an object is created and attached to a layer, you can see it by invoking
the list -o command option. The following section shows you how to create, change, and delete
an object by LabTalk.

10.4.1 Creating Objects
Creating Labels

A label is one type of graphic object and can be created using the Label command. If no name
is specified when creating labels by the label -n command, Origin will name the labels
automatically with "Textn", where n is the creation index.
When creating labels, you can use escape sequences in a string to customize the text display.
These sequences begin with the backslash character (\). Enter the following script to see how
these escape sequences work. When there are spaces or multiple lines in your label text,
quote the text with a double quote mark.

label "You can use \b(Bold Text)

Subscripts and Superscripts like X\=(\i (i), 2)

\i(Italic Text)

\ab (Text with Overbar)

or \c4(Color Text) in your Labels";

The following script creates a new text label on your active graph window with the value from
column 1, row 5 of sheet1 in book3. It works for both string and numeric.
label -s % ([book3]Sheetl,1,5);

198 Graphing

10.4.1 Creating Objects

The following script creates a new text label on your active graph window from the value in row
1 of column 2 of sheet2 in book1. Note the difference from the above example - the cell(i,j)
function takes row number as first argument. It works for a numeric cell only.

label -s $([bookl]Sheet2!cell(1,2));
Besides, you can address worksheet cell values as your label contents. The following script
creates a new text label on your active graph window from the value in row 1 of column 2 of
sheet2 in book1. The value is displayed with 4 significant digits.

label -s $([bookl]Sheet2!cell(1l,2), *4);

I
The %() notation does not allow formatting and displays the value with full
precision. You need to use $() notation if you wish to format the numeric value.

Creating Legends

A graph legend is just a text label with the object name Legend. It has properties common to
all graphical objects. To output a list of all properties of the legend, simply enter the following:
legend.=

I
To view the object name of any graphical object right-click on it and select
Programming Control from the context menu.

To update or reconstruct the graph legend, use the legendupdate X-function, which has the
following syntax:
legendupdate [mode:=optionName]
The square brackets indicate that mode is optional, such that legendupdate may be used on
its own, as in:
legendupdate;
which will use the default legend setting (short name) or use mode to specify what you would
like displayed:
legendupdate mode:=0;
which will display the Comment field in the regenerated legend for the column of data plotted.
All possible modes can be found in Help: X-Functions: legendupdate:
Note that either the index or the name of the mode may be used in the X-function call, such
that the script lines,
legendupdate mode:=comment;
legendupdate mode:=0;
are equivalent and produce the same result.
The custom legend option requires an additional argument, demonstrated here:
legendupdate mode:=custom custom:=@WS;

All available custom legend options are given in the Text Label Options.

Graphing 199

10.4 Creating and Accessing Graphical Objects

The following example shows how to use these functions and commands to update legends.
// Import sample data;
newbook;
string fn$ = system.path.program$ +
"Samples\Curve Fitting\Enzyme.dat";
impasc fname:=fn$;
string bn$ = %H;
// Create a two panels graph
newpanel 1 2;
// Add dataplot to layers
for (ii=1; ii<=2; 1ii++)
{
plotxy iy:=[bn$]1l!wcol (ii+l) plot:=201 ogl:=$(ii);
}
// Upate whole page legends by worksheet comment + unit
legendupdate dest:=0 update:=0 mode:=custom custom:=@1ln;
// Modify the legend settings for each layers
doc -e LW {
// Set legend font size
legend.fsize = 28;
// Set legend font color
legend.color = color (blue);
// Move legend to upper-left of the layer
legend.x = layer.x.from + legend.dx / 2;
legend.y = layer.y.to - legend.dy / 2;
}i
Note: To modify the text of the legend, you can also use the label command. One reason to
use this would be if you wanted to display more than one text entry for each dataplot. The
script below will update the legend text to display both the worksheet name and the X column's
Comment:
label -sl -n legend "\1(1) % (1, @WS) % (1X, QLC)";

Creating Lines

Objects like lines, rectangles, are graphic objects, and you can use draw command to create
them.
In the example below, you can see how to use the -l and -v switches to draw a Vertical Line.
The line will be drawn at the midpoint of the X axis, where X1 and X2 are system variables that
store the X From and X To scale values respectively.

draw -1 -v (X1+(X2-X1)/2);
To make the line movable, use the -Im switch.

draw -1lm -v (X1+(X2-X1)/2);

200 Graphing

10.4.2 Working on Objects

10.4.2 Working on Objects

Position of Objects

Object position can either be controlled when creating it, or changed by object properties. The
following table lists how these properties and commmands works:

Property / Command Unit Reference Point
label -p Percentage Top-left
label -px Pixel of Screen Top-left
object.top / object.left Pixel of Page Top-left
object.x / object.y Layer coordinates Center of Object
object.x1 / object.y1 Layer coordinates Top-left

Notes: The pixel of a page can be found from the Print/Dimensions tab of Plot Details
dialog.

For example:
win -T Plot; // Create an empty graph
// Create a text object at the layer center,
// named as "MyText", and the context is "Hello World"
label -p 50 50 -n MyText Hello World;
sec -p 1;
// Place the label at (1, 5)
MyText.x1l = 1;
MyText.yl = 5;

Change Object Properties

All graphical objects can use objectName.= to get or set object properties. Take label as
example, the object.x and object.y properties specify the x and y position of the center of an
object, and object.dx and object.dy specify the object width and height. These four properties
are all using axis units, so we can combine these four properties with layer.axis.from and
layer.axis.to to place the label in the proper position on a layer.
The following script example shows how to use label properties to place labels.

// Import sample data

newbook;

string fname$ = system.path.program$ +

Graphing 201

10.4 Creating and Accessing Graphical Objects

"Samples\Curve Fitting\Enzyme.dat";

impasc;
string bn$ = %H;
plotxy ((,2), (,3));
// Create a label and name it "title"
// Be note the sequence of option list, -n should be the last option
// -3 is used to center the text
// -s enables the substitution notation
// -sa enables conversion of \n (new line)
// Subsitution is used to get text from column comments
label -j 1 -s -sa -n title

Enzyme Reaction Velocity\n% ([bn$]l!col(2)[c]$) vs. $([bn$]l!col(3) [c]$):;
// Set font
title.font=font (Times New Roman) ;
// Set label font size
title.fsize = 28;
// Set label font color
title.color = color (blue);
// Placing label
title.x = layer.x.from + (layer.x.to - layer.x.from) / 2;
title.y = layer.y.to + title.dy / 2;
// Placing legend
legend.y = layer.y.from + (layer.y.to - layer.y.from) / 2;
legend.x = layer.x.to - legend.dx / 2;

10.4.3 Deleting an Object

To delete objects, use the label command with -r, -ra, and -rc switches:

Switch Description
label -r objectName Delete the specified object
label -ra Delete all objects whose names start with
objectNamePrefix objectNamePrefix
label -rc objectName Remove specified object, with the connected objects

202 Graphing

11 Importing

Origin provides a collection of X-Functions for importing data from various file formats such as
ASCII, CSV, Excel, National Instruments DIAdem, pCLAMP, and many others. The X-Function
for each file format provides options relevant to that format in addition to common settings such
as assigning the name of the import file to the book or sheet name.

All X-Functions pertaining to importing have names that start with the letters imp. The table
below provides a listing of these X-Functions. As with all X-Functions, help-file information is
available at Script or Command line by entering the name of the X-Function with the -h option.
For instance: entering impasc -h in the Script window will display the help file immediately
below the command.

Name Brief Description
impASC Import ASCII file/files
impBin2d Import binary 2d array file
impCSV Import csv file
impDT Import Data Translation Version 1.0 files
impEP Import EarthProbe (EPA) file. Now only EPA file is supported for

EarthProbe data.

impExcel Import Microsoft Excel 97-2007 files
impFamos Import Famos Version 2 files
impFile Import file with pre-defined filter.
impHEKA Import HEKA (dat) files
implgorPro Import WaveMetrics IgorPro (pxp, ibw) files
implmage Import a graphics file
impinfo Read information related to import files.
impJCAMP Import JCAMP-DX Version 6 files

203

10.4 Creating and Accessing Graphical Objects

Import SigmaPlot (JNB) file. It supports version lower than SigmaPlot

impJNB 8.0
impKG Import KaleidaGraph file
impMatlab Import Matlab files
. Import ETAS INCA MDF (DAT, MDF) files. It supports INCA 5.4 (file
impMDF .
version 3.0).
impMNTB Impc')rt' Minitab file (MTW) or project (MPJ). It supports the version prior
to Minitab 13.
impNetCDF Import netCDF file. It supports the file version lower than 3.1.
impNIDIAdem | Import National Instruments DIAdem 10.0 dat files
. Import National Instruments TDM and TDMS files(TDMS does not
impNITDM ;
support data/time format)
impODQ Import *.0DQ files.
. Import pCLAMP file. It supports pClamp 9 (ABF 1.8 file format) and
imppClamp | ~1amp 10 (ABF 2.0 file format).
impSIE Import nCode Somat SIE 0.92 file
impSPC Import Thermo File
impSPE I2m5port Princeton Instruments (SPE) file. It supports the version prior to
impWav Import waveform audio file
reimport Re-import current file

You can write your own import routines in the form of X-Functions as well. If the name of a
user-created X-Function begins with imp and it is placed in the \X-Functions\Import and
Export subfolder of the EXE, UFF or Group paths, then such functions will appear in the
File|lmport menu.

The following sections give examples of script usage of these functions for importing data,
graphs, and images.

204 Importing

11.1.1 Import an ASCII Data File Into a Worksheet or Matrix

11.1 Importing Data

The following examples demonstrate the use of X-Functions for importing data from external
files. The examples import ASCII files, but the appropriate X-Function can be substituted based
on your desired filetype (i.e., CSV, Matlab); syntax and supporting commands will be the same.
Since these examples import Origin sample files, they can be typed or pasted directly into the
Script or Command window and run.

11.1.1 Import an ASCII Data File Into a Worksheet or Matrix

This example imports an ASCII file (in this case having a *.txt extension) into the active
worksheet or matrix. Another X-Function, findfiles, is used to find a specific file in a directory
(assigned to the string path$) that contains many other files. The output of the findfiles X-
Function is a string variable containing the desired filename(s), and is assigned, by default, to a
variable named fname$. Not coincidentally, the default input argument for the impASC X-
Function is a string variable called fname$.

string path$ = system.path.program$ + "Samples\Import and Export\";

findfiles ext:=matrix data with xy.txt;

impASC;

11.1.2 Import ASCII Data with Options Specified

This example makes use of many advanced options of the impASC X-Function. It imports a
file to a new book, which will be renamed by the options of the impASC X-Function. Notice that
there is only one semi-colon (following all options assignments) indicating that all are part of
the call to impASC.

string fn$=system.path.program$ + "Samples\Spectroscopy\HiddenPeaks.dat";

impasc fname:=fn$

options.ImpMode:=3 /* start with a new book */
options.Sparklines:=0 /* turn off sparklines */
options.Names.AutoNames:=0 /* turn off auto rename */
options.Names.FNameToSht:=1 /* rename sheet to file name */
options.Miscellaneous.LeadingZeros:=1; /* remove leading zeros */

11.1.3 Import Multiple Data Files

This example demonstrates importing multiple data files to a new workbook; starting a new
worksheet for each file.

string fns, path$=system.path.program$ + "Samples\Curve Fitting\";

findfiles f:=fns$ e:="stepl*.dat"; // find matching files in 'path$'

int n = fns.GetNumTokens (CRLF) ; // Number of files found

string bkName$;

Importing 205

11.1 Importing Data

newbook s:=0 result:=bkName$;

impasc fname:=fns$ // impasc has many options
options.ImpMode:=4 // start with new sheet
options.Sparklines:=2 // add sparklines if < 50 cols
options.Cols.NumCols:=3 // only import first three columns
options.Names.AutoNames:=0 // turn off auto rename
options.Names.FNameToBk:=0 // do not rename the workbook
options.Names.FNameToSht:=1 // rename sheet to file name
options.Names.FNameToShtFrom:=4 // trim file name after 4th letter
options.Names.FNameToBkComm:=1 // add file name to workbook comment
options.Names.FNameToColComm:=1 // add file name to columns comments
options.Names.FPathToComm:=1 // include file path to comments

orng:=[bkName$]AL!A[1]:C[0] ;

11.1.4 Import an ASCII File to Worksheet and Convert to
Matrix

This example shows two more helpful X-Functions working in conjunction with impASC; they
are digFile, which generates a dialog for choosing a specific file to import, and w2m which
specifies the conversion of a worksheet to a matrix. It should be noted that the w2m X-
Function expects linearly increasing Y values in the first column and linearly increasing X
values in the first row: test this with matrix_data_with_xy.txt in the Samples\Import and
Export\ folder.

dlgfile g:=ascii; // Open file dialog

impAsc; // Import selected file

// Use the worksheet-to-matrix X-Function, 'w2m', to do the conversion

w2m xy:=0 ycol:=1 xlabel:="First Row" xcol:=1

11.1.5 Related: the Open Command

Another way to bring data into Origin is with the Open (Command).

Open has several options, one of which allows a file to be open for viewing in a notes window:
open -n fileName [winName]
This line of script opens the ASCII file fileName to a notes window. If the optional winName is
not specified, a new notes window will be created.
To demonstrate with an existing file, try the following:
%$b = system.path.program$ + "Samples\Import and Export\ASCII simple.dat";

open -n "%b";

206 Importing

11.1.6 Import with Themes and Filters

11.1.6 Import with Themes and Filters

Import with a Theme

When importing from the Origin GUI, you can save your import settings to a theme file. Such
theme files have a *.0IS extension and are saved in the \Themes\AnalysisAndReportTable\
subfolder of the Origin User Files Folder (UFF). They can then be accessed using an X-
Function with the -t option switch. The import is performed according to the settings saved in
the theme file specified.

string fn$=system.path.program$ + "Samples\Spectroscopy\HiddenPeaks.dat";

// Assume that a theme file named "My Theme.OIS" exists

impasc fname:=fn$ -t "My Theme";

Import with an Import Wizard Filter File

Custom importing of ASCII files and simple binary files can be performed using the Import
Wizard GUI tool. This tool allows extraction of variables from file name and header, and further
customization of the import including running a script segment at the end of the import, which
can be used to perform post-processing of imported data. All settings in the GUI can be saved
as an Import Filter File to disk. Such files have extension of .OIF and can be saved in multiple
locations.
Once an import wizard filter file has been created, the impfile X-Function can be used to
access the filter and perform custom importing using the settings saved in the filter file.

string fname$, path$, filtername$;

// point to file path

path$ = system.path.program$ + "Samples\Import and Export\";

// find files that match specification

findfiles ext:="S*.dat";

// point to Import Wizard filter file

string str$ = "Samples\Import and Export\VarsFromFileNameAndHeader.oif";

filtername$ = system.path.program$ + strs$;

// import all files using filter in data folder

impfile location:=data;

11.1.7 Import from a Database

Origin provides four functions for Database Queries. The basic functionality of Database
importing is encapsulated in two functions as shown in this example using the standard
Northwind database provided by Microsoft Office:

// The dbedit function allows you to create the query and connection

// strings and attach these details to a worksheet

dbedit exec:=0

sgl:="Select Customers.CompanyName, Orders.OrderDate,

[Order Details].Quantity, Products.ProductName From

Importing 207

11.2 Importing Images

((Customers Inner Join Orders On Customers.CustomerID = Orders.CustomerID)
Inner Join [Order Details] On Orders.OrderID = [Order Details].OrderID)
Inner Join Products On Products.ProductID = [Order Details].ProductID"
connect:="Provider=Microsoft.Jet.OLEDB.4.0;User ID=;

Data Source=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;
Mode=Share Deny None;Extended Properties="";

Jet OLEDB:System database="";

Jet OLEDB:Registry Path="";

Jet OLEDB:Database Password=***;

Jet OLEDB:Engine Type=5;

Jet OLEDB:Database Locking Mode=1;

Jet OLEDB:Global Partial Bulk Ops=2;

Jet OLEDB:Global Bulk Transactions=1;

Jet OLEDB:New Database Password="";

Jet OLEDB:Create System Database=False;

Jet OLEDB:Encrypt Database=False;

Jet OLEDB:Don't Copy Locale on Compact=False;

Jet OLEDB:Compact Without Replica Repair=False;

Jet OLEDB:SFP=False;Password="

// The dbimport function is all that's needed to complete the import

dbimport;
Two additional functions allow you to retrieve the details of your connection and query strings
and execute a Preview/Partial import.

Name Brief Description

dbEdit Create, Edit, Load or Remove a query in a worksheet.

dbimport Execute the database queried stored in a specific worksheet.

Read the sql string and the connection string contained in a database

dblinfo query in a worksheet.

Execute a limited import (defaults to 50 rows) of a query. Useful in testing

dbPreview to verify that your query is returning the information you want.

208 Importing

11.2.1 Import Image to Matrix and Convert to Data

11.2 Importing Images

The ImpIimage X-Function supports importing image files into Origin from script. By default, the
image is stored in Origin as an image (i.e., RGB values). You have the option to convert the
image to grayscale.

Multiple-file importing is supported. By default, multiple images will be appended to the target
page by creating new layers. If importing to a matrix, each matrix-layer will be renamed to the
corresponding imported file's name.

11.2.1 Import Image to Matrix and Convert to Data

This example imports a single image file to a matrix and then converts the (RGB color) image
to grayscale values, storing them in a new matrix.

newbook mat:=1; // Create a new matrix book

fpath$ = "Samples\Image Processing and Analysis\car.bmp";

string fname$ = system.path.program$ + fpath$;

// Imports the image on path 'fname$' to the active window
// (the new matrix book)

impimage;

// Converts the image to grayscale values,and puts them in a new matrix
// 'type' specifies bit-depth: O=short (2-byte/l16-bit, default);

// 1l=byte (l-byte/8-bit)

img2m type:=byte;

11.2.2 Import Single Image to Matrix

This example imports a series of *.TIF images into a new Matrix Book. As an alternative to the
img2m X-Function (shown above), the keyboard shortcuts Ctrl+Shift+d and Ctri+Shift+i
toggle between the matrix data and image representations of the file.

newbook mat:=1;

fpath$ = "Samples\Image Processing and Analysis\";

string fns, path$ = system.path.program$ + fpath$;

// Find the files whose names begin with 'myocyte'

findfiles f:=fns$ e:="myocyte*.tif";

// Import each file into a new sheet (options.Mode = 4)

impimage options.Mode:=4 fname:=fns$;

Importing 209

11.2 Importing Images

11.2.3 Import Multiple Images to Matrix Book

This example imports a folder of JPG images to different Matrix books.
string pthl$ = "C:\Documents and Settings\All Users\"
string pth2$ = "Documents\My Pictures\Sample Pictures\";
string fns, path$ = pthl$ + pth2$;
// Find all *.JPG files (in 'path$', by default)
findfiles f:=fns$ e:="*.jpg";
// Assign the number of files found to integer variable 'n'
// '"CRLF' ==> files separated by a 'carriage-return line-feed'
int n = fns.GetNumTokens (CRLF) ;
string bkName$;
string fname$;
// Loop through all files, importing each to a new matrix book
for(int ii = 1; ii<=n; ii++)
{
fname$ = fns.GetToken (ii, CRLF)S;

//create a new matrix page

newbook s:=0 mat:=1 result:=bkName$;

//import image to the first layer of the matrix page,
//defaut file name is fname$

impimage orng:=[bkName$]msheetl;

11.2.4 Import Image to Graph Layer

You also can import an Image to an existing GraphLayer. Here the image is only for display
(the data will not be visible, unless it is converted to a matrix, see next example).

string fpath$ = "Samples\Image Processing and Analysis\cell.jpg";

string fn$ = system.path.program$ + fpath$;

impimage fname:=fn$ ipg:=graphl;

210 Importing

12 Exporting

Origin provides a collection of X-Functions for exporting data, graphs, and images. All X-

Functions pertaining to exporting have names that start with the letters exp. The table below

provides a listing of these X-Functions. As with all X-Functions, help-file information is available
at Script or Command line by entering the name of the X-Function with the -h option. For
instance: entering expgraph -h in the Script window will display the help file immediately below

the command.

Name
expASC
expGraph
explmage
expMatASC
expNITDM
expWAV
expWks

img2GIF

Brief Description
Export worksheet data as ASCII file
Export graph(s) to graphics file(s)
Export the active Image into a graphics file
Export matrix data as ASCII file
Export workbook data as National Instruments TDM and TDMS files
Export data as Microsoft PCM wave file
Export the active sheet as raster or vector image file

Export the active Image into a gif file

12.1 Exporting Worksheets

12.1.1 Export a Worksheet

Your worksheet data may be exported either as an image (i.e., PDF) or as a data file.

Export a Worksheet as an Image File

The expWks X-Function can be used to export the entire worksheet, the visible area of the
worksheet, or worksheet selection, to an image file such as JPEG, EPS, or PDF:
// Export the active worksheet to an EPS file named TEST.EPS,

211

12.2 Exporting Graphs

// saved to the D:\ drive.

expWks type:=EPS export:=active filename:="TEST" path:="D:";
The expWks X-Function also provides options for exporting many worksheets at the same
time using the export option, which if unspecified simply exports the active worksheet.
In the following example, export:=book exports all worksheets in the current workbook to the
desired folder path:

expWks type:=PDF export:=book path:="D:\TestImages" filename:=Sheet#;
Worksheets are saved in the order they appear in the workbook from left to right. Here, the
naming has been set to number the sheets in that order, as in 'Sheet1’, 'Sheet2', etc. If more
than 9 sheets exist, filename:=Sheet## will yield names such as 'Sheet01'.
Other options for export are project, recursive, folder, and specified.

The expWks X-Function is particularly useful in exporting custom report worksheets that user
may create by placing graphs and other relevant analysis results in a single sheet for
presentation, using formatting features such as merging and coloring cells.

Export a Worksheet as a Multipage PDF File

The expPDFw X-Function allows exporting worksheets to multi-page PDF files. This X-
Function is then useful to export large worksheets, including custom report sheets, where the
worksheet has more content than can fit in one page for the current printer settings. This X-
Function offers options such as printing all sheets in a book or all sheets in the project, and
options for including a cover page and adding page numbering.

Export a Worksheet as a Data File

In this example, worksheet data is output to an ASCII file with tabs separating the columns
using the expAsc X-Function:

// Export the data in Book 2, Worksheet 3 using tab-separators to

// an ASCII file named TEST.DAT, saved to the D:\ drive.

expASC iw:=[Book2]Sheet3 type:=0 path:="D:\TEST.DAT" separator:=TAB;

Note, in this example, that fype simply indicates the type of file extension, and may be set to
any of the following values (type:=dat is equivalent to type:=0):

e (O=dat:*.dat,

o 1=text:Text File(*.txt),
e 2=csv:*.csv,

o 3=all:All Files(*.*)

212 Exporting

12.2.1 Export a Graph with Specific Width and Resolution (DPI)

12.2 Exporting Graphs

Here are three examples of exporting graphs using the X-Function expGraph called from
LabTalk:

12.2.1 Export a Graph with Specific Width and Resolution
(DPI)

Export a graph as an image using the expGraph X-Function. The image size options are
stored in the nodes of tree variable named tr1, while resolution options (for all raster type
images) are stored in a tree named tr2.
One common application is to export a graph to a desired image format specifying both the
width of the image and the resolution. For example, consider a journal that requires, for a two-
column article, that graphs be sent as high-resolution (1200 DPI), *.iif files that are 3.2 inches
wide:

// Export the active graph window to D:\TestImages\TEST.TIF.

// Width = 3.2 in, Resolution = 1200 DPI

expGraph type:=tif path:="D:\TestImages" filename:="TEST"
trl.unit:=0
trl.width:=3.2
tr2.tif.dotsperinch:=1200;

Possible values for tr1.unit are:

e 0=inch
e 1=cm
o 2 =npixel

e 3 =page ratio
Note: this is a good example of accessing data stored in a tree structure to specify a particular
type of output. The full documentation for tr1 can be found in the online and product (CHM)
help.

12.2.2 Exporting All Graphs in the Project

Exporting all of the graphs from an Origin Project can be achieved by combining the doc -e

command, which loops over all specified objects in a project with the expGraph X-Function.

For example, to export all graphs in the current project as a bitmap (BMP) image, as above:
doc -e P

{
// %H is a string register that holds the name of the active window.

expGraph type:=bmp path:="d:\TestImages\" filename:=%H

Exporting 213

12.3 Exporting Matrices

trl.unit:=2
trl.width:=640;
}
Several examples of doc -e can be found in Looping Over Objects.

12.2.3 Exporting Graph with Path and File Name

The string registers, %G and %X, hold the current project file name and path. Combine with
the label command, you can place these information on page while exporting a graph. For
example:

// Path of the project

string proPath$ = system.path.program$ + "Samples\Graphing\Multi-Curve Graphs.opj";

// Open the project

doc -o % (proPath$);

// Add file path and name to graph

win -a Graphl;

label -s -px 0 0 -n ForPrintOnly \v (%$X%G.opj);

// Export graph to disk D

expGraph type:=png filename:=%H path:=D:\;

// Delete the file path and name

label -r ForPrintOnly;

12.3 Exporting Matrices

Matrices can store image data as well as non-image data in Origin. In fact, all images in Origin
are stored as matrices, whether or not they are rendered as a picture or displayed as pixel
values. A matrix can be exported no matter which type of content it holds.

Exporting matrices with script is achieved with two X-Functions: expMatAsc for a non-image
matrix and explmage for an image matrix.

12.3.1 Exporting a Non-Image Matrix

To export a matrix that holds non-image data to an ASCII file use the expMatAsc X-Function.
Allowed export extenstions are *.dat (type:=0), *.txt (type:=1), *.csv (type:=2), and all file types
(type:=3).

// Export a matrix (in Matrix Book 1, Matrix Sheet 1) to a file of

// the *.csv type named TEST.CSV with xy-gridding turned on.

expMatASC im:=[MBookl]MSheetl type:=2 path:="D:\TEST.CSV" xygrid:=1;

214 Exporting

12.3.2 Exporting an Image Matrix

12.3.2 Exporting an Image Matrix

Matrix windows in Origin can contain multiple sheets, and each sheet can contain multiple
matrix objects. A matrix object can contain an image as RGB values (default, reported as three
numbers in a single matrix cell, each matrix cell corresponds to a pixel), or as gray-scale data
(a single gray-scale number in each matrix cell).

For example, a user could import an image into a matrix object (as RGB values) and later
convert it to gray-scale data (i.e., the gray-scale pixel values) using the Image menu. Whether
the matrix object contains RGB or gray-scale data, the contents of the matrix can be exported
as an image file to disk, using the explmage X-Function. For example, the following script
command exports the first matrix object in Sheet 1 of matrix book MBook 1:

// Export the image matrix as a *.tif image:

expImage im:=[MBookl]1l!1l type:=tif fname:="c:\flower"
When exporting to a raster-type image format (includes JPEG, GIF, PNG, TIF), one may want
to specify the bit-depth as well as the resolution (in dots-per-inch, DPI). This is achieved with
the explmage options tree, tr. The X-Function call specifying these options might look like this:

expImage im:=[MBookl]MSheetl! type:=png fname:="D:\TEST.PNG"

tr.PNG.bitsperpixel:="24-bit Color"

tr.PNG.dotsperinch:=300;

All nodes of the tree tr, are described in the online or product (CHM) help.

12.4 Exporting Videos

To export group of graphs as a video, you need to use the Video Writer (vw) object. In order to
export a video with actual frames, you always need to create a video writer object, write some
window into it as frames and then release the video writer. You can only work with one video
writer at one time, i.e. each time after you create a video writer object with the vw.Create()
method, you must use vw.Release() to release the video writer before you can use the
vw.Create() method again.

Here are several example scripts showing how to create, write graphs in or release a video
writer object. You can also view a full example in the LabTalk Examples category.

12.4.1 Create a Video Writer Object

To export a video, the first thing is to create a video writer object with the vw.Create() method.
You need to at least specify the file name(including complete file path) of the video, and you
can also specify the codec value for compression method, frames per second and video
dimensions at this stage.

For example, this script create a video file named "test.avi" in an existing file path D:\Exported

Videos\ with other settings as default (i.e. no compression, 1 frame per second, 640 px as
width and 480 px as height):

Exporting 215

12.4 Exporting Videos

vw.Create ("D: \Exported Videos\test.avi");
//The above script is the same as the script below
//vw.Create ("D:\Exported Videos\test.avi", 0, 1, 640, 480);

You can also define the compression method with FourCC code, for example the script below
use WMV1 compressed format to create the video:

//Define codec with four character code

int codec = vw.FourCC('W', 'M', 'V', '1");

//Create a 800*600 video file as test.avi under user files folder

vw.Create ($Y\My Video.avi, codec, 1, 800, 600)
Sometimes you need to check whether the video creation is successful, the vw.Create()
method returns 0 if the video is successfully created, and returns a non-zero value if the
creation fails. For example, the following script helps you to decide whether the video is indeed
created.

//If file path D:\AAA exist,the following should return 0

//If the file path does NOT exist, it will return error code

int err = vw.Create (D:\AAA\test.avi);

if (err==0)

type "video creation is successful";
else

type "video creation failure, the error code is $(err)";

12.4.2 Write Graph(s) in a Video Writer Object

Once a video writer object is created, you can start to write graphs into it with the
vw.WriteGraph() method. In fact, not only graph window is supported to be written by this, but
also other windows like function plot, workbook, matrix, layout.
For example, this script writes the current active window to the video.

vw.WriteGraph();
You can specify the window name and also the number of frames to write, for example, the
following script will add Graph1 as 5 frames:

vw.WriteGraph (Graphl, 5);
And you can make use of a loop structure to, for example, add all graphs in a video, so that
you do not need to write multiple lines of script. The example below writes all graph windows in
the project into the video, each graph will be inserted as 2 frames.

doc -e P

{

vw.WriteGraph(,2);

}
You can also get the error code from this method similarly as the last example of the create
video writer session. And if the return value is 0, it means that write graph(or other windows) is
successful.

216 Exporting

12.4.3 Release a Video Writer Object

12.4.3 Release a Video Writer Object

For each video writer object, it is essential to release the video writer so as to actually generate
the video, the method used in this case is vw.Release().
The following scripts shows a complete example of generating a video file "example.avi" in
user files folder with a newly created empty graph window.

int err = vw.Create (%$Y\example.avi) ;

//Write existing graphs into the video if the video can be created.

if (0 == err)

{
//Create an empty graph window with default template

win -t plot;
vw.WriteGraph();
}
//Release the video writer
vw.Release();
The vw.Release() method similarly has a return value, if it is 0 then the video generation is
successful, but if it is 1, it indicates the video generation fails.

Exporting 217

13 The Origin Project

13.1 Managing the Project

13.1.1 The DOCUMENT Command

Document is a native LabTalk command that lets you perform various operations related to
the Origin Project. The syntax for the document command is
document -option value;
Notes:
e value is not applicable for some options and is left out of the command
e For further details please see Document (Object).

Internally, Origin updates a property that indicates when a project has been modified.
Attempting to Open a project when the current project has been modified normally triggers a
prompt to Save the current project. The document command has options to control this
property.

Start a New Project

// WARNING! This will turn off the Save project prompt
document -s;
// '"'doc'' is short for ''document'' and '"'n'' is short for ''new''

doc -n;

Open/Save a project

Use the doc -o command to open a project and the save command to save it.
// Open an Origin Project file
string fname$ = SYSTEM.PATH.PROGRAMS$ + "Origin.opj";
doc -o % (fname$) ; // Abbreviation of ''document -open''
// Make some changes
% (Datal,1l) = data(0,100);
% (Datal,2) = 100 * uniform(101);
// Save the project with a new name in new location
fname$ = SYSTEM.PATH.APPDATAS$ + "My Project.opj";

save % (fname$) ;

219

13.1 Managing the Project

Append projects

Continuing with the previous script, we can Append other project file(s). Origin supports only
one project file at a time.

// BAppend an Origin Project file to the current file

fname$ = SYSTEM.PATH.PROGRAMS$ + "Origin.opj";

doc -a % (fname$); // Abbreviation of ''document -append''

// Save the current project - which is still ''My Project.opj''

save;

// Save the current project with a new name to a new location

save "C:\Data Files\working.opj";

Save/Load Child Windows

In Origin, a child window - such as a graph, workbook, matrix or Excel book - can be saved as
a single file. Append can be used to add the file to another project. The appropriate extension
is added automatically for Workbook, Matrix and Graph whereas you must specify .XLS for
Excel windows.

// The save command acts on the active window

save -i C:\Data\MyBook;
Append can be used to load Child Window Types :

// Workbook (*.0GW), Matrix (*.0GM), Graph (*.0GG), Excel (*.XLS)

dlgfile group:=*.0gg;

// fname is the string variable set by the dlgfile X-Function

doc -a % (fname$) ;
For Excel, you can specify that an Excel file should be imported rather than opened as Excel

doc -ai "C:\Data\Excel\Current Data.xls";

Notes windows are a special case with special option switch:
// Save notes window named Notesl
save -n Notesl C:\Data\Notes\Today.TXT;
// Read text file into notes window named MyNotes

open -n C:\Data\Notes\Today.txt MyNotes;

Saving External Excel Book

This is introduced in Origin 8.1, to allow an externally linked Excel book to be saved using its
current file name:

save -1i;

Refresh Windows

You can refresh windows with the following command:

doc -u;

220 The Origin Project

13.1.2 Project Explorer X-Functions

13.1.2 Project Explorer X-Functions

The following X-Functions provide DOS-like commands to create, delete and navigate through

the subfolders of the project:

Name Brief Description
pe_dir Show the contents of the active folder
pe_cd Change to another folder
pe_move Move a Folder or Window
pe_path Report the current path
pe_rename Rename a Folder or Window
pe_mkdir Create a Folder
pe_rmdir Delete a Folder

In this example :

doc -s;
doc -n;
pe _cd /;

pe mkdir "Test Subjects";
pe_cd "Test Subjects";

pe mkdir "Trials";

pe mkdir "Results";

pe cd /;

pe _mkdir "Control Subjects";

pe cd "Control Subjects";
pe mkdir "Trials";

pe mkdir "Results";

pe _cd /;

pe mkdir "Comparison";

//
//
//
//
//
//
//
//
//
//
//
//
//
//

Clear Origin's 'dirty' flag
Start a new project

Go to the top level
Create a folder
Navigate to that folder
Create a sub-folder

and another

Return to the top level
Create another folder
Navigate to that folder
Create a sub-folder

and another
Return to the top level
Create a folder

The Origin Project 221

13.2 Accessing Metadata

we create a folder structure that looks like this in Project explorer :
Project Explorer (3)
=7 UMTITLED
| Comparison
=I-_ Contral Subjects
[Resulks
[Trials
=I-_ Test Subjects
[Resulks

[Trials

Marme Tvpe
[Comparison Folder
[Contral Subjecks Falder
[Test Subjects Falder
@ Bool1 Wiorkbook

£ >

Note that if you have Open in Subfolder enabled in Tools : Options : [Open/Close] then you
will have an additional folder named Folder1.

13.2 Accessing Metadata

Metadata is information which refers to other data. Examples include the time at which data
was originally collected, the operator of the instrument collecting the data and the temperature
of a sample being investigated. Metadata can be stored in Projects, Pages, Layers and
Columns.

13.2.1 Column Label Rows

Metadata is most visible in a worksheet where column headers may contain information such
as Long Name (L), Units (U), Comments(C), Sampling Interval and various Parameter rows,
including User-Defined parameters.

The row indices for column label rows are assigned to characters, which are given in the
Column Label Row reference table. Examples of use follow.

Read/Write Column Label Rows

At times you may want to capture or set the Column Label Rows or Column Header string from
script. Access the label row by using the corresponding label row characters as a row index.

222 The Origin Project

13.2.2 Even Sampling Interval

Note: Numeric cell access does not supported to use label row characters.
Here are a few examples of reading and writing column header strings:

Bookl A[L]$ = Time; // Set the Long Name of column A to '''Time'''
Bookl A[U]$ = sec; // Set the Units of column A to '''sec'''
string strC$ = col(2) [C]$; // Read the Comments of column2 into strC$

// Get value from first system parameter row

double sysparl = %$(col(2) [pl]$);

Col (1) [L]$="Temperature"; // set Col(l) long name to "Temperature"
range bb = 2; // declare a range variable for Col (2)

// Set the long name of Col(2) to that of Col(l) with the string " Data"
// appended

bb[L]$=Col (1) [L]1$+" Data";

Note: For Origin 8.0, LabTalk variables took precedence over Column Label Row characters,

for example:
int L = 4; // For Origin 8.0 and earlier
Col (B) [L]$= // Returns the value in row 4 of Col(B), as a string

But for Origin 8.1, this has been changed so that the column label rows (L, U, C, etc.) will take
precedence:
int L = 4; // For Origin 8.1
Col (B) [L]s$= // Returns the Long Name of Col(B), as a string
The following example shows how to create and access user parameter rows
// Show the first user parameter row
wks.userParaml = 1;
// Assign the 1lst user parameter row a custom name
wks.userParaml$ = "Temperature";
// Write to a specific user parameter row of a column
col (2) [Temperature]$ = "96.8";
// Get a user-defined parameter row value

double temp = %$(col(2) [Temperaturel$);

Show/Hide Column Labels

You can set which column header rows are displayed and in what order by wks.labels object
method. For the active worksheet, this script specifies the following column header rows (in the
order given): Long Name, Unit, the first System-Parameter, the First User-Parameter, and
Comments:

range ww = !;

ww.labels (LUP1DI1C) ;

13.2.2 Even Sampling Interval

Origin users can set the sampling interval (X) for a data series (Y) to something other than the
corresponding row numbers of the data points (default).

The Origin Project 223

13.2 Accessing Metadata

Accessing the Sampling Interval Column Label Row

When this is done, a special header row is created to remind the user of the custom interval
(and initial value) applied. To access the text in this header row, simply use the E row-index
character. This header is effectively read-only and cannot be set to an arbitrary string, but the
properties from which this string is composed may be changed with either column properties
(see the wks.col object) or the colint X-Function.

// Read the Sampling Interval header text of Column 1 to a string variable

string sampInt$ = Col (1) [E]S$;

// If an initial value of 2 and increment of 0.5 was set for Col(l),

// the output will be:

sampInt$=; // "x0 = 2"

// "dx = 0.5"

1. Create a new worksheet and delete the X-column

2. Right-click at the top of the remaining column (i.e., B(Y)), such that
then entire column is selected, and select Set Sampling Interval
from the drop-down menu.

3. Set the initial and step values to something other than 1.

4. Click OK, and you will see a new header row created which lists the
values you specified.

The next example demonstrates how to do this from script, using X-functions.

Also, when you import certain types of data, e.g. *.wav, the sampling interval
will show as a header row.

é To see a Sampling Interval header, you can try the following steps:

Sampling Interval by X-Function

Sampling Interval is special in that its display is formatted for the user's information.
Programmatically, it is accessed as follows

// Use full formal notation of an X-Function

colint rng:=col(l) x0:=68 inc:=.25 units:=Degrees lname:="Temperature";

// which in shorthand notation is

colint 1 68 .25 Degrees "Temperature";
The initial value and increment can be read back using worksheet column properties:

double XInitial = wks.coll.xinit;

double XIncrement = wks.coll.xinc;

string XUnits$ = wks.coll.xunits$;

string XName$ = wks.coll.xname$;
Note: While these properties will show up in a listing of column properties (Enter wks.col1.= in
the Script window to display the property names for column 1), unless a sampling interval is
established:

224 The Origin Project

13.2.3 Trees

e The strings wks.col1.xunits$ and wks.col1.xname$ will have no value.

e The numeric values wks.col1.xinit and wks.col1.xinc will each have a value of 1,
corresponding to the initial value and increment of the row numbers.

13.2.3 Trees

Trees are a data type supported by LabTalk, and we also consider trees a form of metadata
since they give structure to existing data. They were briefly introduced in the section dealing
with Data Types and Variables, but appear again because of their importance to X-functions.
Many X-functions input and output data in tree form. And since X-functions are one of the
primary tools accessible from LabTalk script, it is important to recognize and use tree variables
effectively.

Access Import File Tree Nodes

After importing data into a worksheet, Origin stores metadata in a special tree-like structure at
the page level. Basic information about the file can be retrieved directly from this structure:

string strName, strPath;

double dDate;

// Get the file name, path and date from the structure

strName$ = page.info.system.import.filename$;

strPath$ = page.info.system.import.filepath$;

dDate = page.info.system.import.filedate;

// Both %

ty File % (strPath$)% (strName$), dated $(dDate,D10);
This tree structure includes a tree with additional information about the import. This tree can be
extracted as a tree variable using an X-Function:

Tree MyFiles;

and $ substitution methods are used

impinfo ipg:=[Book2] tr:=MyFiles;
MyFiles.=; // Dump the contents of the tree to the script Window
Note: The contents of the impinfo tree will depend on the function used to import.

If you import multiple files into one workbook (using either New Sheets, New Columns or New
Rows) then you need to load a particular tree for each file as the Organizer only displays the
system metadata from the last import:

Tree trFile;

int iNumFiles;

// Use the function first to find the number of files

impinfo trInfo:=trFile fcount:=iNumFiles;

// Now loop through all files - these are indexed from 0

for(idx = 0 ; idx < iNumFiles ; idx++)

{

// Get the tree for the next file

The Origin Project 225

13.2 Accessing Metadata

impinfo findex:=idx trInfo:=trFile;
string strFileName, strLocation;

//

strFileName$ = trFile.Info.FileName$;
strLocation$ = trFile.Info.DataRange$;

[

ty File % (strFileName$) was imported into % (strLocation$);

Access Report Page Tree

Analysis Report pages are specially formatted Worksheets based on a tree structure. You can
get this structure into a tree variable using the getresults X-Function and extract results.

// Import an Origin Sample file

string fpath$ = "Samples\Curve Fitting\Gaussian.dat";

string fname$ = SYSTEM.PATH.PROGRAMS + fpath$;

impasc;

// Run a Gauss fit of the data and create a Report sheet

nlbegin (1,2) gauss;

nlfit;

nlend 1 1;

// An automatically-created string variable, _ REPORTS,
// holds the name of the last Report sheet created:
string strLastReport$ = REPORTS;

// This is the X-Function which gets the Report into a tree

getresults tr:=MyResults iw:=% (strLastReport$);

// So now we can access those results

ty Variable\tValue\tError;

separator 3;

ty yO\t$ (MyResults.Parameters.y0.Value)\t$ (MyResults.Parameters.y0.Error) ;
ty xc\t$ (MyResults.Parameters.xc.Value) \t$ (MyResults.Parameters.xc.Error);
ty w\t$ (MyResults.Parameters.w.Value) \t$ (MyResults.Parameters.w.Error) ;

ty A\t$ (MyResults.Parameters.A.Value) \t$ (MyResults.Parameters.A.Error);

User Tree in Page Storage

Information can be stored in a workbook, matrix book or graph page using a tree structure. The
following example shows how to create a section and add subsections and values to the active
page storage area.

// Add a new section named Experiment

page.tree.add (Experiment) ;

// Add a sub section called Sample;

page.tree.experiment.addsection (Sample) ;

// Add values to subsection;

page.tree.experiment.sample.RunNumber = 45;

page.tree.experiment.sample.Temperature = 273.8;

226 The Origin Project

13.2.3 Trees

// Add another subsection called Detector;
page.tree.experiment.addsection (Detector) ;

// Add values;
page.tree.experiment.detector.Type$ = "InGaAs";

page.tree.experiment.detector.Cooling$ = "Liquid Nitrogen";

Once the information has been stored, it can be retrieved by simply dumping the storage
contents:

// Dump entire contents of page storage

page.tree.=;

// or programmaticaly accessed

temperature = page.tree.experiment.sample.temperature;

string type$ = page.tree.experiment.detector.Type$;

[

ty Using % (type$) at $(temperature)K;
You can view such trees in the page Organizer for Workbooks and Matrixbooks.

User Tree in a Worksheet

Trees stored at the Page level in a Workbook can be accessed no matter what Sheet is active.
You can also store trees at the sheet level:

// Here we add two trees to the active sheet

wks.tree.add (Input) ;

// Dynamically create a branch and value

wks.tree.input.Min = 0;
// Add another value
wks.tree.input.max = 1;

// Add second tree
wks.tree.add (Output) ;

// and two more values
wks.tree.output.min = -100;

wks.tree.output.max = 100;

// Now dump the trees

wks.tree.=;

// or access it

ty Input $(wks.tree.input.min) to $(wks.tree.input.max);

ty Output $(wks.tree.output.min) to $(wks.tree.output.max);

// Access a sheet-level tree using a range
range rs = [Book7]Sheet2!;

rs!wks.tree.=;

You can view such trees in the page Organizer for Workbooks and Matrixbooks.

The Origin Project 227

13.3 Looping Over Objects

User Tree in a Worksheet Column

Individual worksheet columns can also contain metadata stored in tree format. Assigning and
retrieving tree nodes is very similar to the page-level tree.
// Create a COLUMN tree
wks.col2.tree.add(Batch) ;
// Add a branch
wks.col2.tree.batch.addsection (Mix) ;
// and two values in the branch
wks.col2.tree.batch.mix.ratio$ = "20:15:2";
wks.col2.tree.batch.mix.BatchNo= 113210;
// Add branch dynamically and add values
wks.col2.tree.batch.Line.No = 7;
wks.col2.tree.batch.Line.Date$ = 3/15/2010;

// Dump the tree to the Script Window

wks.col2.tree.=;

// Or access the tree

batch = wks.col2.tree.batch.mix.batchno;

string strDate$ = wks.col2.tree.batch.Line.Date$;

ty Batch $(batch) made on % (strDate$) [$(date(%(strDate$)))];

You can view these trees in the Column Properties dialog on the User Tree tab.

13.3 Looping Over Objects

There may be instances where it is desirable to perform a certain task or set of tasks on every
object of a particular type that exists in the Origin project. For example, you might want to
rescale all of your project graph layers or add a new column to every worksheet in the project.
The LabTalk document command (or doc) facilitates this type of operation. Several examples
are shown here to illustrate the doc command.

13.3.1 Looping over Objects in a Project

The document command with the -e or -ef switch (or doc -e command), is the primary means
for looping over various collections of objects in an Origin Project. This command allows user
to execute multiple lines of LabTalk script on each instance of the Origin Object found in the
collection.

Looping over Workbooks and Worksheets

You can loop through all worksheets in a project with the doc -e LB command. The script below
loops through all worksheets, skipping the matrix layers:

228 The Origin Project

13.3.1 Looping over Objects in a Project

//loop over all worksheets in project to print their names
//and the number of columns on each sheet
doc -e LB {
if (exist (%H,2)==0) //not a workbook, must be a matrix
continue;
int nn = wks.nCols;
string str=wks.Name$;
type "[%H]%(str$) has $(nn) columns";
}
The following example shows how to loop and operate on data columns that reside in different
workbooks of a project.

Open the sample project file available since Origin 8.1 SR2:
\\Samples\LabTalk Script Examples\Loop_wks.opj

In the project there are two folders for two different samples and a folder named Bgsignal for
the background signals alone. Each sample folder contains two folders named Freq1 and
Freq2, which correspond to data at a set frequency for the specific sample.

The workbook in each Freq folder contains three columns including DataX, DataY and the
frequency, which is a constant. The workbook's name in the Bgsignal folder is Bgsig. In the
Bgsig workbook, there are three columns including DataX and two Y columns whose long
names correspond to set frequencies in the workbook in each Freq folder.

The aim is to add a column in each workbook and subtract the background signal for a
particular frequency from the sample data for the same frequency. The following Labtalk script
performs this operation.
doc -e LB
{ //Loop over each worksheet.
if ($H != "Bgsig") //Skip the background signal workbook.
{
Freg=col (3) [1]; //Get the frequency.
wks.ncols=wks.ncols+l; //Add a column in the sample sheet.
//bg signal column for Freqg using long name.
range aa=[Bgsig]l!col ("$(Freq)");
wcol (wks.ncols)=col (2) —aa; //Subtract the bg signal.

wcol (wks.ncols) [L]$="Remove bg signal"; //Set the long name.

}

For increased control, you may also loop through the books and then loop through the sheets
in your code, albeit a bit more slowly than the code above.

The following example shows how to loop over all workbooks in the current/active Project
Explorer Folder, and then loop over each sheet inside each book that is found:

int nbooks = 0;

// Get the name of this folder

string strPath;

pe path path:=strPath;

// Loop over all Workbooks ...

The Origin Project 229

13.3 Looping Over Objects
// Restricted to the current Project Explorer Folder View
doc -ef W {

int nsheets = 0;

// Loop over all worksheets in each workbook
doc -e LW {
type Sheet name: % (layer.name$);
nsheets++;
}
type Found $ (nsheets) sheet(s) in %H;
type % (CRLF);
nbooks++;
}
type Found $ (nbooks) book(s) in folder % (strPath$) of project %G;
Additionally, we can replace the internal loop using Workbook properties:
int nbooks = 0;
// Get the name of this folder
string strPath;
pe_path path:=strPath;
// Loop over all Workbooks
// Restricted to the current Project Explorer Folder View
doc -ef W {
// Loop over all worksheets in each workbook
loop(ii,1l,page.nlayers) {
range rW = [Bookl1l]$(ii)!;
type Sheet name: % (rw.names$);
}
type Found $(page.nlayers) sheet(s) in $%H;
type % (CRLF);
nbooks++;
}
// Final report - %G contains the project name
type Found $ (nbooks) book(s) in folder % (strPath$) of project %G;

Looping Over Graph Windows

Here we loop over all plot windows (which include all Graph, Function Plots, Layout pages and
embedded Graphs).
doc -e LP
{
// Skip over any embedded graphs or Layout windows
if (page.IsEmbedded==0&&exist ($H) !=11)
{
string name$ = % (page.label$);
if (name.Getlength()==0) name$ = %H;

230 The Origin Project

13.3.1 Looping over Objects in a Project

type [%(name$)]% (layer.name$) ;

}
The following script prints the contents of all graph windows in the project to the default printer
driver.

doc -e P print; // Abbreviation of ''document -each Plot Print''

Looping Over Workbook Windows

The document -e command can be nested as in this example that loops over all Y datasets
within all Worksheets:
doc -e W
{
int iCount = 0;
doc -e DY

iCount++;

if (iCount < 2)
{ type Worksheet %H has $(wks.ncols) columns, ;
type $(iCount) of which are Y columns; }
else
{ type Worksheet %H has $(wks.ncols) columns, ;

type $(iCount) of which are Y columns; }

Looping over Columns and Rows

This example shows how to loop over all columns and delete every nth column
int ndel = 3; // change this number as needed;
int ncols = wks.ncols;
int nlast = ncols - mod(ncols, ndel);
// Need to delete from the right to the left
for (int ii = nlast; ii > 0; ii -= ndel)
{
delete wcol ($(ii))
}

This example shows how to delete every nth rows in a worksheet.

int ndel = 3; // change this number as needed
range rr = col(1l); // Get a range for column 1
nrows = rr.GetSize(); // Get the number of rows

int nlast = nrows - mod(nrows, ndel);
// Need to delete from the bottom to the top

for(int ii = nlast; ii > 0; ii -= ndel)

The Origin Project 231

13.3 Looping Over Objects

{
range rr = wcol(l) [$(ii):$(11)];
mark -d rr;
}
This script calculates the logarithm of four columns on Sheet1, placing the result in the
corresponding column of Sheet2:
for(ii=1; ii<=4; 1ii++)
{
range ss = [bookl]sheetl!col ($(ii));
range dd = [bookl]sheet2!col ($(ii));
dd = log(ss);

Looping Over Graphic Objects

You can loop over all Graphic Objects in the active layer. By wrapping this with two other
options we can cover an entire project.
// For each Plot
doc -e P
{
// For each Layer in each Plot
doc -e LW
{
// For each Graphic Object in each Layer in each Plot
doc -e G
{ // Set Legend background to Shadow
if ("$B"=="Legend") $%B.background = 2;
// Set timestamp color to Blue
if ("$B"=="timestamp") %B.color = color (blue);

13.3.2 Perform Peak Analysis on All Layers in Graph

This example shows how to loop over all layers in a graph and perform peak analysis on
datasets in each layer using a pre-saved Peak Analyzer theme file. It assumes the active
window is a multi-layer graph, and each layer has one data curve. It further assumes a pre-
saved Peak Analyzer theme exists.

// Block reminder messages before entering loop.

// This is to avoid either reminder message from popping up

// about Origin switching to the report sheet

type -mb O;

// Loop over all layers in graph window

232 The Origin Project

13.3.2 Perform Peak Analysis on All Layers in Graph

doc -e LW
{

// Perform peak analysis with preset theme

sec;

pa theme:="My Peak Fit";

watch;

/* sec and watch are optional,

they print out time taken for fitting data in each layer */

}
// Un-block reminder message

type -me;

The Origin Project 233

14 Analysis and Applications

Origin supports functions that are valuable to certain types of data analysis and specific
mathematic and scientific applications. The following sections provide examples on how to use
some of these functions, broken down by categories of use.

14.1 Mathematics

In this section we feature examples of four common mathematical tasks in data processing:

14.1.1 Average Multiple Curves

Multiple curves (XY data pairs) can be averaged to create a single curve, using the avecurves
X-Function. This X-Function provides several options such as using the input X values for the
output curve, or generating uniformly spaced X values for the output and then interpolating the
input Y data before averaging.
The following example demonstrates averaging with linear interpolation:

// Load sample data using existing 'loadDSC.ogs' script

string fpath$ = "Samples\LabTalk Script Examples\LoadDSC.ogs";

string LoadPath$=system.path.program$ + fpaths$;

// If the data does not load properly, then stop script execution.

if (!run.section (% (LoadPath$), Main, 0)) break 1;

// Data should now be loaded now into the active workbook ...

// Get the name of the active workbook, %H points to the active workbook

string dscBook$=%H;

// Perform average on all data using linear interpolation
avecurves 1y:=[dscBook$] (1l:end)! (1,2)
rd:=[<input>]<new name:="Averaged Data">!
method:=ave

interp:=linear;

Once averaged, the data and the result can be plotted:
// plot all the data and the averaged curve, using the plotxy X-Function:
plotxy [dscBook$] (l:end) ! (1,2) plot:=200;

235

14.1 Mathematics

14.1.2 Differentiation

Finding the Derivative

The following example shows how to calculate the derivative of a dataset. Note that the
differentiate X-Function is used, and that it allows higer-order derivatives as well:

// Import the data

newbook;

fname$ = system.path.program$ + "\Samples\Spectroscopy\HiddenPeaks.dat";

impasc;
// Calculate the 1lst and 2nd derivatives of the data in Column 2:

// Output defaults to the next available column, Column 3
differentiate iy:=Col (2);

// Output goes into Column 4 by default

differentiate iy:=Col (2) order:=2;

// Plot the source data and the results

// Each plot uses Column 1 as its x-values

plotstack iy:=((1,2), (1,3), (1,4)) order:=top;

Finding the Derivative with Smoothing

The differentiate X-Function also allows you to obtain the derivatives using Savitsky-Golay
smoothing. If you want to use this capability, set the smooth variable to 1. Then you can
customize the smoothing by specifying the polynomial order and the points of window used in
the Savitzky-Golay smoothing method. The example below illustrates this.

// Import a sample data with noise

newbook;

fpath$ = "\Samples\Signal Processing\fftfilterl.DAT";

fname$ = system.path.program$ + fpath$;

impasc;

bkname$=%h;

// Differentiate using Savitsky-Golay smoothing
differentiate iy:=col(2) smooth:=1 poly:=1 npts:=30;

// Plot the source data and the result
newpanel row:=2;

plotxy iy:=[bkname$]1!2 plot:=200 ogl:=1;
plotxy iy:=[bkname$]1!3 plot:=200 ogl:=2;

236 Analysis and Applications

14.1.3 Integration

14.1.3 Integration

The integ1 X-Function is capable of finding the area under a curve using integration. Both
mathematical and absolute areas can be computed. In the following example, the absolute
area is calculated:

//Import a sample data

newbook;

fname$ = system.path.program$ + "Samples\Mathematics\Sine Curve.dat";

impasc;

//Calculate the absolute area of the curve and plot the integral curve

integl iy:=col(2) type:=abs plot:=1;

Once the integration is performed, the results can be obtained from the integ1 tree variable:

// Dump the integl tree

integl.=;

// Get a specific value

double area = integl.area;
The X-Function also allows specifying variable names for quantities of interest, such as:

double myarea, ymax, xmax;

integl iy:=col(2) type:=abs plot:=1 area:=myarea y0:=ymax x0:=xmax;

type "area=$ (myarea) % (CRLF)ymax=$ (ymax) % (CRLF)xmax=$ (xmax)";
Integration of two-dimensional data in a matrix can also be performed using the integ2 X-
Function. This X-Function computes the volume beneath the surface defined by the matrix,
with respect to the z=0 plane.

// Perform volume integration of lst matrix object in first matrix sheet

range rmat=[MBookl]1!1;

integ2 im:=rmat integral:=myresult;

type "Volume integration result: $(myresult)";

14.1.4 Interpolation

Interpolation is one of the more common mathematical functions performed on data, and Origin

supports interpolation in two ways: (1) interpolation of single values and datasets through
range notation and (2) interpolation of entire curves by X-Functions.

Using XY Range

An XY Range once declared can be used as a function. The argument to this function can be a

scalar - which returns a scalar - or a vector - which returns a vector. In either case, the X
dataset should be increasing or decreasing. For example:

newbook;
wks.ncols = 4;
col(l) = data(1,0,-.05);

Analysis and Applications

237

14.1 Mathematics

col(2) = gauss(col(l),0,.5,.2,100);

range rxy = (1,2);

rxy (.67)=;

range newx = 3; // Use column as X column data

newx = {0, 0.3333, 0.6667, 1.0}; // Create our new X data

range newy = 4; // This is the empty column we will interpolate into

newy = rxy(newx);

You can then use such range variables as a function with the following form:
XYRangeVariable(RangeVariableOrScalar[,connect],param]])

where connect is one of the following options:
line
straight line connection
spline
spline connection
bspline
b-spline connection

and param is smoothing parameter, which applies only to bspline connection method. If
param=-1, then a simple bspline is used, which will give same result as bspline line connection
type in line plots. If 'param >=0, the NAG nag_1d_spline_function is used.

Notes: When using XY range interpolation, you should guarantee there are no duplicated
x values if you specify spline or bspline as the connection method. Instead, you can use
interpolation X-Functions.

From Worksheet Data

The following examples show how to perform interpolation using range as function, with data
from a worksheet as the argument.

Example1: The following code illustrates the usage of the various smoothing parameters for

bspline:
col (l)=data(l,9); // Fill column 1 with row data
col (2)=normal (9) ; // Fill column 2 with random values
col (3)=data(1l,9,0.01); // Fill Col(3) with desired X values

wks.col3.type = 4;

range bb=(1,2); // Declare range using cols 1,2;

// Compute interpolated values using different parameter settings

loop (i, 4, 10) {

wcol (1) =bb(col(3), bspline, $(i*0.1));

}
Example2: With an XY range, new Y values can be obtained at any X value using code such
as:

// Generate some data

newbook;

238 Analysis and Applications

14.1.4 Interpolation

wcol(1l)={1, 2, 3, 4};

wcol (2)={2, 3, 5, 6};

// Define XYrange

range rr =(1,2);

// Find Y value by linear interpolation at a specified X value.

rr(l.23) = ; // BANS: rr(l.23)=2.23

// Find Y value by linear interpolation for an array of X values.

wcol (3)={1.5, 2.5, 3.5};

range rNewX = col (3);

// Add new column to hold the calculated Y values

wks.addcol () ;

wcol (4) = rr (rNewX);
Example3: To find X values given Y values, simply reverse the arguments in the examples
above. In the case of finding X given Y, the Y dataset should be increasing or decreasing.

// Generate some data

newbook;

wcol(1l)={1, 2, 3, 4};

wcol (2)={2, 3, 5, 6};

// Define XYrange

range rr =(2,1); //swapping the X and Y

// Find X value by linear interpolation at a specified Y value.

rr(2.23) = ; // BANS: rr(2.23)=1.23;
// Add new column to hold the calculated X values
wks.addcol () ;

range rNewX = wcol (3);

// Find X value by linear interpolation for an array of Y values:
wcol (4)={2.5, 3.5, 5.5};

range rNewY = wcol (4);

rNewX = rr (rNewY) ;

From Graph

You can also use range interpolation when a graph page is active.
Example 1: Interpolate an array of values.

// Define range on active plot:

range rg = %C;

// Interpolate for a scalar value using the line connection style:
rg(3.54)=;

// Interpolate for an array of values:

// Give the location of the new X values:

range newX = [Book2]1!1;

// Give the location where the new Y values (output) should go:
range newY = [Book2]1!2;

// Compute the new Y values:

newY = rg(newX) ;

Analysis and Applications 239

14.1 Mathematics

Example 2: Specify the interpolation method.

// Define range on specific plot:

range -wx rWx = 2; // Use X of 2nd plot in active layer
range -w rWy = 2; // Use Y of 2nd plot in active layer
range rr = (rWx,rWy); // Construct an XY range from two ranges

// Give the location where the new X values (output) should go:

range newX = [Book2]1!1l;

newX = {5,15,25};

range newYl = [Book2]1!2; // Range for new Y
range newY2 = [Book2]1!3; // Range for new Y

// Find new Y values by linear interpolation for an array of X values:
newYl = rr (newX);
// Find new Y values by bspline interpolation for an array of X values:

newY2 = rr (newX,bspline);

Using Arbitrary Dataset

For two arbitrary datasets with the same length, where both are increasing or decreasing,
Origin allows you to interpolate from one dataset to the other at a given value. The datasets
can be a range variable, dataset variable, or column. The form to perform such interpolation is:
dataset1(value, dataset2)
which will perform interpolation on the group of XY data constructed by dataset2 and
dataset1, and it will return the so-called Y (dataset1) value at the given so-called X (dataset2)
value. For example:

// Using datasets

dataset dsl = {1, 2, 3, 4};

dataset ds2 = {2, 3, 5, 6};

// Return interpolated value in ds2 where X in dsl is 1.23

ds2(1.23, dsl) = ; // Return 2.23
// Return interpolated value in dsl where X in ds2 is 5.28
dsl(5.28, ds2) = ; // Return 3.28

// Using ranges
newbook;
wks.ncols = 3;
range rl = 2; // Column 2 in active worksheet
rl = {1, 2, 3, 4};
range r2 = 3; // Column 3 in active worksheet;
r2 = {2, 3, 5, 6};

r2(1.23, rl) = ;

rl(5.28, r2) = ;

// Using columns
col(3) (1.23, col(2)) = ;

240 Analysis and Applications

14.1.4 Interpolation

col(2) (5.28, col(3)) = ;

Creating Interpolated Curves

X-Functions for Interpolation of Curves

Origin provides three X-Functions for interpolating XY data and creating a new output XY data
pair:

Name Brief Description

Perform interpolation of XY data and generate output at uniformly spaced

interp1xy X

Perform interpolation of XY data and generate output at a given set of X

interp1 values

interp1trace | Perform interpolation of XY data that is not monotonic in X

Using Existing X Dataset

The following example shows how to use an existing X dataset to find interpolated Y values:
// Create a new workbook with specific column designations
newbook sheet:=0;
newsheet cols:=4 xy:="XYXY";
// Import a sample data file
fname$ = system.path.program$ + "Samples\Mathematics\Interpolation.dat";

impasc;

// Interpolate the data in col(l) and col(2) with the X values in col (3)
range rResult=col (4);

interpl ix:=col(3) iy:=(col(l), col(2)) method:=linear ox:=rResult;

//Plot the original data and the result
plotxy iy:=col(2) plot:=202 color:=1;
plotxy iy:=rResult plot:=202 color:=2 size:=5 ogl:=1;

Uniformly Spaced X Output

The following example performs interpolation by generating uniformly spaced X output:
//Create a new workbook and import a data file
fname$ = system.path.program$ + "Samples\Mathematics\Sine Curve.dat";
newbook;

impasc;

Analysis and Applications 241

14.1 Mathematics

//Interpolate the data in column 2
interplxy iy:=col (2) method:=bspline npts:=50;

range rResult = col(3);

//Plot the original data and the result
plotxy iy:=col (2) plot:=202 color:=1;
plotxy iy:=rResult plot:=202 color:=2 size:=5 ogl:=1;

Interpolating Non-Monotonic Data

The following example performs trace interpolation on data where X is not monotonic:
//Create a new workbook and import the data file
fname$ = system.path.program$ + "Samples\Mathematics\circle.dat";
newbook;

impasc;

//Interpolate the circular data in column 2 with trace interpolation
interpltrace iy:=Col (2) method:=bspline;

range rResult= col(4);

//Plot the original data and the result

plotxy iy:=col (2) plot:=202 color:=1;

plotxy iy:=rResult plot:=202 color:=2 size:=1 ogl:=1;
Note that the interpolation X-Functions can also be used for extrapolating Y values outside of
the X range of the input data.

Matrix Interpolation

The minterp2 X-Function can be used to perform interpolation/extrapolation of matrices.
// Create a new matrix book and import sample data;
newbook mat:=1;
filepath$ = "Samples\Matrix Conversion and Gridding\Direct.dat";
string fname$=system.path.program$ + filepath$;
impasc;
// Interpolate to a matrix with 10 times the x and y size of the original
range rin = 1; // point to matrix with input data;
int nx, ny;
nx = rin.ncols * 10;
ny = rin.nrows * 10;
minterp2 method:=bicubic cols:=nx rows:=ny ;
OriginPro also offers the interp3 X-Function which can be used to perform interpolation on 4-
dimensional scatter data.

242 Analysis and Applications

14.2.1 Descriptive statistics

14.2 Statistics

This is an example-based section demonstrating support for several types of statistical tests
implemented in script through X-Function calls.

14.2.1 Descriptive statistics

Origin provides several X-Functions to compute descriptive statistics, some of the most
common are:

Name Brief Description
colstats Columnwise statistics
corrcoef Correlation Coefficient
freqcounts | Frequency counts of a data set.
mstats Compute descriptive statistics on a matrix
rowstats Statistics of a row of data

Treat selected columns as a complete dataset; compute statistics of the

stats dataset.

For a full description of each of these X-Functions and its inputs and outputs, please see the
Descriptive Statistics.

Descriptive Statistics on Columns and Rows

The colstats X-Function can perform statistics on columns. By default, it outputs the mean, the
standard deviation, the number of data points and the median of each input column. But you
can customize the output by assigning different values to the variables. In the following
example, colstats is used to calculate the means, the standard deviations, the standard errors
of the means, and the medians of four columns.

//Import a sample data with four columns

newbook;

fname$ = system.path.program$ + "Samples\Statistics\nitrogen raw.txt";

impasc;

//Perform statistics on column 1 to 4

colstats irng:=1:4 sem:=<new> n:=<none>;

Analysis and Applications 243

14.2 Statistics

The rowstats X-Function can be used in a similar way. The following example calculates the
means of the active worksheet; the results are placed in a new added column at the first of the
worksheet.

Note: mean and sd are defaulted to be <new> in output, if not needed, set to <none>.

newbook;
fname$ = system.path.program$ + "Samples\Statistics\engine.txt";

impasc; //Import a sample data

wunstackcol irngl:=1 irng2:=2; //Unstack columns
wtranspose type:=all ow:=<new>; //Transpose worksheet
range rrl = 1:2;

delete rrl;

range rr2

2;

delete rr2; //delete empty columns

int nn = wks.ncols;

wks.addcol () ;

wks.col$ (nn+l) .1lname$ = Mean;

wks.col$ (nn+1) .index = 2; //Add mean column
wks.addcol () ;

wks.col$ (nn+2) .1lname$ = Sum;

wks.col$ (nn+2) .index = 3; //Add sum column

//Row statistics to get sum and average, saved to corresponding column.

rowstats irng:=4[1l]:end[end] sum:=3 mean:=2 sd:=<none>;

Frequency Count

If you want to calculate the frequency counts of a range of data, use the freqcounts X-
Function.

//Open a sample workbook

%a = system.path.program$ + "Samples\Statistics\Body.ogw";

doc -a %a;

//Count the frequency of the data in column 4

fregcounts irng:=4 min:=35 max:=75 stepby:=increment intervals:=5;

Correlation Coefficient

corrcoef X-Function can be used to compute the correlation coefficient between two datasets.
//import a sample data
newbook;
fname$ = system.path.program$ + "Samples\Statistics\automobile.dat";

impasc;

244 Analysis and Applications

14.2.2 Hypothesis Testing

//Correlation Coefficient

corrcoef irng:= (col(c):col(g)) rt:= <new name:=corr>

14.2.2 Hypothesis Testing

Origin/OriginPro supports the following set of X-Functions for hypothesis testing:

Name Brief Description

rowttest2 (Pro Perform a two-sample t-test on rows.

Only)
ttest1 Compare the sample mean to the hypothesized population mean.
ttest2 Compare the sample means of two samples.
. Determine whether two sample means are equal in the case that

ttestpair

they are matched.

Determine whether the sample variance is equal to a specified
vartest1

value.
vartest2 Determine whether two sample variances are equal.

For a full description of these X-functions, including input and output arguments, please see
the Hypothesis Testing.

One-Sample T-Test

If you need to know whether the mean value of a sample is consistent with a hypothetical value
for a given confidence level, consider using the one-sample T-test. Note that this test
assumes that the sample is a normally distributed population. Before we apply the one-sample
T-test, we should verify this assumption.

//Import a sample data

newbook;

fname$ = system.path.program$ + "Samples\Statistics\diameter.dat";

impasc;

//Normality test

swtest irng:=col (a) prob:=pl;
if (pl < 0.05)

{

type "The sample is not likely to follow a normal distribution."

Analysis and Applications 245

14.2 Statistics

else
{
// Test whether the mean is 21
ttestl irng:=col(l) mean:=21 tail:=two prob:=p2;
if (p2 < 0.05) {
type "At the 0.05 level, the population mean is";
type "significantly different from 21."; }
else {
type "At the 0.05 level, the population mean is NOT";
type "significantly different from 21."; }

Two-Sample T-Test

The ttest2 X-Function is provided for performing two-sample t-test. The example below
shows how to use it and print the results.

// Import sample data

newbook;

string fpath$ = "Samples\Statistics\time raw.dat";

string fname$ = system.path.program$ + fpath$;

impAsc;

// Perform two-sample t-test on two columns
// Sample variance is not assumed to be equal

ttest2 irng:=(col(l), col(2)) equal:=0;

// Type some results

type "Value of t-test statistic is $(ttest2.stat)";

type "Degree of freedom is $(ttest2.df)";

type "P-value is $(ttest2.prob)";

type "Conf. levels in 95% is ($(ttest2.1lcl), $(ttest2.ucl))";
The rowttest2 X-Function can be used to perform a two-sample T-test on rows. The following
example demonstrates how to compute the corresponding probability value for each row:

// Import sample data

newbook;

string fpath$ = "Samples\Statistics\ANOVA\Two-Way ANOVA raw.dat";

fname$ = system.path.program$ + fpath$;

impasc;

// Two-sample T-test on a row
rowttest2 irngl:=(col(a):col(c)) irng2:=(col(d):col(f)

tail:=two prob:=<new>;

246 Analysis and Applications

14.2.2 Hypothesis Testing

Pair-Sample T-Test

Origin provides the ttestpair X-Function for pair-sample t-test analysis, so to determine

whether the means of two same-sized and dependent samples from a normal distribution are
equal or not, and calculates the confidence interval for the difference between the means. The
example below first imports a data file, and then perform pair-sample t-test, and then output

the related results.
// Import sample data
newbook;
string fpath$ = "Samples\Statistics\abrasion raw.dat";
string fname$ = system.path.program$ + fpath$;

impasc;

// Perform pair-sample t-test one two columns

// Hypothetical means difference is 0.5

// And Tail is upper tailed

ttestpair irng:=(col(l), col(2)) mdiff:=0.5 tail:=upper;

// Type the results

type "Value of paired-sample t-test statistic is $(ttestpair.stat)";

type "Degree of freedom for the paired-sample t-test is $(ttestpair.df)";
type "P-value is $(ttestpair.prob)";

type "Conf. levels in 95% is ($(ttestpair.lcl), $(ttestpair.ucl))";

One-Sample Test for Variance

X-Function vartest1 is used to perform a chi-squared variance test, so to determine whether

the sample from a normal distribution could have a given hypothetical vaiance value. The
following example will perform one-sample test for variance, and output the P-value.

// Import sample data

newbook;

string fpath$ = "Samples\Statistics\vartestl.dat";

string fname$ = system.path.program$ + fpath$;

impasc;

// Perform F-test

// Tail is two tailed

// Test variance is 2.0

// P-value stored in variable p

vartestl irng:=col(l) var:=2.0 tail:=two prob:=p;

// Ouput P-value
p =

Analysis and Applications

247

14.2 Statistics

Two-Sample Test for Variance (F-Test)

F-test, also called two-sample test for variance, is performed by using vartest2 X-Function.
// Import sample data
newbook;
string fpath$ = "Samples\Statistics\time raw.dat";
string fname$ = system.path.program$ + fpath$;

impasc;

// Perform F-test
// And Tail is upper tailed
vartest2 irng:=(col(l), col(2)) tail:=upper;

// Output the result tree

vartest2.=;

14.2.3 Nonparametric Tests

Hypothesis tests are parametric tests when they assume the population follows some specific
distribution (such as normal) with a set of parameters. If you don't know whether your data
follows normal distribution or you have confirmed that your data do not follow normal
distribution, you should use nonparametric tests.

Origin provides support for the following X-Functions for non-parametric analysis:

Name Brief Description
. Test whether the location (median) of a population distribution is
signrank1 ; o
the same with a specified value
. . Test whether or not the medians of the paired populations are
signrank2/sign2 .
equal. Input data should be in raw format.
mwtest/kstest2 Test whether the two samples have identical distribution. Input

data should be Indexed.

. Test whether different samples' medians are equal, Input data

kwanova/mediantest .
should be arranged in index mode.

Compares three or more paired groups. Input data should be

friedman L
arranged in index.

As an example, we want to compare the height of boys and girls in high school.
//import a sample data

newbook;

248 Analysis and Applications

14.2.4 Survival Analysis

fname$ = system.path.program$ + "Samples\Statistics\body.dat";

impasc;

//Mann-Whitney Test for Two Sample
//output result to a new sheet named mynw
mwtest irng:=(col(c), col(d)) tail:=two rt:=<new name:=mynw>;

//get result from output result sheet
page.active$="mynw";

getresults tr:=mynw;

//Use the result to draw conclusion
if (mynw.Stats.Stats.C3 <= 0.05); //if probability is less than 0.05
{
type "At 0.05 level, height of boys and girls are differnt.";
//1if median of girls height is larger than median of boy's height
if (mynw.DescStats.Rl.Median >= mynw.DescStats.R2.Median)
type "girls are taller than boys.";
else
type "boys are taller than girls."
}
else
{
type "The girls are as tall as the boys."

14.2.4 Survival Analysis

Survival Analysis is widely used in the biosciences to quantify survivorship in a population
under study. Origin supports three widely used tests:

Name Brief Description
kaplanmeier Kaplan-Meier (product-limit) Estimator
phm_cox Cox Proportional Hazards Model
weibullfit Weibull Fit

For a full description of these X-functions, including input and output arguments, please see
the Survival Analysis.

Analysis and Applications 249

14.2 Statistics

Kaplan-Meier Estimator

If you want to estimate the survival ratio, create survival plots and compare the quality of
survival functions, use the kaplanmeier X-Function. It uses product-limit method to estimate
the survival function, and supports three methods for testing the equality of the survival
function: Log Rank, Breslow and Tarone-Ware.
As an example, scientists are looking for a better medicine for cancer resistance. After
exposing some rats to carcinogen DMBA, they apply different medicine to two different groups
of rats and record their survival status for the first 60 hours. They wish to quantify the
difference in survival rates between the two medicines.

// Import sample data

newbook;

fname$ = system.path.program$ + "Samples\Statistics\SurvivedRats.dat";

impasc;

//Perform Kaplan-Meier Analysis

kaplanmeier irng:=(1,2,3) censor:=0 logrank:=1
rd:=<new name:="sf">
rt:=<new name:="km">;

//Get result from survival report tree

getresults tr:=mykm iw:="km";

if (mykm.comp.logrank.prob <= 0.05)
{

type "The two medicines have significantly different"

type "effects on survival at the 0.05 level

type "Please see the survival plot.";

//Plot survival Function
page.actives$="sf";
plotxy iy:=(?, l:end) plot:=200 o:=[<new template:=survivalsf>];

else

type "The two medicines are not significantly different.";

Cox Proportional Hazard Regression

The phm_cox X-Function can be used to obtain the parameter estimates and other statistics
associated with the Cox Proportional hazards model for fixed covariates. It can then forecast
the change in the hazard rate along with several fixed covariates.

250 Analysis and Applications

14.2.4 Survival Analysis

For example, we want to study on 66 patients with colorectal carcinoma to determine the
effective prognostic parameter and the best prognostic index (a prognostic parameter is a
parameter that determines whether a person has a certain iliness). This script implements the
phm_cox X-Function to get the relevant statistics.
//import a sample data
newbook;
string fpath$ = "Samples\Statistics\ColorectalCarcinoma.dat";
fname$ = system.path.program$ + fpath$;
impasc option.hdr.LNames:=1
option.hdr.units:=0
option.hdr.CommsFrom:=2

option.hdr.CommsTo:=2;

//Perform Cox Regression

phm Cox irng:=(col(1l),col(2),col(3):end) censor:=0 rt:=<new name:="cox">;

//Get result from report tree
page.actives$="cox";

getresults tr:=cox;
type "Prognostic parameters determining colorectal carcinoma are:";

page.active$="ColorectalCarcinoma";

loop(ii, 1, 7)

{
// If probability is less than 0.05,
// we can say it is effective for survival time.
if (cox.paramestim.param$ (ii) .prob<=0.05)

type wks.col$ (ii+2) .comments$;

Weibull Fit

If it is known apriori that data are Weibull distributed, use the weibulifit X-Function to estimate
the weibull parameters.

//import a sample data

newbook;

fname$ = system.path.program$ + "Samples\Statistics\Weibull Fit.dat ";

impasc;

//Perform Weibull Fit
weibullfit irng:=(col(a), col (b)) censor:=1;

Analysis and Applications 251

14.3 Curve Fitting

14.3 Curve Fitting

The curve fitting features in Origin are some of the most popular and widely used. Many users
do not realize that the X-Functions performing the fitting calculations can be used just as easily
from script as they can from Origin's graphical user interfaces. The following sections address
curve fitting using LabTalk Script.

14.3.1 Linear, Polynomial and Multiple Regression

In LabTalk scripts, three simple quick use X-Functions, fitLR, fitPoly, and fitMR, are available
for performing linear regression, polynomial regression, and multiple linear regression,
respectively. And the -h switch can be used to see the argument list.

Linear Regression

fitLR finds a best fit straight line to a given dataset.

newbook; // create a new book

// file name
string strFile$ = system.path.program$ + "Samples\Curve Fitting\Linear Fit.dat";
impasc fname:=strFile$; // import the data

wks.addcol (FitData); // add a column for fitted data, named FitData

// perform linear fit on the first ten points of column 1 (X) and column 2 (Y)
// and the fitted data is output to FitData column
fitLR iy:=(1,2) N:=10 oy:=col (FitData);

// a tree object named fitLR is created, and contains the output values

fitlR.a = ; // output the fitted intercept
fitLR.b = ; // output the fitted slope
fitIR.= ; // output all the results, which include fitted intercept and slope

More examples about linear regression can be found in Curve Fitting sample page, or under
Fitting category in XF Script Dialog (press F11 to open).

Polynomial Regression

Polynomial fitting is a special case wherein the fitting function is mathematically non-linear, but
an analytical (non-iterative) solution is obtained. In LabTalk, fitPoly is used to control
polynomial fitting.

newbook; // create a new book;

// file name

string strFile$ = system.path.program$ + "Samples\Curve Fitting\Polynomial Fit.dat";

252 Analysis and Applications

14.3.1 Linear, Polynomial and Multiple Regression

impasc fname:=strFile$; // import data

wks.addcol (PolyCoef); // add a new column for polynomial coefficients
wks.addcol (FittedX); // add a new column for fitted X values
wks.addcol (FittedY); // add a new column for fitted Y values

// perform polynomial fitting on column 1 (X) and column 3 (Y)
// polynomial order is 3

fitPoly iy:=(1,3) polyorder:=3 coef:=col (PolyCoef) oy:=(col (FittedX),col (FittedY));

// the results are stored in the tree named fitPoly, output it
fitPoly.= ;
Additionally, fitPoly provides the outputs for adjusted residual sum of squares, coefficient of

determination, and errors in polynomial coefficients. For more detailed examples, please refer
to Curve Fitting sample page, or Fitting category in XF Script Dialog (press F11 to open).

Multiple Linear Regression

Multiple linear regression studies the relationship between several predictor variables and a
response variable, which is an extension of simple linear regression.
// create a new book and import some data
newbook;
fn$ = system.path.program$ + "Samples\Curve Fitting\Multiple Linear Regression.dat";
impasc fn$;
wks.addcol (FitValue); // add a column for fitted values of dependent

// perform multiple linear regression

// column D is dependent, and column A, B, and C are independents

// the output results are stored in a tree, tr

fitMR dep:=col (D) indep:=col (A) :col(C) mrtree:=tr odep:=col (FitValue) ;
tr.= ; // output the result tree

For more examples, please refer to Curve Fitting sample page, or Fitting category in XF
Script Dialog (press F11 to open).

Run Operation Classes to Perform Regression

The X-Functions depicted above are for simple quick use only to perform linear, polynomial
and multiple regression. That is to say, some quantities are not available when using these
three X-Functions. For full access to all quantities, the X-Function xop is provided to invoke the
internal menu commands (operation commands), so to run the corresponding operation
classes to perform regression. The following example shows how to use the X-Function xop to
perform linear fit, and generate a report.

// create a new book and import data

newbook;

fname$ = system.path.program$ + "Samples\Curve Fitting\Linear Fit.dat";

impasc fname$;

Analysis and Applications 253

14.3 Curve Fitting

tree 1rGUI; // GUI tree for linear fit
// initialize the GUI tree, with the FitLinear class

xop execute:=init classname:=FitLinear iotrgui:=1rGUI;

// specify the input data in the GUI tree
1rGUI.GUI.InputData.Rangel.X$ = col (A);
1rGUI.GUI.InputData.Rangel.¥$ = col(C);

// perform linear fit and generate a report with the prepared GUI tree

xop execute:=report iotrgui:=1rGUI;

xop execute:=cleanup; // clean up linear fit operation objects after fitting

14.3.2 Non-linear Fitting

Non-linear fitting in LabTalk is X-function based and proceeds in three steps, each calling (at
least) one X-function:

1. nlbegin: Begin the fitting process. Define input data, type of fitting function, and input
parameters.

2. nlfit: Perform the fit calculations

3. nlend Choose which parameters to output and in what format

Besides nlbegin, you can also start a fitting process according to your fitting model or data by
the following X-Functions:

e nlbeginr: Fitting multiple dependnet/independent variables' model
¢ nlbeginm: Fitting a matrix
¢ nlbeginz: Fitting XYZ worksheet data

Script Example

Here is a script example of the steps outlined above:
// Begin non-linear fitting, taking input data from Column 1 (X) and
// Column 2 (Y) of the active worksheet,
// specifying the fitting function as Gaussian,
// and creating the input parameter tree named ParamTree:
nlbegin iy:=(1,2) func:=gauss nltree:=ParamTree;
// Optional: let the peak center be fixed at X = 5
ParamTree.xc = 5; // Assign the peak center an X-value of 5.
ParamTree.f xc = 1; // Fix the peak center (f xc = 0 is unfixed).
// Perform the fit calculations:
nlfit;
// Optional: report results to the Script Window.

254 Analysis and Applications

14.3.2 Non-linear Fitting

type Baseline y0 is $(ParamTree.y0), ;

type Peak Center is $(ParamTree.xc), and;

type Peak width (FWHM) is $(ParamTree.w);

// end the fitting session without a Report Sheet

nlend;

Notes on the Parameter Tree

The data tree that stores the fit parameters has many options besides the few mentioned in the
example above. The following script command allows you to see all of the tree nodes (names
and values) at one time, displaying them in the Script Window.

// To see the entire tree structure with values:

ParamTree.=;
Note: since the non-linear fitting procedure is iterative, parameter values for the fit that are not
fixed (by setting the fix option to zero in the parameter tree) can and will change from their
initial values. Initial parameters can be set manually, as illustrated in the example above by
accessing individual nodes of the parameter tree, or can be set automatically by Origin (see
the nlfn X-function in the table below).

Table of X-functions Supporting Non-Linear Fitting

In addition to the three given above, there are a few other X-functions that facilitate non-linear
fitting. The following table summarizes the X-functions used to control non-linear fitting:

Name Brief Description

Start a LabTalk nlifit session on XY data from worksheet or graph.
Note:

nibegin This X-Function fits one independent/dependent model only. For multiple
dependent/independent functions, use nlbeginr instead.
nibeginr Start a LabTalk nlfit session on worksheet data. It is used for fitting multiple

dependent/independent variables functions.

nlbeginm | Start a LabTalk nlfit session on matrix data from matrix object or graph

nlbeginz | Start a LabTalk nlfit session on XYZ data from worksheet or graph

nifn Set Automatic Parameter Initialization option

nlpara Open the Parameter dialog for GUI editing of parameter values and bounds

Analysis and Applications 255

14.4 Signal Processing

nifit Perform iterations to fit the data

nlend End the fitting session and optionally create a report

For a full description of each of these X-functions and its inputs and outputs, please see the X-
function Reference.

Qualitative Differences from Linear Fitting

Unlike linear fitting, a non-linear fit involves solving equations to which there is no analytical
solution, thus requiring an iterative approach. But the idea---calling X-functions to perform the
analysis---is the same. Whereas a linear fit can be performed in just one line of script with just
one X-function call (see the Linear Fitting section), a non-linear fit requires calling at least three
X-functions.

14.4 Signal Processing

Origin provides a collection of X-functions for signal processing, ranging from smoothing noisy
data to Fourier Transform (FFT), Short-time FFT, Convolution and Correlation, FFT Filtering,
and Wavelet analysis.
These X-Functions are available under the Signal Processing category and can be listed by
typing the following command:

1x cat:="signal processing*";

Some functionality such as Short-time FFT and Wavelets are only available in OriginPro.

The following sections provide some short examples of calling the signal processing X-
Functions from script.

14.4.1 Smoothing

Smoothing noisy data can be performed by using the smooth X-Function.
// Smooth the XY data in columns 1,2 of the worksheet
// using SavitzkyGolay method with a third order polynomial
range r=(1,2); // assume worksheet active with XY data
smooth iy:=r meth:=sg poly:=3;
To smooth all plots in a layer, you can loop over the plots as below:
// Count the number of data plots in the layer and save result in
//variable "count"
layer -c;
// Get the name of this Graph page

string gname$ = $H;

256 Analysis and Applications

14.4.2 FFT and Filtering

// Create a new book named smooth - actual name is stored in bkname$

newbook na:=Smoothed;
// Start with no columns
wks.ncols=0;
loop(ii, 1, count) {
// Input Range refers to 'ii'th plot
range riy = [gname$]!$(ii);
// Output Range refers to two, new columns
range roy = [bkname$]! ($(ii*2-1),$(1i1*2));
// Savitsky-Golay smoothing using third order polynomial
smooth iy:=riy meth:=sg poly:=3 oy:=roy;

14.4.2 FFT and Filtering

The following example shows how to perform 1D FFT of data using the fft1 X-Function.
// Import a sample file
newbook;
fname$ = system.path.program$ + "Samples\Signal Processing\fftfilterl.dat";
impasc;
// Perform FFT and get output into a named tree
Tree myfft;
fftl ix:=2 rd:=myfft rt:=<none>;
// You can list all trees using the command: list vt
Once you have results in a tree, you can do further analysis on the output such as:
// Copy desired tree vector nodes to datasets
// Locate the peak and mean frequency components
dataset tmp x=myfft.fft.freq;
dataset tmp y=myfft.fft.amp;
// Perform stats and output results
percentile = {0:10:100};
diststats iy:=(tmp x, tmp y) percent:=percentile;
type "The mean frequency is $(diststats.mean)";
The following example shows how to perform signal filtering using the fft_filters X-Function:

// Import some data with noise and create graph

newbook;
string filepath$ = "Samples\Signal Processing\";
string filename$ = "Signal with High Frequency Noise.dat";

fname$ = system.path.program$ + filepath$ + filename$;
impasc;

plotxy iy:=(1,2) plot:=line;

// Perform low pass filtering

Analysis and Applications 257

14.5 Peaks and Baseline

fft filters filter:=lowpass cutoff:=1.5;

14.5 Peaks and Baseline

This section deals with Origin's X-Functions that perform peak and baseline calculations,
especially valuable for analyses pertaining to spectroscopy.

14.5.1 X-Functions For Peak Analysis

The following table lists the X-Functions available for peak analysis. You can obtain more
information on these functions from the X-Function Reference help file.

Name Brief Description
pa Perform peak analysis with a pre-saved Peak Analyzer theme file.
paMultiY Perform batch processing of peak analysis on multiple Y datasets
pkFind Pick peaks.
fitpeaks Fit multiple peaks.
blauto Create baseline anchor points.
interp1xy Interpolate the baseline anchor points to create baseline.

subtract_ref | Subtract existing baseline dataset from source data.
smooth Smooth the input prior to performing peak analysis.

integ1 Perform integration on the selected range or peak.

can also use peak functions to perform nonlinear fitting. For more information

For peaks that do not require baseline treatment or other advanced options, you
Q on non-linear fitting from script, please see the Curve Fitting section.

258 Analysis and Applications

14.5.2 Creating a Baseline

The following sections provide examples on peak analysis.

14.5.2 Creating a Baseline

This example imports a sample data file and creates baseline anchor points using the blauto
X-Function.

newbook;

filepath$ = "Samples\Spectroscopy\Peaks on Exponential Baseline.dat";

fname$ = system.path.program$ + filepath$;

impASC;

//Create 20 baseline anchor points
range rData = (1,2), rBase =(3, 4);
blauto iy:=rData number:=20 oy:=rBase;

Plot the data and anchor points in same graph:
// plot a line graph of the data
plotxy rData 200 o:=[<new>];
// plot baseline pts to same layer as scatter

plotxy rBase 201 color:=2 o:=1!;

14.5.3 Finding Peaks

This example uses the pkfind X-Function to find peaks in XY data:
// Import sample pulse data
newbook;
fname$ = system.path.program$ + "Samples\Spectroscopy\Sample Pulses.dat";
impASC;
// Find all positive peaks above a peak height value of 0.2
range rin=(1,2);
range routx = 3, routy=4;
pkfind iy:=rin dir:=p method:=max npts:=5 filter:=h value:=0.2

ocenter:=<none> ocenter x:=routx ocenter y:=routy;

Now graph the data as line plot and the peak x,y as scatter:
plotxy iy:=rin plot:=200;
// Set x output column as type X and plot the Y column
routx.type = 4;
plotxy iy:=routy plot:=201 color:=2 o:=1;

14.5.4 Integrating and Fitting Peaks

X-Functions specific to the goals of directly integrating peaks, or fitting multiple peaks, do not
exist. Therefore, to perform peak fitting or integration, one must first use the Peak Analyzer

Analysis and Applications 259

14.6 Image Processing

dialog to create and save a theme file. Once a theme file has been saved, the pa or paMultiY
X-Functions can be utilized to perform integration and peak fitting from script.

14.6 Image Processing

Origin 8 offers enhanced image processing capabilities compared with earlier versions of
Origin. A few examples of basic image processing are shown below, along with LabTalk scripts
for performing the necessary tasks.
To view a list of all X-Functions available for image processing, please type the following
command:

1x cat:="image*";

Some of the X-Functions are only available in OriginPro.

14.6.1 Rotate and Make Image Compact

This example rotates, trims the margins, and applies an auto-level to make the image more
compact and clear.,

Input Image Qutput Image

//Create a new folder in the Project Explorer
pe mkdir RotateTrim path:=aa$;

pe_cd aa$;

//Create a matrix and import an image into it
window -t m;
string fpath$ = "samples\Image Processing and Analysis\rice.bmp";

string fname$ = System.path.program$ + fpath$;

260 Analysis and Applications

14.6.1 Rotate and Make Image Compact

impimage;

window -r %$h Original;

//Get the dimension of the original image

matrix -pg DIM nColl nRowl;

window -d; //Duplicate the image

window -r %$h Modified;

imgRotate angle:=42;
imgTrim t:=17;

matrix -pg DIM nCol2 nRow2; //Get the dimension of the modified iamge

imgAutolLevel;// Apply auto leveling to image

window -s T; //Tile the windows horizontally

//Report

window -n n Report;

old = type.redirection;

type.redirection = 2;

type.notes$=Report;

type "Dimension of the original image: ";

type " $(nColl) * $(nRowl)\r\n"; // "754 * 668"
type "Dimension of the modified image: "; // "688 * 601"
type " $(nCol2) * $(nRow2)\r\n";

type.redirection = old;

}

Analysis and Applications 261

14.6 Image Processing

14.6.2 Edge Detection

Subtract background from Cells image then detect the edges.

Do -
° . :

ol
..-. Al |

1. calls(intpul imaga1) 2. backgroundiingul image2) 3. after subtract background

4. convert 1o binary with threshalds 5. smooth with median fiter 6. edges detection

' Pa .
<
+ —s
e ‘ i1 3
7. cells (input image1) B. edges 9. celis wilth edges{output image)

iﬂ. .

//Create a new folder in the Project Explorer
pe mkdir EdgeDetection path:=aa$;

pe _cd aa$;

//Create a matrix and import the cell image into it

window -t m;

string fpath$ = "samples\Image Processing and Analysis\cell.jpg";
string fname$ = System.path.program$ + fpath$;

impimage;

cell$ = %h;

//Create a matrix and import the background image into it
window -t m;

string fpath$ = "samples\Image Processing and Analysis\bgnd.jpg";

262 Analysis and Applications

14.6.3 Apply Rainbow Palette to Gray Image

string fname$ = System.path.program$ + fpath$;
cellbk$ = %h;

impimage;

//Subtract background and pre-processing

//%x, y is the offset of Image2

imgSimpleMath imgl:=cellbk$ img2:=cell$ func:=subl2 x:=7 y:=13 crop:=1;
//specify the lowest and highest intensity to be convert to binary 0 or 1.
imgBinary tl:=65 t2:=255;

// the dimensions of median filter is 18

imgMedian d:=18;

//Edge detection

// the threshold value 12 used to determine edge pixels,

// and shv (Sobel horizontal & vertical) Edge detection filter is applied.
imgEdge t:=12 f:=shv;

edge$ = %h;

//Add the edges back to the cell image

imgSimpleMath imgl:=edge$ img2:=cell$ func:=add;

window -z;

14.6.3 Apply Rainbow Palette to Gray Image

This example shows how to convert a gray image to rainbow color.

i

Input Image

pe mkdir Conversion path:=aa$;

Analysis and Applications 263

14.6 Image Processing

pe_cd aa$;

//Create a matrix and import a sample image

window -t m;

path$ = System.path.program$;

fname$ = path$ + "samples\Image Processing and Analysis\myocyte8.tif";
impimage;

window -r %$h Original;

window -d; //Duplicate the image

window -r %$h newimage;
imgC2gray; //Convert to gray

//Bpply pallete
fname$ = System.path.program$ + "palettes\Rainbow.PAL";
imgpalette palfile:=fname$;

window -s T; //Tile the windows horizontally

14.6.4 Converting Image to Data

When an image is imported into a matrix object, it is kept as type Image, indicated by the icon |
on the top right corner of the window. For certain mathematical operations such as 2D FFT the
type needs to be converted to Data, which would then be indicated by the icon D at the top
right corner.
This script example shows importing multiple images into a matrix book and converting them to
type data:

// Find files using wildcard

string path$=system.path.program$+"Samples\Image Processing and Analysis";

findFiles ext:="*tif*";

// Create a new matrix book and import all images as new sheets
newbook mat:=1;
impImage options.FirstMode:=0 options.Mode:=4;
// Loop over all sheets and convert image to byte data
doc -e LW {
img2m om:=<input> type:=1;

264 Analysis and Applications

15 User Interaction

There may be times when you would like to provide a specific type of input to your script that
would be difficult to automate. For instance, you wish to specify a particular data point on a
graph, or a certain cell in a worksheet as input to one or more functions called from script. To
do this, LabTalk supports ways of prompting the user for input while running a script.

In general, consecutive lines of a script are executed until such a user prompt is encountered.
Execution of the script then halts until the user has entered the desired information, and then

proceeds. The following sections demonstrate several examples of programming for this type
of user interaction:

15.1 Getting Numeric and String Input

This section gives examples of prompting for three types of user input during script execution:
1. Yes/No response
2. Single String
3. Multi-Type Input (GetN)

15.1.1 Get a Yes/No Response

The GetYesNo command can be used to get a Yes or No response from the user. The
command takes three arguments:

Syntax: getyesno stringMessage ToUser numericVariableName windowTitle

For example, entering the following line in the Script Window will generate a pop-up window

titted Check Sign of X and ask the user the Yes/No question Should X be positive? with the

options Yes, No, and Cancel as clickable buttons. If Yes is selected, xpos will be assigned a

value of 1. If No is selected, xpos will be assigned the value 0. If Cancel is selected, xpos will

be assigned the value 0, #Command Error! will be printed, and script execution will stop.
getyesno "Should X be positive?" xpos "Check Sign of X"

If additional script processing is required in any event, this command should be called from
elsewhere and the numeric value can be tested. In the following example, getyesno is called
from its own section of code and the two string inputs are passed as arguments to the
section(note, a multi-section LabTalk script will not work if simply pasted to the script window;
save to file and run):

[Main]

// Here is the calling code

265

15.1 Getting Numeric and String Input

int ival = -1;

run.section(,myGetYesNo, "Create a Graph of results?" "Graphing Option");
if(ival > O

{

type "Graph generated"; // Yes response
}
else
{
type "Graph NOT generated"; // No or Cancel response

// 'myGetYesNo' section
[myGetYesNo]
getyesno (%1) ival (%2);

15.1.2 Get a String

GetString can be used for user entry of a single string.
$B = "";
GetString (Enter as Last, First) Last (Your Name);
// Cancel stops here unless using technique as in GetYesNo
if ("%B"!="Last")
{
type User entered %B.;
}
else
{
type User clicked OK, but did not modify text;

15.1.3 Get Multiple Values

The GetN or GetNumber dialog prompts a user for a number, a string or a list entry (in previous
versions of Origin only numeric values were possible, hence the name). Starting with Origin
8.1, GetNumber will accept both string variables (i.e., string str1$) and string registers

(i.e., %A) for string input. Previous versions support string registers only. GetN currently
accepts up to 7 variables in addition to the dialog title.

With the increased functionality of GetN in Origin 8.1, string variables can be used in the
command call. In this case, the strings must first be declared. It is always a good practice to
create variables by declaration rather than by assignment alone; for more see Scope of (String)
Variables. For example:

// First, declare the variables to be used:

double nn = 3.2;

266 User Interaction

15.1.3 Get Multiple Values

string measurement$="length", units$="inches", event$="Experiment #2";

// Use GetN dialog to collect user data:
getn
(Value) nn

Measurement Type) measurement$

(

(Units) units$
(Event Name) event$
(

Dialog Title);

brings up the following dialog, prompting the user for input:

Dialog Title

oK

Cancel

Valu&|3.2

Measurement Typt:llt:ngth

Unitslinches

Event NamEIExperiment #2

The values entered in this dialog will be assigned to the declared variables. If the variables
have an initial value (before GetN is called), that value will show up in the input box, otherwise
the input box will appear blank. In either case, the initial value can be changed or kept.
To check the data entered, run the following line of script:

// Output the data:

[

type In % (event$), the % (measurement$) was $(nn) % (units$);

This next example script assumes a Graph is the active window and prompts for information
then draws a line and labels it. The call to GetN uses string registers and pre-defined lists as
inputs.

$A=Minimum;

iColor = 15;
dval = 2.75;
iStyle = 2;

// Opens the GetN dialog ...

// The extra %$-sign in front of %A interprets the string register
// literally, instead of treating it as a variable name.

getn (Label Quantile) %%A

User Interaction 267

15.1 Getting Numeric and String Input

(Color) iColor:@C
(Style) iStyle:@D
(Value) dval
(Set Quantile);

draw -n %A -1 -h dval; // Draws a horzontal, named line
%A.color = iColor; // Sets the line color
%A.linetype = iStyle; // Sets the line style

// Creates a text label named QLabel at the right end of the
// line
label -s -a x2 dval -n QLabel %A;

%A.Connect (QLabel, 1) ; // Connects the two objects
Note : The script requires that %A should be a single word and that object QLabel does not
exist.

The following character sequences, beginning with the @ character, access pre-defined lists
for GetN arguments:

List Description
@B List of Object Background attributes
@cC Basic Color List
@D Line Style List
@P Pattern List
@S Font Size List
@T Font List
@w Line Width List
@z Symbol Size List

Note that the value returned when a list item is selected within the GetN dialog is the index of
the item in the list. For instance, if one of your GetN entries is:
(Font Size) fs:@S

268 User Interaction

15.2.1 Screen Reader

and you select 18 from the drop-down list in the dialog, the variable fs will hold the value 8,
since 18 is the 8th item in the list.

Below is another example script that allows a user to change a Symbol Plot to a Line + Symbol

Plot or the reverse:
get %C -z iSymbolSize; // Get current Symbol Size
get %C -cl ilLineColor; // Get current Line color
iUseLine = 0;
// Now open the dialog to the user
getn (Symbol Size) iSymbolSize
Use Line) iUseline:2s
Line Color) iLineColor:QC
Set Plot Style);
// 1f User asked for Line

(
(
(
(

if (iUseLine == 1)

{
set %C -1 1; // Turn on the line
set %C -cl iLineColor; // Set the line color

}

// .. if not
else

set %C -1 0; // Turn off line
set %C -z iSymbolSize; // Set Symbol size

15.2 Getting Points from Graph

Any of the Tools in the Origin Tools Toolbar can be initiated from script, but three can be
linked to macros and programmed to do more.

To program tools, define the pointproc macro to execute appropriate code. The pointproc
macro runs when the user double-clicks or single-clicks and presses the Enter key.

15.2.1 Screen Reader

This script puts a label on a graph using the Screen Reader tool.
dotool 2; // Start the Screen Reader Tool
dotool -d; // Allow a single click to act as double click
// Here we define our '''pointproc''' macro
def pointproc {
label -a x y -n MyLabel Hello;
dotool 0; // Reset the tool to Pointer

User Interaction

269

15.2 Getting Points from Graph

done = 1; // Set the variable to allow infinite loop to end
}
// Script does not stop when using a tool,
// so further execution needs to be prevented.
// This infinite loop waits for the user to select the point
for(done = 0 ; done == 0;) sec -p .1l;
// A .1 second delay gives our loop something to do:
type Continuing script ...;

// Once the macro has run, our infinite loop is released

15.2.2 Data Reader

The Data Reader tool is similar to the Screen Reader, but the cursor locks on to actual data
points. If defined, a quittoolbox macro runs if user presses Esc key or clicks the Pointer Tool
to stop the Data Reader.

This example assumes a graph window is active and expects the user to select three points on
their graph.

@global = 1;

dataset dsx, dsy; // Create two datasets to hold the X and Y values

dotool 3; // Start the tool

// Define the macro that runs for each point selection

def pointproc {

dsx[count] = x; // Get the X coordinate

dsy([count] = y; // Get the Y coordinate

count++; // Increment count

if (count == 4) dotool 0; // Check to see if we have three points

else type -a Select next point;
}
// Define a macro that runs if user presses Esc key,
// or clicks the Pointer Tool:
def quittoolbox {
// Error : Not enough points

if (count < 4) ty -b You did not specify three datapoints;

else

{
draw -1 {dsx[1],dsyl[l],dsx[2],dsy[2]};
draw -1 {dsx[2],dsy[2],dsx[3],dsy[3]};
draw -1 {dsx[3],dsyl[3],dsx[1],dsy[1]};
double dsl2 = dsx[1]*dsy[2] - dsy[l]*dsx[2];
double dsl3 = dsy[1]*dsx[3] - dsx[l]*dsy[3];
double ds23 = dsy[3]*dsx[2] - dsy[2]*dsx[3];

)

area = abs(.5*(dsl2 + dsl3 + ds23
type -b Area is $(area);

270 User Interaction

15.2.3 Data Selector

}

count = 1; // Initial point

type DoubleClick your first point (or SingleClick and press Enter);
The following example allows user to select arbitrary number of points until Esc key is pressed
or user clicks on the Pointer tool in the Tools toolbar.

@global = 1;
dataset dsx, dsy; // Create two datasets to hold the X and Y values
dotool 3; // Start the tool

// Define the macro that runs for each point selection
def pointproc {

count++; // Increment count
dsx[count] = x; // Get the X coordinate
dsyl[count] = y; // Get the Y coordinate

// Define a macro that runs if user presses Esc key,
// or clicks the Pointer Tool:
def quittoolbox {
count=;
for(int ii=1; ii<=count; ii++)
{
type $(ii), $(dsx[ii]), S$(dsyldiil]);

}
count = 0; // Initial point
type "Click to select point, then press Enter";

type "Press Esc or click on Pointer tool to stop";

I
Pressing Enter key to select a point works more reliably than double-clicking on
the point.

You can also use the getpts command to gather data values from a graph.

15.2.3 Data Selector

The Data Selector tool is used to set a Range for a dataset. A range is defined by a beginning
row number (index) and an ending row. You can define multiple ranges in a dataset and Origin
analysis routines will use these ranges as input, excluding data outside these ranges.
Here is a script that lets the user select a range on a graph.

// Start the tool

dotool 4;

// Define macro that runs when user is done

User Interaction 271

15.2 Getting Points from Graph

def pointproc {
done = 1;
dotool 0;
}
// Wait in a loop for user to finish by pressing ...
// (1) Enter key or (2) double-clicking
for(done = 0 ; done == g2)
{
sec -p .1;
}
// Additional script will run once user completes tool.
ty continuing ..;
When using the Regional Data Selector or the Regional Mask Tool you can hook into the
quittoolbox macro which triggers when a user presses Esc key:
// Start the Regional Data Selector tool with a graph active
dotool 17;
// Define macro that runs when user is done
def quittoolbox {
done = 1;
}
// Wait in a loop for user to finish by pressing ...
// (1) Esc key or (2) clicking Pointer tool:
for(done = 0 ; done == g2)
{
sec -p .1;
}
// Additional script will run once user completes tool.
ty continuing ..;
And we can use an X-Function to find and use these ranges:
// Get the ranges into datasets
dataset dsB, dsE;
mks ob:=dsB oe:=dsE;
// For each range
for(idx = 1 ; idx <= dsB.GetSize () ; idx++)
{
// Get the integral under the curve for that range
integ %$C -b dsB[idx] -e dsE[idx];
type Area of %C from $(dsB[idx]) to $(dsE[idx]) is $(integ.area);

272 User Interaction

15.2.3 Data Selector

List of Tools in Origin Tools Toolbar. Those in bold are useful in programming.

Tool
Number

10

11

12

13

Description

Pointer - The Pointer is the default condition for the mouse and makes
the mouse act as a selector.

Zoomln - A rectangular selection on a graph will rescale the axes to the
rectangle. (Graph only)

Screen Reader - Reads the location of a point on a page.

Data Reader - Reads the location of a data point on a graph. (Graph
only)

Data Selector - Sets a pair of Data Markers indicating a data range.
(Graph only)

Draw Data - Allows user the draw data points on a graph. (Graph only)

Text - Allows text annotation to be added to a page.

Arrow - Allows arrow annotation to be added to a page.

Curved Line - Allows curved line annotation to be added to a page.

Line - Allows line annotation to be added to a page.

Rectangle - Allows rectangle annotation to be added to a page.

Circle - Allows circle annotation to be added to a page.

Closed Polygon - Allows closed polygon annotation to be added to a
page.

Open Polygon - Allows open polygon annotation to be added to a page.

User Interaction 273

15.3 Bringing Up a Dialog

14 Closed Region - Allows closed region annotation to be added to a page.

15 Open Region - Allows open region annotation to be added to a page.

ZoomOut - Zooms out (one level) when clicking anywhere in a graph.

16 (Graph only)
17 Regional Data Selector - Allows selection of a data range. (Graph only)
18 Regional Mask Tool - Allows masking a points in a data range. (Graph

only)

15.3 Bringing Up a Dialog

X-Functions whose names begin with dlg may be called in your scripts to facilitate dialog-
based interaction.

Name Brief Description
digChkList Prompt to select from a list
digFile Prompt with an Open File dialog
digPath Prompt with an Open Path dialog
digRowColGoto Go to specified row and column
digSave Prompt with a Save As dialog
digTheme Select a theme from a dialog

Possibly the most common such operation is to select a file from a directory. The following line
of script brings up a dialog that pre-selects the PDF file extension (group), and starts at the
given path location (init):

dlgfile group:=*.pdf init:="C:\MyData\MyPdfFiles";

type % (fname$); // Outputs the selected file path to Script Window

274 User Interaction

15.2.3 Data Selector

The complete filename of the file selected in the dialog, including path, is stored in the variable
fname$. If init is left out of the X-Function call or cannot be found, the dialog will start in the
User Files folder.
The dlgsave X-Function works for saving a file using a dialog.

dlgsave ext:=*.ogs;

[

type % (fname$); // Outputs the saved file path to Script Window

User Interaction 275

16 Working with Excel

Origin can use Excel Workbooks directly within the Origin Workspace. The Excel Workbooks
can be stored within the project or linked to an external Excel file (*.xIs, *.xlIsx). An external
Excel Workbook which was opened in Origin can be converted to internal, and a an Excel
Workbook created within Origin can be saved to an external Excel file.
To create a new Excel Workbook within Origin ..

window -tx;
The titlebar will include the text [Internal] to indicate the Excel Workbook will be saved in the
Origin Project file.

To open an external Excel file ..
document -append D:\Testl.xls;
The titlebar will include the file path and name to indicate the Excel file is saved external to the
Origin Project file.
You can save an internal Excel Workbook as an external file at which point it becomes a linked
external file ..
// The Excel window must be active. win -o can temporarily make it active
window -o Book5 {
// You must include the file path and the .xls extension
save -i D:\Test2.xls;
}
You can re-save an external Excel Workbook to a new location creating a new file and link ..
// Assume the Excel Workbook is active
// %X holds the path of an opened Origin Project file

save -1 %$XNewBook.xls;

277

17 Automation and Batch Processing

This chapter demonstrates using LabTalk script to automate analysis in Origin by creating
Analysis Templates, and using these templates to perform batch processing of your data:

17.1 Analysis Templates

Analysis Templates are pre-configured workbooks which can contain multiple sheets including
data sheets, report sheets from analysis operations, and optional custom report sheets for
presenting results. The analysis operations can be set to recalculate on data change, thus
allowing repeat use of the analysis template for batch processing or manual processing of
multiple data files.
The following script example opens a built-in Analysis Template, Dose Response
Analysis.ogw, and imports a data file into the data sheet. The results are automatically updated
based on the new data.
string fPath$ = system.path.program$ + "Samples\Curve Fitting\";
string fname$ = fPath$ + "Dose Response Analysis.ogw";
// RAppend/open the analsys template to current project
doc -a % (fname$) ;
string bn$ = %H;
win -o bn$ {
// Import no inhibitor data
fname$ = fPath$ + "Dose Response - No Inhibitor.dat";
impASC options.Names.FNameToSht:=0
options.Names.FNameToBk:=0
options.Names.FNameToBkComm: =0
orng:=[bn$]"Dose Response - No Inhibitor";
// Import inhibitor data
fname$ = fPath$ + "Dose Response - Inhibitor.dat";
impASC options.Names.FNameToSht:=0
options.Names.FNameToBk:=0
options.Names.FNameToBkComm:=0
orng:=[bn$]"Dose Response - Inhibitor";
// Active the result worksheet
page.active$ = result;
}
To learn how to create Analysis Templates, please refer to the Origin tutorial: Creating and
Using Analysis Templates.

279

17.2 Using Set Column Values to Create an Analysis Template

17.2 Using Set Column Values to Create an Analysis
Template

Many analysis tools in Origin provide a Recalculate option, allowing for results to update when
source data is modified, such as when importing new data to replace existing data. A workbook
containing such operations can be saved as an Analysis Template for repeated use with
Batch Processing.

The Set Column Values feature can also be used to create such Analysis Templates when
custom script is needed for your analysis.

In order to create Analysis Templates using the Set Column Values feature, the following steps
are recommended:

1. Set up your data sheet, such as importing a representative data file.

2. Add an extra column to the data sheet, or to a new sheet in the same workbook.
3. Open the Set Column Values dialog from this newly added column.
4

Enter the desired analysis script in the Before Formula Scripts panel. Note that your
script can call X-Functions to perform multiple operations on the data.

5. In you script, make sure to reference at least one column or cell of your data sheet
that will get replaced with new data. You can do this by defining a range variable that
points to a data column and then use that range variable in your script for computing
your custom analysis output.

6. Set the Recalculate drop-down in the dialog to either Manual or Auto, and press OK.

7. Use the File: Save Workbook as Analysis Template... menu item to save the
Analysis Template.

For an example on setting up such a template using script, please refer to the Origin tutorial:
Creating Analysis Templates using Set Column Value.

17.3 Batch Processing

One may often encounter the need to perform batch processing of multiple sets of data files or
datasets in Origin, repeating the same analysis procedure on each set of data. This can be
achieved in three different ways, and the following sections provide information and examples
of each.

17.3.1 Processing Each Dataset in a Loop

One way to achieve batch processing is to loop over multiple files or datasets, and within the
loop process each dataset by calling appropriate X-Functions and other script commands to
perform the necessary data processing.

280 Automation and Batch Processing

17.3.2 Using Analysis Template in a Loop

The following example shows how to import 10 files and perform a curve fit operation and print
out the fitting results:
// Find all files using wild card

string path$ = system.path.program$ + "Samples\Batch Processing"; // Path to find
files

// Find the files in the folder specified by path$ variable (default)

// The result file names are stored in the string variable fname$

// Separated by CRLF (default). Here wild card * is used, which means

// all files start with "T", and with the extension "csv

findFiles ext:="T*.csv";

// Start a new book with no sheets
newbook sheet:=0;
// Loop over all files
for (int iFile = 1; iFile <= fname.GetNumTokens (CRLF); iFile++)
{
// Get file name
string file$ = fname.GetToken (iFile, CRLF)S$;
// Import file into a new sheet
newsheet;
impasc file$;
// Perform gaussian fitting to col 2 of the current data
nlbegin iy:=2 func:=gaussamp nltree:=myfitresult;
// Just fit and end with no report
nlfit;
nlend;
// Print out file name and results
type "File Name: % (file$)";

type " Peak Center= $ (myfitresult.xc)";
type " Peak Height= $(myfitresult.A)";
type " Peak Width= $(myfitresult.w)";

17.3.2 Using Analysis Template in a Loop

Custom templates for analysis can be created in Origin by performing the necessary data
processing from the GUI on a representative dataset and then saving the workbook, or the
entire project, as an Analysis Template. The following example shows how to make use of an
existing analysis template to perform curve fitting on 10 files:

// Find all files using wild card

string fpath$ = "Samples\Batch Processing\";

string path$ = system.path.program$ + fpath$; // Path to find files

// Find the files in the folder specified by path$ variable (default)

// The result file names are stored in the string variable fname$

Automation and Batch Processing 281

17.3 Batch Processing

// Separated by CRLF (default). Here wild card * is used, which means
// all files start with "T", and with the extension "csv"

findFiles ext:="T*.csv";

// Set path of Analysis Template
string templ$ = path$ + "Peak Analysis.OGW";
// Loop over all files
for(int iFile = 1; iFile <= fname.GetNumTokens (CRLF); iFile++)
{
// Open an instance of the analysis template
doc -a % (templ$);
// Import current file into first sheet
page.active = 1;
impasc fname.GetToken (iFile, CRLF)S$S

// Issue a command to update all pending operations

// in case the operations were set to manual recalculate in the template

run -—-p au;

17.3.3 Using Batch Processing X-Functions

Origin provides script-accessible X-Functions to perform batch processing, where there is no
need to loop over files or datsets. One simply creates a list of desired data to be processed
and calls the relevant X-Function. The X-Function then either uses a template or a theme to
process all of the specified data. Some of these X-Functions can also create an optional
summary report that contains results from each file/dataset that were marked for reporting by
the user, in their custom analysis template.

The table below lists X-Functions available for batch analysis:

Name Brief Description

Perform batch processing of multiple files or datasets using Analysis

batchProcess Template, with optional summary report sheet

Perform peak analysis of multiple Y datasets using Peak Analyzer

paMultiY theme

The following script shows how to use the batchProcess X-Function to perform curve fitting of
data from 10 files using an analysis template, with a summary report created at the end of the

process.
// Find all files using wild card
string path$ = system.path.program$ + "Samples\Batch Processing\"; // Path to find
files

282 Automation and Batch Processing

17.3.3 Using Batch Processing X-Functions

// Find the files in the folder specified by path$ variable (default)
// The result file names are stored in the string variable fname$
// Separated by CRLF (default). Here wild card * is used, which means

// all files start with "T", and with the extension "csv

findFiles ext:="T*.csv";

// Set path of Analysis Template
string templ$ = path$ + "Peak Analysis.OGW";

// Call the Batch Processing X-Function

// Keep only the final summary sheet, delete intermediate books

batchProcess batch:=1 name:=templ$ data:=0 fill:="Raw Data"
append:="Summary" remove:=1 method:=impASC;

Batch processing using X-Functions can also be performed by calling Origin from an external
console; for more see Running Scripts From Console.

Automation and Batch Processing 283

18 Function Reference

This section provides reference lists of functions, X-Functions and Origin C Functions that are
supported in LabTalk scripting:

18.1 LabTalk-Supported Functions

Below is a tabular listing of functions supported by the LabTalk scripting language, broken
down by category.

An Alphabetical Listing of All LabTalk-Supported Functions is also available (CHM and Wiki
only!).

Key to Function Arguments

The datatypes of the arguments in the function tables are given by the following naming
convention:

Name Datatype
ds dataset
morn integer
str$ string
v vector

An argument with any other name is a numeric of type double.

Multiple arguments of type double will be given different names, as in
Histogram(ds, inc, min, max), or numbered, as in Cov(ds1, ds2, ave1, ave2).

Multiple arguments of a datatype other than double will be numbered, as in Corr(ds1, ds2).

285

18.1 LabTalk-Supported Functions

18.1.1 Statistical Functions

General Statistics

Name

Ave(ds, n)

Count(v [,n])

Cov(ds1, ds2, ave1,
ave?2)

Diff(ds)

Histogram(ds, inc,
min, max)

Max(v)

Mean(v)

Median(v [,n])

Min(v)

Percentile(ds1, ds2)

QCD2(n)
QCD3(n)

QCD4(n)

Brief Description

Breaks dataset into groups of size n, finds the average for each
group, and returns a range containing these values.

Counts elements in a vector v; n is an integer parameter
specifying different options.

Returns the covariance between two datasets, where ave? and
ave? are the respective means of datasets ds7 and ds2.

Returns a dataset that contains the difference between adjacent
elements in dataset.

Generates data bins from dataset in the specified range from
min to max.

This function returns the maximum value from a set of values.

Returns the average of a vector.

This function is used to return median of vector v, with
parameter n specifying the type of interpolation.

This function is used to return the minimum value from a vector
V.

Returns a range comprised of the percentile values for ds7 at
each percent value specified in ds2.

Returns Quality Control D2 Factor
Returns Quality Control D3 Factor

Returns Quality Control D4 Factor

286

Function Reference

18.1.1 Statistical Functions

Ss(ds [,ref])

StdDev(v)

StdDevP(v)

Sum(ds)

Total(v)

Returns the sum of the squares of dataset ds. The optional ref
defaults to the mean of ds as the reference value.

Calculates the standard deviation based on a sample.

Return the standard deviation based on the entire population
given as arguments.

Returns a range whose i th element is the sum of the first i
elements of the dataset dataset.

Returns the sum of a vector.

Cumulative Distribution Functions

Name

Betacdf(x,a,b)

Erf(x)

InvF(value, m, n)

Ncchi2cdf(x,f,lambda)

Poisscdf(n,rlamda)

Binocdf(m,n,p)

Fedf(f,df1,df2)

Invprob(x)

Ncfcdf(f,df1,df2,lambda)

Brief Description

Computes beta cumulative distribution function at x, with
parameters a and b.

The error function (or normal error integral).

The inverse F distribution function with m and n degrees of
freedom.

Computes the_}probability associated with the lower tail of the
non-central X~ distribution.

Computes the lower tail probabilities in given value %,
associated with a Poisson distribution using the
corresponding parameters in A.

Computes the lower tail, upper tail and point probabilities in
given value k, associated with a Binomial distribution using
the corresponding parameters in 11, .

Computes ' cumulative distribution function at :r, with
parameters @ and f, and lower tail.

The Inverse Probability Density function.

Computes the probability associated with the lower tail of the

Function Reference 287

18.1 LabTalk-Supported Functions

Srangecdf(q,v,n)

Bivarnormcdf(x,y,rho)

Gamcdf(g,a,b)

Invt(value, n)

Nctcdf(t,df,delta)

Tedf(t,df)

Chi2cdf(x,df)

Hygecdf(m1, m2, n1,
n2)

non-central I or variance-ratio distribution.

Computes the probability associated with the lower tail of the
distribution of the Studentized range statistic.

Computes the lower tail probability for the bivariate Normal
distribution.

Computes the lower tail probability for the gamma
distribution with real degrees of freedom, with parameters &
and

The inverse t distribution function with n degrees of freedom.

Computes the lower tail probability for the non-central
Student's t-distribution.

Computes the cumulative distribution function of Student's t-
distribution.

]
Computes the lower tail probability for the X~ distribution
with real degrees of freedom.

Computes the lower tail probabilities in a given value,
associated with a hypergeometric distribution using the
corresponding parameters.

Inverse Cumulative Distribution Functions

Name

Brief Description

]
Chi2inv(p,df) Compu_tgs th_e in\{er§e of the X' cdf for t_h_e corresponding
probabilities in X with parameters specified by 1-.

Ftable(x, m, n) The F distribution function with m and n degrees of freedom.

Finv(p,df1,df2) Computes the inverse of F cdf at ., with parameters 1 and 2

Gaminv(p,a,b) ,

Computes the inverse of Gamma cdf at 9» , with parameters @ and

IncF(x, m, n) The incomplete F-table function.

288

Function Reference

18.1.1 Statistical Functions

Inverf(x)

Norminv(p)

Srangeinv(p,v,n)
Ttable(x, n)

Tinv(p,df)
Whblinv(p,a,b)

Betainv(p,a,b)

Probability Dens
Name

Betapdf(x,a,b)

Whblpdf(x,a,b)
(8.6 SRO)

Computes inverse error function fnction at x.

Computes the deviate, 7, associated with the given lower tail
probabilip, ”, of the standardized normal distribution.

Computes the deviate, ‘'r, associated with the lower tail probability
of the distribution of the Studentized range statistic.

The Student's t distribution with n degrees of freedom.

Computes the deviate associated with the lower tail probability of
Student's t-distribution with real degrees of freedom.

Computes the inverse Weibull cumulative distribution function for the
given probability using the parameters a and b.

Returns the inverse of the cumulative distribution function for a
specified beta distribution.

ity Functions
Brief Description

Returns the probability density function of the beta distribution
with parameters 1 and b.

Returns the probability density function of the Weibull
distribution with parameters a and b.

lognpdf(x,mu,sigma) | Returns values at X of the lognormal pdf with distribution

(8.6 SRO)

parameters mu and sigma.

normpdf(x,mu,sigma) | computes the pdf at each of the values in X using the normal

(8.6 SRO)

poisspdf(x,lambda)
(8.6 SRO)

distribution with mean mu and standard deviation sigma.

computes the Poisson pdf at each of the values in X using mean
parameters in lambda.

Function Reference 289

18.1 LabTalk-Supported Functions

exppdf(x,lambda)
(8.6 SRO)

lappdf(x,a,b)
(8.6 SRO)

cauchypdf(x,a,b)
(8.6 SRO)

gampdf(x,a,b)
(8.6 SRO)

returns the pdf of the exponential distribution with mean
parameter lambda, evaluated at the values in X.

Laplace probability density function

Cauchy probability density function (also called Lorentz
distribution)

Returns the Gamma probability density with parameters a and
b.

18.1.2 Mathematical Functions

Basic Mathematics

Name
Abs(x)
Acos(x)
Acot(x)

Acoth(x)

Acsc(x)

Acsch(x)

Asec(x)

Asech(x)

Angle(x, y)

Brief Description
Returns the absolute value of x
Returns the inverse of the corresponding trigonometric function.
Returns the inverse of the corresponding trigonometric function.
Returns the inverse hyperbolic cotangent.

Returns the inverse of the corresponding trigonometric function
csc(x)=1/sin(x).

Returns the inverse hyperbolic cosecant.

Returns the inverse of the corresponding trigonometric function
sec(x)=1/cos(x).

Returns the inverse hyperbolic secant.
Returns the angle in radians measured between the positive X

axis and the line joining the origin (0,0) with the point given by
x,)

290

Function Reference

18.1.2 Mathematical Functions

Asin(x) Returns the inverse of the corresponding trigonometric function.
Atan(x) Returns the inverse of the corresponding trigonometric function.
Asinh(x) Returns the inverse hyperbolic sine.

Acosh(x) Return the inverse hyperbolic cosin.

Atanh(x) Return the inverse hyperbolic tangent.

Cos(x) Return value of cosine for each value of the given x.

Cosh(x) Returns the hyperbolic form of cos(x) .

Cot(x) Returns value of cotangent for each value of the given x.
Coth(x) Returns value of the hyperbolic cotangent of x.

Csc(x) Returns value of cosecant for each value of the given x.
Csch(x) Returns value of hyperbolic cosecant of x.

Degrees(angle)

Converts the radians into degrees.

Derivative(vd[,n])

Returns the derivative of the data list in a given vector.

Exp(x) Returns the exponential value of x.
Int(x) Return the truncated integer of x.
Ln(x) Return the natural logarithm value of x.
Log(x) Return the base 10 logarithm value of x.

Return the integer modulus (the remainder from division) of
Mod(n, m) . L .

integer x divided by integer y.
Nint(x) Return value of the nint(x) function is identical to round(x, 0).
Prec(x, n) Returns the input value x to n significant figures.

Returns the real modulus (the remainder from division) of
Rmod(x, y)

double x divided by double y.

Function Reference

291

18.1 LabTalk-Supported Functions

Round(x, n)

Secant(x)
Sech(x)
Sign(x)
Sin(x)
Sinh(x)
Sqrt(x)
Tan(x)
Tanh(x)

Radians(angle)

Distance(x1, y1, x2,
y2)

Distance3D(x1, y1,
z1, x2, y2, z2)

Angleint1(x1, y1, x2,
y2 [, n, m])

Angleint2(x1, y1, x2,
y2, x3,y3, x4, y4 [, n,
m])

Returns the value (or dataset) x to n decimal places.

Returns value of secant for each value of the given x.
Returns hyperbolic secant of x.

Returns the sign of real number x.

Returns value of sine for each value of the given x.
Returns the hyperbolic form of sin(x).

Returns the square root of x.

Returns value of tangent for each value of the given x.

Returns the hyperbolic form of and tan(x).

Returns radians given input angle in degrees.

Returns the distance with two points.

Returns the distance with two points in 3D.

Returns the angle between a line with endpoints (x1, y1) and
(x2, y2) and the X axis. Returns degrees if n=1 or radians if
n=0, default is radians. Constrains the returned angle value to
the first (+x,+y) and fourth (+x,-y) quadrant if m=0. If m=1,
returns values from 0—2pi radians or 0-360 degrees.

Returns the angle between two lines with endpoints (x1, y1) and
(x2, y2) for one line and (x3, y3) and (x4, y4) for the other.
Returns degrees if n=1 or radians if n=0, default is radians.
Constrains the returned angle value to the first (+x,+y) and
fourth (+x,-y) quadrant if m=0. If m=1, returns values from 0-2pi
radians or 0—360 degrees.

292

Function Reference

18.1.2 Mathematical Functions

Multi-parameter Functions

Multi-parameter functions are used as built-in functions for Origin's nonlinear fitter. You can
view the equation, a sample curve, and the function details for each multi-parameter function
by opening the NLFit (Analysis:Fitting:Nonlinear Curve Fit). Then select the function of interest

from the Function selection page.

For additional documentation on all the multi-parameter functions available from Origin's
nonlinear curve fit, see this PDF on the OriginLab website. This document includes the
mathematical description, a sample curve, a discussion of the parameters, and the LabTalk

function syntax for each multi-parameter function.

Name
Boltzmann(x, A1, A2, x0, dx)
Dhyperbl(x, P1, P2, P3, P4, P5)
ExpAssoc(x, y0, A1, t1, A2, t2)

ExpDecay2(x, y0, x0, A1, t1, A2, t2)

ExpGrow2(x, y0, x0, A1, t1, A2, t2)

Gauss(x, y0, xc, w, A)
Hyperbl(x, P1, P2)
Logistic(x, A1, A2, x0, p)
Lorentz(x, y0, xc, w, A)

Poly(x, a0, a1, a2, a3, a4, a5, a6, a7, a8,
ag)

Pulse(x, y0, x0, A, t1, P, t2)

Random Number Generators

Brief Description
Boltzmann Function
Double Rectangular Hyperbola Function
Exponential Associate Function
Exponential Decay 2 with Offset Function

Exponential Growth 2 with Offset
Function

Gaussian Function
Hyperbola Function
Logistic Dose Response Function

Lorentzian Function

Polynomial Function

Pulse Function

Two functions in this category, rnd() and ran() and grnd(), return a value. All the other

functions in this category return a range.

Function Reference 293

18.1 LabTalk-Supported Functions

Name Brief Description

md() Returns a value from a normally (Gaussian) distributed
9 sample,with zero mean and unit standard deviation.

normal(npts, seed) Returns a range with npts number of values.

Returns n random integers having a Poisson distribution
with mean mean. Optional seed provides a seed for the
number generator.

Poisson(n, mean [,
seed])

Return a value between 0 and 1 from a uniformly distributed

rnd() and ran() sample.

uniform(npts, seed) Returns a range with npts number of values.

Bessel, Beta, and Gamma Functions

Bessel Functions

Name Brief Description
Jdn(x, n) | Bessel function of order n

Yn(x, n) | Bessel Function of Second Kind

J1(x) First Order Bessel Function
Y1(x) First order Bessel function of second kind has the following form: Y1(x)
JO(x) Zero Order Bessel Function

YO(x) Zero Order Bessel Function of Second Kind

Beta Functions

Name Brief Description

beta(a, b) Beta Function with parameters a and b

294 Function Reference

18.1.2 Mathematical Functions

incbeta(x, a, b) Incomplete Beta Function with parameters x, a, b

Gamma Functions

Name

incomplete_gamma(a, x)

gammain(x)

Incgamma

Brief Description
Incomplete gamma functions

Natural Log of the Gamma Function

Approximations of NAG Functions

Name

bessel_i_nu(x,n)

bessel_i_nu_scaled(x,n)

bessel i0(x)

bessel_i0_scaled(x)

bessel_i1(x)

bessel_i1_scaled(x)

bessel_jO(x)

bessel_j1(x)

bessel k_nu(x,n)

Brief Description

Evaluates an approximation to the modified Bessel function
of the first kind l1+/4 (x)

Evaluates an approximation to the modified Bessel function
._-I- s P
of the firstkind ¢ 1% ()

Evaluates an approximation to the modified Bessel function
of the first kind, 10(x).

Evaluates an approximation to e " |:f;'

Evaluates an approximation to the modified Bessel function
of the first kind, 1 ().

Evaluates an approximation to e ()

Evaluates the Bessel function of the first kind,'«'ru ()

Evaluates an approximation to the Bessel function of the first
kind /1 ()

Evaluates an approximation to the modified Bessel function
of the second kind F v /4()

Function Reference 295

18.1 LabTalk-Supported Functions

Evaluates an approxim_ation to the modified Bessel function

bessel k_nu_scaled(x,n) K, 4 [r)
(Rl .

of the second kind ©

Evaluates an approximation to the modified Bessel function

| k -
bessel_ko(x) of the second kind,f‘L olz)

bessel_kO0_scaled(x) Evaluates an approximation to ¢ 250 ()

Evaluates an approximation to the modified Bessel function

B | k1 -
essel_k1(x) of the second kind,I‘LJ ()

bessel_k1_scaled(x) Evaluates an approximation to € /1 ()

Gamma(x) [r) = / "= le—tdy
Jo

Evaluates

18.1.3 Origin Worksheet and Dataset Functions
Worksheet Functions
Name Brief Description

Gets or sets values in the active worksheet or matrix. Indicate the row

Cell(n,m)
(n.m) number n and column number m in parentheses.

Refers to the dataset in a worksheet column, to a cell in the column, or to

Col(ds) the column headers.

Wcol(ds) | Can be used either on the left side or on the right side of an assignment.

Dataset Information Functions
Name Brief Description

Returns the dataset (error column) containing the error values of

Errof(ds) dataset.

296 Function Reference

18.1.3 Origin Worksheet and Dataset Functions

Findmasks(ds)

hasx(ds)

Index(d,vd[,n])

IsMasked(n,
ds)

List(val, ds)

Xindex(x, ds)

Xof(ds)

Xvalue(n, ds)

Name

asc(str$)

corr(ds1, ds2, k [,n])

peaks(ds, width, minht)

sort(ds)

Returns a dataset that contains the indexes of the masked data
points.

Returns 1 if dataset is plotted against an X dataset in the active layer.
If not, this function returns O.

Returns the index of x, which is controlled by ctrl, in a strictly
monotonic dataset.

Returns the number of masked points in dataset if index = 0.

Returns the index number in dataset ds where value val first occurs.

Returns the index number of the cell in the X dataset associated with
dataset, where the cell value is closest to x.

Returns a string containing the X values of dataset.

Returns the corresponding X value for dataset at row number i in the
active worksheet.

Dataset Manipulation Functions

Brief Description

Returns the ASCII value of the uppercase character in
parentheses.

Returns the correlation between two datasets using a
lag size k and an optional number of points n.

Returns a dataset containing indices of peaks found
using width and minHt as a criteria.

Returns a dataset that contains dataset, sorted in
ascending order.

Function Reference 297

18.1 LabTalk-Supported Functions

treplace(ds, valt, val2 [, Returns a dataset. Each value in dataset is compared to
cnd)] value1 according to the condition cnd.

Dataset Generation Functions
Name Brief Description

Create a dataset with values ranging from x7-x2 with an

Data(x1, x2, inc) increment, inc.

{v1, v2, ...vn}, Create a dataset of either discrete values, a range from vi-vn
{v1:vn}, with an implied increment equal to 1, or a range from v71—vn with
{v1:vstep:vn} an increment equal to vstep.

Create a dataset based on a fit of the data in Xdataset. If more
Fit(Xds,n) than one fit curve was produced in the last fitting session, n
indicates the index of the dataset to use (default = 1).

Table(ds1, ds2,
ds3)

String and Character Functions

Note: All of the following functions are available only in the Origin 8 SR6 or later version!

Name Brief Description
Char(n) Return the character specified by the code number.

Code(str$) thﬁtnug;n a numeric code for the first character in input

Compare(str1$, str2$ [, n]) Compare str1 with str2, identical will return 1.

Return TRUE if both strings are an exact match

Exact(str1$, str2$) (case and length).

298 Function Reference

18.1.3 Origin Worksheet and Dataset Functions

Find(str1$, str2$ [, n])

Format(data, str$)

Left(str$, n)

Len(str$)

Lower(str$)

MakeCSV(str1$[,n1,n2,str2$])$

MatchBegin(str1$, str2$ [, n, m])

MatchEnd(str1$, str2$ [, n, m)]

Mid(str$, n1, n2)

Replace(str1$, n1, n2, str2$)

Right(str$, n)

Search(str1$, str2$ [, n))

Substitute(str1$, str2$, str3$
[.n])

Finds a string (str2) within another string (str1)
starting from the specific positoin (StartPos), and
returns the starting position of str2 in str1.

Convert double to string with LabTalk formatting
option.

Returns the leftmost n characters from the string.

Returns the number of characters of a string (str).

Converts the string to lowercase.

Converts a string which has an identical delimiter
into CSV format.

Finds a string pattern (str2) within another string
str1 starting from the specified positoin StartPos,
and returns the starting position of str2 in str1.

Finds a string pattern (str2) within another string
str1 from the specified positoin StartPos, and
returns the ending position of str2 in str1.

Returns a specific number of characters (n2) from
the string (str), starting at the specific position (n1).

Replace n2 characters in string1 starting at n1th
position with string2.

Returns the rightmost n characters from the string.

Finds a string (str2) within another string (str1)
starting from the specific positoin (StartPos), and
returns the starting position of str2 in str1.

Substitute string3 with string2 when found in string1.

Function Reference 299

18.1 LabTalk-Supported Functions

Token(str$,n1[,n2])$ Get the Nth token using specified delimiter from a

string.
Trim(str$, n) Removes spaces from string.
Upper(str$) Converts the string to uppercase.
Date and Time Functions
Name Brief Description

Returns the day of the week according to calculate a
WeekDay(d, n) date. By default, the day is ranging from 0 (Sunday) to 6
(Saturday).

WeekNum(d, n) Return a number that indicates the calendar week
’ number of the year.

Year(d) Return the year as an integer in the range 0100-9999.

Month(d) Return the month as an integer from 1 (January) to 12
(December).
MonthName(d, n) Returns the Month name for specified month by index of
’ 11to 12, or as a Date value.
YearName(d, n) Returns the year in string form with input of year or
' date, with option n.

Day(d, n) Returns the day number of a given date.

Returns the hour as an integer, ranging from 0 (12:00
Hour(d), Hour(t) AM.) to 23 (11:00 P.M.).

Minute(d), Minute(t) Returns the minutes as an integer, ranging from 0 to 59.

Returns the seconds as a real value in the range 0
Second(d), Second(t) (zero) to 59.9999. . ’

Returns the current date-time as a date(Julian days)
Now() value.

Today() Returns the current date as a date(Julian days) value.

300 Function Reference

18.1.3 Origin Worksheet and Dataset Functions

Quarter(date)

Date(MM/dd/yy
HH:mm,[format])

Time(n1, n2, n3)

WeekDayName(d[,n1,n2])$

Utility Functions

Name
BitAND(n, m)
BitOR(n, m)

BitXOR(n, m)

colnum(colNameOrDs)

color(name)

color(name, 0)

color(R, G, B)

exist(name)

font(name)

Returns current quarter of time.

Returns the Julian-day value which Origin uses
internally to represent dates.

Returns the Julian-day value which Origin uses
internally to represent time.

Returns the name of the weekday according to index of
the day of the week or date in Julian format.

Brief Description
Returns bitwise AND operation of two intergers.
Returns bitwise OR operation of two intergers.
Returns bitwise XOR operation of two intergers.

Returns the column position number of the column
specified by colName.

Returns a number corresponding to the index in the
color list of the color specified by the name or by the
RGB value.

Similar to color(name) which returns a number
corresponding to the zero-based index in the color list.

Returns a integer color value. This value stores
additional info in the highest byte. R, G, and B
correspond to Red, Green, and Blue in RGB color
scheme, and each component value ranges from 0 to
255.

Returns a single value indicating what 'object type' the
given name is associated with string value.

Returns a number corresponding to the font list index
of the font specified by name.

Function Reference 301

18.2 LabTalk-Supported X-Functions

Returns the base 10 equivalent to the hexadecimal

hex(str$) value represented by the given string.
ISNA(dd) Determines whether the number is a NANUM.
NA() Returns NANUM.

Returns Y values using the user-defined fitting function
nlf_name(ds, p1, p2, ..., pn) name, using the dataset ds as X values, and the
parameters p1-pn.

xf_get_last_error_code() Get the last error code value of XFunction engine.

xf_get_last_error_message()$ | Get the last error string message of XFunction engine.

18.1.4 Notes on Use

Each function returns either a single value or a range of values (a dataset), depending on the
type of function and the arguments supplied. Unless otherwise specified, all functions will
return a range if the first argument passed to the function is a range, and all functions will
return a value if a value is passed.

18.2 LabTalk-Supported X-Functions

Below are several X-Functions, arranged by category, that are used frequently in LabTalk
script.

This is not a complete list of X-Functions in Origin, but only those supported by
LabTalk! For a complete listing of all X-Functions, arranged by category and

alphabetical, see the X-Function Reference.

18.2.1 Data Exploration

Name Brief Description
addtool_curve_deriv | Place a rectangle on the plot to perform differentiation

addtool_curve_fft Add a rectangle onto the plot to perform FFT

302 Function Reference

18.2.2 Data Manipulation

addtool_curve_integ
addtool_curve_interp
addtool_curve_stats

addtool_quickfit
addtool_region_stats
digRowColGoto
imageprofile

vinc

vinc_check

Attach a rectangle on the plot to perform integration

Place a rectangle on the plot to perform interpolation
Place a rectangle onto the plot to calculate basic statistics
Place a rectangle onto the plot to do fitting

Region Statistics:Place a rectangle or circle onto the plot to
calculate basic statistics

Go to specified row and column
Open the Image Profile dialog.
Calculate the average increment in a vector

Calculate the average increment in a vector

18.2.2 Data Manipulation

Name Brief Description
addsheet Set up data format and fitting function for Assays Template
assays Assays Template Configuration:Set up data format and fitting function
for Assays Template
copydata Copy numeric data
cxt Shift the x values of the active curve with different mode

levelcrossing | Get x coordinate crossing the given level

m2v Convert a matrix to a vector

map2c Combine an amplitude matrix and a phase matrix to a complex matrix.
mc2ap Convert complex numbers in a matrix to amplitudes and phases.
mc2ri Convert complex numbers in a matrix to their real and imaginary parts.

Function Reference 303

18.2 LabTalk-Supported X-Functions

mcopy

mks

mo2s

mri2c

ms20

newbook
newsheet
rank
reducedup
reduce_ex
reducerows

reducexy

subtract_line

subtract_ref
trimright
v2m

vap2c

vc2ap

VC2ri

Copy a matrix
Get data markers in data plot

Convert a matrix layer with multiple matrix objects to a matrix page with
multiple matrix layers.

Combine real numbers in two matrices into a complex matrix.

Merge (move) multiple matrix sheets into one single matrix sheet with
multiple matrixobjects.

Create a new workbook or matrix book

Create new worksheet.

Decide whether data points are within specified ranges

Reduce Duplicate X Data

Average data points to reduce data size and make even spaced X
Reduce every N points of data with basic statistics

Reduce XY data by sub-group statistics according to X's distribution

Subtract the active plot from a straight line formed with two points
picked on the graph page

Subtract on one dataset with another

Remove missing values from the right end of Y columns

Convert a vector to matrix

Combine amplitude vector and phase vector to form a complex vector.

Convert a complex vector into a vector for the amplitudes and a vector
for the phases.

Convert complex numbers in a vector into their real parts and imaginary
parts.

Function Reference

18.2.2 Data Manipulation

vfind
vri2c

vshift
Xy_resample

Xyz_resample

Gridding
Name
m2w

r2m
w2m

wexpand2m
XYZ2Mat
Xyz_regular
xyz_renka
xyz_renka_nag
xyz_shep
xyz_shep_nag
Xyz_sparse

Xyz_tps

Find all vector elements whose values are equal to a specified value

Construct a complex vector from the real parts and imaginary parts of
the complex numbers

Shift a vector
Mesh within a given polygon to resample data.

Resample XYZ data by meshing and gridding

Brief Description
Convert the Matrix data into a Worksheet
Convert a range of worksheet data directly into a matrix

Convert the worksheet data directly into a matrix, whose coordinates
can be specified by first column/row and row labels in the worksheet.

Convert Worksheet to Matrix by expand for columns or rows
Convert XYZ worksheet data into matrix

Regular Gridding

Renka-Cline Gridding Method

NAG Renka-Cline Gridding Method

Modified Shepard Gridding Method

NAG Modified Shepard Gridding Method

Sparse Gridding

Thin Plane Spline interpolation

Function Reference 305

18.2 LabTalk-Supported X-Functions

Matrix
Name Brief Description
mCrop Crop matrix to a rectangle area
mdim Set the dimensions and values of XY coordinates for the active matrix
mexpand EXCE[)(:;]PSd for every cell in the active matrix according to the column and row
mflip Flip the matrix horizontally or vertically

mproperty Set properties of the active matrix

mreplace Replace cells in the active matrix with specified datamreplace

mrotate90 Rotates the matrix 90/180 degreesmrotate90

msetvalue Assign each cell in the active matrix from the user definited formula

mshrink Shrink matrix according shrinkage factors

mtiranspose | Transpose the active matrix

Plotting

Name Brief Description

plotbylabel | Plot a multiple-layers graph by grouping on column labels

plotgroup Plot by page group, layer group, and data group

plotmatrix Plot scatter matrix of the dataset

plotmyaxes | Customize Multi-Axes plot

plotstack Plot stacked graph

plotxy Plot XY data with specific properties

306 Function Reference

18.2.2 Data Manipulation

insertSparklines
insertVar
merge_book

sparklines

Plot color fill surfaces or colormap surfaces for all matrix objects in the

plotms specified matrix sheet.
plotvm Plot from a range of cells in worksheet as a virtual matrix
Worksheet
Name Brief Description
colcopy Copy columns with format & headers
colint Set Sampling Interval (Implicit X) for selected Y columns
colmask Mask a range of columns based on some condition
colmove Move selected columns
colshowx Show X column (extract Sampling Interval) for the selected Y
column(s)
colswap Swap the position of two selected columns
filltext Fill the cell in the specified range with random letters
getresults Get the result tree
insertArrow Insert arrow
insertGraph Insert a graph into a worksheet cell
insertimg Insert images from files
insertNotes Embed a Notes page into a worksheet cell

Insert sparklines into worksheet cells
Insert Variables into cells
Merge the workbooks to a new workbook.

Add thumbnail size plots of each Y column above the data.

Function Reference 307

18.2 LabTalk-Supported X-Functions

updateEmbedGraphs
updateSparklines
w2xyz

wautofill

wautosize

wcellcolor

wcellformat
wcellmask
wcellsel
wclear
wcolwidth

wcopy

wdeldup

wdelrows

wkeepdup

wks_update_link_table

wmergexy

wmove_sheet

wmyvsn

Update the embedded Graphs in the worksheet.

Add thumbnail size plots of each Y column above the data
Convert formatted data into XYZ form

Worksheet selection auto fill

Resize the worksheet by the column maximal string length.

Set cell(s) color to fill color or set the selected character font
color to Font color.

Format the selected cells

Set cell(s) mask in specified range

Select cell(s) with specified condition
Worksheet Clear

Update the width of columns in worksheet
Create a copy of the specified worksheet

Remove Duplicated Rows:Remove rows in a worksheet based
on duplications in one column

Delete specified worksheet rows

Hold Duplicated Rows:Hold rows in a worksheet based on
duplications in one column

Update the contents in the worksheet to the linked table on
graph

Copy XY data from one worksheet to another and merge
mismatching X by inserting empty rows when needed

Move the specified worksheet to the destination workbook

Reset short names for all columns in worksheet

Function Reference

18.2.3 Database Access

wpivot

wproperties
wrcopy
wreplace
wrow2label
wrowheight

wsort

wsplit_book

wtranspose
wunstackcol

wxt

Pivot Table:Create a pivot table to visualize data
summarization

Get or set the worksheet property through a tree from script
Worksheet Range Copy with options to copy labels

Find and replace cell value in a worksheet

Set Label Value

Set row(s) height

Sort an entire worksheet or selected columns

Split specific workbooks into multiple workbooks with single
sheet

Transpose the active worksheet
UnStack grouped data into multiple columns

Worksheet Extraction

18.2.3 Database Access

Name
dbEdit
dbimport
dbinfo

dbPreview

Brief Description
Create/Edit/Remove/Load Query
Import data from database through the query
Show database connection information

Import to certain top rows for previewing the data from the query

Function Reference 309

18.2 LabTalk-Supported X-Functions

18.2.4 Fitting

Name Brief Description
findBase Find Baseline region in XY data
fitcmpdata Compare two datasets to the same fit model
fitcmpmodel | Compare two fit models to the same dataset
fitLR Simple Linear Regression for LabTalk usage
fitpoly Polynomial fit for LabTalk usage
getnir Get NLFit tree from a fitting report sheet
nibegin Start a LabTalk nlfit session
nlbeginm Start a LabTalk nlfit session on matrix data
nibeginr Sta_rt a LabTaII_< nifit session and fit multiple dependent/independent

variables function.

nibeginz Start a LabTalk nlfit session on xyz data
nlend Terminate an nlfit session
nlfit Iterate the nl fit session
nifn Set Automatic Parameter Initialization option
nigui Control NLFIT output quantities and destination.
nipara Open the Fitting Parameter dialog.

310

Function Reference

18.2.5 Graph Manipulation

18.2.5 Graph Manipulation

Name Brief Description

add_graph_to_graph Paste a graph from existing graphs as an EMF object onto a
layout window

add_table_to _graph | Add a linked table to graph

Paste a worksheet from existing worksheets onto a layout
add_wks_to_graph window

add_xyscale_obj Add a new XY Scale object to the layer

axis_scrollbar

axis_scroller

g2w

gxy2w

layadd
layalign
layarrange
laycolor
laycopyscale
layextract
laylink

laymanage

Add a scrollbar object to graph to allow easy zooming and
panning

Add a pair of inverted triangles to the bottom X-Axis that allows
easy rescaling

Move graphs into worksheet

For a given X value, find all Y values from all curves and add
them as a row to a worksheet

Create a new layer on the active graph

Align some destination layers according to the source layer.
Arrange the layers on the graph.

Fill layer background color

Copy scale from one layer to another layer

Extract specified layers to separate graph windows

Link several layers to a layer.

Manage the organization of layers in the active graph

Function Reference 311

18.2 LabTalk-Supported X-Functions

laysetfont Fix the display scaling of text in the layer(s) to one.
laysetpos Set position of one or more graph layers.

laysetratio Set ratio of layer width to layer height.

laysetscale Set axes scales for graph layers.

laysetunit Set unit for graph layers.

layswap Swap the positions of two graph layers.

laytoggle Toggle the left axis and bottom axis on and off.
layzoom Center zooms on layer

legendupdate Update or reconstruct legend on the graph page/layer

merge_graph

Merge selected graph windows into one graph

newinset Create a new graph page with insets
newlayer Add a new layer to graph
newpanel Create a new graph with panels
Apply Palette to &Color Map:Apply palette to the specified graph
palApply with an existing palette file
pickpts Pick XY data points from a graph
speedmode Set speed mode properties

18.2.6 Image

Adjustments
Name Brief Description
imgAutoLevel Apply auto leveling to image

312

Function Reference

18.2.6 Image

imgBalance
imgBrightness
imgColorlevel
imgColorReplace
imgContrast
imgFuncLUT

imgGamma

imgHistcontrast

imgHisteq
imgHue
imglnvert
imgLevel

imgSaturation

Analysis

Name

imgHistogram

Name
imgBlend

imgMathfun

Balance the color of image

Adjust the brightness of Image

Apply user-defined color leveling to image
Replace color within pre-defined color range
Adjust contrast of image

Apply lookup table function to image

Apply gamma correction to image

Adjust the contrast of image, using histogram to calculate the
median.

Apply histogram equalization
Adjust hue of image

Invert image color

Adjust the levels of image

Adjust Saturation of image

Brief Description

Image histogram

Arithmetic Transform

Brief Description
Blend two images into a combined image

Perform math function on image pixel values with a factor

Function Reference 313

18.2 LabTalk-Supported X-Functions

imgMorph Apply morphological filter to numeric Matrix or grayscale/binary image
imgPixlog Perform logic operation on pixels

imgReplaceBg | Replace background color

imgSimpleMath | Simple Math operation between two Images

imgSubtractBg | Subtract image background

Conversion
Name Brief Description
img2m Convert a grayscale image to a numeric data matrix
imgAutoBinary Auto convert to binary
imgBinary Convert to binary
imgC2gray Convert to a grayscale image

imgDynamicBinary Convert to binary using dynamic threshold

imglnfo Print out the given image's basic parameters in script window
imgPalette Apply palette to image

imgRGBmerge Merge RGB channels to recombine a color image
imgRGBsplit Split color image into R,G, B channels

imgThreshold Convert part of an image to black and white using threshold
m2img Convert a numeric matrix to a grayscale image

Geometric Transform

Name Brief Description

imgCrop Crop image to a rectangle area

314 Function Reference

18.2.7 Import and Export

imgFlip Flip the image horizontally or vertically
imgResize Resize image

imgRotate Rotates an image by a specified degree
imgShear Shear the image horizontally or vertically
imgTrim Trim image with auto threshold settings

Spatial Filters

Name Brief Description
imgAverage Apply average filter to image
imgClear Clear the image
imgEdge Detecting edges
imgGaussian Apply Gaussian filter
imgMedian Apply median filter
imgNoise Add random noise to image
imgSharpen Increase or decrease image sharpness
imgUnsharpmask Apply unsharp mask
imgUserfilter Apply user defined filter

18.2.7 Import and Export

Name Brief Description
batchProcess | Batch processing with Analysis Template to generate summary report

expASC Export worksheet data as ASCII file

Function Reference 315

18.2 LabTalk-Supported X-Functions

expGraph Export graph(s) to graphics file(s)

explmage Export the active Image into a graphics file

expMatASC Export matrix data as ASCII file

expNITDM Export workbook data as National Instruments TDM and TDMS files

expPDFw Export worksheet as multipage PDF file

expWAV Export data as Microsoft PCM wave file

expWks Export the active sheet as raster or vector image file

img2GIF Export the active Image into a gif file

impASC Import ASCII file/files

impBin2d Import binary 2d array file

impCDF Import CDF file. It supports the file version lower than 3.0

impCSV Import csv file

impDT Import Data Translation Version 1.0 files

impEDF Import EDF file

impEP Import EarthProbe (EPA) file. Now only EPA file is supported for
EarthProbe data.

impExcel Import Microsoft Excel 97-2007 files

impFamos Import Famos Version 2 files

impFile Import file with pre-defined filter.

impHDF5 Import HDF5 file. It supports the file version lower than 1.8.2

impHEKA Import HEKA (dat) files

implgorPro Import WaveMetrics IgorPro (pxp, ibw) files

Function Reference

18.2.7 Import and Export

implmage
impinfo

impJCAMP

impJNB

impKG

impMatlab

impMDF

impMNTB

impNetCDF

impNIDIAdem

impNITDM

impODQ

imppClamp

impSIE
impSPC
impSPE
impWav
insertimg2g

iwfilter

Import a graphics file
Read information related to import files.
Import JCAMP-DX Version 6 files

Import SigmaPlot (JNB) file. It supports version lower than SigmaPlot
8.0.

Import KaleidaGraph file
Import Matlab files

Import ETAS INCA MDF (DAT, MDF) files. It supports INCA 5.4 (file
version 3.0).

Import Minitab file (MTW) or project (MPJ). It supports the version prior
to Minitab 13.

Import netCDF file. It supports the file version lower than 3.1.
Import National Instruments DIAdem 10.0 dat files

Import National Instruments TDM and TDMS files(TDMS does not
support data/time format)

Import *.0DQ files.

Import pCLAMP file. It supports pClamp 9 (ABF 1.8 file format) and
pClamp 10 (ABF 2.0 file format).

Import nCode Somat SIE 0.92 file
Import Thermo File

Import Princeton Instruments (SPE) file. It supports the version prior to
2.5.

Import waveform audio file

Insert Images From Files:Insert graphic file(s) into Graph Window

Make an X-Function import filter

Function Reference 317

18.2 LabTalk-Supported X-Functions

plotpClamp

Plot pClamp data

reimport

Re-import current file

18.2.8 Mathematics

Name Brief Description
avecurves Average or concatenate multiple curves
averagexy Average or concatenate multiple curves
bspline Perform cubic B-Spline interpolation and extrapolation
csetvalue Setting column value

differentiate

Calculate derivative of the input data

filter2 Apply customized filter to a Matrix
integ1 Perform integration on input data
integ2 Calculate the volume beneath the matrix surface from zero panel.
. Perform 1D interpolation or extrapolation on a group of XY data to find Y
interp1 . . X
at given X values using 3 alternative methods.
interp1q Perform linear interpolation and extrapolation
interp1trace | Perform trace/periodic interpolation on the data
Perform 1D interpolation/extrapolation on a group of XY data to generate
interp1xy a set of interpolated data with uniformly-spaced X values using 3
alternative methods.
interp3 Perform 3D interpolation
interpxyz Perform trace interpolation on the XYZ data
marea Calculate the area of the matrix surface

Function Reference

18.2.9 Signal Processing

mathtool Perform simple arithmetic on data

medianflt2 Apply median filter to a matrix

minterp2 2D Interpolate/Extrapolate on the matrix

minverse Generate (pseudo) inverse of a matrix

normalize Normalize the input data

polyarea Calculate the area of an enclosed plot region
reflection Reflect a range of data to certain interval
rnormalize Normalize Columns:Normalize the input range column by column
specialflt2 Apply predefined special filter to a matrix

spline Perform spline interpolation and extrapolation
vcmath1 Perform simple arithmetic on one complex number
vcmath2 Perform simple arithmetic on two complex numbers
vmathtool Perform simple arithmetic on input data

vhormalize | Normalize the input vector

white_noise | Add white (Gaussian) noise to data

Xyzarea Calculate the area of the XYZ surface

18.2.9 Signal Processing

Name Brief Description
cohere Perform coherence
conv Compute the convolution of two signals
corr1 Compute 1D correlation of two signals

Function Reference

319

18.2 LabTalk-Supported X-Functions

corr2 2D correlation.
deconv Compute the deconvolution
envelope Get envelope of the data
fft_filter2 Perform 2D FFT filtering
fft_filters Perform FFT Filtering
hilbert Perform Hilbert transform or calculate analytic signal
msmooth Smooth the matrix by expanding and shrinking
smooth Perform smoothing to irregular and noisy data.
FFT
Name Brief Description
fft1 Fast Fourier transform on input vector (discrete Fourier transforms)
fft2 Two-dimensional fast Fourier transform
ifft1 Perform inverse Fourier transform
ifft2 Inverse two-dimensional discrete Fourier transform
stft Perform Short Time Fourier Transform

unwrap Transfer phase angles into smoother phase

Wavelet

Name Brief Description
cw_evaluate | Evaluation of continuous wavelet functions

Computes the real, one-dimensional, continuous wavelet transform

cwt coefficients

320 Function Reference

18.2.10 Spectroscopy

dwt 1D discrete wavelet transform
dwt2 Decompose matrix data with wavelet transform
idwt Inverted 1D Wavelet Transform from its approximation coefficients and
detail coefficients.
idwt2 Reconstruct 2D signal from coefficients matrix
mdwt Multilevel 1-D wavelet decomposition
wtdenoise Remove noise using wavelet transform
wtsmooth Smooth signal by cutting off detailed coefficients
18.2.10 Spectroscopy
Name Brief Description
blauto Create baseline automatically

fitpeaks | Pick multiple peaks from a curve to fit Guassian or Lorentzian peak functions
pa Open Peak Analyzer

Peak Analysis batch processing using Analysis Theme to generate summary

paMultiY report

pkFind Pick peaks on the curve.

18.2.11 Statistics

Descriptive Statistics

Name Brief Description
colstats Perform statistics on columns
corrcoef Calculate correlation coefficients of the selected data

Function Reference 321

18.2 LabTalk-Supported X-Functions

discfreqs Calculate Frequency for discrete/categorical data
freqcounts Calculate frequency counts

kstest One sample Kolmogorov-Smirnov test for normality
lillietest Lilliefors normality test

mmoments Calculate moments on selected data

moments Calculate moments on selected data

mquantiles Calculate quantiles on selected data

mstats Calculate descriptive statistics on selected data
quantiles Calculate quantiles on selected data

rowquantiles Calculate quantiles on row(s)

rowstats Descriptive statistics on row(s)

stats Calculate descriptive statistics on selected data
swtest Shapiro-Wilk test for normality:Shapiro-Wilk Normality test

Hypothesis Testing

Name Brief Description
rowttest2 Perform a two-sample t-test on rows
ttest1 One-Sample t-test
ttest2 Two-Sample t-test
ttestpair Pair-Sample t test
vartest1 Chi-squared variance test
vartest2 Perform a F-test.

322

Function Reference

18.2.12 Utility

Nonparametric Tests

Name Brief Description
friedman Perform a Friedman ANOVA
kstest2 Perform a two-sample KS-test on the input data.
kwanova Perform Kruskal-Wallis ANOVA
mediantest Perform median test
mwtest Preform Mann-Whitney test
sign2 Perform paired sample sign test
signrank1 Perform a one-sample Wilcoxon signed rank test
signrank2 Preform paired sample Wilcoxon signed rank test

Survival Analysis

Name Brief Description
kaplanmeier Perform a Kaplan-Meier (product-limit) analysis
phm_Cox Perform a Cox Proportional Hazards Model analysis
weibullfit Perform a Weibull fit on survival data

18.2.12 Utility

Name Brief Description
customMenu Open Custom Menu Editor Dialog.
get_plot_sel Get plot selections in data plot
get wks_sel Get selections in worksheet

Function Reference 323

18.2 LabTalk-Supported X-Functions

themeApply2g

themeApply2w
themeEdit

Xop

File
Name
cmpfile
digFile
digPath

digSave
filelog

findFiles
findFolders
imgFile
template_saveas

web2file

System

Name

cd

cdset

Apply a theme to a graph or some graphs.

Apply a theme to a worksheet or some worksheets.
Edit the specific theme file using Theme Editing tool.

X-Function to run the operation framework based classes.

Brief Description
Compare two binary files and print out comparison results
Prompt user to select a file with an Open file dialog.
Prompt user to select a path with an Open Path dialog.
Prompt user with an Save as dialog.

Create a .txt file that contains notes or records of the user's work
through a string

Searches for a file or files.

Searches for a folder or folders.

Prompt user to select an image with an Open file dialog.
Save a graph/workbook/matrix window to a template

Copy a web page to a local file

Brief Description
Change or show working directory

Assigns a specified index to the current working directory, or lists all
assigned indices and associated paths.

324

Function Reference

18.2.12 Utility

debug_log

dir

dlgChkList

group_server

groupmgr
instOPX

language

mkdir
op_change
pb

pe_cd
pe_dir
pe_load
pe_mkdir
pe_move
pe_path

pe_rename

Used to create a debug log file. Turn on only if you have a problem
to report to OriginLab.

list script (ogs) and x-functions (oxf) in current working directory.

Open a dialog with check boxes and return each check box's
selected status when the dialog is closed.

Set up the Group Folder location for both group leader and
members

Group Leader's tool to manage Group Folder files

Install an Origin XML Package

Change Origin Display Language

Lists x-function categories, or all x-functions in a specified category.
Update Module License:Add module license file into Origin

Lists x-functions (by name, keyword, location etc)

Create a new folder in the current working directory

Get and set tree stored in operation object

Open the Project Browser

Change project explorer directory

Lists current project explorer folders and workbooks

Load an Origin project into an existing folder in the current project
Create new folder

Move specified page of folder to specified folder

Find Project Explorer path

Rename Page or subfolder

Function Reference 325

18.2 LabTalk-Supported X-Functions

pe_rmdir

pe_save

pef pptslide

pef slideshow
pemp_pptslide
pemp_slideshow
pep_addshortcuts
pesp_gotofolder
updateUFF

ux

Delete a subfolder under the active folder in PE

Save a folder from the current project to an Origin project file
Export all graphs in folder to PowerPoint Slides

Slide Show (full screen view) of all graphs in folder

Export selected graphs to PowerPoint Slides

Slide Show (full screen view) of selected graphs

Create shortcuts for selected windows in Favorites folder
Go to the original folder where this page locates

Transfer user files in Origin75 to Origin8

Update x-function list in specified location

326

Function Reference

Index

$

$() Substitutionccoeeeeereennnnne 62, 69
F(NUM) 140
%

% variablescccccc 76
% () Substitution ..., 62
%() substitution notation..............c.......... 57
% (StriNG$) oo 139, 140
oA = V0L ... 62
Yon, Argument.........oooceiiiiiiee e 72
@

@ OptioN ..., 66
@ Substitutionccccoiii 64
@ text-label options.........cccceeeeveiiviieenn.n. 68
@ variablecccccooiiiii 66
1

1 222

A

access worksheet cell...........cccooeeveeen 62
Active Columncccevvviviiiiiiiiiiiiiiiiinnns 149
active datasetoooeveveviiiii 77
active graph layerccccococeeiiieeenne 192
Active MatrixbookKuuuennn.... 149, 177
active window title...........cooovvvvviiiiinennnnn, 77
Active WorkbooK............cccuevvvvvevevivnnnnnnns 177
active worksheet........cccccvvvvvviviiiiinininnn, 51
Add Column......oooe, 161
Add Layereuvveeniniiiiiniiiiieiiieininininnns 196
AdditioN.......oooiii e, 29
after fit script ... 112
Align Layer........cuvveveieiiiiiniiiiiiiiiiviininannns 197
analysis template............ccocccceeiiinee 118

Analysis Templateccccc........ 279, 281
and operatorccccoeeveieiiiiie 37
And operator.......cccooceeeeiiiiee e 29
Append project..........ccooeeiiiiiiiiiiiiiee, 220
AICA .. s 237
Argument Order.........cccooveeeeiiieieinienn, 83
Argument, Command Line.................... 114
Argument, Command Statment................ 24
Argument, X-Function.............ccccccceeeenn. 85
ArithmetiC........ooooeiii e 168
arithmetic operator..........ccccceeeiiiiiiiiinnnn. 29
arithmetic statement ... 25
ASCllcceiiie e, 205, 212
assignment operator............ccccceeeeenn. 4,31
assignment statement..................iie. 23
Assignment, X-Function Argument.......... 81
Average CUIVESccceeeviiiiieeeiiiee e 235
AXiS Propertyccooceeeiiiieiiniee e 193
B

baseline........cooooi 259
batch processing.........cccvvvvvvvevennns 118, 280
Batch Processing........ccccocceeeennnis 118, 280
Before Formula Scripts.......cccccooiiineeee. 106
BIOCK. ... 27
block of cells ... 52
Draces ..o 27
Break ... 38
C

Calculation Using Interpolation................ 34
calculations involving columns 64
CalCulUS ..o 236
call a fitting functioncccccccs 46

Index

Calling Origin C Function from LabTalk...93
cd104

Code Builder..........ccoccvvviieeennnn, 99, 126
Code Builder, script access 128
colon-equalccoooeveeeeiiiiee, 81
column dataset namecccccceeeee 62
Column Format........cccceeviieeiiiiiieeeen, 164
Column Header..........c.oooeeeeieii. 222
Column Label.........ccccoovvvveeeeeeen. 162, 223
Column Label ROWccoovcviiiieeneenn, 222
ColumnWidth ... 164
Columns, LOOp OVEr.........ccoevcuvviieeeeeenn, 231
COM Server.....ccocooeiiiiiiiiiiiiieieeeeeeeeee, 113
command historycccoeee, 98
command statement 24
Command Windowcc.cceeeveeneee. 58, 98
command-lineccooee e, 114
COMMENT ... 27
CommENtS.....cocceeiiiiiiiiiiee e 222
complex NUMDETccccvvveiiiiiiieee e 12
Composite Range............ccccceviiieiiiiieene 61
conditional operatoreeeee. 33
CONSOIE...ccoeiiiiiiiiiiieic 114
Constant.......cccceeeviiiiiiiee e, 12
CoNtinUEcoeoeiiiiiiiiii 38
control charactersccccccoovviciieneeeenne 62
convert a numeric date value................. 172
Convert Number to String..........ccceeuee. 139
Convert String to Number..................... 139
Converting Image to Data...................... 264
Copy Column ..o, 169
Copy MatriX........cooeeivieeeiiieiiccieieeeee, 182
Copy Range.......cccovvieiiiiiiiiiecen, 152
correlation coefficient.................cccc..... 244
Cox Proportional hazards model 250
Create Baselineccccooeeeeiiiiiiiiinnnn. 259
Create Graphcccocciiiieeee e, 187

Create Script Fileccccovviiiiiii, 99
current baseline dataset...........cccceeveeee 77
current project namecccccceeeeeiiine 77
current working directory................cc.... 104
current working foldero...... 104
Current Working Folder...............c......... 104
curve fitting.......ooco 252
CUStOM MENU.......ueeiiiiiiiiiiieeieieeeeeeeeeeeeee 122
Custom Routingccooeeiiiveeieeiieie, 5
D

D notation.........ccoooeee 172
DataFilter.....................l 157
Data Format............cccco 165
Datalmport ... 205
data ploteveviiiiiii 194
Data Reader........ccooooiiieiiiiiieee, 270
Data Selectorccoceeviviieeeiiee e 271
Data TYpe.....coovvieiiiiieee e 11
Database.......ccccccoiiiiiiie, 207
Dataset.......ccceeeeeeeiee e 12
dataset function...........coooccoi 45
Dataset in Current Fitting Session........... 77
Dataset Substitution.......................... 52, 64
Date...ooooeeeee . 170
date and time data...........occcoceii. 170
date-time string ... 172
Debug Scriptccoooeiiiiiiieeeeeeeee, 126
Decimal Placesccccceeeveeeiiiciiieeen. 141
Decision structurecoeeeeeeeeeen, 36
Declare Rangeccocevvviieiiniieieen, 50
Define Rangecccccvvvveeeeeiiiccciiieeen. 57
Delayed Execution...............ccccoeeeeeeeen. 26
delete ... 59
Delete Columncccovveeeieiiiiiiiiee. 167
Delete Range Variable.............cccccooeee. 59
Delete Variablecccceeeeeiiiii. 19
Delete Worksheetccccceeviiiiiinnnnn. 151

328

Delete Worksheet Dataccc........ 153
derivative ... 236
Descriptive Statisticsccccvveeeeeenns 243
dialog e 274
Differentiationccccoiviiiiiiinnnnen. 236
DiVISION ... 29
dOC -€.coiiiiiiiiee e 36, 228
Documentooooviiiiiiieie e 219
Double ... 12
Double-Y Graph.......cccccceeiiiiiiiiieeeeeee, 189
3] SR 213
Dynamic Range Assignment................... 57
E

EChO..coi 129
Edge Detection..........ccoooeeeeeiei. 262
Embed debugging statement 130
EPS..oo 211
(=T (o] oo To [N 91
evaluating an expression......................... 29
EXcel bOOKoovviiiiiiiiiiee e, 220
EXCeptioncooviiiiiiee e 91
EXIE e 38
Exponentiate..........ccccocieiiiiiiii 29
Export Graphcccoovveeiiiiiiieeee, 213
Export MatriXcccoeeereeiiiiiieeeeeees 214
External applicationcccccoeeneinns 113
Extract Worksheet Data..............ccc........ 153
Extracting String Number 138
F

Fast Fourier Transform...........cccccooeeee 257
FET e 257
L1 LY SRR 207
fIRErING ..veee e 257
findpeak........ooocuuvieeeiiiiii 259
Finding X given Y ..o 239
Finding Y given X ... 238
Fit Non-Linear........ccccceeviviciiinine s 254

Flow of Control..........ccoovecciiieeieeeiiie, 35
{0) RS 36
format a number ... 140
Formula......cccoovvviiiii 169
frequency countscccceeeiiiiii, 244
Friedman Test.......oovvveiiviiiiii 248
Function ... 168, 302
function statementccccccoiiiin, 25
Function Tutorial ... 48
Function, Built-in............ccooocceiiiiiiiine, 42
Function, LabTalkcccoovvvvviieeeieen. 285
Function, User Define.........cccccevevieeennnnee. 42
functions viewer ... 128
G

GetINput ..o 265
Get Point ..o 269
GeIN. . 266
GetNumber dialog.........cccccoviieeiiiiienens 266
GetString......cooieviieeeee e 266
GetYesNo commandcccccceeeeenneee 265
Global variablescoococvieeiiiie, 19
graph ..., 187, 191
Graph EXportccvveeeiiiiieeee e 213
Graph Groupsccceeeeeeeieiiiiiieeeeeeeeeeas 189
graph layer.........ccooooeiiiiiininenn, 187, 192
Graph Layer ... 189
graphlegend.........cccooiiiiiiiiiiiiiiiiiieee, 193
Graph Legend.........cccoocieeiiiiiiniiiienes 199
graph propertyccoooeeieiiiiiiiiie, 192
graph template........cccccooeviiiiiiiies 187
graph wWindow........cccoeeeiieiiiiiiiiieiceeeee, 187
Graph, 3Doooi e 190
graphic objectccccviiiii 17
Graphic Object.......cccceeeeiieiiiiieeeeeeee, 108
Graphic Objects, Looping over 232
Graphic Windows, Looping over............ 230
gridding ...eeeeee i 191

Index

H

Hello World ... 3
Hide Columnoccoviiiiiiiiiiieeeeeeee 163
Hypothesis Test.......cccociiiiiiiiie 245
I

If 36

1 0= To [S 213
Image Import.........cccooveeiiiiiee e 209
Image Processingccccoovvveeeiniieeenne 260
Import Data Theme......ccccccevvvvvveveennennn. 207
Import Wizard.......cccccooviiiiiiee 111
increment and decrement operators........ 31
Input, X-Functionccccccei 85
insert column..........eeeviiinie 161
Insert Column.......ccoevcieeeiiiieeeeee e 161
INtEGEr....coiiiiii i 12
integrating peakccccvvviviiiiiiiinininnn, 259
Integration ..o 237
Intellisense ..o 98
interactively ... 4
Interpolated Curvescccccceveeeiiinnnee. 241
J

JPEGot 211
K

Kaplan-Meier Estimator 250
Keyword for Rangeccccoceeeiiienenne 87
Kolmogorov-Smirnov Test 248
Krusal-Wallis ANOVAcccoiiveeees 248
L

£=1 oY SRR 198
Label Row Characterscccccceeuveeennee. 63
LabTalk Interpretercccccovvvevvinvvinnnnnns 27
LabTalk Object.........ccooviiiniiiiieeee 72
latest worksheet selection........................ 77
Layer Alignment..........cccceeiiiieeiiiiennne 197
Layer Arrangement...........ccccoieeeieennnnne 196
Layer, Add layer.......ccccoooeiiiiiieniiiiennne 196

Layer, Adding.......cccoooveeiiiiiiieeeiee e 195
Layer, LinKiNg.......coooiiiieeeieiiiiiiieeee, 198
Layer, Looping OVerccccccoeviuiieeeennn. 232
Layer, MOVEccoovviiiiiiiieeeeeeee, 197
Layer, SWapcccooeviiiiiieeeee e 197
Legend Substitutioncccccooeviiiiienn.n. 68
length of script......ccoooii 27
LHS .o, 23
Linear Regression..........ccccccevvvvveeeennn. 252
Link Layers......ccooeeiiiiiiieeeeeeeeeieieeeen 198
1S 58
List Range Variable..........ccccccooiiiiienn.n. 58
List Variables..........ccccceeeiii, 19
Load Origin C....ccooeiiiiiiieeeieeeeieeeeeen 92
Load Origin Projectcccccoeviiiiieennn. 116
Load Windowcccciiieiieiiiiiiieee, 220
logical and relational operators............... 31
Long Name.......ccceeeviiieiiiiiieeeieee e 222
[0 To] o R 35
loop over multiple filesccooeee 280
Loop Over Objectscccoccuveeeiiiieeennnnn 228
Loose Dataset..........cccuveveeeiiiiiiiiiiiieeen, 55
M

Macro Propertycccceeeeeeeieeeeeeeee, 41
Macro Statement...........ccccooeiiiiiieen. 24
Manage Layercccccoceveviiieeeniiieeee 195
Manage Project...........ccceeeieieiiinnnn, 219
MaSK ... 274
mathematical operations..........ccccc.......... 33
MALTIX oo 214
Matrix Export..........cccoeeeeei 214
Matrix Interpolation 242
MALriX, COPY..oeereirieeee e 182
MAX e 243
Mean ..o 243
Metadatacccooeeiiiiiiiee 222
Move Column........oooiiiiiieieeeeee 162

330

MoVve layer......coeviiiiiiiieceeeen 197
Multiple Regression..........cccceeeeeeeeeenn. 252
Multiplication ..., 29
N

Non-linear Fittingccooeveeeeeieieen. 254
Nonparametric Test......c.cccooiiiieinennnes 248
non-printing characters............................ 62
numeric data typeccocceeeiiiiiiiiiiieeee 12
o

Object Methodcooccviiieeieeeeiieee, 73
Object Property.......ccoceevviieiiniiicienenn, 73
OCBAile .o, 94
OGS Aile oo 99
One-Sample T-Test.....ccocceeeeeeevciriieen... 245
OpenaFile...ooceeeiiiieiieieceecee 128
Open the Code Builder.............cccoeeeee.. 128
OptioN ..o, 24
Option switche ..., 85
Option Switcheccccoviiiiiiiiie. 53
Or operatorccccceeeeeecieeeee e 29
Origin C functionscocceiiiiiieeininnen. 92
Origin C, Pass Variableccccuueeee... 93
Origin Object.........coociiiiiiiiiiiee, 75
Origin Project........cccoeveeivveeeeeeiieciieee. 75
origin project, append..........cccceeeiiennee 220
origin project, open/save 219
Output X-Functioncccccoeeeiiiiiinenn.n. 85
P

Parameter rowsccccceviiiiiieeneennnns 222
Pass Arguments in Script...........ccoceeee. 101
Pass Arguments to Function 44
Pass Arguments to Macro 40
Pass Variable, Origin Cccccevvieene 93
Pass Variables by Reference................ 102
Pass Variables by Value....................... 103
path of the current project........................ 77
PDF ..o 211

peak analysiscccccovueeeeiniiieeiiiieeee 258
placeholdercccvvvvvieiiiiiiiiiiiiiiieieiens 101
PIOt .o 187, 230
Plot Designation...........ccccceeeveeiiiiiinnneen. 164
plot style.......oooiiii 194
Polynomial Fit ..., 252
program pathccccoceiiiiiii e, 77
project level loose dataset 13
Project Management............c.ccccoonnneen. 219
Project variables ... 19
ProjectEvents.ogs........ccccoveeiiniienennnen. 110
Q

Quick OUtpUL......ccociieeiciee e, 4
R

=] 1o [T PPPPPRPNt 14
Range Data Manipulation 56
Range Keywordcccooovvviiiiiiii. 87
Range Notation..........cccccoviieiiiiinenn, 49
range variableeevvviiiiiiiiiiiiiiiiinieens 74
Range, Block of Cellsccccceeriiinnineenn. 52
Range, Column.........coooiiiiieeiiie. 51
Range, Column Subrange........................ 52
Range, Getplot X ... 53
Range, GetplotYcccoviieeiiiiiiiee. 53
Range, Getplot Z ... 53
Range, Graph Data........cccccccceeiiiiiiinenn. 53
Range, Matrix Data.................................. 53
Range, Origin Objectccccooiiiinnnnen. 50
Range, Page and Sheetc.c..oeee... 52
Range, Worksheet Datacccceveeeee. 50
Range, X-Function Argument.................. 58
recalculate ... 90
recognition order..........ccccceveveeeiniiienennen 28
Reduce Worksheet Data........................ 152
refresh window..........ccoooccciieneeninnnee 220
Regional Data Selector................cc... 272
Regional Mask Tool...........cccceeeriiiieennnne 272

Index

Regression.......cccoeeeiiiieeii i 254
Rename matrix sheet..............cccccceeee 177
Rename worksheet.............cccos 150
FEPEAL. ... e 35
ReportData............eevvvevevviiiiiiiiiiiiiniiiiininns 87
resolution ... 213
RHS L. 23
Rotate image........ccoccevvviieiiiiiicce 260
Row-by-Row Calculations........................ 34
Rows, Looping OVer.........ccccvvvvvvvvvnnnnnnns 231
Run an OGS Fileccveiviiiiiiiiieeee 100
Run ProjectEvents Script.........ccccccc.... 110
Run Script .oooeeeee 97
Run Script from Command Window 98
Run Script from Custom Menus............. 122
Run Script from External Application.....113
Run Script from Fileccccccceeeiinne 99
Run Script from Graphic Object............. 108
Run Script from Script Panel 108
Run Script from Set Values Dialog 106
Run Script from Toolbar Buttons 122
Run Script Ona Timer.........cccccceeeeeenn. 119
S

Sampling Intervalcooociieeenn. 222
Save Window ..., 220
Scalar Calculationsccccooeceieeenennns 34
Scientific Notationccccceeviiierinineen. 141
scope of a function..........cccccoviiiiine 47
scope of a variable.............ccooeevieeeenenn, 19
Scope of String Regester.........ccccccceee. 76
scope, forcing global............ccccoeeeii, 21
scope, global........ooociiiiie 19
scope, 10Calcoveeiiiiiii e, 20
SCOPE, Project......cceeveeeiiiiiie, 19
SCOPE, SESSION ..eeeiiiiiiiieee e e eeieeee e e 20
Screen Reader.........ccccceveveeeeeiiiienennen. 269
SCHP v, 99, 108, 114, 119

SCrPL e 113
Script After Fitting ..o 112
Script Panel.........oovvvvviiiiiiiiiiiiiieeeees 108
Script Section ... 100
Script Windowcoevveeviivviiinenns 3,5,7,98
Script, Before Formula..........cccccoooonee 106
script, debugging.....cccceeeviiiiiiiiiiiiiis 125
script, executioneeeeeeeiiiiiiiiiinnnns 97
Script, Fithingoccveviiiiiis 254
Script, for specified window 97
script, from a custom menu................... 122
script, from a script panel...................... 108
script, from a toolbar button 122
script, from external console................. 114
script, from non-linear fitter 112
script, import wizard/ffilter 111
script, in set values dialog..................... 106
script, in worksheet script dialog............ 108
script, interactive execution........... 125, 133
Script, Project events..........ccccccceeie. 110
SCHPL, FUN L.eeveiiieiieeees 97
SECHONeiiieiiiiieee e 38
Select Range on Graphccccoceeenee 54
SemMICOolON ..., 22,26
separate statementscccccciiinnnee. 26
SESSION ..eeiiiiie e 121
Session variables.........cccccoeeeeiiiiee e 20
Sl 194
Set Column Value........cccceeuveeenne 169, 280
Set Column Valuescccceeeeeeennn. 169
Set Decimal Places........ccccoccoeveviiieens 141
Set Formula..........cccoooviiieiiiiie 169
set matrix valuecccccooeeeccennenennns 181
SetPath oo 104
Set Significant Digitsccccceviieeens 140
Set Values Dialogccccccuvvveeeeeeennns 106
Signal Processingccccoovveeeiiiieeeene 256

Signed Rank Test........cccvvvieeiiiiieeenen 248
Significant Digitsccccccveeeiiiciiieenn. 140
SMOOthING ..ccovveiiiiiieieeeeeeeeeeeeee 236
SMOOthING....ccoiiiiiiiiii e 256
Sort Worksheet..........cccccovieiiiiiienenee 154
Sparkline........cooveiiii 167
SPECLIOSCOPY ooeeeeeeeeeeeeeeeeeeeeeee e, 258
speed MOde......coooeviiiiiiiiiieee e 193
Stack Datacccooeeiiiiii e 155
Start a New Project........ccccceeeeviininnnn. 219
starting Origin ..., 121
statement.........ccoc 22
Statement Type ..o, 22
stringarray..........cccc 141
String Comparison.........ccccceeeeeeeiecinveeenn.. 78
string concatenationcccocieinen. 30
String Concatenation................cccuveeeee. 137
string expressioncccccccveeeeeiinee 23,62
String Expression Substitution 62
String Method ..., 136
String Register.........occcccveeeen. 14,76, 136
String Registersccccvveeeieiiiiiciinnnen. 137
string variableccoci 97
String variable............ccccoovi 13
String Variablecccccoiiiiiii, 135
String Variable, String Register 78
SHINGAITAY ...t 14
SUDIaNge.......cooovuieieiiiiee e 52
Substitution Notationccccoeeieeennen. 61
substitution notations............cccocceeeiiinenen. 4
substitution, keyword 62
SUbStrNG....eveie i, 136
Substring notation...........cccccceiiiinn. 79
Subtractioncccccvvciiiic e 29
SUM e 243
summary report ... 282
Swap Column ..o, 163

Swap Layersococeeiiiieiiiiiiieeeee 197
sWitch 24, 37, 88
SYNEAX et 22
system variable..............cccoiiis 76
System Variable, String Regester 76
T

T notation.......ccooeeiiiiiiiiieceececee, 172
temporary loose dataset 12
ternary operatorcccccveeiiiiiiiiieeeee, 33
theme..........cc . a0
Time format notation....................cc.ee... 172
HMEr e 119
toKeN (oo, 80
TOKEN ..o 136
toolbar......ccueiei 122
Tree. .o, 225
tree datatype.....ccccooiiieiiieieiii, 15
Trim margin.......coccooveeeeieee e, 260
T-test. s 245
Two-Sample T-Testcccvvveiiiiieee. 246
)

UID oo 60, 73
UID, Rangeuveeeieieeiieiieeee e 60
UNitS oo 222
universal identifier..........ccccccveeeeeeee. 60, 73
Unstack Data 155
Update Origin C....ooooovviiiiieeee e, 94
User Files Foldercccooovvvvvvvnnnnn... 99, 117
User Files Folder Path............................. 77
User-Defined parameters 222
\'

variable ..., 17
Variable.........coooooiiiiiiiiii, 11
Variable Name Conflict...........cccccceeee. 18
Variable Naming Rule..............cccccoinee. 18
variable, global..............c.ooooiiiiiii 19
variable, local............couvveeiiiiiiiiieeieees 20

Index

variable, project...........ccoooiii i 19
variable, session.................c.cccc. 20
variables................... 4
variables viewer 128
Vector Calculation...........ccccceeeeiiiinnennn.n. 34
Virtual MatriX.........cccoveeeeeeeeeeeee. 160, 191
w

WCOI() e 57
Weibull Fit ... 251
11171 o [oz=1 o 153
Window, actiVe..........cccceeeieeiiiiiiiieieeeeeeeeees 97
WOrKSheet......ooovvvviiiiiiiiiieieeeeeeeeeeeeeeeee, 152
Worksheet Exportcccccevevieiiiiieeeen. 211
Worksheet Filter.............................. 157
worksheet info substitution 64
Worksheet Script dialog...........ccceeennee 108

worksheet, column and cell substitution . 62

worksheet, COPY ..o 152
worksheet, reduce data......................... 152
worksheet, sort...........cooevveeeeeiiiiiiiiiinnnn. 154
Worksheets, Looping over 231
X

X-Function..........cocciieeeiiiinnnnne 81, 83, 302
X-Function Argument...........ccccceeiiienen. 85
X-Function Exception............ccccoeeneennn. 91
X-Function Input........cccccoeiiiiiiiiiiiinns 85
X-Function Output.........ccoceeiiiiiiniiiennne 85
X-Function, open dialog.........cccccceuunnnnnne. a0
X-Function, option switch.............cc......... 88
XY RANGE ... 60
XYZ RANQE...ciiiiiiiiiiiiiiee e 60

334

	1 Introduction
	2 Getting Started with LabTalk
	2.1 Hello World
	2.2 Using = to Get Quick Output
	2.3 Other Ways to Execute Script
	2.3.1 Custom Routine Button
	2.3.2 Custom Menu Item
	2.3.3 Button in a Graph

	2.4 Script Example
	2.5 Where to Go from Here?

	3 Resources for Learning LabTalk
	3.1 Online Documentation
	3.2 Script Examples
	3.3 X-Function Script Examples
	3.4 LabTalk Forum
	3.5 Training and Consulting

	4 Language Fundamentals
	4.1 General Language Features
	4.1.1 Data Types and Variables
	LabTalk Data Types
	Numeric
	Dataset
	String
	StringArray
	Range
	Tree
	Graphic Objects

	Variables
	Variable Naming Rules
	Handling Variable Name Conflicts
	Listing and Deleting Variables

	Scope of Variables
	Project (Global) Variables
	Session Variables
	Local Variables
	Forcing Global Scope

	4.1.2 Programming Syntax
	Programming Syntax
	Statement Types
	Assignment Statements
	Macro Statements
	Command Statements
	Arithmetic Statement
	Function Statements

	Using Semicolons in LabTalk
	Separate Statements with a Semicolon
	Leading Semicolon for Delayed Execution

	Extending a Statement over Multiple Lines
	Comments
	Order of Evaluation in Statements

	4.1.3 Operators
	Introduction
	Arithmetic Operators
	Define a constant
	A Note about Logarithmic Conversion

	String Concatenation
	Assignment Operators
	Logical and Relational Operators
	Numeric Comparison
	String Comparison

	Conditional Operator (?:)
	Performing Calculations
	Scalar Calculations
	Vector Calculations

	4.1.4 Conditional and Loop Structures
	Loop Structures
	Repeat
	Loop
	Doc -e
	For

	Decision Structures
	If, If-Else
	Switch
	Break and Progress Bars
	Exit
	Continue

	Sections in a Script File

	4.1.5 Macros
	Definition of the Macros
	Passing Arguments to Macros
	Macro Property

	4.1.6 Functions
	Built-In Functions
	User-Defined Functions
	Passing Arguments by Reference

	Dataset Functions
	Fitting Functions
	Scope of Functions
	Tutorial: Using Multiple Function Features

	4.2 Special Language Features
	4.2.1 Range Notation
	Introduction to Range
	Declaration and Syntax
	Accessing Origin Objects

	Types of Range Data
	Worksheet Data
	Matrix Data
	Graph Data
	Loose Dataset

	Methods of Range
	Unique Uses of Range
	Manipulating Range Data
	Dynamic Range Assignment
	X-Function Argument

	Listing, Deleting, and Converting Range Variables
	Listing Range Variables
	Deleting Range Variables
	Converting Range to UID

	Special Notations for Range
	XY and XYZ Range
	XY Range using # and ? for X
	Tag Notations in Range Output
	Composite Range

	4.2.2 Substitution Notation
	Introduction
	%A - %Z
	%() Substitution
	String Expression Substitution
	Keyword Substitution
	Worksheet Column and Cell Substitution
	Calculation Involving Datasets from Another Sheet
	Worksheet Information Substitution
	Legend Substitution

	$() Substitution
	Default Format
	Origin Formats
	C-Language Formats
	Combining Origin and C-language Formats
	Displaying Negative Values
	Dynamic Variable Naming and Creation

	%n Macro and Script Arguments

	4.2.3 LabTalk Objects
	Properties
	Methods
	Object Name and Universal Identifier (UID)
	Getting Page and Layer from a Range Variable
	Getting Book And Sheet from a Plot

	4.2.4 Origin Objects
	4.2.5 String registers
	Introduction
	String Registers as System Variables
	String Registers as String Variables
	Assigning Values to a String Variable
	Expressing the Variable Before Assignment
	String Comparison
	Substring Notation

	4.2.6 X-Functions Introduction

	4.3 LabTalk Script Precedence

	5 Calling X-Functions and Origin C Functions
	X-Functions
	5.1.1 X-Functions Overview
	Syntax
	Examples
	Option Switches
	Generate Script from Dialog Settings

	5.1.2 X-Function Input and Output
	X-Function Variables
	Special Keywords for Range
	ReportData Output
	Sending ReportData to Tree Variable
	Sending ReportData Directly to a Specific Book/Sheet/Column Location

	5.1.3 X-Function Execution Options
	X-Function Option Switches
	Examples
	Using a Theme
	Setting Recalculate Mode
	Open X-Function Dialog
	Copy Format from Input to Output

	5.1.4 X-Function Exception Handling
	Looping Over to Find Peaks

	5.2 Origin C Functions
	5.2.1 Loading and Compiling Origin C Functions
	Loading and Compiling Origin C Function or Workspace
	Example

	Adding Origin C Source Files to System Folder
	Adding Origin C Files to Project (OPJ)

	5.2.2 Passing Variables To and From Origin C Functions
	Sytnax for calling Origin C Function from LabTalk
	Variable Types Supported for Passing To and From LabTalk

	5.2.3 Updating an Existing Origin C File
	Introduction
	Manually Deleting OCB Files
	Programmatically Deleting OCB Files

	5.2.4 Using Origin C Functions

	6 Running and Debugging LabTalk Scripts
	6.1 Running Scripts
	6.1.1 From Script and Command Window
	6.1.2 From Files
	Creating and Saving Script Files
	The OGS File Extension
	Sections in an OGS File
	Running an OGS File
	Passing Arguments in Scripts
	Passing Numeric Variables by Reference
	Passing Numeric Variables by Value

	Guidelines for Naming OGS Files and Sections
	When Using the Run.section() Method
	When Using the Command Method
	Section Name Rules (When Using Either Method)

	Setting the Path
	Running LabTalk from Origin C

	6.1.3 From Set Values Dialog
	Expression using another column
	Using Before Formula Scripts Section

	6.1.4 From Worksheet Script
	6.1.5 From Script Panel
	6.1.6 From Graphical Objects
	Buttons
	Lines
	Other Objects

	6.1.7 ProjectEvents Script
	Sections of ProjectEvents.ogs
	Utilizing ProjectEvents.ogs

	6.1.8 From Import Wizard
	6.1.9 From Nonlinear Fitter
	6.1.10 From an External Application
	6.1.11 From Console
	Syntax of Command Line Arguments
	Switches
	Examples
	Loading an Origin Project File
	Run OPJ-Based Custom Program with Command-Line Control
	Batch Processing with Summary Report in Origin
	Batch Processing with Summary Report in External Excel File

	6.1.12 On A Timer
	6.1.13 On Starting Origin
	6.1.14 From a Custom Menu Item
	6.1.15 From a Toolbar Button
	Putting a Button on an Origin Toolbar
	Match the Button with a LabTalk Script (OGS) File
	Custom Buttons Available in Origin
	Creating a Bitmap File for a New Button

	6.2 Debugging Scripts
	6.2.1 Interactive Execution
	Classic Script Window
	Command Window in Origin's Main Window
	Command & Results Windows in Code Builder

	6.2.2 Debugging Tools
	Code Builder (Origin feature)
	Ed (object)
	Open the Code Builder
	Open a Specific File in Code Builder
	Open a File on a Pre-Saved Path

	LabTalk Variables and Functions Dialog
	Echo (system variable)
	#!script (special syntax)
	{script} (special syntax)
	@B(system variable), System.Debug (object property)
	@OC (system variable)
	@V(system variable), System.Version(object property)
	@VDF (system variable)
	VarName= (command)
	LabTalk:List (command)
	ErrorProc (macro)
	NotReady (macro)
	Type <ogsFileName> (command)
	Log to a File

	6.2.3 Error Handling

	7 String Processing
	7.1 String Variables and String Registers
	7.1.1 String Variables
	7.1.2 String Registers

	7.2 String Processing
	Using String Methods
	Find substring, using getFileName()
	Find substring, using reverseFind(), mid() methods
	Find substring, token-based
	String Concatenation
	Using String Registers
	Extracting Numbers from a String

	7.3 Converting Strings to Numbers
	7.3.1 Converting String to Numeric
	Using Substitution Notation
	Using String Registers

	7.4 Converting Numbers to Strings
	7.4.1 Converting Numeric to String
	Using Substitution Notation
	Using the Format Function

	7.4.2 Significant Digits, Decimal Places, and Numeric Format
	Use the * notation to set significant digits
	Use the . notation to set decimal places
	Use E notation to change the variable to engineering format
	Use the $(x, S*n) notation to convert from engineering to scientific notation

	7.5 String Arrays

	8 Workbooks Worksheets and Worksheet Columns
	8.1 Workbooks
	Basic Workbook Operation
	Create New Workbook
	Open Workbook
	Save Workbook
	Close Workbook
	Show or Hide Workbook
	Name and Label Workbook
	Activate Workbook
	Delete Workbook

	8.1.2 Workbook Manipulation
	Duplicate Workbook
	Merge Workbooks
	Split Workbook

	8.2 Worksheets
	Basic Worksheet Operation
	Add New Worksheet
	Activate a Worksheet
	Modify Worksheet Properties
	Delete Worksheet

	8.2.2 Worksheet Data Manipulation
	Copy Worksheet Data
	Copy a Worksheet
	Copy a Range of Cells

	Reduce Worksheet Data
	Examples

	Extract Worksheet Data
	Output To New Workbook
	Use Wildcard Search

	Delete Worksheet Data
	Sort Worksheet
	Split Worksheet
	Unstack/Stack Categorical Data
	Unstack Worksheet Columns
	Stack Worksheet Columns

	Pivot Table
	Worksheet Filter
	Insert Links into Worksheet Cells

	8.2.3 Converting Worksheet to Matrix
	Worksheet to Matrix

	8.2.4 Virtual Matrix

	8.3 Worksheet Columns
	Basic Worksheet Column Operation
	Add or Insert Column
	Move Column
	Rename and Label Column
	Hide/Unhide Column
	Swap Column
	Modify Column Formats
	Plot Designation
	Column Width
	Data Format and Display

	Add Sparkline to Column
	Delete Column

	8.3.2 Worksheet Column Data Manipulation
	Basic Operation
	Basic Arithmetic
	Functions

	Set Formula for Column
	Copy Column
	Sort Column
	Reverse Column

	8.3.3 Date and Time Data
	Dates and Times
	Formatting for Output
	Available Formats
	Custom Formats

	9 Matrix Books Matrix Sheets and Matrix Objects
	9.1 Basic Matrix Book Operation
	9.1.1 Workbook-like Operations
	9.1.2 Show Image Thumbnails

	9.2 Matrix Sheets
	9.2.1 Basic Matrix Sheet Operation
	Add New Matrix Sheet
	Activate a Matrix Sheet
	Modify Matrix Sheet Properties
	Delete Matrix Sheet

	9.2.2 Matrix Sheet Data Manipulation
	Conversion Between Matrix Sheets and Matrix Objects

	9.3 Matrix Objects
	9.3.1 Basic Matrix Object Operation
	Add or Insert Matrix Object
	Activate Matrix Object
	Switch Between Image Mode and Data Mode
	Set Labels
	Delete Matrix Object

	9.3.2 Matrix Object Data Manipulation
	Set Values in Matrix Object
	Copy Matrix Data
	Conversion between Matrix Object and Vector
	Conversion between Numeric Data and Image Data
	Manipulate Matrix Object with Complex Values
	Transform Matrix Object Data
	Crop or extract from Data or Image Matrix
	Expand Data Matrix
	Flip Data or Image Matrix
	Rotate Data or Image Matrix
	Shrink Data Matrix
	Transpose Data Matrix

	Split RGB Image into Separate Channels

	9.3.3 Converting Matrix to Worksheet
	Matrix to Worksheet

	10 Graphing
	10.1 Creating Graphs
	10.1.1 Creating a Graph with the PLOTXY X-Function
	Plotting X Y data
	Input XYRange referencing the X and Y
	Input XYRange referencing just the Y

	Plotting X YY data
	Plotting XY XY data
	Plotting using worksheet column designations
	Plotting a subset of a column
	Plotting into a graph template
	Plotting into an existing graph layer
	Creating a new graph layer
	Creating a Double-Y Graph

	10.1.2 Create Graph Groups with the PLOTGROUP X-Function
	10.1.3 Create 3D Graphs with Worksheet -p Command
	10.1.4 Create 3D Graph and Contour Graphs from Virtual Matrix

	10.2 Formatting Graphs
	Graph Window
	10.2.2 Page Properties
	10.2.3 Layer Properties
	Fill the Layer Background Color
	Set Speed Mode Properties
	Update the Legend

	10.2.4 Axis Properties
	10.2.5 Data Plot Properties
	10.2.6 Legend and Label

	10.3 Managing Layers
	Creating a panel plot
	Creating a 6 panel graph
	Creating and plotting into a 6 panel graph

	10.3.2 Adding Layers to a Graph Window
	10.3.3 Arranging the layers
	10.3.4 Moving a layer
	10.3.5 Swap two layers
	10.3.6 Aligning layers
	10.3.7 Linking Layers
	10.3.8 Setting Layer Unit

	10.4 Creating and Accessing Graphical Objects
	10.4.1 Creating Objects
	Creating Labels
	Creating Legends
	Creating Lines

	10.4.2 Working on Objects
	Position of Objects
	Change Object Properties

	10.4.3 Deleting an Object

	11 Importing
	11.1 Importing Data
	11.1.1 Import an ASCII Data File Into a Worksheet or Matrix
	11.1.2 Import ASCII Data with Options Specified
	11.1.3 Import Multiple Data Files
	11.1.4 Import an ASCII File to Worksheet and Convert to Matrix
	11.1.5 Related: the Open Command
	11.1.6 Import with Themes and Filters
	Import with a Theme
	Import with an Import Wizard Filter File

	11.1.7 Import from a Database

	11.2 Importing Images
	11.2.1 Import Image to Matrix and Convert to Data
	11.2.2 Import Single Image to Matrix
	11.2.3 Import Multiple Images to Matrix Book
	11.2.4 Import Image to Graph Layer

	12 Exporting
	12.1 Exporting Worksheets
	Export a Worksheet
	Export a Worksheet as an Image File
	Export a Worksheet as a Multipage PDF File
	Export a Worksheet as a Data File

	12.2 Exporting Graphs
	12.2.1 Export a Graph with Specific Width and Resolution (DPI)
	12.2.2 Exporting All Graphs in the Project
	12.2.3 Exporting Graph with Path and File Name

	12.3 Exporting Matrices
	12.3.1 Exporting a Non-Image Matrix
	12.3.2 Exporting an Image Matrix

	12.4 Exporting Videos
	12.4.1 Create a Video Writer Object
	12.4.2 Write Graph(s) in a Video Writer Object
	12.4.3 Release a Video Writer Object

	13 The Origin Project
	Managing the Project
	The DOCUMENT Command
	Start a New Project
	Open/Save a project
	Append projects
	Save/Load Child Windows
	Saving External Excel Book
	Refresh Windows

	13.1.2 Project Explorer X-Functions

	Accessing Metadata
	13.2.1 Column Label Rows
	Read/Write Column Label Rows
	Show/Hide Column Labels

	13.2.2 Even Sampling Interval
	Accessing the Sampling Interval Column Label Row
	Sampling Interval by X-Function

	13.2.3 Trees
	Access Import File Tree Nodes
	Access Report Page Tree
	User Tree in Page Storage
	User Tree in a Worksheet
	User Tree in a Worksheet Column

	13.3 Looping Over Objects
	13.3.1 Looping over Objects in a Project
	Looping over Workbooks and Worksheets
	Looping Over Graph Windows
	Looping Over Workbook Windows
	Looping over Columns and Rows
	Looping Over Graphic Objects

	13.3.2 Perform Peak Analysis on All Layers in Graph

	14 Analysis and Applications
	14.1 Mathematics
	14.1.1 Average Multiple Curves
	14.1.2 Differentiation
	Finding the Derivative
	Finding the Derivative with Smoothing

	14.1.3 Integration
	14.1.4 Interpolation
	Using XY Range
	From Worksheet Data
	From Graph

	Using Arbitrary Dataset
	Creating Interpolated Curves
	X-Functions for Interpolation of Curves
	Using Existing X Dataset
	Uniformly Spaced X Output
	Interpolating Non-Monotonic Data

	Matrix Interpolation

	14.2 Statistics
	14.2.1 Descriptive statistics
	Descriptive Statistics on Columns and Rows
	Frequency Count
	Correlation Coefficient

	14.2.2 Hypothesis Testing
	One-Sample T-Test
	Two-Sample T-Test
	Pair-Sample T-Test
	One-Sample Test for Variance
	Two-Sample Test for Variance (F-Test)

	14.2.3 Nonparametric Tests
	14.2.4 Survival Analysis
	Kaplan-Meier Estimator
	Cox Proportional Hazard Regression
	Weibull Fit

	14.3 Curve Fitting
	14.3.1 Linear, Polynomial and Multiple Regression
	Linear Regression
	Polynomial Regression
	Multiple Linear Regression
	Run Operation Classes to Perform Regression

	14.3.2 Non-linear Fitting
	Script Example
	Notes on the Parameter Tree
	Table of X-functions Supporting Non-Linear Fitting
	Qualitative Differences from Linear Fitting

	14.4 Signal Processing
	14.4.1 Smoothing
	14.4.2 FFT and Filtering

	14.5 Peaks and Baseline
	14.5.1 X-Functions For Peak Analysis
	14.5.2 Creating a Baseline
	14.5.3 Finding Peaks
	14.5.4 Integrating and Fitting Peaks

	14.6 Image Processing
	14.6.1 Rotate and Make Image Compact
	14.6.2 Edge Detection
	14.6.3 Apply Rainbow Palette to Gray Image
	14.6.4 Converting Image to Data

	15 User Interaction
	15.1 Getting Numeric and String Input
	15.1.1 Get a Yes/No Response
	15.1.2 Get a String
	15.1.3 Get Multiple Values

	15.2 Getting Points from Graph
	15.2.1 Screen Reader
	15.2.2 Data Reader
	15.2.3 Data Selector

	15.3 Bringing Up a Dialog

	16 Working with Excel
	17 Automation and Batch Processing
	17.1 Analysis Templates
	17.2 Using Set Column Values to Create an Analysis Template
	17.3 Batch Processing
	17.3.1 Processing Each Dataset in a Loop
	17.3.2 Using Analysis Template in a Loop
	17.3.3 Using Batch Processing X-Functions

	18 Function Reference
	18.1 LabTalk-Supported Functions
	18.1.1 Statistical Functions
	General Statistics
	Cumulative Distribution Functions
	Inverse Cumulative Distribution Functions
	Probability Density Functions

	18.1.2 Mathematical Functions
	Basic Mathematics
	Multi-parameter Functions
	Random Number Generators
	Bessel, Beta, and Gamma Functions
	Bessel Functions
	Beta Functions
	Gamma Functions

	Approximations of NAG Functions

	18.1.3 Origin Worksheet and Dataset Functions
	Worksheet Functions
	Dataset Information Functions
	Dataset Manipulation Functions
	Dataset Generation Functions
	String and Character Functions
	Date and Time Functions
	Utility Functions

	18.1.4 Notes on Use

	18.2 LabTalk-Supported X-Functions
	18.2.1 Data Exploration
	18.2.2 Data Manipulation
	Gridding
	Matrix
	Plotting
	Worksheet

	18.2.3 Database Access
	18.2.4 Fitting
	18.2.5 Graph Manipulation
	18.2.6 Image
	Adjustments
	Analysis
	Arithmetic Transform
	Conversion
	Geometric Transform
	Spatial Filters

	18.2.7 Import and Export
	18.2.8 Mathematics
	18.2.9 Signal Processing
	FFT
	Wavelet

	18.2.10 Spectroscopy
	18.2.11 Statistics
	Descriptive Statistics
	Hypothesis Testing
	Nonparametric Tests
	Survival Analysis

	18.2.12 Utility
	File
	System

	Index

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (Adobe RGB \0501998\051)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /UseDeviceIndependentColor

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize false

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile (North America Prepress)

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages false

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 1200

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages false

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 1200

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (None)

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [504.000 648.000]

>> setpagedevice

