
Leksah: An Integrated Development

Environment for Haskell

Version 0.8

Jürgen Nicklisch-Franken

Hamish Mackenzie

edited for v. 0.8: Andrew U. Frank and Christian Gruber

May 27, 2010

Contents

1 Introduction 4
1.1 Further Information . 4
1.2 Release Notes . 5

2 Installing Leksah 7
2.1 How to Install: Brief Instructions . 7
2.2 Microsoft Windows . 7
2.3 Mac OS X . 7
2.4 Linux from Distro Packages . 7
2.5 Install from Hackage . 8
2.6 Post Installation steps . 8
2.7 First start of Leksah . 8
2.8 First start dialog . 9

3 Hello World example 12

4 The Editor 14
4.1 Find and Replace in the current folder . 15
4.2 Source Candy . 15
4.3 Completion . 17
4.4 Using the Flipper to Switch Between Editors 18
4.5 Change Your Preferences for the Editor 18
4.6 Further info . 19

1

5 Working with Projects: Workspaces and Packages 20
5.1 Cross package build . 21
5.2 File Organization with Workspaces . 21
5.3 Workspace Operations . 21
5.4 Packages . 22
5.5 Import Helper . 27

6 Module Browser and Metadata 29
6.1 The Module Browser . 29
6.2 The Search Pane . 32

7 Debugger and Interpreter mode 34

8 Metadata collection 36
8.1 Background infos . 36

9 Con�guration 38
9.1 Layout . 38
9.2 Session handling . 39
9.3 Shortcuts . 40
9.4 Con�guration �les . 40

10 The Leksah Project 41

11 Appendix 42
11.1 Command line arguments . 42
11.2 The Candy �le . 42
11.3 The Keymap �le . 43

List of Figures

1 First-Start dialog . 9
2 Leksah after �rst start . 11
3 File menu . 14
4 Edit menu . 14
5 Find bar . 15
6 Grep pane . 16
7 Source candy example . 17
8 Completion . 17
9 Editor Preferences . 18
10 Workspace Menu . 21
11 Package Menu . 22
12 PackageEditor 1 . 24
13 Error Pane . 26

2

14 Package Flags . 27
15 Module browser . 30
16 Construct module dialog . 31
17 Search pane . 32
18 Debug & Bu�er menu . 34
19 Debug Pane . 35
20 Metadata Preferences . 37
21 View and panes menus . 38

License

Leksah has been put under the GNU GENERAL PUBLIC LICENSE Version 2. The full
license text can be found in the �le data/gpl.TX in the distribution.

3

1 Introduction

Leksah is an IDE (Integrated Development Environment) for the programming language
Haskell. It is written in Haskell and integrates various tools available for writing pro-
grams in Haskell: the GHC compiler and interpreter, the CABAL package management
system (the Common Architecture for Building Applications and Libraries), Haddock for
producing documentation, etc. in one, single, comprehensive and easy to use environ-
ment. It allows the developer to concentrate on writing the program and Leksah gives
him easy access to all information she needs and helps with the necessary housekeeping
for compiling, linking and package management.
A uni�ed focus for translating source code to executable programs: Leksah introduces

the notion of a workspace that can include several packages transparently: to the pro-
grammer it appears as if there were a single program with a simple �make� command.
Leksah manages rebuilding and installing packages as far as desired automatically.
Support for writing source code: Leksah supports debugging with GHCi, evaluation

of expressions, gathering type information, setting breakpoints, displays values at break-
points, etc. is all possible from within Leksah.
Last, but not least, Leksah collects information about installed packages, helps to �nd

function names and their type and o�ers an auto-completion feature while you type new
code.
The features of Leksah often re�ect directly features of the Haskell tools used; therefore,

to understand behavior in special cases needs sometimes reading the speci�c documen-
tation of GHC, Cabal or Haddock, (and this manual, to a degree repeats what is found,
with more detail and authority, in the respective tool documentation).
Leksah is written in Haskell, which means the Leksah developers use Leksah to develop

Leksah and users of Leksah can read the code and contribute improvements. Leksah uses
GTK+ as GUI Toolkit with the gtk2hs binding. It is platform independent and runs
on any platform where GTK+, gtk2hs and GHC can be installed. It is used on Linux,
Windows and Mac.
This document is a reference to the functionality of Leksah, it is not intended to be a

tutorial. Since Leksah is still under development the information may be incomplete or
superseded.
The current version is 0.8.

1.1 Further Information

The home page for Leksah is leksah.org. Stable version of Leksah can be installed from
Hackage hackage.haskell.org/package/leksahusing Cabal install. The source code for Lek-
sah is hosted under code.haskell.org/leksah and code.haskell.org/leksah-head. The Lek-
sah user Wiki is haskell.org/haskellwiki/Leksah. The Leksah forum can be accessed
at groups.google.com/group/leksah/topics. The current version of this manual can be
found at leksah.org/leksah_manual.pdf. An issue tracker to collect bug reports and sug-
gestions for improvements is at code.google.com/p/leksah/issues/list. You can contact
the developers at info (at) leksah.org.

4

http://leksah.org
http://hackage.haskell.org/package/leksah
http://code.haskell.org/leksah
http://code.haskell.org/leksah-head
http://haskell.org/haskellwiki/Leksah
http://groups.google.com/group/leksah/topics
http://leksah.org/leksah_manual.pdf
http://code.google.com/p/leksah/issues/list
mailto:info@leksah.org

For information about the Programming language Haskell go to www.haskell.org.
The GHC computer is found at www.haskell.org/ghc. For information about gtk2hs
www.haskell.org/gtk2hs/. For information about GTK+ go to www.gtk.org.

1.2 Release Notes

1.2.1 Version 0.8 Release March 2010

The 0.8 release adds the notion of workspaces to allow develop comfortably projects,
where part of the code is in separate packages. This changes the handling of packages to
a degree, which has been improved with introducing suitable defaults: a simple, single-
shot program can be started with very few clicks and entering not much more than the
name of the program; Leksah becomes usable even for just quickly testing an idea. Other
changes include:

� Better metadata with non exported de�nitions for workspace packages

� Support for prebuild metadata packages

� Better completion (keywords, language extensions, module name, non exported
de�nitions)

� Splittet in a client and server part (Client part doesn't import ghc-api)

� Added support for Ghc 6.12

� Prepared for Yi (Abstract TextEditor interface, not ready for use)

� Various other changes improve usability and stability of the platform.

A large number of bugs has been �xed, but there remain, probably a large number of,
bugs - some old and not yet �xed and some new ones. We expect also to improve and
streamline the user interface in the next minor release to achieve more consistency and
make Leksah easier to learn. You may see comments to this e�ect in this document,
suggesting possible changes in the interface. Your opinion on these and other possible
improvements you see will be highly appreciated!
Version 0.8 works with GHC 6.10 and 6.12. The installation is described in Section 2

for the standard case, more up to date information on installation may be found on the
Wiki haskell.org/haskellwiki/Leksah. If you have any trouble installing, please check the
Wiki, the forum or contact the developers to �nd a solution. A smooth implementation
is a priority for us and we like to hear about di�culties you encounter to �x them; please
report them on the bug and issues tracker code.google.com/p/leksah/issues/list.

1.2.2 Version 0.6 Beta Release Juli 2009

The 0.6 version introduces an interpreter/debugger mode. This mode can be switched on
and o� from the toolbar. In interpreter/debugger mode expressions can be evaluated and
the type of expressions can be dynamically shown. The GHCi debugger is integrated, so

5

http://www.haskell.org
http://www.haskell.org/ghc
http://www.haskell.org/gtk2hs/
http://www.gtk.org
http://haskell.org/haskellwiki/Leksah
http://code.google.com/p/leksah/issues/list

that breakpoints can be set, it is possible to step through the code, observe the values of
variables and trace the execution history.
The other features of Leksah like building in the background and reporting errors on

the �y work in debugger mode as in compiler mode (but not con�guring, installing, etc.
of packages).
Another new feature is integration of grep and text search with regular expression.

This can be accessed from the �ndbar.
The GUI framework has been enhanced, so that layouts can be nested in so called

group panes. This feature is used for the debugger pane. Furthermore notebooks can be
detached, so that Leksah can be used on multiple screens.
A lot of little enhancements has been made and numerous bugs has been �xed.
Known bugs and problems:

� The package editor works only for cabal �les without con�gurations.

� MS Windows: The check for external modi�cations of source �les does not work.

� MS Windows: Interruption of a background build does not work.

� GUI History still not working.

� Traces pane of the Debugger does not work appropriately.

1.2.3 Version 0.4 Beta Release February/March 2009

The 0.4 Release is the �rst beta release of Leksah. It should be usable for practical work
for the ones that wants to engage with it.
It depends on GHC ≥6.10.1 and gtk2hs ≥ 0.10.0.
The class pane and the history feature are not quite ready, so we propose not to use

it yet.

1.2.4 Version 0.1 Alpha Release February 2008

This is a pre-release of Leksah. The editor for Cabal Files is not ready, so we propose
not to use it yet. w

6

2 Installing Leksah

2.1 How to Install: Brief Instructions

You can install from

� a binary installer for your operating system, which is typically Windows or Macin-
tosh.

� a package for your platform, which is currently Arch Linux and Fedora Linux, and
Debian(Ubuntu) is in preparation.

� install from sources from Hackage via cabal install leksah

� leksah or leksah-head development repositories. (If you want the very last or want
to help with Leksah development).

You can consult the Download page for up-to date information and try the user Wiki for
further help.

2.2 Microsoft Windows

1. Install Haskell Platform with an installer for Windows (alternatively install Ghc
directly)

2. Make sure wget and grep are on the path of your Windows shell

3. Install Leksah from the most recent binary installer for Windows.

4. Go to the post installation section.

2.3 Mac OS X

1. Install Haskell Platform with an installer for Mac OS X (alternatively install Ghc
directly)

2. Make sure wget and grep are on the path.

3. Install Leksah from the most recent binary installer for Mac

4. Go to the post installation section.

2.4 Linux from Distro Packages

1. Install Leksah with the package management system of your Linux platform, which
should pull all prerequisites automatically.

2. Go to the post installation section.

7

2.5 Install from Hackage

1. Install Haskell Platform (alternatively install Ghc directly, install Cabal and cabal-
install)

2. Install gtk2hs in a version compatible with the installed Ghc compiler (Currently
gtk2hs can't be installed via Hackage, but this should be possible in the near future,
so that you don't have to care about this step any more). Make sure the gtk2hs
gtksourceview2 package gets built and installed.

3. open a Console and do:

cabal update

cabal install leksah

4. Go to the post installation section.

2.6 Post Installation steps

1. Until the next release of gtk2hs, for a pleasant visual appearance, you have to copy
or append the .gtkrc-2.0 �le from the Leksah data folder or from the data folder
in Leksah sources to your home folder. If you miss the step, the cross [x] buttons
on tabs are almost invisible (or don't �t in tabs). This step may become obsolete
during the 0.8 release cycle.

cd ~

wget http://code.haskell.org/leksah/leksah/data/.gtkrc-2.0 -O

.gtkrc-2.0-leksah

echo -e '\ninclude ".gtkrc-2.0-leksah"' >�> .gtkrc-2.0

2. Before you start Leksah for the �rst time, do a:

ghc-pkg recache

It has been observed, that a package recache is often necessary after installation.
The symptom is an empty Module Browser, if you select the System scope.

2.7 First start of Leksah

The �rst time you start Leksah it will take you through the follow steps:

1. You are asked to �ll in a form telling Leksah where your Haskell sources are (if
you are not sure or just want to test, you can accept the defaults and correct them
later in the �metadata� preferences)

2. Leksah collects �metadata�, i.e. exported symbols and their type, comments ex-
plaining them etc. for all installed packages on your machine. This step may take
a while and may give no feedback or a lot of strange errors and warnings, don't
worry but be patient.

8

Figure 1: First-Start dialog

3. The Leksah IDE starts and you can start working.

Later starts will read in the previously collected metadata and check only for changes.
After starting up, Leksah will open its Main window in a standard con�guration.
Progress on your �rst contact with Leksah:

1. Start with the, infamous, �Hello World� example. The next section gives you a step
by step description.

2. Then it might be the best to construct a workspace and add an existing project
and explore Leksah while you work on it.

2.8 First start dialog

When you start Leksah for the �rst time it must collect the information about the
packages you have on your computer and may use in your projects. The �rst start dialog
let you enter settings about this process. Leksah then collects information about exported
symbols, their type and possible comments (collectively called metadata) to support your
work, e.g. by suggesting auto-completion and type information about functions you may
use while you edit your source.
Later you can change this settings in the preferences pane in Leksah and you can

rebuild the metadata at any time. leksah-server -sbo +RTS -N2 from the console.
Details about metadata collection can be found here: 8.

9

If you want to start from scratch again delete or rename the .leksah-*.* folder in your
home folder. Then you will see the �rst start dialog again.
In the �rst start dialog you are asked for:

1. The location of folders, where Haskell source code for installed packages can be
found. This is important for packages which can't be found on Hackage.

2. Maybe a directory, where Leksah will unpack source �les for packages. If you give
no directory here, Leksah will not try to unpack the sources.

3. Some packages are di�cult to process with Haddock. So we provide some prebuild
metadata. If you allow this, Leksah will look for prebuild metadata, if sources are
available, but Haddock fails to process.

4. The port number used for the local connection to the Leksah server.

5. By default the Leksah server terminates with the last connection. You can change
this setting here.

Leksah collects information about all installed packages on your system that will take
some time (minutes to half an hour) the �rst time. Errors occuring in this metadata
collection step indicate only that Leksah has not succeeded to extract the source locations
and comments from a module or package; they are not consequential, except that some
metainformation may be missing. The metada is cached and future starts only scan
newly installed packaEges, starts only information for new packages will be installed.

10

Figure 2: Leksah after �rst start

11

3 Hello World example

� Workspace -> New. Constructs a new workspace in a selected folder and give it a
name (e.g. �Hello�). This produces a �le Hello.lkshw.

� Package -> New and use the "Create Folder" button to make a new folder for the
package. Make sure to be in this folder when you click �Open�. An editor opens
up, which let you edit cabal �les. The name proposed for your package is the name
of the folder you just constructed. That is the convention with Cabal packages.
The defaults are set for creating a simple executable. The base package is speci�ed
as build dependencies, and an executable with the name of the package will be
constructed. The main module resides in a �le �Main.hs�. The sources are in a
�src� subdirectory of the packages.

� Click Save to write the .cabal �le.

� The main module gets automatically constructed and opens.

� Now add your code to the module

main = putStrLn "Hello World" .

� By default, auto build is on and you can see that the �le will be compiled in the
Log pane.

� Choose Package -> Run or ctrl-alt-r, and you will see Hello World in the Log pane.

� Or: Choose Package -> Install, open a Shell and try out your newly created exe-
cutable

Congratulations ! you have now entered, compiled, linked and run your �rst Haskell
program with Leksah. It is as easy as: Create workspace / New package / enter your
code/ Run. Remember:

� the project folder is the folder in which your .cabal �le for the project is stored.

� A workspace is just a �le, which contain information about included packages.

� You see what Leksah is doing by observing the output from the Log window.

Furthermore:

� You can add Packages with the context menu in the workspace pane. You can
construct new packages with Package -> New, from the menubar.

� You can add other modules by selecting �Add module� from the context menu of
the modules pane of the browser group.

� You can open panes you need by selecting Panes -> Browser | Log | ... from the
menubar.

12

� You can editing modules by selecting them in the Browser. You can search in the
modules pane of the browser by typing text.

You may as easily debug it

� Switch debugger Mode on.

� Pane -> Debugger

� Select the word �main� in your code

� Right click and choose �Eval� from the pop-up menu or press ctrl-enter.

� Switch of debugger Mode if you want to compile an executable.

It is probably counter productive for new users to use Candy mode (converts some
common ASCII based operators to Unicode alternatives) because all the tutorials use
ASCII. Switch it o� when you get irritated. Deselect Con�guration -> To Candy from
the menubar.

13

4 The Editor

Figure 3: File menu

Most of the time programming is editing source code. To
edit Haskell source �les Leksah uses the GtkSourceView2
widget. It provides editing, undo/redo, syntax highlighting
and similar features. In the �le menu (3) you �nd the cus-
tomary functionality to open, save, close and revert �les. To
avoid confusion, it is useful to be able to close all �les, or
all �les which are not stored in or below the top folder of
the current project (this is the folder where the .cabal �le
resides) at once - this helps you focus on your project. This
way it is as well possible to close all �les, which don't belong
to a workspace.
Leksah does not store backup �les. Leksah detects if a �le

which is currently edited has changed on disk and queries the user if a reload is desired.
(Attention: This don't currently work for Windows, so take care). When you open a
�le which is already open, a dialog pops up to inquire if you want to make the currently
open �le active, instead of opening it a second time (Leksah does not support multiple
views on a �le, but if you open a �le a second time, it's like editing the �le two times,
which makes little sense). The list of �les is shown as notebook tabs (on top or left of
the �les - as you prefer (Menu -> View -> Tabs Left).

Figure 4: Edit menu

When a �le has changed compared to the stored version,
the �le name is shown in red in the notebook tab, reminding
you that it needs to be saved before compilation.
If you want to change to a di�erent �le editor bu�er you

can open a list of all open �les by pressing the right mouse
button, while the mouse is over a notebook tab. You can
then select an entry in this list to select this �le. (See 4.4
for a better way to switch between source �les).
On the right side in the status bar at the bottom you can

see the line and column, in which the cursor currently is; and
if overwrite mode is switched on. In the second compartment
from the left you can see the currently active pane, which
is helpful if you want to be sure that you have selected the
right pane for some operation.
In the edit menu (4) you �nd the usual operations: undo,

redo, cut, copy, paste and select all. In addition you can
comment and un-comment selected lines in a per line style
(�); however, the comment symbol must start in the �rst column (beware of illegal
sequences like �# which may be automatically produced by inserting a comment in front
of some symbol).
Selected blocks of code can be shifted left or right using the tab or Tab/Shift-Tab keys.

Furthermore, you can align some special characters (=,<-,->,::,|) in selected lines. The
characters are never moved to the left, but the operation is very simple and takes the

14

Figure 5: Find bar

rightmost position of the special character in all lines, and inserts spaces before the �rst
occurrence of this special characters in the other lines for alignment.

4.1 Find and Replace in the current folder

Leksah supports searching in text �les. When you select Edit/Find from the menu the
�nd bar will open (5) and you can type in a text string. Alternatively you can hit Ctrl-F
or select a text and hit Ctrl-F (a standard keystrokes binding, which can be con�gured,
see 9.3). Pressing the up and down arrow will bring you to the next/previous occurrence
of the search string. Hitting Enter has a similar e�ect as the down arrow. Hitting Escape
will closes the �nd bar and sets the cursor to the current �nd position. You have options
for case sensitive search (labeled �c.S.�), for searching only whole worlds (toggle Words)
and for wrapping around (button Wrap), which means that the search will start at the
beginning/end of the �le, when the end/beginning is reached. If there is no occurrence
of the search string in the currently open �le the entry turns red.
You can search for regular expressions by switching on the Regex option. Leksah

supports regular expressions in the Posix style (by using the regex-posix package). When
the syntax of regular expressions is not legal, the background of the �nd pane turns
orange.
To replace a text enter the new text in the replace entry and select replace or replace

all.
The last �eld on the line gives you a mean to jump to a certain line number in the

current text bu�er.

4.1.1 Search in the package: Grep

Searching for text in all �les in a package is often useful For this feature the grep program
must be on your path. You can then enter a search string in the �nd bar and search for all
occurrences for the string in the folder and sub-folder of the current package with pressing
the Grep button. A pane will open (6), and in every line show where the expression was
found (with context). By clicking on the line, the �le is opened in an editor and the focus
is set to the selected line. You can navigate between lines with the up and down keys.
Greps supports the search for regular expressions.

4.2 Source Candy

When using Source Candy, Leksah reads and writes pure ASCII Code �les, but can
nevertheless show you nice symbols like λ.This is done by replacing certain character
combinations by a Unicode character when loading a �le or when typing, and replace it
back when the �le is saved.

15

Figure 6: Grep pane

The use of the candy feature can be switched on and o� in the menu and the preferences
dialog.
This feature can be con�gured by editing a .candy �le in the .leksah folder or in the

data folder. The name of the candy �le to be used can be speci�ed in the Preferences
dialog.
Lines in the *.candy �le looks like:
"\" 0x03bb --GREEK SMALL LETTER LAMBDA

"->" 0x2192 Trimming --RIGHTWARDS ARROW
The �rst entry in a line are the characters to replace. The second entry is the hex-

adecimal representation of the Unicode character to replace with. The third entry is an
optional argument, which speci�es, that the replacement should add and remove blanks
to keep the number of characters. This is important because of the layout feature of
Haskell. The last entry in the line is an optional comment, which is by convention the
name of the Unicode character.
Using the source candy feature can give you problems with layout, because the align-

ment of characters with and without source candy may di�er!

Leksah reads and writes �les encoded in UTF-8. So you can edit Unicode Haskell
source �les. When you want to do this, switch of source candy, because otherwise
Unicode characters may be converted to ASCII when saving the �le.

16

Figure 7: Source candy example

4.3 Completion

Leksah has the ability to auto complete identi�ers in text you type. Additionally the
Package, Module and Type of the id gets displayed if selected. The completion mode
can either be always on, or only be activated on pressing Ctrl+Space (or a user de�ned
keystroke). You can choose between these two possibilities in the Preferences.

Figure 8: Completion

Autocompletion has currently limitations:

� locally de�ned names are not included

� Quali�ed imports are not handled

� All names from all packages imported are provided; this may be more than you
want

17

4.4 Using the Flipper to Switch Between Editors

You can change the active pane using a keyboard shortcut to bring up the �ipper. It lists
the most recently used panes �rst so they are easier to get to. The default shortcuts for
the �ipper are Ctrl+Tab and Ctrl+Shift+Tab or Ctrl+Page Down and Ctrl+Page Up.
The approach in Leksah is comparable to the Alt+Tab and Alt+Shift+Tab used to

switch between programs in the OS (Ubuntu, Windows).

4.5 Change Your Preferences for the Editor

Figure 9: Editor Preferences

When selecting Con�guration / Edit Prefs the preferences pane opens, which has a
selection called Editor (Figure 8), were you can edit preferences for the editor. Some of
the options you �nd here refer to visual elements, like the display of line numbers, the

18

font used, the display of a right margin and the use of a style �le for colors and syntax
highlighting.
You can set here the Tab size you want. Leksah always stores tabs as spaces. Using

hard tabs is not recommended for Haskell and the Haskell compilers allow only tab size
of 8.
Leksah o�ers as well to remove trailing blanks in lines, which you may choose as

default, because blanks at the end of lines make no sense in source code.

Leksah dialogs o�er mostly a Apply, save and a close button. Be aware that the close
button does not save your changes; press apply, save and then close! We will change this
for the next version.
In dialogs, where you select something, there is typically an add button, selecting does
not add, neither! Therefore: adding an item means select item, add, save, close.

4.6 Further info

The work with the editor is in�uenced by other features

� For background building, which may save your �les automatically after every change
refer to 5.4.8.

� For information about editor preferences go to 4.5.

19

5 Working with Projects: Workspaces and Packages

Haskell organizes software projects in packages, which are managed independently. A
package is compiled and linked as a unit to produce one or more executables or/and a
library. It is installed with the package manager Cabal. A package can be uploaded to
Hackage. And provided packages are downloaded from Hackage and installed. Packages
have version numbers and specify version ranges for dependencies. Cabal assures that, if
a packages is compiled, correct versions of other packages are selected.
The di�culties, when working with a project where source code under development is

spread over several packages, are overcome in Leksah with the concept of a workspace.
It combines several packages and allows smooth working with �les from all packages.
Leksah always works in a workspace and always needs at least one package, to do any-

thing useful. This seems overkill for very simple projects, where the workspace contains
just one package and this package just one source module producing one executable, but
Leksah provides defaults that reduce the e�ort to a minimum. The principle to always
to work in a workspace and in a package is bene�cial in the long run, because it gives a
smooth transition from a one-shot idea to a complex projects and integrates the widely
used cabal system fully.
Leksah, in addition, saves the state of your work environment with a workspace: so

you can switch between workspaces and get exactly back to where you stopped working
when leaving the workspace: the same �les open in editors and the cursor in the same
�le and position. When you open a workspace, and a session is attached to it, Leksah
prompts you, if you want to switch to the session associated with the workspace. Leksah
silently always saves the session for the workspace you are closing.
If you have auto-build on and you change a �le, Leksah detects if this �le belongs to

any project in your Workspace. If this is the case, it builds the package. So the source
�le you are working on, doesn't need to belong to the active package. Leksah will detect
and compile the package for you. The active project is important for the menu items of
the package menu, because they always work on the active package.

� Background build can be permanently set in Prefs -> Build -> Background build.

You can temporarily enable and disable it from the toolbar with this button: .

� You can set, if Leksah automatically save all �les before building, by the setting
Prefs -> Build -> Automatically save all �les before building.

� Linking can take a long time, and on Windows we can't interrupt the build process
in the moment, so it may be an advantage to switch of linking. This can be done
by: Prefs -> Build -> Include linking in background builds. You can temporarily

enable and disable it from the toolbar with this button: .

� The same option (disable linking) can be used to disable cross package build tem-
porarily.

20

5.1 Cross package build

The following is valid in compiler mode: Depending on your settings the following may
happen. After a library has been successfully build, it will be installed if:

� �Include linking in background builds� is on and either

� �Install always after a successful build� is selected or

� �Install if it's a library with depended packages in the workspace� is selected,
and it has dependent packages

After this, dependend packages will be build. If you want a background build, but only
for the one package you're working on, you can temporarily disable this mechanism, by

deselecting .

5.2 File Organization with Workspaces

A workspace is represented by a �le (workspace_name.lkshws) in a directory. You may
choose a hierarchical folder structure with a workspace �le at the top and the projects in
sub-folders for complex projects, but you can as well put all workspaces in one directory
and put all packages �at. You have to use care when you create a new workspace �le.
Each package directory contains at least a cabal �le (packagename.cabal) and typically

folders for the source �les, following the usual Haskell ghc convention of hierarchical
module names.
Cabal controls the compilation and linking of packages with GHC and puts the results

in a dist folder in the package; this folder is reconstructed often and may be deleted
without loss. In the folder package_name/dist/build/executable_name you �nd the
executable, but it is also installed in the folder ~ /.cabal/bin (for a build with the �user
�ag. You may wish to add this folder to your search path).

5.3 Workspace Operations

5.3.1 New workspace

Figure 10: Workspace
Menu

Under the menu workspace you �nd commands to create a
new workspace with a speci�c name and select the folder
in which it should reside. The windows title and the 3.
compartment of the status bar informs you always about
the currently open workspace.

5.3.2 Add packages to the workspace

Open the workspace pane (from menu (Panes�Workspace)
and do a right-click to get the pop-up menu to add a package
by selecting the corresponding cabal �le.

21

5.3.3 Open workspace

When starting, Leksah opens the last workspace used. You can change to another
workspace by opening the corresponding workspace �le, or by choosing from the list
of recently used workspaces. When opening a Workspace you can choose to

5.3.4 Clean and make workspace

A workspace can be cleaned, meaning all packages gets cleaned and must be recompiled
from scratch. Make builds all the packages in a meaningful order, and installs libraries
if needed. It only stops if an error occurs.

5.3.5 Jump between errors

There are menu items to move to the next or the previous error the compiler found.
You can as well use keyboard shortcuts for this: ctr-j and shift-ctrl-j. It is as well
possible to move by pointing to the error messages in the log pane or error pane.

5.3.6 Add all imports

If you miss imports (given error messages (�xx is not in scope�) ctrl-r is adding them
automatically to your import list. Limitation: it does so only, if the modules they export
are in a workspace package or are in a package listed in the build dependencies of the
package.

5.4 Packages

Figure 11: Package Menu

The concept of a package is used to handle a unit of work
for the development of some library or executable. It is, in
the �rst place, the unit Cabal deals with and is a standard
in the Haskell community.
Leksah stores data for packages in the standard cabal �les.

The same �les can be used outside of leksah: for example,
you can issue the command cabal install in the folder that
contains the cabal �le and cabal will (as it would inside
leksah) con�gures, compiles and links and install or register
the library or executable produced.

5.4.1 Opening and activating a package

Leksah uses Cabal for package management, and opening a
package is done by opening the corresponding .cabal �le. To
open a package select Add Package from the context menu
of the workspace, select the *.cabal �le of the desired package. You must not have more
than one *.cabal �le in a folder!

22

For workspaces with more then one package, you can activate a package in the workspace
pane, by double clicking on it or by selecting Activate Package from the context menu.
The active package is the one that the commands in the Package menu refers to. (e.g.
con�gure, build, install).
Leksah shows the currently active package in the third compartment in the status bar

and in the window title. The package �le contains appropriate defaults and for a small
program, you may just save and close it.

5.4.2 New package

To start with a new package select Package / NewPackage from the menu. Then you
have to select a folder for the project, this is by GHC convention the same name you will
give to your package in the package editor (see 5.4.3). Then the package editor will open
to collect the package details.
This currently does not work, if an editor for a di�erent package is open.

5.4.3 Package editor

The package editor (12) is an editor for cabal �les and but you can edit the cabal �les
in your regular text editor as well. Leksah works (usually) with the cabal �les you and
others have already written, for example those you get when you install a package from
Hackage. Since cabal �les o�er complex options the editor o�ers many separate sub-
panes in a list on the right. For a complete description of all options see the Cabal User's
Guide.
The package editor does currently not support the cabal con�gurations feature. If you

need cabal con�gurations, you need to edit the cabal �les as a text �le separately. Leksah
uses standard cabal �les with no modi�cations this is no problem just the package editor
will not work for you.

5.4.4 The most important parts of cabal �les

A package has, as a minimal requirement, a name and a version (default is 0.0.1 � meaning
something like ��rst idea� �). If your code uses other packages then they must be listed in
dependencies. This will be at least the base package (which is entered by default). This is
independent whether you downloaded them, e.g., from Hackage produced them yourself.
Version numbers are used to document (and enforce) that older versions of a program use
the corresponding older versions of other packages with which it was developed originally.
The result of the packages can be an executable and you enter the name of the Haskell

�le that contains the main function in the executable pane and the name of the exe-
cutable. The result of the package can be a library; in the corresponding pane you tick
o� the modules which should be exposed (i.e., their exports can be used in other pack-
ages). Cabal gives the possibility to build more then one executable from one package
and to build a library and executables from one package.
You have to specify a build info. With build information you give additional informa-

tion, e.g:

23

http://www.haskell.org/ghc/docs/latest/html/Cabal/index.html
http://www.haskell.org/ghc/docs/latest/html/Cabal/index.html

Figure 12: PackageEditor 1

� where the sources can be found (relative to the root folder of the project, which is
the one with the cabal �le).

� what additional non-exposed or non main modules your project includes

� compiler �ags

� used language extensions in addition to Haskell 98 (These can also be speci�ed in
the source �les with pragmas)

� and many more ...

Because more than one executable and a library can be build from one package, it is
possible to have cabal �les with more than one build info. The package editor deals with
this by the buttons Add / Remove Build Info. Every build info gets an index number,
and for executables and a library you specify the index of the build info.

5.4.5 Initializing a package: Clean and con�gure operations

Before a package can be acted on it must be con�gured; you may clean a package (i.e.,
delete its dist folder) to start afresh.
Con�gure checks that the packages the current packages depend on are installed in

GHC package manager; it checks for name and version, if you specify them. If an
Hackage package is missing, you can cabal install it in a terminal window.

24

Two types of errors regarding packages may be reported:
While con�guring, Cabal checks that the packages you have listed in the depends on

section are installed on your computer. If one of your packages is missing (or missing
the version that is needed) you can install it either � for packages you have the source
on your computer, e.g. because you wrote them � by switching Leksah to the folder
where this package is and con�gure, build and install them with the command cabal
install. For packages that are on Hackage � use a console, go to the directory where you
keep such sources and type cabal install packageName (possibly package_name-version);
cabal then recursively installs the package and all packages it depends on.
Separate from this error message the case, where the compiler misses a module you

want to import. Ghc provides an error message, indicating what package you have to
add to the depends on' section in the cabal �le. Edit the package, add the dependency
and do con�gure/build.
You have to take care as well, that there is a user and a global package db. Leksah

uses the �user �ag by default, to minimize errors.

5.4.6 Building

The most frequently used functionality with packages is to make a build. If the package
was not con�gured before, Leksah does that step automatically. When you start a build,
you can see the standard output of the Cabal build procedure in the Log pane.
A build may produce errors and warnings. If this is the case the focus is set to the �rst

error/warning in the Log and the corresponding source �le will open with the focus at
the point where the compiler reports the error. You can navigate to the next or previous
errors by clicking on the error or warning in the log window, or by using the menu, the
toolbar or a keystroke.
In the statusbar the state regarding to the build is displayed in the third compartment

from the right. It reads Building as long as a build is on the way and displays the
numbers of errors and warnings after a build.

This is the symbol, which initiates a build when clicked on the toolbar (Ctrl-b).
The error pane (13) shows the errors in the form of a table and provides the same

functionality you �nd in the log, but it may be more convenient to use.

5.4.7 Run

You can run your program after the build operation has compiled and linked it. there is

a convenient button to start it!

5.4.8 Background build

Leksah can run builds while you work and highlight errors as it �nds them. This works
with a timer that runs continuously in the background. If there are changes made to any
open �le it . . .

25

Figure 13: Error Pane

� interrupts any running build by sending SIGINT (this step is OS X and Linux only
at this point, it's not working on MS Windows)

� waits for any running build processes to �nish

� saves all the modi�ed �les

� starts a new build

Current limitation: Because we can't interrupt the build on windows there is an option
in the Leksah build preferences to have it skip the linking stage in background builds.
This reduces the delay before a next build starts. Background build and linking can be
con�gured in the preferences and as well switched on and o� from the toolbar.

This is the toggle, which switches background build on or o� in the toolbar.

The Linking toggle that switches background build on or o�.

5.4.9 Build system �ags

Cabal allows more operations than just build; for example producing documentation with
Haddock (with The �Build documentation� item in the package menu). For each of these
operations you can enter the speci�c �ags they require for you special case. We give here
two often examples of �ags, others work similarly and we recommend that you consult
the respective documentations.
(10) consult the Cabal User's Guide.
Cabal needs the �user �ag (which is set by default in Leksah) to install the result of a

built in the user package database (the alternative is �global to put the resulting �les in
global space in ghc-pkg).
Haddock documentation for the leksah source will not be build, because it is not a

library unless you pass the �executable �ag. The �ags are stored in a �le called IDE.�ags
in the root folder of the project.

26

http://www.haskell.org/ghc/docs/latest/html/Cabal/index.html

Figure 14: Package Flags

5.5 Import Helper

A frequent and annoying error is the Not in scope compiler error. In the majority of
cases it means that an import statement is missing and to write import statements is a
frequent and annoying task. In Leksah if the compiler informs about a missing import,
you can choose Add import from the context menu in the log pane. Leksah will then add
an import statement to the import list. If there is more than one module that exports
this identi�er, a dialog will appear which queries you about the module you want to
import it from.
Leksah then adds a line or an entry to the import list of the a�ected module with the

compiler error. Leksah imports individual elements, but imports all elements of a class
or data structure if one of them is needed. The import helper can work with quali�ed
identi�ers and will add a correct import statement. You can as well select add all imports
from the context menu, in which case all Not in scope errors will be treated sequentially.

When Leksah does not �nd an identi�er update the Leksah database.

Update Metadata or (Ctrl-m)

The import helper just looks in imported packages, so if you miss a package import,
you have to �x it manually.

27

Obviously some not in scope errors have other reasons, e.g. you have misspelled some
identi�er, which can't be resolved by adding imports. After adding all imports, you have
to save the �le and then start a new build.

28

6 Module Browser and Metadata

sort symbol

function

data

constructor

slot

type

newtype

class

member

instance

rule

Table 1: Sorts of
identi�ers

Leksah collects data about the modules of all installed
Haskell packages on your system. It does this by reading
the Haskell interface �les .hi �les (from GHC). It as well
collects source positions and comments from sources. For
this it looks in the source directories you speci�ed in the
preferences and downloads and unpacks sources from Hack-
age depending on your settings. Starting from the current
version, Leksah can as well use prebuild metadata it might
�nd on the web, to provide metadata for packages you have
sources for, but the call to the Haddock library fails for some
reason.
The packages in the workspace are treated di�erently, as

not only external exported entities are collected, but all ex-
ports from all modules are collected. As well identi�ers,
which are not exported from a module get listed. The source
symbol for them is shown in gray.
This metadata is used to answer questions like:

� Which packages and modules export this identi�er?

� What is the type of the exported identi�er?

If the source was found, it lists as well :

� The comment for this identi�er

� and can mark the item in the source �le at the correct position

If you like to get information about some identi�er in the code, the easiest way is to press
Ctrl and double click on it.
More precisely the operation starts with a release of the left mouse button with a

selection with Ctrl pressed; You can use this if the double click doesn't select the
intended area. If the identi�er is known unambiguously the modules and info pane will
show information about it. If more than one possibility exist the search pane will open
and present the alternatives.
The sorts of the identi�ers shown are di�erentiated by the symbols you �nd in Table

1. Note as well the special symbol for identi�ers exposed, but only indirectly, because

the de�nition is imported from another module.

6.1 The Module Browser

The module browser (15) shows information about modules and their interface separated
in scopes: package, workspace, and system. If no package or workspace is open only the
system scope has information. (If a workspace/package is open, it's name(s) are displayed
in the third subdivision from the left of the status and in the title bar.)

29

Figure 15: Module browser

The scope of the displayed information is selected with the radio button on top of
the modules pane: The Package scope shows only modules which are part of the active
project. The Workspace scope shows all modules of all packages in the workspace. The
System scope shows all modules of installed packages of the system.
(It lists all modules of installed packages. These you would get with ghc-pkg list.

Leksah scans the user and the global package database, when both are present).
The amount of information displayed may overwhelm you with details from packages

that are not of interest to you (Like e.g. like Haskell-98, ghc, or base-3.0*). Such packages
can be excluded, by blacklisting them. The packages you want to hide can be speci�ed
in the preferences and you can use the radio button at the right to hide them.
If you select a module in the modules list, its interface is displayed in the interface list

on the right. You can search for a module or package by selecting the modules list and
typing some text. With the up and down arrows you �nd the next/previous matching
item. With the escape key or by selecting any other GUI element you leave the search
mode.

If this icon shows up, Leksah has found a source �le or source position for this
element. You can open the source �le, or bring it to the front and display the source
for the selected location with a double click on the element. (the same is achieved with
selecting Go to de�nition from the context menu.

This is the same as before, but is used for de�nitions not exported from the module.

30

This icon indicates that the symbol is reexported from another module., because
its long list is not much hierarchically structured.
By selecting an element in the Interface List the so called Info Pane is shown with

detailed information (see next subsection).
The modules pane provides detailed information and are the quickest way to open a

source �le for edit. Go to the modules pane, select package or workspace scope, possibly
�nd the module by entering some text, and double click on the module's name to open
the �le in the editor for editing the �le.

Figure 16: Construct module dialog

From the context menu of (right-click) the modules pane you can add a new module by
selecting Add module. The Construct Module dialog will open (16). You have to enter
the name of the module, the source path to use if alternatives exist. If the project is a
library you have to specify if the module is exposed. Leksah will construct the directory,
modify the cabal �le and construct an empty module �le from a template (The template
is stored in the �le module.lksht in the data folder of the project, and will be read from
the .leksah-** folder if you want to provide a di�erent template �le there.
The modi�cation of the cabal �le will currently only happen, if it does not contain

con�gurations.

The Info Pane

The Info Pane is the lower pane of the module browser and shows information about an
interface element, which may be a function, a class, a data de�nition or a type (selected,
for example, in the modules pane). It shows the identi�er, the package and module that
it is exported by, it's Haskell type and, if found, the Haddock documentation inserted in
the source as a comment.
If you select and initiate an identi�er search in an editor pane, the information about

this identi�er is automatically displayed in the info pane (maybe nothing!). The easiest
way to do this is to double click on an identi�er while pressing Ctrl.
Only previously collected metadata is available this way. If the item has changed you

could initiate an update of the information collected with update workspace metadata
(menu con�guration � update workspace data, or Ctrl-m).

31

Figure 17: Search pane

If a source location is attached, you can go to the de�nition by clicking the Source
button.
You can select the module and the interface element in the modules pane by clicking

the Modules button.
With the Refs button a pane opens which displays modules which uses this element.
With the Docu button you can initiate an external search in a browser with e.g. Hayoo

or Hoogle, depending on the con�guration in the Preferences.
With the Search button you can initiate a metadata search for the identi�er.

6.2 The Search Pane

You can search for an identi�er in the metadata by typing in characters in the entry at
the bottom of the pane (not the search entry at the bottom of the window!). The search
result depends on the settings in the search pane (17). You can choose:

1. The scope in which to search, which can be Package, Workspace or System. For
Package and Workspace scopes you can search with or without imports, which gives
5 di�erent scopes.

2. The way the search is executed, which can be exact, pre�x or as a regular expression.

3. You can choose if the search shall be case sensitive or not.

The result of the search is displayed in the list part of the Search pane.
You can see if the module reexports the identi�er, or if the source of the identi�er

is reachable. When you single click on a search result, the module browser shows the

32

corresponding information. If you double click on an entry, the modules and info pane
shows the corresponding information.
If you double click on an identi�er while pressing Ctrl in an editor pane, a case sensitive

and exact search in the is started.

33

7 Debugger and Interpreter mode

Figure 18: Debug & Bu�er
menu

You can switch Debugger mode on only from the toolbar
with the:

toggle, which switches debugger Mode on or o�.
In debugger mode the packages and modules for your cur-

rent project are loaded into GHCi.
In debugger mode, the menu entries from the Debug menu

are no longer disabled (Fig 18), and the context menu of
source bu�ers have entries that were not meaningful in the
regular (GHC) mode. There is also a group of panes specif-
ically used for debugging, allowing you to manage break-
points, observe variables, etc.
You can open the debugger group pane by choosing Panes

/ Debugger. Commands using the debugger are given mostly
in the source editor pane with a context menu: You select
some text and right-click to get the context menu. it lets
you:

� Evaluate the selected expression in the interpreter
and observe the result. If no text is selected the cur-
rent line is taken as input. Select eval. The result of
the evaluation is shown in the log window and as it in
the variables pane. You can as well use the keystroke
Ctrl-Enter.
Choose �Eval & Insert�, to insert a string representa-
tion of the result after the selected expression.

� Determine the type of an expression: Select the ex-
pression in a source bu�er and select Type from the
context menu.

� Get info about an identi�er select: Select Info from
the context menu.

� Get the kind of a type select: Select Kind

� Step through code: Select the expression in a source
bu�er. Select step from the context menu (or F7). Use
the toolbar icons (or shortcuts) for stepping

Step (F6), Step local (F7)

Step in module (F8), Continue (F9)

� Set breakpoints by putting the cursor at the breakpoint and select set breakpoint
from the context menu. Run your application or test cases and start stepping at

34

Figure 19: Debug Pane

the break point. After a break point is reached you use the operations of GHCi
with convenient shortcuts.

The debugger has a pane in which you can enter expressions and have them evaluated.
The pane is a Haskell source bu�er, which has the reserved name _Eval. Its contents is
saved with the session.
Note that:

� breakpoints are set on identi�ers selected, not necessarily where you have found it
in the source (e.g., used in an expression);

� current breakpoints are listed in the breakpoints pane; you can remove breakpoints
from this pane

� While stepping through code, you can observe variables in the variables pane.
You can print or force a variable from the context menu of the variables pane. You
can update the pane from the context menu.

� You can observe an execution trace in the traces pane. Navigation in the traces
pane is currently not supported (:back, :forward).

� You can query information about the current state of GHCi from the Debugger
menu. E.g. Show loaded modules, Show packages and Show languages.

� You can directly communicate with GHCi by evaluating commands entered as text
in the source editor and select it. E.g. �:set ...�

For more information about debugging in GHCi read the GHCi section in the GHC
manual.

35

8 Metadata collection

Remember, that metadata is the data Leksah has collected from all the Haskell code
(including .hi �les for installed packages) it could reach on your computer.
The initial scan may take a long time (some minutes); when Leksah starts later, it

checks only for changes, but does not scan all �les again. Metadata collection depends
on the local con�guration, especially the list of places where Haskell code may be found,
which is entered in the preferences. Occasionally, you may �nd it useful to rebuild the
metadata.
Metadata collection can be manually triggered: If you select Con�guration -> Update

workspace data, the metadata for the current project is collected. This brings the meta-
data of the current project up-to-date. You can as well press Ctrl-m or hit this symbol

in the toolbar:
If you select Con�guration -> Rebuild workspace data, the metadata for the current

project is rebuild.
If you select Con�guration -> Update system data, Leksah checks, if a new library has

been installed and then collects metadata for additions.
If you select Con�guration -> Rebuild system data, Leksah rebuilds all metadata, which

may take a long time. Currently the preferred way to do this is to call leksah-server -rbo
+RTS -N2 from the command line. The reason for this is that the server process may
allocate a lot of memory during collection.

8.1 Background infos

The metadata collection itself proceeds di�erent for workspace and system packages:

� For workspace packages Leksah just uses the parser without typechecking and
maybe .hi �les if available.

� For system packages Leksah uses .hi �les and if sources are available Haddock as a
library.

Collection for system packages works as follows:

1. Packages you installed with cabal from Hackage. If Leksah can't �nd sources, it
does a cabal unpack in the source directory you speci�ed for this in the preferences
(By default .leksah-**/packageSources).

2. Source �les in the folders listed as source folder in the preferences. Leksah looks
for all .cabal �les it can �nd below the source folders. Therefore, Leksah collects
source information only from �Cabalized� projects (i.e., projects that have a .cabal
�le). From this information the �le source_packages.txt in the .leksah folder is
written. If you miss sources for a package in Leksah, consult this �le if the source
place of the package has been correctly found. You can run this step by typing in
a terminal: leksah-server -o (or �sources).

36

Figure 20: Metadata Preferences

3. Problems may occur due to preprocessing, header �les, language extensions, etc.
Error message produced while metadata collection indicate that not all information
for a package was found. If the Haddock call doesn't succeed, Leksah looks if it can
download a prebuild metadata package from the server, if this option is selected in
the preferences.

4. The result of metadata collection is stored in the folder .leksah-*.*/metadata in
�les called *.lkshm. In this folder for every package a metadata �le is stored (e.g.
binary-0.4.1.lkshm). These �les are in binary format. If you want to rebuild just
one package you can delete it here and update the system metadata. The �les
.lkshe specify the base path to sources, if the collection for sources was successfully
or if a metdata �le could be downloaded for this.

For the workspace packages a di�erent procedure is used.

1. Metadata is collected from the source directories of the packages you are working
on. The results are stored in a per module base in a folder with the package name
(e.g .leksah-*.*/metadata/package-*.*.*).

2. Update happens on a per �le base only for changed source �les.

37

9 Con�guration

Leksah is highly customizable and can be adapted to your speci�c needs and work or-
ganization. What follows here is not needed for initial use of Leksah (and need not be
read on a �rst lecture of the manual). Leksah works well with the default settings and a
desire to adapt better to your work habits comes only with extended use of Leksah. How-
ever, with time, you may use one or the other option to tailor Leksah to your personal
preference. It is easy! Here it is explained how this works.

9.1 Layout

Figure 21: View and panes
menus

Leksah has always one special pane, which is called the ac-
tive pane, and its name is displayed in the second compart-
ment from the left side in the status bar. Some actions like
moving, splitting, closing panes or �nding or replacing items
in a text bu�er act on the current pane, so check the display
in the status bar to see if the pane you want to act on, is
really the active one.
You can tailor the layout with the View menu to suit

your work style better. Internally, the panes are arranged
in a layout of a binary tree, where the leaves are horizontal
or vertical splits. Every area can be split horizontally or
vertically and panes can collapse. With the commands in the
View menu you manipulate this tree to change the layout.
In the initial pane positions part of the Preferences, you

can con�gure the placement of panes. Panes belongs to cat-
egories, and a category specify a path were a pane will open
.
The layout of the Leksah window contains areas which

contain notebooks which contain panes. The division be-
tween the two areas is adjustable by the user by dragging a
handle.
Panes can be moved between areas in the window. This

can be done by dragging the notebook tab, and release it on
the frame of another notebook. Alternatively you can use
keystrokes (Shift Alt Arrow) to move panes around. The
tabs of notebooks can be positioned at any of the four di-
rections, or the tabs can be switched o�.
Note that holding the mouse over the tabs and selecting

the right button brings up a menu of all panes in this area,
so that you can for example quickly select one of many open source bu�ers.
The layout will be saved with sessions. The session mechanism will be explained in

9.2.1

1 Currently there is no way to load di�erent layouts independent of the other data stored in a sessions.

38

9.1.1 Advanced layout: Group panes

A notebook cannot only contain single panes, but it can as well contain group panes,
which have a layout on their own and may contain arbitrary other panes; the debug pane
is an example for a group pane. This gives you the possibility to arrange the subpanes
in a debugger pane as it �ts you best.
A new group starts by selecting View / Group from the menu. You have to give a

unique name for the group. Then you can arrange panes in the group as you like. When
closing a group, and the group is not empty, you have to con�rm it.

9.1.2 Using Leksah with multiple displays: Detached windows

This feature allows you to move panes to a separate window on a separate display. This
is as simple as: You select a notebook and choose View / Detach from the menu bar.
Then the notebook is opened in a new window, which you can then move to another
screen.
When you close the detached window, the pane goes back to the place where it was

before detaching. The state of detached window is remembered, when you close Leksah,
and they will be reopened when you restart Leksah.
It is possible to drag and drop panes between windows. But splitting and collapsing of

panes is disabled for detached windows. So a recommended way to use this feature is to
split a pane, arrange the panes that you want to detach in the area of the new notebook.
Select the new notebook and detach.
The detached windows have no menu bar, toolbar and status bar on their own. This

may be a problem, when you want to select a menu entry: the focus changes from a pane
in the detached window to a pane in the main window, and you may not be able to do
what you want. We recommend that you use keystrokes or context menus.

9.2 Session handling

When you close Leksah the current state is saved in the �le current.lksks in the ~/.leksah-
. folder. A session contains the layout of the window, its content, the active package
and some other state. When you restart Leksah it recovers the state from this informa-
tion.
When you close a workspace, the session is saved in the folder of the workspace in

a �le named workspacename.lksks. When you open a workspace and Leksah �nds a
workspacename.lksks �le together with the workspace �le you are going to open, you get
prompted if you want to open this session (this means mostly opening the �les you had
open before in the editor). This helps you to switch between di�erent workspaces you
are working on.
In addition, sessions can be stored and loaded with a name manually by using the

session menu, but the need to use these features occurs rarely. The menu Con�guration
-> Forget Session is useful if you inadvertently changed the layout drastically and do not
want the current session to be stored.

39

9.3 Shortcuts

You can con�gure the keystrokes by providing a keymap �le, which should be be in the
~/.leksah-0.8 folder. The name of the key map �le to be used can be speci�ed in the
Preferences dialog (without extension!).
A line in the .keymap �le looks like:
<ctrl>o -> FileOpen "Opens an existing �le"
Description of the key or key combination: Allowed modi�ers are <shift> <ctrl>

<alt> <apple> <compose>. <apple> is on a Microsoft keyboard the windows key
(and on a Mac, obviously, the apple key!). <compose> is right ALT key, often labeled
Alt Gr. It is as well possible to specify Emacs like keystrokes in the following way:
<ctrl>x/<ctrl>f -> FileOpen "Opens an existing �le"
The name of the action can be any one of the ActionDescr's given in the action function

in the Module IDE.Command. The comment following will be displayed as tool tip for
the toolbar button, if one exists for this action.
Every keystroke must at most be associated with one action, and every action may

only have one associated keystroke.
Simple keystrokes are shown in the menu, but Emacs like keystrokes are not. This

is because simple keystrokes are handled by the standard GTK mechanism, while other
keystrokes are handled by Leksah.
Independently how you initiated an action, by a menu, a toolbar button or a keystroke,

the keystroke with its associated ActionsString is displayed in the Status bar in the
leftmost compartment.

9.4 Con�guration �les

Leksah stores its con�guration in a directory called ~/.leksah-*.* under your home folder.
Indexing the hidden Leksah directory with the version number avoids that changes to
preferences �le layout from version to version cause di�culties. Moving your preferences
from a previous version can potentially be automatic.
The �le prefs.lkshp stores the general preferences. It is a text �le you could edit

with a text editor, but more comfortable and safer is to do it in Leksah with the menu
Configuration / Edit Prefs from the menu.
If no preference �le is found in your .leksah-*.* folder then the global prefs.lkshp in the

installed data folder will be used. If a preference �le get corrupted, which means Leksah
does not start; it is then often su�cient to just delete the preference �le.
The source_packages.txt �le stores source locations for installed packages. It can be

rebuild by calling leksah-server in a terminal with the -o or �sources argument . Do this
after you moved your source or added sources for previous installed packages without
sources.
Files for Keymaps (keymap.lkshk) and SourceCandy(candy.lkshc) may be stored in the

~/.leksah-*.* folder and will be found according to the name selected in the Preferences
Dialog. Leksah �rst searches in this folder and after this in the /data folder.

40

10 The Leksah Project

The development of an integrated Development Environment is a major undertaking and
Leksah should become increasingly supported by the user community. If you are a user
or just test Leksah, we would appreciate to here from you. Do not miss to report bugs,
unclear or wrong information in the documentation and suggestion for improvements on
the Leksah issue tracker.
Everyone is invited to contribute. Spreading the word, supplying error reports, pro-

viding keymap and candy �les, providing a tutorial, caring for a platform will develop
are all helpful and meaningful ways to contribute.
Leksah will advance over time and become more useful. Possible extension and en-

hancements are:

� Package editor with con�gurations

� Add traces to the Debugger

� Support for some kind of plug-ins or extensions

� Context enriched completion

� Version Control (Darcs, ...)

� Testing (Quick check,...)

� Object browser

� Coverage (HPC,...)

� Pro�ling (Ghc Pro�ler,...)

� Re-factoring (HaRe,...)

� FAD (Functional Analysis and Design,...)

Acknowledgment
Thanks to Ricardo Herrmann for making the new Leksah logo.
Thanks to Fabian Emmes, who created the icons for the module browser.
Thanks to Lakshmi Narasimhan for packaging for Fedora.
Thanks to all others who helped us with patches, bug reports and helpful feedback.

41

11 Appendix

11.1 Command line arguments

for leksah-server:

Leksah Haskell IDE (server) Usage: leksah-server [OPTION...] files...

-s --system Collects new information for installed packages

-r[Maybe Port] --server[=Maybe Port] Start as server.

-b --rebuild Modifier for -s and -p: Rebuild metadata

-o --sources Modifier for -s: Gather info about pathes to sources

-v --version Show the version number of ide

-h --help Display command line options

-d --debug Write ascii pack files

-e Verbosity --verbosity=Verbosity One of DEBUG, INFO, NOTICE, WARNING, ERROR, CRITICAL, ALERT, EMERGENCY

-l LogFile --logfile=LogFile File path for logging messages

-f --forever Don't end the server when last connection ends

-c --endWithLast End the server when last connection ends

for leksah:

Usage: leksah [OPTION...] files...

-v --Version Show the version number of ide

-l NAME --LoadSession=NAME Load session

-h --Help Display command line options

-e Verbosity --verbosity=Verbosity One of DEBUG, INFO, NOTICE, WARNING,

ERROR, CRITICAL, ALERT, EMERGENCY

11.2 The Candy �le

"->" 0x2192 Trimming --RIGHTWARDS ARROW

"<-" 0x2190 Trimming --LEFTWARDS ARROW

"=>" 0x21d2 --RIGHTWARDS DOUBLE ARROW

">=" 0x2265 --GREATER-THAN OR EQUAL TO

"<=" 0x2264 --LESS-THAN OR EQUAL TO

"/=" 0x2260 --NOT EQUAL TO

"&&" 0x2227 --LOGICAL AND

"||" 0x2228 --LOGICAL OR

"++" 0x2295 --CIRCLED PLUS

-- "::" 0x2237 Trimming --PROPORTION

-- ".." 0x2025 --TWO DOT LEADER

"^" 0x2191 --UPWARDS ARROW

"==" 0x2261 --IDENTICAL TO

" . " 0x2218 --RING OPERATOR

"\" 0x03bb --GREEK SMALL LETTER LAMBDA

"=<�<" 0x291e --

">�>=" 0x21a0 --

-- "$" 0x25ca --

">�>" 0x226b -- MUCH GREATER THEN

"forall" 0x2200 --FOR ALL

-- "exist" 0x2203 --THERE EXISTS

"not" 0x00ac --NOT SIGN

"alpha" 0x03b1 --ALPHA

"beta" 0x03b2 --BETA

"gamma" 0x03b3 --GAMMA

"delta" 0x03b4 --DELTA

"epsilon" 0x03b5 --EPSILON

"zeta" 0x03b6 --ZETA

"eta" 0x03b7 --ETA

"theta" 0x03b8 --THETA

42

11.3 The Keymap �le
--Default Keymap file for Leksah
--Allowed Modifiers are <shift> <ctrl> <alt> <apple> <compose>
--<apple> is the Windows key on PC keyboards
--<compose> is often labelled Alt Gr.
--The defined values for the keys can can be found at
-- http://gitweb.freedesktop.org/?p=xorg/proto/x11proto.git;a=blob_plain;f=keysymdef.h.
-- The names of the keys are the names of the macros without the prefix.
--File
<ctrl>n -> FileNew "Opens a new empty buffer"
<ctrl>o -> FileOpen "Opens an existing file"
--<ctrl>x/<ctrl>f -> FileOpen "Opens an existing file"
<ctrl>s -> FileSave "Saves the current buffer"
<ctrl><shift>s -> FileSaveAll "Saves all modified buffers"
<ctrl>w -> FileClose "Closes the current buffer"
<alt>F4 -> Quit "Quits this program"
--Edit
<ctrl>z -> EditUndo "Undos the last user action"
<shift><ctrl>y -> EditRedo "Redos the last user action"
--<ctrl>x/r -> EditRedo "Redos the last user action"
<ctrl>a -> EditSelectAll "Select the whole text in the current buffer"
<ctrl>f -> EditFind "Search for a text string (Toggles the "
F3 -> EditFindNext "Find the next occurence of the text string"
<shift>F3 -> EditFindPrevious "Find the previous occurence of the text string"
<ctrl>l -> EditGotoLine "Go to line with a known index"
<ctrl><alt>Right -> EditComment "Add a line style comment to the selected lies"
<ctrl><alt>Left -> EditUncomment "Remove a line style comment"
<alt>Right -> EditShiftRight "Shift right"
<alt>Left -> EditShiftLeft "Shift Left"
--View
<alt><shift>Left -> ViewMoveLeft "Move the current pane left"
<alt><shift>Right -> ViewMoveRight "Move the current pane right"
<alt><shift>Up -> ViewMoveUp "Move the current pane up"
<alt><shift>Down -> ViewMoveDown "Move the current pane down"
<ctrl>2 -> ViewSplitHorizontal

"Split the current pane in horizontal direction"
<ctrl>3 -> ViewSplitVertical

"Split the current pane in vertical direction"
<ctrl>1 -> ViewCollapse "Collapse the panes around the currentla selected pane into one"

-> ViewTabsLeft "Shows the tabs of the current notebook on the left"
-> ViewTabsRight "Shows the tabs of the current notebook on the right"
-> ViewTabsUp "Shows the tabs of the current notebook on the top"
-> ViewTabsDown "Shows the tabs of the current notebook on the bottom"
-> ViewSwitchTabs "Switches if tabs for the current notebook are visible"

<ctrl>t -> ToggleToolbar
-> HelpDebug
-> HelpAbout

<ctrl>b -> BuildPackage
<ctrl>r -> AddAllImports
<ctrl><alt>r -> RunPackage
<ctrl>j -> NextError
<ctrl><shift>j -> PreviousError
<ctrl>o -> ShowModules
--<ctrl>i -> ShowInterface
-- <ctrl>i -> ShowInfo
<ctrl><shift>e -> EditAlignEqual
<ctrl><shift>l -> EditAlignLeftArrow
<ctrl><shift>r -> EditAlignRightArrow
<ctrl><shift>t -> EditAlignTypeSig
<alt>i -> AddOneImport
<alt><shift>i -> AddAllImports
-- "For the next to entries the <ctrl> modifier is mandatory"
<ctrl>Page_Up -> FlipUp "Switch to next pane in reverse recently used oder"
<ctrl>Page_Down -> FlipDown "Switch to next pane in recently used oder"
<ctrl>space -> StartComplete "Initiate complete in a source buffer"
F6 -> DebugStep
F7 -> DebugStepLocal
F8 -> DebugStepModule
F9 -> DebugContinue
<ctrl>Return -> ExecuteSelection
<ctrl>m -> UpdateMetadataCurrent

43

	Introduction
	Further Information
	Release Notes

	Installing Leksah
	How to Install: Brief Instructions
	Microsoft Windows
	Mac OS X
	Linux from Distro Packages
	Install from Hackage
	Post Installation steps
	First start of Leksah
	First start dialog

	Hello World example
	The Editor
	Find and Replace in the current folder
	Source Candy
	Completion
	Using the Flipper to Switch Between Editors
	Change Your Preferences for the Editor
	Further info

	Working with Projects: Workspaces and Packages
	Cross package build
	File Organization with Workspaces
	Workspace Operations
	Packages
	Import Helper

	Module Browser and Metadata
	The Module Browser
	The Search Pane

	Debugger and Interpreter mode
	Metadata collection
	Background infos

	Configuration
	Layout
	Session handling
	Shortcuts
	Configuration files

	The Leksah Project
	Appendix
	Command line arguments
	The Candy file
	The Keymap file

